
UNIX is a Trade/Service Mark of the Bell System. 

This manual was C set on a Graphic Systems, Inc. 
phototypesetter driven' by the'TROFF formatting 'program 
Qperating under the 'PWB/UNIX system. The text of the 
manual was prepared using the Ef) rexteditor. 



ACKNOWLEDGEMENTS 

The form and organization of this manual, as well as a major fraction of its contents, have been 
copied from the UNIX Programmer's Manual-Sixth Edition, by K. Thompson and D. M. Ritchie 
(Bell Telephone Laboratories, May 1975). The number of our colleagues who have contributed 
to UNIX and PWB/UNIX software and documentation is, by now, too large to list here, but the use­
fulness and acceptance of UNIX and of PWB/UNIX is a true measure of their collective success. 

Piscataway, New Jersey 
May 1977 

- iii -

T.A.D. 
R.C.H. 
E.M.P. 



INTRODUCTION 

This manual describes the features of PWB/UNIX. It provides neither a general overview of UNIX 
(for that, see "The UNIX Time-Sharing System," Comm. ACM 17(7):365-75, July 1974, by 
D. M. Ritchie and K. Thompson), nor details of the implementation of the system. 

This manual is divided into eight sections: 

I. Commands and Application Programs 
II. System Calls 
III. Subroutines 
IV. Special Files 
V. File Formats and Conventions 
VI. Games 
VII. Miscellaneous 
VIII. System Maintenance 

Section I (Commands and Application Programs) describes programs intended to be invoked 
directly by the user or by command language procedures, in contradistinction to subroutines, 
which are intended to be called by the user's programs. Commands generally reside in the 
directory Ibin (for binary programs). Some programs also reside in lusr/bin, to save space in Ibin. 
These directories are searched automatically by the command interpreter called the Shell. 

Section II (System Calls) describes the entries into the UNIX supervisor, including the assembler 
and the C language interfaces. In the assembler, these system calls are invoked by the sys 
operation code, which is a synonym for the trap instruction. 

Section III (Subroutines) describes the available subroutines. Their binary versions reside in 
various system libraries in directory /lib. The subroutines available for C and for Fortran are 
also included there~ they reside in Ilibllibc.a and llibllibj.a, respectively. 

Section IV (Special Files) discusses the characteristics of each system "file" that actually refers 
to an inputloutput device. The names in that section refer to the Digital Equipment 
Corporation's device names for the hardware, instead of the names of the special files them­
selves. 

Section V (File Formats and Conventions) documents the structure of particular kinds of files~ 
for example, the form of the output of the assembler and the loader is given. Excluded are 
files used by only one command, for example, the assembler's intermediate files. 

Section VIII (System Maintenance) discusses commands that are not intended for use by the 
ordinary user, in some cases because they disclose information in which he or she is presum­
ably not interested, and in others because they perform privileged functions. 

Each section consists of a number of independent entries of a page or so each. The name of 
the entry is in the upper corners of its pages. Entries within each section are alphabetized. The 
page numbers of each entry start at 1. 

All entries are based on a common format, not all of whose parts always appear: 

The NAME part repeats the name of the entry and states (very briefly) its purpose. 

The SYNOPSIS part summarizes the use of the program being described. A few conven­
tions are used, particularly in Section I (Commands): 

Boldface strings are considered literals, and are to be typed just as they appear 
(they are usually underlined in the typed version of the manual entries unless 
they are juxtaposed with an italic string). 

- v -



Italic strings usually represent substitutable arguments (they are underlined in 
the typed version of the manual entries). 

Square brackets H [ ]" around an argument indicate that the argument is 
optional. When an argument is given as ~~name'" or ~~file", it always refers to a 
file name. 

Ellipses H ••• " are used to show that the previous argument· prototype may be 
repeated. 

A final convention is used by the commands themselves. An argument begin· 
ning with a minus sign H_" or a plus sign ~'+" is often taken to be some sort 
of flag argument even if it appears in a position where a file name could appear: 
Therefore, it is unwise to have files whose names begin with ~~-" 
or 4'+". 

. The DESCRIPTION part discusses in detail the subject at hand. 

The FILES part gives the file names that are built into the program. 

The SEE ALSO part gives pointers to related information. 

The DIAGNOSTICS part discusses the diagnostic indications that may be produced. Mes· 
sages that are intended to be self·explanatory are not listed. 

The BUGS part gives known bugs and sometimes deficiencies. Occasionally , the sug· 
gested fix is also descri bed. 

A table of contents (organized by section and alphabetized within each section) and a permuted 
index derived from that table precede Section I. Within each index entry, the title of the 
manual entry to which it refers is followed by the appropriate section number in parentheses. 
This fact is important because there is considerable name duplication among the sections, aris­
ing principally from commands that exist only to exercise a particular system call. 

All manual entries are available on-line via the maneD command (q. v.). 

- vi -



HOW TO GET STARTED 

This section provides the basic information you need to gOet started on UNIX (we will use 
"UNIX" in this section to mean both "UNIX" and "PWB/UNIX", unless the distinction matters): 
how to log in and log out, how to communicate through your terminal, and how to run a pro­
gram. See UNIX for Beginners by B. W. Kernighan for a more complete introduction to the sys­
tem. 

Logging in. You must call UNIX from an appropriate terminal. UNIX supports full-duplex ASCII 

terminals. You must also have a valid user name, which may be obtained, together with the 
telephone number, from the system administrator. The same telephone number serves termi­
nals operating at speeds of 110, 150, and 300 baud. After a data connection is established, the 
log in procedure depends on the kind of terminal you are using. 

lOO-baud terminals: These terminals generally have a speed switch that should be set to 
"300" (or "30", for 30 characters per second) and a half-/full-duplex switch that 
should be set to full-duplex. When a connection is established, the system types 
"login:"~ you type your user name, followed by the "return" key. If you have a pass­
word (and you should!), the system asks for it, but does not print ("echo") it on the 
terminal. After you have logged in, the "return", "new-line", and "line-feed" keys 
will give exactly the same result. 

Model 17 TELETYPE®: When you have established a data connection, the system types 
out a few garbage characters (the '''login:'' message at the wrong speed). Depress the 
"break" (or "interrupt") key~ this is a speed-independent signal to UNIX that a 150-
baud terminal is in use. The system then will type "login:", this time at 150 baud 
(another "break" at this point will get you down to 110 baud)~ you respond with your 
user name. From the Model 37 TELETYPE, and any other terminal that has the "new­
line" function (combined "carriage-return" and "line-feed" pair), terminate each line 
you type with the "new-line" key (not the "return" key). 

It is important that you type your name in lower case if possible; if you type upper-case letters, 
UNIX will assume that your terminal cannot generate lower-case letters and will translate all sub­
sequent upper-case input to lower case. When you have logged in successfully, the Shell pro­
gram will type a "%" to you. (The Shell is described below under How to run a program.) 

For more information, consult login(I) and getty (VIII) , which discuss the login sequence in 
more detail, and tty (IV) , which discusses terminal input/output. See terminals(VU) for infor­
mation about various terminals. 

Logging out. There are three ways to log out: 

You can simply hang up the phone. 

You can log out by typing an end-of-file indication (ASCII EOT character, usually typed 
as "control d") to the Shell. The Shell will terminate and the "login:" message will 
appear again. 

You can also log in directly as another user by giving a login command. 

How to communicate through your terminal. When you type to UNIX, a gnome deep in the sys­
tem is gathering your characters and saving them. These characters will not be given to a pro­
gram until you type a "return" (or "new-line"), as described above in Logging in. 

UNIX terminal input/output is full-duplex. It has full read-ahead, which means that you can 
type at any time, even while a program is typing at you. Of course, if you type during output, 
the output will have the input characters interspersed. However, whatever you type will be 
saved and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it 

- vii -



is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead 
limit is exceeded, the system throws away all the saved characters. 

On a terminal input line, the character H@" kills all the characters typed before it, so typing' 
mistakes can be repaired on a single line. The character H#" erases the last character typed. 
Successive uses of ~~#" erase characters back to, but not beyond, the beginning of the line. 
~4@" and ~~#" can be transmitted to a program by preceding them with ~4\". (Thus, to erase 
04\", you need two H #" s) . 

The ASCII ~~delete" (a.k.a. Hrubout">' character is not passed to programs but instead generates 
an interrupt signal, just like the ~4break", 44interrupt", or Hattention" signal. This signal gen­
erally causes whatever program you are running to terminate. It is typically used to stop a long 
printout that you don't want. However, programs can arrange either to ignore this signal alto­
gether, or to be notified when it happens (instead of being terminated). The editor ed(I), for 
example, catches interrupts and stops what it is doing, instead of terminating, so that an inter­
rupt can be used to halt an editor printout without losing the file being edited. 

The quit signal is generated by typing the ASCII FS character. It not only causes a running pro­
gram to terminate but also generates a file with the core image of the terminated process. Quit 
is useful for debugging. 

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you 
have a terminal with the 44 new-line" function, or whether it must be simulated with a 
Hcarriage·return" and ~4line·feed" pair. In the latter case, all input ~4carriage·return" characters 
are changed to ~~line-feed" characters (the standard line delimiter), and a Hcarriage-return" and 
Hline·feed" pair is echoed to the terminal. If you get into the wrong mode, the stry(I) com· 
mand will rescue you. 

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab 
function, you can arrange to have tab characters changed into spaces during output, and echoed 
as spaces during input. Again, the stry(I) command will set or reset this mode. The system 
assumes that tabs are set every eight columns. The tabs(I) command will set tab stops on your 
terminal, if that is possible. 

How to run a program; the Shell. When you have successfully logged into UNIX, a program 
called the Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into 
a command name and arguments, and executes the command. A command is simply an exe· 
cutable program. Normally, the Shell looks first in your current directory (see The current direc· 
tory below) for a program with the given name, and if none is there, then in system directories. 
There is nothing special about system· provided commands except that they are kept in direc· 
tories where the Shell can find them. The command name is always the first word on an input 
line to the Shen~ it and its arguments are separated from one another by space or tab characters. 

When a program terminates, the Shell will ordinarily regain control and type a HO/o" at you to 
indicate that it is ready for another command. The Shell has many other capabilities, which are 
described in detail in sh(I). 

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the 
system administrator gave you a user name, he or she also created a directory for you (ordi­
narily with the same name as your user name). When you log in, any file name you type is by 
default assumed to be in this directory. Since you are the owner of this directory, you have full 
permissions to read" write, alter, or destroy its contents. Permissions to have your will with 
other directories and files will have been granted or denied to you by their respective owners. 
As a matter of observed fact, many UNIX users do not protect their files from destruction, let 
alone perusal, by other users. 

To change the current directory (but not the set of permissions you were endowed with at 
login) use chdir(I). 

• viii -



Path names. To refer to files not in the current directory, you must use a path name. Full path 
names begin with ~'I", which is the name of the root directory of the whole file system. After 
the slash comes the name of each directory containing the next sub-directory (followed by a 
"I"), until finally the file name is reached. E.g.: /usrllemllilex refers to the file .lilex in the direc­
tory lem; lem is itself a subdirecto.ry of usr; usr springs directly from the root directory. 

If your current directory has subdirectories, the path names of files therein begin with the name 
of the corresponding subdirectory (without a prefixed "I"). 

Without important exception, a path name may be used anywhere a file name is required. 

Important commands that modify the contents of files are cp(!) , mv(1) , and rm(1) , which 
respectively copy, move (i.e., rename), and remove files. To find out the status of files or 
directories, use IsO). See mkdir(I) for making directories and rmdir(I) for destroying them. 

For a fuller discussion of the file system, see "The UNIX Time-Sharing System" (Comm. ACM 

17 (7) :365-75, July 1974) by D. M. Ritchie and K. Thompson. It may also be useful to glance 
through Section II of this manual, which discusses system calls, even if you don't intend to deal 
with the system at that level. 

Writing a program. To enter the text of a source program into a UNIX file, use ed(D. The three 
principal languages available under UNIX are C (see ceO)), Fortran (see fc(I)) , and assembly 
language (see as(I)). After the program text has been entered through the editor and written 
in a file (whose name has the appropriate suffix), you can give the name of that file to the 
appropriate language processor as an argument. Normally, the output of the. language processor 
will be left in a file in the current directory named "a. out" . (If the output is precious, use 
mv(I) to move it to a less exposed name soon.) If you wrote in assembly language, you will 
probably need to load the program with library subroutines~ see Id(l). The other two language 
processors call the loader automatically. 

When you have finally gone through this entire process without provoking any diagnostics, the 
resulting program can be run by giving its name to the Shell in response to the "%" prompt. 

Next, you will need cdb(1) or db(1) to examine the remains of your program. The former is 
useful for C programs, the latter for assembly-language. No debugger is much help for Fortran. 

Your programs can receive arguments from the command line just as system programs do. See 
exec (II) . 

Text proceSSing. Almost all text is entered through the editor ed(!). The commands most often 
used to write text on a terminal are: cat(l), pr(I), and nro.ff{I). The cat(I) command simply 
dumps ASCII text on the terminal, with no processing at all. The prO) command paginates the 
text, supplies headings, and has a facility for multi-column output. Nro.ff{I) is an elaborate text 
formatting program, and requires careful forethought in entering both the text and the format­
ting commands into the input file~ it produces output on a typewriter-like terminal. Ro.ff{I) is a 
less elaborate text formatting program, and requires somewhat less forethought~ it is obsoles­
cent. Tro.ff{I) is similar to nro.ff{l), but drives a Graphic Systems, Inc. phototypesetter. It was 
used to typeset this manual. 

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use 
them, it would be well to learn something about them, because someone else may aim them at 
you. To communicate with another user currently logged in, write(I) is used~ mail(D will leave 
a message whose presence will be announced to another user when he or she next logs in. The 
corresponding entries in this manual also suggest how to respond to these two commands if you 
are their target. 

When you log in, a message-of-the-day may greet you before the first H%". 

- ix -



TABLE OF CONTENTS 

I. COMMANDS AND APPLICATION PROGRAMS 

450 
adb 
admin 
ar 
as •••• 
banner 
bas .... 
bc ..•• 
bdiff 
bfs 
cal 
cat 
cb 
cc 
cd 
cdb 
chdir 
chghist 
chgrp 
chmod 
chown 
cmp 
col 
comb 
comm 
cp 
cpio 
cpx 
cref 
crypt 
csplit 
date 
db 
dc 
dd 
delta 
deroff 
df 
diff ...• •• 
diff3 -
diffmark 
dsw 
du 
echo 
ed 
egrep 
eqn 
= (equals) 
exit 

handle special functions of DASl450 terminal 
· . . . • . . .. debugger 
· . .. administer sees' files 

archive and library maintainer 
· . . •. assembler 

· . .. print in block letters 
· . . . . . . . . .. basic 

arbitrary precision interactive language 
. . .. big diff 

big file scanner 
print calendar 

concatenate and print 
· . . . . . . . . . . . .. e beautifier 

· . . .. e compiler 
change working directory 

· . . . . . .. ..... e debugger 
. . .. ..... change working directory 

change the history entry of an sees delta 
. . . . change group 

change mode 
change owner 

compare two files 
filter reverse line feeds 

combine sees deltas 
· . . .• print lines common to two files 

. . . . . . . . . . . .. copy 
. . .. copy file archives in and out 

. . .. copy a file exactly 
make cross reference listing 

encode/decode 
· . .. context split 

print and set the date 
· . . . • .. debug 

desk calculator 
con vert and copy a file 

make an sees delta 
remove nroif, troff, and eqn constructs 

. . . . .• report disk free space 
differential file comparator 

· . .• 3-way differential file comparison 
mark changes between versions of a file 
. . • . delete interactively 

. . . . . . . . . summarize disk usage 
. . . .. ... . echo arguments 

. . . . . . . . . . . . . . . . . .. text edi tor 
. . . . . search a file for lines containing a pattern 

- xi -

. ... . typeset mathematics 
shell assignm~nt command 

terminate command file 



expr 
fc 
fd2 
fgrep 
file 
find 
gath 
get 
goto 
graph 
grep 
gsi 
help 
hp 
if 
kill 
Id 
lex 
In 
login 
logname, logdir, logtty 
Is 
m4 
mail 
make 
man 
mesg 
mkdir 
mm 
mv ..•• 
neqn 
newgrp 
next 
nice 
nm .••• 
nohup 
nrotT, trotT 
ad 
onintr 
passwd 
plot: t300, 1300s, t450 
pr 
prof 
prt 
ps 
ptx 
pump 
pwd 
quiz 
rc ..•.• 
reform 
regcmp 
rgrep 

evaluate arguments as an algebraic expression 
· . . . . • . . . •. Fortran compiler 
redirect file descriptor 2 (diagnostic output) 

search a file for lines containing keywords 
. . . . . determine file type 

" • . . . • . . . . . . •. find files 
• • • • . • . . . gather real and virtual files 

. . .. get generation from sees file 
command transfer 

· . • • . • • •. draw a graph 
. . • . search a file for a pattern 

handle special functions of OSI300 terminal 
• • • • • • • • • • • • •• ask for help 
handle special functions of HP 2640 terminal 

· . • • . conditional command 
· • . . . . . . .. terminate a process 

· . . . . . . . . . . . . .. link editor 
. • •. generate programs for simple lexical tasks 

· • • . . • •. make a link 
• . .. sign onto UNIX 

. . . . . . . . • . • . . . . .. information from login 
list contents of directory 

· • . .. macro processor 
send mai I to designated users 

· . . • . . .' make a program 
print on-line documentation 

permit or deny messages 
• • • .. make a directory 

run otT document with PWB/MM 
• . • •• move or rename a file 

typeset mathematics on terminal 
. . • • . • • . . . . . •. log in to a new group 

. • • •• new standard input for shell procedure 
• • • • run a command at low priority 

- xii -

• • . • . . • • . .• print name list 
run a command immune to hangups 

· • . . •. text formatters 
• • • . • . •• octal dump 
handle interrupts in shell files 

change login password 
• • •• graphics fil ters 

· • • • • • • •. print file 
• • •• dis play profile data 

print sees file 
process sta tus 

permuted in lex 
Shell data transfer commJlld 

working directory name 
test your knowledge 

Ratfor compiler 
reformat text file 

regular expression compile 
search a file for a pattern 



rjestat 
rm 
rmdel 
rmdir 
roff 
rsh 
sccsdiff 
sed 
send 
sh 
shift 
size 
sleep 
sno 
sort 
spell 
spline 
split 
strip 
stty 
su 
sum 
switch 
sync 
tabs 
tail 
tbl 
tee 
time 
tp 
tr 
troff 
tty 
typo 
uname 
uniq 
units 
vp 
wait 
wc 
what 
whatsnew 
while 
who 
write 
xargs 
yacc 

II. SYSTEM CALLS 

intro 
access 
alarm 

RJ E status and enquiries 
remove (unlink) files 

remove a delta from an SCCS file 
· . . . . . .. remove directory 

· . . . . . . . . . . . . .. format text 
restricted shell (command interpreter) 

· . .. compare two versions of an SCCS file 
. . . • .. stream editor 
. . . .. submit RJE job 
shell (command interpreter) 

adjust Shell arguments 
· . . • size of an object file 

suspend execution for an interval 
Snobol interpreter 
sort or merge files 
find spelling errors 

interpolate smooth curve 
split a file into pieces 

remove symbols and relocation bits 
set terminal options 

· . . .. become privileged user 
· . . .. print checksum of a file 

· . •. shell multi-way branch command 
· . . . update the super block 
· . . . . . •. set tabs on terminal 

deliver the last part of a file 
format tables for nroff or troff 

· . . . . . . . . . . . . . .. pipe fitting 
. . . . .. time a command 

manipulate DECtape and magtape 
· . . . transli terate 

· . . . text formatter 
· • .. get terminal name 

find possible typos 
· . .. print name of current UNIX 

report repeated lines in a file 
· . .. conversion program 
· . . . Versatec print 

await completion of process 
· . . . . .. word count 
· . . . . .. identify files 

compare file modification dates 
shell iteration command 

• . . . .. who is on the system 
· . . . . . . .. write to another user 

construct argument list (s) and execute command 
. . . . . . . . .. yet anol her compiler-compiler 

· . . . introduction to system calls 
. . . . . . .. determine accessibility of file 

schedule signal after specified time 

- xiii -



break, brk, sbrk 
chdir 
chmod 
chown 
close 
creat 
csw 
dup ..... 
exec, execl, execv 
exit . • . . 
fork ..... 
fstat 
getgid 
getpid 
getuid 
gtty 
indir 
kill 

. .' . 

change core allocation 
change working directory 

change mode of file 
change owner and group of a file 

. . .. close a file 
. . . . .. create a new file 

.. . . .. read console switches 
. duplicate an open file descriptor 

execute a file 
terminate process 

spawn new process 
get status of open file 

get group identifications 
get process identification 

get user identifications 
get terminal status 

indirect system call 

link . . . . . . 
send signal to a process 
. . .. link to a file 

logname, logdir, logtty, Iogpost 
mImod ...•. 
mount 
nice 
open 
pause 
pipe 
profil 
ptrace 
read 
seek 
setgid ..... . 
setpgrp ... . 
setuid 
signal 
stat ..•• 
stime 
stty 
sync 
tell 
time 
times 
udata 
umount 
uname 
unlink 
ustat 
utime 
wait 
write 

· • • . . login information 
make a directory or a special file 

. . . . . • . . . .. mount file system 
. . . . . . • .. . . .. set program priority 

. . . . . . •• open for reading or writing 

• xiv • 

· . • . • . . . .• indefinite wait 
create an interprocess channel 

execution time profile 
· . • . . process trace 

. • • . read from file 
move read/write pointer 

set process group ID 
set process group number 

set. process user ID 
catch or ignore signals 

get file status 
. • . . .. set time 

set mode of terminal 
update super-block 

get file offset 
get date and time 
get process times 
get per· user data . 

. dismount file system 
get name of current PWB/UNIX 

remove directory entry 
get file system statistics 

update times in file 
wait for process to terminate 

. . • . .. write on a file 



III. SUBROUTINES 

abort 
abs, fabs 
alloc, free 
atan, atan2 
atof 
atoi 
cgetpid .••..••. 
crypt . • . • . 
ctime, Iocaitime, gmtime 
descend .•••. 
ecvt, fcvt . • •. 
end, etexl, edata ...• 
exp 
floor, ceil 
fmod 
fptrap 
gamma 
getarg, iargc 
getc, getw, fopen 
getchar 
getpw 
gmatch 
hmul 
ierror 
Idiv, Irem 
locv 
log 
monitor 
nargs 
nlist 
perror, sys _ errlist, sys _ nerr, err no 
pexec .......•. 
plot: openpl et al. 
pow .•..•. 
printf .••...... 
putc, putw, fcreat, mush 
putchar, flush .... 
qsort 
rand, srand 
regcmp, regex 
reset, setexi t 
setfil ..•.. 
setjmp, longjrnp 
sin, cos 
sleep ..•.. 
sqrt ..•• 
strcpy, strcat, strcmp, strlen 
ttyn .......•.• 

- xv-

generate an lOT fault 
absolute value 

. . .. core allocator 
arc tangent function 

convert ASCII to floating 
convert ASCII to integer 

return character form of process ID 
· • . . . . . .• password encoding 

convert date and time to ASCII 
search UNIX file system directories 

· . • . output conversion 
. . •. last locations in program 

· . . . exponential function 
floor and ceiling functions 

floating modulo function 
floating point interpreter 

. . . . . log gamma function 
get command arguments from Fortran 

buffered input 
· . . . . . . . • .. read character 
· . . . . . . .. get name from UID 

match a string with a pattern (like glob(VIID) 
· . . • . high-order product 
· . . . catch Fortran errors 

. . . . . . . . . . . . .. long division 
long output conversion 

natural logarithm 
prepare execution profile 

· . . . . . . • .. argument count 
get entries from name list 

· . • . . . . . .. system messages 
path search and execute a file 

· . . • . . . • .. graphics interface 
floati ng exponentiation 

• . . .. formatted print 
. . .. buffered output 

write character 
quicker sort 

rando'm number generator 
compile and execute regular expressions 

• • •. execute non-local go to 
specify Fortran file name 

execute non-locai goto 
trigonometric functions 

· . .. suspend execution for interval 
. • • .. square root function 

operations on ASCII strings 
return name of current terminal 



IV. SPECIAL FILES 

cat ...••.. 
dh 
dn 
dp 
hp 
hs 
ht 
kl 
Ip 
mem, kmem~ null 
tie .••.•... 
rp ••••••• 
tm 
tty 

. . . .. phototypesetter interface 
DH-Il communications multiplexer 

· . . . . . .. ON-II ACU interface 
DP-ll, DU-II synchronous line interface 

RP04/RPOS/RP06 moving-head disk 
· . . •. RS03/RS04 fixed-head disk 
· . . • . •. TU16 magtape interface 

KL-l1 or DL-l1 asynchronous interface 
· • . • . • • . . . . .• line printer 
• • • • . • . • . . .. core memory 

DQS-IIB interface for remote job entry 
• • •• RP-II/RP03 moving-head disk 
• • •• TMI1/TUIO magtape interface. 

. • • . general terminal interface 

V. FILE FORMATS AND CONVENTIONS 

a.out 
ar 
ascii 
checklist 
core 
cpio 
directory 
dump 
ebcdic 
fs 
fspec 
greek 
group 
master 
mnttab 
passwd 
plot 
sccsfile 
sha 
tp 
ttys 
utmp 
wtmp 

VI. GAMES 

azel 
bio 
bj 
chess 
cubic 
factor 
moo 
othello 
sky 

assembler and link editor output 
archive (library) file format 

. . • • . map of ASCII character set 
. . . • . list of file systems processed by check 

. . • . . •. format of core image file 
. • • . . • • . . . • • format of cpi 0 archi ve 

. • . • . ..• . . • • • . format of directories 
. • • • • • . • • . incremental dump tape format 

• . • . • • . .• file format 
format of file system volume 

format specification in text files 
graphics for extended TELETYPE Model 37 type-box 

.. xvi -

. . . . . • . • . . • . •. group file 
master device information table 

mounted file system table 
• • • . password file 

• • • . graphics interface 
. . . • . format of sees file 

• • • . Sheil accounting file 
mag tape format 

terminal initialization data 
user information 

user login history 

satellite predictions 
biorhythm analysis 

the game of black jack 
• • .. the game of chess 

three dimensional tic-tac-toe 
discover prime factors of a number 

. • . . .. guessing game 
a game of dramatic reversals 

obtain ephemerides 



ttt 
wump 

VII. MISCELLANEOUS 

terminals 
DASI450 
GSI300 
HP2640 
TermiNet 
TI700 
tmac.name 

the game of tic-tac-toe 
the game of hunt-the-wumpus 

. • . .. descriptions of commonly-used terminals 
. . •. DASI450, DIABLO 1620, XEROX 1700 terminals 

GSI300 (DTC300 or DASI300) hard-copy terminals 
Hewlett-Packard 2640 CRT terminal family 

GE TermiNet 300 (and 1200) terminals 
. . .. TI 745, 735, and 725 terminals 

standard nroff and troff macro packages 

VIII. SYSTEM MAINTENANCE 

70boot 11/70 bootstrap procedures 
. . .. login accounting 
. . . .. disk block copy 

file system consistency check 

ac 
bcopy 
check 
clri 
clrm 
config 
crash 
cron 
cu 
dcat 
dcheck 
devom 
diskboot 
dump 
fsdb 
getty 
glob 
hasp 
icheck 
ioit 
lastcom 
mkfs 
mknod 
mount 
ncheck 
patchup 
regen 
restor 
rmall 
rom boot 
sa 
setmot 
setuid 
shutdown 
tape boot 
umount 
unixboot 

. . .. clear i-node 
clear mode of i-node 

· . .. configure a system 
what to do when the system crashes 

· . . . .. clock daemon 
• . . . . . . . . .. call UNIX 

• • . . . . . . . . • .. read/write synchronous line 
file system directory consistency check 

. . • . . . . .• device name 
disk bootstrap programs 

incremental file system dump 
. . . .. file system debugger 

. . . . . . • . .. set terminal mode 
generate command arguments 

PWB/UNIX IBM Remote Job Entry 
file system storage consistency check 

process control initialization 
search shell accounting records 

construct a file system 
build special file 

mount file system 
generate names from i-numbers 
patch up a damaged file system 

regenerate system directories 
incremental file system restore 
· . . . . . .. remove all 
special ROM bootstrap loaders 

. . • . . . . . . . • . . Shell accounting 

- xvii -

establish mnttab table 
set user id of command 
terminate all processing 

magnetic tape bootstrap programs 
. • •.. .. dismount file system 

UNIX startup and boot procedures 



volcopy, labelit copy filesystems with label checking 
wall ..... • . • . . • .• write to all users 

- xviii -



PERMUTED INDEX 

=- (equals) (I): shell assignment command 
70boot(VIII): 11/70 bootstrap procedures 

TermiNet(VII): GE TermiNet 300 (and 1200) terminals 
DASI450(VII): DASI450, DIABLO 1620, XEROX 1700 terminals 
DASI450, DIABLO 1620, XEROX 1700 terminals ... DASI450 (VIII) : 

fd2(I): redirect file descriptor 2 (diagnostic output) 
HP2640(VII): Hewlett-Packard 2640 CRT terminal family 

hp(I): handle special functions of HP 2640 terminal 
TermiNet(VII): GE TermiNet 300 (and 1200) terminals 

graphics for extended TELETYPE Model 37 type-box ... greek(V): 
dUD (I): 3-way differential file comparison 

450(1): handle special functions of DASI450 terminal 
70boot(VIII): 11/70 bootstrap procedures 

TI700(VII): TI 745, 735, and 725 terminals 
TI700(VII): TI 745, 735, and 725 terminals 

TI700(VII): TI 745, 735, and 725 terminals 
abort (III) : generate an lOT fault 
abs, fabs(III): absolute value 

abs, fabs(III): absolute value 
access (II) : determine accessibility of file 

access (II) : determine accessibility of file 
sha (V): Shell accounting file 

lastcom (VIII): search shell accounting records 
ac(VIII): login accounting 
sa (VIII) : Shell accounting 

dn (IV): ON-II ACU interface 
ac(VIII): login accounting 
adb(I): debugger . 

shift(I): adjust Shell arguments 
admin (1): administer secs files 

admin (I): administer SCCS files 
alarm (II): schedule signal after specified time 

alarm (II): schedule signal after specified time 
expr(I): evaluate arguments as an algebraic expression 

plot: openpl et a1. (III): graphics interface 
alloc, free (III) : core allocator 

break, brk, sbrk(1): chang~ core allocation 
alloc, free(III): core allocator 
rmall (VIII): remove all 
bio(VI): biorhythm analysis 

TermiNet(VII): GE TermiNet 300 (and 1200) terminals 
yacc(I): yet another compiler-compiler 

write (I) : write to another user 
a.out(V): assembler and link editor output 

be(l): arbitrary precision interactive language 
atan, atan2 (III) : arc tangent function 

ar(I): archive and library maintainer 
ar(V): archive (library) file format 

cpio(V): format of cpio archive 
cpio(I): copy file . archives in and out 

nargs(III): argument count 

- xix -



xargs(l): construct argument list(s) and execute command 
expr(I): evaluate arguments as an algebraic expression 

getarg, iargc(UI}: get command arguments from Fortran 
echo (I) : echo arguments 

glob(VIII): generate command arguments 
shift (I): adjust Shell arguments 

ar(I): archive and library maintainer 
ar(V): archive (library) file format 

ascii (V): map of ASCII character set 
strcat, strcmp, strlen (m): operations on ASCII strings ... strcpy , 

atof(III): convert ASCII to floating 
atoi (III): convert ASCII to integer 

gmtime(IIl): convert date and time to ASCII ... ctime, local time, 
ascii (V): map of ASCII character set 
as(I): assembler 

help(I): ask for help 
a.out(V): assembler and link editor output 

as 0) : assembler 
=- (equals) (I): shell assignment command 

kl(IV): KL·Il or OL·11 asynchronous interface 
atan, a13n2 (In): arc tangent function 

atan, atan2 (III): arc tangent function 
atof(III): convert ASCII to floating 
atoi (III): convert ASCII to integer 

wait(I): await completion of process 
azel (VI): satellite predictions 
banner(I): print in block letters 
bas(l): basic 

bas (I): basic 
bc(I): arbitrary precision interactive language 
bcopy(VIII): disk block copy 
bdiff(I): big diff' 

cb(I): C beautifier 
suO): become privileged user 

diffmark(I): mark changes between versions of a file 
bfs(I): big file scanner' 

bdiff(I) : big diff 
bfs (I): big file scanner 

bio(VI): biorhythmanalysis 
bio(VI}: biorhythm analysis 

strip(I): remove symbols and relocation bits 
bj (VI): the game of black jack 

bj(VI): the game of black jack 
bcopy(VllI): disk block copy 

banner (I) : print in block letters 
sync (I) : update the super block 

unix boot (VIII): UNIX startup and boot procedures 
romboot(VIII): special ROM bootstrap loaders 

70boot(VIU): 11/70 bootstrap procedures 
diskboot (VIII): disk bootstrap programs 

tape boot (VIII): magnetic tape bootstrap programs 
switch(I): shell multi-way branch command 

break, brk, sbr~ (II): change core allocation 



· break, brk, sbrk(II): change core allocation 
getc, getw, fopen(III): buffered input 

putc, putw, fcreat, ffiush(III): buffered output 
mknod (VIII) : build special file 

list of file systems processed by check ... checklist(V): 
cb(n: C beautifier 
ccO): C compiler 

cdb(I): C debugger 
dc(l): desk calculator 

cal (I): print calendar 
cal (I): print calendar 

cu (VIII) : call UNIX 
indir(II): indirect system call 

intro(II): introduction to system calls 
ierror(IU): catch Fortran errors 
signal (II): catch or ignore signals 

cat (I): concatenate and print 
cat(IV): phototypesetter interface 
cb(n: e beautifier 
ccO): C compiler 
cdb(I): e debugger 
cd (1): change working directory 

floor, ceil (III): floor and ceiling functions 
floor, ceil (III): floor and ceiling functions 

cgetpid(III): return character form of process ID 
break, brk, sbrk (II): change core allocation 

chgrp (I) : . change group 
passwd (I) : change login password 

chmod(II): change mode of file 
chmod (I): change mode 
cQ,own(II): change owner and group of a file 
chown (I): change owner 

chghist(l): change the history entry of an sces delta 
cd(l): change working directory 

chdir(I): change working directory 
chdir(II): change working directory 

diffmark(I): mark changes between versions of a file 
pipe (II): create an interprocess channel 

cgetpid(III): return character form of process ID 
ascii (V): map of ASCII character set 

getchar (III): read character 
putchar, flush (III): write character 

chdir (I): change working directory 
chdir(II): change working directory 

list of file systems processed by check ... checklist(V): 
check(VIII): file system consistency check 

file system directory consistency check ... dcheck(VIII): 
file system storage consistency check ... icheck (VIII) : 

labelit(VIII): copy filesystems with label checking ... volcopy, 
checklist (V): list of file systems processed by check 

sum (1): print checksum of a file 
check(VUI): file system consistency check 

chess (VI): the game of chess 

- xxi -



chess (VI) : the game of chess· 
chghist(I): change the history entry of an sees delta 
chgrp(I): change group 
chmod(I): change mode 
chmod (II): change mode of file 
chown (1): change owner 
chown (II): change owner and group of a file 

clri (VIII): clear i-node 
clrm(VIII): clear mode of i-node 
cron (VIn): clock daemon 

close (II) : close a file 
close (II) : close a file 
clri (VIII): clear i-node 
cion (VIII): clear mode of i-node 
cmp(I): compare two files 
col (I): filter reverse line feeds 
comb (I) : combine sees deltas 

combO): combine sees deltas 
getarg, iargc(III): get command arguments from Fortran 
glob (VIII): generate command arguments 

nice(I): run a command at low priority 
::a (equals) (I): shell assignment command 

exit(I): terminate command file 
nohup (I): run a command immune to hangups 

rsh(I): restricted shell (command interpreter) 
sh (1): shell ( command interpreter) 
, goto(1): command transfer 

if(!): conditional command 
pump (I) : Shell data transfer command 

setuid(VllI): set user id of command 
switch (I) : shell multi-way branch command 

time (1): time a command 
whiie(I): shell iteration command 

construct argument list(s) and execute command ... xargs(I): 
commfI): print lines common to two files 

comm (I): print lines common to two file$ 
terminais(VII): descriptions of commonly-used terminals 

dh(IV): DH-l1 communications multjplexer 
diff(I): differential file comparator 

whatsnew (I) : compare file modification dates 
cmp(I): compare two files 

sccsdi1f(I): compare two versions of an sees file 
diff3(I): 3-way differential file comparison 

regcmp, regex(IU): compile and execute regular expressions 
cc (I): C compiler 

yacc(I): yet another compiler-compiler 
regcmp(I): regular expression compile 

fcO): Fortran compiler 
re(I): Ratfor compiler 

wait (I) : await completion of process 
cat (I): concatenate and print 

if(I): conditional command 
config (VIII): configure a system 



config (VIII): configure a system 
check (VIII): file system consistency check 

dcheck (VIII): file system directory consistency check 
icheck (VIII): file system storage consistency check 

csw(II): read console switches 
mkfs(VlII): construct a file system 

xargs(I): construct argument list(s) and execute command 
derotT(I): remove nrotT, trotT, and eqn constructs 

egrep(I): search a file for lines containing a pattern 
fgrep(I): search a file for lines containing keywords 

Is(l): list contents of directory 
csplit(I): context split 

init(VIII): process control initialization 
units(l): conversion program 

ecvt, fcvtOU): output conversion 
locv(III): long output conversion 

dd(I): convert and copy a file 
atof(III) : convert ASCII to floating 
atoi (III): convert ASCII to integer 

ctime, localtime. gmtime(III): convert date and time to ASCII 
cpx (I):. copy a file exactly 

dd (I): convert and copy a file 
cpio(I): copy file archi ves in and out 

volcopy, labelit(VlII): copy filesystems with label checking 
bcopy(VIII): disk block copy 

cp(l): copy 
break, brk, sbrk (II): change core allocation 

alloc, free (III) : core allocator 
core(V): format of core image file 

mem, kmem, null (IV): core memory 
core(V): format of core image file 

sin, cos (III) : trigonometric functions 
nargs(III): argument count 

wc(l): word count 
cp(l): copy 

cpio(V): format of cpio archive 
cpio(I): copy file archives in and out 
cpio(V): format of cpio archive 
cpx (I): copy a file exactly 

crash (VIII): what to do when the system crashes 
crash (VIII): what to do when the system crashes 

creat (II): create a new file 
pipe(II): create an interprocess channel 

creat (II): create a new file 
cref(I): make cross reference listing 
cron(VIII): clock daemon 

cref(I): make cross reference listing 
HP2640(VII): Hewlett-Packard 2640 CRT terminal family 

crypt (I): encodel decode 
crypt (III): password encoding 
csplit(l): context split 
csw(U): read console switches 

ASCII... ctime, localtime, gmtime(III): convert date and time to 

- xxiii-



cubic (VI) : three dimensional tic-tac-toe 
uname<ln: get name of current PWB/UNIX 

ttynUI!): return name of current terminal 
uname(I): print name of current UNIX 

spline(I): interpolate smooth curve 
qu (VIII): call UNIX 

cron (VIII): clock daemon 
patchup(VUI): patch up a damaged file system 

GSI300(VII): GSI300 (DTC300 or DASI300) hard-copy terminals 
DASI450(VII): DAS1450, DIABLO 1620, XEROX 1700 terminals 

450(1): handle special functions of DASI450 terminal 
terminals... DASI450(VlI): DASI450, DIABLO 1620, XEROX 1700 

prof(I): display profile data 
ttys(V): terminal initialization data 

udata(U): get per-user data 
ctime, locaitime, gmtime(III>: convert date and time to ASelI 

time (II): get date and time 
date (I) : print and set the date 

date (I) : print and set the date 
whatsnew(I): compare file modification dates 

db(!): debug 
dcat(VUI): read/write synchronous line 
dcheck (VIII): file system directory consi .,tency check 
dc(I): desk calculator . 
dd (I): convert and copy a file 

db(I): debug 
adb(I): debugger 

cdb(I): C debugger 
fsdb(VIID: file system debugger 

tp(I): manipulate DECtape and magtape 
dsw(I): delete interactively 
tail (1): deliver the last part of a file 

rmdel (I): remove a delta from an secs file 
change the history entry of an sees delta ... chghist(I): 

delta(I): make an secs delta 
delta (I) : make an sces delta 

comb(I): combine secs deltas 
mesg(I): permit or deny messages ., 

deroff(I): remove nroff, troff, and eqn constructs 
descend(III): search UNIX file system directories 

terminals(VII): descriptions of commonly-used terminals 
fd2(I): redirect file descriptor 2 (diagnostic output) 

dup(II): duplicate an open file descriptor 
mail (I): send mail to designated users 

dc (I) : desk calculator 
access(II): determine accessibility of file 

file (I) : determine file type 
master(V): master device information table 

devnm (VIII): device name 
devnm (VIII): device name 
df(I): report disk free space 

dh(IV): DH-ll communications multiplexer 
dh(IV): DH-ll communications multiplexer 

• xxiv· 



DASI450(VII): DASI450, DIABLO 1620, XEROX 1700 terminals 
fd2(I): redirect file descriptor 2 (diagnostic output) . 

ditf3 (I): 3-way differential file comparison 
bditf(I): big diff 

ditf(I): differential file comparator 
diff3 (0: 3-way differential file comparison 

ditfO): differential file comparator 
ditTmark (I): mark changes between versions of a file 

cubic(VI): three dimensional tic-tac-toe 
descend(III): search UNIX file system directories 

directory(V): format of directories 
regen (VIII): regenerate system directories 

dcheck(VIII): file system directory consistency check 
unlink (II) : remove directory entry 

pwd (I): working directory name 
mknod(II): make a directory or a special file 

cd(I): change working directory 
chdir (I): change working directory 

chdir(II): change working directory 
IsO): list contents of directory 

mkdir(I): make a directory 
rmdir(I): remove directory 

directory (V) : format of directories 
factor(VI): discover prime factors of a number 

bcopy(VIII): disk block copy 
diskboot (VIII) : disk bootstrap programs 

dfO): report disk free space 
du (I): summarize disk usage 

diskboot(VIII): disk bootstrap programs 
hp(IV): RP04/RPOS/RP06 moving-head disk 

hs(IV): RSO~/RS04 fixed-head disk 
rp(IV): RP-II/RP03 moving-head disk 

umount(II): dismount file system 
umount(VIII): dismount file system 

prof(n: display profile data 
ldiv, IremOII): long division 

kl(IV): KL-ll or DL-ll asynchronous interface 
dn(IV): ON-II ACU interface 

dn(IV): ON-It ACU interface 
mm(I): run otT document with PWB/MM 

man(l): print on-line documentation 
dp(IV): DP-II, DU-II synchronous line interface 

dp(IV): OP-II, DU-II synchronous line interface 
rje(IV): DQS-IIB interface for remote job entry 

othello(VI): a game of dramatic reversals 
graph (I) : draw a graph 

dsw(l): delete interactively 
GSI300(VII): GSI300 (DTC300 or DASI300) hard-copy terminals 

dp(IV): DP-lI, DU-Il synchronous line interface 
du (I): summarize disk usage 

dump (V) : incremental dump tape format 
dump (VIII) : incremental file system dump 

odO): octal dump 

- xxv-



dump(V): incremental dump tape format 
dump(VIII): incremental file system dump 
dup(II): duplicate an open file descriptor 

dup(II): duplicate an open file descriptor 
ebcdic(V): file format 

echo(I): echo arguments 
echo (I): echo arguments 
ecvt, fcvt(III): output conversion 

end, etext, edata(III): last locations in program 
ed (1): text edi tor 

a.out(V): assembler and link editor output 
ed(I): text editor 
Id(I): link editor 

sed (1): stream editor 
egrep(I): search a file for lines containing a pattern 

crypt (1) : encodel decode 
crypt (III): password encoding 

end, etext~ edataOII): last locations in program 
rjestat (I): RlE status and enquiries 

nlist(II!): get entries from name list 
chghist(I): change the history entry of an sees delta 

hasp(VIII>: PWB/UNIX IBM Remote Job Entry 
rje(IV): DQS-llB interface for remote job entry 

unlink(II): remove directory entry 
sky (VI) : obtain ephemerides 

deroff(I): remove nroff, trotT, and eqn constructs 
eqn (1): typeset mathematics 

- (equals) (1): shell assignment command 
perror, sys _ errlist, sys _ nerr, ermo (III): system messages 

ierror(III): catch Fortran errors 
spell (I): find spelling errors 

setmnt (VIII): establish mnttab table 
plot openpl et al. (III): graphics interface 

end, etext, edata(III): last locations in program 
expr(I): evaluate arguments as an algebraic expression 

cpx (1): copy a file exactly 
exec, execl, execv (II): execute a file 

exec, execl, execv(II): execute a file 
exec, execl, execv(II): execute a file 

pexec(III): path search and execute a file 
xargs(I): construct argument list(s) and execute command 

reset, setexit(III): execute non-local goto 
setjmp, longjmp (III): execute non-local goto 

regcmp, regex(III): compile and execute regular expressions 
sleep(I): suspend execution for an interval 

sleep (III) : suspend execution for interval 
monitor (III) : prepare execution profile 

profil (II) : execution time profile 
exec, execl, execv(II): execute a file 

exit(I): terminate command file 
exit(II): terminate process 
exp(III): exponential function 

exp(III) : exponential function 

- xxvi -



pow(III): floating exponentiation 
regcmp(I): regular expression compile 

expr(I): evaluate arguments as an algebraic expression 
regex(IID: compile and execute regular expressions ... regcmp, 

expr(I): evaluate arguments as an algebraic expression 
greek(V): graphics for extended TELETYPE Model 37 type-box 

abs, fabsOII): absolute value 
factor (VI) : discover prime factors of a number 

factor (VI) : discover prime factors of a number 
Hewlett-Packard 2640 CRT terminal family ... HP2640(VII): 

abort(III): generate an lOT faulf 
fcU): Fortran compiler 

putc, putw, fcreat, mush (III): buffered output 
ecvt, fcvtOIl): output conversion 

fd2(I): redirect file descriptor 2 (diagnostic output) 
coHI): filter reverse line feeds 

putc, putw, fcreat, mushOI!): buffered output 
fgrep(I): search a file for lines containing keywords 

cpio(I): copy file archives in and out 
diff(I): differential file comparator 

diff3 (I): 3-way differential file comparison 
fd2(I): redirect file descriptor 2 (diagnostic output) 

dup(II): duplicate an open file descriptor 
cpx (I): copy a file exactly 

grep(I): search a file for a pattern 
rgrep(I): search a file for a pattern 
egrep(I): search a file for lines containing a pattern 
fgrep(I): search a file for lines containing keywords 

ar(V): archive (library) file format 
ebcdic(V) : file format 

split(I): split a file into pieces 
whatsnew(I): compare file modification dates 

setfil (III): specify Fortran file name 
tell (II): get file offset 
bfs(I): big file scanner 

stat (II): get file status 
check(VIII): file system consistency check 

fsdb(VIII): file system debugger 
descend (III): search UNIX file system directories 

dcheck(VIII): file system directory consistency check 
dump (VIII) : incremental file system dump 
restor(VIII): incremental file system restore 

ustat (II): get file system statistics 
icheck(VIII): file system storage consistency check 

mnttab(V): mounted file system table 
fs(V): format of file system volume 

mkfs (VIII): construct a file system 
mount(Il): mount file system 

mount(VIII): mount file system 
patchup(VIII): patch up a damaged file system 

checklist (V): list of file systems processed by check 
umount(II): dismount file system 

umount(VIII): dismount file system 

- xxvii -



file (I) : determine file type 
access (II) : determine accessibility of file 

chmod(II): change mode of file 
chown (II): change owner and group of a file 

close (II) : close a file 
core(V): format of core image file 

creat(II): create a new file 
dd(I): convert and copy a file 

mark changes between versions of a file ... diffmark (1) : 
exec, exec(, execv(II): execute a file 

exit(I): terminate command file 
fstat(U): get status of open file 

get(I): get generation from sec;s file 
group (V) : group file 

file (I) : determine file type 
link (II): link to a file 

mknod (II): make a directory or a special file 
mknod (VIII): build special file 
mv(I): move or rename a file 

passwd (V): password file 
pexec(III): path search and execute a file 

prO): print file 
prt(I): print sees file 

read (II) : read from file 
ref orm(I) : reformat text file 

rmdel (I): remove a delta from an sees file 
admin(I): administer sees files 

compare two versions of an sees file ... sccsdiff(I) : 
sccsfile(V) : format of sees file 

cmp(I): compare two files 
comm (I): print lines common to two files 

find (I): find files 
fspec(V): format specification in text files 

gath (I): gather real and virtual files 
sha(V): Shell accounting file 
size (I) : size of an object file 

onintrO): handle interrupts in shell files 
rm(I): remove (unlink) files 

sortO): sort or merge files 
sum (I): print checksum of a file 

what (I) : identify files 
volcopy, labelit(VIII): copy filesystems with label checking 

tail (I): deliver the last part of a file 
-uniq (1): report repeated lines in a file 

utime(II): update times in file 
write (II) : write on a file 

coHn: filter reverse line feeds 
plot: t300~ tJoos, t4S0(I): graphics filters 

find(I): find files 
typo (I) : find possible typos 
spell (I) : find spelling errors 

find (1): find files 
tee (I): pipe fitting 

- xxviii -



hs(IV): RS03/RS04 fixed-head disk 
pow (III) : floating exponentiation 

fmod(UI): floating modulo function 
fptrap(III): floating point interpreter 

atof(III): convert ASCII to floating 
floor, ceil (III): floor and ceiling functions 

floor, ceil (III): floor and ceiling functions 
putchar, flush (III): write character 

fmod (Ill): floating modulo function 
getc, getw, fopenOII): buffered input 

forkOl): spawn new process 
cgetpid(III): return character form of process ID 

core(V): format of core image file 
cpio(V): format of cpio archive 

directory (V) : format of directories 
fs(V): format of file system volume 

sccsfile(V): format of sees file 
fspec(V): format specification in text files 

tbI(I): format tables for nroff or troff 
rotf(1) : format text 

ar(V): archive (library) file format 
dump (V) : incremental dump tape format 

ebcdic(V): file format 
printf(III): formatted print 

nroff, troff(l): text formatters 
troff(I): text formatter 

tp(V): mag tape format 
fcO): Fortran compiler 

ierror(III): catch Fortran errors 
setfil (III): specify Fortran file name 

iargc(III): get command arguments from Fortran ... getarg, 
fptrap(III): floating point interpreter 

df(l): report disk free space 
alloc, free (III) : core allocator 

rmdel (I): remove a delta from an sces file 
read (II): read from file 

getarg, iargc(III): get command arguments from Fortran 
c ncheck(VIII): generate names from i-numbers 

logname, logdir, logtty(l): information from login 
nlist(III): get entries from name list 

get (I): get generation from sces file 
getpw(III): get name from UID 

fsdb(VIII): file system debugger 
fspec(V): format "pecification in text files 
fstat(II): get status of open file 
fs(V): format of file system volume 

atan, atan2 (III): arc tangent function 
exp(III): exponential function 

fmod(III): floating modulo function 
. gamma (III) : log gamma function 

450(1): handle special functions of DASI450 terminal 
gsi(I): handle special functions of GSI300 terminal 
hp(I): handle special functions of HP 2640 terminal 

