

UNIX@ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL

UNIX@ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL.

Seventh Edition, Volume 2

Bell Telephone Laboratories, Incorporated
. Murray Hill, New Jersey,

Copyright © 1983,

lSBN 0-03-061742-1 (v. 1)
ISBN 0-03-061743-X (v. 2)

CONTENTS

Preface vii

General Works 1

1. 7th Edition UNIX-Summary. 3
A concise summary <;>f the facilities available on UNIX.

2. The UNIX Time-Sharing System 20 '
D. M. Ritchie and K. Thompson. The original UNIX paper, reprinted from CACM .

Getting Started 37

3. UNIX for Beginners-Second Edition. 39
B. W. Kernighan. An introduction to the most basic use of the.system.

4. A Tutorial Introduction to the UNIX Text Editor. 54
B. W. Kernighan. An easy way to get started with the editor.

5. Advanced Editing on UNIX. 65
B. W. Kernighan. The next step.

·6. An Introduction to the UNIX Shell. 82

.>

S. R~ Bourne. An introduction to the capabilities of the com'mand interpreter, the shell.
7. Learn-Computer Aided Instruction on UNIX. 109

M. E. Lesk and B. W. Kernighan. Describes a computer-aided instruction program that walks
new users through the basics of files, the editor, and document preparation software.

Document Preparation 123

8. ,Typing Documents on the UNIX System. 125
M. E. Lesk. Describes the basic use of the formatting tools. Also describes "-ms", a standar­
dized package of formatting requests that can be used to layout most documents (including th6~e in
this volume).

9. A System for Typesetting Mathematics. 146
B. W. Kernighan and L. L. Cherry. Describes EQN. an easy-to-Iearn language for doing
high-quality mathematical typesetting.

10. TBL-A Program to Format Tables. 157
M. E. Lesk. A program to permit easy specification of tab.ular material 'for typesetting. Again,
easy to learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. 175
M., E. Lesk. Describes, among other things, the program REFER which fills in bibliographic
citations from a data base automatically.

12. NROFFffROFF User's Manual. 196
J. F. Ossanna. 'The basic formatting program.

13. A TROFF Tutorial. 230
B. W. Kernighan. An introduction to TROFF for those who really want to know such things.

v

CONTENTS

Programming 245

14. The C Programming Language...--Reference Manual. 247
D. M. Ritchie. Official statement of the syntax and semantics ofC. Should be supplemented by
The C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978, which
contains a tutorial introduction and ma~y examples.

15. Lint, A C Program Checker. 278
S. C. Johnson. Checks C programs for syntax errors, type vi~lations, portability problems, and a
variety of probable errors.

16'. Make---A Program for Maintaining Computer Programs. 291
, , S. I. Feldman. Indispensable tool for making sure that large programs are properly compiled

with minimal effort.
17. UNIX Programming. 301

"B. W. Kernighan and D. M. Ritchie. Describes the programming interface to the operating
system and the standard 110 l,ibrary.

18: A Tutorial Introduction to ADB. 323
J. F. Maranzano and S. R. Bourne. ' How to use the ADB debugger.

Supporting'Tools and Languages 351

19. Y ACC: Yet Another Compiler-Compiler. 353
S. C. Johnson. Converts a BNF specification of a language and semantic actions written in C into
a compiler for the language.

20. LEX-A Lexical Analyzer Generator. 388, ' ' _
M. E. Lesk and E. Schmidt. Creates a recognizer for a set of regular expressions; each'regular '
expression can be followed by arbitrary C code which will be executed when the regular expression '
is found.

21. A Portable Fortran,77 Compiler. 401
S. I. Feldman and P. J. Weinberger. The first Fortran 77 compiler, and still one of the best:-

22. Ratfor-A Preprocessor for a Rational Fortran. 421
B. W. Kernighan. Converts a Fortran with C-like'control structures and cosmetics into real, ugly
Fortran.

23. The M4 Macro Process. 433
B~ W. Kernighan and D. M. Ritchie. M4 is a macro processor useful as afrontendforC, Ratfor, '., Cobol, and in Its own right. ','

24 SED-A Non-interactive Text Editor. 440
L. E. McMahon. A variant of the editor for processing large inputs.

25. AWK-A Pattern Scanning and Processing Language. 451
,',,' , A. V. Aho, B. W. 'Kernighan and P. J. Weinberger. Makes it, easy to specify many data
. "transform,ation and selection operations.

26. DC-An Interactive Desk Calculator. 460
R. H. Morris and L. L. Cherry. A super HP calculator, if you don't need floating point. '

27. , BC-An" Arbitrary Precision Desk-Calculator Language. 469
L. L. Cherry and R. H. Morris. A front end forDC that provides infix notation,.,control flow, and
built-in functions.,

28. UNIX ,Assembler Reference Manual. 483
D. M. Ritchie. The ultimate dead language.

Implementation,Maintenance, and Miscellaneous" 495

29.

30.

vi

Setting Up UNIX-Seventh Edition.
C. B. Haley 'and D. M. Ritchie.

Regenerating System Software. 506
C. B. Haley and D. M. Ritchie.

497
HQw to configure and' get your system running.

What to do when you have to change things.

CONTENTS

31. UNIX Implementation. 512
K. Thompson. How the system actually works inside.

32. The UNIX 110 System. 522
D. M. Ritchie. How the 110 system really works.

33. A Tour Through the UNIX C Compiler. 529
D. M. Ritchie. How the PDP-ll compiler works inside.

34. A T~ur Through the Portable C Compiler. 544
S. C. Johnson. How the portable C compiler works inside.

35. A Dial-Up Network of UNIX Systems. 569
D. A. Nowitz and M. E. Lesk. Describes UUCP, a program for communicating files betwee~
UNIX systems.

36. UUCP Implementation Description. 577
D. A. Nowitz. How UUCP works, and ho~ to administer it.

37. On the Security of UNIX. 592.',
. D. M. Ritchie. Hints on how to break UNIX, and how to avoid doing so.

38. Password Security: A Case History. 595
R. H. Morris and K., Thompson. How the bad guys used to be able to break tne password
algorithm, and why they can't now, at least not so easily.

Glossary' 602

Index 609

PREFACE

In this new form from Holt Rinehart, the UNlxt Programmer's Manual becomes a trade book,'readily
available to the tens of thousands of users of the UNIX system. Its usefulness as a reference work had been
enhano~d by the addition of a glossary and an index. '

This volume contains documents which supplement the information contained in Volume 1. The
docll;men,ts here are groupea roughly into the areas of basics, editing, language tools, document preparation,
and system maintenance. Further general information may be found in the/Bell System Technical Journal
special issue on UNIX, July-August, 1978. '

Many of the documents cited within this volume as Bell Laboratories internal memoranda or Computing
Science Technical Reports (CSTR) are also contained here ..

These. documents contain occasional localism, typically references to other operating systems like
GCOS and IBM. In all cases, such references may be safely ignored,

t UNIX is a Trademark of Bell Laooratories. vii

GENERAL WORKS

7th Edition UNIX - Summary,

September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What's new: highlights of the 7th edition UNIXt System

Aimed at larger systems. Devices are addressable to 231 bytes, files to 230 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular, hardware: .

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77. ' ,

Shell. Completely new SH program supports string variables, trap handling, structured pro­
gramming, user profiles,' settable search path, multilevel file name ge'neration, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS' macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for prepar­
ing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith­
metic operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation. i

Debllggi,ng. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.

C language. The language now supports definable data types, generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com­
piled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and 'Semantic
actions into a recognizing subroutine. Analogous to Y ACC. .

Graphics. Simple graph-drawing utHity, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard. - ,

Standard input-output package. Highly efficient' buffered stream I/O is integr,ated with fonnal­
ted input and output.

Other. The op~rating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

/I

t UNIX i~ a Trademark of Bell Laboratories.

3

4 GENERAL.WORKS

J

B.' Hardware

The 7th edition UNIX operating system runs on a DEC PDP-II /45 or 11/70* with at least
·the following equipment:

128K to 2M words of managed memory~ parity not used.

disk: RP03, RP04, RP06, RKOS (mo~e than I ·RK05) .9r equivalent.

console typewriter.

clock: KWII-L or KWII-P.

The following equipment is strongly recommended:

communications controller such as DL II or DHII.

full duplex 96 i character ASCII ~erminals. ,

, 9-track tape or extra ~isk for system backup.

The system is normally /distributed on 9-track tape. The minimum memory and disk 'space
. specified is enough to run and maintain UNIX. More will be needed to keep all source on line,

or to handle a large number of users, big data bases, diversified complements of devices, or
) large programs. The resident code occupies 1~-20K words depending bn configuration~ system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-I 1/34, ·11/40 and 11/60
hardware.

c. Software

Most of the programs available as UNIX' commands .are listed. Source code andprinled
• manuals are distributed for all of the listed software except games. Almost all of the coc!e is

written in C. Commands are self-contained and do not require extra setup information, unless
. specifically noted as Hinteractive." Interactive programs can be made to run from a prepared

script simply by redirecting input. Most programs intended for interactive u~e (e.g., the editor>
· allow for an escape to command level (the Shell). Most file processing 'commands can also go
. from standard input to standard output (Hfilters"). The piping facility of the Shell may be used
to connect such filters directly ~o the input or output of other programs.

1. Basic Software .

This includes the time-sharing operating system wit.h utilities, a machine language assem- .
bier and a compiler for the programming language C -enough softw'are to write and run new
applications and to maintain or modify UNIX itself.

1.]. Operating System

o UNIX The basic resident code on· which everything else depends. Supports the system
calls, and maintains the file system. A general description of UNIX design phi­
losophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more. extensive survey is in the B~II System Technical Journal
for July-August 1978. Capabilities include:'
o Reentrant code for user processes.
o Separate instruction and data spaces.
o HGroup" access permissions. for cooperative projects, with overTapping

memberships.
o Alarm-clock time~uts.

·PDP is a Trademark of Digital Equipment Corporation.

o DEVICES

o BOOT

o MKCONF

7th EDITION UNIX-SUMMARY 5

o Timer-interrupt· sampling and interprocess monitoring for debugging and
I" measurement. I

o Multiplexed I/O for machine-to-machin~ communication.

All I/O ,is logically synchronous. I/O devices are simply files in the file system.
Normally, invisible buffering m~kes all physical record structure and device
characteristics transparent and' exploJts the hardware's ability to do overlapped
I/O. Unbuffered physical record 1/0 is available for unusual applications.
Drivers for these devices are 'available~ others can be easily written:'
o Asynchronous interfaces: DH 11, DL 11. SuppoPt for most common ASCII

terminals. '
o Synchronous interface: DPI L
o Automatic calling unit interface: DN 11.
o Line printer: LPn.
o Magnetic tape: TUIO and TUI6.
o DECtape: TCIL .
o Fixed head disk: RS 11, RS03 and RS04 .

. 0 Pack type disk: RP03, RP04, RP06~ minimum-Iaten~y seek scheduling.
o Cartridge-type disk: RK05, one or more physical devices per logical device.
o Null device. -
o Physical memory of PDP-II, or mapped memory in resident system.
o Phototypesetter: Graphic Systems Systemll 'through DR 11 C.

Procedures to get UNIX started.
, I ' ! .

, Tailor device-dependent system code to hardware configuration. As distribllted,
UNIX can be brought up' di.rectly on. any acceptable CPU with any acceptable
disk, any sufficient amount of core, and· either, clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula­
tor, or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

o LOGIN .Sign on as a new user.
o Verify password and establish user's individual and.group (project) identity.
o Adapt to characteristics of terminal. ' , ,
o Establish working directory.
o Announce presence of mair(from MAIL).
o Publish message of the day. '.
O'Execute user-specified profile.
o Start command interpreter or other initial program,.

o .PASSWD Change a password.
o User can change his own password.
o Passwords are kept. encrypted for securit~.

,0 NEWGRP Change working group (project). Protects against unauthorized changes to pro­
jects.

1.3. Terminal Handling

o TABS

o STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

6 GENERALWORKS

a Half vs. full duplex. '
a'Carriage return + line feed vs. newline.
a Interpretation of tabs.
a Parity .

. a Mapping of upper case to lQwer.
a Raw vs. edited input.
a Delays for tabs, newlines and carriage returns ..

1.4. File M~pipuIation

o CAT

o C~

o PR

o LPR

o CMP

EJ "PAIL

o SPLIT

DOD

o SUM

Concatenate one or more files onto standard ou'tput. Particularly used for una­
dorned printing, for inserting data into a pipeline, and for buffering output that
comes ifl dribs and drabs. Works on any file regar'dless of conte,nts.

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contettts.

Print files with title, date, and page number on every page. ,
a Multicolumn. output. .
a Parailel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

Print last 11 lines of input
a May print last' 11 characters, or from 11 lines or characters to end.

Split a, large file into more manageable pieces. Occasionally necessary for edit­
ing (ED).

Physical file format translator, for exchanging data with foreign systems, espe­
cially IBM 370's.

Sum the words of a file.

J .5. ,Manipulation of Directories and File N a~es

o RM

o LN

o MV

o CHMOD

. 0 CHOWN

o CHGRP

o MKDIR

o RMDIR

o CD

'0 FIND

Remove a file. Only the name goes away if any other names are linked to the
file.
a Step through a directory deleting files interactively.
a Delete entire directory hierarchies.

BLink" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files .

Change group (project) to which a file belongs.

Make a new directory. '

Remove ~ directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

o Criteria include:
name matches a given patteni,
creation date in given range, ,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

7th EDITION UNIX-SUMMARY 7

o Any, directory may be considered to be the root.
o Perform specified ~ommand on each file found.

1.6. Running of Programs

o SH

o TEST

o EXPR

o WAIT

DREAD

D·ECHO

o SLEEP

o NOHUP

o NICE

The Shell, or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard input, standard output, and standard error files.
o Pipes: simultaneous execution with output of one process connected to the

input of another.
o Compose compound commands using:

if ... ' then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for gr.ouping.

o Initiate background processes.
o Perform Shell programs, i.e., command scripts with substitutable arguments.
o Construct argument lists from all file names satisfying specified patterns.
o Take special ac'tion on traps and interrupts. .
o User-settable search path for finding commands.
o E",ecutes user-settable profile upon login.
o Optionally announces presence of mail as it arrives .

. 0 Provi.des variables and parameters with default setting.

Tests for use in Shell conditionals.
o String comparison.
o File nature and accessibility.
o Boolean combinations' of the-above.

String computations for calculating command arguments.
o Integer arithmetic
o Patte~n matching

Wait for termination of asynchronously running processes.

Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagno~tics or prompts in 'Shell
programs, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging_up the terminal.

Run a command in low (or high) priority.

8 GENERAL WORKS

o KILL

o CRON

OAT

o TEE

Terminate named processes.

Schedule regular actions at specified times.
o Actions are'arbitrary programs.
o Times are conjunctions of month, day of month, day of week, hour and

minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.,

Pass data between processes and divert a copy into one or more files.

1. 7. Status Inquiries

o LS

'0 FILE

o DATE

o OF

o DU

o QUOT

o WHO

o PS

O'IOSTA:r

o TTY

oPWD

,lList the names of one, several, or all files in one or more directories.
'0 Alphabetic or temporal sorting, up or down.
o Optional information: size, owner, group, date last modified, date last

accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys­
tem index and by reading the fj}.e itself.

Print today's date and time. Has considerable knowledge of calendric and horo­
logical peculiari ties.
o May set UNIX's idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

Tell who's on the system.
o List of presently logged in users, ports and times on.
o Optional history of all logins and logouts.

Report on active processes.
d List your own or everybody's processes.
o TelJ what commands are being executed.
o Optional status information: state and scheduling info, priority, attached ter-

minal, what it's waiting for, size.

Print statistics about system I/O activity.

Print name of your terminal.

Print name of your working directory.

J .H. Backup and Maintenance

o MOUNT

o UMOUNT

o MKFS

o MKNOD

A ttach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

Remove the file system contained on a device from the tree of directories.
Protects against re~oving a busy device.

Make a new file system on a device.

Make' an i-node (file system entry) for a special file .. Special files are physical
devices, virtual devices, physical memory, etc.

o TP

o TAR

o DUMP

o RESTOR

o SU

o DCHECK

o ICHECK

7th EDITION UNIX-SUMMARY 9,

Manage file archives on magnetic tape or DECtape. TAR is newer.
o Collect files into an archive.
o Update, DECtape archive by date.
o Replace or delete DECtape files.
o Print table of contents.
o Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

o NCHECK Check consistency of file ·system.
o Print gross statistics: number of files, number of directories, number of spe-

cial files, space used, space free.
o Report duplicate use of space.'
o Retrieve lost space.
o Report inaccessible fil~s.
'0 Check consistency of directories.
o List names of all files.

o CLRI Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

o SYNC Force all outstanding I/O on the system· to completion. Used to shut down
gracefu lly.

1.9. Accounting

The timing information on which the reports are based can be manually' cleared or shut off
completely.

o AC

o SA

Publish cumulative connect time report.
o Connect time by user or by day.
o For all users or for selected users.

Publish Shell a<:counting report. Gives usage information on each command
executed.
ONumber of times used.
o Total system time, use'r time and elapsed time.
o Optional averages and percentages.
o Sorting on various fields.

1.10. Communication

o MAIL Mail a message tC' one or more users. Also used to read and dispose of incom­
ing mail. The presence of mail is. announced by LOGIN and optionally by SH.
o Each message can be disposed of individually.
o Messages can be saved in files or·forwarded.

10 GENERAL WORKS

0. CALENDARAuto.matic reminder service for events of today.and tomorrow.

o WRITE

. 0 WALL

o MESa

o CU

o UVCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL:

Call up another time-sharing system.
b Transparent interface to remote machine.
a File transmission. I

a Take remote input from local file or put remoteoutput into local file.
a Remote system need not be UNIX.

UNIX to UNIX copy ..
a Automatic queuing until line becomes available and remote machine' is up.
a Copy betweel) two remote ma~hines. .
a Differen'ces, mail, etc., between two macHines.

1.11. Basic Program Development Tools

. Some.of these utIlities are used as integral parts of the .higher level languages described in ~ec-
. tion 2. .

OAR

[] AS

o Library

Maintain archives and libraries. Combines several files into one for ho~.sekeep­
ing efficiency.
'OCreate new archive.,

. 0 Update archive by date.
o Replace or delete files.
o Print table of contents.
o Retrieve, from archive.

,As~embler. Similar to 'PAL-II, but different in detail. .
o Creates object program consisting of .

code, possibly read-only,
initialized data or read-write code,
uninitiaIized data.

o Relocatable object code is directly 'executable without further transformation ..
o Object' code normally includes a symbol table.
o Multiple source files.
o Local labels.
o Conditional assembly.
o HConditional jump" instructions' become branches or branches plus jumps

depending on distance .

. The basic run-time library. These routines are used freely by all software.
o Buffered character-by-character 110.
o Formatted input' and '~output conversion (SCANF and PRINTF) for standard

input and output, files, in-memory conversion.
o Storage allocator.
,0 Time conversions.'
ON umber conversions.
o Password encryption .

. 0 Quicksort. .
o Random number_generator.
o Mathe~atical function library, including trigonometric functions and

inverses, exponential, logarithm, square root, bessel functions.

7th EDITION UNIX-SUMMARY 11

D ADB Interactive debugger.
o Postmortem dumping.
o Examination of arbitrary files, with no limit on size.
o Interactive, breakpoint debugging with the debugger as a separate proceS3.
O'Symbolic reference to local and global variables.
o S tack trace for C programs.
o Output formats:

1-, 2-, or 4-byte integers in octal, decimal, or hex
single and dOl:lble floating point
character and string
disassembled machine instructions

o Patching.
o Searching for integer, character, or floating patterns.
o Handles separated instructi~n and data space.

D OD Dump any file. Output options include any ,combination of octal or decimal by
words, octal by bytes, ASCII, opcodes, hexadecimal.
o Range of dumping is controllable.

D LD Link edit. Combine relocatable object files. Insert. required routines from
specified libraries.
o Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

D LORDER Places object file names in proper order'for loading, so that files depending on
others come after them.' '

D NM Print the namelist (symbol t?ble) of an object program. Ppovides control over
the style' and order of names that are printed. '

D SIZE Report the core requirements of one or more object files.

D STRIP Remove the relocation and symbol table information from an object file to save
space. .

D TIME

D PROF

D MAKE

Run a command and report timing information on it. .

Construct a profile of time spent per routine from statistiCs gathered by time­
sampling the execution of a program. Uses floating' point.
o Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control ole specifying source file
dependencies to make new version~ uses time last changed to deduce minimum
amount of work necessary.' .
o Knows about CC, Y ACC, LEX, etc.

1.12. UNIX Programmer's Manual

D Manual Machine-readable version of the UNIX Programmer's Manual.
o System overview.
o A II commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All devices and other special files.
o Formats of file system and kinds of files known to system software.
o Boot and maintenance procedures. '

12 GENERAL WORKS

OMAN Print specified manual section on your terminal. ..

1.13. Computer-Aided Instruction

·0 LEARN

2~ Languages

A program for interpreting GAl scripts, plus scripts for ·learning about UNIX by
using it. .
o Scripts for basic files and commands, edi,tor, advanced files and commands,

EQN, MS macros, C programming language.

2.1. The C Language.

b CC

o LINT

o CB

2.2. Fortran

Compile and/or link edit programs in the C language. The UNIX operatirig sys­
tem, most of the subsystems and C itself are written in C. For a full descrip­
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978 .

. 0 General purpose langua~e designed for structured programming.
o Data types include character, integer, float, double, pointers to all types,

functions returning above types, arrays of all types, structures and unions of
all types.

o Operations intended. to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

o Macro preprocessor for parameterized code and inclusion of standard files .
. 0 All procedures recursive, with parameters by value.
o Machine-independent pointer manipulation.
o Object code uses full addressing capability of the PDP-II.
o Runtime library gives access to all system facilities.
o Definable data types. .
o Block structure

Verifier for C programs. Reports questionable or nonportable usage such as: ..
. Mismatched data declarations and procedure interfaces.

Nonportable type converslons.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

o Full cros~-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

D F77 A full compiler for ANSI Standard Fortran 77.
o Compatible with C and supporting tools at object level.
. 0 Optional source compatibility with Fortran 66.'
o Free format source. . .
b Optional subscript-range checking, detection of un initialized variables.
o All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-

byte complex.

o RATFOR Ratfor adds rational control structure a la C to Fortran.
o Compound stateme:nts.

o STRUCT

7th EDITION UNIX-SUMMARY 13

o If-else, do, for, while, repeat-until, break, next statements.
o Symbolic constants.
o File insertion.
o Free format source
o Translation of relationals like >, > =.
o Produces genuine Fortran to carry away.
o May be used with F77.

Converts.; ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

o BAS

o DC

G Be

An interactive interpreter, similar in style to BASIC.- Interpret unnumbered
statements i'mmediately, numbered statements upon 'run'. .
o Statements include:

comment;
dump,
for ... next,
goto,
if ... else ... fi,
list,
print,
prompt,
return,
run,
save.

o All calculations double precision.
o Recursive function defining and calling.
o Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
o Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
o Unlimited precision- decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
o Reverse Polish operators:

+ - * I
remainder, power, square root,
load, store, duplicate, cclear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
o All the capabilities of DC with a high-level syntax.
o Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions' upon call.
o Arbitrary precision elementary functions: exp, sin, cds, atan.
o Go- to-less programming.

2.4. Macroprocessing

14 ~ENERAL WORKS

D .. M4 A general purpose macroprocessor.
o Stream-oriented, recognizes macros anywhere in text.

. 0 Syntax fits with functional syntax of most higher-level languages.
o Can evaluate integer arithmetic expressions. .

2.S. Compiler-compilers

OYACC

o LEX

. An LR(1)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may. be called to do code generation or semantic
actions.
o BNF syntax specifications.
o Precedence relations.
o Accepts formally ambiguous grammars with non-BNF re~olution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isola­
tion of each lexical token.
o Full regular expression, plus left and right context dependence.
o Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processing

3.1. Document Preparation

oED

o PTX

o SPELL

o LOOK

o TYPO

o CRYPT

,--

Interactive context editor. Random access to all lines of a file.
. 0 Find lines by number or .pattern. Patterns may include: specified characters,

. don't care characters, choices among characters, repetitions of these con-
structs, beginning of line, end of line.

o Add, delete, change, copy, move or join lines.
o Permute or split contents of a line.
o Replace one or all instances of a pattern within a line.
o Combine or split files.
o Escape to Shell (command language) during editing.
ODo any of above operations on every pattern-selected line in a given range.
o Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word, in a document against a word
list. .
o 2.5,OOO-word list includes proper names.
o Handles. common prefixes and suffixes.
o Collects words to help .tailor local spelling lists.

Search for. words in dictionary that begin with specified prefi~

Look f~r spelling errors by a statistical·technique;. not limited to English.

Encrypt and decryp·t files for security. .

3.2.. Document Formatting

o ROFF . A typesetting . program for terminals; Easy for nontechQical people to learn, and
good for simple documents. Input consists of data lines intermixed with con~
trol lines, such as

.sp 2 insert two lines of space
~ce center the next line

~OFF. is deemed to be obsolete; it is intended only for. casual use.

o TROFF

O'NROFF

7th EDITION UNIX-SUMMARY 15

a Justification of either or both margins.
a Automatic hyphenation. . ..
aGeneralized running heads and feet, with even-odd page capability, number-

ing, etc. .
a Definable macros for frequently used control sequences (no substitutable

arguments). .
a All 4 margins and page size dynamically adjustable.
o Hanging indents and one-line indents.
a Absolute and relative parameter settings.
a Optional legal-style numbering of output lines .
. a Multiple file capability.
a Not usable as a filter.

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when' appropriately programmed.
TROFF and NROFF accept the same input language.
a All ROFF capabilities available or definable.'
a Completely definable page format keyed to dynamically planted "interrupts"

at specified lines.
a Maintains several separately -definable typesetting environments (e.g., one for

,. body text, one for footnotes, and one for unusualiy elaborate headings).
a Arbitrary number of outP~t poo'ls can be combined at will. -
a Macros with substitutable arguments, and macros invocable in mid-line.
a Computation and printing of numerical quantities.
a Conditional execution of macros.
a Tabular layout facility.
a Positions expressible in inches, centimeters, ems" points, machine u.nits or

arithmetic combinations thereof.
a Access to character-width computation for unusually difficult layout prob-

lems. .
a Overstrikes, built-up brackets, horizontal and vertical line- drawing.
a Dynamic relative or absolute positioning and size selection, globally or at the

character level. ' '
a Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc~

The Graphic Systems typesetter lias a vocabulary of severai 102-character fonts (4 simultane­
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce muHicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL. '

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi­
cal to NROFF and NEQN so it is usually possible to define iIl!erchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL, '
and 'REFER are fully compatible with TROFF and NROFF.

o MS A standardiied manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

16' GENERAL WORKS

D EQN

a Page numbers and draft dates.
a Automatically numbered subheads.
a Footnotes.
a Single or double column.
a Paragraphing, display and indentation.
o Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style iike this:' ,

sigma sup 2 -=- lover N sum from i=1 to N (x sub i-x bar) sup 2

which produces:
1 N

(1"2 = - I: (Xj-X) 2

Nj=l

a Automatic calculation of size changes for subscripts, sub-subscripts, etc.
o Full vocabulary of Greek letters and special' symbols, ,such as 'gamma',

'GAMMA', 'integral'.
a Automatic calculation of large bracket~sizes.
a Vertical "piling" of fonnulae for matrices, conditional alternatives, etc.
a Integrals, sums, etc., with arbitrarily com'plex limits.
a Diacriticals: dots, double dots, hats, bars, etc.
a Easily learned by non programmers and mathematical typists.

D NEQN A version of EQN for NROFF; accepts the same input language. Prepares for­
mulas fof display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.
a Same facilities as EQN ·within graphical capability of terminal.

D TBL A preprocessor for NROFF ITROFF that translates simple descriptions of table
layouts and contents into detailed typesettirtg instructions.
a Computes column widths.
a Handles left- and right-justified columns, center,ed columns and decimal-point

alignment.
a Places 'column titles.
a Table entries can be text, which is adjusted to fit.
a Can box all or parts of table.

D REFER FUls in bibliographic citations in a document from a data base (not supplied).
a References may be printed in any style, as they occur or collected at the end.
a May be numbered sequentially, by name of author, etc .

. D TC Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

D GREEK. Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450,
and on Tektronix 4014.
a Gives half-line forward and reverse motions.
a Approximates Greek letters and other special characters by overstriking.

D COL Canonicalize files with reverse Jine feeds for one-pass printing.

D DEROFF Remove all TROFF commands from input.
,.f"·'

D CHECKEQ Check document for possible errors in EQN usage.

7th EDITION UNIX-SUMMARY 17

4. Information Handling

o SORT

o TSORT

o UNIQ

o TR

o DIFF

oCOMM

o JOIN

P GREP

o LOOK

OWC

o SED

o AWK

Sort or merge ASCII files line-by-line. No limit on 'input size.
o Sort up or down.
o Sort lexicographically or on numeric key.
o Multiple keys located by delimiters or by character position.
o May sort upper case together with lower into dictionary order.
o Optionally suppress duplicat~ data.

Topological sort - converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
o Publish lines that were originally unique, duplicated, or both.
o May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
o May coalesce selected repeated characters.
o May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.
o May produce an editor script to convert one file into another.
o A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in ~p to 3 columns shows
lines present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
o May print all lines that fail to match.
o May print count of hits.
o May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.
o Lines' may be selected by address 'Or range of addresses.
o Control flow and conditional testing.
o Multiple output streams.
o Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per­
forms actions on each line of input that satisfies the pattern.
b Patterns-include regular ·expressions, arithmetic and lexicographic conditions,
, Qoolean combinations and ranges of these. "
o Data treated as string or numeric as appropriate.
o Can break input into fields~ fields are variables.
o Variables and arrays (with non-numeric subscripts).
o Full set of arithme"tic operators and control flow.
o Multiple output streams to files and pipes.
o Output can be formatted as desired.
o Multi-line capabilities.

18 GENERAL WORKS

5. Graphics

The· programs in thfs section are predominantly intended for use with Tektronix 4014 storage
scopes.

o GRAPH

o SPLINE

o PLOT

Prepares a graph of-a set of input numbers.
o IupIt scaled to fit"standard plotting area.
OAb2cissae may be supplied automatically.
o Graph may'be labeled.
o Control over grid style, line style, graph orientation, etc.

Provides a smooth curve "through a set of points intended for GRAPH.

A set of filters for printing graphs 'produced by GRAPH and other programs on
various terminals. Filters p'rovided for 4014, DASI terminals, Versatec
printer/plotter. ..

6. Noveities,Games, and Things That Didn't Fit Anywhere Else

o BACKGAMMON
A player of modest accomplishment.

·0 CHESS Plays good class D chess.

o CHECKERS Ditto, for checkers ..

d BCD Con¥erts ascii to' card-image form.'

o PPTCohverts ascii to paper tape' form.

: 0 BJ A blackjack dealer.

o CUBIC An accomplished player of 4x4x4 tic-tac-toe.

D MAZE Constructs random mazes for you to solve.

o MOO A fascinating number-guessing game.

o CAL Print a calendar otspecified month and year.

o BANNER ,Print output in huge letters.

o CHING The I Ching. Place your own interpretation on the output.

o FORTUNE . Presents a random fortune cookie on each invocation. Limited jar of cookies

o UNITS

OTT!'

included. '

Convert amounts between different scales of measurement. Knows hundreds
of units: For example, ;how many km/sec is a pars~c/megayear?

A tic-tac~toe program that learns. It never makes the same mistake twice.

o ARITHMETIC','
Speed and accuracy)est for number facts.

o FACTOR Factor large integers.

o QUI.Z Test your knowledge of Shakespeare, Presidents, capitals, etc.

o WUMP H,uht the wumpus, thrilling search in a dangerous cave ..

o REVERSI A two person board game, isomorphic to Ot~ello®

G HANGMAN Word-guessing game. Uses t.he dictionary supplied.with SPELL ..

7th EDITION UNIX--!»UMMARY 19

o FISH Children's card-guessing game.

The UNIX Time-Sharing System·

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger Digital Eql1j-l~ment Corporation pOP-II and the Interdata 8/32 com­
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process 110,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100. subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of .
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver­

. sion ran on the unprotected PDP-I"1/20 computer. The third incorporated multiprogramming
and ran on the PDP-I 1/34, /40, /45, /60, and /70 computers; it is the one described in-the pre-

'viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-II/70 and the Interdata 8/32

computers. In fact, the differences among the various systems is rather s!TIall; most of the revi­
sions- made to the originally published version of this paper, aside from' those concerned with
style, had t<;> do with details of the implementation of the file system.

Since pOP-II UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are eng~ged in applications such as· c~mputer science education,
the preparation and formatting of documents and other textual material, the collection and pro­
cessing of trouble data' from various switching machines within the Bell System, and recording
and checking telephone service orders. . Our own installation is used mainly for research in'­
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX •. is t~ demonstrate that a powerful
oijerating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less· than two man-years were
spent on the main system software. We hope, however, that users find that the most important

• Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver­
sion of an article that appeared in Communications of the ACM, 17, No.7 (July 1974), pp. 365-375. That arti­
cle was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems Princi­
ples, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17,1973 .

. tUNIX is a Trademark of Bell Laboratories.

20

THE UNIX TIME-SHARING SYSTEM 21

characteristics of the system are its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QEDl
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs2,3
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,

TMG, Pascal

There is a host of maintenance, utility, recreation and novel,typrograms, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro­
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; Iikewise~ this paper and "all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-ll/70" on which the Research UNIX system is installed is a I6-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for 110 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see .. the description of the
PWB/UNIX systems,4, 5 for example. There are also much smaller, though somewhat restricted;
versions of the system. 6

Our o\yn POP-II has two 200-Mb moving-head disks for file system storage ar:dswapping.
There are 20 variable-speed communications interfaces attached to 300- and I200-baud data
sets, and an additional 12 'communication lines hard-wired to" 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication iriterfaces
used for machine-to-machine file transfer. Finally, there is a variety of misceII~neous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi­
tal switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioneu C language. 7 Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size ~f the new" system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
but also included mal1Y functional improvements, including multiprogramming and the" ability
to share reentrant code among' several user programs, we consider this increase in siz~ quite
acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of. the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more structure; for example, the assem­
bler generates, and the loader expects, an object file in a particular format. However, the struc­
ture of files is controlled by the programs that use them, not by the system.

22 GENERAL WORKS

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together .

. A directory behaves exactly like an ordinary file except that it cannot be written on by
u~privileged programs, so that the system controls the contents of directories. However, any­
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc­
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches' is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of .14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, "I",. and ending in a .file name. If the sequence begins with a
slash, the search begins in the root directory; The name /alpha/beta/gamma causes the sys­
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma

. in beta.' gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
nrrme "I" refers to the root itself. .

A .path name not starting with "I" causes the system to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the:current directory. . . ". .

The same non:-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is·sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links .to a file
have equal status. That is, a file 'does not exist within a particular directory; the directory entry
for a file consists 'merely of its name and a pointer to the information actually describing the
file. Thus a fi.le exists independently of any directory entry, although i"n practice a file is made
to disappear along with the last link to it.

Each directory always has at ieast two entries. The name " • " in each' directory refers to
the directory itself. Thus a program may read the current directory under the name "."
without knowing its complete path name. The name. " •• " by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory' structure is constrained to have the form of a rooted tree. Except for the
special entries " ." and " •. ''', each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoJd the separation of portions'
of the hierarc.hy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files

'Special files constitute the most unusual feature of the UNIX file system. Each supporte'd
110 device is associated with at least one such file. '~pecial files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device~
An entry for each special file resides in. directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each

. tape drive, and for physical main memory .. Of course,' the active disks and the memory 'special
file are protected from indiscriminate access.

THE UNIX TIME-SHARING SYSTEM 23

There is a threefold advantage in treating 110 devices this way': fil ~ and device 110 are as
similar as po.ssibl~; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parame.ter can be passed a device name; finally, spe.cial files are sub-
ject to' the same protection mechanism as regular files. -

3.4 Removable file systems

Although the root o.f- the file system is always ~tored on the same device, it is not neCes­
sary that the entire file system hierarchy reside on this device. There is a mount -system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g.,-·a disk pack) should have the structure of an iildepen­
dent file system containing its own diredtory hierarchy. The effect of mOllnt is to cause refer­
ences to the heretofore ordinary file 'to refer instead to the root directo.ry of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between flIes on the remc;>vable vo.lume and those in the- per­
manent file system. In {)ur instanation, fo.r example, the root directory resides .o.n a small parti­
tion of one o.f our disk drives, while the o.ther drive, which contains the user's files, is mounted
by the system initializatio.n sequence. A 'mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one
may simply copy an existing file system.

There is only o.ne exceptio'n to the rule ot identical treatment of files o.n different devices:
no link may exist between one (He system hierarchy and another .. This .restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable vohime is dismounted.

3.5 Protection

Although the access control scheme is" quite simple, it has 'some unusual features.' Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the' owner of~he
file~ for other members of his group, and for all remaining users. .

If the tenth bit is on, the system will temporarily change the user identification (bereafler,
user ID) of the current user to that of the creator of the file whenev"r the 'file is executed' as "a
program. This change in user ID is effective only during the execution of the 'progfam that calls
fo.r it. The set-user-ID feature provides fo.r Qrivileged programs that may use files inaccessible
to other users. For example, a program may keep an accm,mting file that should neither ue read

·.llnor changed except by. the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be fo.rbidden to other programs invoked by the given' .
program's user. Sinc~ the actual user ID of the. invoker of any program is always available, set­
user-ID programs may take any measures desired to satisfy. themselves, as to. their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invo.kable only by the.
"super-user" (below) that creates an empty directory. As indicated abo.ve, directories are
expected to have entries for" • " and " .• ". The command which creates a directory is owned
by the super-user and has the set-user~ID bit set. After it checks its invo.ker's authorizatio.n to.
create the specified directory, it creates it and makes the entries for" . " and" •• ".

Because anyone may set the set-user-ID bit on one of his o.wn files, this mechanism is
generally available without administrative interventio.n. For example, this protection scheme
ea~ily solves the MOO C;lccounting problem, posed by "Aleph-null."8 .

The· system recognizes one particular user ID (that of the "super-use'r") as exem'pt from
the usual co.nstr~ints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference fro.mthe protectio.n system.

24 GENERAL WORKS

3,.6 1/0 calls

The system calls to do 110 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between "random" and "sequential," 110,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it~ no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly­
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep :::::: open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ­
ten simultaneously.

, The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate'the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist~ create
also opens the new lile for writing and, like open, returns a file descripto,r.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may 'have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac­
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on'the same file,
creating files in the same' directory, or deleting each other's open files.

, Except as indicated below, reading and writing are sequential. This means that if a partic­
ular byte in the file was the last byte written (or read), the next 110 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates, the next byte to be read or written. If 11 bytes are read or written, the pointer
advances by. n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n =, write (filep, buffer, count)

Up to count bytes 'are 'transmitted between the file specified' by filep' and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as IlO errors or end of physi­
cal medium on special files~ in a read, however, ri may without error be less than count. If the
read pointer is so near the end of the file thal reading count characters would cause reading

, beyond the end, only sufficient bytes ,are transmitted to reach the end of the file~ also,
typewriter-like terminals never return more than one line of input. When a read call.returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of­
file from a terminal by use' of an escape sequence that depends on the oevice used.

THE UNIX TIME-SHARING SYSTEM 25

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count~ no other part of the file is changed. If the last byte lies beyond the end of the
file. the file is made to grow as needed.i·

"To do random (direct-access) 110 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = lseek (filep. offset. base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file. from the current position of the pointer. or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location. .

There are several additional system entries having to do with 110 and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec­
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV . IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 aboye, a directory entry contains only a name for the associ­
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
numbed of the file. When the file is accessed, its i-number is used as an index into a system

" table (the i-lisT) stored in a known part of the device on which the directory resides. The -entry
found thereby (the file's i-node) contains the description of the file:

the user and group-ID of its owner

ii its protection bits

III the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi "the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a speciql file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories". Onc;e a file is open, its
device, i-number, and read/write pointer are stored in a system table "indexed by the file
desqiptor returned by" the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file. "

" When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file" entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc­
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de~allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device". There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at" the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev­
ice address points to an i~direct block containing up to 128 addresses of additional blocks in the
file. Still larger files use the twelfth device address of the i-node to point" to a double-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir­
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+ 128+ 128 2+ 1283).512] bytes. Once opened~ bytes numbered below 5120 can be read
with a single disk access~ bytes in the range 5120 to 70,656 require two accesses~ bytes in the

26 GENERAL,WORKS,

range 70,656 to 8,459,264 require three accesses; bytes, from there to the largest file
0,082,201,088) require four accesses. In practice, a device cache mechanism, (see below)
proves effective in eliminating most of the indirect fetches. '

The foregoing discussion applies to ordinary files. When an 110 request is made to 'a file
whose i-node indicates that it is special, the ,lflst 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers r~present­
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with 110 on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation' of the mount system call (Section 3.4) is Quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the o'rdinary file specified during the mount, and whose corresponding value is the
device name of the indicated special ,file. ' This table is searched for each i-number/device pair
that. turns up while a path name is being scanned during an open or create; if a match is found,

, the 'i-numper is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered .
.),hat is, immediately after return from a rea(f call the data are available; conversely, after a

write the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 110 operations required to access a
file. Suppose a write call is made specifying transmission of ,a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if,
not, it will be read in from the device. Then the affected byte is replaced in the bu~er and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual 110 may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether ihe secondary storage block in which the byte is
located is already in one of the system's buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of -a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most progr'ams while adding little to system' overhead.

A 'program 'that reads or writes files in units of 512 bytes has an advantage over a program
that reads or' wrItes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of I/O,
it :may quite reasonably read and write in units as small as it wishes.

The notion of the i .. list' is an unusual feature of UNIX. In practice, this method of organiz­
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other- info'rmation needed to access the file. It also permits a
quite'simple and rapid algorithm' for checking' the consistency of a file system, for example, .
verification that the portions of each device containing useful information and those free to be
allocated. are disjoint and together exhaust the space on the device; This algorithm is indepen­
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities no't found in other file system
organizations. For 'example~ there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair ih general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. 'The simplest reasonably fair algorithm seems to be to spread the charges equaf1y
among users who have links to a' file. Many installations' avoid the issue by not charging any
fees at all.

THE UNIX TIME-SHARING SYSTEM 27

v. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
- register values, status of open files, current directory and -the like. An image is the current

state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behaif of a
process, the image must reside in main memory; during the' execution of other processes it
remains in main memory unless the appearance of an active" higher-priority process forces it t.o
be swapped out to the disk. . '

The user-memory part of an image is divided into three logfcal segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes' executing the same pro­
gram. At the first hardware protection byte boundary above the' program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of therork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processe~ .. The two
processes have independent copies of the original memory image, and share all open files .. The
new process~s differ only in that one i~ considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
'returned value is always O. !

Because tpe values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes'may communicate with related processes'using the same system read and write
calls that are used for file-system 110. The call: . .

filep = pipe ()

returns a file descriptor filep and creates an ihter-process channel called' a pipe. This' channel,
like' other open files, is passed from parent \0 child process, in the image by the fork call. A
read using a pipe' file descriptor waits until another process writes using the file descriptor for
the'same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a completely general mechanism, because the, pipe must be set up by a common ances­
tor of the processes involved.

5~3 Executi~n of programs

Another major system primitive is invoked by

execute (file, argl' arg2, ... , argn)

which requests the system (0 read in and execute the program named by file, passing it string
argumentsargl' arg2' ..• " argo' All the code and data in the process invoking execute is
replaced from the file, but open files,- current directory, and inter-process relatianships are'
unaltered. Only if the call fails, for example because file could not be found or- because its
execute-permission bit was not set, does' a return take place from the execute primitive; 'it

28 GENERAL WORKS .

resembles a "jump" machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

'processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the "terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various ilt'egal actions or user-generated signals (Section VII
below).

VI. THE SHELL

For most users, communication with the system is carried on ~ith the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by ,the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere, 9

so t,his section will discuss only the theory of its operation.) In simplest form, a command line
consists /~f the command name followed by arguments to the command, all separated by spaces:

command arg l arg2 ..• ,argn

The shell splits up the command name and the arguments into separate' strings .. Then a file
with name command is sought; command may be a path name including the ',' /" character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
fini~hed, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character. .

If file command cannot be found, the shell generally prefixes a string such as I bin I to
command and attempts again to find the file. Directory I bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 110

The discussion of 110 in Section III ,above seems. to imply that every file used by a pro-
. gram must be opened or c'reated by the program in order to get a file descriptor for the file.
p'rograms executed by. the shell, however, start off with three open files with file descripto~s 0,-
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the usrr's
terminal. Thus programs that wish to write informative information ordinarily use file descrip~
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
" > ", file descriptor 1 will, for the duration of the command, refer to the file named after the
">". For example:

THE UNIX TIME-SHARING SYSTEM 29

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com­
mand:

Is >there

creates a file called there and places the listing there. Thus the argument> there means Hplace
output on there." On the other h~nd:

ed

ordinarily enters the editor, which .takes requests from the user via his keyboard. The 'com­
mand

ed <script

interprets script as a file of editor commands; thus < script means "take input from script."

Although the file name following "<" or ">" appears to be an argument to the com­
mand, in fact .it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle liD redirection is needed within each command; the com­
mand need merely use the standard file descriptors 0 and I where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with ">" is specified, file 2 remains attached to the termi­
nal, so that commands may produce diagnostic messages that do not silently end up in the out­
put file.

6.2 Filters

An extension of the standard liD notfon is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com­
mand be delivered to the standard input of the next command in the sequence.' Thus in the
"command line:

Is I pr -2 I opr

Is lists the names of the files in the cunent directory; its output is passed to pr, which paginates
its input with dated headings. (The argument "-2" requests double-'column output.) Like~ise,
the output from pr is input to opr; this command spools its input onto a file for off-line print­
ing. '

This procedure could have been carried'oUt more clumsily by:

, Is >templ
pr -2 <tempi >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to' ~eqUlre the Is command to accept user
requests to paginate its output, to print in multi-.column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process­
ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

30 GENERAL WORKS

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines~ instead they may be separated by semicolons:

ls~ ed

will first li~t the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by H&," the shell will not
wait for the command to finish before prompting again~ instead,. it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output~ no matter how. long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
U&" may be used several times in a line:

as source >output & Is > files &

does both the ~ssembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) > x &

writes the current date and time followed by a list of the current directory onto the file x. The
,shell'also'returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lin~s:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be. ex~cuted. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When· the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con­
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.S Implementation of the shell

The outline of the operation of the she."nc.an now be understood. Most of the time, the
shell is waiting for the user to type a commahcl:' When the newline character ending the line is
typed, the shell's read call returns. The sheil analyzes the command-line, putting the argu­
ments in a form appropriate for execute. Then fork is c;;llled. The child process, whose code of
course is still that of the· shell,- attempts to perform an execute with the appropriate arguments .

. If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting fro~ the fork, which is the parent process, waits for the

THE UNIX TIME-SHARING SYSTEM 31

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation,of background processes .. is trivial; whenever a
command line contains H&," the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of ,standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with, file
descriptors 0, 1, and 2. The shell, of course, uses these files to .read command lines and to
write its prompts and diagnostics, and in the ordinary case its children~the command
programs-inherit them automatically. When an argument with "<", or ">" is given, how­
ever, the offspring process, just before it peiforms execute, makes the standard 110 file descrip­
tor (0 or 1, respectively) refer to the named file. This is easy 'because~ by agreement,' the smal­
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces­
sary to close file 0 (or 1) and open the named file. Because the process in which the command
prcgram runs simply terminates when it is through, the association between a file specified after
"<" or ">" and file descriptor 0 or 1 is ende,d automatically when the process dies. There­
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard 110 redirection with pipes used instead
of files. ' ' ,

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is: the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter­
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as a command with a given input file, as in: '

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then thetristance
of the shell invoked by sh will terminate. Because this shell process is the child of another

, instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

,The instances of the shell to which users type commands are themselves c~ildreri of
another process.' The last step in the initialization of the system is the creation of a singlep'to:
cess and the invocation (via execute) of it program caiIed init.' The role of init is to cre~te one
process for each terminal channel. The various 's'ubinstances'of init open the appropriate terrni­
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user login.' When the, user
types a name or other identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user's name is found, and if he is able to supply
the correct password, init changes to the user's defaulfcurrent directory, sets the process'~user
10 to that of the person logging in, and performs an execute of the shell. At this, point, the
shell is ready to receive commands and the logging-in protocol is complete.

'Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that
will later become sh'ells) does a wait. If one, of the child processes terminates;' ei ther because a
shell found an end of file or because a user typed 'an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out­
put files and types another log-'i'n"message. Thus a user may log out simply by typing the end~'
of-file sequence to the shell. '

32 GENERAL WORKS

6.7 Otlier programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution o(any program with ap.propriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily. invokes the shell to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro­
gram is free to interpre(the user's messages in any way it wishes.

For example, the password file en~ries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when u.sers of the editing sys­
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking· programs not intended for their use. In practice, it has proved desir­
able to allow a- temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus­
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a phiyer of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The pOP-II hardware detects a number of program faults, such as references to non­
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange,:,-­

. ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current dir~ctory. A debugger can be used to determine the state·
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the "delete" character. Unless special action has been taken, this signal simply causes the pro­
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults·and the interrupt and quit signals can, by request, be .either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log­
ging the user out. The editor catches interr·upts and returns to its command level. This is use­
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is ·editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-1I/20, specifically to support a text editing and formatting
system. When in turn the 11/70 was outgrown, the system had proved useful enough to per­
suade management to invest in the PDP-Il/45, and later in the PDP-II/70 and Interdata 81-32
machines, upon which it developed to its present form. Our goals throughout the effort, when

THE UNIX TIME-SHARING SYSTEM 33

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas 'and inventions in operating systems and other software. W (; have not been faced
with the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy, to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver­
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "batch" system. Moreover, such a system is

. rather easily ad~ptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints' on the system and its
software. Given the partially antagonistic desires fqr reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philosophy,
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
tbey quickly become aware of its functional and superficial deficiencies and' are strongly
motivated to correct them before it is too late. Because all source programs were always avail­
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and' files and between direct and sequential access. No
large "access method" routines are required to insulate the programmer from the system calls;
in fact, all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by!=:': file system
or other system calls. Generally speaking, the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

, Giyen the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-pependent considerations into the operating system
itself. The only alternatives seem to be' to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware. .

Likewise, the process-control scheme and the command interface have 'proved both con­
v~nient arid efficient. Because the shell operates as' an ordinary, swappable user program, it
consumes no "wired-down" space in the system proper, and it may be made as powerful as
desired at little cost. In particular, giveIi'the framework in which the shell executes as a process
that spawns other processes to perform commands, .the notions of 110 redirection, background
processes, comma,nd files, anq user-selectable system interfaces all. become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, .and especially in showing that they can be keys to the
implementation of a small yet powerful operating system. . '

34 GENERAL WORKS

The fork operation, essentially as we implemented it, was present in, the GENIE time­
sharing system. lO Ona number of points we were influenced by Multics, which suggested the
particular form of the'1I0 system calls ll and both the name of the shell and its general func­
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TEN EX. 12 '

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use 'the system for prog"iam
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files,
512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority~ it is used to soak up,
any idle CPU time. It has 'been used to produce' a million-digit approximation to the constant e,
arid other semi-infinite problems. Not counting this background work, we average daily:·~

x. ACKNOWLEDGMENTS .

13,500
9.6
230
62

240

commands
CPU hours,
connect hours
different users
log-ins

'The contributors to UNIX are, in (he traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys­
tem. We are particUlarly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D.Mcllroy, and J. F: Ossanna.

References

l.' L. P. ·,Deutsch and B. W. Lampson', "An online editor," Comm. Assoc. Compo Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L/ Cherry, "A System for Typesetting' Mathematics," Comm.
Assoc. Compo Mach. 18 pp . .151-157 '(March 1975). '

3. B. W. Kernighan, M. E. Lesk, and 1. F. Ossanna, "UNIX Time-Sharing System: Docu­
mentPreparation," BellSys. Tech. J. 57(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J .. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd Int. Com. on Software Engineering, pp. 164-168 (October 13-15, 1976).

5. T A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbe~ch," Bell SYS'l Tech. J. ~7(6) pp. 2177-2200 (1978).

THE UNIX TIME-SHARING SYSTEM 35

6. H. Lycklama, "UNIX Time-Sharing System: UNIX on a Microprocessor~" Bell Sys. Tech. J.
57(6) pp.' 2087-2101 (1978).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey (1978).

8. Aleph-null, "Computer Recreations," Software Practice and Experience 1 (2) pp. 201-204
(April-June 1971).

9. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J . . 57(6) pp.
1971-1990 (978).

10. L. P. Deutsch and B. W. Lampson, "SDS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (~pril 1965).

11. R. J. Feiertag and E. I. Organick, "The Multics input-output system~" Proc. Third Sympo­
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

12. D. G. Bobrow, J. D. Burchfiel, D. ·L. Murphy, and R. S. Tomlinson, "TEN EX, a Paged
Time Sharing System for the PDP-10," Comm. Assoc. Compo Mach. 15(3) pp. 135-143
(March 1972).

GETTING STARTED

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating
system. It includes:

• basics needed for day-to-day use of the system - typing commands, correct­
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting I/O, pipes, and the shell.

• document preparation - a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software. .

• UNIX programming - using the editor, programming the shell, program­
ming in C, oth'er languages and tools.

• An annotated UNIX bibliography.

September 30,. 1978

tUNIX is a Trademark of Bell Laboratories,

INTJ{ODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the
beginner to know where to start, and how to
make the best. use of the facilities available. The
purpose of this introduction is to help new" users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu­
ments with you for" easy reference as you read
this one. The most important is The UNIX
Programmer's Manual; it's often easier to tell you
to read about something in the manual than to
repeat its "contents here. The other useful docu­
ment is A- TII/arial Il1Irodlictioll 10 the UNIX Text
fdito,., which will tell you how to use the editor
to get text - programs,_ data, documents - into
the computer.

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com­
mon to all versions," there ~ill certainly be a few
things which are different on your system from
what is described here. We have tried to minim­
ize the problem, but be aware of it. In cases of
do.ubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Gelling Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be suppleme~ted by
local information. .

2. Day-to-day Use: Things you need every day
to use the system effel:tively: generally use­
ful commands;" the file syste]il.

40

3. Document Preparation: Preparing manu­
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellellt sys­
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in "any of the programming
languages provided by the system. '

5. A UNIX Reading List. An annotated
bibliography of documents that new users
should be aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys­
tem. You also need to know the phone number,
unless your system uses permanently connected
terminals. The UNIX system is capable of deal­
ing with a wide variety of terminals: Terminet
300's; Execuport, TI and similar portables; video
(CRT) terminals like the HP2640, etc.; high­
priced graphics terminals like the Tektronix
4014; plotting terminals like those from GSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.g., model
33 Teletype, some video and portable terminals),
life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode, full duplex, even parity, and any others
that local wisdom advises. Establish a connec­
tion using whatever magic is needed for your ter­
minal; this may involve dialing a telephone call
or merely nipping a switch. In either case, UNIX
should type "login:" at you. If it types garbage,
you may be at the wrong speed; check "the
switches. If that fails, push th~ "break" or

UNIX FOR BEGINNERS-SECOND EDITION 41

"interrupt" key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if p'ossible) printing
will be turned off while you type it. Don't forget
RETURN.

The culmination of your login efforts is a'
"prompt characte'r," a single character that indi­
cates that the system is ready to accept com­
mands from you. The prompt character is usu­
ally a dollar sign $ or a percent sign %,. (You
may also get a message of the day just before the
prompt character, or a notification that you have
mail.)

J

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap­
pen. RETURN won't be mentioned again, but
don't forget it - it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

mb
ski
gam

ttyOl
tty05
ttyll

Jan 16
Jan 16
Jan 16

09:11
09:33
13:07

The time is when the user logged in; "ttyxx" is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be lold. For example, if you type

whom

you will be told

whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter 'may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar­
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section I of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn't have tabs, type the command

stty -tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes ~n Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The Sharp-character # erases
the last character typed; in fact successive uses of
erase characters back. JO the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte##e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled. up, type an @ and
start the line over. '

What if you must enter a sharp or at-sign as
part of the text? If you PJecede either # or @

by a backslash \, it loses' its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a.
ba.ckslash. Don't worry - the' at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which, means that
you can type as fast as you want, whenever you
want, even when some. command is typing at
you. If you type during output, your input char­
acters will appear intermixed with the output
characters, bu t they will be stored away and
interpreted in the correct order. So you can type
several commands one after another- without
waiting for the first to finish or even begin.

42 GETTING STARTED

Stopping a Program

You can stop most programs by typing the
character, "DEL" (perhaps called "delete" or
"rubout" on your terminat>. The "interrupt" or
"break" key found on most terminals can' also
be used. In a few programs, like the text {;ditor,
DEL stops whatever the program is doing but
leaves you in 'hat program. Hanging up the­
phone will stop r«ost programs.

Logging Out

The easiest way to log out is to hang up the ,
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
'time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail. i

UNIX provides a postal system so you can com­
municate with other' users of the system. To
read your mail, type the command

mail

Your mail will be printed~ one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes·
sage, and RETURN, which does not (so it will
still be there the next time you read your mail­
box). Other responses are described in the
manual.. (Earlier versions of mail do not process
one message at a time, but are otherwise simi­
lar')

How do you send mail to someone else?
Suppose it is to go to '''joe'' (assuming "joe" is
someone's login name). The easiest way is this:

, mail joe
now type in the text D.l the letter
on as many lines'as you like ...
After the last line of the letter
type the character "control"':" d ",
that is, hold down "coiltrol" and type
a letter "d".

And that's it. The "control-d" sequence, often
called· "EOF" for end-of-file, is used throughout"
the system to mark the end of input from a ter­
minal, so you might as well get used to it.

For practice" send mail to yourself. (This
isn't as strange as'it might sound - mail to one-

self is a handy reminder mechanism.)

There are other ways to send mail - you
can send a previously prepared letter, an'CJ, you
can mail to,a number of people all at once. For
more details see maiHO. (The notation mail(I)
means the command mail in section 1 of the
UNIX Programmer's ManuaL>

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07 ••.

accompanied by a startling beep. It means that
Joe wants to talk to you, but. unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (I(you are
in the middle of something, y'ou have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter­
minate or be terminated. If you're editing, you
can escape temporarily from the ·editor - read
the editor tutorial.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's Ii~e this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines
as he likes). When he's ready fora reply,
he signals it by typing (0), which stands
for "over". ,
Now Smith types a reply, also 'terminated
by (0).

This cycle repeats until someone gets
tired; he then signals his intent to quit
with (00), for "over and out".
To terminate the conversation, each side
must type a "control-d" character alone
on a line. ("Delete" also works.) When
the other person types his "control-d",
you will get the message EOF qn your
terminal.

If you write to someone who isn't logged in,
or who doesn't want to be disturbed, you'll be
told. If the target is logged in but doesn't answer

. after a decent interval, simply type "control-d".

On-line Manual

The UNIX' Programmer's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual 'section, type "man command­
name". Thus to read up on the who command,
type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro­
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum' nt preparation,
and even C programming. Try typing the com­
mand

learn

If learn exists on your system, it will tell you
, what to do from there.

II. DAY-TO-DAY USE

Creating Files - The Editor

If you have to type a paper or a letter~or a
program, how do you get the information stored
in the' machine? Most of' these tasks are done
with the UNIX "text editor" ed. Since ed is

. thoroughly documented in ed(I) and explained
in A Tworiallntroduction-to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa­
tion stored in the machine, a simplistic but ade­
quate definition.>

To create a file called ju~k with some text in
it, do the following: '

ed junk (invokes the text editor)

UNIX FOR BEGINNERS-SECOND EDITION 43

correcting spelling mistakes, rearranging para­
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor c9mmand w:

w

ed willi respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per­
manently, so if you hang up and go home the
information is lost. t But' after w the information
is there permanently~ you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
to quit without writing, ed will print a ? to rem­
ind you. A second q gets you out rega.rdiessJ

Now create a second file called' temp in the
same manner. You should now have two files,
junk and temp.

What files are out there?

The Is (for "list") "Command-lists tne names
(not contents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted' into alphabetical order
automatically, but other variations are possible.
For example, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most 'recent first. The
-, option gives a "long" listing:

Is '-I

will produce something like

-rw-rw-rw- 1 bwk 41 Jul22 2:56 junk
, -rw"":'rw-rw- 1 bwk 78 Jul 22 2:57 temp

a (command to "ed", to add text) The date and time are' of the last change to the
now type ill
whatever text you want ...

(signals the end of adding text)

The "." that signals' the end of adding text must
be at the beginning of a line by itself. Don't for­
get: it, for until it is typed, no other ed com­
mands will be recognized - everything you type
wiil be treated as text to be added. '

,At this point yoU can do various editing
operations on the text you typed in, such as

file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The -rw-rw-rw-
tells who has permission to read and, write the
file, in this case everyone.

t This is not slriclly Irue -if you hang up wh11e ediling.
Ihe dala you were working on is saved in a tile called
ed.hup. which you can coniinue wilh al your nexi session.'

44 GETTING STARTED

Options can be combined: Is -It gives the
same thing as Is -I, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in IsO).

. The use of optional arguments that begin
with a minus sign, like -t and -It, is a com­
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: ls-I is not the same as Is -I.

Printing Files

Now· that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making

·changes anyway. You can say

ed junk
t,$p

ed will reply with tne count of the characters in
junk and then print all the lines in the file:
After you learn how to use the editor, you, can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a .time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives. /

First is cat, the simplest 0 of all the printing
o programs. cat simply prints on the terminal the 0

contents of all the files named in a list. Thus .

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated
(hence the name Heat") onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference iSJ that it produces heaaings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold'in the paper. Thus,

. pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

pr -3 junk

prints junk in 3-column format. You can use
any reasonable number in place of "3" and pr
will do its best. pr has other capabilities as well;
see prO) .

It should be noted that pr is not a formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff, which we will get to in the sec­
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and Ipr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys­
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now
"precious". If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
ar('\ I,.."t forever.

If you want to make a copy of a file (that i~',
to have two versions of something), you can use
the cp command:

cp precious tempt

makes a duplicate copy ~f precious intempt~
Finally, when you get tired of creating and

moving files, there is a command to remove files
from the file system, called rm.

rm temp tempt

will remove both of the files named ..

. You will get a warning message if one of the
named files wasn't there, but otherwise rm, like
most UNIX commands, does its work silently.
There is nOo prompting or chatter, and error mes­
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable .

What's in a Filename

So far we have used filenames without ever
saying what's a legal name, so it's time for a
couple of rules. Fir~t, filenames are limited to
14 characters, which is enough to be descriptive.

Second, although you can use almo~t any charac­
ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command, Is -t means
to list in time order. So if you had a file whose
name was -t, you would have a tough time list­
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam­
iliar with the situation.

On to some more positive suggestions. Sup­
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might .have a separate file
for each chapter, called

chapl
chap2
etc ...

Or, if each chapter were broken into several files,
you might have

chap1.l
chap1.2
chap1.3

chap2.l
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. 'What' if you wanted to print the
whole book? You could say

pr chapl .. l chap1.2 chap1.3

but you would get tired pretty fast, arid would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means "anything at all," so this translates
int~' "print all files whose names begin with
chap", listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service' of the' program that interprets com­
mands {the "shell," sh(I». Using that fact,
you can see how to list the names of the files in
the book:

UNIX FOR BEGINNERS-SECOND EDITION 45

Is ch~p*

produces

chap1.l
chap1.2
chap1.3

The * is not limited to the last· position in a
filename. - it can be anywhere and can occur
several times. Thus

rm *junk* *te~p*

removes all files that contain junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so

pr *
prints all your files (alphabetical order), and

rm *
. removes all files. (You had better be very sure
that's what you wanted to say!)

The * is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapU23491*

The [.. .1 means to match any of the rharacters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can.
also do this with

pr chapU -49)*

Letters can also be used within brackets: .fa - zr
matches any character in tHe range a through z.

The ? pattern matches any 'single ch.aracter,
so

Is ?

lis.ts all files which have single-~haracter na'mes,
and

·Is -1 chap?l

lists information about tlie first file of each
chapter (chap1.l, chap2.l, etc.).

Of these niceties, * is.certainly the most use­
ful~ and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe­
cial meaning of *, ?; etc., enclose the en.tire
argument in single Quotes, as in

Is '?'

We'll s'ee some more examples of tnis shortly.

46 GETTING STARTED

W,hat's in a Filename, Continued

When you first made that file called junk,
how did' the' system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory, which contains only the
files that belong to him. When yciulog in, you
are "in'" your direct~ry. Unless you take special
action, when you create a new file, it' is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any 9ther, file of the same name
that might exist in someone else's directory.

. The set of all files is organized into a (usu- .
ally big) tree, with your 'files located several
branches into the tree. It is possible for you to
"walk" around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con­
~versely, you can' start where you are af.1d walk
toward the root.,

, Let's try the latter first. The basic tools is
the command pwd ("print working directory"),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are. on, if you give the command
'pwd, it will print something like .

lusr/your-name

This saY$ that you are currently in the directory
your-nafue, which, is in turn in the directory
lusr,., whi~h is in turn in the root directory called
by convention just I. (Even if it's not called
lusr on your system, yo~. wiU get something
analogous. Make the corresponding changes and
read on.)

If you, now type

Is itisr/your-name

you should get exactly the same lisi of file names
as you gel from a plain Is: with no 'arguments, Is
lists the 'co'ntents of the current directory; given
the name :bf a directory, it lists the contents of
that dire~t6ry.

Next, try
~ :,

Is lusr

This sho'uld print a long series of names, among
which, is' your own login name your-name. On
many 'systems, tlsr is a directory that Qontains
the directories of all the normal users of the sys-'
tern, like you.

, The next step is to try

Is 1

You should get a response something like this
(although again the details may be different):

bin
dey
etc
lib
tmp
usr

This is a collection of the basic di~ectories of files
that the system knows about; we are at the root
of the tree.

Now try

cat /usr/your-name/junk

(if junk is still aroundin your directory). The
name

lusr'/your-pame/junk

is called the path~ame of the file that you' nor­
mally think of as ."junk". "Pathname" has an
obvious meaning: it represents the full name, of
the path you have to follow from the root

, ,through the tree of directories to get to a.partictr
lar file. It is a universal rule in the UNIX system
that anywhere, you can use an ordinary filename,
you can use a path name.

Here is a picture which m~y make this
clearer:

(root)

11\ I \
bin etc urr dev tt1:lP
I~\ 11\ / \ 11\ 11\

,\ I \
adam eve mar\'

I / \ junk
junk temp

Notice that Mary's iunk is unrelated to Eve's.

This isn't too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For,
example, your friends can print your book by
saying

pt·/usr/your-name/chap·

Similarly, you can fi~d out what files your neigh,
, bor has by saying

Is lusr/neighbor-name

or make your ow~ copy of one of his files by

cp lusr/your-neighbor/his-file rourfile

If your neighbor doesn't want you po~ing
around in his. files, or vice versa, privacy can be

UNIX FOR BEGINNERS-SECOND EDITION 47

arranged. Each file and directory has read-write­
execute permissions for the owner, a group, and
everyone else, which can be set to control access. '
See Is(1) and chmod(I) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with path names, try

Is Ibin lusr/bin

Do some of the names look familiar? When you
run a program,' by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find iO, then
in Ibin and finally in lusr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information' in his directory?
You could just log in as your friend each time
you want to, but you can also say HI want to
work on his files instead of my own'\ This is
done by changing the directory that you are
currently in:

cd lusr/your-friend

(On some systems, cd is spelled chdirJ Now
when you use a filename in something like cat or
pr, it refers to the file in your friend's directory.
Changing directories doesn't ,affect any permis­
sions associated with a file - if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it witl1

.:, cd·book

then start typing. chapters. The book is now
found in (presumably)

lusr/your-name/book

To· remove the directory book, type

rm book I· ,
rmdir book:

The first command removes all files from the
directory~ the second removes the empty direc-·
tory.,

You can go up one level in the tree of files
by saying

cd ••

H •• " is the name of the parent of whatever direc­
tory you are c~rrently in. For completeness, "."
is an alternate name for the directory'you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far'
produce output on the terminal~ some" like the
editor, also take their i'nput from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filetist

a list of your files will be placed in the file filetist
(which will be created if it doesn't already exist,
or overwritten if it does). The symbol> means
"put the output on the following file, rather than
on the terminal." Nothing is produced on the
terminal. As another example, you could com­
bine several files into, one by capturing the out­
put of cat in a file:

cat fi f2 f3 '>temp

The symbol> > operates very much like>
does, except I that it means "add to the end of."
That is, -'

cat ~ f2 f3 > >temp

means to concatenate fi, f2 and f3 to the end of
whatever is already iii 'temp, 'instead of overwrit­
ing the existing .contents., As .with > ~ if temp
doesn't exist, it will be created for you.

L.

In a'similar way, the symbol < means t6
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file < script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

I

mail adam eve mary joe < let

48 GETTING STARTED·

PJpes The Shell

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a .
way to connect the output of one program to the
input of another program, so the two. run as a
sequence of processes - a pipeline.

For example,

pr fg h

will print the files f, g, and h, beginning each on
.a new page. Suppose you want them run
together instead. You could say

cat f g h >temp
pr '<temp
rm temp

but this is more work than necessllry. Clearly
what we want is to take the output of cat and
connect it to .the 'input of pro So let ,us use a
pipe:

cat f g hI pr

, The vertical bar I means to take the output from
cat, which would normally have gone to the ter­
minal, and put it into pr to be neatly formatted.

There are· many other examples of. pipes;
For example,

Is I pr -3

prints a list of your files in three columns. The
program we counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged, on people,
one per line. Thus

who Iwc

tells how many people are logged on. And of
course

Is Iwc

counts your files.

Any program that reads fro·m the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input "from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr -3 abc

prints. files a, band c in order in three columns.
But in

~at abc I pr - 3

, prprints the information coming down the· pipe­
'line, still in three'tblumns.

We have already mentioned once or twice
the mysterious "shell," which is in fact sh(I).
The shell is the program that interprets what you
type as commands and arguments. It also looks
after translating *, etc., into lists of filenames,
and <, >, and I into changes of input and out­
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultaneously if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and' you
don't want to wait'around for the results before
starting something else, you can say

ed file < script &

The ampersand at the end of" a command line
says "start this command running, then take
further commands from the terminal immedi­
ately," that is, don't wait for it to complete.
Thus the script will begin, but you can do some­
thing else at the same time. Of course, to keep
the output from interfering with wh~t you're
doing on the terminal, it would be better to say

ed file < script > script.out &

which saves the output lines in. a file called
script.out.

When you initiate a command with &, the
system replies with a, number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-num'ber

If you forget .the process number, the command
ps will tell you about everything you have run­
ning. (If you are desperate, kill 0 will kill all
your processes.). And if you're curious about
other p~9ple, ps a will tell you abolit all, pro­
grams that are currently running.

You can say

(command-I; command-2; command-3) &

to start three commands in the background, or
Y0t.! can start ·a background pipeline with

command-l I c~mmand-2 & .

Just as you can tell the editor or some·s'imi-

UNIX FOR BEGINNERS-SECOND EDITION 49

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
"ead a file to get commands. (Why not? The
hell, after all, is just a program, albeit a clever
~.) For instance, suppose you want to set tabs

on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands·
(tabs, date, who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con­
ten.ts of startup on the terminal.

If this is to be a regular thing, you can elim­
inate the need to type sh: simply type, once only,
the command

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. The ..
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called . profile, and place in it the line
startup. When the shell first gains control when
you log in,. it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to tl}e shell in the sec·tion on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu­
ment preparation. There are two major format­
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro­
nounced "tee-roff") instead drives a photo­
typesetter, which produces very high quality out­
put on photographic paper. This paper was for­
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it "format­
ting commands" that indicate in detail how the
fo(matted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

Because nroff and troff are relatively hard to
learn to use effectively, several "packages" of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the "manuscript" package known as - ms.
Formatting requests typically consist of a period
and two upper-case letters, such as . TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

'.TL
title of document
.AU
author· name
.SH
section heading
.PP
paragraph ..•
.PP
another paragraph .••
.SH
another section heading
.PP
etc.

The lines that begin with a period are the for­
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and·
on what publication the document will appear in.
For example, -ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 112 line in troff) , and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu:­
ment.

To actually produce a document in standard
format using -ms, use the command

troff - ms files ...

for the typesetter, and

nroff - ms files ..•

for a terminal. The - ms argument tells troff
and nroff to use the manuscript package of for­
matting requests.

There are several similar p)lckages; check
with a local expert to determine which ones are
in common use on your machine.

50 GETTING STARTED

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu­
ment preparation. _ The list in the next· few para­
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and ne9n let you integrate mathematics
into the text of a document, in an easy-to-Iearn
language tha~ closely resembles the way you
would speak it aloud. For example, the eqn
input

sum from i=O to n x sub i -=- pi over 2

produces the output

The program tbl provides an analogous ser­
vice for preparing tabular material; it does all the

'computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for­
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author's initials
and the journal name right, and so on.

spell and typo detect possible spelling mis­
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does d very good job.
typo looks for words which are Hunusual", and
prints those. Spelling mistakes tend to be more

. unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for li'nes
that contain a particular text pattern (rather like
the editor's context search does, but on a bunch
of files). For example,

grep 'ingS' chap*

will find all lines that end with the letters lng in
the files chap*.(It is almost always a good prac­
tice to put single quotes around the pattern
you're searching for, in case it contains charac­
ters like * or S that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so 'you can compare two versions of

. something automatically (which certainly beats
proofreading by hand).

wc counts the words, lines and characters in
a set of files. tr translates characters into other
-characters; for example it will convert upper to
lower case and vice versa. This translates uppe-r
into lower: .

tr A-Z a-z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can appiy
them to arbitrarily long· inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen­
dently documented (Hke eqn and tbI), or are
sufficiently simple that the description in the
UNIX Programmer's Manual is adequate explana-

. tion. .

Hints for Preparing Documents

Most documents go 'through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so, that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi­
colons, rather than randomly. Since most people
change documents by rewriting phr~ses and
adding, deleting and rearranging sentences, these
pr.ecautions simplify any editing you have to do
later.' .

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis­
take it's better to have clobbered a small file
than a big one. Split into files at natural boun­
daries in the document, -for the same reasons
that you' start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack:
ages like -ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
prin'ter. '

UNIX FOR BEGINNERS-SECOND EDITION 51

As a rule of thumb, for all but the most'
trivial jobs, you should type a document in terms
of a set of requests like' .PP, and' then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text i!1 some systematic
way, it can always be cleaned up and re­
formatted by a judicious c,ombination of editing
commands and request definitions.

IV. PROGRAMMING'

There will be no attempt made to teach any
of the programming languages availabt'e but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 1/0 redirection, and the capabilities of
the shell often make' it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ••.
I tr ...
I tr .••
I sort '
luniq
Icomm

collect the Jiles
put each word on a new line
delete punctuation, etc.
into dictionary order
discard duplicates
print words in text

but not i!1 dictionary

More pieces have been added subsequently, but
this goes a long way for such a sma,ll effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, ~ch as a book,
you could laboriously type

ed
e chap1.l
lp
Sp
e chap1.2
lp
Sp
etc.

But you can do the job much more easily. qne
way is to type

Is chap· > temp

to get the list of filen~mes into a file. Then edit
this file to make the necessary serie,s of editing

commands (using the global commands of ed),
and write it int<? script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the .fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for iin chap·
do

ed Si < script
done

This sets the shell variable i to each file, name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked qy newcomers is
that the shell is itself a programming language,
with variables,' control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since

, ihere are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here~ exam­
ples and rules can be found in An Introduction to
the UNIX Shell"by S. R. Bourne.

,Programmil!g in C

If you are undertaking anything substantial,'
C is the only reasonable choice of programming
language: ev(trything in, the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once yo.u get started C is
introduced and fully described in The C Progr,am­
ming Language by B. W. Kernighan and D .. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do 110 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 110 library, which provides a
set of 110 functions that: exist in compatible
form on most machines that have C compilers.
In general, it's wisest to confine the system
interactions in a' program to the facilities pro-
vided by this library. '

C programs that don't depend too much on
special' features of UNIX (such as pipes) can. be
moved to other computers that have C com­
pilers. The list of such machines grows daily~ in
addition to the original PDP-II, it currently

52 GETTING STARTED

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris 17, VAX 111780, SEL 86, and
Zilog Z80. Calls to the standard 110 library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for­
potential portability problems, and detects errors
such as mismatched argument types and unini­
tialized variables.

For I~rger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C -programs, but is

-rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru­
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
-p option; .after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro­
gram, but they are not super accurate or repro­
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free­
form input that characterize' C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends' to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro­
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C' and related programs.
(The Ratfor processor and C tools can be us'ed
with Fortran 77 too.) ,

If your application requires you to translate a
language into a set of actions or another
language, you ate in effect building a compiler,
though probably a small one. In that case, you
should be using the yacc compiler-compiler,
which helps you develop a compiler quickly. The

- lex lexical analyzer generator does -the same job
for the simpler 1f.l:lJguages that can be expressed

as regular expressions. It can be used by itself,
or as a front' end to recognize inputs for a
yacc-based program. Both yacc and lex require
some sophistication to use, but 'the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol. 68, APL, Basic,
Lisp, Pascal, andSnobot Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked -on it, it may be in good shape. If not,
the odds are strong that ft will be more trouble
than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer's Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro­
cedures. You can't live without this, ~Jthough
you will probably only need to' read sectf~n 1.

Documents' for Use with the UNIX Time-sharing
System. Volume 2 of the Programmer's Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men­
tioned above.

D. M. Ritchie and K. L. Thompson, "The UNIX
Time-sharing System," CACM, July 1974. An
overview of the system, for people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Bell System Technical Journal (BSTJ) Spe­
cial Issue on UNIX, Julyl August, 1978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer's
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, "A Tutorial Introduction to
the UNIX' Text Editor" and" Advanced Editing
on UNIX," Bell Laboratories, 1978. Beginners
need the introduction~ the advanced material will
help you get the most out of the editor.

M. E. Lesk, "Typing Documents on UNIX," Bell
Laboratories, 1978. Describes the - ms macro
package, which isolates -the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. If this specific pack­
age isn't available on your system, something
similar probably is. The most likely alternative is
the PWBI UNIX macro package - mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, "A System
for Typesetting Mathematics," Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., "NROFF/TROFF User's
Manual," Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by - ms, eqn
and tbl. The reference manual is indispensjlble
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, U A TROFF Tutorial," Bell
Laboratories, 1976. An attempt to unravel the
intricacies of trofe.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, 1978. Con­
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, "UNIX Pro­
gramming," Bell Laboratories, 1978. Describes
how to interface with the system from C pro­
grams: I/O calls, signals, processes.

S. R. Bourne, "An Introduction to the UNIX
Shell," Bell Laboratories', 1978. An 'introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, "Yacc - Ye~ Another Compiler­
Compiler," Bell Laboratories CSTR 32, 1978.

M. ,E. Lesk, "Lex - A Lexical Analyzer Gen­
erator," Bell Laboratories CSTR 39, 1975.

S. C. Johnson, "Lint, a C Program Checker,"
Bell Laboratories CSTR 65, 1977.

S. I. feldman, "MAKE - A Program for Main­
taining Computer Programs," Bell Laboratories
CSTR 57, 1977.

1. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to ADB," Bell Laboratories ,CSTR
62, 1977. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, "A Portable
Fo'rtran 77 Compiler," Bell Laboratories, 1978.
A t~ll Fortran 77 for UNIX systems.

UNIX FOR BEGINNERS-SECOND EDITION 53

A Tutorial Introduction to the UNIX Text Editor

Brian W.; Kernighan

. Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNlxt operating system is done with the text­
editor ed This memorandum is a tutorial guide" to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users' day-to-day needs. This includes printing, appending, changing, deleting,
moving and inse~ting entire lines of text; readi":g and writing files; context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1978

tUNIX is a Trademark of Bell Laboratories.

54

Introduction

Ed is a Htext editor", that is, an interactive
program for creating and modifying Htext",
using directions provided by a user at a terminal.
The text is often a document like this one, or a
program or perhaps data for a program.

This introduction is meant to simplify learn­
ing ed. The recommended way to learn ed is to
read this document, simultaneously using ed to
follow the exa,.lples, then t.o read the description
in section 1 of the UNIX Programmer's Manual, all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do th~ exercises! They cover material not
completely discussed in the actual text. An'
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes 'the most' useful
and frequently. used parts). When you have
mastered the Tutorial, try Advanced Editing 011

UNIX. Also, there is not enougl~ space to explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX, and that you have
at least a vague understanding of what a file is.
For more on that, read UNIX ./or Beginners.

You must also know what character to type
as the end-of-Iine on your particular terminal.
This character is the RETURN key on most ter­
minals. Throughout, we will refer to this charac­
ter, whatever it is, as RETURN.

Getting Started .

We'll assume that you have logged in to your
system and it has just printed the prompt charac­
ter, usually either a $ or a %. The easiest way to
get ed is to type

ed (followed by a return)

. Y QU are now ready to go - eel is waiting for you
to tell it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to
create some text starting from scratch. Perhaps
you, ar~ typing the very first draft or' a paper~
clearly it will have to start somewhere~ and
undergo modifications later. This section will
show how to get some text in, just to get started.
Later we'll talk about how to change it. .

When ed is first started, it is rather like work­
ing with a blank piece of paper - there is no
text or information present. This must be sup­
plied by the person using ed; it is usually done by
typing in the text, or by reading it into ed from a
file. We will start by t)Tping in some text, and
return shortly to how to read files.

First a bit of terminology. In ed jargon, the
text being worked. on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then chang'e some of them, anq finally
file the whole thing away for another·day.

The user tells eel what to' do to his text by
. typing instructions called" "commands." Most
commands consist of a single letter, whiCh must
be typed in lower case. Each command is typed
on a separate line. (Som'etimes the co:nmand is
preceded by information about what line or lines
of text are to be affected - we will discuss these
sh·ortly.) Ed makes no response to most com­
mands - there is no prompting or typing of
messages like "ready". (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is appelld, written as the
letter

a

all . by itself. It means "append (or add) text
lines to the buffer, as I type them in." Appen~
ing is rather like writing fresh material on a pie~e
of paper. \

So to enter lines of ~ext into the buffer, just
type an a followed by a RETURN~ followed by

55

56 GETIING STARTED

the lines of text you want, like this:

a
N ow is the time
for all go~d men
to come to 'the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The "." is used
to tell ed tha~ you have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just"." on it. You may
then find you've added some garbage lines to
your text, whic_h you'll have to take out later,)

After the append command has been done,
the buffer will contain the three lines

N ow is the time
for all good men
to come to the aid of their party.

The "a" and "." aren't there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ­
ing.

Error Messages - "?"

If at any time you make an error in the com­
mands you type to ed, it will tell you by typing'

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.,

Writing text out as a file - the Write command
"w"

It's likely that you'll want to save your text'
for later use. To write out the contents or'the
buffer onto a file, use the write command

w

followed by the filename you want to write on.
This will copy the buffer's co'ntents onto 'the
specified file (destroying any previous informa­
tion on the 'file). To s~ve the text on a file
named junk, for example, type

w junk

Leave a space between wand the file name. ' Ed
will respond by printing the number of characters
it wrote out. In this case, edwould respond with

68

, (Remember that blanks and th'e return character
, at the end of each line are included in the char­

acter count.> ~riiing a file just makes a copy of '

the tex't - the buffer's contents are not dis­
turbed, so you can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the file itself., No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to timeJas it is being created is a good.
idea, since if the system crashes or if you make
some, horrible mistake, you will lose aU the text
in the buffer but any text that was written onto a
file is relatively safe,)

Leaving ed - the Quit command "q"

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for qUit. The system' will respond
with the prompt character ($ or %). At this
point your buffer vanishes, with all, its text,
which is why you want to write it out before
quitting.t

Exercise 1:

Enter edand create some text using

a
... text ...

Write it out using w. Then leave ed with the q
command, and print the file, to see that every­
thing worked. (T~ print a file, say

pr filename

or

cat filename,

in response to the prompt c,haracter. Try both,)

Reading text from a file - the Edit command
"e'" .

A common way to get text into the buffer is
to read it from a file in the,file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edit com~
mand e fetches the entire contents of a file into
the' buffar. So if you had saved the three lines
"Now is 'the time", etc., with a w command in
an earlier session, the edcommand

ejunk

would fetch the entire contents of the file junk
into the buffer, and respond

tActually, ed will prin t? if you try to quit without writ­
ing. At that point, write if you want; if not, another q

'will get you out regardless.

A TUTORIAL INTRODUCTION TO THE UNIX TEXT EDITOR 57

68

which is the number of characters in junk. If
anything was already in the bliller. it is deietedfirst.

If you use the e command to read a file in to
the buffer, then you need not use a file name
after ~ subsequent wcommand~ ed remembers
the last file name used in an e command, and w
will write on this file. Thus a good way to
operate is

cd
c file
[editing session]
w
q

This way, you can simply say w from time to
time, and be secure in the knowledge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembeting by typing the file command f.
In this exampl~, if you typed

f

ed would reply

junk

Reading text from a file - the Read command
"r"

Sometimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by the read command r. The
cqmmand

rjunk

will read the file junk into the buffer~ it adds it_
to the end of whatever is already in the buffer.
So if you do a read after an edit:

ejunk
r junk

the buffer will contain two copies of the -text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men _
t6 come to the aid of their party.

Like the wand e commands, r prints the number
of characters read in, after the reading operation
is complete.

Generally speaking, r is much less used -than
e.

Exercise 2:

Experiment with the e command - try read­
ing and printing various files. You may get an
error ?name, where name is the name of a file;
this means tha~ the file doesn't exist, typically
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

cd filename

is exactly equivalent to

cd
c filename

What does

f filename

do?

Printing the contents of the buffer ~ the Print
command "p"

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com­
mand

p

The way this is done is as follows. Specify the
lines whe~e you want printing to begin and where
you want it to end, separated by a comma, and
followed by the letter p. Thus to print the first
two lines of the buffer, for example, <that is,
lines 1 through 2) say - -

1,2p - (starting line-I, ending line-2 p)

Ed will respo nd with-

N ow is the time
for all good men

: !

Suppose you want to print all the lines in the
buffer. You could use 1,3p as_above if you knew
there were exactly 3 lines in the buffer. But in
general, you don't know how many there are: so
what do you use for the ending line number? Ed
provides a shorthand symbol for ulinenumber
of last line in buffer" - the dollar ~ign S. Use it

- this way:

I,$p

This will prin t ali the lines in the buffer (line I to
last line.) If you want to stop the printing- before
it is finished, push the DEL or Delete key~edwill
ty-pe

?

-and wait for the next command. ;

To print the last line of the buffer, you could
-use

58 GETTINGSTARTED

$,$p

but ed lets you abbreviate this to

$p

y 6~ can prin t any single 'line by typing the line,
number followed by a p. Thus

Ip

produces the response

Now is the time

which is the first line of the buffer.
, ~

In fact, ed lets you abbreviate even further:
you can print any single line by typing just the
line number - no need'to type the letter p. So
if you say

ed will print the last line ~f the buffer.

You can also use S in combinations like

$-I,Sp

which pri,nts the last two lines of the buffer.
This helps when you want to see how far you got
in typing.

I":

Exercisf' 1:

As before, create some text using the a com­
mand and experiment with the p command. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and ihat
attempts to print a buffer in reverse order by say­
ing

,3,lp

'don't work.'

The cunent line - "Dot" or "."

Suppose your buffer still contains the six
lines as above, that you have just typed

1,3p

and ed has printed the three lines, for you. Try
typingjust

p (no line numbers)

This will ptint

to come to the' aid of their party.

which is the third line of the buffer. In fact it ,is
the last (most_recent) 'line that you have done
anything with. (You just printed it!) You can
repeat this p command without line _numbers,

, and it wiH continue to print line 3._

The reason is that ed maintains a record of
the last line that' you did anything to (in this
case, line 3, which you just printed) so that it

can be used instead of an explicit line number.
This most recent line is referred to by the short­
hand symbol

(pronounced "dot"),

Dot is a line number in the same way that S is; it
means exactly "the current line',', or loosely,
"the line you'most recently did something to."
You can use it in several ,ways -one possibility
is to say

."Sp
This will prin t all the lines from '(including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com­
mand will set both, and S to 6.

Dot is most useful when used in combina­
tions like this one: '

.+1 (or equivalently, • + 1 p)

This means "print the next line" and is a handy
way to step slowly through a buffer. You can
also say

.-1 (or .-lp)

which means "print'the line be/ore the current
line." This enables you to go backwards if you
wish. Another useful one is something like

. -3 t • -lp

which prints the previous three lines.

Don't forget that all of these f'hange the
value of dot. You can find out what dot is at any
time by typing

,
Edwill respond by printing the value of dot.

Let's summarize so'me things about the p
command and dot. Essentially p can be preceded
by 0, I, or 2 line numbers. If there is no line
number given, it prints the "current line", the
line that dot refers to. If there is one line
number given (with or without the letter p), it
prints that line (and dot is set there)~ and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
prin ted.) If two line numbers are specified the
first can't be bigger than the seco nd (see Exer­
cise 2.)

, Typing a single 'return will cause printing of
the next line - it's' equivalent to .+lp. Try it.
Try typing a - ~ you will find that it's equivalent
to .-lp.-

A TUTORIAL INTRODUCTION TO THE UNIX TEXT EDITOR ,59

Deleting lines: the "d" command

'Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
delete command

.d

Except that d deletes lines instead of prmtmg
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

starting line, ending line d

Thus the command

4,$d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,$p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer., In
that case, dot is set to S.

Exercise 4:

Experiment with a, e, r, w, p and d until you
are sure that you know what they do, and until
you understand how dot, $, and line numbers'
are used.

If you are adventurous, try using line
numbers with a, rand w as well. You will find
'that a will append lines ajier the line number that
you specify (rather than after dot)~ that r reads a
file in after ·the line number you specify (not
necessarily at the ertd of the buffer)~ and that w
will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a fi'le at the beginning of a buffer by saying

Or filename

and you can enter lines at the, beginning of the
buffer by saying

Oa
... text . ..

Notice that .w is very different frQm

w

Modifying text: the Substitute command "s" ..
We are. now ready to try one 'of ihe most

important of all commands - the substitute
command

s.

This is the command that is used to change indi­
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistake.s and typing errors.

Suppose that by a typing error, line 1 says

N ow is th time

the e has been left off the. You can use s to
fix this up as follows: .

ls/thlthe/

This says: Hin line 1, substitute for the characters
Ih the\;haracters lite." To verify that it works (ed
will not prin t the result automatically) say

p

'and get

N ow is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com­
mand.

The general way to use the substitute com­
mand is

Slarling-line, ending-line s/ change Ihis/ to Ihis/

Whatever string of characters is between the first
pair of slashes is replaced by whatever.is between
the second pair, in all the lines between starling­
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The

. rules for line numbers are the same as those for
p, except that dot is set to the last line changed.
(B~t there is a trap for the unwary: if no substi­
tution took place, dot is nOI changed. This
causes an error? as a warning.)

Thus you can say

I, $s/ speling/ spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspeUers!)

If no line numbers are given, the s command
assu'mes we mean "make the substitution on line
dot", so it changes things only on the current
line. This lea.ds to the very common sequence

s/something/something else/po

which makes some correction on the current
line, and then prin ts it, to make sure it worked
out right. If it didn~t: you can try again. (Notice
that there is a p on the same line as the s com­
mand. With few exceptions, p can follo\Y any
command; no other multi-command lines are

,legal.)

60 GETIINGSTARTED

l1's.also legal to,say

, sl' . .. II

which means "change the· first string of charac­
ters to .. nothing", i.e., remove. them. This is
useful ,for deleting extra words in a line or
removing extra letters from words. For instance,
if you had .

N owxx is the time

you can say

s/xxllp

to g~t

N ow is the time

Notic,e that II (two adjace'nt slashes) means "no
characters", not a blank. There is a difference!
(See be'low for another meaning of II,)

Exercise 5:

Experiment with. the substitute; command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

slthe/on th'elp

, You will get

on the other side of the coin

A' substitute command changes only the first
occurrence of the first string. You can change all
oCcurrences by adding a g (for "global") to the s
command, like this: , .

, sl ... ~ ... /gp

~ ·Try other characters instead of slashes to delimit
the two sets of characters in the s command - ,
anything should 'YC?rk except blanks or tabs.

(If you get funny results using any .of the
characters

$ • \ &

read the.section on "Special Characters"'.)

Context searching - "I ... I"

With 'the, substitute command 'mastered, you
can move on to another highly iinportan't idea of
ed'- context.searching.

Suppose you have the original three line text
, in· the. buffer:

Now is the th'rie
for· all good men
to come to the aid of their party.

Suppose you' want to find the line that contains
their so you can change it to the. Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the word their is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and "rear­
ranging lines, and so on, you would no longer
really know what this line .number would be.
Context searching is simply a ~ethod of specify­
ing the desired line, regardless of what its
number is, by specifying some context on it.'

The way to say 'lsearch for a line that con­
tains this particular string of characters" is to
type

I string oj characters we want"to find!

For example, the edcommand

Itheirl

is a context search which is sufficient to find the
desired line - it will locate the, next occurrence
of the characters between slashes ("their"). It
also sets dot to thai line and prints the line for
verification: •

to come'to the aid of their party.

"Next occurrence" means that ed starts looking
for the string at line .+1, searches to the end of
the buffer, then continues at line 1 and searches.
to line dot. (That is, the search "wraps around"
from $ to 1.) It scans' ail the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message

?

Otherwise it prin ts the line it found.

"ou can' do both the search for the desired
line anda substitution all at once, like this:

I their I sl their I thel p

which will yield·

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution~ print the Iin,e.

The expression Itheirr is a context, search
expression. In their simplest form, all context'
search expressions are like this - a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or'as line numbers for some
other command, like s. They were used both
ways in the examples above.

A TUTORIAL INTRODUCTION ,TO THE UNIX TEXT EDITOR 61

Suppose the buffer contains the three familiar
lines

N ow is the time
for all good men
to come to the ai<:l of their party.

Then the ed line numbers

INow/+1
Igood/
/party/ -I

are all context search expressions, and they all
refer to the same line (Hne 2). To make
change in line 2, you could say

/Now/ + Is/good/bad/

or

Igood/s/good/bad/

or

Iparty / -Is/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/ ,/party/p

or

/Now/,/Now/+2p'

or by any number of similar combinations. The
first one of these might be better if you don't
know how many lines are involved. (Of course,
if there were only three lines ,in the buffer, you'd
use

,I,$p

but not if-there were se~eral hundred.)

The basic rule is: a context search expression
is the, same as a line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try" a :
body, of' text with several occurrences of the
same string of characters, and scan through it
using the same context search. ,

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching us'ing ?text? instead
of /text/. This scans lines in the, buffer in
reverse order rather than normal. This is some-,
times useful if you go too far while looking for
some string of characters - it's an easy way to
back up;

(If you get funny results with any of the
characters

$ • \ &

read the section on "Special Characters"')

Ed provides a shorthand for repeating a con­
text search for the same string. For example,
the ed line number

Istring/

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must' be repeated. This can be done by
typing merely

1/

This shorthand stands for "the most recently
used context search expression." It can also be
used as the first string' of the substitute com-,
mand, as in

I string 1/ sl / strin~2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of
typing. Similarly

1?

means "scan backwards for the same expres­
sion. "

Change and Insert - He" and Hi"

This section discusses the change command

c

which is used to change or repll:lce a group of
one or" more lines, and the insert command

which is used for insertin,s a group of one or
more lines.

"Change", wri~ten as

c

is used to replace a number of lines with
different lines, which are typed in at the termi-,
nal. For example, to cJ1ange lines. +1 through $
to something else, type

.+I,$c
" . . . type the lines oj' te ~t ~Oll wa III here . ..

The lines you type between the c command and
the • will take the place of the original lines
between start line and end line. ,This is most
useful in replacing a line or several lines which
have errors in them.

If' only one line is specified in the. ,c com­
mand, then just th~lt line is replaced. (~You can
type in ,as many. replacement lines ~s 'you like,)
Notice the use of. to' end the inpu't -' this.
works just like the • in the append command

62, GETTINGSTARTED

and must appear by itself on a new line. I.f no
line number is given,. line ~ot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

Istring/i
· . . type the lines to be inserted here

will insert the given text befo;e the next line that
contains "string". The text between i and. is
inserted before the specified line. If no line
number is specified dot is used. Dot is set to'the
last line inserted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
· . '. text . ..

is ,almost the same as

(start, end c
· .. text . ..

,These are not precisely the same if line $ gets.
. deleted. Check this out. What is dot?'

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
· .. text . ..

appends aJier the given line, while

line-number i
· .. text . ..

inserts bef~re it. Observe that if no line number
is given, i inserts before line dot, ,while a
appends after line dot.

Moving text around: the "m" command

The move command m is used for cutting :,
and pasting - it lets you move a group of lines
from one place to another in the, buffer. Sup-'
pose you· want to put the first three lines of the
buffer at the end instead. Y o.u could do it by
saying:

1,3w temp
Sr temp

" .·1,3d
• ".., , : ")1'

<00 you see,~hy?) but you can ,do it 'a lot easier
wit~ the ni command: .

1,3m$

The general case is

start line, end line m after this line

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

ISecond/,/ end of second/m/Firstl-l

Notice the -1: the moved text goes aJier the line
mentioned. Dot gets set to the last line moved.

T~e global commands "g" and "v"

The global command g is used to execute one
or more ed commands on all those lines in the
buffer that match' some specified string. For
example

g/peling/p

prints all lines that contain peling. More use~
fully,

'g/peling/sllpelIing/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

I,$s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There· may be several commands (including
a, c, i, r, w, but not g); in that case, every line
except the last must end with a bac~slash \:

g/xxx/. -ls/abc/def/B
. + 2s/ghiIjkllB
.-2,.p

makes'changes in the lines before and after each
line that contains xxx, then' prints all three lines.

The. v conim'!hd is the same as g, except that
the co'mmands are executed on every line that
does not match the string following v:

vlld

deletes every line that does not contain a blank:

A TUTORIAL INTRODUCTION TO THE UNIX TEXT EDITOR 63

Special Characters

You may ha~e noticed that things jus~ don't
work right when you used some characters like "
., $, and others in contex t searches and the sub­
stitute command. The reason is rather complex,
although the cure is simple. Basically, ed treats
these characters as special, with spedal mean­
ings. For instance, in a context search or the first
string of the substitute command only, . means
"any character," not a period, so

Ix.y/

means "a line with an x, any character, and a y,"
not just "a line with an 'x, a period, and a y." A
complete list of the special characters that car.
cause trouble is the followi,ng: ..

$ • \

Warning: The backslash character \ is special to
ed. For safety's sake, avoid it where possible. If
you have to us~ one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

5/\\\. \-/backslash dot star/

will change \ .• into "backs.lash dot star".

Here is a hurried synopsis of lhe other special
characters. First, the circumnex ,. signifies the
beginning of a line. Thus

I"string/

finds string only'if it is at the beginning of a
line: it will find

. string.

but .not

,the, ~tring ...

The dollar-sign $ is just the opposite' of the'
circumflex~ it means' the end of a line:

Istring$/

will only find an occurrence of string that is at
the end of some line. This implies, of course,
that

/"string$/

will find only a line that contains just string, and

1".$1

finds a line containing exactly one character.

The character " as we mentioned above,
matches anything;

/x.yl

matches any of

x+y
x-y
xy
x.y

This is useful in conjunction with .,. which is a
repetition character~ a. is a shorthand' for "any
number of a's," so .• matches any number of
any things. This is used like this:

s/.-/stuffl

which changes an entire line', or

s/.-,1/

which deletes all characters in the line up to ahd
including the last comma. (Since .• finds the
longest possible rna tch, this goes up to the last
comma.)

(is used with I to form "character classes";
for example,

1[012345678911

matches any single digit - anyone of the char­
acters inside the braces will cause a rna tch. This
can be abbreviated to (0-91.

Finally, the & is another shorthand character
- it is used only on the right-hand part of a sub­
stitute command where it means "whatever was
matched on the left-hand side". It is used to
save typing. S'uppose the.current line contained

N ow is the, time

and you wanted to put parentheses around it..
You c'ould just retype the line~ but this is tedi­
ous. Or you could say

s/"/(/
s/$/)I

using your knowledge of ,. and $. But the easiest
way uses.the &:

s/ .• /(8IJI

This' says "match the whole line, and replace it
by itself surrounded by parentheses.:: The & can
be used several times in a line; consider using

s/.·I&? &!!/

to produce

N ow is the time? Now is the time!!

You don'thav~ to match the ,whole line, of
course::if the buffer contains'

the-end of the world

you could type

Iworld/sll& i~ at handl . ,.

to produce

64 GETTINGSTARTED

the end of the world is at hand

Observe this expression carefully, for it illus­
trates how to take advantage of ed to save typing.
The string Iworldl found the desired line; the
shorthand II found the same word in the line;.
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a \:

sl ampersand/\&1

will convert the word "ampersand" into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general -form of ed commands is the
command mime, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, wand q).

a: Append, that is, add lines to the buffer (at Hne
dot, unless a different line is specified). Append­
ing continues until. is typed on a new line. Dot
is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines sp(:cified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to $.

e: Edit n~w file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

g: The command

g/---/commands

will execute the commands on those ,lines that
contain ---, which can be any context search
expression.

i: Insert 'lines before specified line (or dot) until
a . is typed on a new line. Dot is set to-last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none .specified, print
line dot. A single line number is equivalent to
line-number p. A single return prin ts • + I, the

next line. '

q: Quit ed Wipes out all text in buffer if you
give it twice in a 'row without fi~st giving a w'
command.

r: Read a file into buffer (at 'end unless specified
elsewhere,) Dot set to last line read.

s: The command

s/stringl/string21

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to 'change all of them, type
a g after the final slash. '

v: The command

v/---/commands

executes commands on those. lines that do not
contain ---a
w: Write out buffer onto a file. Dot is not
changed.

• =: Prin t value of dot. (= 'by itself prin ts the
value of $.) ,

!: The line

!command-line

causes co~mand-line to be exe~uted as a UNIX
command.

1-----/: Context search. Search fot next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at • + I, wraps around from $ to 1,
and continues to dot, if necessary.

? -----?: Context' search in reverse direction.
Start search at .-1, scan to I, wrap around to $.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXt facilities for preparing and editing text. It provides
explanations. and examples of

• special characters, line addressing and global commands in the editor ed~

o commands for "cut and paste" operations on files and parts of files,
including the mY, cp, cat and rm commands, and the r, W, m and t com­
mands of the editor;

Q editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
backgrourid should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

65

1. INTRODUCTION

Although UNlxt provides remarkably
effective tools for text editing, that by its~lf is no
guarantee'that everyone will automatically make
the most effective use of them. In particular,
people who are not ccmputer specialists - typ­
ists, secretaries, casual users - often use the

. system less effectively than th~y might.

This document is intended,as a sequel to A
Turorial Introduction to the UNIX Text Editor [I],
providing explanations and examples of how to .
edit with less effort. (You should also be fami­
liar with the material in UNIX For Beginners [2],)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual [3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving ar.d copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use' something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try, but until you actu­
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort. -

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to anyone person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

tUNIX is a Trademark of Bell Laboratories.

66

they will remain theoretical knowledge, not
. something you have confidence in.

The List command 'I'

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

I,$p

to print all the lines you 're editin~, or

s/abc/def/p

to change 'abc' to 'def' on the current line. Less
familiar is the list command I (the letter '1'),
which gives slightly more information than p. In
particular, I makes visible characters that are
normally invisible, such as tabs and backspaces.
If you' list a line that contains some of these, j

will print each tab as -7 and each backspace as
~. This makes it. much easier to correct the sort
of typing mistake that inserts extra spaces adja­
cent to tabs,' or inserts a backspace followed by a
space.

The I command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines~ each printed line
except the last is terminated by a backslash \, so
you can fell it was folded. This is useful for
printing long. lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \ 16. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell. Each
such combination. is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that 'your
finger slipped while you were typing~ you almost
never want them:

The Substitute Command's'

-Most of the n?Xt few sections will be taken
up with a discussion of the substitute command
s. Since this is the co~mand for changing the

contents of individm;ll lines, it probablY,has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com­
mand. With

s/this/thatl

and

s/this/that/g

the first one replaces the first 'this' on the line
with 'that'. If there is more than one 'this' on
the line, the second form with the trailing g
changes all of them. '

, Eitiler form of the s command can be fol­
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:'

S/this/that/p
s/this/that/l
s/this/thatl gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre­
ceded by one or two 'line numbers' to speCify,
that the substitution is. to take place on a group
of lines. Thus

1, $sl mispelll misspelll

changes the . first occurrence of 'mispell' to
'misspell' on every line of the file. But

1 ,$sl mispell/misspelli g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par­
ticular case).

You should also notice that if you add a p,
or I to the end of any of these substitute com­
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about

, how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
you 'undo' th'e last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

ADVANCED EDITING ON UNIX 67

The Metacharacter '.'

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu­
lar line. In the 'next several sections, we will talk
about these special characters, which are often
called 'metacharacters'.

The first one is the period '.'. On the left
side of a substitut~ command, or in a search with
'1 .. .1', '.' stands for al1Y single character. Thus
the search

Ix.yl

finds any line where 'x' and 'y' occur separated
by a single chara~ier, as in

x+y
x-y
Xoy
x.y

and so on. (We will use 0 to stand for a space
whenever we need to make it visible.)

Since '.' matches a single character, that
gives you a way to deal with funny characters
printed by I. Suppose you have a line, that, when
printed with the I command, appears as

.... th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

!,he most obvious solution is to try

s/.\07 II

but this will fail. (Try it.) The brute force solu­
tion, whi~h most people iwould now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the lin~ in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar­
acter '.' comes in handy. Since '\01' really
represents a single character, if we say

s/th .islthisl

the job is done. The'.' matches the mysterious
char~cter between the '~' and the 'i', whatever it
is.

Bear in mind that since '.' matches any
single character, the command

sl .1,/

converts the first character on a line into a',', .
which very often is not what you intended.

As is true of many characters in ed, the '.'
has several 'meanings, depending on its context.
This line shows all three: ' ,

68 GETTING STARTED

.sl .1 .1

The first'.' is a line number, the number of the
line we are editing, which is called 'line dot'.
(We will discuss line dot more in Section 3.) The
second '.' is a metacharacter that matches any"
single character on that line. The third '.' is the
only one that really is an honest literal period.
On the right side of a substitution, '.' is not spe­
cial. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'

Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash
turns off any special meaning that the next char­
acter might have; in particular, '\.' converts the
'.' from a 'match anything' into a period, so you
can use it to replace the period in

Now is the time.

like this:

s/\.1 ?I

The pair of characters '\.' is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac­
ter. Suppose you are looking for a line that con­
tains

.PP

The search

I.PPI

isn't adequate, for it will find a line Iik"e

THE APPLICATION OF .. ,

because the'.' matches the letter' A'. But if you
say

I\.PPI

you will find only lines that contain' .PP'.

The backslash can also be used to turn off
special meanings for characters other than '.'.
For example, consider finding a line that con-

tains a backslash. The search

1\1

won't work, because the '\' isn't a literal '\', but
instead means that the second 'I' no longer
delimits the search. But by preceding a backslash
with another one, you can· search for a literal
backslash. Thus

1\\1

does work.· Similarly, you can search for -a for;.
ward slash'/' with

1\11

The backs lash turns off the meaning of the
immediately following 'I' so that it doesn't ter­
minate the 1 .. .1 construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised.

s/\\ \.11
sIx •• /xl
s/ •• y/yl

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

lIexec IIsys.fort.go II etc ...

you could use a colon as the delimiter - to
delete all the slashes, type

s:/::g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you're talking to
ed or any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign '$'

The next metacharacter, the '$', stands for
'the end of the line'. As its most obvious use,
suppose you have the line

Now is the

and- you wish to add the word 'time' to the end.
Use the $ like this:

s/$/otime/

. to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period
without altering the first:

Now is the time, for all good men,

The command needed is

s/,$/./

The $ sign here provides context to make specific
which comma we mean. Without' it, of course,
the s command would operate on the first
comma to produce

into

I
Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

as we did earlier, we can use

. s/ .$/?!

Like '.', the '$' has mUltiple meanings
depending on context. In the line

. '$s/$/$/

the first '$' refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex ,A,

The circumflex (or hat or caret) ,A, stands
for the beginning of the line. For example, sup­
pose you are looking for a line that begins with
'the'. If you simply say

/the/

you will in all likelihood find several lines that
contain 'the' in the middle before .arriving at the
one you want. But' with

rthel

you nar~ow the context, and thus arrive at the
desired one more easily.

ADVANCED EDITING ON UNIX 69

The other use of ,A, is of course to enable
you to insert something at the beginning of a
line:

sr/o/

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains OI1~V the characters

.PP

you can use the command

r\.pp$/

The Star '.'

Suppose you have a line that looks like
this:

text x y text

where text stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and ,·there are too
many spaces to count. What now?

This is where the metacharacter '.' comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

~/x 0 .y/x oy/

The construction '0.' means 'as many spaces as'
possible'. Thus 'x 0 .y' means 'an x, as many
spaces as possible, then a y.'.

The star can be used with any character,
not just space. If the original example was
instead

text x--------y Fext

then all '-' signs can be replaced by a single
space with the command

sIx - ·y/xoy/

Finally, suppose that the line was

text x •••••••••••••••••• y text

Can you see what trap lies in wait for the
unwary? If you blindly type

sIx •• y/xoy/

what will happen? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then everything works, but it's blind
I~ck, not good management. Remember that'.'
matches allY single character? Then' •• ' matches
as many single characters as possible, and unless

70 GETTING STARTED

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text x text x 0 0 0 0 0 0 U 0 0 0 0 0 0 0 oy lext y lexl

then saying

s/xo·y/xoyl

will take everything from the'jitst 'x' to the last
'y', which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of '.' with '\.': .

s/x\o·y/xoyl

Now everything works, for '\0*' means 'as 'many
periods as possible'.

There are times when the pattern '0.' is
exactly what you want. For example, to ch~nge

Now is the time for all good men

into

Now is the time 0

use' 0.' to eat up everything after the 'for':

sl a for 0·101

There are a couple of additional pitfalls
associated with '.' that you should be aware of ..
Most notable is the fact that 'as many as possi­
ble' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris­
ing. For example, if our line contained

lexl xy lext x

and we said

sIx 8 .y/x oyl

y lexl

the firsl 'xy' matches this pattern, for it consists
of an 'x', zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy', and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

IXa 0 ·y/·

which says 'an x, a space, then as many more
spaces as possible, then a y', in other words, one
or more spaces.

The other startling be'havior of '.', is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x·/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost .certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning 'of the line (so that gets converted
into a 'y'), nor between the 'a' and the 'b' (so
that gets converted into a 'y'), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

'xx.' is one ~r more x's.

The Brackets 'II'
Suppose that you want to delete any

numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1 ,$srI4 I
1,$sr2·11
1,$sr3.11

and so on, but this is clearly going to take for­
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets [and].

The construction

[0123456789]

matches any single digit - the whole thing is
called a 'character class'. With a character class,
the job is easf, The pattern '[0123456789].'
matches zero or more digits (an entire number),
so

1 ,$S/A [0123456789].1 I

deletes all digits from the beginning of all lines.

Any characters can appear within a charac­
ter class, and just to confuse the issue there are
essentially no special characters inside the brack­
ets~ even the backslash doesn't have a special
meaning. To search for special characters, for
example, yOU can say

![o\$A[]1

. Within [. ..], the '[' is not special. To get a ']'
into a character class, make it th~ first character.

