
A/UX® Command Reference
Section lCA-L)

.®
A/UX® Command Reference
Section leA-L)

030-0781

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be affIXed to
any permitted copies as were affIXed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk,
AlUX, ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

APDA, Finder, and QuickDraw are
trademarks of Apple Computer, Inc.

APS-5 is a trademark of Autologic.

B-NET is a registered trademark of
UniSoft Corporation.

DEC, VAX, VMS, and VT100 are
trademarks of Digital Equipment
Corporation.

030-0781

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

MacPaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

Teletype is a registered trademark of
AT&T.

TermiNet is a trademark of General
Electric.

UNIX is a registered trademark of
AT&T Information Systems.

Versatec is a trademark of Versatec.

Wang C/ AlT is a trademark of Wang
Laboratories.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPlACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

AU IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABW1Y AND FITNESS
FOR A PARTICUlAR PURPOSE, ARE
LIMlTED IN DURATION TO NINETY
(90) DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAIL PURCHASE OF
rms PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUAUTY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICUIAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS IS," AND YOU, TIlE
PURCHASER, ARE ASSUMING TIlE
ENTIRE RISK AS TO ITS QUAUTY
AND ACCURACY.

IN NO EVENT WIlL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

TIlE WARRANTY AND REMEDIES
SET FORTII ABOVE ARE EXCLUSIVE
AND IN LIEU OF AU OTIlERS, ORAL
OR WRlTI'EN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0781

Contents

Preface

Introduction

Section 1

Revision C

A/UX Command Reference

User Commands (A-L)

- v-

Preface

Conventions Used in This Manual
NUX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
NUX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username

you type in your name-Laura, for example- so the screen shows:

login: Laura

Key presses
Certain keys are identified with names on the keyboard. These modifier
and character keys perfonn functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN
OPTION

DELETE
CAPS LOCK

For example, if you enter

Revision C

- vii -

SHIFf
CONTROL

EsCAPE

Applee

instead of

Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONTROL-C

you must press CONTROL and c simultaneously (CONTROL-C normally
cancels the execution of the current command).

Terminology
In NUX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term
Enter

Press

Type

Click

Action

Type in the entry and press the RETURN key

Press a single letter or key without pressing the
RETURN key

Type in the letter or letters without pressing the
RETURN key

Press and then immediately release the mouse button

- viii -
Revision C

Term

Select

Drag

Choose

Action
Position the pointer on an item and click the mouse
button

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
NUX commands follow a specific order of entry. A typical NUX
command has this form:

command [flag-option] [argument] ...

The elements of a command have the following meanings.

Element

command

flag-option

argument

Revision C

Description

Is the command name.

Is one or more optional arguments that modify the
command. Most flag -options have the form

[-opt...]
where opt is a letter representing an option.
Commands can take one or more options.

Is a modification or specification of the command;
usually a filename or symbols representing one or
more filenames.

- ix -

Element Description

brackets ([]) Surround an optional item-that is, an item that you
do not need to include for the command to execute.

ellipses (...) Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (1 s) is
followed below by its possible flag options and the optional argument
names.

ls [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]

[-n] [-0] [-g] [-r] [-t] [-u] [-c] [-p] [-F]
[-b] [-q] [-i] [-s] [names]

You can enter

ls -a /users

to list all entries of the directory / users, where

1 s Represents the command name
-a Indicates that all entries of the directory be listed
/users Names which directory is to be listed

Command reference notation
Reference material is organized by section numbers. The standard
A/UX cross-reference notation is

cmd(sect)

where cmd is the name of the command, file, or other facility; sect is
the section number where the entry resides.

D Commands followed by section numbers (1M), (7), or (8) are listed
in AIUX System Adminstrator's Reference.

D Commands followed by section numbers (1), (IC), (IG), (IN), and
(6) are listed in AIUX Command Reference.

D Commands followed by section numbers (2), (3), (4), and (5) are
listed in AIUX Programmer's Reference.

- x-
RevisionC

For example,

cat(l)

refers to the command cat, which is described in Section 1 of A/UX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent information appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to information discussed in
another guide in the suite. The format for this type of cross reference is
"Chapter Title," Name of Guide. For a complete description of NUX
guides, see Road Map to A/UX Documentation. This guide contains
descriptions of each NUX guide, the part numbers, and the ordering
information for all the guides in the NUX documentation suite.

- xi -
Revision C

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

AIUX Command Reference, AIUX Programmer's Reference, and AIUX
System Administrator's Reference are reference manuals for all the pro­
grams, utilities, and standard file formats included with your A/UX®
system.

The reference manuals constitute a compact encyclopedia of A/UX
information. They are not intended to be tutorials or learning guides.
If you are new to NUX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read AIUX Essentials and the other NUX user guides. After you
have worked with NUX, the reference manuals help you understand
new features or refresh your memory about command features you
already know.

2. Information contained in the reference manuals

NUX reference manuals are divided into three volumes:

• The two-part AIUX Command Reference contains information
for the general user. It describes commands you type at the
NUX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/bin and /usr/ucb.

• The two-part AIUX Programmer's Reference contains informa­
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane­
ous programming facilities.

• AIUX System Administrator's Reference contains information for
the system administrator. It describes commands you type at the
A/UX prompt to control your machine, such as accounting

Introduction 1
Revision C

commands, backing up your system, and charting your system's
activity. These commands generally reside in the directories
jete, /usr/ete,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to A/UX Refer­
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other NUX reference manu­
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Drivers and interfaces for devices

8 NUX Startup shell commands

Manual pages are collated alphabetically by the primary name associ­
ated with each. For the individual sections, a table of contents is pro­
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intra. 1 appears at
the start of Section 1. These int ra. section-number manual pages
are brought to the front of each section because they introduce the

2 AlUX Command Reference
Revision C

other man pages in the same section, rather than describe a command
or similar provision of A/UX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the AIUX Command Reference contains sec­
tions I and 6. However, since Section I (User Commands) is so large,
this manual is divided into two volumes, the first containing Section I
commands that begin with letters A through L, and the second contain­
ing Section 6 commands and Section I commands that begin with
letters M through Z. The sections included in each volume are as fol­
lows.

AIUX Command Reference contains sections I and 6. Note that both of
these sections describe commands and programs available to the gen­
eral user .

• Section I-User Commands
The commands in Section I may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypcat(lN) indicates networking as described follow­
ing.

IC Communications commands, such as cu and
tip.

IG Graphics commands, such as graph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem .

• Section 6-User Commands
This section contains all the games, such as cribbage and
worms.

Introduction 3
Revision C

AIUX Programmer's Reference contains sections 2 through 5.

4

• Section 2-System Calls
This section describes the services provided by the NUX system
kernel, including the C language interface. It includes two spe­
cial categories. Where applicable, these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary ver­
sions are in the system libraries in the /lib and /usr/lib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa­
tion that follows the section number. For example, the N in
mount(3N) indicates networking as described following.

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4--File Formats
This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler's intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol­
lows the section number. For example, the N in

NUX Command Reference
RevisionC

protocols(4N) indicates networking as described following.

4N Networking fonnats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous formats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam­
ple, the P in tcp(IP) indicates a protocol as described follow­
ing. by the letter designation in parenthesis at the top of the
page:

5F Protocol families

5P Protocol descriptions

AIUX System Administrator's Reference contains sections 1M, 7 and 8.

• Section IM-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Drivers and Interfaces for Devices
This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the

. provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/ dev / rmt directory (see tc(7». The FILES sections of these
manual pages identify all the device files supplied with the sys­
tem as well as those that are automatically generated by certain
NUX configuration utilties. The names of the man pages gen­
erally refer to device names or device driver names, rather than
the names of the device files themselves.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from
within the A/UX Startup Shell, including detailed descriptions of

Introduction
RevisionC

5

those that contribute to the boot process and those that help with
the maintenance of file systems.

4. How a manual entry is organized
The name for a manual page entry normally appears twice, once in
each upper corner of a page. Like dictionary guide words, these names
appear at the top of every physical page. After each name is the sec­
tion number and, if applicable, a category letter enclosed in
parenthesis, such as (I) or (2N).

Some entries describe several routines or commands. For example,
chown and chgrp share a page with the name chown(l) at the
upper corners. If you turn to the page chgrp(1), you find a reference
to chown(I). (These cross-reference pages are only included in AIUX
Command Reference and AIUX System Administrator's Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

6 AlUX Command Reference
RevisionC

SEE ALSO
provides pointers to related infonnation.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self­
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The directory for the reference manuals, AIUX Reference Summary and
Index, can help you locate information through its index and sum­
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi­
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. For the most part, entries appear in alphabetic order within
each section.

5.2 Commands by function

This summary classifies the A/UX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in AIUX Command Refer­
ence and AIUX System Administrator's Reference. Each is mentioned
just once in this listing.

The summary gives you a broader view of the commands that are avail­
able and the context in which they are most often used.

Introduction 7
Revision C

5.3 Command synopses

This section is a compact collection of syntax descriptions for all the
commands in A/UX Command Reference and A/UX System
Administrator's Reference. It may help you find the syntax of com­
mands more quickly when the syntax is all you need.

5.4 Index

The index lists key terms associated with A/UX subroutines and com­
mands. These key terms allow you to locate an entry when you don't
know the command or subroutine name.

The key terms were constructed by examining the meaning and usage
of the A/UX manual pages. It is designed to be more discriminating
and easier to use than the traditional permuted index, which lists nearly
all words found in the manual page NAME sections.

Most manual pages are indexed under more than one entry; for exam­
ple, lorder(l) is included under "archive files," "sorting," and
"cross-references." This way you are more likely to find the reference
you are looking for on the first try.

5.5 Online documentation

Besides the paper documentation in the reference manuals, A/UX pro­
vides several ways to search and read the contents of each reference
from your A!UX system.

To see a manual page displayed on your screen, enter the man(l)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

8 AlUX Command Reference
RevisionC

To see a list of all manual pages whose descriptions contain a given
keyword or string, enter the apropos command followed by the
word or string. For example,

apropos remove

These online documentation commands are described more fully in the
manual pages man(l), wha tis(1), and apropos(1) in AIUX Com­
mand Reference.

Introduction 9
Revision C

Table of Contents

Section 1 : User Commands (A-L)

intro(l) introduction to commands and applications programs
()
300(1) filter text containing printer control sequences for a DASI terminal
3005(1) .. see 300(1)
4014(1) filter text containing printer control sequences a page at a time
450(1) ... filter text containing printer control sequences for the DASI terminal
adb(l) .. debugger
addbib(l) create or extend bibliographic database
admin(l) .. create and administer sees files
apply(l) apply a command to a set of arguments
apropos(l) locate commands by keyword lookup
ar(l) archive and library maintainer for portable archives
as(l) .. common assembler
asa(l) interpret ASA carriage control characters
at(l) ... execute commands at a later time
atlookup(l) look up network visible entities (NVEs) registered on the

AppleTalk internet
atprint(l) copy data to a remote PAP server
at stat us(l) display status from a PAP server
at _ cho yrn(l) choose a default printer on the AppleTalk® internet
at_ server(l) a generic Printer Access Protocol (PAP) server
aWk(l) pattern scanning and processing language
banner(l) ... generate a poster
banner7(l) .. generate a large banner
basename(l) isolate substrings within a pathname argument
batch(l) .. see at(l)
bc(l) .. arbitrary-precision arithmetic language
bdiff(l) .. diff large files
bfs(l) ... big file scanner
biff(l) be notified if mail arrives and who it is from
bs(l) a compiler/interpreter for modest-sized programs
cal(l) generate a calendar for the specified year
calendar(l) .. reminder service
cancel(l) .. see lp(l)
cat(l) concatenate and display the contents of named files
cb(l) .. e program beautifier
cc(l) .. e compiler

Section 1

ccat(l) ... see compact(l)
cdc(l) change the delta commentary of an SCCS delta
cflow(l) .. generate C flowgraph
changesize(l) change the fields of the SIZE resource of a file
checkcw(l) .. see cw(l)
checkeq(l) ... see eqn(1)
checkinsta11(1) check installation of boards
checkmm(l) check documents formatted with the mm macros
checkmml(l) .. see checkmm(1)
checknr(l) .. check nroff/troff files
chfn(l) .. change finger entry
chgrp(l) ... see chown(1)
chmod(l) ... change the permissions of a file
chown(l) change the owner or group of a file
chsh(l) .. change default login shell
ci(l) ... check in RCS revisions
c1ear(1) ... clear terminal screen
cmdo(l) .. build commands interactively
cmp(l) .. compare two files
co(l) ... check out RCS revisions
co1(1) filter text containing printer control sequences for use at a display

device
co1crt(I) filter nroff output for terminal previewing
co1rm(1) .. remove columns from a file
comb(1) ... combine SCCS deltas
comm(1) select or reject lines common to two sorted files
CommandShe11(1) A/UX® Toolbox application for managing

command-interpretation windows and moderating access to the
A/UX console window

c ornpa c t (1) ... compress and uncompress files
cornpress(l) ... compress and expand data
conv(1) ... swap bytes in COFF files
c p(1) ... copy files
cpio(l) copy files to or from a cpio archive
c pp(1) ... the C language preprocessor
crontab(l) .. user crontab utility
crypt(l) .. encode/decode
csh(l) run the C shell, a command interpreter with C-like syntax
csp1it(l) ... context split
ct(lC) ... spawn getty to a remote terminal
ctags(1) maintain a tags file for a C program
ctrace(l) ... C program debugger
cu(lC) .. call another system

ii User Commands (A-L)

cut(l) cut out selected fields of each line of a file
cw(1) prepare constant-width text for otroff
cxref(l) ., generate e program cross-reference
q.aiw(l) Apple ImageWriter n troff postprocessor filter
daps(l) Autologic APS-5 phototypesetter troff postprocessor
date(1) ... display and set the date
dc(l) ... desk calculator
dd(1) ... convert and copy a file
delta(l) make a delta (change) to an sees file
derez(l) ... decompile a resource file
deroff(l) remove nroff/troff, tbl, and eqn constructs
df(l) ... report number of free disk blocks
diction(l) locate wordy sentences in a document
diff(1) differential file and directory comparator
diff3(1) .. 3-way differential file comparison
diffmk(l) ... mark differences between files
dircmp(l) .. directory comparison
dirname(1) .. see basename(l)
dis(l) .. disassembler
di sable(l) ... see enable(l)
domainname(1) set or display name of current domain system
du(l) .. summarize disk usage
dump(l) .. dump selected parts of an object file
e(l) ... see ex(l)
echo(l) .. echo arguments
ed(l) ... text editor
edi t(l) .. see ex(l)
efl(l) Extended Fortran Language
egrep(l) .. see grep(l)
eject(l) .. eject diskette from drive
enable(l) ... enable or disable LP printers
enscript(l) convert text files to format for printing
env(l) set environment for command execution
eqn(l) ... format mathematical text for troff
ex(l) ... text editor
expand(l) expand tabs to spaces, and vice versa
explain(l) ... see diction(l)
expr(l) .. evaluate arguments as an expression
f77(1) ... Fortran 77 compiler
factor(l) ... factor a number
false(l) .. see true(l)
fcnvt(1) convert a resource file to another format
fgrep(l) .. see grep(l)

Section 1 iii

file(l) ... determine file type
find(l) ... find files
f inge r(l) .. user information lookup program
fmt(l) .. simple text formatter (
fold(l) fold long lines for finite-width output device
fpr(l) filter the output of Fortran programs for line printing
freq(l) report on character frequencies in a file
from(l) ... who is my mail from?
fsplit(l) ... split f77 or efl files
f st yp(1) .. report file-system type

ftp(lN) .. ARPANET file transfer program
get(1) .. get a version of an SCCS file
getopt(1) ... parse command options
grap(l) pic preprocessor for drawing graphs
graph(lG) .. draw a graph
greek(1) filter text for vintage display devices
grep(l) ... search a file for a pattern
groups(l) ... show group memberships
hashcheck(l) ... see spell(l)
hashmake(l) ... see spell(1)
head(l) ... give first few lines
help(l) ... ask for help in using SCCS
hex(l) convert an object file to Motorola S-record format
hostid(lN) set or display the identifier of the current host system
hostname(lN) set or display the name of the current host system
hyphen(1) .. find hyphenated words
id(l) ... display user and group IDs and names
ident(l) display RCS keywords and their values
indent(l) indent and format C program source
indxbib(l) build inverted index for a bibliography
ipcrm(l) remove interprocess communications facilities
ipcs(1) report interprocess communication facilities status
isotomac(l) .. see mactoiso(l)
iw2(1) ... Apple ImageWriter print filter
iwprep(1) ... prepare troff description files
join(l) .. relational database operator
kermit(1C) ... Kermit file transfer
kill(l) .. terminate a process
ksh(l) run the Korn shell, a command interpreter compatible with Bourne

shell
last(1) display login and logout times for each user of the system
launch(l) execute a Macintosh binary application
lav(l) ... display load average statistics

iv User Commands (A-L)

Id(l) ... link editor for common object files
leave(l) remind you when you have to leave
lex(l) generate programs for simple lexical tasks
line(l) .. read one line
lint(1) .. a C program checker
In(l) .. make links
login(l) ... sign on
logname(l) .. get login name
lookbib(l) find references in a bibliography
lorder(l) find ordering relation for an object library
Ip(l) .. send or cancel requests to a line printer for a Berkeley file system (4.2)
Ipq(l) .. spool queue examination program
Ipr(l) .. off line print
Iprm(l) remove jobs from the line printer spooling queue for a Berkeley

file system (4.2)
Ipstat(1) ... print LP status information
15(1) .. list contents of directory

Section 1 v

intro(l) intro(1)

NAME
intro - introduction to commands and applications programs

DESCRIPTION
This section describes, in alphabetical order, generally available
commands. Certain distinctions of purpose are made in the head­
ings:

(1 C) Commands for communication with other systems.
(lG) Commands used primarily for graphics and computer-aided

design.
(IN) Network commands.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of "normal" termination) one supplied by the pro­
gram (see wai t(2) and exi t(2». The former byte is 0 for nor­
mal termination; the latter is customarily 0 for successful execu­
tion and nonzero to indicate troubles such as erroneous parame­
ters, bad or inaccessible data, or other inability to cope with the
task at hand. It is called variously" exit code," "exit status," or
"return code," and is described only where special conventions
are involved.

WARNINGS
Some commands produce unexpected results when processing
files containing null characters. These commands often treat text
input lines as strings and therefore become confused upon en­
countering a null character (the string terminator) within a line.

February, 1990 1
Revision C

300(1) 300(1)

NAME
30 0, 300 s - filter text containing printer control sequences for
a DASI terminal

SYNOPSIS
300 [+12] [-n] [-dl,i,e]

300s [+12] [-n] [-dt,i,e]

DESCRIPTION

1

300 supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 3(0) terminal; 300s performs the same
functions for the DASI 300s (GSI 300s or DTC 300s) terminal. It
converts half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts to draw
Greek letters and other special symbols. It permits convenient use
of 12-pitch text. It also reduces printing time 5 to 70%. 300 can
be used to print equations neatly, in the sequence:

neqn file... I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is
turned ON before 300 is used.

The behavior of 300 can be modified by the optional flag argu­
ments to handle 12-pitch text, fractional line spacings, messages,
and delays.

+12

-n

permits use of 12-pitch, 6 lines/inch text. DASI 300 ter­
minals normally allow only two combinations: 10-
pitch, 6 lines/inch, or 12-pitch, 8 lines/inch. To obtain
the 12-pitch, 6 lines per inch combination, the user
should tum the PITCH switch to 12, and use the + 12 op­
tion.

controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because
each increment equals 1/48 of an inch, a 10-pitch line­
feed requires 8 increments, while a 12-pitch line-feed
needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appear­
ance of subscripts and superscripts. For example,
nroff half-lines could be made to act as quarter-lines
by using - 2. The user could also obtain appropriate
half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-
pitch.

February, 1990
Revision C

300(1) 300(1)

-dt, I, c controls delay factors. The default setting is -
d3, 90, 30. DASI 300 terminals sometimes produce
peculiar output when faced with very long lines, too
many tab characters, or long strings of blankless,
nonidentical characters. One null (delay) character is
inserted in a line for every set of t tabs and for every
contiguous string of c nonblank, nontab characters. If a
line is longer than I bytes, 1 + (total length)/20 nulls are
inserted at the end of that line. Items can be omitted
from the end of the list, implying use of the default
values. Also, a value of zero for t (c) results in two null
bytes per tab (character). The former may be needed
for C programs, the latter for files like / etc/passwd.
Because terminal behavior varies according to the
specific characters printed and the load on a system, the
user may have to experiment with these values to get
correct output The -d option exists only as a last resort
for those few cases that do not otherwise print properly.
For example, the file /etc/passwd may be printed
using -d3, 30,5. The value -dO, 1 is a good one to
use for C programs that have many levels of indenta­
tion.

Note that the delay control interacts heavily with the
prevailing carriage return and line-feed delays. The
stty(l) modes nlO cr2 or nlO cr3 are recom­
mended for most uses.

300 can be used with the nroff -s flag or . rd requests, when
it is necessary to insert paper manually or change fonts in the mid­
dle of a document Instead of hitting the RETURN key in these
cases, you must use the line-feed key to get any response.

In many (but not all) cases, the following two command lines are
equivalent:

nroff -T300 files
nroff files I 300

Similarly, in many (but not all) cases, the following two command
lines are equivalent:

nroff -T300 -12 fiks
nroff fiks I 300 +12

The use of 300 can thus often be avoided unless special delays or

February, 1990 2
Revision C

300(1) 300(1)

options are required; in a few cases, however, the additional
movement optimization of 300 may produce better-aligned out­
put.

The neqn names of and resulting output for the Greek and special
characters supported by 300 are shown in greek(5).

FILES
/usr/bin/300
/usr/bin/300s

SEE ALSO
450(1), eqn(1), mesg(1), nroff(1), stty(I), tabs(I),
tbl(I), tplot(IG), greek(5).

BUGS

3

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.
If your output contains Greek or reverse line-feeds, use a friction­
feed platen instead of a forms tractor; although good enough for
drafts, the latter has a tendency to slip when reversing direction,
distorting Greek characters and misaligning the first line of text
after one or more reverse line-feeds.

February, 1990
Revision C

3005(1)

February, 1990
Revision C

See 300(1)

3005(1)

1

4014(1) 4014(1)

NAME
4014 - filter text containing printer control sequences a page at
a time

SYNOPSIS
4014 [-en] [-n] [-pi] [-t] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen
into n columns, and contributes an eight-space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are
collected and plotted when necessary. TELETYPE Model 37
half- and reverse-line sequences are interpreted and plotted. At
the end of each page, 4 0 14 waits for a new line (empty line) from
the keyboard before continuing on to the next page. In this wait
state, the command ! cmd will send the cmd to the shell.

The command line options are:

-t Don't wait between pages (useful for directing output
into a file).

-n Start printing at the current cursor position and never
erase the screen.

-en Divide the screen into n columns and wait after the last
column.

-pl Set page length to I. 1 accepts the scale factors i (inches)
and 1 (lines); the default is lines.

FILES
/usr/bin/4014

SEE ALSO
pr(I), te(I), troff(I).

1 February, 1990
Revision C

450(1) 450(1)

NAME
450 - filter text containing printer control sequences for the
DASI terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical,
such as the DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the
correct vertical motions. It also attempts to draw Greek letters and
other special symbols in the same manner as 300(1). 450 can be
used to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNINGS
Make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired
position (either 10- or 12-pitch). In either case, vertical spacing is
6 lines/inch, unless dynamically changed to 8 lines per inch by an
appropriate escape sequence.

450 can be used with the nroff -s flag or . rd requests, when
it is necessary to insert paper manually or change fonts in the mid­
dle of a document Instead of hitting the RETURN key in these
cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in
favor of one of the following:

nroff -T450 files ...

or

nroff -T450 -12 fiks

The use of 4 50 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional
movement optimization of 450 may produce better-aligned out­
put.

The neqn names of, and resulting output for, the Greek and spe­
cial characters supported by 450 are shown in greek(5).

February, 1990
Revision C

1

450(1) 450(1)

FILES
/usr/bin/450

SEE ALSO
300(1), eqn(1), mesg(l), nroff(l), stty(l), tabs(1),
tbl(l), tplot(1G), greek(5).

BUGS

2

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there. If
your output contains Greek and/or reverse line-feeds, use a
friction-feed platen instead of a forms tractor; although good
enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

February, 1990
Revision C

adb(l) adb(1)

NAME
adb - debugger

SYNOPSIS
adb [-k] [-w] [obffil [corfil]]

DESCRIPTION
adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe­
cution of A/UX programs.

objfil is normally an executable program file, preferably contain­
ing a symbol table; if not, then the symbolic features of adb can­
not be used, although the file can still be examined. The default
for obffil is a. out. corfil is assumed to be a core image file pro­
duced after executing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses
are to the standard output If the -w flag option is present, then
both objfil and corfil are created (if necessary) and opened for
reading and writing so that files can be modified using adb. adb
ignores quit signals; an interrupt causes return to the next adb
command.

To exit adb: use $q or $Q or CONlROL-d.

Normally, for portability, adb does a system call to gather infor­
mation regarding core file relocation addresses. If using adb on a
standalone program (such as the kernel, /unix), using the -k
flag option skips that part of the adb code.

In general, requests to adb are of the form

[address] [, count] [command] [;]

If address is present, then "dot" is set to address. Initially, dot is
set to O. For most commands, count specifies how many times the
command will be executed. The default count is 1. address and
count are expressions.

The interpretation of an address depends on the context in which it
is used. If a subprocess is being debugged, then addresses are in­
terpreted in the usual way in the address space of the subprocess.
If the operating system is being debugged either post-mortem or
using the special file / dev /kmem to examine interactively and/or
modify memory, the maps are set to map the kernel virtual ad­
dresses. For further details of address mapping, see ADDRESSES.

February, 1990
Revision C

1

adb(l) adb(l)

EXPRESSIONS

2

The value of dot.

+ The value of dott incremented by the current increment.

The value of dott decremented by the current increment.

The last address typed.

integer A number. The prefix 0 (zero) forces interpretation in
octal radix; the prefixes Od and OD force interpretation
in decimal radix; the prefixes Ox and OX force in­
terpretation in hexadecimal radix. Thus 020 = 0 d16
= OxlO = sixteen. If no prefix appearst then the
default radix is used; see the $d command. The de­
fault radix is initially hexadecimal. The hexadecimal
digits are o 123456789abcdefABCDEFt with the obvi­
ous values. Note that a hexadecimal number the most
significant digit of which would otherwise be an alpha­
betic character must have a Ox (or Ox) prefix (or a
leading zero, if the default radix is hexadecimal).

integer fraction
A 32-bit floating point number.

"ecce" The ASCII value of up to 4 characters. \ may be used to
escape a '.

<name The value of name t which is either a variable name or a
register name. adb maintains a number of variables
(see VARIABLES) named by single letters or digits. If
name is a register name, then the value of the register is
obtained from the system header in corfil. The register
names are those printed by the $ r command.

symbol A symbol is a sequence of upper or lowercase letterst
underscores or digitst not starting with a digit. \ may be
used to escape other characters. The value of the sym­
bol is taken from the symbol table in objfil. An initial_
or - will be prefixed to symbol t if needed.

_ symbol In Ct the "true namett of an external symbol begins
with _. It may be necessary to utter this name to distin­
guish it from internal or hidden variables of a program.

(exp) The value of the expression expo

February t 1990
Revision C

adb(l} adb(l}

Monadic Operators

* exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

-exp Bitwise complement

#exp Logical negation.

Dyadic operators are left associative and are less binding than
monadic operators.

el +e2 Integer addition.

el-e2 Integer subtraction.

el *e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

ell e2 Bitwise disjunction.

el#e2 el rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands
"?" and "I" may be followed by "*"; see ADDRESSES for
further details.)

?f Locations starting at address in objfil are printed
according to the format f. Dot is incremented by
the sum of the increments for each format letter
(q.v.).

If Locations starting at address in corfil are printed
according to the format f, and dot is incremented
as for "?".

=/ The value of address itself is printed in the styles
indicated by the format f. (For i format, "?" is
printed for the parts of the instruction that refer­
ence subsequent words.)

A format consists of one or more characters that specify a
style of printing. Each format character may be preceded by
a decimal integer that is a repeat count for the format charac­
ter. While stepping through a format, dot is incremented by

February, 1990 3
Revision C

adb(1)

4

adb(l)

the amount given for each fonnat letter. If no fonnat is
given, then the last fonnat is used. The fonnat letters avail-
able are as follows.

i
0

0
q
Q

d
D
x
x
u
U
f
F
b
c
c

s

S

y

a

p

t

n Disassemble the addressed instruction.
2 Print 2 bytes in hex. All octal numbers output

by adb are preceded by O.
4 Print 4 bytes in octal.
2 Print in signed octal.
4 Print long signed octal.
2 Print in decimal.
4 Print long decimal.
2 Print 2 bytes in hexadecimal.
4 Print 4 bytes in hexadecimal.
2 Print as an unsigned decimal number.
4 Print long unsigned decimal.
4 Print the 32-bit value as a floating point number.
8 Print double floating point.
1 Print the addressed byte in octal.
1 Print the addressed character.
1 Print the addressed character using the standard

escape convention where control characters are
printed as 'X and the delete character is printed

A? as ..
n Print the addressed characters until a zero char-

acter is reached.
n Print a string using the AX escape convention

(see c above). The n is the length of the string
including its zero tenninator.

4 Print 4 bytes in date fonnat (see ctime(3)).
0 Print the value of dot in symbolic fonn. Sym-

bols are checked to ensure that they have an ap-
propriate type as indicated below.

/ global data symbol
? global text symbol
= global absolute symbol

4
Print the addressed value in symbolic fonn using the
same rules for symbol lookup as a.
0
When preceded by an integer tabs to the next ap-
propriate tab stop. For example, 8 t moves to the
next 8-space tab stop.

February, 1990
RevisionC

adb(l)

r

n

o
Print a space.
o
Print a newline.

adb(l)

" ... " 0
Print the enclosed string.
Dot is decremented by the current increment. Noth­
ing is printed.

+ Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline
Repeat the previous command with a count of 1.

[? 1]1 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used, then the
match is for 4 bytes at a time instead of 2. If no match is
found, then dot is unchanged; otherwise, dot is set to the
matched location. If mask is omitted, then -1 is used.

[? I]w value ...
Write the 2-byte value into the addressed location. If the
command is w, write 4 bytes. Odd addresses are not allowed
when writing to the subprocess address space.

[? I]m b1 e1/1 [? I]
New values for (b1 ,e1 ,fl) are recorded If less than three
expressions are given, then the remaining map parameters
are left unchanged. If more than 3 expressions are given, the
values of (b2 ,e2 ,/2) (b3 ,e3 ,/3) and so on, are changed. If
the "?" or "I" is followed by "*", then the first segment
(b1 ,e1 ,/1) of the mapping is skipped, and the second and
subsequent segments are changed instead. (There are as
many (bn ,en ,fn) triples as you have sections in your pro­
gram.) If the list is terminated by"?" or "!,', then the file
(obffil or corfil, respectively) is used for subsequent requests.
(So that, for example, "1m?" will cause "I" to refer to
obffil.)

> name
Dot is assigned to the variable or register named. This com­
mand is often used in the form constant > name. This form
of the command can be used to enter 96-bit "IEEE Extended
Precision" numbers into the floating-point data registers

February, 1990
Revision C

5

adb(l) adb(l)

6

fpO-fp7. For example:

Ox3FFF00008000000000000000 > fpO

puts the value 1.0 into fpO. When this form of the com­
mand is used, only the first 32 vits of the constant are stored
in dot. See MC68881 Floating Point Coprocessor User's
Manual (available from Motorola Literature Distribution
Center, part number MC68881UM/AD), section 2.4, "Ex­
tended Real," p. 211, for a description of IEEE Extended
Precision format.

A shell is called to read the rest of the line following "!".

$modifier
Miscellaneous commands. The available modifiers are:

</ Read commands from the file/. If this command is exe­
cuted in a file, further commands in the file are not seen.
If / is omitted, the current input stream is terminated. If
a count is given, and is zero, the command will be ig­
nored. The value of the count will be placed in variable
9 before the first command in/is executed.

< </ Similar to < except it can be used in a file of commands
without causing the file to be closed. Variable 9 is
saved during the execution of this command, and re­
stored when it completes. There is a (small) finite limit
to the number of < < files that can be open at once.

> / Append output to the file /, which is created if it does
not exist. If/is omitted, output is returned to the termi­
nal.

? Print process ID, the signal which caused stoppage or
termination, as well as the registers as $ r. This is the
default if modifier is omitted.

r Print the general registers and the instruction addressed
by pc. Dot is set to pc.

f Print the floating point data registers fpO-fp7 in IEEE
Extended Precision (see >name, above, for definition),
and exponential notation, along with the floating-point
control registers fpcr, fpsr, and fpiar.

b Print all breakpoints and their associated counts and
commands.

c C stack backtrace. If address is given, then it is taken
as the address of the current frame (instead of a 7). If c
is used, then the names and (16 bit) values of all au-

February, 1990
RevisionC

adb(l) adb(l)

tomatic and static variables are printed for each active
function. If count is given, then only the first count
frames are printed.

d Set the default radix to address and report the new
value. Note that address is interpreted in the (old)
current radix. Thus 10 $d never changes the default
radix. To make decimal the default radix, use
OtlO$d.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default

255).
o Regard all integers subsequently input as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb.
v Print all nonzero variables in hexadecimal.
m Print the address map.

: modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed
count-l times before causing a stop. Each time the
breakpoint is encountered the command e is executed.
If this command is omitted or sets dot to zero then the
breakpoint causes a stop.

d Delete breakpoint at address.
r Run objfil as a subprocess. If address is given explicitly

then the program is entered at this point; otherwise, the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored be­
fore stopping. Arguments to the subprocess may be
supplied on the same line as the command. An argu­
ment starting with < or > causes the standard input or
output to be established for the command. All signals
are turned on on entry to the subprocess.

es The subprocess is continued with signal ses (see sig­
nal(3)). If address is given, then the subprocess is
continued at this address. If no signal is specified, then
the signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r.

ss As for e except that the subprocess is single stepped
count times. If there is no current subprocess then objfil

February, 1990
Revision C

7

adb(1) adb(l)

is run as a subprocess as for r. In this case no signal
can be sent; the remainder of the line is treated as argu­
ments to the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
adb provides a number of variables. Named variables are set ini­
tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $ < or $ < < command.

On entry, the following are set from the system header in the
corfil. If corfil does not appear to be a core file, then these
values are set from obifil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (0407, 0410,0413).
s The stack segment size.
t The text segment size.

ADDRESSES

8

The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by n triples (b1, e1, [1), (b2, e2,12), ... (bn, en, In),
corresponding to the number of sections in your object file, and
the file address corresponding to a written address is calculated as
follows.

bl~ddress<el => file address=address+/l-bl, otherwise,

b2~ddress<e2 => file address=address+12-b2, and so on,

otherwise, the requested address is not legal. In some cases (e.g.,
for programs with separated I and D space), the two segments for
a file may overlap. If a ? or I is followed by an *, then the first
triple is not used.

The initial setting of both mappings is suitable for normal a. out
and core files. If either file is not of the kind expected, then for
that file bl is set to 0, el is set to the maximum file size and /1 is
set to 0; in this way the whole file can be examined with no ad­
dress translation.

February, 1990
RevisionC

adb(1) adb(1)

So that adb may be used on large files, all appropriate values are
kept as signed 32-bit integers.

EXAMPLES
adb objl

will invoke adb with the executable object obj 1. When adb
responds with either

or

a.out file
ready

a.out (COFF format)
a.out a.out
ready

the request

main,lO?ia

will cause 16 (10 hex) instructions to be printed in assembly code,
starting from location main.

FILES
/bin/adb
a.out
core

SEE ALSO
sdb(I), a. out(4), core(4).

DIAGNOSTICS
Echoes adb when there is no current command or format. Pro­
duces comments about inaccessible files, syntax errors, abnormal
termination of commands, etc. Exit status is 0, unless last com­
mand failed or returned nonzero status.

BUGS
Use of # for the unary logical negation operator is peculiar.

There doesn't seem to be any way to clear all breakpoints.

In certain cases, disassembled code cannot be used directly as in­
put to as. This is because adb gives more useful information
than a s accepts. For example, explicit register names are given in
the disassembly of movm and fmovm instructions.

February, 1990
Revision C

9

addbib(l) addbib(l)

NAME
addbib - create or extend bibliographic database

SYNOPSIS
addbib [-p promptfile] [-a] database

DESCRIPTION

1

addbib initiates or furthers a bibliography, entered as a database.
The database structure allows formatting to be imposed as a step
separate from data entry; data entry must be performed only once.
Database entries consist of keyletters and relevant fields. For ex­
ample, %A is the keyletter for author-name, and Bill Tuthill
(the author of refer) could fill in this field. (Further examples
are given below.) Once entered, entries may be culled from the
database easily and in the proper format The refer program
handles this compilation; you do not have to look up entries by
hand.

When this program starts up, answering y to the initial In­
s true t ions? prompt yields directions; typing n or RETURN
skips them. addbib then prompts for various bibliographic
fields, reads responses from the terminal, and sends output records
to a database. A null response (just RETURN) means to leave out
that field. A minus sign (-) means to go back to the previous
field. A trailing backslash allows a field to be continued on the
next line. The repeating Continue? prompt allows the user ei­
ther to resume by typing y or RETURN, to quit the current session
by typing n or q, or to edit the database with any system editor
(vi, ex, edit, ed), by typing its name.

The -a flag option suppresses prompting for an abstract; asking
for an abstract is the default. Abstracts are ended with a
CONlROL-D. The -p flag option causes addbib to use a new
prompting skeleton, defined in promptfiie. This file should contain
prompt strings, a tab, and the key letters to be written to the data­
base.

The most common key letters and their meanings are given below.
addbib insulates you from these keyletters, since it gives you
prompts in English, but if you edit the bibliography file later on,
you will need to know this information.

%A Author's name
%B Book containing article referenced
%C City (place of publication)

February, 1990
RevisionC

addbib(l) addbib(l)

%D Date of publication
%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number
%H Header commentary, printed before reference
% I Issuer (publisher)
%J Journal containing article
% K Keywords to use in locating reference
% L Label field used by - k option of re fer
%N Number within volume
%0 Other commentary, printed at end of reference
%p Page number(s)
%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)
% S Series title
% T Title of article or book
%v Volume number
%X Abstract; used by roffbib, not by refer
%Y ignored by refer
%Z ignored by refer

Except for A, each field should be given just once. Only relevant
fields should be supplied. An example is:

%A John Smith
%T Using A/UX
%I Apple Computer
%C New York
%D 1987

FILES
/usr/ucb/addbib

promptfile
optional file to define prompting

CAVEATS
The length of the prompt strings in a user-defined prompt file
should be less than or equal to 20 characters. That is, addbib
will only display the first 20 characters. If the prompt string is
longer than 20 characters, addbib will append the keyletter from
the prompt file to the end of the truncated prompt string.

February, 1990
Revision C

2

addbib(l) addbib(l)

SEE ALSO
indxbib(I), lookbib(I), refer(I), roffbib(1), sort­
bib(I).

3 February, 1990
Revision C

admin(l) admin(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-alogin] [-djiag(fiag-val]] [-elogin] [-fjiag(fiag-val]]
[-h] [-i[name]] [-m[mrlist]] [-n] [-rrel[. lev]] [-t[name]]
[-y[comment]] [-z]jiie ...

DESCRIPTION
admin is used to create new sees files and change parameters of
existing ones. Arguments to admin, which may appear in any
order, consist of key letter arguments, which begin with -, and
named files (note that sees file names must begin with the char­
acters s.). If a named file does not exist, it is created, and its
parameters are initialized according to the specified keyletter ar­
guments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that non-SeeS
files (last component of the pathname does not begin with s.)
and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken
to be the name of an sees file to be processed. Again, non-SeeS
files and unreadable files are silently ignored.

The key letter arguments are as follows. Each is explained as
though only one named file is to be processed since the effects of
the arguments apply independently to each named file.

-n This keyletter indicates that a new sees file is to be
created.

-i [name] The name of a file from which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see -r key letter for delta
numbering scheme). If the i keyletter is used, but
the file name is omitted, the text is obtained by read­
ing the standard input until an end-of-file is encoun­
tered. If this key letter is omitted, then the sees file
is created empty (in this case, you need to explicitly
use the -n flag). Only one sees file may be created
by an admin command on which the i key letter is
supplied. Using a single admin to create two or

February, 1990 1
Revision C

adrnin(l) adrnin(l)

2

more sees files requires that they be created empty
(no -i keyletter). Note that the -i keyletter implies
the -n key letter.

-rrel[.lev] rei is the release and lev is the level into which the
initial delta is inserted. This keyletter may be used
only if the -i key letter is also used. If the -r
key letter is not used, the initial delta is inserted into
release 1. The default level of the initial delta is 1
(by default initial deltas are named 1.1).

-t [name] The name of a file from which descriptive text for
the sees file is to be taken. If the -t keyletter is
used and admin is creating a new sees file (the -n
and/or -i key letters also used), the descriptive text
filename must also be supplied. In the case of exist­
ing sees files: (1) a -t key letter without a
filename causes removal of descriptive text (if any)
currently in the sees file, and (2) a -t key letter
with a filename causes text (if any) in the named file
to replace the descriptive text (if any) currently in
the sees file.

-fjiag [flag-val]
This key letter specifies ajiag, and, possibly, a value
for the jiag, to be placed in the sees file. Several f
key letters may be supplied on a single admin com­
mand line. The allowable jiags and their values are:

b Allows use of the -b key letter on a
get(l) command to create branch del­
tas.

cceil ceil is the highest release (Le., "ceil­
ing' '), a number less than or equal to
9999, which may be retrieved by a
get(l) command for editing. The de­
fault value for an unspecified c flag is
9999.

fjioor jioor is the lowest release (i.e.,
"floor"), a number greater than 0 but
less than 9999, which may be retrieved
by a get(1) command for editing. The
default value for an unspecified f flag
is 1.

February, 1990
RevisionC

admin(l)

February, 1990
Revision C

admin(l)

dSID The default delta number (SID) to be
used by a get(l) command.

i[str] Causes the No id keywords
(ge 6) message issued by get (I) or
de 1 t a(l) to be treated as a fatal error.
In the absence of this flag, the message
is only a warning. The message is is­
sued if no sees identification key­
words (see get(l» are found in the
text retrieved or stored in the sees
file. If str is supplied, the keywords
must exactly match the given string.
str must contain a keyword and no em­
bedded newlines.

j Allows concurrent get(l) commands
for editing on the same SID of an
sees file. This allows multiple con­
current updates to the same version of
the sees file.

lUst A list of releases to which deltas may
no longer be made (get -e against
one of these "locked" releases fails).
The list has the following syntax:

n

<list> ::= <range> I <list> , <range>
<range>-::= RELEASE NUMBER
a

The character a in the list is equivalent
to specifying all releases for the named
sees file.

Causes del ta(l) to create a "null"
delta in each of those releases (if any)
being skipped when a delta is made in
a new release (e.g., in making delta 5.1
after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as
"anchor points" so that branch deltas
may later be created from them. The
absence of this flag causes skipped
releases to be nonexistent in the sees
file, preventing branch deltas from be-

3

admin(l)

-djiag

-a login

4

admin(1)

ing created from them in the future.

qtext User-definable text substituted for all
occurrences of the %Q% keyword in
sees file text retrieved by get(l).

mmod mod is the module name of the sees
file which is substituted for all oc­
currences of the %M% keyword in sees
file text retrieved by get(l). If the m
flag is not specified, the value assigned
is the name of the sees file with the
leading s. removed.

ttype type of module in the sees file substi­
tuted for all occurrences of %Y% key­
word in sees file text retrieved by
get(I).

vWgm]
Causes delta(l) to prompt for
Modification Request (MR) numbers as
the reason for creating a delta. pgm
specifies the name of an MR number
validity checking program (see del­
ta(I)). (If this flag is set when creat­
ing an sees file, the m keyletter must
also be used even if its value is null).

Causes removal (deletion) of the specifiedjlag from
an sees file. The -d keyletter may be specified
only when processing existing sees files. Several
-d keyletters may be supplied on a single admin
command. See the -f key letter for allowable jlag
names.

I list A list of releases to be "unlocked". See
the -f key letter for a description of the I
flag and the syntax of a list.

A login name, or numeric A/UX system group ID,
to be added to the list of users which may make
deltas (changes) to the sees file. A group ID is
equivalent to specifying all login names common to
that group ID. Several a key letters may be used on
a single admin command line. As many logins, or

February, 1990
RevisionC

admin(1) admin(l)

numeric group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas. If login or group ID is pre­
ceded by a ! they are to be denied permission to
make deltas.

-elogin A login name, or numeric group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID
is equivalent to specifying all login names common
to that group ID. Several e keyletters may be used
on a single admin command line.

-y(comment] The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical
to that of del ta(1). Omission of the -y keyletter
results in a default comment line being inserted in
the form:

-m(mrlist]

-h

February, 1990
Revision C

date and time created YY/MMIDD HH:MM:SS

by login. If the comment contains spaces, you
must enclose the entire comment in double quotes.

The -y key letter is valid only if the -i and/or -n
keyletters are specified (i.e., a new sees file is be­
ing created).

mrlist, the list of Modification Requests (MR)
numbers, is inserted into the sees file as the rea­
son for creating the initial delta in a manner identi­
cal to del ta(l). The v flag must be set and the
MR numbers are validated if the v flag has a value
(the name of an MR number validation program).
Error diagnostics will appear if the v flag is not set
or if MR validation fails.

eauses admin to check the structure of the sees
file (see sccsfile(4)), and to compare a newly
computed checksum (the sum of all the characters
in the sees file except those in the first line) with
the checksum that is stored in the first line of the
sees file. Appropriate error diagnostics are pro­
duced.

This key letter inhibits writing on the file, so that it
nullifies the effect of any other key letters supplied,

5

admin(l) admin(l)

-z

and is, therefore, only meaningful when processing
existing files.

The sees file checksum is recomputed and stored
in the first line of the sees file (see -h, above).

Note that use of this key letter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all sees file names must be
of the form s .file-name. New sees files are
given mode 444 (see chmod(1». Write permission
in the pertinent directory is, of course, required to
create a file. All writing done by admin is to a
temporary x-file, called x .file-name, (see get(l»,
created with mode 444 if the admin command is
creating a new sees file, or with the same mode as
the sees file if it exists. After successful execu­
tion of admin, the sees file is removed (if it ex­
ists), and the x-file is renamed with the name of the
sees file. This ensures that changes are made to
the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be mode 444. The mode of
the directories allows only the owner to modify sees files con­
tained in the directories. The mode of the sees files prevents any
modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(l).
eare must be taken! The edited file should always be processed
by an admin -h to check for corruption followed by an admin
-z to generate a proper check-sum. Another admin -h is recom­
mended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z .file­
name), which is used to prevent simultaneous updates to the sees
file by different users. See get(1) for further information.

EXAMPLES

6

admin -ifilel s .filel

creates a new file in sees format named s .filel, fromfilel.

February, 1990
RevisionC

admin(l)

FILES
/usr/bin/admin

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l),
sccsfile(4).

admin(l)

"sees Reference" in A/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

February, 1990 7
Revision C

apply(1) apply(1)

NAME
apply - apply a command to a set of arguments

SYNOPSIS
apply [-ac] [-n] command args ...

DESCRIPTION
apply runs the named command on each argument arg in turn.
Normally arguments are chosen singly; the optional number n
specifies the number of arguments to be passed to command. If n
is zero, command is run without arguments once for each arg.
Character sequences of the form %d in command, where d is a di­
git from 1 to 9, are replaced by the dth following unused arg. If
any such sequences occur, n is ignored, and the number of argu­
ments passed to command is the maximum value of d in com­
mand. The character % may be changed by the -a flag option.

EXAMPLES
The command

apply echo *
is similar to ls(1);

apply -2 cmp a1 b1 a2 b2

compares the a files to the b files;

apply -0 who 1 2 3 4 5

runs who(1) 5 times; and

apply 'In %1 /usr/mcfong' *
links all files in the current directory to the directory
/usr/mcfong.

FILES
/usr/ucb/apply

SEE ALSO
csh(l), ksh(1), sh(1), xargs(l).

BUGS

1

Shell metacharacters in command may have bizarre effects; it is
best to enclose complicated commands in single quotes ' .
There is no way to pass a literal % 2 if % is the argument expansion
character.

February, 1990
RevisionC

apropos(l) apropos(l)

NAME
apropos -locate commands by keyword lookup

SYNOPSIS
apropos keyword . ..

DESCRIPTION
apropos shows which online manual sections contain in their ti­
tle instances of any of the given keywords. Each keyword is con­
sidered separately and the case of letters is ignored. Words that
are part of other words are considered; thus, looking for "com­
pile" will hit all instances of "compiler" also.

EXAMPLES
Try running the following two commands.

apropos password
apropos editor

If a resulting output line starts with a string of the form
name (section), then you can run the command

man section name

to get the on-line documentation for it. For instance, try

apropos format

and then

man 3s printf

to get the manual on the subroutine printf.

FILES
/usr/ucb/apropos
/usr/lib/whatis

SEE ALSO
man(I), whatis(l).

February, 1990
Revision C

data base

1

ar(1) ar(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [clsuv] [abi posname] afile name ...

DESCRIPTION
ar maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link
editor, though it can be used for any similar purpose.

When a r creates an archive, it creates headers in a format that is
portable across all machines. The portable archive format and
structure are described in detail in ar(4). The archive symbol
table (described in ar(4)) is used by the link editor (ld(1)) to ef­
fect multiple passes over libraries of object files in an efficient
manner. Whenever the ar(1) command is used to create or up­
date the contents of an archive, the symbol table is rebuilt. The
symbol table can be forcibly rebuilt by the s option, described
later in this section.

key is one character from the set dmpqrtx. Optionally, key may
be concatenated with one or more of the letters in the group
clsuv or in the group abi.

afile is the archive file.

The names are constituent files in the archive file.

The meanings of the key characters are:

d Deletes the named files from the archive file.

m Moves the named files to the end of the archive. If a posi­
tioning character is present, then the posname argument must
be present and, as in the r key character, specifies where the
files are to be moved.

p Prints the named files in the archive.

q Quickly appends the named files to the end of the archive
file. Optional positioning characters are invalid. The q com­
mand does not check whether the added members are already
in the archive and is useful only to avoid quadratic behavior
when creating a large archive piece-by-piece.

r Replaces the named files in the archive file; that is, if the
named file is not already included in the archive file, then it
will be placed into the archive. New files are placed at the

1 February, 1990
RevisionC

ar(1) ar(1)

end of the archive, unless the default positioning is overrid­
den by the specification of an optional positioning character
from the set abi. The meaning of these positional characters
is as follows:

a posname
Places the named file or files after posname.

b posname
Places the named file or files before posname.

i posname
Inserts the named file or files before posname. This is
identical to the b positioning character.

t Prints a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

x Extracts the named files. If no names are given, all files in
the archive are extracted. In either case, x does not alter the
archive file.

Any of the flags clsuv may be included in addition to a key
letter. These flags have the following meaning.

c Create. Normally a r creates afile when it needs to. The
create flag option suppresses the normal message that is pro­
duced when afile is created.

1 Local. Normally ar places its temporary files in the directo­
ry / tmp. This flag option causes them to be placed in the lo­
cal directory.

s Symbol table creation. Forces the regeneration of the archive
symbol table even if ar(1) is not invoked with a command
which will modify the archive contents. This command is
useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

u Update. When used in conjunction with the r key letter, only
those files whose modification dates are more recent than the
modification date of the named archive afile are replaced in
the archive.

v Verbose. Under the verbose flag option, ar gives a file-by­
file description of the making of a new archive file from the
old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When

February, 1990
Revision C

2

ar(1) ar(1)

used with x, it precedes each file with a name.

EXAMPLES
The command

ar rc libfoo.a foo.o

creates an archive file containing the object code foo. o.

ar r libfoo.a bar.o

adds the binary file bar. 0 to the end of the archive libfoo. a.

ar ru libfoo.a *.0

replaces in the archive file libfoo. a any object modules in the
current directory that were modified after the most recent
modification of the archive file itself.

ar rb bar.o libfoo.a new.o

inserts the object file new. 0 into the archive libfoo. a before
the already archived object file bar. o.

FILES
/bin/ar
/tmp/ ar* temporary files

SEE ALSO
Id(1), 10rder(1), strip(1), tar(1), a. out(4), ar(4).

BUGS

3

If the same file is mentioned twice in an argument list, it may be
put in the archive twice.

February, 1990
Revision C

as(l) as(l)

NAME
as - common assembler

SYNOPSIS
as [-m] [-n] [-0 objfile] [-R] [-v]filename

DESCRIPTION
The a s command assembles filename. The following flags may
be specified in any order.

-0 objfile Put the output of assembly in objfile. By default, the
output filename is formed by removing the . s suffix,
if there is one, from the input filename and appending
a .0 suffix.

-n Turn off long/short address optimization. By default,
address optimization takes place.

-m Run the m4 macro pre-processor on the input to the as­
sembler.

-R Remove (unlink) the input file after assembly is com­
pleted. This flag option is off by default.

-v Write the version number of the assembler being run
on the standard error output.

FILES
/bin/as
/ u s r / tmp / a s [1-6] XXXXXX temporary files

SEE ALSO
adb(I), Id(l), m4(l), nm(l), strip(l), a. out(4).
"as Reference" in AIUX Programming Languages and Tools,
Volume 1.

WARNINGS
If the -m flag option is used, keywords for m4 cannot be used as
symbols (variables, functions, labels) in the input file because m4
cannot determine which are assembler symbols and which are real
m4 macros (see m4(l)).

BUGS
Arithmetic expressions are permitted to have only one forward
referenced symbol per expression.

February, 1990
Revision C

1

asa(l) asa(l)

NAME
a s a - interpret ASA carriage control characters

SYNOPSIS
asa rfile ...]

DESCRIPTION
asa interprets the output of Fortran programs that utilize ASA
carriage control characters. It processes either the files whose
names are given as arguments or the standard input if no file
names are supplied. The first character of each line is assumed to
be a control character; their meanings are:

(blank) single newline before printing

o double newline before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated
as if they began with The first character of a line
is not printed. If any such lines appear, an appropriate diagnos­
tic will appear on standard error. This program forces the first line
of each input file to start on a new page.

EXAMPLES
To correctly view the output of Fortran programs which use ASA
carriage control characters, asa could be used as a filter, thus:

a.out I asa I lp

and the output, properly formatted and paginated, would be direct­
ed to the line printer. Fortran output sent to a file could be viewed
by:

asa file

FILES
/bin/asa

SEE ALSO
efl(I), f77(1), fpr(I), fsplit(I).

1 February, 1990
RevisionC

ate I) at(l)

NAME
at, ba t ch - execute commands at a later time

SYNOPSIS
at time [date] [+increment]
at -1 Uob ...]
at -rjob .. .
batch

DESCRIPTION
at and batch read commands from standard input to be execut­
ed at a later time. a t allows you to specify when the commands
should be executed, while jobs queued with batch will execute
when system load level penn its. at -r removes jobs previously
scheduled with at. The -1 flag option reports all jobs scheduled
for the invoking user.

Standard output and standard error output are mailed to the user
via mail(l) unless they are redirected elsewhere. The shell en­
vironment variables, current directory, umask, and ulimit are re­
tained when the commands are executed. Open file descriptors,
traps, and priority are lost

Users are pennitted to use at if their name appears in the file
/usr/lib/cron/at. allow. If that file does not exist, the
file /usr/lib/cron/at . deny is checked to detennine if the
user should be denied access to at. If neither file exists, only root
is allowed to submit a job. The allow/deny files consist of one
user name per line.

The time may be specified as 1, 2, or 4 digits. One and two digit
numbers are taken to be hours, four digits to be hours and minutes.
The time may alternately be specified as two numbers separated
by a colon, meaning hour:minUle. A suffix am or pm may be ap­
pended; otherwise a 24-hour clock time is understood. The suffix
zul u may be used to indicate GMT. The special names noon,
midnight, now, and next are also recognized.

An optional date may be specified as either a month name fol­
lowed by a day number (and possibly year number preceded by an
optional comma) or a day of the week (fully spelled or abbreviat­
ed to three characters). Two special days, today and tomor­
row are recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and tomorrow is as­
sumed if it is less. If the given month is less than the current
month (and no year is given), next year is assumed.

February, 1990 1
Revision C

at(l) at(l)

The optional increment is simply a number suffixed by one of the
following: minutes, hours, days, weeks, months, or
years. (The singular fonn is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to stan­
dard error.

batch submits a batch job. It is similar to at now, but goes
into a different queue, and will respond more promptly with any
error messages.

at -r removes jobs previously scheduled by at or batch. The
job number is the number given to you previously by the at or
batch command. You can also get job numbers by typing at
-1. You can remove only your own jobs unless you are the su­
peruser.

EXAMPLES

2

The at and batch commands read from standard input the com­
mands to be executed at a later time. sh(l) provides different
ways of specifying standard input. Within your commands, it may
be useful to redirect standard output.

This sequence can be used at a tennina1:

batch
nroff filename > outJzle
Cm ... 'TRoL-d

This sequence, which demonstrates redirecting standard error to a
pipe, is useful in a shell procedure (the sequence of output redirec­
tion specifications is significant):

batch «!
nroff filename 2>& 1 > outfile I mail loginid ,

To have a job reschedule itself, invoke at from within the shell
procedure, by including code similar to the following within the
shell file:

echo "sh shellfile" I at 1900 thursday next week

February, 1990
Revision C

at(l) at(l)

If the machine is down at the scheduled time, the job is not run.

FILES
/usr/bin/at
/usr/bin/batch
/usr/lib/atrun executor

cron(lM)
(run by

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/lib/cron/queuedefs
/usr/spool/cron/atjobs

SEE ALSO

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

crontab(1), kill(1), mail(1), nice(1), ps(l), sh(1),
cron(1M).

DIAGNOSTICS
Complaints about various syntax errors and times out of range.

February, 1990
Revision C

3

atlookup(l) atlookup(1)

NAME
atlookup -look up network visible entities (NVEs) registered
on the AppleTalk internet

SYNOPSIS
atlookup [-d] [-r nn] [-5 nn] [-x] [object[:type[@zone]]]

atlookup -z [-C]

DESCRIPTION
The atlookup command uses the Name Binding Protocol
(NBP) to look up names and addresses of the specified NVEs.

The default is to look up all the entities (of all types) in the current
zone. Specifying the object. type. or zone on the command line
changes the scope of lookup. The command line arguments and
parameters are

-d Print network address using decimal numbers.

-r nn Retry lookup mi times. The default is to try the look-

-5 nn

-x

object

type

zone

-z

up eight times.

Retry lookup every nn seconds. The default is to
space retries one second apart

Print the 8-bit ASCII characters on output as hexade­
cimal numbers of the form \XX (where X is a hex di­
git). This is useful when you are using a terminal oth­
er than the A/UX system console.

Name of the object to be looked up.

Type of the object to be looked up.

Zone in which the lookup is to be performed. You can
use an asterisk instead of a specific zone name to indi­
cate the current zone name. If you don't specify a
wne name, the current zone is the default.

Lists all zones in the internet.

-C Prints zones in multiple columns.

The object and type arguments may contain wildcard characters.
The symbol '=' indicates a wildcard lookup. For wildcard lookups
to work correctly with all nodes any wildcard character specified
must be the only character in the string. However, AppleTalk
Phase 2 nodes also honor a single embedded wildcard character
'='. Under this scheme one wildcard character may appear any­
where in the string and may match zero or more characters. Note,

February, 1990
Revision C

atlookup(l) atlookup(1)

however, that although an embedded '=' is acceptable in object
and type arguements of atlookup, only the nodes implementing
AppleTalk Phase 2 protocols respond to such a query. Hence the
list of NVEs obtained may be incomplete.

Information about the NVEs is displayed in a table format, one
line per NVE, containing the object, type, and zone names, and the
network, node, and socket numbers.

EXAMPLES
This command looks up all NVEs registered on the local Ap­
pleTalk zone:

atlookup

In response the system displays output similar to this:

Found S entries in zone My-Zone
6bSb.c3.ea 3-Eyed Monster:LaserWriter
6bSb.80.fd 3-Eyed Monster Spooler:LaserWriter
6b14.84.ea Incognito :LaserWriter
6b19.a3.fd Light of Day:AFPServer
6bSl.27.fd Nets-R-Us Spooler:LaserWriter

In an Extended AppleTalk network the command

atlookup L=y:=

displays all NVEs (of any type) in the current zone that have
names starting with an L and ending in a y. For example, the out­
put might be similar to this:

Found 1 entries in zone My-Zone
6b19.a3.fd Light of Day:AFPServer

FILES
/usr/bin/atlookup

SEE ALSO
at_ choyrn(I), atprint(I). atstatus(I); Inside Ap­
pleTalk.

February, 1990
Revision C

2

atprint(l) atprint(l)

NAME
atprint - copy data to a remote PAP server

SYNOPSIS
atprint [object[:type[@zone]]]

DESCRIPTION
The at p r in t command opens a Printer Access Protocol (PAP)
AppleTalk connection to a remote PAP server, such as a Laser­
Writer, and then copies its standard input to the remote server un­
til it reaches an end-of-file. You can use this command to send
"raw" PostScript code to a LaserWriter or to send ASCII text to
an ImageWriter. (This command won't engage in a dialog with a
LaserWriter about fonts or load PostScript header files in the same
manner as a Macintosh Operating System does.)

The destination PAP server is chosen as follows: If you specify a
PAP server using object, type, and zone fields on the command
line, the system uses that PAP server. Otherwise, atprint goes
by default to the system wide default printer set via the Macintosh
Toolbox Chooser or the at_choyrn(l) utility.

If the atprint command succeeds in establishing a connection
with the server, it sends its input there. If you specify only the
name, object, of the printer and leave out the type, atprint uses
LaserWriter by default. An asterisk for zone indicates the lo­
cal zone.

The atprint command outputs a message indicating which
server it is connected to before it transfers data.

EXAMPLES
This command preprocesses the file and then pipes the PostScript
output to joe's printer:

enscript -p- filename I atprint "joe's printer"

WARNINGS
The atprint command does not interpret contents of input files.
To print properly on a PostScript printer, ASCII files must be
preprocessed through pstext(l) or enscript(I), and
troff-formatted files must be pre-processed through psdi t(I).