• xxix -



floor, ceil (III): floor and ceiling functions 
sqrt(III): square root function 

sin, cos (III) : trigonometric functions. 
bj (VI): the game of black jack 

chess(VI): the game of chess 
othello(VI): a game ·of dramatic reversals 

wump(VI): the game of hunt-the-wumpus 
ttt(VI): the game of tic-tac-toe 

moo (VI) : guessing game 
gamma (III) : log gamma function 

gamma(I!I): log gamma function 
gath (1) : gather real and virtual flIes 

gath(I): gather real and virtual files 
TermiNet(VII): GE TermiNet 300 (and 1200) terminals 

tty(IV): general terminal interface 
abort(UI): generate an lOT fault 

g!ob(VIII): generate command arguments 
ncheck(VlII): generate names from i-numbers 

lex(I}: generate programs for simple lexical tasks 
getH): get generation from sees file 

rand, srand(ll): random number generator ' 
getarg, iargc(IU): get command arguments from Fortran 

time(II): get date and time 
nlist(III): get entries from name li~t 

tell (II) : get file offset 
stat (II) : get file status 

ustat(ll>: get file system statistics 
get (1): get generation from sces file 

getgid(U): get group identifications 
getpw(m): get name from UID 
uname(U): get name of current PWB/UNIX 

udata(II): get per-user data 
getpid(II): get process identification 
times (II) : get process times 
fstatUI): get status of open file 

tty(I): get terminal name 
gtty(II): get terminal status 

getuid(II): get user identifications 
getarg, iargc(III): get command arguments from Fortran 
getc, getw, fopen(III): butTered input 
getchar(III): read character 
getgid(II): get group identifications 
get(I): get generation from sces file 
getpid(II): get process identification 
getpw(IlI): get name from l 10 
getty(VIII): set terminal mOl le 
getuid(II): get user identifica tions 

getc, getw, fopen(IlI): buffered input 
giob(VIII): generate command arguments 

match a string with a pattern (like glob(VIII» ... gmatch(III): 
glob(VIU»... gmatch(IlI): match a string with a pattern (like 

ctime, localtime, gmtime(IlI): convert date and time to ASCll 
goto(1): command transfer 

- xxx-



reset, setexit(III): execute non-local goto 
setjmp, 10ngjmp(III): execute non-local goto 

graph (I): draw a graph 
graph 0): draw a graph 

plot: t300, t300s, t450(1): graphics filters 
greek(V): graphics for extended TELETYPE Model 37 type-box 

plot: openpl et al. (III): graphics interface 
plot (V): graphics interface 

type-box... greek (V) : graphics for extended TELETYPE Model 37 
grep(D: search a file for a pattern 

group(V): group file 
getgid(II): get group identifications 

setgid(II): set process group ID 
setpgrp(U): set process group number 

chown (II): change owner and group of a file 
chgrp(I): change group 

newgrp(I): log in to a new group 
group (V) : group file 

OSI300(VII): OSI300 (OTC300 or DASBOO) hard-copy terminals 
gsi (I): handle special functions of OS1300 terminal 

terminals... OSI300(VII): OSBOO (DTC300 or DASI300) hard-copy 
gsi (I): handle special functions of OSBOO terminal 
gttyOI): get terminal status 

moo (VI) : guessing game 
onintr(l): handle interrupts in shell files 

450(1): handle special functions of DASI450 terminal 
gsi (I): handle special functions of OSI300 terminal 
hp(I): handle special functions of HP 2640 terminal 

nohup(I): run a command immune to hangups 
OSI300(VII): OSI300 (DTC300 or DASI300) hard-copy terminals 

hasp(VIII): PWB/UNIX IBM Remote Job Entry 
help(I): ask for help 

help(I): ask for help 
HP2640(VII): Hewlett-Packard 2640 CRT terminal family 

hmul(III): high-order product 
chghistO): change the history entry of an sces delta 

wtmp(V): user login history 
hmul (III): high-order product 

hp(I): handle special functions of HP 2640 terminal 
HP2640(VII): Hewlett-Packard 2640 CRT terminal family 
hp(I): handle special functions of HP 2640 terminal 
hp(IV): RP04/RP05/RP06 moving-head disk 
hs(IV): RS03/RS04 fixed-head disk 
ht(IV): TU16 magtape interface 

wump(VI): the game of hunt-the-wumpus 
getarg, iargc(lII): get command arguments from Fortran 

hasp (VIII) : PWB/UNIX IBM Remote Job Erttry 
icheck(VIII): file system storage consistency check 

setuid (VIII): set user id of command 
return character form of process ID ... cgetpid(III): 

getpid OI): get process identification 
getgid(II): get group identifications 

getuid(II): get user identifications 

- xxxi -



whatO): identify files 
setgid (II): set process group 10 

setuidOI): set process user 10 
ierror(III): catch Fortran errors 
if(I): conditional command 

signal (II): catch or ignore signals 
core(V): format of core image file 

nohup(I): run a command immune to hangups 
dump(V): incremental dump tape format 

dump (VIII) : incremental file system dump 
restor(VIII): . incremental file system restore 

pause(II): indefinite wait 
ptx(I): permuted index 

indir(II): indirect system call 
indir(II): indirect system call 

logname, logdir, 10gtty(I): information from login 
master(V): master device information table 

logname, logdir, logtty, logpostOI): login information 
utmp(V): user information 

ttys(V): terminal initialization data 
init(VIII): process control initialization 

init (VIII): process control initialization 
clri(VUI): clear i-node 

clrm(VIII): clear mode of i-node 
next(I): new standard input for shell procedure 

getc, getw, fopen(UI): buffered input 
atoi (ill): convert ASCII to integer 

bc(I): arbitrary precision interactive language 
dsw(I): delete interactively 

rje(IV): OQS-I1B interface for remote job entry 
cat (IV): phototypesetter interface 

dn(IV): ON-II ACU interface 
dp(IV): OP-I!. DU-l1 synchronous line interface 

ht(IV): TU16 magtape interface 
kI(IV): KL-ll or DL-II asynchronous interface 

plot: openpl et al. (UI): graphics interface 
plot{V): graphics interface 

tm(IV): TMI1/TUIO magtape interface 
tty(IV): general terminal interface 

spline(I) : interpolate smooth curve 
. fptrap(IlI): floating point interpreter 

rsh (1): restricted shell ( command interpreter) 
sh(I): shell (command interpreter) 

sno(1): Snobol interpreter 
pipe (II) : create an interprocess channel 
onintr(1): handle interrupts in shell files 

sleep (I) : suspend execution for an interval 
sleep(IIn: suspend execution for interval 

intro(II): introduction to system calls 
intro(II): introduction to system calls 

ncheck(VIII): generate names from i-numbers 
abort(III): generate an lOT fault 

while (I) : shell iteration command 

.. xxxii -



bj (VI): the game of black 
hasp (VIII) : PWB/UNIX IBM Remote 

rje(IV): DQS-I1B interfac~ for remote 
send(I): submit RJE 

search a file for lines containing 

kl(IV): 

mem, 
quiz (I): test your 

labelit(VIII): copy filesystems with 
volcopy, 

be (I) : arbitrary precision interactive 
end, etext, edata(III): 

tail (I): deliver the 

banner(l): print in block 

lex(I): generate programs for simple 
ar(V): archive 

ar(I): archive and 
gmatch (III): match a string with a pattern 

col (I): filter reverse 
dp(IV): DP-l1, DU-l1 synchronous 

Ip(IV): 
dcat (VIII): read! write synchronous 

comm (I): print 
egrep (I): search a file for 
fgrep(l): search a file for 
uniq (I): report repeated 
a.out(V): assembler and 

Id(I): 
link(I1): 

In (I): make a 
Is(l): 

checklist (V): 
crefO): make cross reference 

nlist (III): get entries from name 
nmO): print name 

xargs(l): construct argument 

romboot(VIII): special ROM bootstrap 
ctime, 

end, etext, edata(III): last 

gamma (III) : 
newgrp(I): 

log (III) : natural 
logname, 

jack 
Job Entry 
job entry 
job 
keywords .. .fgrep(I) : 
kill (I): terminate a process 
kill (II): send signal to a process 
KL-ll or DL-ll asynchronous interface 
kl (IV): KL-ll or DL-ll asynchronous interface 
kmem, null (IV): core memory 
knowledge 
label checking ... volcopy , 
labeIit (VIII): ~opy filesystems with label checking 
language 
last locations in program 
last part of a file 
lastcom (VIII): search shell accounting records 
Id(l): link editor 
ldiv, Irem (III): long division 
letters 
lex(I): generate programs for simple lexical tasks 
lexical tasks 
(library) file format 
library maintainer 
(like glob (VIII) ) 
line feeds 
line interface 
line printer 
line 
lines common to two files 
lines containing a pattern 
lines containing keywords 
lines in a file 
link editor output 
link editor 
link to a file 
link OI): link to a file 
link 
list contents of directory 
list of file systems processed by check 
listing 
list 
list 
list (s) and execute command 
In(I): make a link 
loaders 
localtime, gmtime(III): convert date and time to ASCII 
locations in program 
10cv(III): long output conversion 
log gamma function 
log in to a new group 
logarithm 
logdir, logtty, logpost (II): login information 

- xxxiii -



lo.gname, logdir, 10gtty(l): information from login 
10g(II1): natural logarithm 

ac(VUI): login accounting 
wtmp (V): user login history 

iogname, iogdir, logtty, 10gpost(II): login information 
passwd (I): change login password 

login(I): sign onto UNIX 
logdir, logtty(I): information from login .. .logname, 

logname, logdir, logtty, logpost (II): login information 
logname, logdir, logtty(I): information from login 

logname, logdir, logtty, 10gpost(II): login information . 
logname, logdir, logtty, 10gpost(II): login information 
logname, logdir, 10gtty(I): information from login 

Idiv, Irem(II!): long division 
locv(UI): long output conversion 

setjmp, longjmp(III): execute non-local goto 
nice(I): run a command at low priority 

Ip(IV): line printer 
Idiv, lremOII): long division 

Is(l): list contents of directory 
m4(I): macro processor 

tmac.name(VII): standard nrotT and trotT macro packages 
m4(I): macro processor 
tp (V): mag tape format 

tape boot (VIII) : magnetic tape bootstrap programs 
ht(IV): TU16 magtape interface 

tm(IV): TMIl/TUtO magtape interface 
tp(l): manipulate OECtape and magtape 

mail (I): send mail to designated users 
mail (I): send mail to designated users 

ar(I): archive and library maintainer 
mknod(II): make a directory or a special file 

mkdir(I): make a directory 
In (I) : make a link 

make(I): make a program 
delta(I): make an sces delta 
cref(I): make cross reference listing 

make(I): make a program 
man (I): print on-line documentation 

tp(I): manipulate DECtape and magtape 
ascii (V) : map of ASCII character set 

diffmark(I): mark changes between versions of a file 
master(V): master device information table 

master(V): master device information table 
grnatchHn): match a string with a pattern (like glob(VIII) 

neqn (1): typeset mathematics on terminal 
eqn (D: typeset mathematics 

mem, kmem, null(IV): core memory 
mem, kmem, nulHIV): core memory 

sort (1): sort or merge files 
mesg(!): permit or deny messages 

mesg(I): permit or deny messages 
sys _ errlist, sys _ nerr, ermo (III): system messages ... perror , 

.. xxxiv .. 



mkdir(I): make a directory 
mkfs(VIII): construct a file system 
mknod (II): make a directory or a special file 
mknod(VIII): build special file 
mm(I): run off document with PWB/MM 

setmnt (VIII): establish mnttab table 
mnttab(V): mounted file system table 

chmod(II): change mode of file 
clrm(VIII): clear mode of i-node 

stty(II): set mode of terminal 
chmod (I): change mode 

getty (VIII) : set terminal mode 
greek(V): graphics for extended TELETYPE Model 37 type-box 

whatsnew(I): compare file n;lodification dates 
fmod(III): floating modulo function 

monitor(IU): prepare execution profile 
moo(VI): guessing game 

mount (II) : mount file system 
mount (VIII): mount file system 

mnttab(V): mounted file system table 
mount(II): mount file system 
mount(VIII): mount file system 

mv(I): move or rename a file 
seek(II): move read/write pointer 

hp(IV): RP04/RPOS/RP06 moving-head disk 
rp(IV): RP-ll/RP03 moving-head disk 

dh (IV): DH-ll communications multiplexer 
switch (I): shell multi-way branch command 

mv(I): move or rename a file 
getpw(III): get name from UID 

nlist(III): get entries from name list 
nm (I): print name list 

uname(II): get name of current PWB/UNIX 
ttyn (III): return name of current terminal 
uname(I): print name of current UNIX 

devnm (VIII): device name 
pwd(l): working directory name 

ncheck(VIII): generate names from i-numbers 
setfil (In): specify Fortran file name 

tty(I): get terminal name 
nargs (III): argument count 

10g(II1): natural logarithm 
ncheck(VIII): generate names from i-numbers 
neqn (I): typeset mathematics on terminal 

creat OI): create a' new file 
newgrp(I): log in to a new group 

forkOl): spawn new process 
nextO): new standard input for shell procedure 

newgrp(I): log in to a new group 
next(I): new standard input for shell procedure 
nice 0) : run a command at low priority 
niceOI): set program priority 
nlist(III): get entries from name list 

- xxxv-



nm(I): print name list 
nohup(I): run a command immune to hangups 

reset~ setexit (III): execute non-local goto 
setjmp, 10ngjmp(IID: execute non-local goto 

tmac.name(VII): standard nroff and trotf macro packages 
tbUn: format tables for nroff or troff 

deroff(I): remove nroff, troff, and eqn constructs 
nroff, troff(l): text formatters 

mem, kmem, null (IV): core memory 
rand, srand(III): random number generator 

factor(VI): discover prime factors of a number 
setpgrp(U): set process group number 

size (I) : size of an object file 
sky (VI) : obtain ephemerides 

adO): octal dump 
od (1): octal dump 

mm(I): run off document with PWB/MM 
tell (n): get file offset 

onintr(I): handle interrupts in shell files 
man (I): print on-line documentation 
login (1): sign on to UNIX 

dup(U): duplicate an open file descriptor 
fstatOI): get status of open file 

open (II): open for reading or writing 
open(II): open for reading or writing 

plot: openpl et al. (III): graphics interface 
strepy, streat, strcmp, strlen (III): operations on ASCII strings 

stty(I): set terminal options 
othello (VI) : a game of dramatic reversals 

cpio(I): copy file archives in and out 
ecvt, fcvt(III): output conversion 
locvOIl): long output conversion 

a.out(V): assembler and link editor output 
redirect file descriptor 2 (diagnostic output) ... fd2(I): 

putc, putw, fcreat, mush (III): buffered output 
chown (II): change owner and group of a file 
chown (I): change owner 

standard nroff and troff macro packages ... tmac.name (VII) : 
tail (I): deliver the last part of a file 

passwd (I): change login password 
passwd (V): password file 

crypt (III) : password encoding 
. passwd(V): password file 

passwd(I): change login password 
patchup(VIII): patch up a damaged file syst(:m 

patchup(Vnn: patch up a damaged file system 
pexec(I!I): path search and execute a fif..~ 

gmatch<IID: match a string with a pattern (like glob(VnI)) 
search a file for lines containing a pattern ... egrep(I): 

grep(I): search a file for a pattern 
rgrep(I): search a file for a pattern 

pauseOI): indefinite wait 
mesg(I): permit or deny messages 

• xxxvi -



ptx(I): permuted index 
messages... perror, sys_errlist, sys_nerr, errno(III): system 

udataOI): get per-user data 
. pexec (III): path search and execute a file 

cat(IV): phototypesetter interface 
split(I): split a file into pieces 

tee(I): pipe fitting 
pipe(II): create an interprocess channel 
plot: openpl et a1. (III): graphics interface 
plot: t300, t300s, t450(1): graphics filters 
plot (V): graphics interface 

fptrap(III): floating point interpreter 
seek(II): move read/write pointer 

typo (I): find possible typos 
pow (III) : floating exponentiation 

bc(I): arbitrary precision interactive language 
azel (VI): satellite predictions 

monitor (III) : prepare execution profile 
prO): print file 

factor(VI): discover prime factors of a number 
date (I) : print and set the date 

cal (I): print calendar 
sum (I) : print checksum of a file 

prO): print file 
banner (I) : print in block letters 
comm (I): print lines common to two files 

nm(I) : print name list 
uname(I): print name of current UNIX 

man (I): print on-line documentation 
prt (I) : print sees file 

cat(I): concatenate and print 
Ip(IV): line printer 

printf(lIl): formatted print 
printf(III): formatted print 

vp(I): Versatec print 
nice(I): run a command at low priority 

nice (II) : set program priority 
su(I): become privileged user 

next(I): new standard input for shell procedure 
70boot(VIll): 11/70 bootstrap procedures 

unixboot(VIII): UNIX startup and boot procedures 
init(VIU): process control initialization 

setgid (II): set process group 10 
setpgrp(II): set process group number 

cgetpid(III): return character form of process IO 
getpid (II): get process identification 

ps (I): process status 
times (II): get process times 

wait(Il): wait for process to terminate 
ptrace (II) : process trace 

setuid (II): set process user 10 
checklist(V): list of file systems processed by check 
. exit (II) : terminate process 

- xxxvii -



fork (II) : spawn new process 
shutdown (VIII): terminate all processing 

kill (I): terminate a process 
kill (II): send signal to a process 

m4(I): macro processor 
waite!): await completion of process 

hmul(III): high-order product 
prof(I): display profile data 

prof(I): display profile data 
monitor (III) : prepare execution profile 

profil (II): execution time profile 
profit (II): execution time profile 

nice (II) : set program priority 
end, etext, edata(III): last locations in program 

make (I): make a program 
lex(I): generate programs for simple lexical tasks 

diskboot(VUI) : disk bootstrap programs 
tapeboot (VIII): magnetic tape bootstrap programs 

units(I): conversion program 
prt(I): print sees file 
ps(I): process status 
ptrace(U): process trace 
ptx(I): permuted index 
pump(I): Shell data transfer command 
putc, putw, fcreat, ffiush(III>: buffered output 
putchar, flush OIl): write character 

putc, putw, fcreat, ftlush(III): buffered output 
mm(O: run off document with PWB/MM 

hasp (VIII) : PWB/UNIX IBM Remote Job Entry 
uname(II): get name of current PWB/UNIX 

pwd (1): working directory name 
qsort (III): quicker sort 

qsort (III) : quicker sort 
quiz(I): test your knowledge 
rand, srand (lin: random number generator 

rand, srand(II!): random number generator 
rcO): Ratfor compiler 

rc(I): Ratfor compiler 
getchar (III) : read character 

csw(II): read console switches 
read(I!): read from file 

read(ll): read from file 
open(II): open for reading or writing 

seek(II): move read/write pointer 
dcat(VIIl): read/write synchronous line 

gath(I): gather real and virtual files 
lastcom (VIII): search shell accounting records 

fd2 (1): redirect file descriptor 2 (diagnos1 ic output) 
cref(I): make cross reference listing 

reform (I): reformat text file 
reform (I) : reformat text file 

expressions... regcmp, regex (III): compile and execute regular 
regcmp(I): regular expression compile 

- xxxviii -



regen (VIII) : regenerate system directories 
regen (VIII): regenerate system directories 

regcmp, regex(III): compile and execute regular expressions 
regcmp(I): regular expression compile 

regcmp, regex (III): compile and execute regular expressions 
strip (I) : remove symbols and relocation bits 
hasp (VIII) : PWB/UNIX IBM Remote Job Entry 

rje(IV): OQS-IIB interface for remote job entry 
rmdel(I): remove a delta from an sees file 

rmall (VIII) : remove all 
unlink (II) : remove directory entry 

rmdir(I) : remove directory 
deroff(I) : remove nroff, troff, and eqn constructs 

strip(l): remove symbols and relocation bits 
o rm(I): remove (unlink) files 

mv(I): move or rename a file 
uniq (I): report repeated lines in a file 

df(l): report disk free space 
uniq (I) : report repeated lines in a file 

reset, setexit(III): execute non-local goto 
restor(VIIl): incremental file system restore 

restor (VIII): incremental file system restore 
rsh(l): restricted shell (command interpreter) 

cgetpid(III): return character form of process 10 
ttyn (III) : return name of current terminal 

othello (VI) : a game of dramatic reversals 
col (I): filter reverse line feeds 

rgrep(I): search a file for a pattern 
send(I): submit RJE job 

rjestat (I) : RJE status and enquiries 
rje(IV): DQS-IIB interface for remote job entry 
rjestat(I): RJE status and enquiries 
rmall (VIII): remove all 
rmdel (I): remove a delta from an sees file 
rmdir(l): remove directory , 
rm (I): remove (unlink) files 
roffO): format text 

romboot(VIII): special ROM bootstrap loaders 
romboot(VIII): special ROM bootstrap loaders 

sqrt(III): square root function 
hp(IV): RP04/RPOS/RP06 moving-head disk 
rp(IV): RP-l1/RP03 moving .. head disk 

rp(IV): RP·l1/RP03 moving-head disk 
hs(IV): RS03/RS04 fixed-head disk 

rsh(I): restricted shell (command interpreter) 
nice(I): run a command at low priority 

nohup(I): run a command immune to hangups 
mm(1): run off document with PWB/MM 

azel (VI): satellite predictions 
sa(VIII): Shell accounting 

break, brk, sbrk(II): change core allocation 
bfs(I): big file scanner 

chghist(I): change the history entry of an sees delta 

- xxxix -



delta(!): make an sees delta 
comb(I): combine sees deltas 

get (1): get generation from sees file 
prt (1): print sees file 

rmdel(I): remove a delta from an sees file 
admin (I): administer sees files 

sccsdiff(I): compare two versions of an sees file 
sccsfile(V): format of sees file 

sccsdiffO): compare two versions of an secs file 
sccsfile(V): fon:nat of secs file 

alarm (II) : schedule signal after specified time' 
grep(I): search a file for a pattern 

rgrep(I): search a file for a pattern 
egrep(l): search a file for lines containing a pattern 
fgrep(I): search a file for lines containing keywords 

pexec(III): path search and execute a file 
lastcom (VITI): search shell accounting recI )rds 

descend(IlI): search UNIX file system directories 
sed (I) : stream editor 
seek. on: move read/write pointer 

mail (I) : send mail to designated users 
kill ell): send signal to a process 

send (I): submit RJE job 
stty(II): set mode of terminal 

setgid en) : set process group ID 
setpgrp(II): set process group number 
setuid (II) : set process user ID 

nice (II) : set program priority 
tabs (I) : set tabs on terminal 

getty (VIII) : set terminal mode 
stty(!): set terminal options 

date (I) : print and set the date 
stime(II) : set time 

setuid (VIII) : set user id of command 
ascii (V): map of ASCII character set 

reset, setexit (III): execute non-local goto 
setfil (III): specify Fortran file name 
setgid (II): set process group 10 
setjmp, 10ngjmp(III): execute non-local go to 
setmnt (VIII): establish mnttab table 
setpgrp(II): set process group number 
setuid (II): set process user ID 
setuid (VIII): set user id of command 
sha(V): Shell accounting file 

sha (V) : Shell accounting 'file 
lastcom (VlII): search shell accounting records 

sa (VIII) : Shell accounting 
shift (n: adjust Shell arguments 
== (equals) (I): shell assignment command 

rsh (I): restricted shell ( command interpreter) 
sh (I) : shell (command interpreter) 

pump(I): Shell data transfer command 
onintr(I): handle interrupts in shell files 

_ vi _ 



while (I) : shell iteration command 
switch(I): shell multi-way branch command 

next(I): new standard input for shell procedure 
sh(I): shell (command interpreter) 
shift(I): adjust Shell arguments 
shutdown (VIII): terminate all processing 

login(I): sign onto UNIX 
alarm (II): schedule signal after speci fled time 

kill (II): send signal to a process 
signal (II): catch or ignore signals 

signal (II): catch or ignore signals 
lex(I): generate programs for simple lexical tasks 

sin, cos (III) : trigonometric functions 
size (I) : size of an object file 

size (I) : size of an object file 
sky (VI) : obtain ephemerides 
sleep (I) : suspend execution for an interval 
sleep (III) : suspend execution for interval 

spline (I) : interpolate smooth curve 
sno(I): Snobol interpreter 

sno(I): Snobol interpreter 
sort(l): sort or merge files 

sort (I): sort or merge files 
qsort (III): quicker sort 

df(I): report disk free space 
fork (II) : spawn new process 

mknod (II): make a directory or a special file 
mknod (VIII): build special file 

450(1): handle special functions of DASI450 terminal 
gsi (I): handle special functions of GSI300 terminal 
hp(I): handle special functions of HP 2640 terminal 

romboot(VIII): special ROM bootstrap loaders 
fspec(V): format specification in text files 

alarm (II): schedule signal after specified time 
setfil (III): specify Fortran file name 

spel1(I): find spelling errors 
spell (I): find spelling errors ,-

spline(l): interpolate smooth curve 
split(I): split a file into pieces 

csplit(I): context split 
split(I): split a file into pieces 
sqrt (III): square root function 

sqrt (III) : square root function 
rand, srand(III): random number generator 

next(I): new standard input for shell procedure 
tmac.name(VII): standard nroff and troff macro packages 

unixboot(VIII): UNIX startup and boot procedures 
statOI): get file status 

ustat(II): get file system statistics 
rjestat (I): RJE status and enquiries 

fstat(I1): get status of open file 
gtty(II): get terminal status 

ps (I): process status 

- xIi -



stat (II): get file status 
stime(II): set time 

icheck (VIII): file system storage consistency check 
strcpy, strcat, strcmp, strlen OIl): operations on ASCII strings 

strepy, strcat, strcmp, strlen (III): operations on ASCII strings 
ASCII strings... strcpy, streat, stremp, strlen (III): operations on 

sed (I) : stream editor 
gmatch (III): match a string with a pattern (like glob (VIII) ) 

strcmp, strlen (III): operations on ASCII strings ... strcpy, strcat, 
strip (I) : remove symbols and relocation bits 

strcpy, strcat, strcmp, strlen (III): operations on ASCII strings 
stty(I): set terminal options 
stty(II): set mode of terminal 

send(!): submit RJE job 
suO): become privileged user 
sum(I): print checksum of a file 

du (n: summarize disk usage 
sync(I): update the super block 

sync (II) : update super-block 
sleep(I): suspend execution for an inlerval 

sleep (III) : suspend execution for interval 
csw(II): read console switches 

switch(I): shell multi-way branch command 
strip (I) : remove symbols and relocation bits 

dp(IV): OP-II, CU-11 synchronous line interface 
dcat(VIII): read/write synchronous line 

sync (I): update the super block 
sync (II) : update super-block 

perror, sys _ errlist, sys _ nerr, erma (III): system messages 
perror, sys errlist, sys_nerr, ermo(III): system messages 
indirOI): indirect system call 

intra (II) : introduction to system calls 
check (VIII): file system consistency check 

crash (VIII): what to do when the system crashes 
fsdb(VIII): file system debugger 

descend(III): search UNIX file system directories 
regen (VIII): regenerate system directories 

dcheck(VIII): file system directory consistency eheck 
dump (VIII) : incremental file system dump 

perror, sys_errlist, sys_nerr, errno(III): system messages 
restor(VlII): incremental file system restore 

ustat (II): get file system statistics 
icheck(VIII): file system storage consistency check 

mnttab(V): mounted file system table 
fs(V): format of file system volume 

config (VIII): configure a system 
mkfs(VIII): construct a file system 

mount (II): mount file system 
mount (VIII) : mount file system 

patch up (VIU) : patch up a damaged file system 
checklist (V) : list of file systems processed by.check 

umount(II): dismount file system 
umount(VIII}: dismount file system 

• xlii • 



who(I): who is on the system 
plot: t300, t300s, t450(1): graphics filters 

plot; t300, t300s, t450(1): graphics filters 
plot: t300, t300s, t450(1): graphics filters 

master(V): master device information table 
mnttab(V): mounted file system table 

tbl(I): format tables for nroff or troff 
setmnt (VIII): establish mnttab table 

tabs(I): set tabs on terminal 
tabs (I): set tabs on termi nal 
tail(I): deliver the last part of a file 

atan, atan2 (III): arc tangent function 
tapeboot(VIII): magnetic tape bootstrap programs 

dump(V): incremental dump tape format 
. tp(V): mag tape format 

tapeboot(VIU): magnetic tape bootstrap programs 
generate programs for simple lexical tasks .. .lex(I): 

tbI(I): format tables for nroff or troff 
tee (I) : pipe fitting 

greek (V) : graphics for extended TELETYPE Model 37 type-box 
tell OI): get file offset 

HP2640(VII): Hewlett-Packard 2640 CRT terminal family 
ttys(V): terminal initialization data 

tty(IV); general terminal interface 
getty (VIII) : set terminal mode 

tty (I) : get terminal name 
stty(I): set terminal options 

gtty (II): get terminal status 
450(1): handle special functions of DASI4S0 terminal 

gsi (I): handle special functions of OS1300 terminal 
hp(I): handle special functions of HP 2640 terminal 

neqn (I): typeset mathematics on terminal 
DASI450, DIABLO 1620, XEROX 1700 terminais ... DASI450(VII): 

OS1300 (DTC300 or DASI300) hard-copy terminals ... OSI300(VII): 
descriptions of commonly-used terminals ... terminais(VII): 

TermiNet(VII): OE TermiNet 300 (and 1200) terminals 
TI700(VII): TI 745, 735, and 725 terminals 

stty(II): set mode of terminal 
terminals (VII) : descriptions of commonly-used terminals 

tabs (I) : set tabs on terminal 
ttyn (III): return name of current terminal 

kill (I) : terminate a process 
shutdown (VIII) : terminate all processing 

exit (I) : terminate command file 
exit (11) : terminate process 

wait(II): wait for process to terminate 
TermiNet(VII): GE TermiNet 300 (and 1200) terminals 

TermiNet(VII): OE TermiNet 300 (and 1200) terminals 
quiz(I): test your knowledge 

ed(n: text editor 
reform(I): reformat text file 

fspec(V): format specification in text files 
nroff, troff(I): text formatters 

- xliii -



troff(I): text formatter 
roffO): format text 

cubic(VI): three dimensional tic-tac-toe 
TI700(VlI): TI 745, 735, and 725 terminals 

TI700(VII): Tl 745, 735, and 725 terminals 
cubic (VI) : three dimensional tic-tac-toe 

ttt(VI): the game of tic-tac-toe 
time (I): time a command 

profit (II): execution time profile 
localtime, gmtime(III): convert date and time to ASCII ... ctime., 
alarm (II): schedule signal after specified time . 

time(I): time a command 
time(II): get date and time 

utime(II): update times in file 
times (II) : get process times 

stime(II): set time 
times (II) : get process times 
time (II) : get date and time 

tm(IV): TMll/TUlO magtape interface 
tmac.name(VII): standard nrotf and trof! macro packages 
tm(IV): TMII/TUI0 magtape interface 
tp(l): manipulate DECtape and magtape 
tp(V): mag tape format 

ptrace(II): process trace 
pump(I): Shell data transfer command 

goto(O: command transfer 
tr(1): transliterate 

tr(l): transliterate 
sin., cosHII): trigonometric functions 

deroff(I): remove ntoff, troft", and eqn constructs 
tmac.name (VII): standard nroff and troff macro packages 

troft"(I): text formatter 
nroft", trotf(I): text formatters 

tbl(I): format tables for nroft" or troif 
ttt (Vl): the game of tic-tac-toe 
tty (1): get terminal name 
tty(IV): general terminal interface 
ttyn (III): return name of current terminal 
ttys(V): terminal initialization data 

ht(IV): TU16 magtape interface 
cmp(I): compare two files 

comm (1): print lines common to two files 
sccsdlif(I): compare two versions of an sees file 

graphics for extended TELETYPE Model 37 type-box ... greek(V): 
file (I) : determine file type 

neqn(I): typeset mathematics on terminal 
eqn (1) : typeset mathematics 

typo(I): find possible typos 
typo (I) : find possible typos 

udata(II): get per-user data 
getpw(III): get name from UID 

umountOI): dismount file system 
umount (VIII): dismount file system 

.. xliv .. 



uname(I): print name of current UNIX 
uname(II): get name of current PWB/UNIX 
uniq (I): report repeated lines in a file 
units(!): conversion program 

descendOII): search UNIX file system directories 
unixboot (VIII): UNIX startup and boot procedures 

unixboot(VIII): UNIX startup and boot procedures 
cu (VIII): call UNIX 

login (I): sign onto UNIX 
uname(I): print name of current UNIX 

rmO): remove (unlink) files 
unlink(II): remove directory entry 

sync (II) : update super-block 
sync(I): update the super block 

utime (II) : update times in file 
duO): summarize disk usage 

setuid (VIII): set user id of command 
getuid (II): get user identifications 

setuid (II): set process user ID 
utmp(V): user information 
wtmp(V): user login history 

mail(O: send mail to designated users 
suO): become privileged user 

wall (VIII): write to all users 
write(I): write to another user 

ustatOI): get file system statistics 
utime (II): update times in file 
utmp(V): user information 

abs, fabsOU): absolute value 
vp(l): Versatec print 

diffmark(I): mark changes between versions of a file 
sccsdiff(I): compare two versions of an sees file 
gath (I): gather real and. virtual files 

checking... volcopy, labelit(VIII): copy filesystems with label. 
fs(V): format of file system volume 

vp(l): Versatec print 
wait(II): wait for process to terminate 

wait (I): await completion of process 
wait (II) : wait for process to terminate 

pause(II): indefinite wait 
wall(VIII): write to all users 
wc(O: word count 

crash (VIII) : what to do when the system crashes 
what(n: identify files 
whatsnew(I): compare file modification dates 
while(I): shell iteration command 

who(I): who is on the system 
who (I): who is on the system 

gmatch(III): match a string with a pattern (like glob(VIII» 
volcopy, labeli t (VIII): copy filesystems with label checking 

mm (I): run off document with PWB/MM 
wc(O: word count 

pwd(I): working directory name 

- xlv -



cd (1): change working directory 
chdir(I): change working directory 

chdir(II): change working directory 
putchar, flush (III): write character 

write (II) : write on a file 
wall (VIU)': write to all users 

write(I): write to another user 
write (I) : write to another user 
write (II) : write on a file 

open(II): open for reading or writing 
wtmp(V): user login history 
wump(Vn: the game of hunt-the-wumpus 
xargs(I): construct argument list(s) and execute command 

DASI4S0(VII): DASI4S0, DIABLO 1620, XEROX 1700 terminals 
yacc(I): yet another compiler-compiler 

yacc(I): yet another compiler-compiler 
Quiz(I): test your knowledge 

- xlvi -



450 (I) PWB/UNIX Edition 1.0 

NAME 
450 - handle special functions of DASI450 terminal 

SYNOPSIS 
450 

DESCRIPTION 

450 (1) 

450 supports special functions of, and optimizes the use of the DASI450 terminal, or any terminal 
that is functionally identical, such as the DIABLO 1620 or XEROX 1700. It converts half-line 
forward, half-line reverse, and full-line reverse motions to the correct vertical motions. It also 
attempts to draw Greek letters and other special symbols in the same manner as gsi(J). 450 can 
be used to print equations neatly, in the sequence: 

neqn file ... I nroff I 450 

NOTE: 450 can be used with the nro./f -s flag or .rd requests when it is necessary to insert paper 
manually or change fonts in the middle of a document. Instead of hitting the'RETURN key in 
these cases, you must use the LINE FEED key to get any response. 

However, in most cases, 450 can be eliminated in favor of the following: 

nroff -T450 files ... or nroft' -T450-12 jiles ... 

In a few cases, the additional movement optimization of 450 may produce better-aligned output. 

The SPACING switch may be in either 10-pitch or 12-pitch position (but that setting can be over­
ridden dynamically). In either case, vertical spacing is 6 lineslinch, unless dynamically changed to 
8 lines per inch by an appropriate escape sequence. 

SEE ALSO 
graph(I), gsi(I), mesg(I), neqn(I), stty(I) , tabs(I), greek(V), DASI450(VII), terminals(VII) 

BUGS ' 
Some Greek characters can't be correctly printed in column 1 because the print head cannot be 
moved to the left from there. If your output contains much Greek and/or reverse line feeds, use 
friction feed instead of a forms tractor. Although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters, and misaligning the first line 
after a long set of reverse line feeds. 

- 1 -



ADB (I) PWB/UNIX Edition 1.0 ADB(I) 

NAME 
adb - debugger 

SYNOPSIS 
adb [-w] [ objfil [ corfi11 ] 

DESCRIPTION 
Adb is a general-purpose debugging program. It may be used to examine files and to provide a con­
trolled environment for the execution of UNIX programs. 

Objfil is normally an executable program file, preferably containing a symbol table~ if not then the sym­
bolic features of adb cannot be used although the file can still be examined. The default for objfil is 
a.out. Cor.fil is assumed to be a core image file produced after executing objfil; the default for corfil is 
core. 

Requests to adb are read from the standard input and responses are to the standard output. If the -w 
flag is present then both objfi/ and corfil are created if necessary and opened for reading and writing so 
that files can be modified using a db. Adb ignores QUIT signals; INTERRUPT causes return to the next 
adb command. 

In general, requests to adb are of the form 

[ address] [, count] [command] [;] 

If address is present then dot is set to address. Initially dot is set to O. For most commands, count 
specifies how many times the command will be executed. The default count is 1; Address and count are 
expressions. 

The interpretation of an address depends on the context it is used in. If a sub-process is being 
debugged then addresses are interpreted in the usual way in the address space of the sub-process. For 
further details of address mapping see ADDRESSES. 

EXPRESSIONS 

The value of dot. 

+ The value of dot incremented by the current increment. 

The value of dot decremented by the current increment. 

The last address typed. 

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by '#'; oth­
erwise a decimal number. 

integer. fraction 
A 32-bit flo~ting point number. 

, ecce' The ASCII value of up to 4 characters. '\' may be used to escape "'. 

< name The value of name, which is either a variable name or a register name. Adb maintains a 
number of variables (q.v.) that are referred to by the letters a to z or the digits 0 to 9 (see 
VARIABLES below). If name is a register name, then the value of the register is obtained 
from the system header in cor./il. The register names are rO ... r5 sp pc ps. 

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting 
with a digit. '\' may be used to escape other characters. The value of the symbol is taken 
from the symbol table in objfil. An initial '_' or '-' will be prepended to symbol if needed. 

- 1 -



ADB(I) PWB/UNIX Edition 1.0 ADB (1) 

routine. name 
The address of the variable name in the specified C routine. Both routine and name are 
symbols. If name is omitted, the value is the address of the most recently activated C stack 
frame, corresponding to routine. 

( exp) The value of expo 

Monadic operators 

... exp The contents of the location addressed by ~xp in corfil. 

@ exp The contents of the location addressed by exp in objfil. 

- exp Integer negation. 

- exp Bitwise complement. 

Dyadic operators are left associative and are less binding than monadic operators. 

e J + e2 Integer addition. 

el - e2 Integer subtraction. 

e J ... e2 Integer multiplication. 

e J % e2 Integer division. 

e 1 & e2 Bitwise conjunction. 

el I e2 Bitwise disjunction. 

el # e2 el rounded up to the next multiple of e2. 

COMMANDS 
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are 
available. (The commands ~:' and "/' may be followed by ~*'~ see ADDRESSES for fur.ther details.) 

? f Locations starting at address in objfi/ are printed according to the format j Dot is incremented 
by the sum of the increments for each format letter (q.v.). 

/ f Locations starting at address in codil are printed according to the format f and dot is incre­
mented as for ~?'. 

= f The value of address itself is printed in the styles indicated by the format j (For i format ~?' is 
printed for the parts of the instruction that reference subsequent words.) 

Formats 
A format consists of one or more characters that specify a style of printing. Each format character may 
be preceded by a decimal integer that is a repeat count for the format character. While stepping 
through a format, dot is incremented by the amount given for each format letter. If no format is given 
then the last format is used. The format letters available are as follows. 

0 2 Prin t 2 bytes in octal. All octal numbers output by adb are preceded by O. 

0 4 Print 4 bytes in octal. 

q 2 Print in signed octal. 

Q 4 Print long signed octal. 

d 2 Print in decimal. 

D 4 Print long decimal. 

x 2 Print 2 bytes in hexadecimal. 

-, -



ADB (I) 

X 4 

u 2 

U 4 

f 4 

F 8 

b 1 

c 1 

C 1 

s n 

S n 

Y 4 

PWB/UNIX Edition 1.0 

Print 4 bytes in hexadecimal. 

Print as an unsigned decimal number. 

Print long unsigned decimal. 
\ 

Print the 32-bit value as a floating point number. 

Print double floating point. 

Print the addressed byte in octal. 

Print the addressed character. 

ADB(I) 

Print the addressed character using the following escape convention. Character values 000 
to 040 are printed as @ followed by the corresponding character in the range 0100 to 0140. 
The character @ is printed as @@. 

Print the addressed characters until a zero character is reached. 

Print a string using the @ escape convention; n is the length of the string including its 
zero terminator. 

Print 4 bytes in date format (see time (II) ). 

n Print as PDP-II instructions~ n is the number of bytes occupied by the instruction. This 
style of printing causes variables 1 and 2 to be set to the offset parts of the source and des­
tination respectively. 

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have an 

p 2 

t 0 

r 0 

n 0 

appropriate type as indicated below. 

1 local or global data symbol 
? local or global text symbol 
= local or global absolute symbol 

Print the addressed value in symbolic form using the same rules fDr symbDIIDDkup as a. 

When preceded by an integer, tabs tD the next apprDpriate tab stop. For example, 8t 
moves to. the next 8 space tab stop. 

Print a space. 

Print a newline. 

tt ••• ,. 0 Print the enclosed string. 

+ 
dot is decremented by the current increment. Nothing is printed. 

dot is incremented by 1. Nothing is printed. 

dot is decremented by 1. Nothing is printed. 

MORE COMMANDS 
Here are a few more commands; '[?/]' means the command can start with either '?', for addresses in 
objfil, or '/', for addresses in codil. 

[? I] I value mask 
Words starting at dot are masked with mask and compared with value until a match is found. If 
L is used, then the match is for 4 bytes at a time instead of 2. If no match is found, then dot is 
unchanged; otherwise dot is set to the matched location. If mask is omitted, then -1 is used. 

- 3 -



ADB (I) PWB/UNIX Edition 1.0 ADB (I) 

[? I] w value ••• 
value is written into the addressed location. If W is used then 4 bytes are written, otherwise 2 
bytes are written. Odd addresses are not allowed when writing to the sub-process address space. 

r? /] m b 1 e 1 fl [? I] 
New values for (bI, ei ,j1) are recorded. If less than three expressions are given then the 
r~maining map parameters are left unchanged. If the "?' or 'I' is followed by '*' then the 
second segment (b2, e2,./2) of the mapping is changed. If the list is terminated by'?' or 'I' 
then the file (obffil or 'corfil respectively) is used for subsequent requests. (So that, for exam­
ple, '1m?' will cause '/' to refer to obffil.) 

> name dot is assigned to the variable or register named. 

A shell is called to read the rest of the line following "!'. 

$ modifier 

< f Read commands from the file f and return. 

> f Send output to the file Jwhich is created if it does not exist. 

r Print the general registers and the instruction addressed by pc~ dot is set to pc. 

f Print the floating registers in single or double length. If the floating point status of ps is set to 
double (0200 bit) then double length is used anyway. 

b Print all breakpoints and their associated counts and commands. 

a ALGOL 68 stack backtrace. If address is given then it is taken to be the address of the current 
frame (instead of r4). If count is given then only the first count frames are printed. 

c C stack backtrace. If address is given then it is taken as the address of the current frame 
(instead of rS). If C is used then the names and (16-bit) values of all automatic and static vari­
ables are printed for each active function. If count is given then only the first count frames are 
printed. 

e The names and values of external variables are printed. 

w Set the page width for output to address (default 80). 

s Set the limit for symbol matches to address (default 255). 

o All integers input are regarded as octal. 

d Reset integer input as described in EXPRESSIONS. 

q Exit from adb. 

v Print all non-zero variables in octal. 

m The values used for mapping addresses into file addresses are printed. 

: modifier 

beSet breakpoint at address. The br.eakpoint is executed c-I times before causing a stop. Each 
time the breakpoint is encountered, the command c is executed. If this command sets dot to 
zero then the breakpoint causes a stop. 

d Delete breakpoint at address. 

reRun objfi/ as a sub-process. If address is given explicitly, then the program is entered at this 
point~ otherwise, the program is entered at its standard entry point; c specifies how many break­
points are to be ignored before stopping. Arguments to the sub-process may be supplied on the 
same line as the command. An argument starting with < or > causes the standard input or 

- 4 -



ADB (I) PWB/UNIX Edition 1.0 ADB(I) 

output to be established for the command. All signals are turned on on entry to the sub­
process. 

c s The sub-process is continued with signal s. If address is given then the sub-process is continued 
at this address. If no signal is specified then the signal that caused the sub-process to stop is 
sent. Breakpoint skipping is the same as for r. 

s s As for c except that the sub-process is single stepped count times. If there is no current sub­
process then objfil is run as a sub-process as for r. In this case no signal can be sent~ the 
remainder of the line is treated as arguments to the sub-process. 

k The current sub-process, if any, is terminated. 

VARIABLES 
Adb provides a number of variables. Named variables are set initially by adb but are not used subse­
quently. Numbered variables are reserved for communication as follows. 

o The last value printed. 
1 The last offset part of an instruction source. 
2 The previous value of variable 1. 

On entry the following are set from the system header in the corii!. If cor,fil does not appear to be a 
core file then these values are set from objfil. 

b The base address of the data segment. 
d The data segment size. 
e The entry point. 
m The 'magic' number (0405, 0407, 0410 or 0411). 
s The stack segment size. 
t The text segment size. 

ADDRESSES 
The address in a file associated with a written address is determined by a mapping associated with that 
file. Each mapping is represented by two triples (bl, el,fl) and (b2, e2,./2) and the file address 
corresponding to a written address is calculated as follows. 

bl~address<el => file address=address+fl-bl, otherwise, 

b2~ address< e2 => file address-=address+f2-b2, 

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I and 0 
space) the two segments for a file may overlap. If a '?' or'/, is followed by an '*' then only the second 
triple is used. 

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of 
the kind expected then, for that file, bl isset to 0, el is set to the maximum file size and j1 is set to O~ 
in this way the whole file can be. examined with no address translation. 

So that adb may be used on large files all appropriate values are kept as signed· 32-bit integers. , 

EXIT STATUS 
If the last command was successful then the exit status is zero~ otherwise it is non-zero. 

FILES 
/dev/mem 
/dev/swap 

- 5 -



ADB (I) PWB/UNIX Edition 1.0 ADB(I) 

SEE ALSO 
cdb(I) , db(I), ptrace(II), a.out(V), core(V) 

BUGS 

a) A breakpoint set at the entry point is not effective on initial entry to the program. 

b) When single stepping, system calls do not count as an executed instruction. 

- 6 -



ADMIN (I) PWB/UNIX Edition 1.0 ADMIN (I) 

NAME 
admin - administer sees files 

SYNOPSIS 
admio [-0] [-Hname] [-rreI]] [-t[name]] [-fadd-flag[flag-val]] ... [-ddelete-flag] ... 
[-aadd-loginl... [-eerase-Iogin]... [-h] [-z] name ... 

DESCRIPTION 

Admin is used to create new sees files and change parameters of existing ones. Arguments to 
admin, which may appear in any order, consist of keyletter arguments, which begin with "-", and 
na.med files. If a named file doesn't exist, it is created, and its parameters are initialized according 
to the specified keyletter arguments. Parameters not initialized by a keyletter argument are 
assigned a default value. If a named file does exist, parameters corresponding to specified 
keyletter arguments are changed, and other par~meters are left as is. 

If a directory is named, admin behaves as though each file in the directory were specified as a 
named file, except that non-SeeS files Oast component of the pathname does not begin with 
"s. "), and unreadable files, are silently ignored. If a name of "-" is given, the standard input is 
read~ each line of the standard input is taken to be the name of an sees file to be processed. 
Again, non-SeeS files and unreadable files are silently ignored. 

The keyletter arguments are as follows. Each is explained as though only one named file is to be 
processed, but the effects of any keyletter argument other than i and r apply independently to 
each named file. 

-0 This argument indicates that new files are to be created. This argument must be 
specified when creating new sees files. The i argument implies an 0 argument. 

-i The name of a file from which the text of an initial delta is to be taken. If this argu­
ment is supplied, but the file name is omitted, the text is obtained by reading the stan­
dard input until an end-of-file is encountered. If this argument is omitted, and the 
admin command creates one or more sees files, then their initial deltas must be 
inserted in the normal manner, using get and deltaCI). Only one sees file may be 
created by an admin command on which the i argument is supplied. 

-r The release into which the initial delta will be inserted. This argument may only be 
supplied if the i argument is also supplied. If this argument is omitted, the initial delta 
will be inserted into release 1. The level of the initial delta will always be 1. 

-t The name of a file from which descriptive text for the sees file is to be taken. If this 
argument is supplied and admin is creating a new sees file, the descriptive-text file­
name must also be supplied. In the case of existing sees files, if this argument is 
supplied but the file name is omitted, the descriptive t~xt (if any) currently in the 
sees file will be removed. If the file name is supplied, the text in the file named will 
replace the descriptive text (if any) currently in the sees file. 

-f This argument specifies a flag, and, possibly, a value for the flag, to be added to the 
sees file. Several f arguments may be supplied on a ·single admin command. The 
allowable flags and their values are as follows: 

- 1 -



ADMIN (I) PWB/UNIX Edition 1.0 ADMIN (I) 

b The presence of this flag indicates that the use of the b argument on a get 
command will cause a branch to be taken in the delta tree. 

cceil The Hceiling: " the highest release (less than or equal to 9999) which may 
be specified by the r argument on a get with an e argument. If this flag is 
not specified, the ceiling is 9999. 

dSID The default SID to be used on a get when the r argument is not supplied. 

ffloor The Hfloor:" the lowest release (greater than O) which may be specified by 
the r argument on a get with an e argument. If this flag is not specified, the 
floor is 1. 

The presence of this flag causes the "No id keywords (ge6)" message issued 
by get or delta to be treated as a fatal error. In the absence of this flag, the 
message is only a warning. 

mmod This flag specifies the module name of the sees file. Its value will be used 
by get as the replacement for the %M% keyword. 

ttype This flag specifies the type of the module. Its value will be used by get as a 
replacement for the %Y% keyword. 

v[pgm] The presence of this flag indicates that delta is to prompt for MR numbers 
in addition to comments. If the optional value of this flag is present, it 
specifies the name of an MR number validity checking program. 

-d This argument specifies a flag to be completely removed from an sees file. This argu­
ment may onry be specified when processing existing sees files. Several d arguments 
may be supplied on a single admin command. See the f argument for the allowable 
flags. 

-a A login name to be added to the list of logins which may add deltas. Several a argu­
ments may be supplied on a single admin command. As many logins as desired may be 
on the list simultaneously. If the list of logins is empty, then anyone may add deltas. 

-e A login name to be erased from the list of logins. Several e arguments may be sup­
plied on a single admin command. 