It's a nuisance to have to spell out the
digits, so you' can abbreviate them as [O-9J~
similarly, [a-z] stands for the lower case letters,

. and [A - Z] for upper case.

As a final frill on character classes, you can

specify a class that means 'none of the foliowing
charactr.rs'. This is done by beginning th~ class
with 'a '''': '

("'0-9]

stands for 'any character except a digit'. Thus
you might find the first line that doesn't begin
with a tab or space by a search like

r["'(space) (tab)]1

Within a character class, the circumflex has
a special meaning only if it occurs at the begin­

'ning. Just to convince yourself, verify that

finds a line that doesn't begin with a circumflex.

The Ampersand '&'

The ampersand '&' is used primarily to
save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the bestl

but it seems silly to have to repeat the 'the'.
The '&' is used to eliminate the repetition. On
the right side ,of a substitute, the ampersand
means 'whatever was just matched', so you can
say

s/thel & bestl

and the '&' will stand for 'the'. Of course this
isn't much of a saving if the thing matched is
just 'the', but if it is something truly long or
awful, or if it is something like '.*' which
matches a lot of text, you can save some tedious
typing. There is also much les3 chance of mak­
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/.*, (&)1

The ampersand can occur more than once
on the right side:

s/thel &' best and & worstl

makes

Now is the best and the worst time

and

.s/.*I&? &!!I

converts the original line into

ADVANCED, EDITING ON UNIX 71

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backs lash is used to turn off the special meaning:

s/ampersand/\&1

converts the word into the symbol. Notice that
'&' is not special on the left side of a substitute,
only on the right side'.

Substituting NewIines

ed provides a facility for splitting a single
line into two or more shorter lines by 'substitut­
ing in a newline". As the simplest example, sup­
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text xy text

you can break it between the 'x' and the 'y' like
this:

s/xy/x\
yl

This is actually a single command, although it is
typed on two lines. Bearing in mind that '\'
turns off special meanings, it seems relatively
intuitive that a '\ 'at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
'very' in a long line by splitting 'very' onto a
separa'te line, and preceding it by the rolf or nrolf
formatting command '.ul'.

text a very big' tex,t

The command

s/overyo/\
.ul\
very\
I

converts the line into four shorter lines,' preced­
ing the word 'very' by the line '.ul', and elim­
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined togethp-t, but this
is done with the j command instead of s. Given
the lines

Now is
othe time

and supposing that dot is set to the first of them~

72 GETTING STARTED

then the command

j

joins them together. No blanks are added, which
is why we carefullY-showed a blank at the begin­
ning of the second line.

All by itself, a j command joins line dot to
line dot + I, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

I,$jp

joins "all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ (... \)

(This section should be skipped on first
reading.) Recall that '&' is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched~
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the naf!1e, as in

A. B. Smith
C. Jones

It is possible to do .this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to 'tag' the pieces of the
pattern {in this case, the last name, and the ini­
tials}, and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \ (and \j, whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol '\ I'
refe-rs to whatever matched' the first \ (."\) pair,
'\2' to the second \C .. \), and so on.

The command

1 ,$sr\ ([~,] *\),0 *\ (.*\)/\2 D \ 11

although hard to read, does the job. The first
\ (."\) matches t,he last name, which is any string
up to the comma~ this is referred to. on the right
side with '\ 1 '. The second \ (. .. \) is whatever
follows the comma and any spaces, and is
referred to as '\2'.

Of course, with any editing sequence this
complicated, it's foolhardy to simply run it and

, .
hope. The global commands g and v discussed
in section 4 provide a way for you to print

. exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

I,$s/x/yl

to specify a change on all lines. And most users
are long since familiar with using a single new-

o line (or return) to print the next line, and with

Ithingl

to find a line ffiat contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurretlce of
'thing'. This is especially handy when you real­
ize that the thing you want to operate on is back
up the page from where you are currently edit­
ing.

The slash and question mark 'are the only­
characters you can use to delimit a context
search, though you can use essentially any char­
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like '.', '$', 'I .. J' and '?.?' with '+'
and '-'. Thus

$-1

is a command to IJ. lIlt the next to last line of the
current file (that is, one line before line '$').
For example, to recall how far you got in a previ-
ous editing session, .

$~5,$p

prints the last six lines. (Be sure you understand
why it's six, not five')' If there aren't six, of
course, you'll get an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the '+' can be
omitted:

.-3,.3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use '-' and '+' as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does "-3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than '. -1 " construc­
tions like

- , .sl badl goodl

are useful. This changes 'bad' to 'good' on the
previous line and on the current line.

'+' and '-' can be used in combination
with searches using 'I .. J' and '? ... ?', and with
'$'. The search

/thing/.- -

finds the line containing 'thing', and positions.
you two lines before it.'

Repeated Searches

Suppose you ask for the search

Ihorrible thingl

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it "is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

/I

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be
repeated as many times as necyssary. You" can
also go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use '/ I' as the left side of a substitute
command, to mean 'the most recent pattern'.

/horrible thing/
.... ed prill/s line with 'horrible thing' ...

s//good/p

To. go backwards and change a line, say

??s/lgood/

Of course; you can still use the '&' on the right
hand side of a . substitute to stand for whatever

ADVANCED EDITING ON UNIX 73

got matched:

/lsll&o&/p·

finds the next occun'ence of w~ltever you
searched for last, replaces it by two copies of
itself, then prints tne line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be.
affected by a command if you don't specify the
lines it is to act 011, and on what line you will be
positioned (Le., the value of dot) when a com­
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con­
tains 'thing'. Then no address is required with
commands like" s to make a substitution on that
.line, or p to print it, or I to list it, or d to delete
it, or a to append text after it, or c to change it,
or i to insert tf'xt before it.

What, happens if there was no 'thing'?
Then you are left right where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thing' when you issued the com­
mand. The same rules hold for searches that use
'? ... ?'; the only difference is the direction in
which you search. "

The delete command d leaves dot pointing.
at the line that followed the iast deleted line.
When line '$' gets deleted, however, dot points
at the new line '$':

The line-changing commands a, c and i by
default a1l affect the current line - if you give
no line number with them, a appends text after
the current line, c changes the current line, and i
inserts text before the current line.

a, C, and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit­
ing on the fly. For example, you can say

a
... text ...
... botch ...

s/ botch/ correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the sub-

74 GETTING STARTED

stitute command or for the second append com­
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

. You should experiment to determine what
happens if you add no lines with a, c or i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or· to read a
file in at the beginning of the text. (You can
also say Oa or Ii to start adding text at the begin­
ning.)

The w command writes out the entire file .
. If you precede the command by one line
number, that line is. written, while if you precede
it by two line numbers, that range of lines is
written. The w command does 1101 change dot:
the current line remains the same, regardless of

. what lines are written. This IS true even if you
say something like

r\ .ABI ,r\ .AE/w abstract

which 'involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just "in case the system crashes, or
in case you do something foolish, like clobbering
what you~re editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left sitting on the last line that got

.changed. If there were no changes, .then dot is
unchanged.

To illustrate, suppose tQat there are three
lines in the buffer, and you are sitting on the
middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line, which is tlie last one
changed. But if the three lines had been

xl
y2
y3

and the same command had been issued while

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon' ;'

Searches with '1 .. ,/' and '1 ... ?' start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this: .

ab

bc

Starting at line I, one would expect ,that the
command

la/,/b/p

prints all the lines from the 'ab' to the 'bc'
inclusive. Actually this is not what happens.
BOlh searches (for 'a' and for 'b'-) start from the
same point, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse, if there had been a line with a 'b' in it
before the 'ab' line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order. .

This is because the comma separator for
line numbers doesn't set dot as' each address is
processed; each search starts from the same
place. In ed, the semicolon ';' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon 'moves' dot. Thus in our
example above, the command

la/;/b/p

prints the range of lines from 'ab' to 'bc',
because C after the 'a' is found, dot is set to that
line, and then 'b' is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppos~ you want to find
the second occurrence of 'thing'. You could say

Ithingl
II

but this prints the first occurrence as well as the

second, and is a n~isance when you know very
well that it is only the second one you're.
interested in. The solution is to say' .

Ithingl/ I

This says to find the first occurrence of 'thing',
set dot to that line, then find the second and
,print only that.

Closely related is searching for the second
previous occurrence of something, as in

?soli1ething?~? ?

Printing the third or fourth or... in either direc­
tion is left as an exercise.

Finally, bear in mind that if you want to
find ,the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

l~/thingl

because this fails if 'thing' occurs on line 1. But
ii is possible to ~~y

O~/thingl

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt' or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read­
ing or writing a file or making substitutions or
deleting lines, the~e will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot mayor may not be changed.

Printing is mt>re clear cut. Dot is not
changed until the printing IS done. Thus if you
print until you see an interesting line, then hit
delete, you are 110t sitting on that line or even
near it. Dot is lefi where it was when the p com­
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used t6
perform one or more editing commands on all
lines tha"t either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command,

g/UNIX/p

prints all lines that contain the word 'UNIX'.
The pattern that goes between the slashes can be

ADVANCED EDITING ON UNIX 75

anything that could be used in a line search or in
a substitute command~ exactly the same rules
and limitations apply. "

As another example, then,

gr\./p

prints all the formatting commands in a file
(lines that begin with '. ').

The v command is identical to g, except
that it operates on those line that do not contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter 'v'.)
So

vr\./p

prints all the lines that don't begin with'.' - the
actual text lines.

The command that follows g. or v can be
anything:

gr\./d

deletes all lines that begin with '.', and

gr$/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for ~his can be used to make a change and print
each affected line for verification. Fot example,
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

g/Unix/s/ /UNIX/gp

N0tice that we 'used '/ /' in the substitute com­
mand to mean 'th~ previous pattern', in this
case, 'Unix'. The p command is done on every
line th~t matches the pattern, not just those on
which a substitution took place.

The global cOf.lmand operates by making
two passes over the file. On the first pass, all

'lines that match the pattern are marked. On the
second pass, each marked line in turn is exam­
ined, dot is set to that line, and the commanq
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely. .

gr\.PPI +
prints the line that follows each '.PP' command
(the signal for a new paragraph in some format­
ting package~). Remember that,' +' means 'one
Ii,ne past dot'. And

g/topic/? A\ .SH? 1

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH'
(a section heading) and prints the line that fol­
lows that, thus 'Showing the section headings

76 GElTlNG STARTED

tmder which 'topic' is mentioned. Finally,

gr\.EQI +,r\.EN/-p

prints all the lines that lie between lines begin-
. ning with '.EQ' and '.EN' formatting commands ..

The g and v commands can also be pre­
~ ceded by line numbers, in which case the lines
, searched are only those in the range specified.

Multi-line Global Commands

. It is possible to do more than one com­
mand under the control of a g{obal command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is tochange 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thing/s/x/y/\
s/a/bl

js sufficient The '\' signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with '\'. ',(As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

You' should watch out for this problem:
the command

g/x/slly/\
s/a/bl

does not work as you expect. The remembered
pattern is the last pattern that was a"ctually exe­
cuted, so sometimes it will be 'x' (as expected),
and sometimes it will be 'a' (not expected). You·
must spell it Ollt, like this:

g/x/six/y/\
s/a/bl

It is also possible to execute 'a, c and i
commands under a, global command; as with
other multi-line constructions, ail that is needed
i~ to ~dd a '\' at the end of each line except the
last. Thus to add a '.nf' and '.sp' command
before each '.EQ' line, type

gr\.EQ/i\
.nf\ .
.sp

There is no need for a final line containing a '.'
to terminate the i command, unless there are
further commands being done under the· global.
On the other hand, it does no harm to put it ir
either.

5. CUT AND PASTE WITH UNIX COM­
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be, called 'cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another 'in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, ,if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX

commands for moving entire files around, then
discuss ed commands for operating on. pieces of
files. .

Changing the Name of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
u,~ne?

The UNIX ,ltJrogram that renamef fil'es is
called mv (for 'move'); it 'moves' the file from
one name to another, like this:

mv memo paper.

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if tryere is already a file around with th~
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

my x·x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
comman"d.. (cp stands for 'copy'; the system is
big on short command names, which are appreci­
ated by heavy users', but sometimes a strain for
novices.) Suppose you 'have a file called 'good'
and you want to saye a copy before you make

I

some dramatic editing changes. Choose a name
- 'savegood' might be acceptable - then type

cp good sa vegood

This 'cop!es 'good' onto 'savegood', and you now

have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets overwritten.) .

Now if you decide at some time that you
want to get back to the original state of 'good',
you can say

mv savegood good

(if you're not interested in 'savegood' any
more), or

cp· savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the 'target' file if it already exists, so you had
better be sure that's what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you· can remove it with the rm com­
mand:

rm savegood

throws away (irrevocably) the file called
'savegood' .

Putting Two or, More Files Together

The next step is the familiar one of colle'ct­
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is short for 'concatenate',
which is exactly what we want to do. .

Suppose the job is to combine the files
. 'filel' and ,'file2' into a single file called 'bigfile'.
If you say

cat file

the contents of 'file' will get printed on your ter­
minal. If you say

cat file 1 file2

the contents of 'file l' and then the contents of
'file2' will both be printed on your terminal, in
that 'order. So cat combines the files, all right,
but it's not 'much help to print them on the ter­
minal - we want them in 'l?.igfile'.

. Fortunately, there is away. You can tell
the system that instead of printing on your ter­
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file'

ADVANCED EDITING ON UNIX n

where you want the output to go. Then you can
say

cat file 1 file2 > bigfile

and the job is done. (As with cp and my, you're
putting 'iomething into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one· of the most' useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with allY program that
prints· on your terminal. We'll see some more
uses for it in a moment.

N'aturally, you can combine several files,
not just two:

cat file 1 file2 file3 ... > bigfile

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good >saveg~09

Answer: for most purposes, no. You might rea­
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is .that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we'll stick to ~im­
pte usages.

Adding Something to the End of a File

'Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and! or cat to add the file 'good l' to the end of
the file 'good'?

You could try

cat good good 1 >temp
mv temp good

which is probably most direct. You should al!)o
undt:rstand why

cat good good 1 > good

doesn't work (Don't practice with a good
'good'!)

The easy way is to use a variant of >,
. called >. >. In fact, > > is identical to > except
that instead of clobbering the old file, it. simply
tacks stuff on at the end. Thus you could say

cat good 1 > > good

and 'good l' is added to the end of 'good'. (And

78 GETTING STARTED

if. 'good' didn't exist, this makes a copy of
'good l' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of' files - individual lines or groups of lines.
This . is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you, can't go very far without knowing
,r and w .. Equally useful, but less well known, is
the 'edit' command e. Within ed, the command

e newfile

says 'I want to ~dit a new file called ne»!file.
without leaving the editor.' The e command dis­
cards whatever you're currently working on and

.starts over on ne»!file. It's exactly the same as if
you had quit with the q command, then re­
entered ed with a new file name, except that if

, you have a pattern remembered, then a com­
mand like / / will still work.

If you ente~ ed with the command

ed fjle

ed remembers the name of the file, af!d any sub­
sequent e" r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filel
... (editing) ...

w (writes back in fileI)
e file2 (edit new file, witho~t leaving editor)
... (editing on file2)... .

w (writes back on file2)

, (and so on) does a series of edits on various files
without ever leaving ed and without· typing 'the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use e as a
synonym for ed.) ,

You can find out the remembered file
name at any time with the f command~ just type
f without a file name. You can also change the
name of the remembered file name with f~ a use­
ful sequence is

ed precious,
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber, the original.

Inserting On~ .File into Another

Suppose you have a file called 'm~mo'
and you want the file called 'table' to be inserted
just after the reference to Table 1. That is in
'memo' somewhere is a line that says '

Table 1 shows that '"

and the data contained in 'table' has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit 'memo', find 'Table
1', and add the file 'table' right there:

,ed memo
, ITable 1/

Table I shows that ... [response from ed]
.r table

The critical line is the last one. As we said ear­
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as Sr.

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam-.
pie, maybe you want to. split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

.TS
... [tots ,of stuff]
.TE

which is the way a table is set up for the tbl pro­
gram. To isolate the table in a separate file
called 'table', first find the start of the table (the
'.TS' line), then write out the interesting part:

r\.TSI
, • TS fed prints tne line it fOllnd]
.,r\ .TE/w table' '

and the job is done. If you are, confident, you
can do it all at on,ce with

r\ .TS/~r\ .TE/w table

The point is that the w command can write
out l gr<}!JP of lines, instead of the whole file. In
fact, you can write out a single line if you like~

just give one line number instead of two. For
example, if you have just typed a horribly com­
plicated line and you know that it (or something,
like it) is going to, be needed 'later, then save it
- don't re-type it. In the editor, say

a
.. .lots of stuff .. .
... horrible line .. .

.w temp'

~
••• more stuff •••

.r temp
a
••• more stuff •••

This last example is worth studying, to' be sure
yqu appreciate what's going on.

Moving Lines Around

Suppose 'you want to move a paragraph
from its present position in a paper to the end.
How \Vould you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ".PP'. Think about it
and write down the details before reading on.

. The brute force ~ay (not· necessarily bad)
. is to wri.te the paragraph onto a temporary file,
delete it from its current position, then read in
the temporar)l file at the end. Assuming that
you are sitting on the '.PP' command that begins
the paragraph, this is the sequence oLcommands:

. ,r\.PP/-w temp

.,/ /-d
. $r t~mp

That is, from where· you are now ('.') until one
line before the next • .PP' (' r\ .PP/-') write
onto 'temp'. Then delete the 'same lines.
Finally, read "temp' at the end.

As we said, that's the brute force way.
The easil!r way (often) is to use the move com­
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two lina
numbers in front that tell wha~ lines are, to be
affected., It is also followed by a line number that
~ells where the lines are to go. Thus

line 1 ,line2 m line3

says to move all the . lines between "line l' and
"line2' after "line3'. Naturally, any of "line 1 '
etc., can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you're sitting at the
ftrs-t line of the paragraph. Then you can say

• ,r\.PP/-m$

That's all.

ADVANCED EDITING ON UNIX 79

As another example of a frequent opera':.
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m+
does it. It says to move line dot to alter one line
after line dot. . If you are positioned on the .,
second line,

m--

does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re­
reading. When is brute force better anyway?
This is a matter of personal taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not ·move the
lines you thought you did. The result of a

. botched m command can be a ghastly mess.
Doing the job a step at "a· time makes it 'easier for
you to verify at each step that you accomplished

. what you wanted to. It's also a 'g'o,?d idea to
issue a w command before doing anything com­
plicated~ then if you goof, it's easy to back up to
where you were .

Marks

ed provides a facility for marking a line
with a particular name so you can later reference·
it by name regardless of its actual line number.
This 'can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k~ the command

kx

jl1arks the current line with the name ·x'. If a
lin'e number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the 'marked line
with the address

'x

Marks are. most useful for moving, things
around. Find the first line of the block to be
moved, and mark it with 0. Then find the last
line and mark. it with 'h. Now position yourself
at the place where the stuff is to go and say

'a,lbm'.

Bear in mind that only one line can have a
particular mark name associated with it at any .
given time.

80 GETTING STARTED

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line~ then the saving is
presumably even greater. '

ed provides another command, called t
(for 'transfer') for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading. '

The t command is identical to the m com­
mand, except that instead of moving lines it sim­
ply duplicates' them ,at the place you named.
Thus

1,t

duplicates the enti .. ~ contents that you are edit­
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

a

t.
s/x/y/
t.
s/y/z/

and so on.

x · (long line)

(make a copy)
(change it a 'Jit)
(make third copy)
(change it a bit)

The Temporary Escape '!'

Sometimes it is convenient to be able to
temporarily escape. from the editor to do some
other UNIX. command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor.. The 'escap~' com­
mand ~ provides a way to do this.

If you say

!any UNIX command

your current editing 'state is suspended, and the
UNIX command you asked for is executed. When
the command finishes,' ed will signal you by
printing another !; at that point you can resume
editing.

'. 'You can really do any. UNIX comman<-,
including another ed. (This is quite common"in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

There are ~eve'ral tools and techniques that
go along with the editor, all of which are rela­
tively easy once you know how ed works
because they are all based on the 'editor. In thi~
section we will give sO':11e fairly cursory examples

. of these tools, more to indicate their existence
than to provide a';complete tutorial. More infor-

mation on each can be found in [3].

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
vP;-;y tedious, and if the files are really big, it may
be impossible because of limits in ed. ' " ,

The program grep was invented to get
around these limitations. The search patterns

. that we have described 'in the paper are often
call~d 'regular expressions', and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu­
lar pattern. Thus

grep 'thing' file 1 file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'filel', 'file2', etc. grep also Indicates the filet in
which the line was found, so you can later edit it
if you like. '

The pattern represented by 'thing' can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat­
tern searching. It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-alphabetic characters, since many such char­
acters also mean something special to the' UNIX

corrimand interpreter (the 'shell')~ If you don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that dOll '(

contain a pattern:

grep - v 'th ing' file 1 file2 .. ,

finds all lines that don't contains 'thing'. The
- v must occur in the position shown. Given
grep and grep - v, it is possible to do things like
selecting all lines that contain some ,combination
of patterns. For example, to get all lines that
contain 'x' but not 'y':

gr~~ I • 9Ie ... I grep -v y

(The notation I is a 'pipe" which causes the out­
put of the first command to be used as input to
the second commar:l~ see [2],)

Editing Scripts

If a fairly complicated set of" editing opera­
tions is to be done on a whole set of files, the
easiest thing to do is to make up a 'script', i.e:, a
file that contains the .operations you want to per­
form', then apply this script to each file in turn.

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put
into the file 'script' the lines

g/Unix/s/ /UNIX/g
g/Gcos/s/ /GCOS/g
w
q

Now you can say

ed file 1 <: scri pt
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of

. input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the 'Unix' to 'UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g' file 1 file2 ...

applies the command 's/Unix/UNIX/g' to all
lines from 'file 1 " 'file2', etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col­
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli­
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed -f cmdfile input~files ...

sed has further capabilities, including con­
ditional testing and branching, which we cannot
go into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

ADVANCED EDITING ON UNIX 81

References

[1] Brian W. Kernighan, A TlIIorlalllllrodllction
to the UNIX Text Editor. Bell Laboratories
internal memorandum.

[2] Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's Manllal. Bell
Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell ~aboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the·
UNlxt operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and co J1)J1la nds. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as sheU input:

The shell can modify the environment in which commands run. Input and out:
put can be redirected to files, and processes that communicate through 'pipes'
can be· i.nvoked., Commands are found- by searching directories in the file sys­
tem in· a sequence that can. be defined ·by the user. Commands can be read
either from· the termin~1 or from a file, which allows command procedures to be
,stored for later use.

November 12, 1978

tUNIX is a Trade":1ark of Bell Laboratories.

82

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.'
The first section covers most of the everyday requirements of terminal users. Some familiarity·
with UNIX is an advantage when reading this sec,tion~ see, for example, "UNIX for beginners". 1

Section 2 describes those features of the shell primarily intended for use within shell pro­
cedures. These include the control-flow primitives and ~tring-valued variables provid~d by the
shell. A knowledge of a. programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manua1. 2 .

1.1 Simple commands

Simple commands consist of one or more words separated by blanks: The first ~ord is the
name of the command to be executed~ any remaining words are passed as arguments to the
command. For example, .

who

is a command that prints the names of users logged in. The command

Is -1

prints a list of files ,in the current directory. The argument,.1 tells Is to print status informa­
tion, size and the creation date for each file.

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A
command m?y be run without waiti~g [or it to finish. For example,

cc pgm.c &

calls the C compiler ·to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes. may be
obtained using the ps command.

1.3 Input output redirection

Most commands produce output on the stat:ldardoutput that is initially connected to the termi­
nal. This output may be sent to a file by writing, for example,

Is -I > file

The notation >file is interpreted by the shell and is not passed as at:J, argument to Is. If-fife does
not exist then the shell creates it~ otherwise. the original contents of file are rePlaced with the
output from Is. Output may be appended to a file using the notation'

83

84 GETTING STARTED

Is -I »file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

wc <file

The command we reads its standard input (in this case redirected from .file) and prints the
number of characters, words and lines found. If only the number of lines is required then

wc -I <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indkated by I, as in,

Is -I I wc

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -I >file; wc <file

except that no .file is used. Instead the two processes are connected by a pipe ·(see pipe .~» and
are run in parallel. Pipes iue unidirectional and synchronization is achieved by halting we when
there is noth.ing to read and halting Is when)he pipe is full.

A .filler is a command that rea!1s its standard input, transforms it in some waY,and prints the
resttlt 'as output. One such filter, .grep, selects from its input those lines that contain' some
specified string. For example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter
is so;'. For example,

who.1 sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is 1 grep old 1 wc-I
:;,;

prints the number o'f file names in the current directory containing the string old.

1.5 I File name generation '

Many-commands accept arguments which are file names. For example,

Is -I main.c

prints information relating to the file main.e.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is -I *.C

generates, as arguments to Is, all file names in the current directory that end in .e. The charac­
ter * is a pattern that will match any' string including the null string .. In general pallerns are
specified as follows.' .

AN INTRODUCTION TO THE UNIX SHELL ,85

* Matches any string of characters including the null string.

? Matches any single ,character.

(••• 1 Matches anyone of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair. "

For example,

[a-z]*

matches all names in the current directory beginning with one of the letters' a through z.

lusr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing 'and to select names according to some patt,ern. It
may also be used to find files. For example,

echo lusr/fred/*/core

finds and prints the nameS of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks') This last feature can be expen- '
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The charact,er :.' at the start of a
file name must be explicitly matched. '

echo *

will therefore echo all file names in the current directory not ~eginning with' .' .

echo .*

will echo all those file names that begin' with '.'" This avoids inadvertent matching of the
names'.' and ' .. ' which 'mean 'the current direc(ory' and 'the parent directory' respectively.
(Notice that Is suppresses information for the"files '.' and' .. ' .) ,

1.6 Quoting

Characters that have a special meaning to the shell, such as < > * ? I &;are called metachar­
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that

echo, \?
wHi echo a single ?, and

echo \\

will echo a single \. To 'allow long strings to be continued over more than one line the
, sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
.. above mechanism is clumsy and error prone. A string of characters may be quoted by enclos­

ing the string between single quotes. For example,

echo xx'****'xx

will echo

xx****xx

The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended .for casual use"

86 GETTING STARTED

A, third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

, 1.7 Prompting

When the shell is used from a terminal it. will issue a prompt before reading a command. By
default this prompt is'S'. It may be changed by saying, for example,

PS 1 = yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt '> '. Sometimes this can be. caused by mistyping a quote
mark. If it is unex'pected then an interrupt (DEL) will return the shell to read another com­
mary~. This pro~pt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Follbwing login (I) the shell is called to read and execute commands typed at the terminal. If
the user's login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Sunimary

• Is,
Print the names of files in the cur'rent directory.

e, Is > file.
Put the output from Is intojile.

• Is 1 we-I
Print the number of files in the current directory.

• Is 1 grep old
Print those file names containing the string old.

• Is 1 grep old ,I we-I
Print the number of files whose name contains the string old.

•. ce pgm.e &
Run cc in the background.

AN INTRODUCTION TO THE UNIX SHELL 87

2.0 Shell procedures .

The shell may be used to read and execute comm~nds contained' in a file. For example, .

sh file [args ...] -

calls the shell to read comman~s from' ,file. . Such a file is called a co'-nmand procedure or shell
procedure. Arguments may be supplied with the call and are referred to in .file using the' posi­
tional parameters $1, $2, For example, if the file wg contains

who I grep '$1

then

sh wg fred

is equivalent to

,wh~ I grep fred

UNIX files have three independent attributes, read, write and exeClile. The UNIX command
chmC!d (1) may be used. to make a file.executable. Fqr exan;tple,

chmod +x wg

will ensure that the file wg has execute status. Follow,ing thjs~ the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. tn either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number ofpositi011al parameters
in the call is available' as S#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0. A
typical use of this is to provide som~ default arguments, as in, '.

nroff - T 450 -ms $*

which simply prepends some arguments to those already given.

2.1 Control flow - 'for

, A frequent use of shell procedures is to loop ,through the' arguments ($1. $2, ...) executing
commands once for each argument. An example of such a procedure is lei that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of lei is

for i
, do grep $i /usr/iib/telnos~ done

'The command

tel fred

prints those lines in /usr/lib/telnos that ~ontain the' string .Ii'ed.

'I

88 GETTING STARTED

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

, for name in wI w2 .••
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol­
lowing a newline or semicolon. name is a shell variable that is set to the words wI w2 ••• in
turn each time the command-list following do is executed. If in wI w2 ••• is omitted then the
loop is executed once for each positio~al parameter~ that iS,.in $* is assumed. '

Another example of the use of the for loop is the create command whose text is

for i do >$i~ done

The cpmmand

create alpha beta

.ensures that two empty files alpha and beta exist and are empty. The notati'on >file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new­
line) is required before done.

2.2 Control flow - case

A multiple way branch is provided for by the case notation. For example"

case $# in
1) cat »$1 ~~

, 2) cat »$2 <$1 ~~
*) echo 'usage: append [from] to' ~~

esac

is an append command. When called with one argument as

append file

$# is the string I and th~ standard input is copied onto t~e end of .file using the cal command.

append file 1 file2

appends the contents of ,file I onto .file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage. -~

The general form of the 'case command is

case word in
pallern) command-list ;;

. esac

The shell attempts to match word with each pat(ern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com­
plete. Since * is the pattern that matches any string. it can be us~d for the default case.

A word of caution~ no che-ck is made to ensute' that only one pattern matches the case argu':'
'ment. The first match found defines the set of commands to be executed. In the example
, below the commands following the second * will never be executed.

case $# in
*) •.. ~~
*) ••• ~~

esac

· AN INTRODUCTION TO THE UNIX SHELL 89

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

-[ocs)) ... "
-*) echo 'unknown flag $i' ;;
*.c) /lib/cO$i •.. ;;
*) echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a r. For example,

is equivalent to

case $i in
-x I-y)

esac

case $i in
-[xy))

esac

The usual quoting conventions' apply so that

case $i in
\ ?)

will match the character ? .

2.3 Here documents

The shell procedure leI in section 2.1 uses the file lusr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «!

fred mh0123
bert mh0789

done

In this example the shell takes the lines between «! and ! as the standard input for ,{(rep.
The string ! is arbitrary, the document being terminated by a line that consists of the string fol­
lowing «.
Parameters are substituted in the .document before it is made available to grep as illustrated by
the following procedure called edg.'

90 GETTINGSTARTED

The call

ed $3 «%
g/l/sll2/g
w
%

edg string 1 string2 file

is then equivalent to the command

ed file «%
g/stringl/sllstring2/g
w
%

and changes all occurrences of sIring I in ,file to slring2. Substitution can be prevented using \ to
quote the special character $ a~ in

ed $3. «+
1 ,\$s/$l/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a '! if there are 'flO

occurrences of the string $1.) Substitution within a here document may be prevente'(j entirely
by quoting the terminating string, for example,

grep $i «\#

The document is presented without modification to grep. If parameter substitutIon. is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables user, box·and acct. A variable may be set to the null
string by saying, for example,

null =

The'value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv pgm $b

will move the file' pgm from the current directory to the directory lusr/fred/bin. A more gen­
eral notation is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

AN INTRODUCTION TO THE UNIX SHELL 91

echo $user

and is used when the parameter name is followed by a letter or digit. For examp~e,

tmp = Itmp/ps
ps a >${tmp}a

will direct the output of ps to the file Itmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substitUted.

Except for $? the following are set initially by the shell. $? is set after executing each com­
mand.

$? .,The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with­
later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a > Itmp/ps$$

rm Itmp/ps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks. at the file specified by this variable
before it issues a prompt. If the specified file has been modifip.d "ince it was last
looked at the shell prints the message YOll have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user's
login directory. For example,

MAIL = lusrlmail/fred

$HOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a I , and is changed using the
cd command. For example,

cd lusr/fred/bin

makes the current directory lusr/fred/bin.

cat wn

will print on the terminal the file WIl in this directory. The command cd with no
argument is equivalent to .

cd $HOME

This variable is also typically set in the the! user's login profile.

$PATH A list of directories that contain commands (the search palh). Each time a com­
mand is executed by the shell a list of directories is searched for an executable·

92 GETTING STARTED

file. If $p A TH is not set then the current directory, Ibin, and lusr Ibin are
searched by default. Otherwise $PATH consists of directory names separated by
.. For example,

PATH = :/usr/fred/bin :/bin :/usr/bin

specifies that the current directory (the null string before the first :),
lusr/fred/bin, Ibin and lusr/bin are to b~ searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then
this directory search is not used~ a single attempt is made to execute the com­
mand.

$PSI The primary shell prompt string, by default, '$ '.

$PS2 The shell prompt when further input is needed, by default, '> '.
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test comma,.:·'

The test command, although not part of the shell, is intended for use by shell programs. For
example,

test -f file

returns zero exit status if .tile exists and non-zero exit status otherwise. In general test evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test argu­
ments are given here, see test (I) for a complete specification.

test s
test -f file
test -r file
test -w file
test -d file

true if the argument s is not the null string
true if .file exists
true if .file is readable·
true if .file is writable
true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter­
l1ined by the exit status returned by commands. A while loop has the general form

while command-list I
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list I is executed~ if a zero exit status is returned
then commal1d~list! is executed~ otherwise, the loop terminates. For example, .

is equivalent to

while test $1
do ...

shift
done

for i
do . ~.
done

shit; is a shell command that renames the positional parameters $2, $3, ... as $1, $2, .•• and
loses $1 .

AN INTRODUCTION TO THE UNIX SHELL 93

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam­
ple,

until test -f file
do sleep 300~ done
commands

will loop until .file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-list
then command-lisl
else command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the lest command to test for the existence of
a file as in

if test -f file
then process .file
else do something else
fi

An example of the use of if. case and for constructions is given in section 2.10.

A multiple test if command of the form

if ...
then
else if ...

then
else if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then
elif
then
elif

fi

The following example is the IOllch command which changes the. 'last modified' time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a.
list of files. .

94 GETTING STARTED

flag =
for i
do case $i in

-c) flag = N ~;
*) if test -f $i

then In $i junk$$~ rm junk$$
elif test $flag
then echo file \'$i\' does not exist
else >$i
fi

esac
done

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari­
able flag is set to some non-null string if the -c argument is encountered. The commands

In ... ~ rm ...

make a link to the file and then remove it thuS' causing the last modified date to be updated.

The sequence

if command!
then command2
fi

may be written

command! && command2

Conversely,

command 1 I I command2

executes command2 only if command i fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-Usl ;)

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x~ rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
}

The commands

cd x~ rm junk.

have the same effect but leave the invoking shell in the directory x.

AN INTRODUCTION TO THE UNIX SHELL 95

2~9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful ~o
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying set -11 at a ter­
minal will render the terminal.useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace. Following parameter substitution each command is' printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying .

set -

and the current setting of the shell flags is available as S- .

2.10 The man command

The following is the mall command which is used to. print sections of the UNIX manual. It is
called, for example, as .

man sh
man -t ed
man 2 fork

In the first the manual section for sh is printed. Since n.o section is specified. section }. is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork
manual page from section 2.

96 GETTING.STARTED

cd /usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=1

for i
do case $i in

£1-9]·) s=$i ;;

-0 N=t;;

-n) N=n ;;

-.) echo unknown flag \'$i\' ;;

.) if test -f man$s/$L$s

esac
done

then ${N}roff manO/${N}aa man$s/$L$s
else : 'look through all manual sections'

fi

found=no ..
for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo '$i: manual page not found'
esac

Figure 1. A version of the man command

AN INTRODUCTION TO THE UNIX SHELL 97

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred The -k flag causes arguments of the form
name = value to be interpreted in this way anywhere in the argument list. Such names are some­
times called keyword parameters. If any arguments remain they are available as positional
parameters $1, .$2, .••.

The set command may also be used to set positional parameters from within a procedure. For
example,

set - *
will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first file name begins with a - .

3.1 Parameter transmission
When a shell procedure is invoked both positional and keyword parameters may be supplied
with the calL Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify, the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the ~me as that of the export command, '

readonly name •••

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution
If a shell parameter is not set then the null string is substituted for it. For example, if the vari­
able d is not set

echo $d

or

echo ${d}

will echo no~hing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and'.' otherwise. The default, string is
evaluated using the usual.quoting conventions so that

echo ${d-'*'}

will echo * if the variable d is -not set. Similarly

98 GETTING STARTED

echo ${d-$I}

will echo' the value of d if it is set and the. value (if any) of $1 otherwise. A variable' maY"be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set thel,1 it wiJI. be set to the string'.'. (The notation ${ .•. = ." •. .} is
not available for positional parameters.) ,

If there is no sensible default then the notation

echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parame'ters to be set might start 'a~ follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct .or bin are, not set then the sheli will ab~ndon
execution of the procedure.

3.3 Command substitution

The standard output from a commantlcan be substituted in 'a similar way to parameters. The
command pwd prints on its standard Qutputthe name of the current dfrectory.'~ For example, if
the current directory is lusrlfredlbin then the command

d='pwd~

is equivalent to

d=/usr/fred/bin

The entire string between grave accents C ••. ') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
co'nventions except that a' must'be escaped using a \. For example,

Is 'echo "$1 II'

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the' same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

base name main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.

case $A in

* .c) . B = 'basename $A .c·

esac

AN INTRODUCTION TO THE UNIX SHELL 99

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

G) for i in 'Is -t'; do ...
The variable i is set to the names of files in time order, most recent first.

Q set 'date'; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution anrl
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms. .

Commands are parsed initially according to the grammar given in appendix A. Before a com­
mand is executed the following substitutions occur.

o parameter substitution, e.g. $u~er

o command substitution, e.g. ~pwd'

Op.ly one evaluation occur; so that if, for example, the value of the variable X is the
string $y then

echo $X

will echo $y.

o blank interpretatiQr1

Following the above substitutions the resulting characters are broken into non-blank
words (blank li1terpretation). For this purpose 'blanks' are the characters of the
string $IFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. ,For example,

echo"

will pass on the nu.II string as the first argument to e.cho, whe·reas

echo $null

will call echo with no arguments if the variable null is ·not set or set to the null
string.

o file name generation

. Each word is then scanned for the file pattern characters *, ? and l. . .) and an alpha­
betical Ust of file names is generated to replace the word. Each such file name· is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using -\ and ' .. : a 'third qu·oting mechan­
ism is provided using double Quotes. Within double quotes parameter and command substitu~
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may b!! quoted using \.

For example,

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $, " \

echo "$x"

100 GETTING STARTED

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 •.. "

The notation $@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ••. ,

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter
\ $ • "
n n n n n
y n n t n n
y y n y t n

t -terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

is equivalent to

wg='eval who I grep'
$wg fred

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I , .
following substitution ..

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con­
nected to a terminal (as determined by gt1y (2». A shell invoked with the -i flag is also
interactive .

. Execution of a command (see also 3.7) may fail for any of the following reasons.

o Input output redirection may fail. For example, if a file does not exist or cannot be
created.

AN INTRODUCTION TO THE UNIX SHELL 101

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory fault".
See Figure 2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All'remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter­
minal. Such errors include the following.

• Synt~x errors. e.g., if ... then ... done

• A signal such as interrupt. The shell waits for the current command, if any, to finish exe­
cution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit
4 * illegal instruction
5* trace trap
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (I))

Figure 3 .. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught.' However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1,2,3,14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam­
ple,

trap 'rm Itmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com­
rnands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The eXIf IS

required; otherwise, after the trap has been taken, the shell will resume executing the pro­
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig­
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

102 GETTING STARTED

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com­
mands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junk$$.

flag =

trap'rm -f junk$$; exit' 1 2 3 15
for i
do case $i in

-c) flag = N ;;
*) if test -f $i

esac
done

then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\' does not exist
else >$i
fi

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file. .

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be ~xe­
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore sig'nafs by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap "'1 2 3 15

. which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals.2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupt~ are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d='pwd'
, for i in *

do if test -d $d/$i
then cd $d/$i

while echo "$i:"
trap e~it 2
read x

AN INTRODUCTION TO THE UNIX SHELL 103

do trap : 2~ eval $x~ done
fi

done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates 8. new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap ". 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created com­
mands and' ex~c replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution; No file name generation or blank
interpretation takes place so that, for example,

echo ... >*.c

will write its output into a file whose name is *.c. Input output specifications are evaluated left
to right as they appear in the command.

> word

» word

< word

« word

>& digit

<& digit'

The standard output (file descripior 1) is sent to the file word which is created if it
. does not already exist.

The standard output is sent to file' word. If the file exists then output is appended
(by seeking to the end)~ otherwise the file is created,

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting, only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command su b-'

, stitution occur and \ is used to quote the characters \ S ' and the first character of
word. In the latter case \newline is ignored (c.f. quo~ed strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the ~tandard output.' ,

The standard input is duplicated from file descriptor digit.

104 GETTING STARTED

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file des~riptor created is that
specified by the digit instead of the default 0 or 1. For example,

••• 2 >file

runs a command with message output (file descriptor 2) directed' to .file .

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The. environment for a command run in the background such as

list *.c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file Idev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow' both the editor and the shell to read from the same input at the same time.

The other modification to the environment of.a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an igno~ed signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

-c string
If the -c flag is present then commands are read from string.

-s .If the -s flag is present or if no arguments remain then commands are read from the
stand~rd input. Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as told
by gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill {)

, does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). I n all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX she1l3 and the PWB/UNIX shell,4

some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access SystemS and of CTSS.6 '

I would like to thank Dennis Ritchie and John Mashey Jor many discussions during the design
of the sheiL I. am also grateful "to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document. .

AN INTRODUCTION TO THE UNIX SHELL 105

References

1. B. W. Kernighan, UNIXfor Beginners, Bell Laboratories internal memorandum (I 978).

2. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories (978).
Seventh Edition. "

3. K. Thompson, "The UNIX Command Language," pp. 375-384 in StrucllIred
Programming-It,rotech State of the Art Report, Infotech International Ltd., Nicholson
House, Maidenhead, Berkshire, England (March 1975).

4. J. R. Mashey, PWB/UNIX Shell Tutorial, Bell Laboratories internal memorandum (Sep­
tember 30, 1977).

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System - Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (968).

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System, M".I.T. Press, Cambridge, Mass.
(965) .

106 GETTING STARTED

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item

command:

simple-comma nd item

simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word ••• do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part • •• esac
if command-list then command-list els~-part ff

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline

. andor I I pipeline

command-list: andor
command-list' ;
command-list &
command-list; andor
command-list & andor

input-output: > file
< file
» word
« word

file: word
& digit
&-

case-part: pattern) command-list;;

pattern: word
pattern I word

else-Part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: ' a sequence of letters, digits or underscores starting with a letter

digit: '0 1 2 3 4 5 6 7 8 9

AN INTRODUCTION TO THE UNIX SHELL 107

Appendix E - Meta-characters and Reserved Words

a) syntactic

I pipe symbol

&& ~andf' symbol

II ~orr symbol

command separator

"
case delimiter

& background commands
() command grouping

< input redirection

« input from a here document

> output creation

» output append

b) patterns

* match any character(s) including none

? match any single character

l .. .I match any of the enclosed characters

c) substitution

S{ ••• } substitute shell variable

substitute command output

d) quoting

\ quote the next character

quote the enclos~d characters except for'

quote the enclosed characters except for S . \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

LEARN ~ Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret­
ing CAl scripts on the UNlxt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands., the eqn program for mathematical typing,
the" -ms" package of formatting macros, and an introduction to the C pro- .
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds hav~ used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc­

. tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

108

1. Introduction.

Learn is a driver for- CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXt facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands

the UNIX text editor ed

advanced file handling

the eqn language for typing mathematics

the" -ms" macro package for document formatting

the C programming language

The purported advantages of CAl sc~ipts for training in computer skills include the follow-

(a) students are forced to perform the exercises that are in fact the basis of training in
any case;

(b) students receive immediate feedback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them;

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a' computer for the CAl script there is a place to do
exercises;

(

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas. I, 2, 3 The use of a computer to teach itself, how­
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

. The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of Bell Laboratories.

109,

110 GETTING STARTED

assumptions are outlined in the next section. The remaining sections describe the, operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script wrifer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should,
n'ot contain long pieces of explanation~ they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows ,a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein­
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is givt!n a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the curren(directory? Type "answer N", where N is the number
offiles.

The student is expected to respond (perhaps after experimenting) with

,answer 17

or whatever., Surprisingly often, however, the idea of a substitutable argument (Le., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

, -

The third type of lesson is open-ended - a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure I
shows a sample dialog that illustrates tl:te last of these, using two lessons about the cat (con­
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les­
son number that has just been completed, p~Jmitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson., The
"speed~' r,ating of the student (explained ,in section 5) is given after the lesson number when
,the lesson is completed successfully~ it is printed only for the aid of script authors checking out
possible errors in the lessons. . ' '. ',. ,

It is assumed that there is 'no foolproof way to determine if the student truly Hunder­
stands" what he or she is doing~ accordingly, the current learn scripts only measure perfor­
mance, not comprehension. If the student can perform a given task, that is deemed to be

, Hlearning."4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these'scripts provide few facilities
for dealing with wrong ·answers. In practice, if most of the answers are not· right the script is a
failure~ the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an· endless job, and it is really easier as well as better to provide a
simpler script, .

Along with this goes the"assumption that anything can be taught to anybody ifit can be
broken into sufficiently small pieces. Anything 'not absorbed in a single chunk is just subdi­
vided.

To avoid boring the faster students, however, an effort is made in the files and epitor
. scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly \ the bul~ jand speed of a typical tutorial manual and should be adequate for review and
for well-pr~pared students. The next track is intended for most users and is roughly twi~e as

LEARN-COMPUTER-AIDED INSTRUCTION ON UNIX (SECOND EDITION) 111

Figure I: Sample dialog from basic files script

(Student responses in italics~ '$' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example. there is a file named
"food" in this directory. List it
by saying "cat food"~ then type "ready".
$ cat/ood

this is the file
named food.

$ ready

Good. Lesson 3.3a (I)

Of course. you can print any file with "cat".
In particular. it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is". which tells you the name of the file.
and "cat". which tells you the contents.
One file in the current directory is named for
a President. Print the file. then type "ready".
$ cat President
cat can't open President
$ ready

Sorry. that's not right. Do you want to'try again? yes
Try the problem again.
$ Is
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

, $ reC!dy

Good. Lesson 3.3b (0)

The "cat" command ca'n also print several files
at once. In fact,. it is named "cat" as an abbreviation
for "concatenate"

long. Typically. for example. the fast track might present an idea and ask for a variation on'the
example shown~, the normal track will first ask the student to repeat, the example that was
shqwn before attempting a variation. ·The third ilnd slowest track. which is often three or four
times the length of the fast track. is, intended to be adequate for anyone. (The lessons of Fig­
ure I are from the third track.) The multiple tracks also mean that a student repeating a course
is -unlikely to hit the same series of lessons~ this makes it profitable for a shaky user to back up

112 GETTING STARTED

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis­
cussed in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from.
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian' approach has been
moderated in version 2; Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the

.student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu­
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu­
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably. more tedious than ordinary manuals, however,' it is
s,afe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script o'f 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to 'deal
with student errors.

In most existing courses, the first few lessons are devoted to' checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts'should be getting mostly correct answers~ otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared stud.ents should not be encouraged to continue with
scripts. .

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In a~dition, the character
erase and line kill conventions (# and @) should be known. It is hard'to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis-
tance, however, .J;leed not be highly skilled. '

LEARN-COMPUTER-AIDED INSTRUCTION ON UNIX (SECOND EDITION) 113

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, eat, mv, rm, ep and diff commands. It also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or 1/0 redirec-
tion, nor does it present the many options on the Is command. "

This script contains 31 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc­
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is" 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions tor searching.s All editor features except encryption, mark names and
';' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort.

The advanced file handling script deals with Is options, 110 diversion, pipes, and support­
ing programs like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro­
vides much less of a full three-track sequence than they do. On the other hand, since it is per­
ceived as "advanced," it is hoped that the student will have somewh~t more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the eqn langua~e for typing mathematics. This script must be run"
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo­
based terminals, or the ne,!rly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the thiid track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track oniy script. The macro pack­
age "it describes is no longer the standard, so this script will undoubtedly De superseded in the
future. Furthermore, the linear style of a single learn script ics somewhat inappropriate for the
macros, since the macro package is composed of many ipdependent features, and few users"
need all of them. It would be better to have a selection of short lesson sequences dealing with"
the features independently. "

The script on C is in a state of transition. It was originally d~sigried to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con­
verted to follow the order of presentation in The C Programming Language,7 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introd'uction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc­
tional materials, it should provide a useful supplement to existing tutorials and reference manu­
als.

114 GETTING STARTED

-4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les­
sons in 'a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
everyone failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some­
one doing one or two lessons and then logging out, as do instances of someone pausing in· a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ­
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les­
son, most of which is the system printing.

At present working through a section of the middle of the files script took. about 1.4
.seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at ·least a minute. Thus, as a rough approx­
imation, a UNIX system could support ten students working simultaneously with some 'spare
capacity.

5. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer
to capture .student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is, shown in Figure 2. There is one parent directory
(named lib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named log), and one in which user sub­
directories are created (named play). The subject directofy contains master copies of all les­
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume. that everything is reinitiaJized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(I) the text of the lesson;

(2) the set-up commands to 'be ~xecuted before the user gets contr~l;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4)' the evaluating commands· to be executed after the user has finished the lesson, to decide
whether the answer is right; and

(5) a list of possible successor lessons .

.. Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script) production ;s in planning lessons, writing tutorial paragraphs, and coding tests
of student performance. ..

LEARN-COMPUTER-AIDED INSTRUCTION ON UNIX (SECOND EDITION) 115

lib

Figure 2: Directory structure for learn

play

files

editor

(other courses)

log

studentl

student2

LO.la
LO.lb

files for student 1. ..

files for student2 ...

lessons for files course

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (0 commands to the script interpreter to print something, to create
a files, to test something, etc.~ (2) text to be printed or put in a file~ (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user's work is tested~ if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let. us illustrate this with the script for the second lesson of Figure 1 ~ this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#prin.t

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through~ this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the st~dent; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

. Anything the student types between these commands is copied onto a tile called .copy. This lets
. the script writer interrogate the student's responses upon regaining c<?ntrol.

'116 GETIING STARTED

I #copyout
#uncopyout

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#c~eate roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail - 3 .ocopy > X 1
#cmp X 1 roosevelt
#log
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
ocopy. This lets the script writer interrogate the effect of what the student typed, which true

believers in the performance theory of learning usually prefer to the student's actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the "shell") one line at 'a time. This won't do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyout brackets must include
the pipe brackets. '

There are several commands for setting status after the student has attempted the lesson.

#cmp file1 file2

is an in-line implementation of cmp, which compares two files for identity.

#match stuff

The last line of the student's input is compared to stuff" ~p.1d the success or fail status is set
according to it. Extranecus things like the word answer are stripped before the comparison is
made. There may be several #match lines; this provides a convenient mechanism for handling
multiple "right" answers. Any text up to a # on subsequent lines after a successful #match is
printed; this is illustrated in Figure 4, another sample lesson.

#bad stuff

This is similar to #match, except that it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

LEARN-COMPUTER-AIDED INSTRUCTION ON UNIX (SECOND EDITION) 117

writer.

#succeed
#fail

Figure 4: Another Sample Lesson

#print .
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match m$

"#match .m$
"m$" is easier.
#log
#next
63.ld 10

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no" ready, ~or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise~ this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

log file

writes the date, lesson, user name and speed rating, and a success/failure indication· on .file.
The command

log

by itself wdtes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

next

is followed by a few lines, each with a successor less<?n name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main­
tained for each session with a student~ the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level su'ch that the users get 80% right answers. The maximum rating is lim~
ited to 10" and the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu­
dent fails, a false status is returned and the program reverts to the previous lesson and tries

,118 GETTING STARTED

another alternative. If it can not find another alternative, it skips forward a lesson. The stu-'
dent can, terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an, arbitrary directed graph,. although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu­
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier~ the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the· answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UN{X system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of learn had ,fewer built-in commands in the driver pro­
gram, and made more, use of the facilities of the UNIX system itself. For example, file com­
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document~ even #print had to be followed by a file name. Thus the initialization for each les­
son was to extract the archive into the working directory ,(typically 4-8 files), then #print the
lesson ,text. -

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #creafe can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it. '

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula­
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The' following observations can be made about secretaries, typists, and other non-
programmers who have used learn: ' ,

! (a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson 01' two~ once the first few lessons are passed' people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com­
puters. It would help if there were a low level reference card for UNIX to suppleme'nt the
existing programmer oriented bulky manual and bulky 'reference card.

(c),- The concept of "substitutable argument~' is hard to grasp, and requires help.

(d) They enjoy the system for the most part.' Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable,
ability to create new files and manipulate old ones seems. to be a few days, with perhaps half of

'each day spent on the machine. ' ,

LE~RN-COMPUTER-AIDED INSTRUCTION ON UNIX (SECOND EDITION) 119

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden' on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini­
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime~ when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the 'scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them~ the scripts ought to be altered to recommend suit­
able documents and urge students to read them.

There are several other difficulties which are' clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some­
times this is due to poor explanations, but just as often it is some error ju the lesson itself - a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les­
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, for'
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that, it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which
changes to another directory. The prospect of a student who is learning about directories inad­
vertently moving' to some random directory and removing files has deterred us from even wri~­
ing'lessons on cd, but ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn. for we have benefited greatly from their
suggestions and criticisms. ,In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substan.tial feedback. Conversations with E. Z. Rothkopf also "
prQvided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an expert programmer to deci'de the computer was broken when he had simply left
his termin,al in local mode. Novices have great diffi~ulties with such problems.

120 GETIING STARTED

as. a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

. References

1. D. L. Bitzer and D. Skaperdas, "The Economics ora Large Scale Computer Based Educa­
tion System: Plato IV," pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

2.· D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA • A Minicomputer CAl System," IEEE Trans. Education E.20(1), pp.73-77
(Feb. '1977). .

3. P. Suppes, "On Using Computers to Individualize Instruction," pp. 11-24 in The Com­
puter in American . Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

4. B. F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories (1978).
See section ed (0. .

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

7. B. ·W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Half, Engle­
wood Cliffs, New Jersey (1978).

APPENDIX A - Page given to new users

How to Get Started

Absolutely basic information for using the UNIX system
from DASI, Terminet, or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page. .

Terminals. Turn the power on. There are many kinds 01 terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have

- old style datasets (if the phone set is a small gray box with. "talk" and "data" buttons
, at the right above the handset)

- new style datasets (if the phone'set is a black six button phone with a red "data" button
on the left, sitting on a rectangular box with a glass front)
- acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
- modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests. on).
- none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer).

Calling in. For your local UNIX call _____ _
- I(the terminal doesn't use a phone, ignore this section, and proceed to Login ..
- On terminals with datasets you must push the "talk" button t<? get a dial tone.
- If the terminal has a separate coupler turn the coupler po~er on.
- If the line is busy UNIX is probably full. "
- If there is no answer UNIX is broken.

Usuaily'the phone rings only once~ UNIX an~wers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it ,uses a
- dataset, push down the ~'data" button, let it spring back up, and then hang up the
handset ,(IN THAT ORDER).,
-coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). Y o~ may get better results by placing the
handset in the receptacles as you dial.
- modem, pull up the white button on the telephone and put the handset down some-
where (but don't 'hang up the phone!). '

Login. UNIX should type "login:". If it does not:
, , - Your terminal may be in "local'~ mode - check that the "loe.aI/line" switch is on

"line". Also, Terminets may have their "interrupt" light on - turn it off by pushing
"ready." ,
- If the message is garbled, the speed is, wrong. Somewhere on the terminal is a switch
labeled "rate" or "baud" with positions of either "10,15,30" or "110,150,300". Set it to
30 or 300. Push the ,break or interrupt button slowly a few times. If "login:" doesn't
appear, call for help.
- UNIX may be broken (call ext. __ to check on that).

Type your userid, followed by "return". Your userid is ___ _
- If each letter appears. twice, find the switch, labeled "full/half duplex" and set it to
"full".
- If the computer typed back your use rid in upper case, find the "all caps" switch or
"shift lock" and turn it off. Then dial in again.

Normally UNIX says "Password:" and you should ent,er your password~ printing will be turned
off while you do.

If you misspell it, UNIX will say "Login incorrect. login:" and you can then retype your
userid and password correctly.

UNIX will say "$". You have successfully logged in.
121

122 GETTING $TARTED

Commands. When UNIX has typed "$" you can type commands, one per line. For example,
you can type "date" to find out what day and time it is, or "who" to find out who is logged on.
Every command must end with a "return". After typing a command, wait for the next "$" to
see what happens. For example, your terminal paper might look like· this (what the computer
typed is in italics):

login: myid
Password: <you can't see it>
$ date
Thu Jan 15 10:58:21 EST 1979
$

There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you . learn some' features of UNIX.

- If you make a mistake typing: the character # will erase the previous character, so that
typing

dax#te
is· the same as typing

date
and the character @ will erase the entire line~ typing

xxxxx@
date

is the same as typing "date". UNIX supplies the carriage return after the @.
- You must hit return if you expect the computer to notice what you typed' otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
- If you make a typing error a,nd don't correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where "datr" is the erroneous input line.
- Other messages that may arise from mistyping include "cannot execute" or "No match"
or just I/?'". The cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want to refer to it. Sample names might be "chap3" or "mem02". The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files. . .

Logging out. Just hang up. On a terminal with a data set, push the "talk" button. On other
terminals hang up the handset. Turn the termjnal power off.

Guides. You should have cupies of UNix For Beginners and A Tutorial Introduction to the UNIX
Text Edito.r.

DOCUMENT
PREPARATION

Typing Documents on the UNIX System:
U sing the - ms Macros with Troff and N roff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT"

This document describes a set of easy-to-use macros for preparing docu­
ments on the UNIX system. Documents may be produced on either the photo­
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, "Typing Documents on
UNIX," dated November 22, 1974. "

November 13~ 1978

125

Introduction. This memorandum describes a package of comm~nds to produce papers
using the troff and nroff formatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed, with formatting commands. However, this package,
which itself is written in troff commands, provides higher-level commands than those provided
with the basic troffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
".PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .. LP that was used here will produce a left-aligned (block) para­
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as f~­
lows:

. [optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution (s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
. AE ·(abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AB no" for" .AB". Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document. .

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The
default format is usef,:!l for scanning drafts.

In general ~ms is arranged so that only one form of a document need be stored, contain­
ing all information; the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling ftems is special, and other data placed in them may not behave as you expect.
Don't forget that some -ms command must precede any input text.

126

TYPING DOCUMENTS ON THE UNIX SYSTEM 127

Page headings. The -ms macros, by default, will print a page heading containing a page
number (if greater than 1). A default· page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH, CH, and RH which are the left, center and ri6ht portions of the page headings,
respectively; and 'the strings LF, CF, and RF, which are the left, 'center and r!ght portions of
the page footer. For more complex formats, the user can redefi;"e the macros PT and BT,
which are invoked respectively at t1)e top and bottom of each page.' The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to default
values.

Multi-column formats. If you place
the command". 2C" in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out­
put, but is often desirable on the typesetter.
The command ".1 C" will go back to one­
column format and also skip to a new page.
The ".2C" command is actually a special
case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used:
Thus triple, quadruple, '" column pages can
be printed. Whenever. the number of
columns i3 changed (except going from full
width to some larger number of columns) a
new page is started.

Headings. To produce a special head­
ing, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, .. .), in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

Alternatively,

.SH
Care and Feeding" of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by it paragraph beginning
with .PP or .LP, indicating the. end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
complex numbering schemes. If a numeri­
cal argument is given, it is taken to be a
Hlevel" number and an appropriate sub­
section number is generated. Larger level
numbers indicate deeper sub-~ections, as in
this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ".NH 0" will reset the
numbering of level 1 to one, as here:

.NH 0
Pen n Central

1. Penn Central

128 DOCUMENT PREPARATION

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references') The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces

[1] Text for first paragraph, typed nor­
mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol­
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam­
ple, a plain block indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after -the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, reqUirIng
larger indenting for these para­
graphs.

second: And so forth .

It is also possible to produce multiple nested
indents; the command .RS indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of
indenting so you s~ould balance .RS· and
.RE commands. The .RS command should
be' thought of as "move right" and the .RE
command as "move left". As an example

.IP 1.
Bell Laboratories
.RS
.I~ 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
JP 1.3.1
Madison
.RE
.IP 1.4·
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 . Holmdel

1.3 Whippany,

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur­
poses such as setting off a quotation, a para­
graph indented· on both right and left is
required.

A single p~ragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

TYPING DOCUMENTS ON THE UNIX SYSTEM 129

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital­
icized, it Imay be just given on the line with
the .I command,

.1 word

and in this case no .R is needed to restore
the previous font. Boldface can be pro­
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal·
or line printer. As with .I, a single word can
be plac.ed in boldface by placing it on the
same line as the .~ command.

A few size changes can be specified
similarly with the commands .LG (make.
larger), .SM (make smaller), and . NL
(return to normal size). The size change is
two points; th~ commands may be repeated
for increased effect (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital­
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to .
underline multiple words.on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot­
tom of the current page*. By default, foot­
notes are 11/12th the length of normal text,
but this can be changed using the FL regis­
ter (see below).

Displays and Tables. To prepare
'displays of lines, such as tables, in which the
lines should not be re:arranged, enclose
them in the commands .OS and .DE

* Like this.

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack­
eted by .DS Land .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C .centers each line; there is a
variant . OS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have

.. a long display which may be sP.lit across page
. boundaries, use .CD, .LD, or .10 in place of
the c·ommands .DS C: .DS L~ or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an. amount to
·indent. Note: it is tempting to assume that
.DS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rec­
tangular boxes around words the command

.BX word

will print Iword I as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text...
.B2

as has been done here;

Keeping blocks together. If you wish
to keep a table or :other block of ·lines
together on a page, there"" are "keep -

130 DOCUMENT PREPARATION:

release" commands. If a block of lines pre­
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a

. "keep floating" command: if the. block to be
kept together is preceded by .KF instead of
. KS and does nO,t fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be introduced in the docu­
ment.

Nroff/Troff commands. ·Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

. bp - begin new page.

.br - "break", stop running text
from line to line. '

.sp n - insert n blank lines.

. na - don't adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
bottom of each page; documents produced
on the type'setter don'L To force the date,
say ".DA". To force no date, say ".ND".
To lie about the date, say ".DA July 4,'
1776" which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".RP" format places .the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig­
nature line by placing the command .SG in
the document. The authors' names will be
output in place of the .SG line. An argu­
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG command is ignored in released paper
format.

Registers. Certain of 'the registers
used by -ms can be altered to change
default settings. They should be -changed
witlt .nr commands, as with

. nr PS 9

to make the default point size 9 point. If
the effect is needed immediately, the normal

troffcommand should be used in addition to
changing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para . 6"

. 'LT title length next para. 6"
PD para. spacing next para . 0.3 VS
PI para. indent _ next para. 5 ens
FL footnote length next FS 11112 LL
CW column width next 2C 7115 LL
GW intercolumn gap next 2C 1115 LL
PO page offset next page 26/27"
HM top margin next page 1"
FM bottom margin next page I" .

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on output is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier .

Accents. To simplify typing certain
foreign words" strings representing common
accent marks are defined. They' precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
\ *'e e *-a a
*'e e *Ce

v
e

*:u ii \ *,c C'
*"e e

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff -ms file

and you can print it on the typesetter' with
the command

(roff -ms .file .

(many options are possible). In each case,
if your document is stored in several files,
just list all the filenames where we have
used "file". If equations or tables are used,
eqn and! or (bl must be invqked as prepro­
cessors .

• If .. 2e was used, pipe the IIroff output through
col; . make the fiTst line of the input ".pi

. lusT/bin/col."

TYPING DOCUMENTS ON THE UNIX SYSTEM 131

References and further study. If you
have to do Greek or mathematics, see eqn
[1] for equation setting. To aid eqn users,
-ms provides definitions of .EQ and .EN
which normally center the equation and set
it of:f slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,
there are three special arguments' to EQ: the
letters C, I, and L indicate centered
(default), indented, and left adjusted equa­
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered
O.3a) .

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line .TH in.. the table data after
the heading. If the table has no heading
repeated from page to page, just use the'
ordinary .TS and .TEmacros.

To learn more about troffsee [3] for a
general introduction, and [4] for the full
details (experts only) . Information on
related UNIX commands is in [5]. For jobs
that do not seem well-adapted to -ms; con­
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journa,ls
than'to try to adapt -ms.

Acknowledgment. Many thanks are
due to Brian Kernigh~n for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics - Users Guide
(2nd edition), Bell Laboratories Com­
puting Science Report no. i 7.

[2] M. E. Lesk, Tbl -. A Program to For­
mat Tables, Bell Laboratories Comput­
ing Science Report no. 45.

[3] B. W. Kernighan, A Troff Tutorial, Bell
Laboratories, 1976.

[4] J. F. Ossanna, NrofflTroff Reference
M'lnual, Bell Laboratories Computing
Science Report no. 51.

[5] K. Thompson and D. M. Ritchie,
UNIX Programmer's' Manual, Bell
Laboratories, 1978.

IC
2C
AB
AE
AI
AU
B
DA
DE
DS
EN
EQ
FE
FS

I

IP
. KE

KF
KS

Appendix A
List of Commands

Return to single column format.
Start double column format.
Begin abstract.
End abstract.
Specify author's institution.
Specify author.
Begin boldface.
Provide the date on each page.
End display.
Start display (also CD, LD, ID).
End equation.
Begin equation.
End footnote.
Begin footnote.

Begin italics.

Begin indented paragraph.
Release keep .
Begin floating keep.
Start keep.

LG
LP

ND
NH
NL
PP

R
RE
RP
RS
SG
SH
SM
TL

UL

Increase type size.
Left aligned block paragraph.

Change or cancel date.
Specify numbered heading.
Return to normal type size.
Begin paragraph.

Return to regular font (usually Roman).
End one level of relative indenting.
Use released paper format.
Relative indent increased one level.
Insert signature line.
Specify section heading.
Change to smaller type size.
Specify title.

Underline one word.

Register Names

The following register names are used by -ms internally. Independent· use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any - ms internal name. -

Number registers used in -ms
DW GW HM IQ ,LL NA OJ PO T. TV

#T EF HI HT IR LT NC PD PQ TB VS
IT FL H3 IK KI MM NF PF PX TD VE
AV FM H4 1M LI MN NS PI RO TN YY
CW FP H5 IP LE MO 01 'PN ST TQ ZN

String registers used in - ms
A5 CB DW EZ I KF MR RI RT TL
AB CC DY FA 11 KQ ND R2 SO TM
AE CD EI FE 12 KS NH R3 SI TQ
AI CF E2 FJ I3 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT

, B CM E4 FN 15 LG or RC SH UL
IC BG CS E5 FO ID LP 01 RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS 1M MF PT RH SY WT
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH 'XK

132'

TYPING DOCUMENTS ON THE UNIX SYSTEM 133

p

r
AU

l
AI

AE

NH, SH

~
PP(P

text ...

I

Figure 1

A Guide to Preparing
Documents with - ms

M. £. Lesk

Bell Laboratories August 1978

This guide gives some simple examples of do­
cument preparation on Bell Labs computers,
emphasizing the use of the -ms macro pack­
age. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS, by

M. E. Lesk;
2. Typesetting Mathematics - User's Guide,

by B. W. Kernighan and L. L. Cherry; and
3. Tbl - A Program to Format Tables, by M.

E. Lesk.
These memos are all included in the UNIX
Programmer's Manual, Volume 2. The new
user should also have A Tutorial Introduction to
the UNIX Text Editor, by B. W. Kernighan.

For mote detailed information, read Advanced
Editing on UNIX and A Troff Tutorial, by B. W.
Kernighan, and (for experts) NrofflTroff Refer­
ence Manual by 1. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer's Manual by K. Thomp­
son and D. M. ·Ritchie.

Contents

ATM 2
A released paper
An internal memo, and headings .. .
Lists" displays, and footnotes
Indents, keeps, and double column .
Equations and registers
Tables and usage

3
4
5
6
7
8

Throughout the examples, input is shown in
this Helvetica sans serif font

while'the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

134

Commands fOf a TM

.TM 1978-5b3 99999 99999-11

.ND April 1, 1976

.TL
The Role of the Allen Wrench in Modern
Electronics
.AU "MH 2G-111" 2345
J. Q. Pencilpusher
.AU "MH 1 K-222" 5432
X. Y. Hardwired
.AI
.MH
.OK
Tools
Design
.AS
This abstract should be short enough to
fit on a single page cover sheet.
It must attract the reader into sending for
the complete memorandum.
.AE
.CS 1 0 2 1 2 5 6 7
.NH
Introduction.
.PP
Now the first paragraph of actual text ...

Last line of text.
.SG MH-1234-JQP/XYH-unix
.NH
References ...

Commands not needed in a particular format are- ig­
nored.

@ Bell Laboratories Cover Sheet for TM

This III/orma/ioll i,~ for employee,~ of' Bell Labora/ories. (GEl 13. 9-J)

Title-The Role of the Allen Wrench
in Modern Electronics

Other Keywords- Tools
Design

Date-April I, 1976

TM- I978-5b3

Author Location Ex\. Charging Case- 99999
J. Q. Pencilpusher MH 2G-I11 2345 Filing Case- 999998
X. Y. Hardwired MH IK-222 5432

ABSTRACT

This abstract should be short enough to
fit on a single page cover sheet. It must
attract the reader into sending for the com­
plete memorandum.

Pages Text 10 Other 2 Total 12

No. Figures 5 No. Tables 6 No. Refs. 7

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

A Released Paper 'with Mathematics

.EO
delim $$
.EN
.RP

... (as for a TM)

. CS 10 2 1 2 5 6 7

.NH
Introduction
.PP
The solution to the torque handle equation
.EO (1)
sum from 0 to inf F (x sub i) = G (x)
.EN
is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and $theta$
is derived ".

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pellci/pl/sher

X. Y. flardwired

Bell Laboratories
Murray Hill. New Jersey 07974

ABSTRACT

This abstract should be short enough to fit on a
single Pilge cover sheet. II must allract the
reader into sending for the complete memoran­
dum.

April I. 1976

Th,; Role of the Allen Wrench
in Modern Electronics

1. Q. Pellci/pl/sher

X. Y. Hardwired

Bell Laboratories
Murray Hill. New Jersey 07974

1. Introduction
The solution to the t~rque handle equation

I:F(x,)=G Cd (J)
()

is found with the transformati?n x-* where p-G'(x) and

(I is derived from well-known principles.

An Internal Memorandum

.IM

.ND January 24, 1956

.TL
The 1956 Consent Decree
.AU
Able, Baker &
Charley, Attys .
.PP
Plaintiff, United States of America, having filed
its cOr:t1plaint herein on January 14, 1949; the
defendants having appeared and filed their
answer to such complaint denying the
substantive allegations thereof; and the parties,
by their attorneys, ."

@
Bell Laboralories

Subjecl: The 1956 Consent Decree dale: January 24, 1956

from: Able, Baker &
Charley, Allys.

Plaintiff. United States of America. having filed its com­
plaint herein on January 14. 1949; the defendants having
appeared and filed Iheir answer 10 such complainl denying
the substantive allegalions thereof; and Ihe parties. by their
allorneys. having severally consented 10 Ihe entry of this
Final Judgmenl without trial or adjudic'ltioll of any issues
of fact or law herein and without this Final Judgment con­
stituling any evidence or admission by any party in respect
of any such issues;

Now. Iherefore before any leslimony has been laken
herein. and without trial or adjudication of any issue of faci
or law herein. and upon Ihe consenl of all parties hereto. it
is hereby

Ordered. adjudged and decreed as follows:

I. [Sherman Actl
This Court has jurisdiction of the subject mailer herein

and of all the parties hereto. The complaint slates a claim
upon which relief may be granted againsl each of Ihe
defendants under Sections I. 2 and J of the Act of
Congress of July 2. 1890. entitlf't! "An aCI to protect Irade
and commerce against unlawful restrainls and monopo­
lies." commonly known as the Sherman Act. a'i amended.

II. [Definitions)
For the purposes of this Final Judgment:
(a) "Weslern" shall mean the defendant Weslcr~ Ele~:­

tric Company. Incorporated.

Other formats possible (specify before .TU are: .MR
("memo for record") .. MF ("memo for flle"),.EG
("engineer's notes") and .TR (Computing Science
Tech. Report). . .

.NH
Introduction.
.PP
text text text

1. Introduction

text text text

Headings

.SH
Appendix I'
.PP
text text text

Appendix I

te'St text text

135

A Simple List

.IP 1.
J. Pencilpusher and X. Hardwired,
.I
A New Kind of Set Screw,
.R
Proc. IEEE
.B 75
(1976), 23-255.
.IP 2.
H. Nails and R. Irons,
.I
Fasteners for Printed Circuit Boards,
.R
Proc. ASME
. B 23
(1974), 23-24.
.LP (terminates list)

1. J. Pencilpusher and X. Hardwired. A New Kind
()t'Set Screw. Proc. IEEE 75 (I 976). 23-255.

2. H. Nails and R. Irons. Fasteners for Printed Cir­
cliit Boards. Proc. ASME 23 (J974). 23-24.

Displays

text text text text text text
.DS .
and now
for something
completely different
.DE
text text text text text text

hoboken harrison newark roseville avenue grove
street east orange brick· church orange highland ave­
nue mountain station south orange maplewood
millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling milling­
ton lyons basking ridge bernardsville far hills
peapack gladstone

Options: .DS L:' left-adjust: .DS C: line-by-line
center; .DS B: make block. then center.

Footnotes

Among the most imporfant occupants
of the workbench are the long-nosed pliers.
Without these basic tools·
.FS
• As first shown by Tiger & Leopard
(1975).
.FE
few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work­
bench are the long-nosed pliers. Without these basic
tools· few assemblies could be completed. They
may lack the popular appeal of the sledgehammer

• As first shown by Tiger &.Leopard (I975).

136

Multiple Indents

This is ordinary text So paint out
the margins of the page .
.IP 1 .
First level item
.RS
.IP a)
Second level.
.IP b)
Continued here with another second
level item, but somewhat longer.
.RE
.IP 2.
Return to previous value of the
indenting at this point.
.IP 3 .
Another
line ..

This is ordinary text to point out the margins of the
page.
I. First level item

a} Second level.
b} Continued here with another second level

item. but somewhat longer.
2. Return to previous value of the indenting at this

point.
3. Another line.

Keeps

Lines bracketed by the following commands are kept
together. and will appear entirely on one page:

.KS not moved .KF may float

.KE through text .KE in text

Double Column

.TL
The Declaration of Independence
.2C
.PP
When in the course of human events, it becomes
necessary for one people to dissolve the
political bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature's God entitle
them, a decent respect to the opinions of

The Declaration of Independence

When in the course of they should declare the
human events. it be- causes which impel them
comes necessary for one to the separation.
people to dissolve the We hold these truths
political bonds which to be self-evident. that
have connected them all men are created
with another, and to as- equal. that they are en­
sume among the powers dowed by their creator
of the earth the separate with cerlain unalienable
and equal station to rights, that among these
which the laws of Nature are life. liberty. and the
and of Nature's God en- pursuit of happiness.
title them, a decent That to secure these
respect to the opinions rights. governments are
of mankind requires that instituted among men.

Equations

A displayed equation is marked
with an equation number at the right margin
by adding an argument to the EO line:
.EO (1.3)
x sup 2 over a sup 2 -=- sqrt Ip z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation
number at the right margin by adding an argument
to the EQ line:

0.3)

.EO ' I (2.2a) ,
bold V bar sub nu-=-Ieft [pile la above b above
c I right] + left [matrix I col I A(11) above.
above. I col I . above. above .1 col I. above.
above A(33) II right] cdot left [pile I alpha
above beta above gamma I right]
.EN

_ = lallA (t 1). . 1.lal Vv b + . . . fJ
c . . A (33) y

.EO
F hat (chi) - mark = -I del V 1 sup 2
.EN
.EO L

(2.2a)

lineup = - /left (Ipartial vI over Ipartial xl right)
I sup 2 + I left (Ipartial vI over Ipartial y) right
) I sup 2 ------ lan,bda - > inf
.EN

F(x) = 1'7 Vl 2

~ [~:r+[~~ r x-~
$ a dot $, $ b dotdot$, $ xi tilde times y vec$:

<with delim $$ on, see panel '3),

See also the equations in the second table, panel 8.

Some Registers You Can Change

Line length
.nr LL 7i

Title length
.nrLT7i

Point size
.nr PS 9

Vertical spacing
.nr VS 11

Column width
.nr CW 3i

Intercolumn spacing
.nr GW .5i

Margins - head and foot
.nr HM .75i
.nr FM .75i

Paragraph indent
.nr PI 2n

Paragraph spacing
. nr PD 0

Page oft'set
.nr PO 0.5i

Page heading
.ds CH Appendix

(center)
.ds RH 7-2rs-76

(righ t)
.ds LH Private

(left)

Page footer
.ds CF Draft.
.ds LF ..
.ds RF slmll'

Page numbers
.nr % 3

Tables

'(® indicates a tab) .TS
allbox;
css AT&T Common Stock
ccc Year Price Dividend
n n n.
AT&T Common Stock
Year ® Price ® Dividend
1971 ®41-54®$2.60
2®41-54®2.70
3 ®46-55 ®2.87
4®40-53®3.24
5 ®45-52 ®3.40

1971 41-54
2 41-54
3 46-55
4 40-53
5 45-52
6 51-59

$2.60
2.70
2.87
3.24
3.40

.95·
6 ®51-59 ®.95* • (first quarter only)
.TE
* (first quarter only)

The meanings of the key-letters describing the align­
ment of each entry are:

C center n numerical
right-adjust a subcolumn
left-adjust s spanned

The global table options are center, expand, box,
doublebox, allbox, tab (x) and linesize (n).

.TS (with delim $$ on, see panel 3)
doublebox, center;
cc
II.

, Name (J)Definition
.sp
Gamma (J)$GAMMA (z) = int sub 0 sup inf \ .

t SjJP IZ-11 e sup -t dt$ ~
Sine ®$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error ® $ roman erf (z) = 2 over'sqrt pi \

int sub 0 sup z e sup I-t sup 21 dt$
Bessel ®$ J sub 0 (z) = 1 over pi \

int sub 0 sup pi cos (z sin theta) d theta $
Zeta ® $ zeta (s) = \

sum from k = 1 to inf k sup -s --(Re-s > 1)$
;TE

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

1'(:)= roo,:-Ie-Idt Jo
sinCd= ~i (e"·-e-")

2.J:: 2 erf(:)=- e- I tit
..J; 0

1 .J: 11' •
J 0(:) =- cos(: sinO) d 0

1T 0

,(S)=Lk-' (Res>))
k-I

Usage

Documents with just text:
troft' oms files

With equations only:
eqn files Itroft' oms

Wilh tables only:
tbl files Itroft' oms

With both tables and equations:
tbl filesleqnltroft' oms

The above' generales STARE output on Geos: replace
. - st with - ph for typesetter output.

137

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

. Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This pape: describes the design anq implementation of a system for typesetting
m~thematics~ The language has been designed to be easy to learn and to use by people
(for example, secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so, for
it has few rules and fewer exceptions. For typical expressions, the size and font
changes, positioning, line drawing, and the like necessary to print according to
mathematical conventions are all done automatically. For example, the input

sum from i=O to infinity x sub i = pi over 2

produces

The syntax of the language is specified by a small context-free grammar~ a
co_mpiler-compiler is used to make a compiler that translates this language into typeset­
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs, so mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction character of mathematics,. which the superscrip
and limits in the preceding example showed in it
simplest form. This is carried further by

"Mathematics· is known in the trade as
d~fficull, or penalty, copy because it is slower,
more difficult, and more expensive to set in type
than any other kind of copy' normally occurring
in books and journals." [I]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
ex'pression such as .

lim (tan x)sin l\' = 1
x-,"/2

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special charac­
ter or two. ("Requires" is perhaps the wrong
word, but mathematics has its own typographical
conventions which are quite different from those
of ordinary text.) Typesetting such an expression
by traditional methods is still an essentially
manual operation.

A second difficulty is the two dimensional
138

ao+
b l

and still further by

f dx
aelllx-be-mx

These examples also show line-drawing, built-up
characters like braces and radicals, and a spec­
trum of positioning problems. (Section 6 shows

TYPING DOCUMENTS ON THE UNIX SYSTEM 139

what a user has to type to produce these on our,
system.)

2. Photocomposition

Photocomposition techniques ,can be used
to solve some of the problems of typesetting
mathematics. A phototypesetter is a device
which exposes a piece of photographic paper or
'film, placing characters wherever they are
wanted. The Graphic Systems phototypesetter[2]
on the UNIX operating system [3] works by shin­
ing light through a character stencil. The charac­
ter is made the right size by lenses, and the light
beam directed by fiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX, the phototypesetter is driven by,
a formatting program called TROFF [4]. TROFF
was designed for setting running text. It also
provides all of the facilities that one needs for
doing mathematics, such as arbitrary horizontal
and vertical motions, line-drawing, size changing,
but the syntax for describing these special opera­
tions is difficult to learn, and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an "assembly language," by designing a
language for describing mathematical, expres­
sions, and compiling it into TROFF.

3. Language Design

The fundamental principle upon which we
based our language design is that the language
should be easy to use by people (for example,
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First,
"normal" mathematical conventions about
operator precedence, parentheses, and the like
cannot be used, for to give special meaning to
such characters means that the user has ,to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced, for they are not
in the half-open interval (a,b]. Nor should it
assume that that .Ja +b can be replaced by
(a +b) 1/\ or that 1/ (I-x) is better written as

1 (or vice versa).
I-x '

Second, there should be relatively few,
rules, keywords, special symbols and operators,
and the like. ~ Tttis keeps the language easy to
learn and remember. Furthermore, there should
be few exceptions to the rules, that do exist: if
something works in one situation, it should work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript, and so on

without limit.

Third, "standard" things should happen
automatically. Someone who types
"x=y+z+I" should get "x=y+.:+1". Sub­
scripts and superscripts should automatically be
printed in an appropriately smaller size, with no
special intervention. Fraction bars have to be
made the right length and positioned at the right
height. And so on. Indeed a mechanism for
overriding default actions has to exist, but its
application is the exception, not the rule.

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form, as might -be handwritten by
the author of a paper. We also assume that the
input is typed on a compLLer terminal much like
an ordinary typewriter. This' implies an, input
alphabet of perhaps 100 characters, none of them
special.

A secondary, but still important, goal in
our design was that-the system should be easy to
implement, since neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm, it was also necessary
that the program be easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity ("it should
work everywhere"), the language is defined by a
context-free grammar, described in Section 5.
The compiler for the language was built using a
compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. Our sub­
sequent experience, leads us to believe that any
other course would have been folly. The original
language was designed in a few days. Construc­
tion of a working system sufficient to try
significant examples required perhaps a person­
month. Since the!1, we have spent' a modest
amount of additional time over several years
tU'ning, adding facitities, and occasionally chang­
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numerical
computation and testing, and conditional branch­
ing. Thus we have been able to avoid ,writing a '
lot of mundane but tricky software. For exam­
ple, we store no text strings, but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further­
more, we have been able to isolate ourselves
from most details of the particular device and
character set currently in use. For example, we
let TROFF compute the widths of all strings .of

140 DOCUMENT PREPARATION

characters; we need know nothing about them.

A third design goal is special to o~r

environment. Since our program is only useful
for typesetting mathematics, it is necessary that it
interface cleanly with the underlying typesetting
language for the benefit of users who want to set
intermingled mathematics and text (the usual
case); The standard mode of operation is that
when a document is typed, mathematiCal expres­
sions are input as part of the text, but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not mathematics, simply passing them
through untouched. At the same time it con­
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
::-assed directly to TROFF where the comments
and the mathematical parts both become text
and/ or TROFF cQrnmands.

4. The Language

We will not try to describe, the' language
precisely here; interested readers may refer to
the appendix for more details. Throughout this
section, we will write expressions exactly as they
are handed to the typesetting program
(hereinafter called "EQN"), except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section ..

As we said, typing x = y + z + 1 should pro­
duce x=y+z+l, and indeed it does. Variables
are made italic, oper~tors and digits become
roman, and normal spacings between letters and
operators are altered slightly to give a more
pleasing appearance.

Input is free-form. Spaces and new lines
in the;: input are used by EQN to separate pieces
of the input; they are not used to create space in
the output: Thus '

x y
+z+l

also gives x=y+z+1. Free-form input is easier
to type in'itially; subsequent editing is also easier,
for an expressio:l may be typed as many short
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde" -" gives a space equal to the normal word
spacing ,in text; a circumflex gives half this
much, and a tab charcter spaces to the next tab
stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f {I)=27T J sin {w;)dl

we write

[(1) = 2 pi int sin (omega t)dt

Here spaces are necessqry in the input to indicate
that sin. pi. inl. and omega are special, and poten­
tially worth' special treatment. EQN looks up
each such string of characters in a table, and if
appropriate gives it a translation. In this case, pi
and omega become their greek equivalents, inf
becomes the integral sign (which must be moved
down and enlarged so it looks "right"), and sin
is ,made roman, following conventional
mathematical practice. Parentheses, digits and
operators are automatically made roman wher-
ever found. '

Fractions are specified with the keyword
over:

a+b over c+d+e = 1

produces

a+b
c+d+e

Similarly, subscripts and superscripts are
introduced by the keywords sub and sup:

X2+y2=z2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2's are necessary to mark
the end of the superscripts; similarly the keyword
sup has to be marked off by spaces or some
equivalent delimiter. The return to the proper
baseline is automatic. Multiple levels of sub­
scripts or superscripts are of course ~i1Iowed:

"x sup y sup z" is xY: ~ The construct "some­
thing sub something SliP something" is recog­
nized as a special case, so "x sub i sup 2" is x/
instead of Xi 2.

More complicated expressions can now be
formed with these primitives:

a~l=£+L
8X2 a 2 b 2

is produced by

{partial sup 2 f} over (partial x sup 2)
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces () are used to group objects together; in
this case they indicate unambiguously what goes
over what on the left-hand side of the expres­
sion. The language defines the precede'nce of SliP

to be higher than that of over. so no braces are
needed to get the correct association on the right
Side. Braces can' always be used when in doubt
about precedence.

The braces convention is an example of

TYPING DOCUMENTS ON THE UNIX SYSTEM 141

the power of using a recursive grammar to define
the language .. It is part of the language that if a
construct can appear in some context, then any
expression in braces can also occur in that con­
text.

There is a sqrt operator for 'making $quare
roots of the appropriate size: "sqrt a + b" pro­
duces .Ja +b , and

x = (-b +- sqrt(bsup 2 -4ac)} over 2a

is

x

Since large radicals look poor on our typesetter,
sqrt is not useful for tall expressions.

Limits on summations, integrals and simi­
lar constructions are specified with the keywords
from and to. To get

I,Xi-O
i-O

we need only type

sum from i=O to inf x sub i -> 0

. Centering and making the I. big enough and the
limits smaller are all automatic. The from and to.
parts are both optional, and the central part (e.g.,
the r) can in fact be anything:

is

lim from (x -> pi /2) (tan-x) = inf

lim (tan x)=00
X-1f/2

Again, the braces indicate just what goes into the
fro~ part.

There is a facility for making braces,
brackets, parentheses, and vertical bars of the
right height, using the keywords left and right:

left [x+y over 2a right)-=-1

makes'

h:lj_1
A left 'need not have a corresponding right, as we
shall see in the next example. Any characters
may follow Ie./I and right, but generally only vari­
~us parentheses and bars are n:teaningful.

Big brackets; etc., are often used with
another facility, called piles, which make vertical
piles of objects. For example, to get

I 11 if x>O
sign (x) == 0 if x=O

. -1 if x <0

we can type

sign (x) -= =- left (
rpile (1 above 0 above -I)
--I pile {if above if above if}
--I pile (x>O above x=O above x<O)

The construction "left (" makes a left brace big
enough to enclose the "rpile (... }", which 'is a
right-justified pile of "above ... above ... ".
"lpile" makes a left-justified pile. There are also
centered piles. Because of the recursive language
definition, a pile can contain any number of ele­
ments; any element of a pile can of course con­
tain piles.

Although EQ'N makes a valiant attempt to
use the right sizes and fonts, there are times
when the default assumptions are simply not
what (s wanted. For instance the italic sign in the
previous example would conventionally be in
roman. Slides and transparencies often require
larger characters than normal text. Thus we also
provide size and font· changing commands: "size
12 bold (A -x-=-y)" will produce A X = y.
Size is followed by a nurober representing a char­
acter size in points. (One point is Ij72 inch; this
paper is set in 9 point type.)

If necessary, an input string can be quoted
in " ... ", which turns off grammatical significance,
and any font or spacing changes that might oth­
erwise be done on it. Thus we can say

Iim- roman "sup;" -x sub n = 0

. to ensure that, the supremum doesn't become a
superscript:

lim sup XI/=O

Diacritical marks, long a problem in tradi­
tional typesetting, are straightforward:

:!+x+y+X + Y=z+z
is .made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally chang­
ing default sizes and fonts, for example for mak­
ing viewgraphs or for setting chemical equations.
The language allows for matrices, and for lining
up equations at the same' horizontal position.

Finally, there is a definition facility, so a
user can say

define name " ... "

at any time in the document; henceforth, any
occurrence of the token "name" in an expres­
sion will be expanaed into whatever was inside
the double quotes in its definition. This lets
users . tailor the language to their own

142 DOCUMENT PREPARATION

specifications, for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations, and passes its output to
TROFF. Since TROFF uses lines beginning with a
period as control words (e.g., ".ce" means
"center the next output line"), EQN uses the
sequence ".EQ" to mark the beginning of an
equation and ".EN." to mark the end. The
".EQ" and ".EN" are passed through to TROFF
untouched, so they can also be used by a
knowledgeable user to center equations, number
them automatically, etc. By. default, however,
".EQ" and" .EN" are simply ignored by TROFF,
so by default equations are printed in-line.

".EQ" and ".EN" can be supplemented
by TROFF commands as desired; for example, a
centered display equation can be produced with
the input:

.ce

.EQ
x· sub i = y sub i ...
.EN

Since it is tedious to type ".EQ" and
".EN"· around very short expressions (sin'gle
letters,' for instance), the user can also define
two chara,cters to serve as the left and right del­
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and right delimiters have both
been set to "#", the input:.

Let #x sub i#, #y# and #alpha# be positive

produces:

Let Xi, Y and a be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f", one
issues the command:·

eqn f I troff

The vertical bar connects the output of one pro­
cess (EQN) to the input of another (TROFF).

5. Language Theory

. The basic structure of the language is not a
particularly original. one. Equations Me pictured
as a set of "boxes," pieced together in various
ways. For example, something with a subscript
is just a box. followed by another box moved
downward and shrunk by an appropriate amount.
A fraction' is just a box centered above another
box, at the right altitude" with a line of correct

. length drawn between them.

The gramm&r for the language is shown

below. For purposes of exposition, we have col­
lapsed some productions. In the original gram­
mar, there are about 70 productions, but many
of these are simple ones used only to guarantee
that some keyword is recognized early enough in
the parsing process. Symbols in capital letters
are terminal symbols; lower case symbols are
non-terminals, Le., syntactic categories. The
vertical' bar I indicates an alternative; the brack­
ets [] indicate optional material. A TEXT is a
string of non-blank characters or any string
inside double quotes; the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box I eqn box

box text
{eqn}
box OVER box
SQRT box
box SUB box I box SUP box.
[L I C I R]PILE { list}
LEFT text eqn [RIGHT text]
box [FROM box] [TO box]
SIZE text box
[ROMAN I BOLD I ITALIC] box
box, [HAT I BAR I DOT I DOTDOT I TILDE]
DEFiNE text text

list eqn I list ABOVE eqn

text : TEXT

The grammar makes it oovious why there
are few exceptions. For example, the observa­
tion that something can be replaced by a more
complicated something in braces is implicit in the
productions:

eqn : box I eqn box
box : text I { eqn }

Anywhere a single character could be used, .any
legal construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

Hover {b over c}' ?

To answer questions like this, the grammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In particular, we specify (more or less
arbitrarily) that over associates to the left, so the
first alternative above is the one chosen. On the
other hand, sub arid sup bind to the right,

TYPING DOCUMENTS ON THE UNIX SYSTEM 143

because this is closer to standard mathematical
practice. That is, we assume x ob is X(ob), not
(xo)b.

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define SLIp to have a higher precedence than
2

over, so this construction is parsed as G
b

instead

1
of G b.

Naturally, a user can always force a partic­
ular parsing by placing braces around expres­
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we use is small
enough to be easily. understood, for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup­
plemental information about precedence and
associativity (also small enough to be under­
stood) provides the compiler-compiler with the
informat!on it needs to make a fast, deterministic
parser for the specific language we want. When
the language is supplemented by the disambi­
guating rules, it is in fact LR (l) and" thus easy to
parse[5].

The output code is generated as the input
is scanned. Any time a production of the gram­
mar is recognized, (potentially) some TROFF
commands are output. For example, when the
lexical analyzer reports that it has found a TEXT
(Le., a string of contiguous characters), we have
recognized the production:

text : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name
and the string to TROFF, and let TROFF perform
the storage management. All we save is the
name of the string, its height, and its baseline.

As another example, the translation associ­
- ated with the production

box : box OVER box

is:

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down~
move right enough to center bottom box~
draw bottom box (i.e., copy string for bottom box)~
move up;" move left enough to center top box;
draw top box (Le., copy string for top box)~
move down and left~ draw line full width~
return to proper base line.

Most of the other productions have equally sim­
ple semantic actions. Picturing the output as a
set of properly placed boxes makes the right
sequence of positioning commands quite obvi­
ous. The main difficulty is in finding the right
numbers to use for esthetically pleasing position­
ing:

With a grammar, it is usually clear how to
extend the language. For instance, one of our
users suggested a TEN~OR operator, to make
constructions like

k ;

I~' T IIi

Grammatically, this is easy: it is sufficient to add
a production like

box" : TENSOR { list}

Semantically, we need only juggle the boxes to
the right places.

6. Experience

There are really three aspects of
interest- how well EQN sets mathematics, how
well it satisfies its goal of being "easy to use,"
and how easy it was to build.

The first question is easily addressed. -This
entire paper has been set b.y the program.
Readers can judge for themselves whether it is
good enough for their purposes. One of our
users commented that although the output is not
as good as the best hand-set material, -it is still
better than average, and much better than the
worst. In any case, who cares? Printed books
cannot compete with the birds and flowers of
illuminated manuscripts on esthetic grounds,
either, but they have some clear economic
advantages.

Some of the deficiencies' in the output
could be cleaned up with more work on our part.
For example, we sometimes leave too much
space between a roman letter and an italic one.
If we were willing to keep track of the fonts
involved, we could do this better more of the

144 DOCUMENT PREPARATION

time.

Some other weaknesses are inherent in our
output device. It is hard, for instance, to draw a
line of an arbitrary length without getting a per­
ceptible overstrike at one end.

As to ease of use, at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists, and computer scientists.
Their 'typical reaction has been something like:

(1) It's easy to write, although I make the fol-
lowing mistakes... '

.(2), How do I do ... ?

(3) It botches the following things.... Why
don't you fix them?

(4) You really need the following features ...

, The learning time is shorLA few minutes
gives the general flavor, and typing a page or two
.of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were

. the original target of the ~. stem. They tend to
be enthusiastic converts. They find the language
easy to learn (most are largely self-taught), and
have I~ttle trouble producing the· output they
want. They are of-course less 'critical of the
esthetics of their output than users trained in
mathematics. After a transition period, most
find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems
to be remembering' that a blank is a delimiter~
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance \s typing

f(x sub j)

which produces

instead of

f(x;)

Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering "how much is
'being done, and it is certainly more compact than
the corresponding TROFF commands. For exam­
ple, here is the source for the continued fraction .
expression in Section 1 of this paper:

a sub 0 + b sub lover
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
(a sub 3 +, })}

This is the input for the large integral of Section
1; notice the use of definitio~s:

define emx "{e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over {a emx - be sup -mx} -=­
left { Ipile {

lover {2 mab} -Iog-
{sa emx ~ sb} over {sa' emx + sb}

above
lover mab - tanh sup -1 (sa over sb emx)

above
-lover mab - coth sup -1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really bnly a
few person-months invested. Much of this time
has gone into two things-fine-tuning (what is
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction?), and changing things found deficient
by our users (shouldn't'a tilde be a delimiter?).

The program consists of a number of
small, essentially unconnected modules for code
generation, a simple lexical analyzer, a canned
parser which we did not have to write, and some
miscellany associated with input files and the
macro facility. The program is now about 1600
lines of C [6], a high-level language reminiscent
of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic' routines that generate the
actual TROFF commands can be changed to
accommodate' other formatting languages and
devices. For exaJllple, in less than 24 hours, one
of us changed the entire semantic package to
drive NROFF, a variant of TROFF, for typesetting
mathematics on teletypewriter .devices capable of·
reverse line motions. Since many potential users
do hot have access to a typesetter, but stilI have
to type mathematics, this provides a way to get a
typed version of the final output which is close
enough for debugging purposes, and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is possible
to do acceptably good typesetting of mathematics
on a phototypesetter, with an input language that
is easy to learn and use and that satisfies many
users' demands. Such a package can be imple­
mented in short order,. given a compiler-compiler,

TYPING DOCUMENTS ON THE UNIX SYST~M .145

and a decent typesetting program underneath.

Defining a language, and building a com­
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written. everything into code directly,
we would have been locked into our original
design. Furthermore, we would have never been
sure where the exceptions and special cases were.
But because we have a grammar, we can change
our minds readily and still be reasonably sure
that if a construction works in one place it will
work everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna,
the authOi of TROFF, for his willingness to
modify TROFF to make our task easier and for
his continuous assistance during the develop­
ment of our program. We are also grateful to A.
V. Aho for help with language theory, to S. C.
Johnson for aid with the compiler-compiler, and
to our early users A. V. Aho, S. I. Feldman, S.
C. Johnson, R. W. Hamming, and M. D. McIlroy
for their constructive criticisms.

References

[I] A Manual of Slyle. 12th Edition. Univer­
sity of Chicago Press, 1969. p 295.

[2] Model CIAIT Phololypeseller. Graphic Sys­
tems, Inc., H\jdson, N. H.

[3] Ritchie, D. M., and Thompson, K. L.,
"The UNIX time-sharing system." Comm.
ACM 17. 7 (July 1974), 365-375.

[4] O~sanna, J. F., TROFF User's Manual.
Bell Laboratories Computing Science
Technical Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., "LR
Parsing." Compo Surv. 6. 2 (June 1974),
99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall,
Inc., 1978.

Typesetting Mathematics - User's Guide (Second Edition) .

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the' user's guide for a system for typesetting mathematics, using the photo­
typesetters on the UNIXt and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres­
sions like lim (tan x)sin 2x = 1 or display equations like

X-Tr/2 () I s k Z k] . S zk I k
G(z)=e1nGz=exp L-- =TIe k

. k~l k k~l .

++s)z+ St;2 + .. '][1+ S~z2 + :/~: + ~ ..] ...

=L
m~O

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathemati­
cal expressions can be embedded in the running text of a manuscript, and the entire document
produce~ in on~ process .. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathem'atical
expressions on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

tUN IX is a Trademark of Bell Laboratories.

146

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems. pho­
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like +, x,
parentheses, and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[I], so the nor­
mal mode of operation is to prepare a docu­
ment with both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on Model 37 teletypes. The input is identi­
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
cour~e, some things won't look as good
because terminals don't provide the variety
of characters, sizes and fonts that a '
typesetter does, but the output is usually
ad.equate for proofreading.

To use EQN on UNIX,

eqn files I troff

GCOS use is discussed in section 26.

2. Displayed Equations

• To tell EQN where a mathematical
expression begins and ends, we mark it with
lines beginning .EQ and .EN. Thus if you
type the lines

.EQ
x=y+z
.EN

your output will look like

x=y+z

The .EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering, numbering,
and so on yourself. The most comn.on way
is to use the TROFF and NROFFmacro pack­
age package '-ms' developed by M. E.
Lesk[31, which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa­
tion, use .EQ L instead of .EQ. To indent it,
use .EQ I. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. F.or example,
the input

.EQ I O.1a)
x = f(y/2) + y/2
.EN

pr,oduces the output

x= j(y/2)+y/2 O.1a)

There is also a ·shorthand notation so
in-line expressions like ~ 1 can be entered
,without .EQ and .EN. We will talk about it in
section 19.

3. Input spaces

Spaces and newlines within an expres­
sion are thrown away by EQN. (Normal text -
is left absolutely alone.) Thus between .EQ
and .EN,

x=y+z

147

148 DOCUMENT PREPARATION

and

and

x=y+z

x = Y
+z

and so on all produce the same output

x=y+z

You should use spaces and new lines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you make a mistake.

4. Output spaces

To force extra spaces into the output,
use a tilde" -" for each space you want:

x-=-y-+-z

gives

x=y+z

You can also use a circumflex """" which
gives a space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres­
sion, but the tab stops must be set by TROFF

commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical sym­
bols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin (omega Odt

produces

X=27T f sin (w t) dt

Here the spaces in the input are necessary
to tell EQN that int, pi, sin and omega are
separate entities that, should' get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic; pi and
omega are made Greek; and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type j(pi) without leaving spaces
on both sides of the pi. As a result, EQN

does not recognize pi as a special word, and
it appears as j(pi) instead of j(7T).

A complete list of EQN names appears
in section 23". Knowledgeable users can also
use TROFF four-character names for any­
thing EQN doesn't know about,. like \ (bs for'
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces (or tabs or new lines) , as we did in
the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

x-=-2-pi-inCsin-(-omega-C)-dt

is much the, same as the last example,
except that the, tildes not only separate the
magic words like sin, omega, and so on, but
also add extra spaces, one space per tilde:

x = 2 7T f sin (w t) dt

Special words can also be separated by
braces { } and double quotes " ... ", which
have special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are
obtained with the words sub and sup.

x: sup 2 + y sub k

gives

X
2+Yk

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you
xsub2 instead of X2. Furthermore, don't
forget to leave a space (or a tilde, etc.) to
mark th'e' end of a subscript or superscript.
A common error is to say something like

y = (x sup 2) + 1

which causes

Y=(X 2)+1

instead of the intended

y=(x2)+l

TYPESETTING MATHEMATICS-USER'S GUIDE (SECOND EDITION) 149

Subscripted subscripts and super­
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

Other than this special case, sub and
sup group to the right, so x sup y sub z

Y. Y means x ., not x z.

8. Braces for Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and } to mark the beginning and
end of the subscript or superscript:

e sup Ii omega t}

is

Rule: Braces can a/ways be used to force
EQN to treat something as a unit, or just to

. make your intent perfectly clear. Thus:

x sub Ii sub 1} sup 2

is

with braces,but

is

x sub i sub 1 sup 2

X2
. 11

which is rather different.

Braces can occur within braces if
necessary:

e sup {i pi sup {rho + I}}

is

The general rule is that anywhere you could
use some single thing like x, you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra will cause. EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like "{". Quoting is discussed in
more detail in section 14.

9. Fractions

To make a fraction, use the word over:

a + b over 2c = 1

gives

a+b=l
2c

The line is made the right length and posi­
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta} over {sin (x)}

is

a+{3
sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi

-b2
is -- instead of - b 1T The rules which

7T

decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square ~oots

To draw a square root, use sqrt:

sqrt a + b + lover sqrt {ax sup 2 + bx +c}
is

150 DOCUMENT PREPARATION

Warning - square roots of tall quantities
look -lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

Big square roots are generally better written
as something to the power 1/2:

(a 2/ b2) 1/2

which is

(a sup 2 /p sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar
constructions are easy:

sum from i =0 to {i =. inf} x sup i

produces

Notice that we used braces to indicate where
the upper part i=oo begins and ends. No
braces were necessary for the lower part
i=O, because it contained no blanks. The
braces will never hurt," and if the from and to
parts 'contain any blanks, you must use
braces around them.

The from "and to parts are both
optiomil, but if both are used, they have to
occur in that order.

Other useful characters can "replace the
sum in our example:

int prod union inter

t become, 'respectively,

J"> II -U n
Since the thing before the from can be any­
thing, even something in braces, from-to can
often be used in unexpected ways:

lim from {n - >" inf} x sub n =0

is

12. Size and Font Changes

By default, equations are set in 10-
point type (the same size as this guide),
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali­
ant attempt to use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold
and fat. Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x = y +
size 14 {alpha + beta}

X=y+a +/3
As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 { ... }

Legal sizes which may follow size are
6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24,
28, 36. You can also change the size by a
given amount; for example, you can say
size +2 to make the size two points bigger,
or size - 3 to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say font X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, c italic and bold, other' fonts may not
give quite as good an appearance.

The fat operation takes the current
font and widens it by overstriking: fat grad is
V and fat {x sub ,} is Xi'

If an entire document is to be in a
non-standard size or font, it is a severe nui­
sance to have to write out a size and font
change for each eQ.uation. Accordingly, you
can set a "global" size or font which

TYPESETTING MATHEMATIC~USER'S GUIDE (SECOND EDITION) 151,

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ
gsize 16

. gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after

'.6 gsize can be a rela'tive change with + or -.

Generally, gsize and gfonl will appear at
the b~ginning of a document but they can
also appear thoughout a document: the glo­
bal font and size can be changed as often as
needed. For example, in a footnute; you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks
To get funny marks on top of letters,

there are several words:

x dot x
x dotdot x
x hat x
x tilde x
x vec x
x dyad x
x bar x
x under ~

The diacritical mark is placed at the right
height. The bar and under are made the
right length for th~ entire construct, as in
x+y+z; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(" .. ~,,) is not subject to any of the font
changes ~and spacing adjustments normally
done by the equation ~etter. This provides a
way to do your own spacing and adjusting if

. needed:

*Like this one, in which we have a few random
expressions like Xi and 1T2. The sizes for these
were set by the command gsize - 2.

italic "sin(x)" + sin (x)

is

Quotes are also used to get braces and
other EQN keywords printed:

,,{ size alpha l"
is

{ size alpha J
and

roman III size alpha l"
is

{ size alpha }

, The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want any­
thing in your output. For example, to make
1-Ie, you can't just "type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

"" sup 2 roman He

To, get a literal quote use "\''''.. TROFF
characters like \ (bs can appear unquoted,
but more' complicated things like horizontal
and vertical motions with \ hand \ v should,
always be quoted. (If you've never heard of
\ hand \ v, ignore this section.)

15. Lining Up Equations
Sometimes it's necessary to line up a

series of equations at some horizontal posi­
tion, often at an equals sign. This is done
with two ope~ations called mark and lineup.

The wo'rd mark may appear once a~
any place in an equation. It remembers the
horizontal position where it appeared. Suc­
cessive equations can contain one
occurrence of the word, lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

152 DOCUMENT PREPARATION

.EQ I
x+y mark = z
.EN
. EQ I
x lineup = 1
.EN

to produce

x+y=z

x=l

For reasons too complicated to talk about,
when you use EQN -and '-ms', use either
.EQ I or ;EQ L. mark and -lineup don't work
with centered equations. Also bear in mind
that mark doesn't look ahead;

x mark =1

x+y lineup =z

isn 'tgoing to work, _ because there isn't
room for the x+y part after the mark
remembers where the x is.

16. Big Brackets, Etc.

To get big brackets [], braces {},
parentheses (), and bars II around things,
use the left and right commands:

- lefr{ a over b + 1 right}
-=- left (cover d right)
+ left [e right] -

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char­
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< = left ceiling 'a over b right ceiling

pr<;>duces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because -they are
made up of three, five, seven, etc., pieces,
while brackets can be made up of two,

three, etc. -Second, big left and right
parentheses often look poor, because the
character set is poorly designed .

The right part may be omitted: a "left
something" need not have a corresponding
"right something". If the right part is omit­
ted, put braces around the thIng you want
the left bracket to encompass. Otherwise,
the resulting brackets may be too large.

If you want to omit the left part, things
are more complicated, because technically
you can't have a right without a correspond­
ing left. Instead you have t6 say

. left '"' right)

for example. The left nn means a "left noth­
ing". This satisfies the rules without hurt­
ing your output.

17. Piles

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A -=- left [,
pile { a above b above c }
-- pile { x above y above z }

right]

will make

A = I~ ~I
The elements of the pile (there can be as
many as you want) are centered one above

-another, at the right height for most pur­
poses. The keyword above is used to
separate the pieces; braces are used around
the entire l,ist. The elements of a pile can
be as complicated as needed, even contain­
ing more piles.

Three other forms of pile exist: Ipile
makes a pile with the elements left-justified;
rpile makes ~ right-justified pile; and cpile
makes a' _ centered pile, just like pile. The
vertical spacing between the pieces is some­
what larger for 1-, 'r- -arid cpiles than it is for
qrdinary piles.

roman sign (x) - =:..
left {

-lpile {I above 0 above -I}
-- lpile
{irx>o above- irx=O above irx <oj

TYPESETTING MATHEMATICS-USER'S GUIDE (SECOND EDITION) 153

makes

sign(x) = I~
-1

if x>O

if x=O

if x<O

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example, to make a neat array like

you have to type

matrix {

Xi x 2

Yi y2

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by, the word above. You can also,
use Icol. or rcol to left or right adjust
columns. Each column can be separately
adjusted, 'and there can be as many columns'
~s you like. '

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of ihe piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding'
what spacing to use.

A word of warning about matrices -
each column must have the same number oj
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations
In ,a mathematical document, it is

necessary 'to follow mathematical conven­
tions not just in display equations, but also
in the body of the text, for example by mak­
ing variable names like X italic. 'Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con­
tinual repetition of .EQ and .EN is a nuisance.

,Furthermore, with '-ms', .EQ and .EN imply
a displayed equation.

EQN provides a shorthand for short in­
line expressions. ' You can define two char­
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and -right characters to dollar
signs, for example, add to the beginning of
your document the three lines . "

.EQ
delim $$
.EN

Having done this, you can" ~hen say things
like

Let $alpha sub i$ be the primary
variable, and let $beta$ be zero.
Then we can show that $x sub 1 $ is
$> =0$.

This works as you might expect - spaces,
newlines, -and so on are significant in the
text, but not in the equation p,art itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

n "

something like LXi does not interfere with
" i=1 '

the lines surrounding it.

,To turn off the delimiters,

.EQ
delim off
.EN

Warning: don't use braces, tildes,
circumflexes, or double quotes as delimiters
:..... chaos will result.

20. Definitions
EQN provides a facility so you can give

a frequently-used string of characters a
name, and thereafter just type the name
inst~ad of the whole string. For example, if
the sequence

x'sub i -sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

definexy IX sub i sub 1 + y sub i sub 1 I

This makes .xy a shorthand for whatever
characters occur between the single quotes·
in'the definition. You can use any character

154 DOCUMENT PREPARATION

instead of quot~ to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can use .xy like this:

.EQ
f(x) = xy ...
.EN .'

and so on. Each occurrence of xy will
expand into what it was defined as. Be care­
ful to leave spaces or their equivalent
around the name when you actually use it,
so EQN will be able to identify it as special.

. There are several things to watch out
for. First, although definitions can use pre­
vious definitions, as in

.EQ
define xi ' x sub i '
define xiI ' xi sub 1 '
.EN

don't define something in terms of itself A
favorite error is to say

define X ' roman X '

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X ' roman "X" ,

however, the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make / mean over by saying

define / 'over'

or redefine over as / with

define over ' / '

If you need'different things to print on
a terminal and on the typesetter, it is some­
times worth defining a symbol differently in
NEQN and EQN. This' can be done. with
ndefine and· tdefine. A definition made with
ndefine only takes effect if you are runni9g
NEQN; if you use tdefine, the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries io get most things
at the right place on the paper, it isn't per­
fect, and "occasionally you will need to tune
the' output to make it just right. Small extra

horizontal spaces can be obtained with tilde
and circumflex. You can also say back nand
fwd n to move small amounts horizontally.
n is how far to move in 1/100's of an em
(an em is about the width of the letter 'm'J
Thus back 50 moves back about half the
width of an, m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example
Here is the complete source for the

three display equations in the abstract of this
guide. .

