UINIIX syeiem v

DOCUMENTER’'S WORKBENCH™ Software
Text Formatters Reference

Western Electric

December 1983
307-151 Issue 1

U [N] [I System V
Release 2.0

DOCUMENTER’'S WORKBENCH™ Software
Text Formatters Reference

©1983 Western Electric
All Rights Reserved .
Printed in USA Western Electric

UNIX is a trademark of Bell Laboratories

DOCUMENTER’S WORKBENCH is a trademark of Western Electric

Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6

CONTENTS

INTRODUCTION
NROFF/TROFF TUTORIAL

NROFF AND TROFF USER
MANUAL

DEVICE-INDEPENDENT TROFF
SROFF TUTORIAL GUIDE
SROFF REFERENCE MANUAL

TEXT FORMATTERS

Chapter 1

INTRODUCTION

...

Chapter 1
INTRODUCTION

This book is a guide and reference manual for the text formatters
that are provided with the UNIX* system DOCUMENTER’S
WORKBENCH{ software. This software provides an integrated set of
text processing tools for easy, flexible, and professional
documentation production. Books that describe other aspects of the
DOCUMENTER’S WORKBENCH software are:

e Introduction and Reference Manual—Select Code 307-150
e Macro Packages Reference—Select Code 307-152

e Preprocessors Reference—Select Code 307-153.

The beginning user should refer to the DOCUMENTER’S
WORKBENCH software Introduction and Reference Manual for a
better overall description of the text processing tools available on the
UNIX system.

TEXT FORMATTERS

On the DOCUMENTER’S WORKBENCH software, the text
formatting programs provide control of text format by the use of
requests (sometimes called formatter primitives) that are mixed in
with the text to be formatted. These requests normally consist of
two lowercase letters preceded by a period, on a line by themselves in
the text file. The request may be followed on the same line by
numbers or letters that provide the formatter with more information
about the function of the request. The formatter requests provide a
low-level control of text formatting for items such as indention, line
length, spacing, filling, adjusting, centering, and titles.

* Trademark of Bell Laboratories.
1 Trademark of Western Electric.

INTRODUCTION

The

text formatters covered in this book are:

Chapter 2 (NROFF/TROFF TUTORIAL)—Presents examples and
explanations of formatting activities that you would use with
nroff and troff.

Chapter 3 (NROFF/TROFF USER MANUAL)—Provides a
description of nroff, a formatter designed to produce output for
simple typewriter-like terminals, troff, a formatter designed to
produce output for phototypesetters that is phototypesetter
independent, and otroff, a formatter designed to produce output
for the Wang Laboratories CAT phototypesetter only. The
language of these three formatters is very similar and in most
cases they are compatible.

Chapter 4 (DEVICE INDEPENDENT TROFF)—Provides a
description of the troff formatter in which the differences
between troff and otroff are pointed out.

Chapter 5 (SROFF TUTORIAL)—Presents examples and
explanations of the capablities of sroff.

Chapter 6 (SROFF USER MANUAL)—Provides a description of
the sroff formatter which is designed to produce output for
simple printers. The sroff formatter is faster, but simpler, than
the nroff text formatter.

Chapter 2

NROFF/TROFF TUTORIAL

PAGE
OVERVIEW ...ttt ittt teonsteoessscsennnnsennans 2-1
TUTORIAL TOPICSttt tnentocacscsensnsesnnnees 2-3
1. Point Sizesand Line Spacingcciiiiiiiiiiiiinnnn. 2-3
2. Fonts and Special Charactersiiiiieeencennncncas 2-5
3. Indentsand LineLengthsciiiiiiiiiiiieeiiinenns 2-7
S Y T 2-9
5. Local Motionsiiiiiiiiiiiiiiieiiieeensssenneansnnnnns 2-10
L 15§ 1 - 2-14
7. Introduction to Macrosccceiiiiieneeracionecnonana 2-15
8. Titles, Pages, and Page Numberingciiiee.. 2-17
9. Number Registers and Arithmetico 2-21
10. Macros With Arguments.ciiiiiiiiiiinnininnnnnnns 2-24
11. Conditionalscitiiiiiiiiiiiiiiiiiiiinnnesennansanas 2-27
12. Environmentst tiiiiiiittiieninnnennnnnnnannns 2-29
13. Diversions..........ccitiiiiiiiiinnnnnneeensenssnnncnnnnns 2-30
TUTORIAL EXAMPLES ittt tiittiitaroeeennessnsnncsannns 2-32
1. Page Margins........ ..t iiiiiiiiiiiiinnneeensneencnnnnns 2-32
2. ParagraphsandHeadingscciitiiiinrrennenennnn 2-34
3. Multiple Column Qutputottt neensnonssaanns 2-36
4. Footnote Processingc.ciiriuiteeeneennennnenennnn 2-37
5. Last Pagec.c.uuiiiiiieeieieteeaeaaaencesasssssssnans 2-40

Chapter 2
NROFF/TROFF TUTORIAL

OVERVIEW

An important rule to remember when using the troff formatter is to
use it through an intermediary. In many ways the troff formatter
resembles an assembly language, remarkably powerful and flexible,
but nonetheless such that many operations must be specified at a
level of detail and in a form that is difficult to use.

There are programs that provide an interface to the troff formatter
for the majority of users for three special applications.

e The eqn program provides an easy to learn language for
typesetting mathematics. The user does not need to know the
troff formatter to typeset mathematics.

e The tbl program provides an easy to learn language for
producing tables of arbitrary complexity.

e The pic program provides an easy to learn language for
typesetting graphies that includes several picture elements such
as, boxes, circles, ellipses, arcs, lines, and arrows. It allows
arbitrary positioning and sizing of picture elements and text.

These three programs are nroff/troff preprocessors. More
information on the preprocessors can be found in the
DOCUMENTER’S WORKBENCH Software Preprocessors
Reference—Select code 307-153.

For producing general documents, there are a number of macro
packages that define formatting rules and operations for specific
styles of documents and reduce the amount of direct contact with the
troff formatter. In particular, the Memorandum Macros (MM)
package provides most of the facilities needed for a wide range of
document preparation. There are also packages for viewgraphs and
other special applications. These packages are easier to use than the

2-1

NROFF/TROFF TUTORIAL

troff formatter language. They should be considered first. More
information on the macro packages is in the Macro Packages
Reference—select code 307-152.

In the few cases where existing packages do not accomplish the job,
the solution is not to write an entirely new set of troff instructions
from scratch but to make small changes to adapt packages that
already exist. In accordance with this philosophy, the part of the
troff formatter described here is only a small part of the whole,
although it tries to concentrate on the more useful parts. The
emphasis is on doing simple things and making incremental changes
to what already exists.

To use the troff formatter, the actual text must be prepared plus
some information that describes how it is to be printed. Text and
formatting information are intimately intertwined. Most commands
to the troff formatter are placed on a line separate from the text
itself, one command per line beginning with a period. For example:

Some text.
.ps 14
Some more text.

will change the point size of the letters being printed to 14 point (one
point is 1/72 of an inch).

Occasionally, something special occurs in the middle of a line, such as
an exponent. The backslash (\) is used to introduce troff commands
and special characters within a line of text.

2-2

NROFF/TROFF TUTORIAL

TUTORIAL TOPICS

1. Point Sizes and Line Spacing

The .ps request sets the point size. Since one point is 1/72 inch, 6-
point characters are 1/12 inch high, and 36-point characters are 1/2
inch high. There are 15 point sizes with the otroff formatter: 6, 7, 8,
9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. Available point sizes
with the troff formatter depend on the typesetter. Point size is
rounded to the closest valid value, if the number following the .ps
request is not a legal value.

If no number follows the .ps request, point size reverts to the
previous value. The troff and otroff processors begin with point
size 10. Point size can also be changed in the middle of a line or a
word with a \s escape sequence. The \s sequence should be followed
by a legal point size, except that the \sO sequence causes the size to
revert to its previous value. The \s1011l sequence is understood
correctly as “point size 10, followed by an 11”.

Relative size changes are also legal and useful:
\s-2UNCLE\s+2

temporarily decreases the size by two points, then restores it.
Relative size changes have the advantage that the size difference is
independent of the starting size of the document. The amount of the
relative change is restricted to a single digit.

Another parameter that determines what the type looks like is the
spacing between lines. It is set independently of the point size.
Vertical spacing is measured from the bottom of one line to the
bottom of the next. The command to control vertical spacing is .vs.
For running text, it is usually best to set the vertical spacing about
20 percent larger than the character size. For example, a usable
combination would be

.ps 9
.vs 11p

2-3

NROFF/TROFF TUTORIAL

Vertical spacing is partly a matter of taste, depending on how much
text is to be squeezed into a given space, and partly a matter of
traditional printing style. By default, the troff and otroff
formatters use a point size of 10 and a vertical spacing of 12. When
.vs is used without arguments, vertical spacing reverts to the
previous value.

The .sp request is used to get extra vertical space. Used alone, it
gives one extra blank line (at whatever value .vs is set). Since that
may be more or less than desired, .sp can be followed by information
about how much space is wanted. For instance:

.sp 1.51 means “a space of 1.5 inches”
(most troff processor installations
understand decimal fractions)

.sp 2i means “two inches of vertical space”
.sp 2p means “two points of vertical space”
.Sp 2 or .sp 2v means “two vertical spaces”

(two of whatever .vs is set).

These same scale factors can be used after the .vs request to define
line spacing. Scale factors can be used after most commands that
deal with physical dimensions.

All size numbers are converted internally to machine units, which,
for the Wang C/A/T phototypesetter and otroff, are 1/432 inch (1/6
point). For most purposes, this is enough resolution to provide good
accuracy of representation. The situation is not quite so good
vertically, where resolution is 1/144 inch (1/2 point). With the troff
formatter, the resolution is typesetter dependent. The APS-5
typesetter has a resolution of 723 units per inch.

2-4

(NROFF/TROFF TUTORIAL

2. Fonts and Special Characters

The otroff processor and the Wang C/A/T phototypesetter allows
four different fonts at one time. Normally, three fonts (Times
Roman, Times Italic, and Times Bold) and one collection of special
characters are permanently mounted.

With the troff formatter, available fonts and names are dependent
upon the typesetter. Refer to Chapters 3 and 4 of this book for a
more complete description of fonts, point sizes, and differences
between the otroff and troff formatters.

The otroff processor prints in Roman unless otherwise commanded.
To change the font, the .ft request is used:

ft B switch to bold font.

ft 1 switch to italics font.
ftR switch to Roman font.
ft P return to previous font.
At return to previous font.

" The underline request (.ul) causes the next input line to print in
italies. It can be followed by a number to indicate that more than
one line is to be italicized.

Fonts can be changed within a line or word with the \f in-line
sequences. For instance:

boldface text
is produced by
\fBbold\fIface\fR text

If it is desired to do this so the previous font is left undisturbed,
extra \fP sequences should be inserted:

\fBbold\fP\fIface\fP\fR text\fP

NROFF/TROFF TUTORIAL

Since only the immediately previous font is remembered, the previous
font must be restored after each change or it will be lost. The same
is true of .ps and .vs when used without an argument.

There are other fonts available besides the standard set. The .fp
request tells the troff formatter which fonts are actually mounted on
the typesetter. For example:

fp3 H

says that the Helvetica font is mounted on position 3. Appropriate
fp requests should appear at the beginning of a document if
standard fonts are not used.

It is possible to make a document relatively independent of the actual
fonts used to print it by using font numbers instead of names. For
example: \f3 and .ft3 mean “whatever font is mounted at position 3”.
Normal settings are Roman font on 1, italic on 2, bold on 3, and
special on 4 (otroff).

There is also a way to get synthetic bold fonts by overstriking letters
with a slight offset. The .bd request addresses this function.

Special characters have 4-character input names beginning with \(
and may be inserted anywhere in the text. In particular, Greek
letters are all of the form \(*—, where — is an uppercase or lowercase
Roman font letter reminiscent of the Greek. A list of these special
names is given in Chapter 3, Figure 3-5.

Some characters are automatically translated into others: grave and
acute accents become open and close single quotation marks.
Similarly, a typed minus sign becomes a hyphen. The \— input will
print an explicit minus sign. A \e entry causes a backslash to be
printed.

2-6

NROFF/TROFF TUTORIAL

3. Indents and Line Lengths

The troff processor starts with a line length of 6.5 inches, which is
too wide for 8-1/2 inch by 11-inch paper. The .11 request resets the
line length. For example:

Al 6i

As with the .sp request, the actual length can be specified in several
ways; inches are probably the most intuitive. The maximum line
length provided by the C/A/T phototypesetter and otroff is 7.54
inches. Again, this may be different when using troff with another
phototypesetter. To use the full width, the default physical left
margin (page offset) must be reset. This is done by the .po request.
The margin is normally slightly less than 1 inch from the left edge of
the paper. The .po O request sets the offset as far to the left as it
will go.

The indent request (.in) causes the left margin to be indented by
some specified amount from the page offset. If the .in request is
used to move the left margin to the right and the .11 request is used
to move the right margin to the left, offset blocks of text are
obtained. As an example:

.in 0.51

A1 -0.51

text to be set into a block
A1 +0.51

in -0.51

will create a block of text that looks like:

A clergyman at Cambridge preached a sermon which
one of his auditors commended. “Yes,” said a
gentleman to whom it was mentioned, “it was a good
sermon, but he stole it.” This was told to the
preacher. He resented it, and called the gentleman to
retract what he had said. “I am not,” replied the
aggressor, “very apt to retract my words, but in this
instance I will. I said, you had stolen the sermon; I
find I was wrong; for on returning home and referring

2-7

NROFF/TROFF TUTORIAL

to the book whence I thought it was taken, I found it
there.”

The use of + and — changes the previous setting by the specified
amount rather than just overriding it. The distinction is quite
important:

¢ 1l +1i makes lines 1 inch longer

e Il 1i makes lines 1 inch long.

With the .in, .11, and .po requests, the previous value is used if no
argument is specified.

The .ti request is used to temporarily indent a single line. The
default unit for .ti, as for most horizontally oriented requests (.11, .in,
.po), is ems. An em is roughly the width of the letter m in the
current point size. Precisely, an em in size p is p points. Although
inches are usually clearer than ems to people who do not set type for
a living, ems have a place: they are a measure of size that is
proportional to the current point size. The ems unit is used to make
text that keeps its proportions regardless of point size. The ems can
be specified as scale factors directly, as in .ti 2.5m.

Lines can be indented negatively if the indent is already positive:
ti-38i

causes the next line to be moved back 3/10 of an inch.

To make a decorative initial capital that is three lines high:

e The whole paragraph is indented.
e The initial character is moved back with the .ti request.

e The initial character is made bigger (e.g., \s36N\s0) and moved
down from its normal position.

2-8

' NROFF/TROFF TUTORIAL)

4. Tabs

Tabs (the ASCII horizontal tab character) can be used to produce
output in columns or to set the horizontal position of output.
Typically, tabs are used only in unfilled text. Tab stops are set by
default every half inch from the current indent but can be changed
by the .ta request. Tab stops are set every inch, for example, with
the following entry:

.ta 1i 2i 3i 4i 5i 61

Tab stops are left justified (as on a typewriter), so lining up columns
of right-justified numbers can be a problem. If there are many
numbers or if a table layout is needed, the table formatting program
(tbl) is available.

A handful of numeric columns can be produced by preceding every
number with enough blanks to make it line up when typed. For
instance:

.nf

.ta 11 21 3i
\O\O1@\0\02@ \ 0\ 03
\040@ \ 050 \ 060
700(@ 800 900

fi

Each leading blank is a \O escape sequence. This character does not
print but has the same width as a digit. The @ symbol represents a
tab character. When printed, the above input produces:

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with some character
other than blanks by setting the tab replacement character with the
.te request:

.ta 21 3i

e \(ru \" the “\(ru” string is the rule (_) character
Name@®@® Age®

2-9

NROFF/TROFF TUTORIAL

produces:

To reset the tab replacement character to a blank, the .tc request
(with no argument) is used. Lines can also be drawn with the \1
escape sequence as described in paragraph 5.4.

The troff processor provides a general mechanism called “fields” for
setting up complicated columns. This is used by the tbl program.

5. Local Motions

The troff processor provides a number of escape sequences for
placing characters of any size at any place. They can be used to draw
special characters or to tune the output for a particular appearance.
Most of these sequences are straightforward but messy to read and
tough to type correctly.

5.1 Vertical Motions

If the eqn program is not used, subscripts and superscripts are most
easily done with the half-line local motions \u and \d sequences. To
go back up the page half a point size, insert a \u at the desired place;
to go down half a point size, insert a \d. The \u and \d should
always be used in pairs. Since \u and \d refer to the current point
size, they should either be both inside or both outside the size
changes. Otherwise, an unbalanced vertical motion will result.

Sometimes the space given by \u and \d is not the right amount.
The \v sequence can be used to request an arbitrary amount of
vertical motion. The in-line sequence \v’N’ causes motion up or
down the page by the amount specified in N. For example, to move
the character “N” down, the following would apply

Ain +0.61 \" indent paragraph
11 -0.3i \" shorten lines
.ti -0.3i \" move N back

\v2\s36N\sO\v’'-2’ott met Shott, Nott
shot at Shott...

2-10

NROFF/TROFF TUTORIAL

A minus sign causes upward motion, while no sign or a plus sign
means down the page. Thus \v’—2’ causes an upward vertical motion
of two line spaces.

There are other ways to specify the amount of motion:

\Wv'0.1i’
\v'3p"
\v'—0.5m’

are all legal. The scale specifier i, p, or m goes inside the quotes.
Any character can be used in place of the quotes. This is true of all
other troff formatter commands and sequences described in this
section.

Since the troff formatter does not take within-the-line vertical
motions into account when figuring where it is on the page, output
lines can have unexpected positions if the left and right ends are not
at the same vertical position. Thus \v, like \u and \d, should always
balance upward vertical motion in a line with the same amount in
the downward direction.

5.2 Horizontal Motions

Arbitrary horizontal motions are also available, \h is analogous to
\v, except that the default scale factor is ems instead of line spaces.
As an example,

\n'—0.1i"

causes a backward motion of a tenth of an inch. In a practical
situation, when printing the mathematical symbol > >, the default
spacing is too wide, so eqn replaces this by

>\h'—0.3m"' >

to produce >>.

2-11

NROFF/TROFF TUTORIAL

Frequently, \h is used with the “width function” \w to generate
motions equal to the width of some -character string. The
construction

\w'thing'

is a number equal to the width of “thing” in machine units (1/432
inch). All troff formatter computations are ultimately done in these
units. To move horizontally, the width of an x,

' \w'x'u’'

is used. Since the default scale factor for all horizontal dimensions is
m (ems), u (machine units) must be used, or the motion produced will
be too large. Nested quotes are acceptable to the troff formatter as
long as none are omitted. An example of this kind of construction
would be to print the string .sp by overstriking with a slight offset.
The following example prints .sp, moves left by the width of .sp,
moves right one unit, and prints .sp again:

.sp\h'\w'.sp'u'\h'1u'.sp

There are several special-purpose troff formatter sequences for local
motion:

e The \O is an unpaddable (never widened or split across a line by
line justification and filling) white space the same width as a
digit.

o The \<space> is an unpaddable character the width of a space.

e The \lis 1/6 em wide.

e The \ is 1/12 em wide.

o The \& has zero width and is useful in entering a text line that
would otherwise begin with a ..

2-12

NROFF/TROFF TUTORIAL

o The \o sequence causes up to nine characters to be overstruck,
centered on the widest. This is for accents such as:

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique
which produces
systéme téléphonique

The accents \(ga and \(aa (\” and \") are just one character to
the troff formatter.

5.3 Overstrikes

Overstrikes can be made with another special convention, \z, the
zero-motion sequence. Normal horizontal motion is suppressed with
the \zx after printing the single character x, so another character
can be laid on top of it. Although sizes can be changed within \o,
characters are centered on the widest, and there can be no horizontal
or vertical motions. The \z may be the only way to get what is
needed.

A more ornate overstrike is given by the bracketing function \b,
which piles up characters vertically, centered on the current baseline.
Thus big brackets are obtained by constructing them with piled-up
smaller pieces.

5.4 Drawing Lines

A convenient facility for drawing horizontal and vertical lines of
arbitrary length with arbitrary characters is provided by the troff
and otroff formatters. A 1-inch long line is printed with a \I’1{’
sequence. The length can be followed by the character to use if the _
is not appropriate. The \I’0.5i.” sequence draws a 1/2 inch line of
dots. Escape sequence \L is analogous, except that it draws a
vertical instead of a horizontal line.

The troff formatter provides an even better facility for drawing lines
using the \D escape sequence. This funtion can also be used to draw

arcs, circles, and ellipses.

2-13

NROFF/TROFF TUTORIAL

6. Strings

If a paper contains a large number of occurrences of an acute accent
over a letter e, typing \o" e\’" for each é would be a nuisance.
Fortunately, the troff formatter provides a way to store an arbitrary
collection of text in a “string”, and thereafter use the string name as
a shorthand for its contents. Strings are one of several troff
formatter mechanisms whose judicious use permits typing a
document with less effort and organizing it so that extensive format
changes can be made with few editing changes.

A reference to a string is replaced by whatever text the string was
defined as. Strings are defined with the .ds request. The line

.ds e \o"e\'"
defines the string e to have the value \o" e\’".

String names may be either 1- or 2-characters long. They are
referred to by *x for 1-character names or *(xy for 2-character
names. Thus to get

teléphone

given the definition of the string e as above,
t\#*1l *ephone

is the input.

If a string must begin with blanks, it is defined as
.ds xx " text

The double quote signals the beginning of the definition. There is no
trailing quote; the end of the line terminates the string.

2-14

NROFF/TROFF TUTORIAL

A string may be several lines long. If the troff formatter encounters
a \ at the end of any line, it is thrown away and the next line is
added to the current one. A long string can be made by ending each
line except the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings or even in terms of
themselves.

7. Introduction to Macros

In its simplest form, a macro is a shorthand notation similiar to a
string. For instance, if every paragraph is to start in exactly the
same way, with a space and a temporary indent of two ems, the
following requests would perform the operation:

.Sp
.ti +2m

To save typing these requests every time used, they could be collapsed
into one shorthand line, such as a troff command, .PP. The .PP is
called a macro. The way to tell the troff formatter what .PP means
is to define it with the .de request:

.de PP

.Sp
.ti +2m

The first line names the macro (PP in this example). It is in
uppercase so it will not conflict with any name that the troff
formatter might already know about. The last line (..) marks the end
of the definition. In between is the text which is inserted whenever
the troff formatter encounters the .PP macro call. A macro can
contain any mixture of text and formatting requests.

2-15

NROFF/TROFF TUTORIAL

The definition of a macro has to precede its first use; undefined
macros are ignored. Names are restricted to one or two characters.

Using macros for commonly occurring sequences of requests is
‘important since it saves typing and makes later changes easier. If it
is decided that in producing a document the paragraph indent is too
small, the vertical space is too large, and Roman font should be
forced, only the definition of .PP needs to be changed to read

.de PP \" paragraph macro
.Sp 2p

.t +3m

ftR

The change takes effect everywhere .PP is used and is easier than
changing commands throughout the whole document.

A troff formatter escape sequence that causes the rest of the line to
be ignored is \". It is used to add comments to the macro definition
(a wise idea once definitions get complicated).

Another example of macros is this pair that start and end a block of
offset, unfilled text

.de OS \" start indented block

.Sp
.nf
Ain +0.51

de OF \" end indented block

.Sp
fi
in -0.51

2-16

NROFF/TROFF TUTORIAL

The .0S and .OE macros could be used before and after text to
provide the following effect:

Copy to

John Doe
Richard Roberts
Stanley Smith

In this example, the indention used is .in +0.5i instead of .in 0.5i.
This permits the nesting of the .OS and .OE macros to get blocks
within blocks.