-h This argument provides a convenient mechanism for checking for corrupted files. 
With this argument, admin will check that the sum of all the characters in the sees 
file (the check-sum) agrees with the sum which is stored in the first line of t~e file. If 
the sums are not in agreement a "corrupted file" message will be produced. This argu­
ment inhibits writing on the file, so that it will nullify the effect of any other argu­
ments supplied, and is, therefore, only meaningful when processing' existing files. 

-z This argument will cause admin to ignore any discrepancy in the check-sum of the 
sees file (see h argument), and to replace it with the new one. (The same effect may 
be had by first editing the sees file with eden in order to replace the five-character 
check-sum in the first line of the file with five zeroes. A subsequent invocation of an 
sees command which modifies the file (e.g.~ admin, delta), will cause check-sum vali­
dation to be by-passed, and a new check-sum to be computed.) The purpose of this is 

- 2 -



ADMIN (I) PWB/UNIX Edition 1.0 ADMIN (I) 

FILES 

to correct the check-sum in those files which may have been edited by the user. Note 
that use of this argument on a truly corrupted file will prevent future detection of the 
corruption. 

The last component of all' sees file names must be of the form ~~s.modu/ename". New sees 
files are given mode 444. Write permission in the pertinent directory is, of course, required to 
create a file. All writing done by admin is to a temporary x-file (see get (I) ), created with mode 
444 if the admin command is creating a new sees file, or with the same mode as the sees file if 
it exists. After successful execution of admin, the sees file will be deleted, if it exists, and the 
x-file will be renamed with the name of the sees file. This ensures that changes will be made to 
the sees file only if no errors occurred. 

It is recommended that directories containing sees files be mode 755 and that sees files them­
selves be mode 444. The mode of the directories will allow only the owner to modify sees files 
contained in the directories. The mode of the sees files will prevent any modification at all 
except by sees commands. 

If it should be necessary to patch an sees file for any reason, the mode may be changed to 644 
by the owner, and then the owner may edit the file at will with ed(I). 

Admin also makes use of the z-file, which is used to prevent simultaneous updates to the sees 
file by different users. See get(I) for further information. 

SEE ALSO 
get (I) , delta (I) , prt(D, what(D, help(I), ed(n, sccsfile(V) 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 
Use he/pO) for explanations. 

- 3 -



AR (I) PWB/UNIX Edition 1.0 AR (I) 

NAME 
ar - archive and library maintainer 

SYNOPSIS 
ar key [ posname ] afile name ... 

DESCRIPTION 

FILES 

Ar maintains groups of files combined into a single archive file. Its main use is to create and 
update library files as used by the Id(I). It can be used, though, for any similar purpose. 

Key is one character from the set drtpmx, optionally concatenated with vuabin. AJile is the 
archive file. The names are constituent files in the archive file. The meanings of the key charac­
ters are: 

d means delete the named files from the archive file. 

r means replace the named files in the archive file. If the optional character u is used with r, then 
only those files with modified dates later than the archive files are replaced. If the optional posi­
tioning character a (also i or b) is used, then the posname argument must be present and specifies 
a file in the archive after (before for i and b) which new files are placed. Without a, i, or b, new 
files are placed at the end. 

t prints a table of contents of the archive file. If no names are given, all files in the archive are 
tabled. If names are given, only those files are tabled. 

p prints the named files in the archi ve. 

rn moves the named files to the end of the archive. If the options a, i, or b are used, then the 
posname argument must be present and, as in r, specifies where the files are to be moved. 

x extracts the named files. If no names are given, all files in the archive are extracted. In neither 
case does x alter the archive file. 

v means verbose. Under the verbose option, ar gives a file-by-file description of the making of a 
new archive file from the old archive and the constituent files. When used with t, it gives a long 
listing of all information about the files. 

n is accepted with no effect whatsoever. 

In all cases, the archive file is created mode 644. 

Itmp/v????? temporary 
ItmplvI ????? temporary 
Itmp/v2????? temporary 

DIAGNOSTICS 
Most diagnostics are self-explanatory. The message "no space in xxX' means that the file system 
.xxx does not have enough space to contain the temporary files or the new archive file. 

SEE ALSO 
Id(I), archive(V) 

BUGS 
If the same file is mentioned twice in an argument list, it may be put in the archive twice. 

- I -



AS (I) PWB/UNIX Edition 1.0 AS (I) 

NAME 
as - assembler 

SYNOPSIS 
as [ - ] [ -0 objfil ] name ... 

DESCRIPTION 

FILES 

As assembles the concatenation of the named files. If the optional first argument - is used, all 
undefined symbols in the assembly are treated as global. 

The output of the assembly is left on the file objfil; if that is omitted, a.out is used. It is execut­
able if no errors occurred during the assembly, and if there were no unresolved external refer­
ences. 

/lib/as2 pass 2 of the assembler 
/tmp/atm [1-3]? temporary 
a.out object 

SEE ALSO 
Id(I), nmO), db (I) , a.out(V) , UNIX Assembler Reference Manual by D. M. Ritchie. 

DIAGNOSTICS 

BUGS 

When an input file cannpt be read, its name followed by a question mark is typed and assembly 
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out 
together with the line number and the file name in which it occurred. Errors in pass 1 cause can­
cellation of pass 2. The possible errors are: 

) 
] 
< 
* 

A 
B 
E 
F 
G 
I 
M 
o 
P 
R 
U 
X 

Paren theses error 
Parentheses error 
String not terminated properly 
Indirection used illegally 
Illegal assignment to '.' 
Error in address 
Branch instruction is odd or too remote 
Error in expression 
Error in local ('f or 'b ') type symbol 
Garbage (unknown) character 
End of file inside an if 
Multiply defined symbol as label 
Word quantity assembled at odd address 
'.' different in pass 1 and 2 
Relocation error 
Undefined symbol 
Syntax error 

Symbol table overflow is not checked. x errors can cause incorrect line numbers in following 
diagnostics. 

- 1 -



BANNER (I) PWB/UNIX Edition 1.0 BANNER (I) 

NAME 
banner - print in block letters 

SYNOPSIS 
banner arg ... 

DESCRIPTION 
Banner writes characters as large block letters, 7 characters by 7 characters, on the standard output 
file. Each argument may be up to ten characters, and is printed on a separate row. 

- 1 -



BAS (I) PWB/UNIX Edition 1.0 BAS (I) 

NAME 
bas - basic 

SYNOPSIS 
bas [ file] 

DESCRIPTION 
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the con­
sole is read. Bas accepts lines of the form: 

statement 
integer statement 

Integer numbered statements (known as internal statements) are stored for later execution. They 
are stored in sorted ascending order. Non-numbered statements are immediately executed. The 
result of an immediate expression statement (that does not have '=' as its highest operator) is 
printed. 

Statements have the following syntax: 

expression 
The expression is executed for its side effects (assignment or function call) or for printing as 
described above. 

comment ... 
This statement is ignored. It is used to interject commentary in a program. 

done 
Return to system level. 

draw expression expression expression 
A line is drawn on the Tektronix 611 display '/dev/vtO' from the current display position to 
the XY co-ordinates specified by the first two expressions. The scale is zero to one in both 
X and Y directions. If the third expression is zero, the line is invisible. The current display 
position is set to the end point. 

display list 
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611 
starting at the current display position. The current display position is not changed. 

dump 

edit 

erase 

The name and current value of every variable is printed. 

The UNIX editor, ed, is invoked with the .file argument. After the editor exits, this file is 
recompiled. 

The 611 screen is erased. 

for name = expression expression statement 
for name = expression expression 

next 
The .for statement repetitively executes a statement (first form) or a group of statements 
(second form) under control, of a named variable. The variable takes on the value of the 
first expression, then is incremented by one on each loop, not to exceed the value of the 

- 1 -



BAS (I) PWB/UNIX Edition 1.0 BAS (I) 

sec<?nd expression. 

goto expression 
The expression is evaluated, truncated to an integer and execution goes to the corresponding 
integer numbered statment. If executed from immediate mode, the internal statements are 
compiled first. 

if expression statement 
if expression 

[ else 

fi 
... ] 

The statement (first form) or group of statements (second form) is executed if the expres­
sion evaluates to non-zero. In the second form, an optional else allows for a group of state­
ments to be executed when the first group is not. 

list [expression [expression]] 
is used to print out the stored internal statements. If no arguments are given, all internal 
statements are printed. If one argument is given, only that internal statement is listed. If 
two arguments are given, aU internal statements inclusively between the arguments are 
printed. 

print list 
The list of expressions and strings are concatenated and printed. (A string is delimited by It 

characters. ) 

prompt list 
Prompt is the same as print except that no newline character is printed. 

return [expression] 

run 

The expression is evaluated and the result is passed back as the value of a function call. If 
no expression is given, zero is returned. 

The internal statements are compiled. The symbol table is re-initialized. The random 
number generator is reset. Control is passed to the lowest numbered internal statement. 

save [expression [expression]] 
Save is like list except that the output is written on the .file argument. If no argument is 
given on the command, b.out is used. 

Expressions have the following syntax: 

name 
A name is used to specify a variable. Names are composed of a letter followed by letters 
and digits. The first four characters of a name are significant. 

number 
A number is used to represent a constant value. A number is written in Fortran style, and 
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol­
lowed by a possi bly signed· exponent. 

( expression ) 
Parentheses are used to alter normal order of evaluation. 

_ expression 
The result is the negation of the expression. 

- 2 .. 



BAS (I) PWB/UNIX Edition 1.0 BAS (I) 

expression operator expression 
Common functions of two arguments are abbreviated by the two arguments separated by an 
operator denoting the function. A complete list of operators is given below. 

expression ( [expression [ , expression] ... ] ) 
Functions of an arbitrary number of arguments can be called by an expression followed by 
the arguments in parentheses separated by commas. The expression evaluates to the line 
number of the entry of the function in the internally stored statements. This causes the 
internal statements to be compiled. If the expression evaluates negative, a builtin function 
is called. The list of builtin functions appears below. 

name I expression [ , expression] ... 1 
Each expression is truncated to an integer and used as a specifier for the name. The result 
is syntactically identical to a name. al1,21 is the same as a111121. The truncated expressions 
are restricted to values between 0 and 32767. 

The following is the list of operators: 

&\ 

= is the assignment operator. The left operand must be a name or an array element. The 
result is the right operand. Assignment binds right to left, all other operators bind left to 
right. 

& (logical and) has result zero if either of its arguments are zero. It has result one if both 
its arguments are non-zero. I (logical or) has result zero if both of its arguments are zero. It 
has result one if either of its arguments are non-zero. 

< <= > >= == <> 
The relational operators « less than, <= less than or equal, > greater than, >= greater 
than or equal, == equal to, < > not equal to) return one if their arguments are in the 
specified relation. They return zero otherwise. Relational operators at the same level 
extend as follows: a>b>c is the same as a>b&b>c. 

+-
Add and subtract. 

* I 
Multiply and divide. 

Exponentiation. 

The following is a list of builtin functions: 

arg(i) 
is the value of the i -th actual parameter on the current level of function call. 

exp(x) 
is the exponential function of x. 

log (x) 
is the natural logarithm of x. 

sqr(x) 
is the square root of x. 

sin (x) 
is the sine of x (radians). 

- 3 -



BAS(l) PWB/UNIX Edition 1.0 BAS (I) 

cos (x) 
is the cosine of x (radians). 

atn(x) 
is the arctangent of x. Its value is between -r,12 and 71"12. 

rnd( ) 
is a uniformly distributed random number between zero and one. 

expr( ) 
is the only form of program input. A line is read from the input and evaluated as an expres­
sion. The resultant value is returned. 

abs(x) 
is the absolute value of x. 

int(x) 
returns x truncated (towards 0) to an integer. 

FILES 
Itmp/btm? 
b.out 

DIAGNOSTICS 

temporary 
save file 

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All 
other diagnostics are self explanatory. 

BUGS 
Has been known to give core images. 

- 4 -



BC (1) PWB/UNIX Edition 1.0 BC (0 

NAME 

be - arbitrary precision interactive language 

SYNOPSIS 
be [ -I ] [file ... ] 

DESCRIPTION 

Be is an interactive processor for a language which resembles C but provides unlimited precision 
arithmetic. It takes input from any files given, then reads the standard input. The '-1' argument 
stands for the name of a library of mathematical subroutines which contains sine (named's'), 
cosine ('c'), arctangent ('a'), natural logarithm ('1'), and exponential ('e'). The syntax for be 
programs is as follows~ E means expression, S means statement. 

Comments 
are enclosed in /* and * /. 

Names 
letters a-z 
array elements: lettedE] 
The words 'ibase', 'obase', and 'scale' 

Other operands 
arbitrarily long numbers with optional sign and decimal point. 
( E) 
sqrt ( E ) 
<letter> ( E , ... , E ) 

Operators 
+-*/%" 
++ -- (prefix and postfix~ apply to names) 
== <= >= != < > 
= =+ =- =* =/ =% =" 

Statements 
E 
{S~ ... ~S} 
if ( E ) S 
while ( E ) s. 
for ( E ~ E ~ E ) S 
null statement 
break 
quit 

Function definitions are exemplified by 
define <letter> ( <letter> , ... , <letter> ) { 

auto <letter>, ... , <letter> 
S~ ... S 
return ( E) 

All function arguments are passed by value. 

The value of a statement that is an expression is printed unless the main operator is an assign­
ment. Either semicolons or newlines may separate statements. Assignment to scale influences 
the number of digits to be retained on arithmetic operations. Assignments to ibase or obase set 

- 1 -



BC (I) PWB/UNIX Edition 1.0 BC (I) 

FILES 

the input and output number radix respectively. 

The same letter may be used as an array name, a function name, and a simple variable simultane­
ously. ~ Auto' variables are saved and restored during function calls. All other variables are global 
to the program. When using arrays as function arguments or defining them as automatic variables 
empty square brackets must follow the array name. 

For example 

scale == 20 
define e(x) { 

auto a, b, c, i, s 
a-I 
b-l 
s-I 
forO-I; 1--1; i++){ 

a - a*x 
b == b*i 
c == alb 
if(c -- 0) return (s) 
s == s+c 

defines a function to compute an approximate value of the exponential function and 

forO::il:l~ i<==lO~ i++) eO) 

prints appro~imate values of the exponential function of the first ten integers. 

lusr/lib/lib.b mathematical library 

SEE ALSO 
dc(D 
C Reference Manual by D. M. Ritchie. 
BC·- An Arbitrary Precision Desk Calculator Language by L. L. Cherry and R. Morris. 

BUGS 
No &&; II yet. 
for statement must have all three E's 
quit is interpreted when read, not when executed. 

- 2 -



BDIFF (I) PWB/UNIX Edition 1.0 BDIFF (1) 

NAME 
bdiff - big diff 

SYNOPSIS 
bdiff namel name2 

DESCRIPTION 
Bdi/f is used in a manner analogous to dilJ(I) to find which lines must be changed in two files to 
bring them into agreement. Its purpose is to allow processing of files which are too large for 
dilJ(I) . Bdi/f splits the files into 4000-line segments, and invokes diff(I) on corresponding seg­
ments (4000-lines is a reasonable upper limit for di/f(J)). If namel (name2) is H_", the standard 
input is read. The output of bdi/fis exactly that of diff(I), with line numbers adjusted to account 
for the segmenting (that is, to make it look as if the files had been processed whole). 

Note that unlike diff(I), bdi/f supports no optional keyletter arguments. In addition, because of the 
segmenting of the files, bdi/f does not necessarily find a smallest sufficient set of file differences. 

FILES 
Itmp/bd????? 

SEE ALSO 
diff(I) . 

DIAGNOSTICS 
Use he/pO) for explanations. 

- 1 -



BFS (I) PWB/UNIX Edition 1.0 BFS (I) 

NAME 
bfs - big file scanner 

SYNOPSIS 
bfs [ - ] name 

DESCRIPTION 
Bfs is (almost) like ed(I) except that it is read-only and processes much bigger files. Files can be 
up 1024K bytes (the maximum possible size) and 32K lines, with up to 255 characters per line. 
Bfs is usually more efficient than ed for scanning a file, since the file is not copied to a buffer. 

Normally, the size of the file being scanned is printed, as is the size of any file written with the w 
command. The optional - suppresses printing of sizes. Input is prompted with ,*, if 'P' and a 
carriage return is typed as in ed. Prompting can be turned off again by inputting another 'P' and 
carriage return. Note that messages are given in response to errors if prompting is turned on. 

All address expressions described under ed are supported. In addition, regular expressions may be 
surrounded with two symbols besides '/' and '?': '>' indicates downward search without wrap­
around, and '<' indicates upward search without wrap-around. Since bfs uses a different regular 
expression-matching routine from ed, the regular expressions accepted are slightly wider in scope 
(see regex(III». There is a slight difference in mark names: only the letters 'a' through 'z' may 
be used, and all 26 marks are remembered. 

The e, g, v, k, n, p, q, w, =, ! and null commands operate as described under ed. Commands 
such as '---', '+++-', '+++=', '-12', and '+4p' are accepted. Note that '1,10p' and '1,10' 
will both print the first ten lines. The I command only prints the name of the file being scanned; 
there is no remembered file name. The w command is independent of output diversion, truncation 
or crunching (see the xo, xl an,d xc commands, below). The following additional commands are 
available: 

xf file 
Further commands are taken from the named file. When an end-of-file is reached, an 
interrupt signal is received or an error occurs, reading resumes with the file containing 
the xl XI commands may be nested to a depth of 10. 

xo [file] 
Further output from the p and null commands is diverted to the named file, which, if 
necessary, is created mode 666. Plain 'xo' diverts output back to the standard output. 
Note that each diversion causes truncation or creation of the file. 

: label . 
This positions a label in a command file. The label is terminated by newline, and 
blanks between the ':' and the start of the label are ignored. This command may also 
be used to insert comments into a command file, since labels need not be referenced. 

( . , . ) xb/regular expression/label 
A jump (either upward or downward) is made to the named label if the command 
succeeds. It fails under any of the following conditions: 

1. Either address is not between 1 and $. 
2. The second address is less than the first. 
3. The regular expression doesn't match at least one line in the specified .range, 

including the first and last lines. 

- 1 -



BFS (1) PWB/UNIX Edition 1.0 BFS (I) 

On success, '.' is set to the line matched and a jump is made to the label. This com­
mand is the only one that doesn't issue an error message on bad addresses, so it may 
be used to test whether addresses are .bad before other commands are executed. Note 
that the command 

xb/"/ label 

is an unconditional jump. 

The xb command is allowed only if it is read from someplace other than a terminal. If 
it is read from a pipe only a downward jump is possible. 

xt number 
Output from the p and null commands is truncated to at most number characters. The 
initial number is 255. 

xv [digit: 0-9] [optional spaces] [value] 
The variable name is the specified digit following the 'xv'. 'xv5100' or 'xv5 100' both 
assign the value '100' to the variable '5'. 'xv6l,IOOp' assigns the value '1,100p' to vari­
able '6'. To reference the variable put a '%' in front of the variable name. For exam­
ple, using the above assignments for the variables '5' and'6': 

1,%5p 
1,%5 
%6 

will all print the first 100 lines. 

gI%5/p 

would globally search for the characters '100' and print each line containing a match. 
To escape the special meaning of '%', a '\' must precede it. 

gI".*\%[cds)/p 

could be used to match and list lines containing print! of characters,decimal integers, or 
strings. 

Another feature of the xv command is that the first line of output from a UNIX com­
mand can be stored into a variable. The only requirement is that the first character of 
value be an '!'. For example: 

.w junk 
xv5!cat junk 
!rmjunk 
!echo "%5" 
xv6!expr %6 + 1 

would put the current line into variable '5', print it, and increment the variable '6' by 
one. To escape the special meaning of '!' as the first character of value, precede it with 
a '\'. 

xv7\ ! date 

stores the value '!date' into variable '7'. 

xbz label 
xbn label 

These two commands will test the last saved return code from the execution of a unix 
command (!UNIX command) and branch on a zero or nonzero value, respectively, to 
the· specified label. The two examples below both search for the next five lines 



BFS (I) PWB/UNIX Edition 1.0 

containing the string 'size'. 

xv55 
: I 
/size/ 
xv5!expr %5 - 1 
!if 0%5 !== 0 exit 2 
xbn I 

xv45 
: 1 
/size/ 
xv4!expr %4 - 1 
!if 0%4 == 0 exit 2 
xbz I 

BFS (I) 

xc [switch] 

SEE ALSO 

If switch is 1, output from the p and null commands is crunched; if switch is 0 it isn't. 
Plain 'xc' reverses the switch. Initially the switch is set for no crunching. Crunched 
output has strings of tabs and blanks reduced to one blank and blank lines suppressed. 

ed (I), regex (III) 

DIAGNOSTICS 
'?' for errors in commands, if prompting is turned off. Self-explanatory error messages when 
prompting is on. 

- 3-



CAL (I) PWB/UNIX Edition 1.0 CAL (I) 

NAME 
cal - print calendar 

SYNOPSIS 
cal [ month] year 

DESCRIPTION 
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that 
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12. 
The calendar produced is that for England and her colonies. 

Try September 1752. 

BUGS 
The year is always considered to start in January even though this is historically naive. 

- 1 -



CAT (1) PWB/UNIX Edition 1.0 CAT (1) 

NAME 
cat - concatenate and print 

SYNOPSIS 
cat [ -s ] [ -u ] file ... 

DESCRIPTION 
Cat reads ~ach file in sequence and writes it on the standard output. Thus 

cat file 

prints the file, and 

cat filel file2 >file3 

concatenates the first two files and places the result on the third. 

If no input file is given, or if the argument '-' is encountered, cat reads from the standard input 
file. 

The -s flag suppresses the error messages that cat would otherwise give for non-existent (or 
unreadable) files. The -u flag causes cat to work in an unbuffered fashion (read one character, 
then write that character). 

SEE ALSO 
pr(I), cpO) 

DIAGNOSTICS 
file not found 

BUGS 
cat xy >x and cat x y >y cause strange results (because of shO)). 



CB (I) 

NAME 
cb - C beautifier 

SYNOPSIS 
cb 

DESCRIPTION 

PWB/UNIX Edition 1.0 CB (I) 

cb reads a C program from the standard input, adds the proper indentation, and writes it on the 
standard output. 

- 1 -



CC (I) PWB/UNIX Edition 1.0 CC (I) 

NAME 
cc - C compiler 

SYNOPSIS 
cc [-c] [-p] [-f] [-Dn=vJ [- Idirl [-0] [-8] [-P] [-Un] files ... 

DESCRIPTION 

FILES 

Cc is the UNIX C compiler. It accepts three types of arguments: 

Arguments whose names end with' .c' are taken to be C source programs; they are compiled, and 
each object program is left on the file whose name is that of the source with '.0' substituted for 
'.c'. The '.0' file is normally deleted, however, if a single C program is compiled and loaded all at 
one go. 

The following flags are interpreted by ce. See Id(l) for load-time flags. 

-c Suppress the loading phase of the compilation, and force an object file to be produced even 
if only one program is compiled. 

-p Arrange for the compiler to produce code which counts the number of times each routine 
is called~ also, if loading takes place, replace the standard startup routine by one which 
automatically calls the monitor (III) subroutine at the start and arranges to write out a 
mon.out file at normal termination of execution of the object program. An execution 
profile can then be generated by use of prof{l). 

-f In systems without hardware floating-point, use a version of the C compiler which handles 
floating-point constants and loads the object program with the floating-point interpreter. 
Do not use if the hardware is present. 

- D The name n is de.fined, and is given the value v, if specified. 

-0 Invoke an object-code optimizer. 

- S Compile the named C programs, and leave the assembler-language output on corresponding 
files suffixed '.s'. 

-p Run only the macro preprocessor on the named C programs, and leave the output on 
corresponding files suffixed' .i'. 

- U The name n is undefined. 

- I The include preprocessor statement looks in directory dir"if it can't find the specified file in 
the local directory or in lusr/include. 

Other arguments are taken to be either loader flag arguments, or C-compatible object programs, 
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These pro­
grams, together with the results of any compilations specified, are loaded (in the order given) to 
produce an executable program with name a.out. If desired, a different name can be used; see 
the -0 option of IdO). 

file.c 
file.o 
a.out 
Itmp/ctm? 
/lib/c[Ol] 
/lib/fc[Ol] 

input file 
object file 
loaded output 
temporary 
compiler 
floating-point compiler 

- 1 -



CC (1) 

/lib/c2 
IIib/cpp 
llibl crtO.o 
/lib/mcrtO.o 
llib/fcrtO.o 
llib/libc.a 

. llib/liba.a 

SEE ALSO 

PWB/UNIX Edition 1.0 

optional optimizer 
pre-processor 
runtime startoff 
runtime startoff of profiling 
runtime startoff for floating-point interpretation 
C library; see section III. 
Assembler library used by some routines in libc.a 

C Reference Manual by O. M. Ritchie. 
Programming in C - A Tutorial by B. W. Kernighan. 
adb(l), cdb(I), ld(l), prof(I), monitor (III) 

DIAGNOSTICS 

CC (I) 

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages 
may be produced by the assembler or loader (see asCI) and Id(l). Of these, the most mystifying 
are from the assembler, in particular H m," which means a multiply-defined external symbol 
(function or data). 



CD (I) PWB/UNIX Edition 1.0 CD (I) 

NAME 
cd - change working directory 

SYNOPSIS 
cd directory 

DESCRIPTION 
Cd is an alias for clrdir(I). 

SEE ALSO 
chdir(I), sh(I), pwd(I) 

- 1 -



CDB(I) PWB/UNIX Edition 1.0 CDB (I) 

NAME 
cdb - C debugger 

SYNOPSIS 
cdb [ a.out [ core] ] 

DESCRIPTION 
Cdb is a debugger for use with C programs. It is useful for both post-mortem and interactive 
debugging. An important feature of cdb is that even in the interactive case no advance planning is 
necessary to use it~ in particular it is not necessary to compile or load the program in any special 
way nor to include any special routines in the object file. 

The first argument to cdb is an object program, preferably containing a symbol table~ if not given 
"a.out" is used. The second argument is the name of a core-image file~ if it is not given, "core" 
is used. The core file need not be present. 

Commands to cdb consist of an address, followed by a single command character, possibly fol­
lowed by a command modifier. Usually if no address is given the last-printed address is used. An 
address may be followed by a comma and a number, in whiCh case the command applies to the 
appropriate number of successive addresses. 

Addresses are expressions composed of names, decimal numbers, and octal numbers (which begin 
with "'0"), separated by "'+" and "-". Evaluation proceeds left-to-right. 

Names of external variables are written just as they are in C. For various reasons the external 
names generated by C all begin with an underscore., which is automatically tacked on by cdb. 
Currently it is not possible to suppress this feature, so symbols (defined in assembly-language pro­
grams) which do not begin with underscore are inaccessible. 

Variables local to a function (automatic, static, and arguments) are accessible by writing the name 
of the function, a colon "':", and the name of the local variable (e.g. "main:argc"). There is no 
notion of the "current" function~ its name must always be written explicitly. 

A number which begins with "'0" is taken to be octal~ otherwise numbers are decimal, just as in 
C. There is no provision for input of floating numbers. 

The construction "name[expression]" assumes that name is a pointer to an integer and is 
equivalent to the contents of the named cell plus twice the expression. Notice that name has to 
be a genuine pointer and that arrays are not accessible in this way. This is a consequence of the 
fact that types of variables are not currently saved in the symbol table. 

The command characters are: 

I m print the addressed words. m indicates the mode of printout~ specifying a mode sets the 
mode until it is explicitly changed again: 
o octal (default) 
i decimal 
f single-precision floating-point 
d double-precision floating-point 

\ Print the specified bytes in octa!_. 

print the value of the addressed expression in octal. 

print the addressed bytes as characters. Control and non-ASCII characters are escaped in 
octal. 

- 1 -



COB (I) PWB/UNIX Edition 1.0 COB (I) 

take the contents of the address as a pointer to a sequence of characters, and print the charac­
ters up to a null byte. Control and non-ASCII characters are escaped as octal. 

& Try to interpret the contents of the address as a pointer, and print symbolically where the 
pointer points. The printout contains the name of an external symbol and, if required, the 
smallest possible positive' offset. Only external symbols are considered. 

? Interpret the addressed location as a PDP-II instruction. 

Sm If no m is given, print a stack trace of the terminated or stopped program. The last call made 
is listed first; the actual arguments to each routine are given in octal. (If this is inappropriate, 
the arguments may be examined by name in the desired format using "I".) If m is "r", the 
contents of the PDP· I 1 general registers are listed. If m is "r', the contents of the floating­
point registers are listed. In all cases, the reason why the program stopped or terminated is 
indicated. 

%m According to m, set or delete a breakpoint, or run or continue the program: 

b An address within the program must be given~ a breakpoint is set there. Ordinarily, 
breakpoints will be set on the entry points of functions, but any location is possible as 
long as it is the firSt word of an instruction. (Labels don't appear in the symbol table 
yet.) Stopping at the actual first instruction of a function is undesirable because to make 
symbolic printouts work, the function's save sequence has to be completed; therefore cdb 
automatically moves breakpoints at the start of functions down to the first real code. 

It is impossible to set breakpoints on pure·procedure programs ( -n flag on cc or Id (1) 
because the program text is write .. protected. 

d An address must be given; the breakpoint at that address is removed. 

r Run the program being debugged. Following the H%r", arguments may be given; they 
cannot specify I/O redirection (" >", "<") or filters. No address is permissible, and 
the program is restarted from scratch, not continued. Breakpoints should have been set 
if any were desired. The program will stop if any signal is generated, such as illegal 
instruction (including simulated floating point), bus error, or interrupt (see signalnI) ~ it 
will also stop when a breakpoint occurs and in any case announce the reason. Then a 
stack trace can be printed, named locations examined, etc. 

c Continue after a breakpoint. It is possible but probably useless to continue after an error 
since there is no way to repair the cause of the error. 

SEE ALSO 

BUGS 

cc(I), db(I), C Reference Manual by D. M. Ritchie. 

Use caution in believing values of register variables at the lowest levels of the call stack~ the value 
of a register is found by looking at the place where it was supposed to have been saved by the 
callee. 

Some things are still needed to make cdb uniformly better than db: non-C symbols, patching files, 
patching core images of programs being run. It would be desirable to have the types of variables 
around to make the correct style printout more automatic. Structure members should be avail­
able. 

Naturally, there are all sorts of neat features not handled, like conditional breakpoints, optional 
stopping on certain signals (like illegal instructions, to allow breakpointing of simulated floating .. 
point programs). 

- 2 • 



CHOIR (I) 

NAME 
chdir - change working directory 

SYNOPSIS 
chdir directory 
cd directory 

DESCRIPTION 

PWB/UNIX Edition 1.0 CHDIR (I) 

Directory becomes the new working directory. The process must have execute (search) permission 
in directory. 

Because a new process is created to execute each command, chdir would be ineffective if it were 
written as a normal command. It is therefore recognized and executed by the Shell. 

Cd is a synonym for chdir and acts identically. 

SEE ALSO 
sh (I), pwd (I) 

- 1 -



eHGHIST(I) PWB/UNIX Edition 1.0 eHGHIST(I) 

NAME 
chghist - change the history entry of an sees delta 

SYNOPSIS 
chghist - rSID name ... 

DESCRIPTION 
Chghist changes the history iQformation, for the delta specified by the SID, of each named sees 
file. 

If a directory is named, chghist behaves as though each file in the directory were specified as a 
named file, except that non-SeeS files (last component of the pathname does not begin with 
H S."), and unreadable files, are silently ignored. If a name of "-" is given, the standard input is 
read; each line of the standard input is taken to be the name of an sees file to be processed. 
Again, non-SeeS files, and unreadable files, are silently ignored. 

The exact permissions necessary to change the history entry of a delta are documented in the 
SCCS/PWB User's Manual. Simply stated, they are either (1) if you made a delta, you can change 
its history entry; or (2) if you own the file and directory you can change a history entry. 

The new history is read from the standard input. If the standard input is a terminal (as deter­
mined by a successful gtty(II) call), the program will prompt (on the standard output) with 
"MRs? ", if the file has a v flag (see admin(I)), and with "comments? ". If the standard input is 
not a terminal, no prompt(s) is (are) printed. A newline preceded by a "\" is read as a blank, 
and may be used to make the entering of the history more convenient. The first newline not pre­
ceded by a "\" terminates the response for the corresponding prompt. 

When the history entry of a delta table record (see prt(I)) is changed, all old MR entries (if any) 
are converted to comments, and both these and the original comments are preceded by a com­
ment line that indicates who made the change and when it was made. The new information is 
entered preceding the old. No other changes are made to the delta table entry. 

FILES 
x-file 
z-file 

SEE ALSO 

(see delta (I) ) 
(see delta (n ) 

admin (I), get (I), delta (n, prt (I), help (n, sccsfile (V) 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 
Use helpO) for explanations. 

- 1 -



CHGRP (I) PWB/UNIX Edition 1.0 CHGRP (I) 

NAME 
chgrp - change group 

SYNOPSIS 
chgrp group file ... 

DESCRIPTION 
The group-ID of the files is changed to group. The group may be either a decimal GID or a group 
name found in the group-ID file. 

SEE ALSO 
chown (I), group(V) 

FILES 
/etc/group 

- I -



CHMOD (I) PWB/UNIX Edition 1.0 CHMOD (I) 

NAME 
chmod - change mode 

SYNOPSIS 
chmod octal file ... 

DESCRIPTION 
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of 
the following modes: 

4.000 set user ID on execution 
2000 set group ID on execution 
1000 sticky bit for shared, pure-procedure programs (see below) 
.040.0 read by owner 
0200 write by owner 
.0100 execute (search in directory) by owner 
.0070 read, write, execute (search) by group 
0.007 read, write, execute (search) by others 

Only the owner of a file (or the super-user) may change its mode. 

If an executable file is set up for sharing (H-n'of 'dO», then mode lOaD prevents the system 
from abandoning the swap-space image of the program-text portion of the file when its last user 
terminates. Thus when the next user of the file executes it, the text need not be read from the 
file system but can simply be swapped in, saving time. Ability to set this bit is restricted to the 
super-user since swap space is consumed by the images~ it is only worth while for heavily used 
commands. . 

SEE ALSO 
IsO), chmod(II) 

- 1 -



CHOWN (1) PWB/UNIX Edition 1.0 CHOWN (I) 

NAME 
chown - change owner 

SYNOPSIS 
chown owner file ... 

DESCRIPTION 
The user-ID of the files is changed to owner. The owner may be either a decimal UID or a login 
name found in the password file. 

FILES 
/ etc/ passwd 

SEE ALSO 
chgrp (I), passwd (V) 

- 1 -



CMP(I) PWB/UNIX Edition 1.0 CMP (I) 

NAME 
cmp - compare two files 

SYNOPSIS 
cmp [ -1 ] [ -s ] filel file2 

DESCRIPTION 

The two files are compared. (If .file 1 is '-', the standard input is used.) Under default options, 
cmp makes no comment if the files are the same~ if they differ, it announces the byte and· line 
number at which the difference occurred. If one file is an initial subsequence of the other, that 
fact is noted. Moreover, return code 0 is yielded for identical files, 1 for different files, and 2 for 
an inaccessible or missing argument. 

Options: 

-I Print the byte number (decimal) and the differing bytes (octal) for each difference. 

-sPrint nothing for differing files~ return codes only. 

SEE ALSO 
diffO), comm (I) 

- 1 -



COL(n 

NAME 
col - filter reverse line feeds 

SYNOPSIS 

col 

DESCRIPTION 

PWB/UNIX Edition 1.0 COLen 

Col reads the standard input and writes the standard output. It performs the line overlays implied 
by reverse line feeds (ASCII code ESC-7). Col is particularly useful for filtering multicolumn out­
put made with the '.rt' command of nro./f. 

SEE ALSO 
nroff(n 

BUGS 
Can't back up more than 102 lines. 

The input file must not have ASCII tab characters; col does not handle them properly (see 
reform (I) ) . 

- 1 -



COMB (I) PWB/UNIX Edition 1.0 COMB (I) 

NAME 
comb - combine sees deltas 

SYNOPSIS 
comb [-0] [-s] [-psid] [-clist] name ... 

DESCRIPTION 

FILES 

Comb generates a shell procedure (see sh(I) which, when run, will reconstruct the given sees 
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments 
may be specified in any order, but all keyletter arguments apply to all named sees files. If a 
directory is' named, comb behaves as though each file in the directory were specified as a named 
file, except that non-SeeS files (last component of the pathname does not begin with ~4S."), and 
unreadable files are silently ignored. If a name of 44 -" is given, the standard input is read; each 
line of the standard input is taken to be the name of an sees file to be processed. Again, non­
sees files, and unreadable files are silently ignored. 

The generated shell procedure is written on the standard output. 

The key letter arguments are as follows. Each is explained 'as though only one named file is to be 
processed, but the effects of any keyletter argument apply independently to each named file. 

-p The sees identification string (SID) of the oldest delta to be preserved. All older del­
tas are discarded in the reconstructed file. 

-c A list (see get(I) for the syntax of a list) of deltas to be preserved. All other deltas are 
discarded. 

-0 This argument causes the reconstructed file to be accessed at the release of the delta to 
be created for each "get -e" generated. Without this argument, the reconstructed file 
is accessed at the most recent ancestor for each "get -e" generated. Use of the 0 

key letter may decrease the size of the reconstructed sees file. It may also alter the 
shape of the delta tree of the original file. 

-s This argument causes comb to generate a shell procedure which, when run, will pro­
duce a report giving, for each file, the file name, size after combining, original size, 
and pecentage change computed by: 

100 * (original - combined) I original 
(Sizes are in blocks.) We recommend that before any sees files are actually combined 
one should use this option to determine exactly how much space is saved by the com­
bining process. 

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal 
number of ancestors needed to preserve the tree. 

s.eOMB 
comb????? 

The name of the reconstructed sees file. 
Temporary. 

SEE ALSO 
get (I) , delta (I) , admin(I), prt(I), help(I), sccsfile(V) , SCCSIPWB User's Manual by L. E. Bonanni 
and A. L. Glasser. 

- 1 -



COMB (I) PWB/UNIX Edition 1.0 COMB (I) 

DIAGNOSTICS 
Use he/pO) for explanations. 

BUGS 
Comb may rearrange the shape of the tree of deltas. It may not save any space~ in fact, it is possi­
ble for the reconstructed file to actually be larger than the original. 

- 2 -



COMM (I) PWB/UNIX Edition 1.0 COMM (I) 

NAME 
comm - print lines common to two files 

SYNOPSIS 
comm [ - [ 123 ] ] file 1 file2 

DESCRIPTION 
Comm reads filel and file2, which should be_ sorted in the same order, and produces a three 
column output: lines only in filel; lines only in file2; and lines in both files. The filename '-' 
means the standard input. 

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the 
lines common to the two files~ comm -23 prints only lines in the first file but not in the second~ 
comm -123 is a no-op. 

SEE ALSO 
cmp(I) , diffO) , uniqO) 

- 1 -



CP (I) PWB/UNIX Edition 1.0 CP (I) 

NAME 
cp - copy 

SYNOPSIS 
cp file 1 file2 

DESCRIPTION 
The first file is copied onto the second. The mode and owner of the target file are preserved if it 
already existed~ the mode of the source file is used otherwise. 

If.file2 is a directory, then the target file is a file in that directory with the file-name of.tile/. 

It is forbidden to copy a file onto itself. 

SEE ALSO 
cpx(I), In(l), cat(l), pr(I), mv(1) 

- 1 -



CPIO (I) PWB/UNIX Edition 1.0 CPIO (I) 

NAME 
cpio - copy file archives in and out 

SYNOPSIS 
cpio -o[v] 

cpio - i [drtuv] [ pattern ] 

cpio -p[dlruv] [ pattern] directory 

DESCRIPTION 

Cpio -0 (copy out) reads the standard input for a list of pathnames and copies those files onto 
the standard output together with pathname and status information. 

Cpio - i (copy in) extracts from the standard input, which is the product of a previous "cpio -0 ", 

files whose names are selected by a pattern given in the name-generating syntax of shCI). The pat­
tern meta-characters '?', '*', '[".l' will match '/' characters. The pattern argument defaults to "*". 

Cpio - p (pass) copies out and in in a single operation. Destination pathnames are int'erpreted 
relative to the named directory .. 

The options are: 

d Directories are to be created as needed. 

r Interactively rename files. If the user types a null line, the file is skipped. 

t Print a table of contents of the input. No files are created. 

u Copy unconditionally (normally, an older file will not replace a newer file with the same 
name). 

v Verbose: causes a list of file names to be printed. When used with the t option, the 
table of contents looks like an "Is -1" (see IsCI». 

Whenever possible, link files rather than copying them. Usable only with the -p 
option. 

m Retain previous file modified time (only for the super-user). 

The first example below copies the contents of a directory into an archive~ the second duplicates a 
directory hierarchy: 

Is I cpio -0 >/dev/mtO 

chdir olddir 
find . -print I cpio -pdl newdir 

SEE ALSO 

BUGS 

ar(I), cpio(V) 

Path names are restricted to 128 characters. 
If there are too many unique linked files, the program runs out of memory to keep track of them 
and subsequent linking information is lost. 

- 1 -



CPX (I) PWB/UNIX Edition 1.0 CPX (0 

NAME 
cpx - copy a file exactly 

SYNOPSIS 
cpx - [file 1 1-1 [file21-J 

DESCRIPTION 
Cpx copies file) onto file 2. The mode, owner and time of last modification of the source file are 
preserved. 

Either file} or file2 may be represented as a "-", which uses the standard UNIX input/output 
pipe mechanism, instead of the corresponding file. A file read from a pipe or written to a pipe 
will be preceded with a header, containing the mode, owner, time of last modification, number of 
characters, and a summed total of the characters in the file. The case where a pipe is read and a 
file is written, both the number of characters and the summed total are compared to similar values 
after the copy. If there are no differences between the comparisons, the message "ok" is printed. 

Cpx prohibits copying a file onto itself. 

Cpx does not allow file} to be a directory. If file2 is a directory, then the target file is a file in that 
directory with the file name of file}. 

Examples to copy a file to the current directory: 

cpx . .Ifile1 -I cpx - . 

SEE ALSO 
cp(I) 

cpx . .Ifile1 . 
cpx . .Ifile1 file2 

- 1 -



CREF(I) PWB/UNIX Edition 1.0 CREF(I) 

NAME 
cref make cross reference listing 

SYNOPSIS 

cref [ -acilnostux123 ] name ... 

DESCRIPTION 

Cr~lmakes a cross reference listing of program files in assembler or C format. The files named as 
arguments in the command line are searched for symbols in the appropriate syntax. 

The output report is in four columns: 

(1) (2) 
symbol file 

(3) (4) 
see text as it appears in file 
below 

Cre/uses either an ignore file or an only file. If the -i option is given, the next argument is taken 
to be an ignore file~ if the -0 option is given, the next argument is taken to be an only file. Ignore 
and on(v files are lists of symbols separated by new lines. All symbols in an ignore file are ignored 
in columns (1) and (3) of the output. If an only file is given, only symbols in that file appear in 
column (1). At most one of -i and -0 may be used. The default setting is -i. Assembler 

. predefined symbols or C keywords are ignored. 

FILES 

The -s option causes current symbols to be put in column 3. In the assembler, the current sym­
bol is the most recent name symbol~ in C, the current function name. The -1 option causes the 
line number within the file to be put in column 3. 

The -t option causes the next available argument to be used as the name of the intermediate 
temporary file (instead of Itmp/crt??). The file is created and is not removed at the end of the 
process. 

Options: 

a assembler format (default) 
c C format input 

use ignore file (see above) 
put line number in col. 3 (instead of current symbol) 

n omit column 4 (Hno context") 
o use on(v file (see above) 
s current symbol in col. 3 (default) 
t user supplied temporary file 
u print only symbols that occur exactly once 
x print only C external symbols 
1 sort output on column 1 (default) 
2 sort output on column 2 
3 sort output on column 3 

Itmp/crt?? temporaries 
lusr/lib/aign default assembler ignore file 
lusr/lib/atab grammar table for assembler files 
/usr/lib/cign default C ignore file 
lusr/binl crpost post processor 
lusr/lib/ctab grammar table for C files 

- I -



CREF(I) PWB/UNIX Edition 1.0 CREF(I) 

/usr/bin/upost post processor for -u option 
/bin/sort used to sort temporaries 

SEE ALSO 
as ( I), cc (I ) 

- 2 -



CRYPT(I) PWB/UNIX Edition 1.0 CRYPT (I) 

NAME 
crypt - encodel decode 

SYNOPSIS 
crypt [ password] 

DESCRIPTION 
crypt simulates a cryptographic machine. 

crypt reads from the standard input file and writes on the standard output. It is thus suitable for 
use as a filter. For a given password, the encryption process is idempotent; that is, 

crypt znorkle < clear > cypher 
crypt znorkle < cypher 

will print the clear. 

- 1 -



CSPLIT (I) PWB/UNIX Edition 1.0 CSPLIT (.1) 

NAME 
csplit - context split 

SYNOPSIS 
csplit [ -s ] [ -f prefix] file [RE01 RE02 .•. REn] 

DESCRIPTION 
Csplil reads .file and separates it into n+ 1 sections, defined by the regular expressions REO 1 , •.. , 
REn, where n is less than 100. If the -f option is used, the sections are placed in prefixOO ••• 
pre.fixn. The default is xxOO .•. xxn. These sections get the following pieces of file: 

00: from the start of the file up to (but not including) the first line matched by RE01 
01: from the line matched by RE01 up to the first line that is matched by RE02 

n+ 1: line matched by REn to the end of the file 

Enclose by double quotes (") all RE's that contain blanks or other characters meaningful to the 
Shell. 

esplit tells the size of the original file, as well as of each "split" file as it creates it. It also prints 
any appropriate diagnostics. If the -s option is present, csplit suppresses the printing of all char­
acter counts. 

EXAMPLE: 

csplit -f zz file "procedure division" parS. par16. 

After editing the "split" files, they can be recombined as follows: 

cat zzO[O-3] >file 

It should be noted that esp/if does not affect in any way the original file. The responsibility for 
removing it is the user's. 

SEE ALSO 
ed(I), sh(I) 

- 1 -



DATE (I) PWB/UNIX Edition 1.0 DATE (I) 

NAME 
date - print and set the date 

SYNOPSIS 
date [ mmddhhmm[yy] ] [+format ] 

DESCRIPTION 
If no argument is given, or if the argument begins with H+", the current date and time are 
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day 
number in the month; hh is the hour number (24 hour system); the second mm is the minute 
number~ yy is the last 2 digits of the year number and is optional. For example: 

date 10080045 

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The 
system operates in GMT. Date takes care of the conversion to and from local standard and day­
light time. 

If the argument begins with "+," the output of date is under the control of the user. The format 
for the output is similar to that of the first argument to printj(IlIJ. All output fields are of fixed 
size (zero padded if necessary). Each field descriptor is preceded by H%" and will be replaced in 
the output by its corresponding value. A single "%" is encoded by H%%". All other characters 
are copied to the output without change. The string is always terminated with a newline character. 

Field Descriptors: 

n insert a newline character 
t insert a tab character 
m month of year - 01 to 12 
d day of month - 01 to 31 
y last 2 digits of year - 00 to 99 
H hour - 00 to 23 
M minute - 00 to 59 
S second - 00 to 59 
j julian date - 001 to 366 
w day of ·week - Sunday = 0 
a abbreviated weekday - Sun to Sat 
h abbreviated month - Jan to Dec 
r time in AM I PM notation 

For example: 

date "+DATE: %m/%d/%y%nTIME: %H:%M:%S" 

would generate as output: 

DATE: 08/01/76 
TIME: 14:45:05 

DIAGNOSTICS 
"No permission" if you aren't the super-user and you try to change the date; "bad conversion" if 
the date set is syntactically incorrect; "invalid option" if the field descriptor is not recognizable. 

FILES 
Idev/kmem 

- 1 -



DB (I) PWB/UNIX Edition 1.0 DB (I) 

NAME 
db - debug 

SYNOPSIS 
db [ core [ namelist ] ] [ - ] 

DESCRIPTION 
Unlike many debugging packages (including the Digital Equipment Corporation's ODT, on which 
db is loosely based), db is not loaded as .part of the core image which it is used to examine~ 
instead it examines files. Typically, the file will be either a core image produced after a fault or 
the binary output of the assembler. Core is the file being debugged~ if omitted core is assumed. 
Name/is! is a file containing a symbol table. If it is omitted, the symbol table is obtained from the 
file being debugged, or if not there from a.out. If no appropriate name list file can be found, db 
can still be used but some of its symbolic facilities become unavailable. 

For the meaning of the optional third argument, see the last paragraph below. 

The format for most db requests is an address followed by a one character command. Addresses 
are expressions built up as follows: 

1. A name has the value assigned to it when the input file was assembled. It may be relocatable 
or not depending on the use of the name during the assembly. 

2. An octal number is an absolute quantity ~ith the appropriate value. 

3. A decimal number immediately followed by '.' is an absolute quantity with the appropriate 
value. 

4. An octal number immediately followed by r is a relocatable quantity with the appropriate 
value. 

5. The symbol . indicates the current pointer of db. The current pointer is set by many db 
requests. 

6. A * before an expression forms an expression whose value is the number in the word 
addressed by the first expression. A * alone is equivalent to 4*.'. 

7. Expressions separated by + or blank are expressions with value equal to the sum of the com­
ponents. At most one of the components may be relocatable. 

8. Expressions separated by - form an expression with value equal to the difference to the 
components. If the right component is relocatable, the left component must be relocatable. 

9. Expressions are evaluated left to right. 

Names for registers are built in: 

rO ... r5 sp pc frO ... fr5 

These may be examined. Their values are deduced from the contents of the stack in a core image file. 
They are meaningless in a file that is not a core image. 

If no address is given for a command, the current address (also specified by ~'. ") is assumed. In gen­
eral, "." points to the last word or byte printed 'by db. 

There are db commands for examining locations interpreted as numbers, machine instructions, ASCII 
characters, and addresses. For numbers and characters, either bytes or words may be examined. The 
following commands are used to examine the specified file. 

- 1 -



DB (I) PWB/UNIX Edition 1.0 

I The addressed word is printed in octal. 

\ The addressed byte is printed in octal. 

The addressed word is printed as two ASCII characters. 

The addressed byte is printed as an ASCII character. 

The addressed word is printed in decimal. 

DB (I) 

? The addressed word is interpreted as a machine instruction and a symbolic form of the 
instruction, including symbolic addresses, is printed. Often, the result will appear exactly as it 
was written in the source program. 

& The addressed word is interpreted as a symbolic address and is printed as the name of the 
symbol whose value is closest to the addressed word, possibly followed by a signed offset. 

< nl > (i. e., the character Hnew line") This command advances the current location counter 
H." and prints the resulting location in the mode last specified by one of the above requests. 

A This character decrements H." and prints the resulting location in the mode last selected one 
of the above requests. It is a converse to < nl >. 

% Exit. 

Odd addresses to word-oriented commands are rounded down. The incrementing and decrementing of 
""." done by the <01> and A requests is by one or two depending on whether the last command was 
word or byte oriented. 

The address portion of any of the above commands may be followed by a comma and then by an 
expression. In this case that 'number of sequential words or bytes specified by the expression is printed. 
H." is advanced so that it points at the last thing printed. 

There are two commands to interpret the value of expressions. \ 

== When preceded by an expression, the value of the expression is typed in octal. When not 
preceded by an expression, the value of ~~.'" is indicated. This command does not change the 
value of .... ". 