FILES
/usr/bin/atprint

1 February, 1990
Revision C

atprint(1) atprint(l)

SEE ALSO
at_choyrn(1). atlookup(1). atstatus(1). en­
script(1). psdi t(1); pstext(l). Inside AppleTalk; Inside
PostScriptlLaserWriter; "AppleTalk Programming Guide." in
AIUX Network Applications Programming; "Installing and Ad­
ministering AppleTalk." in AIUX Network System Administration.

February. 1990
Revision C

2

atstatus(l) atstatus(l)

NAME
at status - display status from a PAP server

SYNOPSIS
at status [object[:type[@zone]]]

DESCRIPfION
at status gets the status string from an AppleTalk Printer Ac­
cess Protocol (PAP) server, such as a LaserWriter. The command
parameters are

object The name of the PAP server. Wildcards are not per­
mitted. If you don't specify the PAP server,
atstatus uses the system default. If the name con­
tains spaces, put quotes around the name. Here is an
example:

atstatus "Sharon's Print Shop"

type The type of the server. If you don't specify the type,
the default is Laserwri ter. If you specify a zone,
you must specify a type.

zone The zone of the PAP server. If you don't specify the
zone, the system defaults to *, your local zone.

FILES
/usr/bin/atstatus

SEE ALSO

1

at_choyrn(I), atlookup(I), atprint(I),
Inside AppleTalk.

February, 1990
RevisionC

NAME
at_choyrn - choose a default printer on the AppleTalk®
internet

SYNOPSIS
at_choyrn [type[@zone]]

DESCRIPTION
The at_choyrn command displays a list of printer selections
and saves the name of the printer that you select. The
at _ cho yrn command checks the network to determine which
printers are registered on that network. If you don't enter the zone
part of the argument on the command line, at _ cho yrn lists all
the zones in the internet and prompts you to choose the zone in
which you'd like to select your default printer.

Mter you specify the zone, at_choyrn lists the printers (of
type type) available in that zone. If you don't use the type argu­
ment on the command line, at_choyrn displays all entities of
the types LaserWriter and ImageWriter. The system
prompts you to select a printer by entering the appropriate number
from the printer list display.

EXAMPLES
The command

at_choyrn 'LaserWriter@*'

produces output similar to this:

ITEM NET-ADDR OBJECT : TYPE
1: 56bf.af.fc AnnLW:LaserWriter
2: 56bf.ac.cc TimLW:LaserWriter

ITEM number (0 to make no selection)?

NET-ADDR is the AppleTalk internet address of the printer's
listener socket, printed in hexadecimal.

OBJECT: TYPE is the name of the registered printer and its type.

FILES
/usr/bin/at_cho-prn

SEE ALSO
atlookup(l), atprint(l), atstatus(I); Inside AppleTalk;
"Installing and Administering AppleTalk," in AIUX Network Sys­
temAdministration; "AppleTalk Programming Guide," inAIUX
Network Applications Programming.

February, 1990
Revision C

1

at_server(l)

NAME
at _ serve r - a generic Printer Access Protocol (PAP) server

SYNOPSIS
at_server -c command -0 object [-t type]

DESCRIPTION
The at server server is a simple generic PAP server. It opens
a PAP server AppleTalk® socket and registers itself on the local
server with the name

object: type@ *
When an incoming PAP request is received, at_server forks a
process to read the data from the remote client and executes a
command from the command parameter. Incoming data from the
server is written to a pipe that can be read by the command as
standard input. Note that the server is "one-way"; it only reads
from the remote client. It does not engage in a dialogue with a
client in the same manner that a LaserWriter does with the Macin­
tosh® Operating System.

The parameters that at_server takes are

command A shell command to be executed when an incoming
connection is requested.

object The object name of the server; this is required and
must not be a wildcard (=).

type The type name of the server (this is optional). If type
is omitted, it defaults to Laserwri ter. Wildcards
are not permitted.

EXAMPLES

1

at server -c 'lp -dfalls -s' -0 lori -t LaserWriter &

creates a PAP server of type LaserWriter called lori that
will accept incoming PAP requests from the network. Each re­
quest will have its data spooled locally by lp for printing on
printer falls.

at_printer -0 lori -t LaserWriter < x.list

sends x . lis t to this server to be printed.
at_printer -0 = -t LaserWriter < x.list

sends x .list to any available LaserWriter printer.

February, 1990
RevisionC

FILES
lusr/bin/at_server

SEE ALSO
at_choyrn(1), at_nvelkup(l), atyrinter(1),
at_status(l); Inside AppleTalk.

February, 1990
Revision C

2

awk(l} awk(l}

NAME
a w k - pattern scanning and processing language

SYNOPSIS
awk [-f file ...] [-FC] [prog] [parameters] [file ...]

DESCRIYfION

1

awk scans each input file for lines that match any of a set of pat­
terns specified in prog. With each pattern in prog there can be an
associated action that will be performed when a line of a file
matches the pattern. The set of patterns may appear literally as
prog, or in a file specified as -f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

parameters, in the form x=... y= ... etc., may be passed to
awk.

Files are read in order; if there are no files, the standard input is
read. The filename - means the standard input. Each line is
matched against the pattern portion of every pattern-action state­
ment; the associated action is performed..for each matched pattern.

An input line is made up of fields separated by white space. (This
default can be changed by using FS; see below). The fields are
denoted $1, $ 2, ... ; the variable $ 0 refers to the entire line.

A pattern-action statement has the form:

pattern {action }

A missing action means print the line; a missing pattern always
matches. An action is a sequence of statements. A statement can
be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression
printf format [, expression-list] [>expression
next
exit

February, 1990
RevisionC

awk(1) awk(l)

Statements are terminated by semicolons, newlines, or right
braces. An empty expression-list stands for the whole line. Ex­
pressions take on string or numeric values as appropriate, and are
built using the operators +, -, *, /, %, and concatenation (indicat­
ed by a blank). The C operators ++, -, +=, -=, *=, / =, and %=
are also available in expressions. Variables may be scalars, array
elements (denoted x [i]) or fields. Variables are initialized to the
null string. Array subscripts may be any string, not necessarily
numeric; this allows for a form of associative memory. String
constants are quoted (It).

The print statement prints its arguments on the standard output
(or on a file if >expr is present), separated by the current output
field separator, and terminated by the output record separator. The
printf statement formats its expression list according to the for­
mat specified (see printf(3S)).

The built-in function length returns the length of its argument
taken as a string, or of the whole line if no argument. There are
also built-in functions exp, log, sqrt, and into The last trun­
cates its argument to an integer; substr (s ,m ,n) returns the n­
character substring of s that begins at position m. The function
sprintf ifmt ,expr ,expr , ...) formats the expressions according
to the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, I I, & &, and
parentheses) of regular expressions and relational expressions.
Regular expressions must be surrounded by slashes and are as in
egrep (see grep(I)). Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in re­
lational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next oc­
currence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a
matchop is either - (for contains) or ! - (for does not contain). A
conditional is an arithmetic expression, a relational expression, or
a Boolean combination of these.

February, 1990
Revision C

2

awk(l) awk(l)

The special patterns BEGIN and END may be used to capture con­
trol before the first input line is read and after the last. BEGIN
must be the first pattern, END the last.

A single character e may be used to separate the fields by starting
the program with:

BEGIN { FS = e }

or by using the -Fe flag option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal number of
the current record; FILENAME, the name of the current input file;
OFS, the output field separator (default blank); ORS, the output
record separator (default newline); and OFMT, the output format
for numbers (default % • 6g).

EXAMPLES
The command

awk "length > 72" filea

prints lines longer than 72 characters on the standard output.

awk 'f print $2, $1 }' filea

prints the first two fields of each line in opposite order.

awk '{ s += $1 }
END {print "sum is", s,

"average is", s/NR I' filea

adds up the first column and prints the sum and average.

awk '{ for (i = NF; i > 0; --i)
print $i I' filea

prints all the fields of each line in reverse order. The output prints
one field per line.

awk "/start/, /stop/" filea

prints all lines between start/stop pattern pairs, for every such pair
in the file.

FILES
/usr/bin/awk

3 February, 1990
Revision C

awk(l) awk(1)

SEE ALSO
grep(I), lex(I), sed(l).
"awk Reference" in A/UX Programming Languages and Tools,
Volume 2.

BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings.
To force an expression to be treated as a nwnber add 0 to it; to
force it to be treated as a string, concatenate the null string (n n) to
it.

February, 1990
Revision C

4

banner(1) banner(1)

NAME
banner - generate a poster

SYNOPSIS
banne r string . ..

DESCRIPTION
banner generates its arguments (each up to 10 characters long)
in large letters on the standard output.

EXAMPLES
banner asa

will cause the characters "a", "s" and "a" to be displayed as
large letters on the screen.

FILES
/usr/bin/banner

SEE ALSO
banner7(1), echo(l).

1 February, 1990
Revision C

banner7(1) banner7(1)

NAME
banner7 - generate a large banner

SYNOPSIS
banner7 [-w[n]] [message ...]

DESCRIPTION
banner7 generates a large, high-quality banner on the standard
output. If message is omitted, banner7 prompts for and reads
one line of its standard input If -w is given, the output is
scrunched down from a width of 132 columns to n columns, suit­
able for a narrow tenninal. If n is omitted, the output defaults to
80 columns.

The output should be printed on a hard-copy device, up to 132
columns wide, with no breaks between the pages. The volume is
enough that you want a printer or a fast hard-copy tenninal.

BUGS
Several ASCII characters are not defined, notably <, >, [,] , \, ~ ,
_, {, }, I, and -. Also, the characters ", " and & are funny
looking (but in a useful way.)

The -w flag option is implemented by skipping some rows and
columns. The smaller it gets, the grainier the output Sometimes
letters run together.

FILES
/usr/bin/banner7

SEE ALSO
banner(l), echo(l).

February, 1990
Revision C

1

basename(l) basename(l)

NAME
basename t dirname - isolate substrings within a path name
argument

SYNOPSIS
basename string [suffix]
di rname string

DESCRIPTION
basename deletes any prefix ending in / and the sUffix (if
present in string) from string t and prints the result on the standard
output. It is normally used inside substitution marks (, ') within
shell procedures.

di rname delivers all but the last level of the pathname in string.

EXAMPLES
Invoked with the argument / us r / S rc / cmd/ ca t . C t

cc $1
mv a.out 'basename $1 ' .c' ,

compiles the named file and moves the output to a file named cat
in the current directory.

NAME='dirname /usr/src/cmd/cat.c'

sets the Bourne shell variable NAME to / us r / s rc / cmd.

FILES
/bin/basename
/bin/dirname

SEE ALSO
sh(1).

BUGS
The basename of / is null and is considered an error.

1 Februaryt 1990
Revision C

batch(l)

February, 1990
Revision C

See at(l)

batch(l)

1

be(l) be(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e] [-1] [file ...]

DESCRIPTION

1

be is an interactive processor for a language that resembles C but
provides unlimited precision arithmetic. It takes input from any
files given, then reads the standard input. The -1 argument stands
for the name of an arbitrary precision math library. The syntax for
be programs is as follows: L means letter a-z; E means expres­
sion; S means statement.

Comments
are enclosed in / * and * / .

Names
simple variables: L
array elements: L [E]
The words ibase, abase, and seale

Other operands
arbitrarily long numbers with optional sign and decimal
point.
(E)

sqrt(E)
length (E) number of significant decimal di-
gits
seale (E) number of digits right of decimal point
L (E, ... ,E)

Operators
+ - * / % A (% is remainder; A is power)
++ (prefix and postfix; apply to names)
== <= >= != < >
= =+ =_ =* =/ =% =A

Statements
E
{ S; ... ; S }
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break

February, 1990
Revision C

be(l)

quit

Function definitions
define L (L , ... , L) {

autoL, ... ,L
S; ... S
return (E)

Functions in -1 math library
sex) sine
e(x) cosine
e(x) exponential
1 (x) log
a (x) arctangent
j(n.x) Bessel function

All function arguments are passed by value.

be(l)

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines
may separate statements. Assignment to seale influences the
number of digits to be retained on arithmetic operations in the
manner of dee!). Assignments to ibase or obase set the input
and output number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simultaneously. All variables are global to the program.
aut 0 variables are pushed down during function calls. When us­
ing arrays as function arguments or defining them as automatic
variables empty square brackets must follow the array name.

be is actually a preprocessor for de(l), which it invokes automat­
ically, unless the -e (compile only) flag option is present In this
case the de input is sent to the standard output instead.

EXAMPLES
seale = 20
define e (x) {

auto a, b, e, i, s
a 1
b = 1
s = 1
for(i=l; 1==1; i++) {

a a*x

February, 1990
Revision C

b = b*i

2

be(l)

e = alb
if(e == 0) return(s)
s = s+e

be(l)

defines a function to compute an approximate value of the e;x­
ponential function and

for(i=l; i<=10; i++) e(i)

prints approximate values of the exponential function of the first
ten integers.

FILES
lusr/lib/be
I us r I 1 ib I 1 ib . b mathematical library
/usr Ibin/ de desk calculator proper

SEE ALSO
de(l).
"be Reference" in AIUX Programming Languages and Tools,
Volume 2.

BUGS
No & & or I I yet.

for statement must have all three E's.

qui t is interpreted when read, not when executed.

3 February, 1990
Revision C

bdiff(1) bdiff(1)

NAME
bdi f f - di f f large files

SYNOPSIS
bdifffilel file2 [n] [-s]

DESCRIPTION
bdiff allows processing of file which are too large for diff(1),
and is used in an analogous manner to find which lines must be
changed in two files to bring them into agreement. bdiff ig­
nores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes di f f
upon corresponding segments. The value of n is 3500 by default.
If the optional third argument is given, and it is numeric, it is used
as the value for n. This is useful in those cases in which 3500-line
segments are too large for di f f, causing it to fail. If filel (file2)
is -, the standard input is read. The optional-s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note,
however, that this does not suppress possible exclamations by
di f f). If both optional arguments are specified, they must appear
in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers
adjusted to account for the segmenting of the files (that is, to make
it look as if the files had been processed whole). Note that be­
cause of the segmenting of the files, bdiff does not necessarily
find a smallest sufficient set of file differences.

EXAMPLES
bdiff file1 file2

where file1 and file2 are two versions of the manual text for
the cp command, produces:

22c22
< .IR sh (1)

> .IR sh (1)
35c35
< . IR chrnod (2)

> . IR chrnod (2)

50a51,56
> .SH EXAMPLES
> .IP
> cp alpha beta gamma /users/john

February, 1990
Revision C

1

bdiff(l) bdiff(l)

> .PP
> places copies of the 3 files in directory
> .BR /users/john

FILES
/usr/bin/bdiff

SEE ALSO
diff(l), diff3(1), sdiff(l).

2 February, 1990
Revision C

bfs(1) bfs(1)

NAME
b f s - big file scanner

SYNOPSIS
bfs [-]filename

DESCRIPTION
bfs is a read-only editor that can process much larger files than
standard editors. Files may be up to 1024K bytes (the maximum
possible size) and 32K lines, with up to 512 characters, including
newline, per line (255 for 16-bit machines). bfs is usually more
efficient than ed(1) for scanning a file, since the file is not copied
to a buffer. It is most useful for identifying sections of a large file
where cspli t(1) may be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as is the
size of any file written with the w command. The optional -
suppresses printing of sizes. Input is prompted with * if P RE­
TURN are typed as in ed. Prompting can be turned off again by
entering another P RETURN. Note that messages are given in
response to errors if prompting is turned on.

All address expressions described under ed(1) are supported. In
addition, regular expressions may be surrounded with two sym­
bols besides / and ?: > indicates downward search without
wrap-around, and < indicates upward search without wrap-around.
There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, P, p, q, w, =, ! and null commands operate as
described under ed(1). Commands such as ---, +++-, +++=,
-12, and +4p are accepted. Note that 1,1 Op and 1,10 will
both print the first ten lines. The f command only prints the name
of the file being scanned; there is no remembered filename. The W

command is independent of output diversion, truncation, or
crunching (see the xc, xt and xc commands, below). The fol­
lowing additional commands are available:

xf file

February, 1990
Revision C

Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is re­
ceived or an error occurs, reading resumes with the file
containing the x f. The x f commands may be nested
to a depth of 10.

1

bfs(l)

2

bfs(l)

xn List the marks currently in use (marks are set by the k
command).

xo [file]
Further output from the p and null commands is divert­
ed to the named file, which, if necessary, is created
mode 666. If file is missing, output is diverted to the
standard output Note that each diversion causes trun­
cation or creation of the file.

: label
This positions a label in a command file. The label is
terminated by newline, and blanks between the: and
the start of the label are ignored. This command may
also be used to insert comments into a command file,
since labels need not be referenced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label
if the command succeeds. It fails under any of the fol­
lowing conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one
line in the specified range, including the first and
last lines.

On success, . is set to the line matched and a jump is
made to label. This command is the only one that does
not issue an error message on bad addresses, so it may
be used to test whether addresses are bad before other
commands are executed. Note that the command:

xb/ A / label

is an unconditional jump.
The xb command is allowed only if it is read from
someplace other than a terminal. If it is read from a
pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to at
most number characters. The initial number is 255.

February, 1990
RevisionC

bfs(l) bfs(l)

xv[digit] [spaces] [value]
The variable name is the specified digit following the
xv. xv5100 or xv5 100 both assign the value 100
to the variable 5. xv61, lOOp assigns the value
1, lOOp to the variable 6. To reference a variable, put
a % in front of the variable name. For example, using
the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would search globally for the characters 100 and print
each line containing a match. To escape the special
meaning of %, a \ must precede it.

g/".*\%[cds]/p

could be used to match and list lines contammg
printf of characters, decimal integers, or strings.
Another feature of the xv command is that the first line
of output from a A/UX system command can be stored
into a variable. The only requirement is that the first
character of value be an !. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 6 by one. To escape the special
meaning of ! as the first character of value, precede it
with a \.

xv7date

stores the value! date into variable 7.

xbz label

xbn label
These two commands will test the last saved return
code from the execution of a A/UX system command

February, 1990
Revision C

3

bfs(I) bfs(1)

(! command) or nonzero value, respectively, to the
specified label. The two examples below both search
for the next five lines containing the string si ze:

xc [switch]

xv55
: 1
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn 1
xv45
: 1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz 1

If switch is 1, output from the p and null commands is
crunched; if switch is 0, it is not. Without an argument,
xc reverses switch. Initially switch is set for no crunch­
ing. Crunched output has strings of tabs and blanks re­
duced to one blank and blank lines suppressed.

EXAMPLES
bfs text

will invoke bfs with the file named text.

FILES
/bin/bfs

SEE ALSO
cspli t(I), ed(I), regcmp(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self­
explanatory error messages when prompting is on.

4 February, 1990
RevisionC

biff(l) biff(l)

NAME
biff - be notified if mail arrives and who it is from

SYNOPSIS
biff [choice]

DESCRIYfION
biff informs the system whether you want to be notified when
mail arrives during the current terminal session. choice can be ei­
ther y or n (yes or no) so the command

biff y

enables notification; the command:

biff n

disables it. With no argument, biff prints the current
notification states. When mail notification is enabled, the header
and first few lines of the message will be printed on your screen
whenever mail arrives. A biff Y command is often included in
the file . login or . profile to be executed at each login.

biff operates asynchronously. For synchronous notification use
the MAIL variable of sh(l), csh(I), or ksh(I).

FILES
/usr/ucb/biff

SEE ALSO
csh(I), ksh(l) sh(l), mail(I).

February, 1990
Revision C

1

bs(l) bs(l)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION

1

bs is a remote descendant of BASIC and SNOBOIA, with a little
C language thrown in. bs is designed for programming tasks
where program development time is as important as the resulting
speed of execution. Formalities of data declaration and
file/process manipulation are minimized. Line-at-a-time debug­
ging, the trace and dump statements, and useful run time error
messages all simplify program testing. Furthermore, incomplete
programs can be debugged; inner functions can be tested before
outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for
input before the console is read. By default, statements read from
the file argument are compiled for later execution. Likewise,
statements entered from the console are normally executed im­
mediately (see compile and execute below). Unless the final
operation is an assignment, the result of an immediate expression
statement is printed.

bs programs are made up of input lines. If the last character on a
line is a \, the line is continued. bs accepts lines of the following
form:

statement
label statement

A label is a name (see Expression Syntax later in this section) fol­
lowed by a colon. A label and a variable may have the same
name.

A bs statement is either an expression or a keyword followed by
zero or more expressions. Some keywords (clear, compile,
! , execute, include, ibase, abase, and run) are always
executed as they are compiled.

Statement Syntax
expression

The expression is executed for its side effects (value, assign­
ment or function call). See Expression Syntax for details
about expressions. Descriptions of statement types are as fol­
lows:

February, 1990
RevisionC

bs(l) bs(l)

break
break exits from the innennost for/while loop.

clear
Clears the symbol table and compiled statements. clear is
executed immediately.

compile [expression]
Succeeding statements are compiled (overriding the immediate
execution default). The optional expression is evaluated and
used as a filename for further input A clear is associated
with this latter case. compile is executed immediately.

continue
continue transfers to the loop-continuation of the current
for/while loop.

dump [name]
The name and current value of every nonlocal variable is
printed. Optionally, only the named variable is reported.
After an error or interrupt, the number of the last statement
and (possibly) the user-function trace are displayed.

exi t [expression]
Return to system level. The expression is returned as process
status.

execute
Change to immediate execution mode (an interrupt has a simi­
lar effect). This statement does not cause stored statements to
execute (see run later in this section).

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first
fonn) or a group of statements (second fonn) under control of
a named variable. The variable takes on the value of the first
expression, then is incremented by one on each loop, not to
exceed the value of the second expression. The third and
fourth fonns require three expressions separated by commas.

February, 1990
Revision C

2

bs(l) bs(l)

3

The first of these is the initialization, the second is the test
(true to continue), and the third is the loop-continuation action
(normally an increment).

fun f([a, ...]) [v, ...]

nuf
fun defines the function name, arguments, and local variables
for a user-written function. Up to ten arguments and local
variables are allowed. Such names cannot be arrays, nor can
they be I/O associated. Function definitions may not be nest­
ed.

fret urn
A way to signal the failure of a user-written function. See the
interrogation operator (?), later in this section. If interrogation
is not present, fret urn merely returns zero. When interro­
gation is active, freturn transfers to that expression (possi­
bly by-passing intermediate function returns).

goto name
Control is passed to the internally-stored statement with the
matching label.

ibaseN
ibase sets the input base (radix) to N. The only supported
values for N are 8, 10 (the default), and 16. Hexadecimal
values 10-15 are entered as a-f. A leading digit is required
(that is, fOa must be entered as OfOa). ibase (and obase
later in this section) are executed immediately.

if expression statement
if expression

[else
...]

fi
The statement (first form) or group of statements (second
form) is executed if the expression evaluates to nonzero. The
strings 0 and Itlt (null) evaluate as zero. In the second form, an
optional else allows for a group of statements to be executed
when the first group is not The only statement permitted on
the same line with an else is an if; only other fi's can be
on the same line with a fi. The elision of else and if into
an elif is supported. Only a single fi is required to close an

February, 1990
Revision C

bs(l) bs(l)

if ... elif ... [else ... J sequence.

include expression
The expression must evaluate to a filename. The file must
contain bs source statements. Such statements become part of
the program being compiled. incl ude statements may not
be nested.

obaseN
obase sets the output base to N (see ibase earlier in this
section).

onintr label
onintr

The onintr command provides program control of inter­
rupts. In the first form, control will pass to the label given, just
as if a goto had been executed at the time onintr was exe­
cuted. The effect of the statement is cleared after each inter­
rupt. In the second form, an interrupt will cause bs to ter­
minate.

return [expression]
The expression is evaluated and the result is passed back as
the value of a function call. If no expression is given, zero is
returned.

run
The random number generator is reset. Control is passed to
the first internal statement If the run statement is contained
in a file, it should be the last statement.

stop
Execution of internal statements is stopped. bs reverts to im­
mediate mode.

trace [expression]
The trace statement controls function tracing. If the expres­
sion is null (or evaluates to zero), tracing is turned off. Other­
wise, a record of user-function calls/returns will be printed.
Each return decrements the trace expression value.

while expression statement
while expression

next
while is similar to for except that only the conditional ex­
pression for loop-continuation is given.

February, 1990 4
Revision C

bs(1) bs(l)

5

! shell command
An immediate escape to the Shell.

:#: •••
This statement is ignored. It is used to interject commentary in
a program.

Expression Syntax
name

A name is used to specify a variable. Names are composed of
a letter (upper or lowercase), optionally followed by letters
and digits. Only the first six characters of a name are
significant Except for names declared in fun statements, all
names are global to the program. Names can take on numeric
(double float) values, string values, or can be associated with
input/output (see the built-in function open() later in this sec­
tion).

name ([expression[, expression] ...])
Functions may be called by a name followed by the arguments
in parentheses separated by commas. Except for built-in func­
tions (listed later in this section), the name must be defined
with a fun statement. Arguments to functions are passed by
value.

name [expression[,expression] ...]
This syntax is used to reference either arrays or tables (see
built-in table functions later in this section). For arrays,
each expression is truncated to an integer and used as a
specifier for the name. The resulting array reference is syntac­
tically identical to a name; a [1 , 2] is the same as a [1] [2].
The truncated expressions are restricted to values between 0
and 32767.

number
A number is used to represent a constant value. A number is
written in Fortran style, and contains digits, an optional de­
cimal point, and possibly a scale factor consisting of an e fol­
lowed by a possibly-signed exponent

string
Character strings are delimited by "characters. The \ es­
cape character allows the double quote (\ "), newline (\n),
carriage return (\r), backspace (\b), and tab (\ t) characters
to appear in a string. Otherwise, \ stands for itself.

February, 1990
Revision C

bs(l) bs(l)

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a
comma-separated expression from the parenthesized list. List
elements are numbered from the left, starting at zero. The ex­
pression:

(False, True) [a == b]

has the value t rue if the comparison is true.

? expression
The interrogation operator tests for the success of the expres­
sion, rather than its value. At the moment, it is useful for test­
ing for end-of-file (see examples in Programming Tips,
below), the result of the eval built-in function, and for check­
ing the return from user-written functions (see fret urn).
An interrogation trap (end-of-file, and so forth) causes an im­
mediate transfer to the most recent interrogation, possibly
skipping assignment statements or intervening function levels.

- expression
The result is the negation of the expression.

++name
Increments the value of the variable (or array reference). The
result is the new value.

--name
Decrements the value of the variable. The result is the new
value.

! expression
The logical negation of the expression. Watch out for the shell
escape command.

expression operator expression
Common functions of two arguments are abbreviated by the
two arguments separated by an operator denoting the function.
Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before
the function is applied.

February, 1990
Revision C

6

bs(1) bs(1)

Binary Operators
The binary operators are listeds in order of increasing precedence,
as follows:

& I

THe equal sign (=) is the assignment operator. The left
operand must be a name or an array element The result is the
right operand. Assignment binds right to left, all other opera­
tors bind left to right.

Th underscore U is the concatenation operator.

The logical AND character & has result zero if either of its ar­
guments are zero. It has result one if both of its arguments are
nonzero; the logical OR character I has result zero if both of
its arguments are zero. It has result one if either of its argu­
ments is nonzero. Both operators treat a null string as a zero.

< <= > >= == !=
The relational operators « less than, <= less than or equal, >
greater than, >= greater than or equal, == equal to, ! = not
equal to) return one if their arguments are in the specified rela­
tion. They return zero otherwise. Relational operators at the
same level extend as follows: a>b>c is the same as a>b &
b>c. A string comparison is made if both operands are strings.

+ -
Add and subtract.

* / %
Multiply, divide, and remainder.

Exponentiation.

BUILT -IN FUNCTIONS
Dealing with Arguments

7

arg (i)
The value of the ith actual parameter on the current level of
function call. At level zero, arg returns the ith command-line
argument (arg (0) returns bs).

narg ()
Returns the number of arguments passed. At level zero, the
command argument count is returned.

February, 1990
RevisionC

bs(l)

Mathematical
abs (x)

The absolute value of x.

atan (x)

The arctangent of x. Its value is between -rcll and rc/2.

ceil (x)

Returns the smallest integer not less than x.

cos (x)

The cosine of x (radians).

exp (x)

The exponential function of x.

floor (x)

Returns the largest integer not greater than x.

log (x)

The natural logarithm of x.

randO

bs(l)

A unifonnly distributed random number between zero and
one.

sin (x)

The sine of x (radians).

sqrt (x)

The square root of x.

String operations
size (s)

The size (length in bytes) of s is returned.

format (F, a)
Returns the fonnatted value of a. F is assumed to be a fonnat
specification in the style of printf(3S). Only the % ••• f,
% ••• e, and % ••• s types are safe.

index (x, y)

Returns the number of the first position in x that any of the
characters from y matches. No match yields zero.

trans (s,/, t)

Translates characters of the source s from matching characters
in f to a character in the same position in t. Source characters
that do not appear in! are copied to the result. If the string! is
longer than t, source characters that match in the excess por-

February, 1990
RevisionC

8

bs(l) bs(l)

9

tion off do not appear in the result.

substr (s, start, width)
returns the sub-string of s defined by the start position and
width.

match (string, pattern)
mstring (n)

The pattern is similar to the regular expression syntax of the
ed(1) command. The characters ., [,] , *, and $ are special.
The mstring function returns the nth (1 <= n <= 10) sub­
string of the subject that occurred between pairs of the pattern
symbols \ (and \) for the most recent call to match. To
succeed, patterns must match the beginning of the string (as if
all patterns began with *). The function returns the number of
characters matched. For example

match("a123ab123", ".*\([a-z]\)") == 6
mstring(l) == "b"

File Handling
open (name, file, function)
close (name)

The name argument must be a bs variable name (passed as a
string). For the open, the file argument may be either (1) a 0
(zero), 1, or 2, representing standard input, output, or error
output, respectively, (2) a string representing a filename, or (3)
a string beginning with an ! representing a command to be ex­
ecuted (via sh -c). The function argument must be either r
(read), w (write), w (write without newline), or a (append).
Mter a close, the name reverts to being an ordinary variable.
The initial associations are

open ("get", 0, "r")
open ("put", 1, "w")
open ("puterr", 2, "w")

Examples are given in the following section.

access (s, m)

Executes access(2).

ftype (s)

Returns a single character file type indication: f for regular
file, p for FIFO (that is, named pipe), d for directory, b for
block special, or c for character special.

February, 1990
RevisionC

bs(1} bs(1}

Tables
table (name, size)

A table in bs is an associatively accessed, single-dimension
array. Subscripts (called keys) are strings (numbers are con­
verted). The name argument must be a bs variable name
(passed as a string). The size argument sets the minimum
number of elements to be allocated. bs prints an error mes­
sage and stops on table overflow.

i tern (name, i)

key ()
The item function accesses table elements sequentially (in nor­
mal use, there is no orderly progression of key values). Where
the item function accesses values, the key function accesses
the subscript of the previous item call. The name argument
should not be quoted. Since exact table sizes are not defined,
the interrogation operator should be used to detect end-of­
table, for example:

table ("t", 100)

*' If word contains the string "party",
*' the following expression adds one
*' to the count of that word:
++t[word]

*' To print out the the key/value pairs:
for i = 0, ?(s = item (t , i», ++i
if key () put = key () _: _ s

iskey (name, word)
The iskey function tests whether the key word exists in the
table name and returns one for true, zero for false.

Odds and Ends
eval (s)

The string argument is evaluated as a bs expression. The
function is handy for converting numeric strings to numeric
internal form. eval may also be used as a crude form of in­
direction, as in

name = "xyz"
eval{"++" name)

which increments the variable xyz. In addition, eval pre­
ceded by the interrogation operator permits the user to control

February, 1990
Revision C

10

bs(l) bs(l)

bs error conditions. For example,

?eval("open(\"X\", \"xxx\", \"r\")")

returns the value zero if there is no file named xxx (instead of
halting the user's program). The following executes a goto
to the label L (if it exists):

label="L"
if ! (?eval("goto" label)) puterr = "no label"

plot (request, args)

11

The plot function produces output on devices recognized by
tplot(lG). The requests are as follows:

Call Function

plot (0, term)
Causes further plot output to be piped into tplot(lG)
with an argument of -Tterm.

plot(l)
Erases the plotter.

plot (2, string)
Labels the current point with string.

plot (3,xl ,yl ,x2,y2)
Draws the line between (xl,yl) and (x2,y2).

plot (4,x,y,r)
Draws a circle with center (x,y) and radius r.

plot (5,xl,yl,x2,y2,x3,y3)
Draws an arc (counterclockwise) with center (xl,yl) and
endpoints (x2 ,y2) and (x3 ,y3).

plot (6)

Not implemented.

plot (7,x,y)
Makes the current point (x,y).

plot (8,x,y)
Draws a line from the current point to (x,y).

plot (9,x,y)
Draws a point at (x,y).

plot (10, string)
Sets the line mode to string.

February, 1990
RevisionC

bs(1) bs(l)

plot (ll,xl ,yl ,x2,y2)
Makes (xl,y 1) the lower left comer of the plotting area
and (x2,y2) the upper-right comer of the plotting area.

plot (12, xl , yl, x2, y2)
Causes subsequent x(y) coordinates to be multiplied by xl
(yl) and then added to x2 (y2) before they are plotted.
The initial scaling is plot (12,1.0, 1. 0,0. 0,0. 0)

Some requests do not apply to all plotters. All requests except
zero and twelve are implemented by piping characters to
tplot(1G). See plot(4) for more details.

last ()
In immediate mode, last returns the most recently computed
value.

NOTES
Using bs as a calculator

$ bs * Distance (inches) light travels * in a nanosecond.
186000 * 5280 * 12 / 1e9
11. 78496

* Compound interest * (6% for 5 years on $1,000).
int = .06 / 4
bal = 1000
for i = 1 5*4 bal bal + bal*int
bal - 1000
346.855007

exit

The outline of a typical b s program

* initialize things:
var1 = 1
open ("read", "infile", "r")

* compute:
while ?(str = read)

next * clean up:
close (" read")

February, 1990
Revision C

12

ba(l) ba(l)

* last statement executed (exit or stop):
exit * last input line:
run

Input/Output examples

* Copy "oldfile" to "newfile".
open ("read", "oldfile", "r")
open ("write", "newfile", "w")

while ?(write = read)

* close "read" and "write":
close ("read")
close ("write")

* Pipe between commands.
open ("Is",
open ("pr",
while ?(pr

"!ls *", "r")
" ! pr -2 -h ' Li st ' " ,

Is) ...
"w")

* be sure to close (wait for) these:
close ("Is")
close ("pr")

EXAMPLES
bs program 1 2 3

compiles or executes the file named program as well as state­
ments typed from standard input The arguments I, 2, and 3 are
passed as arguments to the compiled/executed program.

FILES
/bin/bs

SEE ALSO

13

ed(1), ksh(1), sh(1), tplot(1G), access(2), printf(3S),
intro(3), plot(4).
AIUX Programmer's Reference.

February, 1990
RevisionC

cal(1) cal(1)

NAME
cal- generate a calendar for the specified year

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal generates a calendar for the specified year. If a month is also
specified, a calendar just for that month is generated. If neither is
specified, a calendar for the present month is generated. The
value of year can be between 1 and 9999. The value of month is a
number between 1 and 12. cal makes adjustments in its output
based on the specified year to reflect the calendar (Julian or Gre­
gorian) that was in effect for the specified year.

EXAMPLES
cal 9 1752

produces a calendar for September 1752.

FILES
/usr/bin/cal

NOTES
The year is always considered to start in January.
The command cal 87 generates a calendar for 87 A.D., not
1987.

February, 1990
Revision C

1

calendar(l) calendar(l)

NAME
calendar -reminder service

SYNOPSIS
calendar [-]

DESCRIYTION
calendar consults the file calendar in the current directory
and prints out lines that contain today's or tomorrow's date any­
where in the line. Most reasonable month-day dates such as
De'c . 7, decembe r 7, 12/7, etc., are recognized, but not
7 December. On weekends tomorrow extends through Mon­
day.

When an argument is present, calendar does its job for every
user who has a file calendar in their login directory and sends
them any positive results by mail(l). Normally this is done daily
by facilities in the NUX operating system under control of
cron(lM).

EXAMPLES
If the user has the following line, among other lines containing
date information, in the file calendar in the login directory:

Monday, September 6 Labor Day Holiday

typing in

calendar

either on the Friday before or on the specified Monday will cause
this line to be printed on the screen.

FILES
/usr/bin/calendar
./calendar
/usr/lib/calprog
/etc/passwd
/tmp/cal*
/usr/lib/crontab

SEE ALSO
at(1), leave(1), mail(1), cron(1M).

BUGS

1

Your calendar must be public information for you to get reminder
service.
calendar's extended idea of "tomorrow" does not account for
holidays.

February, 1990
RevisionC

cancel(l)

February, 1990
Revision C

See Ip(l)

cancel(l)

1

cat(l) cat(l)

NAME
ca t - concatenate and display the contents of named files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] files

DESCRIPTION
cat reads each file in sequence and writes it on the standard out­
put.

If no input file is given, or if the argument - is encountered, cat
reads from the standard input file. Output is buffered unless the
-u flag option is specified. The -s flag option makes cat silent
about nonexistent files.

The -v flag option causes nonprinting characters (with the excep­
tion of tabs, newlines and form feeds) to be displayed. Control
characters are displayed as ~x (CONTROL-X); the DELETE charac­
ter (octal 0177) is displayed as ~? Non-ASCII characters (with
the high bit set) are displayed as M-x, where X is the character
specified by the seven low-order bits.

When used with the -v flag option, -t causes tabs to be displayed
as ~ I' S and form feeds to be displayed as ~ L' s. When used with
the -v flag option, -e causes a $ character to be displayed at the
end of each line (prior to the newline). The -t and -e flag op­
tions are ignored if the -v flag option is not specified.

EXAMPLES
cat file

displays file, and:

cat filel file2 > file3

concatenates the first two files and places the result in the third.

WARNINGS
Command formats such as

cat filel file2 > filel

will cause the original data in filel to be lost; therefore, take
care when using shell special characters.

FILES
/bin/cat

1 February, 1990
Revision C

cat(l)

SEE ALSO
cp(l), head(1), pg(l), pr(1), tail(l).

February, 1990
Revision C

cat(l)

2

cb(l) cb(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s] [-j] [-lleng] (file . ..]

DESCRIPTION
cb reads C programs either from its arguments or from the stan­
dard input and writes them on the standard output with spacing
and indentation that displays the structure of the code. Under de­
fault options, cb preserves all user newlines. Under the -s flag
option, cb standardizes the code to the canonical style of Ker­
nighan and Ritchie in The C Programming Language. The -j
flag option causes split lines to be put back together. The -1 flag
option causes cb to split lines that are longer than leng.

EXAMPLES

1

If there is a C program called test. c which looks like this:

#define COMING 1
#define GOING 0

main ()
{

1* This is a test of the C Beautifier *1
if (COMING)
printf ("Hello, world\n");
else
printf ("Goodbye, world\n");
}

Then using the cb command as shown below produces the output
shown:

cb test.c
#define COMING 1
#define GOING 0

main ()

/* This is a test of the C Beautifier */
if (COMING)

else
printf ("Hello, world\n");

printf ("Goodbye, world\n");

February, 1990
Revision C

cb(l) cb(l)

FILES
/usr/bin/cb

SEE ALSO
cc(l), indent(l).
The C Programming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, Inc., New Jersey, 1978).

BUGS
Punctuation that is hidden in preprocessor statements will cause
indentation errors.

February, 1990 2
Revision C

cc(1) cc(l)

NAME
cc - C compiler

SYNOPSIS
cc [-B string] [-c] [-C] [-D symbol[=dej]] [-E] [-F]
[-fm68881] [-g] [-I dir] [-L dir] [-Ix] [-n] [-0 out/lie]
[-0] [-p] [-p] [-R] [-5] [-8] [-t [p012al]] [-T]
[-u symbol] [-v] [-w c,argl[,arg2 ...]] [-x] [-z flags]
[-41=] ••• file ...

DESCRIPTION
cc is a front-end program that invokes the preprocessor, compiler,
assembler, and link editor, as appropriate. The default is to invoke
each one in turn.

Arguments whose names end with . c are taken to be C source
programs. They are compiled, and each object program is left in a
file whose name is that of the source, with. 0 substituted for. c.
The.o file is normally deleted. However, if a single C program
is compiled and loaded all at one time, no . 0 is produced, and the
output is left in a file whose default name is a. out. In the same
way, arguments whose names end with. 5 are taken to be assem­
bly source programs and are assembled to produce a . 0 file.

FLAG OPTIONS

1

The following flag options are interpreted by cc. (Other flag op­
tions may be passed to the assembler and the linker. See Id(l)
for link-editor flag options and a5(l) for assembler options.)

-c

-C

-p

-F

Suppress the link-editing phase of the compilation and
force an object file to be produced even if only one pro­
gram is compiled.

Pass along all comments except those found on cpp(l)
directive lines. The default strips out all comments.

Arrange for the compiler to produce code that counts the
number of times each routine is called. Also, if link­
editing takes place, replace the standard startoff routine
by one that automatically calls moni tor(3C) at the
start and arranges to write out a mon. out file at normal
termination of execution of the object program.

Do not generate inline code for the MC68881 floating­
point coprocessor.

February, 1990
Revision C

cc(1) cc(l)

-fm68881
Generate inline code for the MC68881 floating-point
coprocessor. This is the default.

-g Generate additional information needed for the use of
seib(l).

-Ix Same as -1 in Id(l). Search the library libx. a,
where x is up to 7 characters long. A library is searched
when its name is encountered, so the placement of -1 is
significant. By default, libraries are located in LIBDIR.
If you plan to use the - L option, that option must pre­
cede -Ion the command line.

-L dir Same as -L in Id(l). Change the algorithm of search­
ing for 1 ibx . a to look in dir before looking in
LIBDIR. This option is effective only if it precedes the
-1 option on the command line.

-0 outfile
Same as -0 in Id(l). Produce an output object file,
outfile. The default name of the object file is a . out.

-0 Invoke an object-code optimizer. The optimizer moves,
merges, and deletes code, so symbolic debugging with
line numbers could be confusing when the optimizer is
used. This option may not work properly on code con­
taining asm directives.

- R Have assembler remove its input file when finished.

-wc, argl[, arg2 ...]
Hand off the argument(s) argi (where i = 1,2, ... , n) to
pass c, where c is one of [p012al] indicating prepro­
cessor, compiler first pass, compiler second pass, opti­
mizer, assembler, or link editor, respectively. For exam­
ple,

-W a,-m

invokes the m4 macro preprocessor on the input to the
assembler. (The -m flag option to as causes it to go
through m4.) This must be done for a source file that
contains assembler escapes.

-s Same as -s in Id(1). Strip line-number entries and
symbol-table information from the output of the object
file.

February, 1990
Revision C

2

cc(1) cc(1)

3

-s Compile the named C programs and leave the
assembly-language output on corresponding files
suffixed . s.

-t [p012al]
Find only the designated preprocessor passes whose
names are constructed with the string argument of the
-B flag option, that is, (p), compiler (0 and 1), optim­
izer (2), assembler (a), and link editor (1). In the ab­
sence of a - B option and its argwnent, string is taken to
be /lib/n. Using -t with no argument is equivalent
to -tp012.

-T Truncate symbol names to 8 significant characters.
Many modem C compilers, as well as the proposed
ANSI standard for C, allow arbitrary-length variable
names. cc follows this convention. The -T option is
provided for compatibility with earlier systems.

- E Run only cpp(1) on the named C programs and send the
result to the standard output.

-p Run only cpp(1) on the named C programs and leave
the result on corresponding files suffixed . i.

- Dsymbol[=defJ
Define the external symbol to the preprocessor and give
it the value def (if specified). If no def is given, symbol
is defined as 1. This mechanism is useful with the con­
ditional statements in the preprocessor by allowing sym­
bols to be defined as external to the source file.

-Usymbol
Undefine symbol to the preprocessor.

-Idir Search for #include files (whose names do not begin
with I) in dir before looking in the directories on the
standard list. Thus, #include files whose names are
enclosed in ' , " (double quotes) are initially
searched for in the directory of the . c file currently be­
ing compiled, then in directories named in - I flag op­
tions, and finally in directories on a standard list. For
#include files whose names are enclosed in <>, the
directory of the file argument is not searched.

-Bstring Construct pathnames for substitute preprocessor, com­
piler, assembler, and link-editor passes by concatenating

February, 1990
Revision C

cc(l) cc(l)

string with the suffixes cpp, comp, optim, as, and
ld. If string is empty, it is taken to be / lib/ o. For
example, versions of the C compiler, assembler, and link
editor can be found in the directory /usr / lib/big.
These tools operate just like their standard counterparts,
except that their symbol tables are very large. If you re­
ceive an overflow error message when you compile your
program with the standard versions, you may wish to
switch to the alternate versions using

cc -B /usr / lib/big -0 filename filename. c

You should have 4 MB or more of main memory in ord­
er to use the big versions of these programs safely.

-v Print the command line for each subprocess executed.

-x Ignored by A/UX® for Motorola 68020 host processor.

-n Arrange for the loader to produce an executable which
is linked in such a manner that the text can be made
read-only and shared (nonvirtual) or paged (virtual).

-# Without actually starting the program, echoe the names
and arguments of subprocesses that would have started.
This is a special debug option.

-zjlags Special flags to override the default behavior (see
NOTES in this section). Currently recognized flags are:

c

n

m

P
E

F

I

1

t

S

February, 1990
Revision C

Suppress returning pointers in both aO and dO.

Emit no code for stack-growth.

Use Motorola SGS-compatible stack growth code.

Use tst. b stack probes.

Ignore all environment variables.

Flip byte order in multicharacter character con­
stants.

Emit inline code for the MC68881 floating-point
coprocessor.

Suppress selection of a loader command file.

Do not delete temporary files.

Compile to be SVID-compatible. Link the pro­
gram with a library module that calls

4

cc(l) cc(l)

setcornpat(2) with the COMPAT SVID flag set.
Define only the SYSV _SOURCE feature test mac­
ro.

P Compile for the POSIX environment. Link the
program with a library module that calls
setcornpat(2) with the COMPAT POSIX flag
set Define only the POSIX_SOURCE feature test
macro.

B Compile to be BSD-compatible. Link the pro­
gram with a library module that calls
setcornpat(2) with the COMPAT BSD flag set.
Define only the BSD _SOURCE feature test macro.

Other arguments are taken to be either link-editor flag-option ar­
guments or C-compatible object programs, typically produced by
an earlier cc run or perhaps by libraries of C-compatible routines.
These programs, together with the results of any compilations
specified, are link edited (in the order given) to produce an execut­
able program with the name a. out unless the -0 flag option of
the link editor is used.

FILES

5

/usr/bin/cc
file. c
file. 0

file. s
a.out
/usr/trnp/rnc68?
/iib/cpp
/iib/cornp
/iib/optim
/bin/as
/bin/id
/iib/iibc.a
/iib/iibposix.a

/iib/iibbsd.a
/iib/iibsvid.a
/usr/iib/shared.id

/usr/iib/unshared.id

input file
object file
assembly language file
link-edited output
temporary
preprocessor
compiler
optimizer
assembler, as(l)
link editor, id(l)
standard library, see (3)
POSIX library, see (2P) and
(3P)
BSD library
SVID library
loader command file for
shared text or paged programs
loader command file for
unshared text programs

February, 1990
Revision C

cc(1) cc(1)

/lib/crtO.o
/lib/mcrtO.o

run-time startoff
run-time startoff for profiling

SEE ALSO
as(l), dis(l), Id(l), setcompat(2).
The C Programming Language by B. W. Kernighan and D. M.
Ritchie, (New Jersey, Prentice-Hall: 1978); "cc Command Syn­
tax" inAIUX Programming Languages and Tools, Volume 1;
"NUX POSIX Environment," inAIUX Programming Languages
and Tools, Volume 1.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryp­
tic. Occasional messages may be produced by the assembler or
link editor.

WARNINGS
By default, the return value from a C program is completely ran­
dom. The only two guaranteed ways to return a specific value are
to call exit explicitly (see exi t(2)) or to leave the function
main () with a return (expression) statement.

NOTES
This version of cc is based on the cc released with the Motorola
SGS and has been changed in the following ways:

• The - z flag option has been added to explicitly control
generation of stack-growth code for cross-development
environments or generation of stand-alone code. The
Motorola SGS looks for an environment variable called
M68 0 0 0 and generates stack-growth code if the variable
is set to STACKCHECK. This cc defaults to stack probes
on 68000 host processors and no stack-growth code on
the Macintosh II® 68020 processors.

• The default is to produce shared text programs. To pro­
duce nonshared text programs, you must run 1 d.

• When cc is used with the -g flag option, the arguments
-u dbargs -lg are inserted in the command line for
the lmk phase. This causes the contents of 1 ibg . a to be
linked in. Note that the Motorola SGS only generates the
loader argument -lg, which is not sufficient to cause
loading of the library's contents.

February, 1990
Revision C

6

cc(l)

7

cc(l)

• The -v (verbose) flag option has been added to print the
command line for each subprocess executed. This helps
to isolate problems to a specific phase of the compilation
process by showing exactly what cc is doing, so that
each phase can be run by hand, if necessary.

• The Motorola SGS compiler expects functions that return
pointers or structures to return their values in aO and ex­
pects other functions to return their values in dO/dl. Be­
cause of the large body of existing code that has incon­
sistent type declarations. This version of the compiler
emits code to return pointers in both aO and dO by copy­
ing aO to dO just prior to returning. This copy operation
can be suppressed with the -Zc flag option, thus generat­
ing slightly smaller code.

February, 1990
Revision C

ccat(l)

February, 1990
Revision C

See compact(l)

ccat(l)

1

cdc(l) cdc(l)

NAME
cdc - change the delta commentary of an sees delta

SYNOPSIS
cdc [-m[mrlist]] -r SID [-y[comment]]file ...

DESCRIPTION

I

cdc changes the "delta commentary", for the SID specified by
the -r keyletter, of each named sees file.

A "delta commentary" is defined to be the Modification Request
(MR) and comment information normally specified via the del­
ta(1) command (-mand-y keyletters).

If a directory is named, cdc behaves as though each file in the
directory were specified as a named file, except that non-SeeS
files (last component of the pathname does not begin with s.)
and unreadable files are silently ignored. If a name of - is given,
the standard input is read (see WARNINGS); each line of the
standard input is taken to be the name of an sees file to be pro­
cessed.

Arguments to cdc, which may appear in any order, consist of
key letter arguments, and filenames.

All the described keyletter arguments apply independently to each
named file:

-rSID Used to specify the sees Identification (SID)
string of a delta for which the delta commentary is
to be changed.

-m[mrlist] If the sees file has the v flag option set (see ad­
min(l» then a list of MR numbers to be added
and/or deleted in the delta commentary of the SID
specified by the -r keyletter may be supplied. A
null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an
MR, precede the MR number with the character !
(see EXAMPLES). If the MR to be deleted is
currently in the list of MRs, it is removed and
changed into a comment line. A list of all deleted
MRs is placed in the comment section of the delta
commentary and preceded by a comment line stat­
ing that they were deleted.

February, 1990
RevisionC

cdc(1) cdc(1)

If -m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see -ykeyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter­
minates the MR list.

Note that if the v flag option has a value (see ad­
min(1)), it is taken to be the name of a program (or
shell procedure) which validates the correctness of
the MR numbers. If a nonzero exit status is re­
turned from the MR number validation program,
cdc terminates and the delta commentary remains
unchanged.

-y[comment] Arbitrary text used to replace the comment(s) al­
ready existing for the delta specified by the -r
key letter. The previous comments are kept and
preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is is­
sued. An unescaped newline character terminates
the comment text.

The exact permissions necessary to modify the sees file are do­
cumented in the "sees Reference" in A/UX Programming
Languages and Tools, Volume 2. Simply stated, they are either (1)
if you made the delta, you may change its delta commentary;
or (2) if you own the file and directory, you may modify the de I­
ta commentary.

EXAMPLES
cdc -rl.6 -m"b178-12345 !b177-54321
b179-00001" -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list, removes
b177-54321 from the MR list, and adds the comment trou­
ble to delta 1.6 of s . file.

February, 1990
Revision C

2

cdc(l) cdc(l)

cdc -rl.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS
If sees filenames are supplied to the cdc command via the stan­
dard input (- on the command line), then the -m and -y keyletters
must also be used.

FILES
/usr/bin/cdc

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(1), sccsfile(4).
"sees Reference" in A/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

3 February, 1990
RevisionC

cflow(l) cflow(l)

NAME
cflow - generate C ftowgraph

SYNOPSIS
cflow [-dnum] [-i_] [-ix] [-r]file ...

DESCRIPTION
cflow analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external
references. Files suffixed in . y, .1, . c, and . i are yacc'd,
lex'd, and C-preprocessed (bypassed for. i files) as appropriate
and then run through the first pass of lint(l). (The -I, -D, and
-u flag options of the C-preprocessor are also understood.) Files
suffixed with . s are assembled and information is extracted (as in
.0 files) from the symbol table. The output is collected and
turned into a graph of external references which is displayed upon
the standard output.

Each line of output begins with a reference (i.e., line) number, fol­
lowed by a suitable number of tabs indicating the level. Then the
name of the global (normally only a function not defined as an
external or beginning with an underscore; see below for the -i in­
clusion flag option) a colon and its definition. For information ex­
tracted from C source, the definition consists of an abstract type
declaration (e.g., char *), and, delimited by angle brackets, the
name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file
name and location counter under which the symbol appeared (e.g.,
text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent refer­
ences to that name contain only the reference number of the line
where the definition may be found. For undefined references, only
< > is printed.

When the nesting level becomes too deep, the -e flag option of
pr(l) can be used to compress the tab expansion to something
less than every eight spaces.

The following flag options are interpreted by cflow:

-r Reverse the caller: cal lee relationship producing
an inverted listing showing the callers of each function.
The listing is also sorted in lexicographical order by cal­
lee.

February, 1990 1
Revision C

cflow(1) cflow(1)

-ix Include external and static data symbols. The default is to
include only functions in the flowgraph.

-i Include names that begin with an underscore. The default
is to exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the
flowgraph is cut off. By default this is a very large
number. Attempts to set the cutoff depth to a nonpositive
integer will be met with contempt.

EXAMPLES
Given the following in file. c:

int i;

main ()
{

fO
{

fO;
gO;
fO;

i h 0 ;

the command:

cflow -ix file.c

produces the output:

1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4
5 g: <>

i:int, <file.c 1>

DIAGNOSTICS

2

Complains about bad flag options. Complains about multiple
definitions and only believes the first. Other messages may come
from the various programs used (e.g., the C-preprocessor).

February, 1990
RevisionC

cflow(l)

FILES
/usr/bin/cflow
/usr/lib/lpfx

/usr/lib/runf
/usr/lib/dag
/usr/lib/flip

SEE ALSO
as(l), cc(I), cpp(I),
yacc(I).

BUGS

cflow(l)

filters line(l) output into dag in­
put
converts run output into dag input
graph maker
reverser

lex(I), lint(I), nm(1), pr(I),

Files produced by lex(l) and yacc(l) cause the reordering of
line number declarations which can confuse cflow. To get prop­
er results, feed cflow the yacc or lex input.

February, 1990 3
Revision C

changesize(l) changesize(l)

NAME
changesi ze - change the fields of the SIZE resource of a file

SYNOPSIS
/mac/bin/changesize [-v] [-ppre/size] [-mminsize]
[±option] file

DESCRIYTION
changesi ze is based on an MPW tool that prints the fields of
the SIZE resource of an application and allows the user to modify
any of the fields of the SIZE resource. The format of the SIZE
resource contains MultiFinder flags followed by the preferred size
and minimum size of the application.

FLAG OPTIONS

1

The following flag options are interpreted by changesi ze:

-v Print the values of fields in the SIZE resource and then exit
without changing anything.

-pprefsize
Specify an amount of memory in which the application will
run effectively and which MultiFinder attempts to secure
upon launch of the application. This value is expressed in
units of kilobytes (K).

±option
Set or clear the MultiFinder flag specified by option. +option
sets the MultiFinder flag, -option clears the flag. Multiple
options can be specified at the same time on the command
line. The MultiFinder flags that can be modified are:

SaveScreen
For SWITCHER compatibility. Normally, this is
set to O.

SuspendResume
When set, this bit signifies that the application
knows how to process suspend/resume events.

OptionSwitch
For SWITCHER compatibility. Normally, this is
set to 1.

CanBackground
Receive null events while in the background, if set.

MultiFinderAware
Take responsibility for activating and deactivation

February, 1990
Revision C

changesize(l) changesize(1)

any windows in response to a suspend/resume
event, if set

OnlyBackground
Set this flag if your application does not have a user
interface and will not run in the foreground.

GetFrontClicks
Set this flag is you want to receive the mouse-down
and mouse-up events used to bring your application
to the foreground when the user clicks in one of the
windows of your application while it is suspended.

ChildDiedEvents
Normally, applications set this to O. Debuggers
may set this flag to 1.

32BitCompatible
Set this flag if your application is 32-bit clean.

EXAMPLES
To print the fields of the size resource, use

/mac/bin/changesize -v file

To set the 32BitCompatible flag, clear the CanBack­
ground flag, set the preferred memory size to 500 KB, using

/mac/bin/changesize +32BitCompatible
-CanBackground -p500 file

February, 1990
Revision C

2

checkcw(l)

See cw(l)

1

checkcw(l)

February, 1990
Revision C

checkeq(l)

February, 1990
Revision C

See eqn(l)

checkeq(l)

1

checkinstall(l) checkinstall(l)

NAME
checkinstall - check installation of boards

SYNOPSIS
/etc/checkinstall ethertalk

DESCRIPTION
checkinstall performs a quick test to see if the named board
has been installed or not. The only board type currently supported
is the Apple EtherTalk board, which is indicated by the argument
ethertalk.

FILES
/etc/checkinstall

SEE ALSO
etheraddr(IM).

1 February, 1990
Revision C

checkmm(l) checkmm(l)

NAME
checkmm, checkmml - check documents fonnatted with the
mmmacros

SYNOPSIS
checkmmfile ...

DESCRIPTION
checkmm stands for "check memorandum macros." Use
checkmm to check for syntax errors in files that have been
prepared for the rom(l) or mmt(l) command. For example,
checkrom checks that you have a . DE (display end macro)
corresponding to every. DS (display start macro).

The output for checkmrn is the number of lines checked, and a
list of macros that are unfinished because of missing macros. If
you do not include a file name on the command line, checkmm
takes input from standard input.

FILES
/usr/bin/checkrom
/usr/bin/checkroml

SEE ALSO
eqn(I), rom(l), mmt(1), mvt(1), neqn(1), tbl(l), mm(5).
"Other Text Processing Tools" and "rom Reference" in A/UX
Text Processing Tools.

DIAGNOSTICS
"checkrom Cannot open file" if file is unreadable. The
remaining output of the program is diagnostic of the source file.

February, 1990 I
Revision C

checkmml(l)

See checkmm(1)

1

checkmml(l)

February, 1990
Revision C

checknr(l) checknr(l)

NAME
checknr - check nroff/troff files

SYNOPSIS
checknr [-a.xl.yl.x2.y2 xn.yn] [­
c .xl .x2.x3 xn] [-f] [-s] [file ...]

DESCRIPTION
checknr checks a list of nroff(l) or troff(1) input files for
certain kinds of errors involving mismatched opening and closing
delimiters and unknown commands. If no files are specified,
checknr checks the standard input. Delimiters checked are:

(1) Font changes using \ fx ... \ fP.

(2) Size changes using \ sx ... \ sO.

(3) Macros that come in open ... close forms, for example, the
. TS and. TE macros, which must always come in pairs.

checknr operates on the ms(S) macro package only.

Additional pairs of macros may be added to the list using the -a
flag option. This must be followed by groups of six characters,
each group defining a pair of macros. The six characters are a
period, the first macro name, another period, and the second mac­
ro name. For example, to define a pair. BS and . ES, use:

checknr -a.BS.ES

The -c flag option causes commands (macros) to be considered
"defined" which would otherwise be complained about as unde­
fined. For instance, user-defined macros are not part of the ms
macro package, and thus would be considered undefined. Any
macros to be defined for checknr follow the -c with no spaces.
For example, to define the macros . xx and . YY, use:

checknr -c.XX.YY

The -f flag option requests checknr to ignore \f font changes.

The -s flag option requests checknr to ignore \s size changes.

checknr is intended to be used on documents that are prepared
with checknr in mind, much the same as lint(l). It expects a
certain document writing style for \ f and \ s commands, in that
each \ fx must be terminated with \ fP and each \ sx must be ter­
minated with \ sO. While it will work to go directly into the next
font or to specify the original font or point size explicitly, and
many existing documents actually do this, such a practice will pro-

February, 1990
Revision C

1

checknr(l) checknr(l)

duce complaints from checknr. Since it is probably better to
use the \fP and \50 fonns anyway, you should think of this as a
contribution to your document preparation style.

FILES
/usr/ucb/checknr

SEE ALSO
nroff(l), troff(1), rns(5).
"Other Text Processing Tools" and "rns Reference" in AIUX
Text Processing Tools.

DIAGNOSTICS
Complains about unmatched delimiters.
Complains about unrecognized commands.
Various complaints about the syntax of commands.

BUGS

2

There is no way to define a I-character macro name using -a.
Does not recognize certain reasonable constructs correctly, such
as conditionals.

February, 1990
RevisionC

chfn(l) chfn(l)

NAME
chfn - change finger entry

SYNOPSIS
chfn [loginname]

DESCRIPTION
chfn is used to change information about users. This information
is used by the finger program, among others. It consists of the
user's "real life" name, office room number, office phone
number, and home phone number. chfn prompts the user for
each field. Included in the prompt is a default value, which is en­
closed between brackets. The default value is accepted simply by
typing RETURN. To enter a blank field, type the word none.
Below is a sample run:

Name [Biff Studsworth II] :
Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863
Home Phone (Ex: 5557532) [5441546]: none

chfn allows phone numbers to be entered with or without hy­
phens. Because finger knows only about 4-digit extensi'ons,
chfn insists upon a four digit number (after the hyphens are re­
moved) for office phone numbers.

It is a good idea to run finger after running chfn to make sure
everything is the way you want it.

The optional argument login name is used to change another
person's finger information. This can only be done by the su­
peruser.