Should the amount of indention be changed at a later date, it is
necessary to change only the definitions of .OS and .OE, not
individual requests throughout the whole paper.

8. Titles, Pages, and Page Numbering

Titles, pages, and page numbering is a complicated area where
nothing is done automatically. Of necessity, some of this section is a
cookbook to be copied literally until some experience is obtained.

To get a title at the top of each page, such as:
left top center top right top

it was possible on an older system (roff/sroff, see Chapters 5 and 6)
to get headers and footers automatically on every page with the
following:

.he 'left top'center top'right top'
.fo 'left bottom'center bottom'right bottom'

This does not work in the troff formatter. Instead specifications
must be provided:

o What to do at and around the titlé line
e When to print the title

e What the actual title is.

2-17

NROFF/TROFF TUTORIAL

The .NP macro (new page) is defined to process titles at the end of
one page and the beginning of the next:

.de NP
vbp
'sp 0.5i
.tl 'left top'center top'right top'
'sp 0.3i

These requests are explained as follows:

e The ’bp (begin page) request causes a skip to the top-of-page.
o The ’sp 0.51 request will space down 1/2 inch.
o The .tl request prints the title.

e The ’sp 0.3i request provides another 0.3 inch space.

The reason that the ’bp and ’sp requests are used instead of the .bp
and .sp requests is that the .sp and .bp cause a break to take place.
This means that all the input text collected but not yet printed is
flushed out as soon as possible, and the next input line is guaranteed
to start a new line of output. Had .bp been used in the .NP macro, a
break in the middle of the current output line would occur when a
new page is started. The effect would be to print the left-over part of
that line at the top of the page, followed by the next input line on a
new output line. This is not desired. Using “’” instead of “.” for a
request tells the troff formatter that no break is to take place. The
output line currently being filled should not be forced out before the
space or new page.

The list of requests that cause a break is short and natural:

.bp begin page

.br break

2-18

NROFF/TROFF TUTORIAL

.ce center

fi fill mode

nf no-fill mode

.Sp space

.in indent

ti temporary indent

“o» K9

Other requests cause no break, regardless of whether a “.” or a
is used. If a break is really needed, a .br request at the appropriate
place will provide it.

13

To ask for .NP at the bottom of each page, a statement like “when
the text is within an inch of the bottom of the page, start the
processing for a new page” is used. This is done with the .wh
request. For example:

.wh —1i NP

No “.” character is used before NP since it is simply the name of a
macro and not a macro call. The minus sign means “measure up
from the bottom of the page”, so —1i means 1 inch from the bottom.
The .wh request appears in the input data outside the definition of
the .NP macro. Typically, the input would be

.de NP
—-—-- body of macro

- .

.wh —1i NP

As text is actually being output, the troff formatter keeps track of
its vertical position on the page; and after a line is printed within 1
inch from the bottom, the .NP macro is activated.

o The .wh request sets a trap at the specified place. v

o The trap is sprung when that point is passed.

2-19

NROFF/TROFF TUTORIAL

The .NP macro causes a skip to the top of the next page (that is
what the ’bp was for) and prints the title with appropriate margins.

Something to beware of when changing fonts or point sizes is
crossing a page boundary in an unexpected font or size.

o Titles come out in the size and font most recently specified
instead of what was intended.

e The length of a title is independent of the current line length, so
titles will come out at the default length of 6.5 inches unless
changed. Changing title length is done with the .1t request.

There are several ways to fix the problems of point sizes and fonts in
titles. The .NP macro can be changed to set the proper size and font
for the title, and then restore the previous values, like this:

.de NP

,bp

’sp 0.51

ftR \" set title font to Roman
.ps 10 \" set size to 10 point

dt 6i \" set length to 6 inches
.tl ’left top’center top’right top’

.ps \" revert to previous size
ftP \" and to previous font

’sp 0.3i

This version of .NP does not work if the fields in the .tl1 request
contain size or font changes. To cope with that contingency requires
the troff formatter ‘“environment” mechanism discussed in
paragraph 12.

To get a footer at the bottom of a page, the .NP macro should be
modified. One option is to have the .NP macro do some processing
before the ’bp request. Another option is to split the .NP macro into
a footer macro (invoked at the bottom margin) and a header macro
(invoked at the top of page).

2-20

NROFF/TROFF TUTORIAL

Output page numbers are computed automatically as each page is
produced (starting at 1), but no numbers are printed unless explicitly
requested. To get page numbers printed, the % character should be
included in the .tl request at the position where the number is to
appear. For example:

.t1 "' — %

centers the page number inside hyphens. The page number can be
set at any time with either a .bp n request (which immediately starts
a new page numbered n) or with .pn n (which sets the page number
for the next page but does not cause a skip to the new page). The .bp
+n sets the page number to n more than its current value. The .bp
request without an argument means .bp +1.

9. Number Registers and Arithmetic

The troff processor has a facility for doing arithmetic and defining
and using variables with numeric values, called number registers.
Number registers, like strings and macros, can be useful in setting up
a document so it is easy to change later. They also serve for any sort
of arithmetic computation.

Like strings, number registers have 1- or 2-character names. They
are set by the .nr request and are referenced anywhere by \nx (1-
character name) or \n(xy (2-character name).

There are quite a few predefined number registers maintained by the
troff formatter; among them:

e % for the current page number
e nl for the current vertical position on the page

dy, mo, and yr for the current day, month, and year

.s and .f for the current size and font (the font is the number of
a font position).

2-21

NROFF/TROFF TUTORIAL

Any of these can be used in computations like any other register, but
some, like .s and .f, cannot be changed with .nr.

An example of the use of number registers is in an older macro
package where most significant parameters are defined in terms of
the values of a handful of number registers. These include the point
size for text, the vertical spacing, and the line and title lengths. To
set the point size and vertical spacing, a user may input

.nr PS 9
.nr VS 11

The paragraph macro, .PP, is roughly defined as follows:

.de PP
ps \\n(PS \" reset size
.vs \\n(VSp \" spacing

ft R \" font
.sp 0.5v \" half a line
.ti +3m

This sets the font to Roman and the point size and line spacing to
whatever values are stored in the number registers PS and VS.

The reason for two backslashes is to indicate that a backslash is
really meant. When the troff formatter originally reads the macro
definition, it peels off one backslash to see what is coming next. Two
backslashes in the definition are required to ensure that a backslash
is left in the definition when the macro is used. If only one backslash
is used, point size and vertical spacing will be frozen at the time the
macro is defined, not when it is used.

Protection with an extra layer of backslashes is needed only for \n,
*, \$, and \ itself. Things like \s, \f, \h, \v, etc. do not need an
extra backslash since they are converted by the troff formatter to an
internal code immediately upon detection.

Arithmetic expressions can appear anywhere that a number is
expected. As an example:

.nr PS \\n(PS—2

2-22

NROFF/TROFF TUTORIAL

decrements register PS by 2. Expressions can use the arithmetic
operators +, -, * /, % (mod), the relational operators >, >=, <, <=,
=, |= (not equal), and parentheses.

So far, the arithmetic has been straightforward; more complicated
things are tricky.

e Number registers hold only integers. In the troff formatter,
arithmetic uses truncating integer division just like Fortran.

e In the absence of parentheses, evaluation is done left-to-right
without any operator precedence, including relational operators.
Thus:

7*—4+3/13

becomes —1.

Number registers can occur anywhere in an expression and so can
scale indicators like p, i, m, etc. (but no spaces). Although integer
division causes truncation, each number and its scale indicator is
converted to machine units (1/432 inch for the C/A/T) before any
arithmetic is done, so 1i/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear when least expected, in
particular when arithmetic is being done in a context that implies
horizontal or vertical dimensions. For example, .11 7/2i is not 3 2
inches. Instead, it is really 7 ems/2 inches. When translated into
machine units, it becomes 0. This is because the default units for
horizontal parameters (like .11) are ems. Another incorrect try is .11
7i/2. The 2 is 2 ems, so 7i/2 is small, although not 0. The correct
way to specify 3 %2 inches is .1l 7i/2u. A safe rule is to attach a scale
indicator to every number, even constants.

For arithmetic done within a .nr request, there is no implication of
horizontal or vertical dimension, so the default units are “units”, and
7i/2 and Ti/2u mean the same thing. Thus:

.nr 11 7i/2
.11 \\n(1llu

2-23

NROFF/TROFF TUTORIAL

accomplishes what is desired as long as the u on the .1l request is
included.

10. Macros With Arguments

Two things are needed to be able to define macros that can change
from one use to the next according to parameters supplied as
arguments:

1. When the maecro is defined, it must be indicated that some
parts will be provided as arguments when the macro is called.

2. When the macro is called, the actual arguments to be plugged
into the definition must be provided.

An example would be to define a macro (.SM) that will print its
argument two points smaller than the surrounding text.

.de SM

\s—2\\$ 1\s+2

The macro call would appear:
.SM SMALL

The argument (“SMALL” in this example) would then appear two
points smaller than the rest of the print. '

Within a macro definition, the symbol \\$n refers to the nth
argument with which the macro was called. Thus \\$1 is the string
to be placed in a smaller point size when .SM is called.

A slightly more complicated version is the following definition of
.SM which permits optional second and third arguments that will be
printed in the normal size:

.de SM

\\$3\s—2\\$1\s+2\\$2

2-24

NROFF/TROFF TUTORIAL

Arguments not provided when the macro is called are treated as
empty. The macro call

.SM ABLE),
would appear (with “ABLE” in smaller type)
ABLE) ,
The macro call
.SM BAKER). (
produces the following (with “BAKER” in smaller print):
(BAKER) .

It is convenient to reverse the order of arguments because trailing
punctuation is much more common than leading. The number of
arguments that a macro was called with is available in number
register .$.

The macro, .BD, is used to make “bold Roman” for troff formatter
command names in text. It combines horizontal motions, width
computations, and argument rearrangement:

.de BD
NEANNSSNETANS T\h " —\w ' \\$ 1 u+2u’ \\$ 1\fP\\$2

The \h and \w escape sequences need no extra backslash. The \& is
there in case the argument begins with a period. Two backslashes
are needed with the \\$n commands to protect one of them when the

2-25

NROFF/TROFF TUTORIAL

macro is being defined. A second example will make this clearer. A
.SH macro can be defined to produce automatically numbered section
headings with the title in smaller size bold print. The use is

.SH "Section title ...

If the argument to a macro is to contain blanks, it must be
surrounded by double quotes.

The definition of the .SH macro is

ar SH O \" initialize section number
.de SH

.sp 0.3i

ft B

ar SH \\n(SH+1 \" increment number

.ps \\n(PS-1 \" decrease PS number
\\n(SH. \\$1 \" title

.ps \\n(PS \" restore PS

.sp 0.3i

ft R

The section number is kept in number register SH, which is
incremented each time just before use.

Note: A number register may have the same name as a macro
without conflict but a string may not.

A \\n(SH and \\n(PS was used instead of a \m(SH and \n(PS.
Had \n(SH been used, it would have yielded the value of the register
at the time the macro was defined, not at the time it was used.
Similarly, by using \\n(P$S, the point size at the time the macro was
called is obtained.

An example that does not involve numbers is the NP macro (defined
earlier) which had the request

.tl 'left top'center top'right top'

2-26

NROFF/TROFF TUTORIAL

The fields could be made into parameters by using instead
St "* (LT *(CT' *(RT'

The title comes from three strings called LT, CT, and RT. If these
are empty, the title will be a blank line. Normally, CT would be set
with

.ds CT — % —

to give just the page number between hyphens. A user could supply
private definitions for any of the strings.

11. Conditionals

Suppose it is desired that the .SH macro leave two extra inches of
space just before Section 1, but nowhere else. The cleanest way to do
that is to test inside the .SH macro whether the section number is 1,
and add some space if it is. The .if command provides the conditional
test that can be added just before the heading line is output:

Af \\n(SH=1 .sp 2i \" first section only

The condition after the .if request can be any arithmetic or logical
expression. If the condition is logically true or arithmetically greater
than zero, the rest of the line is treated as if it were text (a request
in this case). If the condition is false, zero, or negative, the rest of
the line is skipped.

2-27

NROFF/TROFF TUTORIAL

It is possible to do more than one request if a condition is true. For
example, if several operations are to be done prior to Section 1, the
.S1 macro is defined and invoked when Section 1 is almost complete
(as determined by an .if).

.de S1
—-—— processing for section 1

.de SH

.if \\n(SH=1 .s1

An alternate way is to use the extended form of the .if request, e.g.:

.if \\n{(SH=1 \{--- processing
for section 1 ---\}

The braces, “\{” and “\}”, must occur in the positions shown or
unexpected extra lines will be in the output. The troff processor also
provides an “if-else” construction.

A condition can be negated by preceding it with !. The same effect
as above is obtained (but less clearly) by using

Lif !\\n(SH>1 .s1

There are a handful of other conditions that can be tested with .if.
For example:

if e .tl ’left top’center top’right top’ \" Even page
title

if o .tl ’left top’center top’right top’ \" Odd page
title

gives facing pages different titles, depending on whether the page
number is even or odd, when used inside an appropriate new page
macro.

2-28

NROFF/TROFF TUTORIAL

Two other conditions are t and n, which tells whether the formatter
is troff or nroff:

.if t troff stuff ...
.if n nroff stuff

String comparisons may be made in a .if request.

.if 'stringi1'string2' stuff

executes the program stuff if stringl is the same as string2. The
character separating the strings can be anything reasonable that is
not contained in either string. The strings themselves can reference
strings with ‘“*”, arguments with “\$”, etc.

12. Environments

There is a potential problem when going across a page boundary:
parameters like size and font for a page title may be different from
those in effect in the text when the page boundary occurs. A general
way to deal with this and similar situations is provided by the troff
formatter.

There are three environments. Each has independently selectable
versions of many parameters associated with processing, including
size, font, line and title lengths, fill/no-fill mode, tab stops, and
partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in another
with its own suitable parameters.

The .ev n request shifts to environment n (n must be 0, 1, or 2). The
.ev request with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different
environments may be nested and unwound consistently.

If the main text is processed in environment 0 where the troff
formatter begins by default, the new page macro, NP, can then be
modified to process titles in environment 1, e.g.:

.de NP
evl \" shift to new environment
1t 61 \" set parameters here

2-29

NROFF/TROFF TUTORIAL

ft R
.ps 10
--- any other processing
.ev \" return to previous environment

It is also possible to initialize the parameters for an environment
outside the NP macro, but the version shown keeps all the
processing in one place and is easier to understand and change.

13. Diversions

There are numerous occasions in page layout when it is necessary to
store some text for a period of time without actually printing it.
Footnotes are the most obvious example. Text of the footnote usually
appears in the input well before the place on the page is reached
where it is to be printed. The place where it is output normally
depends upon the magnitude of the footnote. This implies that there
must be a way to process the footnote, at least enough to decide its
size without printing it.

A mechanism called a diversion is provided by the troff formatter
for doing this processing. Any part of the output may be diverted
into a macro instead of being printed; and at some convenient time,
the macro may be put back into the input.

The .di xy request begins a diversion. All subsequent output is
collected into the macro xy until the .di request with no arguments
is encountered. This terminates the diversion. Processed text is
available at any time thereafter by giving the .xy request. The
vertical size of the last finished diversion is contained in the built-in
number register dn. For instance, to implement a keep-release
operation so that text between the macros .KS and .KE will not be
split across a page boundary (as for a figure or table), the following
applies:

e When a .KS is encountered, the output is diverted to determine
its size.

e When a .KE is encountered and if the diverted text will fit on
the current page, it is printed there. If the diverted text does not
fit on the current page, it is printed at the top of the next page.

2-30

NROFF/TROFF TUTORIAL

The definitions of the .KS and .KE macros are as follows:

.de KS \" start keep

Jbr \" start fresh line

evl \" collect in new environment
i \" make it filled text

di XX \" collect in XX

.de KE \" end keep

Jbr \" get last partial line

di \" end diversion

Af \\n(dn>=\\n(.t .bp \" bp if does not fit

.nf \" bring it back in no-fill

XX \" text

.ev \" return to normal environment

The number register nl indicates the current position on the output
page. Since output was being diverted, it remains at its value when
the diversion started. The dn register contains the amount of text in
the diversion. The distance to the next trap is in the built-in register
.t. It is assumed that the next trap is at the bottom margin of the
page. If the diversion is large enough to go past the trap, the .if is
satisfied; and a .bp request is issued. In either case, the diverted
output is brought back with .XX. It is essential to bring it back in
no-fill mode so the troff formatter will do no further processing on
it.

This is not the most general keep-release operation nor is it robust in
the face of all conceivable inputs. It would require more space than
available to display it in full generality. This manual is not intended
to teach everything about diversions, but to sketech out enough so that
existing macro packages can be read with some comprehension.

2-31

NROFF/TROFF TUTORIAL

TUTORIAL EXAMPLES

Although the nroff and troff formatters have by design a syntax
reminiscent of earlier text processors with the intent of easing their
use, it is usually necessary to prepare at least a small set of macro
definitions to describe most documents. Such common formatting
needs as page margins and footnotes are deliberately not built into
the nroff and troff formatters. Instead, the macro and string
definition, number register, diversion, environment switching, page-
position trap, and conditional input mechanisms provide the basis for
user-defined implementations.

Examples in the following text are intended to be useful and
somewhat realistic but will not necessarily cover all relevant
contingencies. Explicit numerical parameters are used to make the
examples easier to read and to illustrate typical values. In many
cases, number registers would be used to reduce the number of places
where numerical information is kept and to concentrate conditional
parameter initialization data that depends on whether the troff or
nroff formatter is being used.

1. Page Margins

Header and footer macros are defined to describe the top and bottom
page margin areas, respectively. A trap is planted at page position 0
for the header and at -N (N from the page bottom) for the footer. A
simple header and footer macro definifion is

.de hd \" define header
’sp 1i

.. \" end definition
.de fo \" define footer
,bp

.. \" end definition
.wh 0 hd

.wh -1i fo

This example provides blank 1-inch top and bottom margins. The
header will occur on the first page, only if the definition and trap
exist prior to the initial pseudopage transition. In fill mode, the
output line that springs the footer trap was typically forced out
because some part or whole word did not fit on it. If anything in the
footer and header that follows causes a break, that word or part word

2-32

NROFF/TROFF TUTORIAL

will be forced out. In this and other examples, requests like bp and
sp that normally cause breaks are invoked using the no-break control
character (’). When the header/footer design contains material
requiring independent text processing, the environment may be
switched to avoid interaction with running text.

A more realistic example follows:

.de hd \" header

Af t .t °\(rn”\(rn’ \" troff cut mark

Af \\n%>1 \{\

’sp 10.5i-1 \" tl base at 0.5 inch
17— % 2 \" centered page number
.ps \" restore size

1t \" restore font

s \} \" restore vs

’sp 11.01 \" space to 1.0 inch

.ns \" turn on no-space mode
.de fo \" footer

.ps 10 \" set footer/header size
ftR \" set font

.vs 12p \" set base-line spacing

A \\n% =1 \{\
sp \\n(.pu-0.5i-1 \" tl base 0.5 inch up

- % 2N} \" first page number
’bp

.wh 0 hd

.wh -1i fo

This example sets the size, font, and base-line spacing parameters for
the footer material. Parameters are restored to their original values
when the header is completed. The material in this case is a page
number at the bottom of the first page and at the top of the
remaining pages. If the troff formatter is used, a cut mark is drawn
in the form of root-en’s at each margin. The sp’s refer to absolute
positions to avoid dependence on the base-line spacing. Another
reason for the sp in the footer is that the footer is invoked by
printing a line whose vertical spacing swept past the trap position by
possibly as much as the base-line spacing. The no-space mode is
turned on at the end of hd to render ineffective accidental
occurrences of sp at the top of the running text.

2-33

NROFF/TROFF TUTORIAL

The above method of restoring size, font, ete. presupposes that such
requests (that set previous value) are not used in the running text. A
better scheme is to save and to restore both the current and previous
values as shown for size in the following:

.de fo

.r s1\\n(.s \" current size

.ps

.ar s2 \\n(.s \" previous size
--- \" rest of footer

.de hd

--- \" header stuff
.ps \\n(s2 \" restore previous size
.ps \\n(sl \" restore current size

Page numbers may be printed in the bottom margin by a separate
macro triggered during the footer’s page ejection:

.de bn \" bottom number
17’- % -’ \"centered page number

.wh -0.5i-1v bn \" tl base 0.5 inch up

2. Paragraphs and Headings

Housekeeping associated with starting a new paragraph should be
collected in a paragraph macro that does the desired preparagraph
spacing, forces the correct font, size, base-line spacing, and indent;
checks that enough space remains for more than one line; and
requests a temporary indent.

.de pg \" paragraph

.br \" break

ftR \" force font,

.ps 10 \" size,

.vs 12p \" spacing,

in 0 \" and indent

.sp 0.4 \" prespace

e 1-++-\\n(.Vu \" want more than 1 line
.t 0.21 \" temporary indent

2-34

NROFF/TROFF TUTORIAL

The first break in pg will force out any previous partial lines and
must occur before the .vs request. The forcing of font, size, base-line
spacing, and indent is partly a defense against prior error and partly
to permit things like section heading macros to set parameters only
once. The prespacing parameter is suitable for the troff formatter; a
larger space, at least as big as the output device vertical resolution,
would be more suitable in the mroff formatter. The choice of
remaining space to test for in the .ne is the smallest amount greater
than one line (the .V is the available vertical resolution).

A macro to automatically number section headings might look like:

.de sc \" section

- \" force font, etc.
.sp 04 \" prespace
.ne 24+\\n(.Vu \" want 2.4+ lines
i
\\n+S.
nrS01 \" initial S

The usage is sc, followed by the section heading text, followed by pg.
The .ne test value includes one line of heading, 0.4 line in the
following pg, and one line of the paragraph text. A word consisting
of the next section number and a period is produced to begin the
heading line. The format of the number may be set by the .af
request.

Another common form is the labeled, indented paragraph where the
label protrudes left into the indent space.

.de lp \" labeled paragraph
-pg

.in 0.51 \" paragraph indent
.ta 0.21 0.51 \" label, paragraph
ti 0

\t\\$1\t\e \" flow into paragraph

2-35

NROFF/TROFF TUTORIAL

The intended usage is
.1p label

The label will begin at 0.2 inch and cannot exceed a length of 0.3 inch
without intruding into the paragraph. The label could be right
adjusted against 0.4 inch by setting the tabs instead with

.ta 0.4iR 0.5i

The last line of the lp macro ends with \¢ so that it will become a
part of the first line of the text that follows.

3. Multiple Column Output

The production of multiple column pages requires the footer macro to
decide whether it was invoked by other than the last column, so that
it will begin a new column rather than produce the bottom margin.
The header can initialize a column register that the footer will
increment and test. The following is arranged for two columns but is
easily modified for more:

.de hd \" header

arel01 \" initial column count
.mk \" mark top of text

.de fo \" footer

de \\n+(cl<2 \{\

.po +3.4i \" next column; 3.1+0.3
rt \" back to mark

s \} \" no-space mode

el \{\

.po \\nMu \" restore left margin
bp \}

A1 3.1i \" column width

ar M \\n(.o \"save left margin

2-36

NROFF/TROFF TUTORIAL

Typically, a portion of the top of the first page contains full width
text; the request for the narrower line length, as well as another .mk
request, will be made where the 2-column output is to begin.

4. Footnote Processing

The footnote mechanism is used by embedding the footnotes in the
input text at the point of reference demarcated by an initial .fn and a
terminal .ef.