.EQ I
G(z)-mark =:- e sup (In - G(z) }
-=:- exp left (
sum from k> =: 1 {S sub k z sup k} over k right)
-=- prod from k> =1 e sup {S sub k Z5UP k Ik}

- .EN
.EQ I
lineup == left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1 + { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over (2 sup 2 edot 2!)
+ ... right) ...
.EN
.EQ I '
lineup =: sum from m> =0 left (
sum from
pile (k sub 1 ,k sub 2. , ... , k sub m > =0
above
k sub 1 +2k sub 2 + ... +mk sub m =m)
{ S sub 1 sup {k sub 1} } over {I sup k sub 1 k sub 1 ! } -
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } -
...
{ S sub m sup {k sub m}' } over {m sup k sub m k sub m ! }
right) z sup m
.EN

23. Keywords, Precedences, Etc.
If you don't use braces, EQN will do

operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left· right

All others group to the right.

. ~. . ~ ,

TYPESETTING MATHEMATICS-USER'S GUIDE (SECOND EDITION) 155

Digits, parentheses, brackets, punctua­
tion marks, and these mathematical words
are converted to Roman font when encoun­
tered:

sin cos tan sinh cosh tanh arc
max min lim 'log In exp
Re 1m and if for det

These character sequences are recognized
and translated as shown.

>=
<=

!=
+­
->
<-
«
»
inf
partial
half
prime
approx
nothing
cdot
times
del
grad

, ... ,
sum

int

prod
union
inter

To obtain Greek

;:C

±

«
»
00

x
V
V

L
f
II
U' n
letters, simply

them out in whatever case you want:

DELTA A. iota
GAMMA r kappa K

LAMBDA A lambda A
OMEGA n mu JL
PHI <I> nu v
PI . 11 omega w
PSI 'I' omicron 0

SIGMA L phi 1>
THETA e pi 7T

UPSILON Y psi t/J
XI - rho p --alpha ex sigma (J"

spell

beta f3 tau T

chi X theta ()

delta 8 upsilon v
epsilon e xi g
eta 71 zeta ,
gamma 'Y

These are all the words known to EQN
(except for characters with names)" together
with the section where they are discussed.

above 17, 18 lpile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 Vt': 13
italic 12 , 4, 6
leol 18 { } 8
left 16 " " 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation,
like leaving out a brace (very common) or
having one too many (very common) .or
having a sup with nothing before it (com­
mon), EQN will tell y<?u with the message

Syntax err:or between lines x and y, file z

where x and yare approximately the lines
between which the trouble occurred, and 7 is
the name of the file in question. The line .
numbers are approximate - look nearby as
well. There are also self-explanatory mes­
sages that arise if you leave out a quote or
try to run EQN on a .non-existent file ..

If you want. to check a document
before actually printing it (on UNIX only),

156 DOCUMENT PREPARATION

eqn files> /dev/null

will throwaway the output but print the
messages.

If you use something like dollar signs
as delimiters, it is easy to leave one out.
This causes very strange troubles. The pro­
gram checkeq (on GCOS, use .Icheckeq
instead) checks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow", you
have exceeded this limit. If you print the
equation as a displayed equation this mes­
sage will usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for this is to break the equation into
two separate ones.

On a related topic, EQN does not break
equations by itself - you must split long
equations up across multiple lines by your­
self, marking each by a separate .EQEN

sequence. EQN does' warn about equ,ations
that are too long to fit on one line.

25. Use on UNIX

To print a document that contains
mathematics on tl~e UNIX, typesetter,

eqn files I troff

" If there are any TROFF options, they go after
the 'TROFF part of the command. For exam­
ple,

eqn files I troff -ms

To run the same document on the GCOS
typesetter, use

eqn files I troff -g (other options) I gcat

A compatible version of EQN can be,
used on' devices like teletypes and DASI and
GSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example, use

neqn files I nroff

The language' for equations recognized by
NEQN is identical to that of EQN: although of
course the output is more restricted.

,/ To use a GSI or DAS'I terminal as the
output device,

neqn files I nroff - Tx

where x is the terminal type you are using,
such as 300 or 300S.

EQN and NEQN can be used with the
TBL program [2] for setting tables, that con­
tain mathematics. Use TBL before [N}EQN,

like this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments

We are deeply indebted to J. F.
Ossanna, the author of TROFF, for his wil­
lingness to extend TROFF to make our task
easier, and for his continuous assistance
during the development and evolution of
EQN. We are also grateful to .A. V. Aho for
advice on language design, to S. C. Johnson
for assistance with the Y ACC compiler­
compiler, and to all the EQN users who have
made helpful suggestions and criticisms.

References
'~

[1], J. F. Ossanna, "NROFF/TROFF User's
Manual", Bell Laboratories Computing'
Science Technical Report #54,,1976.

[2] M. E. Lesk, "Typing Documents on
UNIX", Bell Laboratories, 1976.

[3] M. E. Lesk, "TBL - A Program for
Setting Tables", Bell Laboratories
Computing Science Technical Report
#49, 1976.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill,' New Jersey 07974

ABSTRACT

Tbl is a document formatting preprocess~r for lro./! or nroffwhich makes
even fairly complex tables easy to specify and enter. It is available on the PDP·
11 UNIX· system and on Honeywell 6000 Geos. Tables are made up of columns
which may be independently centered, right-adjusted, .left-adjusted, or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table, and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars)

State
. Taxes Money

Net
coHected spent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12' 3.10 ~1.02

Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98

. Mississippi 1.15 2.32 + 1.17
Texas 9.33 11.13 +1.80

January 16, 1979

• UNIX is a Trademark/Service Mark of the Bell System

151

Introduction.

Tbl turns a simple description of a table into a froff or nro,{f [1] program (list of com­
mands) that prints the table. Tbl may be used on the pop-II UNIX [2] system and on the
Honeywell 6000 GCOS system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus fbI may be used with the equation
formatting program eqn [3] or various layout macro packages [4,5,61, but does not duplicate
their functions. ' ,

This memorandum is divided into two parts. First we give the rules for preparing fbI
input~ then some examples are shown. The description of rules is precise but technical, and the
beginning user may prefer. to read the examples first, as they show some common table

.arrangements. A section explaining how to invoke fbI precedes the examples. To avoid repeti­
tion, henceforth read fro,{fas '''fro,{fo~ nro,{f. "

The input to 'fbI is text for a document, with tables preceded by a ". TS" . (table start)
command and followed by a ". TE," (table end) command. Tbl processes the tables, generating
tro,{fformatting 'commands, and leaves the remainder of the text unchanged. The". TS" ,and
" . TE" lines are copied, too, so that fro,{f page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit. In particular, any
arguments on the". TS" or " . TE". lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input is as fJllows:

text
.TS
fable
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options:
fonnat •
data
.TE

I

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
description of tables is given iii the next section.

158

Tbl-A PROGR'~M TO FORMAT TABLES 159

Input commands.

As indicated above, a table contains, first, global options, then a format section describif!g
the layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The various parts of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this
line must follow the . TS line immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust)~

expand

box

allbox

- make the table as wide as the current line length~

- enclose the table in a box~

- enclose each item in the table in a, box~

doublebox - enclose the table in two boxes~

tab (x) - use x instead of tab to separate data items.

Iinesize (n) - set lines or rules (e.g. from box) in n point type~

delim (xy) - recognize x and y as the eqn delimiters.

The fbI program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu­
'rate; use normal froffprocedures, such as keep-release macros, in that case. The user who
must 'have a mUlti-page boxed table should use macros designed for this purpose, as
explained below under 'Usage.'

2) FORMAT. The format section of the bible specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next . T &, if any - see below), and each line contains a key-,
letter for each column of the table. It is 600d practice to separate the key letters for each
column by spaces or tabs. Each key-letter: is one of the following:

L or I to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry~

.C or c to indicate a centered column entry~

Nor n to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits .of numbers line up;

A or a to indicate an alphabetic subcolumn~ all corresponding entries are aligned on
-the left, and positioned so that the widest is centered within the column (see
example on page 12) ~

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column, obvi­
ously)~ or

to indicate a vertically spanned heading, i.e. to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified, a location for the decimal point is sought. ' The
rightmost dot (.) adjacent to a digit is used ~s a decimal point~ if there is no dot adjoining
a digit, the rightmost digit is used as a units digit~ if,no alignment is indicated, the item is
centered in the column. However, the special non-printing character 'string \& may be
used to override unconditionally dots and digits, or to align alphabetic data~ this string, ._
lines up where a dot normally would, and then disappears from the final output. In the,
example below, the items shown at the left will be aligned (in a numerical column) as

160 DOCUMENT PREPARATION

shown on the right:

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749~ 12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider L or r items (L is used instead of I for
readability; they have the same meaning as key-letters). Alignment within. the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However,' alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries ..

Warning: the n and a items should not be used in the same column.

For readability, the . key-letters describing each column· should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for­
mat might appear as:

c s s
Inn.

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three columns; each remaining line contains a left-adjusted item in· the
first ~0hlmn followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines - A key-letter may be replaced by '_'(underscore) to indicate a hor­
iiontal line in place of the corresponding column' entry, or by '=' to indicate a dou­
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry~is provided for this column, it is ignored and a warn­
ing message is printed.

Vertical lines - A vertical bar may be placed bet'Neen column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. if two vertical bars appear· between key-Ietteis, a double vertical
line is drawn.

Space between columns - A number may follow the key-letter. This indicates the
. amount of separation between this column and the next column. The number nor­

mally specifies the separation in ens (one en is about the width of the letter 'n '). * If
the "expal')d" option is' used, then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation

• More precisely, an en is a number of points (I ~oint = 1172 inch) equal to half the current type size.

Tbl-A PROGRAM TO FORMAT TABLES 161

number is 3. 'If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning - Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters~ a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fl. Font change commands given with the table entries. override these
specifications.

Point size changes - A key-letter may be followed by the letter p orP and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given; one or
more blanks must separate them.

Vertical spacing changes - A key-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit, in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
vertical spacing request, This request has no effect unless the corresponding table
entry is a text block (see beloW).

Column width indica/ion - A key-letter may be followed by the letter w or Wand a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg­
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal trQff'units can be used to sc,,~c the
width value~ if none are used, the default is ens. If the width specification is a unit­
less integer the parentheses may be omitted. If the width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may pe followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be, separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type, with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np12w(2 .. 5i)fI 6

Alternative notation - Instead of listing the format of successive lines of a table on con­
secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

c s s, Inn' .

Default - Column descriptors missing from the end of a format line are assumed to be
L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

162 DOCUMENT PREPARATION

3) DATA. The d~ta for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac­
ter is \ is combined with the following line (and the \ vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option tabs option. There are a few special cases:

Troff commands within tables - An input line beginning with a '.' followed by anything
but a number is assumed to be a command to troffand is passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro­
duced by " .sp" commands in the data.

Full width horizontal lines - An input line containing only the character _ (underscore)
or = (equal sign) is taken to be a single or double line, respectively, extending the
full width of the table.

Single column horizontal lines - An input table entry containing only the character _ or =
is taken to be a single or double line extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Short horizontal lines - An input table entry containing only the string _ is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin­
ing lines.

Repeated characters - An input table entry containing only a string of the form \Rx '.I

where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x's is not extended to meet adjoining
columns.

Vertically spanned items - An input table entry containing only the character string \" ,_
indicates that the table entry immediately above spans qownward over this row. It is
equivalent to a table format key-letter of '''''

Text blocks - In order to include a block of text as a table entry, precede it by T{ and
follow it by T}. Thus the sequence

... T{
block of
text
T} ...

is the way to enter, as a single entry in the table, something that cannot con­
veniently be typed as a simple· string between tabs. Note that the T} end delimiter
must begin a line; additional columns of data may follow after a tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the troff program are likely to be exceeded, producing diagnostics such as 'too many
string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table,· processed separately by iro./J, and replaced
in the table as a solid block. If no. line length is specified in the block of text itself,
or in the table format, the default is to use L xC/(N+I) where L is the current line
length;C is the number of table columns spanned by the text, and N is the total
number of columns in the table. The other parameters (point size, font" etc;) used
in setting the block of text are those in effect at the beginriing of the table (including
the effect of the '~. TS" macro) and any table format specifications of size, spacing
and font, using the p, v and f modifiers to the .column key-letters. Commands
within the text block itself are also recognized, of course. However, troff commands
within the table data but not within the text block do not affect that block.

Tbl-A PROGRAM TO FORMAT TABLES 163

Warnings: - Although any number of lines may be present in a table, only the first 200.
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob­
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the". TS" command was encountered, except for font and size changes indi­
cated (a) in the table format section and (b) within the table data (as in the entry
\s+3\fIdata\fP\sO). Therefore, although arbitrary froffrequests may be sprinkled in
a table, care must be taken to avoid confusing the width calculations~ use requests
such as '.ps' with care.· .

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi­
lar lines, as with sub-headings or summarizations, the". T &" (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS·
0pfions ;
formaf.
dafa

.T&
formaf.
dafa
.T&
formaf •
dafa
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line can be close
to its cor.responding format line.

Warning: it is not possible to change tlie number of columns, the space between columns,
the global options such as box, or th~e selection of columns to be made equfll '.width.

Usage.

On UNIX, fbi ~an be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

tbl file-l file- 2 . . . I eqn I troff - ms

and, of course, the usual options may be used on the fro.ff and eqn commands. The usage for
nroffis similar to that for froff, but only TELETYPE® Model 37 and Diablo-mechanism (DASI or
as}) terminals can print boxed tables directly. .

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special - TX command line option to fbi which produces output that does
not have fractional line motions in it The only other command line options recognized by fbi
are -ms and -mm which are turned into commands to fetch the corresponding macro files~
usually it is more convenient to place these arguments on the fro.fJ part of the command line,
but they are accepted by (bl as well.

Note that when eqn and fbi are used together on the same file fbi should be used first. If
there are no equations within tables, either order works~ but it is usually faster to run fbi first,
since eqn normally produces a larger expansion of the input than fbi. However, if there are
equations within tables (using the delim mechanism in eqn), fbi must be first or the output will­
be scrambled. Users must also beware of using equations in n-style columns~ this is nearly

164 DOCUMENT PREPARATION·

always wrong, since tbl attempts to split numerical format items into two parts and this is not
possible with equations. The user can defend against this by giving the delim(xx) table option~
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del­
imiters are $$, giving delim($$) a numerical column such as "1245 $+- 16$" will be divided
after 1245, not after 16.

Tbl limits tables to twenty columns~ however, use of more than 16 numerical columns
may fail because of limits in troff, producing the 'too many number registers' message. 'Troff
number registers used by tbl must be avoided by the user within tables~ these include two-digit
names from 31 to 99, and names of the forms #x, x+, x I, AX, and X-, where X is any lower
case letter. The names ##, #-, and #A are also used in certain circumstances. To conserve
number register names, the n and a formats share a register~ hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros, tbl defines a number register TW which is the table
width~ it is defined by the time that the ". TE" macro is invoked and may be used in the
expansion of that macro. More importantly, to assist in laying out mUlti-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then
invoked at its end. By use of this macro in the page footer a mUlti-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the" . TS" macro. If the table start macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the
" . TH" is placed at the top of each page of table~ the remaining lines in the table are placed on
several pages as required. Note that this is not a feature of tbl, but of the ms layout macros ..

Examples.

Here are some examples illustrating features of tbl. The symbol (!) in the input
represents a tab character.

Input:

.TS
box~
ccc
I I l.
Language (!) Authors (!) Runs on

Fortran (!) Many (!) Almost anything
PLll (!)IBM G'>360/370 .
C (!) BTL (!) 11145,H6000,37Q .
BLISS <i>Carnegie-Mellon (!)PDP-I0,11
IDS (!) Honeywell (!) H6000
Pascal (!)Stanford (v370
.TE

Output:

Language

Fortran
PLll
C
BLISS
IDS
Pascal'

Authors Runs on

Many Almost anything
IBM 360/370
BTL III 45,H6000,370
Carnegie-Mellon PDP-I0,11
.Honeywell H6000
Stanford 370

Tbl-A PROGRAM TO FORMAT TABLES 165

Input:

.TS
allbox;
css
ccc
n n n.
AT&T Common Stock
Year <I> Price <I> Di vidend
1971 <I>41-54 <I> $2 .60
2 <I>41-54<I>2. 70
3 <I> 46-55 <I>2.87
4 <I> 40-53 <I> 3.24
5 <I> 45-52 (j) 3.40
6(j)51-59(j) .95*
.TE
* (first Quarter only)

Input:

.TS
box~
c s s
clclc
IIII n.
Major New York Bridges

Bridge (j) Designer (j) Length

Brooklyn ~J. A. Roebling (j) 1595
Manhattan (j)G. Lindenthal (j) 1470
Williamsburg (j) L. L. Buck (j) 1600

Queensborough (j) Palmer & (j) 1182
(j) Hornbostel

<I> (j) 1380
Tri bo'rough (j) O. H. Ammann (j) _
(j) (j) 383

Bronx Whitestone <I> 0 . H. Ammann (j) 2300
Throgs Neck (j) O. H. Ammann (j) 1800

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 ·3.40
6 51-59 .95*

* (first Quarter on Iy)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queensborough Palmer & .

Hornbostel

Triborough O. H. Ammann

Bronx Whitestone O. H. Ammann
Throgs Neck O. H. Ammann
George Washington O. H. Ammann

George Washington (j)O. H. Ammann (j)3500
.TE

.~ =
! .:;:ngth

1595
1470

. 1600

1182

1380

383
2300
1800
3500

166 DOCUMENT PREPARATION

Input:

.TS
cc
np-21 n I.
(1) Stack
(1)_
1 (1)46
(1)_
2 (1) 23
(1)_
3(1)15
<I>_
4(1)6.5
(1)_
5(1)2.1
(1)_
.TE

Input:

.TS
box~
LLL
LL
L LILB
LL
L L L.
january (1) february (1) march
april (1) may
june (1)july (1) Months
august (1) september
october (1) november (1) december
.TE

Output:

Stack
1 46-
2 23
3 15
4 6.5
5 2.1

Output:

january
april
june
august
october

february march

may I ·
july Months
september
november december

Input:

.TS
box;
cfB s s s.
Composition of Foods

-
.T&
c I c s s
c I c s s
c I c I c I c.
Food (j) Percent by Weight
\" (j)
\ " (j) Protein (j) Fat (j) Carbo­
\ " (j) \ " (j) \" (j) hydrate

-
.T&
I I n I n In.
Apples (j).4 (j).5 (j) 13.0
Halibut (j) 18.4 (j) 5.2 (j) .
Lima beans (j) 7 .5 (j) .8 (j) 22.0
Milk (j) 3.3 (j)4.0 (j) 5.0
Mushrooms (j) 3.5 (j) .4 (j) 6.0
Rye bread (j) 9.0 (j) .6 (j) 52.7
.TE

Input:

.TS
all box;
cfI s s
c cw(Ii) cw(Ii)
Ip9 Ip9 Ip9.
New York Area Rocks
Era (j) Formation (j) Age (years)
Precambrian (j) Reading Prong (j) > 1 billion
Paleozoic (j) Manhattan Prong (j) 400 million
Mesozoic (j) T { .
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} (j) 200 million
Cenozoic (j) Coastal Plain (j) T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation .
. ad
T} .
. TE

Tbl-A PROGRAM.TO FORMAT TABLES' 167

Output:

Composition of Foods
Percent by Weight

Food Carbo-Protein Fat hydrate
Apples .4 .5 13.0
kalibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3-.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

Output:

New York Area Rocks
Era Formation Age (years)

Precambrian Reading Prong > 1 billion

Paleozoic Manhattan Prong 400 million'

Mesozoic Newark Basin, 200 million
inc!. Stockton,
Lockatong, and
Brunswick for-
mations~ also
Watchungs and
Palisades.

Cenozoic Coastal Plain On Long Island
30,000 years~

Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

168 DOCUMENT PREPARATION

Input:

.EQ
delim $$
.EN

.TS
doublebox;
c c
II.
Name <D Definition
.sp
.vs +2p

Output:

Name

Gamma

Sine

Error

Bessei

Zeta

Definition

r(z)= 50 00 Iz-1e- f dl

sin (x)= ~; (e iX _e- iX
)

2 (Z 2
erf(z)=-J(e- f dl .J; 0

1 (1T
Jo(z)=-J(cos(zsinO)dO

1T' 0
00

,(s)= L k-S (Re s > 1)
k=1

Gamma<D$GAMMA (z) = int sub 0 sup inf t sup {z-I} e sup -tdt$
Sine <D $sin (x) = lover 2i (e sup ix - e sup -ix) $
Error CD $ roman erf (~) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel CD $ J sub 0 (z) = lover pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta<D$ zeta (s) = sum from k= 1 to inf k sup -s --(Re-s > 1)$
. vs -2p
.TE

Input:

.TS

Output:

Readability of Text
Line Width and Leading for IO-Point Type -box, tab(:);

cb s s s s
cp-2 s s s s
cllclclclc
c II c I c I c I c

Line Set I-Point 2-Point 4-Point

r2 II n2 In2 I n2 In.
Readability of Text
Line Width ~nd Leading for IO-Point Type

Line: Set: I-Point: 2-Point: 4-Point
Width: Solid: Leading :Leading : Leading

9 Pica: \-9.3: \-6.0 ': \-5.3: \-7.1
14 Pica: \-4.5: \-0.6: \-0.3: \-1.7
19 Pica:\-5.0:\-5.I: 0.0:\-2.0
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica:\-9.1 :\-9.0:\-5.9:\-8.8
.TE

Width Solid
9 Pica -9.3

14 Pica -4.5
19 Pica -5.0
31 Pica -3.7
43 Pica -9.1

Leading Leading Leading
-6.0 -5.3 -7.1
-0.6 -0.3 -1.7
-5.1 0.0 -2.0
-3.8 -2.4 -3.6
-9.0 -5.9 -8.8

/

Input:

.TS
c s
cip-2 s
In
an.
Some London Transport Statistics
(Year 1964)
Railway route miles <1> 244
Tube <1>66
Sub-surface <1> 22
Surface (j) 156
.sp .5
.T&
I r
a r.
Passenger traffic \- railway
Journeys <1> 674 million
A verage length (j) 4.55 miles
Passenger miles <1> 3,066 million
.T&
I r
a r.
Passenger traffic \- road
Journeys <1> 2,252 million
A verage length (]) 2.26 miles
Passenger miles (j) 5,094 million
.T&
I n
an.
.sp .5
Vehicles(j) 12,521
Railway motor cars <1> 2,905
Railway trailer cars (j) 1,269
Total railwayG)4,174
Omnibuses <1> 8,347
.T&
I n
an .
. sp .5
Staff(j) 73,739
Administrative, etc. (]) 5,582
Civil engineering(])5,134
Electrical eng. (j) 1,714
Mech. eng. \- railway <1>4,310
Mech. eng. \- road (]) 9,152
Railway operations (]) 8,930
Road operations (j) 35,946
Other (j) 2,971
.TE

Tbl-A PROGRAM TO FORMAT TABLES 169

Output:

Some London Transport Statistics
(Year 1964)

Railway route miles 244
Tube 66

. Sub-surface 22
Surface 156

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.·
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

170 DOCUMENT PREPARATION

Input:

.ps 8

.vs lOp

.TS
center box~
c s s
ci s s
ccc
IB In.
New Jersey Representatives
(Democrats)
.sp .5
Name (j) Office address (j) Phone 0

.sp .5
James J. Florio (j) 23 S .-(White Horse Pike, Somerdale 08083 (j) 609-627-8222
Williarri J. Hughes (j)2920 Atlantic Ave., Atlantic City 08401 (j)609-345-4844

o James J. Howard (j)801 Bangs Ave., Asbury Park 07712(j)201-774-1600
Frank Thompson, Jr. (j)10 Rutgers PI., Trenton 08618(j)609-599-1619
Andrew Maguire (j) 115 W. PassaicS1., Rochelle Park 07662 (j) 201-843-0240
Robert A. Roe (j) U.S.P .0., 194 Ward St., Paterson 07510(j)201-523-5152
Henry Helstoski (j)666 Paterson Ave., East Ruth"erford 07073 (j)201-939-9090
Peter W. Rodino, Jr. (j)Suite 1435A, 970 Broad St., Newark 07102(j)201-64°5-3213
Joseph G. Minish <i> 308 Main S1., Orange 07050 (j) 201-645-6363
Helen S. Meyner<I>32 Bridge St., Lambertville 08530 (j)609-397-1830
Dominick V. Daniels (j) 895 Bergen Ave., Jersey City 07306 <I> 201-659--7700
Edward J. Patten<I>Natl. Bank Bldg., Perth Amboy 08861 (j)201-826-4610
.sp .5
.T&
ci Os s
IB In.
-(Repu blicans)
.sp .5v
Millicent Fenwick<i>41 N. Bridge S1., Somerville 08876<I>201-722-8200
Edwin B. Forsythe(j)301 Mill St., Moorestown 08057<I>609-235-6622
Matthew J. Rinaldo (j) 1961 Morris Ave., Union 07083 <I> 201-687-4235
.TE
.ps 10
• vs 12p

Tbl-A PROGRAM TO FORMAT TABLES 171 :.

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Frank Thompson, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin B .. Forsythe
Matthew J. Rinaldo

New Jersey Representatives
(Democrats)

Office address .

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atiantic City 08401
801 Bangs Ave., Asbury Park 07712
10 Rutgers PI., Trenton 08618
115 W. Passaic St., Rochelle Park 07662
U.S. P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102

.308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
895 Bergen Ave., Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

(Republicans)

41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1961 Morris Ave., Union 07083

Phone

609-627-8222
609-345-4844
201-774-1600
609-599-1619
201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397 -1830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted.

Input:

.TS
expand~

c s s s
c c c c
II n n.
Bell Labs Locations
Name <I> Address <I> Area Code <I> Phone
Holmdel <I> Holmdel, N. J. 07733 <I> 201 <I> 949-3000
Murray Hill <I> Murray Hill, N. J. 07974 <I> 201 <I> 582-6377
Whippany <I> Whippany, N. 1. 07981 <I> 201 <I> 386-3000
Indian Hill <I> Naperville, Illinois 60540 <I> 312 <I> 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

'Bell Labs Locations ,
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
, 949-3000

582-6377
386-3000
690-2000

172 DOCUMENT PREPARATION

Input:

".TS
box;
cb s s s
c I c I c s
Itiw(lj) Iltw(2j) IlpSllw(1.6i)pS.
Some Interesting Places

Name <I> Description <I> Practical Information

T{
American Museum of Natural History
TI<I>T{
The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964).
Tl <I> Hours <I> 10-5, ex. Sun 11-5, Wed. to 9
\ ~<I>\ ~<I> Location <I>T{
Central Park West & 79th St.
Tl
\ ~<I>\ ~<I> Admission <I> Donation: $1.00 asked
\ ~<I>\ ~<I> Subway(D AA to 81st St.
\~ <I> \ ~ <I> Telephone <I> 212-S73-4225

Bronx Zoo<I>T{
About a mile long and .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea Hon eats 15 pounds of fish.

" Tl <I> Ho"urs (j) T{
10-4:30 winter, to 5:00 summer
Tl
\ ~ <I> \ ~<I> Location <I>T{
185th St. & Southern Blvd, the Bronx.
Tl
\A<I>\A(j)Admission<I>$1.00, but Tu,We,Th free
\A<I>\A<I> Subway (i)2, 5 to East Tremont Ave.
\ A <I> \ ~ (j)Telephone<I> 212-933-1759

Brooklyn Museum <I>T{
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station.
TI<I>Hours<I>Wed-Sat, 10-5, Sun 12-5
\A (j)\ A <I> Location (J.)T{
Eastern Parkway & Wa<;hington' A ve., Brooklyn.
Tl
\ A <I> \ ~ <I> Admission <IJ Free
\ A <I> \ A <I> Subway <I> 2,3 to Eastern Parkway.
\A <I> \ A(j) Telephone (j) 212-638-5000

T{
New-York Historical Society
TI<I>T{
All the original paintings for Audubon's
. I
Birds of America
.R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.
Tl <I> Hours <I> T{
Tues-Fri & Sun, 1-5; Sat 10-5
Tl
\ A <I> \ "<I> Location <I> T {
Central Pllrk West & 77th St.
Tl
\" <I> \ ~ <I> Admission (j) Free
\"<I>\"<I>Subway<I>AA to Slst St.
\" (j) \" (j)Telephone <I> 212-873-3400
.TE

Tbl-A PROGRAM TO FORMAT TABLES 173

Output:

Some Interesting Places

Name Description Practical·Information

American Muse­
wn of Natural
History

The collections fill 11.5 acres
(Michelin) or 25 acres (MT A)
of exhibition halls on four
floors. There is a full-sized re­
plica of a blue whale and the
world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile
wide, this is the largest zoo in
America. A lion eats 18
pounds of meat a day while a
sea lion eats 15 pounds of fish.

Brooklyn Museum Five floors of galleries contain
American and ancient art.
There are American period
rooms and architectural orna­
ments saved from wreckers,
such as a classical figure. from
~ennsylvania Station.

New- York Histor- All the original paintings fqr
ical Society Audubon's Birds q/' America are

here, as are exhibits of Ameri­
can decorative arts, ,New York
history, Hudson River school
paintings, carriages, and glass
paperweights.

Acknowledgments.

Hours

Location

Admission

Subway

Telephone

Hours

Location

Admission

Subway

Telephone

Hours

Location

Admission

Subway

Telephone

Hours

Location

Admission

Subway

Telephone

10-5, ex. Sun 11-5, Wed. to 9

Central Park West & 79thSt;-

Donation: $1.00 asked

AA to 81st St.

212-873-4225

10-4:30 winter, to 5:00 summer

185th St. & Southern Blvd, the
Bronx.

$1.00, but TU,We,Th free

2, 5 to East Tremont Ave.

212-933-1759

Wed-Sat, 10-5, Sun 12-5

Eastern Parkway & Washington
A ve., Brooklyn.

Free

2,3 to Eastern Parkway.

212-638:5000

Tues-Fri & Sun, 1-5; Sat 10-5

Central Park West & 77~h St.

Free

AA to 81st St.

212-873-3400

Many thanks a're due t~ J. C. Blinn, who has done ~ large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this, document and helped edit ali of it. All pho,totypesetting programs on UNIX are dependent
on the work of the late 1. F. Ossanna, whose assi'stance with this program in particular had been
1)10st helpful. This program is patterned on a table formatter originally written by J. F. Gimpel.
The assistance of T. A. Dolotta, B. W. Kernighan, al1d J. N. Sturman is gratefully ack­
nowledged.

References.

[1] . 1. F. Ossanna,NRoFFITROFF User's Manual, Computing Science Technical Report No'. 54,
Bell Laboratories, 1976.

[2] K. Thompson and D. M. Ritchie, 44The UNIX Time-Sharing System," Comm. ACM. 17,
pp. 365-75 (1974).

[3] B. W~ Kernighan 'and L. L. Cherry, 44A System for Typesetting Mathematics," Comm.
ACM. 18, pp. 151-57 (1975).

[4]- M. E. Lesk, Typing Documents all UNIX, UNIX Programmer's Manual, Volume 2.

174 DOCUMENT PREPARATION

(5J M. E. Lesk and B. W. Kernighan, Computer Typeselfing of Technical Journals on UNIX. Proc.
AFIPS Nee, vol. 46, pp. 879-888 (I977).

[6] J. R. Mashey and D. W. Smith, "Documentation Tools and Techniques," Proc. 2nd Int.
Conf. on Software Engineering. pp. 177-181 (October, 1976).

List of Tbl Command Characters and Words

Command Meaning , Section
aA Alphabetic subcolumn 2
allbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page - 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
fF Font change 2
i l ' Italic item 2
I L Left adjusted column '2
nN Numerical column 2'
nnn Column separation 2
pP Point siz,e change -2

'r R Ri~ht adjusted column 2
s8 Spanned item 2
tT Vertical spanning at top i
tab (x) 'Change data separator character ' 1
T{ T} Text block 3
vV Vertical spacing change 2
wW Minimum width value 2
.xx Included troffcommand 3
I Vertical line 2
II Double vertical line 2

Vertical span 2
V' ,Vertical span J
= Double horizontal line 2,3

Horizontal line 2,3

\- Short horizontal line 3
\Rx Repeat character 3

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search through
files of text, but most of them are based on a linear scan through the entire file, using some
deterministic automaton. This memorandum discusses a program which uses inverted indexes!
and can thus be used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaking the index. Thus
applications are restricted to those making many searches of relatively stable data. Further­
more, these programs depend on hashing, and can only search for exact matches of whole k.ey­
words. It is not possible to look for arithmetic or logical expressions (e.g. "qate greater than
1970") or for regular expression searching such as that in lex.2

Currently there are two uses of this software, the refer preprocessor~ to format references,
and the lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their
uses. Section 2· explains the operation of the searching algorithm and describes the data col­
lected for use with the /ookall command. The more important application, refer has a user's
description in section 3. Section 4 goes ~nto more detail on reference files for the benefit of
those who wish to add references to data bases or write new troff macros for use with refer. The
options to make refer collect identical citations, or otherwise relocate and adjust references, are
described in section 5. The UNIX manual sections for refer, 10 oka II, and associated commands
are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phases, each made of two, parts.
These are shown below.

A. Construct the index.

(1) Find keys"':"" turn the input files into' a sequence of tags and keys, where each tag
identifies a distinct item in lhe input and the keys for each such item are the strings
under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes. from which, given a set of keys, ,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

tUNIX is a Trademark of Bell Laboratories.

1. O. Knuth, The Art 0/ Computer Programming: VoL 3, Sorting and Searching, Addison-Wesley, Reading, Mass
(1977). See section 6.5.

2.' M. E. Lesk, "Lex -"''A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell Laboratories, Mur­
ray Hi,ll, New Jersey (0).

'175

176 DOCUMENT PREPARATION

(3) Search - Given some keys, look through the files prepared by the hashing and sort­
ing facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess.

Th~ first phase, making the index, is presumably done relatively infrequently. It should, of
course, be done whenever the data being indexed change. In contrast, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in steps (2)
and (3), while knowledge of the actual data files is needed only by steps (1) find (4). Thus it is
easy to ada}?t to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input
files. For dealing wit~ files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorting program (step 2) .. The
format used has one line for each input item, arranged as follows:

name:start,length (tab) keyl key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name, byte
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Nor­
mally, an item is either a whole file or a section of a file delimited by blank lines. After the
tab, the second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are not among the 100 most frequent words ·in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates). Keys are truncated to six characters and converted to lower case. Some selection is

needed if the original items are ver lrge. Vie normally just take the first n keys, with n less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce a!l index. What is wanted, ideally, is a series of lists showing the tags associ­
ated with each key. To condense this, what is actually produced is a list showing the tags asso­
ciated with each hash code, and thus with some set of keys .. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
. posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
each hash code. To speed up searching, the entry file· is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file; which gives the com­
plete tags. The key- file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query., containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers in

. the entry file used to access the lists in the posting file: These lists are addresses in the tag file
of documents PQ~ted under the hash codes derived from the query. The common items from

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 177

all lists are determined; this must include the items indexed by every key, but may also contain
some items which are false drops, since items referenced by the correct hash codes need not
actually have contained the correct keys. Normally, if there are several keys in the query, there
are not likely to be many false drops in the final combined list even though each hash code is
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against
the possibility that an item has false-dropped on some hash code in the query, the original
items are normally obtained from the delivery program (4) and the query keys checked against
them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if
the key d.erivation procedure is complex, it may be preferable to check against the keys fed to
program (2). In this case the optional key file which contains the keys associated with eac~
item. is generated, and the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for
each item. This file is not usually necessary with the present key-selection program, since the
keys always appear in the original document.

There is aiso all option (-en) for coordination level searching. This retrieves items which
match all but n of the query keys. The items are retrieved in the order of the number of keys
that they match. Of course, n must be less than the number of query keys (nothing is
retrieved unless it matches at least one key). '

As an example, consider one set of 4377 references, comprising .. 660,000 bytes. This
included 51,000 keys, of which 5,900 were distinct keys. The hash table is kept full td save
space (at the expense of time); 995 of 997 possible hash codes were used. The total set of
index files (no key file) included 171,000 bytes, about 26% of the original file size. It took 8
minutes of processor time to hash, sort, and write the index. To search for a single query with
the resulting index took 1.9 seconds' of pro~essor time, while to find the same paper with a
sequ~n'tial linear search using grep (reading all of the tags and keys) took 12.3 seconds of pro~
cessor time.

We have also used this software to index all of the English stored on our UNIX system.
This is the index searched by the fookall command. On a typical day there were 29,000 files in'
our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing
32,000,000 bytes (about 21%) were English text. The total number of 'words' (determined
mechanically) was 5,100,000. Of these 227,000 were selected as' keys; 19,000 were distinct,
hashing to 4,900 (of 5,000 possible) different hash codes. The resulting inverted file indexes
used 845,000 bytes, or about 2.6% of the size of the original files. The particularly sm~ll/
index~s are caused by the fact that keys are taken from only the first 50 non-common wordS' of
some very long input files.

Even this large fookall index can be searched quickly. For example, to find this document
by looking for the keys "lesk inverted indexes" required 1.7 seconds of processor time and sys ..
tern time. By comparison, just to search the 800,000 byte dictionary (smaller. than even the
inverted indexes, let alone the 32,000,000 bytes of text files) with grep takes 29 seconds of pro-.
cessor time. The fookall program is thus useful when looking for a document which you
believe is stored on-line, but do not. know where. For example~ many menlOs from the Com­
puting Science Research Center are in its UNIX file system, but it is often difficult to guess
where a particular memo might be (it might have several authors; each with many directories,
and have been worked on by a secretary with yet more directories). Instructions for the use of
the fookall command are given in the manual section, shown in the appendix to this memoran­
dum.

The only indexes maintained routinely are those of publication lists and all English files.
To make other indexes, the programs for making keys, sorting them, searching the indexes,
and delivering answers must be used. Since they are usually invoked as parts of higher-level
commands, they are not in the default command directory, but are available to. any us~r in- the

178 DOCUMENT PREPARATION

directory /usr/liblrefer. Three programs are of interest: mkey, which isolates keys from input
files; inv, which makes an index from a set of keys;, and hunt, which searches the index and
delivers the items. Note that the two parts of the retrieval phase are combined into one pro­
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.

These three commands have a large number of options to adapt to 'different kinds of
input. The user not interested in the detailed description that now follows may skip to section
3~ which describes the refer program, a packaged-up version of these tools specifically oriented
towards formatting references.

Make Keys. The program mkey is the key-making program corresponding to step (I) in
phase A., Normally, it reads its input from the file names given as arguments, and if there are
no arguments it reads from the standard input. It assumes that blank lines in the input delimit
separate items, for each of which a different. line of keys should be generated. The lines of
keys are written On the standard output. Keys aTe any alphanumeric string in the input not
among the most frequent words in English and not entirely numeric (except that all-numeric
strings are acceptable if they are between 1900 and 1999). In the output, keys are translated to
lower case, and ,truncated to six characters in length; any associated punctuation is removed.
The following flag arguments are recognized by mkey:

-c name
-f name

-i chars

-kn
-In
-om

-s

.-w

Name of file of common words; default is /usr/libleign.
Read a list of files from name and take each as an input, argu­
ment.
Ignore all lines which begin with '%' followed by any character
in chars.
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first m words of the list of
common English words. The default is 100.
Remove the labels (file:start,length) from the output; just give
the keys. Used when searching rather than indexing.
Each whole file is a separate item; blank lines in files are
irrelevant.

The normal arguments for indexing references are the defaults, which are -c lusr/libleign,
-nlOO; and -13. For s'earching, the -s option is also needed. When the big lookall index of
all English files is run, the options are -w, -k50, and -f (filelist). When running on textual
input, the mkey program processes about 1000 English words per processor second. Unless the
-k option is used (and the input files are long enough for it to take effect), the output of mkey
is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files.
It reads the output of mkey and writes the set of files described <.:arlier in this section. It
expects one argument, which is used as the base name for the three (or four) files to be writ­
ten. Assuming an argument of Index (the default) the entry file is named lndex.ia, the posting
file lndex.ib, the tag file "Index.ic, and the key file (if present) lndex.id. The inv program recog-'
nizes the following options: '

- a Append the new keys to a previous set of inverted files, making
new files if there is no old set using the same base name.

-d Write the optional key file. , This is ·needed when you can not
check for false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not wordsfrom the input flies.

- hn The hash table size is n (default, 997); n should be prime.
Making n bigger saves search time and spends disk space.

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 179

- lIul name Take input from file name, instead of the standard input; if u is
present name is unlinked when the sort is started. Using this
option permits the sort scratch space to overlap the disk space
used for input keys.

- n Make a completely new set of inverted files, ignoring previous
files.

- p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-v Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the total timing for inv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the - h
option), and the tag file around 15-20 bytes per item indexed. Roughly, the posting file con­
tains one item for each key instance and one item for each possible hash code; the items are
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be
over-full; for most of the files indexed ill: this way, there is no other real choice, since the entry
file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an .index. It com­
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and
partly because the delivery operation must be a part of the search operation in any case.
Because of the hashing, the search part takes place in two stages: first items are retrieved which
have the right hash codes associated with them, and then the actual -items are inspected to
determine false drops, Le. to determine if anything with the right hash codes doesn't really
have the right keys. Since the original item is retrieved to check on false drops, it is efficient to
present it immediately, rather than only giving the tag as output and later retrieving the item
again. If there were a separate key file, this argument would not apply, but· separate key files
are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be
in mkey -s output format; all lower case, no punctuation. The hunt program takes one argu­
ment which specifies the base name of the index files to be searched. Only one set of index
files can be searched at a time, although many text files may be indexed as a group, of course.
If one of the text files has been changed since the index, that file is searched withjgrep,' this
may occasionally slow down the searching, and care should be taken to avoid having m·~m~ OUf

of date files. The following option argument:) are recognized by hunt: . .

-a
-en

-F[yndl

-g

-i string
-In

-0 string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default .CO, implying that each
search term must be in the output items.
"-Fy" gives the text of all the items found; "-Fn"
suppresses them. "-F d" where d is an integer gives the text
of the first d items. The default is - Fy.
Do not use jgrep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
default 1000.
Put text output (" - Fy") in string; of use only whep invoked
from another program.

180 DOCUMENT PREPARATION

-p Print hash code frequencies; mostly for use in optimizing -hash
table sizes.

-T(ynd) "-Ty" gives the tags of the items found; "-Tn" suppresses
them. "-T d" where d is an integer gives the first d tags. The
default is - Tn.

-t string Put tag output (" - Ty") in string; of use only when invoked
from another program. _

The timing- of hunt is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on all
terms. Thus if a query is underspecified (one search term) many potential items will be exam­
ined and discarded as false drops, wasting time. If the query is overspecified (a dozen search
terms) many keys will be examined only to verify that the single item under consideration has
that key posted. The variation of search time with number of keys is shown in the table below.
Queries of varying length were 'constructed to retrieve a particular document from the file of'
references. ,In the sequence to the left, search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so
that the query did not uniquely select the desired document until four keys had been used.

___ Th~ same document was the target in each case, and the final set of eight keys are also identi­
. cal; the differences at five, six and seven keys are produced by measurement error, not by the
slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) {incl. false} Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18 _
5 1 1 0.19 5 1 1 0.21
6 1 ' 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi­
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether it
is a false drop or a real answer). In general, overspecification can be recommended; 'it protects
the user against additions to the data base which turn previously uniquely-answered queries into
ambiguous queries. -

The careful reader will have noted an enormous discrepancy between these times and the
earlier quoted time of around 1.9 seconds for a search. The times here are. purely for the
search and retrieval: they are measured by running many searches through a single invocation
of the hUnt program alone. Usually, the UNIX command processor (the sh~ll) must start both
the mkey and hunt processes for each query, and arrange for the output of mkey to be fed to
the hunt program. This adds a fixed overhead of about J ~ 7 seconds of processor time to any
single search. Furthermore, remember that all these times are processor times: on a typical
morning on our' PDP 11/70 system, with about one dozen people logged on, to obtain 1 second
of processor time for the search program took between 2 and 12 seconds of real time, with a
median of 3.9 seconds and a mean of 4.8 seconds. 'Thus, although the work involved in a sin­
gle search may be only 200 milliseconds, after you add the 1.7 seconds of startup processor
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any
response is printed.

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 181

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is refer, which is a troff preprocessor like
eqn.3 It scans its input looking for items of the form

· [
imprecise citation
·]

where an imprecise citation is merely a string of words found in the relevant bibliographic cita­
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper (either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may
specify their own citation fiies. On our system, the default data base is accumulated from the
publication lists of the members of our organization, plus about half a dozen personal bibliogra­
phies that were collected. The present total is about 4300 citations, but this increases steadily.
Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn.
· [
kernighan cherry acm 1975
.]
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as
tbl and troff by the command

refer memo-file I tb/l troff - ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a' paper using refer is as follows. First, use
the lookbib command to' check that the paper is in the data base and to find out what keys are
necessary to retrieve it. This is done by typing lookbib and 'then typing some potential queries
until a suitable query is found. For example, had one started to find the eqn paper shown
above by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless; it is even desir­
able, since it decreases the risk that a document added to the publication data base in the future
will be retrieved in addition to the intended document. The extra time taken by even a grossly
overspecified query is quite small. A particularly careful reader may have noticed that "acm"
does not appear in the printed citation;' we have supplemented some of the data base items with
extra keywords, such as common abbreviations for journals or other sources, to aid in search­
ing.

If the reference is in the data base, the query that retrieved it can be'inserted in the text,
between .1 and .) brackets. If it is not in the data base, it can be typed into a private file of

3. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics,',' Comm. Assoc. Compo Mach. 18,
pp.151-157 (March 1975).

182 DOCUMENT PREPARATION

,references, using the format diseased in the next section, and then the - p option used to
search this private file. Such a command might read (if the private references are called myfile)

refer - p myfile document I tbll eqn I troff - ms . . .

where tbl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some
other macro package, however, is essential. Refer only generates the data for the references;
exact formatting is done by some macro package, and if none is supplied the references will not
be printed.

By default, the references are numbered sequentially, and the -ms macros format refer­
ences as footnotes at the bottom of the page. This memorandum is an example of that style.
Other possibilities are discussed in section 5 below.

4. Reference Files.

A reference file is a set of bibliographic references usable with refer. It can be indexed
using the software described in section 2 for fast searching. What refer does is to read the
input document stream, looking for imprecise citation references. It then searches through
reference files to find the full citations, and inserts them into the document. The format of the
full citation is arranged to make it convenient for a macro package, such as the -ms macros, to
format the reference for printing. Since the format of the final reference is determined by the
desired style of output, which is determined by the macros used, refer avoids forcing any kind

, of reference appearance. All it does is define a set of string registers which contain the basic
information about the reference; and provide a macro call which is expanded by the macro
package to format the reference. It is the responsibility of the final macro package to see that
the reference is actually printed; if no macros are used, and the output of refer fed untranslated
to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in
the following format. The, references should be separated by blank lines. Each reference is a
sequence of lines beginning with % and followed by a key-letter. The remainder of that line,
and successive lines until the next line beginning with Ufo, contain the information specified by
the key-letter. In general, refer does not interpret the informa,tion, but merely presents it to
the macro package for final formatting. A user with a separate macro package, for example, can
add new' Itey-Ietters or' use the existing ones for other purposes without bothering'refer ..

The m,eaning of t~e key-letters given below, in particular, is that assigned by the -ms
macros.' Not all information, obviously, is used with each citation. For example, if a document
is both an internal memorandum arid a journal article, the macros ignore the memorandum ver­
sion and cite only the journal article. Some kinds of information are nat used at all in printing
the reference; if a user does not like finding references by specifying title or author keywords,
and prefers to add specific keywords to the citation~ a field is available which is searched but not
printed (K).

The key letters currently recognized by refer and -ms,' with the kind of information
implied, are:

4. M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, Bell Laboratories internal
memorandum (1977),

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 183

Key Information specified
A Author's name
B Title of book containing item
C City of publication
D Date
E Editor of book containing item
G Government (NTIS) ordering number
I Issuer (publisher)
J Journal name
K Keys (for searching)
L Label
M Memorandum label

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23

,%N 1
%P 1-12
%M abcd~78
%D Jan. 1976

Key Information specified
N Issue number
a Other, information
P Page (s) of article
R Technical report reference
T Title
V Volume number

X or
Y or
Z Information not used by refer

Order is irrelevant, except that authqrs are shown in the order given. The output of refer is a
stream of string definitions, one for each of the fields of each reference, as shown below .

.]-

.ds [A authors' names ...

. ds [T title ...

. ds [J journal ..

.] [type-number

The refer program, in general, does ,not concern itself with the significance of the strings. The
different fields are treated identically by refer, except that the X, Y and Z fields are ignored
(see the - i optio'n of mkey) in indexing and searching. All' refer does is select the appropriate
citation, based on the keys. The macro package must arrange the strings so as to produce an
appropriately formatted citation. In this process, it uses the convention that the 'T' field is the
title, the 'J' field the journal, and so forth.

The refer ~program does arrange the citation to simplify the macro package's job, however.
The special macro .1- precedes the string definitions and t:le special macro .11 follows. These
are changed from the input .1 and .1 so that running the same file through refer again is harm­
less. The .1- macro can be used by the macro package to ini~ialize. The .11 macro, which
should be used to print the reference, is given an argument type-number to indicate the kind of
reference, as follows:

184 DOCUMENT PREPARATION

Value
1
2
3
4
5
o

Kind of reference
Journal article
Book
Article within book,
Technical report
Bell Labs technical memorandum
Other

The type is determined by the presence or absence of particular fields in the citation (a journal
article must have a 'J' field, a book must have an'!, field, and so forth). To a small extent,
this violates the above rule that refer does not concern itself with tl;te contents of the citation;
however, the classification of the citation in troff macros would require a relatively expensive
and obscure program. Any macro writer may, of course, preserve consistency by ignoring the
argument to the .] I macro.

The reference is flagged in the text with the sequence

\ * ([.number\~ (.]

where number is the footnote number. The strings I. and.] should be used by the macro
package to format the reference flag in the text. These strings can be replaced for a particular,

.footnote, as described in section 5. The footnote number (or other signal) is available to the
reference macro .] I as the string register IF. T,o simplify dealing with a text reference that
occurs a~ the end of a sentence, refer treats a reference which follows a period in a special way.
The, period is removed, and the reference IS preceded by a call for the ~tring <. and followed
,by'i~cal1 for the string >. For example, if a reference follows "end." it will appear as

".

'/ ,end*(<.*([.number*(']*(> .
. ...: ':·S, ", . , . .
;!Where number is the footnote number. The macro package should turn either the string >. or
<:«;. in.to a period' and delete the other one. This permits the output to have either the form'
~:::"~'end[31]." or "end.31 " as the macro package wishes. Note that in one case the period pre-
'¢~des the number and in the other it follows the number. ' ,

:In some cases users wish to suspend the searching, and "merely use the reference macro
, formatting. 'That is, the user doesn 'twant to provide a search key between • I and.] brackets,
" '" ' " -'

, but merely the reference lines for the appropriate document. Alternatively, the user can wish
to add a few fields to t~ose in the reference as in the standard file, or override some fields.
Altering or replacing fields, or supplying whole references, is easily done by inserting lines
beginning with %; any such line is taken a:s direct input to the reference processor rather than
keys to be searched. Thus) :

, . [
keyl key2 key3 ...
%Q New format item
%R Override report name .] ,

makes the indicates 'changes to the result of searching for the keys. All of the search keys must
be given before the first % line. '

If no search keys are provided, an entire citation can be provided in-line in the text. 'For
examp~e, if the eqn paper citation were to be inserted in this way, rather"than by searching for
it in the data base, the input would read '

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 185

preprocessor like
.I eqn .
. [
%A B. W. Kernighan
%A L. L. Cherry
%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P 151-157
%0 March 1975
.]
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rather
have them defined as macros, so that other troff commands can be placed into the data. When
this is necessary, simply double the control character % in the data. Thus the input

. [
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

is processed by refer into

.ds [V,23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after %%M is defined as a macro to be invoked by .IM while the informatiori
after %V is turned into a string to be invoked by \.«V. At present -ms expects all informa­
tion as strings.

5. Collecting References and other Refer Options

Normally, the combination of refer and -ms formats output as troff footnotes which are
consecutively numbered and placed at the bottom of the page. However, options exist to place
the references at the end; to arrange references alphabetically by senior author; and to indicate
references by strings in the text of the form [Name1975a1 rather than by number. Whenever
references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to refer specifies that references are to be collected; in this
case they are output whenever the sequence

. [
$LIST$
.1

is encountered. Thus, to place references at the end of a paper, the user would run refer with
the -e option and place the above $LIST$ commands after the last line of the text. Refer will
then move all the references to that point. To aid 'in formatting the collected references, refer
writes the references preceded by the line

186 DOCUMENT PREPARATION

.1<
and followed by the line

.1> r

to invoke special macros before and after the references.

Another possible option to refer is the - s option to specify sorting of references. The
default, of course, is to list references in the order presented. the -s option implies the -e
option, and thus requires a

· [
$LIST$
·]

entry to call out the reference list.. The - s option may be followed by a string of letters,
numbers, and '+' signs indicating how the references are to be sorted. The sort is done using
the fields whose key-letters are in the string as sorting keys; the numbers indicate how many of
the fields are to be considered, with '+' taken as a large number. Thus the default is - sAD
meaning '''Sort on senior author, then date." To sort on all authors and then title, specify
- sA + T. And to sort o~ two aut~ors and then the journal, write - sA2J.

Other options to refer change the signal or label inserted in the text for each reference.
Normally these are just sequential numbers, and their exact placement (within brackets, as
superscripts, etc.) is determined by the macro package. The -I option replaces reference
numbers by strings composed of the senior author's last name, the,date, and a disambiguating
letter. If a number follows the 1 as in -13 only 'that many letters of the last 'name are used tn
the label string. To abbreviate the date as well the form -Im,n shortens the last name to the
first m letters and the date to the last n digits. For example, the option -13,2 would refer to
the ,eqn paper (reference 3) by the signal Ker75a, since it is the first cited reference by Ker-..
nigh an in 1975.

, A user wishing to specify particular labels for -a private bibliography may use the - k
option. Specifying --kx causes the field x to be used as a label. The default is L. If this field
ends in -, that character is replaced by a sequence letter; otherwise the field is used exactly as
given.

If none of the refer-produced signals are desired, the - b option entirely suppresses
· automatic text signals.

If the user w'ishes to override the - ms treatment' of the reference signal (which is nor­
mally to enclose the number in brackets in nroff and make it a superscript in troff) this can be
done easily. If the lines .(or.1 contain anything fo~lowing these characters, the remainders of
these lines ,are used to ,surround the reference signal, instead of the default. Thus, for exam­
pIe, to say "See reference (2)." and avoid ."See reference.2" the input might appear

See reference
.[('
imprecise' Citation ...
·]).

Note that blanks are significant in this construction. If a permanent change is desired in the
style of reference signals, however, it is probably easier to redefine the strings (. and.1 (which
are used to bracket each signal) than to change each citation~

Although normally refer limits itself to retrieving the data for the reference, and leaves to
a macro package, the job of arranging that data' as required by the local format, there are two
special options for

1
rearrangements that can not be done by macro packages. The - cc..- option

puts fields into all u'pper case (CAPS-~MALL CAPS in troff output). The key-letters indicated
what infon:nation is to be translated to upper case follow the c, so that -cAJ means that
authors' names and journals are to be in caps. The - a dption writes the names of authors last

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM 187

name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal
of the ACM, for example, would require both -cA and -a options. This produces authors'
names in the style KERNIGHAN, B. W. AND CHERR Y, L. L. for the previous example. The - a
option may be followed by a number t~ indicate how many author names should be reversed;
-al (without any -c option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned - p option to let the user specify a private
file of references to be searched before the public· files. Note that refer does not insist on a pre­
viously made index for these files. If a file is named which contains reference data but is not
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to
keep small files of new references, which can later be added to the public data bases.

Updating Publication Lists

M. E. L('sk

1. Introduction.

This note describes several commands to update the publication lists. The data base con­
sisting of these lists is kept in a set of files in the directory /lIsridicl/pap('fS on the Version 7
UNIxt system. The reason for having special commands to update these files is that they are
indexed, and the only reasonable way to find the items to be updated is to use the index. How­
ever, altering the files destroys the usefulness of the index, and makes further editing difficult.
So the recommended procedure is to

(1) Prepare additions, deletions, and changes in separate files.

(2) Update the data base and reindex.

Whenever you make changes, etc. it is necessary to run the Hadd & index" step before logging
off~ otherwise the changes do not take effect. The next section shows the format of the files in
the data base. After that, the pr<?cedures for preparing additions, preparing changes, preparing
deletions, and updating the public data base are given.

2.. Publication Format.

The format of a data base entry is given completely in HSome Applications of Inverted"
Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a
few examples. I n each example, first the output format for an item is sho~ri and then the
corresponding data base entry.

Journal article:
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, HBounds on the Com­
plexity of the Maximal Common Subsequence Problem,'" J. Assoc.
Compo Mach.. vol. 23, no. 1, pp. 1-12 (Jan. 1976).

IYrIT Bounds on the Complexity of the Maximal Common
Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Compo Mach.
%V 23
%N 1
%P 1-12
%D Jan. 1976
%M Memo abcd ...

tUNIX is a Trademark of Bell Laboratories.

188

UPDATING PUBLICATION LISTS 189

Conference proceedings:

Book:

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with
Common Subexpressions," Proc. 5th ACM Symp. 011 Prillcipl('s of P/'(I­
grammillg Lallgllag('s, pp. 222-230, Tu.cson, Ariz. (January 1978).

%A B. Prabhala
%A R. Sethi
%T Efficient Computation of Expressions with
Common Subexpressions
%J Proc. 5th ACM Symp. on Principles
of Programming LanglJages
IXIC Tucson, Ariz.
%0 January 1978
%P 222-230

B. W. Kernighan and P. J. Plauger, S(~fiwar(' Tools, Addison-Wesley,
Reading, Mass. (I 976).

%T Software Tools
%A B. W. Kernighan
%A P. J. Plauger
%1 Addison-Wesley
%C Reading, Mass.
%0 1976

Article' within book:
1. W. de Bakker, "Semantics of Programming Languages," pp. 173-227
in Advallc('s ill I'lformatioll ,~vst('ms SCi(,llr(', Vol. 2, ed. J. T. Tou, Ple­
num Press, New York, N. Y. (1969).

%A J. W. de Bakker
%T Semantics of programming languages
%E J. T. Tou
%B Advances in Information Systems Science, Vol. 2
%1 Plenum Press
%C New York, N. Y.
%0 1969
%P 173-227

Technical Report:
F. E. Allen, "Bibliography on Program Optimization," Report RC-
5767, IBM T. J. Watson Research Center, Yorktown Heights. N. Y.
(1975),

%A F. E. Allen
%0 1975
%T Bibliography on· Program pptimization '
%R Report RC-'5'767 .
%I,IBM T. J. Watson Reseafch Center
%C Yorktown Heights, N. Y.

190 DOCUMENT PREPARATION

Other forms of publication can be entered similarly. Note that conference proceedings are
entered as if journals, with the conference name on a (Ud line. This is also sometimes appropri­
ate for obscure publications such as series of lecture notes. When something is both a report
and an article, or both a memorandum and an article, enter all necessary information for both~
see the first article above, for example. Extra information (such as "In preparation" or
"Japanese translation") should be placed on a line beginning %0. The most common use of
%0 lines now is for "Also in ... " to give an additional referen~e to a secondary appearance of
the same paper.

Some of the possible fields of a citation are:

Letter Meaning Letter Meaning
A Author K Extra keys
B Book including item N Issue number
C City of publication a Other
D Date P Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name V Volume number

Note that %B is used to indicate the title of a book containing the article being entered~ when
an item is an entire book, the title should be entered with a % Tas usual.

Normally, the order of items does not matter. The only exception is that if there are
multiple authors (%A lines) the order of authors should be that on the paper. If a line is too
long, it may be conti'nued on to the next line~ any line not beginning with % or . (dot) is
assumed to be a continuation of the previous line. Again, see the first article above for an
example of a long title. Except for authors, do not repeat any items~ if two %J lines are given,
for example, the first is ignored. Multiple items on the same file should be separated by blank
lines. . , ,-

Note that in . formatted printouts of the file, the exact appearance of the items is deter­
mined by a set of macros and the forrnatting programs; Do not try to adjust fonts, punctuation,
etc. by editing the data base~' it is wasted effort. In case someone has a real need for a
differently-formatted output, a new set of macros can easily be generated to provide alternative
appearances of the citations.

3. Updating and Re-indexing.

This section describes the commands that are used to manipulate and change the data
base. I t explains the procedures for (a) finding references in the data base, (b) adding new
references, (c) changing existing references, and (d) deleting references: Remember that all
changes, additions, and deletions are done by preparing separate files and then running an
'update and reindex' step.

Checking what's there now. Often you will want to know what is currently in the data base.
There is a special command lookbib to look for things and print them out. It searches for arti­
cles based on words in the title, or the author's name, or the date. For example, you could find
'the first paper above with

lookbib aho ullman maximal subsequence 1976

or

lookbib aho ullman hirschberg

If you don't give enough words, several items will be found~ if you spell some ~rong, nothing
will be found. There are around 4300 papers in the public file~ you should always use this com­
mand to check when you are not sure whether a certain paper is there or not.

Additions . . To add new papers, just type in, on one or more files, the citations for the new

UPDATING PUBLICATION LISTS 191

papers. Remember to check first if the' papers are already in the data base. For example, if a
paper has a previous memo version, this should be treated as a change to an existing entry,
rather than a new entry. If several new papers are being typed on the same file, be sure that
there is a blank line between each two papers.

Changes. To change an item, it should be extracted onto a file. This is done with the
command

pub.chg keyl key2,key3 ...

where the items keyl, key2, key3, etc. are a set of keys that will fipd the paper, as in the look-
bib command. That is, if .

lookbib johnson yacc cstr

.will find a item (to, in this case, Computing Science Technical Report No. 32, "Y ACC: Yet
Another Compiler-Compiler," by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. The plIb.chg command extracts the item onto a file named
"bibxxx" where "xxx" is a 3-digit number, e:g. "bib234". The command will print the file
name it has chosen. If the set of keys finds more than one paper (or no papers) an error mes­
sage is printed and no file is written. Each reference to be changed must be extracted' with a
separate pub. chg command, ·and each will be placed on a separate file. You should then edit the
"bibxxx" file as desired to change the item, using the UNIX editor. Do not delete or change
the first line of the file., however, which begins %# and is a special code line to tell the update
program which item is being altered. You may delete or change other lines, or add lines, as
you wish. The changes are not actually made in the public data base until you run the update
command pub.flm (see below). Thus, if after extracting an item and modifying it, you decide
that you'd rather leave things as they were, delete the "bibxxx" file, and your change request
will disappear.

Deletions. To delete an entry from the database, type the command

pub.del keyl key2 key3 ...

where the items keyl, key2, etc. are a set of keys that will find the paper, as with the lookbib
command. That is, if

look bib Aho hirschberg ullman

will find'a paper,

pub.del aho hirschberg ullman

deletes it. Note that upper and lower case are equivalent in keys. The pub. del command will
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion
command is stored. The actual deletion is not done until the changes, additions, etc. are pro­
cessed, as with the pub.chg command. If, after seeing the item to be deleted, you change your
mind about throwing it away, delete the "bibxxx" file and the delete request disappears.
Again, if the list of keys does not uniquely identify one paper, an error message is given.

Remember that the defauU versions of the commands described here edit a public data
base. Do not delete items unless you are sure deletion is proper;' usually this means that there
are duplicate entries for the same paper. Otherwise, view requests for deletion with skepticism;
even if one person has no neep for a particular item in the data base, someone else may want it
there.

If an item is correct, but should not appear in the "List of Publications" as normally pro­
duced, add the line

%K DNL

192 DOCUMENT PREPARATION

to the item. This preserves the item intact, but implies "Do Not List" to the to ·the commands
. that print publication lists. The DNL line is normally used for some technical reports, minor
memoranda, or other low-grade publications.

Update and reindex. When you have completed a session of changes, you should type the
command

pub.run filel file2 .. .

where the names "file 1", ... are the new files of additions you have prepared. You need not
list the "bibxxx" files representing changes and deletions~ they are processed automatically.
All of the new items are edited into the standard public data base, and then a new index- is
made. This process takes about 15 minutes~ during this time, searches of the data base will be
slower.

Normally, you should execute pllb.rUIl just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory until
you finally do execute pub.rllfl. When the changes are processed, the "bibxxx" files are
deleted. It is not desirable to wait too long before processing changes, however, to avoid
conflicts with someone else who wishes to change the same file. If executing pub.rull produces
the message "File bibxxx too old" it means that someone else has been editing the same file
between the time you prepared your changes, and the time you typed plIb.flm. You must delete
such old change files and re-enter them.

Note that although pub.rull discards the "bibxxx" files after processing them, your files of
additions are left around even after pub.rull is finished. If they were typed in only for purposes'
of updating the data base, you may delete them after they have beep processed by pllb.rllll.

Example. Suppose, for example, that you wish to

(0 Add to the data base the memos "The Dilo'garithm Function of a Real Argument" by R.
Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk and­
A. S. Cohen~

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH
Newsletter, 1973~ and

(3) Change "J. Assoc. Compo Mach." to "Jour. ACM" in the citation for Aho, Hirschberg,
and Ullman shown above.

The procedure would be as follows. First, you would make a file containing the additions, here
called "new.1", in the normal" way using the UNIX editor. In the script shown below, the
computer prompts are in italics.

$ ed new.l
?
a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%M abcd
°/tID 1978

%T UNIX Software Distribution by Communication Link
%A M. E. Lesk
%A A. S. Cohen
%M abcd
%D 1978
w new.l
Ic)c)

q
(

Next you would specify the deletion, which would be done with the -pllb.del command:

$ pub.del lesk cheap typesetters siglash
to which the computer responds:

Will delete: (file. bib 1 76)

% T Cheap Typesetters
%A M. E. Lesk
fUd ACM SIGLASH Newsletter
%V6
%N4
%P 14-16
%D October 1973

UPDATING PUBLICATION LISTS 193

" And then you would extract the Aho, Hirschberg and Ullman paper. The" dialogue involved is'
shown below. First run pub.chg to extract the paper; it responds by printing the citation and
informing you that it was placed on file bibl23. That file is then edited." " '

, 194 DOCUMENT PREPARATION

$ pub.chg aho hirschberg ullman
Extracting as.lile bibl23
% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Compo Mach.
%V 23
%N 1
%P 1-12
(HIM abcd
%D Jan. 1976

$ ed bib123
312
I Assoc/sl J!.Jour/p
%J JOllr. Assoc. Compo Mach.
sl Assoc.·/ ACM/p

. %J JOllr. ACM
l,$p
%# /usr/dict/papers/p76 233 245 change
%T Bounds on the Complexity of the Maximal
Common Subsequence' Problem
%A A. V. Aho
(~IA D. S. Hirschberg
%A J. D. Ullman
%J JOllr. ACM
%V 23
%N I
%P 1-12
%M abcd
%D Jan. 1976

w
292
q
$

Finally, execute pub.run, making sure to remember that you have prepared a new file LLnew.l":

$ pub.run new. 1

and about fifteen minutes later the new index would be complete and all the changes would be
included.

4. Printing a Publication List

There are two commands for printing a publication list, depending on whether you want
to· print one person's list, or the list of many people. To print a list for one person, use the
pub. indiv command: .

pu b. indiv M Lesk

This runs off the list for M. Lesk and puts it in file Houtput". Note that no L.' is given after
the initial. In case of ambiguity two initials can be used.' Similarly, to get the list for group of
people, say

UPDATING PUBLICATION LISTS 195

pub.org xxx

which prints all the publications of the members of organization xxx, taking the names for the
list in the file /usrldicf/papers/cellllisf/XXX. This command should normally be run in the back­
ground~ it takes perhaps 15 minutes. Two options are available with these commands:

pUb.indiv -p M Lesk

prints only the papers, leaving out unpublished notes, patents, etc. Also

pub.indiv -t M Lesk I gcat

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to an
alternate typesetter with the 4gcaC command. These options may be used together, and may be
used with the pub.org command as well. For example, to print only the papers for all of·organi­
·zation zzz and typeset them, you could type

pub.center - t - P zzz I gcat &

These publication lists are printed double column with a citation style taken from a set of publi­
cation list macros; the macros, of course, can be changed easily to adjust the format of the lists.

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under the POP-II UNIX Time-Sharing Systeml that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into. a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling~ including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik- .
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either .program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resoiution of each terminal. .

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan­
dard input. The options, which may appear in any order so long as they appear before the flies, are:

Option Effect

195

-olist Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial --N means from the beginning to page N; and
a final N - means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N== 1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and wili resume after the phototypesetter START button is
pressed.

- m name Prepends the macro file /usr/lib/tmac. name to the input files.

-raN Register a.(one-character) is set to N.

-i Read standard input after the input files'are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

NROFFrrROFF USER'S MANUAL 197

NROFF Only

-Tname Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model 37 TeletypeOj), t0300 for the GE TermiNet 300 (or any ter­
minal without half-line capabilities), 3008 for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesette,r is available, if currently busy.

- b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done.

- a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output. .

Each option is invoked as a separate argl1ment; for example,

oroff -04,8-10 -T 300S -mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 'of·a document contained in the files named file1 and file2,
specifies the output terminal as a DASI-}OOS, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table­
construction preprocessor TBL3. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4:s a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl files I eqo I troff - t optio1Js I t~at
the first I indicates the piping of TBL's output t~ EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

[1] K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum. .

[3] M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum.

[4] Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

198, DOCUMENT PREPARATION

SUMMARY ANb INDEX

Request Initial If No
Form Value· Argument Notes# Explanation

1. General Explanation

2. Font and Character Size Control

.ps±N

.ss N'

.csFNM

.bd FN

.bdS F N

.ft F

.fp N F

10 point
12/36 em
off
off
off
Roman
R,I,B,S

3. Page Control

.pl ±N 11 in

.bp ±N N=I

.pn ±N N=I

.po ± N 0; 26/27 in

.ne N

.mk R none

.rt ±N none

previous
ignored

previous
ignored

II in

ignored
previous
N=I V
internal
internal

E
E
P
P
P
E

v
B:j:,v

v
D,v
D
D,v

4. Text Filling, Adjusting, and Centering

. br B

. fi fill

.nf fill

.ad c adj,both adjust

.na adjust

.ce N off N=I

s. Vertical Spacing

. vs N 1/6in;12pts previous

.Is N N= I previous

. sp N N=I V

.sv N N=I V

. os

.ns

.rs
space

,6 ... Line Length and Indenting

B,E
B,E
E
E
B,E

E,p
E
B,v
v

D
D

Point size; also \s ± N. t
Space-character size set to N/36 em. t
Constant character ,space (width) mode (font FLt
Embolden font Fby N-I units.t
Embvlden Special Font when current font is F.t
Change t9 font F = x, xx, or 1-4. Also \fx, \f(xx, \f l
Font named Fmounted on physical position 1 ~ N~4

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V = vertical spacing).
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

Break .
Fill output lines .
No filling or adjusting of output lines.
Adjust output lines with mode c.
No output line adjusting.
Center following N input text lines.

Vertical base line spacing (V) .
Output N-I Vs after each text output line.
Space vertical distance N in either direction .
Save vertical'distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

.11 ± N 6.5 in previous ,E,m Line length .

. in ± N N=O previous B,E,m Indent.

.ti ± N ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .yy=.. Define or redefine macro xx:; end at call of yy .

. am xx yy .yy =.. Append to a macro .

. ds xx string - ignored Define a string xx containing string .

. as xx string - ignored. Append string to string xx.

*Values separated by";" 'lre for NROFF and TROFF respectively.

#Notes are explai.ned at the end of this Summary and Index

tNo effect in NROFF.

:tThe use of" ' " as control character (instead of ".") suppresses the break function ..

NROFFrrROFF USER'S MANUAL 199

/fNo Request
Form

Initial
Value Argument Notes explanation

.rm xx

.rn xx yy

.di xx

.da xx

.wh Nxx

.ch xx N

.dt N xx

.it N xx

.em xx none

8. Number Registers

.nr R ±NM

.af R c arabic

.rr R

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

• ta Nt ... 0.8; O.Sin none
.tc c
• Ic c
.fc a b

none

off

none
none
off

D
D

"',v
E

u

E,m
E
E

,Remove,request, macro, or string.
Rename request, macro, or string xx to yy~ ,
Divert output t,o macro xx.
Divert and append to xx.
Set location trap~ negative is w.r.t. page bottom.
Change trap' location. ' , ,
Set a diver~ion trap.
Set an input-line count trap.
End macro is xx.

Define and set number register R; auto~iricrenleilt by 'M
Assign format to register R (c=l, i, I, a, A).,
Remove register R.

Tab settings; left type, unless t=R(right), C(centered) .
Tab repetition character.
Leader repetition character .
Set field delimiter a and pad character~. ".~

10. Input and Output Conventi~ns and Character Translations

. ec c \

.eo on

.Ig N -; on.

.ul N off

.cu N off,

.uf F Italic

\

on
N=l
N=l
Italic

E
E

Set escape character .
Turn off escape character mechanism.
Ligature mode on if N> O.
Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF. '
Underline font set to F (to be switched to by ~I).,

.cc c E Set control character to c .
• c2 c E Set nobreak control charac~er to c .
. tr abcd.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Orerstrike, Bracket, Line-drawing, and. Zero-width Functions

13. Hyphenation •

."nh hyphenate
• hy N hyphenate
.hc c \%
• hw wordl ...

14. Three Part Titles •

. tl 'left' center' right'

hyphenate
\%
ignored

• pc c '% off
.It ± N ' 6.S in previous

15. 'Output' Line Numbering. '

.om ± N M S I off

.nn N N=l

'16. Conditional Acceptance of Input

.if c anything

E
E
E

E,m

E
E

,No hyphenation .
, Hyphenate; N = mode.,
Hyphenation indicator character c .
Exception words; ,

Three part title.
Page number character .
Length, of title.

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept anything as input,
for'multi-line use \{anything\}.

200 DOCUMENT PREPARATION

I/No Request
Form

. Initial
Value Argument Notes Explanation

• if ! e anything
.if N anything
• if ! N anything
. if ' string1' string2' anything
• if ! ' string1' string2' anything
. ie e anything
~el anything

17. Environment Switching.

.ev N N=O previous

u
u

u

18. Insertions from the Standard Input

. rd prompt

. ex
prompt==BEL-

19. Input/Output File Switching

. so filename

.nx filename

. pi program

20. Miscellaneous

.mc eN

end-of-file -

E,m

If condition e false, accept anything .
If expression N > 0, accept anything .
If expression N ~ 0, accept anything .
If string1 identical to string2, accept anything .
If string1 not identical to string2, accept anything .
If portion of if-else; all above forms (like if) .
Else portion of if-else; .

Environment switched (push down).

Read insertion .
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin character e and separation N. .
.tm string
. ig yy

off
newline
.yy== ••
all

Print sIring on terminal (UNIX standard message output).
Ignore till call of y.y •

.pm t Print macro names and sizes;

.n B
if I present, print only total of sizes.
Flush output buffer.

21. Output and Error Messages

Notes-

B Request normally caus·~s a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment. .
0 Must stay in effect until logical output. '"

P Mode must be still or again in effect. at the time of physical output.
v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 4 ee 10 ds 7 fe 9 ie 16 II 6 rih 13 pi 19 rn 7
af 8 ee 4 dt 7 .ft 4 if .16 Is 5 nmt5 pi 3. rr 8
am 7 eh .7 ee 10 fl 20 ig 20 It 14 nn 15 pm 20 rs 5
as 7 es 2 el 16 fp 2 in 6 me 20 nr 8 pn 3 rt 3
bd 2 eu 10 e'm 7 ft 2 it 7 mk 3 ns 5 po 3 .. so 19
bp 3 da 7 eo 10 he 13· Ie 9 na 4 nx 19 ps 2 sp 5
br 4 de 7 ev 17 hw 13 Ig 10 ne 3 os 5 rd 18 ss 2
e2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 7 sv 5

ta 9 vs 5
te 9 wh 7
ti 6
tl 14
tm 20
tr· 10
uf 10
ul 10

NROFFITROFF USER'S MANUAL 201.

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence

10.1 \\
10.1 \e .

2.1 \'
2.1 \'
2.1 \-
7 \.

11.1 \(space)
'.1 1.1 \0
:·'il.l \1
11.1 \"
4.1 .\&

10.6 \!
10.7 \"
7.3 \$N

13 \%
2.1 \ (xx
7.1 \.x,· \.{xx
9.1 \a

12.3 \b' abc ... ' .
4.2 \c

11.1 \d
2.2 \fx,\f{xx,\fN

11.1 \h' N'
11.3 \kx
12.4 \1' Nc'
12.4 \L' Nc'
8 \nx,\n{xx

12.1 \0' abc .. '-
4.1 \p

11.1 \r
2.3 \sN, \s± N
9.1 \t

11.1 . \u
11.1 \v'N'
11.2 \w'string'
5.2 \x'N'

12.2 \zc
16 \{
16 \}
10.7 \ (newline)

\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the- current escape character.
, (acute accent); equivalt~nt to \ {aa .
, (grave accent); equivalent to \ {ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 ~ N~ 9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function:
Interrupt text processing
Forward (down) 1/2 em vertical motion 0/2 line in NROFF)
Chang'e to font named. x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontai input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawiJig function (optionally with c)
Interpolate number. register x or xx
Overstrike cha~a~ters a, b, c, ...
Break and spread.-outp:ut line .
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion 0/2 line in NROFF)
Local vertical motion; move ,down N (negative up)
Interpolate width of string
Extra line-space function (negative be/ore, positive after)
Print f with zero width (without spacing)
'Begin conditional input
Eno conditiqnai input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\, \.,-\", \$, \., \a, \n, \t, and \(n~wiine) are interpreted iIi copy mode (§7.2):
. -.

202 DOCUMENT PREPARATION

P'ledefined General Number Registers

Section Register
Reference Name

3 %
11.2 ct
7.4 cU
7.4 dn

dw
dy

11.3 hp
15' In,

mo
4.1 nl

11.2 sb
11.2 st

yr

Description

Current page number.
Character type (set by, width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (I -7).
Current day of the month (I -31). ,
'Current horizontal place on input line.
Output line number.
Current month' (1-12).
Vertical position ,of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section'
Reference

7.3

11.1

11.1
5.2

'7A
2.2
4
6
6
4
3
3
2.3
7.5
4.1
5.1

11.2

7.4

Register
Name

oS
oA
,0H

oT
oV
oa
oc
od
of
oh
.i
.I
on
'00

op
oS
ot
ou
oV
oW
oX
oy
oZ

Description

Number of arguments 'available at the current macro level.
Set to 1, in TROFF, If -a option used; always 1 in NROFF.
A vailable horizontal resolution in basic units.
Set to 1 in NROFF, if ~T option used; always 0 in TROFF.
A vailable vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of lines read from current input file.
Current vertical place in current diversion; equal to nl, if no diversion.'
Current font as physica) quadrant (1-4).
Text base-line high-water mark on current page or diversion.
Current indent.
Current line length .
Length of text portion on previous output line.
Current page 'offset. '
Current page length.
Current point size ..
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing~
Width '~f previous character.
Reserved version-dependent register.
Reserved version-dependent register .. , ,
Name o(current diversion.

NROFFfTROFF USER'S MANUAL 203

REFERENCE ·MANUAL

1. General Explanation

1.1. Form o/input. Input consists of text lines, which are destined to be printed, intersperse~ with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con­
tro/ character-normally. (period) or • (acute accent) -followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character • suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasoqs. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis­
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis­
introduced, two-character name as in \n (xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the -,
horizontal and vertical resolutions, of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input tor- the actual resolution of the output dev-
ice indicated by the -T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale ,
indicators shown in the following table, where S is the current type size in points, V is the current verti- ,
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

·i Inch 432 240
c Centimeter 432x50/127 240x50/127
P Pica = 1/6 inch 72 240/6
m Em = Spoints 6xS C
n En = Em/2 3xS C, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed 'characters such as· - > (-+) are often extra wide. The default scaling is ems fOf the
horizontally-oriented requests an"d functions II, in, ti, ta, It, po, mc, \h, and \1; Vs fot the vertically­
oriented requests and functions pi, wh, ch, dt, sp, SV, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default ,scaling.

204 DOCUMENT PREPARATION

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, ! N b'ecomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, ! N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example, '

.sp !3.2c

will space in thf! requ,ired direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, /, ., % (mod), and the logical operators <, >, <-, >,.,.., = (or ==-),
& (and), : (or) may be used. Except where controlle,d by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator' must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

. .11 (4.~5i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. "Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter toN, to increment it by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of N. ·Generally, unreasonable
numerkal input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, \vs, Is, II, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and oneltwo character arguments
are ipdicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics. .

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plu's a SpeCial Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are irtcluded, with some on the Special Font.
With three exceptions, the ASCII characters are 'input as themselves, and .non-ASCII" characters are input
in the form \ (xx where xx is a' two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

acute accent
,

close quote
,

grave accent
.,

. open quote
- minus - 'hyphen

The characters', .', and - may be input by \', \', and \- respectively or by their names (Table II).
The ASCII characters @, #, ", " " <, >, \, {, }, ~, "', 'and _ exist only on the Special Font and are
printed as a I-em space if that Font is not mounted. .

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

NROFFITROFF USER'S MANUAL 205

characters ~, ", and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (8) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are alitomatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion .of
font-related requests, F represents either a one/two-character font name or the numerical fOllt position,
1-4. The current font is available (as numerical pos'ition) in the read-only number register .f.

NROFF understands font control and riormally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,.
11, 12, 14, 16, 18, 20, 22, 24, 28, and 3'6. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s ± N (I ~ N~ 9) to
increment/decrement the size by N; \sO restores the previous size. Requested point size values that are
between two valid sizes yield the .larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial If No
Form Value Argument

.ps ±N 10 point previous

.ss N. 12/36. em ignored

.cs FN1J off

.bd F N off

Notes· Explanation

E Point size set to ± N. Alternatively imbed \sN or \8 ± N.

E

p

P

Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, - N will work because the previ­
ous requested value is also remembe~ed. Ignored in
NROFF.

Space-character 'size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on ror font
F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character's point size; if M is given, the em is ¥-

. points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font F will be .artificially emboldened by
printing each one twice, separated by N-l basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in

. effect when the characters are physically printed. Ignored.
in NROFF.

·Notes are explained at the end of the Summary and Index above.

206 ,DOCUMENT PREPARATION

.bd S f N off

.ft FRoman 'previous

.fp N F R,I,B,S , ignored

3. Page con trol

P

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This. is a statement that a font named F is
mounted on position N 0-4). It is a fatal erro~ if F is
not known. The phototypesetter h~s four fon~s physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF' is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at, vertical positions 0 (top) and - N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the cutrent diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level). .

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial U No
Form Value Argument

. pi ± Nfl in 11 in

N=1

.po ±N N=1 ignored

.po ±N 0; 26/27 int previous

.ne N N=1 V

Notes Explanation

v Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

B· ,v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

Page number. The next page (when it occurs) wil~ have
the page number± N. A po must occur before the ini­
tial ~seudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

v Page offset. The current left margin is set.to ± N. The
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter' margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset), is
about 7.54 incheS:. See §6. The current page offset is
available in the .0 register.

D,v Need N vertical space. If tl1e distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

*The use of" • " as control character (instead of ".") S\lppresses the break function.

tValues separated by";" are for NROFF and TROFP respectively.

. mkR none' internal .

.rt ±N none internal

NROFFrrROFF USER'S MANUAL 207

distance to the bottom of the page. If D'< V, another
line could still be output and spring the trap. In a diver­
sion, D is the distance to the diversion trap, if any, or is
very large.

D Mark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

D, v Return upward only to a marked vertical place in the
current diversion. If ± N (w.r.t. current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a pre",ious, mk. Note
that the. sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a

,explicit register; e. g. using the sequence .mk R ...
. sp l\nRu.

4. Text Filling, Adjusting, and Centering

4.1. Fi/lin~ and a~justing. Normally, words arecollecte~ from input text lines ~nd assembled .into a out­
put text hn~nttl some word doesn't fit. An attempt IS then made the hyphenate the word In effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the iQPut line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the ulzpaddable space character "\ " (backslash­
space). The adjusted word spaci,ngs are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Fflling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last ,line output is available in the .n· register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) o,n the current page
is in the .h register.

An input text line ending with ., '?, or ! is taken to be the end of a sentence, and an additional space
character is automatically prq'vided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a qreak.

When filling is in effect, a \p maybe imbedded or attached to a word to cause a break at ~he end of the
word and have the resu.1ting output line spread out to fill the current line length.

A text input line that happens to begin with a control ,character can be made. to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient.character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in nofill (qon-fill) mode can be interrupted by terminat-"
ing the partial line with a \c .. The next encountered input text line will be considered to be a continua­
tion of the same line of'input text. Similarly, a word within filled text may be interrupted by terminat­
ing the word (and line) with \c; the next encounter.ed text will be taken as a continuation of the intet­
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.' " .

Request Initial U No
FormYalue Argument

.br .

Notes Explanation

B .. Break. The ·filling of the line currently bei~g coll~cted is
stopped and the line is output without adjustment. Text
lines beginning with space :~charaCters and empty.! text
lines (blank lines) also cause a ,break. .

208 DOCUMENT PREPARATION

.fi fill on,

.nf fill on

.ad c adj,both adju'sf

.. na adjust

.ce N off N==l,

5. Vertical Spacing

B,E

B,E

E.

E

Fill subsequent output:' lines .. The register .u is 1 in fill
mode and 0 in 'nofill p1ode .

. Nofill.· Subsequent' Ol,ltput .lines are neither filled nor,'
adjusted. 'Input' text lines are' copied .directly to output'

,liJ;le's, withour regard for the current line length .

. Lin~.·.~dfu~tment is begun. If fill mode 'is not'on~ adjust­
m"ent will be deferred until fill mode is back ,on., If 'the
type indicator C'IS present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
I adjust'left margin only
r adjust rightmargin only
c center

b or n adjust both margins
absent 'unchanged'

, Noadju·st. ' Adjustment is turned off; the right margin will '
be'ragged. The adjustment type for ad is' not changed.'
Output line filling still occurs if fill mode is on.

B,E, Center the next N input' text lines within the current
(Iin~-length minus indent). If N= 0, any residual count
is cleared. A break occurs after. each of' the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs reqnest with a resolution of 1/144 inch = 1/2 point in TROFF, and to the output device
resolution in NROFF. , V must be large enough to accommodate the character sizes on the affected out­
P.ut lines. For the common type sizes -(9-12 points), usual typesetting practice is to s~t V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V IS ,available in the .v register. Multiple- V line separation' (e.g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains'a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after .if, the extra-line-space function \x' N' c'an be imbedded
in or attacHed to that word: In~ this and other functions having a pair of-delimiters around their parame,;
ter (here'), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will ~e followed by N extra vertical

. space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently util!zedpost-lin~ extra line-space is'available in th~.a:-iegister.

5..3. Blocks oj vertical space . . A 'block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A conti~ous block of vertical space may be
reserved u~ing sir,
Request Initial ' If No
Form Yalue Argument Notes Expla.nation-

.vs N 1/6in;12pts· previous

.Is N N=l previous

E,p

·E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N' (see above).

'Line spacing set to ± N.' N-l Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, .if the text or pre'vious appended blank line

.sp N N=lV

.sv N N=l V

.os

.ns space

.rs space

Blank text line.

6. Line Length and Indenti~g.

B,v

v

D

D

B

NROFFrrROFF USER'S MANUAL 209

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis­
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse­
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space' mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When 'on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-spa€e mode is turned off.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with II. The indent may be set with in; an indent
applicable to only t~e next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of II,
in, or ti is delayed, if a partially 'Collected line exists, until after that .line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The c'urrent
line length -and indent are available in registers .I and .i respectively. The length of thr~e-part 'titles pro-
duced by tl (see §14) is independently set by It. ' .

Request Initial If No
Form Value Argument

.11 ±N 6.5 in previous

.in ±N N=O previous

.ti ±N ignored

Notes Explanation

E,m Line length is set to ± N. In TROFF the maximum
(line-length) + (page-offset) is about 7.54 inches.

B,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named, set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo­
lated by name at any p6int. Request, ,macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and di, and,appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

210 DOCUMENT PREPARATION

controL line beginning .xx will interpolate the contents of macro xx. The remainder of the Hne may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \.x and
\.(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode' input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read 'in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \. are interpolated.
• Arguments indicated by \$ are interpolated.
'. Concealed new lines indicated by \ (newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \,' \ \n
will copy as \n which wiil be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up' to
~ine arguments. The argument separator is the space character, and arguments may be surrounded by
doubfe-quotes to permit imbedded space ch-aracters. Pairs of double-quotes may be imbedded in
double-quoted arguments to' represent a single double-quote. If the desired arguments won't ·fit on a
line, a concealed newline may be used t<? continue on the next line.

When a macro is invoked the input level is pushed down and any arguments availabIe at the previous
level become unavailable until the macro is completely read and the previous le~l is restored. A
macro's own, arguments can be interpolated at any point within the macro with' \SN, '~hich interpolates
the Nth arg~ment (1 ~N~9). If an invoked argument doesn't exist, a null string results. For exam­
pl~, the macro xx may be defined by

.de xx \ "begin definition
Today is \ \SI the \ \S2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday.the 14th.

Note that the \S was concealed in the definition with a prepended \. The number,';of currently available
arguments is in the .S register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are avaiJ~ble from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy· mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to ~ .long string (interpolated at C09Y time)
and it is advisable to conceal string references (with an extra \). to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §TS) or determining the horizontal and .vertfcal size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread 'correctly only if these modes are aga!n or still in effect at reread time. One way

NROFFITROFF USER'S MANUAL 211

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
des.cribed in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver­
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wh at any page position Including the top.
This trap position may be changed usmg ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps~ the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §T5). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap' is automatically invoked when' a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page tr'ap, if any, provided there is a next page. The distance to the next trap position is avail­
able in the .t register~ if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion m~y be planted using dt. The.t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Request Initial If No
Form Value Argument Notes Explanation

.de xx yy

. am xxyy

.ds xx string -

.as xx string -

.rm xx

.ro xx yy

.di xx

.yy= ..

.yy= ••

, ignored

ignored

ignored

ignored

end D

Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning ,with .yy,' whereupon the macro yy ,is
called. In the absence of yy, the definition is terminated
by a line beginning with " .. ", A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator. is concealed. " •. " can be
concealed as \ \ .• which will copy as \ .. and be reread as
II II

Append to macro (append version of de) .

Define a. string xx containing string. Any initial double­
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds). .

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will ~ave no effect.

Rename request, macro, or string xx to yy. If yyexists, it
is first removed,

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is... not
done. The diversion ends when the, request di or da is
encountered without an argument~ extraneous requests
of this type should not a~pear when nested diversions are
being used ..

212 DOCUMENT PREPARATION

.da xx-_

.wh Nxx

.ch xx N

.dt N xx

.it -N xx

.em xx none

8. Number Registers

end

off

'off

none

D

v

v

D,v

E

Divert, appending to xx (append version of di).

Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by Xx. A zero
N refers to the top of a page. In tije absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed."

Install a diversion trap at position N in the current diver­
sfon to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own namep registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Excep~ for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. O'ne common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register 'nfaybe used
any time -numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated

\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(ri xx incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated~ a number register is converted to decimal {~efault), de.cimal with leading zeros,
lower-case Roman, upper-case' Roman, lower-case sequential alphabetic, or 'upper-case, sequential alpha­
betic according to the format specified by af.

Request
Form

Initial
Value

.nrR±NM

UNo
Argument Notes Explanation

u The number register R is assigned the value ±N with
respect to ~he previous value, if any. :The increment for
auto-incrementing is set to M

·af R c arabic

.rr R ignored

9.' Tabs, Leaders, and Fields

NROFFITROFF USER'S MANUAL 213

As~~~n for~at c to register R. The available formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
. 001 000,001 ,002~003,004,005, ...

i O,i,ii,iii,iv, v, ...
I O,I,II;III,IV, V, ...
a O,a, b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA; ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remqve register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space

. for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or.·a string bf repeated charac­
ters. The length of the generated entity is governed by internal tab stops specifiable with tao The
default difference is that t1bs generate motion and leaders generate a string of periods; te and Ie offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting,
right adjusting, and centering. lIT the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the 'next tab stop; next-string consists of the input charac­
ters following the tab (or leader) up to the next tab (or leader) or end of line; and' W is the width of
next-string.

Tab Length of motion or Location of)
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to ·be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer ~umber of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored; but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab anp
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on' the input line from the
position where the field begins to the next tab stop. The difference between the total length. of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the .field
delimiter is # and the padaing indicator is ", #"xxx" right # specifies a right-adjusted string with the
string xxx centered in the remaining space.

214 DOCUMENT PREPARATION

If No Request
Form

Initial
Value Argument Notes Explanation

.ta Nt ... 0.8; O.Sin none

.tc c none none

.Ic c none

.rc a b off off

Etm Set tab stops and types. t=R, right adjusting; t=C,
centering; t absent, left adjusting. TROFF tab stops are
'preset every O.Sin.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

E The tab repetition character becomes c, or is removed
specifying motion.

E The leader repetition character becomes c, or is removed
specifying motion.

The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence df
arguments the field mechanism is turned off.

10. Input 'and Output Conventions and Character Translations

10.i.input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizont21 tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.S). All others are ignored,

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page· 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape ch:uacter. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ec.

Request Initial If No
.Form Value Argument Notes Explanation

.ec c \ \ Set escape character to \, or to c, if given.

.eo on Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fi, 8, ff, ffi, and m.
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(FI respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial .If No
Form Value Argument Note.: Explan,ation

.Ig N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N=O. If N=2, only the two-character
ligatures are automatically invoked.. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in cop~ .mode. No effect in NROFF.

10.3. Backspac'ing, underlining, overstriking, etc. . Unless in copy mode, the ASCII' backspace character is
replaced by' a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in ·the underline font, specifiable ·with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \f F, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

Request
Form

.ul N

.cu N

.uf F

Initial
ValJle

off

off

Italic

NROFFJTROFF USER'S MANUAL 215

If No
Argument Notes Explanation

N=l

N=l

Italic

E

E

Underline in NROFF (italicize in TROFF) the hext N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora­
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre­
ment N. If N> 1, there is the risk that a trap interpo­
lated macro may provide text lines within the span;
environment switching can prevent this.

A variant of ul that causes every character to be under­
lined in NROFF. Identical 'to ul in TROFF.

Underline font set to F. In NROFF, F may not be' on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character,' may be
changed, if desired. Such a cha'nge must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request Initial If No
Form Value Argument Notes Explanation

.cc c E The basic control character is ·set to c, or reset to "." .

• c2 c E The nobreak control character is set to c, or reset to "'".

10.5. Output translation. One character can be made a stand-in for another character. using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output G.nclud­
ing diversion).

Request Initial
Form Value

If No
Argument Notes Explanation

.tr abcd.... none 0 Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a parti,!ul.ar translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \0; the text processol is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control1ines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line' (e. g.
a string definition, or no filled text) can b~ split into many physical lines by ending all but" the last one
with the escape \. The sequence \(newline) is always ignored-except in a comment.. Comments may
be imbedded at the end of any line by prefacing them with \". The newline at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a com­
ment can be on a line by itself by beginning the line with .\ ".

11. Local Horizontal and Vertical Motions,and the Width Function

11.1. Local Motions. The functions \v' N' and \h' N' can be used for local vertical and horizontal motion
respectively. The distance oN may be negative; the positive directions are rightward and downward. A
locaf motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion ,are summarized in the following
table. '

216 DOCUMENT PREPARATION

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v'N' Move distanceN \h'N' Move distance N
\ (space) Unpaddable space-size space

\u 1/2 em up 1/2 line up '\0 Digit-size space
\d 1/2 em down 1/2 line down
\r 1 em up 1 line up \1 1/6 em space ignored

\" 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2; it should be
noted in this eyample thai the 0.4 em vertical motions are at the smaller size.

11.2. Width FunctIOn. The width function \w'string' generates the numerical width of string On basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti -\w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectivCly to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n (stu - \n (sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that ail of the characters ~ll string were short lower case characters without descenders (like e); 1 means
that at least one character has a descender (like y); 2 means that at least one character is tall Oike H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. 'As an example, 'the construction \kxword\h'l\nxu+2u'word will
embolden word by. backing up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over­
strike function \0' string' . . The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \0' e\" pro­
duces e, and \0'\ (mo\ (sl' produtes ,~.

12.2. Zero~width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstru.ck combinations. As examples, \z\ (ci\ (pI will produce E9, and
\ (br\z\ (rn \ (ui\ (br will produce the smallest possible constructed box O.
12.3.,Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(r 'll J ~ } Il J r 1) that can be combined into various bracket styles. The function \b'string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

lin~ (1/2 line in NROFF). For example, \b'\(Ic\(If'E\I\b'\(rc\~rf'\x' -0.5m'\x'0.Sm' produces [EJ..

12.4. Line drawing. The function \1' Nc' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \ (lower ~ase L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&.' If c is not specified, the _ (baseline rule) 'is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size oN is made' 'be/ore drawing the string. Any space
resulting from N / (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen­
tered oil a distance N. As an example, a macro to underscore a string can be written

.de us .
\\$1\ I 'IO\(ul'

or one to draw a box around a string

.de bx
\(br\I\\Sl\I\(br\1 'IO\(rn'\1 'IO\(ul'

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words and Iwords in a box I.

NROFFITROFF USER'S MANUAL 217

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu­
ous line. The default character is the box rule I' (\ (br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base .line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce 'large boxes.
The zero-width box-rule and the Ill-em wide underrule were designed to form corners when using I-em
vertical spacings. For example the macro

.de eb

.sp -1 \ "compensate for next automatic base-line spacing

.nf \ "avoid possibly overflowing word buffer
\h' - .5n'\L'I\ \nau-l'\l'\ \n (.Iu + 1n\ (ul'\L' ":"1\ \nau + l'\I'IOri - .50\ (ul' \ "draw box
.fi .

will draw a box" around some text whose beginning vertical place was saved in number register a (e. g.
using .mk a) as done for this para~raph.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator ·character, may be imbedded in a word to specify desired hyphena­
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
'exception word list.

Only words that consist of 'a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em) , or hyphenation indicator characters-such as mother-in-Iaw-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nh

.hyN

.hc c

hyphenate

on,N=I

\%

.hw word1

on,N=I

\%

ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N~ 1, or off for
N=O. If N=2, last lines' (ones that will <;ause a trap)
are not hyphenated. For N=4 and 8, the last and first
two characters respectively of a word are not split off.

'These values are additive; i. e. N = 14, will invoke all
three restrictions.

Hyphenation indicator character is set' to c or to the
default \%. The indicator does not ,appear in t~e output.

Specify hyphenation, points in words with imbedded
minus signs. Versions of a word with terminal s are

218 DOCUMENT PREPARATION

14. Three Part Titles.

implied; i. e. dig-it implies dig-its. This list is exam­
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. tI may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros~

Request Initial If No
Form Value Argument Notes Explanation

.t1 ' left' center' right'

.pe c % off

.It ±N 6.5 in previous

15. Output Line Numbering.

E,m

The strings left, center, and right are respectively left­
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over~
lapping is permitted. If the page-number character (ini­
tially %) is found within any of the field~ it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del­
imiter.

The page number character is set to c, or removed. The
page-number register remains %.

Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effectt- a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 . thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, 'other vertical
spaces, and lines generated by tI are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +0. In addition, a line number indent I, and the
number'-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line riumbers that are multiples of some number M are to be printed (the others will appear

9 as blank number fields).

Request
Form

Initial
Value

.nm ±NMSI

.nn N.

If No
Argument

off

N=l

Notes Explanation

E Line number mode. If·± N is given, line numbering is
turned on, and the next output line numbered is num­
bered ± N. Default values are M = 1, S= 1, and 1=0.
Parameters corresponding to missing a(guments are
unaffected; a non-numeric argument is considered miss­
ing. In the absence of 'all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was
placed at the beginning; .nm was placed ·at the end of the first paragraph; and .nm +0 was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\ w'OOOO'u) to keep the right side aligned. Another exa·mple is ~nm + 5·5 x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line, with

15 M= 5, with spacing S untouched, and with the indent I set to 3.

NROFFITROFF USER'S MANUAL 219

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres­
sion, string1 and string2 are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial If No
Form Value Argument Notes Explanation

.if c anything

. if ! c anything

. if N anything

. if ! N anything

. if 'string]' string2' anything

.if ! ' string]' string2' anything

. ie c anything

. el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
n

If condition c true, accept anything as input; in multi-line
case use \{anything\} ..

If condition c false, accept anything .

If expression N > 0, accept anything .

If expression N ~ 0, accept anything .

If string1 identical to string2, accept anything .

If string1 not identical to string2, accept anything.

If p<;>rtion of if-else; all above forms (like if) .

Else portion of if ~else .

True If

Current page number is odd
Cur.rent page number is even
Formatter is TROFF
Formatter is NROFF .

If the condition' c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font),· anything is accepted as input. If a ! precedes the condi­
tion, number, or string comparison, the sense of the accep'tance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the mUlti-line case,
the first line must begin with a left delimiter \ { and the last line must end wit'b a right delimiter \}.

The request ie (if-else) is identical to' if except that the acceptance state is remembered. A· subsequent
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e .tl ' Even Page %'"

which outputs a title if the page number is even; and

.ie \n% > 1 \{\
'sp O.Si
.tl ' Page %'"
'sp 11.2i \}
.el .spI2.Si

which treats page 1 differently from other pages.

17. Environment Switchi~g.

A number of the parameters that control, the text processing are gathered together into an environment,
which can be switched by the· user. The environment parameters are those associated with requests
noting E in their' Notes column; in addition, partially. collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

220 DOCUMENT PREPARATION

number registers, and
parameter values.

Request Initial
Form Value

.ev N N=O

macro and string definitions." All environments are initialized with default

/fNo
Argument Notes Explanation

previous . Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the, Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two new lines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key­
board, a pipe, or a file.

Request Initial
Form Value

.rd prompt

.ex

I

If No
Argument Notes Explanation

prompt=BEL- Read insertion from the standard input until two new­
lines in a row are found. If the standard input is the'
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF /TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions ~re to be taken from. the terminal keyboard while output is being printed on the terminal,
the command line option - q will turn' off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke'
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Request Initial If No
Form Value Argument Notes Explanation

.so filename

.nx filename

.pi program

20. Miscellaneous

Request
Form

.mc cN

Initial.
Value

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be. nested.

end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

If No
Argument

off

Pipe output to program (NROFF only). This request
must occur be/ore any printing occurs. No arguments are
transmitted to program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to
the right of the right margin after each non-empty text
line (except those produced by tn. If the output line is
too-long (as can pappen in nofill mode) the character will

.tm string newline

.ig yy .yy= •.

.pm t all

. n

21. Output and Error Messages.

B

NROFFITROFF USER'S MANUAL 221

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para­
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. ig behaves. exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters .

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are wriU(!n onto
UNIX's standard message output. The latter is different from the standard output, where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected. •

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errqrs having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to tit in the line buffer; in both cases; a message is pripted, the
offending excess is discarded, and the affected word or line is marked at the point of truncation·with a ...
in NROFF and a ... in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

222 DOCUMENT PREPARATION

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors·
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con­
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at .page position 0 for the header, and at - N (N
from the page bottom) for the footer. The sim­
plest such definitions might be

.de hd
'sp li

.de fo
'bp

.wh 0 hd

.wh -li fo

\ "define header

\ "end definition
\ ~define footer

\ "end definition

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the first puge,
only if the definition and trap exist prior to the

*For example: P. A. Crisman, Ed., The Compatible Time­
Sharing System, MIT Press, 1965, Section AH9.01 (Descrip­
tion of RUNOFF program on MIT's CTSS system).

initial pseudo-page transition (§3). In fill mode,
the. output line that springs the footer trap was
typi:ally forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con­
trol character ' to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \ "header

.if t .tl '\(rn"\(rn' \"iroff cut mark

.if \\n%>1 \{\
'sp 10.Si-l \"tl base at O.Si
.tl "- % -" \"centered'page number _
.ps \ "restore size
.ft \ "restore font
. vs \} \ "restore vs
'sp I1.Oi \"space to I.Oi
.ns \ "turn 011 no-space mode

.de fo \ "footer

.ps 10 \ "set footer/header size

.ft R \ "set font

. vs 12p . \"set base-line spacing I

.if \\n%=1 \{\
'sp 1\\n(.pu-O.Si-l \"tI base O.Si up
.tl "- % -" \} \ "first page number
'bp

.wh 0 hd

.wh -li fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at tile bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

much as the base-line spacing. The no-space
mode is turned on at the end of hd' to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow­
ing:

. de fo

.nr sl \ \n (.s \ "current size

.ps

.nr s2 \ \n (.s

.de hd

.ps \ \n (s2

.ps \ \n(51

\ "previous size
\ "rest of footer

\ "header stuff
\ "restore previous size
\ "restore current size

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the
footer's page ejection:

.de bn \ "bottom number

.tl "- % -" \ "centered page number

. wh -0.5i-lv bn \"tl base O.Si up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base~line spacing, and indent, checks' that
enough space remains for more than one line, and
requests a temporary indent.

. de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \ "size,
• vs 12p \ "spacing,
.in 0 \ "and indent
.sp 0.4 \ "pres pace
.ne 1 + \ \n (. viI \ "want more than 1 line
.ti 0.2i \ Rtemp inden,t

The first break in pg will fbrce out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec­
tion heading macros to set parameters only once.

NROFFITROFF USER'S MANUAL 223

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the . V is the available vertical resolu­
tion).

A macro to automatically number section head­
ings might look like:

.de sc \ "section
\ "force font, etc .

.sp 0.4 \ "prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.

.nr SOl

The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the. following pg,
and one line of the paragraph text. A word oon­
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de lp

.pg

.in O.Si

.ta 0.2i O.Si

.ti 0
\t\ \$I\t\c

\ "labeled paragraph

\ "paragraph indent
\ "label, paragraph

\ "flow' into paragraph

The intended usage is n.lp label"; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.4iR O.Si.
The last line of lp ends wi~h \c so that it will
become a part of the first line of the text that fol­
lows .

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro­
duce the bottom margin. The header can initial­
ize a column register that the 'footer will incre­
ment and test. The following,is arranged for two
columns, but is easily modified for more.

224 DOCUMENTPREPARATION

.de hd

.nr cI 0 1

.mk

\"header

. \ "init column count
\ "mark top of text

.de fo \ "footer

.ie \ \ n + (cI < 2 \ {\

.po +3.4i \"next column; 3.1 +0.3

.rt \ "back to mark

.ns \J \ "no-space mode

.el \ {\

.po \ \nMu \ "restore left margin

'bp \}

.11 3.li \ "column width

.nr M \ \n (.0 \ "save left margin

Typically a portion of the top of the first page
contains full width text~ the request for the nar­
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and control lines ...
.ef

In the following, footnotes are processed in a
separate erivironment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the rast collected footnote doesn't com­
plete~y fit in the available space.

:.de hd \"header

.or x 0 1 \" init footnote count

.nr y O-\\nb \"current footer place

.ch fo -\ \nbu \"reset footer trap

.if \ \n (dn .fz \ "leftover footnote

.de fo

.or dn 0

.if\\nx\{\

\ "footer
\ "zero last diversion size

.ev 1 \ "expand footnotes in evl

. nf \ "retain vertical size

.FN \ "footnotes

.rm FN \ "delete it

.if "\ \ n (.z" fy" .di \" end overflow di version

.nr x 0 \ "disable fx

.ev \) \ "pop environment

'bp

.de fx \ "process footnote overflow

.if \ \ox .di fy \ "divert overflow

.de fn \ "start footnote

.da FN \ "divert (append) footnote

.ev 1 \ "in environment 1

.if \ \n + x = I .fs \ "if first, include separator

.fi \ "fill mode

.de ef \ "end footnote

.br \ "finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \ "end diversion·

.nr y -\\n(dn \"new footer position,

.if\\nx=l .nr y -(\\n(.v-\\nz) \
\ "uncertainty correction

.ch fo \ \ nyu \" y is negatiVe

.if (\\n(nl+Iv» (\\n(.p+\\ny) \

.ch fo \\n(nlu+Iv \"it didn't fit

.de fs
\1' Ii'
.br

\ "separator
\" 1 inch rule

.de fz \ "get leJtover footnote

.fn

.nf \ "retain vertical size

.fy \ "where fx put it

.ef

.nr b 1.0i \ "bottom margin size

.wh 0 hd \ "header trap

. wh 12i fo \ "footer trap, temp position

.wh - \ \nbu fx \"fx at footer position

.ch fo -\ \nbu \"conceal fx with fo

The header hd initializes a footnote count regis­
ter x, and sets both the current footer trap posi­
tion register y and .the footer trap itself to a nom­
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment 1, and increments the count x~ if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro. ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

footnote, available in dn~ then on the first foot­
note, y is further decremented by the diffe~ence
in vertical base-line spacings of the two environ­
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then s~t
to the lower (on the page) of y or the current
page position (nl) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish­
ing before reaching the fx trap.

A good exercise for the student is to combine'
the multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke· the end macro (§7), if any, and .
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro­
cessed normally. A t tl~e end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en . \ "end-macro
\c
'bp

.em en

will deposit a null partial word, and effect
another last page.

NROFFfTROFF USER'S MANUAL 225

226 DOCUMENT PREPARATION

Table I

Font Strle Examples

The following fonts are printed in 12-point, with a vertical spacing·of 14-point. and with non­
alphanumeric characters separated by 1,4 em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are' among the many standard fonts available from that company. '.

Times Roman '

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () , , * + - . , / : ~ = ? [] I
• 0 -. - ~ 1,4 Ih % fi fl ff ffi mot ' ¢ ® ©

Tilnes Italic

abcdefghiiklmnopqrstuvwxyz
A BCDEFGHllKLMNOPQRSTUVWXYZ
1234567890
! $ 'ffl & () t , * + - . , /: .. = ? [11
e 0 - - _ '14 '12 ·y.f.1i fl.ff.ffi If! 0 t ' ¢ ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () , , * + - . , / : ; = ? (II
eo --_%%%fiflffffifflOt'¢®©

Special Mathematical Font

"'\"-'-/<,> {}#@+-=*
a~yoe'~OtKA~V~O~pU~TV¢X~W
rL.\eAEn~Y<l>'I'n

.J- ~ ~ = ~ == ~ - -l ! x -:- + u n c :::> c :::> co a
§ \7 -w f ex: 0 E *---- @ I 0 (ll J ~ H lJ rll .

NROFFfTROFF USER'S MANUAL 227

Table II

Input Naming Conventions for " ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \ (fi fi ,
open quote fl \(fl fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi ffi

\(hy hyphen ill \(FI ill
\- current font minus :I \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
1/4 \(14 1/4 ~ \(rg registered
V2 \(12 1/2 ~ \(co copyright
% \(34 3/4

Non-Ast,;11 characters and " ., _, +, -, , and. on the special font.

The ASCII characters @, #~ ", " " <, >, \, {, }, -, A,. and exist only on the special font and are
printed as a I-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case,
English letters in whatever font is mounted on font position one (default Times Roman). The special,
math plus, minus, and equals are provided, to insulate the' appearance of equatiol::; !'rom the choice of
standard fonts.