FILES
/usr/ucb/chfn
/etc/passwd
/etc/ptmp

SEE ALSO
finger(l), passwd(4)

BUGS
The encoding of the office and extension information is
installation-dependent.

For historical reasons, the user's name, etc are stored in the
passwd file. This is a bad place to store the information.

February,1990
Revision C

1

chfn(l) chfn(l)

2

Because two users may try to write the passwd file at once, a
synchronization method was developed. On rare occasions, a
message that the password file is "busy" will be printed. In this
case, chfn sleeps for a while and then tries to write to the
passwd file again.

February, 1990
RevisionC

chgrp(l)

February, 1990
Revision C

See chown(l)

chgrp(l)

1

chmod(l) chmod(l)

NAME
chmod - change the permissions of a file

SYNOPSIS
chmod mode file ...

DESCRIPTION

1

The permissions of the named files are changed according to
mode, which may be absolute or symbolic. An absolute mode is
an octal number constructed from the R of the following modes:

4 000 set user ID on execution
20 0 0 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
02 0 0 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permis­
sions), g (group) and ° (other). The letter a stands for ugo, the
default if who is omitted.

op can be + to add permission to the file's mode, - to take away
permission, or = to assign permission absolutely (all other bits will
be reset).

permission is any combination of the letters r (read), w (write), x
(execute), s (set owner or group ID) and t (save text, or sticky);
u, g, or ° indicate that permission is to be taken from the current
mode. Omitting permission is only useful with = to take away all
permissions.

Multiple symbolic modes separated by commas may be given.
Operations are performed in the order specified. The letter s is
only useful with u or g and t only works with u.

Only the owner of a file (or the superuser) may change its mode.
Only the superuser may set the sticky bit. In order to set the group
ID, the group of the file must correspond to your current group rD.

February, 1990
RevisionC

chmod(l) chmod(l)

EXAMPLES
chmod 755 filename

changes the mode of filename to: read, write, execute
(400+200+100) by owner; read, execute (40+10) for group;
read, execute (4 + 1) for others. An 1 s -1 of filename shows [­
rwxr-xr-xfilename] that the requested mode is in effect.

chmod = filename

will take away all permissions from filename, including yours.

chmod o-w file

denies write permission to others.

chmod +xfile

makes a file executable.

FILES
/bin/chmod

SEE ALSO
ls(1), chown(l), csh(l), ksh(1), sh(1), chmod(2).
AIUX Essentials
AIUX Local System Administration

February, 1990
Revision C

2

ehown(l) ehown(l)

NAME
ehown, ehgrp - change the owner or group of a file

SYNOPSIS
ehown owner file . . .

ehgrp group file . . .

DESCRIPTION
ehown changes the owner of the files to owner. The owner may
be either a decimal user ID or a login name found in the password
file.

ehgrp changes the group ID of the files to group. The group
may be either a decimal group ID or a group name found in the
group file.

If either command is invoked by other than the superuser, and the
files specified are either local or remoted mounted from another
System V system, the set-user ID and set-group ID bits of the file
mode, 04000 and 02000 respectively, will be cleared.

EXAMPLES
ehown doe filea fileb filee

would make doe the owner of the three files.

FILES
/bin/ehown
/bin/ehgrp
fete/group
/ete/passwd

SEE ALSO
ehmod(I), ehown(2), group(4), passwd(4).

1 February, 1990
RevisionC

chsh(1) chsh(l)

NAME
chsh - change default login shell

SYNOPSIS
chsh name [shell]

DESCRIPTION
chsh is a command similar to passwd(l) except that it is used to
change the login shell field of the password file rather than the
password entry. If no shell is specified then the shell reverts to the
default login shell /bin/ sh. Otherwise only /bin/ csh or
/bin/ksh can be specified as the shell unless you are the su­
peruser.

An example use of this command would be

chsh rusty /bin/csh

FILES
/usr/ucb/chsh

SEE ALSO
csh(l), passwd(l), passwd(4).

February, 1990
Revision C

1

ci(l) ci(l)

NAME
ci - check in ReS revisions

SYNOPSIS
ci [-r[rev]] [-f[rev]] [-k[rev]] [-l[rev]] [-u[rev]] [-q[rev]]
[-mmsg] [-nname] [-Nname] [-sstate] [-t[txljile]] files

DESCRIPTION

1

ci stores new revisions into ReS files. Each filename ending in
,v is taken to be an ReS file and all others are assumed to be
working files containing new revisions. ci deposits the contents
of each working file into the corresponding ReS file.

Pairs of ReS files and working files may be specified in three
ways (see also the example section of co(1)).

(1) Both the ReS file and the working file are given. The ReS
filename is of the form path] Iworkfile, v and the working
filename is of the form path2 Iworkfile, where path] and
path2 are (possibly different or empty) paths and workfile is a
filename.

(2) Only the ReS file is given. Then the working file is assumed
to be in the current directory and its name is derived from the
name of the ReS file by removing path] I and the suffix ,v.

(3) Only the working file is given. Then the name of the ReS
file is derived from the name of the working file by removing
path21 and appending the suffix, v.

If the ReS file is omitted or specified without a path, then ci
looks for the ReS file, first in the directory. IReS and then in the
current directory.

For ci to work, the caller's login must be on the access list, un­
less the access list is empty or the caller is the superuser or the
owner of the file. To append a new revision to an existing branch,
the tip revision on that branch must be locked by the caller. Oth­
erwise, only a new branch can be created. This restriction is not
enforced for the owner of the file, unless locking is set to strict
(see rcs(l)). A lock held by someone else may be broken with
the rcs command.

Normally, ci checks whether the revision to be deposited is dif­
ferent from the preceding one. If it is not different, c i either can­
cels the deposit (if -q is given) or asks whether to cancel (if -q is
omitted). A deposit can be forced with the -f option.

February, 1990
Revision C

ci(l) ci(l)

For each revision deposited, ci prompts for a log message. The
log message should summarize the change and must be terminated
with a line containing a single. or a CONfROL-D. If several files
are checked in, ci asks whether to reuse the previous log mes­
sage. If the standard input is not a tenninal, ci suppresses the
prompt and uses the same log message for all files. See also -m.

The number of the deposited revision can be given by any of the
options -r, -f, -k, -1, -U, or -q (see -r).

If the RCS file does not exist, ci creates it and deposits the con­
tents of the working file as the initial revision (default number:
1.1). The access list is initialized to empty. Instead of the log
message, ci requests descriptive text (see -t).

Options
-r[rev] assigns the revision number rev to the checked-in re­

vision, releases the corresponding lock, and deletes
the working file. This is also the default.

February, 1990
Revision C

If rev is omitted, ci derives the new revision number
from the caller's last lock. If the caller has locked the
tip revision of a branch, the new revision is appended
to that branch. The new revision number is obtained
by incrementing the tip revision number. If the caller
locked a non-tip revision, a new branch is started at
that revision by incrementing the highest branch
number at that revision. The default initial branch
and level numbers are 1. If the caller holds no lock
but is the owner of the file, and locking is not set to
strict, then the revision is appended to the trunk.

If a revision number is indicated by rev, it must be
higher than the latest one on the branch to which rev
belongs, or rev must start a new branch.

If rev indicates a branch instead of a revision, the new
revision is appended to that branch. The level
number is obtained by incrementing the tip revision
number of that branch. If rev indicates a non-existing
branch, that branch is created with the initial revision
numbered rev.1.

Exception: On the trunk, revisions can be appended
to the end but not inserted.

2

ci(l) ci(l)

- f [rev] forces a deposit; the new revision is deposited even
though it is the same as the preceding one.

- k[rev] searches the working file for keyword values to deter­
mine its revision number, creation date, author, and
state (see co(1», and assigns these values to the de­
posited revision, rather than computing them locally.
A revision number given by a command option over­
rides the number in the working file. This option is
useful for software distribution. A revision that is
sent to several sites should be checked in with the - k
option at these sites to preserve its original number,
date, author, and state.

-1 [rev] works like -r, except it performs an additional co
-1 for the deposited revision. Thus, the deposited re-
vision is immediately checked out again and locked.
This is useful for saving a revision although one
wants to continue editing it after the checkin.

-u[rev] works like -1, except that the deposited revision is
not locked. This is useful if one wants to process
(that is, compile) the revision immediately after
checkin.

-q[rev] quiet mode; diagnostic output is not printed. A revi­
sion that is the same as the preceding one is not de­
posited, unless - f is given.

-mmsg uses the string msg as the log message for all revi­
sions checked in.

-nname assigns the symbolic name name to the number of the
checked-in revision. ci prints an error message if
name is already assigned to another number.

-Nname same as -n, except that it overrides a ~revious assign­
ment of name.

-sstate sets the state of the checked-in revision to the
identifier state. The default is Exp.

-t[txljile] writes descriptive text into the RCS file (deletes the
existing text). If txt/lie is omitted, ci prompts the
user for text supplied from the standard input, ter­
minated with a line containing a single . or
CONTROL-D. Otherwise, the descriptive text is copied
from the file txtfile. During initialization, descriptive

3 February, 1990
Revision C

ci(l)

DIAGNOSTICS

ci(l)

text is requested even if -t is not given. The prompt
is suppressed if standard input is not a terminal.

For each revision, ci prints the RCS file, the working file, and the
number of both the deposited and the preceding revision. The exit
status always refers to the last file checked in, and is 0 if the
operation was successful, 1 if otherwise.

FILE MODES
An RCS file created by ci inherits the read and execute permis­
sions from the working file. If the RCS file already exists, ci
preserves its read and execute permissions. ci always turns off
all write permissions of RCS files.

FILES
The caller of the command must have read/write permission for
the directories containing the RCS file and the working file, and
read permission for the RCS file itself. A number of temporary
files are created. A semaphore file is created in the directory con­
taining the RCS file. ci always creates a new RCS file and un­
links the old one. This strategy makes links to RCS files useless.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
co(I), ident(1), rcs(I), rcsdiff(I), rcsintro(1),
rcsmerge(I), rlog(I), sccstorcs(IM), rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, September
1982.

February, 1990
Revision C

4

clear(l) clear(1)

NAME
c 1 ea r - clear terminal screen

SYNOPSIS
clear

DESCRIPTION
clear clears your screen if this is possible. It looks in the en­
vironment for the terminal type (TERM) and capabilities string
(TERMCAP). If TERMCAP is not found in the environment, it
looks in / etc/termcap to figure out how to clear the screen.

EXAMPLES
clear

clears the screen.

FILES
/bin/clear
/etc/termcap

SEE ALSO
tput(1C), termcap(4). environ(5).

1 February, 1990
RevisionC

erodo(1) erodo(1)

NAME
erodo - build commands interactively

SYNOPSIS
erodo [command-name]

DESCRIPTION
erodo helps you build A/UX commands using specialized Macin­
tosh dialog boxes. The dialog boxes make it easy to select op­
tions, choose files, and access help information, as well as build
compound command lines.

Commands with many options and parameters may employ one or
more nested dialog boxes.

erodo may be run in one of three ways:

1. Double-click a command's icon from the Finder.

2. Enter a complete erodo command line:

erodo command-name

3. Type a partial command line containing only the name of the
command within a CommandS hell window, then select Com­
mando from the Edit menu. The Command-key equivalent
for selecting Commando from the menu is COMMAND-K.

The first two methods of invoking erodo execute the command.
The third method pastes the command line arguments onto the
command line so that more commands, flag options, and argu­
ments can be added to create the desired command line. A com­
mand line can even be created with erodo consisting of many
commands piped together, also known as a compound command
line. Pressing the RETURN key executes the command.

EXAMPLES
erodo is

displays the 1 s Commando dialog box.

FILES
/ete/erodo

SEE ALSO
CommandShell(1).

February, 1990
Revision C

1

cmp(l) cmp(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-s]filel file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is
used.) Under default flag options, cmp makes no comment if the
files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an subset
of the other, that fact is noted.

FLAG OPTIONS
The following flag options are interpreted by cmp:

-1 Print the byte number (decimal) and the differing bytes (octal)
for each difference.

-s Print nothing for differing files; return codes only.

EXAMPLES
cmp alpha beta

will report if the files are different and at what point they differ,
such as:

alpha beta differ: char 33, line 2

FILES
/bin/cmp

SEE ALSO
bdiff(l), comm(l), diff(l), diff3(1), diffmk(l).

DIAGNOSTICS

1

Exit code 0 is returned for identical files, 1 for different files, and
2 for an inaccessible or missing argument.

February, 1990
RevisionC

co(1) co(l)

NAME
co - check outRCS revisions

SYNOPSIS
co [-l[rev]] [-p[rev]] [-q[rev]] [-ddate] [-r[rev]] [-sstate]
[-w[login]] [- jjoinlist] files

DESCRIPTION
co retrieves revisions from RCS files. Each filename ending in
,v is taken to be an RCS file. All other files are assumed to be
working files. co retrieves a revision from each RCS file and
stores it in the corresponding working file.

Pairs of RCS files and working files may be specified in three
ways (see the EXAMPLES section later in this entry).

(1) Both the ReS file and the working file are given. The RCS
filename is of the form path1 I workfile ,v and the working
filename is of the form path2lworkfile, where path1 and
path2 are (possibly different or empty) paths and workfile is a
filename.

(2) Only the ReS file is given. Then the working file is created
in the current directory and its name is derived from the
name of the ReS file by removing path1 I and the suffix ,v.

(3) Only the working file is given. Then the name of the RCS
file is derived from the name of the working file by removing
path2 I and appending the suffix ,v.

If the ReS file is omitted or specified without a path, then co
looks for the ReS file, first in the directory. IRes and then in the
current directory.

Revisions of an ReS file may be checked-out locked or unlocked.
Locking a revision prevents overlapping updates. A revision
checked out for reading or processing (for example, compiling)
need not be locked. A revision checked out for editing and later
check-in must normally be locked. Locking a revision currently
locked by another user fails. (A lock may be broken with the
rcs(l) command.) co with locking requires the caller to be on
the access list of the ReS file, unless he is the owner of the file or
the superuser, or the access list is empty. co without locking is
not subject to access-list restrictions.

February, 1990
Revision C

1

co(l) co(1)

A revision is selected by number, check-in date/time, author, or
state. If none of these options is specified, the latest revision on
the trunk is retrieved. When the options are applied in combina­
tion, the latest revision that satisfies all of them is retrieved. The
options for date/time, author, and state, retrieve a revision on the
selected branch. The selected branch is either derived from the
revision number (if given) or is the highest branch on the trunk. A
revision number may be attached to one of the options -1, -p, -
q, or -r.

A co command applied to an ReS file with no revisions creates a
zero-length file. co always performs keyword substitution, as fol­
lows.

FLAG OPTIONS
-1 [rev]

-p[rev]

-q[rev]

-dilate

2

Locks the checked-out revision for the caller. If om­
itted, the checked-out revision is not locked. See op­
tion - r for handling of the revision number rev.

Prints the retrieved revision on the standard output
rather than storing it in the working file. This option
is useful when co is part of a pipe.

Quiet mode; diagnostics are not printed.

Retrieves the latest revision on the selected branch
whose checkin date/time is less than or equal to
date. The date and time may be given in free format
and are converted to local time. Examples of ac­
ceptable formats for date are:

22-April-1985, 17:20-CDT
2:25 AM, Dec. 29, 1987
Tue-PDT, 1986, 4pm Jul 21
Fri Apr 16 15:52:25 EST 1988

The last example illustrates the format produced by
ctime(3) and date(1). Most fields in the date and
time may be defaulted. co determines the defaults
in this order: year, month, day, hour, minute, and
second (that is, from most to least significant). At
least one of these fields must be provided. For omit­
ted fields that are of higher significance than the
highest provided field, the current values are as­
sumed. For all other omitted fields, the lowest possi­
ble values are assumed. For example, the date 20,
10: 30 defaults to 10:30:00 of the 20th of the

February, 1990
RevisionC

eo(1) eo(1)

current month and current year. The date specified
on the command line must be in quotation marks if it
contains spaces.

-r[rev] retrieves the latest revision whose number is less
than or equal to rev. If rev indicates a branch rather
than a revision, the latest revision on that branch is
retrieved. rev is composed of one or more numeric
or symbolic fields separated by a period, (.). The
numeric equivalent of a symbolic field is specified
with the -n option of the commands ci and res.

- sstate retrieves the latest revision on the selected branch
whose state is set to state.

-w[login] retrieves the latest revision on the selected branch
which was checked in by the user with login name
login. If the argument login is omitted, the caller's
login name is assumed.

- jjoinlist generates a new revision which is the join of the re­
visions on join list. The join list is a comma­
separated list of pairs of the form rev2 : rev3, where
rev2 and rev3 are (symbolic or numeric) revision
numbers. For the initial pair, rev} denotes the revi­
sion selected by the options -1, ... ,-w. For all other
pairs, rev} denotes the revision generated by the pre­
vious pair. (Thus, the output of one join becomes
the input to the next.)

February, 1990
Revision C

For each pair, eo joins revisions rev] and rev3 with
respect to rev2. This means that all changes that
transform rev2 into rev} are applied to a copy of
rev3. This is particularly useful if rev} and rev3 are
the ends of two branches that have rev2 as a com­
mon ancestor. If rev} < rev2 < rev3 are on the same
branch, joining generates a new revision which is
like rev3, but with all changes that lead from rev} to
rev2 undone. If changes from rev2 to rev} overlap
with changes from rev2 to rev3, eo prints a warning
and includes the overlapping sections, delimited by
the lines «««< revl, =======, and
»»»> rev3.

For the initial pair, rev2 may be omitted. The de­
fault is the common ancestor. If any of the argu-

3

coCl) co(1)

ments indicate branches, the latest revisions on those
branches are assumed. If the option -1 is present,
the initial rev 1 is locked.

KEYWORD SUBSTITUTION

4

Strings of the form $keyword$ and $keyword: ... $ embedded in
the text are replaced with strings of the form $keyword: value $,
where keyword and value are pairs as listed. Keywords may be
embedded in literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On
checkout, co replaces these strings with strings that are of the
form $keyword: value $. If a revision containing strings of the
latter form is checked back in, the value fields will be replaced
during the next checkout. Thus, the keyword values are automati­
cally updated on checkout.

Keywords and their corresponding values are as follows:

$Author$

$Date$

$Header$

$Locker$

Log

The login name of the user who checked in the re­
vision.

The date and time the revision was checked in.

A standard header containing the ReS filename,
the revision number, the date, the author, and the
state.

The login name of the user who' locked the revi­
sion (empty if not locked).

The log message supplied during checkin, preced­
ed by a header containing the ReS filename, the
revision number, the author, and the date. Exist­
ing log messages are not replaced. Instead, the
new log message is inserted after $ Log: ... $.
This is useful for accumulating a complete change
log in a source file.

$Revision$ The revision number assigned to the revision.

$Souree$ The full pathname of the ReS file.

$State$ The state assigned to the revision with res -s or
ei -so

February, 1990
RevisionC

co(l) co(l)

DIAGNOSTICS
The ReS filename, the working filename, and the revision number
retrieved are written to the diagnostic output The exit status al­
ways refers to the last file checked out, and is 0 if the operation
was successful, 1 if otherwise.

EXAMPLES
Suppose the current directory contains a subdirectory RCS with an
ReS file io. c, v. Then all of the following commands retrieve
the latest revision from RCS / io. c, v and store it into io. c.

co io.e
co RCS/io.e,v
co io.e,v
co io.e RCS/io.e,v
co io.e io.e,v
co RCS/io.e,v io.e
co io.e,v io.e

FILE MODES
The working file inherits the read and execute permissions from
the ReS file. In addition, the owner-write permission is turned on
unless the file is checked out unlocked and locking is set to
strict (see rcs(l)).

If a file with the name of the working file already exists and has
write permission, co cancels the checkout if -q is given, or asks
whether to cancel if -q is not given. If the existing working file is
not writable, it is deleted before the checkout

FILES
The caller of the command must have write permission in the
working directory, read permission for the ReS file, and either
read permission (for reading) or read/write permission (for lock­
ing) in the directory which contains the ReS file.

A number of temporary files are created. A semaphore file is
created in the directory of the ReS file to prevent simultaneous
updates.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

February, 1990
Revision C

5

co(l) co(l)

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(l), ident(l), rcs(l), rcsdiff(l), rcsintro(l),
rcsmerge(l), rlog(l), rcsfile(4), sccstorcs(lM).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

LIMITATIONS
The option -d gets confused in some circumstances and accepts
no date before 1970. There is no way to suppress the expansion of
keywords, except by writing them differently. In nroff and
troff, this is done by embedding the null-character \& into the
keyword.

BUGS

6

The option - j does not work for files that contain lines with a sin­
gle ..

February, 1990
Revision C

col(l) col(1)

NAME
col - filter text containing printer control sequences for use at a
display device

SYNOPSIS
col [-b] [-f] [-p] [-x]

DESCRIPTION
col reads from the standard input and writes onto the standard
output. It performs the line overlays implied by reverse linefeeds
(ASCII code EsCAPE-7), and by forward and reverse half­
linefeeds (EscAPE-9 and (ESCAPE-8). col is particularly useful
for filtering multicolumn output made with the . rt command of
nroff and output resulting from use of the tbl(l) preprocessor.

If the -b flag option is given, col assumes that the output device
in use is not capable of backspacing. In this case, if two or more
characters are to appear in the same place, only the last one read
will be output.

Although col accepts half-line motions in its input, it normally
does not emit them on output. Instead, text that would appear
between lines is moved to the next lower full-line boundary. This
treatment can be suppressed by the -f (fine) flag option; in this
case, the output from col may contain forward half-linefeeds
(ESCAPE-9), but will still never contain either kind of reverse line
motion.

Unless the -x flag option is given, col will convert white space
to tabs on output wherever possible to shorten printing time.

The ASCII control characters SO (\016) and SI ('017) are assumed
by col to start and end text in an alternate character set. The
character set to which each input character belongs is remem­
bered, and on output SI and SO characters are generated as ap­
propriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, back­
space, tab, return, SI , SO , T (\013), and escape followed by 7, 8,
or 9. The VT character is an alternate form of full reverse
linefeed, included for compatibility with some earlier programs of
this type. All other nonprinting characters are ignored.

Normally, col will ignore any unknown escape sequences found
in its input; the -p flag option may be used to cause col to gen­
erate these sequences as regular characters, subject to overprinting

February, 1990
RevisionC

1

col(1) col(1)

from reverse line motions. The use of this flag option is highly
discouraged unless the user is fully aware of the textual position of
the escape sequences.

EXAMPLES
nroff -rom filea I col

pipes multicolumn nroff output through the col filter to enable
proper creation of columns.

FILES
/usr/bin/col

SEE ALSO
colcrt(1). nroff(1). tbl(1).

NOTES
The input format accepted by col matches the output produced
by nroff with either the -T37 or -TIp flag options. Use -T37
(and the -f flag option of col) if the ultimate disposition of the
output of col will be a device that can interpret half-line motions,
and -T 1 P otherwise.

BUGS

2

Cannot back up more than 128 lines.
Allows at most 800 characters. including backspaces, on a line.
Local vertical motions that would result in backing up over the
first line of the document are ignored. As a result, the first line
must not have any superscripts.

February. 1990
RevisionC

colcrt(1) colcrt(1)

NAME
colcrt - filter nroff output for terminal previewing

SYNOPSIS
colcrt [-] [-2] [file]

DESCRIPTION
colcrt provides virtual half-line and reverse line feed sequences
for terminals without such capability, and on which overstriking is
destructive. Half-line characters and underlining (changed to
dashing "_") are placed on newlines in between the normal out­
put lines.

The optional - suppresses all underlining. It is especially useful
for previewing allboxed tables from tbl(1).

The option -2 causes all half-lines to be printed, effectively dou­
ble spacing the output. Normally, a minimal space output format
is used which will suppress empty lines. The program never
suppresses two consecutive empty lines, however. The -2 flag
option is useful for sending output to the line printer when the out­
put contains superscripts and subscripts which would otherwise be
invisible.

A typical use of colcrt would be

tbl exum2.n I nroff -mm I colcrt I more

FILES
/usr/ucb/colcrt

SEE ALSO
col(l), more(1), nroff(1), troff(1), ul(1).

BUGS
Should fold underlines onto blanks even with the - flag option so
that a true underline character would show; if we did this, howev­
er, colcrt wouldn't get rid of cu'd underlining completely.

Can't back up more than 102 lines.

General overstriking is lost; as a special case "I" overstruck with
"-" or underline becomes "+".

Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and
subscripts in documents which are already double-spaced.

February, 1990
Revision C

1

colrm(l) colrm(1)

NAME
colrm-remove columns from a file

SYNOPSIS
col rm startcol [endcol]

DESCRIPTION
colrm removes selected columns from a file. Input is taken from
standard input. Output is sent to standard output.

If colrm is called with one parameter, the columns of each line
are removed starting with the specified column. If colrm is
called with two parameters, the columns from the first column to
the last column are removed.

Column numbering starts with column 1.

FILES
/usr/ucb/colrm

SEE ALSO
awk(I), cut(1), expand(I), sed(I).

1 February, 1990
Revision C

comb(1) comb(1)

NAME
comb - combine sees deltas

SYNOPSIS
comb [-clist] [-0] [-psid] [-s]file ...

DESCRIPTION
comb generates a shell script (see sh(l» which, when run, will
reconstruct the given sees files by combining some series of
changes. Then the reconstructed files will, hopefully, be smaller
than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named sees files.
If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-SeeS
files (last component of the pathname does not begin with s.)
and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the input is taken to be the
name of an sees file to be processed; non-SeeS files and un­
readable files are silently ignored.

The generated shell procedure is written on the standard output.

The key letter arguments are as follows (each is explained as
though only one named file is to be processed, but the effects of
any keyletter argument apply independently to each named file):

-pSID The sees Identification string (SID) of the oldest delta
to be preserved. All older deltas are discarded in the
reconstructed file.

-clist A list (see get(l) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get -e generated, this argument causes the
reconstructed file to be accessed at the release of the
delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor (see
"sees Reference" in AIUX Programming Languages
and Tools. Volume 2). Use of the -0 keyletter may de­
crease the size of the reconstructed sees file. It may
also alter the shape of the delta tree of the original file.

-s This argument causes comb to generate a shell script
which, when run, will produce a report giving, for each
file: the filename, size (in blocks) after combining, ori­
ginal size (also in blocks), and percentage change com­
puted by:

February, 1990
Revision C

1

comb(1) comb(1)

100 * (original - combined) I original

It is recommended that before any sees files are actual­
ly combined, one should use this flag option to deter­
mine exactly how much space is saved by the combining
process.

If no keyletter arguments are specified, comb will preserve only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

EXAMPLES
comb s.filel > tmpl

produces a shell script saved in tmpl which will remove from the
SeeS-format file, s. filel, all deltas previous to the last set of
changes, i.e., removes the capability to return to earlier versions.

FILES
/usr/bin/comb
s.COMB

comb???

The name of the reconstructed sees
file.
Temporary.

SEE ALSO
admin(I), del ta(I), get(I), help(l), prs(I), sh(I),
sccsfile(4).
"sees Reference" inAIUX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

BUGS

2

comb may rearrange the shape of the tree of deltas. It may not
save any space; in fact, it is possible for the reconstructed file ac­
tually to be larger than the original.

February, 1990
RevisionC

comrn(l) comrn(1)

NAME
comrn - select or reject lines common to two sorted files

SYNOPSIS
comrn [-[123]]filel file2

DESCRIPTION
c omrn reads filel and file2 which should be ordered in ASCII col­
lating sequence (see sart(1», and produces a three-column out­
put: lines only in filel lines only in file2 and lines in both files.
The file name - means the standard input

Flags 1, 2 , or 3 suppress printing of the corresponding
column. Thus comrn-12 prints only the lines common to the two
files; comrn -23 prints only lines in the first file but not in the
second; comrn -12 3 is a no-op.

EXAMPLES
comrn -12 filea fileb

prints only the lines common to filea and fileb.

comrn -23 filea fileb

prints only lines in the first file but not in the second.

camrn -123 filea fileb

is not an option, as it suppresses all output.

comrn -3 filea fileb

prints only the lines that differ in the two files.

FILES
/usr/bin/comrn

SEE ALSO
bdiff(I), cmp(1), diff(1), diff3(1), diffmk(I),
sort(1), uniq(1).

February, 1990
RevisionC

1

CommandShell (1) CommandShell(l)

NAME
CommandShell - A/UX® Toolbox application for managing
command-interpretation windows and moderating access to the
A/UX console window

SYNOPSIS
CommandShell [-b pid] [-u] [-q]

DESCRIPTION

1

CommandS hell provides a Macintosh user interface to NUX
users. Within CommandShell windows, you can enter A/UX
command lines for processing by one of the available shells.

A/UX commands can be entered with the aid of Macintosh copy
and paste operations. The source of text that can be copied to the
Clipboard includes any previous command lines in the same win­
dow as well as any text available in other windows (including oth­
er Macintosh application windows). The CommandShell win­
dows are scrollable, so you can make previous commands or
resultant outputs available for copying.

NUX commands can also be built semiautomatically by entering
the command name at the start of a line and then choosing the
Commando menu item from the Edit menu of CommandShell.
After entering information in the dialog box, the command line is
changed to include all the flag options and arguments that were
generated with the help of the Commando dialog. This same
function is also available through the erodo command, which is
described in erodo(I).

When CommandShell is started normally, one window is
displayed by default unless you have saved a previous window
layout with more than one window. More windows can be created
by choosing New from the File menu or pressing COMMAND-N.
A new window appears in front of the existing window or win­
dows. The title bar of each window is numbered in sequence ac­
cording to its creation order. Normally you can create up to 15
windows.

When you create a new window, it appears in front of and to the
lower right of the previous window. This position obscures the
windows behind the front window. You can use the tiling com­
mands to view the contents of all the windows. For specific tiling
commands, see the section describing the Window menu.

February, 1990
RevisionC

CommandShell(l) CommandS hell (1)

Besides managing command-interpretation windows, Command­
Shell moderates access to the A/UX console window. This win­
dow is one of the places where the A/UX environment and the
Macintosh desktop environment meet. Kernel error messages are
routed to this window so they do not disturb the bit-mapped
display of Macintosh applications.

The Macintosh user interface is an integral part of the A/UX boot
process, supported in part by the A/UX console window of Com­
mandShell. This special window is the place where all boot
messages are routed and the place where you enter responses in
the event that one of the boot processes requires user input. The
A/UX console window is unlike any other CommandShel1 win­
dow because it can never be closed (although it can be hidden or
obscured). During the boot process, CommandShel1 disables
many of the functions in its menus (see the -b flag option).

All the status messages that are normally directed to the system
console during startup no longer appear. Many of these messages
are not useful to anyone besides the system administrator. A pro­
gress bar is presented to users in place of the startup messages.
When multiuser mode is entered, the progress bar is replaced by a
login dialog box.

If you wish to inspect the boot messages that resulted when the
system was last booted, you can choose the A/UX System Console
window from the Window menu of CommandShell. Within
multiuser mode, a CommandShel1 process has to be started
manually through a command request or automatically through the
Login preferences that you maintain at the time you log in to the
system (see Login(IM».

To view the A/UX console window, perform these steps:

1. Choose CommandShell from the Apple menu.

2. Choose NUX System Console from the Window menu.

3. Use the scroll bar to scroll back the contents of the window.

Processes that run as part of a startup script, such as
/etc/sysinitrc, or as another part of the booting process
may occasionally ask for user input. For example, suppose you
add another Ethernet card to your system. Then suppose that
while rebooting, the system needs to request address information
about the new card. You will not see a prompt for this informa­
tion directly. Instead an alert box will appear in front of the A/UX

February, 1990
RevisionC

2

CommandShell (1) CommandShell (1)

3

boot progress bar. The alert box will say that an NUX process re­
quires input Clicking OK in the alert box will cause the the
NUX console window to appear and the alert box to disappear.
The A/UX console window will contain messages prompting you
for input At these junctures, you will be permitted to provide in­
put into the window. At all other times, the window is for reading
purposes only.

The alerting process that has just been described is referred to as a
notification system. A similar notification system has been created
for the handling of NUX kernel messages. Alert boxes are
displayed that encourage you to inspect the text of the NUX error
messages that has been tucked away in the normally-hidden NUX
console window.

Here is what you should do in response to this form of
notification:

1. After reading the alert box, click OK.

2. Make CommandShell the selected application if it is not
already the application in control of the active window.

3. Inspect the NUX kernel errors by choosing NUX System
Console from the Window menu of CommandShell.
When chosen, this menu item makes active the normally hid­
den NUX console window. If it was hidden, it will now be
visible. It should contain all the error messages generated
since the last time the system was booted (if you scroll back,
you can see the old messages). It will also let you respond to
any prompts for input

If after checking the window messages in the NUX console win­
dow, you see that the error information regards system or network
performance (such as a number of retries before successful
transmission of a network packet), then no further corrective ac­
tion is required. Sometimes, however, the error message may in­
dicate a serious error condition, such as "file system
full," "file system corrupt," or "fork failed:
too many processes." In these cases your current work is
subject to loss if the error condition persists.

You can change the way the system notifies you of a process
needing input or a system message when CommandShell is not
the active application. To set notification preferences, choose
Notification Levels from the Preferences menu. Choosing

February, 1990
RevisionC

CommandS hell (1) ComrnandShell (1)

Notification Levels displays a dialog box in which you can select
to be notified by an alert box, a flashing icon in the menu bar, or
both. User preferences are normally stored in the
. cmdshellprefs files located in the home directories of each
user (see "Managing CommandS hell preferences"). The default
notification is to display an alert box because console messages
may indicate a fundamental system problem that you should know
about immediately.

When CommandShell is run in the normal way and is the active
application, a Quit menu item is not available under the File menu
(see the -q flag option for an alternative way of running Com­
mandShell). Instead of a Quit function, which would leave you
with no way to view or enter responses directed to the system con­
sole, CommandShell has the menu item Close All Windows.
This menu item kills all shell processes and closes all of the win­
dows, except the A/UX console window that accepts console mes­
sages. If you simply wish to set aside CommandShell windows
without killing active processes, choose Hide Command Shell
Windows from the Apple menu.

The combined NUX and desktop environment supported with
CommandShell is unique in terms of the flexibility you have for
performing file manipulation chores. To delete a file, you can
drag it in its iconic form on the desktop to the Trash icon and
choose Empty Trash from the Special menu. Alternately, you can
open a CommandShell window to run the NUX command rm.
The latter way may be the quicker way to perform a sophisticated
operation. For example, consider the task of removing all files in
the current folder (or directory) containing the letters " . trnp.' ,
The easy way is to use a command line such as

rm *.tmp*

Since NUX is a multitasking system, other windows besides the
active one receive processor attention. But when you use a com­
mand, only the active window (the window with horizontal lines
in the title bar) receives the instruction. All mouse and keyboard
inputs are reliably intercepted by the active window. However, if
the active appliaction has no open windows, character sequences
may be lost.

February, 1990 4
Revision C

CommandShell(l) CommandShell(l)

5

MENU OPTIONS
CommandShell displays menus titled File, Edit, Window, Fonts,
Commands, and Preferences in the menu bar at the top of the
screen, plus the Apple menu at the far left of the menu bar. To
choose a menu item, position the pointer on the menu title, press
and hold the mouse button, and move the pointer to the menu item
while holding down the mouse button. Release the mouse button
when the pointer highlights the desired item.

Many menu items can be chosen from the keyboard by holding
down COMMAND (not CONTROL) and typing a character. The
character required is shown beside the Command-key symbol in
the menu. Such Command-key equivalents may be entered as
lowercase; you don't need to hold down SmFf as well.

The following sections describe the actions performed by the vari­
ous CommandShell menu items.

The Apple Menu
At the far left of the menu bar, the Apple symbol is the title of a
menu that contains some general Macintosh desk accessories and
some menu items specifically related to CommandShell. The
menu items related to CommandShell include:

About CommandS hell
Display a dialog box that gives version infor­
mation.

Hide Command Shell Windows
Hide CommandS hell windows temporarily
without killing active processes.

CommandS hell Make CommandShell the selected applica­
tion and make its associated window that was
most recently active the currently active win­
dow once again (if any were opened before).

The File Menu
The menu items in the File menu allow you to do such things as
create and close windows and select printing options.

New

Open ...

Create a new window. The windows are num­
bered sequentially according to their creation
order. The Command-key equivalent for the
New menu item is COMMAND-N.

Launch a UNIX command or launch an editor
if the highlighted file is a text file. The

February, 1990
RevisionC

CommandShell (1) CommandShell(1)

Command-key equivalent for Open menu item
is COMMAND-O.

Close Close the active window. Before you close a
window, make sure that you write the contents
of the window to a disk if you want to save
your work. The Command-key equivalent for
the Close menu item is COMMAND-W.

Save Selection Save the contents of a CommandShell win­
dow in an NUX file. The text you want saved
must be selected (the text appears highlighted).

Save Preferences Save all window settings, layout information,
and notification level settings.

Restore From Preferences
Restore window settings and layout to that
specified in the preferences file. Open any
saved windows that have been closed. Run ini­
tial command in windows that do not already
have a command running.

Page Setup Display a dialog box that lets you set the paper
size, orientation, and reduction or enlargement
for subsequent printing actions.

Print Selection Print selected text from the active window. Use
the Chooser desk accessory, available in the
Apple menu, to specify which printer to use.
Use the Page Setup menu item, just described,
to specify paper size, orientation, and scale.

Close All Windows

The Edit Menu

Close all windows at once. All the windows
disappear. Before you close the windows,
make sure that you write the contents of each
window to a disk if you want to save your
work. If you don't write the contents to a disk,
they are lost.

The menu items in the Edit menu help you do such things as move
text around and perform certain global formatting actions.

Undo Reverse the most recent text change. If you choose
Undo a second time, the change is reinstated. The
Command-key equivalent for the Undo menu item

February, 1990 6
Revision C

CommandShell (1) CommandShell (1)

7

is COMMAND-Z.

Cut Copy the currently selected text in the active win­
dow to the Clipboard and then delete it from the
window. This menu item is used with desk acces­
sories only; otherwise it is disabled. The
Command-key equivalent for the Cut menu item is
COMMAND-X.

Copy Copy the currently selected text in the active win­
dow to the Clipboard without deleting it from the
window. The Command-key equivalent for the
Copy menu item is COMMAND-C.

Paste Inserts the contents of the Clipboard at the current
text cursor location. The Command-key equivalent
for the Paste menu item is COMMAND-V.

Clear Delete the currently selected text from the active
window. This menu item is used with desk acces­
sories only; otherwise it is disabled. The
Command-key equivalent for the Clear menu item
is DELETE.

Select All Select the entire document shown in the active win­
dow. The Command-key equivalent for the Select
All menu item is COMMAND-A.

Commando Build commands semiautomatically. Choose this
after entering the command name at the start of a
line. Afterward, a dialog box is displayed that dep­
icts all the features of the command. Upon exiting
the dialog, the command line that you started to
specify at the outset is changed to include all of the
flag options and arguments that were generated
with the help of the Commando dialog. The
Command-key equivalent for the Commando menu
item is COMMAND-K.

The Window Menu
The menu items in the Window menu help you arrange and
display CommandShell windows. The menu is divided into
three parts. The upper part of the menu contains menu items that
help you arrange windows in various formats. The middle part
contains menu items that help you size and order the windows.
The lower part contains a list of all windows currently available in

February, 1990
Revision C

ComrnandShell(I) CommandS hell (1)

ComrnandShell. When you choose one of the window names in
the lower list, ComrnandShell makes the corresponding window
the active window. The names of currently available windows are
listed in the order they were originally created.

The menu items in the top part of the menu do the following:

Tile Position windows in a right-to-Ieft, then top­
to-bottom sequence. You must have more than
one window on the desktop to use this menu
option. The Command-key equivalent for the
Tile menu item is COMMAND-T.

Tile Horizontal Position windows from top to bottom on the
screen in their creation order. The windows are
stretched to fit the width of the screen. The
height of each window is adjusted to accommo­
date the number of windows.

Tile Vertical Position windows from left to right on the
screen in their creation order. The windows are
stretched to fit the height of the screen. The
width is adjusted to accommodate the number
of windows.

Standard Positions
Reposition the windows in the original stacked
order, from front to back.

The items in the middle part of the menu do the following:

Standard Size Resize a window to its original dimensions.
The Command-key equivalent for the Standard
Size menu item is COMMAND-S.

Full Height Stretch a window to the full height of the
screen. The Command-key equivalent for the
Full Height menu item is COMMAND-F.

Zoom Window Make the window larger. The window au­
tomatically is resized to fit the whole screen.
You can return a window to its previous size by
choosing the Zoom Window menu item again.

Hide window-name

February, 1990
Revision C

Make window-name temporarily disappear.
The window is no longer visible, but is still
available. To show a window that has been hid-

8

CommandShell (1) ComrnandShell(l)

9

den, choose the window name from the Win­
dow menu again. The window appears in front
of other open windows and becomes the active
window. The Command-key equivalent for the
Hide Terminal item is COMMAND-H.

Show All Windows
Show all windows that have been hidden.

Last Window Makes the previously active window the active
window once again, making it visible if it was
hidden, and making it the recipient for any key­
board or mouse inputs. Repeating this selec­
tion, returns the windows to their original
states. The Command-key equivalent for the
Last Window menu item is COMMAND-L.

Rotate Window Move the rear window to the front of all the
other windows. The Command-key equivalent
for the Rotate Window menu item is
COMMAND-R.

The menu items in the bottom part of this menu are window
names for all currently available ComrnandShell windows.
Selecting a window name makes it the active window, which also
makes it visible as the front window. Among any other windows
listed is the ever-present NUX console window.

NUX System Console

The Fonts Menu

Make the NUX console window the active
window. This window is used to view console
messages. The Command-key equivalent for
the A/UX System Console menu item is
COMMAND-O (zero).

The Fonts menu lets you choose the type of font and the point size
of the font for text entered or displayed in the active
ComrnandShell window.

The Commands Menu
The menu items in the Commands menu help you set defaults for
recording information and allow you to clean up the screen.

Don't Record Lines Off Top/Record Lines Off Top
When ComrnandShell is invoked, it is set to
record a preset number of lines as they scroll

February, 1990
Revision C

ComrnandShell (1) ComrnandShell (1)

out of view. If you do not want to store the
lines for possible review later, you can stop the
recording of lines for a particular window. If
the default setting is left unchanged, the menu
item Don't Record Lines Off Top appears in
the Commands menu. Choose it so the lines are
not recorded. If the lines are not being record­
ed, the menu item Record Lines Off Top ap­
pears in the menu. Choose it to record the lines
off the top of the window as they scroll out of
view from a particular window.

Clear Lines Off Top
Erase recorded lines and make them no longer
available for review within a particular win­
dow. The scroll bar disappears in the active
ComrnandShell window.

Redraw Screen Clean up the screen if textual output affects the
bitmapped display.

The Preferences Menu
The menu items in the Preferences menu help you select how you
want to be notified of system messages, choose your default win­
dow settings, and allow you to set your preferred window
configuration.

Notification Levels ...
Set the notification level for console messages. A dialog box
appears in which you choose how you are notified of console
messages. The choices are an alert box, a flashing icon in the
menu bar, or both.

New Window Settings ...
Specify the default title prefix, window cascade origin, win­
dow size, font name, font size, and number of lines saved off
the top of the window. A dialog box appears for these
specifications.

Active Window Settings ...
Specify the settings for the active window. A dialog box ap­
pears allowing you to specify window title, size, and posi­
tion; whether or not to save lines off the top; and the initial
command to run in the window when it opens.

February, 1990 10
Revision C

CommandShell (1) CommandShell (1)

Managing CommandShell preferences
Preferences are normally saved in the . cmdshellprefs file lo­
cated in the home directory. To maintain more than one set of
preferences, you can establish a different filename as the file for
storing preferences. For example, to allow one set of preferences
(window sizes and so forth) to be saved for use with a large
display device and another set of preferences to be saved for use
with a smaller display device, you can reset the CommandShell
variable that controls the file that is used to maintain these set­
tings. The name of this variable is CMDSHELLPREFS. This vari­
able can be set to be something other than. cmdshellprefs.
When reset, the variable is normally assigned the name of a file
relative to the user's home directory, although an absolute path­
name is also acceptable. The choice of an absolute pathname is
particularly helpful when your home directory is served to you
through a file server which you access through several different
NUX systems. In such a case, each system can contain a prefer­
ences file that is customized for its own hardware.

FLAG OPTIONS

11

When invoked without any flag options, CommandShell starts
with one active window on the desktop. The window is titled
"CommandShell 1." The following flag options modify this de­
fault behavior:

-b pid
Used at boot time to start CommandShell in a background
layer without any windows. With this option,
CommandShell accepts window management commands
only as far as permitting the displaying of the NUX console
window. You do this by choosing CommandShell from the
Apple menu and then choosing NUX System Console from
the Window menu. No command-interpretation windows
can be displayed. The treatment of kernel errors or requests
for input are treated as has been described previously. pid is
the process ID of macsysini t (see brc(lM)). After tak­
ing control of the system console, CommandShell sends a
signal to this PID to exit This signal heralds the continuation
of all the remaining startup processes, which can continue
with the assurance that alerts boxes will be produced as
necessary to notify users of the need for interaction with mes­
sages directed to the system console.

February, 1990
Revision C

CommandShell (1) CommandShell (1)

-u Specify that a user has logged in and start CommandShell
in a background layer. When CommandShell is made the
active application, the user's preferred (or default)
CommandShell window layout is established. The default
is to open a single CommandShell window. When started
this way, individual user preferences can be stored using
Save Preferences in the File menu.

-q Do not include a Quit menu item in the File menu and bring
CommandShell into the foreground.

FILES
/rnac/bin/CommandShell
/rnac/bin/%CommandShell
$HOME/.crndshellprefs

SEE ALSO

object file
resource fork
default preferences file

StartMoni tor(1M), brc(1M), startrnac(1M),
startrnsg(1M).

February, 1990
Revision C

12

compact(l) compact(l)

NAME
compact, uncompact, ccat - compress and uncompress
files

SYNOPSIS
compact [name ..•]

uncompact [name . ..]

ccat [file ...]

DESCRIPTION
compact compresses the pamed files using an adaptive Huffman
code. If no filenames are given, the standard input is compacted
to the standard output. compact operates as an on-line algo­
rithm. Each time a byte is read, it is encoded immediately accord­
ing to the current prefix code. This code is an optimal Huffman
code for the set of frequencies seen so far. It is unnecessary to
prefix a decoding tree to the compressed file since the encoder and
the decoder start in the same state and stay synchronized. Further­
more, compact and uncompact can operate as filters. In par­
ticular, the command sequence

I compact I uncompact I

operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting
file is placed in file. c. file is unlinked. The first two bytes of the
compacted file code the fact that the file is compacted. This code
is used to prohibit recompaction.

The amount of compression to be expected depends on the type of
file being compressed. Typical values of compression are: Text
(38%), Pascal Source (43%), C Source (36%) and Binary (19%).
These values are the percentages of file bytes reduced.

uncompact restores the original file from a file compressed by
compact. If no filenames are given, the standard input is un­
compacted to the standard output.

cca t cats the original file from a file compressed by compact,
without uncompressing the file.

RESTRICTION

1

The last segment of the filename must contain fewer than thirteen
characters to allow space for the appended . c.

February, 1990
Revision C

compact(I)

FILES
/usr/ucb/compact
/usr/ucb/ccat
/usr/ucb/uncompact
*.c

SEE ALSO
pack(I),

compact(I)

Gallager, Robert G., Variations on a Theme of Huffman, I.E.E.E.
Transactions on Infonnation Theory, vol. IT-24. no. 6. November
1978, pp. 668-674.

February, 1990
Revision C

2

compress(l) compress(l)

NAME
compress, uncompress, zcat - compress and expand
data

SYNOPSIS
compress [-f] [-v] [-c] [-V] [-bmaxbits] [files]
uncompress [-f] [-v] [-c] [-v] [files]
zcat [-v] [files]

DESCRIPTION
compress reduces the size of the named files using adaptive
Lempel-Ziv coding. Whenever possible, each file is replaced by
one with the extension . z, while keeping the same ownership
modes, access, and modification times. If no files are specified,
the standard input is compressed to the standard output.
Compressed files can be restored to their original form using un­
compress or zcat .

FLAG OPTIONS

1

-f force compression offiles. This is useful for compressing an
entire directory, even if some of the files do not actually
shrink. If -f is not given and compress is running in the
foreground, the user is prompted as to whether an existing
file should be overwritten.

-c make compress or uncompress write to the standard
output; no files are changed. The nondestructive behavior of
zcat is identical to that of uncompress -c.

-b maxbits
use maxbits as the maximum number of bits to use in codes
when compressing file. compress uses a modified
Lempel-Ziv algorithm according to which common sub­
strings in the file are first replaced by 9-bit codes 257 and up.
When code 512 is reached, the algorithm switches to 10-bit
codes and continues to use more bits until the limit, specified
by the -b flag, is reached (default 16). The maxbits
specification must be between 9 and 16. (The default can be
changed in the source to allow compress to be run on a
smaller machine.) After the maxbits limit is attained,
compress periodically checks the compression ratio. If it
is increasing, compress continues to use the existing code
dictionary. However, if the compression ratio decreases,
compress discards the table of substrings and rebuilds it
from scratch. This allows the algorithm to adapt to the next

February, 1990
RevisionC

compress(l) compress(l)

"block" of the file.

-v print a message yielding the percentage of reduction for each
file compressed.

-v print the current version and compile options on the standard
output

Note that the -b flag is omitted for uncompress t since the max­
bits parameter specified during compression is encoded within the
outputt along with a magic number to ensure that neither
decompression of random data nor recompression of compressed
data is attempted.

The amount of compression obtained depends on the size of the
inputt the maximum number of bits per codet and the distribution
of common substrings. Typically t text such as source code or En­
glish is reduced by 50 to 60 percent. Compression is generally
much better than that achieved by Huffman coding (as used in
pack) or adaptive Huffman coding (compact)t and takes less
time to compute.

Exit status is normally 0; if the last file is larger after (attempted)
compression, the status is 2; if an error occurs t exit status is I.

DIAGNOSTICS
This section lists the error messages displayed on the screen fol­
lowed by a description of how to recover from the error.

Usage: compress [-dfvcV] [-b maxbits] [file ...]

Invalid options were specified on the command line.

Missing maxbits

maxbits must follow -b.

file: not in compressed format

The file specified to uncompress has not been compressed.

file: compressed with xx bits,
can only handle yy bits

file was compressed by a program that could deal with more bits
than the compress code on this machine. Recompress the file with
smaller maxbits.
file: already has .Z suffix -- no change

The file is assumed to be already compressed. Rename the file
and try again.

February, 1990
RevisionC

2

compress(l) . compress(l)

file: filename too long to tack on .Z

The file cannot be compressed because its name is longer than 12
characters. Rename and try again.

file already exists; do you wish to overwrite (y or n)?

Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input

A SIGSEGV violation was detected, which usually means that the
input file has been corrupted.

Compression: xx.xx%

Percentage of the input saved by compression. (Relevant only for
-v.)

-- not a regular file: unchanged

When the input file is not a regular file (for example, a directory),
it is left unaltered.

-- has xx other links: unchanged

The input file has links; it is left unchanged. See In(l) for more
information.

-- file unchanged

No savings is achieved by compression. The input remains virgin.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

FILES
/usr/ucb/compress
/usr/ucb/uncompress
/usr/ucb/zcat

SEE ALSO

3

compact(I), pack(I).
Terry A. Welch, "A Technique for High Performance Data
Compression," IEEE Computer, Vol. 17, No.6 (June 1984),
pages 8-19.

February, 1990
RevisionC

compress(l) compress(l)

BUGS
Although compressed files are compatible between machines with
large memory, - b 12 should be used for file transfer to architec­
tures with a small process data space (64K or less, as exhibited by
the DEC PDP series, the Intel 80286, etc.).

February, 1990 4
Revision C

conv(l) conv(l)

NAME
conv - swap bytes in COFF files

SYNOPSIS
conv [-] [-a] [-0] [-p] [-s] -t target file ...

DESCRIPTION

1

The conv command converts object files from their current for­
mat to the format of the target machine. The converted file is
written to file. v .

Flag options are:

-a

-0

-p

-s

-t target

read files from standard input.

If the input file is an archive, produce the output
file in the old archive format.

If the input file is an archive, produce the output
file in the UNIX 6.0 (Version 6) portable archive
format.

UNIX V.O random access archive format. This
is the default.

Byte-swap all bytes in object file. This is useful
only for 3B20 object files which are to be
swab-dumped from a DEC machine to a 3B20.

Convert the object file to the byte ordering of the
machine (target) to which the object file is being
shipped. This may be another host or a target
machine. Legal values for target are: pdp, vax,
ibm, i86, x86, b16, n3b, m32, and m68k.

conv can be used to convert all object files in common object file
format. It can be used on either the source (sending) or target (re­
ceiving) machine.

conv is meant to ease the problems created by a multihost cross­
compilation development environment. conv is best used within a
procedure for shipping object files from one machine to another.

conv will recognize and produce archive files in three formats:
the UNIX pre-V.O format, the V.O random access format, and the
6.0 portable ASCII.

February, 1990
Revision C

conv(l) conv(l)

EXAMPLES
echo *.out I conv - -t m68k

FILES
/bin/conv

DIAGNOSTICS
All diagnostics for the conv command are intended to be self­
explanatory. Fatal diagnostics on the command lines cause termi­
nation. Fatal diagnostics on an input file cause the program to
continue to the next input file.

WARNINGS
conv does not convert archives from one format to another if
both the source and target machines have the same byte ordering.

February, 1990
Revision C

2

cp(l) cp(l)

NAME
cp - copy files

SYNOPSIS
cp [-i] [-r] filel file2

cp [-i] [-r]file ... directory

DESCRIPTION
filel is copied onto file2. The mode and owner of file2 are
preserved if it already existed; otherwise, the mode of the source
file is used (all bits set in the current umask value are cleared).

In the second form, one or more files are copied into the directory
with their original filenames.

cp refuses to copy a file onto itself.

If the - i flag option is specified, cp will prompt the user with the
name of the file whenever the copy will cause an old file to be
overwritten. An answer of y will cause cp to continue. Any oth­
er answer will prevent it from overwriting the file.

If the - r flag option is specified and any of the source files are
directories, cp copies each subtree rooted at that name; in this
case, the destination must be a directory.

FILES
/bin/cp

SEE ALSO
cat(I), pr(I), mv(I), rcp(IN).

WARNINGS

1

cp does not copy the description of special files, but attempts to
copy the contents of the special file. This often occurs when using
the -r flag option for a recursive copy. For example, cp will
hang when trying to copy a named pipe or tty device. When a
disk node is being copied, the contents of the disk partition will be
copied. To copy the description of the special files, use cpio(l).

February, 1990
RevisionC

epio(l)

NAME
epio - copy tiles to or from a epio archive

SYNOPSIS
epio -o[aeBFv]
epio -i[BedmrtuvfsSb6] [patterns]
epio -p[adlmuv] directory

DESCRIPTION

epio{l)

epio -0 (copy out) reads the standard input to obtain a list of
pathnames and copies those files onto the standard output together
with pathname and status information. The list of pathnames must
contain only one file per line. (Thus, only certain commands, such
as find or 1 s without the -c option, will work in a pipeline to
epio.) Output is padded to a 512-byte boundary. When epio
-0 prints a message xxx blocks, it indicates how many blocks
were written.

epio -i (copy in) extracts tiles from the standard input, which
is assumed to be the product of a previous epio -0. Only files
with names that match patterns are selected. patterns are given in
the name-generating notation of sh(I). In patterns, the meta­
characters?, *, and [... J match the slash / character. Multiple
patterns may be specified but if none are, the default for patterns
is * (that is, select all files). The extracted files are conditionally
created and copied into the current directory tree based on the flag
options described later. The permissions of the files will be those
of the previous epio -0. The owner and group assigned to the
files will be that of the current user unless the user is superuser,
which causes epio to retain the owner and group assigned to the
tiles from the previous epio -0. When epio -i prints a mes­
sage xxx blocks, it indicates how many blocks were read from
the collection.

epio -p (pass) reads the standard input to obtain a list of path­
names of files that are conditionally created and copied into the
destination directory tree based on the flag options described later.
When epio -p prints a message xxx blocks, it indicates how
many blocks were written.

epio does not follow symbolic links.

The meanings of the available flag options are

a Resets access times of input files after they have been
copied.

February, 1990
Revision C

1

cpio(l) cpio(l)

B

d
c

r

t

u

v

1

m

f
F

s
S
b

6

Input/output is to be blocked 5,120 bytes to the record
(does not apply to the pass flag option; meaningful only
with data directed to or from 3.5-inch disks).
directories are to be created as needed.
Writes header information in ASCII character form for
portability.
Interactively rename files. If the user types a null line,
the file is skipped.
Prints a table of contents of the input. No files are creat­
ed.
Copies unconditionally (normally, an older file will not
replace a newer file with the same name).
verbose: Causes a list of filenames to be printed. When
used with the t flag option, the table of contents looks
like the output of an Is -1 command (see Is(1)).
Whenever possible, links files rather than copying them.
Usable only with the -p flag option.
Retains previous file-modification time. This flag option
is ineffective on directories that are being copied.
Copies in all files except those in patterns.
When used with the -0 flag and when the output device
is a Macintosh II floppy drive, the F flag will cause each
floppy to be formatted after it is inserted into the drive.
This formatting is for 800K drives only, so only 800K
floppy disk should be used.
Swaps bytes. Use only with the - i flag option.
Swaps halfwords. Use only with the -i flag option.
Swaps both bytes and halfwords. Use only with the - i
flag option.
Processes an old (that is, UNIX System Sixth Edition
format) file. Useful only with - i flag option.

EXAMPLES

2

The pipeline

Is I epio -0 > /dev/rdsk/e8dOsO

copies the contents of a directory into an archive.

cd olddir
find . -depth -print I epio -pdl newdir

duplicates a directory hierarchy.

February, 1990
RevisionC

cpio(l) cpio(1)

The simple case

find . -depth -print I epio -oB > /dev/rdsk/e8dOsO

may be handled more efficiently by:

find . -epio /dev/rdsk/e8dOsO

FILES
/bin/cpio

SEE ALSO
ar(1), dd(1), find(I), 15(1), tar(1), cpio(4).

BUGS
Pathnames are restricted to 128 characters.

If there are too many uniquely linked files, the program runs out of
the memory needed to keep track of them and, thereafter, linking
information is lost.

Only the superuser may copy special files.

February, 1990
Revision C

3

cpp(l) cpp(l)

NAME
cpp - the C language preprocessor

SYNOPSIS
/lib/cpp [-C] [-Dname[=dej]] [-Idir] [-p] [-uname] [­
M{prefix]] [-y] [ifile [oftle]]

DESCRIPTION

1

cpp is the C language preprocessor that is invoked as the first
pass of any C compilation using the cc(l) command. The output
of cpp is acceptable as input to the next pass of the C compiler.
As the C language evolves, cpp and the rest of the C compilation
package will be modified to follow these changes. Therefore, the
use of cpp other than in this framework is not suggested. The
preferred way to invoke cpp is through the cc(1) command be­
cause the functionality of cpp may someday be moved elsewhere.
See m4(1) for a general macro processor.

cpp optionally accepts two filenames as arguments. The input for
the preprocessor is ifile, which is also known as the source file,
and the output is oftle. If not supplied, iftle and oftle default to
standard input and standard output, except in the case of the -M
option, which requires ijile to be present and have a suffix.

The following flag options to cpp are recognized:

-C Pass along all comments except those found on cpp directive
lines. By default, cpp strips C-style comments.

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is
given, name is defined as 1.

-Idir
Search for #include files (whose names do not begin with
/) in dir before looking in the directories on the standard list.
When this flag option is used, #include files whose names
are enclosed in "" (double quotes) are searched for first in
the directory of the ijile argument, then in directories named
in -I flag options, and last in directories on a standard list,
which, at present, consists of /usr / include. If the -Y
option (see below) is specified, the standard list is not
searched. For # incl ude files whose names are enclosed in
<>, the directory of the ijile argument is not searched, unless
- I. is specified.

February, 1990
Revision C

cpp(l) cpp(l)

-Mfprefix]
Generate make dependency statements from the #in­
clude (see below) statements contained in ifile. The depen­
dency statements can later be incorporated into a description
file for use by make in determining the #include files on
which ifile depends. The dependency statements are of the
form:

target: includel [include2 ...]

where target is a name created by subsituting the suffix of
ifile with' . 0'. For example, if the name of ifile is main. c,
target will be main. o. If prefix is present and the #in­
cl ude file in ifile is found in the standard list, prefix is ap­
plied as shown below:

target: prefix/includel [prefixlinclude2 ...]

For example, if the source file main. c includes
<stdio. h> and the -M option is used, the following depen­
dency statement is generated:

main.o: /usr/include/stdio.h

If -M' $ (INC)' is specified, the following dependency
statement is generated:

main.o: $(INC)/stdio.h

Only unique #include files are kept; duplicates are dis­
carded. The resulting ofile will contain only dependency
statements. Error messages are written on standard error. If
cpp is invoked with the -M option and ifile does not have a
suffix, cpp exits with an error message.

-p Turn off the default production of line control information.
Line control information is used by the next pass of the C
compiler to generate useful error messages about the line on
which an error occurred. Line control lines have the form

* lineno file

where lineno is the line number within the file at which cpp
found the line. Line control information is useful because, as
cpp reads each #include file and writes its contents to
ofile, synchronization between the text lines in ifile and the

February, 1990
Revision C

2

epp(1) epp(l)

3

text lines in oftle is lost. For example, if the following ifile is
compiled without line control information

#inelude <stdio.h>

main ()
{

x =) 2;

the C compiler will generate the following error message:

"", line 157: x undefined
"", line 157: syntax error

To the C compiler, having included stdio. h in oftle, line
157 is the true line number at which the error occurred. With
line control information enabled, which is the default, ee
can display the correct line number as shown below:

-Uname

"", line 5: x undefined
"", line 5: syntax error

Remove any initial definition of name, where name is a
reserved symbol that is predefined by the particular prepro­
cessor. The list of reserved symbols is shown below:

operating system:

hardware:

UNIX® System variant:

unix

m68k

_SYSV _SOURCE
_BSD _SOURCE
_AUX_SOURCE

- Y Prevent epp from searching the standard list, which at
present consists of /usr/inelude, when processing
#inelude files. This option is useful when used in con­
junction with the -I option. When epp cannot find a #in­
el ude file in the directories specified by one or more -I
options, its normal behavior is to search the standard list. If
the - y option is used in addition to the -I option and epp
cannot find a #inelude file in the directory specified by
one or more -I options, epp writes an error message on
standard error, does not search the standard list, and contin­
ues processing. Thus, use of the - Y option insures that

February, 1990
Revision C

cpp(l) cpp(1)

cpp does not silently include the wrong #include file in
cases where the -I option is incorrectly specified or the
desired #include file is erroneously missing from the
specified directory.