.fn
Footnote text and control lines.
.ef

The following macro definitions cause footnotes to be processed in a
separate environment and diverted for later printing in the space
immediately prior to the bottom margin. There is provision for the
case where the last collected footnote does not completely fit in the
available space:

.de hd \" header

arx01 \" initial footnote count
.ar y 0-\\nb \" current footer place
.ch fo -\\nbu \" reset footer trap

Aif \\n(dn .fz \" leftover footnote

.de fo \" footer

.nrdn 0 \" zero last diversion size
Af \\x \ {\

evl: \"" expand footnotes in environment 1
.nf \" retain vertical size
.FN \" footnotes

.rm FN \" delete it

Af \\n(.z’fy’ .di
anrx0

\" end overflow diversion
\" disable fx

.ev \} \" pop environment
’bp
.de fx \" process footnote overflow

2-37

NROFF/TROFF TUTORIAL

Af \\nx .di fy \" divert overflow

.de fn \" start footnote

.da FN ' \" divert (append) footnote
evl \" in environment 1

Af \\n+x=1 .fs \" if first, include separator
fi \" fill mode

.de ef \" end footnote

br \" finish output

ar z \\n(.v \" save spacing

.ev \" pop environment

di \" end diversion

ar y -\\n(dn \" new footer position

Af \\nx=1 .nr y -(\\n(.v-\\nz)\ \" uncertainty correction
.ch fo \\nyu \"y is negative

Af (\\n(nl+1v)>(\\n(.p+\\ny)\

.ch fo \\n(nlu+1v \" it did not fit

.de fs \" separator

\I'17’ \" 1 inch rule

.br

.de fz \" get leftover footnote

fn

.nf \" retain vertical size

fy \" where fx put it

.ef

.nr b 1.0i \" bottom margin size

.wh 0 hd \" header trap

.wh 12i fo \" footer trap, temp position
wh -\\nbu fx \" fx at footer position

.ch fo -\\nbu \" conceal fx with fo

e The header macro (hd) initializes a footnote count register x and
sets both the current footer trap position register y and the
footer trap itself to a nominal position specified in register b.

o If the register dn indicates a leftover footnote, the fz macro is
invoked to reprocess it.

2-38

NROFF/TROFF TUTORIAL

The footnote start macro (fn) begins a diversion (append) in
environment 1 and increments the footnote count register x; if
the count is one, the footnote separator macro (fs) is
interpolated. The separator is kept in a separate macro to
permit user redefinition.

The footnote end macro (ef) restores the previous environment
and ends the diversion after saving spacing size in register z.

Register y is decremented by the size of the footnote which is
available in register dn.

On the first footnote, register y is further decremented by the
difference in vertical base-line spacings of the two environments.
This prevents late triggering of the footer trap from causing the
last line of the combined footnotes to overflow.

The footer trap is set to the lower of y or the current page
position (nl) plus one line to allow for printing the reference line.

If indicated by x, the footer fo rereads the footnotes from FN in
no-fill mode in environment 1 and deletes FN. If the footnotes
were too large to fit, the macro fx will be trap-invoked to
redivert the overflow into fy, and the register dn will later
indicate to the header whether or not fy is empty.

Both fo and fx macros are planted in the nominal footer trap
position in an order that causes fx to be concealed unless the fo
trap is moved.

The footer terminates the overflow diversion (if necessary) and
zeros X to disable fx. This is because the uncertainty correction,
together with a not-too-late triggering of the footer, can result in
footnote macros finishing before reaching the fx trap.

2-39

NROFF/TROFF TUTORIAL

5. Last Page

After the last input file has ended, nroff and troff formatters
invoke the end macro, if any, and eject the remainder of the page.

.deen \"end-macro

\¢

7bp

.em en
During the eject, any traps encountered are processed normally. At
the end of this last page, processing terminates unless a partial line,
word, or partial word remains. If it is desired that another page be

started, the end-macro will deposit a null partial word and effect
another last page.

2-40

PPN AW

Chapter 3

NROFF AND TROFF USER MANUAL

PAGE
Introductionttt innnennnnnanannanns 3-1
USAZ@ ¢ ittt ittt iiiieeetoseneenoesacsosessasssesncnsensanan 3-3
NROFF/TROFF Reference Manual 3-9
Nroff/Troff Escape Sequences.ceeieueeernnnnnn. 3-48
Predefined General Number Registers 3-51
Predefined Read-Only Number Registers. 3-52
Font Control Requestsc.ciiiiiiuienernenenernoonnnans 3-54
Character Size Control Requestscciuiieneeennnnnn 3-55
Page Control Requestsciuutiiieititnneenenneennnns 3-56
Text Filling, Adjusting, and Centering Requests 3-58
Vertical Spacing Requests 3-60
Line Length and Indenting Requestscoetunnn. 3-62
Macro, String, Diversion, and Trap Requests 3-63
Number Registers Requests i, 3-66
Tab, Leader, and Field Requestsciitierenennnn 3-67
Input/Output and Translation Requests 3-68
Hyphenation Requestsoiuttitiininrernnnneenennnnn 3-70
Three-Part Title Requestso viv ittt enenennns 3-71
Output Line Numbering Requests 3-72
Conditional Acceptance Requestsc.ciiiiniennnnnnn 3-73
Environment Switching Request................co i, 3-75
Insertions From Standard Input Requests 3-76
Input/Output File Switching Requestscuuun. 3-77
Miscellaneous Requests, 3-78

Output and Error Messages Requestccoiivuun. 3-80

Chapter 3
NROFF AND TROFF USER MANUAL

1. Introduction

This chapter is a user guide and reference manual to the UNIX
system text formatters nroff, troff, and otroff.

The nroff text formatter formats text for typewriter-like terminals.

The troff (device independent) formatter formats text destined to be
printed on a phototypesetter, but is intended to be converted by a
postprocessor into codes that will drive a particular phototypesetter.

The otroff (old troff) formatter formats text for the Wang
Laboratories C/A/T phototypesetter only.

The nroff, troff, and otroff text processors accept lines of text
mixed with lines of format control information. They format the text
into a printable, paginated document having a user-designed style.
These formatters offer unusual freedom in document styling
ineluding:

Arbitrary style headers and footers

e Arbitrary style footnotes

e Multiple automatic sequence numbering for paragraphs and
sections

e Multiple column output
e Dynamic font and point-size control
e Arbitrary horizontal and vertical local motions at any point

e Overstriking, bracket construction, and line drawing functions.

NROFF/TROFF

Since the nroff and troff (or otroff) formatters are reasonably
compatible, it is usually possible to prepare input acceptable to
either. Conditional input is provided that enables the user to embed
input expressly destined for either program (nroff or troff/otroff).
The nroff formatter can prepare output directly for a variety of
terminal types and is capable of utilizing the full resolution of each
terminal.

The otroff text processor is a text-formatting program for driving
the Wang Laboratories C/A/T phototypesetter on the UNIX
operating system. It is capable of producing high quality text. The
C/A/T phototypesetter normally runs with four fonts containing
Roman, italic, and bold letters, a full Greek alphabet, a substantial
number of special characters, and mathematical symbols. Characters
can be printed in a range of sizes and placed anywhere on the page.

The troff text formatter is a program for driving virtually any
phototypesetter since its output is an ASCII code describing the
position, font, size, ete., of characters to be typeset on a page. This
output must be converted by another program, called a postprocessor,
into codes a particular phototypesetter will understand. Parameters
such as fonts, character sizes, special characters, depend on the
phototypesetter being driven. See Chapter 4, DEVICE
INDEPENDENT TROFF, for a more complete description.

Note: Throughout this chapter, a reference to troff also
means otroff unless otherwise indicated. Where there are
differences between the two, the differences are pointed out.
Refer to Chapter 4 for a complete description of the device
independent troff text formatter.

Full user control over fonts, sizes, and character positions, as well as
the wusual features of a formatter (right-margin justification,
automatic hyphenation, page titling and numbering, etc.) are
provided by the troff processor. It also provides macros, arithmetic
variables and operations, and conditional testing for complicated
formatting tasks.

Numbers enclosed in braces ({}) refer to paragraph numbers within
this section. For example, this is paragraph {1}.

3-2

NROFF/TROFF

2. Usage

The general form of invoking the nroff or troff formatter at the
UNIX operating system command level is

nroff options files
or

otroff options files
or

troff options files

where options represents any of a number of option arguments and
files represents the list of files containing the document to be
formatted. An argument consisting of a single minus sign (-) is
taken to be a file name corresponding to the standard input. Input is
taken from the standard input if no file names are given. Options
may appear in any order so long as they appear before the files.

nroff, otroff AND troff OPTIONS

Option Effect

—olist Prints only pages whose page numbers appear in list,
which consists of comma-separated numbers and number
ranges.

e A number range has the form N-M and means pages
N through M

e An initial -N means from the beginning to page N
e A final N- means from page N to the end.
—nN Number the first generated page N.

—sN Stop every N pages. The nroff formatter will halt after
every N pages (default N=1) to allow paper loading or
changing and will resume upon receipt of a new line. The
otroff formatter will stop the phototypesetter every N
pages, produce a trailer to allow changing cassettes, and
resume after the phototypesetter is restarted. When using

3-3

NROFF/TROFF

—mname

—cname

—Z

—kname

3-4

troff, it is probably preferable to use the -s option on the
postprocessor if one exists.

Prepend the macro file
/usr/lib/tmac/tmac.name

to the input files. Multiple —m macro package requests on
a command line are accepted and are processed in
sequence.

Prepend the compacted macro files

/usr/lib/macros/cmp.[nt].[dt].name
and
/usr/lib/macros/ucmp.[nt].name

to the input files. Multiple —e¢ macro package requests on
a command line are accepted. The compacted version of
macro package name will be used if it exists. If not, the
nroff/otroff formatter will try the equivalent —mname
option instead. This option should be used instead of —m
because it makes the nroff/otroff formatters execute
significantly faster.

Note: This option only applies to the nroff and
otroff formatters. Compacted macros are not
supported with the troff formatter.

Set register a (one character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input/output mode of the .rd
request.

Suppress formatted output. Only message output will
occur (from .tm requests and diagnostics).

Produce a compacted macro package from this invocation
of the nroff/otroff formatter. This option has no effect

NROFF/TROFF

if no .co request is used in the nroff/otroff formatter
input. Otherwise, the compacted output is produced in
files d.name and t.name.

Note: This option applies to nroff and otroff

only. Compacted macros are not supported with
the troff formatter.

nroff ONLY OPTIONS

Option Effect

—Tname Specify the name of the output terminal type. Currently
defined names are:

e 37 (default) for the TELETYPE® Model 37.

e tn300 for the GE TermiNet 300 (or any terminal
without half-line capabilities).

e 300 for the DASI 300.

e 300s for the DASI 300s.

e 450 for the DASI 450.

e X9700 for the Xerox 9700 laser printer.
e X for the EBCDIC TX train printer.

e 2631 for the Hewlett-Packard 2631 printer in regular
mode.

e 2631-¢c for the Hewlett-Packard 2631 printer in
compressed mode.

e 2631-e for the Hewlett-Packard 2631 printer in
expanded mode.

e 382 for the DCT-382 terminal.

3-5

NROFF/TROFF

—un

Option

-t

3-6

e 4000a for the Trendata 4000a terminal.
e 832 for the Anderson Jacobson 832 terminal.
o Ip for (generic) printers that can underline and tab.

Produce equally spaced words in adjusted lines using full
terminal resolution.

Use output tabs during horizontal spacing to speed output
and to reduce output byte count. Device tab settings are
assumed to be every eight nominal character widths. The
default settings of logical input tabs are also every eight
nominal character widths.

Set the emboldening factor (number of character

overstrikes) in the nroff formatter for the third font
position (bold) to be n (zero if n is missing).

troff/otroff ONLY OPTIONS

Effect

Direct output to the standard output instead of the
phototypesetter.

Note: This option only applies to the otroff
formatter.

Refrain from feeding paper and stopping phototypesetter
at the end of the run (otroff only).

Wait until phototypesetter is available if busy.

Note: This option only applies to the otroff
formatter.

Report whether phototypesetter is busy or available. No
text processing is done.

Note: This option only applies to the otroff <
formatter.

—Tname

—FRdir

NROFF/TROFF

Send a printable approximation of the results in the ASCII
character set to the standard output. This approximates a
display of the document.

Print all characters in point size N while retaining all
preseribed spacings and motions to reduce phototypesetter
elapsed time.

Note: This option only applies to the otroff
formatter.

Specifies the intended output device (phototypsetter). The
default output device is defined locally.

Font information is to be accessed from the directory
dir/devname where name is the default output device.
The default font information directory is
/usr/lib/font/devname. ‘

Note: This option only applies to the troff
formatter.

Each option is invoked as a separate argument. For example:

nroff -04,8-10 -T300s -mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained
in the files named filel and file2, specifies the output terminal as a
DASI 300s, and invokes the macro package abc.

Various preprocessors and postprocessors are available for use with
the nroff and troff formatters:

e The equation preprocessors are neqn and eqn (for nroff and
otroff/troff formatters, respectively).

e The table-construction preprocessor is tbl.

e The constant-width font preprocessor for the otroff formatter is

ocw.

Note: The oew preprocessor is not needed with the
troff formatter.

3-7

NROFF/TROFF

¢ The picture drawing preprocessor for the troff formatter is pie.

Note: The pic preprocessor cannot be used with the
otroff formatter.

o A reverse-line postprocessor for multiple-column nroff formatter
output on terminals without reverse-line ability is col. The
TELETYPE® Model 37 escape sequences that the nroff formatter
produces by default are expected by col.

[]

The TELETYPE® Model 37-simulator postprocessor for printing
nroff formatter output on a Tektronix 4014 is 4014,

The phototypesetter-simulator postprocessor for the troff
formatter that produces an approximation of phototypesetter
output on a Tektronix 4014 is te. The ote postprocessor
performs a similar function for the otroff formatter. For
example, in:

tbl files | eqn -Tcat | otroff -t [options] ! otc
or

tbl files { eqn | troff [options] | tc

the first | indicates the piping of tbl output to eqn input; the
second | indicates the piping of eqn output to the otroff/troff
formatter input; and the third | indicates the piping of the
otroff/troff formatter output to the ote/te postprocessor.

The troff formatter depends on a postprocessor to convert its output
into codes for a particular phototypesetter. Currently, the only
supported postprocessor for this purpose is a program called daps,
for the Autologic APS-5 phototypesetter. There are two
postprocessors that prepare troff output for printing on high quality
laser printers. These are dx9700 for the Xerox 9700 and dil0 for
the Imagen Imprint-10. For more information about the
preprocessors, refer to the Preprocessors Reference—Select Code
307-153.

3-8

NROFF/TROFF

3. NROFF/TROFF Reference Manual

3.1 General Explanation

3.1.1 Form of Input

Input data consists of text lines destined to be printed mixed with
control lines that set parameters or otherwise control subsequent
processing. Control lines begin with a control character, normally a
period or an acute accent, followed by a 1- or 2-character name that
specifies a basic request or the substitution of a user-defined macro
in place of the control line. The acute accent control character
suppresses the break function (the forced output of a partially filled
line) caused by certain requests. Control characters may be
separated from request/macro names by white space (spaces and/or
tabs) for increased readability. Names must be followed by either a
space or a newline character. Control lines with unrecognized
request/macro names are ignored.

Various special functions may be introduced anywhere in the input
by means of an escape character (\). For example, the function \nR
causes the interpolation of the contents of the number register R in
place of the function. Number register R is either x for a single
letter register name or (xx for a 2-character register name. Part 4,
Nroff/Troff Escape Sequences, itemizes escape sequences for
characters, indicators, and functions.

3.1.2 Formatter and Device Resolution

The otroff text processor internally wuses 432 units/inch,
corresponding to the C/A/T phototypesetter which has a horizontal
resolution of 1/432 inch and a vertical resolution of 1/144 inch. The
troff text processor uses the resolution of the phototypesetter for
which its output is being prepared (723 units/inch for the APS-5).
Both formatters rounds horizontal/vertical numerical parameter
input to the actual horizontal/vertical resolution of the typesetter.

The nroff text processor internally uses 240 units/inch,
corresponding to the least common multiple of the horizontal and
vertical resolutions of various typewriter-like output devices. It
rounds numerical input to the actual resolution of the output device

indicated by the —T option (default TELETYPE® Model 37).
3-9

NROFF/TROFF

3.1.3 Numerical Parameter Input

Both nroff and troff formatters accept numerical input with the
appended scale indicators shown in Figure 3-1, where S'is the current
type size in points, V is the current vertical line spacing in basic
units, and Cis a nominal character width in basic units.

SCALE NUMBER OF BASIC UNITS
MEANING
INDICATOR troff nroff

i Inch 432* 240
c Centimeter 432x50/127 | 240x50/127
P Pica = 1/6 inch T2 240/6
m em = S points 6xS c
n en = em/2 3xS C, same as em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space | V 1%

none Default

* 723 units/inch for the troff formatter driving the Autologic APS-5
phototypesetter. This value may vary for other phototypesetters.

Figure 3-1. Nroff/Troff Scale Indicators

In the nroff processor, both em and en are taken to be equal to C,
which is output-device dependent; common values are 1/10 and 1/12
inch. Actual character widths in the nroff formatter need not be all
the same. Constructed characters (such as ->) are often extra wide.
Default scaling is

e em for horizontally oriented requests (.11, .in, .ti, .ta, .It, .po,
.mc) and functions (\h, \1).

e V for vertically oriented requests (.pl, .wh, .ch, .dt, .sp, .sv, .ne,
rt) and functions (\v, \x, \L).

¢ p for .vs request.

o u for .nr, .if, and .ie requests.

3-10

NROFF/TROFF

All other requests ignore scale indicators. When a number register
containing an already appropriately scaled number is interpolated to
provide numerical input, the basic unit seale indicator (u) may need
to be appended to prevent an additional inappropriate default scaling.
The number, N, may be specified in decimal-fraction form; but the
parameter finally stored is rounded to an integer number of basic
units.

The absolute position indicator ({) may be prepended to a number N
to generate the distance to the vertical or horizontal place N.

e For vertically oriented requests and functions, | N becomes the
distance in basic units from the current vertical place on the
page or in a diversion {3.7} to the vertical place N.

o For all other requests and functions, IN becomes the distance
from the current horizontal place on the input line to the
horizontal place N.

For example:
.sp i13.2¢

will space in the required direction to 3.2 centimeters from the top of
the page.

3.1.4 Numerical Expressions
Wherever numerical input is expected, an expression involving
parentheses, the arithmetic operators

+y_,/y*y % (mOd)

and the logical operators

<, >, <=, >=, = (or ==), & (and), : (or)

3-11

NROFF/TROFF

may be used. Except where controlled by parentheses, evaluation of
expressions is left to right; there is no operator precedence. In the
case of certain requests, an initial + or — is stripped and interpreted
as an increment or decrement indicator. In the presence of default
scaling, the desired scale indicator must be attached to every number
in an expression for which the desired and default scaling differ. For
example, if the number register x contains 2 and the current point
size is 10, then:

11 (4.251+\nxP+3)/2u

will set the line length to % the sum of 4.25 inches + 2 picas + 3 ems
(30 points since the point size is 10).

3.1.5 Notation

Numerical parameters are indicated in this chapter in two ways. A
+ N means that the argument may take the forms N, +N, or -N and
that the corresponding effect is to set the affected parameter to N, to
increment it by N, or to decrement it by N, respectively. Plain N
means that an initial algebraic sign is not an increment indicator but
merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For example, most
requests expect to set parameters to non-negative values; exceptions
are .sp, .wh, .ch, .nr, and .if. The .ps, .ft, .po, .vs, .Is, .11, .in, and .1t
requests restore the previous parameter value in the absence of an
argument.

Single character arguments are indicated by single lowercase letters
and 1- or 2-character arguments are indicated by a pair of lowercase
letters. Character string arguments are indicated by multicharacter
mnemonics.

3-12

NROFF/TROFF

3.2 Font and Character Size Control

3.2.1 Fonts

Default mounted fonts with the otroff formatter are Times Roman
(R), Times Italic (I), Times Bold (B), and Special Mathematical (S)
on physical typesetter positions 1, 2, 3, and 4, respectively. These
font styles are shown in Figure 3-2. In Figure 3-2, the font examples
are printed in 12-point, with a vertical spacing of 14-point, and with
non-alphanumeric characters separated by % em space. The original
Special Mathematical Font was prepared for Bell Laboratories by
Wang Laboratories, Inc., of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts
available.

3-13

NROFF/TROFF

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

'"$$ & () *+—-.,/;="[]1
e—-_uhrufififffificf’'¢e®

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
'$%B&() T F—., /=]
o0 -_nuhufiifffificot’ ¢ee
Times Bold

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
'$% & () *+—.,/:5="2[]
o—-_Un¥ufiifififict ¢eo

Special Mathematical Font

"N _§ /<> {lt@+- =+
afvyoelnbixAuvéomposTvdpxyw
[AGAETNIZT® ¥ Q

V 2<=~ac#—-><1|X++xUNCDc
Do d

§V [c Fetwsa O(1)JLYILIMT

X

Figure 3-2. Some Font Style Examples

3-14

NROFF/TROFF

The default fonts available with the troff formatter depend on the
intended phototypesetter. Refer to Chapter 4, DEVICE
INDEPENDENT TROFF, for font style examples for the Autologic
APS-5 phototypesetter.

The current font may be changed by use of the .ft request or by
embedding at any desired point either \fx, \f(xx, or \fN, where x and
xx are the name of a font and N is a numerical font position. For the
otroff formatter, the font name must already be mounted in a font
position. With the troff formatter, the named font is loaded on font
position 0 if the font exists and is not currently mounted by default
or by a .fp request, but the font must still or again be in position 0
when the line is printed.

It is not necessary to change to the Special Font; characters on that
font are automatically handled. With the otroff formatter, a request
for a named but not mounted font is ignored.

The troff text processor can be informed that any particular font is
to be mounted by use of the .fp request. The list of known fonts is
installation dependent.

Font control is understood by the nroff formatter which normally
underlines italic characters. Part 7 of this chapter contains a
summary and explanation of font control requests.

In the subsequent discussion of font-related requests, F' represents
either a 1- or 2-character font name or the numerical font position, 1
through 4. The current font is available as numerical position in the
read-only number register .f.

3.2.2 Character Set

The troff character set consists of the so-called Commercial II
character set plus a Special Mathematical font character set each
having 102 characters. All ASCII characters are included with some
on the Special Mathematical font. The ASCII characters are input as
themselves (with three exceptions); and non-ASCII characters are
input in the form \(xx, where xx is a 2-character name given in
Figure 3-4 and Figure 3-5. The three ASCII character exceptions are
mapped as shown in Figure 3-3.

3-15

NROFF/TROFF

ASCII INPUT PRINTED BY troff
CHARACTER NAME CHARACTER NAME
’\ acute accent ’ close quote
grave accent ¢ open quote
- minus - hyphen

Figure 3-3. Troff ASCII Character Mapping

The characters ~, \, and — may be input by \’, \\, and \—:,

respectively, or by their names. The ASCII characters @, #," ,”, ,
<,>,\,{,},”, ,and _ exist on the Special Mathematical font and
are printed as a one em space if that font is not mounted.

The nroff text processor understands the entire troff character set
but can print only:

e ASCII characters.
¢ Additional characters as may be available on the output device.

o Such characters as may be able to be constructed by overstriking
or other combinations.

e Those characters that can reasonably be mapped into other
printable characters.

The exact behavior is deter\mined by a driving table prepared for each
device. The characters “, , and _ print as themselves.