Input Character Input Character "

Char Name Name Char Name Name

+ ' \(pl math plus K \(*k kappa
\(mi math minus A \(*1 lambda

. \(eq math equals JL \(*m mu
• \(** math star v \(*n ' nu
§ \(sc section ~, \(*c xi

\(aa acute accent 0 \(*0 omicron
\(ga grave accent 7T \(*p pi
\(ul underrule p , \(*r rho

/ \(sl slash (matching backslash) (T \(*s ~igma
a \(*a alpha ~ \(ts terminal sigma'
f3 \(*b beta T \(*t ' tau

'Y \(*g gamma v \(*u upsilon
S \(*d delta ~ \(*f phi
E \(*e epsilon X \(*x chi , \(*z zeta I/J \(*q psi

,." \(*y eta CJ) , \(*w ,omega
() \(*h theta 'i:, A \(*A Alphat' '

\(*i iota B \(*B · Betat
')

228 DOCUMENT PREPARATION

Input Character Input Character
Char Name Name Char Name Name
r \(·G Gamma I \(br box vertical rule
d \(·D Delta * \(dd double dagger
E· \(·E Epsilont -- \(rh right hand
Z \(·Z Zetat ,. \(Ih left hand
H \(.y Etat @ \(bs Bell· System logo "
e \(·H Theta I \(or or
1 \(·1 lotat 0 \(ci circle
K \(·K" Kappat r \(It left top of big curly bracket
A \(·L Lambda l \(Ib left bottom
M \(·M Mut l \(rt right top
N \(·N Nut J \(rb right bot - \(·C Xi ~ \(Ik left center of big curly bracket :::.
0 \(·0 Omicront ~ \(rk right center of big curly bracket
n \(.p Pi I \(bv bold vertical
P \(·R Rhot l \ (If left floor (left bottom of big
L \(·S Sigma square bracket)
T \(·T Taut J \(rf right floor (right bottom)
y \(·U Upsilon" r \ (Ie left ceiling (left top)
<I> \(·F Phi 1 \(rc right ceiling (right top)
X \(·X Chit
'I' \(.Q Psi
n \(·W Omega
.J \(sr square root

\(rn root en extender
~ \(>= >=
.~ \«= <=
- \ (= = identically equal
- \(-= approx =

\(ap approximates
;:e \(!= not equal - \(-> right arrow - \«- left arrow
t \(ua up arrow
! \(da down arrow
x \(mu multiply

\(di divide
± \(+- " plus-minus
U \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of
::> \(sp superset of
~ \{ib improper subset
~ \(ip improper superset
00 " \(if infinity
a \(pd partial derivative
\l \(gr gradient
.., \(no not
f \ (is integral sign
0: \(pt proportional to
0 \(es empty set
E \(mo member of

Options

-h

-z

Old Requests

.ad c

. so name

New Request

.ab text

.fz F N

NROFFITROFF USER'S MANUAL 229

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output' as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics).

The aqjustment type indicator "c" may now' also be a number previously obtained from
the ".j" register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is m'issing,' "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F" to be in si~e N. N may have' the form N, + N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s+2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0 , .
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any" .fp" requ'est specifying a font on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers.

:.k

.j

. P

. L.

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be,
saved and later given to the "ad" request to restore a previous mode.

Read-only. 1 if the current page is being printed, and' zero otherwise .

Read~only. Contains the current line-spacing parameter ("Is") .

General register access tq the input lin,e-number in the current input file. Contains the
saine value as ,the read-.only ".c" register.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo­
typesetter on the UNIXt and Geos operating systems. This device is capable of
producing high quality text; this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub­
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions,
as well as the usual features of a formatter - right-margin justification,
automatic hyphenation, page titling and numbering, and so on.. It also provides
macros, arithmetic variables and operations, and conditional testing, for compli-
cated formatting tasks .. ·:" . , .,

This document is an introduction to the most basic use of troff. It
presents just enough information to enable the user to do simple formatting
tasks like 'making viewgraphs, and to make incremental changes to existing
packages of troff commands. In most respects, the UNIX formatter nroff is
identical to troff, so this document also serves as a tutorial on nroff.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

230

1. Introduction

troft [1] is a text-formatting program, writ­
ten by 1. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and GCOS operating systems. This docu­
ment is an example of troff output.

The single most important rule of using
troff is not to use it directly, but through some
intermediary. In many ways, troff resembles an
assembly language '- a remarkably powerful and
flexible one - but nonetheless such that many
operations must be specified at a level 'of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, 'there are pro­
grams that provide an interface to troft for the
majority of users. eqn [2] ptovides an easy to
learn language for ~ypesetting mathematics; the
eqn user need know no trolf whatsoever to
typeset mathematics. tbl [3] provides the same'
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables), there are a
number of 'macro packages' that define format­
ting ,rules and operations for specific· styles of
documents, and reduce the· amount of direct
contact with troft. In particular, the' -ms' [4]
and PWB/MM [5] packages for Bell Labs inter­
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu­
ment preparation. (This memo was prepared
witn '-ms'.) There are also packages for view­
graphs, for simulating the older roft' formatters
on UNIX and GCOS, and for other special applica­
tions. Typically you will find these packages
easier to use than trolf once you get beyond the,
most trivial operations; you should always con­
sider them first.

In the few cases where existing packages
don't do the whole job, the solution is not to
write an entirely new set of troft instructions
from scratch, but to make small changes to adapt
packages ~hat already exist.

In accordance with this philosophy of let­
ting someone else do the work, the part-Of troff
described here is only a' small part of the whole,
although it tries to concentrate on the more use­
ful parts. In any case, there is no attempt to b~ .
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre­
mental changes to what already exists. The con­
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments
1.2. Conditionals .
13. . Environments
14. Diversions

Appendix: Typesetter character set

The troti described here is the C-Ianguage ver­
sion running on UNIX at Murray Hill; as docu­
mented in [11.

To use troft you have to prepare not only
the actual text you want printed, but some infor­
mation that tells how you want it printed.
(Readers who use rolf will find the approach
familiar.) For troft' the text and· the formatting.
information are often intertwined quite inti­
mately. Most commands to troft are placed on a',
line separate from the text itself, beginning with
a period (one command per line). For example,

Some text.,
.ps 14
Some more text.

will change the 'point size', that is, the size of
the letters being printed, to '14 point' (one point
is 1172 inch) like this: .

231"

232 DOCUMENT PREPARATION

Some text. Some more text.
Occasionally, though, something special

occurs in the middle of a line - to produce

Area = Tr,2

you have to type

Area = \(.p\flr\fR\l\s8\u2\f)\sO

(which we will explain shortly). The backslash
character \ is used to introduce troff commands
and speci~1 characters within a line of text. .

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the. point size. One point is 1172 inch, so
6-point characters are at most 1112 inch high,
and 36-point characters are 1/2 inch. There are 15
point sizes, listed below.

~ point: Pa~k my box'wilh five dozen liquor jugs.
7 point: Pack my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps is not one of these

legal sizes, it is rounded up to the next valid
value,· with a maximum of 36. If no number fol­
lows .ps, troff reverts to the previous size, what­
ever it was. troff begins with point size 10,
which is usually fine. This document is in 9
point.

The point size can also be changed in the
middle of a line or even a word with the in-line
command \s. To produce

UNIX runs on a PDP-l 1/45

type

\s8UNIX\s1O runs on a \s8PDP-\s1011145

As above, \s should be followed by a legal point
size, except that \sO causes the size to revert to
its previous' value. Notice that \sI011 can be
understood correctly as 'size 10, followed by an
11', if the size is legal, but not otherwise. Be
caut!Dus with similar constructions.

Relative size chang~s are .also legal and
useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com­
mand to control vertical spacing is .vs. For run­
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so far in this document, we have
used' "9 on 11", that is,

.ps 9

.vs IIp

If we changed to

.ps 9

.vs 9p

the running text would look like· this. Aftet a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a matter"
,of traditional printing style. By default, troff
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

Poinl size and verlical spacing make a subslanlial difference in
Ihe amounl of lexl per square inch. For example, lOon 12 uses aboul
Iwil'C as much space as 7 on 8. This is 6 on 7, which is even smaller. II
packs a 101 more words per line, bUI you can go blind Irying 10 read il.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vert­
ical space. . Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to).. Typically, that's more or less than you
want, so .sp can. be followed by information
about how much space you want -

.sp 2i

means 'two inches ·of vertical space'.

.sp 2p

means 'two points of vertical space'~ and

.sp 2

means 'two vertical spaces' - two of whatever

.vs is set to (this can also be made explicit with
:sp 2v); troff also understands decimal fractions
in most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale fac­
tors can be used after . vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers
are converted internally to 'machine units',
which are 1/432 inch 0/6 point). For most pur­
poses, this is enough resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 11144 inch
0/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at anyone time. Normally three fonts
(Times roman, italic and bold) and .. one collec­
tion of special characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
A BCDEFGHJJKLMNOPQRSTUV WXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are 'listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft B

and for italics,

.ftI

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either .ft P or
just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .ul
can -be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line ~ommand \f:

boldface text

is produced by

\fBbold\fIface\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this: '

A TROFF TUTORIAL 233

\fHbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter:

.fp 3 H

says that the Helvetica font is mounted on posi­
tion 3. (For a complete list of fonts and what
they look like, see the troff manual.) Appropriate
.fp commands should appear at the beginning of
your document if you do not use the standard
fonts.

It is possible to make, a document rela­
tively independent of the actual fonts used to
print it by using font numbers instead of names';
for example, \f3 and .fe3 mean 'whatever font
is mounted at position 3 f, and thus work for any
setting. Normal settings are roman font on I,
italic on 2, bold on 3, and special on 4.

There is also a way to get 'synthetic' bold
fonts by overstriking letters with a slight offset.
Look at the .pd command in [1]. ,

Special characters have four-character
names beginning with \ (, arid they may be
inserted anywhere. For example,

.1/4 + 1/2 = %

is produced by

\04 + ,\02 = \(34

In particular, greek letters are all of the form
\ <,.,-, where - js an Up'per 9r lower case roman
letter reminiscent of the greek. Thus to get

L(aX{3) - 00

in bare troff we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if

That line is unscrambled as follows:

\(*S' L
((
\'(*a a

\(mu x
\(*b {3
))

\(->
\ (if 00

A complete list of these special names occurs in
Appendix A.

234 DOCUMENT PREPARATION

. In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise, but dearer to the unini­
tiated.

Notice that each four-character name is a
single character as far as troff is concerned '- the
'translate' command

. tr \ (mi\ (em

is perfectly clear, meaning

,tr --

that is, to translate -:- into '-. '

Some characters are automatically
tra,nslated ,into others: grave ' and acute '
acdmts (apostrophes) become open and close
single quotes '-'; ihe combination' of " ... " is gen-
erally preferable to the double quotes " '. Simi-

.larly a typed minus sign becomes a hyphen -. To
print' an explicit - sign, us'e \-. To get a
,backslash printed, use \e.'

4. Indents and Line Lengths

, ' troff starts with a line length of 6.5 inches,
too wide for 81/2xll paper. To reset the line
length,' use the .Il command, as in

.1I 6i

As with .sp, the actual length can be' speCified in
several ways; inches are probably the most intui­
tive.

The maximum line lengt~ provided by the·
typesetter is 7.5 inches, by the way. To use the
full width, you will have to, reset the default phy­
sicai left margin ("page offset"), which is nor­
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com­
mand.'

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left
margin to be indented by some specified amOlmt ,
from' the page offset. If we use .in to move the
left margin in: and .Il to move the right' margin
to -the left, we can make offset blocks o~ text:

.in O.3i

.Il -O.3i
text to be set into a brock
.II +O.3i
.in -O.3i

will create a block that looks like this:

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut
in caelo, et in terra. ... Arne!?

Notice the use of '+' and '-' to specify the
amount of change. These change the previous
setting by the specified amount,' rather than just
overriding it. The distinction is quite important:
.Il + Ii makes lines one inch longer; .11 Ii makes
them one inch long .

With .in, .Il and .po, the previous value is
used if no argument is specified.

To indent a single line, use the 'temporary
indent' command .tL For example, all paragraphs
in this memo effectively begin with the com­
mand

.ti 3

Three of what? The default unit for .ti, as for
most horizontally oriented commands CIl, .in,
.po), is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely, a
em in size p is p points.) Although inches are
usually clearer than ems to people who don't set
type for a'living, ems have a place: they are a
measure of size that is proportional to the
current point size. If yo'u want to make text that
keeps its proportions regardless of point size, you'

, should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m.

Lines can also be indented negatively if the
indent is already p~sitive:

.ti -O.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then n-I0ve the letter 'P' back with a .ti com­
mand:

P
ater 'noster qui est in caelis
sanctificetur nomen tuum; ad­
veniat regnum tuum; fiat volun­

tas tua, sicut in caelo, et in terra
Amen.

Of course, there is also some trickery to make
the 'P~ bigger (just a '\s36P\sO'), and to move it
down from its normal position (see the section

, on local ~otions). '

5. Tabs

Tabs (the ASCII 'horizontal tab" character>
can be used to produce output in columns, or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .ta command.
To set stops every inch, t'or example,

.ta Ii 2i 3i 4i Si 6i

Unfortunately the ~tops are left-justified
only (as on a typewriter), so lining up columns
of right-justified numbers can be painful. If you
have many numbers, or if you need more com­
plicated table layout, don't use troff directly; use
the tbl program described in [3].

For a handful of numeric columns, you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

.nf

.ta Ii 2i 3i
I tab 2 tab 3

40 tab SO tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string
\0. This is a character that does not print, but
that has the same width as a digit. When
printed, this will produce

I
40

700

2
SO

800

3
60

900

It is also possible to fill up tabbed-over
space with some character other than blanks by
setting the 'tab replacement charader' with the
.tc command: .

.ta l.Si 2.Si

.tc \ (ru (\ (ru is "_")
Name tab Age tab

produces

Name _______ Age ____ _

To reset the tab replacement character to a
blank, use .tc with no argument. (Lines can also
be drawn with the \1 command, described in Sec­
tion 6.)

troff also provides a very general mechan­
ism called 'fields' for setting up complicated
columns. (This is used by tbI). We will not go
into it in this paper.

6. Local Motions: Drawing lines and characw

ters

Remember 'Area = 1Tr2, and the big 'P'
in the Paternoster. How are they done? troff
provides a host of commands for placing charac­
ters of any size at any place. You can use them
to draw special characters or to tune your output
fOf a particular appearance. Most of these com­
mands are straightforward, but messy to read
and tougn to type correctly.

If you won't use eqri, subscripts and super­
scripts are most easily done with the half-line

A TROFF TUTORIAL 235

local motions \u and \d. To go back up the page
half a point-size, insert a \u at the desired place;
to go down, insert a \d. (\u and \d should always
be used in pairs, as explained below.) Thus

Area = \ (·pr\u2\d

produces

Area = 1Tr2

To make the '2' smaller, bracket it with
\s-2 ... \sO. Since \u and \d refer to the current
point size, be sure to put them either both inside
or both outside the size changes, or you will get
an unbalanced vertical motion.

Sometimes the space given by \u and \d
isn't the right amount. The \v command can be
used to request an arbitrary amount of vertical
motion. The in-line command

\ v' (amount)'

causes motion up or down the page by the
amount specified in '(amount)'. For example, to
move the 'P' down, we used

.in +0.6i (move paragraph tn)

.11 -0.3i (shorten lines)

.ti -0.3i (move P back)
\v'2'\s36P\sO\v' -2'ater noster qui est
in caelis ...

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\ v' - 2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\v'O.li'
\v'3p'
\v'-O.Sm'

and so on are all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other troff commands described
in this section.

Since troff does not take within-the-Iine
vertical motions into account when figuring o~t
where it is on the page, output lines can have
unexpected positions if the left and right ends
aren't at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in the downward direction.

Arbitrary horizontal motions are also avail­
able - \h is quite analogous to \ v, except that
the default scale factor is ems instead of line .
spaces. As an example,

\h' -O.Ii'

236 DOCUMENT PREPARATION

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol' > >'. The default spacing
is .too wide~ so eqn replaces th'is by

>\h'-0.3m'>

to produce > > .

Frequently \h is used with the 'width func­
tion' \ w to generate motions equal to the width
of some character string. The construction

\w'thing'

is a number equal to the width of "thing' in
machine units (1/432 inch). All troff complita­
tions are ultimately done in these units. To
move horizontally the' width of an 'x" we can
say r

\h'\w'x'u'

As we mentioned "above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. troff is
quite happy with the nested quotes, by the way,
so long as you' don't leave any out.

As a live example of this kind of construc­
tion, all of the command names in the text, like
.sp, were done by 'overstriking with a slight
offset. ~he commands for .sp are

.sp\h' -\w'.sp'u'\h'lu'.sp

That is, put out '.sp', move left by the width of
'.sp', move right 1 unit, and print '.sp' again.
(Of course there is a way' to avoid typing that

.., much input for each command name, which we
will discuss in Section 11.)

There are also several special-purpose troff
commands for local motion. We have already
seen \0, which is an unpaddable white space of
the same width as a digi!. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\ (blank), which is an unpaddable character the
width of a space, \1, which is half that width, \A,
which is one quarter of the width of a space, and
\&, which bas zero width.- (This last one is use­
ful, for example, in entering a text line which
would otherwise begin with a '.'.)

The command \0, used like

\0' set of characters'

causes (up to 9)' characters to be overstruck, cen­
tered on the widest. This' is nice for accents, as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\(aa"phonique

which makes

systeme telephonique

The accents are \ {ga and \ {aa, or \' and \';
remember that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed 'within \0, it
centers the characters on the widest, and there
can be' no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\(sq\sI4\z\(sq\s22\z\{sq\s36\(sq

The .sp is needed ,to leave room for the result.

. As ,another example, an extra-heavy semi-
colon that looks like .'

; instead of ; or ;

can be constructed with a big comma and a big
period above it:

\s +6\z,\ v' -0.25m'.\ v'0.25m'\sO

'0.25m' is an empirical constant.

A more ornate overstrike is given by the
bracketing fU,nction \b, which 'piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

{!xl}
by typing in only this:

.sp
\b'\ (It\ (Ik\ (Ib' \b'\ (Ic\ or x \b'\ lrc\ err \b'\ {rt\ {rk\ {rb'

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l'li' draws a
line one inch 19n9, like this: '
The length can be followed by the character to
use if the _ isn't appropriate; \I'O.5i.' draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead,of horizontal.

7. Strings

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', typing \o"e\'" for each e would be a

great nuisance.

Fortunately, troff provides a way in which
YO,u can store an arbitrary collection of text in a
~string', and thereafter use the string name as a
shorthand for its contents. Strings are one of
several troff mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive 'format changes can
be made with few editing changes.

A reference to a string is replaced by what­
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\'"

defines the string e to have the value \o"e\'"

String names may be either one or two
characters long, and are referred to by \.x for
one character names or \.(xy for two character
names. Thus to g~t telephone, given the
definition of the string e as above, we can say
t\ *el\ .ephone. .

If a string must begin with blanks, define it
as

. ds xx " text'

The double quote signals the beginning of the
definition. There is no trailing<quote~ the end of
the Hne terminates the string.

A string may actually be several lines long~
if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim­
ply by ending each line but the last with a
backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further, in troff, we
need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
notation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff ~command'
like

A TROFF TUTORIAL 237

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troff what

.PP means is to ddine it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used 'oPP'
for 'paragraph', and upper case' so it wouldn't
conflict with any name that troff might already
know about). The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever troff sees the 'com­
mand' or macro call

.PP

A macro can contain· any mixture of text and
formatting commands.

The definition or .. opp has to precede its
first use; undefined macros are simply ignored .
Names are restriCted to one or two·characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that
the paragraph indent is too small, the vertical
space is much too big, 'and roman font should be
forced. Instead of changing the whole docu­
ment, we need only change the definition of oPP
to something like

.de PP

.sp 2p

.ti +3m

.ft R

\" paragraph macro

and the change takes effect everywhere we used
oPP.

\" is a troff command that causes' the res't
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
onGe definitions get complicated) 0

As another example of macros, consider
these two which start and end a bloc,k of offset,
unfilled text, like most of the examples in this
paper:

\

238 DOCUMENT PREPARATION

.de BS

. sp

.nf

.in +0.3i

.de BE

.sp

.fi

.in -0.3i

\" start indented block

\" end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
.Stanley Smith'

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +0.3i instead ·of .in 0.3i. This way we can
nest our uses of .BS and BE to get blocks within
blocks.

If later on we decide that the indent should
be O.Si, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

9. Titles, Pages and Numbering

rhis is an area where things get tougher,
because nothing' is done for you automatically.
Of necetsity ,some of this section is a cookbook,
to be copied literally until you get some experi­
ence.

Suppose you want a title at the top of each
page, saying just

----left top center top right top----

In roff, one can say

.he 'lef(top' center top'right top'

.fo 'left bottom'center bottom'right bottom'

to get headers 'and footers automatically on every.
page. Alas, this doesn't wor:k in troff, a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak­
ing these in· reverse order, first we define a
macro .NP (for ~new page') to process tities and
the like at the end of one page and the beginning
of the next:

.de NP
't>p
'sp O.Si .
. tl 'left top' center top'right top'
'sp 0.3i

To make sure we1re at the top of a page," we

issue a 'begin page' command 'bp, which causes
a skip to top-of-page (we'll explain the' shortly) .
Then we space'down half an inch, print the title
(the use of .t1 should be self explanatory; later
we will discuss parameterizing the titles), space
another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page,
we have to say something like 'when the text is

. within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'when' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the
name of a macro, not a macro calI.) The minus
sign means 'measure up from the bottom of the
page', so '-} i' means 'one inch from the bot­
tom'.

The .wh command appears in the input
outside the definition of .NP; typically the input
would be

.de NP

.wh -Ii NP

Now what happens? As text is actually
being output, troff keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. (In the jargon, the .wh command
sets a trap at the specified place, which is
'sprung' when that point is passed.) .NP causes a
skip to the top of the next page (that's what the
'bp was for), then prints the title with the
appropriate margins.

Why 'bp and 'sp instead of .bp and .sp?
The answer is that .sp and .bp, like several other
commands, cause a break to take place. That is,
all the input text collected but not yet printed is
flushed out as' soon as possible, and the next
input line is guaranteed to start a new line of
output. _ If we had used .sp or .bp in the .NP
macro, this would cause a break in the middle of
the current. output line when a new page is
started. The effect would be to print the l~
over part of that line at the top of the page, fl.­
lowed by. the next input line on a new output
line. This· is not what we wan~. Using" instead
of . for a command tells troff' that no break is to
take place - the output line currently being
filled should not be forced out before the space
or ne~ page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .ft .nf .sp .in .ti

All others cause no break, regardless of whether

you use a . or a '. If you really need a break, add
a .br command at the appropriate plaCe.

One other thing to beware of -' if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex­
pected font or size, your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.S inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the sim­
plest applications, we can change .NP to set the
proper size and font for the title, then restore
the previous values, like this:

.de NP
"bp
'sp O.Si
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tl'left'center'right'
.ps \" revert to previous size
.ft P \" and to previous font
/sp 0.3i

This version of .NP does not work if the
fields in the .tl command contain size or font
changes. To cope with that requires troff's
'environment' mechanism, which we will discuss
in Section 13.

To get a footer at the bottom of a page,
you can modify .NP so it does some processing
before the 'bp command, or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of, the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at 1), but no nqmbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the, character % in the .i1 line at
the position where you want the number t'o
appear. For' example

. tl"-%-"

centers the page number inside hyphens, as on
'this page. You can set the page number at any
time, with either .bp n, which, immediately starts
a new page numbered n, or with .pn n,which
sets the page number for the next page but
doesn't cause a skip to the new 'page. Again,
bp +n sets the page numberto n more than its

current value; .bp,means .bp + 1.

A TROFF TUTORIAL 239

10. Number Registers and Arithmetic

. troft' has a facility for doing arithmetic, and
for, defining and using variables with numeric
values, called number registers. Number regis­
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later., And of course they serve for any sort of
arithmetic computation.

Like strings, number registers ,have one or
two character names. They are set by the .nr
command, and are referenced anywhere by \nx
(one character name) or \n (xy (t~o' character
name). '

There are quite a few pre-defiried number
registers maintained by trolf, among tt~em % for
the current page number; nl for the current vert­
ical position on the page; dy, rno and Yr,'for the
current day, month and year; and .S "and .f for
the current size and font. (The font is'a number
from 1 to 4.) Any of these can, be used in com­
putations like any other register" but- some, like
.s a~d .f, cannot be changed with .m .

'As an example of the use of npmber regis­
ters, in the -rns micro package (4], most
significant parameters are defined in terl1J~ of the
values of a handful of number registers. These
include the point size for text, the vertical spac­
ing, and the line and title lengths, To set the
point size and vertical spacing for the following
paragraphs, for example, a user may s,ay ,

.nr PS 9

.nr VS 11

'The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ftR

.sp O;5v

.ti +3m

\" reset size
\" spacing
\" font
\" half a line

This sets the font t!J Roman and the point size
and line spacing ,to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is
the eternal problem of how to quote a quo'te .
When troft' originally reads the macro definition,
it peels off one backslash to see what's coming
next. To ensure that another is left in the
definition: when the macro is used, we have to
put in two backslashes in the defin.1tion. If only
one ,backslash is used, point size and vertic~l

spacing will be frozen at the time the macro is
defined, not when ~t L. used.

Protecting by" an extra layer of backslashes

.240 DOCUMENT PREPARATION

is, only need~d for \n, *, \$ (which we haven't
come to yet), and \ itself. Things like \s, \f, \h,
\v, and so on do not need an extra backslash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear any­
where that a number is expected. As a trivial
example,

.nr PS \\n(PS-2

decrements PSby 2. Expressions can use the
arithmetic operators +, -, *, I, % (mod), the
relational operators >, > =, <, < ,=,. =, and
! = (not equal), and, parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somew~at tricky. First, number regis­
ters hold only integers. troff arithmetic uses
truncating integer division, just like Fortran.
.second, in the absence of parentheses, evalua­
tion is done left-to-right, without any operator
precedence (including 'relational operators).
Thus '

7*~4+3/13

becomes '-1'. Number registers can occur any­
where in an ~?,pression, and so can scale indica­
tors like p, i" m, and so on (but no spaces).
Although integer division causes truncation, each
number and its scale indicator is coriverted to
machine units 0/432 inch) before any arithmetic
is done, so. li/2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

.11 7/2i

would seem obvious' enough - 31/2 inches.
Sorry. Remember that the default units for hor­
izontal parameters like .11 are ems. That's really
'7 ems 'I 2 inches', and when translated into
machine units, it becomes zero. ·How about

.11 7i12 '

Sorry, still no good - the '2' is '2 ems'" so
'7i/2' is small, although. not zero. You must use

. 11 7i12u

So again, a safe rule is to attach a scale indicator
to every number: even constants.

For arithmetic done within a .nr commanc;l,
there is no implication of horizontal or vertical
dimension, so the default units are 'units', and

'7i/2 and 7i12u mean the same thing. Thus

.nr II 7i12

.11 \ \n (llu

does just what you want, so long as you don't
forget the u on the .11 command.

11. Macros with arguments

The next step is to define 'macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when' we define
the macro, we have to indicate that SOme parts
of it will be provided as arguments when, the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .SM
that will print its argument two points smaller
than the surrounding text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s-2\\$I\s+2

Within a macro definition, the symbol \ \$n
refers to the nth argument that the macro was
called with. Thus \\$1 is the string to be placed
in a smaller point size when .SM is called.

As a slightly more complicated version, the
following definition of .SMpermits optional
second and third arguments that will be printed
in the normal size:

.de SM
\ \$3\s-2\ \$I\s+2\ \$2

Arguments not provided when the macro is
called are treated as empty, so '

~SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order' of arguments because trailing punctua-­
tion is much more common than, leading .

By the way, the number of arguments that
a macro was called with is available in number
register .$.

The following macro .BD is the one used
'to make the 'bold roman' we have been using
for troff command names in text. It combines
horizon~al motions, width computations, and
argument rearrangement.

.de BO
\&\ \$3\f1\ \$l\h' -\w'\ \$I'u + 1 u'\ \$I\fP\ \$2

The \h and \w commands need no extra
backslash, as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \Sn
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section head­
ings rather like those in this paper, with the sec­
tions numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title ... "

(If the argument to a macro is to contain blanks,
then it must be surrounded by double Quotes,
unlike a string, where only one leading Quote is
permitted,)

Here is the definition of the .SH macro:

.nr SH 0

. de SH

.sp O.3i

\It initialize section number

.ft B

.nr SH \\n(SH+l

.ps \\n(PS-I
\\n(SH. \\$1
.ps \ \n (PS
.sp O.3i
.ftR

\" increment number
\" decrease PS
\" number. title
\" restore PS

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not,)

We used \\n(SH instead of \n(SH and
\ \n (PS instead of \n (PS. If we had used \n (SH,
we would get the value of the register at the time
the macro was defined. not at the time it was
used. If that's what you want, fine, but not here.
Similarly, by using \ \n(PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .NP macro which had a

. tl 'left' center' right'

We could make these into parameters by using
instead

so the title comes from three strings called L T,
CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set

A TROFF TUTORIAL 241

with something like

.ds CT - % -

to give just the page number between hyphens
(as on the top of this page), but a user could
supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1,
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the· section

inumber is 1, and add some space if it is. The.if
command provides the conditional test that we

.. can add just before the heading line is output:

.if \ \n (SH == 1 .sp 2i \" first section only

The condition after the .if can be· any
arithmetic or logical expression. If the condition
is logically true, or arithmetically greater than
zero, the rest of the line is treated as if it were
text - here a command. If the condition is
false, or zero or negative, the rest of the line is
skipped .

I t is possible to do more than one com­
mand if a condition is true. Suppose several
operations are to be done before section 1. One
possibility is to define a macro .SI and invoke it
if we are about to do secti~n 1 (as determined by
an .if). .

.de 51
--- processing for section 1 ---

.de SH

.if\\n(SH=I.SI

An alternate way is to use the extended
form of the .if, like this:

.if \ \n (SH -1 \ {--- processing
for section 1 ----\}

The braces \{ and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. trolf also provides an ~if-else' con­
struction, which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.if !\\n(SH> 1 .SI

There are a handful of other conditions
that can be tested with . if. For example, is the
current page even or odd?

242 DOCUMENT PREPARATION

.if e . tl "even page title"

.if 0 . tl "odd page title"

gives facing pages different titles when used
inside an appropriate new ·page macro.

Two other conditions are t and n, which
tell you whether the formatter is troff or nroff.

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made
in an .if:

.if 'string l' string2' stuff

does 'stuff' if string1 is the same as string2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with
*, arguments with \$, and so on.

13. Environments

As we mentioned, there is a potential
problem when going across a page boundary:
parameters like size and font for a page title may
well be r.ifferent from those in effect in the text
when the page boundary occurs. troff provides a
very general way to deal with .this and similar
situations. There are three 'environments', each
of which has independently settable versions of
many of the parameters associated with process- .
ing, including size, font, line and title lengths,
fill/nofill mode, tab stops, and even partially col­
lected lines. Thus the titling problem may be
readily solved by processing· the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n ·shifts to environment
n; n must be 0, 1 or 2. The command .ev with
no argument returns to the previous environ­
ment. Environment names are maintained in a
stack, so calls for different environments may be
nested and unwound corisistently.

Suppose we say that the main text is pro­
cessedin environment 0, which is where troff
begins' by default. Then we can modify the new
page macro .NP to process titles in envirot:lment
1 like this:

.de NP

.ev 1

.It 6i

.ft R

.ps 10

\" shift to new environment
\" set parameters here .

... any other processing ...

.ev \" return to previous environment

!tis also possible to initialize the parameters for
an environment outside the .NP macro, but the

version shown keeps all the processing in one
place and is thus easier to understand and
change.

14. Diversions

There are numerous occasions in page lay­
out when it is necessary to store, some text for a
period of time without actually printing it. Foot­
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the Pl!ge where it is to be
printed is reached. In fact, the place where it is
output normally depends on how big it is, which
implies that there must be a way to process the
footnote at least enough to decide its size
without printing it.

troff provides a mechanism called a diver­
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

The command .di xy begins a diversion -
all subsequent output is collected into the macro
xy until the command .di with no arguments is
encountered. This terminates· the diversion.
The processed text is avaihible at any time
thereafter, simply by giving the command

.xy

The vertical size of the last finished diversion is.
contained in the built-in number register dn.

As a simple example, suppose we want to
implement a· 'keep-release' operation, so that
text between the commands .KS and .KE will not
be split across a page boundary (as for a figure or
table). Clearly, when a .KS is encountered, we
have to' begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn't. So:

.de KS \" start keep

.br \" start' fresh line

.ev 1 \" collect in new environment

.ft \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if\\n(dn>=\\nCt.bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number' register nl is the current

positIOn on the output page. Since output was
being diverted. this remains at its value when the
diversion started. dn is the amount of text in
the diversion~ .t (another built-in register) is the
distance to the next trap. which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap. the .if is
satisfied. and a .bp is issued. In either case. the
diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so
troff will do no further processing on it.

This is not the most general keep-release.
nor is it robust in the face of all conceivable
inputs. but it would require more space than we
have here to write it in full generality. T~is sec­
tion is not intended to teach everythin~ about
diversions. but to sketch out enough tHat you
can read existing macro packages with some
com prehension.

Acknowledgements

I am deeply indebted to 1. F. Ossanna, the
author of troff. for his repeated patient explana­
tions of fine points. and for his continuing wil­
lingness to adapt troff to make other uses easier.
I am also grateful to Jim Blinn. Ted Dolotta.
Doug McIlroy. Mike Lesk and Joel Sturman for
helpful comments on this paper .

. References

[1] J. F. Ossanna. NROFFITROFF User's
Manual. Bell Laboratories Computing Sci­
ence Technical Report 54, 1976.

[2] B. W. Kernighan. A System for Typesetting
Mathematics - User's Guide (Second Edi­
tion), Bell Laboratories Computing Science
Technical Report 17, 1977.

[3] M. E. Lesk, TBL - A Program to Format
U Tables, Bell Laboratories Computing Sci­

ence Technical Report 49, 1976.

[4] M. E. Lesk. Typing Documents on UNIX,
Bell Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWBIMM
- Programmer 1S Workbench Memorandum
Macrqs, Bell Laboratories internal
memorandum.

A TROFF TUTORIAL 243

244 DOCUMENT PREPARATION

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ff \ (ff fi \(fi f1 \(f1 ffi \ (Fi ill \(FI
\(ru \(em 1/4 \(14 1/2 \(12 3/4 \(34

© \ Ceo
0 \(de t \(dg \(fm ¢ \ (ct

® \ (rg • \(bu o \(sq - \(hy
(In bold, \ (sq is • .)

The following are special-font characters:

+ \(pl \(mi x \(mu \(di
\(eq - . \(== ~ \(>= ~ \«=

~ \0= ± \(+- \(no / \ (sl
\(ap - \(-= 0:: \(pt 'V \(gr
\(->. \«- \(ua 1 \(da

f \ (is a \(pd 00 \ (if .J \ (sr
c \(sb :J \(sp u \(cu n \(Ca
~ \(ib ;;2 \(ip E \(mo '" \(es

\(aa \(ga 0 \(ci @ \(bs
§ \(sc * \(dd ... \Oh -- \ (rh

r \ (It 1 \ (rt \ (Ic \ (rc

l \(Ib J \(rb \ (If \ (rf
{ \(Ik ~ \ (rk \(bv S' \ (ts

I \(br \(or \(ul \(rn
* \(**

These four characters also have two-character names. The' is the apostrophe on terminals; the' is the
other quote mark.

\' \ . \- \-

These characters exist only on the special font, but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by \(* to get the corresponding greek~ for example. \(oa is o.

abgdezyhiklmncoprstu·fxqw
o~ySE~~OtKA~vgo~pUTV~XWW

ABGDEZYHIKLMNCOPRSTUFXQW
A B rilE Z H E>"I K A M N a O.fI P L T Y <I> X 'IT n

PROGRAMMING

The C Programming Language - Reference Manual

Dennis M. Ritchie

Bell Laboratories. Murray Hill. New Jersey

This manual is reprinted. with minor changes. from The C Programming Language. by Brian W. Ker­
nighan and Dennis M.' Ritchie. Prentice-Hall. Inc .• 1978.

1. Introduction
This manual describes the C language on the DEC PDP-II. the DEC VAX-'ll. the Honeywell 6000.

the IBM System/370. and the Interdata 8/32. Where differences exist. it concentrates on the PDP-II. but
tries to point out implementation-dependent details. With few exceptions. these dependencies follow
directly from the underlying properties of the hardware: the various compilers are generally quitl! compa­
tible.

2. Lexical conventions
There are six classes of tokens: identifiers. keywords. constants. strings. operators. and other separa­

tors. Blanks. tabs. newlines. and comments (collectively. "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent
identifiers. keywords. and constants.

, If the input stream has been parsed into tokens up to a given character. the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters 1* introduce a comment. which terminates with the characters *1. Comments do not

nest.

2.2 Identifiers (Names)
An identifier is a ,sequence of letters and digits: the first character must be a letter. The underscore ~

counts as a letter. Upper and lower case 'letters are different. No more than the first eight characters are
significant. although more may' be used. External identifiers. which are used by various assemblers and
loaders. are more restricted:

DEC PDP-II
DEC VAX-II
Honeywell 6000
IBM 360/370
Interdata 8/32

7 characters. 2 cases
8 characters. 2 cases
6 characters.' I case
T characters. 1 case
8 characters. 2 cases

2.3 Keywords _ ,
The following identifiers are reserved for use as keywords. and may not be used otherwise:

int extern else
char register for
float ,typedef do
double static while
struct goto switch
union return case
~ong sizeof default
short' break entry
unsigned continue
auto if

The entry keyword is not currently implemented by any compiler but'is reserved for future use. Some

t UNIX is a Trademark or Bell Laboratories.

248 PROGRAMMING

implementations also reserve the words fortran and asm.

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4.1 IJlteger constants ~ ,
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit

zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by Ox or ox (digit zero) is taken to' be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. A decimal constant whose value exceeds the
largest' signed machine integer is taken to be long~ an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constan~s
A decimal, octal, or hexadecimal integer constant immediately followed by 1 Oetter ell) or L is' a long

constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in 'x'. The value of a character

.- constant is the numerical value of the character in the machine's character set.
Certain non-graphic characters, the single quote ' and the backslash \, may be represented according

to the following table of escape sequences:

newline NL (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \ '
bit pattern ddd \ddd

The escape \ddd consists of the backs lash followed by 1, 2, or 3 octal'digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates ·the character NUL. If the character following a backslash is not one of those specified, the
backslash is ign·ored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E. and an

optionally signed integer exponent. The integer and "fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings
A string is a sequence of char..acters surrounded by double quotes. as in II ••• II. A string has type

"array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically. are distinct. The compiler places a null byte \ 0 at the end of
each string so that programs which scan the string can find 'its end. In a string, the double quote charac­
ter " must ~e preceded by a \~ ifl addition, the same escapes as'described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

A.tthough these affect program portability, in practice they are less of a problem than might be thought a
priori.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 249

DEC POP-II Honeywell 6000 IBM 370 Interdata 8/32

ASCII ASCII EBCDIC ASCII
char 8 bits 9 bits 8 bits 8 bits
int 16. 36 32 32
short 16 36 16 16
.long 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range ± 1O:t 38 ±10±38 .± 1O±76 ±10±76

The V Ax-II is identical to the POP-II except tliat integers have 32 bits.

3. Syntax notation
In the syntax notation used in this manual, syntactic ~ategories are indicated by italic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter­
minal or non-terminal symbol is indicated by the subscript "opt," so that

(expression
oP1

)

indicates an optional expression enclosed in braces. The syntax 'is summarized in § 18.

4. What's in' a name?
C bases the interpretation of an identifier upon two' attributes of the identifier: its storage "Class a'ild its

type. The storage class determines the location and lifetime of the storage associated with an id6tttifier~ .
the type determines the meaning of the values found in the identifier's storage.

There are four. declarable storage classes: automatic, static, external, and register. Automatic vari­
ables are local to each invocation of a block ,(§9.2), and are discarded upon exit from the block~ static
variables are local to a 'block, but retain their values upon reentry to a block even after control has left
the block~ external 'variables exist and retain their values throughout the execution of the entire program,
and may be used Jor communication between functions, even~ separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine~ like automatic variables they are
local to each block and disappear.'pn exit from the block. '

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to'store any member of the i~;!~mentation'~

character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be storeQ into charaGter vari-
ables, but the implementation is machine-dependent. . "

Up to three sizes of integer, declared short int, int, and long in:t, are available. Longer
integ~rs provide no less storage than· shorter· ones, but the implementadon may make ei~her short
integers, or long integers, or both, equivalent to, plain integers. "Plain" integers have the natural size
suggested by the host machine architecture~ the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n wheren is' the
number of bits in the representation. (On the PDP-II, unsigned long quantities are not supportsd.) ,

Single-precision floating point (float) and double-precision floating point' (do'uble) may be
synonymous in some implemen,tations. ...

Because objects of the foregoing types can usefully be interpreted as numbers, they 'will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral' 'ypes. float

.and double will collectively be called floating types.' .
Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-·

stru'cted from the fundamental types in the following ways:
arrays of objects of most lypes~
functions which return obje~ts of a given type~
pointers to objects of a given type~
structures containing a sequence of objects of various type~~
unions capable of co.ntaining any . .one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

250 PROGRAMMING

s. Objects and Ivalues . . ' ..
An object isa manipulatable region of storage~ an ivalue is an' expression referring to an object. An

obvious example of· an lvalue expression is an identifier. There are operators which yield Ivalues: for
example, if E is an expression of pointer type, then *E is an lvalue expression referring to the object to
which E points. The name "lvalue" comes from the assignment expression E1 = E2 in which the left
operand E1 must be an lvalue expression. The discussion of each operator below indicates whether it
expects- lvalue operands and whether it yields an lvalue. >

6. Conversions
A number of operators may. depending on their operands. cause conversion of the value of an

operand from one type to another; This section explains the result to be ~xpected from such conver­
sions. §6.6 summarizes the conversions demanded by most ordinary operators~ it will be supplemented as
required by the discussion of each operator. .

6.1 Characters and integers
. A character or a short integer may be used wherever an integer may be used. In all cases the value

is converted to an intf:ger.· Conversmn of a shorter integer to a longer always involves sign extension~
integers are signed quantities. Whether or not sign-ex'tension occurs for characters is machine dependent.
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual. only the PDP-II sign-extends. On the PDP-II. character variables range in value from
-128 to 127~ the chluacters of the ASCII alphabet are all positive. A character constant specified with an
octal escape suffers sign ex~ension and may appear'negative~ for example. ' \377' has the value -1. . /

When a longer integex is converted to a shorter or to a char, it is truncated on t~e left~ excess bits/
are 'simply discarded~' . " .

6.2 Float and double
All floating arithmetic in, C is car~ied out in double-preCision~ whenever a float app'ears in an

expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to float~ for example by an assignment. the double is rounded before truncation to float length.~1

6~3 Floating and integral.. . '. '. I

Conversions of floating 'values to integral type tend to be rather machine~dependent~ in particular the
direction of truncation of negative numbers varies from machine t'o machine .. The resl,llt. is undefined if
the value will not fit in the space provided. '
. 'Co:nversions of integral values to floating type are well behaved. Some loss of precision occu'rs if the

, I

destination hIcks sufficient bits. I

~.4 Pointers and integers . . !

'. An. integer or long integer may be added to or subtracted from a pointer: in such a case the first is
converted as specified iri the discussion of the addition operator.

Two poiriters to objects of the same type may be subtracted~' in this case, the result is converted to an
integer as sp·ecified. in the discussion of the subtraction operator.

6.5 Unsig~ed''-
.: Whenever 'an unsigned integer and a plain integer are combined. the plain integer is converted to

unsigned and the result is unsigned. The value is the least unsigned integer congruent to .the signed
in~eger' (m'odulo 2wordsize). Iti a 2's complement representation. this conversion is conceptual and there is
no aCtual change in the bit' pattern. .

When an unsigned integer is converted to long. the value of the result is the same numerically as
th3:t of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern will

be called the "usual arithmetic conversions."

First, a'ny operands of type char or short are converted to int, and any of type float are con­
verted to double.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 251

Then, if either operand is double, the. other is converted to' double and that is the type of the
result.
Otherwise, if either operand is long, the other is .converted to long and that is the type of the
result. ')1..

Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type
of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec­

tion. highest precedence first. Thus. for example. the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7 .1-7.3 Within each' subsection, the operators have the same pre­
cedence. Left- or right-associativity is specified in each subsection for thf! operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of § 18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes' most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, I, ,,) may be rearranged arbitrarily, even in the presence
of parentheses~ to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist­
ing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving., ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constam
string
(expression)

primary-expression [expression] .
primary-expression (expression-Iistopt)

primary-Iva/ue . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, p'rovided' it has been suitably declared a's discussed below. Its type
is specified by its declaration. If the type of the identifier is "array of ... ", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which
is declared "function returning ... ", when used except in the function-name position of a call, is con­
verted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int; floating constants are double.

A string is a primary expression. Its type is originally "array of char"; but following the same n.ile
given above for identifiers, this is modified to "pointer to char~' and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8;6.)

. A parenthesized expression is a primary expression whose type and value are 'identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is.a primary expressi<:>n. ' The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the
subscript expression is int, 'andthe type of the result is ". The expression E1 [E2] is identical (by
definition) to. * ((E1) + (E2)). All the clues needed to understand this notation are contained in this sec­
tion together with the discussions in §§ 7.1; 7.2, and 7.4 on identifiers, *, and + respectively; §i4.3 below
summarizes the implications. '

252 PROGRAMMING

A function call. is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type "function returning ... ", and the result of the function call is of type" ... ".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer~ thus in ·the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char or
short are converted to int~ and as usual, array names are converted ·to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument­
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An a~ray name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.
, A primary expression followed by a dot followed by an identifier is an expression. The first expres­

sion must be an lvalue naming a structure or a union, and the identifier J:Tlust name a member of the
structure or union. The result is an lvalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a .;... and a » followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a memb~r of that structure or union. The result is an lvalue referring to the named member of the struc­
ture or union to which the pointer expression points.

Thus the expression E1 ->MOS is the same as (*E1). MOS. Structures and unions are discussed in
§8.S. The rules given here for the use of structures and unions are not e.nforced strictly, in order to allow
an escape from the typing mechanism. See §14.1.

7.2 Unary operators
Expressions with unary operators group right-to-Ieft.

unary-expression:
* expression
& Ivalue
- expression
! expression
- expression,
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer.' and the result is an lvalue
referring to the 'object to which the expression points. If the type of the expression is Bpointer to ... ".
the type of the result is ••... ".

The result of the unary & operator is a pointer to the object referred 'to by the lvalue. If the type of
the lvalue is ••... ", the type of the result is "poi'nter to ... ".

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed, by subtracting its value from 2n,
where n is the number of,bits in an into There is no unary + operator.

The resl\it of the logical negation operator' ! is 1 if the value of its operand is 0, 0 if the value of its
operand is non-zero. The type of the result is int., It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The object referred to by the !value operand of prefix ++ is incremented. The value is the new value
of the operand, but is not an lvalue. The expression ++x is equivalent to x+=1. See the discussions of
addition (§7.4) and assignment operators (§7.14) for information on conve~sions.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 253

The Ivalue operand of prefix -- is decremented analogously to the prefix ++ operator.
When postfix ++ is applied to an Ivalue the result is the value of the object referred to by the IvaJue.

After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the Ivalue expression.

When postfix -- is applied to an Ivalue the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is decremented in the manJ')er as for the prefix -- operator. The type
of the result is the same as the type of the Ivalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8. 7.

The sizeof operator yields the size, in bytes, of its operand. (A bYJe is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression ... This expression is seman'ti­
cally an integer constant and may be used anywhere a constant is required. Its major ,!lse is in communi­
cation with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size~ in bytes, of an object of the indicated type.

The construction sizeo.f ((ype) is taken to be a unit, so the expression sizeof ((ype) -2 is the
same as (sizeof ((Ype)) -2.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right. The usual arithmetic conversions are

performed.

multiplicatiye-expression:
expression * expression
expression / expression
expression % expression

The binary * operator'indicates multiplication. The * operator is associative and expressions with
several mUltiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b) *b + a%b
is equal to a (if b is not 0).

The binary ~ operator yields the remainder from the division of the first expression by the second.'
The usual arithmetic conversions are performed. The operands must not be float.

7.4 Additive operators
The additive operators + and' - grqup left-~o-right. The usual arithmetic conversions are performed.

There are some additional type possibilities for each operator.

additive-:-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi­
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array. '

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the same level may be rear­

ranged by the compiler.
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects .in the same

254 PROGRAMMING

array, since pointers, even to objects ,of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators« and » group left-to-right. Both perform the usual arithmetic conversions on

their operands, each of which must be integral. Then the right operand is converted to int~ the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression « expression
expressior. » expression

The value of E1 «E2 is, E1 (interpreted as a bit pattern) left-shifted E2 bits~ vacated bits are O-filled.
The value of E1 »E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
fill) if E1 is unsigned~ otherwise it may be (and is, on the PDP-II) arithmetic (fill by a copy of the sign
bit).

-1.6 Relational operators
The relational operators group left-to-right, but this fact is not very 'useful~ a<b<c does not mean

what it seems to.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (Jess than), > (greater than), <= (Jess than or equal to) and >= (greater than or equal to)
all yield 0 if the specified relation is false and I if it is true. The type of the result is into The usual
arithmetic conversions are performed. Two pointers may be compared~ the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression == expression
expression ! = expression

The == (equal to) and the ! = (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b == c<d is I whenever a<b and c<d have the same
tn:th-value) .

, A pointer may be compared to an integer, but the result is machine dependent unless the integer is
the constant O. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to O~ in conv'entional usage, such a pointer is considered to be null.

7.8 Bitwise AND operato.r

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged; The usual arithmetic
conversions are performed~ the result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9. Bitwise exclusive OR operator

exc!usive-or-expressiolF ,
expression '" expression

The '" operator is associative and expressions involving '" may· be rearranged. The usual arithmetic
conversions are performed~, there'sult is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands;

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 255

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions involving I may be rearranged. The usual arithmetic
conversions are performed~ the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11 Logical AND operator

logica I-a nd-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 otherwise. Unlike
,&, && guarantees l,eft-to-right evaluation~ moreover the second operand is not evaluated if the first
operand is O.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int. ' .

7.12 Logical OR operaior'

logical-or-expression:
expression I I expression

The I I operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0 otherwise.
Unlike I, I I guarantees left-to-right evaluation~ moreover, the second operand is not evaluated if the
value of ~he first operand is non-zero.

The operands need not h~ve the same type, but each must have one of the fundamental tl'pes or be
a pointer. The result is always into

7.13 • Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-Ieft. The first expression is evaluated and if it is non-zero, the
result. is the value of the second expression, otherwise that 'of third expression. If possible, the usual
arithmetic, conversions are t?erformed to bring the second and third expressions to a common type~ other­
wise, if both are' pointers of the same type, the result has the common type~ otherwise, one must be a
pointer and the other the constant 0, and the res~lt has the type of the pointer. Only one of.the second
and third expressions is evaluated. :

7.14' Assignment operators
There are a number of assignment operators, all of which group right-to-Ieft. ,All require an Ivalue as

their left operand, and the type of an assignment expression is that of its left 9perand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
Ivalue = expression
lvalue += expression
Ivalue -= expression
lvalue *= expression
Ivalue /= expression
lvalue %= expres~ion

Ivalue »= expression
lvalue «= expression
lvalue.&= expressil?n
lvalue "= expression
lvalu.¢ I:=: expr.ession

In the simple assignment with =, the value of the expression replaces that or-the object referred' to. by
the lvalue. 'If both operands have arithmetic typ'e, the right oper~nd is converted to irieltJype of (h~ left'

256 PROGRAMMING

preparatory to the assignment.
The behavior of an expression of the form E1 op= E2 may be inferred by taking it' as equivalent to

E1 = E1 op (E2) ~ however, E1 is evaluated only once. In += and -=, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4~ all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an Integer, an integer to a pointer, and a
point~ to a pointer of another type. The assignment is a pure copy operation, with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7.1S Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and .value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a'list of actual
arguments to functions (§7.1) and lists of inltializers (§8.6), the comma operator as described in this sec­
tion can only appear in parentheses~ for example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier~ they do not

necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listoPf ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

dec/-specifiers:
type-specifier decl-specifiersoPf
sc-specijier decl-specifiersoPf

The list must be self-consistent, in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-speci/ier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage class specifier" only for syntactic
convenience~ iLis discussed in §8.8. The meanings of the various storage classes. were discussed in §4.

, -The auto, static, and regis'.:..er declarations also serve as definitions in that they cause an
appropriate alnount· of storage to be reserved. In the extern case there must be an external definition
(§lO) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com.;.
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers~ on the PPP-Il, they 'are int, char,
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster progral1JS can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessar~ ..

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 257

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara­
tion, it is taken ,to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or~union-specifier

typede/-name

The .words long, short, and unsigned may be thought of as adjectives~ the following combinations are
acceptable.

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be into

. Specifiers for structures and unions are discussed in §8.5~ declarations with typedef names are dis­
cussed in §8.8.

8.3 Declarators
The declarator-list appearing in a' declaration is a comma-separated sequence of declarators, each of

which may hav~ ,~n initializer.

declarator-list:
init-decla.rator
init-declarator , declarator-list

init-declara tor:
declarator initializerop,'

Initializers are discussed i~- §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)

,* declarator
declarator ()

. declarator [cons~ant-expressionop,)

The grouping is the same as in expressions.

8.4 Meaning of declarators
'Each declarator is taken to be an assertion that 'when a construction of the same form as the declara­

tor· appears in an expression, it yields an object of the indicated type and storage. class.· Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifi~r appears as a declarator, then it has the type indicated by the specifier head·
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imaline a declaration

258 PROGRAMMING

T 01

where T is a type-specifier (like int, etc,) and 01 is a declarator. Suppose this declaration makes the
identifier have type ••... T," where the" ... " is empty if 01 is just a plain identifier (so that the type of
x in .. int x" is just int>. Then if 01 has the form

the type of the contained identifier is " ... pointer to T."
If 01 has the form

O()

then the contained identifier has the type" ... function returning T."
If D1 has the form

D [constant-expression]

or

D[]

then the contained identifier has type array of T." In the first case the' constant expression is an .
expression whose value is determinable at compile time, and whose type is into (Constant expressions
are defined precisely in § IS') When several "arl.flY of' specifications are adjacent, a multi-dimensional
array is created~ the constant expressions which specify the bounds of the array~ may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multi-dimensional array);·

Not all the possibilities allowed by the syntax. above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things~ there are no' arrays of functions. although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a
function.

As an example, the declaration

int i, *ip, f() j *fipO, (*pfi) ();

declares all int.!ger i, a pointer ip to an integer, a function f returning an integer, a function fip
returning a pointer to an integer, and a pointer pfi to aJunction which returns an integer. It is espe­
cially useful to compare the last two. The binding of *fip (~ is * (fip ()), so that the declaration sug­
gests, and the same construction in an expression requires, the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*pfi) (), the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
to a function yields a function, which is then called~ it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array 01 pointers to float numbers. Finally,

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers-,. with. rarik 3 x 5 x 7. In complete detail, x3d is an
array of three items~ each item is an array of five arrays~ each o(the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[il. x3d[i] [jl..x3d[i] [j] [k] may reasomibly aP!learin
an expression. The first three have type "array," the last has type in-to

8.S Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union-is an ol2.ject which may, at a giyen time, contain anyone of several members. Structure
and union specifiers have'~the same form.

, ?

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 259

struct-or-union-specifier:
struct-or-union (struct-decl-list)
struct-or-union identifier (struct-decl-list)
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-Iist is a sequence o~ declarations for the membe,rs of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-decla ra tion:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc­
ture member may also consist of a specified number of bits. Su~h a member is also called a field~ its
length is set off from the field name by a colon,

struc t-dec la ra tor:
declarator
declarator : constant-expression
: constant-expression '

Within a structure, the objects declared have addresses which increase as their declarations are read left­
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type~
therefore, there, may be unnamed holes in a structure., Field members are packed into machine integers~
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word, No field may be wider than a word. Fields are assigned right-to-Ieft on t~: PDP-II. left-to­
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The "next field" presum~bly is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of'things that are' declared as fields, but implementations are
not required to suppo~t any but integer fields~ . Moreover, even int' fields m'ay be considered to be
unsigned. On the PDP-II, fields are not signed and have only integer values. In all implementations,
there are 'no arrays of fields, 'and the addcess-of operator & may not be applied to them, so that there are
no pointers to fields. ' .

A union may be thought of as ,a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a Uilion at any
time. ' "

A structure or union specifier of the second form, that is, one of

struct identifier { struct~decl-list }
union identifier (struct-decl-list)

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse­
quent declaration may then use the"third form of specifier, one of

stru9t identifier
union identifier '

r:
Structure tags allow definition of self-referential structures~ they also permit the long part of the declara-
tion to be given once and used several times. It is illegal to declare a structure ()r union which contains
an instance of itself, but a structure or union may con,tain a pointer to an instance of itself.

260 PROGRAMMING

The names of members and tags may be the same as ordinary variables. However. names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members~ that is. the same member may
appear in two different structures if it has the same type in both and if all'previous members are the same
in both. (Actually, the compiler checks only that a name in two different structures has the same type
a'nd offset in~oth, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode (

) i

char tword[20]i
int counti
struct tnode *lefti
struct tnode *righti

which contains an array of 20 characters. an integer. and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sPi

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp-:->count·

refers to the count field of the structure to which sp points~

s.left

refers to the left subtree pointer of the structure s~ and

s.right->tword[O]

refers to the first character of !he tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by =, and consists of an expression or a list of values nested in braces.

initializer:
expression
(initializer-list)
(initializer-list ,

in itializer-list:
expression
initializer-list , initializer-list
(initializer-list,)

All the' expressions in an initializer for a static or externat variable must be constant expressions.
which are described in § 15. or expressions which reduce to the address of a 'previously declared variable.
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants. and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed 'to start off as 0: automatic and
register variables which are not initialized are guaranteed td start off as garbage.

When an initializer applies to a scalar (a pointer or 'tn object of arithmetic type), it consists of a sin­
gle expression, perhaps in braces. The initial value of the object is taken from the expression: the same
conversions as for assignment are performed.

When the declared variable is an aggregate (3 structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initialize.Qi for the members of the aggregate. written in increas­
ing subscript or member order. If the aggregate contains subaggregates. this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the
aggregate. then thE; aggregate is padded with D's. It is not permitted to.' initialize unions or automatic
aggregates.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 261

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate~ it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate~ any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac­
ters of the string initialize the members of the array.

For example, .

int x [] = (1, 3, 5);

declares and initializes x as a I-dimensional array which has three members, since no size was specified
and there are three initializers.

float y[4] [3] = (
(1, 3, 5),
(2, 4, 6),
(3, 5, 7),

) ;

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y [0], namely
y[O] [0], y[O] [1], and y[O] [2]. Likewise the next two lines initialize y[1] and y[2]. The initial­
izer ends early and therefore y [3] is initialized with O. Precisely the same effect could have been
achieved by

float y[4] [3] = (
1, 3, 5, 2, 4, 6, 3, 5, 7

) i

The initializer for y begins with a left brace, but that for y [0] does not, therefore 3 elements from the
list are used: Likewise the next three are taken successively for y [1] and y [2]. Also,

float y[4] [3] «

(1), (2), (3), (4)
} i

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O.
Finally,

char msg[] = "Syntax error on line %s\n"i

shows a character array whose members are initialized with a string.

8.7 Type names
In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name,"
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression

oP'
]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if theconstructiol1 were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

262 PROGRAMMING

int
int *
int *[3]
int (*) [3]
int * ()
int (*) ()

name respectively the types "integer," "pointer to integer," "array qf 3 pointers to integers:' "pointer
to an array of 3 integers:" "function returning pointer to integer," and "pointer to function returning an
integer."

8.8 Typedef
Declarations whose "storage class" is typedef do not define storage. but instead define identifiers

which can be used later as if they were type keywords naming fundamental or derived types.

typede/-name:
identifier

Within the scope of a declaration involving typedef. each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES, *KLICKSPi
typedef struct (double re, imi) complex;

the constructions

MILES distancei
extern KLICKSP metricPi
complex z, *zPi

are all legal declarations~ the type of distance is int, that of metricp is "pointer to int," and tfiat of
Z is"the specified structure. zp is a pointer to such a structure.

typedef does not introduce brand new types, only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected. the compound statement (also. and

equivalently, called "block") is provided: -

compound-statement:
(declaration-listopr statement-list

opr
)

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of JDe identifiers in the declaration-list were previously declared. the outer declaration is pushed
down for the duration of the block. after which it resumes its force.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 263

Any inilializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block~ in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block. extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both easel) the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is O. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.S Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement·
The for statement has the form

.for (expression-l
oPI

; expression-2op; ; expression-3
oP1

) statement

This statement is equivalent to

expression-l ;
while (expression-2)

statement
expression-3 ;

Thus' the first expression specifies initialization for the loop~ the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes O~ the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to whi Ie (1) ~ other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

swi tch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be into The state­
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case co,lstant-expression :

where the constant expression must be into No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in § 15:

There may also be at most one statement prefix of the form

264 PROGRAMMING

default :

When the switch statement is executed, its expression is' evaluated and compared with each case con­
stant. If one of the case constants is equal to the value of the expression, control is passed to the state­
ment following the matched case prefix. If no case constant matches the expression, and if there is a
defaul t prefix, control passes to the prefixed statement. If no case matches and if there is no defaul t
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, which continues unim­
peded across such prefixes. To exit from a switch, see break, §9.8, '

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break

causes termination of the smallest enclosing while, do, for, or swi tch statement: control passes to the
- statement following the terminated statement:

9.9 Continue statement
The statement

, continue

causes control to pass to the loop-continuation portion of the smallest enclosing whi Ie, do, or for state­
ment; that is to the end of the loop. More precisely, in each of the statements

while (....)

contin: ;
f/

do (

contin:
} while (...);

for (...)

contin: ;
}

a continue is equivalent to goto contino (Follo~ing the contin: is a null statement. §9.13')

9'.10 Return statement
A function returns to its caller, by means of the return statement, which has one of the forms

return ;
return expression ;

In the first case the returned value is undefined. In the second case, the value of the expression is
returned to the caller of t'he function. If required, the expression is converted, as if by assignment. to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9.1100to statement
Control may be transferred unconditionally. by means of the statement

goto identifier ;

The 'identifier must be a label (§9.12) located in the current function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form,

identifier:

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function. excluding any sub-blocks in which ,the same identifier has been
redeclared. See § II.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 265

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to supply a null
body to a looping statement such as while.

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static, and a. specified type. The type­
specifier (§8.2) may also be empty, in which case the type is taken to be into The scope of external
definitions persists to the end of the file in which they are declared just as the effect of dechuations per­
sists to the end of a block. The syntax of external definitions is the same as that of all declarations)
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

function-definition:
decl-specifiersoptfunction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static~ see §11.2 for the distinc­
tion between them. A function declarator is similar to a declarator for a Hfunction returning ... " except
that it lists the formal parameters of the function being defined. .

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier , para meier-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be 'declared in the declaration list.
Any identifiers whose type is not given are taken to be into The only storage class which may be
specified is register~ if it is specified, the corresponding actual parameter will be copied, .if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max (a, b, c)
int a, b, Ci

int mi

m = (a > b) ? a : bi
return ((m > cJ ? m c) i

Here int is the type-specifier~ max (a, b, c) is the function-declarator;. int a, h, Ci is the
declaration-list for the formal parameters~ { .•• } is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared float have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
pa·rameters declared "array of : .. " are adjusted to read "pointer to ... ". Finally, because structures~
unions and functions cannot be passed to· a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

266 PROGRAMMING

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The stor~e class of such data may be extern (which· is the default) or static, but not auto or
register.

11. Scope rules
A C program need not all be compiled at the same time: the source text of the program may be kept

in several files, and precompiled routines may be loaded from libraries. Communication among the func­
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
"undefined identifier" diagnostics~ and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition through

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame­
"ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see § 11.2) the com­
piler checks all declarations of the same external identifier for compatibility~ in effect their scope is
increased to the whole file in which they appear.

In .all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union melTJbers and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary i'dentifiers. They may be redeclared in imier blocks, but an explicit type must
be given in the inner declaration:

typedef float .distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancet.

11.2 Scope of externals
If a function refers to an identifier declared to be extern, then somewhere among the files or

libraries constituting the complete program there must be· an external definition for the identifier. All
functions in a given program which refer to the same external identifier ref!!r to the same object, so care
must be taken that the type and size specffied in the definition ar,e compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in· exactly one of the files. Any other files which
wish to give an extern'al definition for the identifier must include the extern in the definition. The
identifier can be initialized only in the declaration where storage 'is allocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

tit is agreed that the ic~ ,is thin here.

THE C PROGRAMMING LANGUAGE-REFEI~ENCE MANUAL 267

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and

inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language~ they may app~ar anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifi~r with
the given string of tokens. A line of the form

#define identifier (identifier) •..) identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub­
sequent instances of the first identifier followed by a (, a sequence of tokensdelimited by commas, and a
) are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas~ however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table[TABSIZE]i

A control line of the form

#undef identifier

causes the identifier's preprocessor definition to be forgotten.

12.2 . File inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard ptaces. Alterna­
tively, a control line of the form

#incl~ie ~kname>

searches only the standard places, and not the directory of the source file.
#include's may be nested.

12.3 Conditional compilation
A compiler control line of the form

#if constant-expression

checks whether the constant expression (see §15) evaluates to non-zero. A control line of the form

#ifdef identifier

checks whether the identiGer is currently defined in the preprocessor~ that is, whether it has 'been the
;.;hje~t of a #define control line. A control line of the form

#ifndef identifier

lnecks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of line~, possibly containing a control line

268 PROGRAMMI~G

#else

and then by. a control line

#endif

If the checked condition is true then any lines between #else and #endif are ignored. If the checked
condition is false then any lines between the test and an #e.lse or, lacking an #else, the #endif, are
ignored.

These 'constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant identifier

causes the compiler to ~elieve, for purposes of error diagnostics, tha't the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a declaration.

The storage class is supplied by the context in external definitions and in declarations of formal para me­
. ters and structure members. In ~ declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int~ if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C
being incapable of compiling code into the stack)~ if the type of an identifier is "function returning ... ", it
is implicitly declared to be extern.

In an expression, an identifier followed by (and not 'already declared is contextually declared to be
"function returning int".

14 .. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unio.ns
There are only two things that can be done with a structure or union: name one of its members (by

means of the • operator)~ or take its address (by unary &). Other operations, such as assigning from or
to it or passing it as a parameter, draw an error message. In the "future, it is expected that these opera­
tions, but not necessarily Others, will be allowed.

§'7.1.says that in a direct or indirect structure reference (with. or -» the name oli the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape,
from the typing rules; this restriction is not firmly enforced by the compiler. In fact, any Ivalue is allowed
before ., and that Ivalue is then assumed to have the form of the structure of which th~ name on the
right is a member., Also, the expression before a -> is required only to be a pointer or an jnteger. If a
pointer, it is assumed'to point to a structure of which the name on the right is a member. If anpinteger,
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two th!ngs that can be done with a funCtion: call it, or take its address. If the name

of a function appears in an expression not in the function-name position of a call, a pointer to the func­
tion is generated. Thus, to pass one function to another, one migh,t say

int f () ;

9 (f);

Then the definition of 9 might read

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 269

g(funcp)
irit (*funcp) () i
(

(*funcp) () i

Notice that f must be declared explicitly in the calling routine since its appearance in g (f) wa~, not fol-
lowed by (. "

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the

first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the subscdpt
operator [] is interpreted in such a way that E1 [E2] is identical to.* ((E1) + (E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank iXjX ... x k, then E appearing in an expression is converted to a pointer to an (n- 1)­
dimensional array with rank jX ... x k. If the * operator, either explicitly or implicitly as a result of
subscript"ing, is applied to this pointer, the result is the pointed-to (n - 1) -dimensional array, which itself
is immediately converted into a pointer. "

For example, consider

int x[3] [5];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) 5-membered arrays of integers. In the expression x [il, which is equivalent to * (x+i), x
is first converted to a pointer as described~ then i is converted to the type of x, which involves mUltiply­
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another ,subscript the same argument applies again~ this time the
result is an integer. .

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the dedaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations. "

14.4 Explicit pointer conversions
" Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator, §§7.2 and 8.7.
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or

long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine." Details for
some particular machines are given below.
.. An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object-of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer; it might be used in this way.

extern char *alloc()i
double *dPi

dp = (double *) alloc(sizeof(double»i
*dp"= 22.0 / 7.0;

alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double~ then the use of the function is portable.

270 PROGRAMMING

The pointer representation on the POP-II corresponds to a 16-bit integer and is measured in bytes.
chars have no alignment requirements~ everything else must have an even address.

On the Honeywell 6000. a pointer corresponds to a 36.-bit integer~ the word part is in the left 18 bits.
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 216 bytes: everything else is measured in units of 218 machine words. double quantities and
aggregates containing them must lie on an even word address (0 mod 219

).

The IBM 370 and the Interdata 8/32 are similar. On both. addresses are measured in bytes~ elemen­
tary objects must be aligned on a boundary equal to their length. so pointers to short. must be 0 mod 2.
to int and float 0 mod 4. and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

15. Constant expressions
In se.veral places C requires expressions which evaluate to a constant: after case, as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character con­
stants, and sizeof expressions. possibly connected by the binary operators

* / % & « » != < > <= >=

or by the unary operators

or by the ternary operator

? :

Parentheses can be used for grouping. but not for function calls.
More latitude is permitted for initializers~ besides constant expressions as discussed abovr_, one can

also apply the unary & operator to external or static objects, and to external or static arrays subscripted
with .a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays ~nd functions. The basic rule is that initializers must evaluate ei.ther to a constant or to the
address' of a previouslY.declared external or static object plus or minus a constant.

16. Portability considerations
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is

not meant to be all-inclusive, but to point out the main ones.
Purely hardware issues like word size and the properties of floatihg point arithmetic and integer divi':

sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these. particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, 'are a nuisance that must be
carefully" watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless. the compilers all do things properly for .their own
machine~ excess. or invalid register' declarations are ignored.

Some difficulties .arise only when dubious coding practices are used.· It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the' language. It is right to left on
the PDP-I I, and ~AX-II, left to right on .the. others. 'The order in whicH side effects take place is also
unspecified. '. .

Since cparacter constants are really objects of type int. multi-character character constants may be
permitted. The specific implementation is very machine dependent, however. because the order in which
characters are assigned to a word varies from one machine to another.

Fields .are assigned to words and characters to integers right-to-Ieft on the PDP-II and VAX-II and
left-ta-right on other machines. These differences are invisible to isolated p~ogramswhich do not indulge'
in type punning (for example. by converting an int pointer to a char pointer and inspecting the
pointed-to storage), but must be accounted for when conforming to externally-imposed storage layouts.

The languag'e accepted by the various compilers differs in minor details.' Most notably. the current
PDP-II compiler will not initialize structures containing bit-fields, and does not accept a few assignment

. operators in certain contexts where the value of th~ assignment is used. . .

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 271

17. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older programs.

Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav­
ing only a portability problem behind.

Earlier versions of C used the form =op instead of opr:: for assignment operators. This leads to
ambiguities, typified by

x=-1

which actually decrements x since the = and the - are adjacent, but which might easily" be intended to
assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x = 1;

one used

int x 1;

The change was made because the initialization

int f (1 +2)

resembles a function declaration closely enough to confuse the compilers.

272 PROGRAMMING

l8. Syntax Summary
, , This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.,

18.1 Expressions
The basic expressions are: - ,

expression:
primary
* expression
& expression
- expression
I expression
- expression
++ Ivalue '.
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
(type-name) expression
expression· binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:,
identifier
constant

. string .
(, expression)
primary (expression-listopt)
primary [expression]
Ivalue . identifier

Ivalue:

primary -> identifier

identifier
primary [expression]
Ivalue • identifier
primary -> identifier
* expression
(Ivalue)

The primary-expression operators

, 0 [] ->

~ave highest priority and group left-to-right. The unary operator~

t & ++ sizeof (iype-name)

have priority below the primary operators but:higher than' any JJinary operator. and group right-to-Ieft.
~ Binary 'operators group left-to-right;' they have priority decreasing as indicated below. The conditional

operator groups right to left.

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 273

binop:

* / %
+
» «
< > <= >=

1=
&

&&
II
?:

Assignment operators all have the same priority, and aU group right-to-Ieft.

asgnop:
+= *= /= %= »= «= &= A= 1=

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration:
decl-specifie.rs init-declara tor-listopt ;

decl-specifiers.;
type-specifier decl-specifiersopt
sc-specifier decl-specij'iersopt

sc-specifier:
auto
static
extern
register
typedef

"type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

in it-declara tor-list:
init-declarator
init-declarator , in it-declara tor-list

i nit-declara tor:
rlzclarator initializeropt

declarator:
identifier
(declarator)
* declarator
declarato; ()
declarator [constant-expressIon]' opt

274 PROGRAMMING

struct-or-union-specifier:
struct {struct-decl-Iist}
struct identifier { struct-decl-Iist }
struct identifier
union {struct-decl-list}
union identifier { struct-decl-list }
union identifier

struct-decl-Iist:
struct-declaration
struct-declaratio"n struct-decl-Iist

struct-declaration:
type-specifier struct-declarator-list ;

struct-declara tor-list:
struct-declarator
struct-qeclarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

initializer:
= expression

{ initializer-Iist }
. = { initializer-list ,

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }

type-name:
type-specifier abstract-declarator

a bstract-declara tor:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-J!Xpressionopt]

typed.e/-name:
identifier

18.3 Statements

compound-statement:
{ declaration-listopt statement-listopt }.

declara lion-list:
declaration
dec/aration de:laration-Iist

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 275

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expression-l oPI ; expression-2oP1 ; expression-loP1) statement
swi tch (expression) statement
case constant-expression
defaul t : statement
break ;
continue ;
return ;
return expression;
goto identifier;
identifier : statement

18.4 External definitions

program:
external-definition
external-definition program

exter na I-defi n itio n:
function-definition
data-definition

junction-definition:

statement

type-specifieroPI junction-declarator junction-body

ju nc tio n-decla ra tor:
declarator (parameter-listoP1)

parameter-list:
identifier
identifier I parameter-list

junction-body:
type-decl-Iist junction-statement

junction-statement:
(declaration-listoP1 statement-list)

data-definition:

18.5 Preprocessor

extern
oP1

type-specifieroPI init-declarator-listoP1 ;
static

oP1
type-specifieroPI init-declarator-listoP1 ;

276 PROGRAMMING

#define identifier token-string
#define identifier(identifier, .•. ,identifier) token-string
#undef identifier
#include "filename"
#include ~kname>
#if constant-expr~ssion
#ifdef identifier
#ifndef identifier
#else .
#endif
#line constant identifier

THE C PROGRAMMING LANGUAGE-REFERENCE MANUAL 277

Recent Changes to C

November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu­
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and ret.urned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, h~ve
not been implemented. .

There is a subtle defect in the PDP-II implementation of functions that return structures: if an inter­
rupt occurs during the return sequence, and the same function' is called reeiltrantly during the .interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary \
recursive calls are quite safe. .

2. Enumeration type

There is a new data type analogous to the scalar types of I?ascal. To the type-specifiers in the syntax
on p. 193 of the C book add

with syntax

.',

enum-specifier

enum-specifier:
enum (enum-list)
enum identifier { enum-list}
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example, ,

enum color { chartreuse, burgundy, claret, winedark }i

enum color *cp, coli

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the pro~ression from the assigned value.

Enumeration tags and constants must all be distinct~ and, unlike structure tags and members, are
drawn from the same set as ordinary identifiers.· .

Objects of a given enumeration type are regarded as having a type distinct from objects of aU-other
types, and lint flags type mismatches. In the PDP-ll implementation all enumeration.variables are treated
as if they were into

Lint, a C Program Checker

S. C. Johnson·

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a
number of bugs and obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and iibrary specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his­
torical and practical rationale. The compilers turn C programs. into executable
files rapidly and. efficiently. This is possible in part because the compilers do
not do sophisticated type checking, 'especially between separately compiled pro­
grams. Lint takes a more global, leisurely view of the. program, looking much
more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of the imple­
mentation, and gives some hints on the wri~ing of machine independent C
code.

July 26, 1978

278 '

Introduction and Usage

Suppose there are two C 1 source files, jilel.c and jile2.c, which are ordinarily compiled and
loaded together. Then the command

lint· file l.c fi.:~2.c

produces ·messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi­
cal reasons) enforce them. The command

lint -p file1.c file2.c

will produce, in addition to the above messages, additional messages which relate to tne porta­
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or' wasteful constructions which, stdctly speaking,
are npt bugs. Saying - hp gets the whole works.

The, next several sections describe the m~ljor messages; the document closes with sections
discussing the implementation and giving suggestions for writing portable C. An appendix
gives a summary of the ,lint options.

A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether
. a given function in a program ever gets called may depend on the input data. Deciding whether

exit is ever called is equivalent to solving the famous "halting :problem," known to be recur-
sively undecidable. '

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is·not neces-
sarily so, but in practice is quite reasonable. -

Lint tries to give . information with a high degree of relevance. Messages of the form "xxx
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi­
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.'

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func­
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary.·, and yet not be removed from the source; These "errors of commis­
sion" rarely cause working programs to fail, but they are' a source of inefficiency, and· ma'ke
programs harder to understand and change. Moreover, information about such unused vari­
ables and functions can occasionally serve to discover bugs; if a function does a necessary job,
and is never called, something is wrong!

279

280 PROGRAMMING

Lint complains about variables and functions which are defined but not otherwise men­
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin ();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external d.eclarations might be of .some interest; they
can be discovered by.adding the -x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter­
faces; frequently, some of the arguments may be'unused in many of the calls. The -Y option
is available to suppress the printing of complaints about unused arguments. When -Y is in
effect, no messages' are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is' 'one case where information about unused, or undefined, variables is rnore dis­
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, .many of the functions and variables defined may
not be used" and~ conversely,' many, functions and variables defined elsewhere may be used.
,The -u flag may be ,used to suppress the spurious messages which might otherwise appear. '

Set/Used Information

Lint attempts to de~ect cases where' a variable is used before it is set. This is very difficult
to do well; many algorithms take a good deal of time and space, 'and still produce messages
about perfectly valid programs. Lint· deteCts local variables (automatic and register storage
classe~) whose first·use appea,rs physically earlier in the input file than the first assignment to
the variable. It assumes that takirig the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data dependent fashion.

The restriction' 'to the physicat"appearance of variables in the file makes the algorithm very
simple and quick to' implement, 'since' the true flow of control neeq not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered 'bad on stylistic grounds. (e.g. might contain at least two goto's).
Because static' and .'external . variables are initialized to 0, no meaningful information can be
disco'veredab6ut their u~e~. The algorithm 'deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

. '

The set/used information also, permits recognition of those local variables which are set
and never 'used; these form a frequent source of inefficiencies, and may also be symptomatic of '
bugs.

Flow of Control'

Lint attempts to detect urir~achable portions of the programs which it processes. ,It will
complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attemp'tis made to detect 'loops which can never be left at the bottom, 'detect­
ing the speCial cases while (1.) and for(;;) as infinite loops. Lint also complains ,about loops
which cannot be entered, at-. the 'top; 'some' valid programs may have such 'loops, but at. best they'
are bad style, at worst bugs. . .

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus" a call to .. eXit may cause' unteach- .
able code which lint doesnot detect;the most serious effects of this are in the determination of
returned' function values' (see the]~ ext sectionY~ ,

One form of unreachable statement is not usually 'complained about by lint; a break state-,
. ment that cannot be reached causes no message. Programs generated. by yacc,2 and especially,
lex, 3 may have, ;11terally.hundreds of unreachable break statements.' The. -0 flag in the' C

LINT, A C PROGRAM CHECKER 281

compiler will often eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the -b option.

Function Values

Sometimes functions return values which are never used~ sometimes programs incorrectly
use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both

ret urn (expr);
and

return ~

statements is cause for alarm~ lint will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3)~
g 0;
}

Notice that, if a tests false, fwill call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, t::: this value is
sometimes, or always, unused. When the value is always unused, it may constitute an

. inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problf!m, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs~' the desired function value just happened to have been com­
puted in the function return register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi­
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ('!:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In "these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
- > be a pointer to structure, the left operand of the. be a structure, and the right operand of

v'
282 PROGRAMMING

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration·variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are =, ini­
tialization, = =, ! =, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider. the assignment

p = 1 ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char *) 1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a ·strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When - c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-II, characters are signed quantities, with a range from -128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment

char c;

if((c = getcharO) < 0)

works on the PDP-II, but. will fail on machines where. characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable· character comparison".

A similar issue arises with bitfields; when assignments of constant values are made to
bitfields, the field may be too small to hold the value. This is espechilly true' because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con­
sider that a two bit field declared of type int. cannot hold the value. 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints

B~gs may arise from the assignment of long to an int, which loses accuracy. This may
happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the -a flag.

LINT, A C ,PROGRAM CHECKER 283,

Strange Constructions

Several perfectly legal, but somewhat strange, .constructions are flagged by lint; the mes­
sages hopefully encourage ,better code quality, clearer style, and may even point out bugs: The
- h flag is used to enable these checks. For example, in the statement

*p++ ;
the * does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x ;
if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test
/ .'

if(x > 0) ...

is equivalent to

if(x ! = 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in
these cases. If one says

if(1 ! = 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con­
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
form·atting, making such bugs extremely hard to find. For example, the statements -

if(x&077 = = 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the -h flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This! is legal, but is con­
sidered by many (including the author) to. be bad style, uS,ually unnecessary, and frequently a
bug.' ' ' -

Ancient History

'There are several'forms of older syntax which- are being officially discouraged. These fall
into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., = +, = -, ...) could cause ambiguous
expressions, such as.

a =-1;

which could be taken as either

a =- 1;

or

a = -1;

The. situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, - =, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned'

284 PROGRAMMING

operators.

A similar issue arises with initialization. The older language allowed

int xI;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-1);

looks somewhat like the beginning of a function declaration:

int x (y) { ...

and the compiler must read a fair'ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-II, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun­
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation whenever either the -p or -h flags are
in effect.'

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines (like the PDP-II) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-Ieft; on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions mayor may not be treated similarly to ordinary
arguments. Similar issues ·arise with other operators which have side effects, such as the assign­
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will·evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere ii'f'the same expression, the result is explicitly ·undefined.

Lint checks for the important 'special case where a simple scalar variable is affected. For
example, the statement '

ali] = b[i+ +] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable
C Compiler4,5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com­
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main­
tains symbol tables, and builds trees "for expressions. Instead of writing an intermediate fil~

LINT, A C PROGRAM CHECKER 285

, which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a
source file name and line nur:nber. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter­
nal names is collected onto an intermediate file. After all the source files and library descrip­
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, prograrp. then reads the lines from
the intermediate file and compares all of the definitions, declarations" and uses for consistency. '

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host
operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
effort. This section describes some of the differences between the implementations, and
discusses the lint features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C.
Suppose two files both contain a declaration without initialization, such as

int a ;

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin­
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
not feasible (for various stupid reasons!) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the -p flag, it will
detect such multiple definitions. '

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upperllower case di~stinction kept. On theJBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads to' si~uations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Lint -p causes all external sym­
bols to be mapped to one case and truncated to six characters, providing a worst-case analysj,s.

) . ~

A number of differences arise in the area of character handling: characters in the UNIX
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, character strings go from high to low bit positions ("left to right") on
GCOS and IBM, and low to high ("right to left") on the PDP-II. This means that code
attempting to construct strings out of character constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lint is of little help here,' except to
flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected,
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The main problems are likely to arise in shifting or masking. C now supports a bit-field
facility', which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

tUNIX is a Trademark of Bell Laboratories.

I
...

.'

286 PROGRAMMING

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-II, but fails badly on GCOS and
IBM. If the bit field feature cannot- be used, the same effect can be obtained by writing

x & = --.. 077'-;

which will work on all the~~ machines.

The right shift operator is arithmetic shift on the PDP-ll, 'and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-II, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-II hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro­
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe, between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up

There are occ'asions when the programmer is smarter than lint. There may be .valid rea­
sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified- above, the flow "of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com..;"

. municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob­
lems.

What was finally done was to cause a number of words to be recognized by lint wl1en they
were embedded in' comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on sys~ems
with the older preprocessors is merely that the lint directives don't work.

The fitst directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the .
directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The-v
flag can be turned on for one function by the directive

1* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the
directive

LINT, A C PROGRAM CHECKER 287

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several argu­
ments, and leave the later arguments unchecked. This can be done by following the
VARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

/* VARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

Library Declaration Files

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive

/ * LINTLIBRAR Y * /
which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the -number and types of arguments to the function. The V ARARGS and
ARGSUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which-are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which con­
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The -n flag can be used to

-suppress· all library checking.

Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters
of programming style, and partially because users usually don't notice bugs which cause lint to
miss· errors which it" should have caught. (By contrast, if lint incorrectly complains about some­
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made ~o match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be. deter..:
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the p-reprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are

288 PROGRAMMING

pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one.
The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen­
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties
of universality and portability:

LINT, ~ C PROGRAM CHECKER 289

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language,. Prentice-Hall t Enlle­
wood Cliffs, New Jersey (1978).

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No.
32, Bell Laboratories, Murray Hill, New Jersey (July 1975).

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39t

Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Program~
and the UNIX System," Bell Sys. Tech. 1. 57(6) pp. 2021 .. 2048 (1978).

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

290 PROGRAMMING

Appendix: Current Lint Options

The command currently has the form

lint [-options] files ... library-descriptors ...

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.

c Complain a~out questionable casts

n No library checking is done

s Same as h (for historical reasons) .

Make - A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose. track of which files need to be
reproc(ssed or recompiled after a change is made in some part of the source.
Make j,rovides a simple mechanism for maintaining up-to-date versions of pro­
grams that result from many operations on a number of files. It is possible to
tell Make the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies~ Make does
a depth-first s~arch of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in· a single file for· convenient administration.

August 15, 1978

291

Introduction

It is common practice to divide large programs into smaller~ more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro

I

processor~ some may need to be processed by a sophisticated program generator (e.g.~ Yacc[I]
or Lex[2]). The outputs of these generators may then have to be compiled with special options

. and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately~ it is very easy for a programmer to forget which files depend on
which others~ which files have been modified recently~ and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session~ one
may easily lose track of which files have been changed and which object modules are still valid~
since a change to a declaration can obsolete a dozen other files .. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in .a program that will not
work~ and a bug that can be very hard to track down. On the other hand~ recompiling every-
thing in sight just to be safe is very wasteful. '

The program described in this report mechanizes many of the activities of pr0gram
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file~ the simple command

make

is frequently sufficient to update the interesting files~ regardless of the number ~hat ha\e been
edited since the last Hmake". In most cases~ the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed, operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects~ it does not solve the prob­
lems of maintaining multiple source versions or of describing huge programs.' Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files' on
which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends .on the ability to find the date and time that a file Was last
modified.

To illustrate, let us consider a simple example: A program named "rog is made by compil­
ing and loading three C-language files x.c, y.c, and z.c with the. IS library. By convention, the
output' of the C compilations will be found in files named x.o~ y.o, and z.o. Assume that the
files x.c and y.c· share ~ome dec.larations in a file named dels, but that z.e does not. That is, x.c

292 '.

MAKE-A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS 293

and y.c have the line

#include "defs"

The following text describes the relationships and operations:

prog: X.o r.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o: defs

If this information were stored in a file named make/ile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, Z.C, or de/so

Make operates using three sources of information: a user-supplied description file (as
above), file names and Hlast-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three H .0" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file de.f$. From the file system, niake discov­
ers that there are three H .f" files corresponding to the· needed H .0" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a HCC -c" command).

. .
The following long-winded description file is equivalent to the one above, but takes no

advantage of make's innate knowledge:

prog: X.O y.O Z.O
cc X.O y.O Z.O -IS -0 prog

X.O: X.C defs
cc -c X.C

y.o: y.C defs
cc -c y.C

z.o : z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the de.ls file had been edited, x.c and y.f
(but not z.e) would be recompiled, and then prog would be created from the new H .0" files. If

,only the file y.c had changed, only it would be recompiled, but it would still. be necessary te
reload prog. .

If no target name is given on the make command line, the first target mentioned in the
description is created~ otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or de.fs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions~ otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substitute macros.
Thus, an entry Hsave" might be included to copy a certain set of files, or an entry Hcleanup'"

294 PROGRAMMING

might be used to throwaway unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were perfo~med. This
tech.nique is useful for maintaining remote archives and listings.

, Alake has a simple macro mechanism for substituting in dependency lines and command
~trings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by .preceding the name by a dollar sigt:l~ macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$'(xy)
$Z
$(Z)

the last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $ <. They will be discussed later. The JOllowin·g. fragment
shows the use:

OBJECTS = x.O y.O z.O
LIBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prog

The command

make

loads the three object files with the IS library. The command

make "LIBES = -II -IS"

loads them with' both the Lex (~~ -II") and the Standard (~~ -IS") libraries, since macro
definitions on the command line override definitions in the description. (It is necessary to
quote arguments with. embedded blanks in UNlxt commands.)

The following sections detail the form of description files and the command line, and dis­
,cuss options and built-in rules in more detail.

Description Files and Substitutions
, ' .
A description file contains three types of information: macro. definitions, dependency

information, and executable commands. There is also a comment convention: all characters
. after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
'the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
:~ .. e replace'd by a single blank.

A 'macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
~re ,stripped.) The follo'Ying are valid macro definitions:

tUNIX is a Trademark of Bell Laboratorie's,

MAKE-A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS 295

2 = xyz
abc = '-II -Iy -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has.
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is: .

target} [target2 .. .1 :[:] [dependentl .. .1 [~ commands] [# .. .1
[(tab) commands] [# .. .1

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters <4*" and H?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi­
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

l. For. the usual single-colon case, at most one of these depen'dency lines may have a com­
mand sequence associated with it. lf the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed~ otherwise a default creation rule may be invoked.

2. In the double-colon <case, a command sequence may be associated with each dependency
line~ if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type file.s.

If a target must be created, the sequence of commands is executed. Normally, each com~ .
mand line is printed and then passed to a separate inVOCation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @

sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored.if the <4 - i" flags has been specified on the make command line, if
the fake target name H.lGNORE" appears in the description file, or if the command string in
the description fiJe begins with a hyphen: Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., cd and Shell control 'commands) that have meaning only within a
single Shell process~ the results are forgotten before the next line is executed.

Befqre issuil1g any command, certain macros are set. $@ is set to the name of the file to
be Hmade". $? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), $ < is the name of·the related file
that caused the action, and $* is the prefix shared by the current and the dependent ~Ie names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
,commands associated with the name ··.DEFAULT" are used. If there is no' such name, make
prints a message and stops.

Command Usage

The make! command takes four kinds of arguments: macro definitions, flags, description
file names, and target file names.

make [flags] [macro definitions] [targets]

296 PROGRAMMING

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files. .

Next, the flag argumt1nts are examined. The permissible flags are

- i Ignore error codes returned by invoked commands. This mode is enter'ed if the fake tar­
get name H.IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name H.SILENT" appears in the description file.

- r Do not use the built-in rules.

- n No execute mode. Print commands, but do not execute them. Even lines beginning with
an H@" sign are printed.

-'t Touch the target files (causing them to be up to date) rather than issue the usual com:.
mands.

- q Question. The make ,command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

- p Print out the complete set of macro definitions and target descriptions

- d Debug mode. Print out detailed information on files and times examined.

- f Description file name: The next argument is assumed to be the name of a descriPtion
file. A file name of H_" denotes the standard input. If there are no H-f" arguments,
the file named makejilC' or MakejilC' in the current directory is read. The contents of the
desJ:ription files qverride the built-in rules if they are present> .

. Finally, the remaining arguments are assumed to be the names of targets to be made~ they
are done in left to right order. If there are no such arguments, the first name in the descriplion
files that does not begin with a period is Hmade".

I mplicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them'> The default suffix list is:

.0

.r

.C'

.r

.f

.S

.y

.,vr

.,VC'

.1

Object file
C source file
Efl.source file
Ratfor source file
Fortran source file
Assembler source file

. Yacc-C source grammar
Yacc-Ratfor. source grammar
Yacc-Efl source grammar
Lex source grammar

The following diagram summarizes the default· transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

MAKE-A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS 297

~o~
.(.r.c ../ .s .y .yr .yc ./ .d

~ \ \
.y./ .yr .yc

If the file x.o were needed and there were an x.c in the description or director.y, it would
be compiled. If there were also an x./, that grammar would be run through Lex before compil­
ing the result. However~ if there were no x.c but there were an x./, make would discard the
intermediate C-language file and use Hie direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, Y ACC, Y ACCR, Y ACCE, and LEX. The command

make CC = newcc

will c"ause the "newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS= -0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make. we will present the description file used to maintain
the make command itself. The code for l11ake is spread over a number of C source files and a
Yacc grammar. The description file contains:

298' PROGRAMMING

Description file for the Make command

P = und -31 opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint - p
CFLAGS'= -0

make: $ (OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): .defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make lusr/bin/make

. cp make lusr/bin/make ~ rm make

print: $(FILES) # print recently changed files
pr $? 1 $P

test:

touch print

make -dp 1 grep -v TIME> Izar'
'/usr/bin/mak.e -dp 1 grep -v TIME >2zap
diff 1 zap 2zap .
rm lzap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c

, arch:

$(LINT) dosys.c ddname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv Isys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing .the simple command

make

in a directory containing only the source and description file:

cc - c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc - c files.c
cc - c dosys.c
yacc gram.y
mv y. tab.c gram.c
c<? - c gram~c .
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS - 0 make
131,88+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by nanie in the description file.
make found them using its suffix rules and issued the needed commands. The string of digits

MAKE-A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS 299

results from the "size make" command~ the printing of the command line itself was suppressed
by an @ sign. The @ sign on tbe size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print"
entry prints only the files that have been changed since the last "make print" command. A
zero-length file prim is maintained to keep track of the time of the printing~ the $? macro in the
command line then picks up only the names of the files changed since prillt was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P = opr -spIt
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file
X.(· has a "#include "defs"" line, then the object file x.o depends on d(~ts~ the source file x.c
does not. (I f d(~ls is changed, it is not necessary to do anything to the file x.c, while it is neces­
sary to recreate x.o.>

To discover what make would do, the" - n" option is very useful. The commimd

make -n

orders make to print out the commands it would issue without actually taking the time to exe­
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include ,file), the"' - 1': (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates' the modification times on the affected file.
Thus, the command

make -ts

("'touch silently") causes the relevant files to appear up to date. Obvious care is necessary,
,~, since this mode of operation subverts the intention of make and destroys all memory of the,

previous relationships.

The debugging flag ("'-d") qtises make to print out a very detailed description of what it
is doing, including the file times/ The output is verbose, and recommended, only as' a last,
resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to ,program maintenance
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of make.

References

I. S. C. Johnson, "'Yacc - Yet Another Compiler-Compiler", Bell Laboratories Computing
Science Technical Report #32, July 1978. '

2. M. E. Lesk, "'Lex - A Lexical Analyzer Generator", Computing Science Technical
Report #39, October 1975.

300 PROGRAMMING

Appendix. Suffixes and Transformation Rules

The, make program itself does not know what file name 'suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the H - r" flag is used, thi~ table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"~ make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".r"
file to a H .0" file is thus ~~ .r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule ".r.o" is used. If
a command is generated by using one of these suffixing rules, the macro $* is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent'that caused the action. '

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with -it, is used. If new names are
to be appended,- the user can just add an eritry for H .SUFFIXES" in his own description file~
the dependents, will be added to the usual list. A" .SUFFIXES" line without any dependents

.deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o,'c .e .r .f .y .yr .ye . .1 .s
Y ACC=:=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS =as .:-
CFLAGS=

, RC=ec
, RFLAGS=
EC=ec
EFLAGS=
FFLAGS=

.. c.o :
$(CC) $(CFLAGS) -c $<

.e.o .r.o .r.o :

.s.o:

.y.o :

.y.c:

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -0 $@ $<-

$(Y ACC) $(YFLAGS) $ <
$(CC) $(CFLAGS) -c,y.tab.c
rm y.tc:b.c

. mv .y. tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab;c $@

UNIX Programming - Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIXt system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard 110 library. The topics discussed include

• handling command arguments

• rudimentary 110; the standard input and output

• the standard 110 library~ file system access

• low-level 110: open, read., write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.

There is also an appendix which describes the standard 110 library in detail.

November 12, 1978

'"

tUNIX is a Trademark of Bell Laboratories.

301

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu­
tion.

The document collects material which is scattered throughout several· sections of· The UNIX
Programmer's Manual [11 for Version ·7 UNIX. There is no attemp(to be complete: only gen­
erally useful material is dealt with. It is assumed that you will be programming in C. so you
must be· able to read the language roughly up to the level of The C Programming Language [2].
.Some of the material in sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to· the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

·When a C program is run as a command, the arguments on the command line are made
, available to the function main as an argument count argc and an array argv of pointers to.

character strings that contain the arguments. By convention, argv [0] is the command name
itself. so argc is always greater than O.

The following program illustrates the me~hanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.) ,

main {argc, argv)
int argc;
·char *argv [] i
(

int ii

/* echo arguments */

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1) ? I I : '\n /);

argv is a pointer to an array whose individual elements are pointers to 'arrays of. characters~
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv [1] and loops untjl it has printed them all,

·The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The "Standard Input" and "Standard Output"

The simplest input mechanism is· to read the Hstandard input," which is generally the
user's terminal. The function getchar returns the next input character each time it is called.
'A file may be substituted for the terminal by using the < convention: if prog uses getchar,-

302

UNIX PROGRAMMING-SECOND EDITION 303

then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog I prog

provides the .standard input for prog from the standard output of otherprog .

getchar returns the value EOF when it en-counters the end of file (or t!n error) on what­
ever you are reading. The value of EOF is normally defined to be -1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character c on the "standard 'output," which is' also by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn't exist~ if it already exists, its previous contents are overwritten. And a pipe can be ~sed:

prog I otherprog

puts the standard output of prog into the standard input of otherprog::.

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in. any order~ the output
will appear in the order of the calls.

Similarly, the. function scanf provides for formatted input conversion~ it will read the
standard input and break it up into strings, numbers, etc~, as desired. scanf uses the sam~
mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output~ for such programs I/O 'with
getchar, putchar, scanf, and printf may be entirely adequate, and it'is almost always.
enough to get started. This is particularly true if the UNIX pipe facility is .used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main ()
(

1* ccstrip: strip non-graphic characters *1

The line

int Cj

while «c = getchar (» ! = EOF)
if «c >= , , && C < 0177) I I c

putchar(c)j
exit(O)j

#include <stdio.h>

,\t' II c '\n')

should appear at the beginning of each source file. It causes the C compiler to read. a file
Uusrlincludelstdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple .files, you can use c~t to collect the files for you:

cat file1 file2 ... I ccstrip >output

and thus avoid learning how to access files from·fa program. By the way, the call to exi t at the
end is not necessary to make the program work properly, ·but it assures that any calle~ of the

304 : . PROGRAMMING

pr9gram will see a normal termination status (conventionally 0) from the program when it com­
,pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD 1/0 LIBRARY
The "Standard 1/0 Library" is a collection of routines intended to provide efficient and

portable 110 services for most C programs. The standard 110 library is available on each sys­
tem that supports C, so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

, In this section, we will discuss the basics of the standard 110 library. The appendix con­
tains a more complete description of its capabilities.

3 . 1. File Access

The programs written so f~r have all read the standard input and written the standard out­
put, which we have assumed,~re magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
'counts the lines, words and characters in a set of files. For instance, the command

we x.e y.e

"prints the number of lines, words and characters in x. c and y. c and the totals.

The question is how to' arrange for the named files to be read - that is, how to connect the
file system· names to the 110 statements which actually read the d3:ta.

. The rules are Isimple. Before it can be read or written a file has to be opened by the stan­
dard library function fopen. fopen takes an external name (like x. cory. c), does some
housekeeping and negotiation with the operating system, and returns an internal name which

, must be used in subsequent reads or writes of the file.

Thi's internal riame is actually a pointer, called a file pointer, to a structure which contains
information aboyt the file, s~ch as the location of a buffer, the current character position in the
buffer. whether the file is be~ng read or, written, and the like. Users don't need to know the
details, because part of the standard 110 definitions obtained by including stdio. h is a struc,~
ture definition called FIL'E. The only .:;.ieclaration nee~ed for a file pointer is exemplified by "

FILE *fp, *fopen()i

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a
type name, like int. not a structure tag.

The actual call to fopen in a progra~ is

fp= fopen(name, mode);

, The first argument of fopen is the name of the file, as a character string. The second argu­
ment is the mode, also as a character string, which indicates now you intend to use the file.
The only allowable modes are read (" r" r. write ("w"), or appeno (" a ,,).

If a file that you open for writing or appending does not exist, it is created (if possible).
- Ope'ning. an ,existing file for ,writing causes the old contents to be discarded. Trying to read a

ijle that does not exist is an error, and there may be other. causes of error as well (like trying to
read a·file when you don't have permission). If there is any error, fopen will return the-null .
pointer value NULL (which is defined as zero in stdio. h).

The next thing needed is a way to read or write 'the file once it is open. Thl!re are seve.ral
possibiliti~s, of" which getc and putc are the, simplest. qetc returns the next character from
a file~ it needs -.the file pointer to tell it what file. ' Thus

e= gete(fp)

-places in c the next character from the file referred to by fp~ it returnSEOF when ·it reaches
end of file. put'e is the inverse of getc: . .

UNIX PROGRAMMING-SECOND EDITION 305

putc(c, fp)

puts the character c on the file fp and returns c. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are pro­
vided for them. These files are the standard input, the standard output, and the standard error
output~ the corresponding file pointers are called stdin, stdout, and, stderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are pre-defined in the I/O library as the standard
input, output and error files~ they may be used anywhere an object of type FILE * can be.
They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is. processed. This
way the program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main (argc, argv)
int argci

1* wc: count lines, words, chars *1

char *argv[];

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect 0, twordct = 0, tcharct 0;

i ~ 1;
fp stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r"» == NULL) (
fprintf(stderr, "wc: can't open .%s\n", argv[i]);
continue;

linect = wordct = charct = inword 0;
while ((c = getc(fp» != EOF) {

charct++;
if (c == ' \n')

linect++;
if (c ==' , II c == '\t' II c == '\n')

inword = 0;
else if (inword == 0)

inword = 1;
wordct++;

printf ("%7ld %7ld %7ld", linect, wordct, charct);·
printf(argc > 1 ?" %s\n" : "\n", argv[i])i
fclose (fp) ;
tlinect += linect;
twordct += wordct;
tcharct += charcti

while (++i < argc);
if (argc > 2)·

printf("%7ld %7ld %7ld total\n", tlinect, twordct, tcharct);
exit(O);

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

308· PROGR.:~MMING

The function fclose is the inverse of fopen~ it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul­
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out­
put. (fclose is called automatically for each open file when a program terminates normally.)

3.2. Errot Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user's terminal even if the Standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exi t to terminate
program execution. The argument of exi t is available to whatever process called it (see Sec­
tion 6), so the succ.ess or failure of the program can be tested by another program that·uses this
one as a sub-process. By convention, a return value of 0 signals that all is well~ non-:-zero
values signal abnormal situations.

exi t itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _ex:l t. The function _exit causes immediate termination without any.
buffer flushing~ it may be called directly if desired.

3 . 3. Miscellaneous 1/0 Functions

The standard I/O library provides several other 110 functions besides those we have illus­
trated above.

·Normally output with putc, etc., is buffered (except to stderr)~ to force it out immedi­
ately, use fflush (fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprint.f) that specifies the file from which the input comes~ it returns EOF at end of file.

The functions sscanf and sprintf ar~ identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf .

. fgets (buf, size, fp) copies the next line from fp, up to and including a newline,
into buf~ at most size-1 characters are copied~ it returns NULL at end of file.
fputs (buf, fp) writes the string in buf onto file fp.

The function ungetc (c, fp) "pushes back" the character c onto the input stream fp~ a
subsequent call to getc, fscanf, etc., will encounter c. Only one character of push back per
file is permitted. .

4. LOW-LEVEL 1/0

This section describes the bottom level of I/O on the UNIX system .. The lowest level of
110 in UNIX provides no buffering or any other services~ it is in fact a direct entry into the
operating system. You are entirely on your own, but on& 'the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn't as bad as
it sounds.

4.1. File Descriptors

In t.he UNIX operating system, all input and output is done by reading or writing files,
(

because all peripheral devices, even the user's terminal, are files in the file system. This means
that a single, homogeneous interface handles all communication betw·een a program and peri­
pheral devices.

UNIX PROGRAMMING-SECOND EDITION 307

In the most general case. before reading or writing a file. it is necessary to inform the sys­
tem of your intent to do so. a process called "opening" the file. If you are going to write on a
file. it may also be necessary to create it. The system checks your right to do' so (Does the file
exist? Do you have permission to access it?). and if all is well. returns a small positive integer
called a .file descriptor. Whenever I/O is to be done on the file. the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S> and
\VRITE(6, .. ,) iri Fortran.) All information about an open file is maintained by the system~ the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors. but file
descriptors are more fundamental: A file pointer is a pointer to a structure that contains,
among other things. the file descriptor for the file in question. .

Since input and output involving the user's terminal are so common. special arrangements
exist to make this convenient. When the command interpreter (the "shell") runs a program, it
opens three files. with file descriptors O. 1, and 2. called the standard input, the standard out­
put. and the stan'dard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 'I and 2, it Gan do terminal I/O
without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with' a pipe. Nor- '
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases. the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file·O for
input and. 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n)i

n_written = write(fd, buf, n)i

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the· number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads onlY, up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is
trye number of bytes actually written~ it is generally an error if this isn't equal to the number

. supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time ("unbuffered"), and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time I/O is not inordinately expensive. . ,

Putting these facts together; we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

308 ·PROGRAMMING

#define BUFSIZE 512 1* best size for PDP-11 UNIX *1

main ()
{

1* copy ,input to output *1

char buf[BUFSIZE)i
int ni

while ((n = read(O, buf, BUFSIZE}) > O}
write (1 , buf, n}i

exit(O)i

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by wri te~ the next call to read after that will return zero.

It is instructive to see how read and wri te can be used to construct higher level routines
like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.

#define, CMASK 0377 1* for making char's> 0 *1

getchar() 1* unbuffered single character input *1
{

char Ci

return ((read(O, &c,' 1) > 0) ? c & CMASK : EOF) i

c ,must be declared char, because read accepts 'a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive~ otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP-II but not necessarily for
other machines.)

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define CMASK
'#define BUFSIZE

0377 1* for ma~ing char's> 0 *1
512

~~tchar() 1* buffered version *1
{

static char
static char
static int

buf[BUFSIZE)i
*bufp = bufi
n = Oi

if (n == 0) 1* buffer is empty *1
n = read(O, buf, BUFSIZE}i
bufp =' bufi

} ,

return((~-n >= 0) ? *bufp++ & CMASK EOF)i

4.3. Open, Creal, Glose, Unlink
. Other than ,the default standard input, output and error files, you must explicitly open files

in order to read or write them. There are two system entry points for this, open and ere a t
[sic].

open is rather like the fopen discussed in the previous section, except that instead of
returning a file pointer, 'it returns a file descriptor, which is just an into

UNIX PROGRAMMING-SECOND EDITION 309

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs~ otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point ere a t is provided
to create n~w files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, erea t will truncate it to zero length~ it is not an error to erp.a t a file that
already exists.

If the file is brand new, ereat creates it with the protection mode specified by the pmode
argument. In the UNIX file system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a, three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write 'and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only"one file: and does not
permit the second argument to be a directory,)

#define NULL 0
#define BUFSIZE 5\2
#define PMODE 0644 /* RW for owner, R for group, others */

main ('argc, argv)
int argc;

/* cp: copy f1 to f2 */

char *argv[];
{ ,

int f1, f2, n;
char buf[BUFSIZE];

if (argc != 3)
error (IIUsage: cp from to", NULL);

if «f1 = open(argv[1], 0» == -1)
error (IICp: can't open %S", argv[1]);

if «f2 = creat(argv[2], PMODE»" == -1)
error (IICp: can't create %S", argv[2]);

while «n = read(f1, buf, BUFSIZE» > 0)
if (write (f2, buf, n) != n)

error (IICp: write error", NULL);
exit(O);

error(s1, s2) /* print error message and die */
char *s1, *s2;
(

printf(s1, s2);
printf("\n");
exit(1);

310 PROGRAMMING

As we said earlier, there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor, and an open file, and frees the file descriptor for use with some other file. Ter­
mination of a progr~m via exit or return from the main program closes all open files.

The function unlink (filename) removes t,he file filename from the file system.

4 . 4 . Random Access - Seek and Lseek
File I/O is normally sequential: each read or write takes place at a position in the file

right after the previous one. When necessary, however, a file can be read or written in arty
arbitrary order. The system call lseek provides a way to move around in a file without actu­
ally reading or writing: '

lseek(fd, offset, origin);

. forces the current position in the file whose descriptor is fd to move to posItIOn offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long~ fd and origin are int's. origin can be 0, 1,
or 2 to specify that offset is to be measured from the beginning, from the current position,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 'a);

Notice'the OL argllment~ it could also be written as (long) O.

With Iseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi­
trary place in a file.

get (fd, pos, buf, n) I * read n bytes, from position pos * I
int fd, n;
long pos;
char *buf;
'(,

lseek(fd, pos, 0);, 1* get to pos */
return(read(fd, buf, n));

In pre-version '7 UNIX" the basic entry point to the I/O system is called seek. seek is
identical to lseek, except that its offset argument is an ~nt rather than a long. Accord­
ingly. since PDP-II integers have, only 16 bits. the offset specified for seek is limited to
65,535~ for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by

, 512 (the number of bytes in one physical block) and then interpret origin as if it were 0, I,
or 2 respectively: Thus' to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has origin equal to 1 and moves to the deSlired byte
within the block.

4 . 5. Error Processing
The routines discussed in this section, and in fact all the routines which are direct entries

into the system can incur errors. Usually they indicate an error by returning a value of -1.
Sometimes it is nice to know what sort of error occurred~ for this purpose all these routines.
when appropriate, leave an error number in the external cell err'no. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer's
.Manual, so YOlW program can, for example, determine if an attempt to, open a file failed

,

UNIX PROGRAMMING-SECOND EDITION 311

because it did not exist or because the user lacked permission to read it. Perhaps more com­
monly, you may want to print out the reason for failure. The routine perror will print ames­
sage associated with the value or' errno~ more generally, sys_errno is an arniy of character
strings which can be indexed by errno and printed by your program. .

5. PROCESSES

\ It is often easier to use a program written by someone else than to invent one's own. This
\ section describes how to execute a program from within another.
}

5 . 1. The "System" Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main ()
(

system ("date").;
1* rest of processing *1

If the command string has to be built from ·pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input~ terminal I/O will not be prop­
erly synchronized unless this buffering is defeated. For output, use fflush~ for input, see
setbuf in the appendix.

5 . 2. Low-Level Process Creation - Execl and Execv

If you're not using the standard library, or if you, need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan­
dard library's system routine is based on.