Two special names are understood by cpp. The name
LINE is defined as the current line number (as a decimal

uiieger) as-known by cpp, and FILE is defined as the
current filename (as a C string) as -kflown bYcpp. They can be
used anywhere, including in macros, just as any other defined
name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name (arg, ... , arg) token-string
Replace subsequent instances of name followed by a left
parenthesis [n, a list of comma-separated tokens, and a right
parenthesis [)] by token-string where each occurrence of arg
in the token-string is replaced by the corresponding token in
the comma-separated list. Notice that there can be no space
between name and the left parenthesis [(].

#undef name
Cause the definition of name, if any, to be undefined.

#include ''filename''
#include <.filename>

Include at this point the contents of filename, which will then
be run through cpp. When the <filename> notation is used,
filename is only searched for in the standard places. See the
- I flag option above for more detail.

1 i ne integer-constant ''filename''
Cause cpp to generate line-control information for the next
pass of the C compiler. The line number of the next line is
integer-constant, and filename is the file where it comes
from. If "filename" is not given, the current filename is un­
changed.

#endif
End a section of lines begun by a test directive (# if, # i f -
def, or #ifndef). Each test directive must have a match­
ing #endif.

February, 1990
Revision C

4

cpp(l) cpp(l)

5

#ifdef name
Displays the lines following in the output if and only if name
was the subject of a previous #define without being the
subject of an intervening #unde f.

#ifndef name
Does not display the lines following in the output if and only
if name has been the subject of a previous #define without
being the subject of an intervening #undef.

i f constant-expression
Displays the lines following in the output if and only if
constant-expression evaluates to nonzero. All binary nonas­
signment C operators, the ?: operator, the unary -, !, and -
operators are legal in constant-expression. The precedence
of the operators is the same as defined by the C language.
There is also a unary operator defined that can be used in
constant-expression in these two forms: defined (name
) or defined name. This allows the utility of #ifdef and
#ifndef in an #if directive. Only these operators, integer
constants, and names that are known by cpp should be used
in constant-expression. In particular, the si zeof operator
is not available.

#elif constant-expression
Displays the lines following the output if and only if
constant-expression is true and the preceding # i f
constant-expression with which the subject #elif is paired
is false. The formation of constant-expression is subject to
the restrictions described for # i f above.

#else
Reverse the notion of the test directive that matches this
directive. If lines previous to this directive are ignored, the
lines following appear in the output. If lines previous to this
directive are not ignored, the lines following do not appear in
the output.

#ident ...
This directive is maintained for historical reasons, but does
not cause cpp to do any special processing nor to generate
any output to ofile.

#pragma ...
Lines beginning with this directive are written to ofile
without modification.

February, 1990
RevisionC

cpp(l) cpp(l)

The test directives and the possible .1f:else directives can be nest­
ed.

FILES
/lib/cpp
/usr/include

SEE ALSO
cc(1), m4(1), make(1).

"Other Programming Tools" in AIUX Programming Languages
and Tools, Volume 2.

DIAGNOSTICS
The error and warning messages produced by cpp are self­
explanatory and are written to standard output. The line number
and filename where the error occurred are printed with the diag­
nostic. If ifile is a relative pathname, cpp also prints the absolute
path of ifile in the form:

ifile (absolute path) : message

NOTES
When newline characters were found in argument lists for macros
to be expanded, previous versions of cpp put out the new lines as
they were found and expanded. The current version of cpp re­
places these new lines with blanks to alleviate problems that the
previous versions had when this occurred.

February, 1990
Revision C

6

crontab(l) crontab(l)

NAME
crontab - user crontab utility

SYNOPSIS
crontab [file]

crontab -1

crontab -r

DESCRIPTION

1

crontab is a utility which aids in the use of the cron process
scheduling program. A crontab file stipulates the timetable for
regular process scheduling. crontab copies the specified file, or
standard input if no file is specified, into a directory that holds all
users' crontabs. If standard input is used, an EOF (CONlROL-D
by default in the NUX standard distribution) must be entered to
terminate the processes. The - r flag option removes a user's
crontab from the crontab directory. crontab -1 wi1llist
the crontab file for the invoking user.

You are permitted to use crontab if your name appears in the
file /usr / lib/ cron/ cron. allow. If that file does not exist,
the file /usr / lib/ cron/ cron. deny is checked to determine
if you should be denied access to crontab. If neither file exists,
only root is allowed to submit a job. The allow/deny files
consist of one username per line.

A crontab file consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal
values), or a list of elements separated by commas. An element is
either a number, or two numbers separated by a minus sign (mean­
ing an inclusive range). Note that the specification of days may be
made by two fields (day of the month and day of the week). If
both are specified as a list of elements, both are adhered to.

February, 1990
RevisionC

crontab(1) crontab(1)

For example,

o 0 1,15 * 1

would run a command on the first and fifteenth of each month, as
well as on every Monday. To specify days by only one field, the
other field should be set to * (for example,

o 0 * * 1

would run a command only on Mondays). Thus, a secondary
meaning of asterisk is "use the other field" .

The sixth field of a line in a crontab file is a string that is exe­
cuted by the shell at the specified times. A percent character in
this field (unless escaped by \) is translated to a newline charac­
ter. Only the first line (up to a % or end-of-line) of the command
field is executed by the shell. The other strings following the per­
cent character are made available to the command as standard in­
put. cron reads only one line at a time. For example,

o 0 * * 1 cat %GO%HOME%EARLY%

would mail the output

GO
HOME
EARLY

to the user at the requested time.

The shell is invoked from your $HOME directory with an argO of
she Users who desire to have their. profile executed must do
so explicitly in the crontab file. cron supplies a default en­
vironment for every shell, defining

HOME
LOGNAME
SHELL (=/bin/sh)
PATH(=:/bin:/usr/bin:/usr/lbin)

Note: Users should remember to redirect the standard out­
put and standard error of their commands! If this is not
done, any generated output or errors will be mailed to the
user (via mail(1».

February, 1990
Revision C

2

crontab(1)

FILES
/usr/bin/crontab
/usr/lib/crontab
/usr/lib/cron
/usr/spool/cron/crontabs
/usr/lib/cron/log
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny

SEE ALSO
at (1), sh(1), cron(1M).

3

crontab(l)

February, 1990
Revision C

crypt(1) crypt(1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION
crypt reads from the standard input and writes on the standard
output. The password is a key that selects a particular transforma­
tion. If no password is given, crypt demands a key from the ter­
minal and turns off printing while the key is being typed in.
crypt encrypts and decrypts with the same key:

crypt key <clear> cypher
crypt key < cypher I pr

will print the clear text file, clear.

Files encrypted by crypt are compatible with those treated by
both the ed and ex editors in encryption mode.

The security of encrypted files depends on three factors: the fun­
damental method must be hard to solve; direct search of the key
space must be infeasible; sneak paths by which keys or clear text
can become visible must be minimized. The security of this
scheme should not be relied on, for reasons described herein.

crypt implements a one-rotor machine designed along the lines
of the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover, the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the
machine is deliberately designed to be expensive, i.e., to take a
substantial fraction of a second to compute. If keys are restricted
to (for example) three lowercase letters, however, encrypted files
may be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is poten­
tially visible to users executing ps(1) or a derivative. To minim­
ize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. The choice of keys and key security
are the most vulnerable aspect of crypt.

February, 1990
Revision C

1

crypt(l) crypt(l)

EXAMPLES
crypt asa < sleeper.c > zzz

will use the string asa as key to the encryption algorithm to en­
crypt the contents of sleeper. c, and place the encrypted output
in file zzz. File zzz at this point will be unreadable. Note that
the original file, sleeper. c, remains in readable form. To ob­
tain readable printout of the file z z z, it could be decoded as fol­
lows:

crypt < zzz

Mter the response:

Enter key:

the user types in: a sa.

FILES
/bin/crypt
/dev/tty

for typed key

SEE ALSO
ed(1), ex(1), makekey(l), stty(l), vi(l), crypt(3C).

BUGS
If output is piped to nroff and the encryption key is not given on
the command line, crypt may leave terminal modes in a strange
state (see st ty(1)).
If two or more files encrypted with the same key are concatenated
and an attempt is made to decrypt the result, only the contents of
the first of the original files will be decrypted correctly.

NOTES

2

This utility is not provided with international distributions.

February, 1990
Revision C

csh(1) cSh(l)

NAME
csh - run the C shell, a command interpreter with C-like syntax

SYNOPSIS
csh[-c] [-e] [-f] [-i] [-n] [-s] [-t] [-v] [-v] [-x] [-x]
[arg .. .]

DESCRIPTION
csh is a command language interpreter incorporating a history
mechanism (see "History Substitutions"), job control facilities
(see "Jobs"), and a C-like syntax. In order to use its job control
facilities, users of csh must enable the generation of suspend
characters with st ty(1).

An instance of csh begins by executing commands from the file
. cshrc in the home directory of the invoker. If this is a login
shell, then it also executes commands from the file .login (also
in the home directory). It is typical for users on CRT's to put the
tset(l) command in their . login file.

In the normal case, the shell will then begin reading commands
from the terminal, prompting with %. Processing of arguments
and the use of the shell to process files containing command
scripts will be described later.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of
words is placed on the command history list and then parsed. Fi­
nally each command in the current line is executed.

When a login shell terminates, it executes commands from the file
. logout in the user's home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs, with the
following exceptions. The characters &, I, ;, <, >, (, and) form
separate words. If doubled in & &, I I, < <, or > >, these pairs form
single words. These parser metacharacters may be made part of
other words, or prevented their special meaning, by preceding
them with \. A newline preceded by a \ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, " ' ,
or ", form parts of a word; metacharacters in these strings, includ­
ing blanks and tabs, do not form separate words. These quotations
have semantics to be described subsequently. Within pairs of ' or
n characters, a newline preceded by a \ gives a true newline char­
acter.

February, 1990
Revision C

1

CSh(l) csh(l)

2

When the shell's input is not a terminal, the character # introduces
a comment which continues to the end of the input line. It is
prevented this special meaning when preceded by \ and when us­
ing " ' , and " quotation.

Commands
A simple command is a sequence of words, the first of which
specifies the command to be executed. A simple command or a
sequence of simple commands separated by I characters forms a
pipeline. The output of each command in a pipeline is connected
to the input of the next. Sequences of pipelines may be separated
by ;, and are then executed sequentially. A sequence of pipelines
may be executed without immediately waiting for it to terminate
by following it with an &.

Any of the above may be placed in () to form a simple command
(which may be a component of a pipeline, and so forth). It is also
possible to separate pipelines with I I or & &, indicating, as in the
C language, that the second is to be executed only if the first fails
or succeeds, respectively (see "Expressions").

Jobs
The shell associates a job with each pipeline. It keeps a table of
current jobs, printed by the jobs command, and assigns them
small integer numbers. When a job is started asynchronously with
&, the shell prints a line which looks like

[1] 1234

indicating that the job which was started asynchronously was job
number 1 and had one (top-level) process, whose process ID was
1234.

If you are running a job and wish to do something else, you may
hit the key CONlROL-Z which sends a stop signal to the current
job. The shell will then normally indicate that the job has been
Stopped, and print another prompt. You can then manipulate
the state of this job, putting it in the background with the bg com­
mand, or run some other commands and then eventually bring the
job back into the foreground with the foreground command f g. A
CONlROL-Z takes effect immediately and is like an interrupt in
that pending output and unread input are discarded when it is
typed. There is another special key, CONlROL-Y, which does not
generate a stop signal until a program attempts to read(2) it.
This can usefully be typed ahead when you have prepared some
commands for a job which you wish to stop after the program has

February, 1990
Revision C

csh(1) cSh(l)

read them.

A job being run in the background will stop if it tries to read from
the terminal. Background jobs are normally allowed to produce
output, but this can be disabled by giving the command
" s tty to stop" . If you set this tty option, then background
jobs will stop when they try to produce output as they do when
they try to read input.

There are several ways to refer to jobs in the shell. The character
% introduces a job name. If you wish to refer to job number 1, you
can name it as %1. Just naming a job brings it to the foreground;
thus % 1 is a synonym for f g % 1, bringing job 1 back into the
foreground. Similarly, saying %1& resumes job 1 in the back­
ground. Jobs can also be named by prefixes of the string typed in
to start them, if these prefixes are unambiguous; thus %ex would
normally restart a suspended ex(l) job, if there were only one
suspended job whose name began with the string ex. It is also
possible to say %? string which specifies a job whose text contains
string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In
output pertaining to jobs, the current job is marked with a + and
the previous job with a -. The abbreviation % + refers to the
current job and % - refers to the previous job. For close analogy
with the syntax of the history mechanism (described later), %%
is also a synonym for the current job.

Status Reporting
This shell learns immediately whenever a process changes state.
It normally informs you whenever a job becomes blocked so that
no further progress is possible, but only just before it prints a
prompt. This is done so that it does not otherwise disturb your
work. If, however, you set the shell variable notify, the shell
will notify you immediately of changes of status in background
jobs. There is also a shell command notify which marks a sin­
gle process so that its status changes will be immediately reported.
By default, notify marks the current process; simply say no­
tify after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be
warned that

You have stopped jobs.

You may use the jobs command to see what they are. If you do

February, 1990
Revision C

3

csh(l) csh(l)

4

this or immediately try to exit again, the shell will not warn you a
second time, and the suspended jobs will be terminated.

Substitutions
In this section, various transformations that the shell performs on
the input are described, in the order in which they occur.

History Substitutions
History substitutions place words from previous command input in
portions of new commands, making it easy to repeat commands,
repeat arguments of a previous command in the current command,
or fix spelling mistakes in the previous command with little typing
and a high degree of confidence. History substitutions begin with
the character! and may begin anywhere in the input stream (with
the proviso that they do not nest). This! may be preceded by an
\ to prevent its special meaning; for convenience, a ! is passed
unchanged when it is followed by a blank, tab, newline, =, or (.
(History substitutions also occur when an input line begins with ~.
This special abbreviation will be described later.) Any input line
which contains history substitution is echoed on the terminal be­
fore it is executed as it could have been typed without history sub­
stitution.

Commands input from the terminal which consist of one or more
words are saved on the history list. The history substitutions rein­
troduce sequences of words from these saved commands into the
input stream. The size of this list is controlled by the history
variable; the previous command is always retained, regardless of
its value. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history
command

9 write zach
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usu­
ally necessary to use event numbers, but the current event number
can be made part of the prompt by placing an ! in the prompt
string.

With the current event 13, we can refer to previous events by
event number ! 11, relatively as in ! -2 (referring to the same
event), by a prefix of a command word as in ! d for event 12 or

February, 1990
RevisionC

cSh(l) csh(l)

! wri for event 9, or by a string contained in a word in the com­
mand as in !?mi c ? also referring to event 9. These fonns,
without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special
case ! ! refers to the previous command; thus ! ! alone is essen­
tially a redo.

To select words from an event, we can follow the event
specification by a : and a designator for the desired words. The
words of an input line are numbered from 0, the first (usually the
command) word being 0, the second word (first argument) being
1, and so forth. The basic word designators are

o first (command) word

n nth argument

first argument, that is, 1

$ last argument

% word matched by (immediately preceding) ? s?
search

x-y range of words

-y abbreviates O-y

* abbreviates ~ - $, or nothing if only 1 word in event

x* abbreviates x- $

x- like x* but omitting word $

The : separating the event specification from the word designator
can be omitted if the argument selector begins with a ~ , $, *, -, or
%. After the optional word designator can be placed a sequence of
modifiers, each preceded by a :. The following modifiers are
defined:

h Remove a trailing path name component, leaving
the head.

r Remove a trailing . xxx component, leaving the
root name.

e Remove all but the extension . xxx part.

s / II r / Substitute I for r.

t Remove all leading pathname components, leaving
the tail.

February,1990 5
Revision C

cSh(l) cSh(l)

6

&

g

p

q

x

Repeat the previous substitution.

Apply the change globally, prefixing the above, for
example g&.

Print the new command but do not execute it.

Quote the substituted words, preventing further
substitutions.

Like q, but break into words at blanks, tabs and
newlines.

Unless preceded by a g, the modification is applied only to the
first modifiable word. With substitutions, it is an error for no word
to be applicable.

The left side of substitutions are not regular expressions in the
sense of the editors, but rather strings. Any character may be used
as the delimiter in place of /; a \ quotes the delimiter into the I
and r strings. The character & on the right side is replaced by the
text from the left. A \ quotes & also. A null I uses the previous
string either from a I or from a contextual scan string s in !? s? .
The trailing delimiter in the substitution may be omitted if a new­
line follows immediately, as may the trailing ? in a contextual
scan.

A history reference may be given without an event specification,
for example! $. In this case the reference is to the previous com­
mand unless a previous history reference occurred on the same
line, in which case this form repeats the previous reference. Thus
! ? f oo? ~ ! $ gives the first and last arguments from the com­
mand matching ? f oo? .

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a ". This is equivalent to
! : S " , providing a convenient shorthand for substitutions on the
text of the previous line. Thus "lb"lib fixes the spelling of
lib in the previous command. Finally, a history substitution may
be surrounded with { and } if necessary to insulate it from the
characters which follow. Thus, after ls -ld -paul we might
do ! {l} a to do ls -ld -paula, while! la would look for a
command starting lao

Quotations with 'and tt

The quotation of strings by , and n can be used to prevent all or
some of the remaining substitutions. Strings enclosed in ' are
prevented any further interpretation. Strings enclosed in n may be

February, 1990
RevisionC

csh(1) csh(1)

expanded as described later.

In both cases the resulting text becomes (all or part of) a single
word; only in one special case (see "Command Substitution")
does a " quoted string yield parts of more than one word; , quot­
ed strings never do.

Alias Substitution
The shell maintains a list of aliases which can be established,
displayed, and modified by the alias and unalias commands.
After a command line is scanned, it is parsed into distinct com­
mands and the first word of each command, left-to-right, is
checked to see if it has an alias. If it does, then the text which is
the alias for that command is reread with the history mechanism
available, as though that command were the previous input line.
The resulting words replace the command and argument list. If no
reference is made to the history list, then the argument list is left
unchanged.

Thus, if the alias for 1 s is 1 s -1, the command 1 s / u s r
would map to 1 s -1 / u s r, the argument list here being undis­
turbed. Similarly if the alias for lookup was
grep ! A /etc/passwd, then lookup tim would map to
grep tim /etc/passwd

If an alias is found, the word transformation of the input text is
performed and the aliasing process begins again on the reformed
input line. Looping is prevented if the first word of the new text is
the same as the old by flagging it to prevent further aliasing. Oth­
er loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus, we can say

alias print 'pr \!* I lpr '

to make a command which uses pr to send its arguments to the
line printer.

Variable Substitution
The shell maintains a set of variables, each of which has as value a
list of zero or more words. Some of these variables are set by or
referred to by the shell. For instance, the a rgv variable is an im­
age of the shell's argument list, and words of this variable's value
are referred to in special ways.

February, 1990 7
Revision C

csh(l) csh(l)

8

The values of variables may be displayed and changed by using
the set and unset commands. Of the variables referred to by
the shell, a number are toggles; the shell does not care what their
value is, only whether they are set or nol For instance, the ver­
bose variable is a toggle which causes command input to be
echoed. The setting of this variable results from the -v flag op­
tion.

Other operations treat variables numerically. The @ command
permits numeric calculations to be performed and the result be as­
signed to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second
and subsequent words of multi word values are ignored.

Mter the input line is aliased and parsed, and before each com­
mand is executed, variable substitution is performed, keyed by $
characters. This expansion can be prevented by preceding the $
with a \ except within double quotes where it always occurs, and
within single quotes where it never occurs. Strings quoted by ,
are interpreted later (see "Command Substitution"), so $ substi­
tution does not occur there until later, if at all. A $ is passed un­
changed if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expan­
sion, and are variable expanded separately. Otherwise, the com­
mand name and entire argument list are expanded together. It is
thus possible for the first (command) word at this point to generate
more than one word, the first of which becomes the command
name, and the rest of which become arguments.

Unless enclosed in " or given the : q modifier, the results of vari­
able substitution may eventually be command and filename substi­
tuted. Within ", a variable whose value consists of multiple
words expands to a (portion of) a single word, with the words of
the variables value separated by blanks. When the : q modifier is
applied to a substitution, the variable will expand to multiple
words with each word separated by a blank and quoted to prevent
later command or filename substitution.

The following metasequences are provided for introducing vari­
able values into the shell input. Except as noted, it is an error to
reference a variable which is not set.

$name

February, 1990
RevisionC

csh(l) csh(l)

$ {name}
Are replaced by the words of the value of variable name,
each separated by a blank. Braces insulate name from fol­
lowing characters which would otherwise be part of it. Shell
variables have names consisting of up to 18 letters and digits
starting with a letter. The underscore character is considered
a letter.

If name is not a shell variable, but is set in the environment,
then that value is returned (but : modifiers and the other
forms given later are not available in this case).

$name [selector]
$ {name [selector] }

May be used to select only some of the words from the value
of name. The selector is subjected to $ substitution and may
consist of a single number or two numbers separated by a -.
The first word of a variables value is numbered 1. If the first
number of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to $#name. The
selector * selects all words. It is not an error for a range to
be empty if the second argument is omitted or in range.

$ # name
$ {#name}

Gives the number of words in the variable name. This is use­
ful for later use in a [selector].

$ 0 Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

$ number
$ {number}

Equivalent to $argv [number] .

$* Equivalentto $argv [*] .

The modifiers : h, : t, : r, : q, and : x may be applied to the sub­
stitutions above, as may: gh, : gt, and : gr. If braces { } appear
in the command form, then the modifiers must appear within the
braces.

Note: The current implementation allows only one :
modifier on each $ expansion.

February, 1990
Revision C

9

csh(1) csh(l)

10

The following substitutions may not be modified with : modifiers.

$?name
$ {?name}

Substitutes the string 1 if name is set, 0 if it is not.

$?O
Substitutes 1 if the current input filename is known, 0 if it is
not.

$ $ Substitutes the (decimal) process nwnber of the (parent)
shell.

$< Substitutes a line from the standard input, with no further in­
terpretation thereafter. It can be used to read from the key­
board in a shell script.

Command and Filename Substitution
The remaining substitutions, command and filename substitution,
are applied selectively to the arguments of built-in commands.
This means that portions of expressions which are not evaluated
are not subjected to these expansions. For commands which are
not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after
input-output redirection is performed, and in a child of the main
shell.

Command Substitution
Command substitution is indicated by a command enclosed in '
The output from such a command is normally broken into separate
words at blanks, tabs, and newlines, with null words being dis­
carded; this text then replacing the original string. Within ", only
new lines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word.
Note that it is thus possible for a command substitution to yield
only part of a word, even if the command outputs a complete line.

Filename Substitution
If a word contains any of the characters *, ?, [, or {, or begins
with the character -, then that word is a candidate for filename
substitution, also known as globbing. This word is then regarded
as a pattern and replaced with an alphabetically sorted list of file
names which match the pattern. In a list of words specifying
filename substitution, it is an error if no pattern matches an exist­
ing filename, but it is not required that each pattern match. Only
the metacharacters *, ?, and [imply pattern matching, the charac-

February, 1990
RevisionC

csh(l) csh(l)

ters - and { being more akin to abbreviations.

In matching filenames, the character . at the beginning of a
filename or immediately following a /, as well as the character /,
must be matched explicitly. The character * matches any string of
characters, including the null string. The character ? matches any
single character. The sequence [... J matches anyone of the
characters enclosed. Within [... J , a pair of characters separated
by - matches any character lexically between the two.

The character - at the beginning of a filename is used to refer to
home directories. Standing alone, that is, as -, it expands to the
invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and
- characters, the shell searches for a user with that name and sub­
stitutes the home directory; thus -paul might expand to
/usr/paul and -paul/chmach to /usr/paul/chmach.
If the character - is followed by a character other than a letter or
/ or appears, but not at the beginning of a word, it is left undis­
turbed.

The metanotation a {b, c, d} e is shorthand for abe ace ade.
Left to right order is preserved, with results of matches being sort­
ed separately at a low level to preserve this order. This construct
may be nested. Thus,

-source/sl/{oldls,ls}.c

expands to

/usr/source/sl/oldls.c /usr/source/sl/ls.c

(whether or not these files exist without any chance of error) if the
home directory for source is /usr / source. Similarly,

.. /{memo,*box}

might expand to

.. /memo .. /box .. /mbox

(Note that memo was not sorted with the results of matching
*box.) As a special case {, }, and { } are passed undisturbed.

Input/Output
The standard input and standard output of a command may be
redirected with the following syntax:

< name
Open file name (which is first variable, command, and

February, 1990
Revision C

11

csh(1) csh(1)

12

filename expanded) as the standard input

« word
Read the shell input up to a line which is identical to word.
word is not subjected to variable, filename, or command sub­
stitution, and each input line is compared to word before any
substitutions are done on this input line. Unless a quoting \,
", ' ,or ' appears in word, variable and command substitu­
tion is performed on the intervening lines, allowing \ to
quote $, \, and '. Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the final
newline which is dropped. The resultant text is placed in an
anonymous temporary file which is given to the command as
standard input

> name
>! name
>& name
>&! name

The file name is used as standard output If the file does not
exist, then it is created; if the file exists, it is truncated and its
previous contents are lost If the variable noclobber is set,
then either the file must not exist or be a character special file
(for example, a terminal or / dev /null) or an error results.
This helps prevent accidental destruction of files. In this
case, the ! forms can be used and suppress this check. The
forms involving & route the diagnostic output as well as the
standard output into the specified file. name is expanded in
the same way as < input filenames are.

» name
»& name
»! name
»&! name

Uses file name as standard output like >, but places output at
the end of the file. If the variable noclobber is set, then it
is an error for the file not to exist unless one of the ! forms is
given. Otherwise similar to >.

A command receives the environment in which the shell was in­
voked as modified by the input-output parameters and the pres­
ence of the command in a pipeline. Thus, unlike some previous
shells, commands that run from a file of shell commands have no
access to the text of the commands by default; rather they receive
the original standard input of the shell. The < < mechanism should

February, 1990
RevisionC

cSh(l) csh(1)

be used to present inline data. This permits shell command scripts
to function as components of pipelines and allows the shell to
block-read its input. Note that the default standard input for a
command run detached is not modified to be the empty file
/ dev /null; rather the standard input remains as the original
standard input of the shell. If this is a terminal and if the process
attempts to read from the terminal, then the process will block and
the user will be notified (see " Jobs" .)

Diagnostic output may be directed through a pipe with the stan­
dard output. Simply use the form I & rather than just I.

Expressions
A number of the built-in commands (to be described subsequent­
ly) take expressions, in which the operators are similar to those of
C, with the same precedence. These expressions appear in the @,

exi t, if, and while commands. The following operators are
available:

I I && I ~ & == != =- !- <=
>= < > « » + - * / % ! - ()

Here the precedence increases to the right with those on the same
line having equal precedence:

!= =- 1-

<= >= < >
« »
+ -
* / %

The ==, ! =, =-, and ! - operators compare their arguments as
strings; all others operate on numbers. The operators = - and ! -
are like == and ! = except that the right side is a pattern (contain­
ing, for example, *, ?, and instances of [...]) against which the
left operand is matched. This reduces the need for use of the
sw itch statement in shell scripts when all that is really needed is
pattern matching.

Strings which begin with 0 are considered octal numbers. Null or
missing arguments are considered o. The result of all expressions
are strings, which represent decimal numbers. It is important to
note that no two components of an expression can appear in the
same word; except when adjacent to components of expressions
which are syntactically significant to the parser

& I < > ()

February, 1990
Revision C

13

csh(l) csh(l)

14

they should be surrounded by spaces.

Also available in expressions as primitive operands are command
executions enclosed in { and } and file enquiries of the form -
I name where I is one of

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command- and filename-expanded and then
tested to see if it has the specified relationship to the real user. If
the file does not exist or is inaccessible, then all enquiries return
false, that is O. Command executions succeed, returning true, that
is 1, if the command exits with status 0, otherwise they fail, re­
turning false, that is O. If more detailed status information is re­
quired then the command should be executed outside of an expres­
sion and the variable s tat u s examined.

Control Flow
The shell contains a number of commands which can be used to
regulate the flow of control in command files (shell scripts) and (in
limited but useful ways) from terminal input. These commands all
operate by forcing the shell to reread or skip in its input and, due
to the implementation, restrict the placement of some of the com­
mands.

The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require that the major
keywords appear in a single simple command on an input line as
shown later.

If the shell's input is not seekable, the shell buffers up input when­
ever a loop is being read and performs seeks in this internal buffer
to accomplish the rereading implied by the loop. (To the extent
that this allows, backward goto's will succeed on nonseekable
inputs.)

February, 1990
RevisionC

csh(1) csh(l)

Built-in Commands
Built-in commands are executed within the shell. If a built-in
command occurs as any component of a pipeline except the last
then it is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the
alias for name. The final form assigns the specified wordlist
as the alias of name; wordlist is command- and filename­
substituted. name is not allowed to be alias or unalias.

alloc

bg

Shows the amount of dynamic core in use, broken down into
used and free core, and the address of the last location in the
heap. alloc used with an argument shows each used and
free block on the internal dynamic memory chain indicating
its address, size, and whether it is used or free. This is a de­
bugging command and may not work in production versions
of the shell; it requires a modified version of the system
memory allocator.

bg %job ...
Puts the current or specified jobs into the background, con­
tinuing them if they were stopped.

break
Causes execution to resume after the end of the nearest en­
closing foreach or while. The remaining commands on
the current line are executed. Multilevel breaks are thus pos­
sible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed later under
switch.

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If

February, 1990
Revision C

15

cSh(l) csh(l)

16

no argument is given, then change to the home directory of
the user. If name is not found as a subdirectory of the current
directory (and does not begin with I, . I, or .. I), then each
component of the variable cdpath is checked to see if it has
a subdirectory name. Finally, if all else fails but name is a
shell variable whose value begins with I, then its value is
tried to see if it is a directory.

continue
Continues execution of the nearest enclosing while or
foreach. The rest of the commands on the current line are
executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

dirs
Prints the directory stack; the top of the stack is at the left,
the first directory in the stack being the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output,
separated by spaces and terminated with a newline unless the
-n flag option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and
while statements later in this section.

eval arg ...
The arguments are read as input to the shell (as in sh(I» and
the resulting command(s) is executed in the context of the
current shell. This is usually used to execute commands gen­
erated as the result of command or variable substitution,
since parsing occurs before these substitutions. See tset(l)
for an example of using eval.

exec command
The specified command is executed in place of the current
shell.

February, 1990
RevisionC

(

1,'1

csh(l) cSh(l)

exit
exit (expr)

fg

The shell exits either with the value of the status variable
(first form) or with the value of the specified expr (second
form).

fg %job ...
Brings the current or specified jobs into the foreground, con­
tinuing them if they were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this com­
mand and the matching end are executed. (Both foreach
and end must appear singly on separate lines.)

The built-in command continue may be used to continue
the loop prematurely and the built-in command break to
terminate it prematurely. When this command is read from
the terminal, the loop is read up once prompting with ? be­
fore any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal, you can interrupt it.

glob wordlist
Like echo but no \ escapes are recognized and words are
delimited by null characters in the output. Useful for pro­
grams which wish to use the shell to filename-expand a list of
words.

goto word
The specified word is filename- and command-expanded to
yield a string of the form label. The shell rewinds its input as
much as possible and searches for a line of the form label:
possibly preceded by blanks or tabs. Execution continues
after the specified line.

hashstat
Prints a statistics line indicating how effective the internal
hash table has been at locating commands (and avoiding any
exec). An exec is attempted for each component of the
path where the hash function indicates a possible hit, and in
each component which does not begin with a / .

February, 1990
Revision C

17

cSh(l) cSh(l)

18

history
history n
history -r n
history h n

Displays the history event list; if n is given, only the n most
recent events are printed. The - r flag option reverses the
order of printout to be most recent first rather than oldest
first The - h flag option causes the history list to be printed
without leading numbers and is used to produce files suitable
for sourcing using the -h flag option to source.

if (expr) command
If the specified expr evaluates true, then the single command
with arguments is executed. In the interactive shell, the if
statement can only accept one simple command after the expr
and in the same line as expr. Variable substitution on com­
mand happens early, at the same time it does for the rest of
the if command. The command must be a simple command,
not a pipeline, a command list, or a parenthesized command
list. Input/output redirection occurs even if expr is false,
when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true, then the first command is execut­
ed. In the interactive shell, the if then statement can only
accept one simple command after then. This command
must be specified on the same line as then. If the specified
expr2 is true, then the command to the else or else if
are executed, and so forth. Any number of else if pairs
are possible; only one endif is needed. The else part is
likewise optional. (The words else and endif must ap­
pear at the beginning of input lines; the if must appear alone
on its input line or after an else.)

jobs
jobs -1

Lists the active jobs; the -1 flag option lists process ID's in
addition to the normal information.

February, 1990
Revision C

csh(l) csh(l)

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -1

Sends either the TERM (terminate) signal or the specified sig­
nal to the specified jobs or processes. Signals are either
given by number or by names (as given in
/usr/include/signal.h, stripped of the prefix SIG).
The signal names are listed by ki 11 -1. There is no de­
fault; just saying ki 11 does not send a signal to the current
job. A pid of 0 means the current process (that is, this invo­
cation of the C shell). Consequently, kill -9 0 ter­
minates the current C shell and possibly logs you off. If the
signal being sent is TERM (terminate) or HUP (hangup), then
the job or process will be sent a CONT (continue) signal as
well.

login
Terminates a login shell, replacing it with an instance of
/bin/ login. This is one way to log off, included for com­
patibility with sh(1).

logout
Terminates a login shell. Especially useful if ignoreeof is
set.

nice
nice +number
ni ce command
nice +number command

The first form sets the nice for this shell to 4. The second
form sets the nice to the given number. The final two forms
run command at priority 4 and number respectively. The
superuser may specify negative niceness by using

nice -number ...

Command is always executed in a subshell, and the restric­
tions placed on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to
be ignored for the remainder of the script. The second form
causes the specified command to be run with hangups ig-

February, 1990
Revision C

19

csh(l) csh(1)

20

nored. All processes detached with & are run effectively
without hangups.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the
status of the current or specified. jobs changes; normally
notification is presented before a prompt. This is automatic if
the shell variable notify is set.

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is
to terminate shell scripts or to return to the terminal com­
mand input level. The second form onintr - causes all
interrupts to be ignored. The final form causes the shell to
execute a goto label when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning and in­
terrupts continue to be ignored by the shell and all invoked
commands.

popd
popd +n

Pops the directory stack, returning to the new top directory.
With the argument +n, popd discards the nth entry in the
stack. The elements of the directory stack are numbered
from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements
of the directory stack. Given a name argument, pushd
changes to the new directory (like cd) and pushes the old
current working directory (as in csw) onto the directory
stack. With a numeric argument, pushd rotates the nth ar­
gument of the directory stack around to be the top element
and changes into it The members of the directory stack are
numbered from the top starting at O.

February, 1990
RevisionC

csh(l) csh(l)

rehash
Causes the internal hash table of the contents of the direc­
tories in the path variable to be recomputed. This is needed
if new commands are added to directories in the path while
you are logged in. This should only be necessary if you add
commands to one of your own drrectories, or if a systems
programmer changes the contents of one of the system direc­
tories.

repea t count command

set

The specified command (which is subject to the same restric­
tions as the command in the one line if statement above) is
executed count times. I/O redirections occur exactly once,
even if count is O.

set name
set name=word
set name [index] =word
set name= (wordlist)

The first form of the command shows the value of all shell
variables. Variables which have other than a single word as
value print as a parenthesized word list. The second form
sets name to the null string. The third form sets name to the
single word. The fourth form sets the index component of
name to word; this component must already exist. The final
form sets name to the list of words in wordlist. In all cases
the value is command- and filename-expanded.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value,
a single string. The most commonly used environment vari­
ables USER, TERM, and PATH are automatically imported to
and exported from the csh variables user, term, and
path; there is no need to use setenv for these.

shift
shift variable

The members of a rgv are shifted to the left, discarding
a rgv [1]. It is an error for a rgv not to be set or to have
less than one word as value. The second form performs the

February, 1990
Revision C

21

csh(l) csh(l)

22

same function on the specified variable.

source name
source -h name

The shell reads commands from name. source commands
may be nested; if they are nested too deeply, the shell may
run out of file descriptors. An error in a source at any level
terminates all nested source commands. Normally, input
during source commands is not placed on the history list;
the - h flag option causes the commands to be placed in the
history list without being executed.

stop %job ...
Stops the current or specified job which is executing in the
background.

suspend
Causes the shell to stop in its tracks, much as if it had been
sent a stop signal with CONTROL-Z. This is most often used
to stop shells started by su(l).

swi tch (string)
case strl:

breaksw

default:

breaksw
endsw

Each case label is successively matched, against the specified
string which is first command- and filename-expanded. The
file metacharacters *, ?, and [...] may be used in the case
labels, which are variable-expanded. If none of the labels
match before a de fa ul t label is found, then the execution
begins after the default label. Each case label and the
default label must appear at the beginning of a line. The
command breaksw causes execution to continue after the
endsw; otherwise control may fall through case labels and
default labels as in C. If no label matches and there is no
default, execution continues after the endsw.

time
time command

With no argument, a summary of time used by this shell and

February, 1990
RevisionC

csh(1) csh(1)

its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra
shell is created to print the time statistic when the command
completes.

umask
umask value

The file creation mask is displayed (first form) or set to the
specified value (second form). The mask is given in octal.
Common values for the mask are 002, giving all access to the
group and read and execute access to others, or 022, giving
all access except no write access for users in the group or
others.

unalias pattern
All aliases whose names match the specified pattern are dis­
carded. Thus all aliases are removed by unalias *. It is
not an error for there to be nothing to unalias.

unhash
Use of the internal hash table to speed location of executed
programs is disabled.

unset pattern
All variables whose names match the specified pattern are re­
moved. Thus all variables are removed by unset * which
has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pat­
tern from the environment. See also the setenv command
and printenv(1).

wait
All background jobs are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and job numbers of all jobs known to be out­
standing.

while (expr)

end
While the specified expression evaluates nonzero, the com­
mands between the while and the matching end are
evaluated. break and continue may be used to terminate

February, 1990
Revision C

23

csh(l) csh(l)

24

%job

or continue the loop prematurely. (The while and end
must appear alone on their input lines.) Prompting occurs
here, the first time through the loop, as for the foreach
statement if the input is a terminal.

Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@

@ name=expr
@ name [index] =expr

The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If
the expression contains <, >, &, or I, then at least this part of
the expression must be placed within (). The third form as­
signs the value of expr to the index argument of name. Both
name and its index component must already exist.

The operators *=, +=, and so forth, are available as in C.
The space separating the name from the assignment operator
is optional. Spaces are, however, mandatory in separating
components of expr which would otherwise be single words.

Special postfix ++ and -- operators increment and decre­
ment name respectively; for example @ i ++.

Predefined and Environment Variables
The following variables have special meaning to the shell. Of
these, argv, cwd, home, path, prompt, shell, and status
are always set by the shell. Except for cwd and status, this set­
ting occurs only at initialization; these variables then will not be
modified except explicitly by the user.

This shell copies the environment variable USER into the variable
user, TERM into term, and HOME into home, and copies these
back into the environment whenever the normal shell variables are
reset. The environment variable PATH is likewise handled; it is
not necessary to worry about its setting other than in the file
. cshrc, as inferior csh processes will import the definition of
pa th from the environment and re-export it if you change it.

a rgv Set to the arguments to the shell, it is from this
variable that positional parameters are substitut­
ed, that is, $1 is replaced by $ a rgv [1] , and

February, 1990
RevisionC

cSh(l)

cdpath

cwd

echo

histchars

history

home

ignoreeof

mail

February,1990
Revision C

cSh(l)

so forth.

Gives a list of alternate directories searched to
find subdirectories in chdi r commands.

The full pathname of the current directory.

Set when the -x command line option is given.
echo causes each command and its arguments
to be echoed just before it is executed. For
nonbuilt-in commands, all expansions occur be­
fore echoing. Built-in commands are echoed
before command and filename substitution,
since these substitutions are then done selec­
tively.

Can be given a string value to change the char­
acters used in history substitution. The first
character of its value is used as the history sub­
stitution character, replacing the default charac­
ter !. The second character of its value re­
places the character ,. in quick substitutions.

Can be given a numeric value to control the
size of the history list. Any command which
has been referenced in this many events will
not be discarded. Values of hi s tory that are
too large may run the shell out of memory. The
last executed command is always saved on the
history list.

The home directory of the invoker, initialized
from the environment. The filename expansion
of - refers to this variable.

If set, the shell ignores end-of-file from input
devices which are terminals. This prevents
shells from accidentally being killed by
CONTROL-D's.

The files where the shell checks for mail. This
is done after each command completion which
will result in a prompt, if a specified interval
has elapsed. The shell says

You have new mail

if the file exists with an access time not greater

25

csh(l)

noclobber

noglob

nonomatch

notify

path

26

csh(l)

than its modification time.

If the first word of the value of mail is numer­
ic, it specifies a different mail checking inter­
val, in seconds, than the default, which is 10
minutes.

If multiple mail files are specified, then the
shell says

New mail in name

when there is mail in the file name.

As described in the section "Input/Output,"
restrictions are placed on output redirection to
insure that files are not accidentally destroyed
and that> > redirections refer to existing files.

If set, filename expansion is inhibited. This is
most useful in shell scripts which are not deal­
ing with filenames, or after a list of filenames
has been obtained and further expansions are
not desirable.

If set, it is not an error if a filename expansion
does not match any existing files; rather the
primitive pattern is returned. It is still an error
for the primitive pattern to be malformed, that
is, echo [still gives an error.

If set, the shell notifies asynchronously of job
completions. The default is to present job com­
pletions just before printing a prompt.

Each word of the path variable specifies a
directory in which commands are to be sought
for execution. A null word specifies the current
directory. If there is no path variable, then
only full pathnames will execute. The usual
search path is ., /bin, and /usr/bin, but
this may vary from system to system. For the
superuser, the default search path is / etc,
/bin, and /usr/bin. A shell which is given
neither the -c nor the -t flag option will nor­
mally hash the contents of the directories in the
path variable after reading. cshrc, and each
time the path variable is reset. If new com-

February, 1990
Revision C

csh(1)

prompt

savehist

shell

status

time

verbose

February, 1990
Revision C

csh(l)

mands are added to these directories while the
shell is active, it may be necessary to give the
rehash or the commands may not be found.

The string which is printed before each com­
mand is read from an interactive terminal input.
If a ! appears in the string, it will be replaced
by the current event number unless a preceding
\ is given. Default is % or * for the superuser.

a numeric value is given to control the number
of entries of the history list that are saved in
- / . history when the user logs out. Any
command which has been referenced in that
number of events will be saved. During start
up the shell sources - / . history into the his­
tory list, enabling history to be saved across 10-
gins. Values of savehist that are too large
will slow down the shell during start up.

The file in which the shell resides. This is used
in forking shells to interpret files which have
execute bits set, but which are not executable
by the system. (See the description of
"Nonbuilt-in Command Execution" later.) In­
itialized to the (system-dependent) home of the
shell.

The status returned by the last command. If it
terminated abnormally, then 0200 is added to
the status. Built-in commands which fail return
exit status 1; all other built-in commands set
status O.

Controls automatic timing of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be print­
ed when it terminates. This line shows user,
system, and real times and a utilization percen­
tage which is the ratio of user plus system times
to real time

Set by the -v flag option, causes the words of
each command to be printed after history sub­
stitution.

27

csh(l) csh(l)

28

Nonbuilt-in Command Execution
When a command to be executed is found to not be a built-in com­
mand, the shell attempts to execute the command via execve(2).
Each word in the variable path names a directory from which the
shell will attempt to execute the command. If it is given neither a
-c nor a -t flag option, the shell will hash the names in these
directories into an internal table so that it will only try an exec in
a directory if there is a possibility that the command resides there.
This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has
been turned off (via unhash), or if the shell was given a -c or
-t argument (and in any case for each directory component of
pa th which does not begin with a I), the shell concatenates with
the given command name to form a pathname of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus,

(cd ; pwd) ; pwd

prints the home directory, leaving you where you were (printing
this after the home directory), while

cd ; pwd

leaves you in the home directory. Parenthesized commands are
most often used to prevent chdi r from affecting the current
shell.

If the file has execute permissions but is not an executable binary
to the system, then it is assumed to be a file containing shell com­
mands and a new shell is spawned to read it

If there is an alias for shell, then the words of the alias will
be prefixed to the argument list to form the shell command. The
first word of the alias should be the full pathname of the shell
(for example $shell). Note that this is a special, late occurring,
case of alias substitution, and only allows words to be prefixed
to the argument list without modification.

Argument List Processing
If argument 0 to the shell is - then this is a login shell. The flag
options are interpreted as follows:

-c Commands are read from the (single) following argument
which must be present Any remaining arguments are
placed in a rgv.

February, 1990
Revision C

csh(1) csh(1)

-e The shell exits if any invoked command terminates abnor­
mally or yields a nonzero exit status.

- f The shell will start faster, because it will neither search for
nor execute commands from the file . cshrc in the
invoker's home directory.

-i The shell is interactive and prompts for its top-level input,
even if it appears to not be a terminal. Shells are interactive
without this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids in syn­
tactic checking of shell scripts.

- s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be
used to escape the newline at the end of this line and contin­
ue onto another line.

-v Causes the verbose variable to be set, with the effect that
command input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are
echoed immediately before execution.

-v Causes the verbose variable to be set even before
. cshrc is executed.

-x Causes the echo variable to be set even before . c5hrc is
executed.

After processing of flag arguments, if arguments remain but none
of the -c, -i, -5, or -t flag options were given, the first argu­
ment is taken as the name of a file of commands to be executed.
The shell opens this file and saves its name for possible resubstitu­
tion by $ O. Since many systems use the standard Bourne shell
(/bin/ sh), whose shell scripts are not compatible with this shell,
the shell will execute such a standard shell if the first character of
a script is not a 41=, that is, if the script does not start with a com­
ment. Remaining arguments initialize the variable argv.

Signal Handling
The shell normally ignores qui t signals. Jobs running detached
(either by & or the bg or % ... & commands) are immune to signals
generated from the keyboard, including hangups. Other signals
have the values which the shell inherited from its parent. The
shells handling of interrupts and terminate signals in shell scripts
can be controlled by onintr. Login shells catch the ter-

February, 1990
Revision C

29

csh(l) csh(l)

minate signal; otherwise this signal is passed on to children
from the state in the shell's parent In no case are interrupts al­
lowed when a login shell is reading the file . logout.

FILES
/bin/csh
-/.cshrc

/etc/cshrc

-/.login
-/.logout
/bin/sh

/tmp/sh*
/etc/passwd

read at beginning of execution by each
shell.
global file read by login shell before
-/.cshrc
read by login shell, after. cshrc at login.
read by login shell, at logout
standard shell, for shell scripts not starting
with a :/t.
temporary file for < <.
source of home directories for - name.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits
argument lists to 10240 characters. The number of arguments to a
command which involves filename expansion is limited to l/6th
the number of characters allowed in an argument list. Command
substitutions may substitute no more characters than are allowed
in an argument list. To detect looping, the shell restricts the
number of alias substitutions on a single line to 20.

SEE ALSO
ksh(1), sh(1), access(2), exec(2), fork(2), pipe(2),
sigvec(2), umask(2), wai t(2), killpg(3N), a. out(4), en­
viron(5), tty(7).
"C Shell Reference" in A/UK User Interface.

BUGS

30

When a command is restarted from a stop, the shell prints the
directory it started in if this is different from the current directory;
this can be misleading (that is, wrong) as the job may have
changed directories internally.

Shell built-in functions are not stoppable/restartable. Command
sequences of the form

a ; b ; c

are also not handled gracefully when stopping is attempted. If you
suspend b, the shell will then immediately execute c. This is espe­
cially noticeable if this expansion results from an alias. It

February, 1990
Revision C

csh(l) csh(l)

suffices to place the sequence of commands in () to force it to a
subshell.

(a ; b ; c)

Control over tty output after processes are started is primitive;
perhaps this will inspire someone to work on a good virtual termi­
nal interface. In a virtual terminal interface, much more interest­
ing things could be done with output control.

Alias substitution is most often used to simulate shell procedures;
shell procedures should be provided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the
history list. Control structure should be parsed rather than
recognized as built-in commands, allowing control commands to
be placed anywhere, to be combined with I, and to be used with
&, and ; metasyntax.

It should be possible to use the : modifiers on the output of com­
mand substitutions. All and more than one : modifier should be
allowed on $ substitutions.

Symbolic links fool the shell. In particular, dirs and

cd ..

don't work properly once you've crossed through a symbolic link.

February, 1990
Revision C

31

csplit(1) csplit(l)

NAME
cspli t - context split

SYNOPSIS
csplit [-f prefix] [-k] [-s]fileargl [... argn]

DESCRIPfION

1

cspli t reads file and separates it into n+ 1 sections, defined by
the arguments argl ... argn. By default, the sections are placed in
files named xx 00. .• xxn (n may not be greater than 99). These
sections get the following pieces of file:

00: From the start of file up to (but not including) the line
referenced by arg 1.

01: From the line referenced by argl up to the line refer­
enced by arg2.

n+ 1: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The flag options to cspli tare:

-s cspli t normally prints the character counts for
each file created. If the -s flag option is present,
cspli t suppresses the printing of all character
counts.

-k cspli t normally removes created files if an error
occurs. If the -k flag option is present, cspli t
leaves previously created files intact.

-f prefix If the -f flag option is used, the created files are
named prefixO 0 ••• prefixn. The default is XXOO
••. xxn.

The arguments (argl ..• argn) to csplit can be a combination
of the following:

/rexp/ A file is to be created for the section from the
current line up to (but not including) the line con­
taining the regular expression rexp. The current
line becomes the line containing rexp. This argu-

February, 1990
Revision C

csplit(l) csplit(l)

ment may be followed by an optional + or - some
number of lines (e.g., /Page/-5).

%rexp% This argument is the same as /rexp/, except that no
file is created for the section.

lnno A file is to be created from the current line up to
(but not including) lnno. The current line becomes
lnno.

(num} Repeat argument This argument may follow any
of the above arguments. If it follows a rexp type
argument, that argument is applied num more
times. If it follows inno, the file will be split every
lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other char­
acters meaningful to the Shell in the appropriate quotes. Regular
expressions may not contain embedded newlines. cspli t does
not affect the original file; it is the user's responsibility to remove
it.

EXAMPLES
csplit -f cobol file '/procedure
division/' /par5./ /par16./

creates four files, "cobolOO ... coboI03". After editing
the split files, they can be recombined as follows:

cat coboI0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

splits the file at every 100 lines, up to 10,000 lines. The -k flag
option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' '/A}/+l' {20}

assuming that prog. c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
will create a file containing each separate C routine (up to 21) in
prog. c.

FILES
/usr/bin/csplit

February, 1990
Revision C

2

csplit(l) csplit(l)

SEE ALSO
ed(l), fsplit(l), sh(l), split(l), regexp(5).

DIAGNOSTICS
Self explanatory except for:

arg - out of range

which means that the given argument did not reference a line
between the current position and the end of the file.

3 February, 1990
Revision C

ct(IC) ct(IC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-h] [-v] [-wn] [-sspeed] telno ...

DESCRIPTION
ct dials the phone number of a modem that is attached to a termi­
nal, and spawns a get ty(1M) process to that terminal. telno is a
telephone number, with equals signs for secondary dial tones and
minus signs for delays at appropriate places. If more than one
telephone number is specified, ct will try each in succession until
one answers; this is useful for specifying alternate dialing paths.

ct will try each line listed in the file

/usr/lib/uucp/L-devices

until it finds an available line with appropriate attributes or runs
out of entries. If there are no free lines, ct will ask if it should
wait for one, and if so, for how many minutes it should wait be­
fore it gives up. ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The di­
alogue may be overridden by specifying the -wn flag option,
where n is the maximum number of minutes that ct is to wait for
a line.

Normally, ct will hang up the current line, so that that line can
answer the incoming call. The -h flag option will prevent this ac­
tion. If the -v flag option is used, ct will send a running narra­
tive to the standard error output stream.

The data rate may be set with the -s flag option, where speed is
expressed in baud. The default rate is 300.

After the user on the destination terminal logs out, ct prompts,
Reconnect? If the response begins with the letter n the line
will be dropped; otherwise, get t y will be started again and the
login: prompt will be printed.

Of course, the destination terminal must be attached to a modem
that can answer the telephone.

EXAMPLES
ct -w15 -s1200 555-9999

dials from the terminal the given modem phone number (555-
9999), spawning a login process at 1200 baud. If the dialer line is
busy, ct will continue to try to open the dialer at one-minute in-

February, 1990
Revision C

1

ct(lC) ct(lC)

tervals for a total of 15 minutes (as set by the -w flag option).

FILES
/bin/ct
/usr/lib/uucp/L-devices
/usr/adm/ctlog

SEE ALSO
cu(1C), login(1), uucp(IC).

2 February, 1990
Revision C

ctags(1) ctags(l)

NAME
ctags - maintain a tags file for a C program

SYNOPSIS
ctags [-a] [-u] [-w] [-x] name ...

DESCRIPTION
ctags makes a tags file for ex(l) and vi(l) from the specified
C, Fortran, and Pascal sources.

A tags file gives the locations of specified objects (in this case
functions) in a group of files. Each line of the tags file contains
the function name, the file in which it is defined, and a scanning
pattern used to find the function definition. These are given in
separate fields on the line, separated by blanks or tabs. Using the
tags file, ex can quickly find these function definitions.

FLAG OPTIONS
-a Causes the output to be appended to the tags file instead

of rewriting it.

-u Causes the specified files to be updated in tags, that is, all
references to them are replaced by new values. (Beware:
this flag option is implemented in a way which is rather
slow; it is usually faster to simply rebuild the tags file.)

-w Suppresses warning diagnostics.

-x If the -x flag option is given, ctags produces a list of
function names, the line number and file name on which
each is defined, as well as the text of that line and prints
this on the standard output.

Files whose name ends in . c or . h are assumed to be C source
files and are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag formed
is created by prefixing M to the name of the file, with a trailing . c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than
one program.

EXAMPLES
ctags *.c *.h

puts the tags from all the . c and . h files into the tagsfile tags.

February, 1990
Revision C

1

ctags(l)

FILES
/usr/bin/ctags
tags

SEE ALSO
ex(1), vi(1).

BUGS

output tags file

Not all warning diagnostics are suppressed by -w.

ctags(l)

If ctags(l) is interrupted while executing under the -u flag op­
tion, a temporary file named OTAGS is left in the current directory.·

2 February, 1990
RevisionC

ctrace(l) ctrace(l)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [-b] [-e] [-f!unctions] [-In] [-0] [-p f Sf] [-p]
[-rj] [-s] [-tn] [-u] [-vfunctions] [-x] [file]

DESCRIPTION
ctrace allows you to follow the execution of a C program, state­
ment by statement The effect is similar to executing a shell pro­
cedure with the -x flag option. ctrace reads the C program in
file (or from standard input if you do not specify file), inserts state­
ments to print the text of each executable statement and the values
of all variables referenced or modified, and writes the modified
program to the standard output You must put the output of
ctrace into a temporary file because the cc(1) command does
not allow the use of a pipe. You then compile and execute this
file.

As each statement in the program executes, it will be listed at the
terminal, followed by the name and value of any variables refer­
enced or modified in the statement, followed by any output from
the statement. Loops in the trace output are detected and tracing
is stopped until the loop is exited or a different sequence of state­
ments within the loop is executed. A warning message is printed
every 1000 times through the loop to help you detect infinite
loops. The trace output goes to the standard output, so that you
may put it into a file for examination with an editor or the bfs(l)
or t a i I (1) commands.

The only flag options you will commonly use are:

-f functions Trace only these functions.

-v functions Trace all but these functions.

You may want to print variables in other formats besides the de­
fault. Long and pointer variables are always printed as signed in­
tegers. Pointers to character arrays are also printed as strings if
appropriate. char, short, and int variables are also printed as
signed integers and, if appropriate, as characters. Double vari­
ables are printed as floating point numbers in scientific notation.
You may request that variables be printed in additional formats, if
appropriate, with these flag options:

February, 1990
Revision C

1

ctrace(l)

-0

-x
-u
-e

Octal
Hexadecimal
Unsigned
Floating point

ctrace(1)

These flag options are used only in special circumstances:

-1 n Check n consecutively executed statements for looping
trace output, instead of the default of 20. Use 0 to get all
the trace output from loops.

-s Suppress redundant trace output from simple assignment
statements and string copy function calls. This flag op­
tion can hide a bug caused by use of the = operator in
place of the = operator.

-t n Trace n variables per statement instead of the default of
10 (the maximum number is 20). The DIAGNOSTICS
section explains when to use this flag option.

-p Run the C preprocessor on the input before tracing it.
You can also use the -D, -I, and -u cc(1) preprocessor
flag options.

These flag options are used to tailor the run-time trace package
when the traced program will run in another environment than that
of the UNIX system:

-b Use only basic functions in the trace code, that is, those in
ctype(3C), printf(3S), and string(3C). These are
usually available even in cross-compilers for micropro­
cessors. In particular, this flag option is needed when the
traced program runs under an operating system that does
not have signa1(3), ff1ush(3S), 10ngjmp(3C), or
set jmp(3C).

-p , s'
Change the trace print function from the default of
, printf ('. For example, ' fprintf (stderr'
would send the trace to the standard error output.

-r f Use file f in place of the runtime. c trace function
package. This lets you change the entire print function,
instead of just the name and leading arguments (see the
-p flag option).

2 February, 1990
RevisionC

etraee(l) etraee(l)

EXAMPLES
If the file Ie. e contains this C program:

1 finelude <stdio.h>
2 main() /* count lines in input */
3 {
4 int e, nl;
5
6 nl = 0;
7 while «e getehar(»!= EOF)
8 if (e = '\n')
9 ++nl;

10 printf("%d\n", nl);
11

and you enter these commands and test data:

ee Ie.e
a.out
1
(CONTROL-d),

the program will be compiled and executed. The output of the
program will be the number 2, which is not correct because there
is only one line in the test data. The error in this program is com­
mon, but subtle. If you invoke etraee with these commands:

etraee le.e > temp.e
ee temp.e
a.out

the output will be:

2 main ()
6 nl = 0;

/* nl == 0 */
7 while «e = getehar(» != EOF)

The program is now waiting for input. If you enter the same test
data as before, the output will be:

8

9

February, 1990
RevisionC

/* e -- 49
if (e
/* e

or ' l' */
= , \n')

10 or ' \n' */
++nl;

3

ctrace(l) ctrace(l)

7

8

9

/* nl == 1 */
while «c = getchar(» != EOF)
/* c == 10 or '\n' */

if (c = '\n')
/* c == 10 or '\n' */

++nl;
/* nl == 2 */

7 /* repeating */

If you now enter an end-of-file character (CONTROL-d), the final
output will be:

/* c == -1 */
10 printf("%d\n", nl);

/* nl == 2 */2
/* return */

Note that the program output printed at the end of the trace line
for the nl variable. Also note the return comment added by
ctrace at the end of the trace output. This shows the implicit re­
turn at the terminating brace in the function.

The trace output shows that variable c is assigned the value "1"
in line 7, but in line 8 it has the value "\ n ". Once your attention
is drawn to this if statement, you will probably realize that you
used the assignment operator (=) in place of the equal operator
(==). During code reading, it is easy to miss this error.

EXECUTION-TIME TRACE CONTROL

4

The default operation for ctrace is to trace the entire program
file, unless you use the -f or -v flag options to trace specific
functions. This does not give you statement by statement control
of the tracing, nor does it let you turn the tracing off and on when
executing the traced program.

You can do both of these by adding ctroffO and ctronO func­
tion calls to your program to tum the tracing off and on, respec­
tively, at execution time. Thus, you can code arbitrarily complex
criteria for trace control with if statements, and you can even
conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdef CTRACE

February, 1990
Revision C

ctrace(l) ctrace(l)

=If:endif

if (c == '!' && i > 1000)
ctron () ;

You can also call these functions from sdb(l) if you compile with
the -g flag option. For example, to trace all but lines 7 to 10 in
the main function, enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also tum the trace off and on by setting the static variable
t r c t to 0 and 1, respectively. This is useful if you are using a
debUgger that cannot call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and
cc(I), since the traced code often gets some cc warning mes­
sages. You can get cc error messages in some rare cases, all of
which can be avoided.

ctrace Diagnostics
Warning: some variables are not traced in
this statement

Only 10 variables are traced in a statement to prevent the C
compiler "out of tree space; simplify expression" error. Use
the -t flag option to increase this number.

Warning: statement too long to trace
This statement is over 400 characters long. Make sure that
you are using tabs to indent your code, not spaces.

Cannot handle preprocessor code, use -P op­
tion

This is usually caused by =If:ifdef/=lf:endif preprocessor
statements in the middle of a C statement, or by a semicolon
at the end of a =If: de fine preprocessor statement.

"if ... else if" sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P flag option to preprocess the ctrace input,
along with any appropriate -D, -I, and -u preprocessor flag
options. If you still get the error message, check the

February, 1990
Revision C

5

ctrace(1) ctrace(l)

WARNINGS section t below.

cc Diagnostics
Warning: floating point not implemented
Warning: illegal combination of pointer and
integer
warning: statement not reached
Warning: sizeof returns 0

Ignore these messages.

Compiler takes size of function
See the ctrace "possible syntax error" mes­
sage above.

yacc stack overflow
See the ctrace ' if . . . else if' sequence too
long messaget above.

Out of tree space; simplify expression
Use the -t flag option to reduce the number of traced vari­
ables per statement from the default of 10. Ignore the
"ctrace: too many variables to trace tt

warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(3)t or remove it
and #include <signal.h>.

WARNINGS
You will get a ctrace syntax error if you omit the semicolon at
the end of the last element declaration in a structure or union t just
before the right brace (}). This is optional in some C compilers.