3-16

NROFF/TROFF

INPUT CHARACTER
CHARACTER

NAME NAME

’ \ close quote

¢ open quote

_ \(em % Em dash

- - hyphen or

- \(hy hyphen

- \- current font minus

. \(bu bullet

O \(sq square

_ \(ru rule

Y% \(14 %

% \(12 1%

% \(34 %

fi \(fi fi

fl \(fl fl

ff \(ff ff

ffi \(Fi fi

il \(F1 f

° \(de degree

T \(dg dagger
\(fm foot mark
\(ct cent sign

® \(rg registered

© \(co copyright

Figure 3-4. Naming Conventions for Non-ASCII Characters
on the Standard Fonts

3-17

NROFF/TROFF

INPUT CHARACTER
CHARACTER
NAME NAME
+ \{pl math plus
- \{mi math minus
= \(eq math equals
* \(** math star
§ \(se section
; \(aa acute accent
\(ga grave accent
_ \(ul underrule
/ \(sl slash (matching backslash)
a \(*a alpha
B8 \(*b beta
k% \(*g gamma
1} \(*d delta
e \(*e epsilon
¢ \(*z zeta
n \(*y eta
0 \(*h theta
¢ \(*i iota
x \(*k kappa
A \(*1 lambda
u \(*m mu
v \(*n nu
£ \(*¢ xi
0 \(*o omicron
™ \(*p pi
P \(*r rho
4 \(*s sigma
s \(ts terminal sigma
T \(*t tau
v \(*u upsilon
[\(f phi
X \(*x chi
2 \(*q psi
w \(*w omega

Figure 3-5. Naming Conventions for Non-ASCII Characters
on the Special Font (Sheet 1 of 3)

3-18

NROFF/TROFF

INPUT CHARACTER
CHARACTER
NAME NAME
A \(*A Alphat
B \(*B Betat
r \(*G Gamma
A \(*D Delta
E \(*E Epsilont
VA \(*Z Zetat
H \(*Y Etat
0 \(*H Theta
1 NG Totat
K \(*K Kappat
A \(*L Lambda
M \(*M Mut
N \(*N Nut
o \(*C Xi
0 \(*O Omicront
1 \(*P Pi
P \(*R Rhot
z \(*S Sigma
T \(*T Taut
T \(*U Upsilon
4 \(*F Phi
X \(*X Chit
v \(*Q Psi
Q \(*W Omega
v \(sr square root
) \{rn root en extender
> \(>= >=
=< \(<= <=
= \(== identically equal
=~ \(= approximately equal
~ \(ap approximates
= \(I= not equal
ind (> right arrow
b \(=<- left arrow

1+ Mapped into uppercase English letters on the font mounted on font
position one. ’

Figure 3-5. Naming Conventions for Non-ASCII Characters
on the Special Font (Sheet 2 of 3)

3-19

NROFF/TROFF

INPUT CHARACTER
CHARACTER
NAME NAME
t \(ua up arrow
| \(da down arrow
X \(mu multiply
+ \(di divide
+ \{+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of
D \(sp superset of
c \(ib improper subset
=} \(ip improper superset
x \(if infinity
a \(pd partial derivative
v \(gr gradient
\(no not
I \(is integral sign
x \(pt proportional to
%] \(es empty set
€ \(mo member of
| \(br box vertical rule
i \(dd double dagger
e \(rh right hand
1 \(1h left hand
| \{or or
O \(ei circle
(\(1t left top (big brace)
L \(1b left bottom (big brace)
] \(rt right top (big brace)
) \(rb right bottom (big brace)
{ \(k left center (big brace)
v \(rk right center (big brace)
| \(bv bold vertical
L \(If left floor (big bracket)
] \(rf right floor (big bracket)
[\(le left ceiling (big bracket)
1 \(rc right ceiling (big bracket)

Figure 3-5. Naming Conventions for Non-ASCII Characters
on the Special Font (Sheet 3 of 3)

3-20

NROFF/TROFF

3.2.3 Character Size

For the otroff formatter, character point sizes available are 6, 7, 8, 9,
10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch
to 1/2 inch. Character sizes with the troff formatter depend on the
phototypesetter installation. The .ps request is used to change or
restore the point size. Alternatively, the point size may be changed
between any two characters by embedding a \sN at the desired point
to set the size to Nor a \s + N (1=N<9) to increment/decrement the
size by N; \sO restores the previous size. Requested point size values
that are between two valid sizes yield the larger of the two for
otroff. With troff, requested point size values that are between two
valid sizes yield the closer of the two. The current size is available in
the .s number register. The nroff formatter ignores type size
control. Part 8, Character Size Control Requests, contains a
summary and explanation of character size requests.

3.3 Page Control

Top and bottom margins are not automatically provided. They may
be defined by two macros which set traps at vertical positions 0 (top)
and -N (N from the bottom) {3.7.5}. A pseudo-page transition onto
the first page occurs either when the first break occurs or when the
first nondiverted text processing occurs. Arrangements for a trap to
occur at the top of the first page must be completed before this
transition. A summary and explanation of page control requests is
shown in Part 9, Page Control Requests. References to the current
diversion mean that the mechanism being described works during
both ordinary and diverted output (the former is considered as the
top diversion level).

Usable page width on the Wang C/A/T phototypesetter is about 7.54
inches. This may differ on other phototypesetters. The left margin
begins about 1/27 inch from the edge of the 8-inch wide, continuous
roll paper {44}. Physical limitations on the nroff text processor
output are output-device dependent.

3-21

NROFF/TROFF

3.4 Text Filling, Adjusting, and Centering

3.4.1 Filling and Adjusting

Normally, words are collected from input text lines and assembled
into an output text line until some word does not fit. An attempt
may be made to hyphenate the word in an effort to assemble a part
of it into the output line. The spaces between the words on the
output line are increased to spread out the line to the current line
length minus any current indent. A word is any string of characters
delimited by the space character or the beginning/end of the input
line. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process)
can be tied together by separating them with the unpaddable space
backslash-space character (\). The adjusted word spacings are
uniform in the troff formatter, and the minimum interword spacing
can be controlled with the .ss request. In the nroff formatter, they
are normally nonuniform because of quantization to character-size
spaces; however, the command line option —e causes uniform spacing
with full output device resolution. Filling, adjustment, and
hyphenation can all be prevented or controlled. The text length on
the last line output is available in the .n number register, and text
base-line position on the page for this line is in the nl number
register. The text base-line high-water mark (lowest place) on the
current page is in the .h register.

An input text line ending with ., 2, :, or ! is taken to be the end of a
sentence, and an additional space character is automatically provided
during filling. Multiple interword space characters found in the
input are retained, except for trailing spaces; initial spaces also cause
a break.

When filling is in effect, a \p escape sequence may be embedded in or
attached to a word to cause a break at the end of the word and have
the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can
be made to not look like a control line by prefacing it with the
nonprinting, zero-width filler character (\&). Another way is to
specify output translation of some convenient character into the
control character using the .tr request.

3-22

NROFF/TROFF

3.4.2 Interrupted Text

Copying of an input line in no-fill mode can be interrupted by
terminating the partial line with a \c¢ escape sequence. The next
encountered input text line will be considered to be a continuation of
the same line of input text. Similarly, a word within filled text may
be interrupted by terminating the word (and line) with \e¢; the next
encountered text will be taken as a continuation of the interrupted
word. If the intervening control lines cause a break, any partial line
will be forced out along with any partial word.

Part 10 contains a summary and explanation of filling, adjusting, and
centering requests.

3.5 Vertical Spacing

3.5.1 Base-Line Spacing

Vertical spacing size (V) between base lines of successive output lines
can be set using the .vs request with a resolution of 1/144 inch = 1/2
point in the otroff formatter and to the output device resolution in
the nroff and troff formatters. Spacing size must be large enough
to accommodate character sizes on affected output lines. For the
common type sizes (9 through 12 points), usual typesetting practice is
to set V to two points greater than the point size; troff default is 10-
point type on a 12-point spacing. The current V is available in the .v
register. Multiple-V line separation (e.g., double spacing) may be
obtained with a .ls request.

3.5.2 Extra Line Space

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and/or after it, the
extra line space function \x’N’ can be embedded in or attached to
that word. In this and other functions having a pair of delimiters
around their parameter, the delimiter choice is arbitrary except that
it cannot look like the continuation of a number expression for N.

e If N is negative, the output line containing the word will be
preceded by N extra vertical spaces.

3-23

NROFF/TROFF

e If N is positive, the output line containing the word will be
followed by N extra vertical spaces.

o If successive requests for extra space apply to the same line, the
maximum value is used.

The most recently utilized post-line extra line space is available in
the .a register.

3.5.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using .sp, which
honors the no-space mode and which does not space past a trap. A
contiguous block of vertical space may be reserved using the .sv
request.

Part 11 contains a summary and explanation of vertical spacing
requests.

3.6 Line Length and Indenting

The maximum line length for fill mode may be set with a .11 request.
The indent may be set with a .in request; an indent applicable to only
the next output line may be set with the .ti request. The line length
includes indent space but not page offset space. The line length
minus the indent is the basis for centering with the .ce request. If a
partially collected line exists, the effect of .1, .in, or .ti is delayed
until after that line is output. In fill mode, the length of text on an
output line is less than or equal to the line length minus the indent.
The current line length and indent are available in registers .1 and .i,
respectively. The length of 3-part titles produced by .tl is
independently set by .lt. Part 12 contains a summary and
explanation of line length and indenting requests.

3-24

NROFF/TROFF

3.7 Macros, Strings, Diversions, and Position Traps

3.7.1 Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by
name or with a trap. A string is a named string of characters, not
including a newline character, that may be interpolated by name at
any point. Request, macro, and string names share the same name
list. Macro and string names may be 1- or 2-characters long and may
usurp previously defined request, macro, or string names. Any of
these entities may be renamed with .rn or removed with .rm.

e Macros are created by .de and .di and appended by .am and .da
(.di and .da cause normal output to be stored in a macro).

e Strings are created by .ds and appended by .as.

A macro is invoked in the same way as a request; a control line
beginning .xx will interpolate the contents of macro xx. The
remainder of the line may contain up to nine arguments. The strings
x and xx are interpolated at any desired point with *x and *(xx,
respectively. String references and macro invocations may be nested.

3.7.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros (not by
diversion), the input is read in copy mode. The input is copied
without interpretation except that:

o Contents of number registers indicated by \n are interpolated.
o Strings indicated by * are interpolated {3.7.1}.
e Arguments indicated by \$ are interpolated.

e Concealed newline characters indicated by \<newline> are
eliminated.

o Comments indicated by \" are eliminated {3.10.7}.

\t and \a are interpreted as ASCII horizontal tab and start of
heading (SOH), respectively {3.9.1}.

3-25

NROFF/TROFF

o \\ is interpreted as “\”.

“ ”

e \.1is interpreted as

These interpretations can be suppressed by prepending a \. For
example, since \\ maps into a \, \\n will copy as \n and will be
interpreted as a number register indicator when the macro or string
is reread.

3.7.3 Arguments

When a macro is invoked by name, the remainder of the line may
contain up to nine arguments. The argument separator is the space
character, and arguments may be surrounded by double quotes to
permit embedded space characters. Pairs of double quotes may be
embedded in double quoted arguments to represent a single double
quote. If the desired arguments will not fit on a line, a concealed
newline character may be used to continue on the next line.

When a macro is invoked, the input level is pushed down and any
arguments available at the previous level become unavailable until
the macro is completely read and the previous level is restored. A
macro’s own arguments can be interpolated at any point within the
macro with \$N, which interpolates the Nth argument (1 < N < 9).
If an invoked argument does not exist, a null string results. For
example, the macro xx may be defined by

.de xx \" begin definition
Today is \\ $1 the \\ $2.
\" end definition

and called by
.xx Monday 14th
to produce the text

Today is Monday the 14th.

3-26

NROFF/TROFF

The \$ was concealed in the definition with a prepended backslash.
The number of currently available arguments is in the .$ register.

e No arguments are available at the top (nonmacro) level in this
implementation. '

e No arguments are available from within a string because string
referencing is implemented as an input-level pushdown.

o No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are
available for reference. The mechanism does not allow an argument
to contain a direct reference to a long string (interpolated at copy
time), and it is advisable to conceal string references (with an extra
\) to delay interpolation until argument reference time.

3.7.4 Diversions

Processed output may be diverted into a macro for purposes such as
footnote processing or determining the horizontal and vertical size of
some text for conditional changing of pages or columns. A single
diversion trap may be set at a specified vertical position. The
number registers .dn and .dl, respectively, contain the vertical and
horizontal size of the most recently ended diversion. Processed text
that is diverted into a macro retains the vertical size of each of its
lines when reread in no-fill mode regardless of the current V.
Constant-spaced (.cs) or emboldened (.bd) text that is diverted can
be reread correctly only if these modes are again or still in effect at
reread time. One way to do this is to embed in the diversion the
appropriate .cs or .bd request with the transparent mechanism
described in paragraph 3.10.6.

Diversions may be nested and certain parameters and registers are
associated with the current diversion level (the top nondiversion level
may be thought of as diversion level 0). These parameters and
registers are:

e Diversion trap and associated macro

3-27

NROFF/TROFF

e No-space mode

e Internally saved marked place (see .mk and .rt)
o Current vertical place (.d register)

e Current high-water text base line (.h register)

e Current diversion name (.z register).

3.7.5 Traps

Three types of trap mechanisms are available:

e Page trap
o Diversion trap

¢ Input-line-count trap.

Macro-invocation traps may be planted using .wh requests at any
page position including the top. This trap position may be changed
using the .ch request. Trap positions at or below the bottom of the
page have no effect unless or until moved to within the page or
rendered effective by an increase in page length. Two traps may be
planted at the same position only by first planting them at different
positions and then moving one of the traps; the first planted trap will
conceal the second unless and until the first one is moved. If the
first planted trap is moved back, it again conceals the second trap.
The macro associated with a page trap is automatically invoked when
a line of text is output whose vertical size reaches or sweeps past the
trap position. Reaching the bottom of a page springs the top-of-page
trap, if any, provided there is a next page. The distance to the next
trap position is available in the .t register; if there are no traps
between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

Macro-invocation traps, effective in the current diversion, may be
planted using .dt requests. The .t register works in a diversion. If
there is no subsequent trap, a large distance is returned.

3-28

NROFF/TROFF

Part 13 contains a summary and explanation of macros, strings,
diversion, and position traps requests.

3.8 Number Registers

A variety of predefined number registers (Part 5) are available to the
user. In addition, the user may define his own named registers.
Register names are 1- or 2-characters long and do not conflict with
request, macro, or string names. Except for certain predefined read-
only number registers (Part 6), a number register can be read,
written, automatically incremented or decremented, and interpolated
into the input in a variety of formats. One common use of user-
defined registers is to automatically number sections, paragraphs,
lines, etc. A number register may be used any time numerical input
is expected or desired and may be used in numerical expressions.

Number registers are created and modified using the .nr request,
which specifies name, numerical value, and automatic increment size.
Registers are also modified if accessed with an automatic
incrementing sequence. If the registers x and xx both contain N and
have the automatic increment size M, Figure 2-6 shows the values
interpolated for the indicated access sequences.

SEQUENCE EFFECT ON VALUE
REGISTER INTERPOLATED.

\nx none N

\n(xx none N

\n+x x incremented by M N+M

\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented by M N-M

Figure 3-6. Nroff/Troff Number Register Interpolation

3-29

NROFF/TROFF

According to the format specified by the .af request, a number
register is converted (when interpolated) to:

o Decimal (default)
e Decimal with leading zeros
o Lowercase Roman
o Uppercase Roman

o Lowercase sequential alphabetic

Uppercase sequential alphabetic.

Part 14 contains a summary and explanation of number registers
‘requests.

3.9 Tabs, Leaders, and Fields

3.9.1 Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH character
(the leader) can both be used to generate either horizontal motion or
a string of repeated characters. The length of the generated entity is
governed by internal tab stops specified with a .ta request. The
default difference is that tabs generate motion and leaders generate a
string of periods; .tc and .le offer the choice of repeated character or
motion. There are three types of internal tab stops: left justified,
right justified, and centered. In Figure 3-7: :

o next-string consists of the input characters following the tab (or
leader) up to the next tab (or leader) or end of line.

e D is the distance from the current position on the input line
(where a tab or leader was found) to the next tab stop.

e Wis the width of next-string.

3-30

NROFF/TROFF

TAB LENGTH OF MOTION OR LOCATION OF
TYPE REPEATED CHARACTERS next-string
Left D Following D
Right D-W Right justified within D
Centered D-w./2 Centered on right end of D

Figure 3-7. Nroff/Troff Tab Types

The length of generated motion is allowed to be negative but that of
a repeated character string cannot be. Repeated character strings
contain an integer number of characters, and any residual distance is
prepended as motion. Tabs (or leaders) found after the last tab stop
are ignored, but they may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. The \t and \a
always generate a noninterpreted tab and leader, respectively, and
are equivalent to actual tabs and leaders in copy mode.

3.9.2 Fields

A field is contained between a pair of field delimiter characters. It
consists of substrings separated by padding indicator characters. The
field length is the distance on the input line from the position where
the field begins to the next tab stop. The difference between the
total length of all the substrings and the field length is incorporated
as horizontal padding space that is divided among the indicated
padding places. The incorporated padding is allowed to be negative.
For example, if the field delimiter is “#” and the padding indicator
is “7”, then

xxx right#

specifies a right-justified string with the string xxx centered in the
remaining space.

Part 15 contains a summary and explanation of tab, leader, and field
requests.

3-31

NROFF/TROFF

3.10 Input/Output Conventions and Character Translations

3.10.1 Input Character Translations

The newline character delimits input lines. In addition, STX, ETX,
ENQ, ACK, and BEL are accepted and may be used as delimiters or
" translated into a graphic with a .tr request. All others are ignored.

The escape character (\) introduces sequences that cause the
following character to mean another character or to indicate some
function. A complete list of such sequences is given in Part 4. The
escape character:

o should not be confused with the ASCII control character ESC of
the same name.

e can be input with the sequence \\.

e can be changed with .ee, and all that has been said about the
default \ becomes true for the new escape character.

A \e sequence can be used to print the current escape character. If
necessary or convenient, the escape mechanism may be turned off
with .eo and restored with .ec. A summary and explanation of input
character translations requests are contained in Part 16.

3.10.2 Ligatures

Five ligatures are available in the troff character set: fi, fl, ff, ffi, and
fii. They may be input (even in the nroff formatter) by \(fi, \(f],
\(ff, \(Fi, and \(F1, respectively. The ligature mode is normally on in
the troff formatter and automatically invokes ligatures during input.
A summary and explanation of ligature requests are included in Part
16.

3.10.3 Backspacing, Underlining, and Overstriking

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character.
Underlining is a form of line drawing and, as a generalized
overstriking function, is described in paragraph 3.12.

3-32

NROFF/TROFF

The nroff text processor underlines characters automatically in the
underline font, specifiable with the .uf request. The underline font is
normally on font position 2. In addition to .ft request and \fF escape
sequence, the underline font may be selected by .ul and .cu requests.
Underlining is restricted to an output-device-dependent subset of
reasonable characters. A summary and explanation of backspacing,
underlining, and overstriking requests are included in Part 16.

3.10.4 Control Characters

Both the break control character (.) and the no-break control
character (’) may be changed, if desired. Such a change must be
compatible with the design of any macros used in the span of the
change and particularly of any trap-invoked macros. A summary and
explanation of the .ce and .c2 control character requests are included
in Part 16.

3.10.5 Output Translation

One character can be made a stand-in for another character using the
.tr request. All text processing (e.g., character comparisons) takes
place with the input (stand-in) character which appears to have the
width of the final character. Graphic translation occurs at the
moment of output (including diversion). Included in Part 16 is a
summary and explanation of the output translation request.

3.10.6 Transparent Throughput

An input line beginning with a \! is read in copy mode and
transparently output (without the initial \!); the text processor is
otherwise unaware of the line’s presence. This mechanism may be
used to pass control information to a post-processor or to embed
control lines in a macro created by a diversion.

3.10.7 Comments and Concealed Newline Characters

An uncomfortably long input line that must stay on one line (e.g., a
string definition or no-filled text) can be split into many physical
lines by ending all but the last one with the escape character (\).
The sequence \<newline> is ignored except in a comment.
Comments may be embedded at the end of any line by prefacing them
with \". The newline character at the end of a comment cannot be
concealed. A line beginning with \" will appear as a blank line and

3-33

NROFF/TROFF

behave like .sp 1; a comment can be on a line by itself by beginning
the line with .\".

3.11 Local Horizontal/Vertical Motion and Width Function

3.11.1 Local Motion

The functions \v’N’ and \WN’ can be used for local vertical and
horizontal motion, respectively. The distance N may be negative; the
positive directions are rightward and downward. A local motion is
one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion (within
a word in filled text and otherwise within a line) balance to zero.
The above and certain other escape sequences providing local motion
are summarized and explained in Figure 3-8 and Figure 3-9. As an
example, E’ is generated by the sequence
E\V'—.5\s—4\&2\s0\Vv’.5’.

EFFECT IN
FUNCTION
TROFF NROFF
\V'N’ Move distance N
\u 1/2 em up 1/2 line up
\d 1/2 em down 1/2 line down
\r 1 em up 1 line up

Figure 3-8. Vertical Local Motions

EFFECT IN
FUNCTION
TROFF | NROFF
\h'N? Move distance N
\(space) Unpaddable space-size space
\O Digit-size space
\! 1/6 em space ignored
\ 1/12 em space | ignored

Figure 3-9. Horizontal Local Motions

3-34

NROFF/TROFF

3.11.2 Width Function

The width function \w’string’ generates the numerical width of
string (in basic units). Size and font changes may be embedded in
string and will not affect the current environment. For example,

ti-\ w'l'u

could be used to temporarily indent leftward a distance equal to the
size of the string “1.”.

The width function also sets three number registers. The registers st
and sb are set to the highest and lowest extent of string relative to
the baseline respectively; then, for example, the total height of the
string is \n(stu-\n(sbu. In the troff formatter, the number
register ct is set to a value between 0 and 3:

e 0 means that all characters in string are short lowercase
characters without descenders (like e).

e 1 means that at least one character has a descender (like y).
e 2 means that at least one character is tall (like H).

e 3 means that both tall characters and characters with
descenders are present.

3.11.3 Mark Horizontal Place

The escape sequence \kx will cause the current horizontal position in
the input line to be stored in register x. As an example, the
construction

\ kxword\h’ } \nxu+2u’word

will embolden word by backing up to almost its beginning and
overprinting it, resulting in word.

3-35

NROFF/TROFF

3.12 Overstrike, Zero-Width, Bracket, and Line Drawing
Functions

3.12.1 Overstrike

Automatically centered overstriking of up to nine characters is
provided by the overstrike function \o’string’. Characters in string
are overprinted with centers aligned; the total width is that of the
widest character. The string should not contain local vertical motion.
As examples, “\o’e\””” produces é, and “\o\(ci\(p!"” produces @ .

3.12.2 Zero-Width Characters

The function \zc¢ will output ¢ without spacing over it and can be
used to produce left-aligned overstruck combinations. As examples,
“\z\(ci\(pl ” will produce &), and “\(br\z\(rn\(ul\(br” will produce
the smallest possible constructed box ([J).

3.12.3 Large Brackets

The Special Mathematical Font contains a number of bracket
construction pieces that can be combined into various bracket styles.
The function \b’string’ may be used to pile up vertically the
characters in string (the first character on top and the last at the
bottom); the characters are vertically separated by one em and the
total pile is centered one-half em above the current base line (one-
half line in the nroff formatter). For example:

\ b \(le \(If’E\ 1\ b’ \(re\ (rf’ \x’-0.5m’ \x’0.5m’
produces [E]

3.12.4 Line Drawing

The \I'N¢’ function will draw a string of repeated ¢’s toward the
right for a distance N (1 is lowercase L).

o If ¢ looks like a continuation of an expression for N, it may be
insulated from N with a “\&”.