An attempt is made to print the given expression as. a symbolic address. If the expression is 
relocatable, that symbol is found whose value is nearest that of the expression, and the sym­
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is 
absolute, a symbol with exactly the indicated value is sought and printed if found~ if no 
matching symbol is discovered, the octal val ue of the expression is given. 

The following command may be used to patch the file being debugged. 

This command must be preceded by an expression. The value of the expression is stored at 
the location addressed by the current value of ~c."'. The opcodes do not appear in the symbol 
table, so the user must assemble them by hand. 

The following command is used after a fault has caused a core image file to be produced. 

$ causes the fault type and the contents of the general registers and several other registers to be 
printed both in octal and symbolic format. The values are as they were at the time of the 
fault. 

For some purposes, it is important to know how addresses typed by the user correspond with locations 
in the file being debugged. The mapping algorithm employed by db is non-trivial for two reasons: First, 
in an a.out file, there is a 20(8) byte header which will not appear when the file is loaded into core for 
execution. Therefore, apparent location 0 should correspond with actual file offset 20. Second, 
addresses in core images do not correspond with the addresses used by the program because in a core 

- 2 -



DB (I) PWB/UNIX Edition 1.0 DB (I) 

image there is a header containing the system's per-process data for the dumped process, and also 
because the stack is stored contiguously with the text and data part of the core image rather than at the 
highest possible locations. Db obeys the following rules: 

If exactly one argument is given, and if it appears to be an a.out file, the 20-byte header is skipped dur­
ing addressing, i.e., 20 is added to all addresses typed. As a consequence, the header can be examined 
beginning at location -20. 

If exactly one argument is given and if the file does not appear to be an a.out file, no mapping is done. 

If zero or two arguments are given, the mapping appropriate to a core image file is employed. This 
means that locations above the program break and below the stack effectively do not exist (and are not, 
in fact, recorded in the core file). Locations above the user's stack pointer are mapped, in looking at 
the core file, to the place where they are really stored. The per-process data kept by the system, which 
is stored in the first part of the core file, cannot currently be examined (except by $). 

If one wants to examine a file which has an associated name list, but is not a core image file, the last 
argument H -" can be used (actually the only purpose of the last argument is to make the number of 
arguments not equal to two). This feature is used most frequently in examining the memory file 
/dev/mem. 

SEE ALSO 
as (I) , core(V), a.out(V), odO) 

DIAGNOSTICS 
"File not found" if the first argument cannot be read~ otherwise "1". 

BUGS 
There should be some way to examine the registers and other per-process data in a core image~ also 
there should be some way of specifying double-precision addresses. It does not know yet about shared 
text segments. 

- 3 -



DC (1) PWB/UNIX Edition 1.0 DC (I) 

NAME 
dc - desk calculator 

SYNOPSIS 
de [ file] 

DESCRIPTION 
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one 
may specify an input base, output base, and a number of fractional digits to be maintained. The 
overall structure of de is a stacking (reverse Polish) calculator. If an argument is given, input is 
taken from that file until its end, then from the standard input. The following constructions are 
recognized: 

number 
The value of the number is pushed on the stack. A number is an unbroken string of the 
digits 0-9. It may be preceded by an underscore _ to input a negative number. Numbers 
may contain decimal points. 

+ _ * % A 

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (/), 
remaindered (%), or exponentiated ("). The two entries are popped off the stack~ the 
result is pushed on the stack in their place. Any fractional part of an exponent is ignored. 

sx The top of the stack is popped and stored into a register named x, where x may be any 
character. If the s is capitalized, x is treated as a stack and the value is pushed on it. 

Ix The value in register x is pushed on the stack. The register x is not altered. All registers 
start with zero value. If the I is capitalized, register x is treated as a stack and its top value 
is popped onto the main stack. 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains unchanged. 

f All values on the stack and in registers are printed. 

q exits the program. If executing a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by 
that value. 

x treats the top element of the stack as a character string and executes it as a string of dc 
commands. 

( •.. ) puts the bracketed ascii string onto the top of the stack. 

<x >x =x 
The top two elements of the stack are popped and compared. Register x is executed if they 
obey the stated relation. 

v replaces the top element on the stack by its square root. Any existing fractional part of the 
argument is taken into account, but otherwise the scale factor is ignored. 

interprets the rest of the line as a UNIX command. 

c All values on the stack are popped. 

The top value on the stack is popped and used as the number radix for further input. 

- 1 -



DC (I) PWB/UNIX Edition 1.0 DC (I) 

o The top value on the stack is popped and used as the number radix for further output. 

k the top of the stack is popped, and that value is used as a non-negative scale factor: the 
appropriate number of places are printed on output, and maintained during multiplication, 
division, and exponentiation. The interaction of scale factor, input base, and output base 
will be reasonable if all are changed together. 

z The stack level is pushed onto the stack. 

? A line of input is taken from the 'input source (usually the console) and executed. 

'An example which prints the first ten values of n! is: 

[Ial +dsa*plaIO>y]sy 
Osal 
lyx 

SEE ALSO 
bc(l), which is a preprocessor for de providing infix notation and a C-like syntax which imple­
ments functions and reasonable control structures for programs. 

DIAGNOSTICS 
(x) ? for unrecognized character x. 
(x) ? for not enough elements on the stack to do what was asked by command x. 
"Out of space' when the free list is exhausted (too many digits). 
~Out of headers' for too many numbers being kept around. 
"Out of pushdown' for too many items on the stack. 
"Nesting Depth' for too many levels of nested execution. 

- 2 -



DD(I) PWB/UNIX Edition 1.0 DO (I) 

NAME 
dd - convert and copy a file 

SYNOPSIS 
dd [option=value] ... 

DESCRIPTION 
Dd copies the specified input file to the specified output with possible conversions. The standard 
input and output are used by default. The input and output block size may be specified to take 
advantage of raw physical I/O. 

option 
if= 
of= 
ibs= 
obs= 
bs= 

values . 
input file name~ standard input is default 
output file name~ standard output is default 
input block size (default 512) 
output block size (default 512) 
set both input and output block size, superseding ibs and obs; also, if no conver­
sion is specified, it is particularly efficient since no copy need be done 

cbs=n conversion buffer size 
skip=n skip n input records before starting copy 
count= n copy only n input records 
conv=ascii convert EBCDIC to ASCII 

ebcdic convert ASCII to EBCDIC 
lcase map alphabetics to lower case 
ucase map alphabetics to upper case 
swab swap every' pair of bytes 
noerror do not stop processing on an error 
sync pad every input record to ibs 
... , ... several conversions separated by commas 

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to 
specify multiplication by 1024, 512, or 2 respectively~ a pair of numbers may be separated by x to 
indicate a product. 

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are 
placed into the conversion· buffer, converted to ASCII, and trailing blanks trimmed and new-line 
added before sending the line to the output. In the latter case ASCII characters are read into the 
conversion buffer, converted to EBCDIC, and blanks added to make up an output record of size 
cbs. 

After completion, dd reports the number of whole and partial input and output blocks. 

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into 
the ASCII file x: 

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase 

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical devices because it 
allows reading and writing in arbitrary record sizes. 

SEE ALSO 
cp(I) 

- 1 -



00(1) PWB/UNIX Edition 1.0 00(1) 

~BUGS 

The ASCII/EBCDIC conversion tables are taken .from the 256 character standard in the CACM 
Nov, 1968. It is not clear how this relates to real life. 

Newlines are inserted only on conversion to ASCII~ padding is done only on conversion to 
EBCDIC. These should be separate options. 

- 2 -



DELTA (I) PWB/UNIX Edition 1.0 DELTA (I) 

NAME 
delta - make an sees delta 

SYNOPSIS 
delta [-s] [-n] [-rsid] [-glist] [-yhistory] [-mmrs] [-p] name ... 

DESCRIPTION 

Delta adds a delta to each named sees file. If a directory is named, delta behaves as though each 
file in the directory were specified as a named file, except that non .. SeCS files Oast component of 
the pathname does not begin with "s."), and unreadable files are silently ignored. If a name of 
"-" is given, the standard input is read~ each line of the standard input is taken to be the name 
of an secs file to be processed. Again, non-SeeS files, and unreadable files are silently ignored. 
(If a name of "-" is given the y keyletter must be present~ see below.) 

A get of many sees files, followed by a delta of those files should be avoided when the get gen­
erates a large amount of data. Instead, multiple get-delta sequences should be used. 

Comments about the purpose of the delta(s) are supplied (once, and only once) either from the 
standard input, or by using the y argument. If one supplies the comments through the standard 
input, and the standard input is a terminal (as determined by a successful gtry(lI) call), the pro­
gram will prompt (on the standard output) with "comments?". Otherwise, no prompt is printed. 
A newline preceded by a "\" may be used to make the entering of the comments more con­
venient. The first newline not preceded by a "\" terminates the comments response. The y 
argument is used to supply comments on the command line~ if it is given the "comments?" ques­
tion is not printed, and the standard input is not read. 

If there is a v flag in the file (see admin (I) the prompting is somewhat different. As the com­
ments are solicited only once, if the first file processed has a v flag then all files processed must 
have a v flag (any files that don't will cause a diagnostic message and won't be processed~ process­
ing will continue with the next file). The inverse is also true. 

When a file has a v flag, before prompting for "comments? " delta will prompt for '''MRs? " 
(again, the prompt is only printed if the standard input is a terminal). MR numbers are read from 
the standard input separated by blanks and/or tabs. The same continuation rules apply as above. 
When an unadorned newline is read, delta will prompt for "comments? " as described above. If 
the v flag has a value, it is taken to be the name of a program (or shell procedure) which will vali­
date the correctness of the MR numbers. This program is executed with the first argument hav­
ing the value of the %M% identification keyword, a second argument of the value of the % Y% 
identification keyword, and third and subsequent arguments being the MR numbers. If a non­
zero exit status is returned from this program delta will terminate (it is assumed that the MR 
numbers were not all valid). The m argument is used to supply MR numbers on ~he command 
line~ if it is given the "MRs? " question is not printed, and the standard input is not read. 

The following description is written as though only one sces file were named~ the process of 
making a delta is equivalent for each file. (Note that the effects of any keyletter arguments apply 
independently to each sees file, and that the same comments are used for all files.) 

The g argument specifies a list (see get(I) for the definition of <list» of deltas which are to be 
marked ignored when the file is accessed at the change level created by this delta. (See the 
description of the l:-:file format in get (I) ). A delta should only be ignored when the problem that 
caused the creation of the delta being ignored is no longer a problem at the change level created 

- 1 -



DELTA (I) PWB/UNIX Edition 1.0 DELTA (I) 

by this delta. 

The p argument causes delta to print the differences that constitute the delta on the standard out­
put. 

Delta makes a delta by ~'getting" the named file (see get (I) ) at the SID specified by the r keyletter 
(this SID must be listed in the p-file), or at the same SID that was used when the get command 
was executed with the e argument by the user executing delta (if the user executing delta is listed 
more than once in the p-file, the r argument must be supplied). The "gotten" file is then com­
pared with the g-file; the differences between the two files constitute the delta. 

When the comparison is finished, delta prints the SID of the new delta, followed by the number 
of lines inserted, deleted, and unchanged. The s argument suppresses this printing. Normally, 
the g-/ile is removed after the delta is made. The n argument suppresses the removal. 

Delta will ignore hangups if it is already ignoring interrupts. 

FILES 
g-file 
p-file 
x-file 

z-file 
defile 

See gef for an explanation of the g-:file. 
Information from gef. 
Replacement for the sees file. The naming convention is the same as that for 
the p-file (see get). 
Lockout file~ see get(I). 
HGotten" file~ temporary. The naming convention is the same as that for the p­
file (see get}. 

lusr/bin/bdiff Program to compute differences between the "gotten" file and the g-file. 

SEE ALSO 
get(I), admin(I)., prt(I), help(D, sccsfile(V), bdiff(I) 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 
Use he/pel) for explanations. 

- 2 -



DEROFF(I) PWB/UNIX Edition 1.0 DEROFF(I) 

NAME 
deroff - remove nroff, troff, and eqn constructs 

SYNOPSIS 
deroff [ -w ] file ... 

DESCRIPTION 
Dero./f reads each file in sequence and removes all nro./f and tro./f command lines, backs lash con­
structions, macro definitions, and equations (between ".EQ" and ".EN" lines or between delim­
iters) and writes the remainder on the standard output. Dero./f follows chains of included files 
(".so" and ".nx" commands); if a file has already been included, a ".so" is ignored and a ".nx" 
terminates execution. If no input file is given, deroJfreads from the standard input file. 

If the -w flag is given, the output is a word list, one "word" (string of letters, digits, and apos­
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters 
ignored. Otherwise, the output follows the original, with the deletions mentioned above. 

SEE ALSO 
nroff(I), troff(I), eqn (I) 

DIAGNOSTICS 
Complains if a file cannot be opened. 

BUGS 
Does not handle recursive backslash constructions like \h '\ w' c" . 

- 1 -



DF(I) PWB/UNIX Edition 1.0 DF(I) 

NAME 
df - report disk free space 

SYNOPSIS 
df [-uqs ] [-tnumber] [arg . ..1 

DESCRIPTION 

FILES 

D/prints the number of free blocks on a file system. If no args are specified, the free counts of 
all the mounted file systems are printed. 

The -u flag prints the total block size, number of blocks allocated for system information, 
number of free blocks, number of blocks used and the number of free inodes. 

The -q flag determines and prints the number of free blocks on a file system by extracting the 
free count directly from the file system's superblock. 

The -s flag is a silent option which prohibits printing of any results. Error messages and exit 
status are not effected. 

The -t flag followed by a decimal number (5 digit maximum) is compared with the number of 
free blocks. The result of the comparison returns the file system's major and minor device 
numbers and a single character either Y or N, to indicate if the number of free blocks is greater 
or less than the requested number, respectively (e.g., df -t 1000 lu8 returns "0 12 Y"). An exit 
status of 0 is returned for Y and 1 for N. 

The arg can be specified as either the root name of the mounted file system, e.g., "/u8" or the 
name of the special file corresponding to the particular device (must refer to a disk), e.g., 
"/dev/rp14". 

Idev/rf?, Idev/rk?, Idev/rp?, letc/mnttab 

SEE ALSO 
icheck(VIII) 

- 1 -



DIFF (I) PWB/UNIX Edition 1.0 DIFF (I) 

NAME 
diff - differential file comparator 

SYNOPSIS 
diff [ -efb ] name1 name2 

DESCRIPTION 
Dlfftells what lines must be changed in two files to bring them into agreement. If name 1 (name2) 
is '-', the. standard inpu1 is used. If namel (name2) is a directory, then a file in that directory 
whose file-name is the same as the file-name of name2 (namel) is used. The normal output con­
tains lines of these forms: 

nl a n3,n4 
nl,n2 d n3 
nl,n2 c n3,n4 

These lines resemble ed commands to convert file namel into file name2. The numbers after the 
letters pertain to file name2. In fact, by exchanging 'a' for 'd' and reading backward one may 
ascertain equally how to convert file name2 into namel. As in ed, identical pairs where nl = n2 or 
n3 = n4 are abbreviated as a single number. 

Following each of these lines come all the lines that are affected in the first file flagged by '<', 
then all the lines that are affected in the second file flagged by '>'. 
The - b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks 
to compare equal. The -e option produces a script of a, c and d commands for the editor ed, 
which will recreate file name2 from file namel. The -f option produces a similar script, not use­
ful with ed, in the opposite order. In connection with -e, the following shell program may help 
maintain multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-version 
ed scripts ($2,$3, .. ') made by dlff need be on hand. A 'latest version' appears on the standard 
output. 

(cat $2 ... $9; echo' 1 ,$p') I ed - $1 

Except for occasional 'jackpots', dlfffinds a smallest sufficient set of file differences. 

FILES 
Itmp/d????? 

SEE ALSO 
cmp (0, comm (0, ed (I), uniq (I) 

DIAGNOSTICS 

BUGS 

'jackpot' - To speed things up, the program uses hashing. You have stumbled on a case where 
there is a chance that this has resulted in a difference being called where none actually existed. 
Sometimes reversing the order of files will make a jackpot go away. 

Editing scripts produced under the -e or -f options are naive about creating lines consisting of a 
single'.' . 

- 1 -



DIFF3 (I) PWB/UNIX Edition 1.0 DIFF3 (I) 

NAME 
diff3 - 3-way differential file comparison 

SYNOPSIS 
diff3 [ -ex3 ] file1 file2 file3 

DESCRIPTION 
Di.fJ3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these 
codes: 

==== 

====1 

====2 

====3 

all three files differ 

filel is different 

file2 is different 

file3 is different 

The type of change suffered in converting a given range of a given file to some other is indicated 
in one of these ways: 

j: n 1 a Text is to be appended after line number nl in file f, where j = 1, 2, or 3. 

j: nl, n2 c Text is to be changed in the range line nl to line n2. If nl = n2, the range may 
be abbreviated to nl. 

The original contents of the range follows immediately after a c indication. When the contents of 
two files are identical, the contents of the lower-numbered file is suppressed. 

'Under the -e option, di.fJ3 publishes a script for the editor ed that will incorporate into filel all 
changes between file2 and file3, i.e. the changes that normally would be flagged ==== and 
====3. Option -x (-3) produces a script to incorporate only changes flagged ==== 
(====3). The following command will-apply the resulting script to 'file 1 '. 

(cat script; echo '1,$p') I ed - file1 

SEE ALSO 
diff(I) 

BUGS 

FILES 

Text lines that consist of a single'.' will defeat -e. 

I tmpl d3a? ? ? ? ? 
Itmp/d3b????? 

- 1 -



DIFFMARK ( I ) PWB/UNIX Edition 1.0 DIFFMARK ( I ) 

NAME 
diffnlark - mark changes between versions of a file 

SYNOPSIS 
diffmark [code"string"] ... [name] 

DESCRIPTION 
Di./fmark is a filter used to mOdify the editor command version of di./f(J) output so that it can be 
used to mark the changes between successive versions of a file. Its most common use is to 
automatically insert change mark commands into a file of text for nrojf(l) or trojf(J). The follow­
ing is a typical command sequence: 

diff -e oldfile newfile I diffmark markedfile I ed - oldfile 

The generated file markeqfile is the same as neH?file, except that it has the needed change mark 
requests inserted. The user would normally print markedfile, and later remove it and oldfile when 
no longer needed. 

Di./fmark adds extra lines to the output of di./f. It inserts one line at both the beginning and end of 
each sequence of appended or changed lines, and appends two lines following each deletion. The 
default values of these lines are chosen to make use of the "margin character" request of the 
formatters. The user may override any such value by supplying an option string, which is con­
catenated with a newline to make up the line. Any null option string causes its corresponding line 
to be omitted completely. The option codes and their defaults-are as follows: 

-ab".mc I" - "append" beginning - insert at beginning of an addition 

-ae".mc" - "append" end - insert at end of an addition 

-cb".mc I" - "change" beginning - insert at beginning of a change 

-ce".mc" - "change" end - insert at end of a change 

-db".mc *" - "delete" 1st line - insert as first line of deletion 

-de".mc" - "delete" 2nd line ...... insert as 2nd line of deletion 

Although not a necessity, the following option is convenient: 

name causes di./fmark to append "w name" to the end of its output. For safety's sake, this name 
should not be the same as that of the file being edited. 

Here is an example. Suppose you run the following sequence of commands: 

diff -e oldfile newfile >diffl 
diffmark diff3 -cb".mc +" <diffl >diff2 
ed - oldfile < diff2 
nroff diff3 >diff4 

Of course, the only reason for doing this rather than using pipelines is to see what all the files 
look like: 

- 1 -



DIFFMARK ( I ) 

oldfile: 
.nf 
ccc 
eee 
ggg 
hhh 
zzz 

newfile: 
.nf 
aaa 
eee 
fiT 
ggg 
zzz 

diffl (output from diff): 
5d 
3a 
fff 

2c 
aaa 

diff2 (output from diffmark): 
5c 
.rnc * 
.mc 

3a 
.rnc I 
fff 
.mc 

2c 
.mc+ 
aaa 
.mc 

w diff3 

diff3 (edited version of oldfile): 
.nf 
.mc+ 
aaa 
.mc 
eee 
.mcl 
iff 
.mc 
ggg 

PWB/UNIX Edition 1.0 DIFFMARK ( I) 



DIFFMARK ( I ) PWB/UNIX Edition 1.0 DIFFMARK ( I ) 

.mc * 

.mc 
zzz 

diff4 (formatted output, with line length set to 10): 
aaa + 
eee 
fff 
ggg 
zzz * 
If you are so inclined, you can use di/fmark to produce listings of C (or other) programs with 
changes marked. A typical shell procedure is: 

cdiffmk: shell proc to show C program differences 
called: cdiffmk old new 

diff -e $1 $21 (diffmark;echo '1,$p') 1 ed - $11 nroff macs -I pr -h $2 

The file macs looks like this: 
.pll 
.11 77 
.nf 
.eo 
.nc 

The II request might specify a different line length, depending on the nature of the program being 
printed. The eo and DC requests are probably needed only for C programs. 

DIAGNOSTICS 
"input not from diff" 
"line too long" (> 512 characters) 
Up to 72 characters of the offending line are printed immediately following the diagnostic. 

EXIT CODES 
o - normal completion 
1 - input did not appear to be from diff, or other error 

SEE ALSO 

BUGS 

diff{I), nroff{I), troff{I) 

Esthetic considerations may dictate manual adjustment of some output. File differences involving 
only formatting requests may produce undesirable output. I.e., replacing ".sp" by It.sp21t will pro-
duce a change mark on the preceding or following line of output. . 

For those who use di/fmark to produce UNIX Manual pages, extra handling may be needed to get 
vertical bars to appear. This results from the choice of the bar as the character translated to a 
nonadjustable blank for use with tabs. When you use di/fmark, override the default choice of "I" 
by "!It instead, causing the latter to appear in your final output. If you prefer the vertical bar, you 
can get it on the final output by adding the following to the beginning of your file: 

.if n .tr !I 

.if n .ds v ! 
which may be mysterious, but works. 

- 3 -



DSW(I) 

NAME 
dsw 

SYNOPSIS 

delete interactively 

dsw [ directory ] 

DESCRIPTION 

PWB/UNIX Edition 1.0 DSW(I) 

For each file in the given directory ('.' if not specified) dsw types its name. If y is typed, the file 
is deleted~ if x, dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again. 

SEE ALSO 
rmO) 

BUGS 
The name dsw is a carryover from the ancient past. Its etymology is amusing. 

- 1 -



DU(I) PWB/UNIX Edition 1.0 DU (I) 

NAME 
du summarize disk usage 

SYNOPSIS 
du [ -s 1 [ -a ] [ name ... ] 

DESCRIPTION 

BUGS 

Du gives the number of blocks contained in all files and (recursively) directories within each 
specified directory or file name. If name is missing, '.' is used. 

The optional argument -s causes oAly the grand total to be given. The optional argument -a 
causes an entry to be generated for each file. Absence of either causes an entry to be generated 
for each directory only. 

A file which has two links to it is only counted once. 

Non-directories given as arguments (not under -a option) are not listed. 

Removable file systems do not work correctly since i-numbers may be repeated while the 
corresponding files are distinct. Du should maintain an i-number list per root directory encoun­
tered. 

- 1 -



ECHO(I) PWB/UNIX Edition 1.0 ECHO(I) 

NAME 
echo - echo arguments 

SYNOPSIS 
echo [ arg ... ] 

DESCRIPTION 
Echo writes its arguments in order as a line on the standard output file. It is mainly useful for 
producing diagnostics in command files. 

Certain escape sequences are recognized: 

"\n" causes the newline character to be written. 

"\c" terminates echo without a newline. 

"\ON" causes the octal number N to be written. 

SEE ALSO 
pump(I) 

- 1 -



ED (1) PWB/UNIX Edition 1.0 ED (1) 

NAME 
ed - text editor 

SYNOPSIS 
ed [ - ] [ + ] [ name ] 

DESCRIPTION 

Ed is the standard text editor. 

If the name argument is given, ed simulates an e command (see below) on the named file~ that is 
to say, the file is read into ed's buffer so that it can be edited. The optional '-' suppresses the 
printing of character counts bye, r, and w (or z) commands. 

Ed operates on a copy of the file it is editing~ changes made in the copy have no effect on the file 
until a w or z (write) command is given. The copy of the text being edited resides in a temporary 
file called the buffer. There is only one buffer. 

If changes have been made in the buffer since the last w or z command, ed warns the user if an 
attempt is made to destroyed's buffer via the q or e commands. Ed prints 'q?' or 'e?" respec­
tively, and allows one to continue editing. A second q or e command at this point will take effect. 
This warning feature may be inhibited by specifying the '+' option (e.g., ed + file). The '-' 
option also inhibits this feature. 

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a 
single character command, possibly followed by parameters to that command. These addresses 
specify one or more lines in the buffer. Every command that requires addresses has default 
addresses, so that the addresses can often be omitted. 

In general, only one command may appear on a line. Certain commands allow the input of text. 
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be 
in input mode. In this mode, no commands are recognized~ all input is merely collected. Input 
mode is left by typing a period '.' alone at the beginning of a line. 

Ed supports a limited form of regular expression notation~ regular expressions are used in addresses 
to specify lines and in some commands (e.g., s) to specify portions of a line that are to be 
replaced. A regular expression specifies a set of strings of characters. A member of this set of 
strings is said to be matched by the regular expression. The regular expressions allowed by ed are 
constructed as follows: 

The following one-character regular expressions match a single character: 

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular 
expression that matches itself. 

1.2 A backslash '\' followed by any special character is a one-character regular expression that 
matches the special character itself. The special characters are: 

a. ' . " '*', '+', '[', and '\' (period, asterisk, plus sign, left square bracket, and backslash, 
respectively), which are always special, except when they appear within square brackets 
'[]' (see 1.4 below). 

b. '''' (caret or circumflex), which is special at the beginning of an entire regular expression 
(see 3.1 and 3.2 below), or when it immediately follows the left of a pair of square 
brackets' []' (see 1.4 below). 

c. '$' (currency symbol), which special at the end of an entire regular expression (see 3.2 
below) . 

- 1 -



ED (I) PWB/UNIX Edition 1.0 ED (I) 

d. The character used to bound (Le., delimit) an entire regular expression, which is spe­
cial for that regular expression (for example, see how 'I' is used in the g command, 
below.) 

1.3 A period '.' is a one-character regular expression that matches any character except the 
new-line character. 

1.4 A non-empty string of characters enclosed in square brackets '[]' is a one-character regu­
lar expression that matches anyone character in that string. If, however, the first charac­
ter of the string is a circumflex '''', the one-character regular expression matches any char­
acter excepT new-line and the remaining characters in the string. The , .. , has this special 
meaning only if it occurs first in the string. The minus '-' may be used to indicate a 
range of consecutive ASCII characters; for example, [0-9] is equivalent to [01234567891-
The '-' loses this special meaning if it occurs first (after an initial '''', if any) or last in the 
string. The 'J' does not terminate such a string when it occurs first (after an initial '''', if 
any), in it, e.g., '[]a]' matches either a right square bracket 'J' or the letter 'a'. The five 
characters listed in 1.2.a above stand for themselves within such a string of characters. 

The following rules may be used to construct regular expressions from one-character regular expres­
sions: 

2.1 A one-character regular expression is a regular expression that matches whatever the one­
character regular expression matches. 

2.2 A one-character regular expression followed by an asterisk '*' is a regular expression that 
matches zero or more occurrences of the one-character regular expression. If there is any 
choice, this regular expression matches as many occurrences as possible. 

2.3 A one-character regular expression followed by a plus '+' is a regular expression that 
matches one or more occurrences of the one-character regular expression. If there is any 
choice, this regular expression matches as many occurrences as possible. 

2.4 A one-character regular expression followed by '\ { m \}', '\ { m. \} ", or '\ { m. n \}' is a regular 
expression that matches a range of occurrences of the one-character regular expression. 
The values of m and n must be non-negative integers less than 256~ '\{ m\}' matches 
exactly m occurrences~ '\ { m, \}' matches at least m occurrences~ '\ { m, n \}' matches any 
number of occurrences between m and n inclusive. Whenever a choice exists, the regular 
expression matches as many occurrences as possible. 

2.5 The concatenation of regular expressions is a regular expression that matches the concate­
nation of the strings matched by each component of the regular expression. 

2.6 A regular expression enclosed between the character sequences 4\ (' and 4\)' is a regular 
expression that matches whatever the unadorned regular expression matches; this con­
struction has side effects discussed under the s command, below. 

Finally, an entire regular expressiOn may be constrained to match only an initial segment or final 
segment of a line (or both): 

3.1 A circumflex , ... , at the beginning of an entire regular expression constrains that regular 
expression to match an initial segment of a line. 

3.2 A currency symbol 4$' at the end of an entire regular expression constrains that regular 
expression to match a .final segment of a line. The construction "entire regular expressionS 
constrains the entire regular expression to match the entire line. 

The null regular expression standing alone (e.g., '/1') is equivalent to the last regular expression 
encountered. 



ED (I) PWB/UNIX Edition 1.0 ED (I) 

To understand addressing in ed it is necessary to know that at any time there is a current line. 
Generally speaking, the current line is the last line affected by a command~ the exact effect on the 
current line is discussed under the description of the command. Addresses are constructed as fol­
lows: 

1. The character ~.' addresses the current line. 

2. The character ~$' addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. ~, x' addresses the line marked with the mark name character x, which must be a lower-case 
letter. Lines are marked with the k command described below. 

5. A regular expression enclosed by slashes '/' addresses the first line found by searching for­
ward from the line following the current line toward the end of the buffer and stopping at 
the first line containing a string matching the regular expression. If necessary, the search 
wraps around to the beginning of the buffer and continues through the current line, so that 
the entire buffer is searched. 

6. A regular expression enclosed in queries '?' addresses the first line found by searching 
backward from the line preceding the current line toward the beginning of the buffer and 
stopping at the first line containing a string matching the regular expression. If necessary 
the search wraps around to the end of the buffer and continues through the current line. 

7. An address followed by a plus sign '+' or a minus sign ~-' followed by a decimal number 
specifies that address plus (respectively minus) the indicated number of lines. The plus 
sign may be omitted. 

8. If an address begins with ~+' or ~-', the addition or subtraction is taken with respect to the 
current line~ e.g. ~-5' is understood to mean' .-5'. 

9. If an address ends with ~+' or '-', then 1 is added or subtracted, respectively. As a conse­
quence of this rule and of rule 8, the address '-' refers to the line preceding the current 
line. Moreover, trailing '+' and '-' characters have a cumulative effect, so '--' refers to 
the current line less 2. 

10. To maintain compatibility with earlier versions of the editor, the character '''' in addresses 
is entirely equivalent to '-'. 

Commands may require zero, one, or two addresses. Commands that require no addresses regard 
the presence of an address as an error. Commands that accept one or two addresses assume 
default addresses when an insufficient number of addresses is given~ if more addresses are given 
than such a command requires, the last one(s) are used. 

Typically, addresses are separated from each other by a comma ','. They may also be separated by 
a semicolon ';'. In the latter case, the current line'.' is set to the first address before the second 
address is interpreted .. This feature can be used to determine the starting line for forward and 
backward searches (see items 5. and 6. in the list above). The second address of any two-address 
sequence must correspond to a line that follows, in the buffer, the line corresponding to the first 
address. 

In the following list of ed commands, the default addresses are shown in parentheses. The 
parentheses are not part of the address, but are used to show that the given addresses are the 
default. 

It is generally illegal for more than one command to appear on a line. However, any command 
may be suffixed by 'p' or by 'I', in which case the current line is either printed ot listed, respec­
tively, . as discussed below under the p and I commands. 

- 3 -



ED (I) PWB/UNIX Edition 1.0 ED (I) 

( . ) a 
<text> 

The append command reads the given text and appends it after the addressed line. ~ .' is left 
at the last inserted line~ or, if there were none, at the addressed line. Address -0' is legal for 
this command: text is placed at the beginning of the buffer. 

(.,.)c 
<text> 

The change command deletes the addressed lines, then accepts input text which replaces 
these lines. '.' is left at the last line input~ if there were none, it is left at the first line not 
deleted. 

(.,.)d 
The delete command deletes the addressed lines from the buffer. The line after the last line 
deleted becomes the current line~ if the lines deleted were originally at the end of the buffer, 
the new last line becomes the current line. . 

e name 
The edit command causes the entire contents of the buffer to be deleted, and then the 
named file to be read in~ '.' is set to the last line of the buffer. If no file name is given, the 
remembered file name, if any, is used (see the f command). The number of characters read 
is typed~ name is remembered for possible use as a default file name in subsequent e or r or 
w or z commands. 

fname 
If name is given, the filename command changes the currently remembered file name to 
l1ame~ otherwise, it prints the currently remembered file name. 

(1,$) g/regular expressionl command list 
In the global command, the first step is to mark every line that matches the given regular 
expression. Then, for every such line, the given command list is executed with'.' initially set 
to that line. A single command or the first of a list of commands appears on the same line 
as the global ~ommand. All lines of a multi-line list except the last line must be ended with 
a '\ \ a, i, and c commands and associated input are permitted~ the '.' terminating input 
mode may be omitted if it would be the last line of the command list. The (global) com­
mands (g, v, G, and V) are not permitted in the command list. 

( • ) h 
The date as returned by date(I) is appended after the addressed line. 

( . ) i 
<text> 

The insert command inserts the given text before the addressed line. '.' is left at the last 
inserted line~ or, if there were none, at the addressed line. This command differs from the a 
command only in the placement of the input text. 

( ... +1 )j 
The join command joins contiguous lines by removing the appropriate new-line characters. 

( . ) kx 
The mark command marks the addressed line with name x, which must be a lower-case 
letter. The address form ~, x' then addresses this line. 



ED (I) PWB/UNIX Edition 1.0 ED (I) 

( . , . ) I 
The list command prints the addressed lines in an unambiguous way: a few non-printing 
characters (e.g., tab, backspace) are represented by (hopefully) mnemonic overstrikes, all 
other non-printing characters are printed in octal, and long lines are folded. An I command 
may also be appended to any other command. 

( . , . ) rna 
The move command repositions the addressed line(s) after the line addressed by a. Address 
'0' is legal for a and causes the addressed line(s) to be moved to the beginning of the file~ it 
is an error if address a falls within the range of moved lines. The last line so moved 
becomes the current line. 

(.,.)p 

q 

The print command prints the addressed lines~ '.' is left at the last line printed. The p com­
mand may be appended to any other command (e.g., 'dp' deletes the current line and prints 
the new current line). 

The quit command causes ed to exit. No automatic write of a file is done. 

($) r name 
The read command reads in the given file after the addressed line. If no file name is given, 
the remembered file name, if any, is used (see e and f commands) . The remembered file 
name is not changed unless name is the very first file name mentioned since ed was invoked. 
Address '0' is legal for r and causes the file to be read at the beginning of the buffer. If the 
read is successful, the number of characters read is typed~ '.' is set to the last line read in. 

( . , . ) s/regular expression/replacement/ or, 
( . , . ) s/regular expression/replacement/g 

The substitute command searches each addressed line for an occurrence of the specified reg­
ular expression. On each line in which a match is found, all (non;..overlapped) matched 
strings are replaced by the replacement if the global replacement indicator 'g' appears after 
the command. If the global indicator does not appear, only the first occurrence of· the 
matched string is replaced. It is an error for the substitution to fail on all addressed lines. 
Any character other than space or new-line may be used instead of '/' to delimit the regular 
expression and the replacement; '.' is left at the last line on which a substitution occurred. 

An ampersand '&' appearing in the replacement is replaced by the string matching the regular 
expression on the current line. The special meaning of '&' in this context may be 
suppressed by preceding it by '\'. As a more general feature, the characters' \n" where n is 
a digit, are replaced by the text matched by the n-th regular subexpression of the specified 
regular expression enclosed betw~en '\ (' and '\)'. When nested parenthesized subexpres­
sions are present, n is determined by countingoccurrenc~s of '\ (' starting from the left. 

A line may be split by substituting a new;..line character into it. The new-line in the replace­
ment must be escaped by preceding it by '\'. Such substitution cannot be done as part of a g 
or v command list. 

( • , . ) ta 

u 

This command acts just like the m command, except that a copy of the addressed lines is 
placed after address a (which may be '0') ~ '.' is left at the last line of the copy. 

This command reverses the effect of the last s command. The u command affects only the 
last line changed by the most recent's command. 

- 5 -



ED (I) PWB/UNIX Edition 1.0 ED (I) 

(1.$) v/regular expression/command list 
This command is the same as the global command g except that the command lisr is executed 
with'.' initially set to every line that does nor match the regular expression. 

(1,$) w name 
(1,$) z name 

The write command writes the addressed lines onto the named file. If the file does not 
exist, it is created with mode 644 (readable by everyone, writable by you). The remem­
bered file name is nor changed unless name is the very first file name mentioned since ed was 
invoked. If no file name is given, the remembered file name, if any, is used (see e and f 
commands) ~ '.' is unchanged. If the command is successful, the number of characters writ­
ten is typed. The z command is identical to w but, on most keyboards, the 'z' key is farther 
from the 'q' key than is the 'w' key. 

(1,$) G/ regular expression/ 

p 

Q 

In the interactive Global command, the first step is to mark every line that matches the 
given regular expression. Then, for every such line, that line is printed, '.' is changed to that 
line, and anyone command, other than a global command (g. v. G. and J!), must be input. 
After the execution of that command, the next marked line is printed, and so on. A new­
line acts as a null command~ an '&' causes the re-execution of the most recent command 
executed within this invocation of G. Note that the commands input after the G command 
prints each marked line may address and affect any lines in the buffer. The G command can 
be terminated by an interrupt signal (ASCII DEL or BREAK) . 

The editor will prompt with a '*' for all subsequent commands. This command alternately 
turns the mode on and off~ it is initially off. 

The editor exits without checking if changes have been made in the buffer since the last w 
or z command. 

0,$) V/regular expression/ 

($) == 

This command is the same as the interactive global command G except that the lines that 
are marked during the first step are those that do not match the regular expression. 

The line number of the addressed line is typed~ '.' is unchanged by this command. 

! UNIX command 
The remainder of the line after the '!' is sent to the UNIX shell (sh(I» to be interpreted as a 
command~ '.' is unchanged. 

( .+1 ) <new-line> 
An address alone on a line causes the addressed line to be printed. A blank line alone is 
equivalent to 4.+ 1 p' ~ it is useful for stepping through text. 

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a '?' and returns to its command 
level. 

Some size limitations: 512 characters per line, 256 characters per global command list, 64 charac­
ters per file name, and 128K characters in the buffer. The limit on the number of lines depends 
on the amount of user memory: each line takes 1 word. 

Ed allows the user to include, in the first line of each text file, a specification to control the line 
length and the tab-to-space conversion. For example, <:t5,10,15s72:> sets tabs at columns 5, 
10, and 15~ it will also truncate the printing of all lines to a length of 72 characters and warn when 
a truncation has occurred. For the specification to take effect, the user's terminal must be in echo 



ED (I) PWB/UNIX Edition 1.0 ED (I) 

and -tabs modes (see SflY (I) ) . Only the ~ l' and's' parameters may be used as described in 
fspec(V). If the's' parameter is used, all referenced lines are checked for maximum length on 
file read and write operations and on line print operations. Appropriate diagnostics are generated. 
Truncation occurs only on printing. 

If the user attempts a wor z command and the destination file system does not have enough space 
available, a diagnostic is printed with an error number (i.e. ~'NO SPACE: el" ). Ed will not per­
form the write. The UNIX command "help el" (see he/pO)) prints out a full description of what 
to do. He/p should be executed before leaving the editor (e.g., "!help e1"). 

FILES 
Itmp/e#, temporary~ '#' is the process number (in octaD. 

DIAGNOSTICS 
'?' for errors in commands~ 'TMP?' for temporary file (buffer) overflow~ he/pO) error numbers in 
all other cases. Commands in error should be re-entered properly. On temporary file overflow, 
the buffer should be written to a file and then an e command executed on that file. This will re­
initialize the buffer~ note that if the buffer overflows during the execution of a command that, in 
the absence of the TMP? diagnostic, would have done several changes, only some of the changes 
may have been done. Help error messages are self-explanatory. 

SEE ALSO 

BUGS 

A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan. 
Advanced Editing on UNIX by B. W. Kernighan. 

If the s command succeeds on (i.e., modifies) a line that was marked by a g, v, G, or V command, 
then that mark is effectively removed. The editor deletes all ASCII null characters whenever it 
reads text into the buffer. 

- 7 -



EGREP (1) PWB/UNIX Edition 1.0 EGREP (I) 

NAME 
egrep - search a file for lines containing a pattern 

SYNOPSIS 
egrep [ -b ] [ -c] [ -f] [ -n ] [ -y ] pattern [ file] ... 

DESCRIPTION 
egrep searches the input files (standard input default) for all lines containing an instance of the 
regular expression pattern. Normally, each line matched is copied to the standard output. The 
pattern matches a line whenever the line contains a substring denoted by the pattern. 

The flags modify the normal behavior as follows: 

-b causes each printed line to be preceded by the block number on which it was found 
-c causes only a count of matching lines to be printed 
-f causes the regular expression to come from a file named pattern 
-n causes each printed line to be preceded by its relative line number in the file 
-y causes all lines but those matching the pattern to be printed 

In all cases the file name is shown if there is more than one input file. 

A pattern is one of the following: 

1. an ordinary character (denoting itself) , 

2. a circumflex '''' (denoting the beginning of a line) 

3. a dollar sign '$' (denoting the end of a line) 

4. a period'.' (denoting any character but a newline) 

5. '[' followed by a string of characters followed by 'J' (denoting any character in the string~ if 
the first character in this string is '''', the pattern denotes any character except newline and the 
characters in the string) 

6. '(' followed by a pattern followed by')' (denoting the enclosed pattern) 

7. a pattern followed by '*', or by '+', or by'?' (denoting zero or more, one or more, or zero or 
one instances, respectively, of the preceding pattern) 

8. a pattern followed by a pattern (denoting conca~enation of the two patterns) 

9. a pattern followed by 'I' followed by another pattern (denoting the alternation of the two pat-
terns) ~ a newline may be used in place of 'I'. 

In parsing a pattern, the rules are applied in the order given. 

A pattern metacharacter can be used as an ordinary character by preceding it by '\'. The meta-
characters are: '''', '$', '.', '[', ']', '*', '+', '?', '(" ')', '\'. . 

Care should be taken when using the characters $ * [ A 1 ( ) and \ in the regular expression as they 
are also meaningful to the Shell. When pattern is a regular expression other than a simple string, 
it is generally necessary to. enclose the entire pattern argument in quotes. 

SEE ALSO 
grep(I), fgrep(I), lex (I), rgrep(I), sed (I) , ed(I), sh(I) 

BUGS 
Lines longer than 512 characters are not printed completely. 

- 1 -



EQN (0 PWB/UNIX Edition 1.0 EQN (I) 

NAME 
eqn typeset mathematics 

SYNOPSIS 
eqn [ file] ... 

DESCRIPTION 
Eqn is a troff(I) preprocessor for typesetting mathematics on the Graphics Systems, Inc. photo­
typesetter. Usage is almost always 

eqn file ... I troff 

If no files are specified, eqn reads from the standard input. A line beginning with B .EQ" marks 
the start of an equation~ the end of an equation is marked by a line beginning with ".EN". Nei­
ther of these lines is altered or defined by eqn, so you can define them yourself in troff(I) to get 
centering, numbering, etc. All other lines are treated as comments, and passed through 
untouched. 

Spaces, tabs, new-lines, braces, double quotes, tilde, and circumflex are the only delimiters. 
Braces B {}" are used for grouping. Use tildes H-" to get extra spaces in an equation. 

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes Xi' a 

sub i sup 2 produces a?, and e sup {x sup 2 + y sup 2} gives ex2+y2
• Fractions are made with over. 

a over b is a
b 

and 1 over sqrt {ax sup 2 +bx+c} is.J 1. ~ sqrt makes square roots. 
; ax2+bx+c 

/I 

The keywords from and to introduce lower and upper limits on arbitrary things: lim LXi is made 
11-00 0 

with lim from {n-> in}} sum from 0 to n x sub i. Left and right brackets, braces, etc., of the right 
height are made with left and right: left [ x sup 2 + y sup 2 over alpha right J - =-1 produces 

[X2+ -: 1 = I. The right clause is optional. 

Vertical piles of things are'made with pile, lpile, cpile, and rpile: pile {a above b above c} produces 
a 
b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and cpile 
c 
center, with different vertical spacing, and rpile right justifies. 

Diacritical marks are made with dot, dotdot, hat, bar: X hat == j(t) bar is x=f(t). Default sizes 
and fonts can be changed with size n and various of roman, italic, and bold. 

Keywords like sum (L), int (f), inf(oo), and shorthands like >=, (~), ->, (-), !=, (¢) are 
recognized. Spell out Greek letters in the desired case, as in alpha, GAMMA. Mathematical 
words like sin, cos, log are made Roman automatically. Troff(I) four-character escapes like \ (ua (j 
- for "up arrow") can be used anywhere. Strings enclosed in double quotes " ... " are passed 
through untouched. 

SEE ALSO 
Typesetting Mathematics - User's Guide (2nd Edition) by B. W. Kernighan and L. L. Cherry 
New Graphic Symbo/sfor EQN and NEQN by C. Scrocca 
NROFFITROFF User's Manual by 1. F. Os sanna 
troff(I), neqn (D 

- 1 -



EQN (I) PWB/UNIX Edition 1.0 EQN(I) 

BUGS 

Undoubtedly. Watch out for small or large point sizes - it's tuned too well for size 10. Be cau­
tious if inserting horizontal or vertical motions, and of backslashes in general. 



EQUALS (I) PWB/UNIX Edition 1.0 EQUALS (I) 

NAME 
= (equals) - shell assignment command 

SYNOPSIS 
= letter [argl [arg2 ] ] 

DESCRIPTION 
The H=" command provides shell string variables. The 26 letter variables ('a'-'z') are referenced 
in later commands in the manner of shell arguments, i.e.: Sa, ... , $z. If no arguments are given, 
the standard input is read to newline or EOT for the value. The exit code is set to 0 if a newline 
is found in the input~ it is set to 1 otherwise, thus providing and end-of-file indicator. If arg] is 
the only argument, or if two non-null arguments are given, the variable is set to arg J, and the exit 
code set to O. If two arguments are given, and if arg] is a null string, the value of arg2 is 
assigned to the variable, and the exit code is set to 1, permitting a convenient default mechanism: 

= a "$1" "default value" && shift 

The H=" command works either at the terminal, or in shell command files. The variables can be 
assigned repeatedly. Storage is assigned as needed, but there is no recovery. 

Some letter variables have predefined meanings and are initialized once at the time the Shell 
begins execution: 

$n The argument count. "sh file argl arg2 arg3" has the value 3. The shift command does not 
change the value of $n. 

$p This variable holds the shell search sequence of pathname prefixes for command execution. 
Alternatives are separated by":". The default initial value is: 

= p ":/bin:/usr/bin" 

which prepends successively 
the null pathname (execute from current dir.} , 
Ibin, 
lusr/bin. 

Using the same type of specification, users may choose their own sequence by storing it in a 
file named" .path" in their login directory. The H.path" information passes to successive 
shells (and other commands like time(I) or nohup(I) ~ the $p value does not. In any case, 
no prepending occurs when a command name contains a '/'. 

$r exit (status) of the most recent command executed by the Shell. The value is ASCII 
numeric, and is initially '0'. At end-of-file the shell exits with the value of Sr. 

$s Name of login (starting) directory. 

$t Terminal identification letter or number: Idev/tty$t is a file name for the terminal. 

$w First component in $s pathname, i.e., file system name (such as lusr). 

$z Is the name of the Shell. Its default value is '/bin/sh', but this can be overridden by sup-
plying a name as the second line of the' .path' file. 

Note that variables ('a' - 'm ') are guaranteed to be initialized to null strings and usable in any 
way desired. Variables ('n' - 'z') may acquire special uses in the future. The values of $n, $s, 
$t, and $w may reasonably be modified~ it is catastrophic to change $p~ it is possible, but useless 
to modify $r. 

- 1 -



EQUALS (I) PWB/UNIX Edition 1.0 EQUALS (I) 

The H =" command is executed within the shell. Note that it is commonly used to read the first 
line of output from a pipe or a line from the terminal, for example: 

grep -c string file I == a 
or: 

== a </dev/tty 

EXIT CODES 
a - normal read, or first of two arguments is not null. 
1 - end-of-file, or first of two arguments is null. 

SEE ALSO 
expr(I), sh (I) 

- ., -



EXIT (1) PWB/UNIX Edition 1.0 EXIT (I) 

NAME 
exit terminate command file 

SYNOPSIS 
exit [ integer] 

DESCRIPTION 
Exit performs a seek to the end of its standard input file. Thus, if it is invoked inside a file of 
commands, upon return from exit the shell will discover an end-of-file and terminate. 

The optional argument will be returned to the shell as the exit status code. 

SEE ALSO 
ire I) , goto (1), sh (I) 

- 1 ~ 



EXPR(I) PWB/UNIX Edition 1.0 EXPR (I) 

NAME 
expr - evaluate arguments as an algebraic expression 

SYNOPSIS 
expr arg ... 

DESCRIPTION 
The arguments are taken as an expression. After evaluation, the result is written on the standard 
output. Terms of the expression must be separated by blanks. Characters special to the Shell, 
i.e., '*', 'I', '&', '(', and ')', must be escaped. 

The operators and keywords are listed below. Characters that need to be escaped are preceded by 
'\' . The list is in order of increasing precedence, with equal precedence operators grouped within 
'{}' symbols. 

expr \1 expr 

expr \& expr 

expr { +, - } expr 

expr { \ *, I, % } expr 

substr expr expr expr 

length expr 

index expr expr 

\( expr \) 

The result of substr is that portion of the first expression (possibly null) which is defined by the 
offset (second expression, starting at '1 ') and the span (third expression). A large span value can 
be given to obtain the remainder of the string. 

Length returns the length in characters of the expression that follows. 

index searches the first expression for the first character that matches a character, from the second 
expression. It returns the character position number if it succeeds, or '0' if it fails. 

The expr command is handy with Shell variables. For example: 

expr substr xxx$a "(" length xxx$a - 2 ")" 3 I = b 

assigns the last three characters of the Shell variable $a into the variable $b. 

Note that '0' is returned to indicate a zero value, rather than the null string. Strings containing 
blanks or other special characters should be quoted. 

DIAGNOSTICS 
Grumbles from yacc(I) for syntax violations. 
"Non-numeric argument" if the argument needs to be, but is not, an integer ~ 

- 1 -



FC (I) PWB/UNIX Edition 1.0 FC (I) 

NAME 
fc - Fortran compiler 

SYNOPSIS 
fc [ -c ] sfilel.f ... ofilel ... 

DESCRIPTION 
Fe is the UNIX Fortran compiler. It accepts three types of arguments: 

Arguments whose names end with '.f are assumed to be Fortran source program files~ they are 
compiled, and the object program is left on the file 'sfile1.o' (i.e., the file whose name is that of 
the source with '.0' substituted for '.f). 

Other arguments (except for -c) are assumed to be either loader flags, or object programs, typi­
cally produced by an earlier fe run, or perhaps libraries jof Fortran-compatible routines. These 
programs, together with the results of any compilations specified, are loaded (in the order given) 
to produce an executable program with name a.out. 

The -c argument suppresses the loading phase, as does any syntax error in any of the routines 
being compiled. 