Ttle most basic operation is to execute another program without returning, by using the rou­
tine execl. To print the date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command~ you have to know where it is
found in the file system. The' second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this~ the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits·.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an·error, for example if the file can't be found or is not executable. If you don't
know where date is located, say

execl (" Ibin/datei" "date", NULL);
execl(l/usr/bin/date", "date", NULL);
fprintf(stderr, uSomeone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance how many
arguments there are going to be. The call is

312 PROGRAMMING

exeev(filename, argp);

where argp is an array of pointers to the arguments~ the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, filename is the file in which
the program is found, and argp [0] is the name of the program. (This arrangement is identi­
cal to the argv array for program arguments,)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located.' 'Nor do you get the expansion of metacharacters like <, >, *, ? and [] in the argu­
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the complete command as it would have been
typed at the terminal, then say

exeel("/bin/sh", "sh", "-e", eommandline, NULL);

The shell is assumed to be at a fixed place, /hin/ sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con­
structing the right information in commandline.

5 .3. Control of Processes - Fork and Wait
,. ~

So far what we've talked about isn't really all that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies~ one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called fork:

proe_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the Hprocess id." In one of these processes (the Hchild"),
proc_id is zero. In the other '(the "'parent"), proc_id is non-zero~ it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() == 0)

exeel("/bin/sh", "sh", "-ell, emd, NULL); ,/* in ehild */

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. ' In the child, the va'lue returned by fork is zero, so it calls execl which does the
command' and then. dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns -1).

t\1ore often,. the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wai t:

int status;

if (fork ()== 0)
exeel (...) ;

wait (&status)';

This still -doesn't handle any 'abnormal conditions, such as'a failure of the execl or fork, or
the possibility that there might be more than one ,child running simultaneously. (The wait
returns the· process id of the terminated child, if you want to check it' against the value returned
by fork,) Finally, this fragment doesn't deal with .any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library's
system routine, which we'll show in a moment:

The status returned by wait encodes in its low-order eight bits the system's idea of the
. child's termination status~ it is 0 for normal termination and non-zero' to indicate various kinds
of problems. T~~ next higher eight bits are taken from the argument of the call to exi t which
caused a normal termination ,of the child process. It is good coding practice for all programs to

" l

UNIX PROGRAMMING-SECOND EDITION 313

return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point­
ing at the right files, and all other possible file descriptors are available for use. When this pro­
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei­
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
exec!. Conversely, if a caller buffers an input stream, the called program will lose any infor­
mation that has been read by the caller.

5.4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn~
chronizing the two processes. Most pipes are created by the shell, as in

Is I pr.

which connects the standard output of Is to the standard input of pro Sometimes, however, it
is most convenient for a process to set up its own plumbing~ in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned~ the actual usage is like this:

int fd[2];

stat = pipe(fd);
if Lstat == -1)

1* there was an error *1

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is
. for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wa~t until data arrives~ if a process' writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate' the use of pipes in a realistic setting, let us write a function called
popen (cmd) mode), which creates a process cmd (just as system does), and returns a file
descriptor that will either read or write that. process, according to mode. That is, the call

fout = popen ("pr" I WRITE);
, .

creates a process that executes the pr command~ subsequent .wri te calls using the file descrip-
. tor fout will send their data to that process through the pipe.

popen first creates the the pipe with ,a pipe system call~ it then forkS to create two
copies of itself. The child decides whether it is supposed to read or write, closes, the other side
of the pipe, then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work. properly. For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there i~ one writer potentially active.

314 PROGRAMMING

#include <stdio~h>

#define READ 0
#define
#define
static

WRITE
tst (a, b) (mode
int popen_pidi

popen(cmd, mode)
char *cmdi
int modei

int p [2] i'

if (pipe(p) < 0)
return(NULL)i

READ? (b)

if «popen_pid = fork~» == 0) (
close (tst(p[WRITE] , p[READ]»i
close(tst(O, 1»i

(a))

dup(tst(p[READ] , p[WRITE]»i
close(tst(p[READ], p[WRITE.]»i
execl("/bin/sh", "sh" , "-c", cmd, O)i
.exit(1); /* disaster has occurred if we get here */

if (popen_pid == -1)
return(NULL);

close(tst(p[READ], p[WRITE]»i
return (tst (p[WRITE] , p[READ]»;

The sequence of closes in the child'is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(O, 1»;
dup(tst(p[READ] , p(WRITE]»i

are the conventional way to associate the pipe descriptor with the standard input of the child.
The c lose closes file' descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor O~ thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pc lose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it rs desirable
to wait for the termination of the child process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter­
minated~ performing the wai t lays the child to rest. Thus:

UNIX PROGRAMMING-SECOND EDITION 315

#include <signal.h>

pclose(fd)
int fd;

1* close pipe fd *1

register r, (*hstat) (), (*istat) (), (*qstat) () i
int status;
extern int popen_pidi

close (fd) i
istat
qstat
hstat
while
if (r

signal (SIGINT, ~[G_IGN);

= signal (SIGQUIT, SIG_IGN);
= signal(SIGHUP, SIG_IGN)i
((r = wait(&status» != popen_pid && r != ~1)i
== -1)

status = -1;
signal (SIGINT, istat)i
signal (SIGQUIT, qstat);
signal (SIGHUP, hstat)i
return(status);

The calls to signal make sure that no interrupts, etc., interfere with the waiting process~ this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid~ it really should be an array indexed by file descrip­
tor. A popen function, with slightly different arguments and return value is available as part
of the standard 110 library discussed below. As currently written, it shares the same limitation.

6. SIGNALS - INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world
(like interrupts), and with program faults. Since there's nothing very useful that can be done
from within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which
is sent when the DEL character is typed~ quit, generated by the FS character~ hangup, caused by
hanging up the phone~ and terminate, generated by the kill command. ,When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter­
minal~ unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal. h gives nam~s for the various arguments, and should always be included
when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN) i

causes interrupts to be ignored, while

signal(SIGINT,.SIG_DFL)i

restores the default action of process termination. In "all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a fu~ction
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the,
named routine will be called when the signal occurs. Most commonly this facility is used to

316 PROGRAMMING

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

#include <signal.h>

main ()
(

int onintr();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process ... */

exit(O);

onintr ()
{

unlink(tempfile)i
exit(1)i

Why the test and the double call to signal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is'to be run non­
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that aU inter­
rupts were to be sent to the onintr routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a -particular signal. If signals were already being

_ ignored, the process sho"uld continue to ignore them~ otherwise, they should be caught. '

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing .and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it 'to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jrnp_buf sjbufi

main ()
{

int (*istat) (), onintr()i

istat = s1gnal(SIGINT, ~IG_IGN)i /* save original status */
setjmp(sjbuf)i /* save cur~ent stack position */
if (istat !~ SIG,....IGN)

signa~(SIGINT, onintr);

/* main processing loop */

-'

onintr ()
(

printf("\nlnterrupt\n");

. UNIX PROGRAMMING-SECOND EDITION 317

longjrnp(sjbuf); 1* return to saved state *1

The include file setjmp. h declares the type jmp_buf an object in which the state can be
saved. sjbuf is suchan object~ it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs; a call is forced to the onintr routine, which
can print a message, set flags, or whatever. longjmp takes as argument an object stored into
by set jmp, and restores control to the location after the call to s'et jmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary~ most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in· the middle of updating a linked list. If the routine called on occurrence of.a signal
sets ·a flag and then returns instead of calling exit or longjmp, execution will continue' at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called~ it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know th~t the program is
reading~ he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened,

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a termin~l, wait, and pause.) A program whose onintr. program just sets intflag,
resets the interrupt signal, and returns, should u·sually include code like the following when it
reads the standard input: .

if (getchar() == EOF)
if (intflag)

1* EOF caused by i~terrupt *1
else

1* true end-of-file *1

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a· method
(like ~~!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork () == 0)
execl (...) ;

signal (SIGINT, SIG_IGN).i 1* ignore interrupts *1
wait(&status); 1* until the child is done *1
signal (SIGINT, oniptr); 1* restore interrupts *1

Why is this? Again, it's not obvious' but not really difficult. Suppose the program you call
catches its own interrupts. If you 'interrupt the subprogram, it will get the signal and return 'to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system:

318 PROGRAMMING

#include <signal.h>

system(s} 1* run command string s *1
char *Si

int status, pid, Wi
register int (*istat) (), (*qstat) () i

if «pid = fork()} == O}
execl("/bin/sh", "sh" , "-c", s, O}i
_exit(127};

istat = signal(SIGINT, SIG_IGN};
qstat = signal(SIGQUIT, SIG_IGN};
while «w = wait(&status)} != pid && w != -1)

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat}i
return(status}i

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is- how they
are defined for the PDP-II ~ the definitions should be sufficiently ugly and nonportable to
encourage use of the include file. ~

#define
#define

. References

(in t (*) () } 0
(int (*}(}}1

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Bell Laboratories,
1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

[3] B. W. Kernighan, "UNIX for Beginners - Second Edition." Bell Laboratories, 1978.

U~JIX PROGRAMMING-SECOND EDITION 319

Appendix - The Standard I/O Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard 1/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita­
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-II running a version of UNIX.

1. General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin With, an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file ~

stderr The name of the standard error file

EOF is actually -1, and is the value returned by the read routines on end-of-file 'or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to in"dicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an 110 buffer supplied by the user.
See setbuf, below.

getc, getchar, putc, putchar, fecf, ferror, fileno
are defit:led as macros. Their actions are described below~ they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions~ thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out­
put flushing where appropriate. The names stdin, stdout, and stderr are' in effect con­
stants and may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *typei
operis the file and, if l}eeded, allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be "r",
"w", or "a" to indicate intent to rcad, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename,. *typei ·'FILE ,*ioptri

320 PROGRAMMING

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a file
such as returned by fopen, or the name stdin. The integer EOF ,is returned on end-of­
file or when an error occurs. The null character \ 0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error'.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
, The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated

by the I/O system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the termin-at however,
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is
reopened.

exit(errcode); ,
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls {flush for each output file. To 'terminate without flush­
ing, use _exi t.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when 1n error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to getc (stdin). '

putchar(c);
is identical to putc (c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointe~ s. The read
terminates with a newline character. The newline character is placed in the bu~er followed
by a null character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptri
writes the null-terminated string (character array) s on the stream ioptr. No newline is

',', "~:" appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;

. UNIX PROGRAMMING-SECOND EDITION 321

The argument character c is pushed back on the. input stream named by ioptr. Only one
character may be pushed back.

printf(format, a1, ...) char *formati
fprintf(ioptr, format, a1) ...) FILE *ioptri char *formati
sprintf(s, format, a1, ...)char *s, *format;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section printf(3) of the UNIX Programmer's Manual.

scanf(format, a1, ...) char *format;
fscanf(ioptr, format, a1, ...) FILE *ioptr; char *format;
sscanf(s, format, a1, ...) char *s, *format;

scanf reads from the standard input. f scanf reads from the named input stream.
sscanf reads from the character string supp~ied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string forma t~ and a set of. arguments, each of which must be a
pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned~ note that this is different from 0, whiCh means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads ni terns of data :beginning at ptr from file ioptr. No advance notification that binary
110 is being done is required~ when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string· on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind (ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system (string) char *string;
. The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or e·rror, but since this a perfectly good integer feof and ferror should be used. A "word"
is 16 bits on the PDP-ll.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf[BUFSIZ]i

fileno (ioptr) FILE *ioptr; .
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrna.me is
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is.
measured from the end of the file. The routine accounts properly for· any buffering. (When

322 PROGRAMMING

this routine is used on non-UNIX systems, the offset must be a value returned from ftell and
the ptrname must be 0).

long ftell(ioptr) FILE *ioptri
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to iseek, so as to position the file to the same place it was when
ftell was called.)

getpw(uid, buf) char *buf;
The pasSword file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line 'is found corresponding to the
user ID then 1 is returned.

char *malloc(num)i
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur­
pose. NULL is returned if no space is available.

char *calloc(num, size); .
allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available.

cfree(ptr) char *ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype . h:>.

isalpha (c) returns non-z~ro if the argument is alphabetic.

isupper (c) returns non;'zero if the argument is upper-case alphabetic.

islower (c) returns non-zero if the argument is lower-case alphabetic.

isdigi t (c) returns non-zero if the argument is a digit.

isspace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

ispunct (c) returns non-zero if the argument is any punctuation character. i.e., not a space,
letter, digit or control character.

isalnum (c) returns non-zero if the argument is a letter or a digit.

isprint (c) returns non-zero if the argument is printable - a letter, digit, or punctuation
character.

iscntrl (c) returns non-zero if the argument is a control character.

isascii (c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

touppel. (c) returns the upper-case character corresponding to the lower-case letter c .

tolo"1er (c) returns the lower-case character corresponding to the upper-case letter c.

A Tutorial Introduction to ADB

J. F. Maranzallo

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey'07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNIXt to allow users
to examine "core" files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core" and other pro­
gram files in a variety of formats, run programs with embedded breakpoints and
patch files.

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam­
ples of its use. It. explains the various formatting options, techniques for
debugging C prograrris, examples ,of printing file system information and patch­
ing.

May 5, 1977

tUNIX is a Trademark of Bell Laboratories.

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to
look at "core" files resulting from aborted programs, print output in a variety of formats, patch
files, and run programs with embedded breakpoints. This document provides examples of the
more useful features of ADB. The reader is expected to be familiar with the bask commands
on UNIXt with the C language, and with References I, 2 and 3.

2. A Quick Survey

2.1. -Invocation

ADB is invoked as:

adb objfile corefile

where ob.ffile is an executable UNIX file and core.file is a core image file. Many times this will
look like:

adb a.out core

or more simply:

adb

where the defaults are a.ollf and core respectively. The filename minus (-) means ignore this
argument as in:

adb - core

ADB has requests for examining locations in either file. The ? request examines the
contents of opifile, the / request examines the core.file. The general form of these requests is:

address ? format

or

address / format

2.2. Current Address

ADB maintains a current address, called dot, similar in function to the current pointer in
the UNIX editor. When an address is entered~ the current address is set to that location, so
that:

0126?i

tUNIX is a Trademark of Bell Laboratories.

324

A TUTORIAL INTRODUCTION TO ADB 325

sets dot to octal 126 and prints the instruction at that address. The request:

.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of"the last item
printed. When used with the ? or I requests, the current address can be advanced by typing
newline~ it can be decremented by typing A.

Addresses are represented by expressions. Expressio.ns are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test. These may be combined
with the operators +, -, *, % (integer division), & (bitwise and)., I (bitwise inclusive or), #
(round up to the next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recog­
nize both forms.

2.3. Formats

. To print data, ·a user specifies a collection of letters and characters that describe the format
of the printout. Formats are "remembered" in the sense that typing a request without one will
cause the new printout to appear in the previous format. The following are the most commonly
used format letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word in decimal
f two words in floating point
i PDP 11 instrqction
s a l1ull terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space

backup dot

(Format letters are also available for "long" values, for example, 'D' for long decimal, and 'F'
for double floating point.) For other formats see the ADB manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.

The following· table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.out file
I Print contents from core file

Print value of" dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

ADB catches signals, so a user cannot use a quit signa.! to exit from ADB. The request $q
or $Q (or cntl-D) must be used to exit from ADB. .

326 PROGRAMMING

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to change the lower case "t" to upper
case in the string pointed to by charp and then write the character string to the file indicated by
argum'ent 1. The bug shown is that the character "T" is stored in the pointer charp instead of
the string pointed to by charp. Executing the program produces a core file because of an out of
bounds memory reference.

ADB is invoke,d by:

adb a.out core

The first debugging request:

$c

is used to give a C back trace through the subroutines called. As shown in Figure 2 only one
function (main) was called and the arguments argc and argv have octal values 02 and 0177762
respectively. Both of these values look reasonable~ 02 = two arguments, 0177762 = address
on stack of parameter vector.
The next request:

$C

is used to give a C back trace plus an interpretation of all the local variables in each function
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a
character.

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at
that location.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is referenced by ?
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use, ?
for instructions and / for data when looking at programs. To print out information about the
maps type:

$m

This produces a report of the contents of the maps. More about these maps later.

In our example, it is useful to see the contents of the string 'pointed to by charp. This is
done by:

*charp/s

which says use charp as a pointer in the 'core file and print the information as a character string.
This printout clearly shows that the character buffer was incorrectly' overwritten and helps iden­
tify the error: Printing the locations around charp shows that the buffer is unchang~d but that
the pointer is destroyed. Using ADB similarly, we .could print information about the arguments
~o a function. The request: .'

m~in.argc/~

prints the decimal core image value of the argument argc in the function main.

A TUTORIAL INTRODUCTION TO ADB 327

The request:

*main.argv,3/0

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASCII value of the first argument. Another way to print this value would have been

*"/s

The " means ditto which remembers the last address typed, in this case main.argc the *
instructs ADB to use the address field of the core file as a pointer.

T.he request:

.=0

prints the current address (not its contents) in octal which has been set to the address of the
first argument. The current address, dot, is used by ADB to "remember" its current lo~ation.
It allows the user to reference locations relative to the current address, for example:

j:

. -to/d

3.2. Multiple Fun<;tions

Consider the C program illustrated in Figure 3. This program calls functions.r. g .. and h
until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

Sc

will fill a page of backtrace references to.r. g, and h. Figure 4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request level).

The request:

,SSC

prints the five most recent activations.

Notice that each [unction. (r.g,h) has a counter of the number .of times it was calt'ed.

The request:

fcnt/d

prints the decimal value of the counter for the function./: Similarly gent and hen! could be
printed. To print the value of an automatic variable, for example the decimal value of x in the
last call of the function h, type: '

h.x/d

It is currently not possible in the' exported version to print stack frames other than ,the, most
recent activation of a function. Therefore, a user can 'print everything with SC or the
occurrence of a variable in the most recent call of a function. It is possible with the SC request,
however, to print the stack frame starting at some address as ·address$C.

328 PROGRAMMING

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is
adapted from Sofiware Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:

adb a.out -

Breakpoints are set in the program as:

The requests:

address:b (request)

settab+4:b
fopen +4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore
it is currently not possible to plant breakpoints at locations other than function' entry points

. without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol + 4 so that they will appear in any C backtrace since the first instruction of
each function is a call to the C save routine (csv). Note that some of the functions are from
the C library.

To print the location of breakpoints one types:

Sb

The display indicates a counl field. A breakpoint is· bypassed cOllnl -/ times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is.
encountered. In our example no command fields are present.

By displaying the original instructions at the function selfab we see that the breakpoint is
set after the jsr to the C save routine. We can display the instructions using the ADB request:

settab,5 ?ia

This request displays five instructions starting at selfab with the addresses of each location
displayed. Another variation is:

settab,5 ?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the? command. In. general
when asking for a printout of multiple items, ADB will advance the current address the number
of bytes necessary to satisfy the request~ in the above example five i~structions were displayed
and the c~rrent address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function selfab, on~ types:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program. has stopped (in this case at the breakpoint for lopen), ADB requests can
be used to display the contentsof memory. For example:

·SC

A TUTORIAL INTRODUCTION TO ADS 329

to display a stack trace, or:

tabs,3/80

to print three lines of 8 locations each from the array called tabs. By this time (at location
fopen) in the C program, sellab has been called and should have set a one in every eighth loca­
tion of tabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. Getc is called three times and the contents of the variable c in the function
main are displayed each time. The single character on the left hand edge is the output from the
C program. On the third occurrence of getc the program stops. We can look at the full buffer
of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

~e hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of tabpos will occur until the program has -changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove the breaKpoint at that
location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out :running

The UNIX q"uit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:

:c 0

is typed.

Now let us reset the breakpoint at sellab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab,5?ia *

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

• Owing to a bug in early versions of ADB (including the versipn distributed in Generic 3 UNIX) these state­
ments '"!lust be written as:

settab + 4:b settab,5?ia;O
getc+4,3:b main.c?C;O
settab + 4:b settab,5?ia;lp~ab/o;O

Note that ;0 will set dot to zern and stop at the breakpoint.

330 PROGRAMMING

stop after the third occurrence by typing:

getc+4,3:b main.c?C *

This request will print the local variable c in the function main at each occurrence of the break­
point. The semicolon is used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed~ executing the pro­
gram under ADB does not change dot. Therefore:

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example ./open +4) not the current location (set­
tab+4) at which the program is executing.

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *

could be entered after typing the above requests.

Now the display of breakpoints:

$b

shows the above request for the seffab breakpoint. When the breakpoint at seffab is encoun­
tered the ADB requests are executed. Note that the location at seffab +4 has been changed to,
plant the breakpoint~ all the ,other locations match their original value.

Using, the functions, ./: g and h shown in Figure 3, we can follow the execution of each
function by planting non-stopping breakpoints. We call ADB with the executable program of

, Figure,3 as follows:

adb ex3 -

Suppose we enter the following breakpoints:

h+4:b
g+4:b
f+4:b
:r

hcnt/d; h.hi/; h.hrl
gcnt/d; g.gi/; g.grl
fcnt/d; f.fi/; f.frl

Each request line indicates that the variables are printed in decimal (by the specification d).
Since the format is nof changed, the d can be left off all but the first request.

The output in Figure, 7' illustrates two points. First, the ADB requests in the breakpoint,
Iin~ are not examined until the program under test is run. That means any errors in those
ADB requests is not detected until run time. At the location of the error ADB stops running
the p.rogram.

The second point is the' way ADB handles register variables. ADB uses the symbol table
to address variables. Register variables, like ./Ji· above, have pointers to uninitialized places on
the stack. There,fore the. message "symbol not found". '

as: '
Another way of getting at the data in, this examp'le is, to print the variables used in the call

f+4:b
g+4:b

, :c

fcnt/d; f.a/; f.b/; f.ftl
gcnt/d; g.p/; g.'.'/; g.g,if

The operator / was used instead of? to read values from the core file. The output for each
function, as shown in Figure 7, has the same format. For the function.f. for example, it shows

,the name and value of the external variable ./'clll. It also shows the address on the stack and
value of the var,if\bles a, band .Ii.

A TUTORIAL INTRODUCTION TO ADB 331

Notice that the addresses on the stack will continue to decrease until no address space is
left for program execution at which time (after many pages of output) the program under test
aborts. A display with names would be produced by requests like the following:-

f+4:b fcnt/d; f.a/" a ="d; f.b/"b ="d; f.fi/"fi ="d

In this format the quoted string is printed literally and the d produces a decimal display of the
variables. The results are shown in Figure 7.

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r argl arg2 ... < infiIe > outfile

This request kills any existing program under test and starts the a.oUf afresh.

• The program being debugged can be single stepped by:

:s

If necessary. this request will start up the program being debugged and stop after executing
the first instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first 11 breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first 11 breakpoints when continuing a program.

• .:A program can be continued at an address different from the breakpoint" by~

addres~:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to
load the program file. File type 407 is the most common and is generated by a C com~iler
invoc~tion such as cc pgm.c. -A 410 file is produced by a C compiler command of the form cc
-n pgm.c, whereas a 411 file is produced by cc -i pglU.c. ADB interprets these different file for­
mats and provides access to the different segments through a set of maps (see Figure 8). To
print the maps type:.

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible"
for ADB to differentiate data from instructions and some of the printed symbolic addresses look
in~orrect; for example, printing data addresses as offsets from routines. -

In 410 files (shared text)-, the instructions are separated from data and ?* accesses the
data part of the a.out file. The ?* request tells ADB to use the second part of the 'map "in:.the

"a.out file. Accessing data in the core file shows the data after it was modified by the" execuJlOil

332 PROGRAMMING

of the program. Notice also that the data segment may have grown during program execution.

In' 411 files (separated I & D space); the instructions and data are also separated. How­
ever, in this case, since data is mapped through a separate set of segmentation registers, the
base of the data segment is also relative to address zero. I n this case since the addresses over­
lap it is necessary to use the ?* operator to access the data space of the a.oUf file. In both 410
and 411 files the corresponding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The
"fl" field is the length of the header at the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The "f2" field is the displacement from the beginning of the file to
the data. For a 407 file with mixed text and data this is the same as the length of the header:

. for 410 and 411 files this is the length of the header plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an
address, A, the lo'cation in the file (either a. out or core) is calculated as:

bl~A~el 9> file address = (A-b1)+f1
b2~ A~ e2 9> file address ~ (A - b2) +f2

A user can access locations by using the ADB defined variables. The Sv request prints the vari-
.ables initialized by ADB:

b base address' of data segment
d length of the data segment
s length of the st~ck
t length of the text
m execution type (407,410,411)

In Figure· 9 those variables not present are zero. Use can be made of these variables by
expressions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment
request such as:

02000> b

that sets h to octal 2000. These variables are useful to know if the file under examination is an
executable or core image file.

ADB reads the header of the 'core image file to find the values for these variables. If the
second file specifie~ does not seem to be a core file. or if it is missing then the header of the
executable file is used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate displays.
Below are several examples.

5.1. Formatted dump

The line:

<b, -1/404~8Cn

prints 4 octal words followed by their ASCII' interpretation from the data space of the core
image file. ,Broken down. the various request pieces mean:

< b The base address of the dahl segment.

A TUTORIAL INTRODUCTION TO ADB 333 .

< b, -1 Print from the base address to the end of file. A negative count is
used here and elsewhere to loop' indefinitely or until some error con­
dition (like end of file) is de~ected.

The format 404"8Cn is broken down as follows:

40 Print 4 octal locations.

4" Backup the current address 4 locations (to the original start of the
field) .

8C Print 8 consecutive cha~acters using an escape convention~ each
character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0140 to 0177. An @ is printed
as @@.

n Print a newline.

The request:

< b, < d/404" 8Cn

could have. been used instead to allow the printing to stop at the end of the data segment «d
provides the data segment size in byte~).

The formatting requests can be combined with ADB's ability to read in a script to produce
a core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
= 3n"C Stack Backtrace"
$C
= 3nu C External Variables"
$e
= 3n" Registers"
$r .
O$s
= 3n" Data Segment"
< b, -1/80na

The request 120$w sets the Width of the output to 120 characters (normally, the width is
80 characters). ADB attempts to print addresses as: .

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request = can be used to print literal strings. Thus, headings
arf? provided in this dump program with reques~s of th~ form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request .$v prints all non-zero ADB
'variables (see Figure 8). The request O$s sets the" maximum oH:set for symbol matches to zero

334 PROGRAMMING

thus s~ppressing the printing of SYIlloolic labels in favor of octal values. Note that this is only
done for the printing of the data segment. The request:

<b,-1/Sona

prints a dump from the base of. the data segment to the end of file with an octal address field
I and eight octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

S.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents o(a
directory (which is made up of an integer inumber followed by a 14 character name):

adb dir -
= nSt" Inurn" St" Name"
0, -1? uSt14cn

In this example, the u prints the inumber as an unsigned decimal integer, the St means that
ADD will space to the next multiple of 8 on the output line. and the 14c prints the 14 character
file name.

5.3. Ilist Dump

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX s9stems-dfstri­
buted by the UNIX Support Group~ see UNIX Programmer's Manual Section V) could be
dumped with the following set of requests: .

adb /dev/sre -
02000>b
?m <b
< b, -1 ?"ftags"Ston"links;uid,gid"St3bn" ,size"Stbrdn"addr"StSun"times"St2Y2na

In this example the value of the base for .the map was changed to 02000 (by saying ?m < b)
since that. is the start of an ilist within a file system. An artifice (brd above) was used to print
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last
modify time are printed with the' 2Y operator. Figure 12 shows portions of these requests as
applied to a directory and file system.

5.4. Converting values

ADD may be used to convert values from one representation to another. For example:

072 = odx

will print

072 58 - #3a

.which is the octal, decimal and hexadecimal' representations of 072 (octal). The format is
remembered so that typing subsequent numbers will print them in the .given formats. Charac­
ter values may be converted similarly, for example:

'a' = co

prints

a 0141
. .

It may also be used to' ev;luate expressions but be warned that all binary operators have the
same precedence which is lower than that for ijnary operators.

A TUTORIAL INTRODUCTION TO ADS 335

6. Patching

Patching files with ADB is accomplished with the wrile, w or W. request (which is not like
the eel editor write command). This is often llsed in conjunction with the lOCale), I or L request.
I n general. the request syntax for I and ware similar as follows:

?I value

The request I is used to match on two bytes. L is used for four bytes. The request w is used to
write two bytes. whereas W writes four bytes. The value field in either locale or wrile requests
is an expression. Therefore. decimal and octal numbers. or character strings are supported.

In order to modify a file. ADB must be called as:

adb - w file I file2

When cal1ed with this option • . tile I and . tile] are created if necessary and opened for both read­
ing and writing.

For example. consider the C program shown in Figure 10. We can change the word
"This" to "The" in the executable file for this program. ex7. by using the following requests:

adb -w ex7 -
?I 'Th'
?W 'The'

The request ? I starts at dot and stops at the first match of "Th" having set dot to the address of
the location found. Note the use of ? to write to the a.ollt file. The form ?* would have been
used for a 411 file.

More frequently the request will be typed as:

?I 'Th'; 1s

and locates the first occurrence of "Th",and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility. consider a C program that has
an internal logic flag. The flag could be set by the user through ADB and the program run.
For example:

adb a.out -
:s argl arg2
flag/w I
:c

The :s request is normally used to single step through a process or start a process in single step
mode. In this case it starts a.OIlI as a subprocess wi'th arguments argl and arg2. If there is a.
subprocess running ADB writes to it rather than to the file so the w request causes ./tag to be
changed in the memory of the subprocess.

7. Anomalies

Below is a list of s9me strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting break­
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2. When printing addresses, ADB uses either text or data symbols from the a.oUl file. This·
sometimes causes unexpected symbol names to be printed with data (e.g. savr5 +022).
This does not happen if ? is used for text (instructions) and / for data.

336 PROGRAMMING

, 3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document
from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes

. necessary to accommodate tracing within ADB. He also participated in discussions during the
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Rit~hie and K. Thompson, "The UNIX Time-Sharing System," CACM', July,
. 1974.

2. B. W. Kernighan a~d D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3. K. Thompson and D'. M. Ritchie, UNIX Programmer's Manual - 7th Edition, 1978.

4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

Figure 1: C program. with pointer bug

struct buf (
int fildes~
int nleft~
char ·nextp~
char buff[512] ~
}bb~

struct buf ·obuf~

char ·charp "this is a sentence."~

main(argc,argv)
int argc~
char ··argv~
(

char cc~

if(argc < 2) (

A TUTORIAL INTRODUCTION TO ADB 337

printf("lnput file missing\n")~
exit(S) ~

if«fcreat(argv[I],obuf» < o){
printf("%s : not found\n", argv[I])~
exit(S) ~

charp = 'T'~

printf("debug 1 %s\n" ,charp) ~
while(cc= ·charp+ +)

putc(cc,obuf) ~
ffiush(obuf) ~

338 PROGRAMMING

Figure 2: ADD output for C program of Figure 1

adb a.out core
$c
-main(02,0111762)
$C
-main(02,0111162)

argc: 02
argv: 0111162
cc: 02124

Sr
ps 0110010
pc 0204 -main+0152
sp 0111140
r5 0171752
r4 01
r3 0
r2 0
rl 0
rO 0124
-main+0152: mov _obuf,(sp)
Se
savr5:
_obuf:
_charp:
_errna:
_fout:
$m

'0
o
0124
o
o

text map 'exl'
bl = 0
b2 = 0
data map 'corel'

el· = 02360
e2 = 02360

bl = 0 el = 03500
b2 = 0175400 e2 = 0200000

f1 0= 020
f2 = 020

f1 = 02000
f2 = 05500

*charp/s
0124: TTTLx

.charp/s
_charp: T

_charp+02: this is a sentence.

~charp+026': Input file missing
main.argc/d
0177756: 2
*inain.argv 130
0177162: 017777001777760177777-
0177770/s
0111710: a.out
*main.argv 130
0177"762: 017777001777760177777
*"/s
0177710: a.out
.=0 '.

0177170
.-IO/d

0117756: 2
$q

A TUTORIAL INTRODUCTION TO ADB 339

Figure 3: Multiple function C program for stack trace illustration

int fcnt,gcnt,hcnt~

h(x,y)
(

g(p,q)
(

f(a,b)
{

mainO
(

int hi~ register int hr~
hi = x+l~
hr = x-y+l~
hcnt+ + ~

hj:
f(hr,hj) ~

. int gi; register int gr:
gi = q-p~
gr = q-p+l~
gcnt++ :
gj:
h (gr ,gj) ~

int fi~ register int fr~
fi = a+2*b~
fr = a+b~
fcnt+ + ~
fj:
g(fr,fi)~

f(I, n~

340 PROGRAMMING

.:figure 4: ADB output for C program of Figure 3

adb
$c
-h(04452,04451)
-g(04453,011124)
-f(02,0445I)
-h (04450,04447)
-g(0445I ,011120)
-f(02,04447)
-h(04446,04445)
-g (04447,011114)
-f(02,04445)
-h (04444,04443)
HIT DELKEY
adb
.S$e
-h (04452,04451) .,.-t

x: 04452
y: 0445'1
hi: ?

-g(04453,011124)
p: 04453
q: 011124
gi: 04451

. gr: ?
-f(02,04451)

a: 02
b: 04451
fi: 011124
fr: 04453

"':h(04450,04447)
x: 04450
y: . 04447
hi: 04451
hr: 02

-&(04451,011120)
p: 04451
q: 011120
gi: 04447
gr,: 04450

fcnt/d
fent: . 1173

gcnt/d
gent: 1173

hcnt/d
hent: 1172

h.x/d
022004: 2·346
$q

rAsure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define T ABSP 8

char input[) "data"~
char ibuf(518);
int tabs[MAXLINE);

mainO
(

int col, *ptab;
char c;

ptab = tabs;

A TUTORIAL INTRODUCTION TOADB 341

settab(ptab); I*Set initial tab stops * /
col = 1 ~
if(fopen{input,ibuf) < 0) {

}

printf("%s : not found\n",input};
exit(8) ~

while«c = getc{ibuf» != -1) (
switch(c) (

case '\t': /* TAB * /
while(tabpos(col) ! = YES) (•

putchar{' ')~ 1* put BLANK */
col++ ;

break~

case '\n':I*NEWLINE */
putchar{'\n') ~
col = 1 ~

default:
break~

putchar(c);
col+ + ~

/* Tabpos return YES if col is a tab stop * /
tabpos(col) .
int col~
(

if(col > MAXLINE)
return (YES) ~

else
return (tabs[col]) ~

1* Settab - Set initial tab stops * I
settab(tabp)
int *tabp~
(

int i-~

for{i = O~ i< = MAXLINE~ i+ +)
(i%TABSP) ? (tabs[i] = NO) : (tabs[iJ = YES)~

342 PROGRAMMING

Figure 6a: ADD output for C program of Figure 5

adb a.out­
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt
1 -tabpos+04
1 _getc+04
1 Jopen+04
1 -settab+04
settab,5?ia
-settab: jsr -settab+04: tst
-settab+06: clr
-settab+ 012: cmp
-setta-b+ 020: bIt
-settab+022:
settab,5?i
-settab: jsr

tst
clr
cmp
bit

. :r
a.out: running

command

r5,csv
-(sp)
0177770(r5)
$0120,0177770(r5)
-settab+076

r5,csv
-(sp)
0177770(r5)
$0120,0177770(r5)
-settab+076

breakpoint -settab+04: tst -(sp)
settab+4:d
:c
a.out: rum~ing
breakpoint _fopen+04: mov 04(r5) ,nulstr+012
$C
_fopen (02302,02472)
-m~in(Ol ,0177770)

col: 01
c: 0
ptab: 03500

tabs,3/So
03500: 01 0 0 0 0 0

01 0 0 0 0 0
01 0 0 0 0 0

0 0
0 0
0 0

A TUTORIAL INTRODUCTION TO ADB 343

Figure 6b: ADD output for C program ofFigure.5

:c
a.out: running
breakpoint _getc+04: mov
ibuf+6/20c
_e1eanu+0202: This I is
:c
a.out: running
breakpoint -tabpos+04: cmp
tabpos+4:d
settab + 4:b settab~S ?ia
settab+4:b settab,S?ia; 0
getc+4,3:b main.c?C; 0
settab +4:b settab,S?ia; ptab/o; 0
$b
breakpoints
count bkpt command
1 -tabpos+04
3 . _getc+04 main.c?C~O
1 _fopen+04

04(rS),rl

a test of

$0120,04(rS)

1 -settab+04
-settab: jsr

bpt
e1r­
cmp
bit

settab,S? ia~ptab? o~O
rS,csv

-settab+04:
-settab+06:
-settab+012:
-settab+020:
-settab+022:
0177766:
0177744:
T0177744:
h0177744:
i0177744:
s0177744:

0177770
@'
T
h
i
s

0177770(rS)
$0120,0177770(rS)
-settab+076

344 PROGRAMMING

, ·Figure 7: ADB output for C program with breakpoints
adb ex3-
h+4:b hent/d; h.hi/; h.hr/
g+4:b gent/d; g.gi/; g.gr/
f+4:b fent/d; f.fl/; f.fr/
:r
ex3: 'running
rent: 0

0177732: 214
symbol not found
f + 4:b fcnt/d; f.a/; f.b/; (.fl!
g +4:b gent/d; g.p/; g.q/; g.gi/
h +4:b hent!d; h~x/; h.y/; h.hl!
:c
ex3: running
rent: ' 0

0177746: 1
0177750: 1
0177732: 214
_gent: 0
0177726: 2
0177730: 3
0177712: 214
hent: 0

0177706: 2
0177710: 1
0177672: 214

rent: I,
0177666: 2,
0177670: 3
0177652: 214' ,
gent: 1

0177646:,.. 5
0177650,: 8
0177632: 214
HIT DEL)

,\

\

f+4:b (cnt/d; f.ara "d; f.brb ... "d; f.firfl - "d
g+4:b gent/d; g.prp ~ "d; g.qrq ... "d; g.girgi 0= "d
h +4:b hent/d; h.xrx "d; h.yrh - "d; h.hirhl - "d
:r
ex3: funning
rent:· 0

0177746: a-I
0177750: b - 1
0177732: fi - 214
. gent: 0
0177726~ P - 2
0177730: q = 3
0177712: gi 214

. hent: 0 '
0177706: x- 2
0177710: ' 'y = I'
0177672: hi = 214 .

rent: 1
0177666: a = 2
0177670: b = 3
0177652: fi - 214
HIT DEL
Sq'

A TUTORIAL INTRODUCTION TO ADB 345

Figure 8: ADD address maps

407.files

a.out hdr text+data
I I

0 D

core hdr text+data stack
I 1 I
0 D S E ,

410.files (shared text)

a.out hdr text data
I I I

0 T B D

core hdll data stack '/

...... 1 I
B D S E

411.files (separated I and D space)

a.out hdr text data
I I I

0 T 0 D

cote hdr data stack
I .: 1

0 'D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

346 PROGRAMMI~G

Figure 9: ADD output for maps

adb map407 core407
$m
text map map40T
bl = 0 el = 0256 fl = 020
b2 = 0 e2 = 0256 f2 = 020
data map 'con!407'
bl = 0 el = 0300 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02300
$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map map4l0'
bi = 0 : el = 0200 fl = 020
b2 = 020000 e2 = 020116 f2 = 0220
data map core410'
bl = 020000 el = 020200 fl = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200

, $v
variables

,
\.

b = 020000
d = 0200
m = 0410
s = 02400
t = 0200
$q

adb map411 core411
$m
text map map4l1'
bl = 0 el = 0200 f1 = 020
b2 = 0 e2 =:= 0116 f2 = 0220
data map core4l1 '
bi = 0 el = 0200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v
variables
d = 0200
Tn = 0411
s = 02400
t = 0200
$q .

A TUTORIAL INTRODUCTION TO ADB' 347

Figure 10: Simple C program for illustrating formatting and patching

char
int
int
long
float
ch'lr
mainO
{

I·

strl [] "This is a character slring"~
one I ~
number 456~
Inum 1234~
fpl 1.25~

slr2 [] "This i~ lhe second characler string"~

one = 2~

348 PROGRAMMING

Figure 11: ADD output illustrating fancy formats

adb map410 core410
<b,-l/Sona
020000: 0 064124 071551 064440 020163 020141

strl+016: 061541 062564 020162 072163 064562 063556 -

number: -
number: 0710 0 02322040240 0 064124 071551 064440 -

str2 +06: 020163 064164 020145 062563 067543 062156 -
- str2 +026: 060562 072143 071145 071440 0711~4 067151

savr5+02: 0 0 0 0 0 0 0 0

< b,20/ 4<?4~ SCn
020000: 0 064124 071551 064440 @'@'This i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@'@'@b@'

number: 0710 0 02322040240 H@a@'@'R@d @@
0 064124 071551 064440 @'@'this i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@ '@'@'
0 0 0 0 @'@'@'@'@'@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'

This i

data address not found
< b,20/ 404~ StScna
020000:. 0
_strl +06: 020163
_strl +016: 061541
_strl +026: 064562

064124
020141
0t>2564
063556

071551
064143
020162

064440
071141
072163

s a char
acter st-

o 02 ring
_number:
_nup-lber: 0710 0 02322040240 . HR
Jpt+02: 0 064124 071551 064440 This i
str2+06: 020163 064164 020145 062563 s the se

_str2+016: 067543 062156 061440 060550 . cond cha
_str2+026: 060562 072143 071145 071440 racter s
_str2+036: 071164 067151 I 0147 0 tring
savr5+02: 0 0 0 0
savr5 +012: 0 0 . 0 0
data address not found
< b,lO/2bSf2cn
020000: 0 0

strl: 0124 0150 Th -
0151 0163 is
040 0151 i
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

$Q

064143 071141

-0 02

061440 060550

0147 0

A TUTORIAL INTRODUCTION TO ADB 349

Figure 12: Directory and inode dumps

adb dir-
= nt" Inode"t" Name"
0,-1 ?ut14cn

Inode
0: 652

82
5971 cap.c
5323 cap
0

adb"/dev/src -
02000> b

pp

Name

?m<b
new map
bl = 02000
b2 = 0

'/dev/src'
el
e2

Sv
variables -
b = 02000

= 0100000000 f1 = 0
=0 f2=0

< b,-1 ?"ftags"8ton"links,uid,gid" 8t3bn"sbe" 8tbrdn" addt"8t8un"times" 8t2ytna
02000: flags 073145

Iinks,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
Iinks,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times1976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid "011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

I

350 PROGRAMMING

ADD Summary

Command Summary
a) format,ted printing

? format print from a.OUI file according to
formal

I formal print from core file according to
formal

= jormal ' print the value of dot

?w expr write expression into a.ollt file
Iw expr write expression into core file

?I expr locate expression in a.out file

b) breakpoint and program control

:b set breakpoint at dOl
:c continue'running program
:d delete breakpoint
:k kill the program being debugged
:r run a.oul-fiJeunder ADB control
:s single step
c) miscellaneous printing

$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$s set offset for symbol match'
$v print ADB variables
$w set output line width
d) calling the shell

call shell to read rest of line
e) assignment to variables

Format Summary
a the value of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
o one word in octal
n print a newline
rprint a blank space
s a null terminated character string
Ilt move to next Il space tab
u one word as unsigned integer
x hexadecimal
Y date

backup dot
print string

Expression' Summary
a) e'xpression components

decimal integer e.g. 256
octal integer e.g. 0277
hexadecimal e.g. #ff
symbols e.g. flag main main.argc
variables e.g. < b
registers e.g. < pc < rO
(expression) expression grouping
b) dyadic operators

+ add

*
,%

&
I

subtract
multiply
integer division
bitwise and
bitwise or
round· up to the next multiple

> name assign dot. to variable or register name c) monadic operators

not
* contents of location

integer negate

SUPPORTING TOOLS
AND LANGUAGES

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnso~

Bell Laboratories
Murray Hill,New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact; every com­
puter program that does input can be thought of as definin~ an "input
language" which it accepts. An input language may be as complex as a pro­
gramming ,language, or as simple 'as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use', and often are lax about check- '
ing their inputs for validity.,

Yacc provides a general tool for describing the input to a ,computer' pro­
gram. The Yacc user specifies the structures of his input, together with cod~ to
be invoked as each such structure is recognized~ Yacc turns such a specification
into a subroutine that handles the input process; frequently" it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in ·terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment imd continuation conventions,(which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(l) grammars w~th disambiguating niles. .

In addition to compilers for C,APL, Pascal, RATFOR, etc., Yacc has also
been used for less convention'al languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system. '

July 31, 1978

353

-0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
_ The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code .to be invoked when these rules are recognized, and a low-level routine to
do the basic input. racc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called' tokens) from the input stream. These tokens are organized according to
the input structure -rules, called grammar rules; when one of these rules ~as been recognized,
then user code supplied for this rule~ an action, is invoked; . actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input _ specification is a collection of grammar rules. Each rule describes'
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ',' year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. Jhe comma"," is, enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and"
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input.' Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule~

An important' part of the input process is carried out by the lexical·analY~er. This user
routine- reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized, by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym­
bol. To avoid confusion, terminal symbols will usually be r-eferred to as tokens~

There is considerable leeway in deciding whether to -recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name ']' 'a' 'n'
month name : 'F" e' 'b' ;

month_name : 'D" e' , c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi-­
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal- with it.
Usually, the lexical analyzer would re-cognize the month names, and return an indication that a

354

Yacc: YET ANOTHER COMPILER-COMPILER 355

month_ name was seen; in this case, month_name would be a token.

Literal characters such as "," must also be passed t'hrough the lexical analyzer, and are
also considered tokens.

Specification flies are very flexible. It is realively easy to add to the above example the
rule

date : month'/' day'/, year ;

allowing

7 / 4/ 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal eifort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per­
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they nlay require a more powerful
recognition mechanism than that available to Yacc. The former cases repr~sent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. Wnile Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
,errors' of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2.J ,4 Yacc has been extensively
used in numerous practical applications, including Iint,5 the Portable C Compiler, 6 and a system
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec­
tion '1 describes the preparation of gramm'ar rules, Section 2 the preparation of the user sup­
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec~
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe­
cial features of the parsers Yacc produces. Section 9 gives some suggestions, which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section .11 gives acknowledgements. Appendix A has a, brief example, and Appen­
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is·often desirable to include
the lexical analyzer as 'part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of 'three sections: the declarations, (grammar)

356 SUPPORTING TOOLS AND LANGUAGES

rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except· that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in 1* ... *1, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in -the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'''. As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n'
'\r'
'\"
'\\'
'\f
'\b'
'\f
,\xxx'

newline
return
single quote ",,,
backslash "\"
tab
backspace
form feed
"xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in gram­
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used. to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as

A

BCD
E F
G

BCD
E F
G

Yacc: YET ANOTHER COMPILER-COMPILER 357

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, althou~ it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ;

Na~es representing tokens must be declared; this is most simply done by writing

%token name 1 name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the deClarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol· must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key­
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it. accepts the input.
If the endmarker is seen in any other cont,ext, it is an error. .

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri­
ate; see section 3, below. Usually the endmarker represents some reasonably, obvious 110
status, such as "end-of-file" or "end-of-record".

"2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, ano' may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is, an arbitrary C statement, and as such can do input and output, call subpro­
grams, and alter exterrial vectors and variables. An action is specified by one or more state­
ments, enclosed in curly braces "{" and "}": For example,

A

and

xxx

, (' B ')'
(

YYY ZZZ
(

are grammar rules with actions.

hello(1, "abc"); }

printf("a message\n");
flag = 25; }

To facilitate easy communication between the actions and the parser, the action state­
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable·"$$" to some value. For'
example, an action that does nothing but return the value 1 is

358 SUPPO~TING TOOLS AND LANGUAGES

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A ,B CD;

for example, then $2 has the value returned by C, and $3 the value returned by D.

, As a ,more concrete example, consider the rule

expr '(' expr 'Y ;
The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr '(' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The' inte­
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above' example as if it had been ,written:

$ACT 1* empty *1
{ $$ = 1; }

A B- $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out­
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the :tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, arid descendants n 1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

Yacc: YET ANOTHER COMPILER-COMPILER 359

expr expr ' + ' expr
($$ = node{ , +', $1, $3);

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%{" and "%}".
These deClarations and definitions have global scope, so they are known -to the action state-
ments and- the lexical analyzer. For example, ',-: -

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions .. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types' will- be
found in Section 10.

3: Lexical Analysis
The user must supply a lexical analyzer to, read the input stream and communicate tokens

(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl­
val.

The parser and the lexical analyzer must agree on these token numbers in order for com­
munication between them to take place. The numbers may be chosen by Yacc~ or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look fike:

yylex(){
extern int yylval;
int c;

c == getchar 0;

switch{ c) (

case '0':
case'1':

case ~9':
yylval = c~'O';

return { DIGIT);

The intent is to return a token number of DIGIT, and a 'value equal to the- numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT ..

This mechanism leads to clear, easily modified lexical analyz~rs; the only pitfall "is. the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the. use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reser,:,edfor'error'

360 SUPPORTING TOOLS AND LANGUAGES

handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char­
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (incl~ding literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the n'ame or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical 'reasons, the endmarker must have token number 0 or negative. This token
, number. cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
o or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program .developed by
Mike Lesk. 8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works
Yacc turns the specification file into a C program, which parses the input according to the

specification given. The algorithm used to go from the' specification to the parser is .complex,
and will Dot be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of yrror recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahe.ad token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows: .

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34, becomes' the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu­
ally it is not; in fact, the default action (represented by a ".''') is often a reduce action.

Yacc: YET ANOTHER COMPILER-COMPILER ,361

Reduce actions are associated with individual grammar rules. Grammar rules are ,also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym­
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as: .

A- goto 20

causing state 20 to be pushed onto the stack, and become the . current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states· off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in paralIel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter­
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The (lccept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

362 SUPPORTING TOOLS AND LANGUAGES

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL
, .

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram­
mar (with some statistics stripped off the end) is:

Yacc: YET ANOTHER COMPILER-COMPILER 363

state 0
$accept : _rhyme $end

DING shift 3
· error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_Send

$end accept
· error

state 2
rhyme sound_place

DELL shift 5
· error

place goto 4

state 3
sound DING_DONG

DONG shift 6
· error

state 4
rhyme : sound place_ (1)

reduce 1

state 5
place : DELL - (3)

reduce 3

state 6
sound DING DONO (2) -

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to corne, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the .
lookahead token. The action in state 0 on DING is is "shift 3'~, so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG· is

364 SUPPORTING TOOLS AND LANGUAGES

'~shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto' 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto' the stack, .which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so

. one state, 5, is popped off; and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state. ° again. In state 0, there is a goto on rhyme causing the parser to enter state
L In state. 1, the inp:ut is read; the endmarker is obtained, indicated by "$end" in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the

. parse.

The reader is urged to consider how the parser works when confronted with such iI.1.Correct
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples WIll probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or mor~ different ways. For example, the grammar rule

expr expr ' -' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram­
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left as.sociation, the second righ~ association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would the.~ read the final part of the input:

Yacc: YET ANOTHER COMPILER-COMPILER 365

- expr

and again reduce. The effect of this is to take the left associative interpretation ..

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, "and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta­
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. K rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduc6 conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies" that reductions are deferred whenever there is a choice, in favor of "shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because- the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the appl\cation of disambiguating rules is inap­
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by ~ule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct"
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna­
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence~ of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program­
ming language involving an "if-then-else" construction: "

stat IF ' (' cond ')' stat
IF ' (' cond ')' stat ELSE stat·

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-ifrule, and the second the if-else rule. ,

366 SUPPORTING TOOLS AND LANGUAGES

These two rules form an ambiguous construction, since input of the form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

or

IF (C1) {
IF (C2) SI
}

ELSE S2 ..

IF (C1) {
IF (C2·) S1
ELSE S2
}

The second interpretation is the one given in most programming languages having this con­
struct. Each ELSEis associated with the last preceding "un-ELSE'd" IF. In this example, con­
sider the situation where the parser has seen

IF (C1) IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (C1) stat

and then read the remaining input,

ELSE S2

and reduce

IF (C1 ") stat ELSE S2

by the if-else rule. This leads to the first of the above groupings. of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be re~uced by the if-else rule to get

IF (C1) stat

which can be reduced .by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired;

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this .case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular cufrent input symbol, .
ELSE, and particular inpJ,lts already seen, such as

IF (C 1) IF (C2) S 1
. .

In general, there may be many conflicts, and each one will be assC.'tiated with an input symbol
and a set of previously read inputs: Th.e previously read inputs are ~haracterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (- v) option
output file. For example, the output corresponding to the above conflict state might be:

Yacc: YET ANOTHER COMPILER-COMPILER 367

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the s,tate, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the. parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23,. the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly.in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF ' (' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbos·e output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2, 3,4 might be cons':!lted; the ser­
vices of a local guru might also be appropriate.

6: Preced~nce

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the comm·only used con­
structions for arithmetic expressions can be naturally described by the notion of precedence lev~
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form· .

expr : expr OP expr

and

expr : UNARY. expr

ror all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, . of all the operators, and the associativity of the binary ope'rators. This information is
sufficient to allow Yacc to resolve the parsing coriflicts iR~ accord~~e With these rules, and

368 SUPPORTING TOOLS AND LANGUAGES

construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in. the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list, of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind­
ing strength. Thus,

%left ' +' '-'
%left ' *' , /'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and, have lower precedence than st~r and slash, which are also left associative.
The keyword, %right is ,used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .L T. in Fortran, that may not associate with
themselves; thus,

. A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the ~ehavior of these declarations, the description

%right '='

%left. ' +' '-'
%left '*' 'j'

%%

expr expr expr
expr ' +' expr
expr expr
expr '*' expr
expr 'j' expr
NAME

might be used to structure the input

a· = b = c*d - e - f *g

as follows:

a = (b = (((c*d)-e)

When this mechanism is useQ, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary' -'; unary minus may be given the
same strength as multiplication, or, even higher, while binary minus has a lower strength than

. multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action' or closing semicolon, and is followed by a token. name or literal. It causes the 'pre­
cedence of the grammar rule to become that of the following token name or literal. For exam­
ple, to make unary minus have the same precedence as multiplication .the rules might resemble:

%left ' +' '-'
%left ' .. ' /'

%%

expr expr ' +' expr.
expr ' - ' expr
expr ' *' expr
expr ' /' expr

Yacc: YET ANOTHER COMPILER-COMPILER 369

, -' ~xpr %prec' *'
NAME

A token declared· by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict', and both the grammar rule and the input character pave
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassochiting implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/ reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y. output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling
Error handling is an extremely difficult area, and many of the problems are semantic ones.

When an error is found, for example, it may be necessary to reclaim parse tree storage, delet~
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard­
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovory
might take place. The parser pops its stack until it enters a state where the token "error" is

370 SUPPORTING TOOLS AND LANGUAGES

legal. It then behaves as if the token "error" were the current lookahead'token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
qu}etly deleted.

As an example, a rule of the form·

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error ·rules. These actions might attempt to reini-
tialize tables, reclaim symbol table space, etc. .

Error rules such as the above are very general, but difficult to control. Somewhat easier
. are rules such as

stat error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';' .. All tokens after the error and before the next ';' cannot be shifted, and
are discarded .. When the ';' is seen, this rule will be reduced, and any ~'cleanup" action associ­
ated with it performed.

Another form of error rul~ arises in interactive applications, where it may be desirable to
permit a line to be reentered after an 'error. A possible error rule might be

input error '\n' { printf("Reenter last line: ,,); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronizedafter the error. If the reen­
tered line. contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state­
ment

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ . 'yyerrok;

printf("Reenter last line: ");
input

$$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might.take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will ,have this effect. For example, ·suppose the action after error were to call some

Yacc: YET ANOTHER COMPILER-COMPILER 371

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. Mter this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille­
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynchO;
yyerrok;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal­
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls yyiex, the lexical analyzer suppiied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns !he \'~lue o.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini­
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a -Iy
argument to the loader. To show the triviality of ' these default prc'Trams, the source is given
below:

and

mainO{
return (yyparse 0);
}

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a. string containing an error message, usually the string "syntax
error" . The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system. .

372 SUPPORTING TOOLS AND LANGUAGES

9.: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan. .

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong.".

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies· by two tab stops, and action bodies by three tab stops.

The -example in Appendix A is written following this style, as are the examples in the text
'of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the. central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists: .

.list item
I list ' , item , .

and

seq item
seq item

In each of these.cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq
I'

item
item' seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to Jeft.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence' were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

seq /* empty */
seq item

Vacc: VET ANOTHER COMPILER-COMPILER 373

Once again, the first rule would always be reduced exactly once, before the first item' was read,
and then· the second rule would be reduced .once for each item read. Permitting empty
sequences often leads to iQcreased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara­
tions, followed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls /* empty */
{ dflag = 1;

decls declaration

stats /* empty */
{ dflag = 0;

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and· 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan. .

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Iteserved VVords

Some programming languages permit the user to use words like "if", which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the pFogramming language. This is extremely hard to do in the framework
ofYacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is
a Keyword, and that instance is a variable". The user can make a stab at'it, using the mechan-
ism described in the last subsection, but it is difficult. .

A number of ways of making this easier are under advisement. Untii then, . if is better
that the keywords be reserved; that is, be forbidden for use ~ variable names. There are

374 SUPPORTING TOOLS AND LANGUAGES

powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Si'mulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or f ontext-sensitive syntax checking.

Accessing Values in Enclo~ing Rules.

An action may refer to values returned by actions to the left of the currer, ·ule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a \ it, but in'
this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . ..

THE
YOUNG

DOG
{

CRONE
{

$$ = THE; }
$$ = YOUNG;

$$ = DOG; }

if($0 = = YOUNG){
printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deed is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure. '

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other'types, including structures. in addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly

. type checked. The Yacc value stack (see Section 4) is declared to be a union -of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as LintS will
be far more silent.

Yacc: YET ANOTHER COMPILER-COMPILER 375

. There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical·
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ­
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the deClaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left < optype > ' +' , -:-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $< intval > $ = 3; } bbb
(fun($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the.
Yacc value stack is used to hold ints, as was true historically.

376 SUPPORTING TOOLS AND LANGUAGE;S

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has 'usually led to my
doing things th¢ir way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version" of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. K~nighan, and M. O. Harris help'ed translate this document into English. Al
Aho also deserves~'special credit for bringing\the mountain to Mohammed, and other favors.

Yacc: Y£T ANOTHER COMPILER-COMPILER 377

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey (I 978).'

2. A. V. Aho and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Aho, ·S. C. Johnson, and 1. D. Ullman, "Deterministic Parsing of Ambiguous
Grammars," Comm. Assoc. Compo Mach. 18(8)pp. 441-452 (August 1975).

4. A. V. Abo and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (I 977).

5. S. C. Johnson, "Lint, a C;: Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc .. 5th A CM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E; Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

f"

378 . SUPPORTING TOOLS AND LANGUAGES

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made
up of the operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise or), and assign­
ment. If an expression at the top level is an assignment~ the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an ~example of a Yacc specification, the desk calculator does a reasonable job of show­
ing how precedences and ambiguities are used, and demonstrating simple error recovery .. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli­
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs [26];
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left ' &'
%left ' +'
%left ' *' , /' '%'
%left UMINUS / * supplies precedence for unary minus */

%% 1 * beginning of rules section */

list

stat

expr

1* empty *1
list stat '\n'
list error '\n'

{ yyerrok;

expr
{

LETTER
{

' (' expr ')'
{

expr '+' expr
{

expr expr

printf("%d\n", $1);
expr
regs [$1] = $3; }

$$ $2; }

$$ $1 + $3;

$$ $1 $3;

number:

expr ' *' expr
{

expr 'j' expr
{

expr '%' expr
{

expr ' &' expr
{

expr 'I' expr
{

, -' expr
{

LETTER
{

number

DIGIT

$$

$$

$$

Yacc: YET ANOTHER COMPILER-COMPILER 379

$1 * $3;

$1 / $3;

$1· % $3;

$$ $1 & $3;

$$ $1 I $3;'}
%prec UMINUS
$$ - $2; }

$$ regs[$I]; .}

{ $$ = $1; base '= ($1==0) ? 8 10;}
number DIGIT

{ $$ = base * $1 + $2; }

%% / * start of programs *'
yyle'.C 0 { / * lexical analysis routine */

/* returns LETTER for a lower case letter, yylval = 0 through 25 */
/ * return DIGIT for a digit, yylval = 0 through 9 */
/ * all other characters are returned. immediately */

int c;

while(. (c=getcharO) = = ") {/* skip blanks *' }
/ * c is now nonblank */

if(islower (c)) {
yylval = c - a;
return (LETTER);
}

if(isdigit. (c)) {
yylval = c - '0';
return{ DIGIT);
}

return (c);
}

380 SUPPORTING TOOLS AND LANGUAGES

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con­
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As 1mplemented, the lexical analyzer looks ahead after seeing an
identifier, and decide. whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C IDENTIFIERs.

/* grammar for the input to Yacc */

/ * basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier (but not literal) followed by colon */
%token NUMBER / * [0-9] + */

/* reserved words: Ofotype = > TYPE, Ofoleft = > LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK
%token LCURL
%token RCURL

/ * ascii

%start spec

%%

spec

tail

defs

def

rword

/* the %% mark */
/* the %{ mark */
/* the %} mark */

character literals stand for themselves */

defs MARK rules tail

MARK {. In this action, eat up the rest oj the file
/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

tag

nlist

nmno

rules

rule

rbody

act

prec

1
1 .

NONASSOC
TYPE

Yacc: YET ANOTHER COMPILER-COMPILER 381

/* empty: union tag is optional */
, <' IDENTIFIER '>'

nmno
nUst nmno
nUst ',' nmnQ

IDENTIFIER /* NOTE: literal illegal with %type */
IDENTIFIER NUMBER /* NOTE: illegal with %type */

/ * rules' section */

1

1

1

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
'I' rbody prec

/* empty' */
rbody IDENTIFIER
rbody act

, r { Copy action, translate $$, etc. } 'I'

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

382 SUPPORTING TOOLS AND LANGUAGES

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis­
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, -, *, /, unary -, and = (assignment), and has 26
floating point variables, "a" through "z". Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix .A; assignments return no
value" and print nothing, whIle expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typedej. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari­
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of the offending line.

In addition to the' mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted U> an interval if the context
demands an interval. value. This causes a large number of conflicts when the grammar is run
.through Yacc: 18 Shiftl Reduce and 26 Reduce/Reduce. The problem can be seen by looking at,
the two input Hnes:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an· interval. This problem is evaded
by having two rules for each binary interval valued operator: one when 'the left operand is a
scalar, and one when the left operand is an interval.. In the second,case, the right operand must
be an interval, so the conversion will'be applied automatically. Despi~e this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by Jistin g the rules that YIeld scalars first in the specifica'tion file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive,it is better practice in a more normal programming la~guage environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point cQnstants. The C library routine ato/is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer cletects an error, it responds
by returning'~ token that is illegal in the grammar, provoking a syntax error in the parser, and
thence 'error recovery.

%{

include <stdio.h>
include < ctype.h >

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vmulO, vdivO;

double at of 0;

double dreg[26];
INTER V AL vreg [26];

%}

%start lines

%union
int ivaI;
double dval;
INTER V AL vval;
}

%token <ivaI> DREG VREG

, %token < dval > CONST

Yacc: YET ANOTHER COMPILER-COMPILER 383

/ * indices into 'dreg, vreg arrays */

/ * floating point constant */

%type < dval > dexp /* expression */

%type < vval > vexp /* interval expression */

/* precedence information about the operators */

%left ;. +' '-'
%left '.'f'

, %left, UMINUS

%%

/* precedence for unary minus */

lines /* empty */
lines line

line dexp , '\n'
, (. printf("%15.8f\n", $1); }

vexp '\n'
t printf("(%15.8f , %15.8f)\n" , $1.10, $l.hi); }

DREG' =' dexp '\n'
{dreg[$l] ~ $3'; },

VREG ' =' vexp '\n'

384 SUPPORTING TOOLS AND LANGUAGES

dexp

error '\n'
{

CONST
DREG

{
dexp '+' dexp

{
dexp

,
- dexp
{

dexp , *' dexp

vreg[$I] $3;}

yyerrok;

$$

$$

$$

dreg [$I]; J

$1 + $3;

$1 - $3;

{ $$ $1 * $3;
dexp , /' dexp

{ $$ $1 / $3;
, -' dexp %prec UMINUS

{ $$ - $2; }
, (' dexp ')'

,{ $$ = $2; }

vexp dexp
$$.hi = $$.10 $1;}

, (' dexp ',' dexp ')'
(

VREG

$$.10= $2;
$$.hi = $4;
if($$.10 > $$.hi) (

printf("interval out of order\n");
YYERROR;
}

{ $$ == vreg [$I];
vexp , +' vexp

{ $$.hi $l.hi + $3.hi;
$$.10 $1.10 + $3.10;

dexp , +' vexp
{ $$.hi

$$.10
vexp ':- ' vexp

dexp

($$.hi

{

$$.10
v·exp

, $$.hi
$$.10, -

, vexp , *' vexp "

$1 + $3.hi;
$1 + $3.10;

$l.hi - $3.10; ,
$1.10 - $3.hi;

$1 ~ $3.10;
$1 -. $3.hi;

, '$$ vmuI($~ .10, $1.hi, $3);
dexp '~' vexp

($$ vmuI($1, $1, $3); }
vexp '1' vexp

{ , if(dcheck ($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3); }

", ,"

%%

Y&cc: YET ANOTHER COMPILER-COMPILER 385

dexp '(vexp
(if(dcheck($3)) YYERROR;

vexp
(

, (' vexp ')'
(

$$ = vdiv($1, $1, $3); }
%prec UMINUS
$$.hi = - $2.10; $$.10 = - $2.hi;

$$ = $2; }

define BSZ 50 / * buffer size for floating point numbers */

yylexO(

/* lexical analysis */

register c;

while ((c = getchar 0) ")(/* skip over blanks */ }

if(isupper(c))(
yylval.ival = c - 'A';
return(VREG);
}

if(islower (c))(
yyl val.i val = c - 'a';
return(DREG);
}

if(isdigit(c) II c= =':)(
/ * gobble up digits, points, exponents */

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf) <BSZ ;. + +cp,c=getcharO)(

*cp = c;
if(isdigit (c)) continue;
if(c = = ':)(

if(dot + + II exp) return (
continue;
)

if(c 'e')(

); /* will cause syntax error */

if(exp+ +) return('e'); /* will cause syntax error */
continue;
}

/~ end of number */
break;
}

*cp = '\0';
if((cp-buf) > = BSZ) printf("constant too long: truncated\n").;

386 SUPPORTING TOOLS AND LANGUAGES

else ungetc(c, stdin); /* push back last char read */
yylval.dval = atof(buf);
return (CONST);
}

return (c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/ * returns the smal1est interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b) { v.hi
else { v.hi = b;

= a; v.lo
v.lo = a;

if(c>d) (

else (

if(c>v.hi) v.hi
if(d<v.lo) v.lo
}

c· ,
d' ,

if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return (v);
}

b; }

INTERV AL vrnul (' a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.1o));
}

dcheck (v) INTER V AL v; (
if(v.hi > = O. && v.1o < = O.){

printf("divisor' interval contains O.\n");
return(1);
}

return (0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v;{
return(hilo(a/v.hi, a/v.1o, b/v.hi, b/v.1o));
}

vacc: VET ANOTHER COMPILER-COMPILER 387

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con­
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ''''''.

2. Literals may be more than one" character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The" use of multi-character literals is likely to mislead those ll;nfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as
O!o%, \left the same as %left, etc.

4. There are a number of other synonyms:

% < is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} u~ed to, be permitted at the head of the rules section, as well
as in the declaration section.

1 Introduction.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill. New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in­
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara­
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond­
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord­
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free­
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au­
tomatically to portable Fortran. It is available on the PDP-ll UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler­
compiler system.

Contents

1. Introduction.
2. Lex Source.
3. Lex Regular Expressions.
4. Lex Actions.
5. Ambiguous Source Rules.
6. Lex Source Definitions.
7. Usage.
8. Lex and Yacc.
9. Examples.

10. Left Context Sensitivity.
11. Character Set.
12. Summary of Source Format.
13. Caveats and Bugs.
14. Acknowledgments.
15. References.

Lex is a program generator designed for lexical process­
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match­
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu­
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog­
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro­
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres­
sion matching needed to complete his tasks, possibly in­
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

388

LEX-A LEXICAL ANALYZER GENERATOR 389

Source - ~ - yylex

Input - ~ - Output

An overview of Lex

Figure 1

write processing programs in the same and often inap­
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called "host
I~nguages." Just as general purpose languages can pro­
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica­
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back­
ground, and the properties of local implementations. At
present there are only two host languages, C[I] and For­
tran (in the form of the Ratfor language[2]). 'Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen­
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the' user's expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expression's in a stream
(called input in this memo) and perform the specified ac­
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\11 +$

is all that is required. The program contains a %% delim­
iter to mark the beginning of the rules, and one rule.

lexical
rules

1
~

1
Input-~

This rule contains Ii regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates "one or more ... "; and' the $ indi­
cates "end of line," as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\11 +$
[\t] + printf(" ");

The finite automaton, generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations,. o~
for analysis and statistics gathering on a iexical level. Lex
can also be used with a parser generator to perform the
lexical 'analysis phase; it is particularly easy to interface
Lex and Yacc [3). Lex programs recognize only regular
expressio'ns; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as­
signs structure to the resulting pieces. The flow of con­
trol in'such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand; can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4). The automaton is
interpreted, rather than compiled, in order to save ~pace.
The result is still a fast analyzer. In particular, the time

grammar
rules

1
Yacc

yyparse I - Parsed input

Lex with Yacc

Figure 2

390 SUPPORTING TOOLS AND LANGUAGES

taken by a Lex program to recognize and partition an in­
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in­
clude forward context require a significant amount of re­
scanning. What does increase with the number and com­
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular

"expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun­
ity is provided for the user to insert either declarations or
additional statements in the "routine containing the ac­
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcde/g, and the input stream is abcdejh, Lex will recog­
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

I definitions}
%%
Irules}
%%
luser subroutin~s}

where th~ definitions and the ~ser subroutines are often
omitted. The second %% is optional, but the first is re­
quired to mark the beginning of the rules. The absolute
minimum Lex program is thu~

%%

(no definitions, no rules) which translates Into' a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular ~pressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog­
nized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print! is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of trye line; if it is com­
pound, or takes more than a line, it should be enclosed in

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

prin tf("color");
printf("mechanize") ;
printf("gas") ;

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of deal­
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [51. A regular expression specifies a set
of strin"gs to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex­
pression

a57D

looks for the string a57D.
Operators. The operator characters are

"\[]"-'?·+I()$/I}%< >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi­
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz"+ +""

matches the string xyz+ + when it appears. Note that a
part of a string may be quoted. It is harmless but un­
necessary to quote an ordinary text character: the expres­
sion

"xyz+ +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac­
ter, the user can avoid remembering the list above of
current operator characters. and is safe should further ex­
tensions to Lex lengthen the list.

An operator character may also .be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is ·another. less readable. equivalent of the above

LEX-A LEXICAL ANALYZER GENERATOR 391

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a n~le. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be ~sed;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al­
ways a text character.

Charac{er . classes. Classes of characters can be
specified using the operator pair []. The constru"ction
. lab} matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig­
nored. Only three characters are special: these are \ -
and A.. The - character indicates ranges. For example,

[a-zo-9< > J

indicates the character class cJntaining all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple­
mentation dependent and will . get a warning message.
(E.g., [O-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

[-+0-9]

matches all the digits and the two signs.
In character classes, the A operator must appear as the

first character after the left bracket; it indicates .that the
resulting string is to be complemented with respect to the
computer character set. Thus

rabc]

matches all characters except a, b, or c, including all spe-
cial or control characters; or .

ra-zA-ZJ

is any character which is not a letter. The \ character pro­
vides the usual escapes within character class brackets.

Arbitrary charGcter. To match almost any character,
. the operator ch.aracter

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

[\40-\ 176J

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op­
tional element of an expression. 'Thus

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat­

ed by the operators * and +.

a*

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-z] +

is all strings of lower case letters. And

[A,-Za-zJ [A-Za-zO-9J·

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. •

Alternation and Grouping. The operator I indicates
alternation:

(ablcd)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out­
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(ab Icd +) ?(en·

matches such strings as abele/, elele/, cde/, or cddd; but
not abc, abcd, or abcdef

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are A and $. If the first character of an .expressiori is
A, the expression will only be matched at the beginning of .
!i line (after a newline character, or at the beginnIng 'of
the input stream). This can never conflict with the other
meaning of A, complementation of character classes, since
that only applies within th~ [J operators. If the very last
character is $, the expression will only be matched at the
end of a line (when 'immediately, followed by newline).
The latter operator is a special case of the loperator char-

. acter, whi~h indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

392 SUPPORTING TOOLS AND LANGUAGES

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as ex­
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con­
sidered "being at the beginning of a line" to be start con­
dition ONE, then the - operator would be equivalent to

<ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators {I specify ei­

ther repetitions (if they enclose numbers) or definition
expansion (if 'they enclose a name). Forexample

{digitI

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con­
trast,

a{ 1,51

looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions., Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be­
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina­
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at­
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is

[\t\n1

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the, action
character l which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
(a--zJ+. Lex leaves this text in an external character ar­
ray named yytext. Thus, to print the name found, a rule
like

[a-zl + printf("%s", yytext);

will print the string in yytext. The C function print! ac­
cepts a format argument and data to be printed; in this
case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z1 + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac­
tion"? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form {a-zJ+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z1 + {words+ +; chars + = yyleng;1

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng-l 1

in C or

yytext (yyleng)

in Ratfor.

LEX-A LEXICAL ANALYZER GENERATOR 393

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou­
tines' are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex­
pression recognized is to t,e tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yyte)/:t. Second, yyless (n) may be
called to indicate that pot all the characters matched by
the currently successful expression are wanted right now.
The argument n indie ltes the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator; but in a
different form.

Example: C("1~lriFt' a language which defines a string as
a set of characters between quotation (") marks, and pro­
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some­
what confusing, so that it might be preferable to write

\"(""1· (
if (yytext [yyleng-II = = \ \')

yymoreO;
else

... normal user processing

which will, when faced with a string such as "ab~" def'
first match the five characters "ab~; then ·the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor­
mal processing".

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin­
guishing the ambiguity of "=-a". Suppose it is desired
to treat this as "=- a" but print a message. A rule
might be

=- la-zA-ZI (
printf("Operator (=-) ambiguous\n");
yyless(yyleng-I);
... action for =- ...
J

, which prints a message, returns the letter after the opera­
tor to the input stream, and treats the operator as "=-".
Alternatively it might be desired to treat this as "= -a".
To do this, just return the minus sign as well as the letter
to the input:

=- la-zA-ZI (
printf("Operator (=-) ambiguous\n");
yyless (yyleng-2);
... action for = ...
J

will perform the other interpretation. Note that the ex­
pressions fof the two cases might more easily be written

=-/ lA-Za-zl

in the first case and

=/-lA-Za-zl

in the second; no backup would be required in the rule
action. It' is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

=-/ r \t\nl

a still better rule.
In addition to these routines, Lex also permits access to

the I/O routines it uses. Th~y are:

1) input() which returns the next input character;

2) output(e) which writes the character e on the out­
put; and

3) unput(e) pushes the character c back onto the in-
put stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is aflother im·portant routine in
Ratfor, named lexshf, which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing / implies
lookahead. Lookahead is also necessary to match an ex­
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex. library imposes a 100 character limit on
backup .

. Another Lex library routine that the user will some­
times want to redefine is yywrap() which is called when­
ev~r Lex reaches an end-of-file. If yywrap returns a I,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the us~r
should provide a yywrap which arranges for new input
and returns O. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a. program. Note that it is
not possible to write a normal rule which recognizes end­
of-file; the only access to this condition· is through
yywrap. In fact, unless a private version of input() is sup­
.plied a file containing nulls cannot be handled, si.nce a
value of 0 returned by input is taken to be cnd-of-file.

In Ratfor all of the standard I/O library routines, input,

394 ' SUPPORTING TOOLS AND LANGUAGES

output, un put, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules '

integer
[a-z] +

keyword action ... ;
identifier action ;

to be given in that order. If the input is integers, it is tak­
en as an identifier, because {a-zl + matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression In'leger and so the identifier in-
terpretation is used. '

The principle of preferring the longest match makes
rules containing expressions like .• dangerous. For exam­
ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking ,for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression'will match

'first' quoted string here, 'second'

. which is probably not what was wanted. A, better rule is
of the form

which, on the above input, will stop after ··'first~ The
consequences of errors like this are mitigated' by the fact
that the , operator will not match newline. Thus expres­
sions like ,. stop on the current line. Don't try to defeat
this with expressions like l\nl+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows. ,

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. 'Some

Lex rules to do this might be

she s+ +;
he h++'
\n I '

where the last .two rqles ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in­
stances of he included ih she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she Is+ +; REJECT;}
he Ih + +; REJECT;}
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re­
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char­
acters were in both classes.

Consider the two rules

a[bc]+
a[cd] +

1 ... ; REJECT; I
1 ... ; REJECT;}

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string aeeb matches
the first rule for four characters and then the second rule .
for three characters. In 'contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three .

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th an,d he. Assuming a two-dimensional array named di­
gram to be incremented, the appropriate source is

%%
[a-z][a-z] 1 digram [yytext [0]] [yytext [1]] + +; REJECT;}
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

'LEX-A LEXICAL ANALYZER GENERATOR 39f

6 Lex Source Definitions.

Remember the format of the Lex source:

(definitions}
%%
(rules}
%%
(user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables fi)r
use in his program and for use by Lex. These can go ei­
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen­
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which c'ontain a com­
ment, are passed through to the generated pro­
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con­
vention.

2) Anything included between lines containing only
%(and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out­
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %}, and begining in column 1, is as-'
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ­
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (name} syntax in a rule. Using (D} for the digits
and (E} for an exponent field, for example, might abbre­
viate rules to recognize numbers:

D
E
%%.
(D}+
(D} +"."!D}*«(E})?
(D}*"."(D} + «(E})?
(D}+{E}

[0-9]
[TEde][-+]?{D} +

printf("integer");
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ./, which does not
contain a real number, a context-sensitive rule such as

[0-9] +I"."EQ printf("integer");

could be used in addition to the normal rule for integers.
The definitions section may also contain other com­

mands, including the selection of a host language, a char­
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These poss-ibilitie.s are discussed below
under "Summary of Source Format," section 12.

7 Usage.

There are two steps in compiling a Lex source' rogram.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li­
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
I/O libraries, one for C defined in terms of the C stan­
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.· .

The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does Jess at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli­
citly requested by making the first line of the source file
%C.

The Ratfor' generated by Lex is the same o'n all sys­
tems, but can not be compiled directly on tSO. See
below for instructions. The Ratfor 110 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor I/O li­
brary, dependent on Fortran character I/O, is quite slow.
In particular it reads all input lines as 80A 1 format; this
will truncate any longer line·, discarding your data, and
pads any shorter line with blanks. The library versi,on of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

396 SUPPORTING TOOLS AND LANGUAGES

file using a'Ratfor host should begin with the "%R" com­
mand.

UNIX. The libraries are accessed by the loader flags
-I/e for C and -lIr for Ratfor; the C name may be abbrevi­
ated to -1/. So an appropriate set of commands is

C Host Ratfor Host

lex source lex s'ource
cc lex.yy.c ~ll -IS rc -2 lex.yy.r -llr

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 110 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input. output and unput are given, the
library can be avoided. Note the "-2" option in the Rat­
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
"." library. The appropriate command sequences are:

t Host Ratfor Host

.I lex' source .Ilex source

.Icc lex.yy.c .I1exclib h = .Irc a ~ lex.yy.r .I1exrlib h =

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h =" option); it
may be copied to a permanent file if desired. Note the
"a=" option in the Ratfor compile command; this indi­
cates that the For~ran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver­
sion, type

exec 'dot.lex.clist (lex)' 'sourcename'
exec Ido.t.lex.clist (cload)' 1ibraryname membername'

The' first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in yo'ur file Iibraryname.LOAD(membername) as
a completely linked 'load module. The compiling com­
mand uses a special ~ersion of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C­
compiled Lex programs on the OS system. Even so, al-

" most any Lex source progrl!!P is too big to compile, and
\ must be split.

:, The same Lex command wili compile Ratfor Lex pro­
grams, leaving' a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how­
ever, t,o compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is 'available. The full commands are: '

", '\

exec \IOt.lex.clist (lex)' 'sourcename'

\

exec 'dot.lex.clist(rload)' 1ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250Kbytes to
operate.

The steps involved in processing the . generated Ratfor
program are:

,a. Edit the Ratfor program.

I. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file'to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces­
sor to get Fortran code.

c. Compile the Fortran.

d. ' Load with the libraries 'hr289.lrl.load' and
'sysl.fortlib'.

The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
~BM 370 are subject to change without notice.

S Lex and Yacc •

If you want to use Lex with Yacc, note that what Lex
wr,ites is a program named yylexO. the name required by
Yacc for its analyzer. Normally, the default main pro­
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylexO. In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac­
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -11 -IS

The Yacc library (-ly) should be loaded before the Lex li­
brary, to obtain a main program' which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEX-A LEXICAL ANALYZER GENERATOR 397

%%
int k;

[0-9]+ (
scanf(-1, yytext, "%d", &k);
if (k%7 == 0)

printf("%d", k + 3)~
else

printf("%d" ,k);

to do just that. The rule [0-9] + recognizes strings. of di­
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%

-?[0-9]+

-?[0-9.] +

int k;
(
scanf(-l, yytext, "%d", &k)~
printf("%d", k%7 == O? k+3: k)~
I
ECHO~

[A-Za-z] [A-Za-zO-9! + ECHO;

Numerical strings containing a "." or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else c".

For an example of statistics gathering, here is a pro­
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-z] +
\n
%%
yywrapO'
(
int i;

int lengs[100]~

lengs lyyleng] + + ~
I

printf("Length No. words\n")~
for(j=O; i< 100; i+ +)

if (tengs[i] > 0)'
printf("%5d% 10d\n" ,i,lengs[i]);

return(t)~
}

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(J); indicates that Lex is to per­
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con­
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For­
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{dlloll ullbl111 Ie} {WI {pI {r}{ellcllills} iiI {oj In} {
printf(yytext[O] = ='d''? "real" : "REAL");
}

Care is taken throughout this progr~m to preserve the
case (upper or lower) of the original program. The condi­
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica­
tions to avoid confusing them with constants:

lOr 0] ECHO~

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of A. There follow some rules to change double
precision constants to ordinary floating constants.

[0-9]+{W}{dl{wl[+-]?{wl[0-9]+ I
[0-9] +{W}"."{W}{d}{W} [+-]?{W} [0-9] + I
"."{W}[0-9] + {WlId}{W}[+-]'?{W}[0-9] + {

/ * convert constants */
for(p=yytext~ *p!= 0; p++)

{
if (*p = = 'd' I *p = = '0')

*p = + 'e'- 'd';
ECHO;
I

After the floating point constant is recog'nized, it is
scanned by the jor loop to find the letter d or D. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By- using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

398 SUPPORTING TOOLS AND LANGUAGES

{d}{s}{i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{t}
{d}{a} {t}{a}{n}

{d}{f}{l}{o}(a}{t} printf("%s" ,yytext + 0;

Allother list of names must have initial d changed to ini­
tial a:

{d}(l}{o}(g}
{d}{I}{Q}{g} 10
{d}{m}{i}{n} I
{d} {m} {a} {x} i

yytext[O] = + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r.

{d} I{m}(a}(c}{h} {yytext[O] = + 'r' - 'd';

To avoid such names as dsinx being detected as instances
of dsin; some final rules pick up longer words as
identifiers and copy some surviving characters:

, [A-Za-z] [A-Za-zO-9].
[0-9]+
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords l,lS; identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lelXical
rules to be applied at different times in the input. For ex­
ample, a compiler preprocessor might distinguish prepro­
cessor statements and analyze them differently from ordi­
nary statements." This requires sensitivity" to prior con­
text, and there are several ways of handling such prob­
lems. The A operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa­
cility similar to that for adjacent right context, but it is "
unlikely to be as useful, since often the relevant left con­
text appeared some time earlier, such as at the beginning
ora line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need" to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat­
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very diSSimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
Aa {flag = 'a'; ECHO;}
Ab {flag = 'h'; ECHO;!
AC {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;!
magic {

switch (flag)
(
case 'a': printf("first lO

); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate.
To handle the same" problem with" start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start name I name2 .. ,

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may -be referenced at the head of a rule with the < >
brackets:

, < name 1 > expression

is a rule which is only recognized when Lex is in the start
condition ,,,amel. To enter a start condition, execute the
action statement

BEGI"N namel;

which changes the start condition to namel. To resume
the. normal state,

LEX-A LEXICAL ANALYZER GENERATOR 399

BEGIN 0;

resets the initial condition of the Lex automaton inter­
preter. A rule may be active in several start conditions:

< name 1 ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
Aa
Ab
AC

\n
<AA>magic
<BB>magic
<CC> magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN O;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character I/ 0
only through the routines input, output, and unput. Thus
the character representation provided in these .routines is
accepted by Lex and employed to return values in yYtext.
For internal use a character is represented as a small in­
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/O rou­
tines are assumed to· deal directly in this· representation ..
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexsh! is called to change the representation
delivered by input into a right-adjusted integer~ If the
user changes the I/O library, the routi~e lexsh! should
also be changed to a compatible version. TJ<e Ratfor li­
brary I/O system is arranged to represent 4he letter a as
in the Fortran value lHa while in C the letter a is
represented as the character constant 'a'. If this interpre­
tation is changed~ by providing I/O routines which
translate the characters, Lex must be told about it, by giv­
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con­
taining only "%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into' 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1- Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char­
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users'will wish to use the charac- .
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou­
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur­
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexsh! but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would' be to leave input and output as routines that read
with 80A 1 format, but replace lexsh! by a table lookup
routine.

12 Su~mary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form "name space transla­
tion".

2) Included code, in the form "space code".

3) Included code, in the form

%{
code
%}

400 SUPPORTING TOOLS AND LANGUAGES

4) Start conditions, given in the form,

%5 name 1 name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) I A language specifier, which must also precede any
rules or included 'code, in the form "%C" for C
or "%R" for Ratfor.

7) Changes to internal array Sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar­
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

, Lines iD'the rule's section have the form "expression ac­
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
"x"
\x
[xyl
[x-zl
rxl

~x

<y>x
x$

, 'J x.
x*
x+
x~
(x)
x/y
{xx}
x{m,n}

the character "x"
an "x", even if x'is an operator.
an' "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
an'y character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an-x or a y.
an x.
an x but only if followed by y.
the translation bf xx from the definitions section.
m through n occurrel!ces of x

13 Caveats and Bugs.

There are pathological expressions which produce ex­
ponential growth of the tables when converted to deter­
ministic machines~ fortunately, they are rare.

REJECT does not rescan the input~ instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non­
supported features are REJECT, start conditions, or vari­
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on '{acc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both. .

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, N. J. (I97~).

2. B. W. Kernighan, Ratfor.~ A Preprocessor for a
Rational Fortran, Software - Practice and Experi­
ence, 5"pp. 395-496 (1975).

3. ,S. C. Johnson, Yace: Yet Another Compiler Com­
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. ,A. V. Aho and M. 1. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18; 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson; QED Text Editor, Computing Science
Technical Report No.5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora­
tories, Murray Hill, NJ 07974. ,

A Portable Fortran 77 Compiler

S. I. feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as For­
tran 77, becaIl)e an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the prst complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIXt systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the 110 system. An appendix describes the Fortran 77 language.

1 August 1978

tUNIX is a Tradem.ark of Bell Laboratories.

401

1. INTRODUCTION·

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on i compiletand run-time system for the new extended language. The compiler
and computation library were wdtten by SIF,. the 110 system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed" to be port­
able to a number of different machines, to be correct and complete, and to generate code com­
'patible with calling sequences produced by compilers for the Clanguage [3]. In particular, it is
in use on UNIXt systems. Two families of C compilers are in use at Bell Laboratories, ·those
b~sed on D. ·M. Ritchie's PDP-II compiler[4] and those based on S. C. Johnson's portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
.we describe the language compiled, interfaces between procedures, and file formats assumed by
the 110 system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-II, the V AX­
Il/780, and the .Interdata 8/32 UNIX systems. The command to run the compiler is

. f77 ./lags file . ..

'f77 is a general-purpose command for compiling and lmiding Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler .. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be
gene,rated,. since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file' name suffixes are understood: .

. f Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.0 Object file

The following flags are understood:

-S ... Generate assembler output for each source file, but do not assemble it. Assem-

tUNIX is a Trademark of Bell Laboratories.

402

-c
-m

-f

-p

-oj

-w
-w66

-0
-C
-onetrip

-u

-u
-12

-E

A PORTABLE FORTRAN 77 COMPILER 403

bier output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

Generate code to produce usage profiles.

Put executable module on file f. (Default is a.out).

Suppress all warning messages.

Suppress warnings about Fortran 66 features used.

Invoke the C object code optimizer.

Compile code the checks that subscripts are within array bounds.

Compile code that performs every do loop at least once. (see Section 2.10).

Do not convert upper case letters to lower case. The default is to convert For­
tran programs to lower case.

Make the default type of a variable undefined. (see Section 2.3).

On machines which support short integers, make the default integer constants
and variables short. '(- 14 is the standard value of this option). (see Section
2.14). All logical quantities will be short.

The remaining characters in the argument are used as an EFL flag argument.

-R The remaining characters in the argument are used as a Ratfor flag argument.

-F Ratfor and and EFL source programs are pre-processed into Fortran files, but
those files are not compiled or removed.

Otherflags, alllibr~ry names (arguments beginning -I), and any names not ending with one of
the understood s~~xes are passed to the loader. '

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in. boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small changes will make thjs Fortran compiler generate code for any of them. Furthermore~
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at least 63 bit
precision. The runtime I/O library makes use of D. M. Ritchie's Standard C I/O package [8]
for 'transferring data. With the few exceptions described below, only documented calls are
used, so it §hould be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS.

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The mo'st important additions are a character string data type, file­
qr!ented input/output stAtements, and random access 1(0. Also, the language has been cleaned
up considerably. . . .

In addition to implementing the language specified in the, new Standard, our compiler
implements a few extensions described in this section. 1\1ost' are useful additions to the

404 SUPPORTING TOOLS AND LANGUAGES

language. The remainder are extensions· to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defin~d. Each datum is· represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

2.2. "Internal Files

The. Fortran 77 standard introduces "internal files" (memory arrays), but restricts their
use to formatted sequential I/O statements .. Our I/O system also permits internal files to
be used.in direct and unformatted reads and writes.

2.3. Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state­
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined (a-z)

turns off the automatic data typing mechanism, and the compiler will issue a di&gnostic
for· each variable that is used but does not appear in a type statement. Specifying the -u
compiler flag is equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
"types" in type st?tements and in implicit statements. Local variables are static by
default~ there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro­
ced~re. Automatic variables may not appear in equivalence, data, or save statements.

2.6. Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com­
ment lines, the first five characters are the· statement number, the next is the continuation
character, and the next sixty-six are· the body of the line. (If there are fewer than

. seventy-two characters 'on a line, the compiler pads it with blanks~ characters after the
seventy-second are ignored).

In order to make it easier to type Fortran. programs, our compiler also accepts input in
variable~ length lines. An ampersand ("&") in the first position of a line indicates a con­
tinuation line~ the remaining characters form the body of the line. A tab character in one
of ·the first six positions of a line signals the end of ' the statement Dumber and continua-
. tion part of the line~ the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the <;ompiler. . .

In the Standard, there are only 26 letters - Fortran is .a one.:case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler· converts all upper case characters to lower case except those inside character
constants. However, if the -U compiler flag is specified, upper case ·letters are nOL
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of

A PORTABLE FORTRAN n COMPILER 405

the flag, keywords will only be recognized in lower case.

2.7. Include Statement

The statement

include' 'stuff'

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

2.S. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con­
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is 0, the string is octal, with
digits 0-7. If the letter is z 'or x, the string is hexadecimal, with digits 0-9, a-f. Thus,
the statements .

integer a(3)
data a / b'IOIO', 0'12', z'a' /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are ,recognized:

\n newline
\t tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\" quotation mark .(does not terminate a string)
\\ \
\x X, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 110 system
recognize both the apostrophe (,) and the double-quote ("). If a string begins with one
variety of quote mark, the other may be embedded within it without using' the repeated
quote or backs lash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to' ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, though the new Standard
recommends implementing the old Hollerith feature· in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state­
ments.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply­
dimensioned array to be represented by a' singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is

406 SUPPORTING TOOLS AND LANGUAGES

printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini­
tial value is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement w-as undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
-onetripcompiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The I/O system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format -

(itO, f20.10, i4)

will read the record

-345,~05e-3,12

correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short intJ An expression involving only objects of type integer*2 is of that type.
Generic functions -return short or long integers depending on th~ actual types of their
-arguments. - If a procedure is compiled using the -12 flag, all small integer constants will
be of-type integer*2. If the precision of an integer-valued intrinsic function is not deter­
mined by the generic function rules; one will be chosen that returns the prevailing length

-(i~tegerll!2 when the -12 command flag is in effect). When the -12 option is in effect, all
quantities of type logi~al will be short. Note that these short -integer and logical quantities
do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions

This -compiler supports allof the intrinsic functions specified in the Fortran 77 Standard.
- In addition, there are functions for performing bitwise Boolean operations (or, and, xor,

and not> and for accessing the UNIX command arguments (getarg and iargc). -

3. VIOLATIONS OF THE-STANDARD

We know only thre ways in which our Fortran system- violates the n~wstandard:

3.1. Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or equivalence statements to
force a double precision quantity onto an-odd word boundary, as in the following example:

real a(4)
double precision b,C'

equivalence (a(1) ,b), (a(4) ,c)
;,

A PORTABLE FORTRAN 77 COMPILER 407

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM ~70), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double preCision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to ioad that double precision te~porary; the
reverse would be needed to store a result. We have chosen to require that all double pre­
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code
demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in·an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning' is printed if a dummy procedure is not declared exter­
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which ~has already been pro­
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the'unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where spf;cifically required by Fortran or the operating system.

4. INTER-PRO~EDURE INTERFACE

To be able to write C procedures that call or are called by Fottnin procedures, it is neces­
sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended t9 it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name.- Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding Fortran and C declarations:

Fortran

integer*2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character*6 x

short int x;
long int x;
long int x;
float x;
double x;

C

struct { float r, i; } x;
struct { double dr, di; } x;
char x[6];

(By the rules of Fortran, integer, logical, and real da~ occupy the same amount of memory).

408 SUPPORTING TOOLS AND LANGUAGES

4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus, '

complex function f(',' .)

is equivalent to

f (temp, .. .)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character* 15 function g (...)

is equivalent to

g_ (result, length, .. .)
char result[];
long int length;

and could be invoked in C by

char charsU 5];

g_ (chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefi"ned') The state-
ment "

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4.4. Argument Lists

All Fortran 'arguments are passed by address. In addition, for every argument: that is of
type character or that is a dummy procedure, an argument giving ,the length of the value is
passed. (The string lengths 'are long int quantities passed by value). The order of arguments is
then:

Extra arguments for compl"ex aQd character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character·7 s
integer b (3)

call sam (f, b (2), s)

is equivalent to that in

int fO;
char s[7];
long int b[3];

sam_(f, &b[1], s, OL, 7L);

A PORTABLE FORTRAN 77 COMPILER 409

·Note that the first element of a C array always has subscript zero, but Fortran arrays begin at I
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran 110 is based on "records". When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran 110 system- to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as I, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.) .

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or. written by any means except Fortran 110 statements. Each record is preceded
and followed by an integer containing the record's length in bytes.

The Fortran 110 system breaks sequential formatted files into records while reading by
using each newline as a record separator.. The result of reading off the end of a record is
undefined according to the Standard. The 110 system is permissive and treats the record as
being extended by blanks. On output, the 110 system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, . but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran 110 system uses only the facilities .of the standard C 110 library, a widely
available and fairly portable package, with the following two nonstandard features: The 110 sys­
tem needs to know whether a file can be used for direct 110, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there' is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire· state­
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathnameJ Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the 110 system runs on the PDP-II, VAX-ll/780, and Interdata 8/32 UNIX· sys­
tems.

410 SUPPORTING TOOLS AND LANGUAGES

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan­
dard error unit. All are connected for sequential formatted 110.

All the other units are also preconnected when execution begins. Unit n is connected to
a file named fort. n These files need not exist, nor will they be created unless their units are
used without first executing an open. The default connection is for sequential formatted 110.

The Standard does not specify where a file which has been explicitly opened for sequential
110 is initially positioned. In fact, the 110 system attempts to position the file at the end, so a
write will append to the file and a read will result in an end-of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program's parent process.

REFERENCES

1. Sigplan Notices 11, No.3 (1976), as amended in X3J3 internal documents through
"/90.1".

2. USA Standard FORTRAN, USAS X3.9-1966, New York: United States of America Stan­
dards Institute, March 7, 1966. Clarified in Comm. A CM 12, 289 (1969) and Comm.
ACM 14, 628 (1971).

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood Cliffs:
Prentice-Hall (1978).

4. D. M. Ritchie, private communication.

5. S. C. Johnson, "A Portable Compiler: Theory and Practice", Proc. 5th ACM Symp. on
Principles of Programming Languages (January 1978).

6. S. I. Feldman, "An Informal Description of EFL", internal memorandum.

7. B. W. Kernighan, "RATFOR - A Preprocessor for a Rational Fortran", Bell Laboratories
Computing Science Technical Report # 55, (January 1977).

8. D. M. Ritchie, private communication.

, '. A PORTABLE FORTRAN 77 COMPILER 411

APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is' a very brief description of the differences between the 1966 [2] and the
1977 [I] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the" /92" document. This draft Standard is writ­
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of "Hollerith" (nh) as data have been officially removed, although our com­
piler, like almost all in the foreseeable fu~ure, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per­
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that progr?m an external
name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro­
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi­
tional entry points, declared by an entry statement with an optional argument list.

entry extra (a, b, c) ,

Execution begins at the first statement following the entry line. All variable deClarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name' of the same ty"pe as that where control entered must be .
assigned a value. Arguments do not retain their values between calls. (The ancient trick

412 SUPPORTING TOOLS AND LANGUAGES

of calling one entry point with a large number of arguments to cause the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our
implementation, since arguments are not kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous 'because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

do 10 i = 1, u, d

performs max (0 , l (u- [) / d J) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return' terminates the loop~ otherwise the
value that failed the limit test. .

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the "alternate returns" is described in section 5.2 of the Appendix.

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data"
type. Local and common character variables must have a length denoted by a constant
expression:

character* 1 7 a, b (3 ,4)
character*(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be decl~red to be the same as that of the
corresponding actual argument at run time by a statement like

character* (*)' a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must' be packed: in an
array of character variables, the first character of one element must follow the last charac- .
ter of the preceding ,element, wit!1out holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be 'overridden with an implic-it ,statement:

implicit real (a-c,g), complex (w-z), character* (17) (s)

deClares that variables whose name begins with an a ,b, c, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an jndustry standard.

A PORTABLE FORTRAN 77 COMPILER 413

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic· name, as in

parameter (x=17, y=x/3, pi=3.14159dO, s='hello')

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and alr~ady defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only thi-ee were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

reala(-5:3, 7, m:n), b(n+l:2*n)

The upper bound on the last dimension of an array argument may be denoted:by an aster­
isk to indicate that the upper bound is not specified:

integer a(5, *), b(*), c(O:I, -2:*)

3.5. SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invoC'ations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the' chain of callers, all of the variables in that common
block also become undefined'

t
(The only exceptions are variables that have been defined

in a data statement and never changed). These rules permit overlay and stack implemen­
tations for the affected variables .. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, Ibl, c

leaves the values of the variables a and c and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in· the Standard are in a single category, "intrinsic func­
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos­
trophe is to be included in a constant, it is repeated:

'abc'
'ain"t'

414 SUPPORTING TOOLS AND LANGUAGES

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, " , ", and" " ". (See Section 2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double
slash (" 1/"). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

'ab' II 'cd'
'a bcd'

~T~~; equal. The strings being concatenated must be of constant length in all concatenations
that 'are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a "* (*)" modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The' assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
sborter than the right, trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

aCi,j) (m:n)

is the string of (n-m+I) characters beginning at the mlh character of the character array
element aij' Results are undefined unless m~ n. Substrings may be used on the left
sides of assignments and' as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

a**b**c = a ** (b**e)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state­
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari­
ables in B common ..

Subscripts inay now be general integer expressions~ the old cv ± c' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and 110 unit numbers may be general integer expr·essions.

A PORTABLE FORTRAN 77 COMPILER 415

S. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a
"Block If'. A Block If begins with a, statement of the form

if (...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else ifC . .) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements fol­
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follo.w all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures) . A case construct may be rendered

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster­
isk, as in

calljoe(j, *10, m, *2)

A return statement may have an integer expression, such as

return k

If the entry point has n alternate return (asterisk) arguments and if 1 ~ k ~ n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1. Format Variables

A format may be the 'value of a character expression (constant or otherwise), or be stored
in a character array, as in

write(6, '(is)') x

416 SUPPORTING TOOLS AND LANGUAGES

6.2. END=, ERR=, and 10STAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses, as in

write(6, 101, err=20, iostat=a(4»
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the 110 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 110, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is· given a value when the 110 statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3~ Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can­
not be read into .

. write(6,'(i2," isn""t ",it)') 7,4

produces

7 isn't 4

Here the format is the character constant

(i2,' isn"t ',it)

and the character constant

isn't

is copied into the output.

6.3.2. Positional Editing Codes

t, t1, tr, and x codes control where the next character is in the record. trn or nx specifies
that the next character is n to the right of the current position. tin specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon­
sidered. tn says that the next character is to be character number n in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the 110 operation if there are no more data items in the
110 list, otherwise it has no effect. In the fragment

x='("hello", :, " there", i4)'
write(6, x) 12
write(6, x) .

the first write stateq1ent prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code, may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the 110 system will not insert the optional plus signs, and v .

th~ s format code restores the default behavior of the 110 system; (Since we never put

A PORTABLE FORTRAN 77 COMPILER 417

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. U nrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, i w. m. It is the same as i w, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. i w.1 is
the same as i w.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it,) There is a gw.d format code which is the same
as ew.d and fw.d on input, but which' chooses for e formats for output depending. on the
size of the number and of d.

6.3.9. "A" Format Code

A codes are used for character values. a w use a field width of w, while a plain a uses the
length of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli­
citly specified by an asterisk, as in

read(*, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

6.5. List-Directed Formatting

List-directed I/O is a kind of free form input for sequential I/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a;b,c

418 SUPPORTING TOOLS AND LANGUAGES

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the I/O list is not changed.
Values may be preceded by repetition counts, as in

4*(3.,2.) 2*, 4*'hello'

which'stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes,so they cannot be read back using list-directed
input.

6.6. Direct I/O

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 110 statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2; rec=13, err=20) (aG), i=l, 203)

reads the thirteenth record into the array a.

The size of the records must be ·given by an open statement (see below). Dir~ct access
files may be connected for either formatted or unformatted I/O.

6.7. Internal Files

Internal files are character string objects,such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file,· in the latter case
each array element is a record. The Standard includes only sequential formatted I/O on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed 110 on internal files. Internal files are
used by giving the name of the character object in place 'of the unit number, 'as in

character*80 x
read(S," (a)") x
read(x,"G3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it.. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct 110 on internal files. This is like direct
110 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gathef infor-.
mation about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal 'example.

open (1, file = 'fott.junk')

open takes a variety of arguments with meanings described below.

A PORTABLE FORTRAN 77 COMPILER 419

unit= a small non-negative integer which is the unit to which the file is to be connected.
We 'allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write . .
err= is the same as in read or write.

r)

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the

. status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the· file will be created if it
doesn't e"xist, or truncated if it does. The meaning of unknown is processor depen­
dent; our system treats it as synonymous with. old.

access= sequential or direct, depending on whether the file is-to be opened for sequen­
tial or direct 110.

form = formatted or unformatted.

recl = a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted I/O. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a uni{ and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close(3, err= 17)

6.8.3. INQUIRE

The inquire statement gives information about a unit ("inquire by unit") or a. file
("inquire by file"). Simple examples are:

inquire(uhit=3, namexx)
inquire(file='junk', number=n, exist=I)

file = a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored. "

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and
is set to .false; o.therwise.

opened = a logical variable. The logical variable is set to • true .• if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.

420 SUPPORTING TOOLS AND LANGUAGES

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise. .

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential' if the con­
nection is for sequential 110, 'direct' if the connection is for direct lio. The value
becomes undefined if there is no connection.

sequential = a character variable to which is assigned the value 'yes' if the file could be
connected for sequential 110, 'no' if the file could not be connected for sequential
110, and 'unknown' if we can't tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con­
nected for direct 110, 'no' if the file could not be connected for direct 110, and 'unk­
nown' if we can't tell.

form = a character variable to which is assigned the value 'formatted' if the file is con­
nected for formatted 110, or 'unformatted' if the file is connected for unformatted
110.

formatted ~ a character variable to which is assigned the value 'yes' if the file could be
connected for formatted 110, 'no' if the file could not be connected for formatted
110, and 'unknown' if we can't tell. -

unformatted = a character variable to which is assigned the value 'yes' if the file- could be
connected for unformatted 110, 'no' if the file could not be connected for unformat­
ted 110, and 'unknown' if we can't tell.

recl = an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank = a character variable to which is assigned the value 'null' if null blank control is in
effect, for the file connected for formatted 110, 'zero' if blanks are being converted to
zeros and the file is connected for formatted 110.

The gentle reader will remember that the people who wrote the standard probably weren't
.hinking of his needs. Here is an example. The declarations are omitted.

open(1, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential 110. An inquire
statement for either unit 1 or file "/dev/console"would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is .opened for sequential 110, could be connected
for sequential 110, could not be connected for direct 110 (can't seeJc), is connected for format­
ted 110, could be connected for formatted 110, could not be connected for unformatted 110
(can't 'seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read ,~pd write it. The err= parameter will return system error
numbers. The inquire statement dOes not give a way of determining permissions.

RAT FOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have'the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

• statement grouping

• if-else and switch for decision-making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

and some "syntactic sugar":

• free form input (multiple statementslIine, automatic continuation)

• unobtrusive comment convention

o translation of >, > =, etc., into .GT., .GE., etc.

• return(expression) state~ent for functions

• define statement for symbolic parameters

• include statement for including source files

'Ratfor is implemented as a preprocessor which translate,S this language into Fortran.

Once the control flow and cosmetic deficiencies of Fo'rtran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironm,ents. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least two
dozen different types of computers at over five·hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple­
mentation, and user experience.

421'

1. INTRODUCTION

Most programmers will agree that Fortran
"is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the only
language thoroughly supported on the local com­
puter. Indeed, it is the closest thing to a univer­
sal programming language currently available:
with care it is possible to write large, truly port­
able Fortran programs [I 1. Finally, Fortran is
often the most "efficient" language availabie,
particularly for programs requiring much compu­
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
-" conditional branches and loops - which
express the logic of the program. The condi­
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO'S; it
leaEls to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the'test part can be stated clearly, but hope­
lessly restrictive because the statement that fol­
lows the IF can only be one Fortran statement
(with some further restrictionsD. And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify an alternative ~ction if the IF is
not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for" 1 to N in steps of 1 (or 2 or .. J", but there
is no direct way to go backwards, or even (in
ANSI Fortran[2]) to go from 1 to N-l. And of
course the DO is useless if one's problem doesn't
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The" resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing [3] of preproces­
sors shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

RatfQr attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran" except for two aspects.
First, since control flow is central to a'ny pro­
gram, regardless of the specific application, the,­
primary task of Ratfor is to conceal this part of
Fortran from the user, by p'roviding decent con­
trol flow structures. These structures are
sufficient and comfortable for structured pro­
gramming in the narrow sense of programming
without GOTO'S. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the "cosmetic" deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects - control flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro­
vide character strings, for example, they are not
needed by everyone, and of course the prepro­
cessor would be harder to implement~
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Ra(/'or doesn't know any For­
tran. Any language feature which would require

This paper is a revised. and expa~ded version of oe published in Sofiware-Praclice and Experience. October
1975. The Ratfor descrtbed here IS the one in use on UNIX and GCOS at Bell Laboratories, Murray Hill, N. J.

422

RATFOR-A PREPROCESSOR FOR A RATIONAL FORTRAN 423

that Ratfor really understand Fortran has been
omitted. We will return to this point in the sec:'
tion on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con­
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor­
mal description of the Ratfor language. The con­
trol flow aspects will be quite familiar to readers
used to languages like Algol, PLII, Pascal, etc.,
and the cosmetic changes are equally straightfor­
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state­
ments together, short or' making them into a
subroutine. The standard construction "if a con­
dition is true, do this group of things," for
example,

if {x > 100}
(call error{"x > 100"); err = 1; return }

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and· branching around the
group of statements:

10

if {x .le. 100} goto 10
call error{Shx> 100}
err = 1
return

When the program doesn't work, or when it
must be modified, this must be translated ba~k
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation~ the first'
form· is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces (and }.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For­
tran meanings.)

Cosmetics contribute- to the readability of
code, and thus to its understandability. The
character ">" is clearer than :'.GT.", so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For­
tran compilers permit character strings in quotes

(like "x> 100"), quotes are not allowed in ANSI

Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi­
colons. The example above could also be written
as

if (x > 100)' (
call error{"x> 100")
err = 1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement {Ratfor or otherwise}, no
braces are needed:

if {y < = 0.0 & z < = O.O}
write(6, 20} y, z

No continuation need be indicated because the
statement is clearly not finished on tbe first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con­
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par­
ticular, proper indentation' is vital, to make the
logical structure of the program obvious to the
reader.

The "else" Clause

Ratfor provides an else statement to han­
dle the construction "if a condition is true, do
this thing, otherwise do that thing."

if {a < = b}
(sw = 0; write{6, 1 }a, b }

else
(sw = 1~ write{6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir­
cuitous indeed:

424 . ,SU?PORTING TOOLS AND LANGUAGES

10·

20

if (a .gt. b) go to 10

sw = 1

sw ~ 0
write(6, 1) a, b
go to 20

write(6, 1) b, a

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a' transla­
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is. an if­
else construction. With the Ratfor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if no't
relevant. The pr.ogram says what it means.

As before, if the statement. following an if
or an else is a single statement, no braces are
needed:

if (a < = b)
sw = 0

else
sw = 1

The syntax of the if statement is

if (legal Fortran condition)
Ra(/or statemel7l

else
Ra(for statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logical IF. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ra(for statemel7l is
any Ratfor or Fortran statement, or any collec­
tion of them in braces.

Nested if's

Since the statement that follows an if or an
else can be any Ratfor statem!!nt, this leads
immediately to· the possibility of another if or
else. As a useful example, consider this probI'em:
the variable f is to be set' to -1 if x is less than
zero, to + 1 if x is greater than 100, and to 0
otherwise. Then in Ratfor, we write

if (x < 0)
f = -1

eJse if (x > 100)
f = +1

else
f = 0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver­
sion written in straight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Followin~ an. else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (...)

else if (.. ,)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts,) The tests
are laid out in sequence, and each one is fol­
lowed by the code associated with it. Read down
the list of decisions until one is' found that is
satisfied. The code associated with this condition
is executed., and then the entire structure is
finished. The trailing else part handles the
"default" case, where none of the other condi­
tions apply. If there is no default action, this
fi nal else part is omitted:

if (x < 0)
x = 0

else if (x > 100)
x = lOO

if-else ambiguity

There is one thing to notice about compli­
cated structures involving nested irs and else's.
Consider

RATFOR-A PREPROCESSOR FOR A RATIONAL FORTRAN 425

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) Y

There are two irs and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else'ed if. Thus in this case,
the else goes with the inner if, as we have indi­
cated by the indentation.