Defining a function with the same name as a system function may
cause a syntax error if the number of arguments is changed. To
fix this t just use a different name.

ctrace assumes that BAD MAG is a preprocessor macrot and that
EOF and NULL are =If:define d constants. Declaring any of
these to be variables t e.g. t int EOF will cause a syntax error.

BUGS

6

ctrace does not know about the components of aggregates like
structures t unions t and arrays. It cannot choose a format to print
all the components of an aggregate when an assignment is made to
the entire aggregate. ct race may choose to print the address of
an aggregate or use the wrong format (e.g. t %e for a structure
with two integer members) when printing the value of an aggre-

February t 1990
Revision C

ctrace(l) ctrace(l)

gate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file
of a multi-file program. This can result in functions called from a
loop still being traced, or the elimination of trace output from one
function in a file until another in the same file is called.

FILES
/usr/bin/ctrace
/usr/lib/ctrace

SEE ALSO
sdb(l), ctype(3C), fflush(3S), longjmp(3C),
printf(3S), setjmp(3C), signal(3), string(3C).

February, 1990
Revision C

7

eu(IC) eu(IC)

NAME
e u - call another system

SYNOPSIS
eu [-d] [-e] [-h] [-lline] [-m] [-n] [-0] [-sspeed] [-t] args

DESCRIPTION

1

eu calls up another system and manages an interactive conversa­
tion with possible transfers of ASCII files.

eu accepts the following flag options and arguments.

-sspeed
Specifies the transmission speed (110, 150, 300, 600, 1200,
4800, 9600); 300 being the default value. Most modems are
either 300 or 1200 baud. Directly connected lines may be set
to a speed higher than 1200 baud.

-1 line
Specifies a device name to use as the communication line.
This can be used to override the search for the first available
line having the right speed. When the -1 flag option is used
without the - s flag option, the speed of a line is taken from
the file /usr/1ib/uuep/L-deviees. When the -1 and
-s flag options are used simultaneously, eu will search the
L-deviees file to check if the requested speed for the re­
quested line is available. If so, the connection will be made
at the requested speed; otherwise, an error message will be
printed and the call will not be made. The specified device is
generally a directly-connected asynchronous line (for exam­
ple, / dev /t tyab), in which case, a telephone number is
not required; however, the string di r may be use to specify a
null ACU. If the specified device is associated with an auto
dialer, a telephone number must be provided.

- h Emulates local echo, supporting calls to other computer sys­
tems which expect terminals to be set to half-duplex mode.

-t Used when dialing an ASCII terminal which has been set to
"auto answer." Appropriate mapping of return to return-line
feed pairs is set.

-d Causes diagnostic traces to be printed.

-e Designates that even parity is to be generated for data sent to
the remote.

February, 1990
RevisionC

cu(lC) cu(lC)

- 0 Designates that odd parity is to be generated for data sent to
the remote.

-m Designates a direct line which has modem control.

-n Will request the telephone number to be dialed from the user
rather than taking it from the command line.

args may be one of the following:

telno
When using an automatic dialer, the argument becomes the
telephone number with equal signs at appropriate places for
secondary dial tone or with minus signs for delays.

systemname

dir

A uucp system name may be used rather than a telephone
number; in this case, cu will obtain an appropriate direct line
or telephone number from /usr / 1ib/uucp/L. sys (the
appropriate baud is also read along with telephone numbers).
cu will try each telephone number or direct line for system­
name in the L. s Y s file until a connection is made or all the
entries are tried.

Using dir ensures that cu will use the line specified by the
-1 flag option.

After making the connection, cu runs as two processes: the
transmit process reads data from the standard input and, except for
lines beginning with -, passes it to the remote system; the receive
process accepts data from the remote system and, except for lines
beginning with -, passes it to the standard output. Normally, an
automatic DC3/DC I protocol is used to control input from the re­
mote so the buffer is not overrun. Lines beginning with - have
special meanings.

The transmit process interprets the following:

- ,

- !cmd

-$cmd

February, 1990
Revision C

Terminate the conversation.

Escape to an interactive shell on the local sys­
tem.

Run cmd on the local system (via sh -c).

Run cmd locally and send its output to the re­
mote system.

2

cu(lC) cu(lC)

3

Change the directory on the local system. Note
that - ! cd will cause the command to be run by
a sub-shell, which is probably not what was in­
tended.

- %take from [to]

- %put from [to]

--cmd

Copy file from (on the remote system) to the
file to on the local system. If to is omitted, the
from argument is used in both places.

Copy file from (on local system) to the file to on
remote system. If to is omitted, the from argu­
ment is used in both places.

Send the line - cmd to the remote system.

- %break Transmit a BREAK to the remote system.

- %nostop Toggles between DC3/DCl input control proto-
col and no input control. This is useful in case
the remote system is one which does not
respond properly to the DC3 and DCl charac­
ters.

The receive process normally copies data from the remote system
to its standard output. A line from the remote that begins with - >
initiates an output diversion to a file. The complete sequence is

-> :file
zero or more lines to be written to file
->

Data from the remote are diverted (or appended, if » is used) to
file. The trailing - > terminates the diversion.

The use of - %put requires st ty(1) and cat(l) on the remote
side. It also requires that the current erase and kill characters on
the remote system be identical to the current ones on the local sys­
tem. Backslashes are inserted at appropriate places.

The use of - %take requires the existence of echo(1) and
cat(l) on the remote system. Also, stty tabs mode should
be set on the remote system if tabs are to be copied without expan­
sion.

When cu is used on system X to connect to system Y and subse­
quently used on system Y to connect to system Z, commands on
system Y can be executed by using - -. For example, unarne may

February, 1990
RevisionC

eu(1C) eu(1C)

be executed on Z, X, and Y as follows:

uname
Z

-!uname
X
--!uname
y

In general, - causes the command to be executed on the original
machine, - - causes the command to be executed on the next
machine in the chain.

EXAMPLES
In the following examples, assume that you wish to connect to a
system named plato through the serial line /dev/ttyO. To
dial a system whose number is 9 201 5559999 using 1200 baud

eu -s1200 9=2015559999

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line

eu -1 /dev/ttyO dir

To dial a system with the specific line and a specific speed

eu -s1200 -1 /dev/ttyO dir

To dial a system using a specific line

eu -1 /dev/eulO 2015559999

To use a system name

eu plato

FILES
/usr/bin/eu
/usr/lib/uuep/L.sys
/usr/lib/uuep/L-deviees
/usr/ spool/uuep/LCK .. tty-device
/dev/null

SEE ALSO
eat(l), et(1C), eeho(1), ftp(IN), stty(l), telnet(1N),
tip(lC), uname(1), uuep(IC).
"Using eu" in A/UX Communications User's Guide.
"UNIX-to-UNIX Communcations Package: uuep" in A/UX Lo­
cal System Administration.

February, 1990 4
Revision C

cu(IC) cu(1C)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) other­
wise.

BUGS
cu buffers input internally.
There is an artificial slowing of transmission by cu during the
- %put operation so that loss of data is unlikely.

NOTES

5

Any input character after a - will be preceded by [sysname] (in­
serted by cu).

February, 1990
RevisionC

cut(l) cut(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -type [-d char] [-5] [file] ...

DESCRIPTION
Use cut to cut out columns from a table or fields from each line
of a file; in database parlance, it implements the projection of a re­
lation. cut may be used as a filter; if no files are given, the stan­
dard input is used.

type may be either c or f, followed by list. The fields as specified
by list may be fixed length, i.e., character positions as on a
punched card (-c flag option) or the length may vary from line to
line and be marked with a field delimiter character like TAB (-f
flag option). Note that -type (i.e., either the -c or -f flag option)
must be specified.

The meanings of the flag options are:

list A comma-separated list of integer field numbers (in in­
creasing order), with optional - to indicate ranges as in
the -0 flag option of nroff/troff for page ranges;
e.g., 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3-
(short for third through last field).

-clist The list following -c (no space) specifies character posi­
tions (e.g., -cl-72 would pass the first 72 characters of
each line).

-fiist The list following -f is a list of fields assumed to be
separated in the file by a delimiter character (see -d);
e.g., -fl, 7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact
(useful for table subheadings), unless -3 is specified.

-dchar The character following -d is the field delimiter (-f flag
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

-5 Suppresses lines with no delimiter characters in case of
-f flag option. Unless specified, lines with no delimiters
will be passed through untouched.

February, 1990
RevisionC

1

cut(1) cut(1)

HINTS
Use grep(l) to make horizontal cuts (by context) through a file,
or paste(l) to put files together column-wise (Le., horizontally).
To reorder columns in a table, use cut and paste.

EXAMPLES
cut -d: -f1,5 /etc/passwd

mappiilg of user IDs to names.

name='who am i I cut -f1 -d" It'
to set name to current login name.

DIAGNOSTICS
Line too long

A line can have no more than 1 023 characters or fields.
Bad list for c / f flag option

Missing -c or -f flag option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

No fields
The list is empty.

FILES
/usr/bin/cut

SEE ALSO
awk(l), colrm(l), grep(1), paste(1), sed(l).

2 February, 1990
Revision C

cw(l) cw(l)

NAME
cw, checkcw - prepare constant-width text for otroff

SYNOPSIS
cw [-d] [-fn] [-lxx] [- rxx] [-t] [+t] rJiles . ..]

checkcw [-lxx] [-rxx]file ...

DESCRIPTION
cw is a preprocessor for otroff(1)) input files that contain text
to be typeset in the constant-width (CW) font

Text typeset with the CW font resembles the output of tenninals
and of line printers. This font is used to typeset examples of pro­
grams and of computer output in user manuals, programming
texts, etc. (An earlier version of this font was used in typesetting
The C Programming Language by B. W. Kernighan and D. M.
Ritchie.) It has been designed to be quite distinctive (but not over­
ly obtrusive) when used together with the Times Roman font.

Because the CW font contains a nonstandard set of characters and
because text typeset with it requires different character and inter­
word spacing than is used for standard fonts, documents that use
the CW font must be preprocessed by cwo

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$%&() "*+@.,/:;=?[] I-_A -,,<>{}#\

plus eight non-ASCII characters represented by four-character
otroff(1) names (in some cases attaching these names to non­
standard graphics):

character
Cents sign

EBCDIC not sign
Left arrow

Right arrow
Down arrow

Vertical single quote
Control-shift indicator
Visible space indicator

February, 1990
Revision C

symbol troff name
¢ \(ct
-, \(no
f- \«-
~ \(->
~ \(da

\(fm
t \(dg
0 \(sq

1

cw(l) cw(l)

2

Hyphen \(hy

The hyphen is a synonym for the unadorned minus sign (-). Cer­
tain versions of cw recognize two additional names: \ (ua for an
up arrow and \ (lh for a diagonal left-up (home) arrow.

cw recognizes five request lines, as well as user-defined delim­
iters. The request lines look like otroff(1) macro requests, and
are copied in their entirety by cw onto its output; thus, they can be
defined by the user as otroff(1) macros; in fact, the . Cw and
• CN macros should be so defined (see HINTS below). The five
requests are:

• CW Start of text to be set in the CW font; . cw causes a break; it
can take precisely the same flag options, in precisely the
same format, as are available on the cw command line.

• CN End of text to be set in the CW font; . CN causes a break; it
can take the same flag options as are available on the cw
command line.

• CD Change delimiters and/or settings of other flag options; takes
the same flag options as are available on the cw command
line.

· CP argl arg2 arg3 ... argn
All the arguments which are delimited like otroff(l) mac­
ro arguments) are concatenated, with the odd-numbered ar­
guments set in the CW font and the even-numbered ones in
the prevailing font.

· PC argl arg2 arg3 ... argn
Same as . CP, except that the even-numbered arguments are
set in the CW font and the odd-numbered ones in the pre­
vailing font.

The. cw and . CN requests are meant to bracket text (e.g., a pro­
gram fragment) that is to be typeset in the CW font as is. Normal­
ly, cw operates in the transparent mode. In that mode, except for
the. CD request and the nine special four-character names listed
in the table above, every character between . cw and . CN request
lines stands for itself. In particular, cw arranges for periods (.)
and apostrophes (') at the beginning of lines, and backslashes (\)
everywhere to be hidden from otroff(1). The transparent mode
can be turned off (see below), in which case normal otroff(1)
rules apply; in particular, lines that begin with. and ' are passed
through untouched (except if they contain delimiters-see below).

February, 1990
RevisionC

cw(l} cw(l}

In either case, cw hides the effect of the font changes generated by
the . cw and . CN requests; cw also defeats all ligatures (fi, ff,
etc.) in the CW font.

The only purpose of the . CD request is to allow the changing of
various flag options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters
perform the same function as the . cw/ . CN requests; they are
meant, however, to enclose CW words or phrases in running text
(see example under BUGS below). cw treats text between delim­
iters in the same manner as text enclosed by . cw/ . CN pairs, ex­
cept that, for aesthetic reasons, spaces and backspaces inside
. cw/ . CN pairs have the same width as other CW characters,
while spaces and backspaces between delimiters are half as wide,
so they have the same width as spaces in the prevailing text (but
are not adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside . cw/ . CN pairs.

The flag options are:

-Ixx The one- or two-character string xx becomes the left delim­
iter; if xx is omitted, the left delimiter becomes undefined,
which it is initially.

-rxx Same for the right delimiter. The left and right delimiters
may (but need not) be different.

-fn The CW font is mounted in font position n; acceptable
values for n are 1,2, and 3 (default is 3, replacing the bold
font). This flag option is only useful at the beginning of.a
document.

-t Turn transparent mode off.

+t Tum transparent mode on (this is the initial default).

-d Print current flag option settings on file descriptor 2 in the
form of otroff(l) comment lines. This flag option is
meant for debugging.

cw reads the standard input when no files are specified (or when­
is specified as the last argument), so it can be used as a filter. Typ­
ical usage is:

cw files I otroff ...

checkcw checks that left and right delimiters, as well as the
. cw/ . CN pairs, are properly balanced. It prints out all offending

February, 1990 3
Revision C

ew(l) ew(l)

lines.

HINTS

4

Typical definitions of the . Cw and . CN macros meant to be used
with the mm(l) macro package:

.de cw

.DS I

.ps 9

.vs IO.Sp

. ta I6m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

.de CN

.ta O.Si Ii I.Si 2i 2.Si 3i 3.Si 4i 4.Si Si S.Si 6i

.vs

.ps

.DE

At the very least, the . cw macro should invoke the atraff(l)
no-fill (. nf) mode.

When set in running text, the CW font is meant to be set in the
same point size as the rest of the text. In displayed matter, on the
other hand, it can often be profitably set one point smaller than the
prevailing point size (the displayed definitions of . cw and . CN
above are one point smaller than the running text on this page).
The CW font is sized so that, when it is set in 9-point, there are 12
characters per inch.

Documents that contain CW text may also contain tables and/or
equations. If this is the case, the order of preprocessing should be:
cw, tbl, and eqn. Usually, the tables contained in such docu­
ments will not contain any CW text, although it is entirely possible
to have elements of the table set in the CW font; of course, care
must be taken that tbl(l) format information not be modified by
ew. Attempts to set equations in the CW font are not likely to be
either pleasing or successful.

In the CW font, overstriking is most easily accomplished with
backspaces: letting f- represent a backspace, df-f-t yields <t.
Because spaces (and, therefore backspaces) are half as wide
between delimiters as inside . cwj. CN pairs (see above), two
backspaces are required for each overstrike between delimiters.

February, 1990
RevisionC

cw(l) cw(l)

EXAMPLES
cw text I tbl I otroff -mm

processes the text file text, sends the output to tbl(1) and then
sends the output for final formatting to otroff(l) and mm(l).

FILES
/bin/cw
/usr/lib/font/ftCW

SEE ALSO
eqn(l), mmt(l), tbl(1), troff(l), mm(5), rnv(5),
"Other Text Processing Tools" in AIUX Programming
Languages and Tools, Volume 2.

WARNINGS
If text preprocessed by cw is to make any sense, it must be set on
a typesetter equipped with the CW font or on a STARE facility;
on the latter, the CW font appears as bold, but with the proper CW
spacing.

Do not use periods (.), backslashes (\), or double quotes (") as del­
imiters, or as arguments to . CP and. pc.
Do not use cw with nroff, since nroff already makes every­
thing constant-width.

BUGS
Certain CW characters don't concatenate gracefully with certain
Roman characters, for example, a CW ampersand (&) followed by
a Roman comma (,). in such cases, judicious use of otroff(l)
half- and quarter-spaces (\ I and \ A) is most salutary, for exam­
ple, one should use _ & _ \ A (rather than just plain _ & --> to obtain &

(assuming that is used for both delimiters).
The output of cw is hard to read. See also BUGS under otr­
off(1).

February, 1990
Revision C

5

cxref(l) cxref(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [-c] [-0 file] [-s] [-t] [-w[num]] file . ..

DESCRIPTION
cxref analyzes a collection of C files and attempts to build a
cross-reference table. cxref utilizes a special version of cpp to
include information from *define statements in its symbol
table. It produces a separate listing on standard output of all sym­
bols (auto, static, and global) in each file, or with the -c flag op­
tion, of all symbols in combination. Each symbol contains an as­
terisk (*) before the declaring reference.

In addition to the - D, - I, and - U flag options (which are identical
to the corresponding flag options in cc(1», the following flag op­
tions are interpreted by cxref:

-c

-w[num]

-0 file

-s

-t

Prints a combined cross-reference of all input
files.

Width flag option which formats output no wid­
er than num (decimal) columns. This flag option
will default to 80 if num is not specified or is
less than 51.

Directs output to named file.

Operates silently; does not print input filenames.

Formats listing for 80-column width.

FILES
/usr/bin/cxref
/usr/lib/xpass
/usr/lib/xcpp

input file parser
special version of C-preprocessor.

SEE ALSO
cc(l).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you
can't compile these files anyway.

BUGS

1

cxref considers a formal argument in a *define macro
definition to be a declaration of that symbol. For example, a pro­
gram that contains the line

February, 1990
RevisionC

cxref(l) cxref(l)

#include <ctype.h>

will contain many declarations of the variable c.

When using the -0 option, the space between the -0 and the file
argument is critical. If you omit the space, as in

cxref -otest test.c

then the input file test. c will be destroyed.

February, 1990
Revision C

2

daiw(l) daiw(l)

NAME
daiw - Apple ImageWriter II troff postprocessor filter

SYNOPSIS
daiw [-v] [-rnum] file

DESCRIPTION
daiw translates a file created by troff(l) to a bitmap image
suitable for printing on the Apple ImageWriter@ II printer. If no
file is mentioned, the standard input is used. The bitmap is sent to
the standard output. The following options are understood.

-v

-rnum

A verbose option. Warning messages (for ex­
ample, font or point size substitutions) are print­
ed on the standard error output. By default,
warning messages are suppressed.

Sets printing resolution to either 72 dots-per­
inch or 144 dots-per-inch.

When processing input files with pic or eqn, you should specify
the -T i w flag option; this option is not required with tbl.

EXAMPLES
The following command line will format the file ch.1 with the
appropriate pre- and post-processors and spool the output for
printing on an Image Writer II:

pic -Tiw ch.l I troff -Tiw I daiw I Ip

FILES
/usr/bin/daiw
/usr/lib/font/deviw/* troff description files for

the ImageWriter II.

SEE ALSO
troff(1).
Inside Macintosh, Addison Wesley, 1985.
Apple ImageWriter II Technical Reference Manual.
AIUX Text Processing Tools.

February, 1990
Revision C

1

daps(l) daps(l)

NAME
daps - Autologic APS-5 phototypesetter troff postprocessor

SYNOPSIS
daps [-b] [-hstring] [-olist] [-r] [-sn] [-t] [-w] [file .. .]

DESCRIPTION
daps prints files created by troff(l) on an Autologic APS-5
phototypesetter. If you do not specify a file, the standard input is
printed. daps understands the following options:

-b Report whether the typesetter is busy; does not print
output

-hstring Prints string in this job's header. The header appears
on a page preceding the output.

-0 list

-r

-sn

-t

-w

Print pages whose numbers are given in the list. The
list contains single numbers n and ranges nl-n2. A
missing nl means the lowest numbered page, a miss­
ing n2 means the highest.

Reports the number of ll-inch pages generated by
this job.

Stop after every n pages of output. daps continues
when you push the PROCEED button on the
typesetter.

Directs output to the standard output instead of the
typesetter.

Waits for typesetter to become free, then prints out­
put.

The files that you submit to daps should be prepared under the
-Taps flag option of troff.

FILES
/usr/bin/daps
/ dev / aps APS-5 phototypesetter device
/usr/lib/font/devaps/* description files for APS-5

SEE ALSO
grap(I), rrnnt(I), mvt(I), pic(l), tc(I), troff(l).

BUGS

1

Installations with an Autologic APS-5 phototypesetter should be
aware that getting a good match to their Autologic fonts will al­
most certainly require hand-tuning of the distributed font descrip-

February, 1990
Revision C

daps(l)

tion files (see FILES above).

February, 1990
Revision C

daps(l)

2

date(1) date(l)

NAME
date - display and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

DESCRIPTION

1

If no argument is given, or if the argument begins with +, the
current date and time are displayed. Otherwise, the current date is
set. The first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second
mm is the minute number; and yy is the last 2 digits of the year
number and is optional. If a number less than 70 is given, the year
that results is 1970. For example,

date 10080045

sets the date to Oct. 8, 12:45 AM. The current year is the default
if no year is mentioned. The operating system operates in GMT.
date takes care of the conversion to and from local standard and
daylight time.

If the argument begins with +, the output of date is under the
control of the user. The format for the output is similar to that of
the first argument to printf(3S). All output fields are of fixed
size (zero padded if necessary). Each field descriptor is preceded
by % and will be replaced in the output by its corresponding value.
A single % is encoded by % %. All other characters are copied to
the output without change. The string is always terminated with a
newline character.

Field Descriptors
n insert a newline character
t insert a tab character
m month ofyear-Ol to 12
d day ofmonth-Ol to 31
y last 2 digits of year -70 to 99
D date as mm/dd/yy
H hour-OO to 23
M minute-OO to 59
s second-OO to 59
T time as HH:MM:SS
j day of year--OOl to 366
w day of week-Sunday = 0
a abbreviated weekday-Sun to Sat

February, 1990
RevisionC

date(l) date(l)

h abbreviated month-Jan to Dec
r time in AM/PM notation

EXAMPLES
The command

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the superuser and you try to

change the date;

bad conversion if the date set is syntactically incorrect

bad format character

FILES
/bin/date

if the field descriptor is not recognizable

/ etc/wtmp to record time

SEE ALSO
gettimeofday(2), stime(2), time(2), printf(3S),
utmp(4).

WARNINGS
It is bad practice to change the date while the system is running
multiuser.

February, 1990 2
RevisionC

de(l) de(l)

NAME
de - desk calculator

SYNOPSIS
de [file]

DESCRIPTION

1

de is an arbitrary precision arithmetic package. Ordinarily it
operates on decimal integers, but one may specify an input base,
output base, and a number of fractional digits to be maintained.
The overall structure of de is a stacking (reverse Polish) calcula­
tor. If an argument is given, input is taken from that file until its
end, then from the standard input. The following constructions
are recognized:

number

+ - / *

sx

Sx

lx

Lx

d

P

p

o A

i5

Pushes the value of number on the stack. A
n umbe r is an unbroken string of one or more
digits in the range 0-9. It may be preceded by
an underscore U to indicate a negative number.
Numbers may contain decimal points.

Operate on the top two values on the stack.
These are added (+), subtracted (-), multiplied
(*), divided (I), remaindered (%), or exponen­
tiated (A). The two entries are popped off the
stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ig­
nored.

Pops the top of the stack and stores it into a re­
gister named x, where x may be any character.

Pushes the value on x, which is treated as a
stack.

Pushes the value in register x on the stack. The
register x is not altered. All registers start with
zero value.

Pops the top value of register x, which is treated
as a stack, onto the main stack.

Duplicates the top value on the stack.

Prints the top value on the stack. The top value
remains unchanged.

Interprets the top of the stack as an ASCII string,
removes it, and prints it.

February, 1990
Revision C

de(l) de(l)

f Prints all values on the stack.

q Exits the program. If executing a string, the re­
cursion level is popped by two. Alternately,
CONTROL-d (BOF) will exit from de.

Q Pops the top value on the stack and pops the
string execution level by that value. Alternately,
CONTROL-d (BOF) will exit from de.

x Treats the top element of the stack as a character
string and executes it as a string of de com­
mands.

x Replaces the number on the top of the stack with
its scale factor.

[string] Puts the bracketed ASCII string onto the top of
the stack.

<x >x =x Pops the top two elements of the stack and com­
pares them. Register x is evaluated if they obey
the stated relation.

v Replaces the top element on the stack by its
square root. Any existing fractional part of the
argument is taken into account, but otherwise
the scale factor is ignored.

c

i

I

o

o
k

February, 1990
Revision C

Interprets the rest of the line as a system com­
mand.

Pops all values on the stack.

Pops the top value on the stack and uses it as the
number radix for further input.

Pushes the input base on the top of the stack.

Pops the top value on the stack and uses it as the
number radix for further output.

Pushes the output base on the top of the stack.

Pops the top of the stack and uses that value as a
non-negative scale factor: prints the appropriate
number of places on output, and maintains them
during multiplication, division, and exponentia­
tion. The interaction of scale factor, input base,
and output base will be reasonable if all are
changed together.

2

dc(l} dc(l}

z

z

?

Pushes the stack level onto the stack.

Replaces the number on the top of the stack with
its length.

Takes a line of input from the input source (usu­
ally the terminal) and executes it.

Allow be to perform array operations.

EXAMPLES
de
24.2 56.2 + P

adds the two numbers and prints the result (top value in the stack).

[lal+dsa*plalO>y]sy
Osal
lyx

prints the first ten values of n!.

FILES
/usr/bin/dc

SEE ALSO
bc(l).
, 'de Reference" in A/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
x is unimplemented where x is an octal number.

3

stack empty

Out of space

Out of headers

Out of pushdown

Nesting Depth

for not enough elements on the stack
to do what was asked.

when the free list is exhausted (too
many digits).

for too many numbers being kept
around.

for too many items on the stack.

for too many levels of nested execu­
tion.

February, 1990
RevisionC

dd(l) dd(l)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output with pos­
sible conversions. The standard input and output are used by de­
fault. The input and output block size may be specified to take ad­
vantage of raw physical I/O.

Option

if=file
of=file

ibs=n
obs=n
bs=n

ebs=n
skip=n
seek=n

eount=n
eonv=aseii

ebedie
ibm

lease
uease
swab
noerror

February, 1990
Revision C

Values

input filename; standard input is default
output filename; standard output is de­
fault
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, su­
perseding ibs and obs; also, if no
conversion is specified, it is particularly
efficient since no incore copy needs to
be generated
conversion buffer size
skip n input blocks before starting copy
seek n blocks from beginning of output
file before copying; dd creates the
specified output file (see ereat(2»,
which insures that the length of the file
will be zero for regular files; seeking n
blocks from the beginning of the output
file will fill the skipped area with zeros
(nulls)
copy only n input blocks
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to
EBCDIC
map alphabetics to lowercase
map alphabetics to uppercase
swap every pair of bytes
do not stop processing on an error

1

dd(l) dd(1)

sync
type, type

pad every input block to ibs
several comma-separated conversions,
where type is one of the conversions list-
edfor conv

mul ti=in input file is multivolume
out output file is multivolume
in,out

both the input file and output file are multivolume

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by 1024,
512, or 2, respectively; a pair of numbers may be separated by x
to indicate a product.

cbs is used only if ascii, ebcdic, or ibm conversion is
specified. In the first case, cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks are
trimmed and a newline added before sending the line to the out­
put. In the next two cases, ASCII characters are read into the
conversion buffer, converted to EBCDIC (or the IBM version of
EBCDIC), and blanks are added to make up an output block of
size cbs.

If multivolume input (output) is specified, a prompt is given at
end-of-file to allow another volume to be mounted.

After completion, dd reports the number of whole and partial in­
put and output blocks.

EXAMPLES
dd if=/dev/rrnt/Orn of=x ibs=800 cbs=80 conv=ascii,lcase

will read an EBCDIC tape blocked at ten 80-byte EBCDIC card
images per block into the ASCII file x.

Note the use of raw magnetic tape. dd is especially suited to I/O
on the raw physical devices because it allows reading and writing
in arbitrary block sizes.

FILES
/bin/dd

SEE ALSO
cp(1), cpio(I), tar(1), tr(1).

2 February, 1990
RevisionC

dd(1) dd(1)

DIAGNOSTICS
f+p blocks in(out)

are numbers of full and partial blocks read (written).

BUGS
The ASCIIIEBCDIC conversion tables are taken from the 256-
character standard in the CACM, November, 1968. The ibm
conversion, while less blessed as a standard, corresponds better to
certain IBM print-train conventions. There is no universal solu­
tion.

Newlines are inserted only on conversion to ASCII; padding is
done only on conversion to EBCDIC. These should be separate
options.

When using dd to transfer data over an Ethernet connection, you
should specify a block size of 1 kilobyte.

February, 1990
Revision C

3

delta(l) delta(l)

NAME
del ta - make a delta (change) to an sees file

SYNOPSIS
delta [-glist] [-m[mrlist]] [-n] [-p] [-rSID] [-s]
[-y[comment]] file ...

DESCRIPTION

1

del ta is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(l) (called the
g-file, or generated file).

del ta makes a delta to each named sees file. If a directory is
named, delta behaves as though each file in the directory were
specified as a named file, except that non-SeeS files (last com­
ponent of the path name does not begin with s .) and unreadable
files are silently ignored. If a name of - is given, the standard in­
put is read (see WARNINGS); each line of the standard input is
taken to be the name of an sees file to be processed.

Del ta may issue prompts on the standard output depending upon
certain keyletters specified and flags (see admin(l» that may be
present in the sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be
made to the sees file. The use of this
key letter is necessary only if two or more
outstanding gets for editing (get -e)
on the same sees file were done by the
same person (login name). The SID value
specified with the -r key letter can be ei­
ther the SID specified on the get com­
mand line or the SID to be made as report­
ed by the get command (see get(1». A
diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted
on the command line.

-s Suppresses the issue on the standard out­
put of the created delta's SID, as well as
the number of lines inserted, deleted and
unchanged in the sees file.

February, 1990
Revision C

delta(l)

-n

-glist

-m[mrlist]

-y[comment]

February, 1990
Revision C

delta(l)

Specifies retention of the edited g-file
(normally removed at completion of delta
processing).

Specifies a list (see get(l) for the
definition of list) of deltas which are to be
ignored when the file is accessed at the
change level (SID) created by this delta.

If the sees file has the v flag set (see ad­
min(I» then a Modification Request
(MR) number must be supplied as the rea­
son for creating the new delta.

If -m is not used and the standard input is
a terminal, the prompt MRs? is issued on
the standard output before the standard in­
put is read; if the standard input is not a
terminal, no prompt is issued. The MRs?
prompt always precedes the comments?
prompt (see -y key letter).

MRs in a list are separated by blanks
and/or tab characters. An unescaped new­
line character terminates the MR list.

Note that if the v flag has a value (see ad­
min(I», it is taken to be the name of a
program (or shell procedure) which will
validate the correctness of the MR
numbers. If a nonzero exit status is re­
turned from MR number validation pro­
gram, delta terminates (it is assumed
that the MR numbers were not all valid).

Arbitrary text used to describe the reason
for making the delta. A null string is con­
sidered a valid comment. If the comment
includes spaces, you must enclose the en­
tire string in double quotes.

If -y is not specified and the standard in­
put is a terminal, the prompt comments?
is issued on the standard output before the
standard input is read; if the standard in­
put is not a terminal, no prompt is issued.

2

delta(l) delta(l)

-p

An unescaped newline character ter­
minates the comment text

Causes de 1 t a to print (on the standard
output) the SCCS file differences before
and after the delta is applied in a diff(l)
format

EXAMPLES
% delta s.testl.c

comments? second version
1.2
1 inserted
o deleted
12 unchanged

does a del ta on file test 1. c.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) can­
not be placed in the SCCS file unless the SOH is escaped. This
character has special meaning to SCCS (see sccsfile(5» and
will cause an error.

A get of many SCCS files, followed by a del ta of those files,
should be avoided when the get generates a large amount of data.
Instead, multiple get/del ta sequences should be used.

If the standard input (-) is specified on the del ta command line,
the -m (if necessary) and -y keyletters must also be present. Om­
ission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

FILES

3

/usr/bin/delta
g-file

p-file

q-file

x-file

z-file

Existed before the execution of del ta; re­
moved after completion of del tao
Existed before the execution of delta;
may exist after completion of del tao
Created during the execution of delta;
removed after completion of delta.
Created during the execution of delta;
renamed to SCCS file after completion of
delta.
Created during the execution of delta;
removed during the execution of del tao

February, 1990
Revision C

delta(l) delta(l)

d-file Created during the execution of delta;
removed after completion of delta.

/usr/bin/bdiff Program to compute differences between

SEE ALSO

the "gotten" file and the g-file.

Note: All files of the fonn ?-file
are explained in the "secs Refer­
ence" in AlUX Programming
Languages and Tools, Volume 2.
The naming convention for these
files is also described there.

admin(l), bdiff(l), cdc(l), get(l), help(l), prs(l),
rmdel(l), sccs(l), sccsfile(4).
"sccs Reference" inA/UX Programming Languages and Tools.
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

February, 1990 4
Revision C

derez(l) derez(l)

NAME
derez - decompile a resource file

SYNOPSIS
derez [option] ... resource-file [resource-description-file] ...

DESCRIPTION

1

derez creates a text representation (resource description) of a
compiled resource file according to the resource type declarations
in the resource-description-files.

The resource-file parameter specifies the name of the file contain­
ing the compiled resources. You must specify a resource file;
de re z never reads the standard input.

The resource-description-file parameter specifies one or more files
containing the type declarations used by the resource file. de re z
can provide meaningful output only if you provide the type de­
clarations.

The type declarations in the resource description file follow the
same format as that used by the resource compiler, rez. The type
declarations for standard Macintosh resources are contained in the
files types. r and systypes. r in the directory
/usr/libmac/rincludes. If you do not specify a resource
description file, the output consists of data statements giving the
resource data in hexadecimal form, without any additional format
information.

The resource description is written to standard output. If the out­
put of de re z is used as input to re z with the same resource
description files, it produces the same resource file that was origi­
nally input to derez. derez is not guaranteed to be able to run
a declaration backward: if it can't, it produces a data statement
instead of the appropriate resource statement.

derez ignores all include (but not *include), read, data,
and resource statements found in the resource-description-file.
(It still parses these statements for correct syntax.) Appendix C in
the AIUX Toolbox: Macintosh ROM Interface, "Resource Com­
piler and Decompiler, tt describes the format of resource type de­
clarations.

The resource description consists of resource and data state­
ments that can be understood by re z.

February, 1990
Revision C

derez(l) derez(l)

If no errors or warnings are detected, derez runs silently. Errors
and warnings are written to standard error (see intro(3S) in
A/UX Programmer's Reference).

de re z returns one of the following status values.

o No errors

1 Error in parameters

2 Syntax error in file

3 I/O or program error

You may specify one or more of the following options.

-c[ompatible]
Generate output that is backward-compatible with rez 1.0.

-d[efine]macro[=data]
Define the macro variable macro to include the value data. If
data is omitted, then macro is set to the null string (note that
this still means that macro is defined). The -d flag option is
the same as writing

*define macro [data]

at the beginning of the input. The -d flag option may be re­
peated any number of times.

-e[scape]
Do not escape characters that are nonnally escaped (such as:
\ Oxff). Instead, print these characters as extended Macin­
tosh characters. Note that not all fonts have defined all the
characters.

Nonnally, characters with values between Ox20 and OxD8 are
printed as Macintosh characters. With the -e option, howev­
er, all characters (except null, newline, tab, backspace, fonn
feed, vertical tab, and rubout) are printed as characters, not as
escape sequences.

-ipathname(s)
Search the specified directories for include files. You may
specify more than one pathname. The paths are searched in
the order they appear on the command line.

To decompile an A/UX Toolbox resource file, use this path­
name:

/usr/lib/mac/rincludes

February,1990
Revision C

2

derez(1) derez(1)

3

-m[axstringsize] n
Set the maximum string size to n; n must be in the range
2-120. This setting controls how wide the strings can be in
the output.

-o[nly] type-expr[(ID1[:ID2])]
-o[nly] type-expr[resourceName]

Read only resources of resource type type-expr. If an ID,
range of IDs, or resource name is given, read only those
resources for the given type. This option may be repeated.

Note: type-expr is an expression, so straight quotes
(') might be needed. If an ID, range of IDs, or name
is given, the entire option parameter must be quoted.
For example,

derez -only "'MENU' (1:128)" ...

See also the EXAMPLES later in this section.

Note: The -only flag option cannot be specified to­
gether with the -skip flag option.

-o[nly] type
Read only resources of the specified type. This is a simpler
version of the above option. No quotes are needed to specify
a literal type as long as it starts with a letter. Do not use es­
cape characters or other special characters. For example,

derez -only MENU ...

-p Display progress and version information.

-rd
Suppress warning messages if a resource type is redeclared.

- s [ki p] type-expr [(ID 1 [: ID2])]
-s[kip] type-expr [resourceName]

Skip resources of type type-expr in the resource file. For ex­
ample, you can save execution time by skipping CODE
resources. The -s option may be repeated any number of
times.

Note: type-expr is an expression, so straight quotes
(') might be needed. If an ID, range of IDs, or name
is given, the entire option parameter must be quoted.
See the note under -only type-expr earlier in this
section.

February, 1990
RevisionC

derez(l) derez(1)

-s[kip] type
Skip resources of the specified type. This is a simpler ver­
sion of the - s option. No quotes are needed to specify a
literal as long as it starts with a letter.

-u[ndef] macro
Undefine the macro variable macro. This is the same as writ­
ing

iundef macro

at the beginning of the input file. (See Appendix C in AIUX
Toolbox: Macintosh ROM Interface for a description of mac­
ro variables.) It is meaningful to undefine only the preset
macro variables. This option may be repeated.

EXAMPLES
The command
derez -i lusr/lib/mac/rincludes sample types.r > sample.r

decompiles the resource file % sample, using the definitions in the
file /usr / lib/mac/ rincludes/types. r and putting the
output into the file sample. r. If it has access to the type
definitions, de re z generates more meaningful output.
derez -0 MENU -i lusr/lib/mac/rincludes sample types.r

displays all of the MENU resources in %sample. The type
definition for MENU resources is in the file type s . r.

FILES
/mac/bin/derez

SEE ALSO
AIUX Toolbox: MadntoshROM Interface.

February, 1990
Revision C

4

deroff(l) deroff(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-rnx] [-w] rJile ...]

DESCRIPTION
de ro f f reads each of the files in sequence and removes all
troff(l) requests, macro calls, backslash constructs, eqn(l)
constructs {between . EQ and . EN lines, and between delimiters),
and tbl(l) descriptions, perhaps replacing them with white space
(blanks and blank lines), and writes the remainder of the file on
the standard output. deroff follows chains of included files
(. so and .nx troff commands); if a file has already been in­
cluded, a . so naming that file is ignored and a . nx naming that
file terminates execution. If no input file is given, deroff reads
the standard input.

The -m flag option may be followed by an m, s, or 1. The-rom
flag option causes the macros be interpreted so that only running
text is output (that is, no text from macro lines.) The -ml flag op­
tion forces the -rom flag option and also causes deletion of lists as­
sociated with the rom macros.

If the -w flag option is given, the output is a word list, one word
per line, with all other characters deleted. Otherwise, the output
follows the original, with the deletions mentioned above. In text,
a word is any string that contains at least two letters and is com­
posed of letters, digits, ampersands (&), and apostrophes ('); in a
macro call, however, a word is a string that begins with at least
two letters and contains a total of at least three letters. Delimiters
are any characters other than letters, digits, apostrophes, and am­
persands. Trailing apostrophes and ampersands are removed from
words.

EXAMPLES
The command

deroff text file

removes all nroff, troff, and macro definitions from
text file.

FILES
/usr/bin/deroff

1 February, 1990
Revision C

deroff(l) deroff(l)

SEE ALSO
eqn(l), nroff(l), tbl(l), troff(l).

BUGS
deroff is not a complete troff interpreter, so it can be con­
fused by subtle constructs. Most such errors result in too much
rather than too little output.
The -ml flag option does not handle nested lists correctly.

February, 1990
Revision C

2

df(l) df(l)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t] [-f] [-T] [file . ..]

DESCRIPTION
df prints out the number of free blocks and free inodes available
for mounted file systems. File systems may be specified either by
device name (for example, / dev / dsk/ casada) or by filenames
(for example, /usr). If the argument is a regular file or directory,
df reports on the amount of free space for the file system on
which that file resides. If no argument is specified, the amount of
free space on all of the mounted file systems is printed. The count
of free inodes on remotely mounted file systems is always zero.

The -t flag option causes the total allocated block and inode
figures to be reported as well.

If the - f flag option is given, an actual count of the blocks in the
free list is made (free inodes are not reported).

If the -T flag option is given, the next argument is the file system
type. The accepted types are: 4.2, 5.2, nfs, and pc; see
f s t ab(4) for a description of the legal file system types.

FILES
/bin/df
/dev/dsk/*
/etc/mtab

disk partitioning
list of currently mounted file systems

SEE ALSO
mount(1M), fs(4), fstab(4), mtab(4).

BUGS

1

Since inodes are file system dependent, the number of inodes re­
ported on remotely mounted file systems is always zero.

February, 1990
Revision C

diction(l) diction(1)

NAME
diction, explain -locate wordy sentences in a document

SYNOPSIS
diction [-ml] [-rom] [-n] [-f pfile] file . ..

explain

DESCRIPTION
diction finds all sentences in a document that contain phrases
from a data base of bad or wordy diction. Each phrase is bracket­
ed with []. Because diction runs deroff before looking at
the text, formatting header files should be included as part of the
input. The default macro package -ms may be overridden with
the flag -rom. The flag -ml (which causes de ro f f to skip lists)
should be used if the document contains many lists of nonsen­
tences. The user may supply her/his own pattern file to be used in
addition to the default file with -f pfile. A pfile is just a list of
(wordy) phrases, with one phrase per line. The default pfile is
/usr / lib/ dict. d. If the flag -n is also supplied, the default
pfile will be suppressed.

explain is an interactive thesaurus for the phrases found by
diction. It prompts you with:

phrase?

to which you should respond by typing the phrase flagged by
diction that you need explained. The explanation tells what to
use instead of phrase. To get out of explain, press DELETE.

FILES
/usr/ucb/diction
/usr/ucb/explain

SEE ALSO
deroff(I), style(I), spell(I).

BUGS
Use of nonstandard formatting macros may cause incorrect sen­
tence breaks. In particular, diction does not recognize -me.

February, 1990
Revision C

1

diff(l) diff(l)

NAME
di f f - differential file and directory comparator

SYNOPSIS
diff [-1] [-r] [-5] [-Sname] [-cefh] [-b] dirl dir2

diff [-cefh] [-b]filel file2

diff [-Dstring] [-b]filel file2

DESCRIPTION

1

If both arguments are directories, di f f sorts the contents of the
directories by name, and then runs the regular file di f f algorithm
(described below) on text files which are different. Binary files
which differ, common subdirectories, and files which appear in
only one directory are listed. Flag options when comparing direc­
tories are:

-1 long output format; each text file di f f is piped through
pr(l) to paginate it, other differences are remembered and
summarized after all text file differences are reported.

-r causes application of di f f recursively to common subdirec­
tories encountered.

-5 causes diff to report files which are the same, which are
otherwise not mentioned.

-Sname
starts a directory di f f in the middle beginning with file
name.

When run on regular files, and when comparing text files which
differ during directory comparison, di f f tells what lines must be
changed in the files to bring them into agreement. Except in rare
circumstances, diff finds a smallest sufficient set of file differ­
ences. If neither filel nor file2 is a directory, then either may be
given as "-", in which case the standard input is used. If filel is
a directory, then a file in that directory whose filename is the same
as the filename offile2 is used (and vice versa).

There are several flag options for output format; the default output
format contains lines of these forms:

nl a nJ,n4
nl,n2 dnJ
nl,n2 c n3,n4

February, 1990
RevisionC

diff(I) diff(l)

These lines resemble edcommands to convertfilel intofile2. The
numbers after the letters pertain to file2. In fact, by exchanging a
for d and reading backward, one may ascertain equally how to
convert file2 into filel. As in ed, identical pairs where nl = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in
the first file flagged by "<", then all the lines that are affected in
the second file flagged by">".

Except for -b, which may be given with any of the others, the
following flag options are mutually exclusive:

-c produces a di f f with lines of context. The default is
to present 3 lines of context and may be changed, e.g.,
to 10, by -clO. With -c the output format is modified
slightly: the output beginning with identification of the
files involved and their creation dates and then each
change is separated by a line with a dozen *' s. The
lines removed from filel are marked with "-"; those
added to file2 are marked "+ " . Lines which are
changed from one file to the other are marked in both
files with " ! ".

-e producing a script of a, c, and d commands for the edi­
tor ed, which will recreate file2 from filel. In connec­
tion with -e, the following shell program may help
maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts
($2,$3, ...) made by diff need be on hand. A "la­
test version" appears on the standard output.

(shift; cat $*; echo 'l,$p') I ed - $1

Extra commands are added to the output when compar­
ing directories with -e, so that the result is a sh(l)
script for converting text files which are common to the
two directories from their state in dir 1 to their state in
dir2. Since such a shell script is useful only in a file
that you may run on other files, it is best to redirect the
output of this command into a file.

-f produces a script similar to that of -e, not useful with
ed, and in the opposite order.

February, 1990 2
Revision C

diff(l) diff(1)

-h does a fast, half-hearted job. It works only when
changed stretches are short and well-separated. but
does work on files of unlimited length.

-Dstring
causes di f f to create a merged version of filel and
file2 on the standard output. with C preprocessor con­
trols included so that a compilation of the result
without defining string is equivalent to compilingfilel.
while defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored,
and other strings of blanks to compare equal.

FILES
/usr/bin/diff
/tmp/d?????
/usr/lib/diffh
/bin/pr

SEE ALSO
bdiff(1), cmp(1), cpp(1), comm(1), diff3(1), ed(1).
"Other Tools" in A/UX Programming Languages and Tools.
Volume 2.

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS

3

Editing scripts produced under the -e or -f flag option are naive
about creating lines consisting of a single" . , •.

When comparing directories with the -b flag option specified,
di f f first compares the files as with cmp, and then decides to run
the di f f algorithm if they are not equal. This may cause a small
amount of spurious output if the files then tum out to be identical,
because the only differences are insignificant blank string differ­
ences.

If an unrecognized flag option is specified, di f f performs the de­
fault operation anyway.

di f f may not work if files contain a very long line, or if files are
very long.

February, 1990
RevisionC

diff3(1) diff3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-3] [-e] [-x]filelfile2file3

DESCRIPTION
di f f 3 compares three versions of a file, and publishes disagree­
ing ranges of text flagged with these codes:

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given
file to some other is indicated in one of these ways:

j : nl a Text is to be appended after line number nl in
file j, where j = 1, 2, or 3.

f : nl , n2 c
Text is to be changed in the range line nl to line
n2. If nl = n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a c
indication. When the contents of two files are identical, the con­
tents of the lower-numbered file is suppressed.

Under the -e flag option, diff3 publishes a script for the editor
ed which results in all changes from file2 and file3 being imple­
mented into file 1. i.e., the changes that normally would be
flagged ==== and ====3. Flag option -x (-3) produces a script
to incorporate only changes flagged ==== (====3). The follow­
ing command will apply the resulting script to filel.

(cat script; echo ' 1, $p') I ed - filel

EXAMPLES
If file f 1 contains the following text:

This is a file.
This is the first of three files.
This is not the last file.

and file f 2 contains:

February, 1990
Revision C

1

diff3(1) diff3(1)

This is a file.
This is the second of three files.
This is not the last file.

and file f 3 contains:

This is a file.
This is the third of three files.
This is the last file.

then

diff3 f1 f2 f3

will return

1:2,3c
This is the
This is not

2:2,3c
This is the
This is not

3:2,3c
This is the
This is the

first of three files.
the last file.

second of three files.
the last file.

third of three files.
last file

FILES
/usr/bin/diff3/
/tmp/d3*
/usr/lib/diff3prog

SEE ALSO
bdiff(I), cmp(l), diff(1).

BUGS

2

Text lines that consist of a single. will defeat -e.
diff3 won't work on files longer than 64K bytes.

February, 1990
RevisionC

diffmk(1) diffmk(l)

NAME
di f fmk - mark differences between files

SYNOPSIS
di f fmk [-] file1 file2 file3

DESCRIPTION
di f fmk compares two versions of a file and creates a third file
that includes "change mark" requests (. me) for nroff(l) or
troff(1). The placeholders filel and file2 are the old and new
versions of the file. If - is given, filel is read from standard input.
diffmk generates file3, which contains the lines of file2 plus in­
serted formatter "change mark" requests. Whenfile3 is format­
ted, changed or inserted text is shown by I at the right margin of
each line. The position of deleted text is shown by *, a single as­
terisk.

If anyone is so inclined, diffmk can be used to produce listings
of C (or other) programs with changes marked. A typical com­
mand line for such use is

diffmk old.c new.c tmp; nroff macs tmp I Ip

where the file maes contains

.pl 1

.11 77

.nf

.eo

.ne

The .11 request might specify a different line length, depending
on the nature of the program being printed. The . eo and. ne re­
quests are probably needed only for C programs.

FILES
/usr/bin/diffmk

SEE ALSO
bdiff(l), emp(l), diff(l), diff3(1), nroff(l), troff(1).

BUGS
Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may
produce undesirable output. For example, replacing. sp by . sp
2 produces a "change mark" on the preceding or following line
of output.

February, 1990
Revision C

1

dircmp(l) dircmp(l)

NAME
di rcmp - directory comparison

SYNOPSIS
dircmp [-d] [-3] [-wn] dirl dir2

DESCRIPTION
di rcmp examines dir 1 and dir2 and generates various tabulated
information about the contents of the directories. Listings of files
that are unique to each directory are generated for all the flag op­
tions. If no flag option is entered, a list is output indicating wheth­
er the filenames common to both directories have the same con­
tents.

-d Compare the contents of files with the same name in both
directories and output a list telling what must be changed in
the two files to bring them into agreement. The list format is
described in diff(I).

-s Suppress messages about identical files.

-wn
Change the width of the output line to n characters. The de­
fault width is 72.

EXAMPLES
dircmp dl d2

will show the differences between the directories dl and d2.

FILES
/bin/dircmp

SEE ALSO
cmp(I), bdiff(l), diff(l), diff3(1), diffmk(l).

1 February, 1990
RevisionC

dirname(l)

February, 1990
Revision C

See basename(l)

dirname(l)

1

dis (1) dis(l)

NAME
di s - disassembler

SYNOPSIS
dis [-d sec] [-da sec] [-F function] [-1 string] [-L] [-0]
[-t sec] [-v] file . ..

DESCRIPTION

1

The di s command produces an assembly language listing of each
of its object file arguments. The listing includes assembly state­
ments and the binary that produced those statements.

The following flag options are interpreted by the disassembler and
may be specified in any order:

-0

-v

-L

-d sec

-da sec

-t sec

-1 string

Print numbers in octal. Default is hexadecimal.

Write the version number of the disassembler to
standard error.

Invoke a lookup of C source labels in the symbol
table for subsequent printing.

Disassemble the named section as . data, printing
the offset of the data from the beginning of the sec-
tion.

Disassemble the named section as . da ta, printing
the actual address of the data.

Disassemble the named section as . text.

Disassemble the library file specified as string. For
example, one would issue the command

dis -1 x -1 z

to disassemble 1ibx. a and 1ibz. a. All li­
braries are assumed to be in /1 ib.

If the -d, -da, or -t flag options are specified, only those named
sections from each user-supplied filename are disassembled. Oth­
erwise, all sections containing text are disassembled.

If the - F flag option is specified, only those named functions from
each user-supplied filename are disassembled.

On output, a number enclosed in brackets at the beginning of a
line, such as [5], means that di s has reached the point in the as­
sembly code where a C language line (numbered as stated) begins.
If a breakpoint is placed there using sdb/adb, the debugger used

February, 1990
Revision C

dis(1) dis(1)

will stop on a C line. An expression such as < 40> in the operand
field, following a relative displacement for control transfer in­
structions, is the computed address within the section to which
control will be transferred. A C function name will appear in the
first column, followed by ().

FILES
/bin/dis

SEE ALSO
asCI), cc(l), ld(l), strings(l).

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command
line or problems encountered with the specified files.

February, 1990
Revision C

2

disable(l) disable(l)

See enable(1)

1 February, 1990
Revision C

domainname(l) domainname(1)

NAME
domainname - set or display name of current domain system

SYNOPSIS
domainname [name-ol-domain]

DESCRIPTION
Without an argument, domainname displays the name of the
current domain. Only the superuser can set the domain name by
giving an argument; this is usually done in the startup script
/ etc/ sysini trc. Currently, domains are only used by the
yellow pages, to refer collectively to a group of hosts.

To make a permanent change to the domain name, edit the second
field of / etc/HOSTNAME and then reboot.

FILES
/bin/domainname

SEE ALSO
ypini t(lM).
AIUX Network System Administration.

Pebruary,1990
Revision C

1

duel) du(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-a] [-r] [-3] [names]

DESCRIPTION
du gives the number of blocks contained in all files and (recur­
sively) directories within each directory and file specified by the
names argument. The default system size for physical blocks is
512 bytes. The block count includes the indirect blocks of the file.
If names is missing, . is used.

The optional argument -3 causes only the grand total (for each of
the specified names) to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

du is normally silent about directories that cannot be read, files
that cannot be opened, etc. The -r flag option will cause du to
generate messages in such instances.

A file with two or more links is only counted once.

EXAMPLES
du dirl dir2

produces a count of the number of (512-byte) blocks in each of the
directories. In order to see how many blocks are in each file, the
-a flag option must be used.

FILES
/bin/du

SEE ALSO
df(I).

BUGS

1

If the -a flag option is not used, nondirectories given as argu­
ments are not listed.
If there are too many distinct linked files, du will count the excess
files more than once.
Files with holes in them will get an incorrect block count.

February, 1990
RevisionC

dump(l) dump(1)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [[-a] [-c] [-f] [-g] [-h] [-1] [-0] [-r] [-5] [-t] [­
z name]] [[-d number] [+d number] [-n name] [-p]
[-t index] [+t index] [-u] [-v] [-z name, number]
[+z name]] file ...

DESCRIPTION
The dump command dumps selected parts of each of its object file
arguments.

This command accepts both object files and archives of object
files. It processes each file argument according to one or more of
the following flag options:

-a Dump the archive header of each member of each ar­
chive file argument.

-f Dump each file header.

-g Dump the global symbols in the symbol table of a
version 6.0 archive.

-0 Dump each optional header.

-h Dump section headers.

-5 Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

-t Dump symbol table entries.

-z name Dump line number entries for the named function.

-c Dump the string table.

The following modifiers are used in conjunction with the flag op­
tions listed above to modify their capabilities.

-d number Dump the section number or range of sections start­
ing at number and ending either at the last section
number or number specified by +d.

+d number Dump sections in the range either beginning with
first section or beginning with section specified by
-d.

February, 1990
Revision C

1

dump(1) dump(1)

-n name Dump information pertaining only to the named enti­
ty. This modifier applies to -h, -s, -r, -1, and -to

-p Suppress printing of the headers.

-t index Dump only the indexed symbol table entry. When
the -t is used in conjunction with +t, it specifies a
range of symbol table entries.

+t index Dump the symbol table entries in the range ending
with the indexed entry. The range begins at the first
symbol table entry or at the entry specified by the -t
flag option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather
than numeric (e.g., C STATIC instead of OX02).
This modifier can be used with all the above flag op­
tions except the -s and -0 flag options of dump.

-z name,number
Dump line number entry or range of line numbers
starting at number for the named function.

+ z number Dump line numbers starting at either function name
or number specified by -z, uI1 to number specified
by +z.

Blanks separating a flag option and its modifier are optional. The
comma separating the name from the number modifying the -z
flag option may be replaced by a blank.

The dump command attempts to format the information it dumps
in a meaningful way, printing certain information in character,
hex, octal, or decimal representation, as appropriate.

FILES
/bin/dump

SEE ALSO .

2

as(1), dis(1), od(1), nm(1), strings(1), dumpfs(1M),
restore(1M), a. out(4), ar(4).

February, 1990
RevisionC

e(1)

February, 1990
Revision C

e(1)

See ex(l)

1

echo(l) echo(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
echo writes its arguments separated by blanks and terminated by
a newline on the standard output. It also understands C-like es­
cape conventions; beware of conflicts with the shell's use of \:

\ b backspace
\ c print line without newline
\f form-feed
\n newline
\ r carriage return
\t tab
\ v vertical tab
\ \ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-

digit octal number n, which must start with a zero.

echo is useful for producing diagnostics in command files and for
sending known data into a pipe. A version of echo is built into
the Bourne shell (sh(l»). Similar versions are also built into
ksh(1) and csh(1).

EXAMPLES
echo curmudgeon

simply responds

curmudgeon

on the standard output.

FILES
/bin/echo

SEE ALSO
csh(I), ksh(I), sh(I).

1 February, 1990
Revision C

ed(l) ed(l)

NAME
ed, red - text editor

SYNOPSIS
ed [-] [-p string] [-x] [file]

red [-] [-p string] [-x] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed
simulates an e command (see below) on the named file; that is to
say, the file is read into ed's buffer so that it can be edited. The
optional- suppresses the printing of character counts bye, r, and
w commands, of diagnostics from e and q commands, and of the
! prompt after a ! shell command. The -p flag option allows the
user to specify a prompt string. The string must be enclosed in
double quotes. If -x is present, an X command is simulated first
to handle an encrypted file. ed operates on a copy of the file it is
editing; changes made to the copy have no effect on the file until a
w (write) command is given. The copy of the text being edited re­
sides in a temporary file called the buffer. There is only one
buffer.

red is a restricted version of ed. It will allow editing of files
only in the current directory. It prohibits executing shell com­
mands via ! shell command. Attempts to bypass these restrictions
result in the error message:

restricted shell

Both ed and red support the fspec(4) formatting capability.
After including a format specification as the first line of file and
invoking ed with your terminal in stty -tabs or stty tab3
mode (see stty(l), the specified tab stops will be used automati­
cally when scanning file. For example, if the first line of a file
contained:

<:t5,lO,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum
line length of 72 would be imposed.

Note: While entering text, tab characters, when typed, are
expanded to every eighth column, as is the default.

February, 1990
Revision C

1

ed(l) ed(l)

2

Commands to ed have a simple and regular structure: zero, one,
or two addresses followed by a single-character command, fol­
lowed by any applicable parameters to that command. These ad­
dresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses
very often can be omitted.

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the ap­
propriate place in the buffer. While ed is accepting text, it is said
to be in "input mode." In this mode, no commands are recog­
nized; all input is merely collected. Input mode is left by typing a
period (.) alone at the beginning of a line.

ed supports a limited form of "regular expression" (RE) nota­
tion; regular expressions are used in addresses to specify lines and
in some commands (e.g., s) to specify portions of a line that are to
be substituted. A regular expression specifies a set of character
strings. A member of this set of strings is said to be matched by
the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2
below) is a one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one­
character RE that matches the special character itself. The
special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except
when they appear within square brackets ([]; see 1.4
below).

b. (circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately
follows the left of a pair of square brackets ([]) (see 1.4
below).

c. $ (currency symbol), which is special at the end of an en­
tire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE,
which is special for that RE (for example, see how slash
(I) is used in the g command, below.)

February, 1990
RevisionC

ed(l) ed(l)

1.3 A period (.) is a one-character RE that matches any charac­
ter except newline.

1.4 A nonempty string of characters enclosed in square brackets
([]) is a one-character RE that matches anyone character in
that string. If, however, the first character of the string is a
circumflex (,..), the one-character RE matches any character
except newline and the remaining characters in the string.
The ,.. has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of con­
secutive ASCII characters; for example, [0-9] is equivalent
to [012345678 9]. The - loses this special meaning if it oc­
curs first (after an initial "', if any) or last in the string. The
right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial "', if
any); e.g., [] a-f] matches either a right square bracket (])
or one of the letters a through f, inclusive. The four charac­
ters listed in 1.2.a (above) stand for themselves within such a
string of characters.

The following rules may be used to construct REs from one­
character REs:

2.1 A one-character RE is a RE that matches whatever the one­
character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that
matches zero or more occurrences of the one-character RE.
If there is any choice, the longest leftmost string that permits
a match is chosen.

2.3 A one-character RE followed by \ {m \ }, \ {m, \ }, or
\ { m,n \} is a RE that matches a range of occurrences of the
one-character RE. The values of m and n must be non­
negative integers less than 256:

\ { m \} matches exactly m occurrences;

\ { m, \} matches at least m occurrences;

\ {m,n \} matches any number of occurrences between m and
n inclusive.

Whenever a choice exists, the RE matches as many oc­
currences as possible.

2.4 The concatenation of REs is a RE that matches the concate­
nation of the strings matched by each component of the RE.

February, 1990
Revision C

3

ed(l) ed(l)

4

2.5 A RE enclosed between the character sequences \ (and \)
is a RE that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as
was matched by an expression enclosed between \ (and \)
earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \ (
counting from the left. For example, the expression
"\ (. * \) \ 1 $ matches a line consisting of two repeated ap­
pearances of the same string.

Finally, an entire RE may be constrained to match only an initial
segment or final segment of a line (or both).

3.1 A caret (") at the beginning of an entire RE constrains that
RE to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains
that RE to match afinal segment of a line.

The construction "entire RE$ constrains the entire RE to match
the entire line.

The null RE (e.g., I!) is equivalent to the last RE encountered.
See the paragraph before FILES, below.

To understand addressing in ed, it is necessary to know that at
any time there is a current line. Generally speaking, the current
line is the last line affected by a command; the exact effect on the
current line is discussed under the description of each command.
addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. IX addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the
k command (described below). If X was not used to mark a
line, ' x addresses line O.

5. A RE enclosed by slashes (I) addresses the first line found
by searching forward from the line following the current line
toward the end of the buffer and stopping at the first line con­
taining a string matching the RE. If necessary, the search
wraps around to the beginning of the buffer and continues up
to and including the current line, so that the entire buffer is

February, 1990
Revision C

ed(l) ed(l)

searched. See the paragraph before FILES, below.