The following is a list of differences between fe and ANSI standard Fortran (also see the BUGS 
section): 

1. Arbitrary combination of types is allowed in expressions. Not all combinations are expected 
to be supported at runtime. All of the normal conversions involving integer, real, double 
precision and complex are allowed. 

2. Two forms of "implicit" statements are recognized: implicit integer Ii -nl or implicit 
integer (i -n). 

3. The types doublecomplex, logical*1, integer*1, integer*2, integer*4 (same as integer), 
real*4 (real), and real*8 (double precision ) are supported. 

\ 

4. & as the first character of a line signals a continuation card. 

5. c as the first character of a line signals a comment. 

6. All keywords are recognized in lower case. 

7. The notion of 'column 7' is not implemented. 

8. G-format input is free form~ leading blanks are ignored, the first blank after the start of the 
number terminates the field. 

9. A comma in any numeric or logical input field terminates the field. 

10. There is no carriage control on output. 

11. A sequence ofn characters in double quotes "" is equivalent to n h followed by those charac­
ters. 

12. In data statements, a hollerith string may initialize an array or a sequence of array elements. 

13. The number of storage units. requested by a binary read must be identical.Jo the number con­
tained in the record being read. 

14. If the first character in an input file is "#", a preprocessor which implements "#define" and 
"#include" preprocessor statements is called. These preprocessor statements are similar to 
the corresponding C preprocessor statements~ see the C reference manual for details. The 



FC (I) PWB/UNIX Edition 1.0 FC (I) 

FILES 

preprocessor does not recognize Hollerith strings written with nh. 

In 1/0 statements, only unit numbers 0-19 are supported. Unit number 11 refers to file fortnn,' 
(e.g. unit 9 is file ~fort09'). For input, the file must exist~ for output, it will be created. Unit 5 is 
permanently associated with the standard input file~ unit 6 with the standard output file. Also see 
serfi/(III) for a way to associate unit numbers with named files. 

a.out 
f.tmp[I23] 
I usr If ort/ errors 
I usr/fort/fe 1 
llib/frO.o 
llib/filib.a 
Ilib/libf.a 
llib/liba.a 

loaded output 
temporary (deleted) 
compile-time error messages 
compiler proper 
runtime start otT 
interpreter library 
builtin functions, etc. 
system Ii brary 

SEE ALSO 
rcO), which announces a pleasant Fortran dialect~ the ANSI standard~ IdO) for loader flags. For 
some subroutines, try ierror, gelarg, ser/i/(III). 

DIAGNOSTICS 

Compile-time diagnostics are given in English, accompanied if possible with the offending line 
number and source line with an underscore where the error occurred. Runtime diagnostics are 
given by number as foHows: 

1 invalid log argument 
2 bad arg count to amod 
3 bad arg count to atan2 
4 excessi ve argumen t to eabs 
5 exp too large in cexp 
6 bad arg count to cmplx 
7 bad arg count to dim 
8 excessive argument to exp 
9 bad arg count to idim 
10 bad arg count to isign 
11 bad arg count to mod 
12 bad arg count to sign 
13 illegal argument to sqrt 
14 assigned/ computed goto out of range 
15 subscript out of range 
16 real**real overflow 
17 (negative real) **real 
100 illegal 1/0 unit number 
101 inconsistent use of I/O unit 
102 cannot create output file 
103 cannot open input file 
104 EOF on input file 
105 illegal character in format 
106 format does not begin with ( 
107 no conversion in format but non-empty list 
108 excessive parenthesis depth in format 
109 illegal format specification 

- 2 -



FC (I) PWB/UNIX Edition 1.0 

BUGS 

110 illegal character in input field 
III end of format in hollerith specification 
112 bad argument to setfil 
120 bad argument to ierror 
999 unimplemented input conversion 

The following is a list of those features not yet implemented: 
arithmetic statement functions 
scale factors on input 
Backspace statement. 

- 3 -

FC (I) 



FD2 (I) PWB/UNIX Edition 1.0 F02 (I) 

NAME 
fd2 - redirect file descriptor 2 (diagnostic output) 

SYNOPSIS 
fd2 [ fd2arg ] command [ command-arg ] ... 

DESCRIPTION 
Fd2 executes command with file descriptor 2 (the diagnostic output) redirected to a file or to the 
standard output. There are three forms: . 

fd2 -file comd •.. 
fd2 --file comd •.. 
fd2 + comd ••. 

[write on file] 
[append to file] 
[causes file descriptor 2 to be made the same as file descriptor 1] 

In either of the first two cases, omission of file causes msg.out to be used as the output file. 
Omission of fd2arg has the effect of -msg.out. 

- 1 -



FGREP (I) PWB/UNIX Edition 1.0 FGREP (1) 

NAME 
fgrep - search a file for lines containing keywords 

SYNOPSIS 
fgrep [ -b ] [ -c) [ -e ] [ -f) [ -n ] [ -v ] pattern [ file] ... 

DESCRIPTION 
fgrep searches the input files (standard input default) for all lines containing one or more key­
words denoted by pattern. Normally, each containing line is copied to the standard output. The 
bcfnv flags modify the normal behavior as in egrep(I). The -e flag causes a match to occur if and 
only if a keyword matches an input line exactly. Without the -f flag, pattern can be only a single 
keyword. With the -f flag, pattern is the name of a file containing a sequence of keywords ter­
minated by newlines. The keywords in this file then constitute the search pattern. A keyword is 
any string of characters except '\0' and newline. No metacharacters are assumed. 

SEE ALSO 
egrep(I) 

BUGS 
Lines longer than 512 characters are not printed completely. 

- 1 -



FILE (I) PWB/UNIX Edition 1.0 FILE (I) 

NAME 
file - determine file type 

SYNOPSIS 
file file ... 

DESCRIPTION 
File performs a series of tests on each argument in an attempt to classify it. If an argument 
appears to be ascii, file examines the first 512 bytes and tries to guess its language. 

- 1 -



FIND (1) PWB/UNIX Edition 1.0 FIND (I) 

NAME 
find - find files 

SYNOPSIS 
find pathname-list expression 

DESCRIPTION 

FILES 

Find recursively descends the directory hierarchy for each pathname in the pathname-lisf (i.e., one 
or more pathnames) seeking files that match a boolean expression written in the primaries given 
below. In the descriptions, the argument n is used as a decimal integer where +n means more 
than n, -11 means less than nand n means exactly n. 

-name filename True if the filename argument matches the current file name. Normal Shell 
argument syntax may be used if escaped (watch out for '[', '?' and '*'). 

- perm onum True if the file permission flags exactly match the octal number onum (see 
chmod(I). If onum is prefixed by a minus sign, more flag bits (017777, see 
statOn) become significant and the flags are compared: (flags&onum) = =onum. 

-type c True if the type of the file is c, where c is b, c, d or f for block special file, char-
acter special file, directory or plain file. 

-links n True if the file has n links. 

-user uname True if the file belongs to the user una me. 

-group gname As it is for -user so shall it be for -group (someday). 

-size n True if the file is n blocks long (512 bytes per block). 

- atime n True if the file has been accessed in n days. 

- mtime n . True if the file has been modified in n days. 

-exec command True if the executed command returns a zero value as exit status. The end of 
the command must be punctuated by an escaped semicolon. A command argu­
ment '{}' is replaced by the current pathname. 

-ok command Like -exec except that the generated command line is printed with a question 
mark first, and is executed only if the user responds y. 

-print Always true; causes the current pathname to be printed. 

The primaries may be combined with these operators (ordered by precedence): 

-a 

-0 

( expression) 

Prefix not. 

Infix and, second operand evaluated only if first is true. 

Infix or, second operand evaluated only if first is false. 

Parentheses for grouping. (Must be escaped.) 

To remove all files named 'a.out' or '*.0' that have not been accessed for a week: 

find / II (" -name a.out -0 -name "* .0" ")" -a -atime +7 -a -exec rm {} ";" 

/ etc/ passwd 

- 1 -



FIND (I) PWB/UNIX Edition 1.0 FIND (I) 

SEE ALSO 
sh(I), if(I), fs(V) 

BUGS 
Test (see i/O») can be useful with .lind. However, since test is implemented within the Shell, you 
must use something like: 

-exec sh -c "test args" "~" 



GATH (I) PWB/UNIX Edition 1.0 GATH(I) 

NAME 
gath - gather real and virtual files 

'SYNOPSIS 
gath [-ih] file ... 

DESCRIPTION 
Gath concatenates the named files and writes them to standard output. Tabs are expanded into 
spaces accord.ing to the format specification for each file (see jspec(V». The size limit and margin 
parameters of a format specification are also respected. Non-graphic characters other than tabs are 
identified by a diagnostic message and excised. The output of goth contains no tabs unless the 
- h flag is set, in which case it is written with standard tabs (every eighth column). 

Any line of any of the files which begins with ,-, is interpreted by goth as a control line. A line 
beginning ,- , (tilde,space) specifies a sequence of files to be includred at that point. A line begin­
ning '-!' specifies a UNIX command~ that command is executed, and its output replaces the '-!' 
line in the goth output. 

Setting the -i flag prevents control lines from being interpreted and causes them to be output 
lit~rally. 

A file name of '-' at any point refers to standard input, and a control line consisting of '-.' is a 
software end-of-file. Keywords may be defined by specifying a replacement string which is to be 
substituted for each occurrence of the keyword. Input may be collected directly from the termi­
nal, with several alternatives for prompting. 

In fact, all of the special arguments and flags recognized by the send command are also recognized 
and treated identically by goth. Several of them are only useful, however, in the context where an 
RJE job is being submitted. The same program implements the two commands, so goth has a 
potential which is not apparent from its name. Refer to the description of send for definitive 
information about goth. 

SEE ALSO 
send (I), fspec (V) . 



GET (I) PWB/UNIX Edition 1.0 GET (I) 

NAME 
get - get generation from sees file 

SYNOPSIS 
get [-rreI[.lev[.bd.seq]]]] [-ccutoffl [-iincl-list] [-xexcl-list] [-aseriall [-k] [-e) [-I[p]] 
[-p] [-m] [-0] [-s] [-b] [-g] [-t] name ... 

DESCRIPTION 
Get generates an ASCII text file from each named sees file according to the specifications given 
by its keyletter arguments, which begin with "-". The arguments may be specified in any order, 
but all keyletter arguments apply to all named sees files. If a directory is named, get behaves as 
though each file in the directory were specified as a named file, except that non-SeeS files (last 
component of the pathname does not begin with "s."), and unreadable files are silently ignored. 
If a name of .. -" is given, the standard input is read~ each line of the standard input is taken to 
be the name of an sees file to be processed. Again, non-SeeS files, and unreadable files are 
silently ignored. 

The generated text is normally written into a file called the g-file. See FILES, below, for an expla­
nation of how the name of this file is determined. 

The keyletter arguments are as follows. Each is explained as though only one named file is to be 
processed, but the effects of any keyletter argument apply independently to each named file. 

-r The sees identification string (SID) of the change level to be generated. If the entire 
argument is omitted, the meaning is the same as if the default SID were specified (see 
admin(I». If there is no default SID in the sees file the highest release which has 
deltas is used. If only the release is specified, the level defaults to the highest level in 
that release. A release and level completely identifies a specific change level. If a 
branch is also specified and the sequence is omitted, the sequence defaults to the 
highest sequence in the branch. A release, level, branch, and sequence also com­
pletely identifies a specific change level. (All deltas are identified either by a 2 com­
ponent SID-release and level, or by a 4 component SID-release, level, branch, and 
sequence. SID's with 4 components identify deltas which have heretofore been called 
"non-propagating" .) 

-c Cutoff date-time, in the form YY[MM[DD[HH[MM[SSJ]JJ]. No delta which was created 
after the specified cutoff date-time will be applied. Units omitted from the date-time 
default to their maximum possible values; that is, "-c7502" is equivalent to 
"-c750228235959". Any number of non-numeric characters may separate the vari­
ous 2 digit pieces of the cutoff date-time. This feature allows one to specify a cutoff 
date in the form: "" -c77 12/2 9:22:25"". Note that this implies that one may use the 
%E% and %U% identification keywords (see below) for nested gets within, say the 
input to a send(I) command: 

-!get "-c%E% %U%" s.file 

-i This argument is used to specify a list of deltas to be included (forced to be applied). 
The list has the following syntax: 

<list> 

<range> .. 

<range> 
<list> , <range> 
<delta> 

- 1 -



GET (I) PWB/UNIX Edition 1.0 GET (I) 

<delta> - <delta> 
<delta> ::= <reI> 

<reI> • <lev> 
<reI> • <lev> • <br> 
<reI> . <lev> • <br> • <seq> 

if a level is omitted from a delta specification the highest level of the specified release 
is assumed. If a branch is specified, but the sequence is omitted the highest sequence 
of the specified branch is assumed. 

-x This argument is similar to i except that it is followed by a list of deltas to be excluded 
(forced to not be applied). 

-a The serial number of the change level to be generated (see sccsjile(V». This keyletter 
is used by the combO) command~ it is not a generally useful keyletter, and most users 
will probably never use it. If both the r and a keyletters are specified, the a keyletter 
is used. Care should be taken when using the a key letter in conjunction with the e 
keyletter, as the SID of the delta to be created may not be what one expects. The r 
keyletter can be used with the a and e key letters to control the naming of the SID of 
the delta to be created. 

-k This argument suppresses replacement of identification keywords (see below) by 
specific values. The k argument is implied by the i, x or e arguments. 

-e This argument indicates that this get is for the purpose of making a delta with a later 
execution of delta. It causes creation, or updating of a p-file (see FILES). Another get 
with an e argument, if at the same delta or for the same new SID, may not be exe­
cuted until the delta is made. If the g-file generated by a get with an e argument is 
ruined, a new one may be obtained by executing another get with a k argument instead 
of an e. Note that although the c argument may be used in combination with e, delta 
will not use it when regenerating the g-file for the purpose of determining what 
changed. When the e argument is supplied the protection restrictions determined by 
the ceiling, the floor, and the list of users authorized to make deltas are enforced. 

-I This argument causes a delta summary to be written into an I-file (see FILES). If -lp 
is used then an I-file is not created~ the delta summary is written on the standard out­
put instead. The reformeD command can be used to truncate lines of the I .. :file. 

-p This argument causes the generated text to be written to the standard output instead of 
to a g-file. All output which normally goes to the standard output goes to file descrip­
tor 2 instead, unless the s argument is supplied, in which case it disappears. 

-s This argument suppresses all output normally written on the standard output. How­
ever, fatal error messages (which always go to file descriptor 2) remain unaffected. 

- m This argument causes each generated text line to be preceded by the SID of the delta 
which inserted that text line. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line. 

-n This argument causes each generated text line to be preceded with the %M% 
identification keyword (see below). The format is: %M% identification keyword, fol­
lowed by a 'horizontal tab, followed by the text line. When both the m and n 



GET (I) PWB/UNIX Edition 1.0 GET (I) 

FILES 

arguments are supplied the format is: %M% identification keyword, followed by a hor­
izontal tab, followed by the m argument format. 

-b This argument is used with the e argument to indicate that the new delta should have 
an SID in' a new branch. This argument is allowed only if the b flag exists in the file~ 
see admin(I). 

-g The g argument suppresses the actual getting of source. It is primarily used to gen­
erate an I-:file, or to verify the existence of a particular SID. 

-t The t argument is used to access the most recent ("top") delta in a given release (i.e., 
when no r argument is supplied, or an argument of the form rrel is supplied). 

For each file processed, get responds (on the standard output) with the SID being accessed and 
with the number of lines generated. If there is more than one named file or if a directory or stan­
dard input is named, each file name is printed (preceded by a newline) before it is processed. If 
the i argument is supplied included deltas are listed following the notation "Included"~ if the x 
argument is supplied excluded deltas are listed following the notation "Excluded". 

Identifying information is inserted into the generated text by replacing identification keywords by 
appropriate values, wherever they occur. The following keywords are available: 

Keyword 

%M% 

%1% 
%R% 
%L% 
%B% 
%S% 
%D% 
%H% 
%E% 
%G% 
%T% 
%U% 
%Y% 
%F% 
%C% 

%Z% 

%W% 

%A% 

Value 

Module name~ either the value of the m flag in the file (see admin(I)), 
or the g-:file name-see FILES. 
SCCS identification string (SID) -%R%.%L%.%B%.%S%. 
Release. 
Level. 
Branch. 
Sequence. 
Current date (YY/MM/DD). 
Current date (MM/DD/YY). 
Date of newest applied delta (YY/MM/DD). 
Date of newest applied delta (MM/DD/YY). 
Current time (HH:MM:SS). 
Time of newest applied delta (HH:MM:SS). 
The value of the t flag in the file (see admin(I)). 
File name. 
Current line number. This keyword is intended for identifying mes­
sages output by the program such as "this shouldn't have happened" 
type errors. It is not intended to be used on every line to provide 
sequence numbers. 
The 4 characters @ (#) (used to construct strings recognizable by 
whar(I)) . 
A shorthand notation for constructing whar(!) strings for UNIX pro­
gram files. %W% = %Z%%M%<horizontal-tab>%I% 
Another shorthand notation for constructing whal(I) strings for noo­
UNIX program files. %A% = %Z%%Y% %M% %I%%Z% 

Several auxiliary files may be created by get. These files are known generically as the g-:file, I-.file, 

- 3 -



GET (I) PWB/UNIX Edition 1.0 GET (I) 

p-/ile, and z-.file. The letter before the hyphen is called the tag. An auxiliary' fife name is formed 
from the sees file name: the last component of all secs file names must be of the form 
"s. modulename", the auxiliary files are named by replacing the leading 4·S" with the tag. The g­
.file is an exception to this scheme: the g-.file is named by removing the 44S.". For example, if the 
sees file name is "4S.xyZ.c''. the auxiliary file names would be 44 xyZ.C", Hl.xyZ.C", Hp.xyZ.c", and 
4·Z.xyZ.c", respectively. 

The g-.file, which contains the generated text, is created in the current directory (unless the p 
argument is supplied, or zero lines of text were generated). It is owned by the real user. If the k 
argument is supplied or implied its mode is 644~ otherwise its mode is 444. Only the real user 
need have write permission in the current directory. 

The I-.file is also created (unless a p follows the -I) in the current directory, if the I argument is 
supplied~ its mode is 444 and it is owned by the real user. Only the real user need have write per­
mission in the current directory. The I-.file contains a table showing which deltas were applied. 
The following is printed for each delta in the sees file: 

a) Blank if the delta was applied~ '~*" otherwise. 
b) Blank if the delta .was applied or wasn't applied and ignored~ 44*" if the delta 

wasn't applied and wasn't ignored. 
c) A code indicating a HspeciaI" reason why the delta was or was not applied: 

d) Blank. 

Hr': Included. 
44X": Excluded. 
4~C": Cut off (by a c argument). 

e) sees identification string (SID). 
f) Tab character. 
g) Date and time (in the form YY IMM/DD HH:MM:SS) of creation. 
h) Blank. 
i) Creator. 

The comments and MR data follow on subsequent lines, indented one horizontal 
tab character. A blank line terminates each entry. 

The p-.file is used to pass information resulting from a get with an e argument along to delta. Its 
contents are used to prevent a subsequent execution of get with an e argument until delta is exe­
cuted (subject to the conditions described above under the e keyletter description). The p-file is 
created in the directory containing the secs ·file (which might, of course, also be the current 
directory), and the effective user must have write permission in that directory. Its mode is 644 
and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by a 
blank, followed by the SID this delta will have when it is made, followed by a blank, followed by 

. the login name of the real user, followed by a blank, followed by the date-time of the get ( not 
the cutoff date-time), followed by a blank and the - i keyletter argument if it was present, fol­
lowed by a blank and the -x keyletter argument if it was present, followed by a newline. Th.ere 
can be an arbitrary number of lines in the p-.file at any time~ no two lines can have the same got­
ten SID or the same new SID. 

The z-.file is created in the directory containing the secs file for the duration of updating the p­
.file. The same protection restrictions as those for the p-.file apply for the z-file. The z-./ile is 
created mode 444. It serves as a lock-out mechanism against simultaneous updates. Its contents 
are (in binary~ 2 bytes) the process ID of the command (Le., get) that created it. 



GET (I) PWB/UNIX Edition 1.0 GET (I) 

SEE ALSO 
admin(I), delta (I) , prt(I), what (I) , help(I), sccsfile(V) , 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 

BUGS 

Use he/pO) for explanations. 

If the effective user has write permission (either explicitly or implicitly) in the directory contain­
ing the sees files, but the real user doesn't, then only one file may be named when the e argu­
ment is supplied. 



GOTO(I) PWB/UNIX Edition 1.0 GOTO(I) 

NAME 
goto - command transfer 

SYNOPSIS 
goto label 

DESCRIPTION 
GOla is allowed only when the Shell is taking commands from a file. The file is searched from the 
beginning for a line beginning with ':' followed by one or more spaces followed by the label. If 
such a line is found, the galo command returns. Since the read pointer in the command file 
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line. 

':' is a do-nothing command that is ignored by the Shell and only serves to place a label. 

SEE ALSO 
she!) 

- 1 -



GRAPH (I) PWB/UNIX Edition 1.0 GRAPH (0 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ option] ... I plotter 

DESCRIPTION 
Graph with no options takes pairs of numbers from the standard input as abscissas and ordinates 
of a graph. The graph is written on the standard output to be piped to the plotter program for a 
particular device~ see plot (I) . 

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a label 
beginning at the point. Labels may be surrounded with quotes " ... ", in which case they may con­
tain blanks or begin with numeric characters~ labels never contain newlines. 

The following options are recognized, each as a separate argument. 

-a Supply abscissas automatically (they are missing from the input) ~ spacing is given by the 
next argument, or is assumed to be 1 if next argument is not a number. A second optional 
argument is the starting point for the automatic abscissa. / 

-c Character string given by next argument is default label for each point. 

-d Omit connections between points. (Disconnect.) 

-gn Grid style: 
n=0, no grid 
n= 1, axes only 
n=2, complete grid (default). 

-I Next argument is label for graph. 

-s Save screen, don't erase before plotting. 

-x Next 1 (or 2) arguments are lower (and upper) x (abcissa) limits. Third argument, if 
present, is grid spacing on x axis. Normally these quantities are determined automatically. 

-y Similarly for y (ordinate) axis. 

- h Next argument is fraction of space for height. 

-w Similarly for width. 

-r Next argument is fraction of space to move right before plotting. 

-u Similarly to move up before plotting. 

-t Transpose horizontal and vertical axes. 

Points are connected by straight line segments in the order they appear in input. If a specified 
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted 
upside down. Automatic abscissas begin with the lower x limit, or wi th 0 if no limit is specified. 
Labels are placed so that the center of an initial letter such as + will fall approximately on the 
plotting point. 

SEE ALSO 
plotO), sphne(I) 

- 1 -



GRAPH (I) PWB/UNIX Edition 1.0 GRAPH (I) 

BUGS 
Graph stores all points internally even when limits are explicit, so utterly enormous graphs can fail 
unnecessarily. 



GREP (I) PWB/UNIX Edition 1.0 GREP (I) 

NAME 
grep - search a file for a pattern 

SYNOPSIS 
grep [ -v ] [ -b ] [ -c ] [ -n ] r. -s ] expression [ file] .. , 

DESCRIPTION 
Grep searches the input files (standard input default) for lines matching the regular expression. 
Normally, each line found is copied to the standard output. If the -v flag is used, all lines but 
those matching are printed. If the -c flag is used, only a count of matching lines is printed. If 
the -n flag is used, each line is preceded by its relative line number in the file. If the -b flag is 
used, each line is preceded by the block number on which it was found. This is sometimes useful 
in locating disk block numbers by context. 

The -s flag suppresses the error messages that grep would otherwise give for non-existent (or 
unreadable) files. 

In all cases the file name is shown if there is more than one input file. 

For a complete description of the regular expression, see ed(n. Care should be taken when using 
the characters $ * [ " I ( ) and \ in the expression, as they are also meaningful to the Shell. It is 
generally necessary to enclose the entire expression argument in quotes. 

SEE ALSO 
ed(I), egrep(I) , fgrep(I) , rgrep(I) , sed (I) , sh(I) 

BUGS 
Lines are limited to 256 characters~ longer lines are truncated. 
Unfortunately, grep does not recognize all of the regular expression operators that eden does. 

- 1 -



GSI (1) PWB/UNIX Edition 1.0 GSI (1) 

NAME 
gsi - handle special functions of GSI300 terminal 

SYNOPSIS 
gsi [+12] [-n] [-dr,I,e] 

DESCRIPTION 

Gsi supports special functions, and optimizes the use, of the GSI3-00 (DASI300 or DTC300) ter­
minal. It converts half-line forward, half-line reverse, and full-line reverse motions to the correct 
vertical motions. It also attempts to draw Greek letters and other special symbols. It permits con­
venient use of 12-pitch text. It also reduces printing time (5 to 70%). Gsi can be used to print 
equations neatly, in the sequence: 

neqn file ... I nroff I gsi 

WARNING: if your terminal has a PLOT switch, make sure it is turned ON before gsi is used. 

The behavior of gsi can be modified by the optional flag arguments to handle 12-pitch text, frac­
tional line spacings, messages, and delays. 

+ 12 permits use of 12-pitch, 6 lines/inch text. GSI terminals normally allow only two com­
binations: IO-pitch, 6 lines/inch, or 12-pitch, 8 lineslinch. To obtain the 12-pitch, 6 
lines per inch combination, the user should turn the PITCH switch to 12, and use the 
+12 option. 

- n controls the size of half-line spacing. A half-line is by default equal to 4 vertical plot 
increments. Because each increment equals 1/48 of an inch, a IO-pitch line-feed 
requires 8 increments, while a 12-pitch line-feed needs only 6. The first digit of n over­
rides the default value, thus al10wing for individual taste in the appearance of subscripts 
and superscripts. For example, nrojJ(l) half-lines could be made to act as quarter-lines 
by using -2. The user could also obtain appropriate half-lines for 12-pitch, 8 lines/inch 
mode by using the option -3 alone, having set the PITCH switch to 12-pitch. 

-dr,l,e controls delay factors. The default setting is -d3,90,30. GSI terminalS sometimes pro­
duce peculiar output when faced with very long lines, too many tab characters, or long 
strings of blankless, non-identical characters. One null (delay) character is inserted in a 
line for every set of t tabs, and for every contiguous string of e non-blank, non-tab char­
acters. If a line is longer than I bytes, I + (total length)/20 nulls are inserted at the end 
of that line. Items can be omitted from the end of the list, implying use of the default 
values. Also, a value of zero for r (c) requests 2 null bytes per tab (character). The 
former may be needed for C programs, the latter for files like /erc/passwd. Because ter­
minal behavior varies according to the specific characters printed and the load on a sys­
tem, the user may have to experiment with these values to get correct output. The-d 
option exists only as a last resort for· those few cases that do not otherwise print prop­
erly. For example, the file /erc/passwd may be printed using -d3,30,5. The value 
-dO,l is a good one to use for C programs that have many levels of iondentation. 

Note that the delay control interacts heavily with the carriage return and line feed delays 
being used at the time: see GSI300(VIIJ. The srty(f) modes ofO cr2 or 010 cr3 are 
recommended for most uses. 

NOTE: gsi always synchronizes its buffering so that it can be used with the nroff -s flag or .rd 
requests, when it is necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the RETURN key in these cases, you must use the LINE FEED key to 
get any. response. 

- 1 -



OSI (I) PWB/UNIX Edition 1.0 aSI ( I ) 

In many cases, the following sequences are equivalent: 

nroff - T300 files ••. 
nroff - T300-12 files ... 

and nroff files ... I gsi 
and nroff files ... I gsi + 12 

The use of gsi can thus often be avoided unless spe,cial delays or options are required. 

Here are the neqn(J) names and resulting output for the special characters supported: 

Name Symbol Name Symbol 

alpha a OMEGA n 
beta f3 partial a 
delta 8 phi rJ> 
DELTA ~ PHI ell 
epsilon E psi tP 
eta TJ PSI '" gamma \ pi 11' 

GAMMA r PI n 
infinity 00 rho p 
integral f sigma (j 

lambda "- SIGMA ! 
LAMBDA A tau 'r 

mu J.L theta () 

nabla (del) V' THETA e 
not xi g 
nu v zeta , 
omega w 

SEE ALSO 
. 450(1), graph(I), greek(V), GSI300(VII) , mesg(I), neqn(I), plot(!), stty(!), tabs(I) 

BUGS' 

Some characters in the above table can't be correctly printed in column 1 because the print head 
cannot be moved to the left from there. If your output contains much Greek and/or reverse line 
feeds, use friction feed instead of a forms tractor. Although good enough for drafts, the latter Mas 
a tendency to slip when reversing direction, distorting Greek characters, and misaligning the first 
line after a long set of reverse line feeds. 
Gsi is definitely not usable with the ~'second generation" models of the 051300, such as the 
GSI3005 or DA51450. 

-, -



HELP (I) PWB/UNIX Edition 1.0 HELP (I) 

NAME 
help - ask for help 

SYNOPSIS 
help [arg] ... 

DESCRIPTION 

FILES 

Help finds information to explain a message from a command or explain the use of a command. 
Zero or more arguments may be supplied. If no arguments are given, help will prompt for one. 

The arguments may be either message numbers (which normally appear in parentheses following 
messages) or command names, of one of the following types: 

type 1 

type 2 

type 3 

Begins with non-numerics, ends in numerics. The non-numeric prefix is 
usually an abbreviation for the program or set of routines which produced 
the message (e.g., 44ge6", for message 6 from the get command). 

Does not contain numerics (as a command, such as get) 

Is all numeric (e.g., 44212") 

The response of the program will be the explanatory information related to the argument, if there 
is any. 

When all else fails, try Hhelp stuck". 

The ASCII file searched for the explanatory information for each type of argument is as follows: 

type 1 lusr/lib/helpl preflx-ol-argument 

type 2 lusr/lib/helpl cmds 

type 3 lusr/lib/sccs.hf 

If the file to be searched for either a type 1 or a type 2 argument does not 'exist, the search will be 
attempted on the file for the type 3 argument. In no case, however, will more than one file be 
searched per argument. 

Anyone wishing to modify the files should list out portions of them - the format will be obvious. 

DIAGNOSTICS 
Use help for help. 

- 1 -



HP (I) PWB/UNIX Edition 1.0 HP (I) 

NAME 
hp - handle special functions of HP 2640 terminal 

SYNOPSIS 
hp [-e] [-m] 

DESCRIPTION 
Hp supports special functions of the Hewlett-Packard 2640 family of terminals, with the primary 
purpose of producing accurate representations of most nroff(I) output. Typical uses are: 

nroff -h files ... 1 hp or: nroff -h -s files ... 1 hp 

In the latter case, nroffwill stop at the beginning of each page including the first and wait for you 
to hit LINE FEED to initiate output. Regardless of the hardware options on your terminal, hp 
does sensible things with underlining and reverse line feeds. If the terminal has the display 
enhancements feature, subscripts and superscripts can be indicated in distinct ways. If it has the 
mathematical-symbol option, you can see Greek and other special characters. 

The flags are as follows: 

-e it is assumed that your terminal has the display enhancements feature, and so maximal use 
is made of the added display modes. Overstruck characters are presented in the Underline 
mode. Superscripts are shown in Half-Bright mode, and subscripts in Half-Bright, Under­
lined mode. If this flag is omitted, hp assumes that your terminal lacks the display enhance­
ments feature. In this case, all overstruck characters, subscripts, and superscripts are 
displayed in Inverse Video mode, i.e., dark on light, rather than the usual light on dark. 

- m requests minimization of output by removal of newlines. Any contiguous sequence of 30r 
more newlines is converted into a sequence of only 2 newlines; i.e., any number of succes­
sive blank lines produces only a single blank output line. This allows you to retain more 
actual text on the screen. 

With regard to Greek and other scientific characters, hp provides the same set as does gsi(I) , 
except that "not" is approximated by a right arrow, and only the top half of the integral sign is 
shown. The display is adequate for examining output from neqn(I). 

DIAGNOSTICS 
"line too long" if representation of a line exceeds 300 characters, which would occur, for 
instance, if you underlined every other character in an 80-character line containing many Greek 
characters. 

EXIT CODES 
0- normal 
1 - for any error 

SEE ALSO 

BUGS 

gsi(I), HP2640(VII), neqn(I), nroff(n 

Note that the second or later characters in an overstriking sequence are always assumed to be 
underlines. For example, a bullet made from lower-case "0" overstruck with n+" appears as an "0" 

that is either underlined or shown in Inverse Video. Although some terminals do provide numer-
* ical superscript characters, no effort is made to display them. The programming is ugly, and most 

terminals do not possess this feature. 

- 1 -



IF (I) 

NAME 
if - conditional command 

SYNOPSIS 
if expr command [ arg ... ] 

if expr then 
command(s) 

[ else [ command] 
... ] 

endif 

test expr 

DESCRIPTION 

PWB/UNIX Edition 1.0 IF (I) 

rf evaluates the expression expr. In the first form above, if expr is true, the given command is 
executed with the given arguments. The command may be another if. 

In the second form, if expr is true, the commands between the then and the next unmatched else 
or endif are executed. If expr is false, the commands after then are skipped, and the commands 
after the optional else are executed. Zero or one commands may be written on the same line as 
the else. In particular, ifmay be used this way. The pseudo commands else and endif(whichever 
occurs first) must not be hidden behind semicolons or other commands. This form may be 
nested: every then needs a matching endif 

Test is an entry to if that evaluates the expression and returns exit code 0 if it is true, and code 1 
if it is false or in error. 

The following primitives are used to construct the expr: 

-r file true if the file exists and is readable. 

-w file 

-s file 

-f file 

-d file 

-z sl 

-n sl 

sl = s2 

sl != s2 

n1 -eq n2 
n1 -ne n2 
n1 -gt n2 
n1 -ge n2 
n1 -It n2 
n1 -Ie n2 

true if the file exists and is writable. 

true if the file exists and has a size greater than zero. 

true if the file exists and is an ordinary file. 

true if the file exists and is a directory. 

true if the length of string s1 is zero. 

true if the length of string s1 is nonzero. 

true if the strings s1 and s2 are equal. 

true if the strings s1 and s2 are not equal. 

true if the stated algebraic relationship exists. The arguments n1 and n2 must be 
integers. 

{ command} The bracketed command is executed to obtain the exit status. Status zero is con­
sidered true. The command must not be another if. 

- 1 -



IF (I) PWB/UNIX Edition 1.0 IF (I) 

These primaries may be combined with the following operators: 

unary negation operator 

-a 

-0 

( expr ) 

binary and operator 

binary or operator 

parentheses for grouping. 

-a has higher precedence than -0. Notice that all the operators and flags are separate arguments 
to if and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the 
Shell and must be escaped. 

EXIT CODES 
o - true expression, no error. 
1 - false condition or error. 

SEE ALSO 
exit(I), goto(I), shU), switch(I), while(I), exit(II) 

DIAGNOSTICS 

BUGS 

if:missing endif 
if:syntax error: value 
if:non-numeric arg: value 
if:no command: name 
else:missing endif 

Test may issue any of the ifmessages above, except the first. 

In general, if, else. enaif, and test must not be hidden behind semicolons on a command line. 
Many of the effects are obtained by searching the input file and adjusting the read pointer 
appropriately. Thus, including any of these commands in a part of the file intended to be read by 
a command other than the shell may cause strange results if they are encountered while searching. 
These commands ignore redirection or piping of their standard input or output. Commands exe­
cuted by if or test may be affected by redirections, but this practice is undesirable and should be 
avoided. 

- 2 -



KILL (I) PWB/UNIX Edition 1.0 KILL (I) 

NAME 
kill - terminate a process 

SYNOPSIS 
kill [ - signo ] processid ... 

DESCRIPTION 
Kill sends signal 15 (terminate) to the specified processes. This will normally terminate the pro­
cess, unless it is caught. The process number of each asynchronous process started with ~&' is 
reported by the Shell. Process numbers can also be found by using ps(I). 

The details of the kill are described in kill(II). For example, if process number 0 is specified, all 
processes in the process group are signaled. 

If a signal number preceded by "-" is given as the first argument, that signal is sent instead. For 
example, -9 will guarantee a kill. 

SEE ALSO 
ps (n, sh (1), kill (II), signal (II) 

- 1 -



LD (1) PWB/UNIX Edition 1.0 LD (I) 

NAME 
ld - link editor 

SYNOPSIS 
ld [ - suIxrdni ] [ -0 name] file ... 

DESCRIPTION 
Ld combines several object programs into one~ resolves external references; and searches libraries. 
In the simplest case several object files are given, and Id combines them, producing an object 
module which can be either executed or become the input for a further Id run. (In the latter case, 
the -r option must be given to preserve the relocation bits.) The output of Id is left on a.out. 
This file is made executable only if no errors occurred during the load. 

The argument routines are concatenated in the order specified. The entry point of the output is 
the function named main. 

If any argument is a library, it is searched exactly once at the point it is encountered in the argu­
ment list. Only those routines defining an unresolved external reference are loaded. If a routine 
from a library references another routine in the library, the referenced routine must appear after 
. the referencing routine in the library. Thus the order of programs within libraries is important. 

Ld understands several flag arguments which are written preceded by a '-'. Except for -I, they 
should appear before the file names. 

-s 'Strip' the output, that is, remove the symbol table and relocation bits to save space (but 
impair the usefulness of the debugger). This information can also be removed by strip (I) . 

-u Take the following argument as a symbol and enter it as undefined in the symbol table. This 
is useful for loading wholly from a library, since initially the symbol table is empty and an 
unresolved reference is needed to force the loading of the first routine. 

-I This option is an abbreviation for a library name. -I alone stands for '/lib/liba.a', which is 
the standard system library for assembly language programs. -Ix stands for '/lib/libx.a', 
where x can be a string. If that does not exist, Id tries '/usr/lib/libx.a'. A library is searched 
when its name is encountered, so the placement of a -} is significant. 

-x Do not preserve local (non-.globI) symbols in the output symbol table~ only enter external 
symbols. This option saves some space in the output file. 

- X Save local symbols except for those whose names begin with 'L'. This option is used by cc to 
discard internally generated labels while retaining symbols local to routines. 

-r Generate relocation bits in the output file so that it can be the subject of another Id run. This 
flag also prevents final definitions from being given to common symbols, and suppresses the 
'undefined symbol' diagnostics. 

-d Force definition of common storage even if the -r flag is present. 

- n Arrange that when the output file is executed, the text portion will be read-only and shared 
among all users executing the file. This involves moving the data areas up to the first possi­
ble 4K word boundary following the end of the text. 

- i When the output file is executed, the program text and data areas will live in separate address 
spaces. The only difference between this option and -n is that here the data starts at loca­
tion O. 

- 1 -



LO (I) PWB/UNIX Edition 1.0 LO (I) 

-0 The name argument after -0 is used as the name of the ld output file, instead of a.out. 

FILES 
!lib/lib? .a 
lusr/lib/lib? .a 
a.out 

SEE ALSO 
as (I) , ar(!), ccO) 

libraries 
more libraries 
output file 

- , -



LEX (I) PWB/UNIX Edition 1.0 LEX (1) 

NAME 
lex - generate programs for simple lexical tasks 

SYNOPSIS 
lex [ -[rctvfn] ] [file] ... 

DESCRIPTION 
Lex generates programs to be used in simple lexical analysis of text. 

The input file(s) contain strings and expressions to be searched for, and C text to be executed 
when found. A file "lex.yy.c" is generated which, when loaded with the library, copies the input 
to the output except when a string specified in the file is found~ then the corresponding program 
text is executed. The actual string matched is left in yytext, an external character array. Match­
ing is done in order of the strings in the file. The strings may contain square brackets to indicate 
character classes, as in 

[abx-z] 
to indicate a, b, x, y, and z; and the operators *, +, and ? mean respectively any non-negative 
number of, any positive number of, and either zero or one occurrences of, the previous character 
or character class. The character ' .' is the class of all ASCII characters except newline. 
Parentheses for grouping and vertical bar for alternation are also supported. The character A at the 
beginning of an expression permits a successful match only immediately after a newline, and the 
character % at the end of an expression requires a .trailing newline. The character I in an expres­
sion indicates trailing context; only the part of the expression up to the slash is returned in yytext, 
but the remainder of the expression must follow in the input stream. An operator character may 
be used as an ordinary symbol if it is within" symbols or preceded by \. Thus 

[a-zA-Z1+ 
matches a string of letters. 

Three subroutines defined as macros are expected: inputO to read a character; unput(c) to replace 
a character read~ and ou'tput (c) to place an output character. They are defined in terms of the 
standard streams (and the -IS standard 1/0 library), but you can override them. The program 
generated is named yylexO, and the library contains a mainO which calls it. The action REJECT 
on the right side of the rule causes this match to be rejected and the next suitable match exe­
cuted; the function yymoreO accumulates additional characters into the same yytext; and the 
function yyless(p) pushes back the portion of the string matched beginning at p, which should be 
between yytext and yytext+yyleng. The macros input and output use files "yyin" and "yyout" to 
read from and write to, defaulted to "stdin" and "stdout", respectively. 

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes %% 
it is copied into the external definItion area of the "lex.yy.c" file. All rules should follow a %%, 
as in Y ACC. Lines preceding %%which begin with a non-blank character define the string on 
the left to be the remainder of the line; it can be called out later by surrounding it with {}. Note 
that curly brackets do not imply parentheses; only string substitution is done. Example: 

D [0-9] 
%% 
if printf("IF statement\n"); 
[a-z] + printf(lItag, value %s\n" ,yytext); 
O{D}+ printf(lIoctal number %s\n",yytext); 
{D}+ printf("decimal number %s\n" ,yytext); 
"++" printf("unary op\n"); 
"+" printf(,'binary op\n") ~ 
"1*" { loop: 

while (inputO != '*'); 

- 1 -



LEX (J) PWB/UNIX Edition 1.0 LEX (I) 

switch (input 0 ) 
{ 
case 'I': break~ 
case '*': unput('*')~ 
default: go to loop~ 
} 

The external names generated by lex all begin with the prefix !lyy" or "YY". 

The flags must appear before any files. The flag -r indicates Ratfor actions, -c indicates C 
actions and is the default, -t causes the "lex.yy.c" program to be written instead to standard out­
put, -v provides a one-line summary of statistics of the machine generated, -f indicates "faster" 
compilation, so no packing is done, but it can handle much smaller machines only, -n will not 
print out the - summary. Multiple files are treated as a single file. If no files are specified, stan­
dard input is used. 

This is intended to replace the older version of Lex. The new standard 1/0 library is used, so 
actions must use it, and an "include" statement is automatically provided. A definition in the 
definitions section may refer to other definitions (but not to itself). The "%+" option has been 
eliminated. The notation r{d,e} in a rule indicates between d and e instances of regular expression 
r. It has higher precedence then 'I', but lower than ~*', "?', '+', and concatenation. 

In the definitions section, 
%p num sets the max. - of positions to num (dft = 2000) 
%n num sets the max. -- of states to num (dft = 500) 
%t num sets the max. - of parse tree nodes to num (dft = 1000) 
%a num sets the max. - of transitions to num (dft = 3000) 

The use of one or more of the above automatically implies the -v option, unless the -n option is 
used. 

SEE ALSO 
yacc(I) 
LEX - LeXical Analyzer Generator by M. E. Lesk and E. Schmidt. 

BUGS 
The Ratfor option is not yet fully operational. 

- 2 -



LN (1) PWB/UNIX Edition 1.0 LN (1) 

NAME 
In make a link 

SYNOPSIS 
in name 1 [ name2 ] 

DESCRIPTION 
A link is a directory entry referring to a file; the same file (together with its size, all its protection 
information, etc.) may have several links to it. There is no way to distinguish a link to a file from 
its original -directory entry; any changes in the file are effective independently of the name by 
which the file is known. 

Ln creates a link to an existing file namel. If name2 is given, the link has that name; otherwise it 
is placed in the current directory and its name is the last component of namel. 

It is forbidden to link to a directory or to link across file systems. 

SEE ALSO 
rm(!) 

BUGS 
There is nothing particularly wrong with In, but tp doesn't understand about links and makes one 
copy for each name by which a file is known; thus if the tape is extracted several copies are 
restored and the information that links were involved is lost. 

- 1 -



LOGIN (I) PWB/UNIX Edition 1.0 LOGIN (I) 

NAME 
login - sign onto UNIX 

SYNOPSIS 
login [ username ] 

DESCRIPTION 

FILES 

The login command is used when a user initially signs onto UNIX, or it may be used at any time 
to change from one user to another. The latter case is the one summarized above and described 
here. See 'How to Get Started' for how to dial up initially. 

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password. 
Echoing is turned off (if possible) during the typing of the password, so it will not appear on the 
written record of the session. 

After a successful login, accounting files are updated and the user is informed of the existence of 
. mail and message-of-the-day files. Login initializes the user and group IDs and the working direc­
tory, then executes a command interpreter (usually sh (I)) according to specifications found in a 
password file. 

Login is recognized by the Shell and executed directly (without forking). 

I etcl utmp accounting 
I usr I adml wtmpaccounting 
. mail mail 
letc/motd message-of-the-day 
I etc/ passwd password file 

SEE ALSO 
init (VIII), getty (VIII) , mail(l), passwd (I) ;passwd (V), sh (I), ·su (n 

DIAGNOSTICS 
'login incorrect,' if the name or the password is bad. 'No Shell', 'cannot open password file,' 'no 
directory': consult a UNIX programming counselor. System hangs up a line left in login state. 

- 1 -



LOGINFO (1) PWB/UNIX Edition 1.0 

NAME 
logname, logdir, logtty - information from login 

SYNOPSIS 
logname 
logdir 
logtty 

DESCRIPTION 
Logname prints the user's login name. 

Logdir prints the login directory pathname. 

Logtty prints the single character tty letter (and never prints 'x'). 

These data are created by login (I) . 

- 1 -

LOG INFO (1) 



LS (I) 

NAME 
Is 

SYNOPSIS 

list contents of directory 

Is [ -Itasdruifg ] name ... 

DESCRIPTION 

PWB/UNIX Edition 1.0 LS ( I) 

For each directory argument, Is lists the contents of the directory~ for each file argument, Is 
repeats its name and any other information requested. The output is sorted alphabetically by 
default. When no argument is given, the current directory is listed. When several arguments are 
given, the arguments are first sorted appropriately, but file arguments appear before directories 
and their contents. There are several options: 

-I list in long format, giving mode, number of links, owner, size in bytes, and time of last 
modification for each file. (See below') If the file is a special file the size field will instead 
contain the major and minor device numbers. 

-t sort by time modified (latest first) instead of by name, as is normal 

-a list all entries; usually those beginning with'.' are suppressed 

-s give size in blocks for each entry 

-d if argument is a directory, list only its name, not its contents (mostly used with -I to get 
status on directory) 

-r reverse the order of sort to get reverse alphabetic or oldest first as appropriate 

-n use time of last access instead of last modification for sorting (-t) or printing (- I) 

-i print i-number in first column of the report for each file listed 

-f force each argument to be interpreted as a directory and list the name found in each slot. 
This option turns off -I, -t, -s, and -r, and turns on -a; the order is the order in which 
entries appear in the directory. 

-g Give group ID instead of owner ID in long listing. 

The mode printed under the -I option contains 11 characters which are interpreted as follows: 
the first character is 

d if the entry is a directory; 
b if the entry is a block-type special file~ 
c if the entry is a character-type special file; 

if the entry is a plain file. 

The next 9 character~ are interpreted as three sets of three bits each. The first set refers to owner 
permissions; the next to permissions to others in the same user-group; and the last to all others. 
Within each set the three characters indicate permission respectively to read, to write, or to exe­
cute the file as a program. For a directory, 'execute'"permission is interpreted to mean permissIOn 
to search the directory for a specified file. The permissions are indicated as follows: 

r if the file is readable 
w if the file is writable 
x if the file is executable 

if the indicated permission is not granted 

- 1 -



LS (I) PWB/UNIX Edition 1.0 LS (1) 

FILES 

The group-execute permission character is given as s if the file has set-group-IO mode~ likewise 
the user-execute permission character is given as s if the file has set .. user-IO mode. , . , 

The last character of the mode is normally blank but is printed as Ht" if the 1000 bit of the mode 
is on. See chmod(I) for the current meaning of this mode. 

/ etc/ passwd . to get user 10' s for Is -I. 

- 2 .. 



M4(I) PWB/UNIX Edition 1.0 M4 (I) 

NAME 
m4 - macro processor 

SYNOPSIS 
m4 [ files] 

DESCRIPTION 
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the 
argument files is processed in order; if there are no arguments, or if an argument is '-', the stan­
dard input is read. The processed text is written on the standard output. 

Macro calls have the form 

name(argl,arg2, ... , argn) 

The '(' must immediately follow the name of the macro. If a defined macro name is not followed 
by a '(" it is deemed to have no arguments. Leading unquoted blanks, tabs, and newlines are 
ignored while collecting arguments. Potential macro names consist of alphabetic letters, digits, 
and underscore '_', where the first character is not a digit. 

Left and right single quotes (") are used to quote strings. The value of a quoted string is the 
string stripped of the quotes. 

When a macro name is recognized, its arguments are collected by searching for a matching right 
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and any 
commas or right parentheses which happen to turn up within the value of a nested call are as 
effective as those in the original input text. After argument collection, the value of the macro is 
pushed back onto the input stream and rescanned. 

M4 makes available the following bUilt-in macros. They may be redefined, but once this is done 
the original meaning is lost. Their values are null unless otherwise stated. 

define The second argument is installed as the value of the macro whose name is the first 
argument. Each occurrence of $ n in the replacement text, where n is a digit, is 
replaced by the n-th argument. Argument 0 is the name of the macro~ missing argu­
ments are replaced by the null string. 

un define removes the definition of the macro named in its argument. 

ifdef If the first argument is defined, the value is the second argument, otherwise the third. 
If there is no third argument, the value is null. 

changequote Change quote characters to the first and second arguments. Changequote without 
arguments restores the original values (i.e., "). 

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation 
of the streams in numerical order~ initially stream 0 is the current stream. The divert 
macro changes the current output stream to its (digit-string) argument. Output 
diverted to a stream other than 0 through 9 is discarded. 

undivert causes immediate output of text from diversions named as arguments, or all diversions 
if no argument. Text may be undiverted 'into another diversion. Undiverting discards 
the diverted text. 

divnum returns the value of the current output stream. 

dnl reads and discards characters up to and including the next newline. 

- 1 -



M4 (1) PWB/UNIX Edition 1.0 M4 (I) 

ifelse has three or more arguments. If the first argument is the same string as the second, 
then the value is the third argument. If not, and if there are more than four argu­
ments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is 
either the fourth string, or, if it is not present, null. 

incr returns the value of its argument incremented by 1. The value of the argument is cal­
culated by interpreting an initial digit-string as a decimal number. 

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators 
include +, -, *, /, %, A (exponentiation)~ relationals; parentheses. 

len returns the number of characters in its argument. 

index returns the position in its first argument where the second argument begins (zero ori­
gin), or -1 if the second argumenf does not occur. 

substr returns a substring of its first argument. The second argument is a zero origin number 
selecting the first character~ the third argument indicates the length of the substring. 
A missing third argument is taken to be large enough to extend to the end of the first 
string. 

include returns the contents of the file named in the argument. 

sinclude is identical to include, except that it says nothing if the file is inaccessible. 

syscmd executes the UNIX command given in the first argument. 

errprint prints its argument on the diagnostic output file. 

dumpdef prints current names and definitions, for the named items, or for all if no arguments 
are given. 