3-36

NROFF/TROFF

e If ¢ is not specified, the base-line rule (_) is used (underline

character in nroff).

o If N is negative, a backward horizontal motion of size N is made

before drawing the string.

Any space resulting from N/(size of ¢) having a remainder is put at
the beginning (left end) of the string. In the case of characters that
are designed to be connected, such as base-line rule (_), underrule
(\(ul), and root en (\(ru), the remainder space is covered by
overlapping. If N is less than the width of ¢, a single ¢ is centered on
a distance N. As an example, a macro to underscore a string can be

written:

.de us

\\SINT H0\(ul’

or one to draw a box around a string:

.de bx
\(br\ 1\\S1\ I\ (br\ I’ {O\(rn\I”{ O\ (ul”

such that

.us "underlined words"

and
.bx " words in a box"
yield

underlined words

and

words in a box

3-37

NROFF/TROFF

The function \L’Ne¢’ will draw a vertical line consisting of the
optional character c¢ stacked vertically apart one em (one line in
nroff), with the first two characters overlapped, if necessary, to form
a continuous line. The default character is box rule (\(br); the other
suitable character is bold vertical (\(bv). The line is begun without
any initial motion relative to the current base line. A positive N
specifies a line drawn downward, and a negative N specifies a line
drawn upward. After the line is drawn, no compensating motions are
made; the instantaneous base line is at the end of the line.

The horizontal and vertical line drawing functions may be used in
combination to produce large boxes. The zero-width box-rule and the
one-half em wide underrule were designed to form corners when
using one em vertical spacings. For example, the macro

.de eb
.sp -1 \" compensate for next automatic base-line spacing
nf \" avoid possibly overflowing word buffer

\h’-5n"\L’ I\\nau-1 "\I"\\n(lu+1n\(ul’ \I'- \\nau+1\I’tOu-.5n\(ul’
fi

will draw a box around some text whose beginning vertical place was
saved in number register z (e.g., using .mk z).

3.13 Hyphenation

The automatic hyphenation may be switched off and on. When
switched on with .hy, several variants may be set. A hyphenation
indicator character may be embedded in a word to specify desired
hyphenation points or may be prepended to suppress hyphenation. In
addition, the user may specify a small exception word list. The
default condition of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by
nonalphabetic strings (usually null) are considered candidates for
automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters

3-38

NROFF/TROFF

(such as mother-in-law) are always subject to splitting after those
characters whether or not automatic hyphenation is on or off. Part
17 is a summary and explanation of hyphenation requests.

3.14 Three-Part Titles

The titling function .tl provides for automatic placement of three
fields at the left, center, and right of a line with a title length
specifiable with .t. The .tl may be used anywhere and is
independent of the normal text collecting process. A common use is
in header and footer macros. Part 18 is a summary and explanation
of 3-part title requests.

3.15 Output Line Numbering

Automatic sequence numbering of output lines may be requested with
.nm. When in effect, a 3-digit, Arabic number plus a digit space is
prepended to output text lines. Text lines are offset by four digit
spaces and otherwise retain their line length. A reduction in line
length may be desired to keep the right margin aligned with an
earlier margin. Blank lines, other vertical spaces, and lines
generated by .tl are not numbered. Numbering can be temporarily
suspended with .nn or with a .nm followed by a later .nm +0. In
addition, a line number indent I and the number-text separation S
may be specified in digit spaces. Further, it can be specified that
only those line numbers that are multiples of some number M are to
be printed (the others will appear as blank number fields). Part 19 is
a summary and explanation of output line numbering requests.

Figure 2-10 is an example of output line numbering. Paragraph
portions are numbered with M=3.

e .nm 1 3 was placed at the beginning.
e .nm +0 was placed in front of the second and third paragraphs.

o .nm was placed at the end.

3-39

NROFF/TROFF

Line lengths were also changed (by \w’0000’u) to keep the right
side aligned. Another example is:

anam +55x3

which turns on numbering with the line number of the next line to be
five greater than the last numbered line, with M=5, spacing S
untouched, and the indent I set to 3.

3-40

12

15

18

21

NROFF/TROFF

Automatic sequence numbering of output lines may be requested
with .nm. When in effect, a 3-digit, arabic number plus a digit-
space is prepended to output text lines. Text lines are offset by
four digit-spaces and otherwise retain their line length. A
reduction in line length may be desired to keep the right margin
aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by .tl are not numbered. Numbering
can be temporarily suspended with .nn or with a .nm followed by
a later .nm +0. In addition, a line number indent I and the
number-text separation S may be specified in digit-spaces.
Further, it can be specified that only those line numbers that are
multiples of some number M are to be printed (the others will
appear as blank number fields). Part 19 is a summary and
explanation of output line numbering requests.

As an example of output line numbering, paragraph portions of
this figure are numbered with M=3: .nm 1 3 was placed at the
beginning; .nm was placed at the end of the first paragraph; and
.nm +0 was placed in front of this paragraph; and .nm placed at
the end. Line lengths were also changed (by \w'0000™u) to keep
the right side aligned. Another example is .nm +5 5 x 3, which
turns on numbering with the line number of the next line to be
five greater than the last numbered line, with M=5, spacing S
untouched, and the indent I set to 3.

Figure 3-10. Example of Output Line Numbering

3-41

NROFF/TROFF

3.16 Conditional Acceptance of Input

Part 20 shows is a summary and explanation of conditional
acceptance requests where:

e cis a l-character, built-in condition name.
e ! signifies not.
e Nis a numerical expression.

e stringl and string2 are strings delimited by any nonblank, non-
numeric character not in the strings.

anything represents what is conditionally accepted.

Built-in condition names are shown in Figure 3-11.

CONDITION TRUE IF
NAME
o Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff

Figure 3-11. Nroff/Troff Built-In Condition Names

If condition c is true, if number N is greater than zero, or if strings
compare identically (including motions and character size and font),
anything is accepted as input. If a “!” precedes the condition,
number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are
skipped over. The anything can be either a single input line (text,
macro, or whatever) or a number of input lines. In the multiline
case, the first line must begin with a left delimiter “\{”, and the last
line must end with a right delimiter “\} ”. If the left delimiter is the
last thing on that line, the following newline should be concealed
with a “\” or a blank line may result on output.

3-42

NROFF/TROFF

The request .ie (if-else) is identical to .if except that the acceptance
state is remembered. A subsequent and matching .el (else) request
then uses the reverse sense of that state. The .ie - .el pairs may be
nested. For example:

.if e .tl ' Even Page %’”’
outputs a title if the page number is even, and

de\n%>1\{\
’sp 0.51

.tl1 '’Page %’’’
spil.2i\}

.el .spt2.5i

treats Page 1 differently from other pages.

3.17 Environment Switching

A number of parameters that control text processing are gathered
together into an environment, that can be switched by the user.
Environment parameters are those associated with some requests.
Parts 7 through 25 of this section indicate in the “Explanation”
column those requests so affected. In addition, partially collected
lines and words are in the environment. Everything else is global;
examples are page-oriented parameters, diversion-oriented
parameters, number registers, and macro and string definitions. All
environments are initialized with default parameter values. Part 21
is a summary and explanation of the environment switching request.

3.18 Insertions From Standard Input

The input can be switched temporarily to the system standard input
with .rd and switched back when two newline characters in a row are
found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On the UNIX
system, the standard input can be the user keyboard, a pipe, or a file.

If insertions are to be taken from the terminal keyboard while output
is being printed on the terminal, the command line option —q will

3-43

NROFF/TROFF

turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come
from the standard input. As an example, multiple copies of a form
letter may be prepared by entering insertions for all copies in one file
to be used as the standard input and causing the file containing the
letter to reinvoke itself by using the .nx request. The process would
be ended by a .ex request in the insertion file. Part 22 is a summary
and explanation of insertions from the standard input requests.

3.19 Input/Output File Switching

Part 23 is a summary and explanation of input/output file switching
requests.

3.20 Miscellaneous

Part 24 is a summary and explanation of miscellaneous requests.

3.21 Output and Error Messages

Output from .tm, .pm, and prompt from .rd, as well as various error
messages are written onto the UNIX system standard output and
error (message) output. By default, both are written onto the user’s
terminal, but they can be independently redirected.

Various error conditions may occur during the operation of the nroff
and troff formatters. Certain less serious errors having only local
impact do not cause processing to terminate. Two examples are:

e word overflow—caused by a word that is too large to fit into the
word buffer (in fill mode).

o line overflow—caused by an output line that grew too large to fit
in the line buffer.

In both cases, a message is printed, the offending excess is discarded,
and the affected word or line is marked at the point of truncation
with an * (in nroff) or a & (in troff). The philosophy is to continue
processing, if possible, on the grounds that output useful for
debugging may be produced. If a serious error occurs, processing

3-44

NROFF/TROFF

terminates, and an appropriate message is printed. Examples are the
inability to create, read, or write files, and the exceeding of certain
internal limits that make future output unlikely to be useful. Part 25
is a summary and explanation of output and error messages requests.

3.22 Compacted Macros

Note: The rest of this chapter applies only to the nroff and
otroff formatters. Compacted macros are not supported by
the troff formatter.

The time required to read a macro package by the nroff formatter
may be lessened by using a compacted macro (a preprocessed version
of a macro package). The compacted version is equivalent to the
noncompacted version, except that a compacted macro package
cannot be read by the .so request. A compacted version of a macro
package, called name, is used by the —ecname command line option,
while the uncompacted version is used by the —mname option.
Because —cname defaults to —mname if the name macro package has
not been compacted, the user should always use —c¢ rather than —m.

3.22.1 Building a Compacted Macro Package

Only macro, string, and diversion definitions; number register
definitions and values; environment settings; and trap settings can be
compacted. End macro (em) requests and any commands that may
interact during package interpretation with command-line settings
(such as references in the MM package to the number register P,
which can be set from the command line) are not compactible. There
are two steps to make a compacted macro from a macro package:

o Separate compactible from noncompactible parts
e Place noncompactible material at the end of the macro package

with a .co request. The .co request indicates to the nroff
formatter when to compact its current internal state.

3-45

NROFF/TROFF

Compactible Material

.co
Noncompactible Material

3.22.2 Produce Compacted Files

When compactible and noncompactible segments have been
established, the nroff formatter may be run with the —k option to
build the compacted files. For example, if the output file to be
produced is called mac, the following may be used to build the
compacted files:

nroff -kmac mac

This command causes the nroff formatter to create two files in the
current directory, d.mac and t.mac.

Note: When nroff/otroff is complied with the INCORE
option (which is the default, except on the PDP*-11) only one
file, d.mac, will be created. In this case, only d.mac should be
installed, ignoring the missing t.mac.

The macro file must contain a .co request. Only lines before the .co
request will be compacted. Both —k and .co are necessary. If no .co
is found in the file, the —k is ignored. Likewise, if no —k appears on
the command line, the .co is ignored.

Each macro package must be compacted separately by the nroff
formatter. Compacted macro packages depend on the particular
version of the nroff formatter that produced them. Any compacted
macro packages must be recompacted when a new version of an nroff

* Trademark of Digital Equipment Corporation.

3-46

NROFF/TROFF

formatter is installed. If it is discovered that a macro package was
produced by a different version than that attempting to read it, the
—c¢ will be abandoned and the equivalent —m option attempted
instead.

3.22.3 Install Compacted Files

The two compacted files, d. mac and t.mac, must be installed into the
system macro library (/usr/lib/macros) with the proper names. If
the files were produced by an nroff formatter, cmp.n. must be
prepended to their names. For example, if the macro package is
called mac, the two nroff formatter compacted files may be installed
by

cp d.mac /usr/lib/macros/cmp.n.d.mac
and
cp t.mac /usr/lib/macros/emp.n.t.mac

3.22.4 Install Noncompactible Segment

The noncompactible segment from the original macro package must
be installed on the system as

/usr/lib/macros/uemp.[nt].mac

where n of [nt] means the nroff formatter version, and t means the
troff formatter version. The noncompactible segment must be
produced manually by using the editor. Using the mac package as
an example, the following could be used to install the nroff
formatter noncompactible segment:

$ ed mac
/" \ .co$/+,$w /usr/lib/macros/ucmp.n.mac

3-47

NROFF/TROFF

4. Nroff/Troff Escape Sequences

\ <space>

\&

\!

X.

\$N

\ %

\(xx

*x, \ *(xx
\ {

\}

\ <newline>

3-48

\ (to prevent or delay the interpretation of \)
Acute accent; equivalent to \(aa

Grave accent; equivalent to \(ga

Minus sign in the current font

Period (dot) (see de)

Unpaddable space-size space character
Unpaddable digit width space

1/6 em narrow space character (zero width in the
nroff formatter)

1/12 em half-narrow space character (zero width in
the nroff formatter)

Nonprinting zero width character
Transparent line indicator

Beginning of comment

Interpolate argument (1< N<9)
Default optional hyphenation character
Character named xx

Interpolate string x or xx

Begin conditional input

End conditional input

Concealed (ignored) newline character

\a
\b’abe...’

\¢
\d

\D’l dh dv’

\D’c &’

\D’e dl d2

NROFF/TROFF

Noninterpreted leader character
Bracket building function
Continuation of interrupted text

Forward (down) Y2 em vertical motion (% line in
the nroff formatter)

Draw a line from the current position by dh, dv.
(Not supported in otroff)

Draw a circle of diameter d with left side at the
current position. (Not supported in otroff)

Draw an ellipse of diameters dI and d2 with left
side at current position. (Not supported in otroff)

\D’a dhl dvl dh2 dv2’

Draw a counterclockwise arc from current position
to dhl+dh2, dvl+dv2, with center at dhl, dvl from
current position. (Not supported in otroff)

\D"" dhl dvl dh2 dv2...’

\e
\fx,\f(xx,\fN

\gx, \g(xx

\I'N’

\H'n’

Draw a B-spline from current position by dhl, dvi,
then by dh2, dv2 then (Not supported in
otroff)

Printable version of current escape character

Change to font named x or xx or position N

Return the .af-type format of the register x or xx
(returns nothing if x or xx has not yet been
referenced)

Local horizontal motion, move right N (negative
left)

Character heights are set to m points without
changing widths. A height of the form =+n is an
increment to the current point size; a height of 0
restores the height to the current point size. (Not
supported in otroff)

3-49

NROFF/TROFF

\jx, \j(xx

\kx
\I'Ne’
\L’Ne’
\nx, \n(xx
\o’abec...’
\p

\r

\sN\sxtN

\S)n’

\t
\u

\\V,N?

\w’string

\x'N’

\z¢
\ X

3-50

Mark the current horizontal output position in
register x or xx. This only exists with otroff.

Mark horizontal input place in register x

Horizontal line drawing function (optionally with ¢)

Vertical line drawing function (optionally with ¢)
Interpolate number register x or xx

Overstrike characters a, b, c...

Break and spread output line

Reverse 1 em vertical motion (reverse line in the
nroff formatter)

Point-size change function

Output is slanted n degrees. The value of n may be
negative. A value of 0 turns slant mode off. (Not
supported in otroff)

Noninterpreted horizontal tab

Reverse (up) %2 em vertical motion (% line in the
nroff formatter)

Local vertical motion; move down N (negative up)
Interpolate width of string

Extra line-space function (negative before, positive
after)

Print ¢ with zero width (without spacing)

Any character not listed above

NROFF/TROFF

5. Predefined General Number Registers

Yo
ct
dl
dn
dw
dy
hp
In
mo
nl

sb

st

yr

Current page number.

Character type (set by width function).

Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1 through 7).

Current day of the month (1 through 31).

Current horizontal place on input line. (otroff only)
Output line number.

Current month (1 through 12).

Vertical position of last printed text base line.

Depth of string below base line (generated by width
function).

Height of string above base line (generated by width
function).

Last two digits of current year.
Provides general register access to the input line

number in the current input file. Contains the same
value as the read-only .c register.

3-51

NROFF/TROFF

6. Predefined Read-Only Number Registers

3

3-52

Number of arguments available at the current macro
level.

Process-id of the troff process (troff only).

Set to 1 in the troff formatter if -a option used;
always 1 in the nroff formatter.

Value is a string that is the name of the current
input file.

Available horizontal resolution in basic units.

Contains the current line spacing parameter (the
value of the most recent .Is request).

Contains the value 1 if the current page is being
printed and is zero otherwise, i.e., if the current page

did not appear in the —o option list.

Set to 1 in the nroff formatter if -T option used;
always O in the troff formatter.

Available vertical resolution in basic units.

Post-line extra line space most recently utilized using

x'N.
Emboldening factor of the current font.
Number of lines read from current input file.

Current vertical place in current diversion; equal to
nl if no diversion.

Current font as physical quadrant (1 through 4).

Text base-line high-water mark on current page or
diversion.

NROFF/TROFF

Current indent.

Indicates the current adjustment mode and type.
Can be saved and later given to the .ad request to
restore a previous mode.

Contains the horizontal size of the text portion
(without indent) of the current partially collected
output line, if any, in the current environment.
Current line length.

Length of text portion on previous output line.
Current page offset.

Current page length.

Number of number registers that remain available
for use.

Current point size.

Distance to the next trap.

Equal to 1 in fill mode and O in no-fill mode.
Current vertical line spacing.

Width of previous character.

Reserved version-dependent register.
Reserved version-dependent register.

Name of current diversion.

3-63

NROFF/TROFF

7. Font Control Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.bd FN off -

Embolden font F' by N-1 units. Characters in font F' will be artificially emboldened by
printing each one twice, separated by N-1 basic units. A reasonable value for N is 3
when the character size is in the vicinity of 10 points. If N is missing, the embolden
mode is turned off. The mode must still (or again) be in effect when the characters are
physically printed. There is no effect in the nroff formatter.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.bd SFN off -

Embolden special font when current font is F. The characters in the special font will
be emboldened whenever the current font is F. The mode must still (or again) be in
effect when the characters are physically printed. There is no effect in the nroff
formatter.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
fpNF R,IB,S ignored

Font position. A font named F'is mounted on position N. It is a fatal error if F'is not
known.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ft F Roman previous

Change to font F (F is x, xx, digit, or P). Font P means the previous font. For font
changes within a line of text, sequences \fx, \f(xx, or \fN can be used. Relevant
parameters are a part of the current environment. ‘

3-54

NROFF/TROFF

8. Character Size Control Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
cesFNM off -

Set constant character space (width) mode on for font F (if mounted). The width of
every character is assumed to be N/36 ems. If M is absent, the em is that of the
character point size; if M is given, the em is M-points. All affected characters are
centered in this space including those with an actual width larger than this space.
Special font characters occurring while the current font is F are also so treated. If N
is absent, the mode is turned off. The mode must still (or again) be in effect when the
characters are printed. There is no effect in the nroff formatter.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ps +N 10 point previous

Set point size to = N. Any valid positive size value may be requested; if invalid, the
next larger valid size will result (maximum of 36). Valid point sizes depend upon the
typesetter used. A paired sequence +N, -N will work because the previous requested
value is remembered. For point size changes within a line of text, sequences \sN or
\s+ N can be used. Relevant parameters are a part of the current environment. There
is no effect in the nroff formatter.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ss N 12/36 em ignored

Set space-character size to N/36 ems. This size is the minimum word spacing in
adjusted text. Relevant parameters are a part of the current environment. There is no
effect in the nroff formatter.

3-556

NROFF/TROFF

9. Page Control Requests

Note: Values separated by ™ are for the nroff and troff/otroff
formatters, respectively.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
Jbp £N N=1 -

Begin page. The current page is ejected and a new page is begun. If * Nis given, the
new page number will be +N. The scale indicator is ignored if not specified in the
request. The request causes a break. The use of “’” as the control character (instead
of “.”) suppresses the break function. The request with no N is inhibited by the .ns
request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.mk R none internal

Mark current vertical place in an internal register (associated with the current
diversion level) or in register R, if given. The request is used in conjunction with
“return to marked vertical place in current diversion” request (.rt). Mode or relevant
parameters are associated with current diversion level.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ne N - N=1V

Need N vertical spaces. The scale indicator is ignored if not specified in the request.

« If the distance to the next trap position (D) is less than N, a forward vertical
space of size D occurs which will spring the trap.

o If there are no remaining traps on the page, D is the distance to the bottom of the
page.

o If Dis less than vertical spacing (V), another line could still be output and spring
the trap.

In a diversion, D is the distance to the diversion trap (if any) or is very large. Mode or
relevant parameters are associated with current diversion level.

3-56

NROFF/TROFF

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.pl £tN 1lin 1lin

Page length set to +N. The internal limitation is about 75 inches in the troff
formatter and 136 inches in the nroff formatter. Current page length is available in
the .p register. The scale indicator is ignored if not specified in the request.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.pn + N N=1 ignored

Page number. The next page (when it occurs) will have the page number +N. The
request must occur before the initial pseudopage transition to affect the page number
of the first page. The current page number is in the % register.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.po £t N 0;26/27in previous

Page offset. The current left margin is set to = N. The scale indicator is ignored if not
specified in the request. The troff formatter initial value provides about 1 inch of
paper margin including the physical typesetter margin of 1/27 inch. In the otroff
formatter the maximum (line-length) + (page-offset) is about 7.54 inches. The current
page offset is available in the .o register.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
xrt +N none internal

Return (upward only) to marked vertical place in current diversion. If *N (with
respect to place) is given, the vertical place is +N from the top of the page or
diversion. If N is absent, the vertical place is marked by a previous .mk. The .sp
request may be used in all cases instead of .rt by spacing to the absolute place stored
in an explicit register; e.g., using the sequence .mk R....sp !Ru. Mode or relevant
parameters are associated with current diversion level. The scale indicator is ignored
if not specified in the request.

3-57

NROFF/TROFF

10. Text Filling, Adjusting, and Centering

Requests
Note: Values separated by “;” are for the nroff and troff/otroff formatters
respectively.
REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.ad N adjust adjust

Adjust. Output lines are adjusted with mode N. If the type indicator (N) is present,
the adjustment type is as follows:

N ADJUSTMENT TYPE

1 adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

The adjustment type indicator N may also be a number obtained from the .j register.
If fill mode is not on, adjustment will be deferred. Relevant parameters are a part of
the current environment.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.br - -

Break. Filling of the line currently being collected is stopped and the line is output
without adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ce N off N=1

Center. The next N input text lines are centered within the current line-length. If
N=0, any residual count is cleared. A break occurs after each of the N input lines. If
the input line is too long, it will be left adjusted. The request normally causes a break.
Relevant parameters are a part of the current environment.

3-58

NROFF/TROFF

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
fi fill -

Fill mode. The request causes a break. Subsequent output lines are filled to provide
an even right margin. Relevant parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.na adjust -

No adjust. Output line adjusting is not done. Since adjustment is turned off, the right
margin will be ragged. Adjustment type for the .ad request is not changed. Output
line filling still occurs if fill mode is on. Relevant parameters are a part of the current
environment.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.nf fill -

No-fill mode. Subsequent output lines are neither filled nor adjusted. The request
normally causes a break. Input text lines are copied directly to output lines without
regard for the current line length. Relevant parameters are a part of the current
environment.