6. A RE enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the
current line toward the beginning of the buffer and stopping
at the first line containing a string matching the RE. If neces­
sary, the search wraps around to the end of the buffer and
continues up to and including the current line. See also the
last paragraph before FILES, below.

7. An address followed by a plus sign (+) or a minus sign (-)
followed by a decimal number specifies that address plus
(respectively minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, - 5 is understood to
mean .-5.

9. If an address ends with + or -, then 1 is added to or subtract­
ed from the address, respectively. As a consequence of this
rule and of rule 8 immediately above, the address - refers to
the line preceding the current line. (To maintain compatibili­
ty with earlier versions of the editor, the character ,.. in ad­
dresses is entirely equivalent to -.) Moreover, trailing + and
- characters have a cumulative effect, so -- refers to the
current line less 2.

10. For convenience, a comma (,) stands for the address pair
1 , $, while a semicolon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if
more addresses are given than such a command requires, the last
one(s) are used.

Typically, addresses are separated from each other by a comma
(,). They may also be separated by a semicolon (;). In the latter
case, the current line (.) is set to the first address, and only then is
the second address calculated. This feature can be used to deter­
mine the starting line for forward and backward searches (see
rules 5. and 6. above). The second address of any two-address se­
quence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

February, 1990
Revision C

5

ed(l) ed(l)

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the address;
they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a
line. Any command (except e, f, r, or w) may be suffixed by 1,
n or p, however, in which case the current line is either listed,
numbered or printed, respectively, as discussed below under the 1,
n and p commands.

(.) a
text

(.) c
text

The append command reads the given text and appends
it after the addressed line; . is left at the last inserted
line, or, if there were none, at the addressed line. Ad­
dress 0 is legal for this command: it causes the append­
ed text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered
from a terminal is 256 per line (including the newline
character).

The change command deletes the addressed lines, then
accepts input text that replaces these lines; . is left at
the last line input, or, if there were none, at the first line
that was not deleted.

(• f •) d
The delete command deletes the addressed lines from
the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the
end of the buffer, the new last line becomes the current
line.

e file The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be read
in; . is set to the last line of the buffer. If no file name
is given, the currently-remembered filename, if any, is
used (see the f command). The number of characters
read is typed; file is remembered for possible use as a
default filename in subsequent e, r, and w commands.
If file is replaced by !, the rest of the line is taken to be a
shell (sh(l)) command whose output is to be read.
Such a shell command is not remembered as the current
filename. See also DIAGNOSTICS, below.

6 February, 1990
RevisionC

ed(1) ed(l)

E file The E command is like e, except that the editor does not
check to see if any changes have been made to the
buffer since the last w command.

f file If file is given, this command changes the currently­
remembered filename to file; otherwise, it prints the
currently-remembered filename.

(1 , $) g I REI command list
In the global command, the first step is to mark every
line that matches the given RE. Then, for every such
line, the given command list is executed with . initially
set to that line. A single command or the first of a list of
commands appears on the same line as the global com­
mand. All lines of a multi-line list except the last line
must be ended with a \; a, i, and c commands and as­
sociated input are permitted. The . terminating input
mode may be omitted if it would be the last line of the
command list. An empty command list is equivalent to
the p command.

(1 , $) GIREI
In the interactive global command, the first step is to
mark every line that matches the given RE. Then, for
every such line, that line is printed, . is changed to that
line, and anyone command (other than one of the a, c,
i, g, G, v, and V commands) may be input and is exe­
cuted. After the execution of that command, the next
marked line is printed, and so on; a newline acts as a
null command; an & causes the re-execution of the most
recent command executed within the current invocation
of G. Note that the commands input as part of the exe­
cution of the G command may address and affect any
lines in the buffer. The G command can be terminated
by an interrupt signal (ASCII DELETE or BREAK). A
command that causes an error terminates the G com­
mand.

h The help command gives a short error message that ex­
plains the reason for the most recent ? diagnostic.

H The Help command causes ed to enter a mode in which
error messages are printed for all subsequent ? diagnos­
tics. It will also explain the previous ? if there was one.
The H command alternately turns this mode on and off;

February, 1990 7
Revision C

ed(l) ed(l)

8

(.) i
text

it is initially off.

The insert command inserts the given text before the ad­
dressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. This command differs
from the a command only in the placement of the input
text Address 0 is not legal for this command. The
maximum number of characters that may be entered
from a terminal is 256 per line (including the newline
character).

(.,.+l)j
Join contiguous lines by removing the appropriate new­
line characters. If exactly one address is given, this
command does nothing.

(.) kx Mark the addressed line with name x, which must be a
lowercase letter. The address 'x then addresses this line;
. is unchanged.

(. , .) 1
List the addressed lines in an unambiguous way: a few
nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes. All other non­
printing characters are printed in octal, and long lines
are folded. An 1 command may be appended to any
other command other than e, f, r, or w.

(• , •)ma

Move addressed line(s) to after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s)
to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines; . is left
at the last line moved.

(. , .) n
Prints the addressed lines, preceding each line by its line
number and a tab character; . is left at the last line print­
ed. The n command may be appended to any other
command other than e, f, r, or w.

(. , .) p
Print the addressed lines; . is left at the last line printed.
The p command may be appended to any other com­
mand other than e, f, r, or w. For example, dp deletes

February, 1990
RevisionC

ed(l)

p

q

Q

ed(l)

the current line and prints the new current line.

The editor will prompt with a * for all subsequent com­
mands. The P command alternately turns this mode on
and off; it is initially off.

Exit. ed No automatic write of a file is done (but see
DIAGNOSTICS, below).

Exit ed without checking if changes have been made in
the buffer since the last w command.

($) r file
The read command reads in the given file after the ad­
dressed line. If no filename is given, the currently­
remembered filename, if any, is used (see e and f com­
mands). The currently-remembered filename is not
changed unless file is the very first filename mentioned
since ed was invoked. Address 0 is legal for r and
causes the file to be read at the beginning of the buffer.
If the read is successful, the number of characters read is
typed; . is set to the last line read in. If file is replaced
by !, the rest of the line is taken to be a shell (sh(1))
command whose output is to be read. For example, $ r
! 1 s appends current directory to the end of the file be­
ing edited. Such a shell command is not remembered as
the current filename.

(. , .) s/RE/replacement/ or
(. , .) s/RE/replacement/g or
(. , .) s/RE/replacement/n

Search each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all
(nonoverlapped) matched strings are replaced by the re­
placement if the global replacement indicator g appears
after the command. If the global indicator does not ap­
pear, only the first occurrence of the matched string is
replaced. Sometimes substitution of an RE results in the
last (or only) affected line being printed out. This oc­
curs only when substitution is not global or of an nth oc­
currence. If a number n appears after the command,
only the nth occurrence of the matched string on each
addressed line is replaced. It is an error for the substitu­
tion to fail on all addressed lines. Any character other
than space or newline may be used instead of / to del-

February, 1990
Revision C

9

ed(l) ed(l)

10

imit the RE and the replacement; . is left at the last line
on which a substitution occurred. See the paragraph be­
fore FILES, below.

An ampersand (&) appearing in the replacement is re­
placed by the string matching the RE on the current line.
The special meaning of & in this context may be
suppressed by preceding it by ,. As a more general
feature, the characters 'n, where n is a digit, are re­
placed by the text matched by the n-th regular subex­
pression of the specified RE enclosed between , (and
,). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of , (
starting from the left. When the character % is the only
character in the replacement, the replacement used in
the most recent substitute command is used as the re­
placement in the current substitute command. The %
loses its special meaning when it is in a replacement
string of more than one character or is preceded by a ,.

A line may be split by substituting a newline character
into it. The newline in the replacement must be escaped
by preceding it by ,. Such substitution cannot be done
as part of a g or v command list.

(. , .) ta
Similar to the move (m) command, except that a copy of
the addressed lines is placed after address a (which may
be 0); . is left at the last line of the copy.

u Undo the most recent command that modified anything
in the buffer, namely the most recent a, c, d, g, i, j, m,
r, S, t, v, G, or V command.

(1 , $) v I REI command list
This command is the same as the global command g, ex­
cept that the command list is executed with . initially
set to every line that does not match the RE.

(1 , $) v IREI
This command is the same as the interactive global com­
mand G except that the lines that are marked during the
first step are those that do not match the RE.

(1 , $) w file
Write the addressed lines into the named file. If the file

February, 1990
RevisionC

ed(l) ed(l)

does not exist, it is created with mode 666 (readable and
writable by -everyone), unless your umask setting (see
sh(1» dictates otherwise. The currently-remembered
filename is not changed unless file is the very first
filename mentioned since ed was invoked. If no
filename is given, the currently-remembered filename, if
any, is used (see e and f commands); . is unchanged.
If the command is successful, the number of characters
written is typed. If file is replaced by !, the rest of the
line is taken to be a shell (sh(l» command whose stan­
dard input is the addressed lines. Such a shell command
is not remembered as the current filename.

x A key string is demanded from the standard input. Sub­
sequent e, r, and w commands will encrypt and decrypt
the text with this key by the algorithm of crypt(l). An
explicitly empty key turns off encryption. The encryp­
tion scheme used here is not secure.

($) = The line number of the addressed line is typed; address 0
is legal for this command. . is unchanged by this com­
mand.

! shell command
The remainder of the line after the ! is sent to the sys­
tem shell (sh(1» to be interpreted as a command.
Within the text of that command, the unescaped charac­
ter % is replaced with the remembered filename; if a !
appears as the first character of the shell command, it is
replaced with the text of the previous shell command.
Thus, ! ! will repeat the last shell command. If any ex­
pansion is performed, the expanded line is echoed; . is
unchanged.

(. + 1) new line
An address alone on a line causes the addressed line to
be printed. A newline alone is equivalent to . + 1 p; it is
useful for stepping forward through the buffer.

If an interrupt signal (ASCII or CONTROL-C is sent, ed prints a ?
and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per file name, and 128K char­
acters in the buffer. The limit on the number of lines depends on
the amount of user memory: each line takes 1 word.

February, 1990 11
RevisionC

ed(l) ed(l)

When reading a file, ed discards ASCII NUL characters and all
characters after the last newline. Files (e.g., a. out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /)
would be the last character before a new line, that delimiter may be
omitted, in which case the addressed line is printed. The follow­
ing pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

EXAMPLES
ed text

invokes the editor with the file named text. For further exam­
ples, see "Using ed" in AIUX Text Editing Tools.

FILES
/bin/ed
/bin red
/tmp/e#
ed.hup

temporary; =It is the process number.
work is saved here if the terminal is
hung up.

DIAGNOSTICS
? for command errors.

for an inaccessible file. ?file
(use the hand H commands for detailed
explanations).

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is
made to destroyed's buffer via the e or q commands. It prints?
and allows one to continue editing. A second e or q command
will take effect at any time, provided no further changes have
been made to the file. The - command-line flag option inhibits
this feature.

SEE ALSO

12

crypt(I), ex(I), grep(I), sed(I), sh(1), stty(I), vi(I),
fspec(4), regexp(5).
"Using ed" in AIUX Text Editing Tools.

February, 1990
RevisionC

ed(l) ed(1)

NOTES
The ! command and the ! escape from the e, r, and w commands
cannot be used if the the editor is invoked from a restricted shell
(see sh(l)).
The sequence \ n in a RE does not match a newline character.
The 1 command mishandles interrupts.
Files encrypted directly with the crypt(l) command with the
null key cannot be edited.
Characters are masked to 7 bits on input

The -x flag option and the editor command X are not implement­
ed in the international distribution.
If the editor input is coming from a command file (i.e., ed file <
ed-cmd-file), the editor will exit at the first failure of a command
that is in the command file.

February, 1990
Revision C

13

edit(l)

See ex(l)

1

edit(l)

February, 1990
RevisionC

efl(l) efl(l)

NAME
e f 1 - Extended Fortran Language

SYNOPSIS
efl [-41=] [-c] [-w] [file ...]

DESCRIPTION
efl compiles a program written in the efl language into clean
Fortran on the standard output. efl provides the C-like control
constructs similar to Ratfor:

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as
swi tch-case);
while, for, Fortran do, repeat, and
repeat ... until loops;
multi-level break and next.

efl has C-like data structures, e.g.:

struct
{

integer flags (3)
character(8) name
long real coords(2)
} table(lOO)

The language offers generic functions, assignment operators (+=,
&=, etc.), and sequentially evaluated logical operators (& & and II).
There is a uniform input/output syntax:

write(6,x,y:f(7,2), do i=l,lO
a (i, j) , z.b (i) })

efl also provides some syntactic sugar:

free-form input:
multiple statements per line; automatic continuation;
statement label names (not just numbers).

comments:
41= this is a comment.

translation of relational and logical operators:
>, >=, &, etc., become. GT., • GE., • AND., etc.

return expression to caller from function:
return (expression)

February, 1990 1
Revision C

efl(l) efl(1)

defines:
define name replacement

includes:
include file

efl understands several flag option arguments: -w suppresses
warning messages, -:jf: suppresses comments in the generated pro­
gram, and the default flag option -c causes comments to be in­
cluded in the generated program.

An argument with an embedded = (equal sign) sets an efl flag
option as if it had appeared in an option statement at the start of
the program. Many options are described in the reference manual.
A set of defaults for a particular target machine may be selected
by one of the choices: system=unix, system=gcos, or
system=cray. The default setting of the system option is the
same as the machine the compiler is running on. Other specific
options determine the style of input/output, error handling, con­
tinuation conventions, the number of characters packed per word,
and default formats.

efl is best used with f77(1).

EXAMPLES
The command sequence:

efl prog.for > prog.f
f77 prog.f -0 prog

will process the program prog. for through efl and then run
the f 77 (1) compiler on the output from e f 1, generating an exe­
cutable file named prog.

FILES
/usr/bin/efl

SEE ALSO

2

cc(l), f77(1).
"e f 1 Reference" in AIUX Programming Languages and Tools,
Volume 2.

February, 1990
Revision C

egrep(1)

February, 1990
Revision C

See grep(1)

egrep(l)

1

eject(l) eject(l)

NAME
eject - eject diskette from drive

SYNOPSIS
eject [0] [1] [/dev/rdsk/name]

DESCRIPTION
eject causes a floppy diskette drive (see fd(7» to eject an in­
serted diskette. One of three arguments may be included on the
command line. Arguments 0 or 1 specify diskette drive 0 or 1.
Alternatively t / dev / rds k / name specifies the full path name of
the character special file for the device. If the device is not given t

the device 0 is assumed.

FILES
/bin/eject
/dev/rdsk/c8d?sO

SEE ALSO
fd(7).

1 February t 1990
RevisionC

enable(l) enable(1)

NAME
enable, disable - enable or disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason]] printers

DESCRIPTION
enable activates the named printers, enabling them to print re­
quests taken by lp(l). Use lpstat(1) to find the status of
printers.

disable deactivates the named printers, disabling them from
printing requests taken by lp(l). By default, any requests that are
currently printing on the designated printers will be reprinted in
their entirety either on the same printer or on another member of
the same class. Use lpstat(l) to find the status of printers.
Flag options useful with disable are:

-c Cancel any requests that are currently printing on any
of the designated printers.

-r [reason]
Associates a reason with the deactivation of the
printers. This reason applies to all printers mentioned
up to the next - r flag option. If the - r flag option is
not present or the - r flag option is given without a
reason, then a default reason will be used. reason is
reported by lpstat(I).

FILES
/usr/bin/enable
/usr/bin/disable
/usr/spool/lp/*

SEE ALSO
lp(1), lpstat(I).
AIUX Local System Administration

February, 1990
Revision C

1

enscript(l) enscript(l)

NAME
enscript - convert text files to POSTSCRIPT format for
printing

SYNOPSIS
enscript [-12BGghKklmoqRr] [-Llines] [-f!ont] [-FJifont]
[-bheader] [-pout] [spoolopts] [files]

DESCRIPTION

1

enscript reads plain text files, converts them to POSTSCRIPT
format, and spools them for printing on a POSTSCRIPT printer.
Fonts, headings, and limited formatting options may be specified.

For example:

enscript -paleph boring. txt

processes the file called boring. txt for PoSTSCRIPT printing,
writing the output to the file aleph.

enscript -2r boring.c

prints a two-up landscape listing of the file called boring. c on
the default printer (see below).

Font specifications have two parts: A font name as known to
POSTSCRIPT (for example, Times-Roman, Times-Roman
BoldItalic , ReI vetica, Courier), and a point size (1
point=I/72 inch). So, Courier-Bold8 is 8 point Courier Bold,
ReI vetica12 is 12 point Helvetica.

The environment variable ENSCRIPT may be used to specify de­
faults. The value of ENSCRIPT is parsed as a string of arguments
before the arguments that appear on the command line. For exam­
ple

ENSCRIPT='-fTimes-Roman8'

sets your default body font to 8 point Times Roman.

The possible options are:

-2 set in two columns.

-1 set in one column (the default).

- r rotate the output 90 degrees (landscape mode). This is
good for output that requires a wide page or for program
listings when used in conjunction with -2.

enscript -2r files

February, 1990
Revision C

enscript(l) enscript(l)

is a nice way to get program listings.

-R don't rotate, also known as portrait mode (the default).

-G print in gaudy mode: causes page headings, dates, page
numbers to be printed in a flashy style, at some slight per­
formance expense.

-1 simulate a line printer: make pages 66 lines long and omit
headers.

- B omit page headings.

-bheader
sets the string to be used for page headings to header.
The default header is constructed from the file name, its
last modification date, and a page number.

- Llines set the maximum number of lines to output on a page.
enscript usually computes how many to put on a page
based on point size, and may put fewer per page than re­
quested by lines.

- ffont sets the font to be used for the body of each page. De­
faults to Courier10, unless two column rotated mode
is used, in which case it defaults to Courier7.

- F hfont sets the font to be used for page headings. Defaults to
Courier-Bo1dlO.

-pout causes the POSTSCRIPT file to be written to the named file
rather than being spooled for printing. As a special case,
-p - will send the POSTSCRIPT to the standard output.

-g enables the printing of files containing non-printing char-
acters. Any file with more than a small number of non­
printing characters is suspected of being garbage and is
not printed unless this option is used.

-0 If enscript cannot find characters in a font, the miss­
ing characters are listed.

-q causes enscript to be quiet about what it is doing.
enscript won't report about pages, destination, omit­
ted characters, and so forth. Fatal errors are still reported
to the standard error output.

- k enables page prefeed (if the printer supports it). This al­
lows simple documents (e.g., program listings in one
font) to print somewhat faster by keeping the printer run-

February, 1990 2
Revision C

enscript(l) enscript(l)

ning between pages.

-K disable page pre feed (the default).

- h suppress printing of job burst page.

ENVIRONMENT
ENSCRIPT

PSLIBDIR

PSTEMPDIR

LPDEST

string of options to be used by
enscript.

path name of a directory to use instead
of /usr/lib/ps for enscript
prologue and font metric files.

path name of temporary directory to
use instead of XP S TEMD I RX of
spooled temporary files.

the name of a printer for 1 p to use. If
LPDEST is not set, enscript will
spool to a printer class named
PostScript.

FILES
/usr/bin/enscript
/usr/lib/ps/*.afm
/usr/lib/ps/enscript.pro

font metrics files.
prologue for enscript
files.

SEE ALSO
cancel(1), lp(l), lpr(l), lprm(l), lpstat(l), pr(1),
ps630(1), getopt(3).

FEATURES
Options and the ENSCRIPT environment string are parsed in
getopt(3) fashion.

BUGS

3

Long lines are truncated. Line truncation may be off by a little bit
as printer margins vary. There should be a "wrap" option and
multiple (truncated or wrapped) columns.

February, 1990
RevisionC

env(l) env(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION
env obtains the current environment, modifies it according to its
arguments, then executes command with the modified environ­
ment. Arguments of the fonn name =value are merged into the in­
herited environment before the command is executed. The - flag
option causes the inherited environment to be ignored completely,
so that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

EXAMPLES
env XYZ=pdq sh

XY Z to the value pdq for the duration of the command, which
here is a new shell, sh.

FILES
/bin/env

SEE ALSO
csh(l), ksh(l), sh(1), exec(2), profile(4), environ(5).

February, 1990
Revision C

1

eqn(1) eqn(1)

NAME
eqn, checkeq- format mathematical text for troff

SYNOPSIS
eqn [-dxy] [-pn] [-sn] [-fn] [-Ttty-type] [-] [file ...]

checkeq [file . ..]

DESCRIPTION

1

eqn is a troff(1) preprocessor for typesetting mathematical text
on a phototypesetter. Normal usage is

eqn [options] file ... I troff [options] I [typesetter]

If you do not specify file (or if you specify - as the last argument),
eqn reads the standard input. eqn prepares output for the output
device you name in the -T option. Currently supported devices
are -Taps (Autologic APS-5) and -Tpsc (POSTSCRIPT device).
The default is -Tpsc.

A line beginning with . EQ marks the start of an equation; a line
beginning with. EN marks the end of an equation; troff does
not alter these lines, so they may be defined in macro packages to
get centering, numbering, and so forth. You may also name two
characters as delimiters; eqn treats subsequent text between del­
imiters as input. You may set delimiters to characters x and y with
the command-line argument -dxy or (more commonly) with
delim xy between . EQ and. EN. The left and right delimiters
may be the same character, the dollar sign often being used as
such a delimiter. Delimiters are turned off by delim off. All
text that is neither between delimiters nor between . EQ and . EN
is passed through untouched.

checkeq is a related program that reports missing or unbalanced
delimiters and . EQ/ . EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines,
braces, double quotes, tildes, and circumflexes. Braces ({ }) are
used for grouping; generally, wherever a single character such as x
may be used, then x enclosed in braces may be used instead. A
tilde (-) represents a full space in the output; a circumflex (~) half
as much.

For full details, see "eqn Reference" in AIUX Text Processing
Tools.

February, 1990
RevisionC

eqn(1) eqn(1)

FILES
/bin/ch~ckeq
/bin/eqn

SEE ALSO
mm(1), mmt(1), nroff(1), tbl(1), troff(1), eqnchar(5),
mm(5), mv(5).
"eqn Reference" in A/UX Text Processing Tools.

BUGS
To boldface digits, parentheses, and so forth, it is necessary to
quote them, as in

bold "12.3"

When you use eqn with the mm macro package, displayed equa­
tions must appear only inside displays.
See also BUGS under troff(1).

February, 1990 2
Revision C

ex(l) ex(l)

NAME
e, ex, edit - text editor

SYNOPSIS
ex [-] [+command] [-r] [-R] [-t tag] [-v] [-x] name ...

e ex-arguments

edit [-] [+command] [-r] [-R] [-t tag] [-v] [-x] name ...

DESCRIPTION

1

ex is the root of a family of editors: edit, ex, and vi. The
edi t command set is a subset of the ex set, including just the
basic commands, fewer magic characters, and line-based editing
only. Display-based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the
editor edit is convenient for you. It avoids some of the com­
plexities of ex, which is used mostly by systems programmers and
those very familiar with ed.

e is synonymous with ex.

If you have a CRT terminal, you may wish to use a display-based
editor; in this case see vi(I), which is a command that focuses on
the display editing portion of ex.

The following flag options are recognized:

Suppresses all interactive-user feedback, as when processing
editor scripts in command files.

-v Equivalent to using v i rather than ex.

-t tag
Equivalent to an initial tag command, editing the file contain­
ing the tag and positioning the editor at its definition.

-rfile
Used for recovery after an editor or system crash, retrieving
the last saved version of the named file. If no file is specified,
a list of saved files will be reported.

-R Read-only mode set, prevents accidentally overwriting the
file.

+ command
Indicates that the editor should begin by executing the
specified command. If command is omitted, then it defaults
to $, positioning the editor initially at the last line of the first
file. Other useful commands here are scanning patterns of

February, 1990
Revision C

ex(l) ex(l)

the form / pat or line numbers, for example, + 100 to start at
line 100.

-x Encryption mode; a key is prompted for allowing creation or
editing of an encrypted file. This encryption scheme is not
secure.

name
Indicates files to be edited.

Modes
Command Normal and initial state. Input prompted for by

:. The kill character cancels partial command.

Insert

Visual

Entered by a, i, and c. Arbitrary text may be
entered. Insert is normally terminated by line
having only. on it, or abnormally with an in­
terrupt

Entered by vi, terminates with Q or ~ \.

Command Names and Abbreviations
abbrev ab next n undo u
append a number nu unmap unrn
args ar preserve pre version ve
change c print p visual vi
copy co put pu write w
delete d quit q xit x
edit e read re yank ya
file f recover rec window z
global g rewind rew escape
insert i set se lshift <
join j shell sh printnext CR
list 1 source so resubst &
map map stop st rshift >
mark rna substitute s scroll ~D

move rn unabbrev una

where CR=RETURN, and ~D=CONTROL-D.

Command Addresses
n line n /pat next with pat

current ?pat previous with pat
$ last x-n n before x

February, 1990 2
Revision C

ex(l) ex(l)

3

+

+n
%

next
previous
n forward
1,$

Initializing options

x,y
'x

xthroughy
marked with x
previous context

EXINIT place set's here in environment variable
$HOMEI • exrc editor initialization file
. I . exrc editor initialization file
set x enable option
set nox disable option
set x=val give value val
set show changed options
set all show all options
set x? show value of option x

Most useful options
autoindent ai
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode
slowopen
window
wrapscan

aw
ic
lisp
list
magic
nu
para
redraw
scroll
sect
sw
sm
smd
slow
window
ws

wrapmargin wm

Scanning pattern formation

supply indent
write before changing files
in scanning
() { } are s-exp's

print CONIROL-I for tab, $ at end
. [* special in patterns
number lines
macro names which start .
simulate smart terminal
command mode lines
macro names
for < >, and input CONIROL-d
to) and } as typed
show insert mode in vi
stop updates during insert
visual mode lines
around end of buffer?
automatic line splitting

A beginning of line
$ end of line

\<
\>

any character
beginning of word
end of word

February, 1990
Revision C

ex(l)

any char in str
... not in str

ex(l)

[str]
[istr]
[x-y]

*
. . . between x and y
any number of preceding

FILES
/usr/bin/e
/usr/bin/ex
/usr/bin/edit
/usr/lib/ex3.9strings
/usr/lib/ex3.9recover
/usr/lib/ex3.9preserve
/usr/lib/*/*

-/.exrc

/ tmp / EXnnnnn
/ tmp / Rxnnnnn
/usr/preserve
/usr/lib/tags

EXAMPLES
The command

ex text

error messages
recover command
preserve command
describes capabilities of
terminals
editor startup command
file, user-created in home
directory
editor temporary
named buffer temporary
preservation directory
standard editor tag file

would invoke the editor with the file named text.

SEE ALSO
aWk(l), ed(l), grep(1), sed(1), vi(1), curses(3X), term(4),
terminfo(4),
"Using ex" and "Using vi" in AIUX Text Editing Tools.

BUGS
The undo (u) command causes all marks to be lost on lines
changed and then restored if the marked lines were changed.

The undo command never clears the "buffer modified" condition,
that is, once the editor buffer has been modified, ex tells you that
it is [Modi f ied] , even if you undo the only modification.

The z command prints a number of logical rather than physical
lines. More than a screen full of output may result if long lines are
present.

February, 1990
Revision C

4

ex(l) ex(l)

5

File input/output errors don't print a name if the command line -
option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not
used before exiting the editor.

Null characters are discarded in input files, and cannot appear in
resultant files.

February. 1990
Revision C

expand(1) expand(1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop] [-tabl ,tab2, ... , tabn] ffile ...]

unexpand [-a] ffile ... J

DESCRIPTION
expand reads the named files (or the standard input, if none are
given) and writes on the the standard output with tabs changed
into blanks. Backspace characters are preserved into the output
and decrement the column count for tab calculations. expand is
useful for preprocessing character files that contain tabs (before
sorting, looking at specific columns, and so forth).

If a single numerical tabstop argument is given, then tabs are set
tabstop spaces apart instead of the default 8. If multiple tabstops
are given, then the tabs are set at those specific columns.

unexpand puts tabs back into the data from the standard input or
the named files and writes the result on the standard output. By
default, only leading blanks and tabs are reconverted to maximal
strings of tabs. If the -a flag option is given, then tabs are insert­
ed whenever they would compress the resultant file by replacing
two or more characters.

FILES
/usr/ucb/expand
/usr/ucb/unexpand

February, 1990
Revision C

1

explain(l)

See diction(1)

1

explain(l)

February, 1990
Revision C

expr(l) expr(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
exp r evaluates its arguments as an expression and writes the
result on the standard output. Terms of the expression must be
separated by blanks. Characters special to the Bourne shell or
Korn shell (sh (1) or ksh (1), respectively) must be escaped.
(expr is replaced in the C shell (csh (1)) by @.) Note that 0 is
returned to indicate a zero value, rather than the null string.
Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary
minus sign. Internally, integers are treated as 32-bit, 2's­
complement numbers.

The operators and keywords are listed below. Characters that
need to be escaped are preceded by \. The list is in order of in­
creasing precedence, with equal precedence operators grouped
within { } symbols.

expr \ I expr
returns the first expr if it is neither null nor 0, otherwise re­
turns the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise re­
turns o.

expr { =, \>, \>=, \<, \<=, ! = } expr
returns the result of an integer comparison if both arguments
are integers, otherwise returns the result of a lexical com­
parison.

expr (+, -} expr
addition or subtraction of integer-valued arguments.

expr (\ * , /, %} expr
multiplication, division, or remainder of the integer-valued
arguments.

expr : expr
The matching operator : compares the first argument with
the second argument which must be a regular expression;
regular expression syntax is the same as that of ed(l), except
that all patterns are anchored (Le., begin with A) and, there-

February, 1990 1
Revision C

expr(l) expr(l)

fore, A is not a special character, in that context. Nonnally,
the matching operator returns the number of characters
matched (0 on failure). Alternatively, the ...) pattern
symbols can be used to return a portion of the first argument.

EXAMPLES
a = 'exp r $ a + l'

adds 1 to the shell variable a.

:/I: 'For $a equal to either "Iusr/abc/file"
:/I: or just "file'"
expr $a : '. * I \ (. * \) , \ I $a

returns the last segment of a pathname (Le.,file). Watch out for I
alone as an argument: expr will take it as the division operator
(see BUGS below).

A better representation of above example:

expr II$a : '.*/\(.*\)'

the addition of the / / characters eliminates any ambiguity about
the division operator and simplifies the whole expression.

expr $VAR '.*'
returns the number of characters in $VAR.

FILES
/bin/expr

SEE ALSO
csh(1), ed(I), ksh(1), sh(I).

EXIT CODE
As a side effect of expression evaluation, expr returns the fol­
lowing exit values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions

DIAGNOSTICS
syntax error for operator/operand errors

non-numeric argument if arithmetic is attempted on such
a string

2 February, 1990
Revision C

expr(l) expr(1)

BUGS
After argument processing by the shell, exp r cannot tell the
difference between an operator and an operand except by the
value. If $a is an =, the command:

expr $a ' ='
looks like:

expr

as the arguments are passed to expr (and they will all be taken as
the = operator). The following works:

expr X$a X=

February, 1990 3
Revision C

f77 (1) f77(1)

NAME
f 77 - Fortran 77 compiler

SYNOPSIS
f77 [-1] [-66] [-c] [-C] [-E] [-f] [-F] [-g] [-r[24s]] [-m]
[-ooutput] [-0] [-onetrip] [-p] [-R] [-S] [-u] [-U] [-w]file

DESCRIPTION

1

f77 is the Fortran 77 compiler; it accepts several types offile ar­
guments:

Arguments whose names end with . f are taken to be Fortran
77 source programs; they are compiled and each object pro­
gram is left in the current directory in a file whose name is
that of the source, with . 0 substituted for . f.

Arguments whose names end with . r or . e are taken to be
EFL source programs; these are first transformed by the EFL
preprocessor, then compiled by f77, producing. 0 files.

In the same way, arguments whose names end with. cor. s
are taken to be C or assembly source programs and are com­
piled or assembled, producing . 0 files.

The following flag options have the same meaning as in cc(1)
(see Id(1) for link editor flag options):

-c

-p
-0
-S

-ooutput

-f

-g

Suppress link editing and produce. 0 files for each
source file.
Prepare object files for profiling (see prof(1».
Invoke an object code optimizer.
Compile the named programs and leave the assem­
bler language output in corresponding files whose
names are suffixed with. s. (No .0 files are creat­
ed.)
Name the final output file output, instead of
a.out.
In systems without floating-point hardware, use a
version of f77 that handles floating-point con­
stants and links the object program with the
floating-point interpreter.
Generate additional information needed for the use
of sdb(l)

February, 1990
RevisionC

f77(1) f77(1)

The following flag options are peculiar to f 77:

-onetrip Perform all DO loops at least once. (Fortran 77
DO loops are not performed at all if the upper limit
is smaller than the lower limit)

-1 Same as -onetrip.
-66 Suppress extensions which enhance Fortran 66

compatibility.
-C Generate code for run-time subscript range­

checking.
-I[24s] Change the default size of integer variables (only

valid on machines where the normal integer size
is not equal to the size of a single precision real).
- I 2 causes all integers to be 2-byte quantities, - I 4
(default) causes all integers to be 4-byte quantities,
and -Is changes the default size of subscript ex­
pressions (only) from the size of an integer to 2
bytes.

-u Do not "fold" cases. F77 is normally a no-case
language (i.e., a is equal to A). The -u flag option
causes f 77 to treat upper and lower cases separate­
ly.

-u Make the default type of a variable undefined, rath­
er than using the default Fortran rules.

-w Suppress all warning messages. If the flag option is
-w66, only Fortran 66 compatibility warnings are
suppressed.

-F Apply EFL preprocessor to relevant files and put
the result in files whose names have their suffix
changed to • of. (No .0 files are created.)

-m Apply the M4 preprocessor to each EFL source file
before transforming with the efl(l) processor.

-E The remaining characters in the argument are used
as an EFL flag argument whenever processing a . e
file.

Other arguments are taken to be link editor flag option arguments,
f77-compilable object programs (typically produced by an earlier
run), or libraries of f77-compilable routines. These programs, to­
gether with the results of any compilations specified, are linked (in
the order given) to produce an executable program with the de­
fault name a. out.

February, 1990
RevisionC

2

f77(1)

FILES
/usr/bin/f77
file. [fresc]
file.o
a.out
. /fort [pid] . ?
/usr/lib/f77comp
/lib/c2
/usr/lib/libF77.a
/usr/lib/libI77.a
/lib/libc.a

SEE ALSO

input file
object file
linked output
temporary
compiler
optional optimizer
intrinsic function library
Fortran I/O library

f77(1)

C library; see Section 3 in AIUX
Programmer's Reference.

asa(1), cc(I), efl(1), fpr(l), fsplit(I), Id(I), m4(1),
prof(1), sdb(1).
"f77 Reference" in AIUX Programming Languages and Tools.
Volume 1.

DIAGNOSTICS

3

The diagnostics produced by f 77 itself are self-explanatory. Oc­
casional messages may be produced by the link editor Id(1).

February, 1990
RevisionC

factor(l) factor(l)

NAME
factor - factor a number

SYNOPSIS
factor [number]

DESCRIPTION
factor prints the prime factors of its argument. When factor
is invoked without an argument, it waits for a number to be typed
in. If you type in a positive number less than pow (2,56) , it will
factor the number and print its prime factors; each one is printed
the proper number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as
above and then exits.

Maximum time to factor is proportional to ~n and occurs when n
is prime or the square of a prime, where n is the number being fac­
tored. It takes 1 minute to factor a prime near 1011 on a 68020.

FILES
/bin/factor

DIAGNOSTICS
"Ouch" is echoed when input is out of range or is garbage.

February, 1990
Revision C

1

false(1) false(l)

See true(l)

1 February, 1990
Revision C

fcnvt(1) fcnvt(1)

NAME
fcnvt - convert a resource file to another fonnat

SYNOPSIS
fcnvt [-i input{ormat] [-0 output{ormat] [-f] input-file
output-ftle
fcnvt [-i input{ormat] -s [-f] input-ftle output-file
fcnvt [-i input{ormat] -d [-f] input-ftle output-file
fcnvt [-i input-format] -t [-f] input-ftle output-file
fcnvt [-i input-format] -p [-f] input-ftle output-file
fcnvt [-i input{ormat] -b [-f] input-ftle output-file
fcnvt [-i input{ormat] -m [-f] input-ftle output-ftle

DESCRIPTION
fcnvt converts a file (input-file) from one file fonnat to another
(output-file). The command line options and their meanings are:

- i input format
Specify the file format of the file to be converted. If an
input-file fonnat is not specified, the AppleSingle fonnat is
assumed. Supported formats are:

single
AppleSingle (see the -s flag option)

double
AppleDouble (see the -d flag option)

triple
Plain Triple (see the -t flag option)

pair
Plain Pair (see the -p flag option)

hex
BinHex 4.0 (see the -b flag option)

bin
MacBinary (see the -m flag option)

- 0 output format
Specify the output-file format. Supported formats are listed
above. If an output-file format is not specified, the input file
is converted to AppleSingle format.

-s Create an AppleSingle-format output file. This fonnat is the
default. AppleSingle combines both the resource and data
forks into a single A/UX® file and is most useful when the
resource fork seldom or never changes or when a file has no

February, 1990
Revision C

1

fcnvt(1) fcnvt(1)

2

data fork. The use of AppleSingle format is very inefficient
when both the resource and data forks are frequently expand­
ed.

-d Create an AppleDouble-format output file. The AppleDouble
format is the same as AppleSingle format except that the data
fork is kept in a separate file. The resource file is prefixed
with a % character.

-t Convert the input file into Plain Triple file format. This for­
mat is used by the macget and macput public-domain
file-transfer programs. Three files are created with suffixes
attached to help tell them apart. The files output-file. inf 0,

output-file. data, and output-file. rsrc contain
identification information, the data fork, and the resource
fork, respectively.

-p Convert the input file into Plain Pair file format. This option
is the same as the -t option except that output-file. info is
not created.

-b Create a BinHex 4.0-format output file. The input-file is en­
coded into ASCII characters, permitting ASCII transfer of a
binary file.

-m Create a MacBinary-format output file. This format is com­
monly used when transferring files by using XMODEM,
XMODEM7, Kermit, and CompuServe A or B protocols.

-f Allow fcnvt to overwrite an existing file with the same
name as the new file. If you specify an output filename that
is the same as an existing filename without specifying the - f
flag option, fcnvt takes no action and returns an error mes­
sage.

AppleSingle is particularly nice for executable Macintosh® object
files. Directory listings look much cleaner because each Macin­
tosh file maps to a single NUX file with no % prefix.

If the initial transfer is made using a terminal emulator program,
the file created is likely to be in a text-only format, BinHex 4.0
format, or MacBinary format, if not just a copy of the resource
fork of the Macintosh file. In any of those cases, f cnvt can be
used to convert the file to either AppleSingle or AppleDouble for­
mat, assuming you know their starting format.

February, 1990
RevisionC

fcnvt(l) fcnvt(1)

Note that file transfers made using terminal emulators are likely to
strip away the Macintosh type and creator attributes for the file.
(Each of these attributes is one four-character string.) See
settc(l) to restore those attributes, once you know what they
are supposed to be.

FILES
/mac/bin/fcnvt

SEE ALSO
settc(I).

February, 1990
RevisionC

3

fgrep(l)

See grep(l)

1

fgrep(l)

February, 1990
RevisionC

I

\~

file(l) file(l)

NAME
f i 1 e - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
file performs a series of tests on each file named in its argu­
ments in an attempt to classify it If file appears to be ASCII,
file examines the first 512 bytes and tries to guess its language.
If a file is an executable a. out file, file will print the version
stamp, provided it is greater than 0 (see ld(l».

If the -f flag option is given, the next argument is taken to be a
file containing the names of the files to be examined.

f i 1 e uses the file / et c / mag i c to identify files that have some
sort of "magic number," that is, any file containing a numeric or
string constant that indicates its type. Commentary at the begin­
ning of / etc/magic explains its format.

The -m flag option instructs f i 1 e to use an alternate magic file.

The -c flag option causes file to check the magic file for format
errors. This validation is not normally carried out for reasons of
efficiency. No file typing is done under -c.

EXAMPLES
file text-file program-file directory

reports the file names and directory name, and whether the files
are English text, nroff input, a C program, or whatever.

FILES
/bin/file
/etc/magic

SEE ALSO
ld(l), magic(4).

February, 1990
Revision C

1

find(l) find(1)

NAME
find - find files

SYNOPSIS
find pathname-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each path­
name in the pathname-list (that is, one or more pathnames) seek­
ing files that match a boolean expression written in the primaries
given below. find does not follow symbolic links. In the
descriptions, the argument n is used as a decimal integer, where
+n means more than n, -n means less than n, and n means exactly
n.
-name file

-perm onum

True iffile matches the current filename. Nor­
mal shell argument syntax may be used if es­
caped (watch out for [, ?, and *).

True if the file pennission flags exactly match
the octal number onum (see chmod(I». If
onum is prefixed by a minus sign, more flag
bits (017777, see stat(2» become
significant and the flags are compared:

(flags & onum) == onum

-type c True if the type of the file is c, where c is b, c,
d, 1, p, or f for block special file, character
special file, directory, symbolic link, fifo
(named pipe), or plain file, respectively.

-1 ink s n True if the file has n links.

-user uname True if the file belongs to the user uname. If
uname is numeric and does not appear as a lo­
gin name in the / etc/passwd file, it is tak­
en as a user ID.

-group gname True if the file belongs to the group gname. If
gname is numeric and does not appear in the
Jete/group file, it is taken as a group ID.

- s i zen [c] True if the file is n blocks long (512 bytes per
block). If n is followed by a c, the size is in
characters.

1 February, 1990
Revision C

find(l)

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-print

-cpio device

-newer file

-depth

(expression)

find(l)

True if the file has been accessed in n days.
The access time of directories in pathname-
list is changed by find itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a zero value
as exit status. The end of cmd must be punc-
tuated by an escaped semicolon. A command
argument of the form {} is replaced by the
current pathname.

Like -exec, except that the generated com­
mand line is printed with a question mark first,
and is executed only if the user responds by
typing y.

Always true; causes the current pathname to
be printed.

Always true; write the current file on device in
cpio(4) format (512-byte records).

True if the current file has been modified more
recently than the argument file.

Always true; causes descent of the directory
hierarchy to be done so that all entries in a
directory are acted on before the directory it­
self. This can be useful when find is used
with cpio(l) to transfer files that are con­
tained in directories without write permission.

True if the parenthesized expression is true
(parentheses are special to the shell and must
be escaped).

The primaries may be combined using the following operators (in
order of decreasing precedence):

1. The negation of a primary (! is the unary NOT operator).

2. Concatenation of primaries (the AND operation is implied by
the juxtaposition of two primaries).

3. Alternation of primaries (-0 is the OR operator).

February, 1990
Revision C

2

find(l) find(l)

EXAMPLES
The command

find / -perm 755 -exec Is n{}n n;n

will find all files, starting with the root directory, on which the per­
mission levels have been set to 755 (see chmod(l)).

With -exec and a command such as Is, it is often necessary to
escape the { } that stores the current pathname under investigation
by putting it in double quotes. It is always necessary to escape the
semicolon at the end of an -exec sequence.

Note again that it is also necessary to escape parentheses used for
grouping primaries, by means of a backslash, as illustrated:
find \(-name a.out -0 -name '*.0' \) -exec rm {} \;

removes all files named a. out or * . o.

FILES
/bin/find
/etc/passwd
/etc/group

SEE ALSO

3

chmod(l), cpio(1), csh(1), ksh(1), sh(1), xargs(l), ff(1M),
stat(2), cpio(4), fs(4),
"Other Tools" inA/UX Programming Languages and Tools,
Volume 2.

February, 1990
Revision C

finger(l) finger(l)

NAME
finger - user information lookup program

SYNOPSIS
finger [-b] [-f] [-h] [-i] [-1] [-m] [-p] [-q] [-s] [-w]
[name •. .]

DESCRIPTION
By default, finger lists the login name, full name, terminal
name and write status (as a "*" before the terminal name if write
permission is denied), idle time, login time, and office location
and phone number (if they are known) for each current A/UX®
user. (Idle time is minutes if it is a single integer, hours and
minutes if a ":" is present, or days and hours if a d is present.)

A longer format also exists and is used by finger whenever a
list of people's names is given. Login names as well as actual
user names (that is, first, last, or middle names) are accepted. This
format is multiline and includes all the information described
above as well as the user's home directory and login shell, any
plan that the user has placed in the file . plan in his or her home
directory, the project on which he or she is working and has
placed in the file .project, in the home directory, and the
user's home phone number.

finger may be used to look up users on a remote machine. To
do so, specify name as user@host. If user is not supplied, a listing
in standard format is provided.

FLAG OPTIONS
finger flag options include:

-b In the short form, the option is the same as no option. In long
form, suppress the printing of the directory and login shell.

-f In the long form, same as no option. In short form, suppress
printing of column headings.

-h In the short form, same as no option. In long form, suppress
the printing of the project.

-i Always print the short form. This option matches name only
on login and suppresses the name and office column.

-1 Force the output to the long format.

-m Match arguments only on login name.

February, 1990 1
Revision C

finger(1) finger(l)

-p Suppress the printing of the . plan files.

-q Always print the short form. This option matches name only
on login.

-s Force short output fonnat.

-w In long form, same as no option. In short form, supress print-
ing the name field.

FILES
/usr/ucb/finger
/etc/utmp
/etc/passwd
/usr/adm/lastlog
-/.plan
-/.project

SEE ALSO
chfn(1), w(1), who(1),

BUGS

who file
for users names, offices, ...
last login times
plans
projects

whoami(1), passwd(4).

Only the first line of the .project file is printed and case is ig­
nored in the name argument.

2 February, 1990
RevisionC

fmt(l) fmt(l)

NAME
fmt - simple text formatter

SYNOPSIS
fmt [name ...]

DESCRIPTION
fmt is a simple text formatter which reads the concatenation of
input files (or standard input if none are given) and produces on
standard output a version of its input with lines as close to 72
characters long as possible. The spacing at the beginning of the
input lines is preserved in the output, as are blank lines and inter­
word spacing.

fmt is meant to format mail messages prior to sending, but may
also be useful for other simple tasks. For instance, within visual
mode of the ex editor (e.g. vi) the command

! }fmt
will reformat a paragraph, evening the lines.

FILES
/usr/ucb/fmt

SEE ALSO
nroff(I), mail(l), pr(1), troff(1), vi (1).

BUGS
The program was designed to be simple and fast; for more com­
plex operations, the standard text processors are likely to be more
appropriate.

February, 1990 1
Revision C

fold(l) fold(l)

NAME
fold - fold long lines for finite-width output device

SYNOPSIS
fold [-width] rJile ...]

DESCRIPTION
f old is a filter which will fold the contents of the specified files,
or the standard input if no files are specified, breaking the lines to
have maximum width width. The default for width is SO. width
should be a multiple of 8 if tabs are present, or the tabs should be
expanded using expand(l) before coming to fold.

FILES
/usr/ucb/fold

SEE ALSO
expand(l)

BUGS
If underlining is present it may be messed up by folding.

1 February, 1990
RevisionC

fpr(l) fpr(l)

NAME
fpr - filter the output of Fortran programs for line printing

SYNOPSIS
fpr

DESCRIPTION
fpr is a filter that transforms files formatted according to
Fortran's carriage control conventions into files formatted accord­
ing to UNIX line printer conventions.

fpr copies its input onto its output, replacing the carriage control
characters with characters that will produce the intended effects
when printed using Ipr(I). The first character of each line deter­
mines the vertical spacing as follows:

Character Vertical S~ace Before Printi'!K
Blank One line

0 Two lines
1 To first line of next page
+ No advance

A blank line is treated as if its first character is a blank. A
"blank" that appears as a carriage control character is deleted. A
"0" is changed to a newline. A "1" is changed to a form feed.
The effects of a "+" are simulated using backspaces.

EXAMPLES
a.out I fpr I Ipr

fpr < f77.output I Ipr

FILES
/usr/ucb/fpr

SEE ALSO
asa(I), f77(1).

BUGS
Results are undefined for input lines longer than 170 characters.

February, 1990
Revision C

1

freq(l) freq(l)

NAME
f req - report on character frequencies in a file

SYNOPSIS
freq [file ...]

DESCRIPTION
f req counts occurrences of characters in the list of files specified
on the command line. If no files are specified, the standard input
is read.

EXAMPLES
freq filea

will list a count of each character that appears in filea.

FILES
/bin/freq

1 February, 1990
RevisionC

from(l) from(l)

NAME
from - who is my mail from?

SYNOPSIS
from [-s sender] [user]

DESCRIPTION
f rom prints out the mail header lines in your mailbox file to show
you who your mail is from. If user is specified, then user's mail­
box is examined instead of your own. If the -s flag option is
given, then only headers for mail sent by sender are printed.

from works with mail and mailx.

FILES
/usr/ucb/from
/usr/bin/mailx
/usr/mail/*

SEE ALSO
biff(1), mail(l), mailx(1).

February, 1990
Revision C

1

fsplit(l) fsplit(l)

NAME
fsplit - split f77 or efl files

SYNOPSIS
fspli t [-e] [-f] [-s]jile ...

DESCRIPTION
fsplit splits the named files into separate files, with one pro­
cedure per file. A procedure includes blockdata, function,
main, program, and subroutine program segments. Pro­
cedure X is put in file X. f, X. r, or X. e depending on the
language flag option chosen, with the following exceptions:
main is put in the file MAIN. [efr] and unnamed blockdata
segments in the files blockdataN. [efr] where N is a unique
integer value for each file.

The following flag options are available:

-e Input files are EFL.

-f (default) Input files are F77.

-s Strip f77 input lines to 72 or fewer characters with trailing
blanks removed.

FILES
/bin/fsplit

SEE ALSO
csplit(1), efl(1), f77(1), split(l).

1 February, 1990
Revision C

fstyp(l) fstyp(l)

NAME
f s t yp - report file-system type

SYNOPSIS
fstypfile

DESCRIPTION
f s t yp reports the type of the file system on which file resides. If
file is a device file, fstyp attempts to read a file-system super­
block from the device. The file system must be one of the sup­
ported types listed in f stypes(4).

DIAGNOSTICS
If successful, f s t yp prints to the standard output a message that
indicates the file-system type.

FILES
/etc/fstyp
/etc/fs/*/fstyp

SEE ALSO
statfs(2), fstyp(3), fs(4), fstypes(4).

February, 1990
RevisionC

1

ftp(IN) ftp(IN)

NAME
ft P - ARPANET file transfer program

SYNOPSIS
ftp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION

1

ftp is the user interface to the ARPANET standard File Transfer
Protocol. The program allows a user to transfer files to and from a
remote network site.

The client host with which ftp is to communicate may be
specified on the command line. If this is done, ftp will immedi­
ately attempt to establish a connection to an FfP server on that
host; otherwise, ftp will enter its command interpreter and await
instructions from the user. When ftp is awaiting commands
from the user, the prompt ftp> is provided to the user. The fol­
lowing commands are recognized by ftp:

[command [args]]
Invoke an interactive shell on the local machine. If there are
arguments, the first is taken to be a command to execute
directly, with the rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the
macdef command. Arguments are passed to the macro
unglobbed.

account [passwd]
Supply a supplemental password required by a remote system
for access to resources once a login has been completed suc­
cessfully. If no argument is included, the user will be
prompted for an account password in a nonechoing input
mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If
remote-file is left unspecified, the local filename is used in
naming the remote file, after being altered by any ntrans or
nma p setting. File transfer uses the current settings for
type, form (format), mode, and struct (structure).

ascii
Set the file transfer type to network ASCII. This is the de­
fault type.

February, 1990
Revision C

ftp(1N) ftp(1N)

bell
Arrange that a bell be sounded after each file transfer com­
mand is completed.

binary

bye

Set the file transfer type to support binary image transfer.

Terminate the FfP session with the remote server and exit
ftp. An end-of-file will also terminate the session and exit.

case
Toggle remote computer filename case mapping during
mget commands. When case is on (default is oft), remote
computer filenames with all letters in upper case are written
in the local directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to
remote-directory .

cdup
Change the remote machine working directory to the parent
of the current remote machine working directory.

close
Terminate the FfP session with the remote server, and return
to the command interpreter. Any defined macros are erased.

cr Toggle carriage return stripping during ASCII-type file re­
trieval. Records are denoted by a carriage return-linefeed se­
quence during ASCII-type file transfer. When cr is on (the
default), carriage returns are stripped from this sequence to
conform with the UNIX single-linefeed record delimiter.
Records on non-UNIX remote systems may contain single
linefeeds; when an ASCII -type transfer is made, these
linefeeds may be distinguished from a record delimiter only
when c r is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is
specified, it is used to set the debugging level. When debug­
ging is on, ftp prints each command sent to the remote
machine, preceded by the string - - >.

February, 1990 2
Revision C

ftp(lN) ftp(lN)

3

di r [remote-directory] [local-file]
Print a listing of the directory contents in the directory,
remote-directory, and, optionally, placing the output in
local-file. If no directory is specified, the current working
directory on the remote machine is used. If no local file is
specified, or local-file is -, output comes to the terminal.

disconnect
A synonym for close.

formformat
Set the file transfer form to format. The default format is
file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If
the local filename is not specified, it is given the same name
it has on the remote machine, subject to alteration by the
current case, ntrans, and nmap settings. The current set­
tings for type, form, mode, and struct (structure) are
used while transferring the file.

glob
Toggle filename expansion for mdelete, mget, and mput.
If globbing is turned off with glob, the filename arguments
are taken literally and not expanded. Globbing for mput is
done as in csh(l). For mdelete and mget, each remote
filename is expanded separately on the remote machine and
the lists are not merged. Expansion of a directory name is
likely to be different from expansion of the name of an ordi­
nary file: the exact result depends on the foreign operating
system and ftp server, and can be previewed by issuing:

hash

ml s remote-files -

Note: mget and mput are not meant to transfer en­
tire directory subtrees of files. That can be done by
transferring a tar(l) archive of the subtree (in binary
mode).

Toggle hash-sign (#) printing for each data block transferred.
The size of a data block is 1024 bytes.

help [command]
Print an informative message about the meaning of com-

February, 1990
Revision C

ftp(IN) ftp(IN)

mand. If no argument is given, f t P prints a list of the
known commands.

lcd [directory]
Change the working directory on the local machine. If no
directory is specified, the user's home directory is used.

ls [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on
the remote machine. If remote-directory is left unspecified,
the current working directory is used. If no local file is
specified, or if local-file is -, the output is sent to the termi­
nal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro
macro-name; a null line (consecutive newline characters in a
file or carriage returns from the terminal) terminates macro
input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until
a close command is executed. The macro processor inter­
prets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argu­
ment on the macro invocation command line. A $ followed
by an i signals that macro processor that the executing mac­
ro is to be looped. On the first pass, $ i is replaced by the
first argument on the macro invocation command line, on the
second pass, it is replaced by the second argument, and so on.
A \ followed by any character is replaced by that character.
Use the \ to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdi r remote-files local-file
Like dir, except multiple remote files may be specified. If
interactive prompting is on, ftp will prompt the user to veri­
fy that the last argument is indeed the target local file for re­
ceiving mdi r output.

mget remote-files
Expand the remote-files on the remote machine and do a get
for each filename thus produced. See glob for details on the
filename expansion. Resulting filenames will then be pro­
cessed according to case, ntrans, and nmap settings.
Files are transferred into the local working directory, which

February, 1990
Revision C

4

ftp(IN) ftp(1N)

5

can be changed with the command

1 cd directory

and new local directories can be created with

! mkdi r directory

mkdi r directory-name
Make a directory on the remote machine.

ml s remote-files local-file
Like Is, except multiple remote files may be specified. If in­
teractive prompting is on, ftp will prompt the user to verify
that the last argument is indeed the target local file for receiv­
ing ml s output.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is
"stream" mode.

mput local-files
Expand wild cards in the list of local files given as arguments
and do a put for each file in the resulting list. See glob for
details of filename expansion. Resulting filenames will then
be processed according to ntrans and nmap settings.

nmap [inpattern out pattern]
Set or unset the filename mapping mechanism. If no argu­
ments are specified, the filename mapping mechanism is un­
set. If arguments are specified, remote filenames are mapped
during mpu t commands and put commands issued without
a specified remote target filename. If arguments are
specified, local filenames are mapped during mget com­
mands and get commands issued without a specified local
target filename. This command is useful when connecting to
a non-UNIX remote computer with different file naming con­
ventions or practices. The mapping follows the pattern set by
in pattern and outpattern. inpattern is a template for incom­
ing filenames (which may have already been processed ac­
cording to the ntrans and case settings). Variable tem­
plating is accomplished by including the sequences
$1, $2, ... ,$ 9 in inpattern. Use \ to prevent this special
treatment of the $ character. All other characters are treated
literally, and are used to determine the nmap inpattern vari­
able values. For example, given inpattern $1 . $ 2 and the re­
mote filename mydata. data, $1 would have the value

February, 1990
Revision C

ftp(lN) ftp(lN)

mydata, and $2 would have the value data. The outpat­
tern detennines the resulting mapped filename. The se­
quences $1, $2, ... ,$9 are replaced by any value resulting
from the inpattern template. The sequence $ 0 is replaced by
the original filename. Additionally, the sequence [seq] ,seq2]
is replaced by seq] if seq] is not a null string; otherwise, it is
replaced by seq2. For example, the command:

nmap $1.$2.$3 [$1,$2]. [$2,file]

would yield the output filename myfile. data for input
filenames myfile. data and myfile. data. old,
myfile. file for the input filename myfile, and
myfile. myfile for the input filename. myfile. Spaces
may be included in outpattern, as in the example:

nmap $1 I sed "s/ *$//" > $1

Use the \ character to prevent special treatment of the $, [,
] , and , characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If
no arguments are specified, the filename character translation
mechanism is unset. If arguments are specified, characters in
remote filenames are translated during mpu t commands and
pu t commands issued without a specified remote target
filename. If arguments are specified, characters in local
filenames are translated during mget commands and get
commands issued without a specified local target filename.
This command is useful when connecting to a non-UNIX re­
mote computer with different file naming conventions or
practices. Characters in a filename matching a character in
inchars are replaced with the corresponding character in
outchars. If the character's position in inchars is longer than
the length of outchars, the character is deleted from the
filename.

open host [port]
Establish a connection to the specified host FfP server. An
optional port number may be supplied, in which case, ftp
will attempt to contact an FfP server at that port. If the auto­
login option is on (default), ftp will also attempt automati­
cally to log the user in to the FfP server (see below).

February,1990 6
Revision C

ftp(1N) ftp(1N)

7

prompt
Toggle interactive prompting. Interactive prompting occurs
during multiple file transfers to allow the user selectively to
retrieve or store files. If prompting is turned off (default is
on), any mget or mput will transfer all files, and any
mdelete will delete all files.

proxy ftp-command
Execute an ftp command on a secondary control connection.
This command allows simultaneous connection to two re­
mote ftp servers for transferring files between the two
servers. The first proxy command should be an open, to
establish the secondary control connection. Enter the com­
mand proxy ? to see other ftp commands executable on the
secondary connection. The following commands behave dif­
ferently when prefaced by proxy: open will not define
new macros during the autologin process, close will not
erase existing macro definitions, get and mget transfer files
from the host on the primary control connection to the host
on the secondary control connection, and put, mpu t, and
append transfer files from the host on the secondary control
connection to the host on the primary control connection.
Third party file transfers depend upon support of the ftp pro­
tocol P ASV command by the server on the secondary control
connection.

put local-file [remote-file]

pwd

Store a local file on the remote machine. If remote-file is left
unspecified, the local filename is used, after processing ac­
cording to any ntrans or nmap settings in naming the re­
mote file. File transfer uses the current settings for type,
form (format), mode, and struct (structure).

Print the name of the current working directory on the remote
machine.

quit
A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote
FTPserver.

recv remote-file [local-file]
A synonym for get.

February, 1990
Revision C

ftp(IN} ftp(IN}

remotehelp [command-name]
Request help from the remote FfP server. If a command­
name is specified, it is supplied to the server as well.

rename [from] [to]
Rename the filefrom on the remote machine, to the file to.

reset
Clear reply queue. This command resynchronizes
command/reply sequencing with the remote ftp server.
Resynchronization may be neccesary following a violation of
the ftpprotocol by the remote server.

rmdi r directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique
filenames. If a file already exists with a name equal to the
target local filename for a get or mget command, a .1 is
appended to the name. If the resulting name matches another
existing file, a . 2 is appended to the original name. If this
process continues up to . 99, an error message is printed, and
the transfer does not take place. The generated unique
filename will be reported. Note that runique will not af­
fect local files generated from a shell command (see below).
The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will at­
tempt to use a PORT command when establishing a connec­
tion for each data transfer. The use of PORT commands can
prevent delays when performing multiple file transfers. If the
PORT command fails, ftp will use the default data port.
When the use of PORT commands is disabled, no attempt
will be made to use PORT commands for each data transfer.
This is useful for certain FfP implementations which do ig­
nore PORT commands but, incorrectly, indicate they've been
accepted.

status
Show the current status of ftp.

February, 1990
Revision C

8

ftp(lN) ftp(lN)

9

struct [struct-name]
Set the file transfer structure to struct-name. By default,
"stream" structure is used.

sunique
Toggle storing of files on remote machine under unique
filenames. Remote ftp server must support ftp protocol
STOU command for successful completion. The remote
server will report unique name. Default value is off.

tenex
Set the file transfer type to that needed to talk to 1ENEX
machines.

trace
Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is
specified, the current type is printed. The default type is net­
work ASCII.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is
not specified, and the server requires it, ftp will prompt the
user for it (after disabling local echo). If an account field is
not specified, and the FfP server requires it, the user will be
prompted for it. If an account field is specified, an account
command will be relayed to the remote server after the login
sequence is completed if the remote server did not require it
for logging in. Unless ftp is invoked with "autologin" dis­
abled, this process is done automatically on initial connection
to the FTP server.

verbose
Toggle verbose mode. In verbose mode, all responses from
the FfP server are displayed to the user. In addition, if ver­
bose is on, when a file transfer completes, statistics regarding
the efficiency of the transfer are reported. By default, ver­
bose is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quot­
ed with quote (n) marks.

February, 1990
RevisionC

ftp(1N) ftp(IN)

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually
CONTROL-C). Sending transfers will be halted immediately. Re­
ceiving transfers will be halted by sending an ftp protocol ABOR
command to the remote server, and discarding any further data re­
ceived. The speed at which this is accomplished depends upon the
remote server's support for ABOR processing. If the remote
server does not support the ABOR command, an ftp> prompt
will not appear until the remote server has completed sending the
requested file.