SEE ALSO 
The M4 Macro Processor by B. W. Kernighari and D. M. Ritchie. 



MAIL (I) PWB/UNIX Edition 1.0 MAIL (I) 

NAME 
mail - send mail to designated users 

SYNOPSIS 
mail [-yn] [ person ... ] 
mail -f file 

DESCRIPTION 
.Mail with no argument searches for a file called .mail, prints it in reverse chronological order if it 
is nonempty, then asks if it should be saved. If the answer is y, the mail is added to mbox. In 
either case, .mail is truncated to zero length. To leave .mail untouched, hit 'delete.' The ques­
tion can be answered on the command line with the argument -y or -no 

FILES 

Mail tries to use .mail and mbox in the current directory. But if .mail doesn't exist, mail uses 
.mail and mbox in your login directory instead. 

When persons are named, mail takes the standard input up to an end-of-file (or a line with just'. ') 
and adds it to each person's .mail file. The message is preceded by the sender's name and a post­
mark. A person is a user name recognized by login (I). Mail is sent to the login directory of that 
user. 

The -f option causes the named file to be printed as if it were mail. 

When a user logs in he is informed of the presence of mail. 

To receivemail.a.mail file must exist in your login directory, and it must be writable by every­
one. However, it need not be readable by everyone. 

/ etc/ passwd to identify sender and locate persons 
.mail input mail 
mbox saved mail 
/tmp/m????? temp file 

SEE ALSO 
write (I) 

- 1 -



MAKE(I) PWB/UNIX Edition 1.0 MAKE(I) 

NAME 
make - make a program 

SYNOPSIS 
make [-f descfile] [-p] [-i] [-s] [-r] [-n] [-t] file ... 

DESCRIPTION 
Make may be used to mechanize program creation and maintenance, while ensuring that all con­
stituents are current. A graph of dependencies is specified in the descjile(s). The standard input 
will be read if - is given for descfile. If no -f options are present, the file named makefile or, if 
absent, the file named Makefile in the current directory is used. The -p option prints out a ver­
sion of that graph. Each file name argument is 'made', as described below. If no such arguments 
are present, the initial node in the description file is made. 

The descfile consists of a sequence of entries that describe the prerequisites and operations for 
creating an object (usually a file). The first line of each entry contains the names of the objects ·to 
be made, followed by a colon, optionally followed by a list of other files that must be available 
and current in order to remake it. Text following a semicolon on the first line, and all immedi­
ately following lines that begin with a tab, are fed to the Shell to make the object. Each line is fed 
to a separate instance of the Shell. All text following a sharp is taken to be a comment. For 
example: 

pgm: x.o y.o ~ cc x.o y.o -lp 
mv a.out pgm # command to be done 

x.o: dcls 

Make walks the graph of dependencies. If a needed object depends on another that is not present 
or is younger than itself, it is remade. If an object's name ends in '.0', the description file, and 
then the current directory, are searched for a corresponding name ending in 'or" 'of, 'oc" 'os', '.1' 
(Lex), '.y' (Yacc-C). (These default rules are not applied if the -r option is specified). If such a 
file is found and is younger than the object, a compilation command is executed. In the example 
above, if 'dcls' has been changed since 'pgm' was last made, 'x.c' will be recompiled and 'pgm' 
will be reloaded. 

Each command line is printed before it is executed unless the -s option is specified on the com­
mand line or the special name '.SILENT' appears in the description. The command lines are 
printed but not executed if the -0 option is specified. The date last modified is updated but the 
commands' given are not executed for each file if the -t option is specified. (This option is use­
ful when a source change is known to be incremental or benign) . 

Make examines the exit(II) status returned by each executed command. If the status is non-zero 
(i.e., if an error occurred), make aborts, unless either (a) the -i option was specified, or (b) the 
command name in the descfile was prefixed by '-'. 

SEE ALSO 
Make - A· Program for Maintaining Computer Programs by S. I. Feldman. 

DIAGNOSTICS 
No description file argument 
Cannot find description file 
Syntax. error 
Don't know how to make xxx. 

- 1 -



MAKE (I) PWB/UNIX Edition 1.0 MAKE (I) 

BUGS 
Many UNIX commands return random status, which will cause make to assume that the com­
mand failed. In case of trouble, use the -i option or a minus sign on the command line. 



MAN (I) PWB/UNIX Edition 1.0 MAN (I) 

NAME 
man - print on-line documentation 

SYNOPSIS 
man [ options ] documents ... 

DESCRIPTION 
Man is a Shell command file that prints on-line documentation on the standard output by means 
of nroff(I) or troff(I). On-line documentation consists of manual pages from the PWB/UNIX 
User's Manual. . 

The command line to print manual pages consists of: 

man [ term ] [ -s ] [ section ] title ... 

where "term" is one of the following: 

- t produces photocomposed output; 

_ -g adapts the output to a DASI300 terminal in 12-pitch mode; 

-450 adapts the output to the DASI450 terminal in 10-pitch mode; 

- hp adapts the output to a Hewlett·Packard terminal; 

-v followed by a space and a bin number, produces output on the Versatec printer. Exactly 
one bin number must be specified when the -v option is used. 

The -s option prints only the SYNOPSIS portion of a manual page. 

Section is the section number in the PWB/UNIX User's Manual in which a manual page is filed; it 
is specified as a single Arabic dedmal digit. If section is omitted on the command line, the section 
number defaults to 1. If the page is not in the given section, then a search is made of a/~ sections 
of the manual. If the page is not found (Le., does not exist), an error message is produced. 

Title is the name of the manual page. One or more titles may be specified in a single command. 

Thus, the command line: 

man -g 1 ed man tbl 

would print out (in 12-pitch on a DASI300 terminal) the pages for the commands ed, man,and 
tbl, all of which can be found in Section I of the PWB/UNIX User's Manual. 

DIAGNOSTICS 
"man page for xxx not found" 

FILES 
lusr/man/man[O-8] 

SEE ALSO 

A manual page for xxx does not exist. 

Installed PWB/UNIX pages. 

Anyone· who wishes to write manual pages like those accessed by this command should read 
PWBIUNIXManual Page Macros by E. M. Piskorik. 

- 1 . 



MESG (1) PWB/UNIX Edition 1.0 MESG (I) 

NAME 
mesg - permit or deny messages 

SYNOPSIS 
mesg [ n J [y ] 

DESCRIPTION 
Mesg with argument n forbids messages via write(I) by revoking non-user write permission on the 
user's terminal. Mesg with argument y reinstates permission. All by itself, mesg reverses the 
current permission. In all cases the previous state is reported. 

FILES 
Idev/tty? 

SEE ALSO 
write (I) 

DIAGNOSTICS 
'?' if the standard input file is not a terminal. 

- 1 -



MKDIR (I) PWB/UNIX Edition 1.0 MKDIR (I) 

NAME 
mkdir - make a directory 

SYNOPSIS 
mkdir dirname ... 

DESCRIPTION 
Mkdir creates specified directories in mode 755. The standard entries '.' and ' •. ' are made 
automatically. 

SEE ALSO 
rmdir(I) 

- 1 -



MM(I) PWB/UNIX Edition 1.0 MM(I) 

NAME 
mm - run off document with PWB/MM 

SYNOPSIS 
mm [options] [files] 

DESCRIPTION 
The mm command can be used to run off documents using nroff(I) and the PWB/MM text for­
matting codes. It has options to specify preprocessing by tbl(I) or by neqnO) and for postprocess­
ing by various output filters. The proper pipe sequences and the required arguments .and flags for 
nroff(I) and PWB/MM are generat~d, depending on the options selected. For example, inclusion 
of the - h nroff(I) flag occurs unless colO) is to be used or unless the -450 option is specified. 

The options for mm are listed below. Any other arguments or flags, e.g. -rC3, are passed to 
nroff(I) or to PWB/MM, as appropriate. The options can occur in any order, but they must 
appear before the files. 

-e 

-t 

-c 

-12 

-300 

-hp 

-450 

-300S 

-300s 

-to 

-t0300 

-ti 

-37 

neqn(I) processing is needed. 

tN(I) is needed. 

colO) is needed. 

want 12 pitch mode. (Be sure that the 12-pitch switch is set on the terminal.) 

output onto a DASI 300 terminal. This is the default terminal type. 

output onto a HP 2640A. 

output onto a DASI 450. 

output onto a DASI 300S. 

output onto a DASI 300S. 

output onto a GE TermiNet 300. 

output onto a GE TermiNet 300. 

output onto a Texas Instrument terminal. 

output onto a TTY 37. 

If several terminal types are specified, the last one takes precedence. Note that -ti, -tn, and 
-t0300 all do the same thing~ they all imply -C, and work for any terminal that lacks reverse 
line feed capability. 

As an example, 

mm -t -450 -rC3 -12 qqsv* 

generates 

tbl qqsv* 1 nroff -h -mm -rT1 -rC3 -I 450 

If no arguments are given, mm prints a list of options. 

If only options and unreadable files are specified, then mm terminates silently. 

HINTS 
1. mm may invoke nroff(I) with the - h flag. With this flag, nroff(I) assumes that the terminal 

has tabs set at every 8 character positions. ' 

- 1 -' 



MM(I) PWB/UNIX Edition 1.0 MM (1) 

2. Use the -olist option of nrojf(I) to specify ranges of pages to be output. 

3. When either -t or -e or both are specified and the -o/ist does not cause the last page of 
the document to be printed, a Hbroken pipe" message from the Shell will result. 

SEE ALSO 
nroff(I) 
PWBIMM - Programmer's Workbench Memorandum Macros by D. W. Smith and J. R. Mashey. 
Typing Documents with PWBIMM by D. W. Smith and E. M. Piskorik. 

- 2 -



MV(I) PWB/UNIX Edition 1.0 MV(I) 

NAME 
mv move or rename a file 

SYNOPSIS 
mv namel name2 

DESCRIPTION 
Mv changes the name of name} to name2. If name2 is a directory, name} is moved to that direc­
tory with its original file-name. Directories may only be moved within the same parent directory 
Gust renamed). 

If name2 already exists, it is removed before name} is renamed. If name2 has a mode which for­
bids writing, mv prints the mode and reads the standard input to obtain a line; if the line begins 
with y, the move takes place~ if not, mv exits. 

If name2 would lie on a different file system, so that a simple rename is impossible, mv copies the 
file and deletes the original. 

SEE ALSO 
cp(I), cpio(I) 

BUGS 
It should take a -f flag, like rm, to suppress the question if the target exists and is not writable. 

- 1 -



NEQN(I) PWB/UNIX Edition 1.0 NEQN (I) 

NAME 
neqn - typeset mathematics on terminal 

SYNOPSIS 
neqn [ file ] ... 

DESCRIPTION 
Neqn is an nroff(I) preprocessor. The input language is the same as that of eqn(I). Normal usage 
is almost always: 

neqn file ... I nroff 

Output is meant for terminals with forward and reverse capabilities, such as the Model 37 
TELETYPE® or aSI (DASI or DIABLO) terminals. 

If no arguments are specified, neqn reads the standard input, so it may be used as a filter. 

SEE ALSO 

BUGS 

eqn(I), gsiCO, mm(O, DASI450(VII), aSI300(VII) 
Typesetting Mathematics - User's Guide (2nd Edition) by B. W. Kernighan and L. L. Cherry. 
New Graphic Symbols for EQN and NEQN by C. Scrocca. 

Because of some interactions with nroff(O, there may not always be enough space left before and 
after lines containing equations. 

·1· 



NEWGRP (I) PWB/UNIX Edition 1.0 NEWGRP (I) 

NAME 
newgrp - log in to a new group 

SYNOPSIS 
newgrp group 

DESCRIPTION 
Newgrp changes the group identification of its caller, analogously to Jogin(n. The same person 
remains logged in, and the current directory is unchanged, but calculations of access permissions 
to files are performed with respect to the new group 10. 

FILES 

A password is demanded if the group has a password and the user himself does not. 

When most users log in, they are members of the group named 'other.' 

/ etc/ group, / etc/passwd 

SEE ALSO 
login (I), group (V) 

- 1 -



NEXT (I) PWB/UNIX Edition 1.0 NEXT (I) 

NAME 
next - new standard input for shell procedure 

SYNOPSIS 
next [ filename ] 

DESCRIPTION 
This command causes .filename to become standard input. The current input is never resumed. If 
no filename is given, the real terminal is assumed. 

Next is executed within the shell. 

SEE ALSO 
sh(I) 

- 1 -



NICE (I) PWB/UNIX Edition 1.0 NICE (I) 

NAME 
nice - run a command at low priority 

SYNOPSIS 
nice [ -number] command [ arguments] 

DESCRIPTION 
Nice executes command with low scheduling priority. If the number argument is given, that prior­
ity (in the range 1-20) is used~ if not, priority 4 is used. 

The super-user may run commands with priority higher than normal by using a negative priority, 
e.g. '--10'. 

SEE ALSO 
nohup(I), niceOI) 

- 1 -



NM(I) PWB/UNIX Edition 1.0 NM(I) 

NAME 
nm print name list 

SYNOPSIS 
om [ - cnrupg ] [name ] 

DESCRIPTION 

FILES 

Nm prints the symbol table from the output file of a compiler or loader run. Each symbol name is 
preceded by its value (blanks if undefined) and one of the letters U (undefined) A (absolute) T 
(texi segment symbol), D (data segment symbol), B (bss segment symbol), or C (common sym­
bol). If the symbol is local (non-external) the type letter is in lower case. The output is sorted 
alphabetically. 

If no file is given, the symbols in a.out are listed. 

Options are: 

-c list only C-style external symbols, that is those beginning with underscore '_'. 

-g print only global (external) symbols 

- n sort by value instead of by name 

-p don't sort~ print in symbol-table order 

-r sort in reverse order 

-u print only undefined symbols. 

a.out 

- 1 -



NOHUP (1) PWB/UNIX Edition 1.0 NOHUP(I) 

NAME 
nohup - run a command immune to hangups 

SYNOPSIS 
nohup command [ arguments] 

DESCRIPTION 
Nohup executes command with hangups, quits and interrupts all ignored. If output is not re­
directed by the user, it will be sent to /dev/nu/l (a "write-only" file). 

SEE ALSO 
nice (I), signal (II) 

- 1 -



NROFF /TROFF ( I ) PWB/UNIX Edition 1.0 NROFF /TROFF ( I ) 

NAME 
nroff~ troff - text formatters 

SYNOPSIS 
nroff (or troff) [options] files 

DESCRIPTION 
NROFF and TROFF accept lines of text interspersed with lines of format control information and 
format the text into a printable, paginated document having a user-designed style. NROFF and 
TROFF are highly compatible with each other and it is almost always possible to prepare input 
acceptable to both. Conditional input is provided that enables the user to embed input expressly 
destined for either program. NROFF can prepare output directly for a variety of terminal types and 
is capable of utilizing the full resolution of each terminal. 

An argument consisting of a single minus (-) is taken to be a file name corresponding to the 
standard input. If no file names are given, input is taken from the standard input. The options, 
which may appear in any order so long as they appear before the filenames, are: 

Option Effect 

-0 list Print only pages whose page numbers appear in Itsf, which consists of numbers 
and number ranges separated by commas. A number range has the form N-M 
and means pages N through M inclusive~ an initial - N means from the beginning 
to page N; and a final N - means from N to the end. 

-nN Number first generated page N. 

-sN Stop every N pages. NROFF will halt prior to every N pages (default lV=l) to 
allow paper loading or changing, and will resume upon receipt of a new-line char­
acter. TROFF will stop the phototypesetter every N pages, produce a trailer to 
allow the changing of cassettes, and will resume after the phototypesetter START 
button is pressed. 

-mname Prepends the macro file /usr/lib/tmac.name to the input files. 

-raN Register a (one-character name) is set to N. 

-i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous input-output mode of the rd request. 

NROFF Only 

-Trype Specifies the output terminal type. Currently defined values for type are 37 for the 
(default) Model 37 TELETYPE@, tn300 for the GE TermiNet 300 (or any terminal 
without half-line capabilities), 300 for the DASI .. 300, 450 for the DASI-4S0 (or 
Diablo Hyterm) and 300S for the DASI-300S. For 12-pitch, use 300-12, 3008-12, 
and 450-12. 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

- h Use output tabs during horizontal spacing to speed output and reduce output char-
acter count. Tab settings are assumed to be every 8 nominal character widths. 

TROFF Only 

-t Direct output to the standard output instead of the phototypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the 
run. 

- 1 -



NROFF/TROFF (I) PWB/UNIX Edition 1.0 NROFF/TROFF (I) 

FILES 

-w Wait until phototypesetter is available, if it is currently busy. 

-b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done. 

-a Send a printable (ASCII) approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and 
motions, to reduce phototypesetter elasped time. 

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct 
it to the standard output. . 

lusr/lib/suftab suffix hyphenation tables 
/tmp/taOOOOO temporary file 
/usr/lib/tmac.* standard macro files 
hisr/lib/term/* (NROFF only) terminal driving tables 
lusr/lib/font!* (TRO~F only) font width tables 

SEE ALSO 
NROFF/TROFF User's Manual by J. F. Ossanna. 
A TROFF Tutorial by B. W. Kernighan. 
tbl(D. 
For NROFF, see neqn(I), col (I), and tabs(I) 
For TROFF, see eqn (I). 

- 2 -



OD (I) 

NAME 
od 

SYNOPSIS 

PWB/UNIX Edition 1.0 

octal dump 

od [ -abcdho ] [file] [ [ + ] offset[ . 1 [ b ] 1 

DESCRIPTION 

00 (I) 

Od dumps file in one or more formats as selected by the first argument. If the first argument is 
missing, -0 is default. The meanings of the format argument characters are: 

a interprets words as PDP-II instructions and dis-assembles the operation code. Unknown 
operation codes print as ??? 

b interprets" bytes in octal. 

c interprets bytes in ascii. Unknown ascii characters are printed as \? 
d interprets words in decimal. 

h interprets words in hex. 

o interprets words in octal. 

The file argument specifies which file is to be dumped. If no file argument is specified, the stan­
dard input is used. Thus od can be used as a filter. 

The offset argument specifies the offset in the file where dumping is to commence. This argu­
ment is normally interpreted as octal bytes. If'.' is appended, the offset is interpreted in decimal. 
If 'b' is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file argument 
is omitted, the offset argument must be preceded by '+'. 
Dumping continues until end-of-file. 

SEE ALSO 
db(I) 

- 1 -



ONINTR (I) PWB/UNIX Edition 1.0 ONINTR (I) 

NAME 
onintr - handle interrupts in shell files 

SYNOPSIS 
onintr [ label ] 

DESCRIPTION 
The onintr command catches interrupts received while the Shell is reading from a file. After the 
interrupt, and after any active process has completed, the Shell procedure is transferred to the 
label specified. Unless another onintr command is processed, the next interrupt will kill the Shell. 
The command without a label turns interrupts back on. The special case "onintr -" causes inter­
rupts to be totally ignored, both by the Shell itself and by subsequent commands invoked by the 
Shell. 

Onintr is executed within the Shell. 

SEE ALSO 
sh(I) 

- 1 -



PASSWD (I) PWB/UNIX Edition 1.0 PASSWD (I) 

NAME 
passwd - change login password 

SYNOPSIS 
passwd name password 

DESCRIPTION 
The password becomes associated with the given login name. This can only be done by the user 
who has that login name, or by the super· user. An explicit null argument ("") for the password 
argument removes any password. 

FILES 
I etcl passwd 

SEE ALSO 
login(I), passwd(V) , crypt(III) 

·1· 



PLOT (I) PWB/UNIX Edition 1.0 

NAME 
plot: t300, t300s, t450 - graphics filters 

SYNOPSIS 
t300 
t300s 
t450 

DESCRIPTION 

PLOT (I) 

These commands read plotting instructions (see plot(V» from the standard input, and produce 
device-dependent plotting instructions on the standard output. 

T300 produces a plot for a as! 300 terminal on the standard output. 

T300s produces a plot for a GSI 300s terminal on the standard output. 

T450 produces a plot for a DASI 450 terminal on the standard output. 

SEE ALSO 
graph (I), plot (III), plot (V) 

- 1 -



PR (I) PWB/UNIX Edition 1.0 PR (I) 

NAME 
pr print file 

SYNOPSIS 
pr [ -h header] [ -n] [ +n ] [ -wn ] [ -In] [ -t ] [ -sc] [ -m ] name ... 

DESCRIPTION 
Pr produces a printed listing of one or more files. The output is separated into pages headed by a 
date, the name of the file or a specified header, and the page number. If there are no file argu­
ments, pr prints its standard input, and is thus usable as a filter. 

FILES 

Options apply to all following files but may be reset between files: 

- n produce n-column output 

+ n begin printing with page n 

- h treat the next argument as a header to be used instead of the file name 

-w n for purposes of multi-column output, take the width of the page to be n characters instead of 
the default 72 

-In take the length of the page to be n lines instead of the default 66 

-t do not print the 5-line header or the 5 .. line trailer normally supplied for each page 

-sc separate columns by the single character c instead of by the appropriate amount of white 
space. A missing c is taken to be a tab. 

-m print all files simultaneously, each in one column 

Inter-terminal messages via write(1) are forbidden during apr. 

/dev/tty? to suspend messages. 

SEE ALSO 
cat (0, cp (I) 

DIAGNOSTICS 
none~ files not found are ignored. 

- 1 -



PROF (I) PWB/UNIX Edition 1.0 PROF (I) 

NAME 
prof - displayp profile data 

SYNOPSIS 
prof [ - a ] [ -I ] [file] 

DESCRIPTION 

FILES 

Prof interprets the file mon.out produced by the monitor(III) subroutine. Under default modes, 
the symbol table in the named object file (a.out default) is read and correlated with the mOD.out 
profile file. For each external symbol, the percentage of time spent executing between that sym­
bol and the next is printed (in decreasing order), together with the number of times that routine 
was called and the number of milliseconds per call. 

If the - a option is used, all symbols are reported rather than just external symbols. If the -I 
option is used, the output is listed by symbol value rather than decreasing percentage. 

In order for the number of calls to a routine to be tallied, the -p option of cc must have been 
given when the file containing the routine was compiled. This option also arranges for the 
mOD.out file to be produced automatically. 

mon.out 
a.out 

for profile 
for namelist 

SEE ALSO 
monitor (III) , profil (II), ccO) 

BUGS 
Beware of quantization errors. 

- 1 -



PRT (I) PWB/UNIX Edition 1.0 PRT (I) 

NAME 
prt - print SCCS file 

SYNOPSIS 
prt [-d] [-s] [-a] [-i] [-u] [-f] [-t] [-b] [-e] [-y[SID]] 
[-c[cutoff]] [-r[reverse-cutoff]] name ... 

DESCRIPTION 
Prt prints part or all of an SCCS file in a useful format. If a directory is named, prt behaves as 
though each file in the directory were specified as a named file, except that non-SeeS files (last 
component of the pathname does not begin with "s."), and unreadable files are silently ignored. 
If a name of "-" is given, the standard input is read; each line of the standard input is taken to 
be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are 
silently ignored. 

The keyletter arguments are as follows. Each is explained as though only one named file is to be 
processed, but the effects of any key letter argument apply independently to each named file. 

-d This keyletter normally causes the printing of delta table entries of the "D" type. 

-s Causes only the first line of the delta table entries to be printed; that is, only up to the 
statistics. This keyletter is effective only if the d keyletter is also specified (or 
assumed). 

-a Causes those types of deltas normally not printed by the d keyletter to be printed. 
These are types "R" (removed) and "H" (changed history). This key letter is 
effective only if the d keyletter is also specified (or assumed). 

-i Causes the printing of the serial numbers of those deltas included, excluded, and 
ignored. This keyletter is effective only if the d keyletter is also specified (or 
assumed). 

The following format is used to print those portions of the sces file as specified by the above 
keyletters. The printing of each delta table entry is preceded by a newline character. 

a) Type of delta ("D", "R", or "H"). 
b) Space. 
c) SCCS identification string (SID). 
d) Tab. 
e) Date and time of creation. 

(in the form YY /MM/DD HH:MM:SS) 
f) Tab. 
g) Creator. 
h) Tab. 
i) Serial number. 
j) Tab. 
k) Predecessor delta's serial number. 
I) Tab. 
m) Statistics. 

(in the form inserted/deleted/unchanged) 
n) Newline. 

- 1 -



PRT (I) PWB/UNIX Edition 1.0 PRT (1) 

0) ""Included: tab ", followed by SID's of deltas included, followed by newline (only if 
there were any such deltas and if i keyletter was supplied). 

p) HExcluded:tab", followed by SID's of deltas excluded, followed by newline (see 
note above). 

q) HIgnored:tab", followed by SID's of deltas ignored, followed by newline (see note 
above). 

r) HMRs:tab", followed by MR numbers related to the delta, followed by newline 
(only if any MR numbers were supplied). 

s) Lines of comments (history), followed by newline (if any were supplied). 

-u Causes the printing of the login-names of those users allowed to make deltas. 

-f Causes the printing of the flags of the named file. 

-t Causes the printing of the descriptive text contained in the file. 

-b Causes the printing of the body of the SCCS file. 

-e This keyletter implies the d, i, U, f, and t key letters and is provided for convenience. 

-y This keyletter will cause the printing of the delta table entries to stop when the delta 
just printed has the specified SID. If no delta in the table has the specified SID, the 
entire table is printed. If no SID is specified, the first delta in the delta table is printed. 
This keyletter will cause the entire delta table entry for each delta to be printed as a 
single line (the newlines in the normal mUlti-line format of the d keyletter are replaced 
by blanks) preceded by the name of the sces file being processed, followed by a H:", 
followed by a tab. This keyletter is effective only if the d keyletter is also specified (or 
assumed). 

-c This keyletter will cause the printing of the delta table entries to stop if the delta about 
to be printed is older than the specified cutoff date-time (see ger(I) for the format of 
date-time). If no date-time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used .. As 
with the y keyletter, this keyletter will cause the entire delta table entry to be printed 
as a single line and to be preceded by the name of the SCCS file being processed, fol­
lowed by a 1.4:", followed by a tab. This keyletter is effective only if the d keyletter is 
also specified (or assumed) . 

-r This keyletter will cause the printing of the delta table entries to begin when the delta 
about to be printed is older than or equal to the specified cutoff date-time (see get(I) 
for the format of date-time). If no date-time is supplied, the epoch 0000 GMT Jan. 1, 
1970 is used. (In this case, nothing will be print~d). As With the y keyletter, this 
keyletter will cause the entire delta table entry to be printed as a single line and to be 
preceded by the name of the sces file being processed, followed by a 1.4:", followed by 
a tab. This keyletter is effective only if the d keyletter is also specified (or assumed). 

If any key letter but y, c, or r is supplied, the name of the file being processed (preceded by one 
newline and followed by two newlines) is printed before its· contents. 

If none of the u, f, t, or b keyletters is supplied, the d key letter is assumed. 

Note that the s aryd i keyletters, and the c and r keyletters are mutually exclusjve~ therefore, they 
may not be specified together on the same prt commarid. 

- 2 -



PRT (I) PWB/UNIX Edition 1.0 PRT (0 

The form of the delta table as produced by the y, C, and r keyletters makes it easy to sort multip'le 
delta tables by time order. For example, the following will print the delta tables of all sees files 
in directory sees in reverse chronological order: 

prt -c sccs I grep . I sort ' -rttao +2 -3 

When both the y and C or the y and r keyletters are supplied, prl will stop printing when the first 
of the two conditions is met. 

The r~form(I) command can be used to truncate long lines. 

See admin(I), see~file(V), and SCCS/PWB Users Manual for more information about the meaning 
of the output of prl. 

SEE ALSO 
admin(I), get (I) , delta (I) , what (I) , help(I), sccsfile(V) 
SCCSIPWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 
Use he/pO) for explanations. 

- 3 -



PS (I) PWB/UNIX Edition 1.0 PS (I) 

NAME 
ps - process status 

SYNOPSIS 
ps [ aklxt ] [ namelist ] 

DESCRIPTION 

FILES 

Ps prints certain indicia about active processes. The a flag asks for information about all processes 
with terminals (ordinarily only one's own processes are displayed)~ x asks even about processes 
with no terminal~ I asks for a long listing. The short listing contains the process 10, tty letter, the 
cumulative execution time of the process and an approximation to the command line. If the k 
flag is specified, the file Isyslsys/core is used in place of Idevlmem. This is used for postmortem sys­
tem debugging. If a second argument is given, it is taken to be the file containing the system's 
namelist. If the t flag is used, the following character is taken to be the specific tty for which 
information is to be printed. 

The long listing is columnar and contains 

F Flags associated with the process. 01: in core~ 02: system process~ 04: locked in 
core (e.g. for physical I/O) ~ 10: being swapped~ 20: being traced by another pro­
cess. 

S 

UID 

PID 

PPID 

CPU 

PRI 

NICE 

ADOR 

SZ 

The state of the process. 0: nonexistent~ S: sleeping~ W: waiting~ R: running~ I: 
intermediate~ Z: terminated~ T: stopped. 

The user ID of the process owner. 

The process ID of the process~ as in certain cults it is possible to kill a process if 
you know its true name. 

The process 10 of the parent process. 

Processor utilization for scheduling. 

The priority of the process~ high numbers mean low priority. 

Used in priority computation. 

The core address of the process if resident, otherwise the disk address. 

The size in blocks of the core image of the process. 

WCHAN The event for which the process is waiting or sleeping~ if blank, the process is 
running. 

TTY 

TIME 

The controlling tty for the process. 

The cumulative execution time for the process. 

COMMANDThecommand and its arguments. 

Ps makes an educated guess as to the file name and arguments given when the process was 
created by examining core memory or the swap area. The method is inherently somewhat unreli­
able and in any event a process is entitled to destroy this information, so the names cannot be 
counted on too much. 

lunix 
Idev/mem 

system namelist 
core memory 

- 1 -



PS (I) 

/sys/sys/core 
/dev 

SEE ALSO 
kiIJ{I) 

PWB/UNIX Edition 1.0 PS (I) 

alternate core file 
searched to find swap device and tty names 

- 2 -



PTX (I) PWB/UNIX Edition 1.0 PTX (I) 

NAME 
ptx - permuted index 

SYNOPSIS 
ptx [ -t ] input [ output] 

DESCRIPTION 
Ptx generates a permuted index from file input on file output. It has three phases: the first does 
the permutation, generating one line for each keyword in an input line. The keyword is rotated to 
the front. The permuted file is then sorted. Finally the sorted lines are rotated so the keyword 
comes at the middle of the page. 

Input should be edited to remove useless lines. The following words are suppressed: 'a', 'an', 
'and', 'as', 'is', 'for', 'or, 'on', 'or', 'the', 'to', 'up'. 

The optional argument -t causes ptx to prepare its output for the phototypesetter. 

The index for this manual was generated using ptx. 

FILES 
Ibin/sort 

- 1 -



PUMP (I) PWB/UNIX Edition 1.0 PUMP (I) 

NAME 
pump - Shell data transfer command 

SYNOPSIS 
pump [ - [subchar] ] [ + ] [ eofstr ] 

DESCRIPTION 
Pump is a filter that copies its standard input to standard output with possible substitution of Shell 
arguments and variables. It reads its input to end~of~file, or until it finds eQ{str alone on a line. If 
not specified, eoIsfr is assumed to be '!'. Normally, Shell variable and argument values are substi~ 
tuted in the data stream, using '$' as the character to indicate their presence. The argument '-' 
alone suppresses all substitution, '-subchar' causes subchar to be used as the indicator character 
for substitution in place of '$'. Escaping is handled as in double quoted(") strings: the indicator 
character may be hidden by preceding it with a '\'. Otherwise, '\' and other characters are 
transmitted unchanged. The '+' flag causes all leading tab characters in the input to be thrown 
away, in order to permit readable indentation of text and eQ(sfr. PU!J!.P may be used interactively 
and in pipelines. A common use is to get variable values into editor scripts. If $a, $b, and $c 
have the values A, B, and C respectively, the two sequences below are equivalent: 

ed file 
1,$sl A$/BI 
?C? 
q 

The sequence above will work at the terminal as well as in Shell procedures. Pump is an efficient 
and convenient replacement for multiple uses of echo([); e.g., the following are equivalent: 

pump > file echo "$1 II > file 
$1 echo "$2" > >file 
$2 

Pump is actually implemented inside the Shell, although it executes as a separate process. 

SEE ALSO 
echo (I), sh (I) 

BUGS 
The size of eQlsfr is limited to 95 bytes, and it may not begin with '+'. 

- 1 -



PWD (I) 

NAME 
pwd - working directory name 

SYNOPSIS 
pwd 

DESCRIPTION 

PWB/UNIX Edition 1.0 

Pwd prints the path name of the working (current) directory. 

SEE ALSO 
chdir(I) 

- 1 -

PWD (I) 



QUIZ (I) PWB/UNIX Edition 1.0 QUIZ (I) 

NAME 
quiz - test your knowledge 

SYNOPSIS 
quiz [ -i file] [ -t ] [ categoryl categQry2 ] 

DESCRIPTION 
Quiz gives associative knowledge tests on various subjects. It asks items chosen from categoryl 
and expects answers from category2. If no categories are specified, quiz gives instructions and lists 
the available categories. 

QUiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter­
rupt, or when questions run out, quiz reports a score and terminates. 

The -t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is 
gradually introduced as you learn. 

The -i flag causes the named file to be substituted for the default index file. The lines of these 
files have the syntax: 

line = category newline I category':' line 
category = alternate I category 'I' alternate 
alternate = empty I alternate primary 
primary = character I '[' category '1' I option 
option = '{' category'}' 

The first category on each line of an index file names an information file. The remalntng 
categories specify the order and contents of the data in each line of the information file. Informa­
tion files have the same syntax. Backslash '\' is used as with sh(I) to quote syntactically 
significant characters or to insert transparent newlines into a line. When either a question or its 
answer is empty, quiz will refrain from asking it. 

FILES 
lusr/lib/quiz/index 
lusr/libl quiz/* 

- 1 -



RC (I) PWB/UNIX Edition 1.0 RC (I) 

NAME 
rc - Ratfor compiler 

SYNOPSIS 
rc [ -c ] [ -r] [ -f] [ -v ] file ... 

DESCRIPTION 

FILES 

Rc invokes the Ratfor preprocessor on a set of Ratfor source files. It accepts three types of argu­
ments: 

Arguments whose names end with '.r' are taken to be Ratfor source programs~ they are prepro­
cessed into Fortran and compiled. Each subroutine or function 'name' is placed on a separate file 
name./, and its object code is left on name.o. The main routine is on MAIN./and MAIN.o; block 
data subprograms go on blockdata?..( and blockdata ?o. The files resulting from a '.r' file are 
loaded into a single object file file. 0, and the intermediate object and Fortran files are removed. 

The following flags are interpreted by rc. See IdO) for load-time flags. 

-c Suppresses the loading phase of the compilation, as does any error in anything. 

-f Save Fortran intermediate files. This is primarily for debugging. 

-r Ratfor only~ don't try to compile the Fortran. This implies -f. 

-v Don't list intermediate file names while compiling. 

Arguments whose names end with '.r are taken to be Fortran source programs; they are compiled 
in the normal manner. (Only one Fortran routine is allowed in a '.r file.) 

Other arguments are taken to be either loader flag arguments, or Fortran-compatible object pro­
grams, typically produced by an earlier rc run, or perhaps libraries of Fortran-compatible routines. 
These programs, together with the results of any compilations specified, are loaded to produce an 
executable program with name a.out. 

rat junk temporary 
I usr I binI ratf or preprocessor 
lusr/fort/fel Fortran compiler 

SEE ALSO 
RA TFOR - A Preprocessor for a Rational Fortran by B. W. Kernighan. 
fc(I) for Fortran error messages. 

DIAGNOSTICS 
Yes, l;>oth from rc itself and from Fortran. 

BUGS 
Limit of about 50 arguments, 10 block data files. 

#define and #include lines in ".r' files are not processed. 

- 1 -



REFORM (I) PWB/UNIX Edition 1.0 REFORM (I) 

NAME 
reform - reformat text file 

SYNOPSIS 
reform [Iabspec} [tabspec2]] [+bn] [+en] [+f] [+in] [+mn] [+pn] [+s] [+tn] 

DESCRIPTION 
Reform reads each line of the standard input file, reformats it, and then writes it to the standard 
output. Various combinations of reformatting operations can be selected, of which the most com· 
mon involve rearrangement of tab characters. It is often used to trim trailing blanks, truncate 
lines to a specified length, or prepend blanks to lines. 

Reform first scans its arguments, which may be given in any order. It then processes its input file, 
performing the following actions upon each line, in the order given: 

- A line is read from the standard input. 

- If +s is given, all characters up to the first tab are stripped off and saved for later addition to 
the end of the line. Presumably, these characters comprise an sees SID produced by gel (I) . 

- The line is expanded into a tabless form, by replacing tabs with blanks according to the input 
tab specification tabspec 1. 

- If + p n is gi ven, n blanks are prepended to the line. 

- If +tn is given, the line is truncated to a length of n characters. 

- All trailing blanks are now removed. 

- If +el1 is included, the line is extended out with blanks to the length of n characters. 

- If +s is given, the previously-saved sees SID is added to the end of the line. 

- If +bn is given, the n characters at the beginning of the line are converted to blanks, if and 
only if all of them are either digits or blanks. 

- If +mn is included, the line is moved left, i.e., 11 characters are removed from the beginning 
of the line; 

- The line is now contracted by replacing some blanks with tab characters according to the list of 
tabs indicated by the output tab specification tabspec2, and is written to the standard output file. 
Option +i controls the method of contraction (see below). 

The various arguments accepted by reform are as follows: 

labspecl describes the tab stops assumed for the input file. This tab specification may take on 
any of the forms described in tabs (I) . In addition, the operand "--" indicates that 
the tab specification is to be found in the first line read from the standard input. If no 
legal tab specification is found there, -8 is assumed. If labspecl is omitted entirely, 
"- -" is assumed. 

labspec2 describes the tabs assumed for the output file. It is interpreted· in the same way as 
tabspeci, except that omission of labspec2 causes the value of labspeci to be used for 
tobspec2. 

The remaining arguments are all optional and may be used in any combination, although only a 
few combinations make much sense. Specifying an argument causes an action to be performed, as 
opposed to the usual default of not performing the action. Some options include numeric values, 
which also have default values. Option actions are applied to each line in the order described 

- 1 -



REFORM (1) PWB/UNIX Edition 1.0 REFORM (I) 

above. Any line length mentioned applies to the length of a line just before the execution of the 
option described, and the terminating newline is never counted in the line length. 

+bn causes the first n characters of a line to be converted to blanks, if and only if those 
characters include only blanks and digits. If 11 is omitted, the default value is 6, which 
is useful in deleting sequence numbers from COBOL programs. 

+en causes each line shorter than 11 characters to be extended out with blanks to that 
length. Omitting n implies a default value of 72. This option is useful for those rare 
cases in which sequence numbers need to be added to an existing unnumbered file. 
The use of $ in editor regular expressions is more convenient if all lines hav·e equal 
length, so that the user can issue editor commands such as: 

s/$/OOOO 1 000/ 

+f causes a format line to be written to the standard output, preceding any other lines 
written. See ./spec(V) for details regarding format specifications. The format line is 
taken from Idbspec2, i.e., the line normally appears as follows: 

< :t-labspec2 d: > 
If tabspec2 is of the form - -.filename (i.e., an indirect reference to a tab specification 
in the first line of the named file), then that lab specification line is written to the stan­
dard output. 

+in controls the technique used to compress interior blanks into tabs. Unless this option is 
specified, any sequence of 1 or more blanks may be converted to a single tab character 
if that sequence occurs just before a tab stop. This causes no problems for blanks that 
occur before the first non blank character in a line, and it is always possible to convert 
the result back to an equivalent tabless form. However, occasionally an interior blank 
(one occurring after the first nonblank) is converted to a tab when this is not intended. 
For ins~ance, this might occur in any program written in a language utilizing blanks as 
delimiters. Any single blank might be converted to a tab if it occurred just before a 
tab stop. Insertion or deletion of characters preceding such a tab may cause it to be 
interpreted in an unexpected way at a later time. If the +i option is used, no string of 
blanks may be converted to a tab unless there are n or more contiguous blanks. The 
default value is 2. Note that leading blanks are always-converted to tabs when possi­
ble. It is recommended that conversion of programs from non-PWB to PWB sys­
tems use this option. 

+mn causes each line to be moved left n characters, with a default value of 6. This can be 
useful for crunching COBOL programs. 

+pn causes n blanks to be prepended (default of6 if n is omitted). This option is 
effectively the inverse of +mn, and is' often useful for adjusting the position of nrojf(J) 
output for terminals lacking both forms tractor positioning and a settable left margin. 

+s is used with the -m option of get (I) . The -m option causes get to prepend to each 
generated line the appropriate SCCS SID, followed by a tab. The +s option causes 
reform to remove the SID from the front of the line, save it, then add it later to the 
end of the line. Because +e72 is implied by this option, the effect is to produce 80-
character card images with sees SID in columns 73-80. Up to 8 characters of the 
SID are shown~ if it is longer ~ the eighth character is replaced by ~*' and any characters 
to the right of it are discarded. 

+tn causes any line longer than n characters to be truncated to that length. If 11 is oinitted, 
the length defaults to 72. Sequence numbers can thus be removed and any blanks 
immediately preceding them deleted. 

- 2 -



REFORM (I) PWB/UNIX Edition 1.0 REFORM (I) 

The following illustrate typical uses of reform. The terms "PWB" and "OBJECT" below refer to 
UNIX and non-UNIX computer syste~s, respectively. Each arrow indicates the direction of 
conversion. The character '?' indicates an arbitrary tab specification; see tabs(J) for descriptions 
of legal specifications. 

OBJECT ---> PWB (i.e., manipulation of RJE output): 

Note that files transferred by RJE from OBJECT to PWB materialize with format -8. 

reform -8 ? +t +f <oldfile >newfile (into arbitrary format) 
reform -8 -c +t +b +f <oldfile >newfile (into COBOL) 
reform -8 -c3 +t +m +i <oldfile >newfile (into COBOL, crunched) 

NOTE: -c3 is the preferred format for COBOL; it uses the least disk space of the COBOL for­
mats. 

PWB ---> OBJECT {i.e., preparation of files for RJE submission}: 

reform? -8 <oldfile >newfile (from arbitrary format into -8) 
get -p -m sccsfile I reform +s I send ... 

PWB ONLY (i.e., no involvement with other systems): 

pr file I reform? -0· < oldfile (print on terminal without hardware ~abs) 
reform? -0 <oldfile >newfile (convert file to tabless format) 

DIAGNOSTICS 

All diagnostics are fatal, and the offending line is displayed following the message. 
"line too long" a line exceeds 512 characters (in tabless form). 
"not SCCS -m" a line does not have at least one tab when +s flag is used. 
Any of the diagnostics of tabs(J) can also appear. 

EXIT CODES 

0- normal 
1 - any error 

SEE ALSO 

BUGS 

fspec(V), get(I), nroff(I), send(I), tabs(I) 

Re./orm is aware of the meanings of backspaces and escape sequences, so that it can be used as a 
postprocessor for nrQ{f. However, be warned that the +e, +m, +t options only count characters, 
not positions. Anyone using these options on output containing backspaces or halfline motions 
will probably obtain unexpected results. 

- 3 -



REGCMP (I) PWB/UNIX Edition 1.0 REGCMP (1) 

NAME 
regcmp - regular expression compile 

SYNOPSIS 

regcmp [-] file '" 

DESCRIPTION 
Regcmp, in most cases, precludes the need for calling regcmp (see regex(III) from C programs. 
This saves on both execution time and program size. The command regcmp compiles the regular 
expressions in .file and places the output in .file.i. If the " ..... " option is used, the output will be 
placed in file.c. 

The format of entries in .file is a name (C variable), followed by one or more blanks, followed by 
a regular expression enclosed in double quotes. The output of regcmp is C source, which declares 
each variable name as an extern char array, and initializes that array with the compiled form of the 
corresponding regular expression. File.i files may thus be included into C programs, or .file.c files 
may be compiled and later loaded. Diagnostics are self-explanatory. 

Example: 

name "([A-Za-z][A-Za-zO-9 ]*)$0" 
telno "\\({O,I} ([2-9][01l [I-9])$0\\){0, I} *" 

"([2-9)[0-9]{2})$I[ -]{O,l}" 
"([0-9] (4})$2" 

In the C program which uses the regcmp output, 

regex(telno, line, area, exch, rest) 

will apply the regular expression named telno to line. 

SEE ALSO 
regex(III) 

- 1 -



RGREP (I) PWB/UNIX Edition 1.0 RGREP(I) 

NAME 
rgrep - search a file for a pattern 

SYNOPSIS 
rgrep [ -v ] [ -b ] [ -c ] [ -0 ] expression [ file] ... 

DESCRIPTION 
Rgrep is an extended form of grep which uses the facilities of the regex(III) routine. Rgrep 
searches the input files (standard input default) for lines matching the regular expression. Nor­
mally, each line found is copied to the standard output. If the -v flag is used, all lines but those 
matching are printed. If the -c flag is used, only a count of matching lines is printed. If the -0 

flag is used, each line is preceded its relative line number in the file. If the -b flag is used, each 
line is preceded by the block number on which it was found. This is sometimes useful in locating 
disk block numbers by context. 

In all cases the file name is shown if there is more than one input file. 

For a complete description of the regular expression, see ed(I) and regex(III). Care should be 
taken when using the characters $ * [ " I ( ) and \ in the regular expression as they are also mean­
ingful to the Shell. It is generally necessary to enclose the entire expression argument in quotes. 

SEE ALSO 
ed (I), sh (I), regex (III) 

- 1 -



RJESTAT (I) PWB/UNIX Edition 1.0 RJESTAT (I) 

NAME 
rjestat - RJE status and enquiries 

SYNOPSIS 
rjestat [ - ] [ A ] [ B ] [ 1110 ] 

DESCRIPTION 

FILES 

When invoked without the '-' argument, rjestat reports the current status of RJE links to the 
specified host computers. When invoked with the '-' argument, rjestat sets up an interactive 
status terminal. If no hosts are cited explicitly, the specification defaults to all those for which a 
given PWB/UNIX is configured. The "host" pseudonyms A, B, and 1110 are built into the RJE 
software. A and B may be used to represent any IBM host machine. Their actual destinations are 
immaterial to RJE. The pseudonym 1110 is built into RJE to represent any UNIVAC host. 

To enter an enquiry via such a status terminal, you must first generate an interrupt. This can be 
done by hitting the DEL key or the BREAK/INTERRUPT key. Rjestat will respond by prompting 
for enquiries directed to each host in turn. The line on which a prompt appears may be com· 
pleted to form a legitimate display command for that particular host. If the line is terminated with 
a '\', the prompt will be repeated, otherwise it will advance to the next host. A carriage return 
alone indicates that no enquiry is to be directed to a particular host. You should expect to wait at 
least 30 seconds for a response. 

An interrupt will temporarily halt the display of responses. It can therefore be used to inhibit 
roIl·up on a CRT terminal. The display of responses will resume after all prompts have been 
satisfied (perhaps by null completions). 

To exit from the status terminal, generate a quit signal or type DEL followed by EOT. 

The UNIVAC 1110 capability is only supported at the BTL Piscataway location. 

Idev/rje* DQS·ll's used by RJE 
I usr I rjel sys PWB/UNIX system name 
lusr/rje/lines configuration table 

And, in the directory for each RJE subsystem: 

log 
resp 
status 
xmit* 
*mesg 
*init 

activity log 
concatenated responses 
message of the day 
files queued 
enquiry slot 
boot program 

SEE ALSO 
GUide to IBM Remote Job Entryfor PWB/UNIX Users by A. L. Sabsevitz. 
OS/VS2 HASP /I VerSion 4 Operator's Guide, IBM SRL #GC27-6993. 
Operator's Library: OS/VS2 Reference (JES2), IBM SRL #GC38-0210. 

·1-



RM(I) PWB/UNIX Edition 1.0 RM (I) 

NAME 
rm - remove (unlink) files 

SYNOPSIS 
rm [ -f] [ -r ] name .. , 

DESCRIPTION 

FILES 

Rm removes the entries for one or more files from a directory. If an entry was the last link to the 
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither 
read nor write permission on the file itself. 

If the user does not have write permission on a file, rm prints the file name and its mode, then 
reads a line from the standard input. If the line begins with y, the file is removed, otherwise it is 
not. The question is not asked if option -f was given or if the standard input is not a terminal. 

If a designated file is a directory, an error comment is printed unless the optional argument -r 
has been used. In that case, rm recursively deletes the entire contents of the specified directory. 
To remove directories per se see rmdir(I). 

I etcl glob to implement the - r flag 

SEE ALSO 
rmdir(I) 

BUGS 
When rm removes the contents of a directory under the -r flag, full pathnames are not printed in 
diagnostics. 

- 1 -



RMDEL (I) PWB/UNIX Edition 1.0 RMDEL (I) 

NAME 
rmdel - remove a delta from an sees file 

SYNOPSIS 
rrndel - rSID name ... 

DESCRIPTION 
Rmdel removes the delta specified by the SID from each named sees file. The delta to be 
removed must be the newest (most recent) delta in its branch in the delta chain of each named 
sees file. 

If a directory is named, rmdel behaves as though each file in the directory were specified as a 
named file, except that non-SeeS files (last component of the pathname does not begin with 
"s. '~), and unreadable files, are silently ignored. If a name of ~'-" is given, the standard input is 
read~ each line of the standard input is taken to be the name of an sees file to be processed. 
Again, non-SeeS files, and unreadable files, are silently ignored. 

The exact permissions necessary to remove a delta are documented in the SCCS/PWB User's 
Manual. Simply stated, they are either 0) if you make a delta you can remove it~ or (2) if you 
own the file and directory you can remove a delta. 

FILES 
x-file 
z-file 

SEE ALSO 

(see delta (I) ) 
(see delta (I) ) 

get (I) , delta(I), prt(I), help(D, sccsfile(V) 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser 

DIAGNOSTICS 
Use help(I) for explanations. 

- 1 -



RMDIR (I) PWB/UNIX Edition 1.0 RMDIR (I) 

NAME 
rmdir - remove directory 

SYNOPSIS 
rmdir dir ... 

DESCRIPTION 

BUGS 

Rmdir removes (deletes) directories. The directory must be empty (except for the standard 
entries '0' and '00', which rmdir itself removes). Write permission is required in the directory in 
which the'directory to be removed appears. 

Needs a -r flag. 
Actually, write permission in the directory's parent is not required. 
Mildly unpleasant consequences can follow removal of your own or someone else's current direc­
tory. 

- 1 -



ROFF (I) PWB/UNIX Edition 1.0 ROFF (I) 

NAME 
roff format text 

SYNOPSIS 
roff [ + n] [ - n 1 [ - s ] [ - h ] file ... 

DESCRIPTION 

FILES 

Roffformats text according to control lines embedded in the text in the given files. Encountering 
a nonexistent file terminates printing. Incoming interconsole messages are turned off during 
printing. The optional flag arguments mean: 
+ n Start printing at the first page with number n. 
- n Stop printing at the first page numbered higher than n. 
-s Stop before each page (including the first) to allow paper manipulation~ resume on receipt of 

an interrupt signal. 
- h Insert tabs in the output stream to replace spaces whenever appropriate. 

Input consists of intermixed text lines, which contain information to be formatted, and request 
lines, which contain instructions about how to format it. Request lines begin with a distinguished 
control character, normally a period. 