I t is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x > 0) (
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other association, we must write

if (x > 0) (
if (y > 0)

write(6, 1) x, y.

else
write(6, 2) y

The "switch" Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (expression) (

case exprl :
statements

case expr 2. expr 3 :
statements

default:
statements

Each case is followed by a list of comma­
separated integer expressions. The expression

. inside switch is compared against the case
expressions exprl. expr2. and so on in turn until
one matches, at which time the statements fol­
lowing that case are executed. If no cases match
exr·"ession. and there is a default section, the

statements with it are done~ if there is no
default, nothing is done. In' all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The "do" Statement

The do, statement in Ratfor is quite similar
to the DO statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done' just as easily with
braces. Thus

do i = 1, n {
xO) = 0.0
y(i) = 0.0
zO) = 0.0

is the same as

10

do 10 i = 1, n
x(j) = 0.0
y(j) ~ 0.0
z(i) = 0.0 .

continue

The syntax is:

do legal-Fortran-DO-text
Raffor statement

The part that follows the keyword do has to be
something that can legally go into.a Fortran DO

statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran), they can be
used in a Ratfor do.

The Raffor statement part will often be
enClosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

do i = 1, n
x(i) = 0.0

Slightly more complicated,

do i = 1, n
do j = 1, n

mO, j) = 0

sets the entire array m to zero, and

426 SUPPORTING TOOLS AND LANGUAGES

do i = 1, n
do j = 1, h

if 0 < j)
mO, j) = -1

else if 0 = = j)
mO, j) = 0

else
mO,j) = +1

sets the upper triangle of m to -1, the diagonal
to zero, and the lower triangle to + 1. (The
operator == is "equals", that is, ".EQ.".) In
each case, the statement that follows the do is
logically a single statement, even though compli­
cated,' and thus needs no braces.

"break" and, "next"

Ratfor prov.ides a statement for leaving a
loop early, and one for beginning the next itera­
tion. break causes an immediate exit from the
,do~ in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop, so .it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

do i = 1, n (
if (xO) < 0.0)

next
process positive element

break and next also work in the other Ratfor
looping cons'tructions that we will talk about in
the next few sections.

break and ,next can be followed by an
integer to indicate breaking or iterating that level
of enclosin'g loop~ thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to bre~k. next 2 iterates
the second enclosing loop. (Realistically, multi­
level break's and next's are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The "while" Statement

One of the problems with the Fortran DO

statement is that it generally insists upon being
done .once, regardless of its limits. If a: loop
begins

DO I = 2, 1

this will typically be done once with I se~ to 2,
even though common- sense would suggest that

'perhaps, it shouldn't be. Of course a'Ratfor do
can easily be preceded by a test

if (j < =, k)
do i = j, k

but this has to' be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state­
ment is that it encourages 'that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran DO, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro­
vides a while statement, which is simply a loop:
"while some condition is true, repeat this group
of statements". It has no preconceptions about
why one is looping. For exa'mple, this routine to
compute sin (x) by the Maclaurin series combines
two termination criteria.

real function sin (x, e)
returns sin (x) to accuracy e, by
sin (x) = x - x**3/3! + x**S/S! - ...

sin = x
term = x

i=3
while (abs(term) >e & i < 100) (,

term = '-term • x**2 / floatO.O-l»
sin = sin + term
i=i+2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times. that is, no attempt will be made
to compute x**3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a, special case
disappears - the code works at one of its boun'­
daries. ' (The test i< 100 is the other boundary -
making sure the routine stops after some max­
imum number of iterations.)

As an aside, a sharp character "#" in a
line marks the begin'ning of a comment~ the rest
of the line is comment. 'Comments and code can
co-exist on the same line - one can make mar­
ginal remarks, which is not possible with
Fortran's "C in column 1" convention. Blank
lines are also permitted anywhere (they are not
in Fortran) ~ they should be used to emphasize
the natural divisions of a program.

RATFOR-A PREPROCESSOR FOR A RATIONAL FORTRAN 427

The syntax of the while statement is

while (legal Fortran condition)
Ra(for statement

As with the if, legal Fortran condition is some­
thing' that can go into a Fortran Logical IF, and
Ra(for statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func­
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch{ich) = = iblank)

A semicolon by itself is a null' statement, which
is necessary here to mark the end of the while;
if it were not present, the while 'would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch (ich) .eq. iblank) goto 100

.but many Fortran programmers (and a few com­
pilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop­
body from reason-for-Iooping a step further than
the while. A for statement allows explicit initiali­
zation and increment steps as part of the state­
ment. For example, a DO loop is just

for (j = 1; i < = n; i = i + 1) ...

This is equivalent to

i = 1
while (j < = n)

i=i+l

The' initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that 'they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ­
ous section can be re-wri,tten with a for as

for (i=3; abs(term) > e & i < 100; i=i+2)
term = -term * x**2 / float{i*(h- 1)
sin = sin +. term

The syntax of the for statement is

for (init ; condition; increment)
Raffor statement

init is any single Fortran statement; which gets'
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, befo're
the test. condition is again anything that is legal
in a logical IF. Any of init, condition. and incre­
ment may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so fod;;) is an
indefinite repeat. (But see the repeat-until in
the next section,)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write ciut with IF'S and GOTO's.
For example, here is a backwards DO loop to find
the last non-blank character on a card:

for (j = 80; i > 0; i = i - 1)
if (card(i) ! = blank)

break

("!=" is .the same as ".NE."). The code scans
the columns from 80 through to 1. If a non­
blank is found, the loop is immediately broken.
(break and next work in for's and while's just as
in do's). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for­
ward, and we must explicitly set up proper condi-.
tions when we fall out of the loop. (Forgetting
this is a common error,) Thus:

DO 10 J = 1,80
I = 81 - J
IF (CARD(I) .NE. BLANK) GO TO'Il

10 CONTINUE
1=0

11

The version that uses the for handles the termi­
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding ,up element~
from a parallel array of values:

428 SUPPORTING TOOLS AND LANGUAGES

sum = 0.0
for (j = first~ i > O~ i = ptr(i)

sum = sum + value(j)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until" statement

In spite. of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ra(ior statement

until (legal Fortran condition)

The Ra(ior statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited~ if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter. of observed fact[8], the
repeat-until statement is much less used' than the
other looping constructions~ in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre­
ment step of a for.

"return" Statement·

. The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to~ the last value stored in it is the
function value upon return. For example, here
is a routine" equal which returns I if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value -I.

equal _ compare strl to str2~
return I if equal, 0 if not

says

integer function equaI(strl, str2)
integer strl(100), str2(100)
integer i

for (j = I ~ strl(i) = = str2(j)~ i = i + 1)
if (strl(i) = = -1) {

equal = 0
return
end

equal = I
return

In many languages (e.g., PL/I) one instead

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement - in a function F, return(expression)
is equivalent to

(F = expression~ return)

For example, here is equal again:

equal _ compare strl to str2~
return I if equal, 0 if not

integer function equaI(strl, str2)
integer strl(IOO), str2(100)
integer i

for (j = I~ strl(i) = = str2(i}~ i = i + 1)
i((strl(j) == -1)

return(O)
end

return(1)

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly')

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand. programs. Accord­
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
line~ long statements are continued automati­
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state­
ments may appear on one line~ if they are
separated by semicolons. No semicolon js
needed at the end or"a line, if Ratfor can make

RATFOR-A PREPROCESSOR FOR A RATIONAL FORTRAN 429

some reasonable guess about whether the state­
ment ends there. Lines ending with any of the
characters

+ • &

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all­
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write{6, 100); 100 format{"hello")

is converted into

write{6, 100)
100 format{5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during t~e reformat­
ting process). Within quoted strings, the
backslash '\' serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backs lash
itself) into quoted strings:

"\\\'"
is a string containing a backslash and an apos­
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character '%'
is left absolutely unaltered except for stripping
off the '%' and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (Jike an existing Fortran pro­
gram). Use '%' only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a '%'.

. eq. != .ne .
> .gt. >= .ge.
< .It. <= .Ie ..
& .and. I .or.

.not. .not.

In addition,· the following translations are pro­
vided for input devices with-restricteu character
sets.

[
$(

]
$)

I·

"define" Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the in·put (delimited by non­
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS lQO
define COLS 50

dimension a{ROWS), b(ROWS, COLS)

if 0· > ROWS I j > COLS) ...

Alternately, definitions may be written as

define{ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym­
bolic parameters for most conslants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define
define
define
define

YES
NO
EOS
AR~

'1
o
-1
100

equal ~ compare strl to str2;
retut:n YES if equal, NO if not

integer function equaJ(strl, str2)
integer strl(ARB), str2 (ARB)
integer i

for 0 = 1; strl(i) = = str2{i); i = i + 1)
if (strl (i) = = EOS)

return{YES)
return{NO)
end

"include" Statement

The statement

include file

inserts the file found on input stream .file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed: .

430 SUPPORTING TOOLS AND LANGUAGES

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON

blocks are identical

Pitfalls, Botches., Blemishes and other Failings

Ratfor catches certain syntax errors, such
as rriissing braces, else clauses without an if, and
most errors involving missing p~rentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you 'will from time to
time have to relate a Fortran diagnostic back to

-the Ratfor source.

Keywords are reserved - using if, else,
etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF.

The Fortran nH convention is not recog­
nized anywhere by Ratfor~ use quotes instead.

3. IMPLEMENTATION

. Ratfor was originally written in C[4] on the
UNIX oPtrating system[5]. The language is
specified by' a co'ntext free grammar and the
compiler constructed using' the Y ACC compiler­
compiler[6] .

The Ratfor grammar is simple and straight­
forward, being essentially

prog : stat
I prog stat

stat : if (..,) stat
I if (..,) stat else stat
I while (...) stat
I for (..;~ ... ~ .. J stat
I do ... stat
I repeat stat
I repeat stat until (..,)
I' switch (...) { case ... : prog ...

default: prog }
I return
I break
I next
I digits stat
I { prog }
I anything unrecognizable

The observation that Ratfor knows no Fortran
. follows directly from the rule that says a state­
,ment is "anything: unrecognizable". In fact most

of Fortran falls into this category, since' any
statement that does not begin with one of the
keywords is by definition "unrecognizable."

Code generation is also simple. If the first
thing on a source line is not a keyword (Iike if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla­
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels Land L+ 1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if enot. '{Condition}} goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested irs, of course), the code

L continue

is generated, unless' there is an else clause, in
which case the code is

go to L+ 1
L continue

In this latter case, the code

L+ 1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if (j > 0) x = a

should be left alone, not converted into

if enot. (j .gt. O)} goto 100
x = a

100 continue

But what are optimizing compilers for, if not to
improve code? I t is a rare program indeed where
this kind of "inefficiency" will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ~%'.

The· use of a compiler-compiler is
definitely the pref~rred method of software
development. The language is well-defined, with
few syntactit irregularities. Implementation is
quite simple~ the original construction took
under a week. The language is sufficiently sim­
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available .

RATFOR-A PREPROCESSOR FOR A RATIONAL FORTRAN 431

The C version of Ratfor is used on UNIX

and on the Honeywell GCOS systems. C com­
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver­
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
descri,bed in [11. so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word~ subscripts in the form c*v±c;
avoiding expressions in places like DO loops; con­
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra­
tuitously generate non-standard Fortran,)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C) ~ this
compiles into 2500 lines of Fortran. This expan­
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe­
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions~ unless this is
done, the efficiency of other parts of the transla­
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

"It's so much better than Fortran" is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be. vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bao language
into quite a reasonable one, assuming that For­
tran data structures are adequate for the task at
hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code
can be read. The looping statements which test
at the top instead of the bottom seem to elim-

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
th'at programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran's clerical detail and rigid
input format, it is easy to write code that is read­
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

A(m+I) = x
for (i = 1; A (j) ! = x: i = i + 1)

if (i > m) (

else

m = i
B(j) = 1

B(i) = B(i) + 1

A large corpus (5400 Ii'nes) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The ·compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe­
cially if the implementation conceals the gen­
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica­
tion of the source line that created it, but this is
inherently implementation-dependent, so no
action has yet been" taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables,
only a simple pattern of IF'S and GOTO'S, data-:­
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore,
there has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like unbal­
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, espechilly to new
users. For example, keywords are reserved.
This rarely makes any difference, ,except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a

432 SUPPORTING TOOLS AND LANGUAGES

'%' is not really a complete solution. although it
serves as a stop-gap. The best long-term solu­
tion is provided by the program Struct [9]. which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is "unreadable"
because it is not· tastefully formatted and con­
tains extraneous CONTI~UE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen­
erated Fortran). but it .has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is· relatively easy to
modify. there are now several dialects of Ratfor ..
Fortunately. so far most of the differences are in
character set. or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor

.. is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language. it is important
to concentrate on the essential requirement of
providing the user with the best language possi­
ble for a given effort. One must avoid throwing
in "features" - things \.Vhich the user may trivi­
ally construct within the existing framework.

One· must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to· prepare· a neatly formatted listing of
either its. input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro­
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknow ledgements

C!~ A. R. Hoare once said that "One thing
[the. language designer] should not do is to
incl~de untried ideas of his own." Ratfor follows
this precept very closely - everything in it has
been stolen from" someone else. Most· of the
contr·ol flow structures .are taken directly. from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran[10J.

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

also translated the C parse-tables and YACC

parser into Fortran for the first Ratfor version of
Ratfor.

References

[11 B. G. Ryder. "The PFORT Verifier."
SQ{tware-Practice & Experience. October
1974.

[2] American National Standard Fortran.
American National Standards Institute.
New York. 1966.

[3] For-word: Fortran Development Newsleller.
August 1975.

[4] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prenti~e-Hall. Inc .•
1978.

[5] D. M. Ritchie and K. L. Thompson. "The
UNIX Time-sharing System." CACM. July
1974.

[6] S. C. Johnson. "Y ACC - Yet Another
Compiler-Compiler." Bell Laboratories
Computing Science Technical Report #32,
1978.

[7] D. E. Knuth, "Structured Programming
with goto Statements." Computing Surveys,
December 1974.

[8] B. W. Kernighan and P. J. Plauger,
SQ{tware Tools. Addison-Wesley, 1976.

[9] B. S. Baker. ~'Struct - A Program which
Structures Fortran", Bell Laboratories·
internal memorandum, December 1975.

[10] A. D. Hall, "The Altran System for
Rational Function Manipuiation - A Sur­
vey." CACM, August 1971.

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXt and GCOS. Its primary use
has been as a front end· for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is ·particularly ,suited for functional languages like Fortran,
PLII and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

• arguments

• condition testing
g arithmetic capabilities

.. string and substring functions

• file manipulation

This paper is a user's manual for M4.

July 1, 1977

tUNIX is a Trademark of Bell Laboratories.

433

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten­
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [IJ.
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is -a suitable front end for Ratfor
and C, arid has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari­
ous useful operations; in addition, the user
434

can define new macros. Built-ins and user­
d~fined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use

m4 [files}

Each argument file is processed in order; if
there are no arguments, or. if an argument is
'- " the standard input is read at that point.
The processed text is written on the stan­
dard output, which may be captured for sub­
sequent processing with

m4 [files} > outputfile

On GCOS, usage is identical, but the pro­
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define (name, stum

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced.
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100; and uses this "symbolic

constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by '(', it is
assumfd to have no arguments. This is the

. ~ituation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it app~ars
surrounded, by non-alphanumerics. For
example, in

define(N, 100) ,

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con­
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define (M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
lOp, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it's just as if
you had said

define(M, 100)

in the first place.

If this isn't what you really want, there
are two ways .out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define (M, ,N)
define(N, 100)

Now M is defined to be the .string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced '
by 100).

THE M4 MACRO PROCESSOR 435

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ' and ' is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)'
define(M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in· the out­
put, you have to quote it in the input, as in

'define' = 1;

As another instal1ce of the same thing,
which is a bit more surprising, consider
redefining N: ,

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen;
that is, it is replaced by 100, so it's as if you
had written

define (tOO, 200) ,

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define (N, 100)

defineCN', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote ([,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

436 SUPPORTING TOOLS AND LANGUAGES

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

uitdefineCN')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefineCdefine')

but once you remove' one, you can never
get it back.

The built-in ifdef provides a way' to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos' on the corresponding sys­
tems, so you can tell ~hich one you're

.using:

ifdefCunix', 'define(wordsize,16)')
ifdef('gcos', 'define(wordsize,36)')

makes a ,definition appropriate for the partic­
ular machine. Don't forget the quotes!

. ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdefCunix', on UNIX, not on UNIX)

Arguments

So far, we have discussed the simplest
form of m.acro processing - replacing one
string by another (fixed) string. User­
defined macros may also have arguments, so
different invocations can have, different
results. ,Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = $-1 +,1)

generates code to increment its argument by
1:

bump(x)

is

x = x + 1

A macro can have as many arguments
as you want, but only the first nine are

'accessible; through $1 to $9. (The macro

name itself is $0, although that is less com­
monly used.) Arguments that are not sup­
plied are replaced by nuU strings, so we can
define a macro cat which simply concaten­
ates its arguments, like this:

define(cat, $1$2$3$4S6$7$8$9}

Thus

cat (x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond­
ing arguments were provided. -

Leading, un quoted blanks, tabs, or
newlines that occur during argument collec­
tion are discarded. All other white space is
retained. Thus

define (a, b c)

defines a to' be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in

define(a, (b,c»

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr" which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
define(Nl, 'incr(N)') ,

Then ~l is defined as one more than the
current value of N.

The more 'general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary, arithmetic on integers.
It provides the operators {in decreasing
order of precedence}

unary + and-
** or ,. (exponentiation)
* / % (modulus)
+ -
== !=
!
& or &&
lor II

< <= .> >=
(not)
(logical and)
(logical or)

Parentheses may be used to group opera­
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela­
tion (like 1>0) is 1, and false is O. The
precision in eval is 32 bits on UNIX and 36
bits on Geos.

As a simple example, suppose we want
M to be 2** N + 1. Then

define(N,3)
define (M, 'evaI(2** N + 1)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The-.:'value
of include (that is, its' replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude ("silent
include") says nothing and continues if it
can't access the file.

It is ·also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com­
mand. M4 maintains nine of these diver­
sions, numbered 1 through 9. If you say

. divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

THE M4 MACRO PROCESSOR 437

mand; in particular, divert or divert (0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings .back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The. act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For' example,

. syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used ~o create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func­
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth­
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and ~eturns "yes" or "no" if they
are the same or different.

438 SUPPORTING TOOLS AND LANGUAGES

define(compare, 'ifelse($I, $2, yes, nor)

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

-.is c if a matches b, and n:ull otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len «a,b» is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the· substring of s that starts at the
ith position (origin zero), and is n charac­
ters long. If n is omitted, the rest of the
string is retu,rned, so

sUbstr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index (sl, s2) returns the index (posi­
tion) in sl where the string s2 occurs, or
-1 if it doesn't occur. -As with substr, the
origin for strings is O.

The built-in translit performs charac­
ter transliteration.

translitcs, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit (s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s: So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it u·p
to and including the next newline~ it is use­
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define (M, 200)
define (L, 300)

the newline at the end· of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted .. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert (-1)
define(. ..)

divert

Printing

The built-in errprint writes its argu­
ments·, out on the standard error file. Thus
you can say

errprint ('fatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything~ otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the· page
number where it is described.

3 changequote (L, R)
1 define (name, replacement)
4 divert (number)
4 divnum
5 dnl
5 dumpdef('name', 'name', ...)
5 errprint (s, s, .. .)
4 eval (numeric expression)
3 ifdef('name', this if true, this if false)
5 ifelse (a, b, c, d)
4 include (file)
3 incr{number)
5 index (s 1, s2)
5 len (string)
4 maketemp(... XXXXX ...)
4 sinclude (file)
5 substr(string, position, number)
4 syscmd{s)
5 translit (str, from, to)
3 un define ('name')
4 undivert (number ,number, .. .)

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug McIlroy, aqd especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve­
ments. We are also deeply grateful 'to
Weythman for several substantial contribu­
tions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Software· Too/s,· Addison-Wesley, Inc.,
1976. .

THE M4 MACRO PROCESSOR 439

SED - ANon-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-~nteractive context editor that runs on the UNIxt operating
system~ Sed is desighed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing~
2) To edit' any -size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15~ 1978.

tUNIX is,a Trademark of Bell Laboratories.

440

Introduction

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform mUltiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command ,file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is mu'ch more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared' to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
. tive and non-interactive operation, considerable changes have been made between ed and sed,'
even confirmed users of ed will frequently be surprised .(and probably chagrined): if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem­
blance between the two editors is in the class of patterns ('regular expressions') they recognize~
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip­
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Pro~rammer's ManualD1. (Both code and description were written by Dennis M. Ritchie'>

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line~ see Section 1.1 below.

The general format of an editing command is:

[address 1 ,address2] [function] [arguments]

One or both addresses may be omitted~ the format of addresses is given in Section 2. / Any
number of blanks or tabs may separate the addresses from the function. The function must be

. present~ ·the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given~ again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

441

442 SUPPORTING TOOLS AND LANGUAGES

1.1. Command-line Flags
Three flags are recognized on the command line:

-n: tells sed not to copy all lines, but only those specified by p functions or p flags after
s functions (see Section 3.3)~

-e: tells sed to take the next argument as an editing command~
-f: tells sed to take the next argument as a file _name~ the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com­
. mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are cgm­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied 'one at a time; the input to each
command is the output of all preceding commands.

The default linear order of appliCation of editing commands can be changed by the flow-of­
control commands, f and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text,. but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Ex.ample:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines. in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be eit.her line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (, (}') (Sec. 3.6.).

SED-A NON-INTERACTIVE TEXT EDITOR 443

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented~ a line-number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files~ it is not reset when a new input file. is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in' slashes (' /'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ,'" at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

S) A period '.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk '*' matches any number <Including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ,[]' matches any character in the string,

and no others. If, however, -the first character of the. string is circumflex '''',
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression:

9) A regular expression between the sequences '\ (' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) Th~ expression '\d'means the same string of characters matched by cUI expression
enclosed in '\ (' and '\)' earlier in the same pattern. Here d is a single digit~ the
string specified is that beginning with the dth occurrence of '\ (' counting from
the left. For example, the expression '''\ (. *\)\1' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., '/ /'). is equivalent to the last reg-.
ular expression compiled.

To use· one of the special characters (" $. * [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'.

For a context address to 'match' the input requires that the whole pattern· within the address
match some portion of the pattern space.

2.3. N umber of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command- to have more addr~sses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every. line in the input.

If a command has one address,· it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address, .

444 SUPPORTING TOOLS AND LANGUAGES

and the process is repeated.

Two addresses are separateQ by a comma.

Examples:

lanl
lan.*anl
rani

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines

/./ matches all lines
1\,/ matches line 5
Ir*anl
1\(an\).*\11

matches lines 1,3, 4 (number = zero!)
match~s line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then' the single character func­
tion name, possible arguments enclosed in angles « », an expanded English translation of
the'single-character name, and finally a description of what each function does. The angles
around the arguments are 1101 part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions
.. (2) d -- delete lines

The d function deletes from the file (does not write to the ()utput) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the­
corpse of a deleted line~ as soon as the d function is executed, a new line is
read from. the input, and the list of editing commands is re-started from the
beginning on the ne~ line.

(2) n -- next line

(Oa\

The 11 function reads the next line from the input, replaCing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the 11 command.

< text> -- append lines

(1) i\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-Iine fiction, the interior newlines'
must be hidden by a backslash character ('\ ') immediately preceding the new­
line. The < text> argument is terminated by the' first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out­
put regardless of wh&t later commands do to the line which triggered it. The
'triggering line.may be deleted entirely; <text> will still be written to the out­
put.

The < text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause-any change in the line-number counter.

.< text> -- insert lines

· SED-A NON-INTERACTIVE TEXT EDITOR 445

The i n.mction behaves identically to the a function, except that < text> is
, ' written to the output before the matched line. All other ~omments about the a

function apply to the i function as well.

(2)c\
< text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in < text>. Like a and i, c must be followed by a newline hid-

'den by a backslash; and interior new lines in <.text> must be hidden by
backslashes.

The c command may have two addresses, and:therefore select a range of lines.
If it does; all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per 'line deleted. As with a and i,<text>
is not scanned for address matches, and no editing commands are attempted on
it It does not change the line-number counter.

After a line has been deleted by a c function, no further commands; are
attempted on the corpse. . .

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; tt~e backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhhi Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the sa'me effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
'd

n
c\
XXXX

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces 'part of a line (selected by <patt~rn», with <replace­
ment>. It can best be read:

Substitute for <pattern>, <replacement>

446 SUPPORTING TOOLS AND LANGUAGES

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2:2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited br slash (' /') charac­
ters; <pattern> may be delimited by any charncter other than space or new­
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of ·the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in < replacement>. Instead, other char­
acters are special:

& is replaced by the string matched by < pattern>

\d (where d is a single digit) is replaced by the ath substring matched
by parts of < pattern> enclosed in '\ (' and '\)'. If nested sub­
strings occur in < pattern>, the ath is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\ ').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for ail (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the"­
scan for the next instance" of <pattern> begins just after the
end of the inserted characters; characters put into the lin~ from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand -< filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w funCtions (see beloW), combined.

SED-A NON-INTERACTIVE TEXT EDITOR . 447

Examples:

The following command, applied to our standard input,

s/to/by Iw changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and,. on the file 'changes': .

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/L,; ?:lI*P&* Igp
produces:

A stately pleasure dome decree*P:*
Where Alph*P, * the sacred river*P, * ran
Down to a sunles's sea*P.*

Finally, to illustrate the effect of the g flag, the command:

IXlslanl AN/pl

~roduces (assuming nocopy mode):

In XANadu did Kubhla Khan'

and the command:

IXlslanl AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. 'Input-output Functions
(2) p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by < filename>.
If the file previously existed, it is overwritten; if not, it is crea~ed. The lineS
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

~xactly one space must separate the wand < filename> .

A maximum of ten different files may be mentioned in write functions and w
flags after s fUijctions, combined.

(I)r <filename>, -- read the contents of a file

The read function reads the contents of < filename>., and appends them after
the ,line matched by the address. The file is "read and appended regardless of
what subsequent editing commands do to the line whicIlmatched its address.
If , and a functions are executed on the same line, the text from the a'

448 SUPPORTING TOOLS AND LANGUAGES

functions and the r functions is written to the output in the order that the func­
tions are executed.

Exactly one space must separate the rand < filename>. If a file mentioned by
a r function cannot be opened, it is considered a hull file, not an error, and no
diagnostic is given. .

NOTE: Since there is a limit to the number of files that can ~e opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

IKubla/r notel

produces:

In Xanadu did Kubla Khan,
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines~ they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

, ,The next input line is appended to the current line .in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline (s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline characfer in the current pattern
space. If the pattern space becomes 'empty (the only newline was the terminal
newline), read another line from the input. I n any case, begin the list of edit­
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

" SED-A NON-INTERACTIVE TEXT EDITOR 449

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later ~se.

(2) h -- hold pattern space

The h functions copies the contents of the pattern space into a' hold area (des­
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline. '

(2)g -- get contents of hoJd area

The g function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2) x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

lh
lsI did. *1 I
Ix
G
s/\o.l :1

applied to our standard example, produce:

In Xanadu did Kubla Kh-an :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :I.n Xanadu
Through caverns measureless to man ~I,Q. Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-or-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on "the same line), to
, be applied to ~II 'and only those input lines not selected by the adress part.

, (2) { -- Grotip,ing

The g'r04pin~ comma.nd '{' causes the next set of commands to ,be applied ·(or
not applied) as a block to the input lines selected by the·addresses of the group­
ing command. The first of the commands under' c6ntrol of the grouping may
appear on the'same line as the '{' ~r on the next line.

450 SUPPORTING TOOLS AND LANGUAGES

The group of commands is terminated by a matching 4}' standing on a·line by
itself. -

Groups can be nested.

(O):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by band t Junctions. The < label> . may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The' branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the list of
editing commands~ whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2) t < label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to < label > ~ if not, it does' nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(I) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

~

(I)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

Jll Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora­
tories, 1978.

Awk - A Pattern Scanning and Processing Language
(Second Edition)

Alfred v. Aha

Brian W. Kernighal1

Peter J .. ~Veil1berger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patterns. Au,'k makes certain data selec­
tion and transformation operations easy to express~ for example, the awk pro­
gram

length> 72

prints all input lines whose length exceeds 72 characters~ the program

N'F % 2 = = 0

prints all lines with an even number of tields~ and the program

($1 = 10g($"1); print}

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fielqs, variables;
and array elements. Actions may include the same pattern-match(ng construc­
tions as in patterns, as well as ar.ithmetic and string expressions and assign­
ments, if-else, while, for statements. and multiple output streams.

This report contains a user's guide, a discussion of the design an'd imple­
mentation of awk , .and some timing statistics.

S~ptember 1, 1978

451

1. Introduction
Awk is a programming language designed

to make many common information retrieval and
text manipulation tasks easy to state and to per­
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified~ this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXt program
grcp 1 will recognize the approach, although in
awk the 'patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

(print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 - fAISlef

prints all input lines with an A, B, or C in the
second field. The program

$1 ! = prev (print; prev = $1 }

prints all lines in which the first field is different
from the, prev;ous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro­
gram on the set of named files, or on the stan­
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark of Bell Laboratories,

452

awk - f pfile [files]

1.2. Program Structure

An awk program is a sequence ,of state­
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When aU the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat­
terns can be printed several times.) If there is no
pattern for an action, then the action is per­
formed for every input line. A line which
matches no pattern is ignored. -

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter­
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into ··fields." Fields are normally
separated by white space' - blanks or tabs - but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

AWK-A PATTERN SCANNING AND PROCESSING LANGUAGE 453

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument - Fe may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and new lines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An actioh may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print I
prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a ~omma in the print statement will
,be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 I
prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files~ ,
the program

{ print $1 >"fo01"; print $2 >"fo02" I
writes the first field, $1, on the file foo 1, and
the second field on file fo02. The > > notation
can also be used:

print $1 > >"foo"

appends the output to' the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files~ currently it is 10.

Similarly, output can be piped into another
process (on UNIX only) ~ for instance,

print I "mail bwk"

mails the output to bwk.

The variables DFS and DRS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10Id\n", $1, $2

prints $1 as a floating poinf number 8 digits
wide, with two after the decimal point, and $2 as
a lO-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

,A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches, the
beginning of the input, before the first record is
read. The' pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a ~ay to gain con­
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN '{ FS = ":" I
... rest of program ...

Or the input lines may be counted by
..

END {print N'3 I
If BEGIN is present, it must be the first pattern;
END must be the last if used.

454 SUPPORTING TOOLS AND LANGUAGES

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

Ismithl

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu­
lar expression forms found in the UNIX text edi­
tor ed l and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and? for
"zero or one", all as in lex. Character classes
may be abbreviated:- [a-zA-ZO-9] is the set
of all letters and digits. As an example, the awk
program

I[Aa]ho I [Ww]einberger I [Kk]ernighanl

will print all lines which contain any of the
names "Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari­
able matches a regular expression (or does not
match it) with the operators - and !-. The
program

$1 - IUJ]ohnl

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly UJ]ohn, use

$1 - rUJ]ohn$1

The caret - refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres­
sion involving the usual relational operators <,
< =, = =, !=, > =, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.-

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators II (or), &&
(and), and! (not). For example,

$1 > = "5" && $1 < "t" && $1 ! = "smith"

selects lines where the first field begins with "s",
but is not "smith". && and II guarantee that
their operands will be evaluated froll} left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 I ... I
In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive). For example,

Istartl, Istopl

prints all lines between start and stop, while

NR = = 100, NR = = 200 I ... I
does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi­
colons. These action statements can be used to
do a variety of bD'Okkeeping and string manipu­
lating tasks.

AWK-A PATTERN SCANNING AND PROCESSING LANGUAGE 455

3.1. Built-in Functions

Awk provides a "length" function to com­
pute the length of a string of characters, Tt,lis
program prints each record, preceded by. its
length:

. (print length, $0)

length by itself is a "pseudo-variable" which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

(print length($O)' $0)

. The argument may be any expression.

A wk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func­
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 1 0 II length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit­
ted, the substring goes to the end of s. The
function index(s 1, s2) returns th~ position
where the string s2 occurs in s1, or zero if it
does not.

The function sprintf(t, e1, e2, ...) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

x = ~printf("%8.2f %10Id", $1, $2)

sets x to the string produced by formatting the.
values of $1 and $2.

3.2. . Variables, Expressions, and Assign­
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa' wnenever context
demands it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be inter-

preted 'as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (o.ther than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums. of the first two fields can be compu ted by

(s1 + = $1; s2 + = $2)
END (print s1, s2)

Arithmetic is done internally in floating
point. The arithmetic operators are +, -, *, I,
and % (mod). The C increment + + and decre­
ment . - - operators are also available, and so
are the assignment operators +=, -=, *=,
1=, and % =. These operators may all be used
in expressions.

3.3. Field Vpriables

Fields in awk share essentially all of the
properties of variables - the~ may be used in
arithmetic or string operations, and may be
assigned to. Thus one can leplace tfie first field
with a sequence number like this:

($1 = NR; print)

or accumulate two fields into a third, like this:

t' $1 = $2 + $3; print $0)

or assign a string to a field:

if ($3 > 1000)
. $3 "too big"
print

which replaces the third field by "too big" when
it is, and in any case prints the record.

F,ield references may be numeriCal expres­
sions, as in

(print $i, $0 + 1), $0 +n))

Wh~ther a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 = = $2) ...

fields are treated as strings.

Each input line is split into fields automati­
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1), ... , array[n).
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS· is used as the
separator.

456 SUPPORTING TOOLS AND LANGUAGES

3.4. String Concatenation

Stril)gs may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prin ts the two fields separated by H is ". Vari­
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared~ they
spring into existence by being mentioned. Sub­
scripts may have any non-null value, including
non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order '1ith the awk pro­
gram

{ x[NR] = $0 }
END { ... program ... I

The first action merely records each input line in
the array x.

Array elements may be named by non­
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro­
gram

/apple/ {x["apple"] + + I
/orange/ { x["orange"] + + I
END (print x["apple"], x["orange"]

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated~ if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i = 1
while (i < = NF) {

print $i

++i

The for statement is also exactly that of C:

for (j = 1 ~ i < = NF; i + +)
print $i

does the same job as the while statement above.

There is an alternate form of the for state­
ment which is suited for accessing the elements
of an associative array:

for (j in array)
statemel1f

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur­
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, < =, >, > =, = = (His equal to"), and
! = (Hnot equal to") ~ regular expressi~n matches
with the match operators - and !-; the logical
operators II, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con­
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan­
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro­
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. DeSign

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first . and sim­
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general­
ity; /grep searches for a set of keywords with a
particularly fast algorithm. Sc:d l provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

AWK-A P~TTERN SCANNING AND PROCESSING LANGUAGE 457 '

Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli­
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con­
venient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within Iines~ it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
. operator for concatenation) rather than on writ­
ing or debugging the code. We· have tried' to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa­
tions, while probably a bad idea for a general­
purpose programming language, is desirable in a
language that is meant to be used for tiny pro­
grams that may even be composed on the com­
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called "report generation" - processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric. information or that certain delim­
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

. A second area· of use is as a data
transformer, converting data from the form pro­
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools 'available on the
UNIX operating system. The grammar is
specified with yacc~4 the lexical analysis is done
by lex~ the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed~ the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-llnO of the UNIX
programs we, grep, egrep, fgrep, sed, lex, and·
awk on the following simple tasks:

1. count the number of lines.

2. print all lines containing "doug".

3. print all lines COiltaining "doug", "ken"
or "dmr".

4. print the third field of each line.

5. print the third and second fields of each
line, in that order .

6. append alI lines containing "doug",
"ken", and "dmr" to· files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "Iine-
number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input~ we have already men­
tioned the others. In all cases the input was a
file containing 10,000, lines as created by the
command Is -/~ each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this· input is 452,960 charac:-
ters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more
general tool lex. In alI cases, the tasks were
about as 'easy to express as awk programs as pro­
grams in these other languages~ tasks involving
fields were considerably easier to express as au:k
programs. Some of the test programs are shown
in awk, sed and lex.

458 SUPPORTING TOOLS AND LANGUAGES

References

1. K. Thompson and D. M. Ritchie, UNIX

Programmer's /vtallua/, Bell Laboratories
(May 1975). Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

3. M. E. Lesk, ""Lex - A Lexical Analyzer
Generator," . Compo Sci. Tech. Rep: No.
39, Bell Laboratories, Murray Hill, New
Jersey (October)975'.

4. S. C. Johnson, ""Yacc - Yet Another
Compiler-Compiler," Compo Sci. Tech.
Rep. No. '32, Bell Laboratories, Murray
Hill, New Jersey (July 1975).

AWK-A PATTERN SCANNING AND PROCESSING LANGUAGE 459

Program 2
we 8.6

grep 11.7 13.1
egrep 6.2 11.5
fgrep 7.7 13.8

sed 10.2 11.6
lex 65.1 150.1

awk 15.0 25.6

3

11.6
16.1
15.8

144.2
29.9

Task
4

29.0
67.7
33.3

5

30.5
70.3
38.9

6 7 8

16.1
104.0 8l.7 .92.8
46.4 71.4 3l.1

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1. END {print NRI

2. /doug/

3. /kenldougldmr/

4. {print $31

5. wrint $3, $21

6. /ken/ {print >"jken"l
/doug/ {print >"jdoug"l
/dmr/ {print >"jdmr"l

7. {print NR ": " $01

8. {sum = sum
END {print sum I

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

+ $41

4. /r]* []*r]* []*\W]*\) .*/sll\ 1 /p

5. /r]* []*\([~]*\) []*\([~]*\) .';sll\2 \1 /p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LJ::X:

1. %{
int i; .
%1
%%
\n i++;

%%
yywrapO (

printf("%d\n", j);

2. %%
~.*doug.*$

\n

printf("%s\n", yytext);

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt

time-sharing system to do arbitrary-precision integer arithmetic. It has provi­
sion for manipulating sc~led fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage .. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits' on the smallest systems to
several thousand on the largest.

November 15, 1978

tUNIX is a Trademark of Bell Laboratories.

460

DC is an arbitrary precision arithmetic package implemented on the UNIXt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
re~erse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional ~igits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami­
liar style of higher-level programming languages and compiles output which· is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC cQmmands work by
taking the top number or two off the stack, performing the desired operation~' and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A - F which are treated as digits with values 10.:-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.·

+ - * % "
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(J), remaindered (%), or exponentiated ("). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

461 .

462 SUPPORTING TOOLS AND LANGUAGES

S:X

Ix

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as. a stack and .the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

~

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

The top value on the stack is duplicated.

The top value on the" stack is printed. The top value ,remains unchanged.

All values on the stack arid in registers are printed.

treats the top element' of the stack as a character string, removes it from the stack, and
executes it asa string of DC commands.

(... I

q

puts the bracketed character string onto the top of the stack.

exits the program. If e?Cecuting a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by

lthat·value.

<x >x =x !<x !>x !=x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element. on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed descriptiori below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX

command terminates.

All values on the stack are popped; the stack becomes empty.

o

k

z

?

DC-AN INTERACTIVE DESK CALCULATOR 463

The top value on the stack is popped and used as, the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No' mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The to'p of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be' greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack. '

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept.. in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string ,is stored with the low-order digit' at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negatiye numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result,
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi­
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal p~int. ' The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number. '

The Allocator

DC uses a dynamic s~ring storage allocator for all of its internal storage. All reading and
writing of numbe.5 internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pOinters to these headers. . .

464 SUPPORTING TOOLS AND LANGUAGES

The allocator fnitially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and" if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using 'these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a seri.es of read or write calls. The
~rite pointer is interpreted as the end of the information-containing portion of" a string and a
call to read beyond that point returns an end-of-string indication. Ail attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy' the old- string
into the larger block. ' ' '

Internal Arithinetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their 'scaie, factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After 'performing
the required, arithmetic operation, the 'proper scale factor is appe'itded .to the end of the number
before it is pushed on the' stack.

A registercalied scale plays a part iIi tlie results of most arithmetic uperations. scale is
the-bounQ.on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top'of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater, than or equa,l, to 0 and
less. than 100.' The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations. '

Addition and Subtraction

The scales of the two numbers are comJjared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd.' The scale of the result is then set to the
larger of,tlie scales of the two operands.

Subtraction is performed by negating the number to -be subtracted and proceeding as in
addition.

~ .. , Finally, the addition is performed digit by digit from the low- order end of the number.
The carries are propagated in the usual way. The resulting number i~ brought. into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, -1 by the digit -1. In any case, digits which are not in the range

,O-99"must be brought in'to that range, p~opagating any carries ~r borrows' that result.'

DC-AN INTERACTIVE DESK CALCULATOR 465

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low oider digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales' of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits' removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The,
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. At the end, the digits of the quotient are put into ·the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Reinainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the oper~nd. Zeros are added if necessary to make the integer
result have a scale that is the larger of toe internal quantity scale and the scale of the operand.

I

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule /

Xn+l = 1/2(Xn+L)
Xn

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then t~e
result is 1. If the exponent is negative, then it is made positive and the base .is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond t6 the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed. '

466 SUPPORTING TOOLS AND LANGUAGES

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the
numbers 10-15 regardless of input base. The i command can be used to change the base of
the, input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value' of the input base on the stack.

Output Commands

The command p causes the to'p of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The 0

command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output: The output base in initialized to 10.
It will work correctly for any base. The command 0 pushes the value of the output base on the
stack. -

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line;' a \ indicates a continued line. All choices of input and output bases work correctly,
although 'not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits, in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexad~cimal cot:J,'versions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands s and I. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the \
stack. The I command has no effect on the contents of register x. The s cammand, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a du'plicate of the number on
the top of the stack on the stack. ' The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and .Calls

Enclosing a string in [) pushes the ascii string on the stack. The q' command quits or, in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with [) to store strings, _x to execute and the test';
ing commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relatio'n. For example, to print the numbers 0-9,

Hipl t si li10 >a]sa
Osi lax

DC-AN'INTERACTIVE DESK CALCULATOR 467

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work' on, DC can be
thoijght of as having individual stacks for each register. These registers are operated oil by the
commands Sand L. Sx pushes the top value of the' main stack onto t~e stack for the register
x. Lx pops the stack for register x, and puts the result on the main stack. The cominands sand
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before. '

The commands to work on arrays are : and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ,;X is the command to load the, main
stack from the array x. The value on the' top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com­

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general 'Purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket L .. 1 commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type' arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in th~
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all­
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a' minimum' the number of
decimal places in the operands but not to give more than that number of digits unless the user

468 SUPPORTING TOOLS AND LANGUAGES

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no ~.ay to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no .digits are thrown away.

References

[1] L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator Language.

[2] K. t. Knowlton, A Fast Storage A /locator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

BC - An Arbitrary Precision Desk-Calculator L~nguage

Lorinda Cherry .
Robert MorriS

Bell Laboratories
Murray Hill, New jersey 07974

ABSTRACT

Be is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-II under the UNIxt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely· large integers and on scaled fixed:point
nun:tbers.

These routines are themselves based on a dynamic storage all~cator.

Overflow does not oc~ur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and, Bessel functions of integer order.

Some of the us~s of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

469

Introduction'
J

BC'is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called. DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no m·eans intended to provide a complete programming language. It is a
minim~l language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and· output in bases' other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8~ ,

, '

The actual 'limit on the number of digits that can be handled depends on the amount of
storage available on' the machine.. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

~he syntax of BC has been deliberately selected to agree substantially with the C language
[2]., Those who are familiar with C will find few surprises'in this language.

Simple Compufations with ·Integers

The simplest kind of statement is an arithmetic expression on 'a line by itself. For
instance, if you type in th~ line: J

142857 + 285714

the progra,m responds immediately with the line

428571

The operators '-, *, /, %, and';' can also be used~ they indicate subtraction; multiplication, divi­
sion, remaindering, and exponentiation~ respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment. '

, Any term in an expression may be prefixed by a minus sign tp indicate that it is to be
',,,negated (the 'unary' minus sign). The expression

'7+-3

is interpreted to m~an that' -'3 is to be added to 7.

More complex expressions with severai opera:tor's and- with parentheses are interpreted just
as in Fortran, with " having the greatest binding, power:, then * and % and' /, and finally + and
-. Contents of parentheses are evaluated before, material outside the parentheses. Exponen­
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

470

BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE 471

aAbAc and aA (bAc)

are equivalent, as ar~ the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention tha~

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. , The value
of an expression can be assigned to a register in the usual way. The statement

x=x+3·

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines .

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' ·and 'obase'. The contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines .

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of try'ing to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this' statement will have no effect. For those
who deal in hexadecimal notation, the characters A - F are permitted in numbers (no matter
what base' is in effect) and are Interpreted as digits having values 10-15 respectively. The
statement

ibase ~ A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases' less than 1 and greater than 16~

The contents of 'obase', initially' set to 10,. are used as the base for output numbers. The
lines

obase. = 16
1000

will produce the output line

472 SUPPORTING TOOLS AND LANGUAGES

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han­
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (Le., m'ore than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best ~o remember that 'ibase' and 'abase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, r~spectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits aftet the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined hy the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands.- In this case, there is never any
truncatio~ of the'result. For multiplications, the scale of the result is never, less than the max­
imum of the two scales of the operands, never more than the sum.of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
intermll quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled' as if the implied mUltiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of 'scale'.

All of the internal' operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed. '

The' contents of 'scale' must be no greater than 99 and no less than O. It is initially set to
O. In case you need more than 99 fraction digits, you may arrange your own scaling. ,.

The- internal quantities 'scale' , 'ibase', and 'obase' can be used in expressions just like
other variables. TQe line

scale = scale + 1

increases the value of 'scale' by one, and the line,

scale

ca~ses th~ current value 'of 'scale' to be pr~nted .
. The value of 'scale' retains its meaning as a numb~r -of decimal digits to be retained in

internal computation even when 'ibase' or 'obase' are not equal tol10. The internal computa­
tion's (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits,' never hexadecimal or octal or any other kind of digits.

.. • f '.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col­
-lide with simple variable names. Twenty-six different 'defined functions are permitted in addi­
tion to the twe~~y-six variable names. The 'line

BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE 473

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace}. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second; the value of the expression
in" parentheses;

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'aute;>' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on r~turn. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are '
given a value on entry to the f~nction. An example of a function definition is

define a (x,y){
auto z
z = x*y
return (z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used. .

Functions with no arguments are defined and called using parentheses with nothing
between them: b 0 .

If the function a above has been defined, then ~he line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple "variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zerq and less than or equal to 2047.

Subscri"pted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a fUlwtion, or may be declar~d as
automatic in a function definition by the, use of empty brackets: I

474 SUPPORTING TOOLS AND LANGUAGES

f(a[])
define f(a [])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 'if', the 'while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The range of each of them is a statement or a compound statement

. consisiing of a collection of statements enclosed in braces. They are written in the following
way

or

if (relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

if (relation) {statements}
while(relation) {statements}
for (expression 1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, < =, ? =,
= =, or ! =. The relation ~ = stands for 'equal to' and ! = stands for 'not equal to'. The
meaning of the remaining relational operators is clear. "

BEWARE of using = instead of = = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really wi~l not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence. .

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con-
trol passes to the next statement beyond the range of the while. .

The 'for' statement begins by executing 'expression 1 '. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical. use of the 'for' statement is for a controlled itera­
tion, as in the statement

forO=l; i<=10; i=i+I) i

which will print the integers from' 1 to 10. Here are some examples of the use of the control
statements.

define f(n) {
auto i, x
x=l
forO=l; i< =n; i=i+I) x=x*i
return (x)
}

. The line

f(a)

BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE 475

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be posi,tive integers).

define b(n,m){
auto x, j
x=1
forG = 1; j< =m; j =j + I) x =x*(n -j + I)/j
return (x)
}

The following function computes values of the exponential function by summing the, appropri:.
ate series without regard for possible truncation errors:

scale = 20
define e (x) {

auto a, b, c, d, n
a'= 1
b = 1
c = 1
d=O
n = 1
while (1 = = I) (

Some Details

a = a*x
b = b*n

: c' = C + alb
n = n + 1
if(c = =d) return (c)
d=c

There are, some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

, ,.
"'If an assignment statement is parenthesized, it then has a value and it can be used any­

where that an expression can. For example, the line

" (x=y+ 17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even, when it is not
parenthesized.

x = a[i=i+1l
, ,

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in' exactly the same manner as they do in ,the C '
language. Consult the appendix or the C manuals [2] for their exact workings.

476 SUPPORTING TOOLS AND LANGUAGES

~ =y=z is the same as
x =+ y
x =- y
x =* y
x =1 y
x =% y
x =" Y
x++
x--
++x
--x

x= (y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x%y
x = x"y
(x=x+I)-1
(x=x- I) + 1
x = x+l
x = x-I

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x = -y and x = -yo The first replaces x by x -y and the second by -yo

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with '/*' and end with '*/'.

3. There is a library of math functions which may be obtained by typing at command level

bc -1

This command will load a set of library functions which, at the time of writing, consists of sine
(named's'), cosine ('c'), arctapgent ('a'), natural logarithm ('I'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The­
library sets the scale to 20. You can reset' it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type

bc file ...

BC will read and execute the named 'file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknow iedgemen t

The compiler is written in Y ACC [4]; its original version was written by S. C. Johnson.

References

[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie~ The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard 'Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975. .

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

Be-AN ARBITRARY PRECJSION DESK-CALCULATOR LANGUAGE 477

Appendix

1. Notation

In the following pages syntactic categor!es are in italics; literals are in bold; material in
brackets [] is optional. .

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be hlanks, tabs or comments. Newline characters or semicolons separate state~
ments.

2.1. Comments

Comments are introduced by the characters /* and terminated by * /.

2.2. Identifiers

There ar~ three kinds of identifiers ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types, of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase ' if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. 'Constants

Constants consist of arbitrarily long numbers with an opti.onal deciIll:al point.. The hexade-·
cimal digits A- F are also recognized as digits with values 10-15, respectively.· .

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

478 SUPPORTING TOOLS AND LANGUAGES

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. ident~ers

Simple identifiers are named expressions. They have an initial value of zero.

~"'\ 3.1.1.2. array-name [expression I
?' Array elements are named expressions. They have an initial value of zero.
l .. '>

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1:2.1./unction-name ([expression [, expression .. .]])

A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effeCt"
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the' expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expresskm. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits, in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive exp~essions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE 479

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decremen~ing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing.
\

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression A expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the .right expression, then the scale of the result is: .

min (axb, max (scale, a))

3.4 .. Multiplicative operators

The operators *, /, % bind left to right. '

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the 'two
expressions, then the scale of the result is: '

min (a +b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%b is a-a/b*b. .

The scale of the result is the sum of the scale of the divisor and.the value of scale

,!'

480 SUPPORTING TOOLS AND LANGUAGES

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on. the right to the named
expression on the left.

3.6.2. named-expression = + expression

3.6.3. hfamed-expression = - expression

3.6.4. named-expression = * expression

3.6.5. named-expression = / expression

3.6.6. named-expression = % expression

3.6.7 .. named-expression =" expression

The result of the above expressions is equivalent to "named expression";' named expres­
sion OP expression", where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression> expression

4.3. expression < = expression

4.4. expression > = expression

4.5. expression = = expression
,

4.6. expression! = expression

BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE 481

5. Storage classes

There are only two storage. classes in BC, global and automatic (Ioca)). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables i,n BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and· used when one statement is expected by sur­
rounding them with { }.

6.3. Quoted string statements

"any stri~g"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu- .
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
,first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

482 SUPPORTING TOOLS AND LANGUAGES

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto ident(/ier [,ident(/ier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define([par~meter[,parameter . ..]]) {
statements}

The define statement defines a function. The parameters may"'·be ordinary identifiers or
array names. Array na~es must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement c~uses termination of a function, popping of its auto variables, and
specifies the result of the function .. The first form is equivalent to return (0). The result of. tlie
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a Be program and returns control to UNIX when it ..
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

o. Introduction

UNlxt Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This do~ument describes the usage and input. syntax of the UNIX pop-II assembler as.
The details of the. pOP-II are not described.

The in'put syntax o·f the UNIX assembler is generally similar to that of the DEC asSembler
PAL-llR, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-ll-ASDB-D, which describes PAL-llR, although naturally one must use
care in assuming that its rules apply to as ..

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contajns relocation information and a complete symbol table; thus the output is acceptable
tD the UNIX link-editor Id, which may be used to combine the outputs of several assembler runs
and to o~taln object programs from libraries. The output format has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing.

1. Usage

as is 'used as follows:

- as I -:-u] [-0 olsltPUl1.file, ...

If the optional" -u" argument is given, all undefined symbols in the current assembly· will be
made undefined-external. See the .glob! directive 'below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several piec~s and assembled together.

, The output of the assembler is by default placed on the file f!.out in the current directory~
the" -0" flag ca-uses the output to be placeo on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable~ otherwise, if

, it is produced at all~ it is ma·de non-executable.

2. Lex.ical conventions

Assembler tokens include identifiers (altern~tively, ",symbols" or "names'''), temporary
symbols, constants, and operators.

2~1 Identifiers

An identifier consists of a sequence of 'alphanumeric characters (including period " . " ,
underscore" ", and tilde "-,, as alphanumeric) of which the first may not be numeric. Only
the ·first eight-characters are significant. When a name ,begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which. can
match no other occurrence of the identifier. This feature is used by the C compiler to place

t UNIX is a Trademark of Bell Laboratories.

483

484 SUPPORTING TOOLS AND LANGUAGES

names of local variables in the output symbol table without having to worry about making them
unique ..

2.2 Temporary symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are
discussed fully in §5.1.

2.3 Constants

An octal constant .consists of a sequence of digits; "8" and "9" are taken to have .octal
value 10 and.11. The constant is truncated to 16 bits and interpreted in two's complement
notation.

A decimal constant cqnsists of a sequence of digits terminated by a decimal point" .".
The magnitude of the constant shQuld be representable in 15 bits; i.e., be less than 32,768.

A single-character coristant consists of a single quote ",,, followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place' of the ASCII

character to represent new-line and other non-graphics (see String statements, §5.5). The
constant's value has the code for the given character in the least significant byte of the word
and is null-padded on the left.

A double-character constant consists of a double quote""" followed by a pair of ASCII

characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the ASCII characters to represent new-line and other non-graphics tsee String
statements, §5.5). The constant's value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators

There are several siI1gle- and double-character operators; see §6.

2.5 Blanks,

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments

The character" /" Introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

. Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor Id (using its" -n" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructioris which will be modified dur­
ing execution. Anything which may go in the' text segment may be put into the data segment.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. ' The length of the

UNIX ASSEMBLER REFERENCE MANUAL 485

bss segment (like that. of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to O. Typi­
cally the bss segment is set up by statements exefTlPlified by

lab: • = .+ 10

The advantage in- using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

One special symbol, ".", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change~
furthermore, the value of " . " may not decrease. If the effect of the assignment is to increase
the value of " . ", the required number of null bytes are generated (but see Segments above).

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statemel1ts: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a c'olon (:). The effect of a name label is to assign the current value and
type of the location counter " ." to the name. An error is indicated ·in pass 1 if the name is
already defined~ an error is indicated in pass 2 if the " value assigned changes the definition
of the label.

A numeric label consists of a digit 0 to 9 followed' by a colon (:). Such a label serves to
define temporary symbols of the form "nb" and "nf", where n is the digit of the label. As in
the case of name labels, a numeric label assigns the current value and type of " . " to the tem­
porary symbol. However, several nume"ric labels with the same digit may be used within the
same assembly. References of the form "nf." refer to the first numeric label "n:" forward

. from the· reference~ "nb" symbols refer to the first ~~n :" label backward from the reference.
This sort of temporary label was introduced by; Knuth [The Art of Computer Programming, Vol I:
Fundamental Algorithms]. Such labels tend to conserve both the symbol table space of. the
assembler and. the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement ~wnlCn may, however, have labels): A null state­
ment is ignored by the assembler. Common exampi~s of null statements are empty lines or
lines containing only a label. .

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key­
word. The assembler computes its 06-bit) value and places it.in the output stream, together
with the appropriate relocation bits.

486 SUPPORTING TOOLS AND LANGUAGES

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign (=), and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by
assignment.

~ny external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global syrhbol by assigning to it, and'that it is impossible to define a
symborto be offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter" . ". It is required, how­
, ever, that the type of the expression assigned be of the same type as " . ", and it is forbidden
, to decrease the ~alue of " . ". In practice, the most common assignment to " . " has the form
": ~ . +. n" for some number n; this has the effect of generating n null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote "<" followed by a sequence of ASCII characters not

\.

including newline, followed by· a right string quote" >". Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol­
lows:

\n NL (012)
\s SP (040)
\t HT (011)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2,3 above). '

5.6 Keyword statements

Keyworc;l statements' are numerically the most common type, since most machine instruc­
tions, are of this sott. A keyword statement begins with one of the many predefined keywords
of tlte assembler~ the syntax of the remainder depends on the' keyword. All the keywords are
li,sted below with the syntax they require.

6. Expressions·

An expressi.on IS a sequence' of. symbols representing a value. Its constituents are
idt1ntifiers, constants, temporary symbols, operators,' and ,brackets. Each expression has ,a type.

All operators in expressions are fundamentally binary in nature~ if,an operand is mjSsing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits bf
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except 'for the effect of brackets.

UNIX ASSEMBLER REFERENCE MANUAL 487

6.1 Expression operators

The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a "+"
had appeared.

+ addition

•
\I
8

I
\>
\<
%

subtraction

multiplication

division (note that plain H / " starts a comment)

bitwise and

bitwise or

logical right shift

logical left shift

modulo

a! b is a or (not b); i.e., the or of the first operand and the one's complement of the
second; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets H [] ". (Round parentheses are
reserved for address modes.)

6.2 Types

The assembler deals with a number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each symbol is undefin~d. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used to
load the assembler's output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg-
ment of the program. If the assembler· output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor's output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of " . " is text O.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol" may change during a sub­
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of " . " is data O.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, si"nce previously loaded programsLmay have bss segments.
After the first .lJss statement, the value of H • " is bss 0:

488 SUPPORTING TO,OLS AND LANGUAGES

external absolute, text, data, or bss

register

symbols declared .globl but defined within an assembly as absolute, text, data, or bss
symbols may be used exactly as if they were not declared .globl~ however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

The symbols

rO ... r5
frO ... fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names~ the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type,propagation in expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as "rO + 3" . If two operands of "other
type" are combined, the result has the numerically larger type An "other type" combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external, the
result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand) ~ or
the second operand may have the same type as the first (in which case the result is abso­
lute). If the first operand is external undefined, the second must be absolute. All other
combinations are illeg~l.

This operator follows no other rule than that the result has the value of the first operand
and the type of the second.

UNIX ASSEMBLER REFERENCE MANUAL 489

others
It is illegal to apply these operators to any but absol~te symbols.

7. Pseudo-operations

The ~eywords 'listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff] ...

means that 0 or more instances of the given stuff may appear. Also, boldface 'tokens are
literals, italic words are substitutable.

7.1 .byte expression [,expression]

The expressions in the comma-separated list are truncated to 8 ,bits and assembled in suc­
cessive bytes. The expressions must be absolute. This 'statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even

If the location counter H ." is odd, it is advanced by one so the next statement will be
assembled at a word boundary. .

7.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero, the .if is
ignored; if zero, the statements between the .if and the matching .endif (below) are ignored .
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs.are
scanned for, and moreover all names are entered in the symbol table. T.hus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See.if above.

7.5 .globl name [, name] ...

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a label) they act within the assembly exactly as if the .globl 'statement were not
given; however, tbe link editor Id may be used to combine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in §l, it is possible to force the assembler to make all otherwise undefined sym ..
boIs external.

7.6 .text

7.7 .data

7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the ~ext segment. It is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and H • " moved
about by assignment.

490 SUPPORTING TOOLS AND LANGUAGES

1.9 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression " name

That is, the type of name is "undefined external", and its value is expression. In fact the name
behaves in the current assembly just like an undefined external. However, the link-editor Id
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. Machine instructions
. .

Because of the rather complicated instruction and addressing structure of the pOP-II, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the 'machine handbooks should be consulted on the semantics.

8.1 Sources and Destinations

The syntax of general source and deStination addresses is the same. Each must have one
of the following forms, where reg is a register symbol, and expr is any sort o.f expression:

syntax words· mode
reg 0 00+ reg
(reg) + 0 20+ reg
- (reg) 0 40+ reg
expr (reg) I 60+ reg
(reg) . 0 IO+reg
* reg 0 IQ+reg
* (reg) + 0 30+reg
* - (reg) 0 50+ reg
* (reg) I 70+ reg
*expr (reg) I 70+ reg
expr. I 67
$expr I 27
*expr I 77
*$expr I 37

The words column "gives the number of address words generated; the mode ,column gives the
octal address-mode number. The syntax of the address forms i"s identical to that in DEC assem­
blers, except that "*,, has been substituted for H@" and "$" for "#"; the UNIX typing con­
ventions make "@" and "#" rather in'convenient.

Notice that mode "*reg" is identical to "(reg)"; that "* (reg)" generates an index word
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc­
relative references independent of the type of the expression. To force a non-relative refer­
en~e, the form "*$expr" can be used, but notice that further indirection is impossible.

\

8.3 \ Simple machine instructions

\ The following instructions are defined as absolute symbols:
\

ele
elv
elz
ehl
see
sev
sez
sen

UNIX ASSEMBLER REFERENCE MANUAL 491

They therefore require no special syntax. The· pop-II hardware allows more than one of the
"clear" class, or alternatively more than one of the "set" class to be or-ed together~ this may
be expressed as follows:

clC I clV

8.4 Braneh .

The following instructions take an expression ~s operand. The expression must lie in the
same segment as the reference, cannot be undefined-external, and its value cannot differ from
the current location of ,', . " by more than 254 bytes:

br bIos
bne bve
beq .bvs I

bge bhis
bIt bee (= bee)
bgt bee
ble blo
bpI bes
brni bes (= bcs)
bhi

bes ("branch on error set") and bee ("branch on error clear") are intenged to test the error bit
returned by system'calls (which is the c-bit).

8.5 Extended braneh instructions

The following symbols are followed by an expression representing an address in the same
'segment as " . ". If the target address is close enough, a branch-type instru'ction is generated~ if
the address is too far away, a jrnp will be m ~d. \

jbr . jlos
jne jve
jeq jvs
jge jhis
jIt jee
jgt jee
jIe jlo
jpl jes
jrni" jes
jhi

jbr tur.ns into a plain jrnp if its targef.is too remote~ the others' (whose names are contructed by
replacing the "b ,', intthe branch instruction's' name· by ~'j") turn into' the converse branch over
a jrnp to tl1e target address.

492 SUPPORTING TOOLS AND LANGUAGES

8.6 Single operand instructions

The fallowing symbols are names of single-operand machine instructions. The fotm of
address expected is discussed in §8.1 above. '

elr sbcb
elrb ror
com rorb
comb rol
,inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb' jmp
adc swab
adcb tst
sbc tstb

8. 7 Do~~ble operand instructions

The following instructions take a, general source and destination (§8. 1), separated by a
comma, as operands.

8.8

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

Miscellaneous instructions

The following instruction's have more specialized syntax. Here reg is a register name, src
~.nd dst a general source or destination (§8.1), and expr is an expression:

jsr reg.dst
rts reg
sys expr
ash src. reg (or, als)
ashc src. reg (or, alsc)
mul src. reg (or, mpy)
div src. reg (or, dvd)
xor reg. dst
sxt dst
mark 'expr
sob reg. expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in six bits,
'and the expression in sob must be in the same segment as "." " must not be external-
undefined, must'be less than" . ", and must be within 510 bytes of " . ". .,.

UNIX ASSEMBLER REFERENCE MANUAL 493

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:

cfcc
setf
setd
seti
setl
elrf . fdst
negf fdst
absf fdst
tstf fsre
movf fsre.freg (= ldf)
movf freg.fdst (= stf)
movif sre.freg (= ldcif)
movfi freg. dst (r= stcfi)
movof fsre.freg (= ldcdf)
movfo freg . ./ast (= stcfd)
movie sre.freg (= ldexp)
movei .freg. dst (= stexp)
addf fsre.freg
subf fsre . ./reg
mulf fsre . ./reg
divf ./sre . ./reg
cmpf fsre..!reg
modf ./sre .. treg
Idfps sre
stfps dst
stst dst

./sre, jast, and freg mean floating-point source, destination, and register respectively. Their syn­
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can b~ a .treg.

The names of several of the operations have been changed to bring -out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
Idf depending respectively on whether its first operand is or is not a register. Warning: Idf sets
the floating condition codes, stf does not.

9. Other symbols

9.1 ..

The symbol" .. " is the .relocation counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word"if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of " .. " is subtracted.

Thus the value of " .. " can be taken to mean the starting memory location of the pro­
gram. The initial value of " .. " is O.

The value of " .. " m"ay be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change" .. " midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of " .. ".

I

494 SUPPORTING TOOLS AND LANGUAGES

9.2 System calls

System call names are not predefined. They may be found in the file lusrlincludelsys.s

10. Diagnostics

·When an input file cannot be read, its name followed by a question mark is typed and·
assem·bly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass 1
cause cancellation of pass 2. The possible errors are:

)
]

>
*

A

B

E

F

G

I

M

o
P

R
- U

:X

parentheses error
parentheses. error
string not terminated properly
indirection (*) used illegally
illeg&l assignment to " . "
error in address
branch address is odd or too remote
error in expression
error in local ("f" or "b") type symbol
garbage (unknown) character .
end of file inside an .if
multiply defined symbol as label
word quantity assembled at odd address
pliase error- " . " different in .pass 1 and 2
relocation error
·undefined symbol
syntax. error

IMPLEMENTATION,·
MAINTENANCE,
AND MISCELLANEOUS

Setting Up Unix - Seventh Edition

Charles B. Haley
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The distribution tape can be used only on a PEC PDP11/45 or PDP11/70 with RP03,
RP04, RP05, RP06 disks and with a TUI0, TUI6, or TE16 tape drive. It consists of some prel­
iminary bootstrapping programs followed by two file system images~ if needed, after the initial
construction of the file systems individual files can be extracted. (See restor(1»

If you are set up to do it, it might be a good idea immediately to make a copy of the tape
to guard against disaster. The tape is 9-track 800 BPI and contains some 512-byte records fol­
lowed by many 10240-byte records. There are interspersed tape marks.

The system as distributed contains binary images of the system and all the user level pro­
grams, along with source and manual sections for them-about 2100 files altogether. The
binary images, along with other things needed to flesh out the file system enough so UNIX will
run, are to be put on one file system called the ~root file system'. The file system size required
is about 5000 blocks. The file second system has all of the source and documentation. Alto­
gether it amounts to more than 18,000 512-byte blocks.

Making a Disk From Tape
Perform the following bootstrap procedure to obtain a disk with a root file system on it.

I. Mount the magtape on drive 0 at load point.

2. Mount a formatted disk pack on drive O.

3. Key in and execute at 100000

TUIO
012700
172526
010040
012740
060003
000777

TUI6/TEI6
Use the DEC ROM or other
means tq load block I
(i.e. second block) at 800 BPI
into location 0 and transfer
to O.

The tape should move and the CPU loop. (The TUIO code is notthe DEC bulk ROM for
tape~ it reads block 0, not block I.)

4. If you used the above TUIO code, halt and restart the CPU at 0, otherwise continue to
the next step.

5. The console should type

Boot

Copy the magtape to disk by the following procedure. The machine's printouts are shown
in italic, explanatory comments are within (). Terminate each line you type by carriage
return or line-feed. There are two classes of tape drives: the name ~tm' is used for the
TUIO, and ~ht' is used for the TUI6 or TEI6. There are also two classes of disks: ~rp' is

497

498 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

used for the RP03, and 'hp' is used for the RP04/S/6.

If you should make a mistake while typing, the character '#' erases the last character
typed up to the beginning of the line, and .the character '@' erases the entire line typed. Some
consoles cannot print lower case letters, adjust the instructions accordingiy.

(bring in the program mkfs)
:tm(0,3) (use 'ht(0,3)' for the TU16/TE16)
file system size: SOOO
file system: rp(O,O) (use 'hp(O,O)' for RP04/S/6)
isize = XX
min = XX
(after a while)
exit called
Boot

This step makes an empty file system.

6. The next thing' to do is to restore the data onto the new empty file system. To do this you
respond to the':' printed· in the last step with

(bring in the program restor)
:tm(0,4) . ('ht(0,4)' for TU16/TE16)
tape? tm(O,S) (use 'ht(O,S)' for TU16/TE16)
disk? rp(O,O) (use 'hp(O,O)' for RP04/S/6)
Last chance be/ore scribbling on disk. (you type return)
(the tape moves, perhaps S-IO minutes pass)
end o/tape
Boot

You now have a UNIX root file sy~tem.

Booting UNIX

You probably have the bootstrap running, left over from the last step above~ if not, repeat
. the boot process (step 3) again. Then use one of the following:

:rp(O,O)rptmunix (for RP03 and TUIO)
:rp(O,O)rphtunix (for RP03 and TU16/TE16)
:hp(O,O)hptmunix (for RP04/S/6 and TUIO)
:hp(O,O)hphtunix (for RP04/S/6 and TU16/TE16)

The machine should type the following:

mem = xxx

The mem message gives the memory available to user programs in bytes.
. I .

UNIX is now running, and the 'UNIX Programmer'& .manual' applies~ references below of
the form XCV) mean the subsection named X in. section'Y of the manual. The '#' is the
prompt from the Shell, and indicates you are the super-user. The user name of the super-user
is 'roof if you should find yourself in multi-user mode and need to log in~ the password is also
'root'.

To simplify your life later, rename the appropriate versioll'of the system as specified
abov~ plain 'unix.' For example, use mv (1) as follows if you have an RP04/S/6 'and a TU16
tape:

mv hphtHnix unix

SETTING UP UNIX-SEVENTH EDITION 499

In the future, when you reboot, you can type just

hp(O,O) unix

to the ':' prompt. (Choose appropriately among 'hp', 'rp" 'ht', 't'm' accqrding to your
configuration) .

You now need to make some special file,entries in the dev directory. These specify what
,sort of disk you are running on, what sort of tape drive you have, and where the file systems
are. For simplicity" this recipe creates fixed device names. These names will be used below,
and some of them are built into various programs, so they are most convenient. However, the
names do not always represent the actual major and minor device in the manner suggested in
section 4 of the Programmer's Manual. For example, 'rp3' will be used for the name of the file
system on which the user file system is put, even though it might be on an RP06 and is ,not
logical device 3. Also, this sequence will put the user file system on the same disk drive as the
root, which is not the best place if you have more than one drive. ,Thus the prescription below
should be taken only as one example of where to put things. See also the section on 'Disk hiy-
out' below. .

In any event, change to the dev directory (cd(1» and, if you like, examine and perhaps
change the makefile there (make (I».

cd Idev
cat makefile

Then, use one of

make rp03
make rp04
make rp05
make rp06

depending on which disk you have. Then~ use one of

make tm
make ht

depending on which tape you have. The file 'rpO' refers to the root file system~ 'swap' to the
swap-space file system~ 'rp3' to the user file system. The devices 'rrpO' and 'rrp3' are the 'raw'
versions of the disks. Also, 'mtO' is tape drive 0, at 800 BPI~ 'rmtO' is the raw tape, on which
large records can be read and written~ 'nrmtO' is raw tape with the quirk that it does not rewind
on close, which is a subterfuge that permits multifile tapes to be handled.

The next thing to do is to extract the rest of the data from the tape. Comments are
enclosed in () ~ don't type these. The number in the first command is the size of the file sys­
tem~ it differs between RP03, RP04/5, and RP06.

letc/mkfs Idev/rp3 74000 (153406 if on RP04/5, 322278 on RP06)
(The above command takes about 2-3 minutes on an RP03)
dd if=/dev/nrmtO of=/dev/null bs=20b files=6 (skip 6 files on the tape)
restor rf Idev/rmtO Idev/rp3 ,(restore the·file system)
(Reply with a 'return' (CR) to the 'Last chance' message)
(The restor takes about 20-30 minutes)

All of the data on the tape has been extracted.

You may, at this point mount the source file system (mount (I ». To do this type the fol­
lowing:

letc/mount Idev/rp3 lusr

The source and manual pages are now available in subdirectories of lusr.

500 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

The above mount command is only needed if you intend to play around with source on a
single user system, which you are going to do next. The file system is mounted automatically
when multi-user mode is entered, 'by a command in the file /etc/rc. (See 'Disk Layout' below).

Before anything further ~s done the bootstrap block on the disk (block 0) should be filled
in. This is done using the command

dd if=/usr/mdec/rpuboot of=/dev/rpO count= I

if you have the RP03, or

dd if=/usr/mdec/hpuboot of=/dev/rpO count= I

if you have an RP04/S/6. Now the DEC disk bootstraps are usable. See Boot Procedures(8)
for further information.

Before UNIX is turned up completely, a few configuration dependent exercises must be
p~rformed. At this point, 'it would be wise to read all of the manuals (especially 'Regenerating
System Software') and to augment this reading with hand to hand combat.

Reconfiguration'

The UNIX system running is configured to run with the given disk and tape, a console,
.and no other device. This is certainly not the correct configuration. You will have to correct
the configuration table to reflect the true state of your machine.

His wise at this point to know how to recompile the system. Print (cat(I»' -the file
/usr/sys/conf/makefile. This file is input to the program 'make(I)' which if invoked with
'make all' will recompile all of the system source and install it in the correct' libraries.

The program mkconf(I) prepares files that, describe a given configuration (See
mkcorif(I». In the /usr/sys/conf directory, the four files ~onf were input to mkcorif to pro­
duce the four versions of the system xyunix. Pick the appropriate one, and edit it to add lines,
describing your own configuration. (Remember the console typewriter is automatically
included; don't count it in the kl specification.) Then run mkconf; it will generate the files l.s
(trap vectors) c.c (configuration table), and mchO.s. Take 'a ca~eful look at l.s to make sure that
all the devices that you have are assembled in the correct interrupt vectors. If your

, configuration is non-standard, you will have to modify l.s to fit your configuration.

There are certain magic numbers and configuration parameters imbedded in various dev­
ice drivers that you may wa~t to change. The device addresses of each device are defined in
each driver. In case you have any non-standard device addresses, just change the address and

'recompile. (The device drivers are in the directory /usr/sys/dev.)

The DCII driver is set to run 4 lines. This can be changed in dc.c.

The DHII driver is set to handle 3 DHll's with a full complement of 48 lines. If you
have less, or more, you may want to edit dh.c.

The ,DNII driver'will handle 4 ON's. Edit dn.c.

, The DUll driver can only handle a single DU. This cannot be easily changed.

The KL/DL driver is set up to run a ,single DLll-A, -B, or -C (the console) and no
DLll-E's. To change this, edit kl.c to have NKLll reflect the total number of DLll-ABC's
and NDLII to reflect the number of DLll-E's. So far as the driver is concerned, the
difference between the devices is their address.

All of the disk and tape drivers (rf.c, rk.c, rp.c, tm.c, tc.c, hp.c, ht.c) are set up to run 8
drives and should not need to be changed. The big disk drivers (rp.c and hp.c) have partition
tables in them which you may want to exp~riment with.

After all·the corrections have been made, use 'make(I), to recompile the system (or
recompile individually if you wish: use the makefile as a guide). If you compiled individually,
say 'make unix' in the directory /usr/sys/conf. The final object file (unix) should be moved to

,I •

the root, and then booted to try it out. It is best to name it /nunix so as not to destroy the

SETTING UP UNIX-SEVENTH EDITION 501

working system until you're sur' it does work. See Boot Procedures(S} for a discussion of
booting. Note: before taking the system down, always O!) perform a sync(I} to force delayed
output to the disk. '

Special Files

Next you must put in special files for the new devices in the directory Idev using
mknod(I). Print the configuration file c.c created above. This is the major deviCe switch of
each device class (block and character). There is one line for each device configured in your
system and a null line for place holding for those devices not configured. The essential block
special files were installed above~ for any new devices, the major device number is selected by
counting the line number (from zero) of the device's entry in the block configuration table.
Thus the first entry' in the table bdevsw would be major device zero. This number is also
printed ,in the table along the right margin.

The minor device is the drive number, unit number or partition as described under each
device in section 4 of the manual. For tapes where the unit is dial selectable, a special file may
be made for each possible selection. You can also add entries for other disk dri~es.

In reality, device names are arbitrary. It is usually convenient to have a system for deriv­
ing names, but it doesn't have to be the one presented above.

Some further notes on minor device numbers. The hp driver uses the 0100 bit of the
minor device number to indicate whether or not to interleave a file system across more than
one physical device. See hp(4} for more detail. The tm and ht drivers use the 0200 bit to indi­
cate whether or not to rewind the tape when it is closed. The 0100 bit iI1dicates the density of
the tape on TU16 drives. By convention, tape special files with the 0200 bit on have an 'n'
prepended to their name, as in Idev/nmtO or Idev/nrmtl. Again, see tm(4} or ht(4}.

The naming of character devices is similar to block devices. Here the names are even
more arbitrary except that devices meant to be used for teletype access should (to avoid confu­
sion, no other reason) be named Idev/ttyX, where X is some string (as in '00' or 'library').
The files console, mem, kmem, and null are already correctly configured.

, The disk and magtape drivers provide a 'raw' interface to the device which provides direct
transmission between the user's core and the device and allows reading or writing large records.
The raw device counts as a character devic~, and should have the name of the corresponding
standard block special file with 'r' prepended. (The 'n' for no rewind tapes violates this -rule')
Thus the raw magtape files would be called Idev/rmtX. These special files should be made.'

When all the special files have been created, care should be taken to change the access
modes (chmod(I» on these files to appropriate values (probably 600 or 644). -

Floating Point

UNIX only supports (and really expects to have) the FPll-B/C floating point unit. For
machines without this hardware, there is a user subroutine available that will catch illegal
instruction traps and interpret floating point operations. (See fptrap(3}.) To install this subrou­
tine in the library, change to lusrlsrc/libfpsim and execute the shell files

com pall
mklib

The system as delivered does not have this. code included in any command, although the
operating system adapts automatically to the presence or absence of the FPll.

Next, a floating-point version of the C compiler in I~srlsrc/cmd/c should be compiled
using the commands:

502 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

cd lusrlsrc/cmd/c
make fcI
mv feI llib/fcI

This allows programs with floating point' constants to be compiled. To compile floating point
programs use the '-r flag to cc(I). This flag ensures that the floating point interpreter is
loaded with the program and that the floating point version of 'cc' is used.

Time Conversion
If your machine is not in the Eastern time zone, you must edit (ed(I» the file

/usrlsys/h/param.h to reflect your local time. The manifest 'TIMEZONE' should be changed
to reflect the time difference between local time and GMT in minutes. For EST, this is 5*60~
for PST it would be 8*60. Finally, there is a 'DSTFLAG' manifest~ when it is 1 it causes the
'tiine to shift to Daylight Savings automatically between the last Sundays in April and October
(or other algorithms in 1974 and 1975). Normally this will' not have to be reset. When the
needed changes are done, recompile and load the system using make(I) and install it. (As a
general rule, when a system header file is changed, the entire system should be recompiled. As
it happens, the 'only uses of these. flags are in lusrlsys/sys/sys4.c, so if this is all that was
changed it alone needs to be recompiled.)

You may also want to look at timezone(3) Uusrlsrc/libc/gen/timezone~c) to see if the'
name of your timezone is in its internal table. If needed, edit the changes in. ,After timezone.c
has been edited it should be compiled and installed in its library. (See lusrlsrc/.1i.bc!{m1<fib and
compalO) Then you should (at your leisure) recompile and reinstall all programs that use it
(such as date(1».

Disk Layout
. If there are to be more file systems mounted than just the root and lusr, use mkfs(I) to

create. any new 'file system and put its mounting in the file letc/rc (see init(8) and mount(I)).
(You might. look at letc(rc anyway to see what has been provided for you.)

There'are two considerations in deciding how to adjust the' arrangement of things on your
disks: the' most important is making sure there is adequate space for what is required~ secon­
darily, throughput should be maximized. Swap space is a critical parameter. The system as dis­

\tributed. has 8778 (hpunix) or 2000 (rpunix) blocks for swap .space. This should be large
. enough so 'running out of swap space never occurs. You may want to change these if local wis-
"dom indicates otherwise. '

The system as distributed has all of the binaries in Ibin. Most of them should be moved
to lusr/bin~ 'leaving only'the ones 'required for' system maintenance (such as icheck, dcheck, cc,
ed, restor, etc.) and' the most heavily used in Ibin. This will speed things up a bit if you. have
o~ly onedisk, and also free up space on the root file system for temporary files. (See below).

. Many common system programs (C, the editor, the assembler etc.) create i~termediate
. files in the Itmp directory, so the file, ·system. where this is stored also should be made large
. enough to accommodate most high-water marks .. If you leave the root file system as distributed

(except as discussed above) ·there should be no problem. All the programs that create files in
Itmp take care to delete them, but· most 'are not immune· to events like being hung up upon,
and can leave dregs. The directory should be examined every so often and the old files deleted.

Exh~ustion of user-file space is certain to o~cur now· an'd then; tne only mechanisms for
controlling this phenomenon are occasional use of du(I), df(I), quot(I), threatening messages
of the day, and' personal -letters. "

The efficiency with which UNIX is able to use the CPU is largely dictated by the
configuration of disk controllers. For general time':'sharing applications, the best strategy is to

,try to split user files, the root directory (including the ltmpdirectory) 'and the swap area among
three controller~, i

SElTlNG UP UNIX-SEVENTH EDITION 503

Once you have decided how to make best use of your hardware, the question is how to
initialize it. If you have the equipment, the best way to move a file system is to dump it
(dump(I» to magtape, use mkfs(I) to create the new file system, and restore (restor(I» the
tape. If for some reason you don't want to use magtape, dump accep"ts an argument telling
where to put the dump~ you might use another. disk. Sometimes a file system has to be
increased in logical size without copying. The super-block of the device has a word giving the
highest address which can be allocated. For relatively small' increases, this word can be patched
using the debugger (adb(I) and the free list reconstructed using icheck(I). The size should
not be increased very greatly by this technique, however, since although the allocatable space
will increase the maximum number of files will not (that is, the i-list size can't be changed).
Read and understand the description given in file system(5) before playing around in this way.
You may want to see section rp(4) for some suggestions on how to layout the information on
RP disks.

If you have to merge a file system into another, existing one, the best bet is to use tar(1).
If you must shrink a file system, the best bet is to dump the original and restor it onto the new
filesystem. However, this might not work if the i-list on the smaller filesystem is smaller than
the maximum allocated inode on the larger. If this is the case, reconstruct the filesystem from"
scratch on another fllesystem (perhaps using tar(I» and then dump it. If you are playing with
the root file system and only have one drive the procedure is more complicated. What you do is
the following:

1. GET A SECOND PACK!!!!

2. Dump the current root filesystem (or the reconstructed one) using "C!ump(1) .

3. Bring the system down and mount the new pack.

4. Retrieve the WECo distribution tape and perform steps 1 through 5 at the beginning of
this document, substituting the desired file system size instead of 5000 when asked for
~file system size'.

5. Perform step 6 above up to the pOint where the ~tape' question is asked. At this point
mount the tape you made just a few minutes ago. Continue with step 6 above substituting
a 0 (zero) for the 5.

New Users

Install new users by editing the password file /etc/passwd (passwd(S». This procedure
. should be done once multi-user mode is entered (see init(8». You'll have to make a current

directory for each new user and change its owner to the newly installed name. Login as each
user to make sure the password file is correctly edited. For example:

ed /etc/passwd
$a
joe:: 10: 1 ::/usr/joe:

w
q
mkdir /usr/joe
chown joe /usr/joe
login joe
Is -la
login root

This will make a new login entry for joe, who should be encouraged to use passwd(I) to give
himself a password. His default current directory is /usr/joe which has been created. The
delivered password file has the user bin in it to be used as a prototype.

504 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

Multiple Users

If UNIX is to support simultaneous access from more than just the console terminal,the
file letc/Uys (ttys(S» has to be edited. To add a new terminal be sure the device is configured
and the special file exists, then set the first character of the appropriate line of letc/ttys to 1 (or
add a new line). Note that init.c will have to be recompiled if there are to be more than lod
terminals. Also note that if the special file is inaccessible when init trie~ to create a process for
it, the system will thrash trying and retrying to open it.

File System Health

Periodically (say every day or so) and always after a crash, you should check all the file
systems for consistency (icheck, dcheck(I». It is quite important to execute sync (8) before
rebooting or taking the machine down. This is done automatically every 30 seconds by the
update program (8) when ,a multiple-user system is running, but you should do it anyway to
make sure.

Dumping of the file system should be done regularly, since once the system is going it is
very easy to become complacent. Complete and incremental dumps are easily done with
dump(I). Dumping of files by name is best done by tar(I) but the number of files is some­
what limited. Finally if there are enough drives entire disks can be copied using cpO), or
.preferably with dd(I) using the raw special files and an appropriate block size.

Converting Sixth Edition Filesystems
The best way to convert fiie systems from 6th edition (V6) to 7th edition (V7) format is

l to use tarO). However, a special' version of tar must be prepared to run on V6. The following
steps will do this: "

1. change directories to lusrlsrc/cmd/tar
2. At the shell prompt respond

make v6tar

This will leave an executable binary named 'v6tar'.

3. MQunt a scratch tape.

4. Use tp(I) to put 'v6tar' on the scratch tape.

S. Bring down V7 and bring up V6.

6. Use tp (on V6) to read in 'v6tar'. Put it in Ibin or lusr/bin (or perhaps some other 'pre­
ferred 10'cation).

7. Use v6tar to make tapes of all that you wish to coIivert. You may want to read the
manual section on tar (I) to see whether you want to use blocking or not. Try to avoid
using full path names when making the tapes. This will simplify moving the hierarchy to
some other place on V7 if desired. For example

chdir lusr/ken
v6tar c .

is preferable to

v6tar c lusr/ken

8. After all of the desired tapes are made, bring down V6 and reboot V7. Use tar(1) to read
in the tapes just made.

SETTING UP UNIX-SEVENTH EDITION 505

Odds and Ends
The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd)

should be chanBed to reflect your default mounted file system devices. Print the first few lines
of these programs and the changes will be obvious. Tar should be changed to reflect your
desired default tape drive.

Good Luck

Charles B. Haley
Dennis M. Ritchie

Introduction

REGENERATING SYSTEM SOFTWARE

Charles B. Haley

. Dennis. M. Ritchie
Bell Laboratories

Murray Hill, New Jersey 07974 .

This document discusses how to assemble or compile various parts of the UNlxt system
software. This may be necessary because a command or library is accidentally deleted or other­
wise destroyed~ also, it may be desirable to install a modified version of some command or
library routine. A few commands depend to some degree on the current configuration of the
system~ thus in any new system modifications to some commands are advisable. Most of the
likely modifications relate to the standard disk devices contained in the system. For example,
the df(I) ('disk free') command has built into it the names of the standardly present disk
storage drives (e.g. '/dev/rfO" '/dev/rpO'). Df(I) takes an argument to indicate which disk to
examine, but it is coiwenient if its default argument is adjusted to reflect the ordinarily present
devices. The companion document 'Setting up UNIX' discusses which commands are likely to
require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of the
directory lusrlsrc. These subdirectories, and a general description of their contents, are

cmd Source files for commands.

libc/stdio Source files making up the 'standard i/o package'.

libc/sys

libc/gen

libc/crt

libc/csu

games

libF77

libl77

libdbm

libfpsim

libm

Source files for the C system -call interfaces.

Source files for most of the remaining routines described in section 3 of the
manual.

Source files making up the C runtime support package, as in call save-return and
long arithmetic.

Source for the C startup routines.

Source for (some of) the games. No great care has been taken to try to make it
obvious how to compile these; treat it as a game.

Source for the Fortran 77 runtime library, exclusive of 10.

Source for the Fortran 77 10 runtime routines.

Source for the 'data-base manager' package dbm (3).

Source for the floating-point simulator routine.

Source for the mathematical library.

tUNIX is a Trademark of Bell Laboratories.

506

REGENERATING SYSTEM SOFTWARE 507

libplot Source for plotting routines.

Commands

The regeneration of most commands is straightforward. The 'cmd' directory will contain
either a source file for the command or a subdirectory containing the set of files that make up
the command. If it is a single file the command

cd /usr/src/cmd
cmake cmd_name

suffices. (Cmd_name is the name of the command you are playing with.) The result of the
cmake command will be an executable version. If you type

cmake -cp cmd_name

the result will be copied to /bin (or perhaps /etc or other. places if appropriate).

If the source files are in a subdirectory there will be a 'makefile' (see make 0» to control
the regeneration. After changing to the proper directory (cdO» you type one of the following:

make all The program is compiled and loaded; the executable is left in the current din~c-·
tory.

make cp The program is compiled and loaded, and the executable is installed. Everything
is cleaned up afterwards; for example .0 files are deleted.

make cmp The program is compiled 'and loaded, and the executable is compared against the
one in /b~n.

Some of the make files have other options. Print (catO» the ones you are interested in to
find out.

The Assembler

The asse.mbler consists of two e·xecutable files: /bin/as and /lib/as2. The first is the O-th
pass: it reads the source program, converts it to an intermediate form in a temporary file
'/tmp/atmO?', and estimates the final locations of symbols. It also makes two or three other
temporary files which contain the ordinary symbol table, a table of temporary syrr.~~!s (like 1:) .
and possibly an overflow intermediate file. The program /lib/as2 acts as an ordinary multiple

. pass assembler with input taken from the files produced by /bin/as. . :

The source files for /bin/as are named '/usr/src/cmd/as/asl ?s' (th~re are 9 of them)~
/lib/as2 is' produced from the source files ·/usr/src/cmd/as/as2?s'~ they likewise are 9 in
number. Considerable care should be exercised in' replacing either component of the assem­
bler. Remember that if the assembler is lost, the only recourse is to replace it from ~ome
backup storage; a broken assembler cannot assemble .itself. .

The C Compiler

The C compiler consists of seven routines: '/bin/cc', which calls the phases of the com­
piler proper~ the compiler control line expander '/lib/cpp" the assembler tas'), and the loader
('ld'). The phases of the C compiler are '/lib/cO', which is the firsLphase of the compiler~
'/lib/cl' ,which is the second phase of the compiler; and '/lib/c2" which is ·the optional third
phase optimizer. The loss·of the C compiler is .as s~rious as that of the assembler.

The source for /bin/cc resides in '/usr/src/cmd/cc.c'. Its loss alone (or that of c2)' is not
fatal. ·If needed, prog.c can be compiled by

508 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

/lib/cpp prog.c > tempO
/lib/cO tempO tempI temp2
/lib/ cl temp 1 temp2 temp3
as - temp3
ld - n /lib/crtO.o a.out -Ie

The source for the compiler proper is in the directory /usr/src/cmd/c.· The first phase
(/lib/cO) is generated from the files cOO.c, ... , c05.c, which must be compiled by the C com­
piler. . There is also cO.h, a header file included by the C programs of the first phase. To make a
new /lib/ cO use

make cO

Before installing the new cO, it is prudent to save the old one someplace.

The second phase of C (/lib/cl) is generated from the source files clO.c, ... , cI3.c, the
include-file cl.h, and a set of object-code tables combined into table.o. To generate a new
second phase use

make cI

It is likewise prudent to save cl before installing a new version. In fact in general it is wise to
save the object files for the C compil~r so that if disaster strikes C can be reconstituted without
a working version of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files
c20.c and c21.c together with c2. h. Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the file table.s. This '.s' file is not in
fact assembler source~ it must be converted by use of the cvopt program, whose source _and
object are located in the C directory. Normally this is taken care of by make (1). You migh~.
want to look at the makefile to see what it does.

UNIX

The source and object programs for UNIX are kept in four subdirectories of /usr/sys. In
the subdirectory h there are several files ending in '.h'~ these are header files which are picked
up (via '#include ... ') as required by each system module. The subdirectory dev consists
mostly of the device drivers together with a few other things. The subdirectory sys is the rest
of the system. There are files of the form LIBx in the directories sys and dev. These are
archives (ar(I» which contain the object versions of the routines in the directory.

Subdirectory can! contains the files which control device configuration of the system. L.s
specifies the contents -of the interrupt vectors~ C.c contains the tables which relate device
numbers to handler routines. A third file, mch.s, contains all the machine-language code in the
system. A fourth file, mchO.s, is generated by mkconf(I) and contains flags indicating what
sort of tape drive is available for taking crash dumps.

There are two ways to recreate the system. Use

cd /usr/sys/conf
make unix

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIBI, and also c.o and l.o, are correct. Use

cd /usr/sys/conf
make all

to recompile everything and recreate the libraries from scratch. This is needed, for example,
when a header included in several source files is changed. See 'Setting' Up UNIX' for other
information about configuration and such.

REGENERATING SYSTEM SOFTWARE 509

When the make is done, the new system is present in the current directory as 4unix'. It
should be tested before destroying the currently running 4 lunix', this is best done by doing
something like

mv lunix lou nix
mv unix lunix

If the new system doesn't work, you can still boot. 40unix' and come up (see boot(8». When
you have satisfied yourself that the new system works, remove lou nix.

To install a new device driver, compile it and put it 'into its library. The best way to put it
into the library is to use the command

ar uv LIB2 x.o

where x is the routine you just compiled. (All the device drivers distributed with the system
are already in the library.)

Next, the device's interrupt vector must be entered in 1.s. This is probably already done
by the routine mkconf(1), but if the device is esoteric or nonstandard you will have to massage
1.s by hand. This involves placing a pointer to a callout routine and the device's priority level
in the vector. Use some other device (like the console) as a guide. Notice that the entries in
1.s must be in order as the assembler does not permit moving the location counter 4.' back­
wards. The assembler also does not permit assignation of an absolute number to 4.', which is
the reason for the 4. = ZERO+ 100' subterfuge. If a constant smaller than 16(10) is added to
the priority level, this number will be available as the first argument of the interrupt routine.
This stratagem is used when several similar devices share the same interrupt routine (as in
d111 's).

If you have to massage 1.s, be sure' to add the code to actually transfer to the interrupt
routine. Again use the console as a guide. The apparent strangeness of this code is due to run­
ning the kernel in separate I&D space. The call routine saves registers as required and prepares
a C-style call 9n the actual interrupt routine named after the 4jmp.' instruction. When the rou­
tine returns, call restores the registers and performs an rti instruction. As an aside, note that
external namei in C programs have an underscore e_') prepended to them.

The second step which must be performed to add a device unknown to mkconf is to add
it to the config~ration table lusrlsys/conf/c.c. This file contains two subtables, one for block­
type devices, and one for character-type devices. Block devices include qisks, DECtape, and
magtape. All other devices are character devices. A line in each of these tables gives all the
info~mation the system needs to know about the device handler; the ordinal position of the line
in the table implies its major device number, starting at O.

There are four subentries per line in the block device table, which give its open routine,
close routine, -strategy routine, arid device table. The open and close routines may be nonex­
istent, in which case the name 4nulldev' is given; this routine merely returns. The strategy rou­
tine is called to do any I/O, and the· device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and
write, and one which sets and returns device-specific status (used, for example, for sUy and gUy
on typewriters). If there is no open or close routine, 4nulldev' may be given; if there is no
read, write, or status routine, 4nodev' may be given. Nodev sets an error flag 'and returns.

The final step which must be taken to install a device is to make a special file for it. This
is done by mknod (1), to which you must specify the device class (block or character), major
device number (relative line in the configuration table) and minor device number (which is
made available to the driv.er at appropriate times).

The documents 4Setting up Unix' and 'The Unix 10 system' may aid in comprehending
these steps. . '

510 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

The Library libc.a

The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of
the manual are kept. This library can be remade using the following commands:

cd /usr/src/libc
sh compall
sh mklib
mv libc.a /lib/libc.a

If single routines need to be recompiled and replaced, use

cc -c -0 x.c
ar vr llib/libc.a x.o
rm x.o

The above can also be used to put new items into the library. See ar(1), 10rder(1), and
tsort(1) .

The routines in lusrlsrc/cmd/libc/csu (C start up) are not in libc.a. These are separately
assembled and put into Ilib. The commands to do this are

cd lusrlsrc/libc/csu
as - x.s
mv a.out /lib/x

where x is the routine you want.

Other Libraries

Likewise, the directories containing the source for the other libraries have files compall
(that recompiles everything) and mklib (that recreates the library).

System Tuning

There are several tunable parameters in the system. These set the size of various tables
and limits. They are found in the file lusrlsys/h/param.h as manifests ('#define's). Their
values are rather generous in the system as distributed. Our typical maximum number of users
is about 20, but there are many daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as discussed
above. A brief discussion of each follows:

NBUF This sets the size of the disk buffer cache. Each buffer is 512 bytes. This number
should be around 25 plus NMOUNT, or as big as can be if the above number of
buffers cause the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table every
time a file is 'opened' (see open (2), creat(2)). Processes share these table entries
across forks (fork(2)). This number should be about the same size as NINODE
below. (It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough
that you don't run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount of memory a process may have.
It is set automatically if the amount of physical memory is small, and thus should
not need to be changed.

MAXUPRC This sets the mSlximum number of processes that anyone user can be running at
anyone time. This should be set just large enough that people can get work done

. but not so large that a user can hog all the processes available (usually by
accident!) .

REGENERATING SYSTEM SOFTWARE 511

NPROC This sets the maximum number of processes that can be active. It depends on the
demand pattern of the typical user; we seem to need about 8 times the number of
terminals.

NINODE This sets the size of the inode table. There is one en"try in the inode table for
every open device, current working directory, sticky text segment, open file, and
mounted device. Note that if two users have a file open there is still only one
entry in the inode table. A reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

SSIZE The initial size of a process stack. This may be made big"ger if commonly run
processes have larg~ data areas on the stack .

.sINCR The size of the stack growth increment.

NOFILE This sets the maximum number of files that anyone process can have open. 20 is
plenty.

CANBSIZ This is the size of the typewriter canonicalization buffer. It is in this butTer that
erase and kill processing is done. Thus this is the maximum size of an input type­
writer line. 256 is usually plenty.

CMAPSIZ The number of fragments that memory can be broken into. This should be big
enough that it never runs out. The theoretical maximum is twice the number of
processes, but this is a vast overestimate in practice. 50 seems enough.

SMAPSIZ Same as CMAPSIZ except for secondary (swap) memory.

NCALL This is the size of the callout table. Callouts are entered in this table when some
sort of internal system timing must be done, as in carriage return delays for termi­
nals. The number must be big enough to handle -all such requests.

NTEXT The maximum number of simultaneously executing pure programs. This should
be big enough so as to not run out.of space under heavy load. A reasonable rule
of thumb is about

(number of terminals) + (number" of sticky programs)

NCLIST The number of clist segments. A clist segment is 6 characters. NCLIST should be
big enough so that the list doesn't become exhausted when the machine is busy.
The characters that have arrived from a terminal and are waiting to be given to a
process live here. Thus enough space should be left so that every terminal can
have at least one average line pending (about 30 or 40 characters).

TI~EZONE The number of minutes westward from Greenwich. See 'Setting Up UNIX'.

DSTFLAG See 'Setting Up UNIX',"section on time conversion.

MSGBUFS The maximum number of characters of system error messages saved. This is used
as a circular buffer.

NCARGS The maximum number of characters in" an e~ec (2) arglist. This number controls
how many arguments can be passed into a process. 5120 is practically infinit~.

HZ Set to the frequency of the system" clock (e.g., 50 for a 50 Hz. clock) .
.....

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974 .

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXt kernel.. This discussion is broken into three parts. The first part
describes how the UNIX system views processes, users, and programs. The
second part describes the 110 system. The last part describes the UNIX file sys­
tem.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code,and about 1,000 lines of assem­
bly code. The assembly code can be further broken down into 200 lines incluBed for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression
"the UNIX operating system." The kernel is the only UNIX code that cannot be substituted by a
user to his own liking. For this reason, the kernel should make as few real decisions as possi-·
ble. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on "the way things should be done." Even so, if "the
way" is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process.
When a system function is required, the user process calls the system as a subroutine. At some
point !n this call, there is a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously). For protection, each
system process has its own stack.. . r

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no junctional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal iI?-Put. Furthermore, if
two processes are executing simultaneously from the same copy of ~ read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

tUNIX is a Trademark of Bell Laboratories.

512

UNIX IMPLEMENTATION 513

execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an, .. overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the text table. A
text table entry holds the location of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory . location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer~
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As
"far as possible, the system does not use the user's data segment to hold system data. In partic­
ular,_there are no I/O buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initialized
to zero .

. AI~o associated and swapped· with a process is a small fixed-size system data segment.
This segment contains all the data about the process· that the system needs only when the pro­
cess is active: Exmnples of the kind of data contained in the system data segment are:. saved
central processor regis~e~s, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process.' The system data segment is not addressable from
the user process and is therefore protecteq.

Last, there is·a process table with one entry per process. This entry contains all the data
needed by the system when the process is not' active. Examples are the process's name, the
location of the other segments, and scheduling information: The process table entry is allo­
cated when the process is created, and freed when the process terminates. This process entry is
'always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. in a sense, the
process table is'the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

PROCESS
TABLE
ENTRY

PROCESS TABLE

lUSER .
ADDRESS
SPACE

TEXT TABLE

SYSTEM
DATA
SEG¥ENT

USER
DATA
SEGMENT

TEXT
TABLE
ENTRY

.--------.

USER
TEXT
SEGMENT

Fig. 1-Process control data structure:

RESIDENT

SWAPPABLE

514 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was' executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost.
Doing an exec does not change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec.

If a program, say the first !lass of a compiler, wishes to overlay itself with another pro­
gram, say the second pass, then it simply execs the second program. This is analogous to a
"goto." If a program wishes to regain control after execing a second program, it should fork 'a
child process, have the child exec the second program, and have the parent wait for the child.
This is analogous to a "call." Breaking up the call into a binding followed by a transfer is simi-
lar to the subroutine linkage in SL-S.l .

2.2. Swapping

The major data associated with a process (the user data segment, thrl system data seg-
ment, and the text segment) are swapped to and from secondary memory, as needed. The user . I

data segment and the system data segment are kept in contiguous primary memory' to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered,) Allocation of both primary and
secondary memory is performed by the .s~me simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri-
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the' kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes. for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. It
selects a process to swap out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes that are loaded is to be swapped
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk
110) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing:

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic. severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resources.

UNIX IMPLEMENTATION 515

2.3. Synchronization and scheduling
" ,

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an 'event that is the address of its own process table entry. When a pro­
cess terminates, it signals the event represented by its parent's process table entry. Signaling an
event on which no process is waiting has' no ,effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from' Dijkstra's
P and V synchronization 'operations, 2 in that no memory is associated with events, ' Thus there
need be no allocation of events prior to their use. Events exist simply by being used.

On the negative side, because there i::> n'o ,memory associated with events, no notion of
"how much" can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then w~ke up to fight over the new memory. (In reality, the swapping process is the only pro­
cess that waits for primary memory to become available,)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an eveI1t that has already hap­
pened (and'may never happen again). This race condition happens because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the ev~nt in question is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations.,3 "

The event-wait code in the kernel is like a co-routine linkage, At any time, all but one of
the processes' has called event-wait. The remaining process is ,the one currently executing.
"When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of. the runable processes is to run next? Associated with each process is a pr'iority.
The priority of a system process is assigned by the code iS8uing the, wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the'difference in system process priorities' has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of ~ompute time to real time consumed by'
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because i~teractive processes are characterized by low ratios of compute to
real time, interactive response is maintained without any special arrangements.

v The 'scheduling algorithm simply picks the process with the highest priority, thus picking
all system pr<?cesses first and user processes second. The compute-to-real-time ratio is updated

. every' second. ' Thus, all other things being equal, looping user processes will be scheduled
round-robin with a I-second" quantum.' A high-priority process waking up will preempt a run- ,
ning, low-priority process. The scheduling algorithm has a very desirable negative feedback,
character., If a process uses its high priority to hog the computer, its priority will drop. 'At the

'same time, if a low-priority process is ignored for a long time, its priority will rise.

3. I/O SYSTEM

The 110 system is broken into two completely separate systems: the block, 110 system and
the character 110 system. In retrospect, ~he names should have been "structured 110"" and·
"unstructured 110," respectively; while the term "block 110" has some meaning, "character - '

516 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

110" is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and'a class
(block or character). For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical d~vices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system' had.a.
much less formal connection with the drivers, so that it was ·extremely hard to handcraft

. differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system's parts list.

3.1. Block 1/0 system

The model block 110 device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device .

. The block liD devices are accessed through. a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a ·device name and a
device address. This buffer pool constitutes a data cache for the block devices. 9n a read
request, . the cache is searched for the qesired block. If the block is found, the data are made
available to the requester without any physical 110. If the block is not in the cache,. the least
recently used block in ,the cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made avaiiable. Write requests are handled in an analo­
gous manner. The correct buffer is found and relabeled if necessary. The write is performed­
simply by marking the buffer as "dirty." The physical 110 is then deferred until the buffer is
renamed.

The benefits in reduction of physical 110 of this scheme are substantial, especially consid­
ering the file system implementation. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting ~nd meaningful user error handling almost
impossible. The cavalier approach to 110 error handling in the UNIX system is partly due to the
asynchronous nature of the block 110 system. A second problem is in the .delayed writes .. If
the system stops unexpectedly, it is almost certain that ther'e is a lot of logically complete, but
physically incomplete, 110 in the buffers. There is a system primitive to flush all outstanding
110 activity from the buffers. Periodic use of this primitive helps, but does not solve, the prob- .
lem. Finally, the associativity in the buffers can alter the physical 110 sequence from that of
the logical liD sequence. This means that there are times when data structures on disk. are
inconsistent, even though the software is careful to perform 110 in the correct order. On non­
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob­
lem with magnetic tapes is "cured" by allowing only one outstanding write request per drive.

3.2 .. Character 1/0 system

The character 110 system consists of all devices that do not fall into the bloc'k 110 model.
This includes the "classical" character devices such as communications lines, paper tape, and

/ line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, 8"9-byte physical records on tape and track-at-a-time disk copies. In short,
the character I/O interface means "everything other than block." liD requests from the user
are sent to the device driver essentially unaltered. The implementation' of these requests is, of
coutse, up to the device driver. There are guidelines and conventions to help the implementa~
tion of certain types of device drivers.

UNIX IMPLEMENTATION 517

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/wri'te flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block 110 interface is implemented by passing such records with requests to fill and empty sys­
tem buffers. The character 110 interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this 110 transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device, and a swap device. The only
really disk-sp~cific code in normal disk drivers is the pre-sort of transactions to minimize
latency for a particular device, and the actual issuing of the 110 request.

'3.2.2. Character lists
Real character-oriented devices may be implemented using the common code to handle

character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue returns
the corresponding space to'the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char­
acters is on the queue: The 110 is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a com­
pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of 'characters on the- queue is checked and, as the cpunt falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
,maximum when the event occurs. '!

A typical character input device (for example, a paper tape reader)' is handled in a very
similar manner,

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char­
acters going to the output of a terminal are handled by common code exactly as described
above. The main difference is that there' 'is also code to interpret the output stream as ASCII

,characters and to perform some translations,' e.g., escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain control characters.,

Input on terminals is a little different. Character·s are collected from the terminal and
placed on a raw input queue. Some device-dependent,code conversion 'and escape interpreta­
tion is handled here. When a line is complete in the raw queue, an event is signaled. 'The code
catching this signal then copies a line from the raw queue to a canonical queue' performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices
Finally, there are devices that fit no general category. These devices are set up as charac­

ter 110 drivers'. An example ·is a driver that reads and writes unmapped primary memory as an
110 device. Some devices are too fast to be treated' a character at time, but do not fit the disk
110 mold. Examples are fast communications lines and fast line prinJers. These devices either
have their own buffers or "borrow" block 110 buffers for a while and then give them back.

518 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

4. THE FILE SYSTEM
In the 'UNIX system, a file is a (one-dimens!onaO array of bytes. No other structure of

files is implied by the system. Files are attached' anywhere (and possibly multiply)' onto a
hierarchy of directories. Directories are simply files that users cannot write. .For a further dis­
cussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block 110
system. , As stated before, the canonical view of a "disk" is a' randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called "super-block." This block, among other things,
. contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files. .

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one 110 operation,
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo­
rithms are very straightforward. Since all allocation is in fixed-size blocks. and there is strict
accounting 'of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose \0 occasionally com­
pact disk space to reduce latency.

An i-node contains 13 disk ·addresses. The first 10 of these addresses point directly at-the
first 10 blocks of a file'. If a file is larger than 10 blocks (5,120 bytes), then the eleventh.
address points at a block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here with the maximum file size of
1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz., 2). The file system structure allows an arbitrary, directed graph of direc­
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys­
tems used such a structure. Administration of such a structure became so chaotic that later sys- '
terns were restricted to a directory tree. Even now, with regular files linked multiply into' arbi­
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to
the tree structure.

The file system allows easy creation, easy rem6val, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical 110 without
adding much execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead (i-node, indirect blocks, and last block breakage) is about 11.5M bytes.
The directory structure to support these files has about 1,500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys-.
terns haye this much overhead in padded trailing blanks alone.

UNIX IMPLEMENTATION 519

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and reads
the i-node into primary memory. As in the buffer cache, the table entry is considered to be the
current version of the i-node. Modifications t9 the i-node are made to the table entry. When
the last access to the i-node goes away, the table entry is copied back to the secondary store i­
list and the table entry is freed.

Ali liD operations on files are carried out with the aid of the corresponding i-node' table
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References to the file system are
made in terms of path names of the directory tree. Converting a path name into an i-node

'table entry is also straightforward. Starting at some known i-node (the root or the current
directory of some process), the next component of the' path name is searched by reading the
directory. This gives an i-number and ,an implied device (that of the directory). Thus the next
i-node table entry can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated.

,The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2.

OPEN FILE
TABLE

PER·USER OPEN
FILE TABLE

ACTIVE I,NODE
TABLE

Fig. 2-File system data structure.

}

SWAPPED
PERIUSER

}

RESIDENT
PE'R/SYSTEM

SECONDARY
STORAGE
PERI
FILE SYSTEM

hi the system data segment associated with a user, there is room for some (u'sually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node table entries. Associated with each of these open files is a current liD
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request a.s random with an implied seek ,to the liD pointer. The user usually
thinks of the file as sequential with the 110 pointer automatically counting the number of bytes
that have been read/written from the file. The user may, of course, perform random liD by
setting the I/O pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common 110 pointer

520 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

and yet have separate 110 pointers for independent processes that access the same file. With
these two conditions, the 110 pointer cannot reside in the i-node table nor can it reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the 110 pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed in the system data seg­
ment for the process. create first creates a new i-node entry, writes the i-number into a direc­
tory, and then builds the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the I/O pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point­
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i­
node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems arising from removing active files. A file may be
removed while still open. The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are also
checks and synchronization to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer.

4.2. Mounted file systems,

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mou.nted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to allow
easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user-a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in compu ting science research does not need them.
There are some features that ar~ missed in some applications, for example, better inter-process
communication.

The UNIX kernel is an 110 multiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel does not s4-pport file
access methods, file disposition, file formats, file maximum size, spooling, command languagt;,
logical records, physical records, assignment of logical file names, logical file names, more than
one character set, an operator's console, an' operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many Qf these things are implemented in user software
using the kernel as a tool. A good example of this is the command language. 5 Each user may
have his own command language. Maintenance of such code is as easy as maintaining user

UNIX IMPLEMENTATION 521

code. The idea of implementing "system" code with general user primitives comes directly
from MUL TICS. 6

References

1. R. E. Griswold and D. R. Hanson, "An Overview of SL5," SIGPLAN Notices 12(4) pp.
40-50 (April 1977). .

2. E. W. Dijkstra, "Cooperating Sequential Processes," pp. 43-112 in Programming
Languages, ed. F. Genuys,Academic Press, New York (1968).