3-59

NROFF/TROFF

11. Vertical Spacing Requests

Note: Values separated by “;” are for the nroff and troff/otroff formatters

respectively.
REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
Is N N=1 previous

Line spacing set to + N. Output N-1 blank lines (Vs) after each output text line. If
the text or previous appended blank line reached a trap position, appended blank lines
are omitted. Relevant parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ns space -

Set no-space mode on. The no-space mode inhibits .sp and .bp requests without a next
page number. It is turned off when a line of output occurs or with the .rs request.
Mode or relevant parameters are associated with current diversion level.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.08 - -

Output saved vertical space. The request is used to output a block of vertical space
requested by an earlier .sv request. The no-space mode (.ns) has no effect.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
s - R

Restore spacing. The no-space mode (.ns) is turned off. Mode or relevant parameters
are associated with current diversion level.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
sp N - N=1V

Space vertically. The request provides spaces in either direction. If N is negative, the
motion is backward (upward) and is limited to the distance to the top of the page.
Forward (downward) motion is truncated to the distance to the nearest trap. If the
no-space mode (.ns) is on, no spacing occurs. The scale indicator is ignored if not
specified in the request. The request causes a break.

3-60

NROFF/TROFF

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
sV N - N=1V

Save a contiguous vertical block of size N. If the distance to the next trap is greater
than N, N vertical spaces are output. If the distance to the next trap is less than N, no
vertical space is immediately output; but N is remembered for later output (.0s).
Subsequent .sv requests overwrite any still remembered N. The no-space mode (.ns)
has no effect.. The scale indicator is ignored if not specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.vs N 1/6in;12pts previous

Set vertical base-line spacing size V. Transient extra vertical spaces are available with
\X’N’. The scale indicator is ignored if not specified in the request. Relevant
parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

Blank text line - -

This condition causes a break and output of a blank line (just as does .sp 1).

3-61

NROFF/TROFF

12. Line Length and Indenting Requests

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
in =N N=0 previous

Indent. The indent is set to +N and prepended to each output line. The scale
indicator is ignored if not specified in the request. Relevant parameters are a part of
the current environment. The request causes a break.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
Al £N 6.5 in previous

Line length. The line length is set to = N. In the otroff formatter, the maximum
(line-length) + (page-offset) is about 7.54 inches. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ti =N - ignored

Temporary indent. The next output text line will be indented a distance +N with
respect to the current indent. The resulting total indent may not be negative. The
current indent is not changed. The scale indicator is ignored if not specified in the
request. Relevant parameters are a part of the current environment. The request
causes a break.

3-62

NROFF/TROFF

13. Macro, String, Diversion, and Trap Requests

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.am xx yy - yy=..

Append to macro xx (append version of .de).

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.as xx string - ignored

Append string to string xx (append version of .ds).

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ch xx N - -

Change trap location. Change the trap position for macro xx to be N. In the absence
of N, the trap, if any, is removed. The scale indicator is ignored if not specified in the
request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
da xx - end

Divert and append to macro xx (append version of the .di request). Mode or relevant
parameters are associated with current diversion level.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
de xx yy - yy=..

Define or redefine macro xx. The contents of the macro begin on the next input line.
Input lines are copied in copy mode until the definition is terminated by a line
beginning with .yy. The macro yy is then called. In the absence of yy, the definition is
terminated by a line beginning with “..”. A macro may contain .de requests provided
the terminating macros differ or the contained definition terminator is concealed; “..”

can be concealed as “\ \..” which will copy as “\..” and be reread as “..”.

3-63

NROFF/TROFF

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
Jdi xx - end

Divert output to macro xx. Normal text processing occurs during diversion except that
page offsetting is not done. The diversion ends when the request .di or .da is
encountered without an argument; extraneous requests of this type should not appear
when nested diversions are being used. Mode or relevant parameters are associated
with current diversion level.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ds xx string - ignored

Define a string xx containing string. Any initial double-quote in string is stripped to
permit initial blanks.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
dt N xx - off

Install a diversion trap at position N in the current diversion to invoke macro xx.
Another .dt will redefine the diversion trap. If no arguments are given, the diversion
trap is removed. Mode or relevant parameters are associated with current diversion
level. The scale indicator is ignored if not specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.em xx none none

End macro. Macro xx will be invoked when all input has ended. The effect is the same
as if the contents of xx had been at the end of the last file processed.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
At N xx - off

Input-line-count trap. An input-line-count trap is set to invoke the macro xx after N
lines of text input have been read (control or request lines do not count). Text may be
in-line or interpolated by in-line or trap-invoked macros. Relevant parameters are a
part of the current environment.

3-64

NROFF/TROFF

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
rm Xxx - ignored

Remove. A request, macro, or string is removed. The name xx is removed from the
name list and any related storage space is freed. Subsequent references have no effect.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
rn xXx yy - ignored

Rename. Rename request, macro, or string from xx to yy. If yy exists, it is first
removed.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.wh N xx - -

When. A location trap is set to invoke macro xx at page position N; a negative N is
interpreted with respect to the page bottom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top of a page. In the absence of xx, the first
found trap at N, if any, is removed. The scale indicator is ignored if not specified in
the request.

3-65

NROFF/TROFF

14. Number Registers Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.afRe Arabic -

Assign format. Format c is assigned to register R. Available formats are:

c NUMBERING SEQUENCE

1 0,1,234,5,...

001 000,001,002,003,004,005, . . .

i 0,1,it,iii,iv,v,. ..

I 0,LILIILIV,V,...

a 0,a,b,...,z,aa,ab,... zz,aaa,...

A 0,AB,....Z,AAAB,... . ZZ,AAA,. ..

An Arabic format having N digits specifies a field width of N digits. Read-only
registers and width function are always arabic.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
nr R+NM - -

Number register. The number register R is assigned the value + N with respect to the
previous value, if any. The automatic incrementing value is set to M. The number
register value (N) is ignored if not specified in the request.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
rr R - -

Remove register. The number register R is removed. If many registers are being
created dynamically, it may be necessary to remove registers that are no longer used in
order to recapture internal storage space for newer registers.

3-66

NROFF/TROFF

15. Tab, Leader, and Field Requests

@,

Note: Values separated by ;" are for the nroff and troff/otroff formatters

respectively.
REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
fecab off off

Field delimiter is set to a. The padding indicator is set to the space character or to b,
if given. In the absence of arguments, the field mechanism is turned off.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
de ¢ . none

Leader repetition character becomes ¢ or is removed specifying motion. Relevant
parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
ta Nt... 8n;0.5 in none

Set tab stops and types. The adjustment within the tab is as follows:

t ADJUSTMENT TYPE
R right
C centering

absent left

Tab stops for the troff formatter are preset every 0.5 inch; Tab stops for the nroff
formatter are preset every eight nominal character widths. Stop values are separated
by spaces, and a value preceded by + is treated as an increment to the previous stop
value. Relevant parameters are a part of the current environment. The scale indicator
is ignored if not specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.tcce none none

Tab repetition character becomes ¢ or is removed specifying motion. Relevant
parameters are a part of the current environment.

3-67

NROFF/TROFF

16. Input/Output and Translation Requests

Note: Values separated by “;” are for the nroff and troff/otroff formatters

respectively.
REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.cce

Set control character to ¢ or reset to “.”. Relevant parameters are a part of the

current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
cu N off N=1

Continuous underline in the nroff formatter. A variant of .ul that causes every
character to be underlined. Identical to .ul in the troff formatter. Relevant
parameters are a part of the current environment.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
c2c ’ ’

IR

Set no-break control character to ¢ or reset to . Relevant parameters are a part of

the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ecc \ \

Set escape character to \ or to ¢ if given.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.eo on -

Turn escape character mechanism off.

3-68

NROFF/TROFF

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
dg N off;on on

Ligature mode is turned on if N is absent or nonzero and turned off if N=0. If N=2,
only the 2-character ligatures are automatically invoked. Ligature mode is inhibited
for request, macro, string, register, file names, and copy mode. There is no effect in
the nroff formatter.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.tr abed. .. none -

Translate a into b, ¢ into d, etc. on output. If an odd number of characters is given, the
last one will be mapped into the space character. To be consistent, a particular
translation must stay in effect from input to output time. Initially there are no
translate values.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
uf F Italic Italic

Underline font set to F' (to be switched to by .ul). In the nroff formatter F' may not be
on position 1 (initially Times Roman).

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
al N off N=1

Underline in the nroff formatter (italicize in troff) the next N input text lines.
Switch to underline font saving the current font for later restoration; other font
changes within the span of a .ul will take effect, but the restoration will undo the last
change. Output generated by .tl is affected by the font change but does not decrement
N. If Nis greater than 1, there is the risk that a trap interpolated macro may provide
text lines within the span, which environment switching can prevent. Relevant
parameters are a part of the current environment.

3-69

NROFF/TROFF

17. Hyphenation Requests

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
Jee \% \%

Hyphenation character. Hyphenation indicator character is set to ¢ or to the default
“N%”. The indicator does not appear in the output. Relevant parameters are a part of
the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
hw wordl. .. - ignored

Exception words. Hyphenation points in words are specified with embedded minus
signs. Versions of a word with terminal s are implied; i.e., dig-it implies dig-its. This
list is examined initially and after each suffix stripping. Space available is small —
about 128 characters.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
hy N off, N=0 on N=1

Hyphenate. Automatic hyphenation is turned on for N>1 or off for N=0. If N=2,
last lines (ones that will cause a trap) are not hyphenated. For N=4 the last two
characters of a word are not divided. For N=38 the first two characters of a word are
not divided. These values are additive; i.e., N=14 invokes all three restrictions.
Relevant parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.nh no hyphen -

No hyphenation. Automatic hyphenation is turned off. Relevant parameters are a
part of the current environment.

3-70

NROFF/TROFF

18. Three-Part Title Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
At =N 6.5 in previous

Length of title set to £+ N. Line length and title length are independent. Indents do
not apply to titles; page offsets do. Relevant parameters are a part of the current
environment. The scale indicator is ignored if not specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.pc ¢ % of f

Page number character set to ¢ or removed. The page number register remains %.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
tlle’r’ - -

Three-part title. The strings I, ¢, and r are respectively left-adjusted, centered, and
right-adjusted in the current title length. Any of the strings may be empty, and
overlapping is permitted. If the page number character (initially %) is found within
any of the fields, it is replaced by the current page number having the format assigned
to register %. Any character may be used as the string delimiter.

3-71

NROFF/TROFF

19. Output Line Numbering Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
anm tNMSIT - off

Line number mode. If +N is given, line numbering is turned on, and the next output
line is numbered =+ N. Default values are M=1, S=1, and I=0. Parameters
corresponding to missing arguments are unaffected; a non-numeric argument is
considered missing. In the absence of all arguments, numbering is turned off, and the
next line number is preserved for possible further use in number register In. Relevant
parameters are a part of the current environment.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
nn N - N=1

Next N lines are not numbered. Relevant parameters are a part of the current
environment.

3-72

NROFF/TROFF

20. Conditional Acceptance Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.el anything

The “else” portion of “if-else”.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.de c anything

The “if” portion of “if-else”. The ¢ can be any of the forms acceptable with the .if
request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

Af ¢ anything

If condition c true, accept anything as input; for multiline case, use \{anything\}. The
scale indicator is ignored if not specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

Af /¢ anything

If condition ¢ false, accept anything.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
if N anything

If expression N > 0, accept anything. The scale indicator is ignored if not specified in
the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.if /N anything

If expression N < 0 accept anything. The scale indicator is ignored if not specified in
. the request.

3-73

NROFF/TROFF

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
Af ’s17s2’ anything

If string sl is identical to string s2, accept anything.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

Af sl ’ s2’ anything

If string sI is not identical to string s2, accept anything.

3-74

NROFF/TROFF

21. Environment Switching Request

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ev N N=0 previous

Environment switched to 0, 1, or 2. Switching is done in pushdown fashion so that
restoring a previous environment must be done with .ev rather than specific reference.

3-75

NROFF/TROFF

22. Insertions From Standard Input Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ex - _

Exit from the nroff/troff formatter. Text processing is terminated exactly as if all
input had ended.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.rd prompt prompt=BEL -

Read insertion from the standard input until two newline characters in a row are
found. If standard input is the user keyboard, a prompt (or a BEL) is written onto the
user terminal. The request behaves like a macro; arguments may be placed after
prompt.

3-76

NROFF/TROFF

23. Input/Output File Switching Requests

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.cf filename - -

Copy file. This request copies the contents of filename into the troff output file at this
point, uninterpreted. Havoc ensues unless the motions in the file restore current
horizontal and vertical position. (Not supported in otroff)

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
.nx filename end-of-file -

Next file is filename. The current file is considered ended, and the input is
immediately switched to filename.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.pi program - -

Pipe output to program (nroff and troff formatters only, not otroff). This request
must occur before any printing occurs. No arguments are transmitted to program.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT

.so filename - -

Switch source file (pushdown). The top input level (file reading) is switched to
filename. Contents are interpolated at the point the request is encountered. When the
new file ends, input is again taken from the original file. The .so requests may be
nested.

3-77

NROFF/TROFF

24. Miscellaneous Requests

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT
.CO - -

Specify the point in the macro file at which compaction ends. When -kname is called
on the command line, all lines in the file name before the .co request will be compacted
(otroff only).

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
f1 - -

Flush output buffer. Used in interactive debugging to force output. The request
causes a break.

REQUEST INITIAL IFNO
FORM VALUE ARGUMENT
ig yy - yy=..

Ignore input lines until call of yy. This request behaves like the .de request except
that the input is discarded. The input is read in copy mode, and any automatically
incremented registers will be affected.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.me¢ ¢ N - off

Sets margin character ¢ and separation N. Specifies that a margin character ¢ appear
a distance N to the right of the right margin after each nonempty text line (except
those produced by .tl). If the output line is too long (as can happen in no-fill mode),
the character will be appended to the line. If N is not given, the previous N is used,;
the initial N is 0.2 inches in the nroff formatter and 1em in troff. Relevant
parameters are a part of the current environment. The scale indicator is ignored if not
specified in the request.

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.pm ¢ - all

Print maecros. The names and sizes of all defined macros and strings are printed on
the user terminal. If ¢ is given, only the total of the sizes is printed. Sizes are given in
blocks of 128 characters.

3-78

NROFF/TROFF

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT

.sy cmd args - -

The UNIX system command emd is executed. Its output is not captured. The standard
input for emd is closed. (Not supported in otroff)

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.tm string - newline

Print string on terminal (UNIX operating system standard message output). After
skipping initial blanks, string (rest of the line) is read in copy mode and written on the
user terminal.

3-79

NROFF/TROFF

25. Output and Error Messages Request

REQUEST INITIAL IF NO
FORM VALUE ARGUMENT
.ab text - -

Prints text on the message output and terminates without further processing. If text
is missing, “User Abort.” is printed. This request does not cause a break. The output

buffer is flushed.

3-80

NS RPN

Chapter 4

DEVICE-INDEPENDENT TROFF

PAGE
Introduction ittt ieeietieritnieeecaannnans 4-1
Incompatibilitiescoiiiiiiiiiiiii ittt eiaea 4-1
New Featuresooiutiiiiineeinneetoeiotsesneseesosannnnns 4-4
Other Important Changescciiietieeeeraecaaaaanns 4-6
CaveatSttt it it ittt 4-6
SUPPOrted DevicesS . . v v vttt in et ieirseeeanneeencsooneeooansnnns 4-7

Parameters of the APS-5 Phototypesetter 4-8

Chapter 4
DEVICE-INDEPENDENT TROFF

1. Introduction

Troff (but not nroff) has been rewritten to support phototypesetters
other than the Wang C/A/T. This new version of the formatter has
been named troff and the older version (Wang C/A/T only) has been
renamed otroff for old troff. Thus, parameters which were
previously constants dictated by the physical constraints of the
C/A/T can now be varied to satisfy the constraints of other
phototypesetters. Example of these parameters are the device
resolution (for the C/A/T and otroff, 1/432 inch horizontally, and
1/144 inch vertically), and the number of fonts that can be used in a
single run (four for the C/A/T). Section 6 describes these
parameters and some of the available fonts for supported
phototypesetting devices.

The new troff accepts the same language as otroff (known
exceptions are noted below in Part 2). However, its output, instead of
being machine codes for the C/A/T phototypesetter, consists of a
device-independent American Standard Code for Information
Interchange (ASCII) language describing where on the page
characters are to be placed by the phototypesetter. This output has
been tailored to the resolution and font descriptions of a particular
phototypesetter, but otherwise independent of any particular device.
To produce the desired phototypeset pages, this language must be
translated by another program (called a postprocessor) into the
machine codes needed to run that particular phototypesetter. For the
output to look optimal, the postprocessor should support the same
device as the description tables used earlier by troff, but this is not
necessary.

2. Incompatibilities

Aside from the fact that the phototypeset output generated by the
new troff will look slightly different (hopefully better for devices
other than the C/A/T), there are certain known incompatibilities
from otroff to the new troff.

DEVICE-INDEPENDENT TROFF

2.1 Unsupported Features

Compacted macros are no longer supported by troff. This includes
the request .co, and the command line options —¢ and —k.

The constant-width preprocessor c¢w is no longer needed, or
supported. To run without e¢w, add the following troff requests to
your definition of the .CW macro:

ft CW
.br

and to the definition of the .CN macro:

.br
ft

Also, all uses of the .CD, .CP and .PC macros and ew delimiters
must be replaced by their equivalents (using \f(CW and \fP).
Dependence on the transparent mode feature of ew must be removed.
For users who are unwilling to give up their use of e¢w, there is an
unsupported revision of ew which should look identical to the old cw
except for the default font position of the CW font.

2.2 Deleted Options

—p The —p option is no longer supported.
—g The —g option is no longer necessary.
-, -k The options —¢ and —k have been eliminated,

along with compacted macros.

—w, —b The —w and —b options have migrated to the
postprocessor.

4-2

DEVICE-INDEPENDENT TROFF

2.3 Deleted Requests

.
-

fz

.CO

The .! request no longer exists. Instead, use
.Sy (see Part 3.2) which does not interpolate
its output into the input of troff. To capture
the output from a .sy request, redirect it into
a temporary file, perhaps using the new
number register $$ (see Part 3.5).

The .fz request to force a size for a particular
font no longer exists.

The .co request for compacting macros no
longer exists.

2.4 Deleted Escape Sequences and Number Registers

\j

hp

The escape sequence \j to mark horizontal
position on the output line no longer exists.

The number register \n(hp (horizontal
position on input line) no longer exists.

2.5 Changed Character Names in The CW Font

\(dg

\(sq

The special character name \(dg no longer
represents the control-shift indicator in the
CW font. It represents the dagger on all
fonts. For the control-shift indicator, use the
new special character \(cs (see Part 3.6).

The special character name \(sq no longer
represents the visible space indicator in the
CW font. It represents the square on all
fonts. For the visible space indicator, use the
new special character \(vs (see Part 3.6).

DEVICE-INDEPENDENT TROFF

3. New Features

Aside from its device-independence and the loosening of restrictions
on fonts, the new troff also supplies the following new features:

3.1 New Options

3.2 New Requests

—Tname

—Fdir

.cf file

sy cmd args

.pi cmd

The —T option may be used to specify the
output device. The default output device is
defined locally.

The —F option causes font information
accessed from the directory dir/devname
instead of the default /usr/lib/font/devname
(where name is the default output device).

The .cf request copies the contents of file into
the troff output file at this point,
uninterpreted. Havoc ensues unless the
motions in the file restore current horizontal
and vertical position.

The UNIX command cmd is executed. Its
output is not captured anywhere. The
standard input for emd is closed.

As in nroff, the .pi request causes the output
of troff to be piped into emd instead of
appearing on the standard output.

3.3 Modified Requests and Escape Sequences

4-4

£t F, \fF

The .ft request and the \f escape sequence
cause the font F to be loaded on font position
0 (which is in all other ways inaccessible) if
the font exists and is not currently mounted
by default or by a .fp request. The font must

be still or again in font position 0 when the
line is printed.

DEVICE-INDEPENDENT TROFF

3.4 New Escape Sequences

\D1 dh dv'

\D’c &

\D’e dI d2

Draw a line from the current position by
dh,dv.

Draw a circle of diameter d with left side at
current position.

Draw an ellipse of diameters dI and d2 with
left side at current position.

\D’a dhl dvl dh2 dvZ

Draw a counterclockwise arc from current
position to dhl+dh2, dvi+dv2, with center at
dhl,dvl from current postion.

\D" dhl dvl dh2 dv2 ..’

\H'n’

\S'n"’

Draw a B-spline from current position by
dhl,dvl, then by dh2,dv2, then

Character heights are set to n points, without
changing widths. A height of the form +n is
an increment on the current point size; a
height of zero restores the height to the point
size.

Output is slanted n degrees. n may be
negative. If n is zero, slant mode is turned
off.

3.5 New Predefined Number Registers and Strings

3

Read-only. Contains the process-id of the
troff process. This is useful for temporary
file names as in

.8y ... >\n($$

DEVICE-INDEPENDENT TROFF

T Contains the name of the troff output device,
for example, aps. This is a string, not a
number register, so it is accessed as *(.T.

3.6 New Special Character Names

\(cs Represents the control-shift indicator and is
available with any font.

\(vs Represents the visible space indicator and is
available with any font.

4. Other Important Changes

Transparent mode with \! has been fixed so that undiverted
transparent output actually appears in the output.

5. Caveats

Users must remember that any changes to fonts made using \f, .ft or
fp must still be in effect at the time of actual output of the unit of
text, be it a line of output or a diversion. There is a known problem
when multiple \f escape sequences or multiple .fp requests for the
same font position occur in too short a sequence. This can cause
either incorrect fonts or incorrect spacings of characters in the
correct font.

The escape sequence \sn (point size) does not work for n larger than
36. Use .ps for point sizes larger than 36.

4-6

DEVICE-INDEPENDENT TROFF

6. Supported Devices

6.1 Phototypesetters

The machine parameters for each supported phototypesetter are
contained in a description table which is used by the new troff as
well as by the postprocessor for that phototypesetter. This
description table sets parameters for legal point sizes, default font
settings, machine resolution, and legitimate special names for non-
ASCII characters.

For phototypesetters other than the Wang C/A/T, it is no longer
necessary to mount fonts at the beginning of a document. Fonts can
be mounted and remounted at any time, subject to the limitation that
they must be still mounted when the actual output is done. A font
can be accessed with the \f escape sequence or .ft request even if that
font is not mounted (which is equivalent to mounting it on the
" imaginary" font position 0). There is no limit to the number of
fonts used in a document.

Currently, only one phototypesetter is supported, which is the
Autologic APS-5. It is referenced by the troff option —Taps, and
has a postprocessor named daps. A table of its relevant parameters
is found in Part 7.

6.2 Simulator Postprocessors

In addition to postprocessors for phototypesetters, there are also
postprocessors for various devices which can simulate (to a greater or
lesser extent) the output of a phototypesetter. These postprocessors
can be used with the output from troff which has been prepared for
any one of a number of different phototypesetters. In other words,
these postprocessors do not require their own —T option to troff.
Currently supported devices of this type include postprocessors for
the Xerox 9700 laser printer (dx9700) and the Canon Imagen
Imprint-10 laser printer (dil0).

DEVICE-INDEPENDENT TROFF

7. Parameters of the APS-5 Phototypesetter

RESOLUTION: 723 units per inch.
LEGAL POINT SIZES:

345678910111213141516171819 20
22 24 26 28 30 32 34 36 40 44 48

DEFAULT FONT SETTINGS:

POSITION: 1 2 3 4 5 6 7 8
FONT: R I B HCW S S1 GR

SLANT: On the APS-5, all type set in slant mode is set at an angle
of approximately 14 degrees, regardless of the value of n
(in \S’r’). If n is positive, slant will be 14 degrees; if n is

negative, slant will be reverse 14 degrees.

HEIGHT: On the APS-5, height can be squashed down to the
minimum allowable size, but can only be stretched to

about 1.5 times its original size.

Refer to Figure 4-1 for a list of available font styles with the APS-5

phototypesetter.