The terminal interrupt key sequence will be ignored when ftp
has completed any local processing and is awaiting a reply from
the remote server. A long delay in this mode may result from the
ABOR processing described above, or from unexpected behavior
by the remote server, including violations of the ftp protocol. If
the delay results from unexpected remote server behavior, the lo­
cal ftp program must be killed by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed ac­
cording to the following rules:

I) If the filename - is specified, the standard input (for reading)
or standard output (for writing) is used.

2) If the first character of the filename is I, the remainder of the
argument is interpreted as a shell command. ftp then forks
a shell, using popen(3) with the argument supplied, and
reads (writes) from the stdout (stdin). If the shell command
includes spaces, the argument must be quoted; for example,

"I ls -It''

A particularly useful example of this mechanism is:

dir . I more

3) Failing the above checks, if "globbing" is enabled, local
filenames are expanded according to the rules used in the
csh(I); compare the glob command. If the ftp command
expects a single local file (for example, put), only the first
filename generated by the "globbing" operation is used.

4) For mget commands and get commands with unspecified
local filenames, the local filename is the remote filename,
which may be altered by a case, ntrans, or nmap setting.

February, 1990
RevisionC

10

ftp(1N) ftp(1N)

The resulting filename may then be altered if runique is
on.

5) For mput commands and put commands with unspecified
remote filenames, the remote filename is the local filename,
which may be altered by a ntrans or nmap setting. The
resulting filename may then be altered by the remote server if
sunique is on.

FILE TRANSFER PARAMETERS
The FfP specification specifies many parameters which may af­
fect a file transfer. The type may be one of ascii, image
(binary), ebcdic, and local byte size (for PDP-lO's and
PDP-20's, mostly). ftp supports the ascii and image types of
file transfer, plus local byte size 8 for tenex mode transfers.

ftp supports only the default values for the remaining file
transfer parameters: mode, form, and struct.

FLAG OPTIONS
Flag options may be specified at the command line, or to the com­
mand interpreter.

The -v (verbose on) flag option forces ftp to show all responses
from the remote server, as well as report on data transfer statistics.

The -n flag option restrains ftp from attempting "autologin"
upon initial connection. If autologin is enabled, ftp will check
the . netrc (see below) file in the user's home directory for an
entry describing an account on the remote machine. If no entry
exists, f t P will prompt for the remote machine login name (de­
fault is the user identity on the local machine), and, if necessary,
prompt for a password and an account with which to login.

The -i flag option turns off interactive prompting during multiple
file transfers.

The -d flag option enables debugging.

The -g flag option disables filename globbing.

THE . netrc FILE

11

The . net rc file contains login and initialization infonnation
used by the autologin process. It resides in the user's home direc­
tory. The following tokens are recognized; they may be separated
by spaces, tabs, or newlines:

machine name
Identify a remote machine name. The autologin process

February, 1990
RevisionC

ftp(lN) ftp(lN)

searches the . net rc file for a machine token that matches
the remote machine specified on the ftp command line or as
an open command argument. Once a match is made, the
subsequent . net rc tokens are processed, stopping when the
end-of-file is reached or another machine token is encoun­
tered.

login name
Identify a user on the remote machine. If this token is
present, the auto login process will initiate a login using the
specified name.

password string
Supply a password. If this token is present, the autologin
process will supply the specified string if the remote server
requires a password as part of the login process. Note that if
this token is present in the . netrc file, ftp will abort the
autologin process if the . netrc is readable by anyone be­
sides the user.

account string
Supply an additional account password. If this token is
present, the autologin process will supply the specified string
if the remote server requires an additional account password,
or the autologin process will initiate an acct command, if it
does not.

macdef name
Define a macro. This token functions like the ftp macdef
command functions. A macro is defined with the specified
name; its contents begin with the next. net rc line and con­
tinue until a null line (consecutive newline characters) is en­
countered. If a macro named ini t is defined, it is automati­
cally executed as the last step in the autologin process.

EXAMPLES
The first example illustrates a simple ftp connection and file
transfer from a remote machine to the local machine. (Long out­
put lines have been folded for the sake of readability.)

[2] % ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.

February, 1990
Revision C

12

ftp(IN) ftp(IN)

13

Password:
230 User tim logged in.
ftp> get tmac.an
200 PORT command successful.
150 Opening data connection for tmac.an

(89.0.0.33,1205) (13366 bytes).
226 Transfer complete.
local: tmac.an remote: tmac.an
13922 bytes received in 0.69 seconds (20 Kbytes/s)
ftp> quit
221 Goodbye.
[3]%

The second example illustrates an ftp connection and a file
transfer from the local machine to the remote.
[4]% ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.
Password:
230 User tim logged in.
ftp> put tmac.an
200 PORT command successful.
150 Opening data connection for tmac.an

(89.0.0.33,1209) .
226 Transfer complete.
local: tmac.an remote: tmac.an
13922 bytes sent in 0.83 seconds (16 Kbytes/s)
ftp> quit
221 Goodbye.
[5]%

The third example illustrates moving around in the remote file sys­
tem and listing the contents of several directories.
[8]% ftp printms
Connected to printms.
220 printms FTP server (Version 4.109 Fri Nov 20

07:43:57 PST 1987) ready.
Name (printms:tim):
331 Password required for tim.
Password:
230 User tim logged in.
ftp> Is
200 PORT command successful.

February, 1990
RevisionC

ftp(1N) ftp(IN)

150 Opening data connection for /bin/ls
(89 . 0 . 0 . 33, 1212) (0 byt e s) .

OUT
cutmks
tmac.ap
tmac.ptx
tmac.syn
tmac.toc
226 Transfer complete.
76 bytes received in 1.2 seconds (0.13 Kbytes/s)
ftp> cd OUT
250 CWD command successful.
ftp> Is
200 PORT command successful.
150 Opening data connection for /bin/ls

(89.0.0.33,1213) (0 bytes).
junk
226 Transfer complete.
4 bytes received in 0.058 seconds (3.9 Kbytes/s)
ftp> close
221 Goodbye.
ftp> quit

FILES
/usr/spool/ftp

SEE ALSO
cu(lC), tip(IC).
"Using B-NET" in AIUX Communications User's Guide.

BUGS
Correct execution of many commands depends upon proper
behavior by the remote server.

An error in the treatment of returns in the 4.2 BSD UNIX ASCII­
mode transfer code has been corrected. This correction may result
in incorrect transfers of binary files to and from 4.2 BSD servers
using the ascii type. You may avoid this problem by using the
image (binary) type.

When the verbose mode (-v flag option) is turned off, ftp does
not echo responses from the remote server. This includes the
response to the request pwd. Beware of this.

February, 1990
Revision C

14

get(l) get(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-aseq-no] [-b] [-ccutoff] [-e] [-g] [-ilist] [-k] [-l[p]]
[-m] [-n] [-p] [-rSID] [-3] [-t] [-wstring] [-xlist]file ...

DESCRIPTION
get generates an ASeII text file from each named sees file ac­
cording to the specifications given by keyletter arguments that be­
gin with -. The arguments may be specified in any order, but all
keyletter arguments apply to all named sees files. If a directory
is named, get behaves as though each file in the directory is
specified as a named file, except that non-SeeS files (last com­
ponent of the pathname does not begin with 3.) and unreadable
files are silently ignored. If a name of - is given, the standard in­
put is read; each line of the standard input is taken to be the name
of an sees file to be processed. Again, non-SeeS files and un­
readable files are silently ignored.

The generated text is normally written into a file called the g-file,
the name of which is derived from the sees filename simply by
removing the leading 3. (see also NOTES, later in this section).

Each of the keyletter arguments is explained in the following as
though only one sees file is to be processed, but the effects of
any keyletter argument apply independently to each named file.

-rSID The sees Identification string (SID) of the version
(delta) of an sees file to be retrieved. The table that
follows these descriptions shows, for the most useful
cases, what version of an sees file is retrieved (as
well as the SID of the version to be eventually created
by del ta(l) if the -e key letter is also used) as a
function of the SID specified.

-ccutoff The cutoff date-time, in the form: IT[MM[DD[
HH[MM[SS]]]]] No changes (deltas) to the sees file
which were created after the specified cutoff date-time
are included in the generated ASeII text file. Units
omitted from the date-time default to their maximum
possible values; that is, -c 7502 is equivalent to
-c750228235959. Any number of non-numeric
characters may separate the various 2-digit pieces of
the cutoff date-time. This feature allows one to specify
a cutoff date in the form: -c77/2/2 9: 22: 25.

1 February, 1990
RevisionC

get(1) get(1)

Note that this implies that one may use the %E% and
%U% identification keywords (see later) for a nested
get within, for example, the input to a send(2N)
command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or
making a change (delta) to the sees file via a subse­
quent use of del ta(1). The -e keyletter used in a
get for a particular version (SID) of the sees file
prevents a further get from editing on the same SID
until delta is executed or the j (joint edit) flag is set
in the sees file (see admin(1)). Concurrent use of
get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is
accidentally ruined in the process of editing it, it may
be regenerated by re-executing the get command with
the -k keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor,
and authorized user list stored in the sees file (see
admin(I)) are enforced when the -e keyletter is used.

-b Used with the -e keyletter to indicate that the new del­
ta should have an SID in a new branch as shown in
Table 1. This key letter is ignored if the b flag is not
present in the file (see admin(l)) or if the retrieved
delta is not a leaf delta. (A leaf delta is one that has no
successors on the sees file tree.)

-ilist

February, 1990
Revision C

Note: A branch delta may always be created
from a nonleaf delta.

A list of deltas to be included (forced to be applied) in
the creation of the generated file. The list has the fol­
lowing syntax:

<list> :: = <range> I <list> , <range>
<range> :: = SID I SID-SID

SID, the sees Identification of a delta, may be in any
form shown in the "SID Specified" column; partial
SIDs are interpreted as shown in the "SID Retrieved"
column of Table 1.

2

get (1) get (1)

-xlist A list of deltas to be excluded (forced not to be ap­
plied) in the creation of the generated file. See the - i
key letter for the list format.

- k Suppresses replacement of identification keywords
(described below) in the retrieved text by their value.
The - k key letter is implied by the -e keyletter.

-l[p] Causes a delta summary to be written into an [-file. If
-lp is used, then an I-file is not created; the delta sum-
mary is written on the standard output instead. See
NOTES for the format of the l-file.

-p Causes the text retrieved from the SCCS file to be writ­
ten on the standard output. No g-file is created. All
output which normally goes to the standard output
goes to file descriptor 2 instead, unless the -5 keyletter
is used, in which case it disappears.

-5 Suppresses all output normally written on the standard
output. However, fatal error messages (which always
go to file descriptor 2) remain unaffected.

-m Causes each text line retrieved from the SCCS file to
be preceded by the SID of the delta that inserted the
text line in the SCCS file. The format is: SID, fol­
lowed by a horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the
%M% identification keyword value (described later) The
format is: %M% value, followed by a horizontal tab,
followed by the text line. When both the -m and -n
key letters are used, the format is: %M% value, followed
by a horizontal tab, followed by the -m key letter gen­
erated format.

-g Suppresses the actual retrieval of text from the SCCS
file. It is primarily used to generate an l-file, or to veri­
fy the existence of a particular SID.

-t Used to access the most recently created (top) delta in
a given release (for example, -rl), or release and lev­
el (for example, -rl . 2).

-wstring Substitute string for all occurrences of %w% when run­
ning get on the file.

3 February, 1990
Revision C

get(l) get(l)

-aseq-no The delta sequence number of the SCCS file delta (ver­
sion) to· be retrieved (see sccsfile(4)). This
keyletter is used by the comb(1) command; it is not a
generally useful key letter, and users should not use it.
If both the -r and -a key letters are specified, the -a
key letter is used Care should be taken when using the
-a keyletter in conjunction with the -e keyletter, as
the SID of the delta to be created may not be what one
expects. The -r key letter can be used with the -a and
-e keyletters to control the naming of the SID of the
delta to be created.

For each file processed, get responds (on the standard output)
with the SID being accessed and with the number of lines re­
trieved from the SCCS file.

If the -e key letter is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated.
If there is more than one named file or if a directory or standard
input is named, each filename is printed (preceded by a newline)
before it is processed. If the -i keyletter is used included deltas
are listed following the notation Included; if the -x keyletter is
used, excluded deltas are listed following the notation Exclud­
ed.

February, 1990
Revision C

4

get{l) get{l)

Determination of SCCS Identification String

SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

nonet no R defaults to mR mR.mL mR.(mL+l)
nonet yes R defaults to mR mR.mL mR.mL.(mB+l).1

R no R>mR mR.mL R.l***
R no R=mR mR.mL mR.(mL+l)
R yes R>mR mR.mL mR.mL.(mB+l).1
R yes R=mR mR.mL mR.mL.(mB+l).1

R

R

R.L
R.L

R.L

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

5

*

**

t

R<mRand
hR.mL** hR.mL.(mB+l).1

R does not exist
Trunk succ.#
in release> R R.mL R.mL.(mB+ 1).1
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB+l).1

Trunk succ.
R.L R.L.(mB+l).I

in release ~ R

no No branch succ. R.L.B.mS R.L.B.(mS+l)
yes No branch succ. R.L.B.mS R.L.(mB+l).1
no No branch succ. R.L.B.S R.L.B.(S+ 1)
yes No branch succ. R.L.B.S R.L.(mB+l).I

Branch succ. R.L.B.S R.L.(mB+l).I

R. L. B. and S are the release. level. branch. and se­
quence components of the SID. respectively; 'm' means
maximum. Thus. for example. R.mL means the max­
imum level number within release R; "R.L.(mB+ 1).1"
means the first sequence number on the new branch (i.e .•
maximum branch number plus one) of level L within
release R. Note that if the SID specified is of the form
R.L. R.L.B. or R.L.B.S. each of the specified com­
ponents must exist.
"hR" is the highest existing release that is lower than
the specified. nonexistent. release R.
This is used to force creation of the first delta in a new
release.
Successor.
The -b key letter is effective only if the b flag (see ad­
min(1» is present in the file. An entry of - means ir-

February. 1990
Revision C

get(1) get(l)

relevant.
:{: This case applies if the d (default SID) flag is not

present in the file. If the d flag is present in the file, then
the SID obtained from the d flag is interpreted as if it
had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying infonnation is inserted into the text retrieved from the
SCCS file by replacing identification keywords with their value
wherever they occur. The following keywords may be used in the
text stored in an SCCS file:

Keyword Value
%M% Module name: either the value of the m flag in the file

(see admin(l)), or if absent, the name of the SCCS file
with the leading s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of
the retrieved text

%R% Release.
%L% Level.
%B% Branch.
% S % Sequence.
%D% Current date (YfIMMIDD).
%H% Current date (MMIDDIYY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (YYIMMIDD).
%G% Date newest applied delta was created (MMIDDIYY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the SCCS file (see

admin(l».
%F% SCCS filename.
% P % Fully qualified SCCS filename.
%Q% The value of the q flag in the file (see admin(l»).
%C% Current line number. This keyword is intended for

identifying messages output by the program such as
this should not have happened type errors.
It is not intended to be used on every line to provide se­
quence numbers.

%Z% The 4-character string @ (=IF) recognizable by what(l).
%W% A shorthand notation for constructing what(1) strings

for NUX system program files.
%W%=%Z%%M%<horizontal-tab>%1%

February, 1990
Revision C

6

get(l) get(l)

%A% Another shorthand notation for constructing what(l)
strings for non-A/UX system program files.
%A% = %Z%%Y% %M% %I%%Z%

EXAMPLES
get -e s.fi1el

generates from the sees format file, s. fi1el, the text file,
fi1el, for editing.

NOTES

7

Several auxiliary files may be created by get. These files are
known generically as the g-file, I-file, p-file, and z-file. The letter
before the hyphen is called the tag. An auxiliary filename is
formed from the sees filename: the last component of all sees
filenames must be of the form s. module-name, and the auxiliary
files are named by replacing the leading s with the tag. The g-file
is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s. xyz. c, the auxiliary filenames
would be xyz. c, 1. xyz. c, p. xyz. c, and z. xyz. c, respec­
tively.

The g-file, which contains the generated text, is created in the
current directory (unless the -p keyletter is used). A g-file is
created in all cases, whether or not any lines of text were generat­
ed by the get. It is owned by the real user. If the -k key letter is
used or implied its mode is 644; otherwise, its mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in
generating the retrieved text. The I-file is created in the current
directory if the -1 key letter is used; its mode is 444 and it is
owned by the real user. Only the real user need have write per­
mission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not ap­
plied and ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a special reason why the delta was or
was not applied:
I: Included.

February, 1990
RevisionC

get(l) get(l)

X:
c:

d. Blank.

Excluded.
eut off (by a -c key letter).

e. sees identification (SID).
f. TAB character.
g. Date and time (in the form YfIMMIDD HH:MM:SS) of

creation.
h. Blank.
i. Login name of person who created del tao

The comments and MR data follow on subsequent lines, in­
dented one horizontal tab character. A blank line terminates
each entry.

The p-file is used to pass information resulting from a get with an
-e keyletter along to del tao Its contents are also used to prevent
a subsequent execution of get with an -e keyletter for the same
SID until delta is executed or the joint edit flag, j, (see ad­
min(l» is set in the sees file. The p-file is created in the direc­
tory containing the sees file and the effective user must have
write permission in that directory. Its mode is 644 and it is owned
by the effective user. The format of the p-file is: the acquired
SID, followed by a blank, followed by the SID that the new delta
will have when it is made, followed by a blank, followed by the
login name of the real user, followed by a blank, followed by the
date-time the get was executed, followed by a blank and the-i
key letter argument if it was present, followed by a blank and the
-x keyletter argument if it was present, followed by a newline.
There can be an arbitrary number of lines in the p-file at any time;
no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the
command (that is, get) that created it The z-file is created in the
directory containing the sees file for the duration of get. The
same protection restrictions as those for the p-file apply for the z­
file. The z-file is created mode 444.

FILES
/usr/bin/get

SEE ALSO
admin(l), cdc(1), comb(1), del ta(l), help(1), prs(1),
rmdel(l), sact(1), sccs(1), sccsdiff(1), unget(1),
val(1), what(1), sccsfile(4).

February, 1990
Revision C

8

get(l) get(l)

"sees Reference" in A/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

BUGS

9

If the effective user has write permission (either explicitly or im­
plicitly) in the directory containing the sees files, but the real
user does not, then only one file may be named when the -e
keyletter is used.

February, 1990
Revision C

getopt(1) getopt(1)

NAME
get opt - parse command options

SYNOPSIS
getopt [flag-letter[: n ... [input-string]

DESCRIPTION
getopt returns input-string with additional separators to help
distinguish any flag options, any arguments associated with the
flag options, and any arguments not associated with the flag op­
tions. By replacing input-string with the command arguments $ *
for a script, getopt helps shell scripts to parse their command­
line arguments by making a regularized copy of them as well as
checking them for legal options. The regularization that getopt
can perform for each flag option is twofold or threefold:

1. Each flag option on the command line is returned separated
with white space.

2. Each flag option on the command line is returned with a lead­
ing hyphen.

3. Optionally, the argument associated with a given flag is re-
turned with white space.

Each flag-letter helps control how input-string is manipulated to
detect flags and flag arguments. If a flag-letter is followed by a :
(colon), getopt expects to find a flag-specific argument follow­
ing that flag in the input-string. For example,

getopt a: $*

requires that -a always be followed by its own argument (either
with or without a space separator), as in the following:

yourcornmand -a param .. .
yourcornmand -aparam .. .

The special option -- can be used within input-string to request
that only a portion of input-string actually be processed for the
presence of flags. Any text following -- is not processed. If it is
not supplied explicitly, getopt still generates the symbol in its
output to help separate any flags and flag arguments found from
any nonflag arguments that might remain in input-string.

For example,

getopt abo: $*

returns

February, 1990
Revision C

1

getopt(l) getopt(l)

2

-a -0 param -- xxxx yyyy zzzz

when you place the getopt command line (shown above) in a
command script invoked with

yourcommand -aoparam xxxx yyyy zzzz

Even though a hyphen was not specified in front of each flag op­
tion in this example, the output of getopt includes hyphens in
front of both a and o.

To reset the shell's positional parameters ($1 $2 ...) so that they
are regularized by getopt and so that each discrete flag and flag
argument is stored as a unique positional parameter, specify the
output of getopt as the argument for set by using command
substitution:

set -- 'getopt abo: $*'

Quoted Arguments
getopt correctly parses quoted arguments within input-string.
However, if the input string you wish to parse with getopt is
specified as $ * in order to request the parsing of command-line
arguments, any quotes that may be present in the command line
are automatically stripped by the shell. In such cases you need to
use a reference to the un stripped version of the command-line ar­
guments, $ @. For example

getopt a:b: n$@n

correctly returns

-a 'hello world' -b oneword --

when the getopt command line (shown above) is in a script in­
voked with

yourcommand -a'hello world' -b oneword

The challenge then becomes resetting the shell's positional param­
eters so that 'hello world' is interpreted as one positional ar­
gument rather than two positional arguments (' hello as one ar­
gument and world' as another). To do so, use eval to invoke
the set function, as in the following:

eval set -- 'getopt abo: n$@n,

To preserve the opportunity to process the exit status of getopt,
the eval command line cannot be used as shown preceding.
(The exit status from get opt is lost when eval is used to evalu-

February, 1990
RevisionC

getopt(l) getopt(l)

ate a command string.)

The only recourse is to defer the resetting of positional arguments
until after the exit status stored in the $? variable can be tested:

x='getopt abo: "$@"'
if [$? ! = 0]
then

fi

echo $USAGE
exit 2

eval set -- $x

A nonzero exit value conventionally indicates that processing was
terminated abnormally. So in the example preceding, the value of
the exit status variable is used to detect whether or not the string
processing performed by getopt succeeded: which in turn
depends on whether or not getopt recognized and regularized
the input string in terms of the control arguments supplied.

EXAMPLES
The following code fragment shows how one might process the
arguments for a command that can take the options a or b, as well
as the option 0, which requires an argument.

x='getopt abo: "$@"'
if [$? != 0]
then

fi

echo $USAGE
exit 2

eval set -- $x
for i in n$@n
do

done

case $i in
-a I -b)
-0)
--)

esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break; ;

If this code is placed in a script called cmd, then any of the fol­
lowing invocations are accepted as equivalent:

cmd -aoarg filel file2
cmd -a -oarg filel file2

February, 1990
Revision C

3

getopt(l) getopt(l)

cmd -0 arg -a filel file2
cmd -a -oarg -- filel file2

The script also interprets any imbedded blanks in arguments
correctly, as long as the arguments are quoted as in the following:

cmd -aoarg "file one" "file two"
cmd -a -0 "an arg" "file two" "file two"
cmd -0 "an arg" -a "file one" "file two"
cmd -a -o"an arg" -- "file two" "file two"

FILES
/bin/getopt

SEE ALSO
csh(I), ksh(I), sh(I), getopt(3C).

DIAGNOSTICS
get opt prints an error message on the standard error when it en­
counters an option letter not included as aflag-letter.

4 February, 1990
Revision C

grap(1) grap(l)

NAME
grap - pic preprocessor for drawing graphs

SYNOPSIS
grap [-Ttty-type] [-1] [-] [file ...]

DESCRIPTION
grap is a language for typesetting graphs. It is also the name of a
preprocessor that feeds input to pic(I). Thus, a typical command
line would appear as follows:

grap files I pic I troff I output-device

Graphs are surrounded by the troff commands. G1 and . G2.
Data that is enclosed is scaled and plotted, with tick marks sup­
plied automatically. Commands exist to modify the frame, add la­
bels, override the default ticks, change the plotting style, define
coordinate ranges and transformations, and include data from files.
In addition, g rap provides the same loops, conditionals and mac­
ro processing that pic does.

FLAG OPTIONS
-T Specifies tty-type as grap's output device. Currently sup­

ported devices are psc (POSTSCRIPT device such as the Ap­
ple LaserWriter) and aps (Autologic APS-5). The default is
-Tpsc.

-1 Stops grap from looking for a library file of macro defines,
/usr/1ib/dwb/grap.defines.

FILES
/usr/bin/grap
/usr/1ib/dwb/grap.defines

SEE ALSO
pic(1).

definitions of standard
plotting characters

"grap Reference" in AIUX Text Processing Tools.

February, 1990 1
Revision C

graph(IG) graph(IG)

NAME
graph - draw a graph

SYNOPSIS
graph [-a [sp] [st]] [-b] [-clabel] [-g [style]] [-h hspace] [-
1 title] [-m [mode]] [-r rspace] [-5] [-t] [-u uspace] [-
w wspace] [-x [I] [a] [b] [e]] [-y [1] [a] [b] [c]]

DESCRIPTION

1

graph with no flag options takes pairs of numbers from the stan­
dard input as abscissas and ordinates of a graph. Successive
points are connected by straight lines. The graph is encoded on
the standard output for display by the tp1ot(1G) filters.

If the coordinates of a point are followed by a non-numeric string,
that string is printed as a label beginning on the point. Labels may
be surrounded with quotes (n), in which case they may be empty
or contain blanks and numbers; labels never contain newlines.

The following flag options are recognized, each as a separate ar­
gument:

-a [sp] [st]
Supply abscissas automatically (they are missing from
the input); spacing is given by sp (default I). st is the
starting point for automatic abscissas (default 0 or the
lower limit given by -x).

-b Break (disconnect) the graph after each label in the
input.

-c label Character string given by label is the default label for
each point.

-g [style]
style is grid style, where O=no grid, l=frame with
ticks, 2=full grid (default).

-h hspace hspace is the fraction of the space for height.
-1 title title is the label for the graph.
-m [mode]

mode is the mode (style) of connecting lines:
O=disconnected, l=connected (default). Some dev­
ices give distinguishable line styles for other small in­
tegers (e.g., the Tektronix 4014: 2=dotted, 3=dash­
dot, 4=short-dash, 5=long-dash).

-r rspace rspace is the fraction of the space to move right be­
fore plotting.

February, 1990
Revision C

graph(1G) graph(IG)

-s Save screen, don't erase before plotting.
-t Transpose horizontal and vertical axes.
-u uspace uspace is the fraction of the space to move up before

plotting.
-w wspace wspace is the fraction of the space for width. (-x

now applies to the vertical axis.)
-x [1] [a] [b] [c]

If 1 is present, x axis is logarithmic. a (and b) are
lower (and upper) x limits. c, if present, is the grid
spacing on the x axis. Normally these quantities are
determined automatically.

-y [1] [a] [b] [c]
Similarly for the yaxis.

A legend indicating grid range is produced with a grid unless the
-s flag option is present. If a specified lower limit exceeds the
upper limit, the axis is reversed.

FILES
/usr/bin/graph

SEE ALSO
spline(1G), tplot(1G).

BUGS
graph stores all points internally and drops those for which there
isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.
Options and their arguments must be delimited by at least one
space.

February, 1990
Revision C

2

greek(1) greek(1)

NAME
greek - filter text for vintage display devices

SYNOPSIS
greek [-Tterminal]

DESCRIPTION
greek is a filter that reinterprets the extended character set, as
well as the reverse and half-line motions, of a 128-character Tele­
type Model 37 terminal and certain other terminals. Special char­
acters are simulated by overstriking, if necessary and possible. If
the argument is omitted, greek attempts to use the environment
variable $TERM (see environ(5)). The following terminals are
recognized currently:

300 DASI300.
300-12 DASI 300 in 12-pitch.
300 s DASI300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI450) in 12-pitch.
4014 Tektronix 4014.
tek Tektronix 4014.

EXAMPLES
The command

nroff fik I greek -T4014

reinterprets the extended character set on a Tektronix 4014 termi­
nal.

FILES
/usr/bin/greek
/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450

SEE ALSO
300(1),4014(1),450(1), eqn(1), mm(1), nroff(1),
tplot(1G), term(4), environ(5), greek(5).

1 February, 1990
RevisionC

grep(l) grep(l)

NAME
grep~ egrep~ fgrep - search a file for a pattern

SYNOPSIS
grep [-b] [-c] [-i] [-n] [-3] [-v] expression [file ...]

egrep [-b] [-c] [-e expression] [-fjile] [-i] [-n] [-v]
[expression] [file ...]

fgrep [-b] [-c] [-e expression] [-fjile] [-i] [-n] [-v] [-x]
[strings] [file .. .]

DESCRIPTION
Commands of the grep family search the inputjiles (standard in­
put default) for lines matching a pattern. Normally~ each line
found is copied to the standard output. grep patterns are limited
regular expressions in the style of ed{l); it uses a compact non­
deterministic algorithm. egrep patterns are full regular expres­
sions; it uses a fast deterministic algorithm that sometimes needs
exponential space. fgrep patterns are fixed strings; it is fast and
compact. The following flag options are recognized:

-v All lines but those matching are printed.

-x

-c

-i

-1

-n

-b

-3

(Exact) only lines matched in their entirety are
printed (fgrep only).

Only a count of matching lines is printed.

Ignore upper!lowercase distinction during com­
parisons.

Only the names of files with matching lines are
listed (once)~ separated by newlines.

Each line is preceded by its relative line number
in the file.

Each line is preceded by the block number on
which it was found. This is sometimes useful in
locating disk block numbers by context.

The error messages produced for nonexistent or
unreadable files are suppressed (grep only).

-e expression Same as a simple expression argument~ but useful
when the expression begins with a - (does not
work with grep).

February ~ 1990
Revision C

1

grep(1) grep(l)

-f file The regular expression (egrep) or strings list
(fgrep) is taken from thefile.

In all cases, the file name is output if there is more than one input
file. Care should be taken when using the characters $, *, [, A ,I ,
(,) ,and \ in expression, because they are also meaningful to the
shell. It is safest to enclose the entire expression argument in sin­
gle quotes ' ... '.

fgrep searches for lines that contain one of the strings separated
by new lines.

egrep accepts regular expressions as in ed(1), except for \ (and
\) , with the addition of:

1. A regular expression followed by + matches one or more oc­
currences of the regular expression.

2. A regular expression followed by ? matches 0 or 1 oc­
currences of the regular expression.

3. Two regular expressions separated by I or by a newline match
strings that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [] , then * ? +, then con­
catenation, then I and newline.

EXAMPLES
grep -v -c'regular' grep.1

reports a count of the number of lines that do not contain the
word regular in the file grep .1.

FILES
/bin/grep
/bin/egrep
/bin/fgrep

SEE ALSO
awk(I), csh(1), ed(1), ex(I), ksh(I), lex(I), sed(l), sh(I),
vi(l).

DIAGNOSTICS

2

Exit status is 0 if any matches are found, 1 if none, 2 for syntax er­
rors or inaccessible files (even if matches were found).

February, 1990
Revision C

grep(l) grep(l)

BUGS
Ideally there should be only one grep, but we do not know a sin­
gle algorithm that spans a wide enough range of space-time trade­
offs.
Lines are limited to BUFSIZ characters; longer lines are truncat­
ed. (BUFSIZ is defined in /usr / include/ stdio. h.)
egrep does not recognize ranges, such as [a-z], in character
classes.
If there is a line with embedded nulls, grep will only match up to
the first null; if it matches, it will print the entire line.

February, 1990
Revision C

3

groups(l) groups(l)

NAME
groups - show group memberships

SYNOPSIS
groups [user]

DESCRIYfION
The groups command shows the groups to which you or the
optionally-specified user belong. Each user belongs to a group
specified in the password file / ete/passwd and possibly to oth­
er groups as specified in the file fete/group. If you do not
own a file, but belong to the group which owns it, you are granted
group access to the file.

When a new file is created, it is given the group of the containing
directory.

SEE ALSO
setgroups(2).

FILES
/usr/bin/groups
/ete/passwd
fete/group

BUGS
More groups should be allowed. Eight groups is currently the lim­
it.

1 February, 1990
RevisionC

hashcheck(1)

February. 1990
Revision C

See spell(1)

hashcheck(1)

1

hashmake(l)

See spell(l)

1

hashmake(l)

February, 1990
Revision C

head(l) head(l)

NAME
head - give first few lines

SYNOPSIS
head [-count] [file . ..]

DESCRIPTION
This filter gives the first count lines of each of the specified files,
or of the standard input If count is omitted it defaults to 10.

EXAMPLES
head -6 filea fileb filec

will print out the first six lines of the three specified files. The
filename will appear before each new set of head lines listed, if
more than one file has been specified.

FILES
/bin/head

SEE ALSO
awk(I), cat(I), more(1), pg(I), tail(1).

February, 1990
Revision C

1

help(l) help(1)

NAME
help - ask for help in using sees

SYNOPSIS
help [args]

DESCRIPTION
help finds information to explain a message from an sees com­
mand or explain the use of an sees command. Zero or more ar­
guments may be supplied. If no arguments are given, help will
prompt for one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names, of
one of the following types:

type 1 Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for the
program or set of routines which produced the mes­
sage (e.g., ge4, for message 6 from the get com­
mand).

type 2 Does not contain numerics (as a command, such as
get)

type 3 Is all numeric (e.g., 26)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try help stuck.

EXAMPLES
help he2

prints the message for error number he2.

FILES

1

/usr/bin/help
/usr/lib/help

/usr/lib/help/helploc

/usr/lib/help/lib/help2

directory containing files
of message text.
file containing locations of
help files not in
/usr / lib/help. This
file is created by the user
for user-defined help mes­
sages.

February, 1990
RevisionC

help(l) help(1)

SEE ALSO
admin(1), cdc(l) comb(1), del ta(I), get(1), unget(1),
help(1), prs(I), rmdel(1), sact(I), sccsdiff(1), val(I),
what(1).

DIAGNOSTICS
Use help(l) for explanations.

February, 1990
Revision C

2

hex(l) hex(l)

NAME
hex - convert an object file to Motorola S-record fonnat

SYNOPSIS
hex [-f] [-1] [-nUl [-r] [-sa] [-s2] [-ns8] [+saddr] ifile

DESCRIPTION
hex translates executable object files into ASCII formats suitable
for Motorola S-record downloading. The following flag options
detennine locations:

-f The file specified is to be shipped as is without treating it
as an object file.

-1 Output tlLoading attl message.

-n# Number of characters to output per record. # is a de-
cimal number.

-r Output a carriage return at the end of each S-record (in-
stead of a newline).

-sa Output a leading sa record.

-s2 82 records only (no sl records are produced).

-ns 8 Do not output a trailing s 8 (s 9) record.

+saddr Starting load address (in hex).

ifile File to be downloaded. The file's starting address is used
if saddr is not present.

EXAMPLES
hex objfi1e

where objfi1e is the object file to be downloaded.

FILES
/usr/bin/hex

SEE ALSO
as(I), od(I), rcvhex(l), a. out(4).

1 February, 1990
Revision C

hostid(lN) hostid(lN)

NAME
hostid - set or display the identifier of the current host system

SYNOPSIS
hostid [identifier]

DESCRIPTION
The hostid command displays the identifier of the current host
in hexadecimal. This numeric value is expected to be unique
across all hosts and is normally set to the host's Internet address
(for the Ethernet or TCP/IP). The superuser may set the hostid by
giving a hexadecimal argument; this is usually done in the startup
~ript/etc/sysinitrc.

FILES
/bin/hostid

SEE ALSO
getho s t id(2N).

February, 1990
Revision C

1

hostname(IN) hostname(IN)

NAME
hostname - set or display the name of the current host system

SYNOPSIS
hostname [nameojhost]

DESCRIPTION
The hostname command displays the name of the current host.
The superuser can set the hostname by giving an argument; this is
usually done in the startup script / etc/ sysini trc.

FILES
/bin/hostname

SEE ALSO
gethostname(2N).

1 February, 1990
RevisionC

hyphen(l) hyphen(1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen ffile ... J

DESCRIPTION
hyphen finds all the hyphenated words ending lines in files and
prints them on the standard output. If no arguments are given or if
hyphen encounters -, it uses the standard input. Thus, hyphen
may be used as a filter.

EXAMPLES
You would use the following command line to proofread nroff's
hyphenation in files:

mmfile I hyphen

FILES
/usr/bin/hyphen

SEE ALSO
grep(1), mm(l), troff(l).

BUGS
hyphen can't cope with hyphenated italics (or underlined
words); it frequently will either miss them altogether or mishandle
them. hyphen occasionally gets confused but with no ill effects
other than spurious extra output.

February, 1990 1
Revision C

id(1) id(1)

NAME
i d - display user and group IDs and names

SYNOPSIS
id

DESCRIPTION
id writes a message on the standard output giving the user and
group IDs and the corresponding names of the invoking process.
If the effective and real IDs do not match, both are displayed.

EXAMPLES
If logged in as the user guest, the command

id

will return

uid=100 (guest) gid=100 (users)

where 100 and gue stare the user's ID number and name and
100 and users are the user's group ID number and group name.
These values are set up in the administrative file / etc/passwd.

FILES
/usr/bin/id
/etc/passwd

SEE ALSO
logname(1), whoami(l), get uid(2).

1 February, 1990
Revision C

ident(1) ident(l)

NAME
ident - display RCS keywords and their values

SYNOPSIS
identfiles

DESCRIPTION
ident searches the named files for all occurrences of the pattern
$keyword: ... $, where keyword is one of

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are normally inserted automatically by the RCS
command co(l), but can also be inserted manually.

ident works on text files as well as object files.

EXAMPLES
If the C program in file f . c contains the line

char rcsid[] = n$Header: utility $n;

and f . c is compiled into f . 0, then the command

ident f.c f.o

will print

f.c:
$Header: utility $

f.o:
$Header: utility $

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

February, 1990
Revision C

1

ident(l) ident(l)

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907
Copyright © 1982 by Walter F. Tichy.

SEE ALSO

2

ci(l), co(l), rcs(l), rcsdiff(l), rcsintro(l),
rcsmerge(l), rlog(l), rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, September
1982.

February, 1990
RevisionC

indent(l) indent(l)

NAME
indent - indent and format C program source

SYNOPSIS
indent input [output] (flags]

DESCRIPTION
indent is intended primarily as a C program formatter.
Specifically, indent will:

indent code lines
align comments
insert spaces around operators where necessary
break up declaration lists as in in t a , b, c; .

indent will not break up long statements to make them fit within
the maximum line length, but it will flag lines that are too long.
Lines will be broken so that each statement starts a new line.
Comments will be lined up one indentation level to the left of the
code, and an attempt is made to line up identifiers in declarations.

The flags which can be specified follow. They may appear before
or after the file names. If the output file is omitted, the formatted
file will be written back into input and a "backup" copy of input
will be written in the current directory. If input is named
/blah/blah/ file, the backup file will be named . Bfile.
If output is specified, indent checks to make sure it is different
from input.

The following flag options may be used to control the formatting
style imposed by indent.

-lnnn

-cnnn

-cdnnn

-innn

Maximum length of an output line. The default is
75.

The column in which comments will start. The de­
fault is 33.

The column in which comments on declarations will
start. The default is for these comments to start in the
same column as other comments.

The number of spaces for one indentation level. The
default is 4.

-dj,-ndj -dj will cause declarations to be left justified.
-nd j will cause them to be indented the same as
code. The default is -ndj.

February, 1990 1
Revision C

indent(l) indent(l)

2

-v,-nv -v turns on "verbose" mode, -nv turns it off. When
in verbose mode, indent will report when it splits
one line of input into two or more lines of output, and
it will give some size statistics at completion. The de­
fault is -n v.

-be,-nbe If -be is specified, then a newline will be forced after
each comma in a declaration. -nbc will turn off this
flag option. The default is -be.

-dnnn This flag option controls the placement of comments
which are not to the right of code. Specifying -d2
means that such comments will be placed two inden­
tation levels to the left of code. The default, -dl,
places comments one indentation level to the left of
code. -dO lines up these comments with the code.
See the section on comment indentation below.

-br,-bl Specifying -bl will cause complex statements to be
lined up like this:

if (...)
{

code

Specifying -br (the default) will make them look like
this:

if (...) {
code

You may set up your own "profile" of defaults to indent by
creating the file . indent. pro in your home directory and in­
cluding whatever switches you like. If indent is run and a
profile file exists, then it is read to set up the program's defaults.
Switches on the command line, though, will always override
profile switches. The profile file must be a single line of not more
than 127 characters. The switches should be separated on the line
by spaces or tabs.

February, 1990
Revision C

indent(l) indent(l)

Multiline Expressions
indent will not break up complicated expressions that extend
over multiple lines, but it will usually correctly indent such ex­
pressions which have already been broken up. Such an expression
might end up looking like this:

x =

) ;

Comments

(Arbitrary parenthesized expression)
+
(

(Parenthesized expression)

*
(Parenthesized expression)

indent recognizes four kinds of comments. They are: straight
text, box comments, UNIX-style comments, and comments that
should be passed through unchanged. The action taken with these
various types are as follows:

Box comments. indent assumes that any comment with a dash
immediately after the start of comment (i.e. / *-) is a comment
surrounded by a box of stars. Each line of such a comment will be
left unchanged, except that the first non blank character of each
successive line will be lined up with the beginning slash of the
first line. Box comments will be indented (see below).

UNIX-style comments. This is the type of section header which
is used extensively in the UNIX system source. If the start of
comment (I *) appears on a line by itself, indent assumes that it is
a UNIX-style comment. These will be treated similarly to box
comments, except the first nonblank character on each line will be
lined up with the "*" of the / * .

Unchanged comments. Any comment which starts in column 1
will be left completely unchanged. This is intended primarily for
documentation header pages. The check for unchanged comments
is made before the check for UNIX-style comments.

Straight text. All other comments are treated as straight text. in­
dent will fit as many words (separated by blanks, tabs, or new­
lines) on a line as possible. Straight text comments will be indent-

February, 1990
Revision C

3

indent(l) indent(l)

ed.

Comment Indentation
Box, UNIX-style, and straight text comments may be indented. If
a comment is on a line with code it will be started in the com­
ment column, which is set by the -cnnn command line param­
eter. Otherwise, the comment will be started at nnn indentation
levels less than where code is currently being placed, where nnn is
specified by the -dnnn command line parameter. (Indented com­
ments will never be placed in column 1.) If the code on a line ex­
tends past the comment column, the comment will be moved to
the next line.

DIAGNOSTICS
Diagnostic error messages, mostly to tell that a text line has been
broken or is too long for the output line.

FILES
/usr/ucb/indent
-I.indent.pro

SEE ALSO
cb(1).

BUGS

profile file

Does not know how to format "long" declarations.

4 February, 1990
RevisionC

indxbib(1) indxbib(l)

NAME
indxbib - build inverted index for a bibliography

SYNOPSIS
indxbib database . ..

DESCRIPTION
indxbib makes an inverted index to the named databases (or
files) for use by lookbib(l) and refer(l). These files contain
bibliographic references (or other kinds of information) separated
by blank lines.

A bibliographic reference is a set of lines, constituting fields of bi­
bliographic information. Each field starts on a line beginning with
a %, followed by a key-letter, then a blank, and finally the contents
of the field, which may continue until the next line starting with %.

indxbib is a shell script that calls /usr/lib/refer/mkey
and /usr/lib/refer/inv. The first program, mkey, trun­
cates words to 6 characters, and maps uppercase to lowercase. It
also discards words shorter than 3 characters, words among the
100 most common English words, and numbers (dates) < 1900 or
> 2000. These parameters can be changed; see refer(l). The
second program, inv, creates an entry file (. ia), a posting file
(. ib), and a tag file (. i e), all in the working directory.

FILES
/usr/ueb/indxbib
x. ia, x. ib, x. ie, where x is the first argument, or if these are
not present, then x. ig.

SEE ALSO
addbib(l), lookbib(I), refer(I), roffbib(I), sort­
bib(1).

BUGS
Probably all dates should be indexed, since many disciplines refer
to literature written in the 1800s or earlier.

February, 1990 1
Revision C

ipcrm(l) ipcrm(l)

NAME
ipcrm - remove interprocess communications facilities

SYNOPSIS
ipcrm [-m shmidJ [-M shmkey] [-q msqidJ [-Q msgkey] [­
s semidJ [-s semkey]

DESCRIPTION

1

ipcrm will remove one or more specified message, semaphore,
or shared memory identifiers. The identifiers are specified by the
following flag options.

-q msqid removes the message queue identifier msqid from the
system and destroys the message queue and data
structure associated with it.

-m shmid removes the shared memory identifier shmid from the
system. The shared memory segment and data struc­
ture associated with it are destroyed after the last de­
tach.

- s semid removes the semaphore identifier semid from the sys­
tem and destroys the set of semaphores and data struc­
ture associated with it.

-Q msgkey

-M shmkey

-s semkey

removes the message queue identifier, created with
key msgkey, from the system and destroys the mes­
sage queue and data structure associated with it.

removes the shared memory identifier, created with
key shmkey, from the system. The shared memory
segment and data structure associated with it are des­
troyed after the last detach.

removes the semaphore identifier, created with key
semkey, from the system and destroys the set of sema­
phores and data structure associated with it.

The details of the removes are described in msgctl(2),
shmctl(2). and semctl(2). The identifiers and keys may be
found by using ipcs(I).

February, 1990
Revision C

ipcrm(l) ipcrm(1)

FILES
/bin/ipcrm

SEE ALSO
ipcs(l), msgctl(2), msgget(2), msgop(2), semctl(2),
semget(2), semop(2), shmctl(2), shmget(2), shmop(2).

February,1990
Revision C

2

ipcs(1) ipcs(1)

NAME
ipcs - report interprocess communication facilities status

SYNOPSIS
iPC5 [-a] [-b] [-c] [-C core file] [-m] [-N name list] [-0] [-p]
[-q] [-5] [-t]

DESCRIPTION

1

ipcs prints certain information about active inter-process com­
munication facilities. Without flag options, information is printed
in short format for message queues, shared memory, and sema­
phores that are currently active in the system. Otherwise, the in­
formation that is displayed is controlled by the following flag op­
tions:

-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the flag options -q, -m, or -s are specified, information
about only those indicated will be printed. If none of these three
are specified, information about all three will be printed.

-b Print information on largest allowable size (maximum
number of bytes in messages on queue for message queues,
size of segments for shared memory, and number of sema­
phores in each set for semaphores.) See below for meaning
of columns in a listing.

-c Print creator's login name and group name. See below.
-0 Print information on outstanding usage (number of messages

on queue and total number of bytes in messages on queue for
message queues and number of processes attached to shared
memory segments.)

-p Print process number information (process ID of last process
to send a message and process ID of last process to receive a
message on message queues and process ID of creating pro­
cess and process ID of last process to attach or detach on
shared memory segments) See below.

-t Print time information (time of the last control operation that
changed the access permissions for all facilities; time of last
msgsnd and last msgrcv on message queues, last sJunat and
last shmdt on shared memory, last semop(2) on sema­
phores.) See below.

-a Use all print flag options. (This is a shorthand notation for
-b, -c, -0, -p, and -t.)

February, 1990
Revision C

ipcs(l) ipcs(l)

-c corefile
Use the file corefile in place of / dev / kmem.

-N namelist
The argument will be taken as the name of an alternate
namelist (/unix is the default).

The column headings and the meaning of the columns in an i pc s
listing are given below; the letters in parentheses indicate the flag
options that cause the corresponding heading to appear; all means
that the heading always appears. Note that these flag options
determine only what information is provided for each facility; they
do not determine which facilities will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget, semget,

MODE

February, 1990
Revision C

or shmget to create the facility entry.

Note: The key of a shared memory seg­
ment is changed to IPC PRIVATE
when the segment has been removed un­
til all processes attached to the segment
detach it.

(all) The facility access modes and flags. The mode
consists of 11 characters that are interpreted as
follows:

The first two characters are:
R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory seg­

ment has been removed. It will disap­
pear when the last process attached to
the segment detaches it;

C if the associated shared memory seg­
ment is to be cleared when the first at­
tach is executed;
if the corresponding special flag is not
set.

The next 9 characters are interpreted as three

2

ipcs(1) ipes(1)

sets of three bits each. The first set refers to
the owner's permissions; the next to permis­
sions of others in the user-group of the facili­
ty entry; and the last to all others. Within
each set, the first character indicates permis­
sion to read, the second character indicates
permission to write or alter the facility entry,
and the last character is currently unused.

The permissions are indicated as follows:
r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not grant­
ed.

OWNER (all) The login name of the owner of the facility en-
try.

GROUP (all) The group name of the group of the owner of
the facility entry.

CREATOR (a,e) The login name of the creator of the facility en­
try.

CGROUP (a,e) The group name of the group of the creator of
the facility entry.

CBYTES (a,e) The number of bytes in messages currently out­
standing on the associated message queue.

QNUM (a,e) The number of messages currently outstanding
on the associated message queue.

QBYTES (a,b) The maximum number of bytes allowed in mes­
sages outstanding on the associated message
queue.

LSPID (a,p) The process ID of the last process to send a
message to the associated queue.

LRPID (a,p) The process ID of the last process to receive a
message from the associated queue.

STIME (a,t) The time the last message was sent to the asso-
ciated queue.

RTIME (a,t) The time the last message was received from
the associated queue.

3 February, 1990
RevisionC

ipes(1) ipes(1)

CTIME (a,t) The time when the associated entry was created
or changed.

NATTCH (a,o) The number of processes attached to the associ­
ated shared memory segment

SEGSZ (a,b) The size of the associated shared memory seg-
ment

CPID (a,p) The process ID of the creator of the shared
memory entry.

LP I D (a ,p) The process ID of the last process to attach or
detach the shared memory segment.

ATIME (a,t) The time the last attach was completed to the
associated shared memory segment

DTIME (a,t) The time the last detach was completed on the
associated shared memory segment

NSEMS (a,b) The number of semaphores in the set associated
with the semaphore entry.

OTIME (a,t) The time the last semaphore operation was

FILES
/bin/ipes
/unix
/dev/kmem
/ete/passwd
fete/group

SEE ALSO

completed on the set associated with the sema­
phore entry.

system namelist
memory
user names
group names

iperm(1), msgop(2), semop(2), shmop(2).

BUGS
Things can change while ipes is running; the picture it gives is
only a close approximation to reality.

February, 1990
Revision C

4

isotomac(l)

See mactoiso(1)

1

isotomac(l)

February, 1990
RevisionC

iw2(1) iw2(1)

NAME
iw2 - Apple ImageWriter print filter

SYNOPSIS
iw2 [-a dots pace] [-b] [-c color] [-d] [-D udcfile] [-f] [-h]
[-k mode] [-1 language] [-m margin] [-n length] [-0 file]
[-p pitch] [-q quality] [-5 spacing] [-t tabs] [-u]
[-u udcfile] [-w value] [-x] [-z] rJile ...]

DESCRIPTION
The Apple Imagewriter II is a dot matrix printer that works as a
normal ASCII character set printer. It has many options, includ­
ing color ribbons, various print qualities, national language char­
acter sets, downloadable fonts, and more. iw2 is a program that
accepts options indicating that a file or files (or standard input) is
to be printed with various Apple Imagewriter II options set.

i w2 prepares the named files for eventual printing on the Apple
Imagewriter II by sending appropriate Apple Imagewriter II con­
trol codes and then the named files to the standard output. If no
files are specified, the standard input is assumed. The various
features of the Apple Imagewriter II may be specified by the fol­
lowing flag options.

-a dotspace Add dot spaces to proportional pitch text. When
the Apple Imagewriter II is printing in a propor­
tional pitch, the space allotted to each character
depends on the shape of the character. Each char­
acter has one dot space added after it to keep it
from running into the next character. This option
allows from 1 to 6 additional dot spaces to be ad­
ded after each proportional character.

-b Print boldface text. Each dot of the character is
printed twice with a small shift of position.

-c color Print text in color. The Apple Imagewriter II can
print in color by using the color ribbon. The color
ribbon contains four bands of color: yellow, cyan,
magenta, and black. In addition, the Apple Image­
writer II automatically prints orange, green, and
purple by overprinting one color with another, as
follows:

February, 1990
Revision C

black Selects the black color ribbon band.

1

iw2(1) iw2(1)

yellow Selects the yellow color ribbon band.
red Actually selects the magenta color rib­

bon band. You can specify this color
by magenta as well.

bl ue Actually selects the cyan color ribbon
band. You can specify this color by
cyan as well.

orange Orange will be printed by overprinting
yellow and magenta.

green Green will be printed by overprinting
yellow and cyan.

purple Purple will be printed by overprinting
magenta and cyan.

-d Print double-width characters. Each character is
printed with two dots for every one normally print­
ed.

-D udcfile This works just like the -u flag option, except that
the udcfile filename is prefixed with the directory
path name /usr/lib/iw2/ first. (See the -u
flag option later in this section).

-f An initial formfeed is output before any files are
printed. Generally used with the Apple Imagewrit­
er II sheetfeeder.

- h Print half-height characters. Half-height characters
are printed by cutting in half the vertical distance
between the rows of dots that make up the charac­
ters.

- k mode Select print direction mode. The Apple Imagewrit­
er II can print from left-to-right or bidirectional.
Left-to-right, while slower, improves the precision
at which characters line up.

1 r Print left-ta-right only.
bi Print bidirectional.

-1 language Select language font. As an aid, there are 8 dif­
ferent language fonts used for printing text in other
languages. Each of these fonts substitutes charac­
ters for these ten American font symbols:

41= @ \

2 February, 1990
Revision C

iw2(1) iw2(1)

american Select the American language font.
italian Select the Italian language font.
danish Select the Danish language font.
british Select the British language font.
german Select the German language font.
swedish Select the Swedish language font.
french Select the French language font.
spanish Select the Spanish language font.

-m margin Specify the left page margin. This sets the leftmost
column to start printing in. Nonnally zero, the
column number may be set from zero (leftmost) to
a value that depends on the current character pitch,
as shown in the following list.

Pitch Chars/line Range
9 72 0 to 71
10 80 0 to 79
12 96 0 to 95
13.4 107 0 to 106
15 120 0 to 119
17 136 0 to 135
pica depends 0 to 71
elite depends 0 to 79

For setting the margin when using proportional
fonts, elite uses 10 characters per inch and pica
uses 12 characters per inch.

-n length Specify page length. This is the page length in
inches, integer values only. If the number is pre­
ceded by a /, it will be considered as length/144 in.
That is, both -n 11 and -n /1584 will set a
page length of 11 inches.

-0 file Specify an output file. By default, iw2 writes to
the standard output, so this option will redirect the
output to file.

-p pitch Specify pitch, or characters per inch. The Apple
Imagewriter II prints in eight different widths
(character pitches), from 9 characters per inch (cpi)
to 17 cpi. Two of the character pitches print pro­
portionally; that is, the space allotted to each char­
acter depends on the shape of the character.

February, 1990 3
Revision C

iw2(1)

-q quality

iw2(1)

9 Print at 9 cpi, for 72 characters per line.
1 0 Print at 10 cpi, for 80 characters per line.
12 Print at 12 cpi, for 96 characters per line.
13 Print at 13.4 cpi, for 107 characters per line.

13 . 4 may also be specified.
15 Print at 15 cpi, for 120 characters per line.
1 7 Print at at 17 cpi, for 136 characters per line.
pica

Print pica proportional font. Averages 10 cpi.
elite

Print elite proportional font. Averages 12 cpi.

Specify quality of printing. The Apple Imagewriter
II can print ASCII text in one of three qualities:
draft (250 characters per second), correspondence
(180 cps), and near letter quality (45 cps).

draft Print in draft quality mode.
better Print in better, or correspondence quali­

ty mode.
nlq Print in best, near letter quality. You

may also specify be 5 t for this mode.

- 5 spacing Specify spacing, or distance between lines. This
value can be specified in two ways.

2 Set line spacing to 2 lines per inch.
3 Set line spacing to 3 lines per inch.
4 Set line spacing to 4 lines per inch.
6 Set line spacing to 6 lines per inch.
8 Set line spacing to 8 lines per inch.
9 Set line spacing to 9 lines per inch.

Or the value can have a slash (f) affixed to it. This
value, then, indicates line spacing at 1/144 in. For
example, three lines per inch would be a spacing of
48/144 in., and could be specified by either -5 3
or -5 /48.

-t tabs Specify tab settings. Default tabs are set every 8
columns (9, 17, 25, ...). This ft ag option clears all
default tab stops and is used to set custom tab
stops. Tabs are specified by numbers followed by
commas. For example, to set tabs every four
columns (up to column 25):

4 February, 1990
Revision C

iw2(1)

-u

-u udcfile

-w value

-x

-z

UDC FILES

iw2(1)

-t 5,9,13,17,21,25

The limit on the number of settable tabs is 8. The
highest legal column for the tab stop must lie in the
left margin range. See the -m flag option for the
margin range table.

This flag option causes all characters and spaces to
be underlined.

Loads user defined characters from the file udcfile,
the contents of which are defined later in this sec­
tion.

Set dot spacing for proportional pitch text. When
the Apple Imagewriter II is printing in a propor­
tional pitch, the space allotted to each character
depends on the shape of the character. Each char­
acter has a single dot space added after it to keep it
from running into the next character. This flag op­
tion allows setting dot spaces for the proportional
character set. Dot spacing may be set from 0 to 9
dot spaces. Each proportional character will al­
ways include one dot space, thus the settings of 0
through nine allow set dot spacing from 1 to 10.

This flag option resets the Apple Imagewriter II ini­
tialization sequences (that set the default settings).
In this program, first the default sequences are pro­
cessed (see "DEFAULTS" later in this section),
then the environment variable, and then the op­
tions. This flag option, when encountered, resets
the buffer holding the initialization sequences that
were built by processing the default and environ­
mental variable.

This specifies that all zeros are to be printed with a
slash through them.

A UOC (user defined character) file consists of ASCII text that
defines the bit patterns that make up a character. More than one
character can be defined in a UDC file, and any character may be
redefined. Characters that are not defined in a UDC file print out
in the normal ASCII character bit pattern. For example, to define
the ASCII space character (SP) to resemble an upside down and

February, 1990 5
RevisionC

iw2(1) iw2(1)

6

backwards capital L:

=040
1 # =lHt # .
2 ... # .
3 ... # .
4 ... #.
5 ... # .
6 ... # .
7 ••• # .
8 ... #.

In a UDC file, each character is defined by 9 text lines. The first
line starts with an equal sign (=), and is followed by an octal, de­
cimal, or hexadecimal number that indicates the character to be
defined. Octal, decimal, or hexadecimal is selected by using the
standard C language conventions.

The next 8 tines define the 8 rows of the character. Notice that the
lines are numbered These numbers correspond to the nine-wire
print head. You are limited to 8 rows only, so you can specify
rows 1 through 8, or rows 2 through 9. Each line contains a
period (.) to indicate no dot, and a pound sign (#) to indicate dot.
The width of the character is computed by the longest line en­
countered in the 8 lines. You should place extra periods at the
right columns of the character definition to allow for space
between it and the adjacent character.

For example, we have redefined the letter "A" to be a vertical
bar, with a small amount of space between it and the character on
its left, and a lot of space between it and the character on the right.

=Ox41
1. ## .. .
2.## .. .
3. #* .. .
4. ## .. .
5.## .. .
6.## .. .
7.## .. .
8. ## .. .

The maximum width of any character is 16 columns of dots.

February, 1990
RevisionC

iw2(1) iw2(1)

NOTES
Using the -x flag option, you specify character strings, as needed,
to set various Apple Imagewriter II capabilities, without knowing
the machine dependent codes. For example, if you wished to print
a file, using pr(I), but want the header to be in red and the rest of
the file in black, you could do the following:

set red='iw2 -x -c red < /dev/null'
black='iw2 -x -c black < /dev/null'
pr -h "$red this is the heading $black" $1 I lp

Or if you wanted to change the word "red" in the file foobar to
print in the color red, you could do the following:

set red='iw2 -x -c red < /dev/null'
set black='iw2 -x -c black < /dev/null'
sed s/red/"$red"red"$black"/g foobar I lp

Always remember that you must both set and unset the capability,
or else the characters following what you have set will remain that
way. Also note that in the set red and set black lines is
the " ,,, character (the ASCII character with the value of hexade­
cimal60).

The -0 flag is ignored when iw2 reads from the standard input.
If an input file is specified as an argument, then the -0 option
works as documented.

DEFAULTS
Draft font
American language
Black color
Stop double width print
Stop boldface
Stop sub/super scripting
Set left margin at 0
Bidirectional printing
Forward line feeding
Insert CR before LF/FF
CR, LF, FF cause printing
Perforation skip disabled

ENVIRONMENT
The environment variable

Standard ASCII
Pitch is 12 cpi (Elite)
Set default tabs every 8 columns (12 cpi)
Stop underlining
Stop half-height text
Zeros unslashed
Set page length to 11 inches
6 lines per inch spacing
Paper-out sensor on
No LF when line is full
Ignore 8th data bit
Dot spacing is zero

APPLE IMAGEWRITER II PRINT OPTIONS - - -
can be used to supply default print options. All options may be

February, 1990
Revision C

7

iw2{l) iw2(1)

specified in the environment variable. In the C shell, a typical set­
ting of the environment variable would be

setenv APPLE_lMAGEWRITER_II_PRINT_OPTIONS\
"-c red -q better"

EXAMPLES
iw2 -c red -q n1q -1 british

FILES
/usr/bin/iw2

SEE ALSO
daiw(1), iwprep(l), Ip(l), iwmap(4).

8 February, 1990
RevisionC

iwprep(1) iwprep(l)

NAME
iwprep - prepare troff description files

SYNOPSIS
iwprep [file]

DESCRIPTION
iwprep processes a file describing a troff output device and
creates the device and font files required by troff(l) as
described in troff(5).

FILES
/usr/bin/iwprep
/usr/lib/font/deviw/*. def description files for the Im­

ageWriter II.

SEE ALSO
troff(I). iwdesc(4). troff(5).

February. 1990 1
RevisionC

join(l} join(l)

NAME
join - relational database operator

SYNOPSIS
join [-an] [-e string] [-jn m] [-0 list] [-tc]filel file2

DESCRIPTION
join forms, on the standard output, a join of the two relations
specified by the lines of file 1 and file2. If filel is -, the standard
input is used.

filel and file2 must be sorted in increasing ASCII collating se­
quence on the fields on which they are to be joined, normally the
first in each line.

There is one line in the output for each pair of lines in filel and
file2 that have identical join fields. The output line normally con­
sists of the common field, then the rest of the line from filel, then
the rest of the line from file2 .