3. 1. A. Hawley and W. B. Meyer, "MUNIX, A Multipro'cessing Version of UNIX," M.S.
Thesis, Naval Postgraduate School, Monterey, Cal. (1975).

4. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57(6) pp. 1905-1929 (1978).

5. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57 (6) pp.
1971-1990 (1978).

6. E. I. Orga~ick, The MULTICS System, M.I.T. Press, Cambridge, Mass. (1972).

The UNIX I/O System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This p~per gives an overview of the workings of the UNIXt I/O system. It was written
with an eye toward providing guidance to ,writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file sys­
tem as discussed in the paper' "The UNIX Time-sharing System." A more detailed discussion
appears in "UNIX Implementation;" the current document restates parts of that one, but is
still more detailed. It is most useful in conjunction. with a copy of the system code, since it is

. basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for
devices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte
blocks.. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block cah be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file s·ystem. The interface to
block devices' is very highly structured; the drivers for these devices share a great many rou­
tines as well as a pool of buffers.

Character-type devices have·a much ·more straightforward interface, although more work
must be done by the driver itself .

. Devices of both types are named by a major and a minor device ntimber. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher 8 bits; macros major and minor are available to access
these numbers. The major device number selects which driver will deal with the device~ the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to a given con-

. troller, or one of several similar hardware interfa~es. -

. The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overlap .

. Overview of "I/O

The purpose of the open and creat system calls is to SY.t up entries in three separate system
tables. The first of these is the U o./ile table, which is stored in the system's per-process data
area u. This table is indexed by the file descriptor returned by the open or creat, and is accessed
during a read, write, or other operation on the open file. An entry contains only a pointer to the
(;orresponding ~nt~y of the .file table, which is a per-system data base. There is one entry in the
.file table' for each instance of open or creat. This table is per-system because the same instance
of an open file must be shared among the several processes which can result from forks after

tUNIX is a Trademark of Bell Laboratories.

·522

THE UNIX 1/0 SYSTEM 523

the file is opened. A file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all processes using the
entry have terminated or closed the file (so the entry can be abandoned). There is also a 32-bit
file offset which is used to indicate where in 'the file the next read or' write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of
the file's i-node.

Certain open files can be designated "multiplexed" files, and several other flags apply to
such channels. In such a case, instead of an offset, th~re is a pointer to an asso~iated multiplex
channel table. Multiplex channels will not be discussed here.

An entry- in the file table corresponds precisely to an instance of open or creat; if the same
file is opened several times, it will 'have several entries in this table. However, there is at most
one entry in the inode table for a given file. Also, a file may enter the inode table not only
because It is open, but also because it is the current directory of some process or because it is a
special file containing a currently-mounted file system.

An entry in the illode table differs somewh~t from the corresponding i-node as stored on
the disk~ the modified and accessed times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and' the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinoing a tape, turning on
the data-terminal-ready lead of a modem, etc.). However, the c1f}se routine is called only when,
the last process closes a file, that is, when the i-node table entry ~.3 being deallocated. Thus it is
not feasible for a device to maintain, or depend on, a count of its users, although it is quite
possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

When a read or write takes place, the user's arguments and the ,file table entry are used to
set up the variables 1I.u_base, ll.ll_coUnt, and u.u_o.f(set which respectively contain the (user)
address of the I/O target area, the byte-count Jor the transfer, and the current location in the
file. If the file referred to is a character-type special file, the appropriate read or write routine is
called~ it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physic~l block number~ a block-type special file
need not be mapped. This mapping is performed by the bmap routine. In any event" the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the in~erface routines present for character deviCes. Each dev­
ice provides five routines: open, close, read, write, and special-function (to implement the ioctl
system call). Any of these may be missing. If a call on the routine should be ignored, (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as nulldev; if
it should be considered an error, (e.g. write on read-only devices) nodev is used. For terminals,
the cdevsw structure also contains a pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the full device ~umber as'
argument. The second argument is a flag which is non-zero only if the device is to be written
upon.

The close routine is called only when the tile is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver
to maintain its own count of its users. The first argument is the device number~' the second is a

524 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

flag which is non-zero if the file was open for writing in the pr.ocess which performs the final
close.

When write is called, it is supplied the device as argument. The per-user variable
u.u_count has been set to the number of characters indicated by the user; for character devices,
thisOnumber may be 0 initially. u.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the flag u.u_segflg is supplied
that indicates, if on, that u.u_base refers to the system address space instead of the user's.

The write routine should copy up to u.u_count characters from the user's buffer to the
device, decrementing u.u count for each character passed. For most drivers, which work one
character at a time, the routine cpass() is used to pick up characters from the user~s buffer:
Successive call:; on it teturn the characters to be written until u.u_count goes to 0 or an error
occurs, when· it returns -1. Cpass takes care of interrogating u.u_segflg and updating u.u_coun.t . . '

Write routines which. want to transfer a probably-large number of characters into an inter­
nal buffer may also use the routine iomove(bujJer, offset, c~unt, flag) which is faster when. many
characters must be moved. Iomove transfers up to count characters into the bujfer starting offset
bytes from the start of the buffer; flag should be B_ WRITE (which-is 0) in the write· case. Gau­
tion: the caller is responsible for making sure the count is not too large and is non-zero. l~s an
efficiency note, iomove is much srower, if any of bujfer+offset, count or u.u_ba.se is odd:

The device's read routine is'called under conditions similar to write, except that u.u count
is guaranteed to be non-zero. To return characters to the user, the routine.pa:ssc(c) is available;
it takes· care of housekeeping like cpass and returns -1 as the last character specifle'd by
u.u_count is returned to the user; before that time, Ois returned. Iomove iS'also usable as with
write; the flag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the sttyand gttY system calls as follows: (*p)
(de v, v) where p is a pointer to the device's routine" dev lis the device number, and v is a vector.
In the gtty case, the device is supposed to place up to '3 words of status information into the,
vector; this will be returned to the caller. ·In the sttY case, v is 0; the device should take up t03
words of control information from the array u.u_arg[O ... 2}.

- Finally, each device should have appr'opriate interrupt-time routines. When an interrupt
occurs, it'is turned into a C-compatible call on the devices's interrupt routine. The interrupt­
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with 'multiple similar devices to encode the minor device number. After the interrupt ·has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, 'need a place to buffer characters in the internal interface
between their "top half" (read/write) and "bottom half" (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int
char
char

} queue;

c._cc;
*c cf' - ,
*c cl' - ,

/* character count * /
/* first character */
/ * last character * /

. A character is placed on the end of a queue by putc(c, &queue) where c is the character and
queue is the queue header. The routine returns -1 if there is no space to put the character, 0
otherwise. The first character on the queue inay be retrieved by getc(&queue) which returns
either the (non-negative)' character or -1 if the queue is empty.

Notice that the space for characters jn queues is shared among all devices in the system
and in the standard system there are only some 600 character slots available. Th us device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of

THE UNIX I/O SYSTEM 525

characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The
call sleep (event, priority) causes the process to 'wait (allowing other processes to run) until the
event occurs; at that time,' the process 'is marked ready-io-run and the call will return when
there is no process with higher priority.

The call wllkeup(event) indic&tes that the e~eiit has happened, that is, causes processes
_ sleeping .on the event to be awakened. The event is an arbitrary quantity agreed upon by the

sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique. '

Processes sleeping on an event should not assume that the event has really happened;
they should check that the conditions which caused them to sleep no longer hold.

'Priorities can range from 0 to 127; a higher numerical value indicates a less-favored,
scheduling situation. A distinction is'made between processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event which might never occur. On the other hand, calls
to sleep with larger priority may never return if the process is terminated by some signal in the,
meantime. IncidentaJly" it is a gross error' to call sleep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area" u." should be touched, let alone changed, by

, an' interrupt routine. '

If a device driver wishes to wait for some 'event for which it is inconvenient or impossible
to _ supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt), the call sleep (&Ibolt, priority) may be given. Lbolt is an external cell whose address is
awakened once every 4 seconds by the clock interrupt routine.

The routines spl4(), spl5(), spl6(), spl7() are available to set the' processor priority level
as indicated to avoid inconvenient interrupts from the device. '

If a device needs to know about real-time intervals, then timeout (func, arg, interval) will be
useful. This routine arranges that after interval sixtieths of a second, the Junc will be called'with
arg as a,rgument, in the style (*!unc) (arg). Timeouts are used, for example, to provide real­
time delays after function characters like new-line and tab in typewriter. output, and to ter­
minate an attempt to read the 201' Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified' Junc is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of, data on the various devices. The most important
purpose of these routines is to' assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a' consistent view of' the data in the block.
A secondary but still important purpose is to increase the efficiency of the'system by keeping
in-core copies of blocks that are being accessed frequently~ The main data base for this
mechanism is the taple of buffers buj. Each buffer header contains a pair of pointers (bJorw,
b back) which maintain a doubly-linked list of the buffers associated ·with a particular block
device, and a' pair of pointers (avJorw, av back) which genenilly maintain a doubly-linked list
of. blocks which are "free," that is, eligible to be reallocated for another transaction. Buffers
that- have I/O in progress or are busy for other purposes do not appear in this list. The buffer
header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associat~d with the buffer. There is a word <;ountwhich is' the negative of the
number of words to be'transferred to or from the buffer; there'is also an ~rror byte arid, a

526 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

residual word count uS,ed to communicate information from an 110 routine to its caller.
Finally, there is a flag word with bits indicating the 'status of the buffer. These flags will be dis-
cussed below. .

Seven routines constitute the most important part of the interface with the rest of the sys­
tem. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con­
taining the current data for the block, while getblk returns 'a buffer which contains the data in
the block only if it is already in core (whether it is or not is .indicated by the B_DONE bit; see
below). In either case the buffer, and the corresponding device block" is made "busy," so that
,other processes referring to it are obliged to wait until it becomes free. Getblk is used, for.
example, when a block is about to be to,tally rewritten, so that its previous contents are not use­
ful; still,' no ~ther process can be allowed to refer to the block until the new data is placed into
it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the. number of a block (on the same device) to be read asyn­
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
p,rocesses. It is called, for example, after data has been extrSlcted following a bread. There are
three subtly-different write routines', all of which take a buffer pointer as argument, and all of

'which logically release the buffer for use by others and place it on the free list. Bwrite puts the
.buffer on the appropriate device queue;. waits for the write to be done, and 'sets the user'-s- error
flag if required. Bawriie places the buffer on the device's queue, but does noi wait for comple­
tion, so that errors cannot be reflected directly to' the user: Bdwrite does not start any 110
operation at all, but merely' marks the buffer· so that if it happens to be grabbed from the free
list to contain data from some other block, the data in it will. first be written out.

~ '. '- - ..
Bwrite is used when one wants to be sure that 110 takes place correctly, and that errors are

reflected to. the proper user; it is used, for· example, when updating i-nodes. Bawrite is useful
when more overlap is desired (because no' wait is required for 110 to finish) but when it is rea­
sonably certain that the write is really required. Bdwrite is used when there is doubt that the.
write is needed at the moment. For example, bdwrite is called when the ·last byte of a write sys-

. tern call falls short of the end of' a block, on the assumption that another write will be given
soon which will re-use the same block: On· -the other hand, as the end of a block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routines getblk and bread,dedicate ,the given block exclusivelY
to the use of the caller, and mak.e others wait, while one of brelse, bwrite, bawrite, or bdwrite I

must ev~ntu~lly be called to free the block for use by others~ '.

As mentioned, each buffer header contains a flag word which indicates the status of the
buff~r. Since they provide one important channel for information between' the drivers and the

. block 110 system, it is important to -understand these flags. _ The following names are m'anifest
constants which select the associated flag bits ..

H READ This bit is set: when the buffer is handed t6 the device strategy routine (see below)
-: to indicate a read operation. The symbol B_ WRITE is defined as 0 and does not

define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read _or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally .as the result of an error.
It is also' used as part of the return argument of getblk to indicate if 1 that the
returned buffer actually contains the data in the requested block.

THE UNIX I/O SYSTEM 527

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an I/O or other error
occurred. If it is set the b _ error byte of the buffer header may contain an error code
if it is non-zero. If b error is 0 the nature of the error is not' specified. Actually no
driver at present setS b_error; the latter is provided for a future impr~)Vement
whereby a more detailed error-:reporting scheme may be implemented.

B BUSY This bit indicates that the buffer header is· not on the free list, i.e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks asso­
ci.ated with its device, however. When getblk (or bread, which calls it) searches the
buffer list for a given device and finds the requested block with this bit on, it sleeps
until the bit clears.

B PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an
11170 ..

·B MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou­
tine knows to deallocate the map.

B_ WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described
just above, getblk sets this flag. Conversely,- when the block is freed and the busy bit
goes down (in brelse) a wakeup is given for the block header whenever B_ WANTED
is on. This strategem avoids the overhead of having to call wakeup every time a
buffer is freed on the chance that someone might want it. .

B AGE This bit may be set on buffers just before releasing them~ if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It i~ ~a performance heuris­
tic used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been finished, usually at interrupt time. The
difference between bwrite and bawrite is that the former starts I/O, waits unti,l it is
done, and frees the buffer. The latter merely sets this bit and starts I/O. The bft
indicates that relse should be called for the buffer on completion.

B DELWRIThis bit is set by bdwrite before releasing the buffer. When getblk, while searching
- . for a free ble>ck, discovers the bit is 1 in a buffer it would otherwise grab, it causes

the block to be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final clqse of the device. Instead of separate read
and write routines, each block device driver has a strategy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the block number, a (negative) word count, and the major and minor device
number. The role of the strategy routine is to carry out the operation as requested by the
information in the buffer header. When the transaction is complete the B_DONE (and possibly
theB_ERROR) bits should be set. Then if the B_ASYNC bit is set, brelse should be called~
otherwise, wakeup. In cases where the device is capable, under error':'free operation, of
transferring fewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header~ otherwise, the residual count should be set to' O.
This particular mechanism is really for the benefit of the magtape driver~ when reading this
device records shorter than requested are quite normal, and the user should be told the actual
length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer to a
place containing the appropriate information. For example the' swap routine, which manages
movement of core images to aIid from the swapping device, uses the strategy routine for this

528 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

device. Care has to be taken that no extraneous bits get turned ,on in the flag word.

The device's table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (bJorw,
b"-back), and a first and last pointer for a 'device queue. Of these things, aU are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should ,be issued. The error count :s useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to' the strategy routines ,are never on the list of free buffers, the pointers in the
buffer 'which maintain the free list (av Jorw, av _ back) are also used to contain' the pointers
which mainta~n the device queues.

A <;ouple of routines are provided which ar~' useful to block device drivers. iodone(bp)
arranges that tne buffer to' which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the B_ERROR bit has presumably been set.)

The routin'e geterror(bp) can be used to examine the error bit in fJ buffer header and
arrange that any error indication found the'rein is reflected to the user. It may be called only in
.the non-interrupt part of a driver when 110 has completed (B_DONEhas been set).

Raw Block-device I/O

'- A scheme has been set up whereby block device drivers may provide the ability to
transfer information dir~ctly between theu,ser's core image and the device 'without the use of
buffers and in,.blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw,device and providing read and write routines
which set up what is usually a private, non-shared buffer header with the appropriate informa­
tion and call the device'sstrategy routine., If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

A great dea! of work has to pe done to generate the "appropriate information" to put in
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(strat, bp, de v, rw) whose arguments

, are the name of the strategy routine strat, the buffer pointer bp, the device number de v, and a
read-write flag rw whose value is either B READ or B WRITE. Physio makes sure that the
user's base address and count are even (because most devices work in words) and that. the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.

, , ' (

A Tour through the UNIXt c: Compiler

The Intermediate Language

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Communication between the two phases of the compiler proper is carried out by means of
a pair of intermediate files. These files are treated as having identical structure, although the
second file contains only the code generated for strings. _ It is convenient to write· strings out
separately to reduce the need for multiple location counters in a later assembly phase.

The -intermediate language is not machine-independent; its structure in a number of ways
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max­
imum memory requirement. In fact, only the latest version of the compiler has a complete
intermediate language at all. Until recently, the first phase of the compiler generated assembly
code for those constructions it could deal with, and passed expression P!lrse trees, in absolute
binary form, to the second phase for code generation. Now, at least, all inter-phase informa­
tion is passed in a describable form, and there are no absolute pointers involved, so the cou­
pling between the phases is not so stro"ng.

The areas in which the machine (and system) dependencies are most noticeable are

1 Storage allocation for automatic variables and arguments has already been performed, and
nodes for such variables refer to them by offset from a display pointer. Type conversion
(for example, from integer to pointer) has already occurred using the assumption of byte
addressing and 2-byte words.

2. Data representations suitable to the PDP-ll are assumed; in particular, floating point con­
stants are passed as four words in the machine representation.

As it happens, each intermediate file is represented as a sequence of binary numbers
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by
an operator, and possibly containing various operands. The operators are small numbers; to
assist in recognizing failure in synchronization, the high-order byte of each operator word is
always the octal number 376. Operands..are either ~6-bit binary numbers or strings of charac­
ters representing names. Each name is terminated by a null character. There is no alignment
requirement for numericfll operands and so there is no padding after a name string.

Th~ binary representation was chosen to avoid the necessity of converting to and from
character form and to minimize the size of the files. It would be very easy to make each
operator-operand 'line' in the "file be a genuine, printable line, with the numbers in octal or
decimal; this in fact was the representation originally used.

The operators fall naturally into two classes: those which represent part of an expression,
and all others. Expressions are transmitted in a reverse- Polish notation; as they are being read,
a tree is built which is isomorphic to the tree constructed in the first phase. Expression~ are
passed as a whole, with no non-expression operators intervening. The reader maintains a stack; -
each leaf of the expression tree (name, constant).is pushed on the stack; each unary operator
replaces the top of the stack by a node whose operand is the old top-of-stack; each binary

tUNIX is a Trademark of Bell Laboratories.

529

530IMPLEMENTATIO~, MAINTENANCE, AND MISCELLANEOUS

operator replaces the top pair on the stack with a single entry. When the expression is com­
plete there is exactly one item on the stack. Following each expression is a special operator
which passes the unique previous expression to the 'optimizer' described below and then· to the
code generator.

Here is the list of operators not themselves part of expressions.

EOF
(

marks the end of an input file.

BDATAjiag data ...

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of
words; the first member of the pair is non-zero to indicate that the data continue; a zero

. flag is not followed by data and terminates the operator. The data bytes occupy the low­
order part of a word.

WDATAjiag data ...

specifies a sequence of words to be assembled as static data; it is identical to the BOAT A
operator except that entire words, not just bytes, are passed.

PROG
means that subsequent information is to be compiled as program text.

DATA

means that subsequent information is to be compiled as static data.

BSS

means that subsequent information is to be compiled as unitialized static data.

'SYMDEF name

means that the symbol name is an external, name defined in the current program. It is
produced for each external data or function definition.

CSPACE name size

indicates that the name refers to a data area whose size is the specified number of bytes.
It is produced for external data definitions without explicit initialization.

SSP ACE size

indicates that size bytes should be set aside for data storage. It 'is used to pad out short
initializations of external data and to reserve space for static (internal) data.· It will be
preceded by an appropriate label.

EVEN

is produced after each external data definition whose size is not an integral number of
words. It is not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BOAT A or WOAT A initializing external data, and serves as a
label for the data.

~

A TOUR THROUGH THE UNIX C COMPILER 531

RLABEL name

is produced just before each function defini.tion, and labels its entry point.

SN AME name number

is produced at the start of each ftinction for each static' variable or label declared therein.
Subsequent uses of the variable will be in terms of the given number. The code genera­
tor uses this only to produce a debugging symbol table.

AN AME name number

Likewise, each automatic variable's name and s~ack offset is specified by this operator.
Arguments count as automatics.

RNAME name number

Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLA­
BEL).

SETREG number

is used to indicate the number of registers used for register variables. It actually gives the
register number of the lowest free register; it is redundant because the RNAME operators
could be counted instead.

PROFIL

is produced before the save sequence for functions when the profile 'option is turned on.
It produces code to count the number of times the function is called.

SWIT de/lab line label value ...

is produced for switches. When control flows into it, the value' being switched on is in the
register forced by RFORCE (below). The switch statement occurred on the indicated line
of the source, and the label number of the default location is de/lab. Then the operator is
followed by a sequence of label-number and value pairs;' the list is terminated by a 0 label.

LABEL number

generates an internai label. It is referred to else~here using the given number.

BRANCH number

indicates an unconditional transfer to the internal label number given.

RETRN

produces the return sequence for a function. It occurs only once, at the end of each func­
tion.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in
the source where the expression occurred.

532 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

NAME class type name

NAME class type number

indicates a name occurring in an expression. The first form is used when the name is
external; the second when the name is automatic, static, or a register. Then the number
indicates the stack offset, the label number, or the register number as appropriate. Class
and type ,encoding is described elsewhere.

CON type value

transmits an integer constant. This and the next two operators occur as part of expres­
sions.

FCON type 4-word-value

transmits a floating constant as four words in PDP-II notation.

SFCON type vall!e

transmits a floating-point constant whose value is correctly represented by its high-order
word in PDP-II notation.

NULL

indicates a null argument list of a function call in an expression; call is a binary oQerator
whose second operand is the argument list. •

CBRANCH label cond

produces a conditional branch" It, is an expression operator, and will be followed by an
EXPR. The branch to the label number takes place if the expression's truth value is the
same as that of condo _ That is, ,if cond= 1 and the expression evaluates to true, the branch
is ta-ken.

binary-operator type

There are binary operators correspondirig to each such source-language operator; the type
oftbe result of each is passed as well. Some perhaps-unexpected ones are: COMMA,
which is a right-associative operator designed to' simplify right-to-left evaluation of func­
tion arguments; prefix and postfix + + and - -, whose second operand is the increment
amount, as a CON; QUEST and COLON, to express the conditional expression as
'a? (b:c) '; and a sequence of special operators for expressing relations between pointers, in
case pointer comparison is different from integer comparison (e.g. unsigned).

unary-operator type

There are also numerous unary operators. These include ITOF, FTOI, FTOL, L TOF,
ITOL, L TOI which convert among floating, long, and integer; JUMP which branches
indirectly through a labelexpressio,n; INIT, which compiles the value of a constant
expression used as an initializer; RFORCE, which is' 'used bef~re a return sequence or a
switch to place a value in an agreed-upon register.

Expression Optimization
, ,

Each expression tree, as it. is read in, is subjected to a fairly comprehensive analysis. This,
is performed by the optim routine and a number of subroutines; the major things done are

"

A TOUR THROUGH THE UNIX C COMPILER 533 '

1. Modifications and simplifications of the tree so its value may be computed more efficiently
and conveniently by the code generator.

2. Marking each interior node with an estimate of the number of registers required to evalu­
ate it. This register count is needed to guide the code generation algorithm.

One thing that is definitely not done is discovery or exploitation of common subexpres­
sions, nor is this done anywhere in the compiler. '

The basic organization is simple: a depth-first scan of the tree. Opfim does n9thing for
leaf nodes (except for automatics; see below), and calls unopfim to handle unary operators. ,For
binary operators, it calls itself to process the operands, then treats each operator separately.
One important case is commutative and associative operators, which are handled by acommute.

Here is a brief catalog of the transformations carried out by by opfim itself. It is not
intended to be complete. Some of the transformations are machine-dependent, although they
may well be useful on machines other than the PDP-ll.

1. As indicated in the discussion of unopfim below, the optimizer can create a node type
corresponding to the location addressed by a register plus a constant offset. Since this is
precisely the implementation of automatic variables and arguments, where the register is
fixed by convention, such variables are changed to the new form to simplify later process­
ing.

2. . Associative add commutative operators are processed by the special routine acommute.

3. After processing 'by acommute, the bitwise & operator is turned into a new andn operator;
'a & b' becomes 'a andn -b'. This is done because the PDP-ll prDvides no and operator,
but only andn. A similar transformation takes place for' =&'.

4. Relationals are turned around so the more complicated expression is ori the left. (So that
'2 > f(x)' becomes 'f(x) < 2'). This, improves code generation since the algorithm
prefers to have the right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant,
and the acommute routine is called to take advantage of the properties of addition. "

6. Operators with constant operands are evaluated.

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since
the PDP-II lacks a general right-shift operator.

8. A number of special cases are simplified, such as diVision or multiplication by 1, and
shifts by O.

The unopfim routine performs the same sort of processing for unary operators.

1. '*&x' and '&*x' are simplified to 'x'.

2. If r is a register and c is a constant or the address of a static or external variable, the
expressions '*(r+c)' and '*r' are turned into a special kind of name node which expresses
the name itself and the offset. This simplifies subsequent processing because such con~
structions can appear as the the address of a PDP-ll instruction.

3. When the unary '&' operator is applied to a name node of the special kind just discussed,
it is reworked to make the addition explicit again; this is done because the PDP-II has no
'load address' instruction. .

4. Constructions like '*r+ +' and '* - -r' where r is a register are discovered and marked as
being implementable using the PDP-II auto-increment and -decrement modes.

5. If '!'. is applied to a relational, the '!' is. discarded and the sense of the relational is
reversed.

6. Special cases irivolving reflexive use of negation and complementation are discovered.

534 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

7 _ Operations applying to constants are evaluated.

The- aeommute routine, called for associative and commutative operators, discovers clus­
ters of the same operator at the top levels of the current tree, and arranges them in a list: for
'a + «b +c) + (d -tr»' the list would be'a,b,c,d,e,f'. After each subtree is optimized, the list is
sorted in decreasing difficulty of computation; as mentioned above, the code generation algo­
rithm works best when left operands are the difficult ones. The 'degree of difficulty' computed
is actually finer than the mere number of registers required; a constant is considered simpler
than the address of a static or external, which is simpler than reference to a variable. This
makes it easy to fold all the constants together, and also to merge together the sum of a con­
stant and the address of a static or external (since in such nodes there is space for an -'offset'
value). There are also special cases, like multiplication by 1 and addition of O. '.

. .
A special routine is invoked to handle sums of products. Distrib is based on the fact that it is
better to' compute 'cl*c2*x + cl*y' as 'cl*(c2*x + y)' and makes the divisibility tests required
to assure the correctness of the transformation. This transformation is rarely possible with code
directly written by th~ user, but it invariably occurs as a result of the implementation of multi­
dimensional arr~ys.

Finally, acommute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular'machine; it.;<fepends
largely on a set of tables. -But this fact does not necessarily make it very easy to modify the -
compiler to produce code for other machines, both because there is a good deal of machine­
dependent structure in the tables, and because in any event such tables are non-trivial to
prepa~e.

The arguments to the basic code generation routine reexpr are a pointer to a tree
representing an expression, the name of,~ code-generation table, and the number of a register
in which the value of the expression should be placed. Reexpr returns the number of the regis­
ter in which the value actually ended up; its caller may need to produce a mov instruction if the
value really needs to be i~ the given register. There are four code generation tables .

• # Regtab is the basic one, which actually does the job described above: namely, compile
code which places the value represented by die expression tree in a register ..

Cetab is used when the value' of the expression is not actually needed, but instead the
value of the condition codes resulting from evaluation of the expression. This table is used, for
example, to evaluate the expression after if. It is clearly silly to calculate the- value (0 or 1) of
the expression 'a= =b' in the context 'if (a==b) ... ' .

The sptab table is used when the value of an expression is to be pushed on the stack, for
example when it is an actual argument. For example in the function call 'r(a)' it is a bad idea
to load a into a register whjch is then pusryed on the stack, when·,there is a single instruction
which does the job. .

The e./ftab table is used when an expression is to be evaluated for its· side effects, not its
value. This occurs mosiIy for expressions which are statements, which have no value. Thus
the code for the 'statement 'a = b' need produce only the approoriate mov instruction, and need
not leave the value of b in a register, while in the expression. 'a + (b = c)' the value of 'b ='
c' will appear in a register.

All of the tables besides regtab are rather small, and handle only a relatively few special
cases. If one df these subsidiary tables does not contain an entry'applicable to the givenexpres­
sion tree, reexpr uses regtab to put the value df the expression into a register and then fixes
things up; nothing need be done when the table . was e./ftab, but a tst instruction. is produced
when the table called for was eetab, and a mov instruction, pushing the register on the stack,

- when the table was sptab. . .

A TOUR THROUGH THE UNIX C COMPILER 535

The rcexpr routine itself picks off some special cases, !hen calls cexpr to do the real work.
Cexpr tries to find an entry applicable to the given tree in the given table, and returns -1 if no
such entry is found, letting rcexpr try again with a different table. A successful match yields a
string containing both literal characters which are written out and pseudo-operations, or macros,
which are expanded. Before studying the contents of these strings we will consider how table
entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator,
the type of the value represented, and pointers to the subtrees (operands). They also contain
an estimate of the number of registers required to evaluate the expression, placed there by the
expression-optimizer routines. The register counts are used to guide the code generatio'n pro­
cess, which is based on the Sethi-Ullman algorithm.

The main code generation tables consist of entries each containing an operator number
and a pointer to a subtable for the corresponding operator. A subtable" consists of a sequence of
entries, each with a key describing certain properties of the operands of the operator involved~
associated with the key is a code string. Once the subtable corresponding to the operator is

I
found, the,subtable is searched linearly until a key is found such that the properties demanded
by the key are compatible with the operands of the tree node. A successful match returns the
code string~ an unsuccessful search, either for the operator in the main table or a compatble key
"in the subtable, returns a failure indication.

The tables are all contained in a file which must be processed to obtain an assembly
language program. Thus they are written in a special-purpose language. To provided
definiteness to the following discussion, here is an example of a subtable" entry.

%n,aw
F
add A2,R

The '%' indicates the key~ the informati9n following (up to a blank line) specifies the code
string. Very briefly, this entry is in the subtable for' +' of regtab; the key specifies that the left
operand is any integer, character, or pointer expression, and the right operand is any word
quantity which is directly addressible (e.g. a variable or constant). The code string calls for the
generation of the code to compile the left (first) operand into the current register ('F') and
then to produce an 'add' instruction which adds the second operand (' A2') to the register
('R'). All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred.
They are:

1. Is the type of the operand compatible with that demanded?

2. Is the 'degree of difficulty' (iri a sense described below) compatible?

3. The table may demand that the operand have a '*' (indirection operator) as its highest
operator.

As suggested above, the key for a subtable entry is indicated by a '%,' and a comma­
separated pair of specifications for the operands. (The second specification is ignored for unary
operators). A specification indicates a type requirement by including one" of the following
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the
requirement (not float, double, or long).

b A byte (character) operand is required.

w A word (integer or pointer) operand is required.

f A float or double operand is required.

d A double operand is required.

536 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

l A long (32-bit integer) operand is required.

Before discussing the 'degree of difficulty' specification, the algorithm has to be explained
more completely. Rcexpr (and cexpr) are called with a register number in which to place their
result. Registers 0, I, ... are used during. evaluation of expressions; the maximum register
which can be used in this way depends on the number Qf register variables, but in any event
only registers 0 through 4 are available since r5 is used as a stack frame header and r6 (sp) and
r7 (pc) have. special hardware properties. The code generation routines assume that when
called with register n as argument, they may use n + 1, ... (up to the first register .variable) as
temporaries. Consider the expression 'X + Y', where both X and Yare expressions. As. a first
approximation, there are three ways of compiling code to put this expression in register n.

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it.

2. If Y is' an expression that can be calculated in k registers, where k smaller than the
riumber of registers available, compile X into register n, Y into register n + 1, and add
register n + 1 to n.

3. Otherwise, c.ompile Y into register n, save the result in a temporary (actually, on the
stack) compile X into register n, then add in the temporary.

The distinction b~tween cases 2 and 3 therefore depends on whether the:right operand can
be compiled in fewer than k registers, where k is the number of free registers left after registers
·0 through n are taken: 0 through n -1 are presumed to contain already computed temporary
results; n will, in case 2, contain the value of the left operand while the right is being e\,~uated.

These considerations should make clear the specification codes for the degree of difficulty,
bearing in mind that a number of special cases are also present:

..

fZ is satisfied when the operand is zero, so that special code can be produced for expressions
like 'x = 0'. '

1 is satisfied when the operand is the constant 1, to optimize cases like left and right shift
by I, which can be done efficiently on the PDP-II.

c is satisfied ~hen the operand is a positive (16-bit) constant; this takes care of some special
cases in long arithmetic.

a. is satisfied when the' operand IS addressible; this occurs not only for variables and con­
stants, but also for some more complicated constructions, such as indirection through a
simple variable, '*p+ +' where p is a register variable (because of the PDP-II's auto­
increment address mode), and '*(p+c)' where p is a register and c is a constant. Pre­
cisely, the requirement is that the operand refers to a cell whose address can be written as
a~ource or destination of a PDP-II instruction.

e is satisfied by an operand whose value can be generated in a register using no more thank
registers, where ~ is the number of registers left (not counting the current register). The
'e' stands for 'easy.'

n is satisfied by any operand.· The 'n' stands for 'anything.'

These degrees of difficulty are considered to lie in a linear ordering and any operand
which satisfies an earlier-mentioned requiremen:t will satisfy a later one. Since the subtables are
searched linearly, if a 'I' spe'cification is included, almost certainly a 'z" must be written first to
prevent expressions containi~g the constant 0 to be compiled as if the 0 were 1 .

.i Finally, a key specification may contain a '*' which requires- the operand to have an
indirection as its' leading operator. Examples below should clarify the utility of this
specification.

Now let us consider the contents of the code strin'g associated with each subtable entry.
Conventionally: lower-case letters in this string' represent literal information which is copied
directly to the. output. Upper-case letters generally introduce specific. macro-operations, some

. of which may be followed by modifying information .. The code strings in the tables are written
with tabs and new-lines used freely to suggest instructions which will -be generated~ the table-

A TOUR THROUGH THE UNIX C COMPILER 537

compiling program compresses tabs (using the 0200 bit of the next character) and throws away
some of the new-lines. For example the macro 'F' is ordinarily written on a line by itself~ but
since its expansion will end with a new-line, the new-line after ~F' itself is dispensable. This is
all to reduce the size of the stored tables. '

The first set of macro-operations is concerned with compiling subtrees. Recall that this is
done by the cexpr routine. In the following discussion the 'current register' is generally the

, argument register to cexpr; that is, the place where the result is desired. The 'next register' is
numbered one higher than the current register. (This explanation isn't fully true because of
complications, described below, involving operations which require even-odd register pairs.)

F causes a recursive call to the rcexpr routine to compile code which places the value of the
first (left) operand of the operator in the current register.

FI generates code which places the value of the first operand in the next register. It is
incorrectly used if there might be no next register~ that is, if the degree of difficulty of the
first operand is not 'easy;' if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr
specifying spfab as the table.

Analogously,

S, St., SScompile, the second (right) operand into the current register, the next register, or onto
the stack.

To deal with registers, there are

R . which expands into;the name of the current register ..

R I which expands into the name of the next register.

R + which expands into the the name of the current register plus 1. It was suggested above
that this is the same as the next register, except for complications~ here is one of them.
Long integer variables have 32 bits and require 2 registers~ in such cases the next register
is the current register plus 2. The code would like to talk about both halves of th~ long

, quantity, so R refers to the register with the high-order part and R + to the low-order
part.

R - This is anpther complication, involving division and mod. These operations involve a pair
of r~gisters of which the odd-numbered contains the left operand. Cexpr artanges that the
current register is odd~ the R - notation allows the code to refer to ~~e next lower, even­
numbered register.

,To refer to addressible quantities, there ar'e: :the notations:

Al causes generation of the address specified by the first operand. For this to be',legal, the
operand must be addressible~ its key must contain an 'a' or a more restrictive
specification.

A2 correspondingly generates the address of the second operand providing it has one.

We now have enough mechanism to show a complete, if suboptimal, table for the +
operator on word or byte operands.

538 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

%n,z
F

%n,I
F
inc R

%n,aw
F
add A2,R

%n,e
F
SI
add RI,R

%n,n
SS
F
add (sp)+,R

The first two sequences handle some 'special cases. Actually it turns out that handling a right
operand of 0 is unnecessary since the expression-optim~zer throws out adds of O. Adding 1 by
using the 'increment' instruction is done next, and then the case where the right operand is
addressible. It must be a word quantity, since the PDP-II lacks an 'add byte' instruction.
Finally the cases where the right operand either can, or cannot, be done in the available regis-
ters are treated. \

The next macro-instructions are conveniently introduced by noticing that the above table
is suitable for subtraction as well as addition, since no use is made of the commutativity of
addition. All that is needed is substitution of 'sub' for 'add' and 'dec' for 'inc.' Considerable
saving of space is achieved by factoring out several similar dperations.

I is replaced by a string from another table indexed by the operator in the node being
expanded. This secondary table actually contains two strings per operator.

I' is replaced by the second string in the side table entry for the current operator.

Thus, given that the en~ries for' +' and' -' in the side table (which is called insfab) are
'add' and 'inc,' 'sub' and 'dec' respectively, the middle of of the above additio~ table can be
written

%n,I
F
I' R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and'several other operafors, as well.

Next, there is the question of character and floating-point operations.

B 1 generates the letter 'b' if the first ,operand is a character, 'f' if it is float or double, and
nothing otherwise., It IS used in a context like 'movBI' which generates, a 'mov', 'movb',
or 'movf' instruction according to the type of the operand.

A TOUR THROUGH tHE UNIX C COMPILER 539

B2 is just like Bl but applies to the second operand.

BE generates 'b' if either operand is a character and null otherwise.

BF generates of' if the type 5lf the operator node itself is float or double, otherwise null.

For example, there is an entry in e.fftab for the' =' operator

%a,aw"
%ab,a

IBE A2,Al

Note first that two key specifications can be applied to the same code string. Next, observe that
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc­
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word,
it must pass through a register to implement the sign-extension rules:

%a,n
S"
IBI R,AI

Next, there is the question of handling indirection properly. Consider the expression 'X
+ *Y', where X and Yare expressions, Assuming that Y is more complicated than just a vari­
able, "but on the other hand qualifies as 'easy' in the context, the expression would be compiled
by placing the value of X in a register, that of *y i'n the next register, and adding the registers.
It is easy to se~ that a better job can be done by compiling X, then Y (into the next register),
and producing the instruction symbolized by 'add (R 1) ,R'. This scheme avoids generating the
instruction 'mov (R 1),R l' required actually to place the value of *y in a register. A related
situation occurs with the expression 'X + * (p + 6)', which exemplifies a construction frequent
in structure and array references. The addition table shown above would produce

[put X in register R]
mov p,RI
add $6,RI
mov (R1),RI
add RI,R

when the best code is

[put X in R]
mov p,RI
add 6(Rl),R

As we said above, a key specification for a code table entry may require an operand to have an
indirection as .its highest operator. To make use of the requirement, the following macros are
provided.

F* the first operand must have the form *X. If in particular it has the form * (Y + c), for
some constant c, then code is produced which places the value of Y iri the curren~ regis­
ter. Otherwise, code is produced which loads X i~to the current register."

FI * resembles F* except that the next register ,is loaded.

S* resembles F* except that the second operand is loaded.

S 1 * resembles S* except that the next register is loaded.

FS* The first operand must have the form '*X'. Push, the value of X on the stack.

SS* resembles FS* except that it applies to the second operand.

To capture the constant that may have been skipp,ed over in the above macros, there are

540 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

#1 The first operand must have the form *X~ if in particular it has the form * (Y + c) for c a
constant, then the constant is written out, otherwise a null string.

#2 is the same as #1 except that the second operand is used.

Now we can improve the addition table above. Just before the '%n,e' entry, put

%n,ew*
F
SI *
add #2(RI),R

and just before the '%n,n' put

%n,nw*
SS*
F
add *(sp)+,R

When using the .stacking macros there is no place to use the constant as an index word, so that
particular special case doesn't occur.

The constant mentioned above can actually be more general than a number. Any quantity
acceptable to the assembler as an expression will do, in particular the address of a static cell,
perhaps with a numeric offset. If x is an external character array, the expression 'x [i + 5] = 0'
will generate the code

mov i,rO
c1rb x + 5 (rO)

via the table entry (in the' =' part of eltiab)

%e*,z
F
I'BI #1(R)

Some machine operations place restrictions on the registers used. The divide instruction, used
to implement the divide and mod operations, requires the dividend to be placed in the oud
member of an even-odd pair~ other peculiarities of multiplication make it simplest to put the
multiplicand in an odd-numbered register. There is no theory which optimally accounts for this
kind of requirement. Cexpr handles it by checking for a multiply, divide, or mod operation~ in
these cases, its argument register number is· incremented by one or two so that it is odd, and if
the operation was divide or mod, so that it is a member of a free even-odd pair. The routine
which determines the number of registers required estimates, conservatively, that at least two
registers ar~ required for a multiplicadon and three for the other peculiar operators. After the
expression is compiled, the register where, 'the result actually ended up is returned. (Divide and
mod are actually the same operation except for the location of the result).

These operations are the ones which cause results to end up in unexpected places, and
this possibility adds a further level of complexity. The simplest way of handling the problem is
always to move the result to the place where the caller expected it, but thi,s will produce
unnecessary register moves in many simple cases~ 'a = b*c' would generate

mov b,rl
mul c,rl
mov rl,rO
mov rO,a

The next thought is used the passed-back information as to where the, result landed to change
the notion of the current register. While compiling the '=' operation above, which comes
from a table entry like '

A TOUR THROUGH THE UNIX C COMPILER 541

%a,e
S
mov R,AI

it is sufficient to redefine the meaning of 'R' after processing the'S' which does the multiply.
- This technique is in fact used; the' tables are written in such a way that correct code is pro­
duced. The trouble is that the technique cannot be used in general, because it invalidates the
count of the number of registers required for an expression. Consider just 'a*b + X' where X
is some expression. The algorithm assumes that the value of a*b, once computed, requires just
one register. If there are three registers available, and X requires two registers to compute,
then this expression will match a key speci(ying '%n,e'. If a*b is computed and left in register
I, then there are, contrary to expectations, no longer two registers available to compute X, but
only one, and bad code will be produced. To guard against this possibility, cexpr checks the
result returned by recursive calls which implement F, S and their relatives. If the result is not
in the expected register, then the number of registers required by the other operand is checked~
if it can be done using those registers which remain even after making unavailable the
unexpectedly-occupied register, then the notions of the 'next register' and possibly the 'current
register' are redefined. Otherwise a register-copy instruction is produced. A register-copy is
also always produced when the current operator is one of those which have odd-even require­
ments.

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors:

V is used for long operations. It is written with an address like a machine instructi~n; it
expands into 'adc' (add carry) if the operation is an additive operator, 'sbc' (subtract
carry) if the operation is a subtractive operator, and disappears, along with the rest of the
line, otherwise. Its purpose is to a'lIow common treatment of logical operations, which
have no carries, and additive and subtractive operations, which generate carries.

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to
generate the high-order part of the dividend.

H is analogous to the 'F' and'S' macros, except that it calls for the generation of code for
the current tree (not one of its operands) using regtab. It is used in cftab for all the
operators which, when executed normally, set the condition. codes properly according to
the result. It prevents a 'tst' instruction from being generated for constructions like 'if
(a + b) ... ' since after calculation of tne value of 'a + b' a conditional branch can be written
immedi'ately.

All of the discussion above is in terms of operators with operands. Leaves of the expres­
sion tree (variables and constants), however, are peculiar in that they have no operands. In
order to regularize the matching process, cexpr examines its operand to determine if it is a leaf~
if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for the
argument tree~ this allows the table entry for the created operator to use the 'A I' notation to
load the leaf into a register.

Purely to save space in the tables, pieces of sub tables can be labelled and referred to later.
It turns out, for example, that rather large portions of the the e.tftab table for the' =' and' = +'
operators are identical. Thus' =' has an entry

%[move3:]
%a,aw
%ab,a

IBE A2,AI

while part of the '= +' table is

542 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

%aw,aw
% [move3]

Labels are written as '% [... :]" before the key specifications; references are written with '%
...]' after the key. Peculiarities in the implementation make it necessary that labels appear
before references to them.

The example illustrates the utility of allowing separate keys to point to the same code
string. The assignment code works properly if either the right' operand is a word, or the left
operand is a byte; but since there is no 'add byte' instruction the addition code has to be res­
tricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. ' The
first, implemented by a routine called delay, is based on the observation that naive code genera­
tion for the expression 'a = b + +' would produce J

mov b,rO
inc b
mov rO,a

The point is that the table for postfix + + has to preserve the value of b before incrementing
it; the general way to do this is to preserve its value in a register. A cleverer scheme would
generate

mov b,a
inc b

Delay is called for each expression. input to rcexpr, and it searches for. postfix + + and
operators. If one is found applied to a variable, the tree is patched to bypass the operator and­
compiled as it stands; then the increment or decrement itself is done. The effect is as if 'a =
b; b+ +' had been written. In this example, of course, the user himself could have done the
same job, but more complicated examples are easily constructed, for example 'switch (x + +)'.
An essenti~l restriction is that the condition codes not be required. It would be incorrect to
compile 'if (a + +) ... ' as

tst a
inc a
beq

because the 'inc' destroys the required setting of the condition codes.

Reordering is a similar 'sort of optimization. Many cases which it detects are useful
mainly with register variables. If r isa register variable, the expression 'r = x +y' is best com-
piled as .

mov x,r
add y,r

but the codes tables would produce

mov x,rO
add y,rO
mov rO,r

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the
same size, but the second is slightly faster.) The scheme is to compile the expression as if it
had been written 'r = x; r = + y'. The reorder routine is called with a pointer to each tree t1)at
rcexpr is .about to compile; if it has the right characteristics, the 'r = x' tree is constructed and
passed recursively to rcexpr; then the original tree is modified to r.ead 'r = + y' and the calling
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so thal

A TOUR THROUGH THE UNIX C COMPILER 543

more extended forms of the same phenomenon are handled, like 'r = x + y I z'.

Care does have to be taken to avoid 'optimizing' an expression like 'r = x + r' into 'r =
x; r = + r'. It is required that the right operand of the expression on the right of the' =' be a.
" distinct from the register variable.

The second case that reorder handles is expressions of the form 'r = X' used as a subex-
pression. Again, the code out of the tables for "x = r = y' would be

mov y,rO
mov rO,r
mov rO,x

whereas if r were a register it would be better to produce

mov y,r
mov r,x

When reorder discovers that a register variable· is being assigned to in a subexpression, it calls
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the
register variable itself appears as the operand instead of the whole subexpression. Here care
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to
hand~e assignments to registers.

A third set of cases treated by reord.er comes up when any name, not necessarily a regis­
ter, occurs as a left operand of an assignment operator· other than '=' or as an operand of
prefix' + +' or '- -'. Unless condition-code 'tests are involved, when a subexpression like' (a
= + b)' is seen, the a'ssignment is performed and the argument tree modified so that a is its
operand; effectively 'x + (y = + z)' is compiled as 'y = + z; x + y'. Similarly, prefix incre­
ment and decrement are pulled out and pe'rformed first, then the remainder .·of the expression.

Throughout code generation, the expression optimizer is called whenever delay or reorder
change the expression tree. This allows some special cases to be found that otherwise would
not be seen. . .

Introduction

A Tour Through the Portable C Compiler

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974 _

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, includirig the Honeywell 6000, IBM 370,
and Interdata 8/32. The cqmpiler is highly compatible with the C language standard. 1

Among the goals of this compiler are portability, high reliability, and the use of state-of­
the-art techniques and tools wherever practical. Although the efficiency of the' compiling pro­
cess is not a primary goal, the compiler is efficient enough, and prbduces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with ,the current PDP-II version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou­
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which-was
the basis of his Master's Thesis at M.LT.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter­
mediate language, perhaps based on three-address code or code for a stack machine, and writing
a machine independent program to translate from the source code to this intermediate code.
The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some. constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen­
dent way that still allows them to be easily adapted to the target assemblers. Most of these
approaches require a symbol table to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated
that have no effect on a given machine, but may be needed on others (for example, pointer- to
pointer conversions usually do nothi.ng in Q, but must be generated because there are some
machines where _they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine indepen­
dent. It contains some machine dependent features, such as initialization, subroutine prolog
and epilog, certain storage allocation functions, code for the switch statement, and code to
throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly -600 -machine dependent lines of source out of 4600 in Pass 1, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine depen­
dent (I2% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly as the
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the
Honeywell 25%. If the assembler format and structure were the same for all these machines,
544

A TOUR THROUGH THE PORTABLE C COMPILER 545

perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way. On
the other hand, a certain amtlUnt of the code requres hard intellectual effort to convert, since
the algorithms embodied in this part of the code are typically complicated and machine depen­
dent.

To summarize, however, if you need a C compiler written for a machine with a reason-.
able architecture, the compiler is already three quarters finished! .

Overview

This paper discusses the structure and organization of the portable compiler. The intent is
to give the big picture, rather. than discussing the details of a particular machine implementa­
tion. After a brief .overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more c10sdy into the two passes. Some· of the
theoretical work on which the compiler is based, and its application to the compiler, is discussed
elsewhere.4 One of' the major design issues in any C compiler, the design of the calling
sequence arid stack frame, is the subject of a separate memorandum.5 .

The compiler consists of two passes, passl and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and H~lated features (e.g., #ifdef, etc,). It
is a nearly machine inde~endent p~ogram, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. T,his p~oduces as standard output another text file that becomes the standard input of the
second pass. The second pass produces" as standard output, the desired assembler language
source code. The preprocessor and the two passes all write error mess~ges on the standard ~

error file. Thus the compiler itself makes few demands on the 110 library support, aiding in the
bootstrapping process.

, ,Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes operate
in the same program. This "one pass" operation eliminates the overhead of re~d:ng and writ­
ing the intermediate file\. so the compiler operates about 30% faster in this mode, It also occu­
pies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one,
this ~ocument primarily describes the two .pass version.

The first pass does the lexical analysis,· parsing, 'and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track' of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass serve
to generate subroutine prologs and epilogs, code for switches, and code for branches, label
definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly' to its output file, with the parenthesis
stripped off. Thus, When the first pass produces assembly code, such as subroutine prologs,
etc., each line is prefaced with a right parenthesis~ the second pass passes these lines to through
to the assembler.

The major job done by the second pass is generation of code for expressions. The expres­
sion parse trees produced in the first pass are written onto the intermediate file in Polish Prefix
forin: first, there is a line. beginning with a period, followed by the source file line number and
name on which the expression appeared (for debugging purposes). The successive lines
represent the nodes of the parse tree, one node per line. Each line contains the node number,
type, and any values (e.g., values of constants) that may appear in the ndde. lAnes represent­
ing nodes with descendants are immediately followed by the left subtree of descendants, then
the right. Since the number of descendants of any node is completely determined by the node

546 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

number, there is no need to mark the end of the tree.

There are only two other line types in the inter",ediate file. Lines beginning with a left
square bracket (' [') represent the beginning of blocks (delimited by { ... } in the C source) ~
lines beginning with rightsquare brackets (']') represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the "intermediate files, copies the ')' lines, 'makes note of the
information in the' [' and']' lines, and devotes most of its effort to the'.' lines and their asso­
ciated expression trees,. turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the firsfpass,
, have been declared to have 'room for the second pass information as well. Instead of writing
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for
the code generator. The code generator then writes the result of compiling this tree onto the
standard output. Instead of '[' and ']' lines in the intermediate file; the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written
out, without the need for ')' at the head of each line. '

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdefs, are
header files included with all other files. Manifest has declarations for the node numbers, types,
storage classes, and other global data definitions. Macdefs has machine-dependent definitions,
such as the size and alignment of the various data representations. Two machine .independent
header files, mfi1e 1 and m/ile2, contain the data structure and manifest definitions for the first
and second passes, respectively. In' the second pass, a machine dependent h~ader file,
mac2de/s, contains declarations of register names" etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comml.c and comm2.c,
that simply include common within the scope of the appropriate pass} or pass2 header files.
When -the compiler is loaded as a single pass, common only needs to be included once: comm2.c
is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give'a brief description of the files. The first pass is obtained by compiling
and loading scan.c, cgram.c, xdefs.c, p/tn.c, trees.c, optim.c, lo(!al.c, code.c, and comml.c. Scan.c is
the lexical analyzer, which is used by cgram.c, the result of applying Yaccl' to the input grammar
cgram.y. Xdefs.c is a short file of external definitions. P/tn.c maintains the symbol table, and
does initialization. Trees.c builds the expression trees, and computes the node types., Optim.c
does some machine independent optimizations on the expression trees. Comml.c includes co;"­
mon, that contains service routines common to the two passes of the compiler. Ail the above
files are machine independent. The files I~cal.c and code.c contain machine dependent code for
'generating subroutine prologs, switch code, and the like. '

The second pass is produced by compiling and loading reader.c, a./lo.c, match.c, comml.c,
order.c, local.c, anq table.c. Reader.c reads the intermediate file, and controls the major logic of
the code g~pet~tion. A lIo.c keeps track of busy and free'registers. Match.c controls the match­
ing of code'tetj1plates to subtrees of the expression tree to be compiled. Comm2.c includes the
file common, as in the first pass. The above files are machine independent. Order.c controls the'
machine dependent details of the code generation strategy. Local2~c has many small machine
dependent 'routines, and tables of opcodes, register types, etc. Table.c has the code template
tables, which are also clearly machine dependent.

A TOUR THROUGH THE PORTABLE C COMPILER 547

Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use
the same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis,
parsing, tree building, and code generation phases~ this requires some synchronization with the
Yacc input file, cgram.y, as well.

.A token like MINUS may be seen in the lexical analyzer before it is known whether it is a
unary or binary operator~ clearly, it is necessary to know this by the time the parse tree is con:.
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and
UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist in a'n
assignment form (for example, - =), and the operator ASG may be applied' to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro optype(o) returns
one of the manifest constants L TYPE, UTYPE, or BITYPE, respectively, depending on the
node number o. Similarly, asgop(o) returns true if 0 is an assignment operator number (=,
+ =, etc.), and logop(o) returns true if 0 is a relational or logical (&&, II, or !) operator.

. C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR: SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY ~ and ENUMTY. Then, there are three operators that can be applied to
iypes to make others: if t is a type, we may potentially have types pointer to t, function retufning
t, and array of t's generated from t. Thus, an arbitrary type in C consists of a basic type, and
zero or more of these operators.

In the compiler, a type is represented by an unsigned integer~ the rightmost four bits' hold
the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no opera­
tor), or one of the three operators described above. The modifiers are read right to left in the
word, starting with the two-bit field adjacent to the b~sic type, until a field with 0 in it is
reached. The macros 'PTR, FTN, and AR Y represent the pOinter to; fUllction retllr.>1ing, and array
of operators. The macro values are shifted so that they align with the first two. bit field~ thus
PTR + INT represents the type for an integer pointer, and

ARY + (PTR < <2) + (FTN < <4) + DOUBLE

represents the type of an array of pointers' to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE{t) gives
the basic type; ISPTR (t), ISA R Y(t), and ISFTN(t) ask if an object of this type is a poiriter,
array,' or a function, respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t)
gives the type resulting from removing the first operator from t. Thus, if t is a pointer to t " a

, function returning t', or an array of t " then DEC R EF(t) would equal t: -/ NC R EF(t) gives' the
type representing a pointer 'to t. Finally, there are ,operators for dealing with the unsigned
types. ISUNSIGNED(t) returns true if t is one of the four basic unsigned types~ in this case,
DEUNSIGN(t) gives the associated 'signed' type .. Similarly, UNSIGNABLE(tJ r.eturns true ~f tis
one of the four basic types that could become unsigned, and ENUNSIGN(t) returns the
unsigned analogue of t in this case, '

The other important global data structure is that of expression trees. The actual shapes of
the nodes are given in mfilel and mfile2. They are not the same in the two passes~ the first pass
nodes contain dimension' and size information, while the second pass nodes contain register
allocation information. Nevertheless, all nodes contain fields called op, containing .the node
number, and type, containing the type word. A function called tal/ocO r.eturns a poi'nter to a
new tree node. To free a node, its op field need merely be set to FREE. The other fields in
the node will remain intact at least until the nex'! allocation.

548 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

Nodes representing binary operators contain fields, left and right, that contain ,pointers to
the left and right descendants. Unary operator nodes have the left field, and a vaiue field called
rval Leaf nodes, with no descendants, have two value fields: IvaI and rval

At appropriate times, the function tcheckO can be called, to check that there are no busy
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree ..
The function walkflp,j} performs a postorder walk of the tree pointed to by p, and applies the

, function fto each node. The function fwalk(p,f,d) does a preorder walk of the tree pointed to
by p. At each node, it calls a function f, passing to it the node pointer, a value passed down
from its ancestor, and two pointers to values to be passed down to the left and right descen­

, dants (if any). The value d is the value passed down to the root. Fwalk is used for a number
of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be dis­
cussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building,
optimization, and a number of machine dependent things. This pass is largely machine
independent, "and the machine independent sections can be pretty successfully ignored. Thus,
they will be only sketched here.

Lexical. Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the
tokens of the C language as it encounters them: names, constants, operators, and 'keywords.
The conceptual simplicity of this job is confounded a bit by several other simple jobs-that
unfortunately must go on simultaneously. These include

• Keeping track of the current filename and line number, and occasionally setting this infor­
mation as the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well
as character strings.

To achieve speed, the program maintains several tables that are indexed into by character
value, to tell the lexical analyzer what to do next. To achieve portability, these tables must be
initialized each time the compiler is run, in order that the table entries reflect the local charac­
ter set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.
The grammar is relatively readable, but contains some unusual features that are worth com­
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob­
lem is to keep track of the basic type and the storage class while interpreting the various stars,
brackets, and parentheses that may surround a given name. The entire declaration mechanism
must be recursive, since declarations may appear within declarations of structures and unions,
or even within a sizeof construc~ion inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han­
dle constructions where a lot of left context information must be kept around. The problem is
that the original PDP-II compiler is top-down in implementation, and some of the semantics of
C reflect this. "in a top-down parser, the input rules are restricted somewhat, but one'can natur­
ally associate temporary storage with a rule at a very early stage in the recognition of that rule.
In a bottom-up parser, there is more freedom in the specification of rules, but it is more

A TOUR THROUGH THE PORTABLE C COMPILER 549

difficult to know what rule is being matched until the entire rule is seen. The parser described
by cgram.c makes effective use of the bottom-up parsing mechanism in some places (notably
the treatment of expressions), but struggles against the restrictions in others. The usual result
is that it is necessary to run.a stack of values Hon the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute ihformation (type, etc.) .for a declaration is care­
fully kept immediately to the left of the declarator (that part of the declaration involving the
name). In this way, when it is Hme to declare the name, the name and the type information
can be quickly brought together. The H$O" mechanism of Yacc is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so it
is kept in an external variable, and stacked if necessary. Some of the grammar could be consid­
erably cleaned up by using some more recent features of Yacc, notably actions within rules and
the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break
or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function prologs, and switch state­
ment processing, when. having all the affected data together in an array speeds later processing~
in this case, use of ext~~nal storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the parser.
These include routines for saving case v~lues and labels in processing switches, and stacking
and popping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number· of storage cla~es available. One of the com­
piler design decisions, was to process the storage class information totally in the first pass~ by the
second pass, this information must have been totally dealt with. This means that all of the
storage allocation, must take place in the first pass, so that references to automatics and parame­
terscan he turned into references to cells lying a certain number of bytes offset from certain
machine registers. Much of this transformation is machine dependent, and strongly depends on
the storage class.

'The' classes include' EXTERN (for externally declared, but not defined variables),
EXTDEF (for external definitions), and similar distinctions for UST ATIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNAME, and ENAME (for
structure, union, and enumeration tags), and the associated MOS, MOU, and MOE (for the

. members). TYPEDEF is treated as a storage class as well. There are two special storage
classes: P ARAM and SNULL. SNULL is used to distinguish the case where no explicit storage
class has been given~ before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is 'completed.·

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field~ a k bit bit field has storage class k plus FIELD.
This enables the size to be quickly recovered from the storage class.

550 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

Symbol Table Mairitenance. '

The symbol table routines do far more than simply enter names into the symbol table~
considerable semantic processing and checking is done as well. For example, if a new declara­
tion comes in, it must be checked to see if there is a previous declaration of the same symbol
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. The new
declaration may add information (such as an explicit array dimension) to an already present
declaration. The new declaration. may be different, but still correct (for example, an extern
declaration of something may be entered, and then later the definition may be seen). The new
declaration may be incompatible, but appear in an inner block~ 'in this case, the old declaration

. is carefully hidden away, and the new one comes into force until the block is left. Finally, the
declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user
is not always the type entered into the symbol table (for example, if an formal parameter to a
function is declared to be an array, C requires that this be changed into a pointer before entry
in the symbol table). Moreover, there are various kinds of illegal types that may be declared
which are difficult to check for syntactically (for example, a function returning an array).
Finally, there is a strange feature in C that requires structure tag names and member names for'
structures and unions to be taken from a different logical symbol table than ordinary identifiers.
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names
used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix' bugs. They address the above problems with reasonable
effectiveness but a singular lack of grace. '

When a name is read in the input, it is hashed, and the routine lookup is called, together
with a flag which tells which symbol table should be searched (actually, both symbol tables are­
stored in' one, and a flag is used to distinguish individual entries). If the name is found, lookup
returns the index to the entry found~ otherwise, it makes a new entry, marks it UNDEF
(undefined), and returns the index of the new entry. This index is stored in the rval field of a
NAME 'node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY
MUL n'odes for each *, LB nodes for each array descriptor (the right descendant has the dimen­
sion), and UNARY CALL nodes for each function descriptor. This tree is passed to the rou­
tine tymerge, along with the attribute type of the whole declaration~ this routine collapses the
tree to a single node, by calling tyredllce, and then modifies the type to reflect the overall type
of the declaration.

Dimension and size information is stored in a table calleq dim/abo To properly describe a
type in C, one needs not just the type information but also size information (for structures and
enums) and dimension information (for arrays). Sizes and offsets are dealt with in the com­
piler by giving the associated indices into dim/abo Tymerge and tyredllce call ds/ash to put the
discovered dimensions away into the dim/ab array. Tymerge returns a pointer to a single node
that contains the symbol table index in its rval field, and the size and dimension indices in fields
csiz and cdim, respectively. This information is,properly considered part of the type in the first
pass, and is carried around at all times.

To enter aIL element into the symbol table, the routine de/id is called~ it is handed a
storage class, and a pointer to the node produced by (vmerge~ De./id calls ./ix(vpe, which adjusts
and checks the given type depending on the storage class~,and converts null types appropriately.
It then calls ./ixclass, which does a similar job for the stonlke class~ it is here, for example, that
register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. ff the definitions are compatible, with possibly some added infor­
mation, the processing is straightforward. If the definitions differ, the block levels of the

A TOUR THROUGH THE PORTABLE C COMPILER -551

current and the old declaration are compared. The current block level is kept in blevel, an
external variable~ the old declaration level is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a func­
tion. If the current block I~vel is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry uhidden", and making a new entry, marked Hhiding". Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed~ if they hid other entries, the old entries are Hunhidden".

This nice block structure is warped a bit because labels do nQt follow the block structure
rules (one can do a goto into a block, for example); default definitions of functions in inner
blocks also persist clear out to the outermost scope. This impiies that cleaning up the symbQI
table after block ex~ t is more subtle than it might first seem.

For successful new definitions, de.fid also initializes a ""general purpose" field, aOset, in the
symbol table. It contains the stack offset for automatics and parameters, the register number
for register variables, the bit offset into the structure for structure members, and the internal
label number for static variables and labels. The offset field is set by falloe for bit fields, and
ddstruet for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a field
gives the line number of the last use, or of the definition, of the name. This is used mainly for
diagnostics, but is useful to lim as well.

. In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially tr~e with structures~ for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept in
dimtab. Because a structQre can be"mentioned long bef~re the members are known, it is neces­
sary to have another level of indirection in'the table. Th'e two words following the esiz entry in
dimtab are used to hold the alignment of the structure, and the ind~x in dimtab of the list of
members. This list contains the symbol table indices for the 'structure members, terminated by
a -1.

Tree Building

The portable compiler transforms expressions into expression trees .. As the parser recog­
nizes each rule making up an expression, it calls bUildtree which is given an operator number,
and pointers to the left and right descendants. Buildtree first examines the left and right des­
cendants, and, if they are both constants, and the operator is appropriate, simply does the con­
stant computation at compile time, and returns the result as a constant. Otherwise, buildtree
allocates a node for the head of the tree, attaches the descendants to it, and, ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity

. here; many combinations of types afe illegal, and the portable .compiler makes a strong effort to
check the legality of expression types completely. This is dime both for lim purposes, and to
prevent such semantic errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opaet. This routine maps
the types of the left and right operands into a rather smaller set of descriptors, arid then
accesses a table (actually encoded in a switch statement) which for each operator and pair of
types causes an action to be returned. The actions are logical or's of a number of separate
actions, which may be car.ried out by buildtree. These component actions may include checking
the left side to ensure that it is an Ivalue (can be stored into), applying a type conversion to the
left or right operand, setting the type of the new node to the type of·the left or right operand,

'calling various routines to balance the types of the left and right operands; ana suppressing the
ordinary conversion of arrays and function operands to pointers. An important operation i6
OTHER, which causes some special code to be invoked in buildtree, to' handle is'sues which 'are

552 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

unique to a particular ·operator. Examples of this are structure and union reference (actually
handled by the routine stre/) , the building of NrtME, ICON, STRING and FCON (floating
point constant) nodes, unary * and &, structure assignment, and calls. In the case of unary *
and &, buildtree will cancel a * applied to a tree, the top node of which is &, and conversely.

Another special operation is PUN~ this causes the compiler to check for type mismatches,
such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of
CD. The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to tymatch and ptmatch, both of which are given a
tree, and asked to make the operands agree in type. Ptmatch treats the case where one of the
operands is a pointer~ tymatch treats all other cases. Where these routines have decided on the
proper type for an operand, they call makety, which is handed a tree, and a type word, dimen­
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types
correct. Conversion operations are never inserted on the left side of assignment operators,
however. There are two conversion operators used~ PCONV, if the conversion is to a non-basic
type (usually a pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, c1ocal, immediately after it is produced. This is to allow more or less
immediate rewriting of those nodes which must be adapted for the local machine. The conver­
sion operations are given to clocal as well~ on most machines, many of these conversions do
nothing, and should be thrown away (being careful to retain the type). If this· operation is done
too early, however, later calls to bllildtree may get confused abol;lt correct type of the subtrees~
thus c10cal is given the conversion ops 'Only after the entire tree is built. This topie will be dealt
with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is
that most of the mess takes place in the machine independent part, where it is may be safely
ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine struc­
ture~ one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory. The
dramatic differences in the local assemblers also come to the fore here. The parsing problems
are dealt with by keeping a rather extensive stack containing the current state of the initializa­
tion~ the assembler problems are dealt with by having a fair 'number of machine dependent rou­
tines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another enti·y has the offset, in bits, of the beginning of
the current identifier. Another entry keeps track of how many elements have been seen, if the
current identifier is an array. Still another entry keeps track of the current member of a struc­
ture being initialized. Finally, there is..an entry containing flags which keep track of the current
state of the initialization process (e.g., tell if a) has been seen for the current identifier.)

When an initialization begins, the routine beginit is called~ it handles the alignment restric­
tions, if any, and calls instk to create the stack entry. This is done by first making an entry on
the top of the stack for the item being initialized. If the top entfY is an array, another entry is
made on the stack for' the first element. If the top entry is a structure, another entry is made
on the stack for the first member of the structure. This continues until the top element of the
stack is a scalar. Instk then r~turns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinil is called~ it examines the stack, and does
whatever is necessary to assign the current constant to the scalar on the top of the stack. 1.:0 IS­

cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed
on top of the stack. This process continues until the end of the initializers~ (,lIdil1il cleans up. If

A TOUR THROUGH THE PORTABLE C COMPILER 553

a { or } is encountered. in the string of initializers, it is handled by calling ilbrace or irbrace,
respecti vely.

A central issue is the treatment of the "holes" that arise as a result of alignment restric­
tions or explicit requests for holes in bit fields. There is a global variable, inojJ, which contains
the current offset in the initialization (all offsets in the first pass of the compiler are in bits).
Doinit figures out from the top entry on the stack the expected bit offset of the next identifier;
it calls the machine dependent routine inforce which, in a machine dependent way,. forces the
assembler to set aside space if need be so that the next scalar seen will go into the appropriate
bit offset position. The scalar itself is passed to one of the machine dependent routines fincode
(for floating point initialization), incode (for fields, and other initializations less than an int in
size), and cinit (for all other initializations). The size is passed to all these routines, and it is up
to the machine dependent routines to ensure that the initializer occupies exactly the tight size.

Character strings represent a bit of an exception. If a character string is seen as the ini­
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls getstr,
which sets up the appropriate location counter~ and flags, and calls Ixstr to read and process the·
contents of the string.

If the string is being used to initialize a character array, lxstr calls putbyte, which in effect
simulates doinit for each character read. If the string is used to initialize a character pointer,
Ixstr calls a machine dependent routine, bycode, which stashes away each character.· The pointer
to ·this string is then returned, and processed normally by do in it.

The null at the end of the string is treated as ifit were read explicitly by Ixstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and
statements. The statement processing is relatively simple; most of it is carried out in the parser
directly. Most of the logic is concerned with. allocating label numbers, defining the labels, and
branching appropriately. An external symbol, reached, is 1 if a statement can be reached, 0
otherwise; this is used to do a bit 'of simple flow analysis as the program is being parsed, and
also to avoid generating the subroutine return sequence if the subroutine cannot "fall through"
the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node contain­
ing the internal label number to be branched to. For efficiency, the semantics are that the label
is gone to if the condition is false ..

The switch statement is compiled by collecting the case entries, and an indication as. to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is compile"
when the switch keyword is encountered, but the expression tree is headed by a special node,
FORCE, which tells the code generator to put the expression value into a special distinguished
register (this same mechanism is used for processing the return statement). When the end of
the switch block is reached, the array containing the case values is sorted, and checked for
duplicate entries (an error); if all is correct, the machine dependent routine gens witch is called,
with this ~rray of labels and values in increasing order. Genswitch can assume that the value to
be tested is already in the register which is the usual integer return val4e register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimi~a­
tion routine, optim . . Actually the word optimization is something of a misnomer; the results are
not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.

554~ IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

Optim is called after an expression tree is built, but before the code generator is called.
The essential part of its job is to call clocalon the conversion operators. On most machines,
the treatment of & is -also essential: by this time in the processing, the only node whiCh is a
legal descendant of & is NAME. (Possible descendants of * have been eliminated by buildtree.)
The address of a static name is, almost by definition, a constant, and can be represented by an
ICON node on most machines (provided that the loader has enough power). Unfortunately,
this is not universally true; on some)'machine, such as ·the IBM 370, the issue of addressability .
rears its ugly head; thus, before turning a NAME node into an ICON node,. the machine depen­
dent function andable is called.

The .optimization attempts of optim are currently quite limited. It is primarily concerned
with improving the behavior of the compiler with operations one of whose arguments is a con­
stant. In the. simplest case, the coristant is placed on the right if the operation is commutative.
The compiler also makes a limited search for expressions such as'

(x+aJ"+b

where a and b are constants, and attempts to combine a and b at compile time. A number of
special cases are. also examineq; additions of 0 and multiplications-by 1 are removed, although
the correct processing of these cf;lses to get the type of/the resulting tree correct· is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to

. keep the types from becoming fouled up. Finally, in cases where a relational operation is being
done, and one operand is a constant, the operands are permuted, and the operator dltered,- if
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed
to shifts. -

There are dozens or' similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine pependent Stuff

A number of the first pass machine dependent routines have been discussed above. In
general, the rout.ines are short, and easy to adapt from machine to machine. The' two excep­
tions to thiS general rule are clocal and the ·function prolog· and epilog generation routines,
~fcode and e.fcode ..

Clocal has the jol1 of rewriting, if appropriate and desirable, the nodes constructed by
buildttee. There are two major areas where this is important; NAME nodes and conversion
operations: In the case of NAME nodes, cfocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be exam­
i'ned, the symbol table entry· found (through the tval field of the node), and, based on the
storage class of the node, the tree must be rewritten. Automatic variables and parameters are
typically' rewritten ·by treating the reference to the variable as a structure reference~ off the
register which holds the stack or argument pointer; the stre.froutine is set up to be called in this
way, 'and to build the appropriate tree. In the most general case, the tree consists of a unary *
node, whose descendant is a + node, with the stack or argument 'register as left operand, and a
constant offset as right operand. In the case of LABEL and internal static nodes, the rval field
is rewritten to _ be the negative of the internal label number; a negative rval field is taken to be
an internal label number. Finally, a name of class REGISTER must be converted into a REG·
node, and the rval field replaced by the register number. hi fact, this part of the clocal routine
is nearly machine independent; only' for machines with addressability problems (IBM 370
again!) does it have to be noticeably different, .

The conversion operator treatment is rather tricky. It is necessary to handle the applica­
tion of conversion operators· to constants in clocal, in order that all constant expressions can
have their values 'known at compile time. In extreme cases, this may mean that some simula­
tion of the arithmetic of the target machine might have to be done in.a cross-compiler. In the

. most common case, conversions from pointer to pointer do nothing. Fpr some machines, how~
ever, conversiort l from byte pointer to short or long pointer- might require a shift or rotate

A TOUR THROUGH THE PORTABLE C COMPILER 555

operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer d~pends
on its type would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog gen­
eration. The hard part here is the design of the stack frame and calling sequence~ this design
issue is discussed elsewhere. s The routine Q/i:odf! is ·called with the number of arguments the
function is defined with, and an array containing the symbol table indices of the declared
parameters. Bfcodf! must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when Qlcode is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat­
ics, and temporaries have been seen). The final job is to find those parameters whiCh may have
been declared register, and generate the code to initialize the register with the value passed on
the stack. Once again, for most machines, the general logic of Q/i:odf! remains the same, but the

. contents of the prill(!'calls in it will change from machine to machine. f!.lcodf! is rather simpler,
having just to generate the default return at the end of a function. This may be nontrivial in
the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions. This·
was added rather late to C, and thus to the portable compiler. Consequently, it fits in less well
than the older features. Moreover, most of the burden of making these features work is placed
on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc­
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of trouble on some machines (e.g., machines with 3-address opcodes),
but matches many machines quite well. Unfortunately, this notion breaks down with struc­
tures. The closest that one can come is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte move)
to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it piaces it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temllorary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller to
pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type,' even if the value is never used. On some
machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller know
and declares the function properly.

The PDP-II and the' V AX have stack hardware which is used in function calls and
returns~ this makes it very inconvenient to use either of the above mechanisms. I n these
machines, a static area within the called functionis allocated, and the function return value is
copied into it on return~ the function returns th~ address of that region. This is simple to
implement, but is non-reentrant. However, the. function can now be called as a subroutine
without being properly declared, without the disaster which would otherwise ensue. No'
what choice is taken, the convention is that the function actually returns the address of the
return structure value.

I n building expression trees, the portable compiler takes a bit for granted about struc·tures.
It assumes that functions returning structures actually return a pointer to the structure, and it

,556 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS,

'assumes that a reference to a structure is actually a reference to its address. The structure
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the
right operand is the address of the structure being assigned~ this makes it easier to deal with

a =,b = c

and similar constructions.

There are four special tree nodes associated with these operations: STASG (structure
assignment), ST ARG (structure argument to a function call), and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively) ~ These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are
set aside 'in these nodes to contain this information, and special intermediate code is usert to
transmit this information.

,First Pass Surumary

There ,are may,' other issues which have been ignored here, partly to justify the title
"tour", and partially because they have, seemed to cause-little trouble. There are some debug­
ging flags which may be turned on, by g}ving the compiler's fiJstpass the argument

- X [flags]

Som~ of the more interesting flags are - Xd for the defining and freeing of symbols~ :-;-Xi for
initialization comments, and - Xb for various, comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thus, - Xddd gives more
information than - Xd. In the two pass version of the compiler, the flags should not be set
when' the-output is sent to the second pass, since .the debugging output and the intermediate

, code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the' second pass is far harder t9 discuss in a file by file manner. A great deal of the
difficulW is in understanding the issues and the strategies. employed to meet (hem. Any particu­
lar functi<?n is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy
in the code generator, and will not get too intimate with ,the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate' code for a
large, number of machines, and still be efficient for anyone of them. Flexibility is also impor-'

I tant when it comes time to tune the code generator to improve the output code quality. On the
other hand, too much flexibility can lead to semantically incorrect code, and potentially a com­

'binatorial explosion in the number of cases to be considered il\ the compiler.'

One goal of the code gen,erator is'to have a high deg~~e of correctness. It is very desirable
to have the compiler detect its own imibility to generate correct code, rather than to produce
incorrect code. This goal is achieved by having a simple model of 'the job to be done (e.g., an
expression tree) and' a simple model of the 'machine 'state (e.g., which registers are free). The
act of generating an instruction performs a transformation on the tree and the machine state~
hopefully, the tree, eventually gets ,reduced' to a single ,node. If each of these
instructionltransformation pairs is correct, and if the machine state model really represents the
actual machine, and if the transformations reduce the input tree to the desired single node,

- then the output code will be correct.

A TOUR THROUGH 'THE PORTABLE C COMPILER 557

For most real machines, there is no definitive theory of code generation that encompasses
all the C operators. Thus the selection of which instruction/transformations to generate, 'and in
what order, will have a heuristic flavor. If, for some expression tree, no transformation:applies,
or, more seriously~ if the heuristics select a sequence of instruction/trans'formations that do not
in fact reduce the tree, ,the compiler will report its inability to generate code, and abort.

, A major part of the code generator is concerned with the model and the transformations,
- most of this is machine' independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of subgoals,
and the ordering of the computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A
and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers
involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2defs file;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rsiatlls.table on file locaI2.c. This table is indexed by regis­
ter number, and contains expressions made up from manifest constants describing the register
types: SAREG for dedicated AREG's, SAREGIST AREG for scratch AREGS's, and SBREG
and SBREGISTBREG similarly for BREG's. There are macros that access this information:
isbreg(,) returns true if register number.r is a BREG, and istreg(r) returns true if register
number r is a temporary AREG or BREG. Another table, rnames, contains the register names;
this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busy[r} is the number of
uses of register r in the current tree being processed. The allocation and freeing of registers
will be discussed later as part of the code generation algorithm. J'

General Organization

,As mentioned above, the second pass reads lines from the intermediate file, copying
through to the output unchanged any lines that begin with a ')', and making rlote of the infor­
mation about stack usage and register allocation contained on lines beginning with ']' and ,['.
The expression trees, whose beginning is indicated by a line beginning with '.', are r~ac1 and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
avaJlable to the code generator.

The actual code generation is done by a hierarchy.of routines. The rQutine delay is' first
given the tree; it attempts to delay some postfix + +. and - - computations that might reason­
aoly be done after the smoke clears. It also attempts to handle comma (,) operators by com­
puting the left side expression first, and then rewriting the tree to eliminate the operator: Delay
calls codgen to control the actual code generation process. Codgen takes as arguments a pointer
to the expression tree, and a seconq argument that, for socio-historical reasons, is called a
cookie. The cookie describes a set of goals that would be acceptable for the code gener'ation:
these are assigned to individual bits, so they may be logically or'ed together to form a large
number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value), INTEMP (compute and store value into a temporary loca- ,
tion in memory), INAREG (compute into' an A register), INT AREG (compute into a scratch
A register), INBREG and INTBREG similarly, FORCC (compute for condition cqdes), and
FORARG (compute it as a function argument; e.g., stack it if appropriate).

Codgen first canonicaii~es the tree by calling callan. This, routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and very
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG); In
most machines, this combination is',addressable directly, and so is similar to a NAME in its

558 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

be.hayior. The 'UNARY MUL and REG are folded together to.make another node type called
OREG. In fact, in marty machines it is possible to directly address not just the cell pointed to
by a register, but also cells differing by a constant offset from the cell pointed to by the register.
Canon also looks for such cases, calling the machine dependent routine notoff to decide if the
offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 bytes).
Another optimization is to replace bit field operations by shifts and masks if the operation
involves extracting the field. Finally, a machine dependent routine, sucomp, is called that com­
putes the Sethi.:.Ullman numbers for the tree (see below).

After the tree iscanonicalized, codgen calls the routine' store whose job is to select a sub­
tree of the tree to be computed and (usually) stored before begir""\itlg the computation of the

. full tree. Store must return a tree that can be computed without need tor any temporary storage
locations. In effect, the only store operations generated while processing the subtree must be' as
a response to' explicit assignment operators in the tree .. This division of the job marks o~e of
the more significant, and successful, departures from. most other compilers. It means that the
code generator can operate under the assumption that there are enough registers to do its job,
without worrying about temporary storage. If a store into a temporary appears in the output, it
is always as a dir~ct result of logic in the store routine; this makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this' decision.? It may be desirable to compute several sub­
'trees and store them before tackling the whole tree; if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is 'computep wilen all
scratch registers are available.

The store routine decides what subtrees, if any, should be stored ·by .making use of
numbers, called Sethi-Ullman numbers, that" give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree;. without any stores into
tempo~aries. 8 These numbers ar'e computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing 'the Sethi-Ulhnan numbers for the descendants of a
node, and knowing the operator of the node and some information abo-ut the machine, the
Sethi-Ullman number of the node itself can be computed .. If the Sethi-Ullman number for a
tree exceeds ·the number of scratch registers available, some subtree must be stored. Unfor­
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich setoL C' operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying; the application, especially when the corripiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp ~f heuristics. This topic will be
taken up again later, when more of the compiler structure has been described'.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, .
and: returns the subtree and the associated cookie in the external variables. stotree and stocook.
If a subtree has been selected~ or if the whole tree is ready to be processed, the routine order is
called, with a tree and cookie. Order"generates code for trees that do not require' temporary
locations. Order may make recursive calls on itself, and, in some cases, on codgen; for exam­
ple, when processing the 'operators &&, II, and comma (','), that have a.left to right evaluation,
it is incorrect for store examine the right, operand for su.l?trees to be stored. In these cases,
order will call codgen recursively when it is permissible to work on the right operand. A similar
issue arises with the? .: operator.

:. The order routine works by matching the curre'rit tree with a set of code templates. If a
template is discovered that -will match the current tree and cookie, ·the associated assembly
language statement or statements are generated.' The tree is then rewritten, as specified by the
template, to represent the effect of the output instruction (s). If no template match is found,
first an attempt i's made to find a match with a different cookie~ for example, in' order to com-

. pute an expression with cookie INTEMP (store into a temporary storage location), it is usually
, necessary to compute the expression into a scratch register first. If ail attempts to match the

A TOUR THROUGH THE PORTABLE C COMPILER 559

tree fail, the heuristic part of the algorithm becomes dominant. Control is typically given' to
one of a number of machine-dependent routines that may in turn recursively call order to
achieve a subgoal of the computation (for example, one of the arguments may be computed
into a tempor~ry register). After this subgoal has been achieved, the process begins again with
the modified tree. If the_machine-dependent heuristics are unable to reduce the tree further, a
number of default rewriting rules may be considered appropriate. For example, if the left,
operand of a + is a scratch register, the + can be 'replaced by a + = operator~ the tree may
then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+= b

where a and b are static variables.

To. b~gin with, the whole expression tree is examined with cookie FOREFF, and no match
is found: Search with other cookies is equally fruitless, so an attempt at rewriting is made.
Suppose we are dealing with the Interdata 8/32 for the moment. It is recogni:ped that the left
hand and right hand sides of the + = operator are addressable, and in particular the left hand
side has no side effects, so it is permissible to rewrite this as

a=a+b

and this is done. No match is found on this tree either, so. a machine dependent rewrite is
done~ it is recognized that the . left hand side of the assignment is addressable, but the right
hand side is not in.a register, so order is called recursively, being asked .. to put the right hand

, side of the assignment into ,a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notices that the right hand operand is address- '
able; it decides to put the left operand into a scratch register. Another recursive call to order is
made, with. the tree consisting solely of the leaf a, and the cookie asking that the value be
placed into a scratch register. This now, matches a template, and a load instruction is emitted.
The node consisting of a is rewritten in place to represent the register into which a is loaded,
and this third call to, .order returns. The second call to order now findp that it has the tree

reg + b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+ = operator, since the left operand is a scratch register. When this is done, 'there is a match:
in fact,

reg += b

. simply describes the effect of the add instruction on a typical machine.· After the add is emit­
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register: This agrees with the cookie passed to the second invocation of order, so
this· invocation terminat'es, returning to the first level. 'The o'riginal tree has now become.

a = reg

which matches a te'mplate for the store instruction. The store is output, and the tree rewritten
to become just a single register node. At this point, since the top level call. to order was
interested only in side effects, the call to ,order returns, and the code generation is completed~
we have generated a load, add, and store, as might have been expected.

The' effect of machine architecture on this is considerable. For example, on the
Honeywell. 6000, the machine dependent heuristics recognize that there is an Badd to storage"
iIistruction~ so the strategy is' quite different; b is loaded,in to a register, and then an add to
st~rage instruction generated to add this register in to Q. The transformations, involving as .
they do the semantics of C, are largely machine independent. The· decisions as tq when to use
them, however, are almost totally machine dependent. '

Having given a broad 'outline of the code generation process, we shall next consider the

560 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

heart of it: the templates. This leads naturally into discussions of template matching and regis
ter allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of com­
putation around which the compiler is organized. In effect, each template has five logical sec­
tions, and represents an assertion of the form:

If w,e have a subtree of a given shape 0), and we have a goal (cookie) or goals to achieve
(2), and we have sufficient free resources (3), then we may emit an instruction or
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten tree
will achieve the desired goals.

Thes~ five sections will be discussed in more detail later. First, we give an example of a
template;

ASG PLUS, INAREG,
SAREG,
SNAME,

TINT,
TINT,
0, RLEFT,
" add AL,AR\n",

The tOP'line specifies the operator (+ =) and the cookie (compute the value of the subtree into
an AREG). The second and third lines specify the left and right descendants, -respectively, of

,the + =' operator. The left descendant must be a REG node, representing an A regist~r, and
have integer type, while the right side must be a NAME node, and also have integer type. The
fourth Iin'e contains the resource requirements (no scratch registers or temporaries needed),
and the rewriting rule (replace the subtree by the left descendant). Finally, the quoted string
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are
~opied verbatim. to the output; upper 'case letters trigger various macro-like expansions. Thus,

; AL would expand into the Address form of the Left operand - presumably the register
'number. Similarly, AR would expand into the name of the right operand. The add instruction
of the last section might well be emitted by this template.

In principle~ it would be possible to make separate templates for all legaL combinations of
operators,' cookies, types, and shapes. ,In practice, the number of combinations is very large.
Thus; a considerable amount of mechanism is present to permit a large number of subtrees to

.' . be _ matched by a single template. Most of the shape and type specifiers are individual bits, and
can be logically or'ed together. There are' a number of special descriptors for matching classes
of operators. The cookies can also be combined. As an example of the kind of template that
really arises in practice,' the actmil template Jor the Interdata 8/32 that subsumes the above
example' is: ' ,

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,
. , 0, RLEFTIRESCC,

" . "', 01 AL,AR \n",

Here,.OPSIMP represents the operat~rs +, -, I', &, and !: ,The 01 macro in the output string
expands into the appropriate Integer Opcode for the ~perator. ' The left and right sides can be
integers, unsigned, ,or pointer types. The right side can be~ in addition to a name, a register, a
memory locatiqn whose address is given' by a register and displacement (OREG), or a constant.
Finally, these instructions 'Set the condition codes, and so can be used in condition contexts: the
cookie and rewriting 'rules reflect this.

A TOUR THROUGH THE PORTABLE C COMPILER 561

The Template Matching Algorithm.

The heart of the second pass is the template matching algorithm, in the routine match.
Match is called with a tree and a cookie~ it attempts to match the given tree against some tem­
plate that will transform it according to one of the goals given in the cookie. If a match is suc­
cessful, the transformation is appfied; expand is called to generate the assembly code, and then
reclaim rewrites the tree, and reclaims the resources,. such as registers, that might have become
free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple­
mentation techniques available for doing this matching. The most naive algorithm si"mply looks
at the templates one by one. This can be considerably improved upon by restricting the search
for an acceptable template. It would be possible to do better than this if the templates were
given to a separate program that ate them and generated a template matching subroutine. This
would make maintenance of the compiler much more complicated, however, so this has not
been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of s'ympathetic help by ttie person constructing the compiler in order to obtain best
results. The exact tuning of this algorithm continues; it is best to consult the code and com­
ments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout" lhe second pass of the
compiler. If a node represents a unary operator, the single descendant is always the "Ieff' des­
cendant. If a node represents a unary operator 9r a leaf node (no descendants) the "right"
descendant is taken by convention to be the node itself. This enables templates to easily .match
leaves and conversion operators, for example, without any additional mechanism in the match­
ing program.

The type matching is straightforward; it is· possible to· specify any combination of basic
types, general poiriters, and pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on which the opcode might match. In the simplest case, an ad.d operation
might be able to add to either a register variable or a scratch register, and.might be able .(with
appropriate help from the assembler) to add an integer cons~ant (ICON), a static memory cell
(NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen­
tary shapes such as ICON, NAME, OREG, AREG Of BREG (both scratch and register forms)",
etc. To handle at least the simple forms of indirection, one can also match some more compli­
cated forms of trees; ST ARNM and ST ARREG can match more complicated trees headed by
an indirection operator, and .SFLD can match certairi trees headed by a FLO operator: these
patterns call machine dependent routines that match the patterns of intecest on a given
machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on . word - addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes, but
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE~
and SMONE are predefined and match constants 0, 1, and -1, respectively; others are easy to
add and match by using the machine dependent routine special.

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for ·some resources (for example, a scratch register). The routine allo is called, . and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated resources are given numbers 1, 2, etc. fo·r later reference when the

562 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

assembly code is generated. The routines expand and reclaim are then called. The match rou­
tine then -returns a special value, MDONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewritin-g rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor~
ward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules art? keyed to various opcodes; most are carried out.in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

,The register allocation routines, and the allocation strategy, play a central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa­
tion that caus.e the number of needed registers to be underestimated, the C(ompiler may run out
of scratc~ registers; it is essential that the ,allocator keep track of those registers that are free
and busy, in order to detect such conditions.

'Allocation of registers takes place as the result of a template match; the routine allo is
called with a word describing the n~mber of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further ,covered; the bookkeeping is a bit tricky, but conceptually trivial, and
.requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. ,In many machines, some operations (such as multiplication an'd division),~·and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations

. of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical
properties are r~ther bad as well. 9 The second issue is dealt with rather more successfully; a
machine dependent function called szty(t) is called that returns 1 or 2, depending on the
number' of A registers required to hold an object of type t. If szty returns 2, an even/odd pair
of A registers is allocated for each request. -

The other issue, sharing, is more subtle, but important for good code quality. When
registers ar~ allocated, it is possible to reuse registers that hold address information, and use
them to contain the valu~s computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register'i had a byte pointer, however, the sequence for loading a character involves clearing
-the target register first, and then inserting the desired character: - '

SR
Ie

3,3
3,0(2)

In the first case, if registe,r 3 were used as the target, it would lead to a larger number of regis­
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would sim­
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible tb indicate whether
required scratch registers may be shared with possible regis~ers on the left or the right of the
input tree. In order that a register be shared, it must be scratch, and it must be used only
once, on the appropriate side of the tree',being compiled.

The alia routine thus has a bit more to do than meets the eye; it calls freereg to obtain a
free register fo'r each A and B register request. Freereg makes multiple calls on the routine
usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if the
register is busy, but might be shared. Finally, shareit,calls lIshare to decide if the desired regis­
ter is actually in the appropriate subtree, and can be shared.

Just to add, fldditional complexity, on some machines (such as the IBM 370) it is possible

A TOUR THROUGH THE PORTABLE C COMPILER 563

to have "double indexing" forms of addressing~ 'these are represented by OREGS's with the
base and index registers encoded into the register field. While the register allocation and deal­
location per se is not made more difficult by this phenomenon, the code itself is' somewhat more
complex.

Having allocated the register.s and expanded the assembly language, it is time to reclaim
the resources; the routine reclaim does this. Many.operations produce more· than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters~ the tree and cookie that were matched, and the rewriting
field of the template. The rewriting field allows the specification of possible results~ the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are also freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu­
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed~ then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie~ otherwise, the compiler error "cannot reclaim" is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interrace

The files order.e, loeaI2.e, and table.e, as well as the header file mae2defs, represent the
machine dependent portion of the second pass. The machine dependent portion can be roughly
divided into two: the easy portion and the hard portion. The easy portion tells the compiler the
names of the registers, and arranges that the compiler generate the proper assembler formats,
opcode names, locatio'n counters', etc. The hard portion involves the Sethi - Ullman computa­
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no
real algorithms that apply~ most of this portion is based on heuristics. This section discusses
the easy portion~ the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mae2defs, the register numbers are defined, as well as various parame­
ters for the stack frame, and various macros that describe the machine arcbitecture. If double
indexing is to be permitted,' for example, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here. .

In loeaI2.e, a large number of simple functions are defined. These' do things such as write
out opcodes, register names, and address forms for the assembler. Part of the function call
code is defined here~ that is nontrivial to design, but typically rather straightforward to imple­
ment. Among. the easy routines in order.c are routines for generating a created label, defining a
label, and generating the arguments of a function·call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they will

. not be further treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the
tree is rewritten, the' machine dependent routine nextcook is called with the tree and the cookie~
it suggests another cookie that might be a better candidate for the matching of the tree. If all
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule.
The rewriting rules are of two kinds; for most of the common operators, there are machine
dependent rewriting rules that may be applied~ these are handled by machine dependent func­
tions that are called and given the tree to be computed. These routines may recursively call

564 IMPLEMENTATION, MAINTENANCE, AND MISCELL.ANEOUS

order or codgen to cause certain subgoals to be achieved; if they actually call for some alteration
of the tree, they return 1, and the code generation algorithm recanonicalizes and tries again. If
these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a += b

to be rewritten as

a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an cha~acter) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by
the machine dependent routines. For historical reasons, the routines generating the calls return
1 on failure, 0 on success, unlike the other routines.

The machitie dependent routine setbin handles binary operators; it too must do, most of
the job: In particular, when it returns 0, it must do so with the left hand side in a temporary

.register. The default rewriting rule in this case is to convert the binary operator 'into the associ­
ated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template, table.

The increment and decrement operators may be dealt with with the machine dependent
routine setincr. If this routine chooses not to deal with the tree, the rewriting rule replaces

x++

by

((x + = J) - J)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UN AR Y MUL) operator is also handled in a special way. The
machine dependent routine offstar is extremely important for the efficient generation of code.
Oftstar is .called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UNARY MUL with the transformed tree
becomes addressable. On most machines, o.ftstar can simply compute the tree into an A or B
register, depending on the architecture, and then canon will make the resulting tree into an
OREG. On many machines, o.ftstar can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a

- constant offset from a register, and o.ftstar is called with a tree of the form

expr + const

where const is a cons'taqt, then offstar need only compute expr into the appropriate form of
register. On machines that support double indexing, o.flstar may have even more choice as to
how to proceed. The proper tuning of o.flstar, which is not- typically too difficult, should be one
of the first tries at optimization attempted by the compiler writer.

The Sethi-Ullman Computation

The heart of the -heuristics is the computation of the Sethi-Ullman numbers. This compu­
tation is closely linked with the rewriting rules and the templates. As mentioned 'before, the
Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to com­
pute the subtrees without using any stores. However, the original theory does riot apply to real
machines. For one thing, the theory assumes ,that all registers are interchangeable. Real
machines have general purpose', floating point, and index registers, register pairs, etc. ,The

A TOUR THROUGH THE PORTABLE C COMPILER 565

theory also does not account for side effects~ this rules out various forms of pathology that arise
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the
influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a Huseless" theory, the basic insight of Sethi and Ullman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs of . ~

trees before starting the code generation provides a natural means of splitting the code genera-
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if
writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alternative
(routines that attempt to free up registers by stores into temporaries Hon the fly") is even
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where
there is no Hright" way to write them~ it is an art, the realm of heuristics, and, consequently, a
major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble~ only after the compiler is a<:tually working and the code quality is being improved
do serious problem have to be faced. Having a simple, regular machine architecture is worth
quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre­
quently a pair) to' store certain data types· (such as longs or doubles). There appears to be no
general way of treating this problem~ solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis­
ters, so a need for a pair is the same as the need for two registers. On t.qe IBM 370, the regis­
ter pair (0,1) is used to do multiplications and divisions~ registers 0 and 1 are not generally con­
sidered part of the scratch registers, and so do not require allocation explicitly. On the Inter­
data 8/32, after much consideration, the decision was made not to try to deal with the register
pair issue~ operations such as multiplication and division that required pairs were simply
assumed to take .all of the scratch registers. Several weeks of effort had failed to produce an"
algorithm that seemed to have much chance of running successfully without inordinate debug­
ging effort. The difficulty of this issue should not be minimized~ it represents one of the main
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a
degree of.success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of
rather subtle ways ... As already discussed, the sforC! routine uses the Sethi.:UlIman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose
we have a tree such as

A-B

where A and B are expressions~ suppose further that B takes two registers,. and A one. I t is
possible to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute A. The subtraction cari
then be done~ computing the expression. (Note that this assumes a number of things, not the
least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine sC!lbin, howeyer, is not prepared to recognize this case and compute
the more difficult side of the expression first, the Sethi-Ullman number must be set to three.
Thus, the Sethi-Ullman number for a tree should represent the code that the machine depen­
dent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where f1 is a pointer and i an integer, this can probably be done in one register .on most
machines. Thus, its Sethi-Ullman number would ,probably be set to. one. If double indexing is
possible in the machine, a possible way of computing the expression is to load both p and i into.

566 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

registers, and then use double indexing. This would use two scratch registers; in such a case, it
is possible that the scratch registers might be unobtainable, or might make some other part of
the computation run out of registers. The usual solution is to cause offstar to ignore opportuni­
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number
had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and
, artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo­

rithms a,re available that will produce nearly optimal code for specialized machines, but unfor­
tunately most existing machines are far removed from these ideals. The best way of proceeding
in practice is to start with a compiler for a similar machine to the target, and proceed very care­
fu)ly.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does regis­
ter allocation, if appropriate. This routine does relatively little, in general; this is especially true
if the target machine is fairly regular. There are a few cases where it is assumed that tne result
of a computation takes place in a particular register~ 'switch and function return are the two
major places. The expression tree has a field, rail, that may be filled with a register number;
this is taken to be a preferred register, and the first temporary register allocated by a template
"match will be this preferred one, if it is free. If not, no particular action is taken; this is just a
heuristic. If no register preference is present, the field contains NOPREF.' In some ca_s_es, the
result must be placed in a given register, no matter what. The register number is pJaced in rail,
and the' mask MUSTDO is logically or'ed in with it. In this case, if the subtree is requested in
a register, and comes back in a register other thari the demanded one, it is moved by calling the
routine rmove. If the target register for this move is busy, it is a compi,er error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template). This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number~ if there is an operator or situation requiring a particu­
lar register,- the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computation.
This is most easily done by making the special operation take all of the free registers, prevent­
ing any other partially-computed results from cluttering up the works.

, Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require­
ment for reasonable cooperation 'between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds q~ite a bit of redundancy into the compiling process. The
effect of this is that, in a'surprisingly short time, the compiler will start generating correct code
for those programs that it can compile. The hard part of the job then becomes finding and
eliminating those situations where the compiler refuses to compile a program because it knows
it ca'nnot do it right. For example~ a template may simply be missing~ this may either give a
compiler error, of the fol'm '~no match for op ... " , or cause the compiler to go .into an infinite
loop applying various rewriting rules. The· compiler hilS a variable, IlteClIr, that is set to 0 at the
begil1lling of an expressions, and incremented at key spo'ts, in the compilation process~ if this
pa-rameter gets too large, the co'n1piler decides that it is in a loop, and aborts .. Loops are also
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa­
tions usually qlUse, the scratch, registers to run out~ this often means that the Sethi-Ullman
number was underestima(ed, so store did not 'store something it should have~ alternativeIY",it
can mean that the rewr~ting rules were not smart enough to find the sequence that sllcomp

, assumed would be used.

The best approach when a compiler error is detected involves -several stages. First, try to
get a small example program that steps on the bug. Second, turn on various debugging flags in

A TOUR THROUGH THE PORTABLE C COMPILER 567

the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are -e, which prints the expression tree, -r, which gives information
about the allocation of registers,' -a, which gives information about the performance of rallo,
and - 0, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly. .

Unfortunately, finding the bug is usually not enough~ it must also be fixed! The difficulty
arises because a fix to the particular bug of interest tends to break other code that already
works. Regression tests, tests that compare the performance of a new compiler against the per­
formance of an old~r one, are very valuable in preventing major, catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It
has many blemishes, both in style and functionality. It has' been applied to many more
machines than first anticipated, of a much wider range than originally dreamed of. I ts use has
also spread much faster than expected, leaving parts of the compiler still somewhat raw in
shape.

On the theoretical side, there is some hope that the skeleton of the slicomp routine could
be generated for many machines directly from the templates~ this would give a considerable
boost to, the portability and correctness or'the compiler, but might affect tunability and code
quality. There is also room for more optimization, both within optim and in the form of a port­
able "peephole" optimizer. '

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic structure. Parts of the compiler deserve to
be rewritten~ the. initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile~ it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

\ .
Finally, I would like to thank the many people who have sympathetically, and even

enthusiastically, helped me grapple with what has been a frustrating program to write, test, and
install. D. M. Ritchie and E. N. Pinson -provided needed ea.'ly encouragement and philosophi­
cal guidance~ M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier,. R. W. Mitze, B. R.
Rowland, S. I. Feldman,. and T. B. London ·have all cO)1tributed ideas, gripes, and all, at one
time or another, climbed "into the pits" with me to help debug.' Withou~ their help this effort
would have not been possible~ with it, it was often kind of fun.

568 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

" References

1.

4.

5.

6.

,7.

8.

9.

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, ,Engle­
wood Cliffs, New Jersey (1978).

S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (1978).

A. Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cambridge,
Mass. (1974).

,So C. Johnson, "A Portable Compiler:' Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, pp. 97 .. 104 (January 1978).

M. E., Lesk, S. C. Johnson, and D. M. Ritchie, The C Language Calling Sequence, Bell
Laboratories internal memorandum (1977). -

S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No.
32; Bell Laboratories, Murray Hill, New Jersey (July 1975).

A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees," J.
Assoc. Compo Mach. 23(3) pp. 488-501 (1975). Also in Proc. ACM Symp. on Theory oj
Computing,.pp. 207-217,1975.

R. Sethi and J. D. Ullmali, "The Generation of Optimal Code for Arithmetic Expres­
sions," J. Assoc. Comp., Mach. 17(4) pp. 715-728 (October 1970). Reprinted as pp. 229-
247 in Compiler Techniques, ed. B. W. Pollack, Auerbach, Princetori Nt (1972).

A., V. Aho, S. C. Johnson, and J. D. Ullman, "Code Generation for "Machines with MuI­
tiregister Operations," Proc. 4th ACM Symp. on Principles of Programmini Languages, pp.
2i-28 (January 1977).

A Dial-Up Network of UNIXTM Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of .over· eighty UNIxt computer systems has been established
using the telephone system as its primary communication medium. The net­
work was designed to meet the growing demands for software distribution and
ex~hange. Some advantages of our design are:

The startup cpst is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.

No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, however, hardwired
communication lines can be used to increase speed.

The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software
, maintenance

August 18, 1978 .

tUN IX is a Trademark.of Bell Laboratories.

569

1. Purpose

The widespread use of the UNIXt system! within Bell Laboratories has produced problems
of software distribution and maintenance. A conventional mechanism was set up to distribute
the operating system and associated programs from a central site to the various users. However
this mechanism alone does not meet all software distribution needs. Remote sites generate
much software and must transmit it to other sites. Some UNIX systems are themselves central
sites for redistribution of a particular specialized utility, such as the Switching Control Center
System. Other sites have particular, often long-distance needs for software exchange; switching
research, for ex~mple, is carried on in New Jersey, Illinois, Ohio, and Colorado. In addition,
general purpose utility programs are written at all UNIX system sites. The UNIX system 'is
modified and enhanced by many people in many places and it would be very constricting to
deliver new software in a one-way stream without any alternative for the user sites to respond
with changes of their own.

Straightforward software distribution is only' part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group of
people. It then becomes necessary for them to pass messages, data and other information back
an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.2,3 Our network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possible.

2. Design Goals

Although some of our machines are connected directly, others "can only communicate
over low-speed dial-up lines. Since the dial-up lines are often unavailahle and file transfers may
take considerable time, we spool all work and transmit' in the background. We also had to
adapt to a community of systems which are independently operated and resistant to suggestions
that they should all buy particular hardware or install particular operating system modifications.
Therefore, we make minimal demands on the local sites in the network. Our implementation
requires no operating system changes; in fact, the transfer programs look like any other user
entering t~e system through the n<lfmal dial-up login ports, and obeying all local. protection
rules.

We distinguish "active" and "passive" systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas­
sive systems do n9t have the hardware to initiate a connection. However, an active system can
be assigned the job of calling passive systems and executing work found there; this makes a .
passive ,system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copying
from one passive system" to another. This requires two telephone calls, but even 'so, it is faster

tUNIX is a Trademark of Bell Laboratories.

570

A DIAL-UP NETWORK OF UNIX SYSTEMS 571

than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster
transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1200 baud; har.<fwired connections are asynchronous up to 9600 baud and might
run even faster on special-purpose communications hardware.4,5 Thus, systems typically join
our network first as passive systems and when they find the servige more important, they
acquire automatic calling units and become activ,e systems~ eventually, they may install .high­
speed links to particular machines with which they handle a great deal of traffic. At no point,
however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool
directory, in which work to be done (files to be moved, or commands to be executed remotely)
is stored. A standard program, uucico, performs all transfers. This program starts by identify­
ing a particular communication channel to a remote system with which it will hold a conversa­
tion. Uucico then selects a device and establishes the connection, logs onto the remote machine
and starts the lIucico program on the remote machine. Once two of these programs are con­
nected, they first agree on a line protocol, and then start exchanging work. Each program in
turn, beginning with the calling (active system) program, transmits everything it needs, and
then asks the other what it wants done. Eventually neither has any more work, and both exit.

.In this way,. all services are available from all sites; passive sites, however, must wait until
called. A variety of protocols may be used; this conforms to the real, non-standard world. As
long as the caller and called programs have a protocol in common, they can communicate.
Furthermore, each caller knows the hours when each destination system should be called. If a
destination is unavailable, the data intended for it remain in the spool directory until the desti­
nation machine can be reached.

, The implementation of this Bell Laboratories network between independent sites, all of
which store proprietary programs and data, ilIustratives the pervasive need for security and
administrative controls over"' file access. Each site, in configuring its programs and system files,
limits and monitors transmission. In order to access a file a user needs access permission for
the machine that contains the file and access permission for the file itself. This is achieved by
first requiring the user to use his password to log into his local machine and then his local
machine logs into the remote machine whose tiles are to be accessed. In addition; records are
kept identifying all files that are moved into and out of the local system, and how the requestor
of such accesses identified himself. Some sites may arrange to permit user~ only to call up and
request work to be done~ the calling users are then called back before the work is actually done.
It is, then possible to verify that the request is legitimate from the standpoint of the target sys­
tem, as well as the originating system. Furthermore, because of the call-back, no' site can
masquerade as another even if it knows all the necessary passwords .

. Each machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. Thus, even
if call back is not in use, a successful masquerade requires the calling party to present the

:-correct sequence number. A would-be impersonator must not just steal the ,correct phone
number, 'user name, and password, but also the sequence count, and must call in sufficiently
promptly to preced~ the next legitimate request 'from either side. Even a successful
masquerade will be detected on the next correct· conversation.

3. Processing

The user has two commands which set up communications, UllCP to set up file copying,
and uux to set up command execution where some of the required resources (system and/or
files) are not on the local machine. Each of these commands will put work and data files into
the spool directory for execution by llllCP daemons. Figure 1 shows the major blocks of the file
transfer process. .

572 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

File Copy·

The uucico program is used to perform all communications between the two systems. It
performs the following functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Start program uucico on the remote system.

Execute all requests from both systems.

Log work requests and work completions.

U ucico may be started in several ways~

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs
(l/l/cico, uuxqt) to determine the files they should look at, the remote machines they should call
and the order in which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program
directory. At the start of the call process, a lock is set on the system being called so that
another call will not be attempted at the same time.

The system name is found in a "systems" file. The information contained for each sys­
tem is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call' should be made. The
phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial'
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at
every site, despite local variations in telephone services and dialing conventions.

A "devices" file is scanned using fields' [3] and [4] from the "systems" file to find' an
available device for the connection. The program will try all devices which satisfy [3] and [4]
until a connection is made, or no more devices can be tried. If a non-multiplexable device is
successfullY.opened, a lock file is created so that·another copy of uucico will not try to use it. If
the connection is complete, the login information is used to log into the remote system. Then a
command is sent to the remote system to start the uucico program. The conversation between
the two l/ucico programs begins with a handshake started by the called, SLA VE, system. The
SLA VE sends a message to let the MASTER know it is ready' to receive the system
identification and conversation sequence number. The response from the MASTER is verified
by the SLA VE and if acceptable, protocol selection begins.

. A DIAL-UP NETWORK OF UNIX ~YSTEMS 573

Line Protocol Selection

The remote system sends a message

P proto-list

where proto-list is a string of -characters, each representing a line protocol. The calling program
checks the proto-list for a letter corresponding to an available line protocol and returns a use­
protocol message. The lise-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common
protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp
transmission program. Other protocols may be added by individual installations.

VVork Processing

During processing, one program is the MASTER and the other is SLA VE. Initially, the
calling program is the MASTER. These roles may switch one or more times during the conver­
sation.

There are four messages used during the work processing, each specified by the first char­
acter. of the message. They are

S send a file,
R receive a file,
C copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLA VE will reply with SY, SN, R Y, RN, HY, HN,
corresponding to yes or no for each request. -

The send and receive replies are based on permission to access the requested
file/ directory. After each file is copied into the spool directory of the receiving system, a copy­
complete message is sent by the receiver of the file. The message CY will be sent if the UNIX
cp command, used to copy from the spool directory, is successful. Otherwise, a CN message is
sent. The requests and results are logged on both systems, and, if requested, maH is sent to the
user reporting completion (or the user can request status information from the log program -at

. any time).

, The hangup response is determined by the SLA VE program by a work scan of the spool
directory. If work for the remote system exists in the SLA VE's spool directory, a HN message
is sent and the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure t'

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLA VE and the
protocols are turned off. Each program sends a final "00" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user flrites
Hmail dan" to send mail to user Hdan". By writing "mail usg!dan" the mail is sent to user
Hdan" on system Husg".

The primary uses o'f our network to date have been in software maintenance. Relatively
few of the bytes passed between systems are intended for people to read. Instead, new pro­
grams (or new versions of programs) are sent to users, and potential bugs are returned to
authors. Aaron Cohen has implemented a "stockroom" which allows remote users to call in

574 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

and request software. He keeps a "stock list" of available programs, and new bug fixes and
utilities are added regularly. In this way, users can always obtain the latest version of anything
without bothering the authors of the programs. Although the stock list is maintained on a par­
ticular system, the items in the stockroom may be warehoused in many places~ typically each
program is distributed from the home site of its author. Where necessary, uucp does remote-'
to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on
remote systems are caused by local misconfigurations or old versions of software, or whether
they are bugs that must be fixed at the home site. This helps ide'ntify errors'rapidly. For one
set of test programs maintained by us, over 70% of the bugs reported from remote sites were
due to old software, and were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two
different machines. A very useful utility on one machine has been Doug Mcilroy's "diff" pro­
gram which compares two text files and indicates the differences, line by line, between them.6

Only lines which are not identical are printed. Similarly, the program "uudrff'.' compares files
(or directories) on two machines. One of these directories may be on a passive system. The,
"uudiff" program is set up to work similarly to the inter-system mail, but it is slightly more
complicated.