DEVICE-INDEPENDENT TROFF

NAME FONT

R Times Roman

I Times Italic

B Times Bold

BI Times Bold Italic

H Helvetica Regular

HI Helvetica Italic

HB Helvetica Black

PA Palatino Regular

PI Palatino Italic

PB Palatino Bold

CE Century Expanded
Cl Century Italic

SM Stymie Medium

TB Techno Bold

C News Gothic Condensed
Ccw Constant Width
CT Courier Typewriter
GS German Script

SC Rogudar Soript

Figure 4-1. Available Font Styles for the APS-5

4-9

PN oA B PR

Chapter 5

SROFF TUTORIAL GUIDE

PAGE
Introductionc.iiiiiiiiiiiiieiiiiiiinertienennnnnns 5-1
Headsand Feetccouiuiiiiuiinienieenseesenenacannnns 5-3
Line Breaksiiiiiiiiiiiinnnineinnnnnsoeasanansaaann 5-3
Finding Troubles it tiiiieetireneseenneennnnennns 5-6
Pages, Widows, Figures iiiiiiiiiiennns 5-6
Underlining and Boldface.ccoiiitiiiietinnnnrenann 5-9
Tabulation..........oiiiiiiiinniiiieeiinneeneenrooaesenans 5-9
Footnotes........ciiiiiiiiiiiiiiiiieeiieensesnntenaannnons 5-10
Literalttt iieeinnnneseossocanssnsns 5-11
Translationottt iieeiriienennansonans 5-12
Hyphenationcctiiiieiininenseieenerosanrosnnssaans 5-13
Source Switchingttt ittt tianerannnns 5-14
Numbering et et aeiats ettt 5-14
Dates, Number Formatsot iiiiiiiiiiiiinennnns 5-16
Indexing, Cross-referencingccoveeivoucrnnnnssns 5-16
Page Offset, Line Numbering it 5-18
Text RegisStersouvuiiiieerieeeennenoneneassnaaneaasanns 5-18
Parametersiiiiiiiiieiitiittt ittt 5-20
UseoftheIgnore Requestc.0iiiiiiiieneennannanns 5-21
Merge Patternsccouiiiieitnneeeeinneeacansnenseasonnns 5-22
Multiple Columnsttt innnneenenaeoanaansns 5-23
Conelusionottt ettt 5-23

Chapter 5
SROFF TUTORIAL GUIDE

1. Introduction

This chapter is a tutorial introduction to the sroff text formatter.
The sroff formatter is designed to produce output that will be
printed on a typewriter-like printer or higher quality laser printer.
The formatting requests sroff understands are similar to, but not
compatible with, nroff/troff requests. Since the sroff formatter is
less complex than the nroff formatter, it is much faster and
therefore provides an advantage for documents that do not require
high-quality phototypeset output.

Consider the example of sroff output on the next page.

5-1

SROFF TUTORIAL

SROFF TEXT FORMATTER
Tutorial Guide

The title 1lines, "SROFF TEXT FORMATTER" and "Tutorial
Guide," and this paragraph were set up by the input that
follows. One extra line (.sp) was spaced down, and then
each title line was. centered (.ce). An extra 1line was
put between the two title lines. The paragraph begins
after another spacing line and is éouble spaced (.ds).
The paragraph was typed without attention to lines; Sroff
took care of filling them. Each sentence begins on a
separate line to make editing easier.

.ce
SROFF TEXT FORMATTER

.Sp

.ce

Tutorial Guide

.Sp

.ds

The title lines, "SROFF TEXT FORMATTER" and
"Tutorial Gnide," and this first paragraph

were set up by the input that follows.

One extra line (.sp) was spaced down,

and then each title

line was centered (.ce).

An extra line was put between the two title lines.
‘The paragraph begins after another spacing line
and is double spaced (.ds).

The paragraph was typed without attention to lines;
Sroff took care of filling them.

Each sentence begins on a separate line to make
editing easier.

5-2

SROFF TUTORIAL

2. Heads and Feet

A footing line at the bottom of each page can be specified by the
request .ef for even-numbered pages and .of for odd-numbered pages.
Similar requests, .eh and .oh, set up the headings. Quote marks split
up the foot into parts for the left and right side of the page. Between
the two middle quote marks is stuff for the middle of the line. The
% mark shows where the page number is to go.

The following input:

.ef 'Your Company'- T-% -'“(amon) 19 “(year)'
.0f '~(amon) 19 ~(year)'~ T-% -'Your Company'

will produce at the bottom of even pages
Your Company - T-(Page #) - October 1983
and at the bottom of odd pages

October 1983 - T-(Page #) - Your Company

If you want the same heading on all pages, then a single .he request
will do. To set up a standard style of page numbering for
memoranda use

3. Line Breaks

In ordinary paragraph text, Sroff takes care of filling lines with
words, but there are places where one wants to control exactly where
the line ends. The titles in the example of Part 1, " SROFF TEXT
FORMATTER" and " Tutorial Guide,” should each have a line to
itself, and each paragraph is expected to begin on a new line, not just
run on to the paragraph before. Certain requests, among them .ce
and .sp, cause line breaks; others are explained in the Chapter 6.

Sometimes a break on every line is needed. One could place a simple
break (.br) request between every pair of lines, as in X. J. Kennedy’s
first stanza below, but it is easier to shut off all filling of lines by .nf
(no fill) as in the second. The .fi request turns filling on again.

5-3

SROFF TUTORIAL

In a prominent bar in Secaucus one day

.br

Rose a lady in skunk with a top-heavy sway,

.br

Raised a knobby red finger—--all turned from their beer--
.br

While with eyes bright as snowcrust she sang high
and clear:

.Sp

.nf

"Now who of you'd think from an eyeload of me

That I once was a lady as proud as could be?

Oh, I'd never sit down by a tumbledown drunk

If it wasn't, my dears, for the high cost of junk."
fi

Normally all paragraphs are justified, that is, enough extra spaces
are put into every line to align the right margin exactly (as shown in
the example in Part 1). Ordinary typewriter style with an uneven
right margin results from a no justification (.nj) request.

Consider the following example.

.nj
.ti 5

This paragraph is not justified. It was
surrounded by the no justification (.nj) and
justification (.ju) requests that you see. The first
line was indented 5 spaces by a temporary indent (.ti)

request that holds for exactly one line.

.Jju

5-4

SROFF TUTORIAL

Lines may still be filled even with justification off, but justification
is never done when nofill (.nf) is in effect. Now for a different look.

.ss
.in5

.1155
.ti+5

.Sp
.1165
.in0
.ds

This paragraph was single spaced
(.ss), indented (.in) 5 spaces and the
right margin was shortened 5 by setting
the line length (.11). (The line length
includes the indentation.) Indentation
and line 1length may also be changed by
addition and subtraction as in .ti+5.
The indentation and line length were set
back to normal after the paragraph.

SROFF TUTORIAL

4. Finding Troubles

Because all the requests vanish when you Sroff something, it is
sometimes tricky to figure out the trouble when things go wrong. The

following paragraph shows how it can be done.

The requests that made this paragraph
were caused to be printed in the right
margin beyond the 50-character lines by
.pr 64. To help in locating text in the
original input, the sequence numbers of
the input lines were printed at column 61
by .ps 60. To see the exact division of
the original input lines, the first char-
acter of each was underlined by .uf. All
this was turned off at the end by .pr 0,

.ps 0, and .nu.

5. Pages, Widows, Figures

These requests cause a new page to begin:

.bp begins a page

.pan Dbegins a page and sets its number to n

278

279

280

281

282

283

284

285

286

287

288

.pr.ps.uf.ul

.pr.ps.nu.sp

Ordinarily Sroff begins a new page only when the page before is
filled up. It can very easily create " widows," isolated lines that
really belong with the page before or the page after. Typical cases
are a subhead that falls at the bottom of a page, or the last couple of
words of a paragraph that fall at the top. When a widow does crop

5-6

SROFF TUTORIAL

up, you can fix it with a need (.ne) request. In the next example, .ne
4 says no more lines should be put on the current page unless four
lines can be put there, thus assuring that at least the first two lines
of the single-spaced paragraph go along with the subhead.

.Ss
.ne 4

.ce

Control of Radioactive Pollution

.sp

No really effective therapy is known for preventing or
curing the harmful effects of internal contamination
by radioactive nuclides.

Need requests come in handy as well for guaranteeing that a table or
a set of equations not be split across pages.

Widows that appear at the top of a page while really belonging on
the previous page pose a more difficult problem. One could put a
.ne 2 request somewhere close to the end of a paragraph to force the
last two lines to appear on the same page (.ne doesn’t cause a line
break), but it is generally unknown where new output lines will begin
when you are in fill mode. Instead an automatic widow suppression
mechanism is available. If you are in single space fill mode and are
not centering lines, then by default any .sp request (empty lines are
the same as .sp) behaves like this sequence:

.m4 -1
.Sp

.mi +1
.ne 2

The bottom margin is reduced by one, making space on the page for
one extra line of text, the .sp causes a line break which flushes the
last line or the paragraph onto the page, the bottom margin is reset
to its original value, and the .ne 2 request causes a new page to begin
if there is not space on the current page for at least two lines.

This has the effect of automatically suppressing all one-line widows
in fill mode. It also has the effect of pushing one-line paragraphs

5-7

SROFF TUTORIAL

that would have fit exactly on the bottom of the page to the top of
the next page.

It is possible to do something about leading widows via

perform no widow suppression
(default) suppress 1-line leading and trailing widows
suppress 2-line leading and 1-line trailing widows

£
1]
W N 2 O

suppress 3-line leading and 1-line trailing widows

but multi-line trailing widows are still a problem with no general
solution. Sroff does the obvious thing in double space or multi-space
mode; .ws operates in terms of the line spacing. Obvious boundary
condition errors are avoided, such as the bottom margin being less
than the line spacing.

A need request may be used to set aside space for a figure. Both
these examples leave room for 12 lines (two inches):

.ss .ds
.ne 12 .ne 6
.sp 12 .sp 12

An obvious trouble with .ne for this purpose is its dependence on line
spacing; another is that it can leave more space than you want. In
these examples there could be as much as 11 lines empty at the
bottom of one page before the 12-line figure at the top of the next. A
v (leave) request does a better job for figures. It leaves space on the
current page if there is room, but remembers the request until the
next page if there isn’t. Thus

Llv 12

would set aside space as well as the previous examples, but would not
insist that the space come right where the request appeared.

5-8

SROFF TUTORIAL

6. Underlining and Boldface

The best way to do underlining is to use the .ul n request, which
causes the next n lines of input to be underlined regardless of line
filling. Putting underlines into filled text by backspacing and
overstriking is a ticklish procedure that can give troublesome effects.

Punctuation characters are not touched by .ul. To underline
punctuation you can use the .us request, which underlines even the
space character. It is best to use this request in nofill mode if blanks
are included in the lines to be underscored.

The .bf n request causes the next n input lines to appear in boldface.
Since most output devices don’t have this capability, it is usually
simulated by n successive overstrikes, where n is settable by .bo n.
Boldface can also be achieved by backspacing over the text and
retyping the overstrikes yourself. In any case, always observe the
cardinal rule for typing filled text: Never backspace across a space.

7. Tabulation

Tab stops may be set in Sroff as on a typewriter, but in addition to
creating columns of data aligned along their left edges, tabs may also
create columns aligned along their right edges, or columns aligned by
centering. The alignment is done during input before any other
formatting. Thus tabs work best in nofill mode, but filling of the
rightmost column is possible.

Tabs are set by a .ta request, which shows in what columns tabs are
to be set, and actuated by the presence of a tab character. Tabs for
left-aligned columns of data are set by an "L" at the leftmost
position of a field, for right-aligned fields by an " R" at the rightmost
position, and for centered fields by a " C" at the middle position. It
is not necessary for your terminal tab stops to be correctly
positioned; Sroff replaces all tabs by an appropriate number of
spaces.

In the example below, we wish to right-align the left sides of
equations, (left-) align the equals signs, and right-align the equation
numbers. To make the tab character visible we used .tc:. Notice
that there must be a tab character wherever spaces are to be

5-9

SROFF TUTORIAL

inserted, including the space at the left margin before the first
tabbed field.

.nf

.in5

.tc:

.ta 10R 12L 40R

:sin x:= x - x**3/3! + x**5/5! - __ _:(9)
:sinh x:= x + x**3/3! + x**5/5! + ...:(10)

Here is the result. The pointers are at 10, 20, 30, etc.

sin x = X — x*%*3/3! + x**5/5! - . (9)
sinh x = x + x**3/3! + x**5/5! + ., (10)
t 0 ? t

Tabs can be set by addition and subtraction to save the trouble of
calculating positions when all you know is column widths. For
example, to divide the page into 8-character columns write

.ta 1 +8 +8 +8 +8 +8 +8
This one sets left- and right-justified stops at 60 and 54.

-ta 60L -6R

8. Footnotes

Footnotes can be placed anywhere in the input; Sroff collects them
and places them at the bottom of the page. A footnote is set off by
fn and .en. With only minor exceptions, .fn, .en and everything in
between are completely parenthetical to the surrounding text.
Indentation, line length, filling, justification, single- and double-
spacing, line breaks, tab settings, etc. are all independently handled
in footnotes and their settings are remembered from footnote to
footnote. You may want to include a .ne request to assure that a

5-10

SROFF TUTORIAL

footnote and the reference* to it have room on the same page, as was
done here.

You may want to include a .ne request to

assure that a footnote and the

.ne 5

reference*

.fn .

* Otherwise it is possible for some or all of the
footnote to spill over to the next page, or for the
line containing the reference to get pushed over.
.en

to it have room on the same page, as was done here.

Because .ne counts in units of the current line spacing (in this case
single spacing), 5 lines is enough to take care of the reference, the
one-line separator between body text and footnotes, and the three-
line footnote. The .fs request sets the footnote separator line in the
same way that .he and .fo set head and foot titles.

9. Literal

Occasionally you may want to type a line beginning with a period,
which looks like a Sroff request. A literal (i) request put right
before the line will prevent Sroff from mistakenly trying to interpret
it and cause the line to be accepted as ordinary text.

.1i
.sp this couldn't be printed without .1li

If the occurrences are many, you may find it more convenient to
redefine the control character, thus liberating “.” from its special
meaning when it begins a line:

.cc !

.sp leading . isn't special now

the 'but leading ! is'

* Otherwise it is possible for some or all of the footnote to spill over to the next page,
or for the line containing the reference to get pushed over.

5-11

SROFF TUTORIAL

10. Translation

Translation can be used to overcome some unpleasing results of
justification and filling, such as

(1) extra spaces between a hanging paragraph
number and the rest of the first line
of the paragraph

(2) unwanted break inside a formula: 1 + x +
X*¥%2/21 + x**3/31 +

To fix up such annoyances, you may designate an otherwise unused
character, say $, to be translated (.tr) into a space. Though it will
print as a space, Sroff does not treat it as such, and so won’t pad or
break lines there.

.11 48

.in 10

.tr ¢

.ti-4

(1)$extra spaces between a hanging paragraph

number and the rest of the first line of the paragraph
.ti-4

(2)$unwanted break inside a formula:
1$+$x$+$x**2/21$+$x**3/31§+$. ..

The prettied-up result follows.

(1) extra spaces between a hanging
paragraph number and the rest of the
first line of the paragraph

(2) unwanted break inside a formula:
1 + x + x**%2/21 + x**3/3! + ...

5-12

SROFF TUTORIAL

11. Hyphenation

To improve the fit, Sroff ordinarily tries to hyphenate at the end of
filled lines. Errors of commission and omission sometimes happen,
as here where the column width has been set to 6 letters.

ces-

spool

cour-—

thouse
tetrabromomethane

Hyphenation mode (.hy) requests control the boldness with which
Sroff inserts hyphens. Words are never broken under .hy 0; words
are quite frequently broken under .hy 3. If you find automatic
hyphenation generally displeasing, the best setting will probably be
.hy 1. In that mode already hyphenated words, like " run-of-the-
mine," may be broken, but nothing else will.

Other places may be marked as candidates for hyphenation by means
of a hyphenation character, an otherwise unused character,
designated in a .he request. Setting .he \ and supplying
syllabification for the unfortunate " tetra\bromo\meth\ane," we can
arrange for satisfactory hyphenation with almost any column width.
Here the widths are 6, 12 and 18. :

width = 6
tetra-
bromo-
meth-

ane

width = 12

tetrabromo-
methane

width = 18

tetrabromomethane

5-13

SROFF TUTORIAL

Words containing - signs or hyphenation characters are not split at
other places. This convention permits a trick for completely avoiding
hyphenation of a selected word: put a hyphen character at the
beginning or end of the word. Here we arrange that a proper name
not be broken and also (by .tr) that initials be kept with it.

.tr §
.hc J.$Q.$Public\ can't be fooled

The additional .hp request controls hyphenation in words spelled with
all CAPITAL letters. Frequently, these are acronyms (like
FORTRAN) not suitable for hyphenation.

12. Source Switching

The .so request causes Sroff to switch temporarily to another file for
input, then return to the current file when the other is exhausted. It
is particularly useful for long documents that have been edited in
pieces. For example if the pieces are in files chapl, chap2, chap3, you
might prepare a very short file called book, containing only

.so /chap1
.so /chap2
.so /chap3

then do the whole works by the simple command " sroff book" .

13. Numbering
Sroff can help keep book on numbers of paragraphs, equations, etc.
Pick any letter, say P, to name a number, and assign it a numeric
value with a .an request. Thus to make P become 1 write

.an P 1

or to increase P by 1 write

.an P +1

5-14

SROFF TUTORIAL

To place the number in text (or in a request), mention its name right
after an insertion character of your choosing. The .i¢c request
specifies the insertion character.

Paragraphs of this tutorial guide could have been numbered by a
quantity P, which would be bumped up 1 before each paragraph:

Lic 7
.an P O
text
.an P +1
.ul
“P. Numbering.
.. text ...

Names of numbers are called registers. Digits may be used as well as
letters. Names up to eight letters or digits long can be used, but they
must be enclosed in parentheses. For example we might have called
the paragraph number (par) and used it this way:

.an (par) +1
~(par). Numbering.

Once declared by an .ic request, the insertion character will disappear
from all input text and request lines up through the next .ic. When
the character right after a disappearing insertion character is not the
name of a register, that character goes through unchanged —even if it
is the insertion character. It may be instructive to puzzle out the
reason for the behavior of this sequence:

~

.dc make "~ the insertion character
.ic 7 turn off insertion character
Lic ¢ make ~ the insertion character

.ic 7 make ~ the insertion character

5-15

SROFF TUTORIAL

14. Dates, Number Formats

You can get today’s date into a document being Sroffed by inserting
the registers (year), (mon), and (day), which are set automatically by
Sroff. Thus

The date is ~(mon)/ “(day)/ ~(year)
turns into
The date is 10/27/83
More pleasant is
The date is “(amon) ~(day), 19 “(year)
which becomes
The date is October 27, 1983

The time is similarly available in registers (hour), (min), and (sec).
If you are addicted to military-style time, e.g. 0800 hours, where
padding with zeroes may be required, you can get it by assigning a
special format to the registers with .af.

.af (hour) 01
.af (min) 01

The format, in this case 01, shows how the number 1 is to print.
Usually the format is "1". The formats "i" and "I" get Roman
numerals. Formats "a" and " A" get "theater-row" numbering,
a,b,c,...,z,aa,bb... Of course, formats may be assigned to any register,
not just to (hour) and (min). Sroff keeps the page number in register
%, so this request gives Roman numeral page numbers:

.af % i

15. Indexing, Cross-referencing

If an "index file" is specified when Sroff is invoked, Sroff will copy
portions of the input bracketed between .ix and .en directly to that
file with no changes except substitution for insertion characters. The
index file can be processed later (perhaps sorted, or even Sroffed).
Suppose we wish to index the key phrase of this sentence by page
number, so that the index file gets a line like this:

T-14 - key phrase

5-16

SROFF TUTORIAL

To do this we used an insertion character followed by % .to pick up
the page number:

Suppose we wish to index the key phrase
.ix

T-"% - key phrase

.en

of this sentence by page number.

The index entry came immediately after the phrase to be indexed to
assure that the page number would be right.

A table of contents could be produced by index requests imbedded in
the input (again, is the insertion character):

Lix
"P. Indexing and cross-referencing <tab> "%
.en

Cross-references may be remembered similarly by assigning the
current page number, equation number, or whatever to a register and
calling it out later on. Here (XR1) holds the cross-reference.

This is the word.
.an (XR1) "%

The word was given on page "(XR1).

Though backward cross-references are easy, forward cross references
pose real obstacles. One clever Sroffer did the job by Sroffing a
whole document with printing turned off (by .np 9999 and .so),
gathering cross-references, then doing it again with printing turned
on (by .np 0 and .so):

.np 9999
.so user/document
.np 0
.pa 1
.so user/document

5-17

2

3
4
5
6
7

8
9
10
11
12
13

14
15
16
17

18
19

20
21
22

SROFF TUTORIAL

This is all very well, except that depending on the size of the

numbers inserted, subtle changes in pagination of the document could
happen the second time through.

16. Page Offset, Line Numbering

Page offset (.po) requests come in handy when the machine you use
for printing places the output too close to the left side of the paper.
A page offset request before everything else will move all the output
right. In general, .po should not be used in place of .in to affect
indentation—it moves headers, footers and everything else with it.

Line numbers may be produced automatically in the margin left by
.po (a page offset of 4 will usually suffice). The request .nl causes
the lines on each page to be numbered starting from 1, while .n2
causes continuous numbering from the request onward. Line
numbering is shut off by .n0. This section was bracketed by .n2 and
.n0 requests.

You can retrieve the latest line number by using the name # after an
insertion character, and you can set it by .an #. Here is a scheme for
causing one line to be unnumbered without interrupting the number
sequence. As before ~ is the insertion character:

.an A "# save line number in register A

.no0

This line is not to be numbered

.br

.n2

.an # "A restore line number to previous value

17. Text Registers

If you have to use identical bits of text over and over again in a
document, you may assign the stuff once to a register, then get it
back whenever you need it. For example, to assign the words " Bell

5-18

SROFF TUTORIAL

Telephone Laboratories, Incorporated" to a register named " BTL"
write

.at (BTL)
Bell Telephone Laboratories, Incorporated
.en (BTL)

The register is named just like a number register, and the fragment
of text is contained between an .at (assign text) request and an .en
(end) request on which the name must be repeated.

Having put the stuff in a register, use an insertion character (the
same character, set by .ic, that was discussed above under
" Numbering") with the name to get the text back:

Jiec
The transistor was announced by "(BTL) in 1947.

Sroff automatically replaces " (BTL)' by "Bell Telephone
Laboratories, Incorporated.”

Text registers come in handy to avoid typing the same sequence of
requests over and over in elaborate documents, especially when the
sequence is rather tricky to get right. This example, where ~ is again
the insertion character, sets up the requests for a numbered section
heading, named (ph), in the style of this tutorial guide. (The method
of numbering was described above under " Numbering" .)

.at (ph)

.sp leave a space

.ne 2 avoid a widow

.an P +1 calculate the number

.ul 2 underline number and following title
~P. insert the number

.en (ph)

5-19

SROFF TUTORIAL

Notice the trickery with the double insertion character. If there were
only one, then the text in register (ph) would end up looking like this
and would always put out the same number, namely 1.

.sp

.ne 2
.an P +1
.ul 2

1.

The trouble happens because the "P gets replaced by a number as the
stuff comes in the first time, while being assigned to register (ph).
But as we actually wrote it, the double ~ will be reduced to a single
on the first reading*. Having now done the hard work, all we do to
start a new section, such as the present one, and to get the proper
number attached, is write

A(ph)
Text registers.

Text registers holding requests are so useful that Sroff has a way to
use them just as if they were requests. When the name has two
letters, as in the last example, it may be used this way.

.ph
Text registers.