Output lines may be filled as nearly as possible with words without regard to input lineation. Line 
breaks may be caused at specified places by certain commands, or by the appearance of an empty 
input line or an input line beginning with a space. 

The capabilities of roff are specified in the attached Request Summary. Numerical values are 
denoted there by n or +n, titles by t, and single characters by c. Numbers denoted +n may be 
signed + or -, in which case they signify relative changes to a quantity, otherwise they signify an 
absolute resetting. Missing n fields are ordinarily taken to be 1, missing t fields to be empty, and 
c fields to shut off the appropriate special interpretation. 

Running titles usually appear at top and bottom of every page. They are set by requests like 

.he 'partl'part2'part3' 

Partl is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a 
title is replaced by the current page number. Any nonblank may serve as a quote. 

ASCII tab characters are replaced in the input by a replacement character, normally a space, accord­
ing to the column settings given by a .ta command. (See .tr for how to convert this character on 
output.) 

Automatic hyphenation of filled output is done under control of .hy. When a word contains a 
designated hyphenation character, that character disappears from the output and hyphens can be 
introduced into the word at the marked places only. 

lusrlIibl suftab suffix hyphenation tables 
Itmp/rtm? temporary 

SEE ALSO 
nroff(I), troff(I) 

BUGS 
Roffis the simplest of the run-off programs, but is utterly frozen and quite obsolescent. 

- 1 -



ROFF(1) 

Request 
. ad 
.ar 
. br 
. bl n 
.bp +n 
.cc c 
.ce n 
.de xx 

. ds 

.ef t 

.eh t 

. fi 

.fo 

. hc c 

. he t 

. hx 

.hy n 

. ig 

.in +n 

.ix +n 

.Ii n 

.11 +n 

.Is +n 

.ml n 

.m2 n 

. m3 n 

.m4 n 

.na 

. ne n 

. nn +n 

. nl 

Break 
yes 
no 
yes 
yes 
yes 
no 
yes 
no 

yes 
no 
no 
yes 
no 
no 
no 
no 
no 
no 
yes 
no 
no 
no 
yes 
no 
no 
no 
no 
yes 
no 
no 
no 

. n2 n no 

.ni +n no 

. nf yes 

. nx filename 

. of t no 

.oh i no 

.pa +n yes 

. pl +n . no 

.po +n no' 

.ro no 

. sk n no 

. sp n yes 

.55 yes 

. ta n n .. 

.tc c no 

. ti +n yes 

.tr cdef.. no 

. ul n no 

IniTial 
yes 
arabic 

n=1 
c=. 

no 
1=-='"'' 
t=== "" 
yes 
t="·' 

none 
t=="" 

n=1 

n=65 
'n=1 

n==2 
n=2 
n-=1 
n==3 
no 

no 
no 
n=O 
no 

n=1 
n-66 
n=O 
arabic 

yes 

space 

PWB/UNIX Edition 1.0 

REQUEST SUMMARY 

J¥!eaning 
Begin adjusting right margins . 
-Arabic page numbers. 

ROFF( I) 

Causes a line break - the filling of the current line is stopped . 
Insert of n blank lines, on new page if necessary . 
Begin new page and number it n~ no n means ~+ 1'. 
Control character becomes ~c'. 
Center the next n input lines, without filling. 
Define parameterless macro to be invoked by request ~ .xx' 
(definition ends on line beginning \.'). 
Double space; same as ~.Is 2' . 
Even foot title becomes t. 
Even head title becomes t. 
Begin filling output lines . 
All foot titles are t. 
Hyphenation character becomes 4 c' . 
All head titles are t . 
Title lines are suppressed . 
Hyphenation is done, if n= 1 ~ and is not done, if n==O. 
Ignore input lines through a line beginning with 4. 0 ' • 

Indent n spaces from left margin . 
Same as 4.in' but without break . 
Literal, treat next n lines as text. 
Line length including indent is n characters. 
Line spacing set to n lines per output line. 
Put n blank lines between the top of page and head title. 
n blank lines put between head title and beginning of text on page. 
n blank lines put between end of text and foot title . 
n blank lines put between the foot title and the bottom of page. 
Stop adjusting the right margin. 
Begin new page, if n output lines cannot fit on present page . 
The next n output lines are not numbered . 
Add 5 to page offset~ number lines in margin from 1 on each' page . 
Add 5 to page offset~ number lines from n~ stop if n=O . 
Line numbers are indented n. 
Stop filling output lines . 
Change to input file 'filename' . 
Odd foot title becomes t . 
Odd head title becomes t. 
Same as '.bp'. 
Total paper length taken to be n lines . 
Page offset. All lines are preceded by n spaces. 
Roman page numbers. 
Produce n blank pages starting next page . 
Insert block of n blank lines, except at top of page . 
Single space output lines, equivalent to ".Is 1'. 
Pseudotab settings. Initial tab settings are columns 9 17 25 ... 
Tab replacement character becomes ~c' . 
Temporariiy indent next output line n spaceS . 
Translate c into d, e into f, etc" ' 
Underline the letters and numbers in the next n input lines . 

- 2 -



RSH (I) PWB/UNIX Edition 1.0 RSH (I) 

NAME 
rsh restricted shell (command interpreter) 

SYNOPSIS 
rsh [ -x ] [ - ] [ -ct ] [ name [ arg1 ... ] ] 

DESCRIPTION 

FILES 

Rsh is a restricted version of the standard command interpreter sh(I). It is used to set up login 
names or execution environments whose capabilities are more controlled than that of the standard 
shell. The actions of rsh are identical to those of sh. except for the following restrictions: 

1) chdir is not allowed. . 

2) changes to the shell variable ~$p' are not permitted. 

3) it is illegal to use ~/' in the name of a command. 

4) next is not permitted. 

5) ~ > ' and 4> > ' are disallowed. 

These restrictions combine to lock a user into the login directory, limit the set of invokable com­
mands to those found in directories included in the ~.path' file, and eliminate the direct creation 
or modification of files. When a command to be executed is found to be a shell procedure, rsh 
invokes sh to execute it. Thus, it is possible to write shell procedures using the full power of the 
standard shell, while the end user is restricted to a limited menu of commands. 

Rsh is actually just a link to sh. 

/etc/glob, which interprets '*', '?', and '['. 
/dev/null as a source of end-of-file . 
. path in login directory to initialize $p . 
. profile in login directory for general initialization. 
/etc/sha for accounting information. 

SEE ALSO 
sheD 

BUGS 
It would be better to have a flag for opt which changed sh into rsh dynamically. With a non­
interruptable '.profile', it would be possible to act as sh, use chdir (for example), and then change 
into rsh at the end of initialization. 

- 1 -



seeSDIFF (I) PWB/UNIX Edition 1.0 seeSDIFF (I) 

NAME 
sccsdiff - compare two versions of an sees file 

SYNOPSIS 
sccsdiff old-spec new-spec [ pr-args ] sccsfile ... 

DESCRIPTION 

FILES 

Sccsdi/f compares two versions of an sees file and generates the differences between the two ver­
sions. The old-spec is any valid get(I) specifier (e.g., -r1.1) for the old version to be gotten. 
Similarly, new-spec is any valid get(I) specifier (e.g., -rl.4) for the new version to be gotten. 
The pr-args are any valid prO) arguments which begin with a "-", except for "-h" (the output 
of sccsdiff is piped through prO). Any number of sees files may be specified, but the old-spec 
and new-spec apply to all files. 

Sccsdi/f is a simple shell procedure~ interested persons should "cat lusr/bin/sccsdiff" to discover 
how it works. 

Itmp/get???? ? 
lusr/bin/bdiff 

temporary for old gotten version 
program that generates differences 

SEE ALSO 
get (1), help(I), prO), bdiff(I) 
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser. 

DIAGNOSTICS 
Use helpO) for explanations. 

- 1 -



SED (I) PWB/UNIX Edition 1.0 SED (I) 

NAME 

sed - stream editor 

SYNOPSIS 
sed [ -g ] [ -n ] [ ..... f commandfile ] ... [ [ -e ] command] ... [ file] ... 

DESCRIPTION 
Sed copies the input .files (default is standard input) to the standard output, perhaps performing 
one or more editor commands (see ed(n) on each line. 

The -g flag indicates that all 5 commands should be executed as though followed by a g. If only 
some substitutions are to be done globally, leave out the -g flag and put the g's at the end of the 
appropriate command lines. 

The -n flag indicates that only lines that are explicitly printed by p commands are to be copied to 
the standard output. In order to avoid getting double copies of some lines in the standard output, 
the p command is ignored unless the -n flag is set. 

The -e flag indicates that the next argument is an editor command. 

The -f flag indicates that the next argument is a file name~ the file contains editor commands, 
one to a line. Commands that are inherently multi-line, like a or c, should have the interior new­
lines escaped by ~\'. Append, insert, and change modes are terminated by an non-escaped new­
line. 

The -e and -f flags may be intermixed in any order. 

If no -e or -f flags are given, the first argument is taken by default to be an editor command. 

Addresses are allowed. The meaning of two addresses is: 44 Attempt this command on the first line 
that matches the first address, and on all subsequent lines up to and including the first subsequent 
line that matches the second address~ then search for a match of the first address and iterate." 
One address means: 4. Attempt this command on all lines that match the address." Either line­
numbers or regular expressions are allowed as addresses. Line numbers increase monotonically 
throughout all the input files, so that, if n is the number of the last line of the first input file, then 
17+ 1 is the number of the first line of the second file, etc. A 4$' as an address matches the la5/ 
line of the la5/ input file. 

The intention is to simulate the editor as exactly as possible, but the line-at-a-time operation 
makes certain differences unavoidable or desirable: 

1. There is no notion of '.' and no relative addressing. 

2. Commands with no addresses are defaulted to ],$ rather than to dot. 

3. Addresses specified as regular expressions must be delimited by '/'~ 4?' is an error. 

4. Expressions in addresses are not allowed (i.e., '+', '-'). 

5. Commands may have only as many addresses as they can use. That is, no command may 
have more than two addresses~ the a, i, and ,. commands may have only one address. 

6. A p at the end of a command only works with the 5 command. For other commands, or if 
the -n flag is not in effect, a p at the end of a command line is ignored. 

7. A w may appear at the end of a 5 command. It should be follo~ed by a single space and a 
file name. If the 5 command succeeds, the modified line is appended to the file. All files 
are opened when the· commands are being compiled, and closed when the program ter­
minates. Only ten distinct file names may appear in w commands in a single execution ·of 

- 1 -



SED (I) PWB/UNIX Edition 1.0 SED (I) 

sed. Unlike p, w takes effect regardless of the -0 flag. If both p and ware appended to the 
same substitute command, they must be in the order pw. 

8. The only editor commands available are a, c, d, i, s, P, q, r, w, g, l'. and =, A successful 
execution of a q command causes the current line to be written out if it should be. and 
execution terminated. When a line is deleted by a d or c command, no further commands 
are attempted on its corpse, but another line 'is immediately read from the input (but see 
item 10. below). 

9. The next line command, n, replaces the current line by the next line from the input file. 
The list of editing commands is continued after the n command is executed. 

10. If an a, i, or r command is successfully executed, the text is inserted into the standard out­
put whether or not the line on which the match was made is later deleted or not. Thus the 
commands: 

Ib/a\ 
XXX 
Ib/,/ c/d 

applied to the file 
a 
b 
c 
d 

wi II produce 

on the output. 

a 
XXX 
d 

11. Text inserted in the output stream by the a, i, c, or r commands is not scanned for any pat-
tern matches, nor are any editor commands applied to it. 

Sed supports three commands to control the flow of processing. These commands do no editing 
on the input line, but serve to control the order in which multiple editing commands are applied 
to an input line. 

12. The label command, : label, marks a place in the list of editing commands which may be 
referred to by j and t commands (see 13. and 14. below)~ the label may be any sequence of 
eight or fewer characters~ if two different colon commands have identical labels, a compile­
time diagnostic will be generated and no execution attempted. 

13. The jump command, j label, causes the sequence of editing commands being applied to the 
current input line to be restarted immediately after the place where a colon command with 
the same label was encountered. If no colon command with the same label can be found 
after all editing commands have been compiled, a compile-time diagnostic is produced and 
no execution is attempted. A j command with no label is taken to be a jump to the end of 
the list of editing commands~ whatever should be done with the current inp~t line is done, 
and another input line is read~ the list of editing commands is restarted from the beginning 
of that line. 

14. The test command, t label, tests whether any successful substitutions have been made on 
the current input line~ if so, it jumps to label; if not, it does nothing. The flag that indi­
cates that a successful substitution has occurred on the current input line is reset by either 
reading a new line or by executing the t command. 

- 2 -



SED (I) PWB/UNIX Edition 1.0 SED (I) 

Sed also supports command grouping and several operations that can build lines into a pattern 
space to be operated upon by other commands. 

15. Commands may be grouped by curly braces. The opening brace must appear in the place 
where a command would ordinarily appear; the closing brace must appear on a line by itself 
(except for leading blanks or tabs). If the first line of a command file has #11 as its first 
two characters, the no-copy flag is set, as though the - n option had been given on the 
command line. The remainder of this first line is ignored and may be used for a title or a 
comment. As an example: 

#n Print first non-blank line after a blank line, and first line, if non-blank. 
1{ 

/./p 
} 
/"$/{ 
: loop 

n 
/./{ 

p 

j loop 

16. The Next command, N, appends the next input line to the current line; the two lines are 
separated by a new-line character, that may be matched by '\n'. 

17. The Delete command, D, deletes up to and including the first (leftmost) new-line in the 
current pattern space. If the pattern space becomes empty (the only new-line is at the end 
of the space), Delete reads another line from the input. The list of e~iting commands is 
restarted from the beginning. 

18. The Print command, P, prints on standard output up to and including the first new-line in 
the pattern space. 

SEE ALSO 
ed(I) 

BUGS 
Lines are silently truncated to a maximum length of 512 characters. The "plus", "range", and 
"through" regular expression operators (" + ", "\ { \} ", "[ - ] ''') of eden are not implemented in 
sed. 

- 3 -



SEND (I) PWB/UNIX Edition 1.0 SEND (I) 

NAME 
send - submit RJE job 

SYNOPSIS 
send argument ... 

DESCRIPTION 
Send is a command-level interface to the RJE subsystems hasp(VIII) and uvac(VIII). It allows 
the user to collect input from various sources in order to create a run stream consisting of card 
images. Send creates a temporary file, with a special format, to contain the collected run stream, 
and then queues the file for transmission by invoking haspqer or uvacqer, as appropriate. Further 
processing of the job is controlled by the appropriate PWB/UNIX RJE subsystem and the host 
computer to which the job is submitted. 

Possible sources of input to send are: ordinary files, standard input, the terminal, and the output 
of a command or shell file. Each source of input is treated as a virtual file, and no distinction is 
made based upon its origin. Typical input is an ASCII text file of the sort that is created by the 
editor ed(I). An optional format specification appearing in the first line of a file (see fspec(V) 
determines the settings according to which tabs are expanded into spaces. In addition, lines that 
begin with .~-" are normally interpreted as commands controlling the execution of send. They 
may be used to set or reset flags, to define keyword substitutions, and to open new sources of 
input in the midst of the current source. Other text lines are translated one-for-one into card 
images of the run stream. 

The run stream that results from this collection is treated as one job by the RJE subsystems. Send 
provides a card count for the run stream, and the queuer that is invoked announces the position 
that the job has been assigned in the queue of jobs waiting to be transmitted. The initial card of a 
job submitted to an IBM system must have a ~4/" in the first column. The initial card of a job 
submitted to a UNIVAC system must begin with a "@RUN" or "'run", etc. Any cards preced­
ing these will be excised. If a host computer is not specified before the first card of the runstream 
is ready to be sent, send will select a reasonable default. In the case of an IBM job, all cards 
beginning "'/*$" will be excised from the runstream, because they are HASP command cards. 

The arguments that send accepts are described below. An argument is interpreted according to the 
first pattern that it matches. Preceding a character with "\" causes it to lose any special meaning 
it might otherwise have when matching against an argument pattern. 

+ 
: spec: 

:m~ssage 

-:prompt 

+:prompt 

-flags 

+flags 

Close the current source. 

Open standard input as a new source. 

Open the terminal as a new source. 

Establish a default format specification for included sources, e.g., 
:m6t-12:. 

Print message on the terminal. 

Open standard input and, if it is a terminal, print prompt. 

Open the terminal and print prompt. 

Set the specified flags, which are described below. 

Reset the specified flags. 

- 1 -



SEND (I) 

-.f1ags 

!command 

$ line 

-comment 

-:keyword 

keyword-" xx 

keyword== string 

host 

.filename 

PWB/UNIX Edition 1.0 SEND (I) 

Restore the specified flags to their state at the previous level. 

Execute the specified PWB/UNIX command via the one-line Shell, with 
input redirected to Idevlnull as a default. Open the standard output of 
the command as a new source. 

Collect contiguous arguments of this fotm and write them as consecu­
tive lines to a temporary file; then have the file executed by the Shell. 
Open the standard output of the Shell as a new source. 

19n.ore this argument. 

Prompt for a definition of keyword from the terminal. 

Define keyword as a twa-digit hexadecimal character code. 

Define keyword in terms of a replacement string. 

Job is to be submitted to: A; B, 1110. The pseudonyms A and Bare 
built into RJE to represent any IBM host connection. Their actual desti­
nations are immaterial to RJE. The pseudonym' 1110 is built into RJE 
to represent any UNIVAC host. 

Open the specified file as a new source of input. 

Arguments of the form ~~! chdir directory" will be trapped so that the send process can execute the 
specified chdir itself. The original directory will be restored at the end of any source that contains 
a chdir. 

The flags recognized by send are described in terms of the special processing that occurs when 
they are set: 

-I List card images on standard output. EBCDIC characters are translated back to ASCII. 

-q Do not output card images. 

-f Do not fold lower case to upper. 

-t Trace progress on diagnostic output, by announcing the opening of input sources. 

-k Ignore the keywords that are active at the previous level and erase any keyword definitions 
that have been made at the current level. 

-r Process included sources in raw mode~ pack arbitrary S-bit bytes one per column (SO 
columns per card) until anend-of-file. 

-i Do not interpret control lines in included sources; treat them as text. 

-s Make keyword substitutions before detecting and interpreting control lines. 

-y Suppress error diagnostics and submit job anyway. 

-g Gather mode, qualifying -1 flag~ list text lines before converting them to card images. 

-h Write listing with standard tabs. 

-p Prompt with 44*" when taking input from the terminal. 

-m When input returns to the terminal from a lower level, repeat the prompt, if any. 

-a Make -k flag propagate to included sources, thereby protecting them from keyword sub-
stitutions. 

- 2 -



SEND (I) PWB/UNIX Edition 1.0 SEND (1) 

-c List control lines on diagnostic output. 

-d Extend the current set of keyword definitions by adding those active at the end of 
included sources. 

Control lines are input lines that begin with "-". In the default mode +ir, they are interpreted 
as commands to send. Normally they are detected immediately and read literally. The -s flag 
forces keyword substitutions to be made before control lines are intercepted and interpreted. 
Arguments appearing in control lines are handled exactly like the command arguments to send, 
except that they are processed at a nested level of input. 

The two possible formats for a control line are: "~argument" and ,,- argument ... ". In the first 
case, where the "-,, is not followed by a space, the remainder of the line is taken as a single argu­
ment to send. In the second case, the line is parsed to obtain a sequence of arguments delimited 
by spaces. In this case the quotes ~"" and """ may be employed to pass embedded spaces. 

The interpretation of the argument "." is chosen so that an input line consisting of ~~-." is 
treated as a logical end-of-file. The following example illustrates some of the above conventions: 

send -
- argument ... 

This sequence of three lines is equivalent to the command synopsis at the beginning of this 
description. In fact, the "-" is not even required. By convention, the send command reads stan­
dard input if no other input source is specified. Send may therefore be employed as a filter with 
side-effects. 

The execution of the send command is controlled at each instant by a current environment, which 
includes the format specification for the input source, a default format specification for included 
sources, the settings of the mode flags, and the active set of keyword definitions. This environ­
ment can be altered dynamically. When a control line opens a new source of input, the current 
environment is pushed onto a stack, to be restored when input resumes from the old source. The 
initial format specification for the new source is taken from the first line of the file. If none is 
provided, the established default is used or, in its absence, standard tabs. The initial mode set­
tings and active keywords are copied from the old environment. Changes made while, processing 
the new source will not affect the environment of the old source, with one exception: if -d mode 
is set in the old environment, the old keyword context will be augmented by those definitions that 
are active at the end of the new source. When send first begins execution, all mode flags are 
reset, and no keywords are defined. 

The initial, reset state for all mode flags is the ~~+" state. In general, special processing associated 
with a mode x is invoked by flag -x and is revoked by flag +x. Most mode settings have an 
immediate effect on the processing of the current source. Exceptions to this are the -r and -i 
flags, which apply only to included source, causing it to be processed in an uninterpreted manner. 

A keyword is an arbitrary ASCII string for which a replacement has been defined. The replace­
ment may be another string, or (for IBM RJE only) the hexadecimal code for a single 8-bit byte. 
At any instant, a given set of keyword definitions is active. Input text lines are scanned, in one 
pass from left to right, and longest matches are attempted between substrings of "the line and the 
active set of keywords. Characters that do not match are output, subject to folding and the stan­
dard translation. Keywords are replaced by the specified hexadecimal code or replacement string, 
which is then output character by character. The expansion of tabs and length checking, accord­
ing to the format specification of an input source, are delayed until substitutions have been made 
in a line. 

- 3 -



SEND (I) PWB/UNIX Edition 1.0 SEND (1) 

All of the keywords definitions made in the current source may be dele"ted by setting the - k flag. 
It then becomes possible to reuse them, aJthough this is not recommended. Setting the - k flag 
also causes keyword definitions active at the previous source level to be ignored. Setting the + k 
flag causes keywords at the previous level to be ignored but does not delete the definitions made 
at the current level. The ==k argument reactivates the definitions of the previous level. 

A keyword may not be redefined, except redundantly, if it is active at some level of source input 
and its replacement is not null. Prompts for keywords that have already been defined at some 
higher level will simply cause the definitions to be copied down to the current level~ new 
definitions will not be solicited. Only in the case where a keyword is defined by a null replace­
ment, A ==, is a redefinition allowed, A -a. Prompts for the keyword, -=:A, will be satisfied by 
either definition. 

Keyword substitution is an elementary macro facility that is easily explained and that appears use­
ful enough to warrant its inclusion in the send command. More complex replacements are the 
function of a general macro processor(m4(I), perhaps. To reduce the overhead of string compari­
son, it is recommended that keywords be chosen so that their initial characters are unusual. For 
example, let them all be upper case. 

Send performs two types of error checking on input text lines. Firstly, only ASCII graphics and 
tabs are permitted in input text. Secondly, the length of a text line, after substitutions have been 
made, may not exceed 80 bytes for IBM, or 132 bytes for UNIY AC. The length of each line may 
be additionally constrained by a size parameter in the format specification for an input source. 
Diagnostic output provides the location of each erroneous line, by line number and input source, 
a description of the error, and the card image that results. Other routine errors that are 
announced are the inability to open or write files, and abnormal exits from the Shell. Normally, 
the occurrence of any error causes send, before invoking the queuer, to prompt for positive 
affirmation that the suspect run stream should be submitted. 

The hasp subsystem, which supports IBM RJE, operates in EBCDIC code. The send command is 
therefore required to translate ASCII characters into their ESCDIC equivalents. The standard 
conversion is based on the character set described in H Appendix H" of IBM Sysleml370 Principles 
of Operation (IBM SRL G A22-7000). Each ASCII character in the octal range 040-176 possesses 
an EBCDIC graphic equivalent into which it is mapped, with four exceptions: broken vertical bar 
into HI", H"''' into .... ...,", ~ .. [" into "'e", H]" into broken vertical bar. In listings requested from 
send and in printed output returned by hasp. the reverse translation is made from EBCDIC to 
ASCII, with the qualification that EBCDIC codes that do not have ASCII equivalents are 
translated into ..... ". The uvac subsystem, on the other hand, operates in ASCII code, and any 
translations between ASCII and field-data are made, in accordance with the UNIVAC standard, by 
the host computer. 

Additional control over the translation process is afforded by the -f flag and hexadecimal charac­
ter codes. As a default, send folds lower-case letters into upper case. For UNIY AC RJE it does 
more: the entire ASCII range 140-176 is folded into 100-136, so that H''', for example, becomes 
'''@''. In either case, setting the -f flag inhibits any folding. Non-standard character codes are 
obtained as a special case of keyword substitution. 

When invoked under the name gath, the send command establishes initial flag settings ..... Igq and 
suppresses announcement of a zero card count. While in -gq mode, long lines that are detected 
elicit a diagnostic but are not truncated. Also,. in this mode., it is potentially useful to cOJlvey 
non-graphics to standard output. To prevent gath from deleting non-printing characters, each' may 
be declared as a single character keyword whose replacement is itself. To retain backspaces, for 
example, supply the argument ""BS=BS", where BS denotes the ASCII character whose octal code 
is 010. 

- 4 -



SEND (I) PWB/UNIX Edition 1.0 SEND (I) 

FILES 

~'., 

The UNIVAC 1110 capability is only supported at the BTL Piscataway location. 

/bin/sh 
/tmp/sh* 
/ usr / rje/ sys 
/usr/rje/lines 

Shell 
Shell temporary 
PWB/UNIX system name, e.g., "A" 
RJE configuration table 

And, where xx:x:x is either hasp or uvac: 

/usr/xxxx/pool/stm* 
/usr/xxxx/xmit??? 
/ usr / xxxx/ xxxxqer 
/ usr I xxxx/ xxxxiock 
/ usr / xxxx/ xxxxstat 

temporary 
queued output 
queueing program 
null file for lockout 
queue status record 

SEE ALSO 
help(I), m40), sh(I), ascii(V), ebcdic(V), fspec(V), hasp(VnI) 
Guide to IBM Remote Job Enfly./or PWBIUNIX Users by A. L. Sabsevitz. 

DIAGNOSTICS 

BUGS 

~4non-graphic deleted''. "undefined tab deleted", "long line detected", ~'long line truncated", 
"illegal card' excised" - followed by the resulting card image. 
"Errors detected" - type "y" to submit anyway. 

Use he/pO) for explanations of error messages. 

Standard input is read in blocks, and unused bytes are returned via seekOI). If standard input is a 
pipe, multiple arguments of the form "-" and "-:prompt" should not be used, nor should the 
logical end-of-file "-.". 

- 5 -



SH (I) 

NAME 
sh 

SYNOPSIS 

PWB/UNIX Edition 1.0 

shell (command interpreter) 

sh [ -v ] [ - ] [ -ct ] [ name [ argl ... ] ] 

DESCRIPTION 

SH (I) 

Sh is the standard command interpreter. It is the program which reads and arranges the execution 
of the command lines typed by most users. It may itself be called as a command to interpret files 
of commands. Before discussing the arguments to the Shell when it is used as a command, the 
structure of command lines themselves will be given. 

Commands. Each command is a sequence of non-blank command arguments separated by 
blanks. The first argument specifies the name of a command to be executed. Except for certain 
types of special arguments discussed below, the arguments other than the command name are 
passed without interpretation to the invoked command. 

By default, if the first argument is the name of an executable file, it is invoked~ otherwise the 
string "/bin/" is prepended to the argument. (In this way most standard commands, which 
reside in "/bin", are found.) If no such command is found, the string "/usr" is further 
prepended (to give "/usr/bin/command") and another attempt is made to execute the resulting 
file. (Certain lesser-used commands live in "/usr/bin"') If a command name contains a "I", it is 
invoked as is, and no prepending ever occurs. This standard command search sequence may be 
changed by the user. See the description of the Shell variable H$p" below. 

If a non-directory file exists that matches the command name and has executable mode, but not 
the form of an executable program (does not begin with the proper magic number) then it is 
assumed to be an ASCII file of commands and a new Shell is created to execute it. See" Argu­
ment passing" below. 

If the file cannot be found, a diagnostic is printed. 

Command lines. One or more commands separated by 441" or " ... " constitute a chain of filters, or 
a pipeline. The standard output of each command but the last is taken as the standard input of the 
next command. Each command is run as a separate process, connected by pipes (see pipe (II) ) to 
its neighbors. A command line contained in parentheses "( )" may appear in place of a simple 
command as a filter. 

A command line consists of one or more pipelines separated, and perhaps terminated by 44;" or 
"&", or separated by "II" or "&&". The semicolon designates sequential execution. The 
ampersand causes the following pipeline to be executed without waiting for the preceding pipeline 
to finish. The process id of the preceding pipeline is reported, so that it may be used if necessary 
for a subsequent wait or kill. A pipeline following H&&" is executed only if the preceding pipe­
line completed successfully (exit code zero), while that following "II" is executed only if the 
preceding one did not execute successfully (exit code non-zero). The exit code tested is that of 
the last command in the pipeline. The "&&" operator has higher precedence. 

Termination Reporting. If a command (not followed by "&") terminates abnormally, a message 
is printed. (All terminations other than exit and interrupt are considered abnormal). Termination 
reports for commands followed by 4'&" are given upon receipt of the first command subsequent 
to the termination of the command, or when a wait is executed. The following is a list of the 
abnormal termination messages: 

Bus error 
Trace/BPT trap 

- 1 -



SH (I) 

Illegal instruction 
lOT trap 
EMT trap 
Bad system call 
Quit 
Floating exception 
Memory violation 
Killed 
Broken Pipe 
Alarm clock 
Terminated 

PWB/UNIX Edition 1.0 SH (I) 

If a core image is produced, H_ Core dumped" is appended to the appropriate message. 

Redirection of 1/0. There are three character sequences that cause the immediately following 
string to be interpreted as a special argument to the Shell itself. Such an argument may appear 
anywhere among the arguments of a simple command, or before or after a parenthesized com­
mand list, and is associated with that command or command list. 

An argument of the form H <arg" causes the file "'arg" to be used as the standard input (file 
descriptor .0) of the associated command. 

An argument of the form H >arg" causes file "arg" to be used as the standard output (file 
descriptor 1) for the associated command. "Arg" is created if it did not exist, and in any case is 
truncated at the outset. 

An argument of the form ~4 > >arg" causes file "arg" to be used as the standard output for the 
associated command. If "arg" did not exist,it is created~ if it did exist, the command output is 
appended to the file. 

For example, either of the command lines 

Is >junk~ cat tail> >junk 
( Is~ cat tail) > junk 

creates, on file "junk", a listing of the working directory, followed immediately by the contents of 
file "'tail". 

Either of the constructs H>arg" or H> >arg" associated with any but the last command of a 
pipeline is ineffectual, as is ~'<arg" in any but the first. 

In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell 
regardless of any redirection of standard output. Thus filters may write diagnostics to a location 
where they have a chance to be seen. 

A redirection of the form" <-" requests input from the standard input that existed when the 
instance of the Shell was created. This permits a command file to be treated as a filter. The pro­
cedure "lower" could be used in a pipeline to convert characters to lower case: 

tr "[A-Z]" "[a-z]" <­
A typical invocation might be: 

reform -8 -c <prntO I lower >prntOa 

Generation of argument lists. If any argument contains any of the characters H?", H*" or "[", 
it is treated specially as follows. The current directory is searched for files which maTch the given 
argument. 

- 2 -



SH (I) PWB/UNIX Edition 1.0 SH (I) 

The character "'*" in an argument matches any string of characters in a file name (including the 
null string). 

The character "'?" matches any single non-null character in a file name. 

Square brackets "[...]" specify a class of characters which matches any single file name character 
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A 
pair of characters separated by "-" places in the class each character lexically greater than or 
equal to the first and less than or equal to the second member of the pair. 

Other characters match only the same character in the file name. 

If an argument starts with "*", "?", or "[", that argument will not match any file name that 
starts with ~ •. ". 

For example, "*" matches all file names~ "?" matches all one-character file names~ "[ab]* .s" 
matches all file names beginning with "a" or "b" and ending with ".s"~ "?[zi-m]" matches all 
two-character file names ending with ~'z''' or the letters "i" through "m". None of these exam­
ples match names that start with ".". 

If the argument with "*,, or "'?" also contains a ~~/", a slightly different procedure is used: 
instead of the current directory, the directory used is the one obtained by taking the unmodified 
argument to the "I" preceding the first 4 4*? [" . The matching process matches the remainder of 
the argument after this "I" against the files in the derived directory. For example: 
"/usr/dmr/a*.s" matches all files in directory 44/usr/dmr" which begin with 44a" and end with 
".s". 

In any event, a list of names is obtained which match the argument. This list is sorted into alpha­
betical order, and the resulting sequence of arguments replaces the single argun:tent containing the 
"*", "[", or 4'?". The same process is carried out for each argument (the resulting lists are not 
merged) and finally the command is called with the resulting list of arguments. 

If a command has one argument with 44*", "?", or "[", a diagnostic is printed if no file names 
match that argument. If a command has several such arguments, a diagnostic is only printed if 
they' all fail to match any files. 

Quoting. The character 4'\" causes the immediately following character to lose any special mean­
ing it may have to the Shell; in this way 4 ~ <", 4 ~ > ", and other characters meaningful to the 
Shell may be passed as part of arguments. A special case of this feature allows the continuation of 
commands onto more than one line: a new-line preceded by "\" is translated into a blank. 

A sequence of characters enclosed in single quotes (') is taken literally, with no substitution or 
special processing whatsoever. 

Sequences of characters enclosed in double quotes (") are also taken literally, except that "\", 
'''''', and "$" are handled specially. The sequences "\"" and "\$" yield '''''' and "$", respec­
tively. The sequence "\x", where "x" is any character except """ or "$", yields "\x". A "$" 
within a quoted string is processed in the same manner as a "$" that is not in a quoted string (see 
below), unless it is preceded by a "\". For example: 

Is I pr -h "\ \"My directory\"\$" 

causes a directory listing to be produced by is, and passed on to pr to be printed with the heading 
"\"My directory"$". Quotes permit the inclusion of-blanks in the heading, which is a single argu-: 
ment to pr. Note that "\" inside quotes disappears only when preceding "'$" or ",II". -

Argument passing. When the Shell is invoked as a command, it has additional string processing 
capabilities. Recall that the form in which the Shell is invoked is 

- 3 -



SH (I) PWB/UNIX Edition 1.0 SH (I) 

sh [ -v ] [ name [ arg1 ... ] ] 

The name is the name of a file which is read and interpreted. If not given, this subinstance of the 
Shell continues to read the standard input file. 

In command lines in the file (and also in command input), character sequences of the form 
H$N", where N is a digit, are replaced by the nth argument to the invocation of the Shell (argn). 
~'$O" is replaced by name. Shell variables (H$a H - H$Z"), described be~ow, are replaced in the 
same way. 

The special argument ~4$*" is a name for the current sequence of all arguments from 440$1" 
'through the last argument, each argument separated from the previous by a single blank. 

The special argument "$$" is the ASCII representation of the unique process number of the 
current Shell. This string is useful for cr.eating temporary file names within command files. 

The sequence H$X", where "x" is any character except one of the 38 characters mentioned 
above, is taken to refer to a variable "x" whose value is the null string. All substitution on a 
command line occurs before the line is interpreted: no action that alters the value of any variable 
can have any effect on a reference to that variable that occurs on the same line. 

The argument -t, used alone, causes sh to read the standard input for a single line, execute it as 
a command, and then exit. 'It is useful for interactive programs which allow users to execute sys­
tem commands. 

The argument -c (used with one following argument) causes the next argument to be taken as a 
command line and executed. No new-line need be present, but new-line characters are treated 
appropriately. This facility is useful as an alternative to -t where the caller has already read some 
of the characters of the command to be executed. 

The argument -v ("verbose") causes every command line to be printed after all substitution 
occurs, but before execution. Each argument is preceded by a single blank. When given, the -v 
must be the first argument. 

Used alone, the argument H_" suppresses prompting, and is commonly used when piping com­
mands into the Shell: 

Is I sed "s/.*/echo &:~cat &/" I sh-

prints all files in a directory, each prefaced by its name. 

Initialization. When the Shell is invoked under the name 4~_" (as it is when you login), it 
attempts to read the file ".profile" in the current directory and execute the commands found 
there. When it finishes with ".profile", the Shell prompts the user for input as usual. Typical 
files contain commands to set terminal tabs and modes, initialize values of Shell variables, look at 
mail, etc. 

End of file. An end-of-file in tl1e Shell's input causes it to exit. A side effect of this fact means 
that the way to log out from UNIX is to type an EOT. 

Command file errors; interrupts. Any Shell-detected error, 'or an interrupt signal, during the 
execution of a command file causes the Shell to cease execution of that file. (Except after onintr; 
see below.) 

Processes that are created with "&" ignore interrupts. Also if such a process has not redirected 
its input with a ~~ <", its input is automatically redirected to come from the zero length file 
H/dev/null". 

Special commands. The following commands are treated specially by the Shell. These com­
mands generally do not work when named as arguments to programs like time. if, or nohup 

- 4 -



SH (I) PWB/UNIX Edition 1.0 

because in these cases they are not invoked directly by the Shell. 

chdir and cd are done without spawning a new process by executing chdir(II). 

login is done by executing H /bin/login" without creating a new process. 

waif is done without spawning a new process by executing wait (II) . 

SH (I) 

shift [ integer) is done by manipulating the arguments to the Shell. In the normal case, shit; has 
the effect of decrementing the Shell argument names by one (~~$1" disappears, H$2" becomes 
"$1 ", etc.). When the optional integer is given, only arguments equal to or greater than that 
number are shifted. 

":" is simply ignored. 

"=" name [ argl [ arg2] ] 
The single character Shell variable (name) is assigned a value, either from the optional 
argument(s), or from standard input. If a single argument is given, its value is used. If a second 
argument is included, its value is used only if the first argument has a null value. This permits a 
simple way of setting up default values for arguments: 

= a "$1" default 

causing default to be used if "$1" is null or omitted entirely. 

Such variables are referred to later with a "$" prefix. The variables "$a" through "$m" are 
guaranteed to be initialized to null, and will never have special meanings. The variables ~'$n" 
through ··$z" are nOl guaranteed to be initialized to nUll, and may, at some time in the future, 
acquire special meanings. Currently, these variables have predefined meanings: 

$n is the argument count to the Shell command. 

$p contains the Shell directory search sequence for command execution. Alternatives are 
separated by H:". The default initial value is: 

= p ":/bin:/usr/bin" 
which executes from the current directory (the null pathname), then from ... /bin", then 
from H /usr/bin", as described above. For the super-user, the value is: 

= p "/bin:/ etc:/" 
Using the same syntax, users may choose their own sequence by storing it in a file named 
".path" in their login directory. The" .path" information is available to successive Shells~ 
the "$p" value is not. If the ., .path" file contains a second line, it is interpreted as the 
name of the Shell to be invoked to interpret Shell procedures. (See "$z" beloW). 

$r is the exit status code of the preceding command. "0" is the normal return from most 
commands. 

$s is your login directory. 

$t is your login tty letter. 

$w is your file system name (first component of "$s"). 

$z is the name of the program to be invoked when a Shell procedure is to be executed. Its 
default value is "/bin/sh", but it can be overridden by supplying a second line in the 
".path" file. It can be used to achieve consistent use of a specific Shell during periods when 
several distinct Shells are present in the system. For safety in the presence of change, use 
"$z" as a command rather than "sh". 

No substitution of variables (or arguments) occurs within single quotes ('). Within double quotes 
("), a variable string is substituted unchanged, even if it contains 'characters (""", "\", or "$") 
that might otherwise be treated specially. In particular, the argumen~ "$1" can be passed 

- 5 -



SH (I) PWB/UNIX Edition 1.0 SH (I) 

FILES 

unchanged to another command by using H"$l ''''. Outside quotes, substituted characters possess 
the same special meanings they have as if typed directly. 

To illustrate, suppose that the shell procedure "mine" is called with two arguments: 

sh mine ' a~ echo "$2'" 'II' 

Then sample commands in Hmine" and their output are as follows: 

echo '$1' 
echo "Sl" 
echo $1 

$1 
a~echo "$2" 
a 
$2 

echo $2a" a 
echo "$2a" "a 
echo $2 syntax error 

The appearance of the string H$2" (rather than """) occurs because the Shell performs only one 
level of substitution, i.e., no rescanning is done. 

onintr [ label] 
Causes control to pass to the label named (using a goto command) if the Shell command file is 
interrupted. After such a transfer, interrupts are re-enabled. Onintr without an argument also 
enables interrupts. The special label "-" will cause any number of interrupts to be ignored. 

next [ name] 
This command causes name to become the standard input. Current input is never effectively 
resumed. If the argument is omitted, your terminal keyboard is assumed. 

pump [ --[subcharl ] [ + ] [ eolstr] 
This command reads its standard input until it finds eolstr (defaults to ~~!" if not specified) alone 
on a line. It normally substitutes the values of arguments and variables (marked with H$" as 
usual). If "-" is given alone, substitution is suppressed, and "-subchar" causes subchar to be 
used in place of H$" as the indicator character for substitution. Escaping is handled as in Quoted 
strings: the indicator character may be escaped by preceding it by H\". Otherwise, H\" and other 
characters are transmitted unchanged. If "+" is used, leading tabs in the input are thrown away, 
allowing indentation. This command may be used interactively and in pipelines. 

opt [ -v ] [ +v] [ -p prompt-s1r ] 
The argument -v turns on tracing, in the same style as a -v argument for the Shell. The argu­
ment +v turns it off. The argument -p causes the next argument string to be used as the 
prompt string for an interactive shell. 

Commands implementing control structure. Control structure is provided by a s.et of commands that 
happen currently to be built into the Shell, although no guarantee is given that this will remain so. 
They are documented separately as follows: 

if(n - if, else, endif, and test. 
switch(I) - switch, breaksw, endsw. 
whiIe(I) - while, end, break, continue. 
goto(I) - goto. 
exit (n - exit. 

/ etc/ sha, for shell accounting. 
/ dev/null as a source of end-of-file . 
. path in login directory to initialize $p and name of Shell. 
.profile in login directory for general initialization. 

- 6 -



SH (I) PWB/UNIX Edition 1.0 SH (I) 

SEE ALSO 
The UNIX Time-Sharing System by D. M. Ritchie and K. Thompson, CACM, July, 1974, which 
gives the theory of operation of the Shell. 
PWBIUNIX Shell Tutorial by J. R. Mashey. 
chdir(I), equals(I), exit(I), expr(I), fd2(I) , if(I), 10gin(I), loginfo(I), onintr(I), pump(I), shift(I), 
switch (I) , wait (I) , while(I), pexec(I1I), sha(V), glob(VIII) 

EXIT CODE 

BUGS 

If an error occurs in a command file, the Shell returns the exit value ~'1" to the parent process. 
Otherwise, the current value of the Shell variable $r is returned. Execution of a command file is 
terminated by an error. 

There is no built-in way to redirect the diagnostic output; jd2(J) must be used. 
A single command line is limited to 1000 total characters, 50 arguments, and approximately 20 
operators. 

- 7 -



SHIFT (I) PWB/UNIX Edition 1.0 SHIFT (I) 

NAME 
shift - adjust Shell arguments 

SYNOPSIS 
shift [ digit] 

DESCRIPTION 
Shift is used in Shell command files to shift the argument list left by 1, so that old $2 can now be 
referred to by $1 and so forth. Shift is useful to iterate over several arguments to a command file. 
For example, the command file 

while "$1" 

end 

pr -3 $1 
shift 

prints each of its arguments in 3-column format. 

Shift is executed within the Shell. 

The optional argument causes shift to leave shell arguments numbered lower than $digit alone on 
shifts~ shift alone and shift 1 are identical in effect. 

SEE ALSO 
shCD 

- 1 -



SIZE (I) PWB/UNIX Edition 1.0 SIZE (I) 

NAME 
size - size of an object file 

SYNOPSIS 
size [ object ... ] 

DESCRIPTION 
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their 
sum in octal and decimal, of each object-file argument. If no file is specified, a.out is used. 

SEE ALSO 
a.out(V) 

- 1 -



SLEEP (I) PWB/UNIX Edition 1.0 SLEEP (I) 

NAME 
sleep - suspend execution for an interval 

SYNOPSIS 
sleep time 

DESCRIPTION 

Sleep suspends execution for time seconds. It is used to execute a command in a certain amount 
of time as in: 

(sleep 105~ command)& 

Or to execute a command every so often, as in this shell command file: 

while 1 

SEE ALSO 
sleep(I) 

BUGS 

end 

command 
sleep 37 

Time must be less than 65536 seconds. 

- 1 -



SNO(I) PWB/UNIX Edition 1.0 SNO (I) 

NAME 
sno - Snobol interpreter 

SYNOPSIS 
sno [ file] 

DESCRIPTION 
Sno is a Snobol III (with slight differences) compiler and interpreter. Sno. obtains input from the 
concatenation of .file and the standard input. All input through a statement containing the label 
'end' is considered program and is compiled. The rest is available to 'syspit'. 

Sno differs from Snobol III in the following ways. 

There are no unanchored searches. To get the same effect: 

a ** b . unanchored search for b 
a *x* b = x c unanchored assignment 

There is no back referencing. 

x = "abc" 
a *x* x is an unanchored search for 'abc' 

Function declaration is different. The function declaration is done at compile time by the use of 
the label 'define'. Thus there is no ability to define functions at run time and the use of the name 
'define' is preempted. There is also no provision for automatic variables other than the parame­
ters. For example: 

define f() 

or 

define f(a,b,c) 

All labels except 'define' (even 'end') must have a non-empty statement. 

If 'start' is a label in the program, program execution will start there. If not, execution begins 
with the first executable statement. 'define' is not an executable statement. 

There are no builtin functions. 

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the arith­
metic operators 'I' and '*' must be set off by space. 

The right side of assignments must be non-empty. 

Either ", or"" may be used for literal quotes. 

The pseudo-variable 'sysppt' is not available. 

SEE ALSO 
Snobol III Manual (JACM Vol. 11, No. 1~ Jan. 1964~ pp. 21ff.) 

- 1 -



SORT (I) PWB/UNIX Edition 1.0 SORT (I) 

NAME 
sort - sort or merge files 

SYNOPSIS 
sort [ -mubdfinr] [ -tx ] [ +pos [ -pos ] ] ... [-0 name] [ name] ... 

DESCRIPTION 
Sorl sorts lines of all the named files together and writes the result on the standard output. The 
name '-' means the standard input. The standard input is also used if no input file names are 
given. Thus sort may be used as a filter. 

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine col­
lating sequence. The ordering is affected by the following flags one or more of which may appear. 

b Leading blanks (spaces and tabs) are not included in keys. 
d 'Dictionary' order: only letters, digits and blanks are significant in comparisons. 
f Fold lower case letters onto upper case. 

Ignore all nonprinting non blank characters in nonnumeric comparisons. 
n An initial numeric string, consisting of optional minus sign, digits and optionally included 

decimal point, is sorted by arithmetic value. 
r Reverse the sense of comparisons. 
tx Tab character between fields is x. 

Selected parts of the line, specified by + pos and - pas, may be used as sort keys. Pos has the 
form m.n optionally followed by one or more of the flags bdfinr, where m specifies a number of 
fields to skip, 11 a number of characters to skip further into the next field, and the flags specify a 
special ordering rule for the key. A missing .n is taken to be O. + pos denotes the beginning of 
the key~ - pos denotes the first position after the key (end of line by default). Later keys are 
compared only when all earlier keys compare equal. 

When no tab character has been specified, a field consists of nonblanks and any preceding blanks. 
Under the -b flag, leading blanks are excluded from a field. When a tab character has been 
specified, fields are strings separated by tab characters. 

Lines that otherwise compare equal are ordered with all bytes significant. 

These flag arguments are also understood: 

m Merge only, the input files are already sorted. 

o The next argument is the name of an output file to use instead of the standard output. This 
file may be the same as one of the inputs, except under the merge flag -m. 

u Suppress all but one in each set of contiguous equal lines. Ignored bytes and bytes outside 
keys do not participate in this comparison. 

Examples. Print a list of all the distinct roff(I) commands in a given document: 

grep ""\." document I sort -u +0 -0.3 

Print the password file passwd(V) sorted by user id: 

FILES 
Itmp/stm??? 

sort -t: +2n /etc/passwd 

- 1 -



SPELL (I) PWB/UNIX Edition 1.0 SPELL (I) 

NAME 
spell - find spelling errors 

SYNOPSIS 
spell [ -y ] [ -1 ] file ... 

DESCRIPTION 

FILES 

Spell collects words from the named files, and looks them up in a spelling list. Words that neither 
occur among nor are derivable (by applying certain inflections, prefixes, or suffixes) from words in 
the spelling list are printed on the standard output. If no files are named, words are collected 
from the standard input. 

Spell omits I1rQtf(I), trQUO), neql1 (I), and eqn 0) constructions from the input. 

The process may take several minutes. 

Under the -y flag, all words not literally in the spelling list are printed, and plausible derivations 
from spelling list words are indicated. 

The -1 option causes the final output to appear in a single column instead of three columns. 
The normal header and pagination is also suppressed. 

The spelling list is based primarily on Kucera and Francis, CompUTational Analysis Q/' Presel11-Day 
English and the Merriam Webster New Il11ernational Dictional}', 2nd edition. Other sources include 
lists of chemical elements, states, countries, province~, capital cities, major cities~ given names 
from Kucera and Francis~ the most common surnames from a large telephone book~ common 
names from the index of Fieldbook 0/ Natural His/ory by E. L. Palmer and H. S. Fowler~ selected 
names from Bli/finch's Mythology; Bell System Practices~ Bell Laboratories technical papers and 
manuals~ the Federalist papers~ random literary fragments~ etc. 

If the file "'/usr/dict/spellhist" is writable, spell accumulates copies of its output there. 

Ibin/deroff, lusr/lib/spell[0123]: programs 
lusr/lib/w2006: list of common words for primary filtering 
lusrl dictl spellinglist 
lusr/dict/stoplist: likely misspellings (e.g. thier=thy-y+ier) that would otherwise pass 
I usr I dictl spellhist 

SEE ALSO 
typoO) 

BUGS 
The coverage of the spelling list is uneven~ new installations will probably wish to monitor the 
output for a few months to gather local additions. 

- 1 -



SPLINE (I) PWB/UNIX Edition 1.0 SPLINE (I) 

NAME 

spline - interpolate smooth curve 

SYNOPSIS 

spline [ option] ... 

DESCRIPTION 

Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It 
produces a similar set, which is approximately equally spaced and includes the input set, on the 
standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scientists alld 
Engineers. 2nd ed., 349ft') has two continuous derivatives, and sufficiently many points to look 
smooth when plotted, for example by plotO). 

The following options are recognized, each as a separate argument. 

a Supply abscissas automatically (they are missing from the input) ~ spacing is given by the 
next argument, or is assumed to be 1 if next argument is not a number. 

k The next argument is used as the constant k used in the boundary value computation 

" ky" " k " Yo = I' Y/l = Y/l- 1 

is set by the next argument. By default k = O. 

n Space output points so that approximately n points occur between the lower and upper x lim­
its, where /l is the next argument. (Default n = 100.) 

p Make output periodic, i.e. match derivatives at ends. First and last input values should nor­
mally agree. 

x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu­
lated from the data. Automatic abcissas start at the lower limit (default Or 

SEE ALSO 
plot(n 

BUGS 
A limit of 1000 input points is enforced silently. 