To avoid moving large numbers of usually identical files, uudi/J computes file checksums
on each side, and only moves files that are different for detailed comparison. For large files,
this process can be iterated~ checksums can be computed for each line, and onl~ those lines that
are different actually moved.

The "uux" command has been' useful for providing remote output. There are some
machines which do not have hard-copy devices, but which are connected over 9600 baud com­

'munication lines to machines with printers. The ill/X command allows the formatting of-the
printout on the local machine and printing on the remot~ machine using standard UNIX com-"
mand programs.

5. Performance

Throughp'lt, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred~ they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of even very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

C haractersl sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the connection and logging
. in ranging from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte
source program can be transferred in four minutes instead of the 2 days that might be required
to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20
files moved and 5 remote commands executed in a typical day. A more normal traffic out of a
single system would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes'< most of
the Bell Laboratories full-size machines which run the UNIX operating system. Geogniphically,
the machines range fr,om Andover, Massachusetts to Denver, Colorado.

A DIAL-UP NETWORK OF UNIX SYSTEMS 575

Uucp has also been used to set up another network which connects a group of systems in
operational sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

'Eventually, we would like to develop a full system of remote software maintenance. Con­
ventional mainten'ance (a support group which m'ails tapes) has many well-known disadvan­
tages'? There are distribution errors and delays, resulting in old software running at remote
sites and old bugs continually reappearing. These difficulties are aggravated when there are 100
different small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it
possible just to send programs directly to the end user who wants them. This avoids the
bottleneck of negotiation and packaging in the central support group. The Hstockroom" serves
. this function for new utilities and fixes to old utilities. However, it is still likely that distribu-
tions will not be sent and installed as often as needed.' Users are justifiably suspicious of the
Hlatest version" that has just arrived; all too often it features the Hlatest bug." What is needed
is to address both problems simultaneously:

l. . Send distribut,ions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend 'systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated and permits the local
system to ensure that Its essential work can continue despite the constant installation of changes
sent from elsewhere. ! The work of writing the test sequences should be recovered in lower
counseling and distribution costs.

Some slow-speed network services' are also being implemented. We now have inter­
system Hmail" and Hdiff," plus the many implied commands represented by HUUX." However,
we still need inter-system Hwrite" (real-time inter-user communication) and Hwho" (list of
people logged in on different systems). A slow-speed network of this sort may be very useful
.for speeding up counseling and education, even if not fast enough for the distributed data base
applications that attract many users to networks. Effect~ve use of remote execution over slow­
speed lines, however, must await the general installation of multiplexable channels so that'long .
file transfers do 'not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system
changes, you can'get going quickly.

2. ' Support 'will follow use. Since the network existed and was being used, system main­
tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3. Make the network commands look like local commands. Our users have 'a resistance to
learning anything new: all' the inter-system commands look very similar to standard UNIX
system commands so that little training cost is involved1

4. An initial error was not coordinating enough with existing communications projects: thus,
the first version of this network was restricted to dial-up, since it did not support the vari-
ous hardware links between systems. This has been fixed in the current system. .

Acknowledgements

We thank G. L~ Chesson for his design and implementation of ·the packet driver and pro­
tocol, and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and.assistance.

576 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57(6) pp. 1905-1929 (1978).

2. T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," Bell Sys. Tech. J. 57(6) pp. 2177-2200 (1978).

3. G. L. Chesson, "The Network UNIX System," Operating.Systems Review 9(5) pp. 60-66
(1975). Also in Proc. 5th Symp. on Operating Systems Principles.

4. A. G. Fraser, "Spider - An Experimental Data Communications System, " Proc. IEEE
CO/{l on Communications, p. 21 F (June 1974). IEEE Cat. No. 74CH0859-9-CSCB .

. 5. A. G. Fraser, "A Virtual Channel Network," Datamation, pp. 51-56 (February 1975).

6. J. W. Hunt and M. D. McIlroy, "An Algorithm for Differential File Comparison," Compo
Sci. Tech. Rep. No. 41, Bell Laboratories, Murray Hill, New Jersey (June 1976).

7. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, Mass. (1975).

Uucp Implementation Description

D. A. Nowitz

ABSTRACT

Uucp is a series of programs designed to permit communication between
UNIX systems using either dial-up or hardwired communication lines. This
document gives a detailed implementation description of the current (second).
implementation of uucp.

This document is for use by an administrator/installer of the system. It is
not meant as a user's guide.

October 31, 1978

577

Introduction

Uucp is a series of programs designed to permit communication between UNIXt systems using
either' dial-up or hardwire9 communication lines. It is used for file transfers and remote com­
mand execution. The first version of the system was designed and implemented by M. E.
Lesk.1 This paper describes the current (second) implementation of the system. '

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. There are three ty'pes of files used for the execution of work. Data files contain data
f~r transfer to remote systems. Work files contain directions for, file transfers between systems.
Execution files are directions for UNIX command executions which involve the r~sources of one
or more systems.

The uucp system consists of four primary and two secondary programs. The primary programs
are:

uucp

uux

uucico

This program creates work and gathers data files in the spool directory 'for' the
transmission of files.

This program creates work files, execute files and gathers data files for the
remote execution of UNIX commands.

This program executes the work files for data transmission.

~uxqt This program executes the execution files for UNIX command execution.

The secondary programs are:

uulog This program updates the log file with new entries and reports on the status of
uucp requests.

uuclean This program removes old files ,froin the spool,directory.

The remainder of this 'paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra­
tion of the system.

1. Uucp - UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The uucp command was
designed to look like cp to the user. The syntax is

uucp I option) ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the sys­
tem on which the file or files reside or where they will be copied.

The options interpreted by uucp are:

-d Make directories when necessary for copying the file.

tUNIX is a Trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communication.

578

Uucp IMPLEMENTATION DESCRIPTION 579

- c Don't copy source files to the spool directory, but use the specified so.urce
when the actual transfer takes place.

-gletter Put letter in as the grade in the name of the work file .. (This can be used to
change the order of work for a. particular machine.)

- m Send mail on completion of the work.

The following options are used primarily for debugging:

- r Queue the job but do not start uucico program.

-sdir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part
of the source's name. The source name may contain special shell characters such as "?*[J'. If
a source argument has a system-name! p'refix for a remote -system, the file name expansion will
be done on the remote system. .

The command

uucp *.c usg!/usr/dan

will set up the 'transfer of all files whose names end with ".c" to the "/usr/dan" directory on
the"usg" machine.

The source and/or destination names may also contain a -user prefix. This translates to the
login directory on the specified system. For names with partial path-names, the current'direc­
tory is prepended to the file name. File names with .J are not permitted: ~

The command

uucp usg!-danl*.h -dan

will set up the transfer of files whose names end with ".h" in dan's login directory on system
"usg" to dan's local login directory.

For each source file, the program will check the source and destination file-names and the I

system-part of each to classify the work into one of five types:

[I] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a retpote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters
as mentioned above.

After the work has been set up in the spool directory, the l/l/cico program is started to try to
contact the other machine to execute the work (unless the - r option was specified).

Type 1

A cp command is used to do the work. The - d and the - m options are not honored in. this
case.

Type 2

A one line work .file is created for each file requested and put in the spool directory with the fol­
lowing fields, each separated by a blank. (All work .files and execute .files use a blank as the field
separator.) .

[1] R

580 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

[2] The _ full path-name of the source or a -user/path-name. The -user part will be
expanded on the remote system.

[3] The full path-name of th.e destination file. If the -user notation is used, it will be
immediately expanded to be the login directory for the user.

[4] The user's login name;

[5] A" -" followed by an option list. (Only the - m and - d options will appear in
this list.)

Type 3

For each source file, a work file is created and the source file is copied into a data file in the
spool directory. (A" -:-c" option on the uucp command will prevent the data file from being
made,) In this case, the file will be transmitted from the indicated source,} The.fields of each
entry are given below.

[1] S

[2] The full-path name of the source file.

[3] The full-path name of the destination or -user/file-name.

[4] The user's login name.

[5] A":-" followed by an option list.

[6] . The name of the data file in the spool directory.
. " , ,

[7] The file mode bits of the source file in octal print format (e.g. 0666).

Type 4 and Type 5

Uucp generates' allucp command and sends it to the remote machine; the remote uucico exe-
cutes the uucp command. .

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of _a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux [- J [option J ... command-string

where the command-string is made up of one or more arguments. All special shell characters
such as "< >/"" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. - All arguments which do not contain a ~~!" will not be
treated as files. (They wiII not be copied to the execution machine,) The" -" is used to indi­
cate that the standard input for command-string should be inherited from the standard input of
the '1ux command. The options, essentially for debugging, are:

- r Don't start uucico oruuxqt after queuing the job;

-xnum Num is the level of debugging output desired.

The coinmand

pr' abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an lpr command to be executed on sys­
tem "usg".

Uux generates an execute .file which contains the names of the files required for execution
(including standard input), the user's login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution or
sent to the remote system using a generated send command (type 3 above).

For required files which are not on the execution machine, Ul/X will generate receive command
files (type 2 above). These command-files will be put on the execution machine-and executed

Uucp IMPLEMENTATION DESCRIPTION 581

by the uucico program. (This will work only if the local system has permission to put files in
the remote spool directory as controlled by the remote USER FILE.)

The execute .file will be processed by the uuxqt program on the execution machine. It is mad~
up of several lines, each of which contains an identification character and one or more argu­
ments. The order of the lines in the file is not relevant and some of the lines may· not be
present. Each line is described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where the .file-name is the generated name of a file for the execute machine and". real-name
is the last part of the actual file name (contains no path information). Zero or more of
these lines may be present in the execute file. The uuxqt program will check for the
existence of all required files before the command is executed.

Standard Input Line

I file-name

The standard input is either specified by a "<" in the command-string or inherited from
the standard input of the uux command if the H_" option is used. If a standard input is
not specified, "/dev/null" is used.

.)

Standard Output Line

o file-name system-name

The standard output is specified by a ">" within the command-string. If a standard out­
put is not specified, "/dev/null" is used. (Note - the use of ., > >" is not imple­
mented.)

Command Line

C command [arguments) ...

The arguments are those specified in the command-strit:tg. The standard input and stan­
dard output will not appear on this line. All required.files will be moved to the executiop.
directory (a subdirectory of the spool directory) and the UNIX command is executed using
the Shell specified in the uucp. h header file. In addition, a shell "PATH" statement is
prepended to the command line as specified in the lIuxqt prograhl. .

After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out

The lIucico program will perform the following major functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be ~sed.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

582 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

".~,:, . a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uucico programs,

c) .girectly by the user (this is usually for testirig),

d) by a remote system. (The uucico program should be specified as the "shell" field in
the "/~tc/passwd" file for the "uucp" 10ginsJ

When started by method a, b or c, the program is considered to be in MASTER mode. In this
mode, a connection will be made to a remote system. If started by a remote system (method
d), the program is considered to be in SLA VE mode.

The MASTER mode will operate in' one of two ways. If no system name is specified (- s
option not specified) the program will scan the spool directory for systems to call: If a system
name is specified, that system will be called, and work will only be done for that system ..

The uucico program is gene.rally started by another program. There are several 'options used for
execution:

- r1 Start the program in MASTIiR mode. This is used when uucico is started by a
program or "cron" shell.

-ssys Do work only for sys.tem sys. If"-s is specified, a call to the specified system
will . be made even if' there is no work for system sys in the spool directory.
This is useful for polling systems which do not have the hardware to initiate a
connection.

The following options are used primarily for debugging: .

:"""ddir Use directory dir for the spool directory. . .

-:- XIJum Num is the level of deb~gging output desired.

"The n~xt part of this ,section will describe the major steps within the uu~ico program.

Scan For Work

The names, of the work related files in the spool directory have format·

type. "system-name grade number

. "where: ,

Type is an upper case letter, (C - copy command file, D- data file, X - execu te file);

System-name is the remote system;

Grade is a character;

Number is a four" digit, padded sequence number.
. . .

The file

C.res45n0031

would b'e a work file for a file transfer between the local machine and the "res45" machine.

. The scan f~r workis done by looking through th~ spool directory for work .files (files with prefix
. '~C. "); A list is made of-all systems to be called. UuCico will then call ea~h system and process
all work files.

~all Remote System

'f,he caIl is made using information' from several files which reside in the uucp program direc­
~ t~ry. At the start of the call process, a lockis set to forbid multiple Conversations between'the

slame two systems.

The system namei; found in the L.sys file. The information contained for each system is;

Uucp IMPLEMENTATION DESCRIPTION 583

U] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number if field [3] is ACU or the ~evice name (same as field [3]) if not ACU,

[6] login informati'on (multiple fields),

The time field is checked aga-inst the present time to see if the call should be made .

. The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into
dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available dev­
ice for the call. The program will try all devices which satisfy [3] and [4] until the call is made,
or no more devices can be tried. If a device is successfully opened, a lock file is created so that
another copy of uucico will not try to use it. If the call is complete, the login in/ormation (field
[6] of L.sys) is used to login.

The conversation between the two uucico programs begins with a hand~hake started by the
called, SLA VE, system. The SLA VE sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified by the SLA VE and if acceptable, protocol selection begins. The SLA VE
can also reply with a "call-ba'ck required" message in which case, the current conv~rsation is
terminated.

Line Protocol Selection

The remote system sends a message

P proto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto~list for a letter corresponding to an available line protocol
and returns a use-protocol message. The lise-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common pro­
tocol.

VVork Processing

The initial roles (MASTER or SLA VE) for the work processing are the mode in which each
program starts. (The MASTER has been specified by the ~~-rl" uucico option,) The MASTER
program does a work search similar to the one used in the "Scan For Work" section.

There are five messages used during the work processing, each specified by the first character of
the message. They are~' .

S send a £:ile,

R receive a file,

C copy complete,

X execute a 1I11CP command,

H hangup.

Tl)e MASTER will send R, S or X messages until all work from the spool directory is complete,
at which point an H message will be sent. The SLA VE will reply with SY, SN,' R Y, RN, HY,
HN, XY, XN, corresponding to yes or no for each request.

584 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

The send and receive replies are based on permiSSIOn to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved from
the temporary spool file to the actual destination. Otherwise, a eN message is sent. (In the
case of CN, the transferred file 'will be in the spool directory with a name beginning with
"TM' J The requests and results are logged on both systems.

The hangup response' is determined by the SLA VE program by a work scan of the spool direc­
tory. If work for the remote system exists in the SLA VE's spool directory, an HN message is
sent and the programs switch roles. If no work exists, anHY response is sent. '

Conversation, Termination

When a HY message is received by the MASTER it is echoed back to the SLA VE and the proto­
cols are turned off. Each' program sends a final "00" message to the other. The original
SLA VE program will clean up and terminate. The MASTER will proceed to call other systems
and process work as long as possible or terminate if a - s option was specified.

4. Uuxqt - Uucp Command Execution

·The uuxqt program is used to execute execute files generated by uux. The uuxqt program may be
started by either the uucico or uux programs. The program scans the spool directory for execute
files (prefix "X."). Each one is checked tc;> see if ail the required files are available and if so,
the command line or send line is executed.

The execute file is described in the "U ux" section above.

Command Execution

The execution is accomplished by executing a sh -c of the command line after appropriate
standard input and standard output have' been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

5. Uulog - UucpLog Inquiry

The uucp programs create individual log files- for each program invocation. Periodically, uulog
may be executed to prepend these files to the system logfile. This method of logging was
chosen to 'minimize file locking of the logfile during program execution.

The uulog program merges the individual log files and outputs specified log entries. The output
request is specified by the use of t~e following options:

-ssys Print entries where sys is the remote system name~

- u user Print entries for user user.

The intersec.tion of lines satisfying the two options is output. A null sys or user means all sys­
tem names or users respectively.

6. Uuclean- Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a ·day. -Its fu .1ction is to remove files
from the spool directory which are more than 3 days old: These are usually files' for work
which can not be completed.

The options available are:

- ddir The directory to be ~canned is dit ..

-m Send" mail to the o~ner of each file being removed. (Note that most files put
into the spool directory will be.owned by the owner of ' the uucp programs since
the setuid bit will be set on these programs. The mail will therefore most

'dften go to the owner of the uucp programsJ

Uucp IMPLEMENTATION DESCRIPTION 585

- nhollrs Change the aging time from 72 hours to hours hours.

- ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be
specified.)

-X/lum This is the level of debugging output desired.

7. Security

The uucp system, left unrestricted, will let any outside user execute any com­
mands and copy in/out any file which is readable/writable by the uucp login
user. It is up to the individual sites to be aware of this and apply the protec­
tions that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the 1I11CP system.

The login for uucp does not get a standard shell. Instead, the Ul/cico program is started.
Therefore, the only work that can be done is .through lIlicico.

A path check is done on file names that are to be sent or received. The USER FILE supplies
the information for these checks. The USERFILE can also be set up to require call-back for
certain login-ids. (See the HFiles required for execution" section for the file description.)

A conversation sequence count can be set up so that the called system can be more
confident that the cf:lller is who he says he is.

The lIuxqt program comes with a list of commands that it will execute. A ~~PATH" shell
statement is prepended to the command line as specifed in the uuxqt program. The installer
may modify the list or remove the restrictions as desired.

The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also
owned by uucp and have the setuid bit set.)

8. Uucp Installation

There are several -source modifications that may be required before the system programs are
compiled. These relate to the directories used during compilation, the directories used during
execution, and the local lIUCP system-name.

The four directories are:

lib Uusrlsrc/cmd/uucp) This' directory contains the source files for generating·
the UlICP system.

program Uusr/lib/uucp) This is the directory used for the executable system pro­
grams and the system files.

spool Uusr/spooI/uucp) This is the spool directory used during ulIcp.execution,

xqtdir Uusr/spooI/uucp/.XQTDIR) This directory is used during execution of exe-
cute.1i les.

The names given in parentheses above are the default values for the directories. The italicized
named lib, program, xqtdir, and spool will be used in the following text to represent the appropri-
ate directory names. .

There are two files which may require modification, the make.file file and the uucp.h file. ~Th~
following paragraphs describe the modifications. The modes of spool and xqtdir should· be made
"0777".

586 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

Uucp.h modification

Change the program and the spool names from the default values to the directory names to be
used on the local system using global edit commands.

Change the define value for MYNAME to be the local uucp system-name.

makefile modificaHon

There are several make variable definitions which may need modification.

INSDIR This is the program directory (e.g. INSDIR = lusr/lib/uucp). This parameter is
used if "make cp" is used after the programs are compiled.

IOCTL This is required to be set if an appropriate ioctl interface subroutine does not
exist in the standard "C" library~ the statement "IOCTL = ioctl.o" is required
in this case.

PKON The statement "PKON = pkon.o" is required if the packet driver is not in the
kernel.

Compile the system The command

make

will compile the entire system. The command

make cp

will copy the commands to the to the appropriate. directories.

The programs uucp, uux, and uulog should be put in "/usr/bin". The programs uuxqt, uucico,
.. and uuclean should be put in the program directory.'

Files required for execution

There are four files which are required for execution, all of which should reside in the program
directory. The field separator for all files is a space unless otherwise specified.

L-devices·

This file contains entries for the call-unit devices and hardwired connections which are to be
used by uucp. The special device files are assumed to be in the Idev directory. The format for
each entry is·

line call-unit speed

where~

line

call-unit

speed

The line

is the device for the line (e.g. culO) ,

is the automatic call unit associated with line (e.g. cuaO) , (Hardwired lines
have a number "0" in this field.),

is the line speed.

culO cuaO 300

would be set up for a system which had device culO wired to a call-unit cuaO for use at 300
baud.

L-dialcodes

This file contains entries with location abbreviadons used in the L.sys file (e.g. py, mh, boston).
The entry format is .

Uucp IMPLEMENTATION DESCRIPTION 587

abb dial-seq

where;

is the abbreviation, abb

dial-seq

The line

is the diaf sequence to call that location.

py 165-

would be set up so that entry py7777 would send 165 -7777 to the dial-unit.

LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote computer to call into a local computer is not
the same as the login name of a normal user of that local machine. However, several remote
computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each call.
This name identifies the calling machine to the called machine.

USERFILE

This file contains user accessibility information. It specifies four types of constraint;

[1] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,

[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the following format

login,sys [c] path-name [path-name] ...

where;

login is the login name for a user ot the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for user.

The constraints are implemented as follows.

, [I]' When the program is obeying 'a command stored on the local machine, MASTER
mode, the path-names allowed are those given for the first line in the USERFILE
that has a login name that matches the login name of the user who entered the com­
mand. If no such line is found, the first line with a milllogin name is used.

[2] When the program is responding to a command from a remote machine, SLA VE
mode, the path-names allowed are those given for the first line in the file that has
the system name that matches the system name of the remote machine. If no such
line is found, the first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USER FIL E. There may be several lines with the same login name but one" of them
must either have the name of the remote system or must contain a null system
name.

[4] If the line matched in ([3]) contains aBc", the remote machine is called back
before any transactions take place.

The line

588 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
"/usr/xyz".

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only
ask to transfer files whose names start with "/usr/spool".

The lines

root, /
, /usr

allows any user'to transfer files beginning with "/usr" but the user with login root can transfer
any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp programs.
The fields are described below.

system name

The name of th~ remore system.

time

This is a string which indicates the days-of-week and times-of-day when the system should
be called (e.g. MoTuTh0800-1730).

The day portion may be a list containing some of

Su Mo Tu We Th FrSa

or it may be Wk for any week-day or A ny for any day.

The time should be a range of times (e.g. 0800-1230). If no time portion is specified,
any time of day is assumed to be ok for the call.

device

This is either ACU or the hardwired device to be used for. the call. For the hardwired
case, the last part of the' special file name is used (e.g. ttyO).

speed

This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation is one which appears in the L-dia/codes file (e.g. mh5900, bos­
ton995 - 9980).

For the hardwired devices, this' field contains the same string as used for the devic~ field.

Uucp IMPLEMENTATION DESCRIPTION 589

login

The login information is given as a series of fields and subfields in the format

expect send [expect send I ...
where; expect is the string expected to be read and send is the string to be sent when the
expect string is received.

The expect field may be made up of subfields of the form

expectl- send - expectl ...

where the send is sent if the prior expect is not successfully read and the expect following
the send is the next expected string.

There are two special names available to be sent during the login sequence. The string
EOTwill send an EOT character and the string BREAK will try to send a BREAK charac­
ter. (The BREAK character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.) .

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some ·events and files which must be administered for the uucp system.
Some admihistration can be accomplished by shell.files which can be initiated by c;ontab entries.
Others will require manual intervention. Some sample shell.files are given toward the end of
this section.

SQFILE - sequence check file

This file is set up in the program directory and contains an- entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system

. name of the remote system. The first conversation will add two items to the line, the conversa­
tion count, and the dateltime of the mo~t resent conversation. These items will be updated
with each conversation. If a sequence check fails, the entry will have to be adjusted.

TM - temporary data files

These files are created in the spool directory while files are· being copied from a remote
machine: Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of uucico and incremented for each file received.

After the entire remote file is received; the TM file is moved/copied to the requested destina­
tion. If processing is abnormally terminated or the move/copy fails, the file wifl remain in the
spool directory.

The leftover files should be periodically removed; the uuclean program is useful in this regard.
The commaQd '

uuclean -pTM

will remove all TM files older than three days.

590 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

LOG - log entry files

During execution of programs, individual LOG files are created in the spool directory with infor­
mation about queued requests, calls to remote systems, execution of uux commands and file
copy results. These files should be combined into the LOGFILE by using the uulog program~
This program will put the new LOG files at the beginning of the existing LOGFILE. The com­
mand

uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically since it is copied each time
new LOG entries are put into the file.

The LOG files are created initially with mode 0222 .. If the program which creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode
0222 and the uulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them with the LOGFILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
of failures such as login, dialup ()r sequence check and will contain a TALKING status when to
machines are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures (dialup, login),. the file will prevent repeated tries for about one hour. For
sequence check failures, the file must be removed before any future attempts to converse with
that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file
must be removed before a conversation is attempted.

LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev­
ices. The form of the lock file name is

. LCK .. str

w'here sfr is either a device or system name. The files may be left in the spool directory if runs
abort. They will be ignored (reused) after a time of about 24 hours. When runs abort and calls
are desired before the time limit, the lock files should be removed.

Shell Files

The 1I11CP program will spool work and attempt to start the ilucico program, but the starting of
ullcico will sometimes fail. (No devices available, login failures etc,). Theiefore, the ullcico
program should be periodically started. The command to start lIucico can be put in a "shell"
file with a command to merge LOG files and started by a crontab entry on an hourly baSIS. The
file could contain the commands

program/uulog
program/uucico - r1

Note that the "-rl" option is required to start the lIucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove TM, STand LCK files and C. or D.
files for work which can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing co~m~nds like

program/uuclean -pTM -pC. -pD.
program/uuclean -pST -pLCK -n12

Uucp IMPLEMENTATION DESCRIPTION 591.

can be used. Note the H- n12" option causes the ST and LCK files older than 12 hours to be
deleted. The absence of the.H-n" option will use a three day time limit.

A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp spoollLOGFILE spooUo.LOGFILE
rm spooULOG FILE

can be used.

Login Entry

One or more logins should be set up for 1I11Cp. Each of the H/etc/passwd" entries should have
. the Hprogram/uucico" as the shell to be executed. The login directory is not used, but if the
system has a special directory for use by the users for sending or receiving file, it should as the
login entry. The various logins are used in conjunction with the USERFILE to restrict file
access. Specifying the shell argument limits the login to the use of uucp (uucico) only.

File Modes

It is .suggested that the owner and file modes of various programs and files be set as follows.

The programs uucp, uux, ulicico and ulIxqt should be owned by the 1I11CP login with the "setuid"
bit set and only execute permissions (e.g. mode 0411 O. This will prevent outsiders from
modifying the programs to get at a standard shell for the 1I11CP logins.

The L.sys, SQFILE and the USERFILE which are put in the program directory should be owned
by the uucp login and set with mode 0400,

On the Security of UNIX

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of'
security which can be provided under the UNIXt system and offers a number of hints on how to
improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in
mind; this fact alone guarantees a vast number of holes. (Actually the same statement can be
made with respect to most systems.) The area of security in which UNIX is theoretically weakest
is in protecting against crashing or at least crippling the operation of the system. The problem
here is not mainly in uncritical acceptance ,of bad parameters ,to, system calls- there may, be
~l:lgs ;i~"t'his area, ~ut'-none are known - ~ut rather in lack, of checks focexcessive consumption.,
pCr.esources. Most notably, there is no limit on the amount of disk storage !lsed, either ill total
space allocated or in the number of 'files or directories. Here is a particularly ghastly shell
sequence guaranteed to stop the system:

while: ; do
mkdir x
cd x

, done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that anyone can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for Ptl)~,~s. Also, if many large jobs are run simultaneously, swap space may
run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command level.
In fact UNIX is ~ssentially defenseless against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to detect what has happened when disaster
strikes, to identify the user responsible, and take appropriate action. In practice, we have found
that difficulties in this area are rather rare, but we have not been' faced with malicious users,
and enjoy a fairly generous supply of resources which have served to cushion us against
acciden tal overconsumption.

The picture is considerably brighter in the area of protection of information from unau­
thorized perusal and destruction. Here the degree of security seems (almost) adequate theoret­
ically, and the problems lie more in the necessity for care in the actual use of the syste~.

Each UNIX file has associated with it eleven bits of protection information together with a
user identification number and a user-group identification'number (UID and GID). Nine of

tUNIX is a Trademark of Bell Laboratories.

592

ON THE SECURITY OF UNIX 593

the protection bits are used to specify independently permission to read, to write, and to exe­
cute the file to the user himself, to members of the user's group, and to all other users. Each
process generated by or for a user has associated with it an effective UID and a real UID, and
an effective and real GID. When an attempt is made to access the file for reading, writing, or
execution, tp.e user process's ~ffective UID is compared against the file's UID~ if a match is
9btained, ~ccess is granted provided the read, write, or execute bit respectively for the user
himself is present. If the UID for the file and for the process fail to match, but the GID's do
match, the group bits are used; if the GID's do not match, the bits for other users are tested.
The last two bits of each file's protection information, cal,led the set-UID and set-GID bits, are
used only when the file js executed as a program. If, in this case, the set-UID bit is on for the
file, the effective UID for the process is changed to the UID associated with the file~ the change,
persists until the process terminates or until the UID changed again by another execution of-a
set-UID file. Similarly the effective group ID of a process is changed to the GID associated
with a file when that file is executed and has the set-GID bit set. The r'eal UID and GID of a
process do not change when any file is executed, but orily as the result of a privileged system
call.

The basic notion of the set-UID and set-GID bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game's
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro-

I

grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless' operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name~ thus if a directory has execute permission but no read' permission
for a given user, he may access files with known names in the directory, b~t may not read (list)
the entire contents of the directory. Write permission on a directory is interpreted to mean that
the user may create and delete files in that directory;' it is impossible for an::,' ~ser to write
directly into any directory.

Another, and from the point of view of security, much more serious special case' is that
t.here is a "super user" who is able to read any file and write any non-directory. The su'per­
user is also able to change the protection mode and the owner UID and G ID of any file and to
invoke privileged system calls. It must be'recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first ,necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis­
sive in this regard~ essentially all commands create files readable and writable by everyone. In

, the current version, this policy may be easily adjusted to suit the needs of the installation or the
individual user. Associated with each process and its descendants is a mask, which is in effect
and-ed with the mode of every file and directory created by that process. In this way, users
can arrange that" by default, all their files are no more accessible than they wish. The standard
rnask, set by login, allows all permissions to the user himself and to his group, but disallows
writing by others.

To maintafn both data privacy and data integrity, it is necessary, and largely sufficient, to.
make one's files inaccessible to others. The lack of sufficiency could follow from the existence
of set-UID programs created by the user and the possibility of total breach of system security in
one of the ways discussed below (or one of the ways not discussed below). For greater protec­
tion, an encryption scheme is available. Since the editor is able to create encrypted documents, '
and the crypt command can be used to pipe such documents into the other text-processing pro­
grams, the length of time during which cleaftext versions need be available is strictly limited.

594 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sens~ that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as
truly secret should be aware that he is implicitly ~rusting the system administrator not to install
a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In partic­
ular, it is necessary that special files be protected from writing, and probably reading, by ordi­
nary users when they store sensitive files belonging to other users. It is easy to write programs
that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Passwords
are stored in an encrypted form which, in the absence of serious attention from specialists in
the field, appears reasonably secure, provided its limitations are understood. In the current ver­
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so
that easily-available har~ware is useless for attempts at exhaustive key-search. Since both the
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We have observed that users choose pass­
words that are easy to guess: they are short, or from a limited alphabet, or in a dictionary.
Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login:" on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program copied
onto it. For example, if the super-user (su) command is writable, anyone can copy th'e shelJ.­
onto it and get a password-free version of suo A more subtle problem can come from set-UID
programs which are not sufficiently careful of what is fed into them. To take ail obsolete exam­
ple, the previous version of the mail command was set-UID and owned by the super-user.
This version sent mail to the recipient's own directory. The notion was that one should be able
to send mail to anyone even if they want to protect their directories from writing. The trouble
was that mail was rather dumb: anyone could mail someone else's private file to himself. Much
more serious is the following- scenario: make a file with a line like one irt the password file
which allows one to log in as the super-user. Then make a link named" .mail" to the password
file in some writable directory on the same device as the password file (say Itmp). Finally mail
the bogus login line'to Itmp/.mail; You can then login as the super-user, clean up the incrim­
inating evidence, and have your will.

The fact that users can mount their own disks and t pes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem is'
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs owned
by others, and accessible special files, and balk at unprivileged invokers.

Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories
'Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the history of the design of the password security
scheme on a remotely accessed time-sharing system. The present design was
the result of countering observed attempts to penetrate the system. The result' ,
is a compromise between extreme security and ease of use.

April 3, 1978

·595

INTRODUCTION

Password security on the UNIxt time-sharing system [1] is provided by a collection of pro­
grams whose elaborate and strange design is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we have had a continuing competition to
devise new ways to attack the security of the system (the bad guy) and, at the same time, to
devise new techniques to resist the new attacks (the good guy). This competition has been in
the same vein as the competition of long standing between manufacturers of armor plate and
those of armor-piercing shells. For this reason, the description that follows will trace the his­
tory of the password system rather than simply presenting the program in its current state .• In
this way, the reasons for the design will be made clearer, as the design· cannot be understood
without also understanding the potential attacks.

An underlying goal has been to ~rovide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who require all of their users to have passwords gain a high degree of secu­
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by unau­
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are
already logged in from doing things that they are not authorized to do. The so called "super­
user" password; for example, is especially critical because the super-user has all sor~ of per­
missions and has essentially unlimited access to all system resources.

Password security is of course only one component of ove'rall system security, but it is an
essential component. Experience has shown that attempts to penetrate remote-access systems
have been astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are
threats at the remote terminal, along the communications link, as well as at the computer itself.
Although the security of a password encryption algorithm is an interesting intellectual and
mathematical problem, it is only one tiny facet of a very large problem .. In practice, physical
security of the computer, ·communications security of the communications link, and physical
control of the computer itself loom as far more important issues. Perhaps most important of all
is control over the actions of ex-employees, since they are not under any direct control and
they may have intimate knowledge about the system, its resources, and methods of access.
Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

tUN IX is a Trademark of Bell Laboratories.

596

PASSWORD SECURITY: A CASE HISTORY 597

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual
passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory for s~veral reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protec­
tion can occur when the password file is being edited or otherwise modified. There is no way to
prevent the making of copies by privileged users. Experience with several earlier remote-access
systems showed that such lapses occur with frightening frequency.- Perhaps the most memor:­
able such occasion occurred in the early 60's when a system administrator on the CTSS system
at MIT was editing the password file and another system administrator was editing the daily
message that is printed on everyone's terminal on login. Due to a software design error, the
temporary editor files of the two users were interchanged and thus, for a time, the password file
was printed on.every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed,
usually simultaneously, at a considerable administrative cost. This is not a great matter, but far
more serious is the high probability of such lapses going unnoticed by the system administra­
tors.

·Security against unauthorized disclosure of the passwords was, in the last analysis, impos­
sible with this system because, for example, if the contents of the file system are put on to
magnetic tape for backup, as they must be, then anyone who has physical access to the tape can
read anything on it with no restriction.

Many programs must get information of various kinds about the users of the system, and
these programs in general should have no special permission to read the pass·word file. The

. information which should have been in the password file act~ally was distributed (or replicated)
into a number of files, all of which had to be updated whenever a user was added to or dropped
from the system.

·THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and
it is not difficult to decide that this can be done by encrypting each user's pas~word, putting
only the encrypted form in the password file, and throwing away his original password (the one
that he typed in). When the user later tries to log in to the system, the password that he types
is encrypted and compar~d with the encrypted version in the password file. If the two match,
his login ·attempt is accepted. Such a scheme was first described in [3, p.91ff.1. It also seemed
advisable to devise a system in which neithet the password file nor the pass,":,ord program itself
needed to be protected against being read by anyone.

All that was needed to implement these iqeas was to find a means of encryption that was
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messages are rather easy to invert. A
convenient and· rather good encryption program happened to exist on the system· at the time~ it
simulated the M-209 cipher machine [4] used by the U.S. Army during World War II. It
turned out that the M-209 program was usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more difficult matter to find ·out the key given
th.e cleartext input and the enciphered output of the program. Therefore, the password was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
k.ey. The encrypted result was entered into the password file.

598 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

A TT ACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a gen­
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc­
cessful results have come to light, despite substantial efforts extending over a period of more
than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords, until' one
succeeds~ this is a general cryptanaly-tic approach called key search. Human beings being what
they are, there is a strong tendency for people to choose relatively short and simple passwords
that they can remember. Given free choice, most people will choose their passwords from a
restricted character ~et (e.g. all lower-case letters), and will often choose words or names. This
human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an entry in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately 1.25
milliseconds on a PDP-II 170. when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the passwords
in an entire password file, or for that matter, against any collection of encrypted passwords,
perhaps collected from many installations.

If we want to check all passwords.of length n that consist entirely of lower-case letters, the
number of such passwords is 26". If we suppose that the password consists of printable charac­
ters only, then the number of possible passwords is somewhat less than 95". (The standard
system "character erase" and "line kill" characters are, for example, not prime candidates.)
We can immediately estimate the running time 'of a program that will test every password of a-'
given length with all of its characters chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-11/7D to test all possible character
strings of length n chosen from various sets of characters: namely, all lower-case letters, all
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 3D msec. 40. msec. 80. msec. 120. msec. 160. msec.
2 80.0. msec. 2 sec. 5 sec. 11 sec. 20. sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10. min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 10.7 hrs.

One has to conclt1de that it is no gr.eat matter for someone with access to a PDP-II to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say, several,
weekends, to test all such strings up to six -characters in length. By using such a program
against a collection of actual encrypted passwords, a substantial fraction of all the passwords will
be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to
use a list of names. For -example, a large commercial dictionary contains typicallly about
250.,0.0.0. words~ these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some "good" things to try are: '

PASSWORD SECURITY: A CASE HISTORY 599

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names,
and city names also work well.

The above with initial U)Jper-case letters.

All valid license plate numbers in your state. (This takes about five hours in New Jer­
sey)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to' determine typical users' habits in the
choice of passwords when no cons.traint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3,289 passwords gathered from many ~sers over a
long period of time~

15 were a single ASCII character~

72 were strings of two ASCII characters~

464 were strings of three ASCII characters~

477 were string of four alphamerics~

706 were five letters, all upper-case or all lower-case~

. 605 ·were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the like.
A total of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictio.nary results and the charac­
ter string searches. The dictionary search alone, which required only five minutes to run, pro­
duced about one third of the passwords. '

Users could be urged (or forced) to use either longer passwords or passwords chosen from
a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force
users to use less predictable passwords. The users did not choose their own passwords~ the sys­
tem supplied them. The supplied passwords were eight characters long and were taken from
the character set consisting of lower-case letters and digits. They were generated by a pseudo­
random number generator with only 2 15 starting values. The time required to search (again on
a PDP-II/70) through all character strings of length 8 from a 36-character alphabet 'is 112
years.

Unfortunately, only 2 15 of them need be looked at, because that is the number of possible
outputs of the" random number generator. The bad guy did, in fact, generate and fest each of
these strings and found everyone of the system-generated passwords using a total of only about
one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1~ Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES
encryption algorithm [2] by the National Bureau of Standards was timely and fortunate. The
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow when
implemented in software, The DES was implemented and used in the following way: The first
eight characters of the user's password are used as a key for the DES~ then the algorithm is
used to encrypt a constant. Although this constant is zero at the moment, it is easily accessible
and can be made installation-dependent. Then the' DES algorithm is iterated 25 times and the
resulting 64 bits are repacked to become a string of 11 printable characters.

600 IMPLEMENTATION, MAINTENANCE, AND MISCELLANEOUS

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five chara~ters, then­
the program asks him to enter a longer password. This further reduces the efficacy of key
search.

These improvements make it exceedingly difficult to find' any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse's name if he wants to.

3. Salted Passwords

The key search technique is still likely to turn up a few passwords when it is used on a
large collection of passwords, a"nd it seemed wise to make this task as difficult as possible. To
this end, when a password is first entered, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends this to the password typed in by the user.
The concatenated string is encrypted and both the 12-bit random quantity (called the salt) and
the 64-bit result of the encryption are entered into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the pass­
word fi]e and appended to the typed password. The encrypted result is required, as before, to
be the same as the remaining 64 bits in the password file. This modification does nol increase
the task of finding any individual password, starting from scratch, but now the work of testing a
given character string against a large collection of encrypted passwords has been multiplied by
4096 (2 12). The reason for this is that there are 4096 encrypted versions of each pas~word and
one of them has been picked more or less at random, by the system.

With this modification, it is likely that the bad guy can spend days of computer time try­
ing' to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance.
Such an encrypted dictionary could be used to crack new passwords in milliseconds when they
appear.

There is 'a (not inadvertent) side effect of this modification. It becomes nearly impossible
to find out whether a person with passwords on two or more systems has used the same pass­
word on all of them, unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very
fast. The use of such a chip speeds up the process of password hunting by three orders of mag­
nitude. To avert this possibility, one of the internal tables of the DES algorithm (in particular,
the so-call~d E-table) is changed in a way that depends on the 12-bit random number. The E­
table is inseparably wired into the DES chip, so that the commercial chip cannot be used.
Obviously, the bad guy could have his own chip designed and built, but the cost would be
unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary 'after dialing into type a valid
user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only
if the user name was valid, because' otherwise there was no encrypted password to comp&re with
the supplied password. The result was that the response was delayed by about one-half second
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par­
ticular user name was valid. The routine was modified to do the encryption in either case.

,PASSWORD SECURITY: A CASE HISTORY 601

CONCLUSIONS

On the issue of password security, UNIX is pro.bably better than most systems. The use
of encrypted passwords appears reasonably secure in the absence of serious attention of experts

, in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX .sys­
terns have instituted what is called an "external security. code" that must be typed when dialing.
into the system, but before logging in. If this code is changed periodically, then someone with

'an old password will likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthor­
ized persons, it is wise to keep a record of both successful and unsuccessful attempts to get at
the secured resource. Just as an out-of-hours visitor to a computer center normally must not
only identify qimself, but a record is usually also kept of his entry. Just so, it is a wise precau­
tion to make and keep a record of all attempts to log into a remote-access time-sharing system,
and certainly all unsuccessfur attempts.

Bad guys fall on a spectrum whose one end is someone with 'ordinary access to a system
and whose goal is to find out a particular password' (usually that of'the super-user) and, at the'
other end, someone who wishes to collect as much password information as possible from as
rpany systems as possible. Most of the work reported here serves to frustrate the latt'ertype~
our experience indicates that the former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did
not attempt to hIde the security aspects of the operating system, thereby ~playing the customary
make-'believe game in which weaknesses of the system are not discussed. no matter how
apparent. Rather we advertised the password algorithm and invited attack in the belief that: this
approach would minimize f4ture trouble. The approach has been successful.

References

[1] Ritchie, D.M. and Thomp~un, K. The UNIX Time-Sharing System. Comm. ACM 17
(July 1974), pp. 365-375.

[2] Proposed Federal In/ormation Processing Data' Encryption Standard. Federal Register
(40FRI2134), Marcil 17,1975 . .

[3] Wilkes, M. V. Time-Sharing CompUferSystems. American Elsevier, N~w York, (1968).

[4] u. S. Patent Number 2,089,603.

, A Short Glossary of the UNIX System

M. D. Mcilroy

This glossary covers major 'terms that have special meaning for the UNIX system. It excludes
ordinary terms of art such as "ASCII", "compiler", "address space", or "byte". It also excludes
most terms peculiar to a single part of UNIX, e.g. "diversion" (troff), "enumeration" (C), or
"pattern space" (sed).

a.out the default name of a freshly compiled executable file, pronounced "a-dot-out"; histotically
a.out signified assembler output; cf. objeCt file.

absolute path name same as full pathname.

alarm a signal scheduled by the clock.

archive 1. a collection of ,jata gathered from several files into one file. 2. especially, such a col­
lection gathered by ar(1) for use as a library.

argument 1. a -string made available to a process upon executing a file. 2. a string in a command,
which the shell will pass to the command program as an argument (sense 1).

ASCII file same as text file.

automatic persistent only during the invocation of a procedure, said of data belonging to a pro­
cess,· automatic data occupies the stack segment; cf. static.

background running independently of a terminal, said of a process; converse of foreground.

block the basic unit of buffering in the, kernel, 512 bytes in the 7th edition.

block device a device upon which a file system (sense 1) can be mounted, typically a permanent
storage: device such as a tape or disk drive, so called because data transfers to the device occur by
blocks; cf. character device. '

boot to start the operating system, so called because the kernel must bootstrap itself from secon­
dary store into an empty machine.

boot block the first block of a file system (sense 1) ,which is reserved for a booting program for
the device.

break 1. an out-qf-band signal on an asynchronous data line arising from the "break" or "inter-
,rupt" key on a terminal; before logging in a break causes a change in baud rate; thereafter it is
interpreted 'as an interrupt. 2. a control statement in the C language. 3. the program break. 4.
in troff(1), a point in running text where a new line must begin.

bss segment see segme'nt.

butTer 1. a staging area for input-output where arbitrary-length transactions are collected into
convenient units for system operations; the file system (sense 3) uses buffers, as does stdio. 2. to
use buffers.

butTer pool a region of store available to the file system (sense 3) for holding blocks; all but raw
(sense 2) input.;output for block devices goes through the buffer pool so read and write operations
may be independent of device blocks.

cbreak a mode of terminal· input in which every character not a special character becomes avail­
,able to a read(2) operation as soon as it is typed, instead ofbein~ ,buffered up to a newline or EDT
',character.,

character 1. a unit of store, usually 8 bits; a byte. 2. a token of the ASCII code, with octal
value between 0 and 0177.

character device a device upon which a file system (sense 1) cannot be mounted, such as a terminal
or the null device. '

child process see fork.

close to make an open file unavailable for input or output; converse of open. '

602

GLOSSARY

command 1. an instruction to the shell, usually to run a program (sense 1). 2. by exter:tsion, any
executable file, especially a utility program.

command file same as shell scrfpt.

control character an ASCII character with octal code 0-037 or 0177, which does not print but may
otherwise affect the behavior of a terminal; cf. special chardcter.

control terminal the terminal associated with a process from which the process may receive inter­
rupt, quit, and hangup signals; cf. process group.

cooked hot raw (sense 1); terminal input is usually cooked.

core file a core image.of a terminated process saved for debugging; a core file is created under the
name "core" in the current directory of the process. '

core image a copy of all the segments of an executing program; the copy may exist in main store,
in the swap area, or in a core file.

create to open a file for writing, bringing it into existence as a plain file if necessary, and discard-
ing any data it may have contained previously; cf. unlink. .

,current directory, working directQry the directory from which relative pathnames begin; a current
directory is associated with each process.

daemon a background process, often perpetual, that performs a system-wide public function, e.g.
calendar(l) and cron(8); the affected spelling is an ancient legacy.

data segment see segment.

data space, D-space see separate.

device 1. a. file (sense 2) that is not a plain file or a directory, such as a tape drive, a terminal, a
span of blocks on a disk drive, or the null device; a special file. 2. a physical input-output unit.

directory a catalog of filenames; the organizing principle of the file system (sense 2), a directory
consists of entries which specify further files (sense 2, including directories), and constitutes a node
of the directory tree. '

directory entry, entry 1. an association of a name with an inode number appearing as an element
of a directory. 2. the name part of such an association.

directory hierarchy, directory tree the tree of all directories, in which each is reachable Jrom the
root via a chain of subdirectories.

echo -to transmit characters received from a tern:tinal back to it; the technique of echoing to a full
duplex terminal provides acknowledgement of typed input.

effective userid see set userid.

end of file the condition of the read pointer being past the last character of an open file; end of file
is signified by a read operation returning zero bytes, or by an EOF return from functions of th'e
stdio package; end' of file may be simulated from a term~nal by typing EOT (control-D) after a
newline.

entry see directory entry.

environment 1. a set of strings, distinct from the arguments, made available to a process when it
executes a file; the environment is usually inherited across exec(2) operations. 2. a 'specific
environment (sense 2) maintained by the shell. 3. a nebulously identified way of doing things, as
in "interactive environment": deprecated usage, not always expunged from these manuals:

EOT, EOT character 1. the ASCII "end of transmission" character, control-D, octal code 04. 2.
a charact!!r that ends (and is excluded from) data obtain,ed by read(2) from a termin~l: EO:r at the
beginning of a line causes the end of file condition.

epoch the zero of UNIX clocks, 00:00:00 Greenwich Mean Time, January 1,)970.

erase character a special character (sense 2), which, when received- from a terminal, is deleted
together with the character immediately preceding it on the line; usually defaulted to "#" or back­
space, the erase character may be chal1ged by stty(l); cf. kill character.

escape character 1. The ASCII character ESC, octal 033. 2. a special character that may cause

603

604 GLOSSARY

the following character to have other than its usual meaning; the default escape character in termi­
nal input is ",".

executable file, object program 1. an object file that is ready to be copied into the address space
of a process to run as the code of that· process. 2. a file that has execute permission, either an exe­
cutable file or a shell script.

execute 1. (informally) run a program. 2. replace the text segment and data segments of a process
with a given program (sense 1). .

exit to terminate a process; exit is voluntary, in contrast to kill.

exit status, return code an integer value denoting the outcome of a process, including an indica­
tion of the cause of termination.

external known beyond the scope of a single compilation, said of names of data and functions in a
program.

file 1. in general, a potential source of input or destination for output. 2. most specifically, an
inode and/or associated contents, i:e. a plain file, a special file, or a directory. 3. a directory entry;
several directory entries may name the same file (sense 2). 4 .. most loosely, a plain file.

file descriptor a conventional integer quantity that designates an open filt;; cf. stream.

file system 1. a collection of files that can be mounted on a block special file; each file of a file
. 'system appears exactly once in the i-list of the file system and is accessible via some path from the

root directory of the file system. 2. the collection of all files on a computer. 3. the part of the
kernel that deals with file systems (sense 1). .

. filen~me 1. a pathname. 2. the last component name in a pathname.

filter a program (sense 1) that reads from the standard input and writes on the standard olftput, so
called because it can be used asa data-transformer· in a pipeline.

flag ari option for a command.

flush tor empty a buffer, for example to throwaway' unwanted input-output upon interrupt or to
release output from the clutches of stdio.

foreground running under direct control of a terminal, said of a process; converse of background.

fork to split 'one process into two, the parent process and child process, with separate, but initially
identiC~l, text, data, and stack segmenis.

free list in a file system (~ense 1), the list of blocks th~t are not occupied by data.

full duplex. 1. capable of carrying information simultaneously in both directions, said of ,a com­
munication channel. 2. transmitting what is typed while printing what is received, said of a termi­
nal, or of terminal communication; cf. half duplex and echo.

global same as external.

group 1. a set of permissions alternative to owner permissions for access to a file. 2. a set of
userids that maY'assum~ t.he privileges of a group (sense 1). 3. t~e groupid of a file.

groupid an integer value, usually a.ssociated with one or.more login names; as the userid of a pro­
cess becomes the owner of files created by the process, so the groupid of a process becomes. the
group (sense 3) of such files. .

half duplex 1. capable of carrying information in both directions, but not simultaneously, said of

a communication channel. . 2. transmitting (usually typing what is transmitted) 'and receiving, but
not simultaneously, said of a terminal; cf. full duplex.

hangup a signal indi~ating th~t a user's terminal has been disconnected .

. here file in a shell script, literally given input data for a command; here files are introduced by
"«".
hole a gap in a plain file caused by seeking while writing; read(2) takes data in holes to be zero; a
block in a hole occupies no space in its file system.

home directory 1. the current directory established for each user upon logging in. 2. a part of
the environment maintained by the shell: used in particular for a default destination for the cd com­
mand.

GLOSSARY

i-list the index to a file system (sense 1) listing all the inodes (files) of the file system; cf. inode
number.

include file a file, usually containing shared data declarations, that is to be copied into source pro­
grams as they are compiled.

inode an element of a file system (sense 1); an inode specifies all properties of a particular file and
locates the file's contents, if any.

inode number, i-number the position of an inode in the i-list of a file system (sense 1).

instruction space, I-space see separate.

interrupt 1. a signal that normally terminates a process, caused by a break (sense 1) or an inter­
rupt character; cf. quit. 2. loosely, any signal.

interrupt character a character (normally ASCII DEL) that, when typed on a control terminal,
causes an interrupt.

kernel the UNIX system proper; resident code that implements the system calls.

kill I.' a particular signal guaranteed to terminate a process. 2. by extension; to send any signal
to a process. 3. the kill character.

kill character a special character, which, when received from a terminal, is deleted together with
all preceding characters on the line; defaulted to "@", the kill character may be changed by
stty(1); cf. erase character.

library an archive of object. files from which the link editor may select functions and data as
needed.

line in a text file, a sequence of bytes terminated by a newline.

link 1. to add an entry for an existing file to a directory; converse of unlink. 2. by extension, a
directory entry.

link count the number of directory entries that pertain to an inode; a file ceases to exist when its
link count becomes zero and it is not open.

link editor, loader the utility ld(1), which combines separately compiled object files into single exe­
cutable files.

loader same as link editor.

log in to identify one's self as a user and start a computing session.

login 1. the program that controls logging in. 2. the act of logging in.

login name the name by which a person identifies himself upon logging in; cf. userid.

makefile a list of dependencies among files and recipes for updating them, usually by recompila­
tion, used by make(1) to maintain self-consistent software.

'mode, file mode the permissions of a file; colloquially referred to by a 3-digit octal number, e.g.
"a 755 file"; see chmod(1). '

mount to extend the directory hierarchy by associating the root of a file system (sense 1) with a
directory entry in an already mounted file system; converse is unmount, spelled "umount".
namelist same as symbol table. '

newline the combined function of carriage return and line feed, represented by the ASCII charac­
ter LF, octal value 012; separates lines in a text file; newline is evoked by the "return" key on most
terminills. .

nice mode 1. the priority level of a process. 2. a low priority level, so called because the process
gives way to others.

null device a
device (sense 1) that always yields end of file on reading and discards all data written on it.

object file a file of machine language code and data; object files are produced from source pro­
grams by compilers and from other object files and libraries by the link editor; an object file that is
ready to run is an executable file.

other 1. a set of permissions regulating access to a file by processes with userid different from the

605

606 GLOSSARY

owner and groupid different from the group of the file. 2. the customary name of the default
group (sense 2) assigned upon login.

open to make a file available for writing or reading, with the write pointer or read pointer posi­
tioned at byte 0; converse of close; cf.· create.

open file 1. the destination for input or output obtained by opening a file or creating a pipe; a file
descriptor; open files are shared across forks and persist across executes. 2. loosely, a file that has
been opened, however an open file (sense 1) need not exist in a file system (sense 1), and a file
(sense 2) may be the destination of several open files simultanously ..

option an argument that affects the way a command works; option names customarily begip with

owner the userid of the proce~s that created a file; the owner has distinctive permissions for a file.

parent directory the directory next nearer the root than a given directory; the inverse of a sub­
directory; the parent of a given directory appears in it as the entry " .. ".

'parent process see fork.

password a secret word used to. confirm a user's right to log in under a particular iiserid; pass­
words are encrypted by a one-way algorithm and k~pt in the password file.

password file a record of all login names with the password, userid, groupid, home directory, and
·shell. (sense 2)' for each, used to control acces~ to the syste~. .

path, path name a chain of name.s designating i file; l;t relative path name leads from the current
directory,' for example, a path to directory A~ thence to directory E, thence to file C' is' denoted
AlBIC; a full pathname begins at the root, indicated by an· initial "I", as in IA/B/C.

per~ission .a right to access a file in a particular way: read, write, ~xecute (or look up in, if a
directory); permissions are granted separately to owner, group, and others. permission bit a per­
mission, so called because each permissIon is ~ncoded into· one bit in ,an inode ..

pipe a direct input-o\ltput" connection between proce~ses, whereby data written on an open file in
one proc~S's becomes available for reading in another. ~

. pipeline a sequence of programs (sense 1) connected by pipes.

plain file a file that is neither a special file nor a directory; plain files are the customary repository
of data.

priority see" nice mode.

process a connected sequence of computation;· a process is characterized by a core image with
instruction . location counter, current directory, a set of open files, control terminal, userid, and
groupid.

process group' a set of processes that share a control terminal and among which signals may be
broadcast.by kill(2); a process group is 'created upon logging in and augmented by forking.

process number, process id . an integer that identifies a pro~ess.
profile 1. an optional sHell script, ".profile", conventionally used by the shell upon· logging in to
estabiish the environment (sense 3) and other working conditions customary to a particular user. 2 .

. to collect-a histogram of values of the instruction location counter of a process.

program 1. an executable file. 2. a running process. 3. all the .usual meanings.

program break the first address beyond the static data accessible to a process; the program break
may be adjusted 'by sbrk(2). .

quit a . signal that normally terminates a process, caused by a quit character (normally control-\);
quit differs from. interrupt in that quit creates a core file for the terminated process.

random library a -library that contains an index to external names; a library is made into a random
library by ranlib{ 1); nonrandom libraries must be carefully ordered for the link ·editor. to cope with
crossreferences among the subroutines. .

raw 1. a mode of terminal input in which every character typed is passed to a reading process
.and special characters lose their special character; converse of cooked. 2. said of input-output to a
raw device.

.,j

GLOSSARY

raw device a block device, read and write operations to which are not buffered, and are synchron-
ized to natural records of the physical device. . ,

read ahead to fill input buffers in the kernel in advance of rt!ad(2) operations.

read pointer the number of the next byte that read(2) would normally obtain from an open file;
same as write pointer.

real userid see set userJd.

regular expression 1. an expression denoting a set of strings in a notation due to Kleene.· 2.
especially, a restricted and modified form regular expression used for pattern-matching in ed(1),
gre.ry(l), etc.

relative path name see pathname.

re\ocation bits, relocation information information in an object file that tells the link editor how to
adjust addresses when combining it with other object files; "bits" is a fossilized misnomer.

return code same as exit status.

root a distinguished directory that constitutes the origin of the directory hierarchy; the root of an
entire UNIX system has the conventional pathname "I".

runcom a shell script, obsolete.

schedule to assign resources - main store and CPU time - to processes. scheduler a permanent
process, with process number 1, and associated kernel facilities that do scheduling.

search path in the shell, a list of pathnames ~f directories that determines the meaning of a com­
mand name; a command name is prefixed with members of the search path in (lfrn until a path­
name of an executable file results.

seek to set the read pointer or write pointer to a specified place in an open' file.

segment a contiguous range of the address space of a process with consistent store access capabili­
ties; the four segments are (i) the text segment, occupied by executable code,(ii) the data seg­
ment, occupied by static data that is specifically initialized, (iii) the bss segment, occupied by static
data that is initialized by default to' zero values, and (iv) the stack segment, occupied by automatic
data, see stack; sometimes (ii), (iii), and (iv) are collectively called data segments.

separate 1. a mode of operating a PDP-ll in which the text segment and the data segments of a
process have distinct address spaces; a given address value refers to a store location in the ,instruc­
tion space when accessing an instruction and in the data space when accessing data. 2. intended
to use separate address spaces,sai~ of an executable file. .

set userid a special permission for an executable file that causes a process executing it to have the
access rights of the owner of the file; the owner's userid becomes the effective userid of the pro­
cess, distinguished from the real userid under which the process began. set userid bit the
associated permission bit.' .

shared text a text segment, one copy of which may be used simultaneously by more than one pro­
cess.

shell 1. the program sh(l), which causes other programs to be executed on command; the shell is
usually started on a user's behalf when the user logs in. 2. by analogy, any program started upon
logging in.

shell script, command file a file of commands taken as input to the shell.

signal an exceptional occurrence that causes a process to terminate ,or divert from the normal flow
of control; cf. interrupt, kill. -

sleep to cease activity for a specified time, or until a signal occurs, said of a process.

special character a character, which, when typed at a terminal, modifies the input or affects the
behavior of processes for which that terminal is the control terminal; examples are the interrupt
character, erase character, and EDT character.

special file an itzode that designates a device, further categorized as either (i) a block special file
describing a block device, or (ii) a character special file describing a character device.

spool to collect and serialize output from multiple processes competing for ~ single output service.

607

608 GLOSSARY

spooler a daemon that spools. spool area a directory in which a spooler collects work.

stack a segment of the address space into which automatic data and subroutine linkage information
is allocated in last-in-first-out fashion; the stack occupies the largest dat,a addresses and grows
downward towards static data.

strip remove the symbol table and relocation bits from an executable file.

standard input, standard output, standard error open files, customarily available when a process
begins, with file descriptors 0, 1, 2 and stdio names "stdin", "stdout", "stderr"; where possible,
utilities by default read from the standard ipput, write on the standard output, and place error
comments on the: standard error file.

static persistent throughout a: process, said of data; static data occupies the data segment and the
bss segment; cf: automatic.

status see exit status .

. stdio, standard input-output a collection of functions for formatted and character-by-character
input-output at a higher level than the basic read, write, and open(1) operations; stdio is described
in Volume 1, Section. 3S.

sticky file a spedal permission for a shared text file that causes a copy of the text segment to be
ret~ined !n the swap area to improve system response. sticky bit the associated permission bit.

"S~ream an open file with buffering superimposed by the stdio package.

subdi!-"e~tory a directory that appears as an entry in another ..

super blo·~ the second block in a file system '(sense 1), which-describes the allocation of space in
the file system; cf. boot block.

super-user userid 0, which c~n access any file regardless of permissions and can perform certain
priv.ile~ed system calis, e.g. setting the clock.

swap to move the core. image of an executing program between main and secondary store to, make
room for other processes.

swap area the part of secondary store to which core images are swapped; the swap area is disjoint
from the file system.

symbol table- information in an object file about the names of data and functions in that file; the
symbol table and relocation bits are used by the link editor and by the debugger adb(1).

system c II a basic operation performed by the UNIX kernel; system calls are described in Volume
1, Section 2.
text see texi file, segment.

text file, ASCII file afile, the bytes of which are understood to be in ASCII code.

text _ segment see segment.

umask ~llist of permissions that will be denied for files created by a process, so called because the·
list is expressed as a mode bit mask.

UNI~ the mime of an operating system, not an acronym for anything; a trademark of Bell Labora­
tories, UNIX should be used as an adjective: "UNIX system", "UNIX software", "UNIX editor",
etc. ./

unlin~ to remove an entry from a directory; converse to link and create.

usenet an informal~ nationwide ~omputer network based on uucp(1).

userid an integer yalue, usually associated with a login namei the userid of a process becomes the
owner of files created by the process and descendent (forked) processes.

utility, utility program a standard, ge·nerally useful,permanently available program.

wait to suspend 'running until the ~ermination of a~other process; only a parent process can wait
for one of its child processes. . .

working directory' same as current directory.

write behind to buffer -data for writing to a device at a convenient time without holding up the
computation of a writing process.

write pointer the;6umber of the next byte that write(2) would normally fill in an open file; same
as read pointer.

"a" fonnat code, in Fortran 77, 417
accents, 130
accept action, of Yacc parser, 360, 374
access control scheme, 23

See also security
accounting, 9
active processes, detennination of, 8
adb, 3, 11,52

address maps, 345-346
advanced breakpoint usage, 329-331
and combinations of fonnatting requests,

332-334
conunand sununary, 350
and conversion of values from one repre-

sentation to another, 334 -
current address dot, 324-325
and debugging A core image, 326-327
and debugging C progranls, 326-331
and directory and i-node dumps, 334, 349
and example of C program with pointer

bug, 337-338
expressions, 350
fonnats, 325, 350
and fonnatting and patching, 347-348
general fonn of requests, 325
and ilist dump, 334
invocation of, 324
and maps, 331-332
and multiple function C program for stack

trace illustration, 339-340
multiple functions, 327
output for C program with breakpoints,

344
and patching files, 335
problems with, 335-336
and setting breakpoints, 328-329
tabs decoding, 341-343
usage, 323, 324

addition, DC, 464
additive operators

BC,480
in C language, 253-254

addresses
number of, conunands in sed and, 443-

444
and selection of lines for editing with sed,

442-444
Advanced Editing on UNIX, 55
algorithmic languages, 13
allocator, DC, 463-464
alphabetic sorting, 8, 45
alternate returns, in Fortran 77,412
alternative notation, tbl conunand for, 161
ampersand (&), 71

at end of command line, 48
and shell, 83
as special characte. in ed, 64

append conunand "a," 55-56, 88-89
arbitrary characters, Lex, 391
archives

creation, 10
maintenance, 10
retrieval, 10
Updating by date, 10

arguments
in Fortran 77, 408-409
and M4 macro processor, 436
and macros in nroff/troff, 210
in UNIX program, 302
values between calls, in Fortran 77, 411-

412
See also dununy procedure arguments;

macros with arguments
arithmetic, 18

in C language, 249
and DC, 464
and M4 micro processor, 436-437
and troff, 239-240
and Yacc, 367-369, 378-379

arithmetic test, 18
arrays

awk,456
in Fortran 77, 413
operations in C language with, 269

(as) Assembler, 10
blank and tab characten., 484
conunents, 484
constants, 484
diagnostics, 494

INDEX

expressions, 486-489
identifiers. 483-484
lexical conventions, 483
location counter, 485
machine instructions, 490-493
operators, 484
pseudo-operations, 489-490
regeneration, 507
relocation counter, 493
segments, 484-485
statements, 485-486
system calls, 494
usage, 423

ASCII
conversion to card-image fonn, 18
conversion to paper tape fonn, 18

ASCII files, sorting or merging, 17
assignment operators

BC,480
in C language, 255-256
older fonns of, lint detection of, 283-284

assignment statements, as, 486
assignments, awk, 455
at-sign (@)

as symbol in copy, 41
and typing errors, 41

awk, 17,50
actions, 454-456
design, 456-457·
execution times for programs vs. sed and

lex, 459
field variables, 455
implementation, 457
patterns, 453-454
printing, 453
records and fields, 452-453
regular expressions, 454
usage, 452, 457

Backgammon, 18
background commands, 83
backs lash character <"-.), 68

and ed, 63
erasing. 41

backspaces '
list command and visibility of, 66
in nroff/troff, 214

backup, 8-9
bar, in mathematical typesetting, 151
bases, in BC language, 471-472
BC language, 13,469-482

assignment statements, 475
and bases, 471-472
conunent convention, 476
constants, 477
control statements, 474-475, 481-482
exiting, 476
expressions, 477-480
functions, 472-473
identifiers, 477
keywords, 477
and library of math functions, 476-
notation, 477
scaling, 472
storage classes, 481
subscripted variables, 473-474
tokens, 477
usage, 469, 470

BEGIN pattern, awk, 453
bibliographic citations, 16
binary initialization constants, in Fortran 77,

405
bitwise AND operator, in C language, 254
bitwise exclusive OR operator, in C lan­

guage, 254
bitwise inclusive OR operator, in C lan-

guage, 255
BJ,18
Blackjack, 18
blank int~rpretation, 92
blank characters, as, 484
blank lines, in Fortran 77 and 66, 411
blanks, in numeric input fields, and fonnat-

ted 110 of Fortran 77, 417
block. See compound statement
block data statements, in Fortran 77; 411
block device drivers, 527-528
block device interface, 525-527
block if, in Fortran 77, 415

block 110 system, 516
BNF syntax specifications, 14
Boolean operations, and Fortran 77, 406
boxes, 129
braces

in C language, 261
in mathematical typesetting, 140-141, 149

brackets, 70-71
calculation of sizes, 16
large, in nroff/troff, 216

break, in Ratfor, 428
"break" key, 40-4

1
1 .

and stopping programs, 42
break statement

in C language, 264
and lint, 280-281
in Ratfor, 426

breakpoints
ADB output for, 344
ADB setting of, 328-329
advanced usage with ADB, 329-331

buffer, 24
printing contents of, 57-58

c conunand, 61-62·
C compiler, 529-543

code generation, 534-542
delaying and reordering, 542-543
expression optimization, 532-534
and intennediate language, 529-532
list of operators, 530-532
regeneration, 507-508
See also portable C compiler

C language, 3
. anachronisms, 271

arithmetic conversions in, 250-251
arithmetic types in, 249
and BC language, 470
characters in, 250
comments in, 247
compiler control lines in, 267-268
constant expressions in, 270
constants in, 248
conversions, 250
conversions of floating values to integral

types in, 250
debugging, see ADB
declarations in, 256-262
expressions in, 251-256
external definitions in, 265-266
float and double in, 250
and Fortran 77· compiler, 403
hardware characteristics, 248-249
identifiers In, 247, 249
implicit declarations in, 268
initialization in, 260-261
integers in, 249, 250
keywords, 247-248
and Lex, see Lex
lexical conventions, 247
lint program checker, see lint
Ivalues, 250
objects, 250
operations with arrays, pointers, and sub­

scripts in, 269
operations with explicit pointer conver­

sions with, 269-270
operations with functions in, 268-269
operations with structures and unions in,

268
pointers and integers in, 250
portability considerations with, 270
and prog, 292-293
programming in, 51-52
recent changes in, 277
scope rules in, 266
stack trace for, 11
statements in, 262-265
storage classes, 249
strings in, 248
supporting programs with, 52
syntax notation, 249, 272-276
type Hames in, 261-262
typedef in. 262
unsigned integers in, 250
usage, 247
See also UNIX programming; Yacc

CAl scripts
advantages of, 109

609

610
CAl scripts (continued)

available, 109
description of, 112-113
sample dialog from basic files script, 111
Sce also LEARN

calendar printing, 18
calling in, 121
calls. See commands
card-guessing game, 19
caret. See circumflex .
case notation, 88-89
cat, 6, 44
cc command, 402

and MAKE, 11
change command "c," 61-62
character classes, Lex, 391
character constants

in C language, 248
in Fortran 77, 413-414, 416

character counts, 17
and ed, 56-57
and Lex, 392-393

character data type, in Fortran 77,412
character device drivers, 523-525
character input streams, lexical processing

of. See Lex
character VO system, 516, 517
character patterns, searching for, 11
character sequences, in mathematical typeset-

ting, 155
character sets, Lex, 399
character size, in nroff/troff, 198, 204-206
character strings

assignment in Fortran 77, 405, 414
concatenation in Fortran 77, 414
and initialization of portable C compiler,

553
'character throughput, of UNIX dial-up net­

work, 574-575
character translations, 17

nroff/troff commands for, 199, 214
characters

C language, 249, 250
nonportable, line and, 282
in Lex, 391
repeated tbl commands for, 162

Checkers, 18
Chess, 18·
child process, 27

and implementation of shell, 30-31
chmod command, 87
circumflex , 69, 148
close, 520

in Fortran, 77, 419
in VO library, 398-310

code generation, for C compiler, 534-542,
556-560 '

colon, in Fortran 77 VO operation, 416
column entries, and tbl input commands,

159, 161
comfile, commands in, 31
command files, 30

locating, 28 .
command line, 28
command separators, 30
commands, 74

ADB,350
awk,452
background, 83
in BC language, 476
compiled output for DC, 464-467
for compiling and loading Fortran and For-

tran-related files, 402
DC,461-463
for document typing, 126, 132
ed, 55, 64
errors in, 56
execution by shell, 103-104
execution by uucp, 584
failing to execute, 100-101
and file names, 84-85
filter, 84
format with sed, 441
GCOS on Lex, 396
grouping, 94
immune to hanging up terminal, 7
input-output redirection, 83-84
interactive, 4
and make, 295-296
mistaken, 41
nroff and troff, 198-202
pipe and connection of standard input and

output of, 84
and prompting, 86
running in low or high priority, 7
running and reporting tiJx)ing information

on, 11
sed,441-442

shell, 86, 104
shell as, 30
simple, 83
speed of typing, 41
of Standard 110 Library, 319-322
substitution, 98-100 .
tbl input, 159-163, 174
typing, 41, 122
UNIX, regeneration of, 507
and UNIX dial-up network, 571
and whole-line oriented functions in sed,

444-445
. See also Program running

commas
in C language, 256
in formatted input of Fortran 77, 406

comments
as, 484
in BC language, 476, 477
in C language, 247
in nroff/troff, 215

Communications, 9-10
mail command, 42
writing to other users, 42

compiler control lines in C language, 267
compiler-compiler. See Yacc
compilers, 14

See also C compiler
compound statement, in C language, 262-

263
computer-aided instruction, 43
concatenation

of character strings in Fortran 77, 414
string, awk, 456

conditional acceptance of input in nroff/troff,
219

conditional assembly, 10
conditional compilation, in C language, 267-

268
"conditional jump" instructions, 10
conditional opt"rator, in C language, 255
conditional statement

in C language, 263
in troff, 241-242

Connect time report, publishing cumulative,
9

constants
as, 484
in BC, 477
in C language, 248, 270
in Fortran 77, 414

context addresses, and sed, 443
context searching, 60-62, 72

and substitute function of sed, 445-447
context sensitivity of Lex, 391-392
continue statement, in C language, 264
control characters, in nroff/troff, 215
control-d sequence, 42
control flow statements, and Ratfor language,

421
converson operators, and portable C compil­

er,554-555
conversions, in C language, 250-251
copy in, copy out, and uucp uncico program,

581-584
core image, ADB debugging of, 326-327
cp command, 6, 44 .
create, in 110 Library, 308-310
create command, 24, 26, 520, 523
cref,50
cross-references (creO, 50
current address, in ADB, 324-325

daemon programs, and UNIX dial-up net­
work, 571, 572

date, on document, 130
DC,13, 460-468

addition, 464
and BC language, see BC language
commands, 461-463, 464-467
and computations with integers, 470-471
description, 461 .
design choices, 467-468
division, 465
dynamic string storage. allocator, 463-464
exponentiation, 465
input conversion and base, 466
interactive interface to, 13
internal arithmetic, 464
internal registers and programming, 466
multiplication, 465
numbers, 461
output commands, 466
output format and base, 466
push-down registers and arrays, 467
remainder, 465
square root, 465
stack commands, 466

INDEX
subroutine definitions and calls, 466
subtraction, 464
Yacc specification for, 378-379

debugging, 3, 32, 52
of C programs, see lint
interactive, 11
of M4 macro processor, 438
of portable C compiler, 566-567
shell procedures, 95
See also ADB

declarations
in C language, 256-262, 273-274
corresponding Fortran and C, 407
in Fortran 77, 412,413
Yacc, 355-356

DECtape files
replacing or deleting, 9
updating by date, 7

default
in Fortran 77, 417
Lex, 392
tbl command for, 161

default suffix list, and make, 296
default transformation paths, and make, 296-

297
define statement, in Ratfor, 429
definitions, for frequently used string of

characters, 153-154
See also external definitions; source defini-

tions
"delete" character, 32
deletion of lines, 59
DES chips, 600
description files, make and, 294-299
Desk calculator (DC). See DC
device resolution, nroff and troff, 203
diablo-mechanism terminals, fancy printing

on, 16
diacritical marks, 16, 151

in mathematical typesetting, 141-
diagnostics, as, 494
dictionary, search for words with specified

prefix in, 14
diff, 17,50
DIGIT, in Yacc, 359-360
directories, 22

and ADB, 334
checking consistency of, 9
manipulation of, 6-7

di.rectory/dev, 22
disk, making from tape, 497-498
disk drivers, 517
displays, and advanced ADB usage, 332-

334
See also tables

diversions, in nroff/troff, 198-199,210-211,
242-243

division, DC, 465
do loops, in Fortran 77, 406, 412
do statement

in C language, 263
in Ratfor, 425-426

document changing
and accents, 130
and registers, 130

document formatting, 14-16
document preparation, 14,49-51

and file size, 50
supporting programs for, 50

document typing, 126-130
beginning, 126
and boxing words or lines, 129
and changeable registers, 137
commands for, 132, 134
cover sheets and first pages, 126
and dating, 130
displays, 129,.136
and double columns, 136
and equations, 131, 137
examples of, 134-137
and footnotes, 129, 136
and headings, 127, 135
and indented paragraphs, 128
internal memorandum example, 135
and italics or underlining, 128-129
and keeping tables or blocks of lines on

same page, 129-130
and keeps, 136
list, 136
mathematics, 135
and multi-column formats, 127
and multiple indents, 136
and nroff/troff commands, 130
and page headings, 127
and paragraph indents, 126
references for further study, 131
register names, 132
and signature line, 130

INDEX

tables, 129, 137
and text, 126

documentation conventions, for Fortran i7
compiler, 403

dollar sign "$," 68-69
and Yacc, 357-359

do~, 73-74, 324-325
double, in C language, 250
double columns, 136
double complex data type, and Fortran 77,

.404
double precision alignment, and Fortran 77

compiler, 406-407
Drawing lines and characters, in troff, 235-

236
Dummy procedure arguments, and Fortran 77

compiler, 407
dumping, 9

ADB and, 349
postmortem, 11

e command, 78
and reading text from file, 56-57

echo command, 7, 85, 103,392
ed, 14, 43-44

and additions to end of file, 77-78
and append command "a", 55-56
change command "c", 61-62
and changing name of file, 76
compared with sed, 441
and context searching, 60-62
and copying files, 76-77
and copying lines, 80
cut and paste operations, 78-80
and deleting lines, 59
and editing scripts, 80-81
entering and creating text exercise, 56

-and error messages, 56
and escape command, 80
and global commands, 62, 75-78
grep program and, 80 .
and insert command "i", 61-62
inserting one file into another, 78
interrupting, 75
and joining lines, 71-72
leaving, 56
line addressing in, 72-75
marking lines, 79
method of learning, 55
and moving lines around, 79
and moving text around, 62
and print command "p," 57-58
and printing contents of buffer, 57-58
and printing files, 44 ~
and publication lists, 192-193
and putting files together, 77
and qUit command, 56
and read command "r," 57
and reading text from file exercise, 56-57
removing files, 77
and RETURN, 55
and sed, 17, 81
and special characters, 63-64, 66-72
starting with, 55
and substituting newlines, 71
summary of commands and line numbers,

64
and text creation, 55-56
and text modification, 59-60
and write command, 56
and writing out part of file, 78-79
and writing text out as a file, 56

edg, 89-90
edit command (e), and reading text from file,

56-57
editing codes, positional, in Fortran 77,416
egrep, 456
else statement, in Ra~for language, 423-424
end=, err=, and instat= clauses, in Fortran

77,416
end macro, in nroff/troff, 225
END pattern, awk, 453
ENTRY statement, in Fortran 77, 411-412
enumeration type, in C language, 277
environment switching, nroff/troff commands

for, 200, 219-220
EOF. Sa control-d sequence
eqn, 16, 50. 131

checking for errors in, 16
and mathematical typesetting, 140-144
use with tbl, 163-164
See also mathematical typesetting

equations, 137
displayed, 147
example of, 154
in-line, shorthand for, 153
lining up. 151-152

equality operators, in C language, 254

equivalence statements, in Fortran 77, 405-
406

escape command, 80
escape sequences, nroff/troff, 201
error correction .

110 library and, 306, 310-311
in mathematical typesetting, 155-156
moff/troff and. 221
shell and, 100-103
Yacc and, 360, 369-371, 374
See also text modification

evaluations, in shell, 99-100
events, automatic reminder service for, 10
exec, 514
execl, 311-312
execute primitive, 27-28
execv, 311-312
exit command. 101

of BC program, 476
in UNIX programming, 306

explicit long constants, in C language, 248
explicit pointer conversions, operations in C

language with. 269-270
ex ponentiation

in BC, 479
DC, 465
in Fortran 77, 414

expression operators, as, 487
expression optimization, for C compiler,

532-534
expression statements

as, 485
in C language, 262

expression trees, building with portable C
compiler, 547, 551-552. 555-556

expressions
ADB,350
as, 486-489
awk, 454, 455
in BC, 477-480
of C compiler, 529-530
in C language, 272-273
complicated, lint evaluation of, 284
in Fortran 77, 413-414
repeated. in Lex, 391

external data definitions. in C language,
265-266, 275

fields
awk. 452-453, 455
nroff/troff commands for. 199,213-214

file archives
managing on magnetic or DEClape. 9
retrieval from, 9
See also 110 library, 304-306

file descriptor I, 28-29
file descrip~or 2, 29
file descriptors. 24

110 Library, 306-307
file formats, in Fortran 77, 409-410
file inclusion, in C language, 267
file manipulation, 6

and M4 micro processor, 437
file modes, for uucp, 591
file names

changing, 76
choosing, 44-47
for Fortran 77 compiler, 402
generation of, 84-85
manipulation of, 6-7

file pointer, 304, 305
file switching, input/output. in nroff/troff,

220
file systems. 21-25, 5i8-521

access control scheme, 23
amount of free space on, 8
attachment of device containing to tree of

directories, 8
checking consistency of, 9
conversion from UNIX 6th to 7th edition,

504
creation, 502-503
directories, 22
dumping, 9
implementation of, 25-26
and 110 calls, 24
making new, 8
ordinary files, 21
removable, 23
repairing damage to, 9
restoring dumped, 9
special files, 22-23
See also Files

Filep,24
files'

additions at end of, 77-78
binary search for lines with speCified pre­

fix, 17

611

bringing into agreement, 17
collapsing successive duplicate lines into

one line, 17
combining, 17
combining into archives and libraries, 10
comparing, 6
comparison, and UNIX dial-up network,

574
concatenation into standard output, 6
copying, 6,44, 76-77
creation of, 43
in current directory, 83
determination of kind of information in, 8
dumping, II
examination of, 11
encrypting and decrypting, 1,+
expunging from file system, 9
identification of common lines in, 17
input/output switching, nroff/troff com-

mands for, 200
insertion into another file, 78
line, word and character counts in, 17
listing names of, 8, 9, 43-44
locating, 46-47
modification for uucp installation, 585-589
moving, 44, 76
naming, 22
partial printing, 6
patching with ADB, 335
preconnected in Fortran 77, 410
printing, 6, 44
putting together, 77
reading text from, 56-57
reading and writing, 78
recommended size of, 50
remote input or output into or out of local,

10
removal,44
removing, 77
replacement of terminal with, 47
replacing. or deleting from archives, 10
reporting inaccessible, 9
with reverse line feeds, canonicalizing for

one-pass printing, 16
searching, see also inverted indexes
splitting, 6
sum of words of, 6
transmission to another time-sharing sys-

tern, 10
translation of data, 6
and UNIX dial-up network, 572
UNIX to UNIX communication, uucp and,

578-580
updating, see make
writing out part of, 78-79
writing text out as, 56

filters, 4, 18, 29. 84
Fish. 19
flags

Fortran 77 compiler, 402- . __
and make, 296
names for selection of, 526-527

float. in C language, 250
floating constants, in C language. 248
floating patterns. searching for,.- J 1 .
floating point, single and double-precision, in

C language, 249
floating point unit. and UNIX. 501-502
floating values, conversions to integral type

in C language, 250
flow-of-control

and awk, 456
and lint, 280-281
and sed, 449-450

font changes
in mathematical typesetting, 150-151
tbl command for, 161

font size, moff/troff commands for, 198
fonts, in nroff/troff, 226, 233
footnotes, 129,136

in nroff/troff, 224-225
for loop notation, 87-88
for statement

in C language, 263
in Ratfor, 427-428

foreign words, accents in, 130
fork, 34, 312-313

and implementation of shell, 30-31
and UNIX process creation. 514

fork primitive, 31
fork system call, 27
formats

in ADB, 325, 347-348, 350
in Fortran 77, 415
multi-column, 127
nroff and troff, 203 .

formatting packages, 49
Formulae, vertical "~iling" of, 16

612

FORREW: and rewriting rules, 563-564
Fortran 77 language, 3, 4O~7

alternate returns in, 412, 415
',and automatic storage, 404

binary initialization constants, 405
blank lines in, 411
..nd Boolean operations and UNIX com-

mand arguments, 406
character strings, 405
and commas in formatted input, 406
compared with Fortran 68, 411-420
conversion of, 13
declarations in, 412-413
deletion of extended range, 411
do loops in, 412
and double complex data type, 404
ENTRY statement in, 411-412
equivalence statements, 405-406
executable statements in, 415
expressions in, 413-414
features deleted from Fortran 66, 411
formatted 110 in, 416-417
and implicit undefined statements, 404
include statement, ,405
input/output, 415-420
inquire statements, 419-420
and internal files, 404
and old Hollerith notation, 405
and one-trip do loops, 406
open statement in, 418-419
progratn and block data statements, 411
rational proprocessor fo~, see Ratfor lan-

guage
and recursion of procedures, 404
return statement in, 428
and short integers, 406
source input format, 404-405

Fortran 77 compiler, 401-420
argument lists, 408-409
command for compiling 'and loading files,

402
and corresponding Fortran and C declara-

tions, 407 '
documentation conventions, 403, ,
and double precision alignment, 496--407
and dummy procedure arguments, 407
file formats, 409-410
file name suffixes, 402
flags, 402-403
and Fortran 77, see Fortran 77
implementation strategy, 403
interface with C procedures, 407-409
portability considerations, 409
and pre-connected files and file positions,

410 .
and procedure names, 407
and return values, 408
usage, 402-403
violations of standard by, 406-407

Fortune, 18
Fortune cookies, 18
fractions, 149 "
fred command, 97
ftee-form input, in Ratfor, 428-429
fseek routine, 409
functions

in BC language, 472~73
built-in, awk, 455
flow-of-control functions, 449-450
operations in C language with, 268-269
sed,444-450 ,
unused, lint and, 279-280, 281
whole-line oriented, sed and, 444-445
See also input/output function

g command, 75-76
games, 18-19

logging in to, 32
acos typesetter

Lex commands on, 496
and M4 macro processor, see M4 macro

processor
printing mathematical document on, 156

get functions. See hold and get functions
global commands, 62, 75-76

multi-line, 76
and rearranging lines, 72

global data structure of portable C computer,
547-548

"global" size or font, 150-151
goto statement, in C language, 264
grammar rules .

ambiguity and conflicts in, Yaac and,
364-367

Ratfor, 430
Yacc, 355-357

graphics, 3, 18
graph"IS

Greek letters, 155
and EQN, 16
in mathematical typesetting, 148
in troff, 244

grep, 17,50,80,84,456
and shell, 89-90

gross statistics, printing, 9

hanging numbers., See indented paragraphs
Hangman, 18
hardware, 4, 21
, of C language, 248-249

hat. See circumflex '
header and footer macros, and nroffltroff,

222-223
headings, 127

and nroff/truff, 223
here document, 89-90
hold and get functions, sed, 449
"holes," in bit fields of portable C compiler,

553
Hollerith notation, and Fortran 77, 405, 411
horizontal lines, tbl command for, 160, 162
horizontal place, marking in nroff/troff, 216
hunt program

option arguments recognized by, 179-180
and retrieving items from index, 179-180

hyphenation, nroff/troff commands for, 199,
217-218

I Ching, 18
IBEX

accounting, 9
backup and maintenance, 8-9
communicat)on, 9-10

identifiers '
as, 48~84
in BC language, 477
in C language, 247, 249

if command, 93-94
nested in Ratlbr, 424

if-else ambiguity, in Ratfor, 424-425
if-than-else statement. See block if
i1ist of file system, 25, 26

ADB dump of, 334
Images, processes and, 27-28
Implementation, of Ratfor, 430-431

See also UNIX implementation
implicit declarations

in C language, 268
in Fortran 77, 412

include statements
in Fortran 77, 405
in Ratfor, 429-430

indents, 126
multiple, 136
in nroff/troff, 198,209, 234

indexes
construction of,175, 176
key word in context, '14
of references, 178
See also inverted indexes; publication lists

information handling, 17-18
Initialization, 31

in C langl,lage, 260--261
oldc;r forms of, lint detection of, 283-284
,and portable C compiler, 552-553
See also binary initialization constants

i-node, 25
making for special file, 8

input, conditional acceptance of, nroff/troff
commands for, 199-200

input conversion
DC, 466
formatted, 10

input form, in nroff/troff, 203
input-line functions, multiple, sed and, 448
input/output conventions

nroff/troff, 199
and sed, 447-448
Yacc, 372

input output redirection, 83-84
input spaces, in mathematical typesetting,

147-148
inquire statement, 409

in Fortran 77,419-420
insertions, 61-62

from standard output, nroffltroff com-
mands for, 200, 220

integer arithmetic, evaluation of, 14
integer constants, in C language, 248
integer patterns, searching for, II
integer sizes, in C language, 249
integers

in C language, 250
computations in DC language, 470-471
factoring, 18
short, in Fortran 77, 406

integrals
in mathematical typesetting, 150

Interactive programs, 4

INDEX

internal files, in formatted 110 of Fortran 77,
418

internal registers, of DC, 466
Interpreter, interactive, 13
"interrupt" key, 40-41

and stopping program 42
interrupt signal, 32, 104
intrinsic statement, in Fortran 77, 413
i-number, 25
inverted index

check for bad drops, 177
and coordination level searching, 177
generating to list of record tags and keys,

176
has~ and invert process, 178-179
and mkey program, 178
preparation of, 175, 176
and searching, 175-18Q.
'and updating publication lists, 188-195

110 system, 3,5,304-306,522-528
block and character, 515-517, 522
and block device interface, 525-527
and block device drivers, 527-528
bottom level on UNIX system, 306-311
buffered character-by-character, 10
calls, 319-322
and character device drivers, 523-525
character devices, 517
character lists, 517
direct access in Fortran 77, 418
and disk drivers, 517
and error handling, 306, 310-311
and execl and execv, 311-312
and execution of program from within

another, 311-315
and file access, 304-306
forcing to completion, 9
and fork and wait, 312-313
formatted in Fortran 77,416-417
Fortran, 409-410
and Fortran 77 compiler, 403
general usage, 319
ar:d Lex, 393-394, 396, 399
and miscellaneous 110 functions, 306
open, creat, close, and unlink in, 308-310
overview, 522-523
and pipes, 313-315
random access in, 310
read and write in, 307-308
and signals and program faults, 315-318
and "system" function, 311

Is-It, 44
italics, 128-129
iw.m integer output code, in Fortran 77, 417

j command, 71-72

k command', 79
keeps, 136
key-making program mkey, 178
keyword parameters in shell

and parameter substitution, 97-98
and parameter transmission, 97
substitution, 99-100

, keyword statements, as, 486
keywords

and automatic storage of Fortran 77, 404
in BC language, 477
in C language, 247-248
in mathematical typesetting, 154-155
reserved, specifications for Yacc and,

373-374
knowledge tests, 18

I command, ,66
labeled statement, in C language, 264
labels, as, 485
leaders, in nroff/troff, 199,213
learn, 43

advantages of CAl scripts, 109
available CAl scripts for, 109
directory structure for, 115
disadvantages of, 119
educational assumptions and design, 110-

112
experience with, 114, 118-119
and interpretation of scripts, 114-118
sample lesson, 116-117
See also CAl scripts

left context sensitivity, lex; ,398-399
Lex, 3, 14, 52, 457

actioln;, 392-394
and ambiguous source rules, 394
bugs, 400
character set, 399

INDEX

compilation of source program with, 395-
396

context sensitivity, 391-392
definitions of regular expressions, 390-392
execution time for program vs. awk and

sed,459
format of source, 390
GeOS commands, 396
and left context sensitivity, 398-399
and make, 11
source definitions, 395
source format summary, 399-400
source program example, 396-398
TSO commands and, 396
usage, 388-389
and Yacc, 396

lexical analysis, 14
and portable C compiler, 548
and Yacc, 359-360
See also Lex; Yacc

lexical conventions, as, 483
lexical scope, in C language, 266
library declaration files, and lint, 287
library Iibe.a, regeneration, 510
ligatures, in nroff/troff, 214
line length, in nroff/troff, 198, 209, 234
line numbers

default, 73
in nroff/troff, 218
and sed, 443

line protocol selection, and UNIX dial-up
network, 573

lines
beginning of, circumflex and, 69
in C language, 268
changes and insertions, in, 61-62
copying, 80
deletion of, 59
drawing in troff, 216-217, 235-236
duplicate, 17
identification of common lines in two

files, 17
joined together, 71-72
marking, 79
moving around, 72, 79
satisfying pattern used in ed, 17
with specified prefix, binary search in

sorted file for, 17
splitting into two or more shorter lines, 71
See also blank lines; horizontal lines; ver-

tical lines; output line numbering
link edit, II
linking, 22
lint, 52

and assignments of longs to ints, 282
communicating with, 286-287
and detection of variables used before set-

ting, 280
and evaluation of complex expression, 284
and flow of control, 280-281
implementation of, 284-285
and library declaration files, 287
and nonportable character use, 282
and older forms of assignment operators

and initialization, 283-284
options, 290
and pointer alignment, 284
portability of, 285-286
problems with, 287-288
and strange constructions, 283
and type casts, 282
and type checking, 281-282
and unused and unreturned function

values, 281
and unused variables and functions, 279-

280
usage, 278, 279

local motions, in troff, 235-236
local variables, set and unused, 280
location counter, as. 485
lock files of uucp, 590
log entry files of uucp, 590
logging in, 40-41, 121
logging out, 42, 122
logical AND operator, in C language, 255
logical OR operator, in C language, 255
LOGIN,5
login, 9, 40-41, 121

and password security, 600
~d shell, 86
and uucp, 585, 591 ,

longs, assignments to ints, lint and, 282
lookall command, 175, 177
looping, 32
lower case devices, and UNIX, 40
Is command, 8, 4~
Iseek, in 110 Library, 310
Itypes, in C language, 250

m command, 62, 79
M4 macro processor, 14, 433-439

and arguments, 436
and arithmetic built-ins, 436-437
basic operations, 434
built-ins summary, 439
conditionals, 437-438
and defining macros. 434-435
features, 433
and file manipulation. 437
printing, 438
and quoting. 435-436
and system command, 437
usage. 434 '

machine instruction statements. as. 490-
493

macro definitions. make and. 294-295. 296
macro processors. 13-14

See also M4 macro processor
macros

defining. M4 macro processor and. 434-
435

in nroff/troff. 198-199.209-210. 220-
221. 237-238. 240-241

and type words of portable C compiler.
547

mail. 5. 91
announcing presence ot'. 9
reading and sending. 42

mailing. 9
maintenance. 8-9
make. 3. 11.52

basic features. 292-294
command usage. 295-296
and description files and substitutions.

294-;-295
exa,ople of use of. 297-299
implicit rules. 296-297
problems with. 299
and updating target file. 292-294
usage. 291. 292

man command. 95-96
manuscript layout package (MS). 15-16
maps. and ADB. 331-332. 345-346
mark command k. 79
MASTER. See Unix dial-up network ' ..
mathematical function library. 10
mathematics typesettting. 135. 138-156

and assembly language design. 139-143
big brackets. 152
braces for grouping in. 149
character sequences in. 155
diacritical marks. 151
difficulties of. 138-139
and displayed equations. 147. 154
and eqn. 147
error correction. 155-156
experience with. 143-J44
and extra spaces. 154
fractions. 149
Greek letters in, 155
and input spaces. 147-148
keywords and precedences. 154-155
and language theory. 142-143
and languages. 146
lining up equations in. 151-152
matrices. 153
and output spaces, 148
and phototypesetter. 139
piles in. 152-153
printing on UNIX typesetter. 156
quotes in. 151
and shorthand for frequently used string of

characters. 153-154
and shorthand for in-line equations 153
and sizes and fonts. 141. 150-151 '
square roots, 149-150
subscripts and superscripts, 148-149
summation. integral. 150
symbols. special names. and Greek

alphabet in. 148
words know to' eqn. 155

matrices, 153
vertical piling of formulae for. 16

mazes. 18
measurements, conversion between scales of.

18
messages" mailing to users. 9
metacharacters. 67-68

ampersand "&", 71
backslash ('-...). 68
brackets. 70-71
circumflex "A". 69
dollar sign "$." 68-69
re¢oval of special meaning. 85-86
sjtell. 107
star ".". 69-70

mixed mode expressions. in Fortran 77.414

613

mkey program. 178
flag arguments reorganized by. 178

motions. local horizontal and vertical. nroff/
troff and. 215-216

mount system request. 23. 26
move command "m." 62
multiple columns. 127

in nroffltroff. 223-224
multiple users of UNIX, setting up for • .504
multiplication. DC. 465 .
multiplicative operators

in BC. 479
in C language. 253

multitasking. and command separators. 30
ms macro package. 3. 15~16

See also Document typing

name list of object program printing. 11
neqn. 16.50
new users of UNIX. installation of. 503
new lines .

concealed. in nroffltroff. 215
in mathematical typesetting. 147-148

next statment. in Ratfor. 426. 428
Nonprogrammers. and eqn. 16
nonsense arrangements. protection against, 8
novelties. See games
nroff. 3. 15-16.49-51

applications. 196
commands. 130. 198-202
invoking. 196-197
and neqn. 16
options and effects. 196-197
and ul. 71
See also document typing; nroff/troff

nroff/troff
backspacing. 214
changes since 1976 manual 'in. 229
comments and concealed newlines in. 215
conditional acceptance of input. 219
control characters in. 215
diversioRs in. 210-211

, environment switching in, 219-220
escape sequences fot characters. indicators

and functions. 201
fields in. 213-214
font and character size control. 204-206
font style examples. 226
footnotes in. 224-225
form Of input. 203
formatter and device resolution. 203
hyphenation in. 217-218
indenting. 209
input character translations. 214
input naming conventions for special char-

acters. 227-228
input/output file switching. 220
insertions from standard input. 220
large brackets in. 216
last page. ~25
ligatures. 214
line drawing. in, 216-217
line length. 209
local horizontal and vertical motions in,

215-216
macros and strings. 209-210, 220-221
marking horizontal place in. 216
multiple column output. 223-224
number registers. 202. 212-213. 229
numerical notation. 204
numerical parameter input. 203-204
output and error messages. 221
output line numbering. 218
overstriking. 214. 216 .
page control. 206-207
page margins. 222-223
paragraphs and headings. 223
tabs and leaders, 213
text filling, adjusting, and centering. 207-

208
three-part titles in. 218
transparent throughput in. 215
traps. 211-212
underlining. 214-215
vertical spacing. 208-209
width function. 216
zero-width characters in. 216

nroff/troff commands
alphabetical request and section number

cross references. 200
for conditional acceptance of input. 199-

200
environment switching. 200
hyphenation, 199
indenting, 198
input/output con~entions and character

translations, 199
input/output file switching. 200

614

nroff/troff commands (continued) .
insertions from standard input, 200
line length, 198

. , macros, strings, diversion, and position
traps, 198-199

number registers, 199
for output line numbering, 199
for page control, 198
tabs, leaders, and fields, 199
for text filling, adjusting and centering,

198
for three-part titles, 199
for vertical spacing, 198

null statements
as, 485

. in C language, 266
number conversions, 10
number-guessing game, 18
number registers

and arithmetic in troff, 239-240
in nroff/troff, 199,202, 212-213, 229

numbers
and DC, 263, 461
graphs, 18
nroff/troff, 204

object codes, creation of, 10
object files,

combining, 11
placement for loading, 11
printing namelist of, 11
removal of relocation and symbol table in­

formation from, 11
reporting core requirements of, 11

open command, 26, 520, 523
in Fortran 77, 418-419
in I/O Library, 308-310

open system call, 25
operators

of C compiler, list of, 530-532
Lex, 390-391

optional plus signs, in formatted 110 of For­
tran 77, 416-417

output
and filter, 84
from nroff/troff, 221

output commands, DC, 466
output conversion, formatted, 10
output formats, 11

DC,466
output line numbering, nroff/troff commands

for, 199
overstriking, in nroff/troff, 214, 216

P command, 66 -
and printing contents of buffer, 57-58

-p option of refer, 187 .
page control, in nroff/troff, 198, 206-

207
page headings of documents, 127
page margins, and nroff/troff, 222-223
page numbering, in troff, 238-239
pages, last, in nroff/troff, 225
paragraph indents, 126, 128

nroff/troff and, 223
parameter statement, in Fortran 77,413
parent process, 27 .

and implementation of shell, 30-31
parentheses, 30
_ in BC, 478
parse tree, Yacc, 358-359
parsing

by portable C compiler, 549
. Yacc. See Yacc parser

password, 5
changing, 5

password security, 595-601
and DES chips, 600
first scheme for, 597-599
improvements to,. 599-60 1
and login, 600

_ and salted passwords, 600
and selection of passwords, 600
and UNIX system vulnerability, 597

patching, 11
and ADB, 335, 347-348

pathname of file, 22, 46-47
pattern matching, 88-89
pattern scanning, and A WK, 17, 453-454
period

actual instead of "match anything," 68
and append command, 56

piles, and mathematical typesetting, 141,
152-153

pipes, 27, 48,80,84,313-315
implementation of, 520' j

plus signs, optional, in formatted 110 of For­
tran 77, 416-417

point size changes
tbl command for, 161
in troff, 232-233

pointer alignment, lint and, 284
pointer bug, ADB and, 337-338
pointers

integers added to or subtracted from, in C
language, 250

operations in C language with, 269
portable C compiler, 544-567

bugs, 566-567
and code generation, 556-560
data structure of, 547-548
description of, 544-545
and expression tree building, 551-552
first pass summary, 556
improvements needed for, 567

. and initialization, 552-553
and lexical analyzer, 548
and machine dependent interface, 563
machine dependent routines, 554-556
optimization, 553-554
overview, 545-546
and parsing, 548-549
pass one of, 548
passes of, 545-546
and register allocation, 566
register allocation routines and allocation

strategy, 562-563
registers, 557
and rewriting rules, 563-564
and Sethi-Ullman computation, 564-566
source files of, 546·
statements, 553
storage classes, 549 .
and symbol table maintenance, 550-551
template matching algorithm of, 561-562
templates, 560

position traps, nroff/troff coinmands for,
198-199 -

positional editmg codes, in Fortran 77, 416
pr, 6, 44
Precedence relations, 14 -

in mathematical typesetting, 154-155
preparagraph spacing, in nroffltroff, 223
preprocessor, in C language, 275-276
primary expressions, in C language, 251-252
print command,

awk,453
and printing contents of buffer, 57-58

printing, 6
and M4 macro process, 438

procedure names, in Fortran 77, 404, 407
processes

communication via pipes, 27
defined,27
fork system call and, 27
images and, 27-28
synchronization, 28
termination, 28

processid, 27, 28
prof, 11, 52 _
program faults, and 110 Library, 315-318
programs

execution of, 7-8, 27-28
stopping, 42
·Yacc, 356

Programming, 51-52
in C, 51-52
and shell, 51
with UNIX, see UNIX programming
See also awk; C language

project, changes in, 5
prompts, 41, 86

shell, 92
pseudo-operations, as,' 489-490
publication lists

fields of citation, 190
format of data base entries, 188-190
printing, 194-195

. updating, 188-195
updating and reindexing, 190-194

push-down registers and arrays, DC, 467
pwd command, 8, 46

q command, 43
quicksort, 10. .
quit command (q), 56, 315
quit signal, 32, 103
Quiz, 18
quotes

in mathematical typesetting, 151
and M4 macroprocessor, 435-436
in shell, 99-100
and special meaning of metacharacters,

85-86 .

random access, in 110 Library, 310
random number generator, 10

Ratfor, 3, 52
break statement in, 428
break and next in, 426
control flow statements, 421
cosmetic facilities, 428

INDEX

and deficiencies with Fortran, 422
define statement, 429
design, 422-423
do statement, 425-426
else statement, 423-424
experience with, 431-432
for statement in, 427-428
free-form input in, 428-429
if-else ambiguity in, 424-425
implementation, 430-431
include statement, 429-430
nested if's in, 424
next statement in, 428
problems with, 420
repeat until statement, 428
statement grouping in, A23
switch statement, 425
translations in, 429
while statement in, 426-427

. See also Lex
raw block-device 110 system, 528
read,7

in 110 Library, 307-308
read-ahead, 41
read call, 24, 26
read command (r), and reading text from

file, 57
read statements, end=, err=, and instat=

clauses in Fortran 77, 416
reconfiguration of UNIX, 500-501
records, awk, 452-453
reduce action, of Yacc parser, 360-361
refer, 3, 16, 50

collecting references, 185-187
key letters recognized by, 182-183
options, 186-187 .
and reference files, 182-185
and selecting and formatting references for

troff, 181-182
refer preprocessor, 175
references

and indented paragraphs, 128
indexing, 178
refer and, 182-187
selecting and formatting for troff, 181-182

register allocation routines, of portable C
compiler, 562-563, 566

registers, 132 .
alternation for document typing, 130
changes in, 137

regular expressions, Lex, 390-392
REJECf action, in Lex, 394
relational expressions

awk,454 .
BC,480
in C language, 254

relocation counter symbol, as, 493
remainders, and DC, 465
remote systems, calling up, 10
repeat until statement, in Ratfor, 428
repetitions, ampersand and elimination of,

71
report generation, and awk, 457
requests, in ADB, 325
reserved words, shell, 107
retrieval from archives, 10
RETURN .

ed and, 55
and logging in, 41

return statement
in C language, 264
in Fortran, 428
in Fortran 77, 415

return values, in Fortran 77, 408
rewriting rules, and portable C compiler,

563-564
roff, 14-15

and ul, 71
root directory, 22
root file system, and making disk from tape,

497-498

s command, 66-67, 74
save statement, in Fortran 77, 413
scaling, and BC language, 472, 478
scan command, 102-103
scheduling •

one-shot action. 8
regular actions. 8

scheduling algorithm of UNIX, 515
scope of externals, in C language, 266
scope rules. in C language. 266
scripts, 80-81

INDEX

searching
with inverted index, 176-177
and lookall command, 177
repeated, 73
and retrieving, 179-180
See also inverted indexes

Security
encrypt and decrypt files for, 14
optional encryption for, 14
and passwords, 5
and UNIX dial-up network, 571, 592-594
and uucp, 585
See also password security

sed, 81,456
addresses and selection of lines for editing,

442-444 .
command format, 441
execution time for programs vs. awk and

lex, 459
flow-of-control functions, 449-450
functions, 444-450
hold and get functions, 449
inpuVoutput functions, 447-448
and multiple input-line functions, 448
order of application of editing commands,

442
overall operation of, 441-442
and substitute function, ~5-447
usage, 440, 441

seek, 520
segments, as, 484-485
semicolon

and line addressing, 74-75
and separation of commands, 30, 4H

sequence check file of uucp, 589
Sethi-Ullman computation, 563

and portable C compiler, 564-566"
sharp sign (#)

as symbol in copy, 41
and typing errors, 41

shl!ll, 4, 7, 9, 28-32
and background commands, 83
capabilities, 48-49
and case notation, 88-89
as command, 30
command execution, 103-104
command grouping, 94
and command separators, 30
command substitution, 98-99
debugging pr.)Cedures, 95
error correction, 100-101
escape to during editing, 14
evaluations and quoting, 99-100
and familiarity with UNIX, 83
fault handling, 101-103
features of, 3, 82
and file name generation, 84-85
filters, 29, 84
and for loop notation, 87-88
functions of, 7
grammar, 106
and grep, 89-90
and here document, 89-90
if command, 93-94
implementation of, 30-31
and initialization, 31
and input output redirection, 83-84
invoking, 104
keyword parameters, 97
and login, 86
and man command, 95-96
metacharacters and reserve words, 107
other programs as, 32
parameter substitution, 97-98
parameter transmission, 97
pipelines, 84
procedures, 87
and programming, 51
and prompting, 86, 92
and quoting, 85-86
scan command, 102-103
simple commands, 83
Ilnd standard 110, 28-29
string-valued variables, 90-92
and test command, 92
and trap and touch commands, 102
and UNIX signals, 101-102
and while loop, 92-93

shell accounting report, publishing, 9
shell conditionals, tests for use in, 7
shell files of uucp, 590-591
shift action, or YaC'C parser, 360
shift operlltor~, In C language, 254
signals, ond I/O library, 315-318
signature line, 130
simple commands, 83
size chonges, 11

In mathematical typesetting, 150

slashes, in file system, 22
SLAVE. See UNIX dial-up network
Software, 21

See also UNIX software regeneration
sort, 17,50
sorting files, 17
source definitions, Lex, 390, 395
source files, of portable e compiler, 546
source input format

for Fortran 77, 404-405
Lex, summary of, 399-400

source modifications, and uucp instalIation,
585-589

source program, Lex, example of, 396-398
spaces

between columns, 160-161
determination of usage, 8
in mathematical typesetting, 140, 147-148
reporting duplicate use of, 9
retrieval of, 9
See also vertical spacing

special characters, 16, 63-64, 66-72
and EQN, 16
input naming conventions in oroffltroff,

227-228 "
and list command "I", 66
metacharacters, 67-68 "
substitute command s, 66-67
in troff, 233-234, 244 .
undo command u, 67
See also metacharacters

special files
creation for UNIX, 501
making i-node for, 8

special names, in mathematical typesetting,
148

specifications for Lex, 394
specifications for Yaac, 355-356, 372-374

and input style, 372
and left recursion, 372-373
and lexical decisions, 373
and reserved words, 373-374

spelI, 14, 18, 50
spelling errors, 50

locating, 14
and substitute command "s", 59-60, 67

spool directory cleanup, uucp, 584-585
square roots, 141, 149-150,465
stack commands, DC, 466
stack trace illustration, ADB and, 339-340
standard input, in UNIX programming, 302-

304
Standard 110, 28-29
standard output, in UNIX programming,

302-304
star "*", 69-70
statements

as, 485-486
Be, 481-482
in e language, 262-265, 274-275
control, in Be language, 474-475
executable in Fortran 77,415
flow-of-control, awk, 456
grouping in Ratfor language, 423
and portable C compiler, 553
program and block data, in Fortran 77,

411
static, and automatic storage of Fortran 77,

404
status inquiries, 8
stderr, in UNIX programming, 306
storage allocator, 10
storage classes

BC,481
in C language, 256-257
of portable C compiler, 549

String computations, 7
string concatenation, awk, 456"
string statements, "as, 486
strings

awk,455
in C language, 248
in oroff/troff, 198-199, 209-210, 220-

221,236-237
See also character strings
structure specifiers, in C language, 258-

260, 268, 277
subdirectories of UNIX, contents of, 506-

507
subroutines

definitions and calIs in DC, 466
in Fortran 77, 411

subscripts, 148-149
in C language, 269
calculation of size changes for, 16
in Fortran 77, 414

substitute command "s", 59-60, 66-67
substitution, undoing, 67

subtraction, on DC, 464
substrings, in Fortran 55, 414
summations, 150
superscripts, 148-149
SOper-user

and access control scheme, 23
temporarily becoming, 9

615

swapping process, and user control of UNIX,
514

switch statement
in e language, 263-264
and portable e compiler, 553
in Ratfor, 424, 425

Switches, setting for logging in, 40-41
symbol table maintenance, and portable C

compiler, 550-551
symbols

in mathematical typesetting, 148
fi:mporary, as, 484

syntax, in C language, 249, 272-276
system calIs, as, 494
system command, of M4 macro processor,

437
"system" function, of 110 Library, 311

t command, 80
tab characters, as, 484
table of contents, printing, 9, 10
tables, 129, 137

kept on same page, 129-130
See also tbl

tabs, 5, 41
ADB decoding, 341-343
list command and visibility of, 66
in nroff/troff, 199, 213, 235
setting, 5

tape, making disk from, 497-498
tbl, 3, 16,50, 158-174,235

applications, 151
data commands, 162-163
input command options, 159-163
input format, 158
input-output examples, 164-173
list of command characters and words, 174
usage, 163-164
use with eqn, 163-164

template matching algorithms, of portable e
compiler, 561-562

templates, of portable e compiler, 560
temporal sorting of names of files, 8
temporary data files of uucp, 589
Terminal, 5-6

calling in on, 121
connecting, 121
printing name of, 8

terminal communication, establishing, 10
terminals

strange behavior, 41
types of, 121

termination of process, 3, 28
of shell procedures, 101-102

terminology, 122
test command, 7, 92
Text .

changes and insertions, 61-62
filling, adjusting, and centering, oroff/troff

commands for, 198, 207-208
interrupted, in nroff/traff, 207-208
"kept in a buffer," 55
modification, 59-60
moving, 62

text blocks in tables, tbl command for, 162-
163

text creation, and ed, 55-55
text editors, interactive compared with nonin­

" teractive, 441
See also ed; sed

Tic-tac-toe, 18
timing" information

construction of profile of time spent per
routine, 11

reporting, 11
See also accounting

Time, 8, 11,52
Time conversions, 10, 502
titles, three-part, in nroff/traff, 199, 218,

238-239
token names, in Yacc, 355
token numbers, and lexical analyzer of Yacc,

359-360 "
tokens

in BC language, 477
in C language, 247, 267

touch command, 93.-94
tr, 17, 50
tIanslations, 6

Ratfor and, 429
transparent throughput, in nroff/traff, 215

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616