In short, by using text registers, you can make up ybur own requests.

18. Parameters

Text registers used as requests can have parameters. For example,
suppose we wish to invent an .ip n request to begin an indented
paragraph that works just like the sequence

.Sp
.in n
.ti +10

* An explanation of this special handling of the insertion character appears under
" Numbering”" .

5-20

SROFF TUTORIAL

We denote the quantity n by #1 to show that it is to be the first
parameter of .ip. The character # is a parameter character of our
own choosing, set beforehand by .pc:

.pc #
.at (ip)
.sp

.in #1
.ti +10
.en (ip)

Given this definition, #1 will be replaced by whatever appears in later
.ip requests, as in

.ip 10
.ip 45

19. Use of the Ignore Request |

Ignore requests (.ig) can be used to exclude text conditionally, usually
depending on the value of a number in a register. This sequence
turns into "one" or "two" depending on whether the value of
register (reg) is 1 or 2.

Lie ”

.ig (~(reqg))
.en (1)

one

.ig (0)

.en (2)

two

.en (0)

If (reg) is 2, then Sroff sees .ig(2) request and ignores everything
down to the matching .en(2) (end) request. "two" gets taken as
input, and .en(0), which ends nothing at all, gets bypassed. If (reg) is
1, then Sroff ignores only down to .en(1) on the very next line. " one"
gets included, then .ig(0) causes " two" to be bypassed.

5-21

SROFF TUTORIAL

20. Merge Patterns

Merge patterns accomplish various special effects by putting
fixed information into every line. A pattern is given on an input
line all by itself, preceded by a .mg request. For example, a table
of contents could be Sroffed with a merge pattern of underscores
set this way:

so the entries would come out looking as below. (Actually a
non-blank " blank" , using .tr, will be needed to keep underscores
out of the spaces between words.)

Complete Table of Requests - ~(tbl)

The vertical bars to the right of this paragraph were set by the
following pattern, except that the spacing of the bar was wider.

.mg

5-22 -

21. Multiple Columns

By the mere insertion of
.mc 2 in your input text,
output will be produced
in double-column format.
Although any number up to
10 is allowed, the
relatively large size of
terminal and line printer
characters (10 or 12
characters per inch)
makes more than three
columns appear ungainly.
The columns are by
default four spaces
apart, and each column is
of a width such that the
right-most one 1is right
justified with respect to
the line length which was
in effect when single-
column output was being
generated.

22. Conclusion

SROFF TUTORIAL

Note that you can
adjust the line-length
within a column (via
.11-2 and .in+2 in
this case). The
column offset request
can be used to move

the second column
further to the left or
right than the

default, just as page
offset can be used for
the entire page;
however, .CO flushes
pending columns and so
should be wused only
following a .mc.

This tutorial guide only hits the high spots. It will get you off the
ground, but to get the most out of Sroff, you will want to study the
reference manual proper to learn all its capabilities. This can be
found in the next chapter, Chapter 6. Happy Sroffing.

5-23

Chapter 6

SROFF REFERENCE MANUAL

PAGE

1. Introductionciiiiiiurieeeronioonoeanoanssnannanas 6-1
2., USAB .« v i vi i tiirieoesneaesoooaeeassssssessssssseasssoannanas 6-1
6-13

Chapter 6
SROFF REFERENCE MANUAL

1. Introduction

Sroff is a program to format documents for printing. Sroff is
similar in nature to nroff and troff, but it has fewer capabilities and
is significantly cheaper to run. A typical sroff run costs about one-
tenth the cost of the equivalent troff run, and produces medium-to-
high quality output suitable for internal publication; troff is capable
of producing superior quality phototypeset output, sometimes
required for outside publication.

2. Usage

2.1 Input

Input to sroff should be a file with text lines containing the
information to be formatted, intermixed with request lines that
contain instructions about how to format it. Request lines begin with
a distinguished control character.

The syntax of sroff is as follows:
sroff [options] [files]

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which must appear
before the files are:

-olist
Print only pages whose page numbers appear in the Iist of
numbers and ranges, separated by commas. A range N-M means
pages N through M; an initial -N means from the beginning to
page N; and a final N- means from N to the end.

6-1

SROFF

-sN ,
Stop every N pages. Sroff will halt after every N pages
(default=N=1) to allow paper loading or changing, and will
resume upon receipt of a line-feed or newline.

-mname
Prepend to the input file the macro file /usr/lib/smac/mname.

2.2 Output

Printed output lines can either be filled as nearly as possible with
words or can be copied one-for-one from input text. Right-margin
justification can be done on filled text. Computation of page
numbers is automatic; section numbers, equation numbers, etc., can
also be computed. Indentation, centering, line length, line spacing,
page layout, titling, hyphenation at line breaks, footnotes, multiple
columns, and collecting of an index are all controllable.

2.3 Request Lines

Formatting requests to sroff are identified by three characters at
the beginning of a line. The first character must be a control
character, which is normally the period or dot (.). The short table of
requests shown in Figure 6-1 is a good starting set and is adequate
for routine formatting.

As the table indicates, some requests cause line breaks, that is,
termination of the current output line even if it is not filled. Some
requests set values and formatting modes; values and modes in effect
initially are indicated under " default" .

SROFF

REQUEST BREAK DEFAULT

MEANING

.bp
.br
.ce
ds
i
fot
he t
An n
Jju
dln
nf
.nj

.pon

.Sspn
.88
tin

ul

yes

yes

yes

yes

yes

no

no

no

yes

no

yes

yes

no

yes

yes

yes

no

no

yes

t=””

t:””

n=

yes

n=60

no

yes

begin page

break

center next text line, do not fill it
double space

fill output lines

foot titles are t

head titles are t

indent left margin n spaces
justify right margins of filled lines
line length is n, including indent
nofill, break on each input line
no right margin justification

page offset is n; i.e., move all
output n spaces right

insert n extra spacing lines
single space
temporary indent, for next line only

underline next input text line

Figure 6-1. A Short Table of Sroff Requests

6-3

SROFF

All the sroff requests are given in the section Complete List of sroff
Requests at the end of this chapter.

2.4 Titles

Running titles usually appear at the top and bottom of every page. A
title can be set or reset by the request:

.he ’partl’part2’partd’

Partl is left justified, part2 centered, and part3 right justified with
respect to the margins current when the title was set.

There can be up to ten head and ten foot titles for even- and odd-
numbered pages. If there are to be several headings the request is:

.he n ’partl’part2’part3’

where n is a number in the range 1 through 10. " .he" could be any
one of .ef, .eh, .he, .fo, .of, .oh. Any % sign in a title is replaced by
the current page number when the title is printed. Any nonblank
character may serve as a quote.

The head titles appear in the margin left by .m2 in the order 1,2,. . .,
10. The foot titles appear in the margin left by .m3 in the order
10,9,. . ., 1. If the margin is n lines, n<10, titles n+1 through 10 do
not appear.

2.5 Blanks

Lines beginning with blank cause a break. Trailing blanks are
stripped from input lines. If no characters remain (i.e., the line was
all blanks), .sp 1 is assumed; otherwise, in the output, one blank is

b

appended, or two after’.’,’!’,’?’, or ’:’.

6-4

SROFF

2.6 Tabulation

Tab characters in the input specify positions of separate fields on the
output line. The fields can be left justified, centered, or right
justified. The tab characters are replaced by one or more blanks;
these blanks are immune to padding in justified output. The first
field is always left justified to the first character position; the
positioning of other fields is given by column numbers separated by
spaces. Each column number may be followed by L, C, or R to denote
left, center, or right tab stops. A column number may be preceded by
+ or - to cause the tab position to be computed relative to the
preceding position. If no numbers are given, the next line after the
.ta line is taken to contain L’s, C’s, and R’s in the positions of the tab
stops. Initially, L-stops are set in every position and the ASCII TAB
(octal 11) is the tab character. To use another character (that can be
seen in the input file) for the tab character, the request .te can be
used.

2.7 Diversions

Certain requests, namely .at (assign text), .fn (footnotes), .ig
(ignore), and .ix (index), cause diversions from the main text. Each
diversion has an associated label which may be empty or may have
the form of a register name described below in Part 213, Register
Insertion. Nested diversions require non-empty end labels. A
diversion is ended by a .en (end) request having the same label.

2.8 Footnotes

Lines between .fn and .en are formatted normally, then are held for
the bottom of the page. Line formatting is handled completely
independently in the footnote text. In particular, separate settings
are maintained in the footnote text and in the text proper for .ce, .li
A, .in, .ju, .11, .ls, .mg, .ta, .ti, and their synonyms and antonyms.
The footnote separator (normally an empty line) between text body
and footnotes is set like a title by .fs.

6-5

SROFF

2.9 Translation

Every output character is translated, normally into itself. The
request .tr cded... specifies that each of the characters ¢ is to be
translated into the corresponding d. The first ¢ must not be a space.
ASCII control characters cannot enter into translation.

2.10 Merging

Fixed information to be put into all output lines may be specified by
merge patterns. Blank positions of every nonempty output line are
replaced from merge pattern 1, then positions still blank are replaced
from merge pattern 2, and so on. Merge pattern n is specified by a
special input line following a .mg n request. The pattern is
permanently positioned according to the indentation and page offset
(.po) current when the pattern was set. A merge pattern containing
ASCII control characters will probably not give the intended results.

2.11 Hyphenation

The hyphenation mode, set by .hy n and .hp n, controls attempts to
split words at the end of filled lines. Only capitalized words are
affected by .hp. Hyphenation breaks may be inserted within words:

if n=0, nowhere

if n=1, at - signs or at hyphenation characters
if n=2, before certain suffixes

if n>3, between certain pairs of letters.

The hyphenation character, set by .he, disappears from the output.
A word containing a - sign or a hyphenation character is treated as if
the hyphenation mode were min(n,1).

6-6

SROFF

2.12 Numbering Lines

Line numbers (sometimes useful for debugging input errors) can be
produced automatically in the space left by .po (a page offset of 4
will usually suffice) under control of .n0, .n1, and .n2. Only
nonempty lines not in titles or footnotes are numbered.

2.13 Register Insertion

Sroff can calculate and keep numerical values or text fragments in
registers. Each register has a 1-to-8 character name chosen from a
“through z, 0 through 9, %, #, and enclosed in parentheses. Uppercase
and lowercase are identical in register names. The parentheses may
be dropped from 1-character names. In every input line, appearances
of an insertion character followed by the name of a register are
replaced by the contents of that register. The insertion character is
set by .ic.

An insertion character not followed by a register name disappears
and the following character—even when it is an insertion character—
is left untouched. Insertion characters are effective everywhere else,
including request lines, diversions, and the interior of parenthesized
register names.

2.14 Number Registers

The request .an R n assigns the number n to register R. The number
must be an unsigned decimal integer, possibly preceded by one of
+-*/ to cause modification based on the old value. (That is, +1
means previous value plus 1, etc.) Numeric values are not allowed to
go negative; negative values are replaced by zero.

6-7

SROFF

Each register containing a number can have a format assigned to it
to prescribe how the number is to printed, for example to print a 2 as
ii. The request .af Rf assigns format f to register R. Possible
formats and numbers printed in each are:

0,1,2,34,...,26,27,28,...
00,01,02,03,04,...,26,27,28....
0,1,1i,iii,iv,...,xxvi,xxvii,xxviii,...
0,LILIILIV,. XXVLXXVILXXVIII,...
0,a,b,c,d,...,z,aa,bb,...
0,AB,CDD,...,Z,AA BB,...

—— S
o =

Formats 1, 01, 001, . . . specify a minimum width for decimal printing.
Shorter numbers in these formats will be padded with leading zeroes.
All registers have format 1 initially.

The registers listed below contain special values; all others start at 0.

(year), (mon), (day) —date and time of day of the start
(hour), (min), (sec) of the present run, coded as numbers
(%) —current page number

—current line number

Register (amon) is initialized to the present month, in English, as in
the footer of this manual.

Right after .bp, .ep, .op, or .pa, register % contains the current page
number. Otherwise it contains the number of the page to which the
last character of the last preceding line of input text would be
assigned, except in pathological cases where certain requests (.ml,
.m2, .m3, .m4, .ne, .pl, .sk) unpredictably alter pagination.

Note: The % in titles is not preceded by a number character,
and is evaluated on output rather than upon input.

Register # contains the line number of the last character of the last
preceding line of input text. The request .an # n (after a break) will
cause the next line to be numbered n+1.

6-8

SROFF

2.15 Text Registers (Macros)

The request .at R assigns to register R the following lines of input
text, up to a matching .en R. The final carriage return is dropped.
Considered as a macro, the text assigned to a register may contain
parameters, each signaled by a parameter character followed by a
digit. The parameters are used for argument substitution as
described below. The parameter character is set by .pe and has no
special significance except when followed by a digit under .at.

If a text register has a 2-character name, say (xx), then it may be
used as if it were a request. Later request lines .xx will be replaced
by the text of the register plus a final carriage return. Any
arguments—strings on the .xx line separated by blanks and counted
1, 2, ..., 9 from left to right—will be substituted into the
replacement text for occurrences of the parameter character followed
by a digit 1 through 9. If, in a text register, the parameter character
appears without being followed by a digit, the parameter character
disappears on output or rather is replaced by the character following
it (even if that second character is the parameter character). Blanks
between .xx and the first argument are allowed but unnecessary.

2.16 File Insertion

A source file can be introduced in the middle of sroff input by a .so
request giving a filename. Source requests may be nested almost
indefinitely, even recursively.

2.17 Canned Programs

These sroff programs are permanently stored in the file system to be
fetched by .so:

.80 <defaults> resets all parameters to default values.
.80 <corrball> sets up a translation (by .tr) to run an EBCDIC

Selectric terminal (IBM 2741) using a
" correspondence” ball.

6-9

SROFF

Macro packages normally specified on the command line by “\fB-M?’,
where ‘? is any text, can be invoked by .s0 <?mac>.

2.18 Indexing

If an index file is specified when sroff is invoked, then lines between
.ix and .en are diverted to it. Diverted lines may include references
filled in from number registers, but otherwise, the lines are
unmodified. Requests other than .en are treated simply as text
within an indexed region. The lines are ignored if no index file is
present.

2.19 Debugging and Caveats

Sroff does not produce error comments, except for file accessing
errors. Every effort has been made to make nonsensical requests
yield reasonable symptoms. To help in editing, the .pr request causes
requests to be printed in the right margin along with the output, .ps
prints original line numbers, and .uf shows where original lines
started.

Some boundary conditions and pitfalls:

e Sroff imposes a limit of 180 characters, counting backspaces,
upon each line (or pair of lines in filled text), limits text
registers to 400 characters each, and limits the footnotes on any
one page to 4000 characters.

o Although it accepts all ASCII characters and escape sequences,
sroff knows the meaning of only a few—form feed, carriage
return, newline, horizontal tab and backspace. In particular,
forward and reverse half line feeds will work reasonably only if
balanced within the line.

e Control characters usually do not work in merge patterns.

e Backspacing across a blank in filled text almost never produces
the desired effect.

6-10

SROFF

e No numeric value is ever permitted to go negative. In particular
a negative cumulative indent or a negative register value cannot
exist.

e .ul, .us, .bf and .ce apply only to text lines not to titles.

o Titles, registers, footnotes, tab settings, and merge patterns use
memory and cause sroff to grow in space and cost. Macro files
add further to cost since prototypes of the macros are read and
saved even if never used.

2.20 Processing Sequence

Steps 1 through 5 are performed character-by-character.
1. Read input from current source (file, text register, number
register, or insertion argument). If exhausted, pop source and

try again.

2. If source is text register, recognize parameter flag (see step 7)
and switch source to argument.

3. Recognize insertion character, continue getting characters for
name, then switch source (further insertions are honored

within a parenthesized name).

4. Replace tab character by unpaddable blanks according to .ta,
except under .ix or .at

5. Repeat steps 1 through 4 until one line of input is collected.

Steps 6 to 9 are performed input-line-by-input-line.
6. Inside .at, .ig, and .ix diversions, recognize closing .en;
otherwise diverted line goes straight to destination. Under
.at, parameter positions as indicated by .pc are replaced by
parameter flags.

7. Recognize and perform requests.

6-11

SROFF
8. Underline according to .ul and .uf and replace hyphen
characters by hyphenation flags.

9. Repeat steps 1 through 8 until a line of output is collected.

Steps 10 through 14 are performed output-line-by-output-line.

10. Eject a page if there is not room for the line and insert
footnotes, margins, and titles as appropriate.

11. Insert line numbers and request summaries as requested by
.al, .n2, .ps, and .pr.

12. Insert combined merge patterns 1,2,3,...,10.
13. Translate according to .tr.
14. Append the line, preceded by spacing specified by .Is, onto the

output file, or onto the footnote collection buffer if under .fn, or
nowhere if under .np.

6-12

SROFF

3. Complete List of Sroff Requests

The following listing contains a description of each sroff request.
Numerical values are denoted by n or +n, titles by t, and single
characters by c¢. Numbers denoted +n may be preceded by one of
+-*/, in which case the the previous value is increased, decreased,
multiplied, or divided by n (division by zero yields zero). Otherwise,
the request simply replaces the value. No numeric value is allowed to
be set negative; attempts to do so cause the value to be set to zero.

Missing n fields are taken to be 1, missing t fields to be empty.
Missing ¢ fields turn off .ec, .he, .ic, .pc, and .te. End labels are
denoted by e and may be empty or may have the form of a register
name described in Part 2.13, Register Insertion.

Synonyms are indicated by " syn =".

Parenthesized defaults are octal representations of nonprinting
characters.

6-13

SROFF

REQUEST

.ab

af R{

.an R +n

.ar

.at R

Jbecc

bfn

.bon

.bp

CcCC

cen

.co +n

die

6-14

BREAK

yes

no

no

no

no

no

no

no

yes

yes

no

yes

yes

yes

yes

DEFAULT

n=

yes

(010)

no

MFEANING

abort the run (system
debugging only)

assign format to register
R, f=i,l,a,A,1,01,...

assign number to register
R, R#%; if result is

negative, replace by zero

arabic page numerals
(syn = .af % 1)

assign text to register R
until .en R

¢ will be treated as a
backspace

next n lines will appear
in boldface

boldface will be
simulated by n
overstrikes
begin page
break

control character is ¢

center next n text lines,
break on each

second column offset is n

divert output to register e
until .en e

double space (syn = .Is 2)

REQUEST

efnt

ehnt

.en e

.ep

fi

fne

font

fst

Jhee

Jhent

Jhp +n

Jhyn

decec

BREAK

no

no

yes

yes

no

no

no

no

no

no

no

no

no

DEFAULT
t:’”’

t=7”?

yes

t=7’”

t=””

t=nn

n=1

n=3

SROFF

MEANING

nth even page foot title is
t, 1<n<10

nth even page head title
is t, 1<n<10

end all diversions labeled
e, break if end of footnote

begin an even page
fill output lines

flush output buffer (as in
nroff)

divert text to footnotes
until .en e

nth even/odd foot titles
are t, 1<n<10

footnote separator is t

hyphenation character is
c

nth even/odd head titles
are t, 1<n<10

hyphenation mode for
capitalized words is n,

0<n<3

hyphenation mode is n,
0<n<3

insertion character is ¢

ignore all input until .en
e

6-15

SROFF

REQUEST

Jdn +n
ix e
Ju
Jdin

Al +n
Jds +n
Jdvn
.ml +n
m2 +n
.m3 +n
.m4 +n
.m5 +n
.-m6 +n

.mecn

6-16

BREAK

no

no

yes

no

no

yes

no

no

no

no

no

no

no

yes

yes

DEFAULT

yes

n=

n=

MEANING

indent left margin n
spaces

divert input to index file
until .en e

justify right margin of
filled lines

literal, take next n lines
to be text

line length is n including
indent

line spacing is n
leave n consecutive blank
lines; wait until next

page if necessary

margin above head no. 1
is n lines

margin below and
including heads is n

margin above and
including feet is n

margin below foot no. 1
is n lines

margin for footnote
separator is n

margin below footnote
separator is n

multi-column mode is n

No adjust (syn = .nj, for
nroff compatibility)

REQUEST

.mgn

.n0

nl

.n2

.nen

.nf

nj

.np n

.nu

.0C

ofnt

ohnt

BREAK

no

yes

yes

yes

no

yes

yes

no

no

no

no

DEFAULT

yes

no

no

no

no

no

yes

t=””

t=””

SROFF

MEANING

next line sets merge
pattern n, 1<n<10

do not number output
lines

number output lines,
reset each page

number output lines, no
page reset

need room for n output
lines with present
spacing, do .bp if
necessary

nofill, break on each
input line

no right margin
justification

no printing of output for
next n pages

no first character
underlining

overstrike character has
been restored. The
overstrike character acts
as a toggle on boldface
within a line; its effect is
confined to one line.

nth odd page foot title is
t, 1<n<10

nth odd page head title is
t, 1<n<10

6-17

SROFF

REQUEST

.op

.pa +n

.pc ¢
.pl +n

.po +n

.pr +n

.ps +n

gcece

ro

sk +n

.so ¢/f

Spn

.sp -1

.SS

.ta

6-18

BREAK DEFAULT
yes

yes n=1
no

yes n=66
no n=0
no n=0
no n=0
no none
no no
no

no

yes

yes yes
no all

MEANING

begin an odd page

begin page with page
number n

parameter character is ¢
paper length is n lines

page offset is n, i.e. move
all output n spaces right

print requests indented n,
don’t print if n < line
length

print sequence numbers

‘of input lines indented n

(n for .pr > n for .ps)

¢ is argument quote
character

roman page numerals
(syn = .af % 1)

skip at next new page to
page number n

insert sroff source from
filename

insert n extra spacing
lines

overlay next line on
previous if it doesn’t
collide.

single space (syn = .Is 1)

tabs set by this line or
next

REQUEST

tce

ti+n

.tr cd...

uf

aln

auasn

WS n

BREAK DEFAULT
no (o11)

yes

no

no no

no n=1

no n=1

no n=1

SROFF

MEANING

¢ will be treated as a tab

temporary indent, for one
line only

translate ¢ into d on
output

Underline character has
been restored. Underline
character acts as a toggle
on underline within a
line; its effect is confined
to one line.

underline first character
of each input text line

underline alphanumerics
in next n input text lines

underscore all printing
characters in the next n

input text lines

suppress leading and
trailing widows

6-19

TEXT FORMATTERS REF. 307-151 COMMENT FORM

Your comments and suggestions are appreciated and will help us to provide the best
documentation for your use.

1. How would you rate this document for COMPLETENESS? (Please Circle)

Excellent Adequate i Poor
4 3 2 1 0

2. Identify any information that you feel should be included or removed.

3. How would you rate this document for ACCURACY of information? (Please Circle)

Excellent Adequate Poor
4 3 2 1 0

4. Specify page and nature of any error(s) found in this document.

5. How would you rate this document for ORGANIZATION of information? (Please Circle)

Excellent Adequate Poor
4 3 2 1 0

6. Describe any format or packaging problems you have experienced with this document.

7. Do you have any general comments or suggestions regarding this document?

8. We would like to know a little about your background as a user of this document:

A. Your job function

B. Number of years experience with computer hardware: operation
maintenance

C. Number of years experience with computer software: user
programmer

Your Name Phone No.
Company
Address .
City & State Zip Code

NO POSTAGE
NECESSARY
IF MAILED

IN THE

Western Electric UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1999 GREENSBORO, N.C -
POSTAGE WILL BE PAID BY'ADDRESSEE

DOCUMENTATION SERVICES
2400 Reynolda Road
Winston-Salem, N.C. 27106-9989

Do Not Tear—Fold Here and Tape

	0000
	0001
	001
	1-00
	1-01
	1-02
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	replyA
	replyB