- 1 -



SPLIT (I) PWB/UNIX Edition 1.0 SPLIT (I) 

NAME 
split - split a file into pieces 

SYNOPSIS 
split - n [ file [ name ] ] 

DESCRIPTION 
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of 
output files. The name of the first output file is name with aa appended, and so on lexicographi­
cally. If no output name is given, x is default. 

If no input file is given, or if - is given in its stead, then the standard input file is used. 

- 1 -



STRIP (I) PWB/UNIX Edition 1.0 STRIP (I) 

NAME 
strip - remove symbols and relocation bits 

SYNOPSIS 
strip name ... 

DESCRIPTION 
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem­
bler and loader. This is useful to save space after a program has been debugged. 

The effect of strip is the same as use of the -s option of Id. 

FILES 
Itmp/stm? 

SEE ALSO 

temporary file 

ld (I), as (I), nm (I) 

- 1 -



STTY (I) PWB/UNIX Edition 1.0 STTY (I) 

NAME 
stty - set terminal options 

SYNOPSIS 
stty [ option ... ] 

DESCRIPTION 
Stty sets certain 110 options on the current output terminal. With no argument, it reports the 
current settings of the options. The option strings are selected from the following set: 

even allow even parity 
-even disallow even parity 
odd allow odd parity 
-odd disallow odd parity 
raw raw mode input (no erase, kill, interrupt, quit, EOT~ parity bit passed back) 
-raw negate raw mode 
cooked same as '-raw' 
-nl allow carriage return for new-line, and output CR-LF for carriage return or new-line 
nl accept only new-line to end lines 
echo echo back every character typed 
-echo do not echo characters 
lease map upper case to lower case 
-lease do not map case 
-tabs replace tabs by spaces when printing 
tabs preserve tabs 
ek reset erase and kill characters back to normal # and @. 
erase c set erase character to c. 
kill c set kill character to c. 
crO crl cr2 cr3 

select style of delay for carriage return (see stO'(II» 
nlO nIl nl2 nl3 

select style of delay for linefeed (see stO'(II» 
tabO tab 1 tab2 tab3 

select style of delay for tab (see stO'(II» 
ffO ff1 

select style of delay for form feed (see stO'OI) 
tty33 set all modes suitable for the Model 33 TELETYPE® 
tty37 set all modes suitable for the Model 37 TELETYPE 
vt05 set all modes suitable for Digital Equipment Corp. VT05 terminal 
tn300 set all modes suitable for a General Electric TermiNet 300 
ti700 set all modes suitable for Texas Instruments 700 series terminal 
tek set all modes suitable for Tektronix 4014 terminal 
hup hang up dataphone on last close. 
- hup do not hang up dataphone on last close. 
o hang up phone line immediately 
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb 

SEE ALSO 
stty(II) 

Set terminal baud rate to the number given, if possible. (These are the speeds sup­
ported by the DH-ll interface). 

- 1 -



SU (I) PWB/UNIX Edition 1.0 SU (I) 

NAME 
su become privileged user 

SYNOPSIS 
su [ name] 

DESCRIPTION 

FILES 

Su allows one to become the super-user, who has all sorts of marvelous (and correspondingly 
dangerous) powers. In order for su to do its magic, the user must supply a password. If the pass­
word is correct, su will execute the Shell with the user-id set to that of the super-user. To restore 
normal user-id privileges, type an end-of-file to the super-user Shell. 

The password demanded is that of the entry "root" in the system's password file. 

To remind the super-user of his responsibilities, the Shell substitutes "#" for its usual prompt 
("%"). The ordinary user's command path search sequence does not apply to the super-user. 
The super-user gets "/bin", "I etc", and "I" instead (no current directory). 

The optional argument allows logging in as name without logging off as yourself. That is, you get 
the powers and privileges, if any, of the user whose login name is name. In this case (unless you 
already are the super-user), su asks for that user's password, rather than for the super-user pass­
word. 

I etcl passwd system's password file 

SEE ALSO 

BUGS 

sh (I), pexec(III) 

If you are the super-user and invoke su with an invalid argument (Le., a non-existent login name), 
you will get the powers and privileges, if any, of the user whose user-id is 255 (regardless of 
whether there actually is such a user). 

- 1 -



SUM (I) PWB/UNIX Edition 1.0 SUM (I) 

NAME 
sum - print checksum of a file 

SYNOPSIS 
sum [ file 1 ... 

DESCRIPTION 
Sum sums the contents of the bytes (mod 2"16) of each .file specified. Sum prints the file name, 
the number of whole or partial 512-byte disk blocks read, and the summed value of its bytes in 
decimal. 

In practice, sum is often used to vertify that all of a special file can be read without error. 

- 1 -



SWITCH (I) PWB/UNIX Edition 1.0 SWITCH (I) 

NAME 
switch - shell multi-way branch command 

SYNOPSIS 
switch arg 
: labell 

: labeln 

commands ... 
breaksw 

commands ... 
breaksw 

: default 
commands ... 

endsw 

DESCRIPTION 
Switch searches forward in the input file for the first one of: 

1. a label that pattern-matches argo The pattern-matching used is that of the Shell in generat-
ing argument lists. 

2. the label default. 
3. a matching endsw command. 

The Shell resumes reading commands from the next line after the location where the search 
stopped. Thus, switch supplies a 'case' or 'computed goto' statement similar to that of C. 
Because I.:' is ignored by the Shell, several labels may occur in order, so that the same sequence 
of commands is executed for several different values of argo 

The breaksw command searches forward to the next unmatched endsw, and is normally used at the 
end of the sequence of commands following each label. It may be omitted to allow common code 
to be shared among label values. Several breaksw commands may be written on the same line to 
exit from that many levels of nested switch-endsw pairs. 

The optional label default should be placed last, since switch always stops upon discovering it. The 
construct can be nested: any labels enclosed by a switch-endsw pair are ignored by an outer switch. 
The most common use of switch is to process 'flag' arguments in a shell procedure. 

SEE ALSO 
if(D, sh (1), while (I) 

DIAGNOSTICS 

BUGS 

switch: missing endsw 
breaksw: missing endsw 

None of these commands should be hidden behind semicolons. Nested groups hidden behind it 
or else may also cause trouble. 

- 1 -



SYNC (I) 

NAME 
sync - update the super block 

SYNOPSIS 
sync 

DESCRIPTION 

PWB/UNIX Edition 1.0 SYNC (I) 

Sync executes the sync system primitive. If the system is to be stopped, sync must be called to 
insure file system integrity. See sync(JJ) for details. 

SEE ALSO 
sync(II) 

- 1 -



TABS (I) PWB/UNIX Edition 1.0 TABS (I) 

NAME 
tabs - set tabs on terminal 

SYNOPSIS 
tabs [tabspec} [+f} [+mn} [+In] [+ttype] [+q] 

DESCRIPTION 
Tabs sets the tab stops on the user's terminal according to the tab specification tabspec, after clear­
ing any previous settings. The user must of course be logged in on a terminal with remotely­
settable hardware tabs, including the DASI450 (DIABLO 1620 or XEROX 1700), GS1300 
(DTC300 or DASI300), DAS1300S (DTC300S), HP2640B (HP2640A, HP2644A, HP2645A, 
etc.), TELETYPE® Model 40/2, and General Electric TermiNet terminals. 

Users of TermiNet terminals should be aware that they behave in a different way than most other 
terminals for some tab settings~ the first number in a list of tab settings becomes the left margin 
on a TermiNet terminal. Thus, any list of tab numbers whose first element is other than 1 causes 
a margin to be left by a TermiNet, but not by other terminals. A tab list beginning with 1 causes 
the same effect regardless of terminal type. It is also possible to set a left margin on the DASI450 
and DASI300S, although in a different way. 

Four types of tab specification are accepted for tabs pee: 4canned', repetitive, arbitrary, and file. If 
no arguments are given, the default value is -8, i.e., UNIX 'standard' tabs. The lowest column 
number is 1 and the highest is 158. Note that for tabs, column 1 always refers to the leftmost 
column on a terminal, even one whose column markers begin at 0, e.g., the DASI300, 
DASI300S, and DASI450. 

- code Gives the name of one of a set of 'canned' tabs. The legal codes and their meanings are 
as follows: 

-a 1,10,16,36,72 
Assembler, IBM S/370, first format 

-a2 1,10,16,40,72 
Assembler, IBM S/370, second format 

-c 1~8,12,16,20,55 
COBOL, normal format 

-c2 1,6,10,14,49 
COBOL compact format (columns 1-6 omitted). Using this code, the first typed charac­
ter corresponds to card column 7, one space gets you to column 8, and a tab reaches 
column 12. In order to get send(J) to prepend the blanks at the beginning, files using 
this tab setup should include a format specification (see fspec(V» as follows: 
< :t-c2 m6 s66 d: > 

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67 
COBOL compact format (columns 1-6 omitted), with more tabs than -c2. THIS IS 
THE RECOMMENDED FORMAT FOR COBOL. The appropriate format specification 
is: 
<:t-c3 m6 s66 d:> 

- 1 -



TABS (I) 

-f 1, 7 J 1.15.19,23 
FORTRAN 

PWB/UNIX Edition 1.0 

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 
PLII 

-s 1,10,55 
SNOBOL 

-u 1,12,20,44 . 
UNIVAC 1100 Assembler 

In addition to these ~canned' formats, three other types exist: 

TABS (I) 

-17 A repetitive specification requests tabs at columns 1 +11, 1 +2* 17, etc. Note that such a set­
ting leaves a left margin of n columns on TermiNet terminals on£v. Of particular impor­
tance is the value -8: this represents the UNIX ~standard' tab setting, and is the most 
likely tab setting to be found at a terminal. It is required for use with the IlrQtf(l) -h 
option for high-speed output (about 10% speed increase). Another special case is the 
value -0, implying no tabs at all. 

111,n2 •... The arbitrary format permits the user to type any chosen set of numbers', separated by 
commas, in ascending order. Up to 40 numbers are allowed. The maximum tab value 
accepted is 158 .. If any number (except the first one) is preceded by a plus sign. it is 
taken as an increment to be added to the previous value. Thus, the tab lists 1,10,20,30 
and 1,10,+ 1 0, + 10 are considered identical. 

- -.file If the name of a file is given, tabs reads the first line of the file, searching for a format 
specification (see fspec(V). If it finds one there, it sets the tab stops according to it, oth­
erwise it sets them as -8. If an actual format specification is found in the file. it is 
printed at the terminal to remind the user what it is, unless the +f flag is also included 
to suppress this output. This type of specification may be used to make sure that a 
tabbed file is printed with correct tab settings, and would be used with the prO) com­
mand: 

tabs --file~ pr file 

Any of the following may be used also~ if a given flag occurs more than once, the last value given 
takes effect. 

+f If the -file type of tab specification IS used and this option given, no tab specification is 
printed at the terminal, but the tab stops are set: This option is most useful when tabs is 
invoked from a shell procedure or another command. rather than directly from a termi­
nal. This option has no effect unless a --.file form of specification is used. 

+In The length argument gives the number of the rightmost column at which a tab will be set 
by a repetitive-style specification. The default value is 132, but may be different if the 
+t argument implies a more appropriate value for the specific type of terminal being 
used. When examining printed output obtained from another computer. it is helpful to 
have tabs across the entire width of the terminal. Maximum usable values of 11 are 118 
(TermiNet), 132 (any DASI in 10-pitch mode), 158 (any DASI in 12-pitch mode), and 
80 (HP2640). Although tabs will accept larger values without diagnostics, using them 
may cause a terminal (especially a DASI) to behave strangely. 

+mn The margin argument may be used for TermiNet, DASI450, and DASI300S terminals. It 
causes all tabs to be moved over n columns by making column n+ 1 the left margin. If 

- 2 -



TABS (I) PWB/UNIX Edition 1.0 TABS (I) 

+m is given without a value of n, the value assumed is 10. For a TermiNet, the first 
value in the tab list should be 1, or the margin will move even further to the right. 

To reset the left margin of a DASI450 to the normal (leftmost) position, type: 

tabs + t450 + mO 

The margin on a DASI450 or DASI300S is reset only when the +m flag is given expli­
citly. The margin is not settable on a DASI300, and is settable on the DASI450 and 
DASI300S only when the +t option is used (see below). 

+q The ('quick') flag suppresses the emission of characters to clear previously set tabs. It 
can b~ used if the terminal is know to be clear already, i.e., just after it has been powered 
up or reset. 

+ttype The terminal type can be supplied to help tabs optimize its output for specific kinds of 
terminals, and is sometimes required when certain functions of some terminals are 
desired. This argument interacts with +1 by setting different defaults for different termi­
nals, and different maximum lengths. It interacts with +m because different methods 
must be used to set margins on the various terminals. 

Value 
+t300 
+tgsi 
+t300S 
+tgsis 
+t450 
+t1620 
+ttn 
+thp 
+t40-2 
+t 
omitted 

Given below are the possible cases for +t argument, listing argument value, maximum 
length, default length if +1 is omitted, and notes. The notes give the following codes: 
'S' for a short (several characters) clearing sequence, 'L' for a long sequence (about 60 
characters), 'M' for a settable margin, and a list of the terminal types expected. 

Maximum Default S/L M Terminal (s) 
158 132 L GSI300 (DTC300 or DASI300) 

" " 
158 132 S M DASI300S (DTC300S) 

" 
158 132 S M DAS1450 (DIABLO 1620 or XEROX 1700) 

" " 
118 118 S M TermiNet 300 or 1200 
80 80 L HP2640A, HP2640B 
80 80 S TELETYPE 40/2 
158 132 S any with settable tabs 
158 132 L any with settable tabs 

Omitting the +t argument entirely will work for most situations. You should probably 
try to type the least that will work, and be more specific only when necessary. 

Tab-setting is performed using the standard output. 

DIAGNOSTICS 
"illegal tabs"when arbitrary tabs are ordered incorrectly, or include any value greater than 158. 
"illegal increment" when a zero or missing increment value is found in an arbitrary specification. 
"unknown tab code" when a 'canned' code cannot be found. 
"can't open" if --file option used, and file can't be opened. 
"file indirection" if --file option used and the specification in that file points to yet another file. 
Indirection of this form is not permitted. 

- 3 -



TABS (I) PWB/UNIX Edition 1.0 TABS (I) 

EXIT CODES 
o - normal 
1 - for any error 

SEE ALSO 

BUGS 

fspec(V), nroff(I), reform (I) , send(I) 
GSI300(VII), DASI450(VII)', HP2640(VII) , TERMINET(VII) 

It is sad, but true, that it is often necessary to specify the terminal type. Various terminals use 
totally inconsistent ways of clearing tabs and setting margins. Tabs clears only 20 tabs (on termi­
nals requiring a long sequence), but is willing to set 40. 

- 4-



TAIL (I) PWB/UNIX Edition 1.0 TAIL (1) 

NAME 
tail - deliver the last part of a file 

SYNOPSIS 
tail [ ± number[lbc] ] [file] 

DESCRIPTION 
Tail copies the named file to the standard output beginning at a designated place. If no file is 
named, the standard input is used. 

Copying begins at distance + number from the beginning, or - number from the end of the input. 
Number is counted in units of lines, blocks or characters, according to the appended option I, b or 
c. When no units are specified, counting is by lines. 

SEE ALSO 
dd(I) 

BUGS 
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length. 
Various kinds of anomalous behavior may happen with character special files. 

- 1 -



TBL(I) PWB/UNIX Edition 1.0 TBL (I) 

NAME 
tbl - format tables for nroff or troff 

SYNOPSIS 
tbl [ files ] ... 

DESCRIPTION 
Tbl is an nroff(O or trojJ(I) preprocessor for formatting tables. The input files are copied to the 
standard output, except for lines between . TS and . TE command lines, which are assumed to 
describe tables, and which are reformatted. There are several global options~ if any are desired, 
they are specified on the first line after . TS as a series of keywords separated by blanks or commas 
and followed by a semicolon. The possible words are: 

center - center the table 
expand - format the table to fill the current line length 
box - enclose the table in a box 
all box - draw all possible lines so that every item is in a box 

After this line (or after. TS if no global options are given) are the lines describing the table for­
mat. Each line describes a line of the actual table. One letter is used for each column. As many 
lines are as needed to describe the table are given~ the last line should end with the character"." 
to signal the end of the format information. The last line of the description will apply to all fol­
lowing lines of the table. The legal characters to describe a column are: 

c center within the column 

r right-adjust 

left -adjust 

n numerical adjustment: the units digits of numbers are aligned. 

s span the previous entry over this column. 

replace this entry with a horizontal line 

= replace this entry with a double horizontal line 

A column letter may be followed by an integer giving the number of spaces between this column 
and the next~ 3 is default. A column letter may be preceded by a "I" character to indicate that a 
vertical line is to be drawn to the left of this column. Letting \t represent a tab (which must be 
typed as a genuine tab), the input: 

.TS 
css 
ccs 

:.c C C 
Inn. 
Household Population 
Town\tHouseholds 
\tNumber\tSize 
Bedminster\ t789\ t3 .26 
Bernards Twp.\t3087\t3.74 
Bernardsville \ t20 18\ t3.30 
Bound Brook\t3425\t3.04 
Branchburg\tI644\t3.49 
Bridgewater\t7897\t3.81 
Far Hills\t240\t3.19 
.TE 

- 1 -



TBL (1) 

yields: 

PWB/UNIX Edition 1.0 

Household Population 
Town Households 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Branchburg 
Bridgewater 
Far Hills 

Number Size 
789 3.26 

3087 3.74 
2018 3.30 
3425 3.04 
1644 3.49 
7897 3.81 
240 3.19 

TBL (I) 

If a table element contains only 44_" or 44==", a single or double line (respectively) is drawn across 
the column at that point. If a table line contains only H " or H_", a single or double line (respec-
tively) is drawn all the way across the table. -

If a column describer contains the character HI", a vertical line is drawn to the left of that column 
beginning at the point in the column corresponding to the position of the vertical bar in the 
describer~ and extending to the bottom of the table. 

If no arguments are given, tbl reads the standard input, so it may be used as a filter. When it is 
used with eqn or neqn, the tbl command should be first, to minimize the volume of data passed 
through pipes. 

SEE ALSO 
TBL - A Program fO Format Tables by M. E. Lesk. 



TEE (I) PWB/UNIX Edition 1.0 TEE (I) 

NAME 
tee - pipe fitting 

SYNOPSIS 
tee [ name ... ] 

DESCRIPTION 
Tee transcribes the standard input to the standard output and makes copies in the named files. 

- 1 -



TIME (I) PWB/UNIX Edition 1.0 TIME (I) 

NAME 
time - time a command 

SYNOPSIS 
time command 

DESCRIPTION 

BUGS 

The given command is executed~ after it is complete, time prints the elapsed time during the com­
mand, the time spent in the system, and the time spent in execution of the command. 

The times are printed on the diagnostic output stream. 

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second. 
Thus the sum of the CPU times can be up to a second larger than the elapsed time. 

- 1 -



TP (I) 

NAME 
tp 

SYNOPSIS 

PWB/UNIX Edition 1.0 TP (I) 

manipulate DECtape and magtape 

tp [ key] [ name ... ] 

DESCRIPTION 
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu­
ment. The key is a string of characters containing at most one function letter and possibly one or 
more function modifiers. Other arguments to the command are file or directory names specifying 
which files are to be dumped, restored, or listed. In all cases, appearance of a directory name 
refers to the files and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the following letters: 

r The named files are written on the tape. If files with the same names already exist, they 
are replaced.' 'Same' is determined by string comparison, so '.I abc' can never be the 
same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argument is 
given, '.' is the default. 

u updates the tape. U is like r, but a file is replaced only if its modification date is later 
than the date stored on the tape; that is to say, if it has changed since it was dumped. U 
is the default command if none is given. 

d deletes the named files from the tape. At least one name argument must be given. This 
function is not permitted on magtapes. 

x extracts the named files from the tape to the file system. The owner and mode are 
restored. If no file argument is given, the entire contents of the tape are extracted. 

t lists the names of the specified files. If no file argument is given, the entire contents of 
the tape is listed. 

The following characters may be used in addition to the letter which selects the function desired. 

m Specifies magtape as opposed to DECtape. 

0, ... ,7 This modifier selects the drive on which the tape is mounted. For DECtape, 'x' is 
default; for magtape '0' is the default. 

v Normally tp does its work silently. The v (verbose) option causes it to type the name 
of each file it treats preceded by the function letter. With the t function, v gives more 
information about the tape entries than just the name. 

c means a fresh dump is being created~ the tape directory is zeroed before beginning. 
Usable only withr and u. This option is assumed with magtape since it is impossible 
to selectively overwrite magtape. 

f causes new entries on tape to be 'fake' 'in that no data is present for these entries. 
Such fake entries cannot be extracted. Usable only with rand u. 

Errors reading and writing the tape are noted, but no action is taken. Normally, errors 
cause a return to the command level. 

w causes tp to pause before treating each file, type the indicative letter and the file name 
(as with v) and await the user's response. Response y means 'yes', so the file is 
treated. Null response means 'no', and the file does not take part in whatever is being 
done. Response x means 'exit'; the tp command terminates immediately. In the x 

- 1 -



TP (I) 

FILES 
/dev/tap'? 
/dev/mt'? 

DIAGNOSTICS 

PWB/UNIX Edition 1.0 TP (I) 

function, files previously asked about have been extracted already. With r, U, and d no 
change has been made to the tape. 

Several; the non-obvious one is "Phase error', which' means the file changed after it was selected 
for dumping but before it was dumped. 

BUGS 
A single file with several links to it is treated like several files. 



TR (I) PWB/UNIX Edition 1.0 TR (I) 

NAME 
tr - transliterate 

SYNOPSIS 
tr [ - cds ] [string 1 [ string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with substitution or deletion of selected char­
acters. Input characters found in string1 are mapped into the corresponding characters of string2. 
Any combination of the options -cds may be used: -c complements the set of characters in 
string] with respect to the universe of characters whose ascii codes are 001 through 377 octal~ -d 
deletes all input characters in string1; -s squeezes all strings of repeated output characters that are 
in string2 to single characters. 

The following abbreviation conventions may be used to introduce ranges of characters or repeated 
characters into the strings: 

la - b I stands for the string of characters whose ascii codes run from character a to character b. 

la*nl, where n is an integer or empty, stands for /rfold repetition of character a. Nis taken to be 
octal or decimal according as its first digit is or is not zero. A zero or missing n is taken to be 
huge~ this facility is useful for padding string2. 

The escape character '\' may be used as in the Shell to remove special meaning from any charac­
ter in a string. In addition, '\' followed by 1, 2, or 3 octal digits stands for the character whose 
ascii code is given by those digits. 

The following example creates a list of all the words in 'file1' one per line in 'file2', where a word 
is taken to be a maximal string of alphabetics. The strings are quoted to protect the special char­
acters from interpretation by the Shell~ 012 is the ascii code for newline. 

tr -cs n[A-Z] [a-z] " "[\012*]" <file1 >file2 

SEE ALSO 
sh (I), ed (I), ascii (V) 

BUGS 
Won't handle ascii NUL in string1 or string2; always deletes NUL from input. 

- 1 -



NROFF/TROFF (I) PWB/UNIX Edition 1.0 NROFF /TROFF ( I ) 

NAME 
nroff, troff - text formatters 

SYNOPSIS 
oroff (or troff) [options] files 

DESCRIPTION 
NROFF and TROFF accept lines of text interspersed with lines of format control information and 
format the text into a printable, paginated document having a user-designed style. NROFF and 
TROFF are highly compatible with each other and it is almost always possible to prepare input 
acceptable to both. Conditional input is provided that enables the user to embed input expressly 
destined for either program. NROFF can prepare output directly for a variety of terminal types and 
is capable of utilizing the full resolution of each terminal. 

An argument consisting of a single minus (-) is taken to be a file name corresponding to the 
standard input. If no file names are given, input is taken from the standard input. The options, 
which may appear in any order so long as they appear before the filenames, are: 

Option 

-olist 

-oN 

-sN 

-mname 

-raN 

-i 

-q 

Effect 

Print only pages whose page numbers appear in' list, which consists of numbers 
and number ranges separated by commas. A number range has the form N-M 
and means pages N through M inclusive~ an initial -N means from the beginning 
to page N; and a final N - means from N to the end. 

Number first generated page N. 

Stop every N pages. NROFF will halt prior to every N pages (default N=I) to 
allow paper loading or changing, and will resume upon receipt of a new-line char­
acter. TROFF will stop the phototypesetter every N pages, produce a trailer to 
allow the changing of cassettes, and will resume after the phototypesetter START 
button is pressed. 

Prepends the macro file /usr/lib/tmac. name to the input files. 

Register a (one-character name) is set to N. 

Read standard input after the input files are exhausted. 

Invoke the simultaneous input-output mode of the rd request. 

NROFF Only 

...;.Ttype Specifies the output terminal type. Currently defined values for type are 37 for the 
(default) Model 37 TELETYPE@, tn300 for the GE TermiNet 300 (or any terminal 
without half-line capabilities), 300 for :the DASI-300, 450 for the DASI .. 450 (or 
Diablo Hyterm) and 300S for the DASI .. 300S. For 12-pitch, use 300-12, 3008-12, 
and 450-12. 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

- h Use output tabs during horizontal spacing to speed output and reduce output char-
acter count. Tab settings are assumed to be every 8 nominal character widths. 

TROFF Only 

-t Direct output to the standard output instead of the phototypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the 
run. 

- 1 -



NROFF/TROFF (I) PWB/UNIX Edition 1.0 NROFF /TROFF ( I ) 

FILES 

-w Wait until phototypesetter is available, if it is currently busy. 

'-b TROFF will report whether the phototypesetter is busy or available. No text pro­
cessing is done. 

-a Send a printable (ASCII) approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and 
motions, to reduce phototypesetter elasped time. 

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct 
it to the standard output. 

/usr/lib/suftab suffix hyphenation tables 
Itmp/taOOOOO temporary file 
/usr/lib/tmac.* standard matro files 
lusr/lib/term/* (NROFF only) terminal driving tables 
lusr/lib/font/* (TROFF only) font width tables 

SEE ALSO 
NROFF/TROFF User's Manual by J. F. Ossanna. 
A TROFF Tutorial by B. W. Kernighan. 
tbl (n. 
For NROFF, see neqn (0, col (1), and tabs(I) 
For TROFF, see eqn(I). 



TTY(I) 

NAME 
tty - get terminal name 

SYNOPSIS 
tty 

DESCRIPTION 

PWB/UNIX Edition 1.0 TTY (I) 

Tty gives the name of the user's terminal in the form 'ttyn' for n a digit or letter. The actual path 
name is then '/dev/ttyn'. 

DIAGNOSTICS 
'not a tty' if the standard input file is not a terminal. 

- 1 -



TYPO(I) PWB/UNIX Edition 1.0 TYPO (I) 

NAME 
typo - find possi ble typos 

SYNOPSIS 
typo [ -1 ] [ -0 ] file ... 

DESCRIPTION 

FILES 

Typo hunts through a document for unusual words, typographic errors, and hapax legomena and 
prints them on the standard output. 

The words used in the document are printed out in decreasing order of peculiarity along with an 
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very com­
mon English words is suppressed. 

The statistics for judging words are taken from the document itself, with some help from known 
statistics of English. The -0 option suppresses the help from English and should be used if the 
document is written in, for example, Urdu. 

The -1 option causes the final output to appear in a single column instead of three columns. 
The normal header and pagination is also suppressed. 

RQff(I) and nroff(I) control lines are ignored. Upper case is mapped into lower case. Quote 
marks, vertical bars, hyphens, and ampersands within words are equivalent to spaces. Words 
hyphenated across lines are put back together. 

/tmp/ttmp'?'? 
/usr/lib/salt 
/usr/lib/w2006 

SEE ALSO 
spell (I) 

BUGS 
Because of the mapping into lower case and the stripping of special characters, words may be hard 
to locate in the original text. 

The escape sequences of trQff(I) are not correctly recognized. 

SEE ALSO 
spell CD 

- 1 -



UNAME(I) PWB/UNIX Edition 1.0 

NAME 
uname - print name of current UNIX 

SYNOPSIS 
uname 

DESCRIPTION 

UNAME (I) 

Uname prints the current name of UNIX on the standard output file. It is mainly useful to deter­
mine what system one is using. 

SEE ALSO 
uname(II) 

_ 1 _ 



UNIQ (I) PWB/UNIX Edition 1.0 UNIQ (I) 

NAME 
uniq '- report repeated lines in a file 

SYNOPSIS 
uniq [ -ude [ +n ] [ -n ] ] [ input [ output] ] 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding 
copies of repeated lines are removed; the remainder is written on the output file. Note that 
repeated lines must be adjacent in order to be found; see sort (I) . If the -u flag is used, just the 
lines that are not repeated in the original file are output. The -d option specifies that one copy 
of just the repeated lines is to be written. The normal mode output is the union of the -u and 
-d mode outputs. 

The -e option supersedes -u and -d and generates an output report in default style but with 
each line preceded by a count of the number of times it occurred. 

The n arguments specify skipping an initial portion of each line in the comparison: 

SEE ALSO 

- n The first n fields together with any blanks before each are ignored.' A field is defined as a 
string of non-space, non-tab characters separated by tabs and spaces from its neighbors. 

+ n The first n characters are ignored. Fields are skipped before characters. 

sort (I), comm (I) 

.- 1 -



UNITS (I) 

NAME 
units - conversion program 

.sYNOPSIS 
units 

DESCRIPTION 

PWB/UNIX Edition 1.0 UNITS (I) 

Units converts quantities expressed in various standard scales to their equivalents in other scales. 
It works interactively in this fashion: 

You have: inch 
You want: cm 

* 2.54000e+OO 
/ 3. 93701e-Ol 

A quantity is specified as a mUltiplicative combination of units optionally preceded by a numeric 
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign: 

You have: 15 pounds force/in2 
You want: atm 

* 1.0206ge+OO 
/ 9. 79730e-Ol 

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not Cen­
tigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized, 
together with a generous leavening of exotica and a few constants of nature including: 

pi ratio of circumference to diameter 
c speed of light 
e charge on an electron 
g acceleration of gravity 
force same as g 
mole Avogadro's number 
water pressure head per unit height of water 
au astronomical unit 

'Pound' is a unit of mass. Compound names are run together, e.g. 'light year'. British units that 
differ from their US counterparts are prefixed thus: 'brgallon'. For a complete list of units, 'cat 
/usr/lib/units' . 

FILES 
/usr/lib/units 

- 1 -



VP (I) PWB/UNIX Edition 1.0 VP (I) 

NAME 
vp - Versatec print 

SYNOPSIS 
vp [-bbin] [-ooffset] [-ttspec] [-0] [-rname] cmd [args] 

DESCRIPTION 
Vp builds a sh(I) command file in directory /usr/vpd, and invokes /etc/vpd (the Versatec dae­
mon). The command file has the form: 

: /ogname 
vpbrk bin /ogname 
chdir curdir 
= p < /ogdir/ • path 
cmd args .. reform (spec -0 +pojfset 
cat /usr/vpd/.X 
[ echo shlile finished" mail /ogname >/dev/null ] 
[ echo shiile finished" write logname >/dev/null] 
rm -f shlile 

Here logname is your login name, curdir is your current directory when you executed vp, /ogdir is 
your login directory, shlile is the name that vp selects for the generated command file, bin is your 
data station bin (see below), offset is the offset for reformeD (see below), and cmd and args are the 
command and optional arguments specified on the command line. 

The Versatec daemon, letc/vpd, invokes sh(I) on the command files that vp queues up in lusr/vpd. 
The daemon redirects the standard output of each command file to the Versatec printer. 

The keyletter arguments are as follows: 

-b Your data station bin. 
-0 The offset for reform. The default is 12. 
-t The first tabspec for reform. The default is '--'. 
-0 A flag that includes the optional "mail" and "write" lines in the command file. 
-r The file named name is to be removed after printing is completed. 

Example: 

vp -bx 123 pr -184 myfile 

OPERATIONS NOTE: 

FILES 

BUGS 

Execute /etc/vpd after replacing paper in the Versatec printer. 

/usr/vpd/* 
/usr/vpd/ .X 
/usr/bin/vpbrk 
/dev/vpO 
/etc/vpd 

queued command files 
terminator 
break page generator 
Versatec printer 
daemon program 

There should be a vp(IV) and a vpd(VIII). 
Only printers with DMA interfaces are handled~ plotting is tolerated, but not supported. 
You' cannot pipe into vp. 

- 1 -



WAIT (I) PWB/UNIX Edition 1.0 

NAME 
wait - await completion of process 

SYNOPSIS 
wait 

DESCRIPTION 

WAIT (I) 

Wait until all processes started with & have completed, and report on abnormal terminations. 

Because the waif(II) system call must be executed in the parent process, the Shell itself executes 
waif, without creating a new process. 

SEE ALSO 
sh(I) 

BUGS 
After executing waif you are committed to waiting until termination, because interrupts and quits 
are ignored by all processes concerned. The only out, if the process does not terminate, is to kilt 
it (see kill (I» from another terminal or to hang up. 

- 1 -

• .! ... 



WC(I) PWB/UNIX Edition 1.0 WC(I) 

NAME 
we - word count 

SYNOPSIS 
we [ -I ] [ name ... ] 

DESCRIPTION 
We counts lines and words in the named files, or in the standard input if no name appears. A 
word is a maximal string of printing characters delimited by spaces, tabs or newlines. All other 
characters are simply ignored. 

The -I flag suppresses all output except the line count. 

- 1 -



WHAT (I) PWB/UNIX Edition 1.0 WHAT (I) 

NAME 
what - identify files 

SYNOPSIS 
what name ... 

DESCRIPTION 
What searches the given files for all occurrences of the pattern which get(I) substitutes for %Z% 
(this is @ (#) at this printing) and prints out what follows until the first "", '>', newline, or null 
character. For example, if the e program in file 'f.c' contains 

char iden_n "@(#)identification information"~ 

and f.c is compiled to yield 'f.o' and 'a.out', then the command 

what f.c f.o a.out 

will print 

f.c: 
identification information 

f.o: 
identification information 

a.out: 
identification information 

What is intended to be used in conjunction with the sees command get (I) , which automatically 
inserts identifying information, but it can also be used where the information is inserted manually. 

SEE ALSO 
get (1), help(I) 

DIAGNOSTICS 

BUGS 

Use he/pO) for explanations. 

It's possible that an unintended occurrence of the pattern @(#) could be found just by chance, 
but this causes no harm in nearly all cases. 

- 1 -

..... '. 



WHA TSNEW ( I ) PWB/UNIX Edition 1.0 WHA TSNEW ( I ) 

NAME 
whatsnew - compare file modification dates 

SYNOPSIS 
whatsnew [ -yymmdd] [listfile] 

DESCRIPTION 

FILES 

Whatsnew will compare the modification dates of files listed in lis(ji/e against the date supplied and 
report those files that have changed since that date. By default, the modification time of the file 
• newdale in the user's login directory will be used as the comparison date. Similarly, the file .new/­
ist in the user's login directory will be used if lisrfiie is omitted. 

If a date is not supplied and . newlist exists, it will be re-created. This will essentially update the 
default comparison date used by subsequent whatsnew commands. 

Entries in the list file should be relative to the login directory, one per line. If an entry is a direc­
tory, files in that directory will be compared. Only one level of directory searching is performed. 

Ilogindir/.newlist 
Ilogindir/.newdate 

DIAGNOSTICS 
"bad date" if the supplied date is earlier than 1970. 
"cannot read list" if the list file is not readable. 
"cannot access file status" if it can't. 

- 1 -



WHILE(I) PWB/UNIX Edition 1.0 WHILE (I) 

NAME 
while - shell iteration command 

SYNOPSIS 
while expr 

commands ... (may include break or continue) 
end 

DESCRIPTION 
While evaluates the expression expr, which is similar to (and a superset of) the expression 
described in if 0). If the expression is true, while does nothing, permitting the command(s) on 
following lines to be read and executed by the Shell. If the expression is false, the input file is 
effectively searched for the matching end command, and the Shell resumes execution of the 
command(s) on the line following the end. The while-end grouping may be nested up to three 
levels deep. 

In addition to the type of expression permitted by if, while treats a single, nonnull argument as a 
true expression, and treats a single null argument or lack of arguments as a false expression. 

The break command terminates the nearest enclosing while-end group, causing execution to 
resume after the nearest succeeding unmatched end. Exit from n levels is obtained by writing n 
break commands on the same line. 

The continue command causes execution to resume at a preceding while, i.e., the while that begins 
the smallest loop containing the continue. 

A common loop is that of processing arguments one at a time: see shijf(J). 

The following is a shell procedure that is also a filter. It reads a line at a time from the standard 
input that existed when the procedure was invoked, exiting on end-of-file. 

while 1 

end 

= a <--II exit 
commands using $a ... 

SEE ALSO 
go to (I) , if(I) , onintr(l), sh (I), shift (I), switch (I) 

DIAGNOSTICS 

BUGS 

while: missing end 
while: > 3 levels 
while: syntax errors like those of if. 
break: missing end 
break: used outside loop 
continue: used outside loop 
end: used outside loop 

A goto may be used to terminate one or more while-end groupings. Those who use it to branch 
into a loop will receive appropriately peculiar results. When an interrupt is caught and transfer to 
a label caused by use of onintr(J), all currently effective while-end loops are cancelled, i.e., the 
onintr performs a goto that breaks all loops. Neither while nor end may be hidden behind 
semicolons or used within other commands. 

- 1 -



WHO (I) 

NAME 
who 

SYNOPSIS 

who is on the system 

who [ who-file] [ am I ] 

DESCRIPTION 

PWB/UNIX Edition 1.0 WHO (I) 

Who, without an argument, lists the name, terminal channel, and login time for each current 
UNIX user. 

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is 
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a 
record of all the logins since it was created. Then who lists logins, logouts, and crashes since the 
creation of the wtmp file. Each login is listed with user name, terminal name (with '/devl' 
suppressed), and date and time. When an argument is given, logouts produce a similar line 
without a user name. Reboots produce a line with 'x' in the place of the device name, and a fos­
sil time indicative of when the system went down. 

With two arguments, who behaves as if it had no arguments except for restricting the printout to 
the line for the current terminal. Thus 'who am I' (and also 'who are you') tells you who you are 
logged in as. 

FILES 
/etc/utmp 

SEE ALSO 
login (I), init (VIII) 

- 1 -



WRITE (I) PWB/UNIX Edition 1.0 WRITE (I) 

NAME 
write - write to another user 

SYNOPSIS 
write user [ ttyno ] 

DESCRIPTION 
Write copies lines from your terminal to that of another user. When first called, it sends the mes­
sage 

message from yourname ... 

The recipient of the message should write back at this point. Communication continues until an 
end of file is read from the terminal or an interrupt is sent. At that point write writes 'EOT' on 
the other terminal and exits. 

If you want to write to a user who is logged in more than once, the ttyno argument may be used 
to indicate the last character of the appropriate terminal name. 

Permission to write may be denied or granted by use of the mesg(I) command. At the outset 
writing is allowed. Certain commands, in particular nroff and pr, disallow messages in order to 
prevent messy output. 

If the character '!' is found at the beginning of a line, write calls the Shell to execute the rest of 
the line as a command. 

The following protocol is suggested for using write: when you first write to another user, wait for 
that user to write back before starting to send. Each party should end each message with a dis­
tinctive signal (0) for 'over' is conventional) that the other may reply. (00) (for 'over and out') 
is suggested when conversation is about to be terminated. 

FILES 
letc/utmp 
Ibin/sh 

SEE ALSO 

to find user 
to execute '!' 

mesg (I), who (I), mail (I) 

- 1 -

.' ",.-



XARGS (I) PWB/UNIX Edition 1.0 XARGS (I) 

NAME 
xargs - construct argument list(s) and execute command 

SYNOPSIS 
xargs [flags] [command [initial-args] ] 

DESCRIPTION 

Xargs combines the fixed initial-args with args read from standard input to execute the specified 
command one or more times. The command can either be executed for each line of args read, 
with all args read for each automatically-determined group of (at most size characters of) args 
read, or for each user-specifiable number of args read. 

Specifical1y, xargs reads the standard input for arguments, using them to construct one or more 
arg lists with initial-args (if any), and executes command with each such constructed argument list~ 
the directory containing command, which may also be a Shell file, must be in one's .path file. If 
command is omitted, Ibin/echo is used. Excepting the use of the insert option (-i flag, see 
below), arguments read in from standard input are defined to be contiguous strings of characters 
delimited by one or more blanks, tabs, or newlines~ however, quoted strings (including embedded 
blanks or tabs) may also form all or part of an argument. 

Excepting the -I option, each argument list will be constructed starting with the initlal-args, fol­
lowed by an appropriate number of arguments read from standard input. Flags -i, -I, and -n 
modify how args are selected for each command invocation~ when none of these flags are coded, 
each arg list is built from the continuously .. read args from standard input, up to size characters per 
list maximum, until there are no more args. When there are flag conflicts (e.g., -I vs. -n), the 
last flag has precedence. Flag values are: 

-x 

-1 

-ireplstr 

-nnumber 

-t 

-p 

Causes xargs to terminate· if any arg list would be greater than size characters~ - x 
is forced by the options -i and -1. When neither of the options -i, -1, or -n 
are coded, the total length of all args must be within the size limit. 

Command is executed for each non-null line of args from standard input. A line 
is considered to end with the first newline unless the last character of the line is a 
blank or a tab~ in either of these cases, the blank/tab signals continuation 
through the next non-null line. Option -x is forced. 

Insert mode: command is executed for each line from standanj input, taking the 
~ntire line as one entity, inserting it in initial-args for each occurrence of rep/str. 
A maximum of 5 args in initial-argsmay each contain one or more instances of 
replstr. Blanks and tabs at the beginning of each line are thrown away, as are 
empty lines. Constructed args may not grow larger than 255 characters, and 
option -x is also forced. '{}' is assumed for rep/str if not specified. 

Execute command using as many standard input args as possible, up to number 
args maximum. Fewer args will be used if their total size is greater than size 
characters, and for the last invocation if there are fewer than number args remain­
ing. If option -x is also coded, each number args must fit in the size limitation, 
else xargs terminates execution. 

Trace mode: the command and each constructed arg list are echoed to file descrip­
tor 2 just prior to their execution. 

Prompt mode: the user is asked whether to execute command each invocation. 
Trace mode (-0 is turned on to print the command instance to be executed, 
followed by the prompt '? .. '. A reply of y (optionally followed by anything) 



XARGS (I) PWB/UNIX Edition 1.0 XARGS (I) 

will execute the command~ anything else, including just a carriage return, skips 
that particular invocation of command. 

-ssize The maximum total size of each arg list is set to size characters~ size must be a 
positive integer less than or equal to 470. If -s is not coded, 470 is taken as the 
default. Note that the character count for size includes one extra character for 
each arg and the count of characters in the command name. 

-eeofstr Eo/str is taken as the logical end-of-file string. Underbar ( ) is assumed for the 
logical EOF string if -e is not coded. -e with no eofstr coded turns off the logi­
cal EOF string capability (underbar is taken literally). Xargs reads standard input 
until either end-of-file or the logical EOF string is encountered. 

In args read from standard input, characters may be escaped (by a '\ ') outside of quoted strings~ 
quoted strings are stripped of the delimiting quotes, with the contents taken literally. 

Xargs will terminate if either it receives a return code of minus one from, or if it cannot execute, 
command. 

EXAMPLES 

The following will copy all files from directory $1 to directory $2, and echo each move command 
just before doing it: 

Is $1 I xargs -i -t mv SI/{} S2/{} 

The following will combine the output of the parenthesized commands onto one line, which is 
then echoed to the file log: 

(logname; date; echo SO S*) I xargs > > log 

The user is asked which files in the current directory are to be archived and archives them into 
arch (1.) one at a time, or (2.) many at a time. 

1. Is I xargs -p -1 ar r arch 
2. Is I xargs -p -I I xargs ar r arch 

The following will execute com with successive pairs of args originally typed as Shell arguments: 

echo $* I xargs -n2 com 

DIAGNOSTICS 

arg list too long 
command not executed or returned -1 
Missing quote? <string> 
too many argswith rep/sIr 
insert-buffer overflow 
max arg size with insertion via rep/sfr exceeded 
unknown option: < option> 
o < max-tine-size <=- 470: <-s option as coded> 
#args must be positive int: < -n option as coded> 
can't read from tty for -p 



YACC(I) PWB/UNIX Edition 1.0 YACC (I) 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yacc [ - vrd ] [grammar] 

DESCRIPTION 
Yaee converts a context-free grammar into a set of tables for a simple automaton which executes 
an LR (I) parsing algorithm. The grammar may be ambiguous~ specified precedence rules are 
used to break ambiguities. 

The output is y.tab.e, which must be compiled by the C compiler and loaded with any other rou­
tines required (perhaps a lexical analyzer) and the yaee library: 

cc y.tab.c other.o -ly 

If the -v flag is given, the file y.output is prepared. which contains a description of the parsing 
tables and a report on conflicts generated by ambiguities in the grammar. 

The -r flag causes yaee to accept grammars with Ratfor actions, and produce Ratfor output on 
y. tab.r. Typical usage is then 

rc y.tab.r other.o 

If the -d flag is used, the file y.tab.h is generated with the define statements that associate the 
yaee-assigned "token codes" with the user-declared "token names". This allows source files 
other than y.tab.c to access the token codes. 

SEE ALSO 
lex (I) 

FILES 

LR ParSing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974. 
YACC - Yet Another Compiler Compiler by S. C. Johnson. 

y.output 
y.tab.c 
y.tab.r 
y.tab.h 
yacc.tmp, yacc.acts 
Ilib/liby.a 
I usr I Ii bl yaccopar 
I usr I Ii bl yaccrpar 

when rat for output is obtained 
defines for token names 
temporary files 
runtime library for compiler 
parser prototype for C programs 
parser prototype for Ratf or programs 

DIAGNOSTICS 

BUGS 

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output~ a 
more detailed report is found in the y.output file. 

Because file names are fixed, at most one yaee process can be active in a given directory at a time. 

- 1 -


	00_002
	00_003
	00_005
	00_006
	00_007
	00_008
	00_009
	00_011
	00_012
	00_013
	00_014
	00_015
	00_016
	00_017
	00_018
	00_019
	00_020
	00_021
	00_022
	00_023
	00_024
	00_025
	00_026
	00_027
	00_028
	00_029
	00_030
	00_031
	00_032
	00_033
	00_034
	00_035
	00_036
	00_037
	00_038
	00_039
	00_040
	00_041
	00_042
	00_043
	00_044
	00_045
	00_046
	01_001-01_450
	01_002-01_adb
	01_002-02
	01_002-03
	01_002-04
	01_002-05
	01_002-06
	01_003-01_admin
	01_003-02
	01_003-03
	01_004-01_ar
	01_005-01_as
	01_006-01_banner
	01_007-01_bas
	01_007-02
	01_007-03
	01_007-04
	01_008-01_bc
	01_008-02
	01_009-01_bdiff
	01_010-01_bfs
	01_010-02
	01_010-03
	01_011-01_cal
	01_012-01_cat
	01_013-01_cb
	01_014-01_cc
	01_014-02
	01_015-01_cd
	01_016-01_cdb
	01_016-02
	01_017-01_chdir
	01_018-01_chghist
	01_019-01_chgrp
	01_020-01_chmod
	01_021-01_chown
	01_022-01_cmp
	01_023-01_col
	01_024-01_comb
	01_024-02
	01_025-01_comm
	01_026-01_cp
	01_027-01_cpio
	01_028-01_cpx
	01_029-01_cref
	01_029-02
	01_030-01_crypt
	01_031-01_csplit
	01_032-01_date
	01_033-01_db
	01_033-02
	01_033-03
	01_034-01_dc
	01_034-02
	01_035-01_dd
	01_035-02
	01_036-01_delta
	01_036-02
	01_037-01_deroff
	01_038-01_df
	01_039-01_diff
	01_040-01_diff3
	01_041-01_diffmark
	01_041-02
	01_041-03
	01_042-01_dsw
	01_043-01_du
	01_044-01_echo
	01_045-01_ed
	01_045-02
	01_045-03
	01_045-04
	01_045-05
	01_045-06
	01_045-07
	01_046-01_egrep
	01_047-01_eqn
	01_047-02
	01_048-01_equals
	01_048-02
	01_049-01_exit
	01_050-01_expr
	01_051-01_fc
	01_051-02
	01_051-03
	01_052-01_fd2
	01_053-01_fgrep
	01_054-01_file
	01_055-01_find
	01_055-02
	01_056-01_gath
	01_057-01_get
	01_057-02
	01_057-03
	01_057-04
	01_057-05
	01_058-01_goto
	01_059-01_graph
	01_059-02
	01_060-01_grep
	01_061-01_gsi
	01_061-02
	01_062-01_help
	01_063-01_hp
	01_064-01_if
	01_064-02
	01_065-01_kill
	01_066-01_ld
	01_066-02
	01_067-01_lex
	01_067-02
	01_068-01_ln
	01_069-01_login
	01_070-01_loginfo
	01_071-01_ls
	01_071-02
	01_072-01_m4
	01_072-02
	01_073-01_mail
	01_074-01_make
	01_074-02
	01_075-01_man
	01_076-01_mesg
	01_077-01_mkdir
	01_078-01_mm
	01_078-02
	01_079-01_mv
	01_080-01_neqn
	01_081-01_newgrp
	01_082-01_next
	01_083-01_nice
	01_084-01_nm
	01_085-01_nohup
	01_086-01_nroff
	01_086-02
	01_087-01_od
	01_088-01_onintr
	01_089-01_passwd
	01_090-01_plot
	01_091-01_pr
	01_092-01_prof
	01_093-01_prt
	01_093-02
	01_093-03
	01_094-01_ps
	01_094-02
	01_095-01_ptx
	01_096-01_pump
	01_097-01_pwd
	01_098-01_quiz
	01_099-01_rc
	01_100-01_reform
	01_100-02
	01_100-03
	01_101-01_regcmp
	01_102-01_rgrep
	01_103-01_rjestat
	01_104-01_rm
	01_105-01_rmdel
	01_106-01_rmdir
	01_107-01_roff
	01_107-02
	01_108-01_rsh
	01_109-01_sccsdiff
	01_110-01_sed
	01_110-02
	01_110-03
	01_111-01_send
	01_111-02
	01_111-03
	01_111-04
	01_111-05
	01_112-01_sh
	01_112-02
	01_112-03
	01_112-04
	01_112-05
	01_112-06
	01_112-07
	01_113-01_shift
	01_114-01_size
	01_115-01_sleep
	01_116-01_sno
	01_117-01_sort
	01_118-01_spell
	01_119-01_spline
	01_120-01_split
	01_121-01_strip
	01_122-01_stty
	01_123-01_su
	01_124-01_sum
	01_125-01_switch
	01_126-01_sync
	01_127-01_tabs
	01_127-02
	01_127-03
	01_127-04
	01_128-01_tail
	01_129-01_tbl
	01_129-02
	01_130-01_tee
	01_131-01_time
	01_132-01_tp
	01_132-02
	01_133-01_tr
	01_134-01_troff
	01_134-02
	01_135-01_tty
	01_136-01_typo
	01_137-01_uname
	01_138-01_uniq
	01_139-01_units
	01_140-01_vp
	01_141-01_wait
	01_142-01_wc
	01_143-01_what
	01_144-01_whatsnew
	01_145-01_while
	01_146-01_who
	01_147-01_write
	01_148-01_xargs
	01_148-02
	01_149-01_yacc