The default input field separators are blank, tab, or newline. In
this case, multiple separators count as one field separator, and
leading separators are ignored. Thus, to preserve tabs and multi­
ple occurrences of spaces in a file, you must select tabs as the al­
ternate delimiter using the -t option where c is the tab character
(see -t option below). The default output field separator is a
blank.

Some of the below flag options use the argument n. This argu­
ment should be a 1 or a 2 referring to either filel or file2, respec­
tively. The following flag options are recognized:

-an In addition to the normal output, produce a line for each
unpairable line in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m join on the mth field of file n. If n is missing, use the mth
field in each file. Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list,
each element of which has the form n. m, where n is a
file number and m is a field number. The common field is
not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every ap­
pearance of c in a line is significant. The character c is
used as the fieid separator ior both input and output. Note
that this option must be used to preserve tabs and multiple

1 February, 1990
RevisionC

join(l)

spaces in a file.

EXAMPLES
If f i 1 e 1 contains:

Austen -
Bailey -
Clark -
Dawson -
Smith -

and file2 contains:

then

Austen Jack Anchor Brewery
Clark Maryann Shoeshop
Daniels Steve Computer Software
Dawson Sylvia Toot Sweets
Smith Sally Talcum Powdery

join(l)

join - j 1 1 - j 2 1 -0 2. 2 2. 1 1. 2 2.3 2 . 4 f i 1 e 1
file2

will generate

Jack Austen - Anchor Brewery
Maryann Clark - Shoeshop
Sylvia Dawson - Toot Sweets
Sally Smith - Talcum Powdery

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /ete/passwd
jete/group

joins the password file and the group file, matching on the numeric
group ID, and the login name, the group name, and the login
directory. It is assumed that the files have been sorted in ASCII
collating sequence on the group ID fields.

FILES
/usr/bin/join

SEE ALSO
awk(1), comm(1), sort(1), uniq(I).

BUGS
With default field separation, the collating sequence is that of
sort -b; with -t, the sequence is that of a plain sort.

February, 1990 2
Revision C

join(l) join(l)

3

The conventions of join(1), sort(1), comm(1), uniq(l) and
aWk(l) are wildly incongruous.

Filenames that are numeric may cause conflict when the -0 flag
option is used right before listing filenames.

February, 1990
Revision C

kermit(1C) kermit(lC)

NAME
ke rmi t - Kermit file transfer

SYNOPSIS
kermi t [option . .. J [file ... J

DESCRIPTION
ke rmi t is a file transfer program that allows files to be moved
between machines of many different operating systems and archi­
tectures. This manual page describes version 4C of the program.

Arguments are optional. If ke rmi t is executed without argu­
ments, it will enter command mode. Otherwise, ke rmi t will
read the arguments off the command line and interpret them.

The following notation is used in command descriptions:

In An NUX file specification, possibly containing ei­
ther of the metacharacters "*", which matches all
character strings, or "?", which matches any sin­
gle character.

Inl An NUX file specification which may not contain
* or?

rfn A remote file specification in the remote system's
own syntax, which may denote a single file or a
group of files.

rfnl A remote file specification which should denote
only a single file.

n A decimal number between 0 and 94.

c A decimal number between 0 and 127 representing
the value of an ASCII character.

cc A decimal number between 0 and 31, or else exact­
ly 127, representing the value of an ASCII control
character.

[] Any field in brackets is optional.

{x, y , z} Alternatives are listed in braces.

kermi t command line options may specify either actions or set­
tings. If ke rmi t is invoked with a command line that specifies
no actions, then it will issue a prompt and begin interactive dialog.
Action options specify either protocol transactions or terminal
connection.

February, 1990
Revision C

1

kermit(1C) kermit(1C)

2

FLAG OPTIONS
-s In Send the specified file or files. If In contains metachar­

acters, the NUX shell expands it into a list. If In is -,
then kermit sends from standard input, which must
come from a file:

kermit -s - < foo.bar

or a parallel process:

ls -1 I kermit -s -

You cannot use this mechanism to send terminal type in.
If you want to send a file whose name is -, you can pre­
cede it with a path name, as in

kermit -s ./-

-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending them to stan-
dard output. This option can be used in several ways:

kermit -k

displays the incoming files on your screen; to be used
only in "local mode" (see below).

kermit -k > Inl
sends the incoming file or files to the named file,lnl. If
more than one file arrives, all are concatenated together
into the single file Inl.

kermi t -k I command

pipes the incoming data (single or multiple files) to the
indicated command, as in

kermit -k I sort> sorted. stuff

-a Inl If you have specified a file transfer option, you may
specify an alternate name for a single file with the -a
option. For example,

kermit -s foo -a bar

sends the file f 00 telling the receiver that its name is
bar. If more than one file arrives or is sent, only the
first file is affected by the -a option:

kermit -ra baz

February, 1990
RevisionC

kermit(1C) kermit(lC)

stores the first incoming file under the name ba z.

-x Begin server operation. May be used in either local or
remote mode.

Before proceeding, a few words about remote and local operation
are necessary. kermit is "local" if it is running on a personal
computer or workstation that you are using directly, or if it is run­
ning on a multiuser system and transferring files over an external
communication line, not your job's controlling terminal or con­
sole. ke rmi t is remote if it is running on a multiuser system and
transferring files over its own controlling terminal's communica­
tion line, connected to your personal computer or workstation.

If you are running ke rmi t on a personal computer, it is in local
mode by default, with the "back port" designated for file transfer
and terminal connection. If you are running ke rmi t on a mul­
tiuser (timesharing) system, it is in remote mode unless you expli­
citly point it at an external line for file transfer or terminal connec­
tion. The following command sets kermi t 's "mode":

-1 dey Line; specify a terminal line to use for file transfer and
terminal connection, as in

kermit -1 /dev/ttyiS

When an external line is being used, you might also
need some additional options for successful communica­
tion with the remote system:

-b n Baud; specify the baud rate for the line given in the -1
option, as in

kermit -1 /dev/ttyiS -b 9600

This option should always be included with the -1 op­
tion, since the speed of an external line is not necessarily
what you expect.

-p x Parity; e, 0, m, s, n (even, odd, mark, space, or none).
If parity is other than none, then the 8th-bit prefixing
mechanism will be used for transferring 8-bit binary
data, provided the opposite ke rmi t agrees. The de­
fault parity is none.

-t Specifies half duplex, line turnaround with XON as the
handshake character.

February, 1990
Revision C

3

kermit(lC) kermit(lC)

4

The following commands may be used only with a ke rmi t
which is local, either by default or else because the -1 option has
been specified.

-g rfn Actively request a remote server to send the named file
or files; rfn is a file specification in the remote host's
own syntax. If In happens to contain any special shell
characters, like *, these must be quoted, as in

kermit -g x*.\?

-f Send a "finish" command to a remote server.

-c Establish a terminal connection over the specified or de-
fault communication line, before any protocol transac­
tion takes place. Get back to the local system by typing
the escape character (normally CONTRoL-Backslash)
followed by the letter c.

-n Like -c, but after a protocol transaction takes place; -c
and -n may both be used in the same command. The
use of -n and -c is illustrated below.

On a timesharing system, the -1 and -b options will also have to
be included with the -r, -k, or-s options if the other kermit is
on a remote system.

If kermit is in local mode, the screen (standard output) is con­
tinuously updated to show the progress of the file tranfser. A dot
is printed for every four data packets, other packets are shown by
type (for example, S for Send-Init), T is printed when there's a
timeout, and % for each retransmission. In addition, you may type
(to standard input) certain "interrupt" commands during file
transfer:

CONTROL-F

CONTROL-B

CONTROL-R

CONTROL-A

Interrupt the current file, and go on to the
next (if any).

Interrupt the entire batch of files, terminate
the transaction.

Resend the current packet

Display a status report for the current tran­
saction.

These interrupt characters differ from the ones used in other ker­
mi t h"TIplementations to avoid conflict with A/UX shell interrupt
characters. With System III and System V implementations of the

February, 1990
Revision C

kerrnit(1C) kerrnit(1C)

UNIX system, interrupt commands must be preceded by the es­
cape character (e.g. CONTROL-\).

Several other command-line options are provided:

-i Specifies that files should be sent or received exactly
"as is" with no conversions. This option is necessary
for transmitting binary files. It may also be used to
slightly boost efficiency in UNIX-to-UNIX transfers of
text files by eliminating carriage return-linefeed/newline
conversion.

-w Write-Protect; avoid filename collisions for incoming
files.

-q Quiet; suppress screen update during file transfer, for in­
stance to allow a file transfer to proceed in the back­
ground.

-d Debug; record debugging information in the file
debug .log in the current directory. Use this option if
you believe the program is misbehaving, and show the
resulting log to your local kermi t maintainer.

-h Help; display a brief synopsis of the command line op­
tions.

The command line may contain no more than one protocol action
option.

INTERACTIVE OPERATION
kerrni t 's interactive command prompt is

C-Kermit>

In response to this prompt, you may type any valid command.
ke rrni t executes the command and then prompts you for another
command. The process continues until you instruct the program
to terminate.

Commands begin with a keyword, normally an English verb, such
as "send". You may omit trailing characters from any keyword,
so long as you specify sufficient characters to distinguish it from
any other keyword valid in that field. Certain commonly-used
keywords (such as "send", "receive", "connect") have
special nonunique abbreviations (" s "f 0 r send, (" r" for re­
ceive, ("c"for connect).

February, 1990
Revision C

5

kermit(1C) kermit(1C)

6

Certain characters have special functions in interactive com­
mands:

? Question mark, typed at any point in a command, will
produce a message explaining what is possible or ex­
peeted at that point. Depending on the context, the mes­
sage may be a brief phrase, a menu of keywords, or a
list of files.

ESC The EsCAPE or ALTMODE key; request completion of the
current keyword or filename, or insertion of a default
value. The result will be a beep if the requested opera­
tion fails.

DEL The DELETE or RUBOUT key; delete the previous charac-
,ter from the command. You may also use BS (,
CONrROL-H) for this function.

"W CONrROL-W; erase the rightmost word from the com-
mand line.

"U CONrROL-U; erase the entire command.

"R CONrROL-R; redisplay the current command.

SP Space; Delimits fields (keywords, filenames, numbers)
within a command. HT (Horizontal Tab) may also be
used for this purpose.

CR Carriage return; enters the command for execution. LF
linefeed or FF (form feed) may also be used for this pur­
pose.

\ Backslash; enter any of the above characters into the
command, literally. To enter a backslash, type two
backslashes in a row (\ \). A single backslash immedi­
ately preceding a carriage return allows you to continue
the command on the next line.

You may type the editing characters (DEL, "W, etc.) repeatedly,
to delete all the way back to the prompt. No action will be per­
formed until the command is entered by typing carriage return,
linefeed, or formfeed. If you make any mistakes, you will receive
an informative error message and a new prompt; make liberal use
of ? and ESC to feel your way through the commands. One im­
portant command is help; you should use it the first time you run
1 ____ .: .L..

h."t::J..1Ll.J.. '-.

February, 1990
RevisionC

kermit(IC) kermit(IC)

Interactive ke rmi t accepts commands from files as well as from
the keyboard. When you enter interactive mode, kermit looks
for the file. kermrc in your home or current directory (first it
looks in the home directory, then in the current one) and executes
any commands it finds there. These commands must be in interac­
tive format, not NUX command-line format. A Htake" com­
mand is also provided for use at any time during an interactive
session. Command files may be nested to any reasonable depth.

Here is a brief list of kermi t interactive commands:

bye

close

connect

cwd

dial

directory

echo

exit

finish

get

help

log

quit

receive

remote

,script

February, 1990
Revision C

Execute an NUX shell command.

Terminate and logout a remote kermi t
server.

Close a log file.

Establish a terminal connection to a re­
mote system.

Change working directory.

Dial a telephone number.

Display a directory listing.

Display arguments literally.

Exit from the program, closing any open
logs.

Instruct a remote ke rmi t server to
exit, but not log out

Get files from a remote kermi t server.

Display a help message for a given
command.

Open a log file - debugging, packet,
session, transaction.

Same as "exit".

Passively wait for files to arrive.

Issue file management commands to a
remote kermi t server.

Execute a login script with a remote
system.

7

kermit(IC) kermit(IC)

8

send

server

set

show

space

statistics

take

Send files.

Begin server operation.

Set various parameters.

Display values of "set" parameters.

Display current disk space usage.

Display statistics about most recent
transaction.

Execute commands from a file.

The "set" parameters are:

block-check Level of packet error detection.

delay

duplex

How long to wait before sending first
packet.

Specify which side echoes during "con­
nect".

escape-character Character to prefix "escape com­
mands" during connect.

f i 1 e Set various file parameters.

flow-control Communication line full-duplex flow
control.

handshake

line

modem-dialer

parity

prompt

receive

send

speed

Communication line half-duplex tur­
naround character.

Communication line device name.

Type of modem-dialer on communica­
tion line.

Communication line character parity.

Change the ke rmi t program's prompt.

Set various parameters for inbound
packets.

Set various parameters for outbound
packets.

Communication line speed.

February, 1990
Revision C

kermit(IC) kermit(IC)

The "remote" commands are:

cwd

delete

directory

help

host

space

type

who

FILES
lusr/bin/kermit

Change remote working directory.

Delete remote files.

Display a listing of remote file names.

Request help from a remote server.

Issue a command to the remote host in
its own command language.

Display current disk space usage on re­
mote system.

Display a remote file on your screen.

Display who's logged in, or get infor­
mation about a user.

$ HOME I . kermrc kermit initialization commands
. I . ke rmrc more ke rmi t initialization commands

SEE ALSO
cu(1C), uucp(lC).
Kermit User's Guide, Frank da Cruz and Bill Catchings, Columbia
University, 6th Edition.

DIAGNOSTICS
The diagnostics produced by ke rmi t itself are intended to be
self-explanatory .

BUGS
See recent issues of the Info-Kermit digest (on ARPANET or
Usenet), or the file ckuke r . bw r, for a list of bugs.

February, 1990
Revision C

9

kill(l) kill(l)

NAME
kill- terminate a process

SYNOPSIS
kill [-sig] pid ...

DESCRIPTION
kill sends signal 15 (terminate) to the specified processes. This
will normally kill processes that do not catch or ignore the signal.
The process number (Pi(/) of each asynchronous process started
with & is reported by the shell (unless more than one process is
started in a pipeline, in which case the number of the last process
in the pipeline is reported). Process numbers may also be found
by using ps(1).

Details of the kill are described in kill(2). For example, if pro­
cess number 0 is specified, all processes in the process group are
signaled.

The to-be-killed process must belong to the current user unless he
is the superuser.

If the -sig option is given, the corresponding signal is sent instead
of terminate (see signal(3». In particular kill -9 ... is the
surest kill; especially with NFS, the 9 signal does not always des­
troy the process.

Similar versions of kill are built into ksh(1) and csh(1).

EXAMPLES
kill 24068

Sends signal 15 to the process with the ID number 24068.

FILES
/bin/kill

SEE ALSO
ps(I), sh(I), csh(I), ksh(I), kill(2), signal(3).

1 February, 1990
RevisionC

ksh(l) ksh(l)

NAME
ksh - run the Kom shell, a command interpreter compatible
with Bourne shell

SYNOPSIS
ksh[-a] [-e] [-f] [-h] [-i] [-k] [-rn] [-n] [-0] [-p] [-r] [­
s] [-t] [-u] [-v] [-x] [-0 option] ... [-c string] [arg ...]

DESCRIPTION
ksh is a command programming language that executes com­
mands that are read from a terminal or a file. See "Invocation"
later in this section for the meaning of arguments to the shell.

Definitions
A metacharacter is one of the following characters:

; & () I < > newline space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore.
Identifiers are used as names for aliases, functions, and named
parameters. A word is a sequence of characters separated by one
or more nonquoted metacharacters.

Commands
A simple-command is a sequence of blank-separated words which
may be preceded by a parameter assignment list (see "Environ­
ment" later in this section). The first word specifies the command
name to be executed. With exceptions described later, the remain­
ing words are passed as arguments to the invoked command. The
command name is passed as argument 0 (see exec(2». The
value of a simple-command is its exit status if it terminates nor­
mally, or (octal) 200+status if it terminates abnonnally (see sig­
nal(3) for a list of status values).

A pipeline is a sequence of one or more commands separated by a
vertical bar (I). The standard output of all but the last command
is connected by a pipe(2) to the standard input of the next com­
mand. Each command is run as a separate process; the shell waits
for the final command to terminate. The exit status of a pipeline is
the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &,
& &, or I I, and optionally terminated by ;, &, or I &. Of these five
symbols, ; , &, and I & have equal precedence, which is lower than
that of & & and I I. The symbols & & and I I also have equal pre­
cedence. A semicolon (;) causes sequential execution of the

February, 1990
RevisionC

1

ksh(l) ksh(l)

2

preceding pipeline; an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (that is, the shell does not wait for
that pipeline to finish). The symbol I & causes asynchronous exe­
cution of the preceding command or pipeline with a two-way pipe
established to the parent shell. The standard input and output of
the spawned command can be written to and read from by the
parent shell using the -p flag option of the special commands,
read and print described later. Only one such command can
be active at any given time. The symbol & & (I I) causes the list
following it to be executed only if the preceding pipeline returns a
zero (nonzero) value. An arbitrary number of newlines may ap­
pear in a list, instead of semicolons, to delimit commands.

Unless stated otherwise, the value returned is that of the last
simple-command executed in the command. A command is either
a simple-command or one of the following:

for identifier [in word ...] do list done
Each time a for command is executed, identifier is set to the
next word taken from the in word list. If in word ... is
omitted, then the for command executes the do list once
for each positional parameter that is set (see "Parameter Sub­
stitution" later). Execution ends when there are no more
words in the list.

select identifier [in word . ..] do list done
A select command prints on standard error (file descriptor
2), the set of words, each preceded by a number. If in word
. .. is omitted, then the positional parameters are used instead
(see "Parameter Substitution" later). The P S 3 prompt is
printed and a line is read from the standard input. If this line
consists of the number of one of the listed wordS, then the
value of the parameter identifier is set to the word
corresponding to this number. If this line is empty, the selec­
tion list is printed again. Otherwise the value of the parame­
ter identifier is set to null. The contents of the line read
from standard input is saved in the parameter REP LY. The
list is executed for each selection until a break or end-of-file
is encountered.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first
pattern that matches word. The form of the patterns is the
same as that used for filename generation (see "Filename
Generation" later).

February, 1990
RevisionC

ksh(l) ksh(l)

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if a zero exit status is
returned, the list following the first then is executed. Other­
wise, the list following elif is executed and, if its value is
zero, the list following the next then is executed. Failing
that, the else list is executed. If no else list or then list
is executed, then the if command returns a zero exit status.

while list do list done
until list do list done

A while command repeatedly executes the while list and,
if the exit status of the last command in the list is zero, exe­
cutes the do list; otherwise the loop terminates. If no com­
mands in the do list are executed, then the while command
returns a zero exit status; un til may be used in place of
while to negate the loop termination test.

(list)
Executes list in a separate environment. Note that if two ad­
jacent open parentheses are needed for nesting, a space must
be inserted to avoid arithmetic evaluation as described later.
A parenthesized list used as a command argument, denoting
"process substitution," is also described.

{ list; }
list is simply executed. Note that { is a keyword and requires
a blank in order to be recognized.

function identifier {list;}
identifier () { list; }

Defines a function which is referenced by identifier. The
body of the function is the list of commands between { and
}. (See "Functions" later in this section).

time pipeline
The pipeline is executed and the elapsed time, as well as the
user and system time, are printed on standard error.

The following keywords are recognized only when occurring as
the first word of a command and when not quoted.

if then else elif fi case esac for do
while until done { } function select time

February, 1990
Revision C

3

ksh(l) ksh(l)

4

Comments
A word beginning with a :11= causes that word and all the following
characters prior to a newline to be ignored.

Aliasing
The first word of each command is replaced by the text of an
alias if an alias for this word has been defined. The first
character of an alias name can be any nonspecial printable
character, but the rest of the characters must be the same as for a
valid identifier. The replacement string can contain any valid shell
script, including the metacharacters listed earlier. The first word
of each command of the replaced text will not be tested for addi­
tional aliases. If the last character of the alias value is a blank,
then the word following the alias will also be checked for alias
substitution. Aliases can be used to redefine special built-in com­
mands but cannot be used to redefine the keywords listed earlier.
Aliases can be created, listed, and exported with the alias com­
mand and can be removed with the unalias command. Export­
ed aliases remain in effect for subshells but must be reinitialized
for separate invocations of the shell (see "Invocation" later in this
section).

Aliasing is performed when scripts are read, not while they are ex­
ecuted. Therefore, for an alias to take effect, the alias com­
mand has to be executed before the command which references
the alias is read.

Aliases are frequently used as a type of shorthand for full path­
names. A flag option to the aliasing facility allows the value of
the alias to be automatically set to the full pathname of the
corresponding command. These aliases are called "tracked"
aliases. The value of a tracked alias is defined the first time the
corresponding command is looked up and becomes undefined
each time the PATH variable is reset. These aliases remain
tracked so that the next subsequent reference will redefine the
value. Several tracked aliases are compiled into the shell. The - h
flag option of the set command makes each command name that
is a valid alias name into a tracked alias.

The following "exported aliases" are compiled into the shell but
can be unset or redefined:

false='let 0'
functions~' t~{peset -f'
history='fc -1'
integer='typeset -i'

February, 1990
Revision C

ksh(1)

nohup='nohup ,
r='fc -e -'
true=' :'
type='whence -v'
hash='alias -t'

Tilde Substitution

ksh(l)

After alias substitution is performed, each word is checked to see
if it begins with an unquoted tilde (-). If it does, then the word
prior to a / is checked to see if it matches a user name in the
/ etc/passwd file. If a match is found, the - and the matched
login name is replaced by the login directory of the matched user.
This is called a tilde substitution. If no match is found, the origi­
nal text is left unchanged. A - by itself, or in front of a /, is re­
placed by the value of the HOME parameter. A - followed by a +
or - is replaced by the value of the parameter PWD and OLDPWD
respectively.

In addition, the value of each keyword parameter is checked to see
if it begins with a - or if a - appears after a :. In either of these
cases, a tilde substitution is attempted.

Command Substitution
The standard output from a command enclosed in parentheses pre­
ceded by a dollar sign $ () or a pair of grave accents " may be
used as part or all of a word; trailing newlines are removed. In the
second (archaic) form, the string between the quotes is processed
for special quoting characters before the command is executed.
(See "Quoting" later.) The command substitution $ (cat file)
can be replaced by the equivalent but faster $ (<file). Command
substitution of most special commands that do not perform
input/output redirection are carried out without creating a separate
process.

Process Substitution
This feature is only available on versions of the NUX operating
system that support the / dev / f d directory for naming open files.
Each command argument of the form (list), < (list) , or > (list)
will run the process list asynchronously connected to some file in
/ dev / f d. The name of this file will become the argument to the
command. If the form with > is selected then writing on this file
will provide input for list. If < is used or omitted, then the file
passed as an argument will contain the output of the list process.
For example,

February, 1990
RevisionC

5

ksh(l) kSh(l)

6

paste (cut -fl filel) (cut -fC file2) I tee >(procl»(proc2)

cuts fields 1 and 3 from the files filel and file2 respectively,
pastes the results together, and sends it to processl and pro­
cess2, as well as putting it onto the standard output. Note that the
file, which is passed as an argument to the command, is an NUX
pipe(2) so programs that expect to Iseek(2) on the file will not
work.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the
characters *, @, 41:, ?, -, $, and !. A named parameter (a parame­
ter denoted by an identifier) has a value and has zero or more at­
tributes. By using the typeset special command, named
parameters can be assigned values and attributes. The attributes
supported by the shell are described later with the typeset spe­
cial command. Exported parameters pass values and attributes to
subshells but values only to the environment

The shell supports a limited one-dimensional array facility. An
element of an array parameter is referenced by a subscript. A sub­
script is denoted by a [, followed by an arithmetic expression (see
"Arithmetic Evaluation" later in this section), followed by a] .
The value of all subscripts must be in the range of 0 through 511.
Arrays need not be declared. Any reference to a named parameter
with a valid subscript is legal and an array will be created if neces­
sary. Referencing an array without a subscript is equivalent to re­
ferencing the first element

The value of a named parameter may also be assigned by writing:

name=value [name=value] ...

If the integer attribute, - i, is set for name the value is subject to
arithmetic evaluation as described later.

Positional parameters denoted by a number are assigned values
with the set special command. Parameter $ 0 is set from argu­
ment zero when the shell is invoked.

The character $ is used to introduce substitutable parameters.

$ {parameter}
The value, if any. of the parameter is substituted. The braces
are required when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name or
when a named parameter is subscripted. If parameter is one
or more digits, then it is a positional parameter. A positional

February, 1990
RevisionC

ksh(1) ksh(1)

parameter of more than one digit must be enclosed in braces.
If parameter is * or @, then all the positional parameters,
starting with $1, are substituted (separated by a field separa­
tor character). If an array identifier with subscript * or @ is
used, then the value for each of the elements is substituted
(separated by a field separator character).

$ { -# parameter}
If parameter is * or @, the number of positional parameters is
substituted. Otherwise, the length of the value of the param­
eter is substituted.

$ { -# identifier [*] }
The number of elements in the array identifier is substituted.

$ {parameter: -word}
If parameter is set and is not null, then substitute its value;
otherwise substitute word.

$ {parameter: =word}
If parameter is not set or is null, then set it to word; the value
of the parameter is then substituted. Positional parameters
may not be assigned in this way.

$ {parameter: ?word}
If parameter is set and is not null, then substitute its value;
otherwise print word and exit from the shell. If word is omit­
ted then a standard message is printed.

$ {parameter: +word}
If parameter is set and is not null, then substitute word; oth­
erwise substitute nothing.

$ {parameter-#pattern}
$ {parameter##pattern}

If the shell pattern matches the beginning of the value of
parameter, then the value of this substitution is the value of
the parameter with the matched portion deleted; otherwise
the value of this parameter is substituted. In the first form,
the smallest matching pattern is deleted and in the latter form,
the largest matching pattern is deleted.

$ {parameter%pattern}
$ {parameter% %pattern}

If the shell pattern matches the end of the value of parame­
ter, then the value of this substitution is the value of parame­
ter with the matched part deleted; otherwise substitute the

February, 1990
Revision C

7

ksh(l) ksh(l)

8

value of parameter. In the first form, the smallest matching
pattern is deleted and in the latter form, the largest matching
pattern is deleted.

In the preceding, word is not evaluated unless it is to be used as
the substituted string, so that, in the following example, pwd is ex­
ecuted only if d is not set or is null.

echo ${d:- $(pwd)}

If the colon (:) is omitted from the above expression, then the
shell only checks as to whether parameter is set or not.

The following parameters are automatically set by the shell.

:/I: The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by
the set command.

? The decimal value returned by the last executed
command.

$

PPlD

PWD

OLDPWD

RANDOM

The process number of this shell.

The last argument of the previous command.
This parameter is not set for commands which
are asynchronous. This parameter is also used
to hold the name of the matching MAl L file
when checking for mail. Finally, the value of
this parameter is set to the full pathname of each
program the shell invokes and is passed in the
environment.

The process number of the last background
command invoked.

The process number of the parent of the shell.

The present working directory set by the cd
command.

The previous working directory set by the cd
command.

Each time this parameter is referenced, a ran­
dom integer is generated. The sequence of ran­
dom numbers can be initialized by assigning a
numeric value to RANDOM.

February, 1990
RevisionC

kSh(l)

REPLY

kSh(l)

This parameter is set by the select statement
and by the read special command when no ar­
guments are supplied.

SECONDS Each time this parameter is referenced, the
number of seconds since shell invocation is re­
turned. If this parameter is assigned a value,
then the value returned upon reference will be
the value that was assigned plus the number of
seconds since the assignment.

The following parameters are used by the shell.

CDPATH

COLUMNS

EDITOR

ENV

FCEDIT

IFS

HISTFILE

HISTSIZE

February,1990
RevisionC

The search path for the cd command.

If this variable is set, the value is used to define
the width of the edit window for the shell edit
modes and for printing select lists.

If the value of this variable ends in vi and the
VISUAL variable is not set, then the
corresponding flag option (see "Special Com­
mands") will be turned on.

If this parameter is set, then parameter substitu­
tion is performed on the value to generate the
pathname of the script that will be executed
when the shell is invoked (see "Invocation' ').
This file is typically used for alias and
function definitions.

The default editor name for the fc command.

Internal field separators, normally space, tab,
and newline that are used to separate command
words which result from command or parameter
substitution and for separating words with the
special command read. The first character of
the IF S parameter is used to separate arguments
for the $ * substitution (see' 'Quoting' ').

If this parameter is set when the shell is invoked,
then the value is the pathname of the file that
will be used to store the command history (see
"Command Re-entry").

If this parameter is set when the shell is invoked,
then the number of previously entered com-

9

ksh(l) ksh(l)

10

mands that are accessible by this shell will be
greater than or equal to this number. The de­
fault is 128.

HOME The default argument (home directory) for the
cd command.

LINES If this variable is set, the value is used to deter­
mine the column length for printing select
lists. Select lists will print vertically until about
two-thirds of LINES lines are filled.

MAl L If this parameter is set to the name of a mail file
and the MAILPATH parameter is not set, then
the shell informs the user of arrival of mail in
the specified file.

MAl LCHECK This variable specifies how often (in seconds)
the shell will check for changes in the
modification time of any of the files specified by
the MAILPATH or MAIL parameters. The de­
fault value is 600 seconds. When the time has
elapsed, the shell will check before issuing the
next prompt.

MAl LPATH A colon (:) separated list of filenames. If this
parameter is set, then the shell informs the user
of any modifications to the specified files that
have occurred within the last MAl LCHECK
seconds. Each filename can be followed by a ?
and a message that will be printed. The message
will undergo parameter and command substitu­
tion with the parameter, $,defined as the name
of the file that has changed. The default mes­
sage is You have mail in $_.

PATH The search path for commands (see "Execu­
tion").

P S 1 The value of this parameter is expanded for
parameter substitution to define the primary
prompt string which by default is $. The char­
acter ! in the primary prompt string is replaced
by the command number (see "Command Re-
pntnr"\
-"-J ".

February, 1990
RevisionC

ksh(l)

PS2

PS3

SHELL

TMOUT

VISUAL

ksh(l)

Secondary prompt string, by default>.

Selection prompt string used within a select
loop, by default *? .
The pathname of the shell is kept in the environ­
ment. At invocation, if the value of this variable
contains an r in the basename, then the shell be­
comes restricted.

If set to a value greater than zero, the shell will
terminate if a command is not entered within the
prescribed number of seconds after issuing the
P S 1 prompt (Note that the shell can be com­
piled with a maximum bound for this value
which cannot be exceeded.)

If the value of this variable ends in vi then the
corresponding option (see "Special Com-
mands") will be turned on.

The shell gives default values to PATH, PSI, PS2, MAILCHECK,
TMOUT, and IFS, while HOME, SHELL, ENV, and MAIL are not
set by the shell (although HOME is set by login(I)). On some
systems MAIL and SHELL are also set by login(I)).

Blank Interpretation
After parameter and command substitution, the results of substitu­
tions are scanned for the field separator characters (those found in
IFS) and split into distinct arguments where such characters are
found. Explicit null arguments"" or " are retained. Implicit
null arguments (those resulting from parameters that have no
values) are removed.

Filename Generation
Following substitution, each command word is scanned for the
characters *, ?, and [unless the - f option has been set If one of
these characters appears, then the word is regarded as a pattern.
The word is replaced with alphabetically sorted filenames that
match the pattern. If no filename is found that matches the pat­
tern, then the word is left unchanged. When a pattern is used for
filename generation, the character . at the start of a filename or
immediately following a /, as well as the / itself, must be
matched explicitly. In other instances of pattern matching the /
and . are not treated specially.

February, 1990
Revision C

11

ksh(l) ksh(1)

12

*
?

[...]

Quoting

Matches any string, including the null string.

Matches any single character.

Matches anyone of the enclosed characters. A pair
of characters separated by - matches any character
lexically between the pair, inclusive. If the first
character following the opening [is a ! then any
character not enclosed is matched. A - can be in­
cluded in the character set by putting it as the first or
last character.

Each of the metacharacters listed above (see "Definitions" ear­
lier) has a special meaning to the shell and causes termination of a
word unless quoted. A character may be "quoted" (that is, made
to stand for itself) by preceding it with a backslash (\). The pair
\newline is ignored. All characters enclosed between a pair of
single quote marks " are quoted. A single quote cannot appear
within single quotes. Inside double quote marks "" parameter
and command substitution occurs and \ quotes the characters \,
" ", and $. The meaning of $ * and $ @ is identical when not
quoted or when used as a parameter assignment value or as a
filename. However, when used as a command argument, $* is
equivalent to $ld $2d ... , where d is the first character of the
IFS parameter, whereas $@ is equivalent to $1 $2 Inside
grave accent marks (, '), \ quotes the characters \, ',and $. If
the grave accents occur within double quotes, then \ also quotes
the character ".

The special meaning of keywords or aliases can be removed by
quoting any character of the keyword. The recognition of func­
tion names or special command names listed later in this section
cannot be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the spe­
cial command let. Evaluations are performed using long arith­
metic. Constants are of the form [base4f:ln where base is a de­
cimal number between 2 and 36 representing the arithmetic base
and n is a number in that base. If base is omitted, then base 10 is
used.

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command.
When this attribute is selected, the first assignment to the parame-

February, 1990
RevisionC

ksh(l) ksh(l)

ter determines the arithmetic base to be used when parameter sub­
stitution occurs.

Since many of the arithmetic operators require quoting, an alterna­
tive form of the let command is provided. For any command
which begins with a ((, all the characters until a matching)) are
treated as a quoted expression. More precisely, « ...)) is
equivalent to let" ... ".

Prompting
When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a newline is typed and
further input is needed to complete a command, then the secon­
dary prompt (that is, the value of P S 2) is issued.

Input/Output
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may
precede or follow a command and are not passed on to the invoked
command. Command and parameter substitution occurs before
word or digit is used except as noted. Filename generation occurs
only if the pattern matches a single file and blank interpretation is
not performed.

<word

>word

»word

«[-]word

February, 1990
Revision C

Use file word as standard input (file descriptor
0).

Use file word as standard output (file descriptor
1). If the file does not exist then it is created;
otherwise, it is truncated to zero length.

Use file word as standard output. If the file ex­
ists then output is appended to it (by first seeking
to the end-of-file); otherwise, the file is created.

The shell input is read up to a line that is the
same as word, or to an end-of-file. No parameter
substitution, command substitution, or filename
generation is performed on word. The resulting
document, called a "here-document," becomes
the standard input. If any character of word is
quoted, then no interpretation is placed upon the
characters of the document; otherwise, parameter
and command substitution occurs, the \newline
command is ignored, and \ must be used to

13

ksh(l) ksh(l)

14

quote the characters \, $, ',and the first charac­
ter of word. If - is appended to «, then all
leading tabs are stripped from word and from the
document

< & digit The standard input is duplicated from the file
descriptor digit (see dup(2)). Similarly for the
standard output using >& digit.

< & - The standard input is closed. Similarly for the
standard output using >&-.

If one of the above is preceded by a digit, then the file descriptor
number referred to is that specified by the digit (instead of the de­
fault 0 or 1). For example,

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of
file descriptor 1.

The order in which redirections are specified is significant. The
shell evaluates each redirection in terms of the (file descriptor,
file) association at the time of evaluation. For example,

... 1 >fname2 >& 1

first associates file descriptor 1 with file fname. It then associates
file descriptor 2 with the file associated with file descriptor 1 (that
is,fname). If the order of redirections were reversed, file descrip­
tor 2 would be associated with the terminal (assuming previous as­
sociation by file descriptor 1) and then file descriptor 1 would be
associated with file fname.

If a command is followed by & and job control is not active, then
the default standard input for the command is the empty file
/ dev / null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as
modified by input/output specifications.

Environment
The environment (see environ(7)) is a list of name-value pairs
that is passed to an executed program in the same way as a normal
argument list. The names must be identifiers and the values are
character strings. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
,.. nnf-l"'II.n n. n ... n~n .. n. " ... nn"J." n,...'W'V\l'1I. .f'" .. ,nr1 n--:,,.~nrr~" .. J."l':'l ,..."o."''''n.n,.J "' ... ""' .. "'., "}XU"'""''''''''' "'v'" "''''''" ""111'" ... VUIIU, 5"''' ... 115 UI'" "'VU."'''YV"U-

ing value and marking it expo rt. Executed commands inherit

February, 1990
Revision C

kSh(l) kSh(l)

the environment. If the user modifies the values of these parame­
ters or creates new ones, using the export or typeset -x
commands, they become part of the environment. The environ­
ment seen by any executed command is thus composed of any
name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which
must be noted in export or typeset -x commands.

The environment for any simple-command or function may be
augmented by prefixing it with one or more parameter assign­
ments. A parameter assignment argument is a word of the form
identifier=value. Thus, the following two commands are
equivalent (as far as the above execution of cmd is concerned).

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

If the - k flag is set, all· parameter assignment arguments are
placed in the environment, even if they occur after the command
name. The command that follows first prints a=b c and then c.

echo a=b c
set -k
echo a=b c

Functions
The function keyword, described in the "Commands" section
earlier, is used to define shell functions. Shell functions are read
in and stored internally. Alias names are resolved when the func­
tion is read. Functions are executed like commands with the argu­
ments passed as positional parameters. (See' 'Execution" later in
this section.)

Functions execute in the same process as the caller and share all
files, traps (other than EXIT and ERR), and present working direc­
tories with the caller. A trap set on EXIT inside a function is exe­
cuted after the function completes. Ordinarily, variables are
shared between the calling program and the function. However,
the typeset special command used within a function defines lo­
cal variables whose scope includes the current function and all
functions it calls.

The special command return is used to return from function
calls. Errors within functions return control to the caller.

February, 1990
Revision C

15

ksh(l) ksh(l)

16

Function identifiers can be listed with the - f option of the
typeset special command. The text of functions will also be
listed. Function can be undefined with the - f option of the un­
set special command.

Ordinarily, functions are unset when the shell executes a shell
script. The -xf option of the typeset command allows a func­
tion to be exported to scripts that are executed without a separate
invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be placed in the ENV file.

Jobs
If the moni tor option of the set command is turned on, an in­
teractive shell associates a job with each pipeline. It keeps a table
of current jobs, printed by the jobs command, and assigns them
small integer numbers. When a job is started asynchronously with
&, the shell prints a line which looks like

[1] 1234

indicating that the job which was started asynchronously was job
number 1 and had one (top-level) process, whose process ID was
1234.

If you are running a job and wish to do something else you may
hit CONTROL-Z which sends a S TOP signal to the current job. The
shell will then normally indicate that the job has been "Stopped,"
and print another prompt. You can then manipulate the state of
this job, putting it in the background with the bg command, or run
some other commands and then eventually bring the job back into
the foreground with the foreground command f g. A CONTROL-Z
takes effect immediately and is similar to an interrupt in that pend­
ing output and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from
the terminal. Background jobs are normally allowed to produce
output, but this can be disabled by giving the command
stty tostop. If you set this tty option, then background jobs
will stop when they try to produce output as they do when they try
to read input.

There are several ways to refer to jobs in the shell. The character
% introduces a job name. If you wish to refer to job number 1, you
can give it the name %1. Jobs can also be named with prefixes of
thp. ~trinO' tvnP.rl in to ~t~rt th""m Thl1~ on ~v~tpm~ th~t ~l1nTV\rt inh ---- -----0 -Jr-- --- -- --- ---~---. -----, --- -J---"'- _._- --t"t"~'.J~~

control, fg %ed would normally restart a suspended ed(1) job,

February, 1990
RevisionC

ksh(l) ksh(1)

provided a suspended job whose name began with the string ed
was present

The shell maintains a notion of current and previous jobs. In out­
put pertaining to jobs, the current job is marked with a + and the
previous job with a -. The abbreviation % + refers to the current
job and %- refers to the previous job. % % is also a synonym for
the current job.

This shell knows immediately when the state of a process changes
and will generally inform you when a job becomes blocked and no
further progress is possible, This information is offered just before
the shell prints a prompt, so as to not be interrupted.

When you try to leave the shell while jobs are running or stopped,
you will be warned that "You have stopped (running)
jobs". You may use the jobs command to see what they are.
If you use this command or immediately try to exit again, the shell
will not warn you a second time, and the stopped jobs will be ter­
minated.

Signals
The INT and QUIT signals for an invoked command are ignored
if the command is followed by an & and the job moni tor option
is not active. Otherwise, signals have the values inherited by the
shell from its parent (see also the trap command later in this sec­
tion).

Execution
Each time a command is executed, the substitutions described are
carried out. If the command name matches one of the "Special
Commands" listed later, it is executed within the current shell
process. Next, the command name is checked to see if it matches
one of the user defined functions. If it does, the positional param­
eters are saved and then reset to the arguments of the function call.
When the function completes or issues a RETURN, the positional
parameter list is restored and any trap set on EXIT within the
function is executed. The value of a function is the value of the
last command executed. A function is also executed in the current
shell process. If a command name is not a special command or a
user defined junction, a process is created and an attempt is made
to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separat­
ed by a colon (:). The default path is /bin: / usr /bin: (speci-

February, 1990 17
Revision C

ksh(l) ksh(1)

18

fying Ibin, I us r Ibin, and the current directory in that order).
The current directory can be specified by two or more adjacent
colons, or by a colon at the beginning or end of the path list. If the
command name contains a I then the search path is not used.
Otherwise, each directory in the path is searched for an executable
file. If the file has execute permission but is not a directory or an
a. out file, it is assumed to be a file containing shell commands
and a subshell is spawned to read it All nonexported aliases,
functions, and named parameters are removed in this case. If the
shell command file doesn't have read permission, or if the
setuid and/or setgid bits are set on the file, then the shell ex­
ecutes an agent whose job it is to set up the permissions and exe­
cute the shell with the shell command file passed down as an open
file. A parenthesized command is also executed in a subs hell
without removing nonexported quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered
from a terminal device is saved in a hi s tory file. The file
$ HOME I sh history is used if the HISTFILE variable is not
set or is not-writable. A shell can access the commands of all in­
teractive shells which use the same named HISTFILE. The spe­
cial command f c is used to list or edit a portion of this file. The
portion of the file to be edited or listed can be selected by number
or by typing the first character or characters of the command. A
single command or range of commands can be specified. If you
do not specify an editor program as an argument to f c then the
value of the parameter FCED I T is used. If FCED I T is not defined
then Ibin/ ed is used. The edited command(s) is printed and
reexecuted upon leaving the editor. The editor name - is used to
skip the editing phase and to re-execute the command. In this
case a substitution parameter of the form old=new can be used to
modify the command before execution. For example, if r is
aliased to ' f c -e -' then typing r bad=good c will reexe­
cute the most recent command which starts with the letter c, re­
placing the first occurrence of the string bad with the string
good.

Inline Editing Options
Normally, each command line entered from a terminal device is
simply typed and followed by a newline (RETURN or LINEFEED).
If the vi or emacs option is active, the user can edit the com­
mand line. To be in either of these edit modes, set the correspond-

February, 1990
RevisionC

ksh(l) ksh(1)

ing option. An editing option is automatically selected each time
the VISUAL or EDITOR variable is assigned a value ending in ei­
ther of these option names.

The editing features require that the user's tenninal accept RE­
TURN as a carriage return without a linefeed and that a space ()
must overwrite the current character on the screen.

Note: ADM terminal users should set the "space­
advance" switch to "space". Hewlett-Packard series
2621 terminal users should set the straps to
"bcGHxZ etX".

The editing modes implement a concept where the user is looking
through a window at the current line. The window width is the
value of COLUMNS if it is defined, otherwise 80. If the line is
longer than the window width minus two, a mark is displayed at
the end of the window to notify the user. As the cursor moves and
reaches the window boundaries the window will be centered
around the cursor. The mark is a > «, *) if the line extends on
the right (left, both) side(s) of the window.

The emac s Editing Mode
This mode is entered by enabling either the emacs or gmacs op­
tion. The only difference between these two modes is the way
they handle CONTROL-T. To edit, the user moves the cursor to the
point needing correction and then inserts or deletes characters or
words as needed. All the editing commands are control characters
or escape sequences. The notation for control characters is caret
(") followed by the character. For example, "F is the notation for
CONTROL-F. The SmFf key is not depressed. (The notation "?
indicates the DELETE.)

The notation for escape sequences is M- followed by a character.
For example, M-f (pronounced Meta f) is entered by depressing
EsCAPE (ASCII 033) followed by f. (M - F would be the notation
for EsCAPE followed by SmFf (uppercase) F.)

All edit commands operate from any place on the line (not just at
the beginning). Neither RETURN nor LINEFEED is entered after
edit commands except when noted.

,. F Move cursor forward (right) one character.
M-f Move cursor forward one word. (The editor's idea of

a word is a string of characters consisting of only
letters, digits and underscores.)

February, 1990
Revision C

19

ksh(1)

20

AB
M-b
AA
AE
A] char
AXAX
erase

AD
M-d
M_AH
M-h
M_A?

kill

Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor to character char on current line.
Interchange the cursor and mark.

ksh(1)

Delete previous character. (User-defined erase char­
acter as defined by the stty command, usually
CONfROL-H or i).
Delete current character.
Delete current word.
Delete previous word. (Meta-backspace)
Delete previous word.
Delete previous word (Meta-delete) If your interrupt
character is A? (DELETE, the default), then this com­
mand will not work.
Transpose current character with next character in
emacs mode. Transpose two previous characters in
gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lowercase.
Kill from the cursor to the end of the line. If given a
parameter of zero then kill from the start of the line to
the cursor.
Kill from the cursor to the mark.
Push the region from the cursor to the mark on the
stack.
Kill the entire current line. (User-defined kill charac­
ter as defined by the s tty command, usually
CONfROL-G or @.) If two kill characters are entered
in succession, all kill characters following will cause
a linefeed (useful when using paper terminals).
Restore last item removed from the line. (Yank item
back to the line.)
Line feed and print current line.
Set mark. (Null character)
Set mark. (Meta space)
Execute the current line. (Newline)
Execute the current line. (RETURN)

February, 1990
RevisionC

ksh(1) ksh(1)

eo! End-of-file character, normally CONlROL-D, will ter­
minate the shell if the current line is null.

A P Fetch previous command. Each time CONTROL-P is
entered, the previous command, backward in time, is
accessed.

M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history line.
A N Fetch next command. Each time CONIROL-n is en­

tered, the next command, forward in time, is ac­
cessed.

A Rstring Reverse search history for a previous command line
containing string. If a parameter of zero is given, the
search is forward. The string is tenninated by a RE­
TURN or newline character. If string is omitted, then
the next command line containing the most recent
string is accessed In this case, a parameter of zero
reverses the direction of the search.

A 0 Operate-execute the current line and fetch the next
line relative to the current line from the history file.

M-digits Define numeric parameter, the digits are taken as a
parameter to the next command. (ESCAPE) The com­
mands that accept a parameter are ., CONTROL-F,
CONTROL-B, erase, CONTROL-D, CONTROL-K,
CONTROL-R, CONfROL-P, CONfROL-n, M-., M- ,
M-b, M-c, M-d, M-f, M-h, and M_A H. -

M-letter Soft-key searches your alias list for an alias by the
name letter and if an alias of this name is defined, its
value will be inserted on the input queue. The letter
must not be one of the above named meta-functions.

M - . The last word of the previous command is inserted on
the line. If preceded by a numeric parameter, the
value of this parameter detennines which word to in­
sert other than the last word.

M- SameasM- ..
M-* Attempts filename generation on the current word.

An asterisk is appended if the word doesn't contain
any special pattern characters.

M-EscAPE Same as M-*.
M-= Lists all files matching current word pattern if an as­

terisk is appended.

February, 1990 21
RevisionC

ksh(l) ksh(l)

22

"'u
\

"'V

Multiplies parameter of next command by 4.
Escape next character. Editing characters, the user's
erase, kill, and interrupt (normally ... ?) characters,
may be entered in a command line or in a search
string if preceded by a \. The \ removes the next
character's editing features (if any).
Display version of the shell.

The vi Editing Mode
There are two typing modes. Initially, when you enter a command
you are in the input mode. To edit, the user enters control mode
by typing EsCAPE (033), moves the cursor to the point needing
correction, and then inserts or deletes characters or words as need­
ed. Most control commands accept an optional repeat count prior
to the command.

When in v i mode on most systems, canonical processing is ini­
tially enabled and the command will be echoed again if the speed
is 1200 baud or greater, if it contains any control characters, or if
less than one second has elapsed since the prompt was printed.
The escape character terminates canonical processing for the
remainder of the command and the user can then modify the com­
mand line. This scheme has the advantages of canonical process­
ing with the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal will always have
canonical processing disabled. This mode is implicit for systems
that do not support two alternate end-of-line delimiters, and may
be helpful for certain terminals.

Input Edit Commands
By default the editor is in input mode.

Erase

"'w
"'D
"'V

\

Delete previous character. (User-defined erase
character as defined by the s tty command, usu­
ally CONTROL-H or #.)
Delete the previous blank separated word.
Terminate the shell.
Escape next character. Editing characters, the
user's erase or kill characters, may be entered in
a command line or in a search string if preceded
by a CONlROL-V. The CONTROL-V removes the
next character's editing features (if any).
Escape the next erase or kill character.

February, 1990
RevisionC

kSh(l) ksh{l)

Motion Edit Commands
These commands will move the cursor.

[count] 1 Cursor forward (right) one character.
[count]w Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that fol­

lows a blank.
[count]e Cursor to the end of the current word.
[count]E Cursor to the end of the current blank delimited

[count]h
[count]b
[count]B
[count]fc
[count]Fc
[count]tc
[count]Tc

o

word.
Cursor backward (left) one character.
Cursor backward one word.
Cursor to the preceding blank separated word.
Find the next character c in the current line.
Find the previous character c in the current line.
Equivalent to f followed by h.
Equivalent to F followed by 1.
Repeats the last single character find command,
f, F, t, or T.
Reverses the last single character find command.
Cursor to the start of the line.
Cursor to the first nonblank character in the line.

$ Cursor to the end of the line.

Search Edit Commands
These commands access your command history.

[count]k Fetch previous command. Each time k is en­
tered the previous command in time is accessed.

[count] - Equivalent to k.
[count] j Fetch next command. Each time j is entered the

next command in time is accessed.
[count] + Equivalent to j.
[count]G The command number count is fetched. The de­

/ string

?string

n

February, 1990
Revision C

fault is the least recent history command.
Search backward through history for a previous
command containing string. The string is ter-
minated by a RETURN or newline. If string is
null the previous string will be used.
Same as / except that the search will be in the
forward direction.
Search for the next match of the last pattern to /
or ? commands.

23

ksh(1) ksh(1)

N Search for the next match of the last pattern to /
or ?, but in reverse direction. Search history for
the string insert by the previous / command.

Text Modification Edit Commands

24

These commands will modify the line.

a Enter input mode and enter text after the current
character.

A Append text to the end of the line. Equivalent to
Sa.

[count] cmotion
c[count]motion

Delete from the current character through the
character preceding the cursor which was moved
by motion. If motion is c, the entire line will be
deleted and the input mode entered.

e Delete from the current character through the
end of the line and enter input mode. Equivalent
to c$.

S Equivalent to cc.
D Delete from the current character through the

end of the line. Equivalent to d$.
[count]dmotion
d[count]motion

Delete from the current character through the
character that motion would move to. If motion
is d, the entire line will be deleted.

i Enter input mode and insert text before the
current character.

I Insert text before the beginning of the line.
Equivalent to the two character sequence Ai.

[count]p Place the previous text modification before the
cursor.

[count]p Place the previous text modification after the
cursor.

R

rc

Enter input mode and replace the characters on
the screen with characters you type in overlay
fashion.
Rpnl~{'p thp {'nTrpnt {'h~T~{'tPT u,ith ,. _.1"' .. ___ ... -- __a_ - ... ~ "'~ ~.

February, 1990
RevisionC

ksh(l) ksh(l)

[count] x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification command.

Invert the case of the current character and ad­
vance the cursor.

[count]_ Causes the count word of the previous command
to be appended and input mode entered. The last
word is used if count is omitted.

* Causes an* to be appended to the current word
and filename generation is attempted. If no
match is found. it rings the bell. Otherwise. the
word is replaced by the matching pattern and in­
put mode is entered.

Other Edit Commands
[count]ymotion
y[count]motion

Yank from the current character through the
character that motion would move the cursor to
and puts them into the delete buffer. The text
and cursor are unchanged.

Y Yanks from the current position to the end of the
line. Equivalent to y$.

u Undo the last text modifying command.
U Undo all the text modifying commands per­

formed on the line.
[count] v Returns the command

fc -e ${VISUAL:-${EDITOR:-vi}} COUN

in the input buffer. If count is omitted. then the
current line is used.

A L Line feed and print current line. Has effect only
in the control mode.

A J Execute the current line. regardless of mode.
(Newline)

A M Execute the current line. regardless of mode.
(RETURN) * Inserts a * before the line and after each newline
prior to sending it. Useful for causing the
current line to be inserted in the history without
being executed.

February. 1990
Revision C

25

ksh(l) ksh(l)

26

Lists the filenames that match the current word
as if an asterisk were appended to it

@letter Search your alias list for an alias by the
name letter and if an alias of this name is
defined:" its value will be inserted on the input
queue for processing.

Special Commands
The following simple commands are executed in the shell process.
Input/output redirection is permitted. Unless otherwise indicated,
the output is written on file descriptor 1. Commands that are pre­
ceded by one or two t are treated specially in the following ways:

• Parameter assignment lists preceding the command remain in
effect when the command completes.

• Commands are executed in a separate process when used
within command substitution.

• Errors in commands preceded by tt cause the script that con­
tains them to abort.

t : [arg ...]
The command only expands parameters. A zero exit code is
returned.

tt . file [arg ...]
Read and execute commands from file and return. The com­
mands are executed in the current shell environment. The
search path specified by PATH is used to find the directory
containing file. If any arguments arg are given, they become
the positional parameters. Otherwise the positional parame­
ters are unchanged.

alias [-tx] [name [=value] ...]
alias with no arguments prints the list of aliases in the
form name=value on standard output. An alias is defined
for each name whose value is given. A trailing space in
value causes the next word to be checked for alias substitu­
tion. The -t flag is used to set and list tracked aliases. The
value of a tracked alias is the full pathname corresponding to
the given name. The value becomes undefined when the
value of PATH is reset but the aliases continue to be tracked.
Without the -t flag, assigned to each name in the argument
list for which no value is given~ the name and value of the
alias is printed. The -x flag is used to set or print exported

February, 1990
RevisionC

ksh(l) ksh(l)

aliases. An exported alias is defined across subshell environ­
ments. Alias returns true unless a name is given for which no
alias has been defined.

bg [%job]
Puts the specified job into the background. The current job is
put in the background if job is not specified.

break [n]
Exits from the enclosing for, while, until, or select
loop, if any. If n is specified, then break n levels.

continue [n]
Resumes the next iteration of the enclosing for, while,
until, or select loop. If n is specified then resume at the
nth enclosing loop.

t cd [arg]
t cdoldnew

This command can be in either of two forms. In the first
form it changes the current directory to argo If arg is - the
directory is changed to the previous directory. The shell
parameter HOME is the default arg. The parameter PWD is set
to the current directory. The shell parameter CDPATH
defines the search path for the directory containing arg. Al­
ternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path­
name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list.
If arg begins with a /, then the search path is not used. Oth­
erwise, each directory in the path is searched for arg.

The second form of cd substitutes the string new for the
string old in PWD, the current directory name, and tries to
change to this new directory.

echo [-n] [arg ...]
The built-in echo command writes its arguments (separated
by blanks and terminated by a RETURN) on the standard out­
put If the -n flag is used, no newline is added to the output.
echo is useful for producing diagnostics in shell programs
and for writing constant data on pipes. To send diagnostics
to the standard error file, do

echo ... 1>&2

February, 1990 27
Revision C

ksh(1) ksh(1)

28

tt eva1 [arg ...]
The arguments are read as input to the shell and the resulting
command(s) are executed.

tt exec [arg ...]
If arg is given, the command specified by the arguments is
executed in place of this shell without creating a new pro­
cess. Input/output arguments may appear and affect the
current process. If no arguments are given, the effect of this
command is to modify file descriptors as prescribed by the
input/output redirection list. In this case, any file descriptor
having numbers greater than 2 and are opened with this
mechanism, are closed when invoking another program.

exit [n]
Causes the shell to exit with the exit status specified by n. If
n is omitted then the exit status is that of the last command
executed. An end-of-file will also cause the shell to exit un­
less it has the ignoreeof option (see set later in this sec­
tion) turned on.

tt expo rt [name ...]
The given names are marked for automatic export to the en­
vironment of subsequently-executed commands.

tt fc [-e enamel [-n1r] [first] [last]
tt f c -e - [old=new] [command]

In the first form, a range of commands from first to last is
selected from the last HISTSIZE commands that were typed
at the terminal. The arguments first and last may be specified
as a number or as a string. A string is used to locate the most
recent command that begins with the given string. A nega­
tive number is used as an offset to the current command
number. If the flag -1, is selected, the commands are listed
on standard output. Otherwise, the editor program ename is
invoked on a file containing these keyboard commands. If
ename is not supplied, then the value of the parameter
FCEDIT (default /bin/ ed) is used as the editor. When
editing is complete, the edited command(s) is executed. If
last is not specified then it will be set to first. If first is not
specified, the default will be the previous command for edit­
ing and -16 for listing. The flag - r reverses the order of the
commands and the flag -n~ when listing~ suppresses the com­
mand numbers. In the second form the command is re­
executed after the substitution old=new is performed.

February, 1990
RevisionC

kSh(l) kSh(l)

fg [%job]
If job is specified t f g brings it to the foreground. Otherwise t

the current job is brought into the foreground.

jobs [-1]
Lists the active jobs; when given the -1 option t it lists pro­
cess IDs in addition to the normal information.

kill [-sig] process ...
Sends either the TERM (terminate) signal or the specified sig­
nal to the specified jobs or processes. Signals are given ei­
ther by number or by name (as given in
/usr/include/signal.h t stripped of the prefix 81G).
The signal numbers and names are listed by kill -1. If
the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal
if it is stopped. The argument process can be either a process
ID or a job.

let arg ...
Each arg is an arithmetic expression to be evaluated. All cal­
culations are executed with long integers and no check for
overflow is performed. Expressions consist of constants,
named parameters, and operators. The following set of
operators, listed in order of decreasing precedence, have been
implemented:

* / %
+ -
<= >= < >
== !=

unary minus
logical negation
multiplication, division, remainder
addition, subtraction
comparison
equality inequality
arithmetic replacement

Subexpressions in parentheses () are evaluated first and can
be used to override the precedence rules as listed. The
evaluation within a precedence group is from right to left for
the = operator and from left to right for the others.

A parameter name must be a valid identifier. When a param­
eter is encountered, the value associated with the parameter
name is substituted and expression evaluation resumes. Up
to 9 levels of recursion are permitted.

February, 1990
Revision C

29

kSh(l) kSh(l)

30

The return code is 0 if the value of the last expression is
nonzero, and 1 if otherwise.

tt newgrp [arg ...]
Equivalent to exec newgrp arg ...

print [-Rnprsu[n]] [arg ...]

pwd

The shell output mechanism. With no flags or with the flag
-, the arguments are printed on standard output as described
byecho(l). In raw mode, -R or-r, the escape conventions
of echo are ignored. The -R option will print all subsequent
arguments and options other than -no The -p option causes
the arguments to be written onto the pipe of the process
spawned with I & instead of standard output. The -s option
causes the arguments to be written onto the history file in­
stead of onto standard output. The -u flag option can be
used to specify the one digit file descriptor unit number n on
which the output will be placed. The default is 1. If the flag
option -n is used, no newline is added to the output.

Equivalent to print -r - $PWD

read [-prsu [n]] [name?prompt] [name ...]
The shell input mechanism. One line is read and is broken up
into words using the characters in IFS as separators. In raw
mode, - r, a \ at the end of a line does not signify line con­
tinuation. The first word is assigned to the first name, the
second word to the second name, and so on, with leftover
words assigned to the last name. The -p option causes the
input line to be taken from the input pipe of a process
spawned by the shell using I &. If the - s flag is present, the
input will be saved as a command in the history file. The flag
-u can be used to specify a one digit file descriptor unit to
read from. The file descriptor can be opened with the exec
special command. The default value of n is O. If name is
omitted then REPLY is used as the default name. The return
code is 0 unless an end-of-file is encountered. An end-of-file
with the -p option causes cleanup for this process so another
can be spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt when the shell is
interactive. If the given file descriptor is open for writing and
is a terminal device~ then the prompt is placed on this unit.
Otherwise the prompt is issued on file descriptor 2. The re­
turn" code is 0 unless an end-of-file is encountered.

February, 1990
RevisionC

ksh(l) ksh(l)

tt readonly [name .. . J
The given names are marked "read only" and these names
cannot be changed by subsequent assignment

tt ret urn [nJ
Causes a shell function to return to the invoking script with
the return status specified by n. If n is omitted then the return
status is that of the last command executed. If ret urn is in­
voked while not in afunction or a . script, then it is the same
as an exit.

set [-aefhkmnostuvxJ [-0 option ... J [arg . .. J
The flags for this command have meaning as follows:

-a All subsequent parameters defined are automatical­
ly exported.

-e If the shell is noninteractive and if a command
fails. execute the ERR trap. if set. and exit immedi­
ately. This mode is disabled while reading profiles.

-f Disables filename generation.

- h Each command whose name is an identifier be-
comes a tracked alias when first encountered.

- k All parameter assignment arguments are placed in
the environment for a command, not just those that
precede the command name.

-m Background jobs will run in a separate process
group and a line will print upon completion. The
exit status of background jobs is reported in a com­
pletion message. On systems with job control, this
flag is turned on automatically for interactive
shells.

-n Reads commands but does not execute them. Ig­
nored for interactive shells.

-0 The following argument can be one of the follow­
ing names:

February, 1990
RevisionC

allexport

errexit

bgnice

Same as -a.

Same as -e.

All background jobs are run at a
lower priority.

31

ksh(l)

-p

32

emacs

gmacs

ignoreeof

keyword

markdirs

monitor

noexec

noglob

nounset

protected

verbose

trackall

vi

viraw

xtrace

ksh(l)

Enters into an emacs style in­
line editor for command entry.

Enters into a gmacs style in­
line editor for command entry.

The shell will not exit on end­
of-file. The command exi t
must be used.

Same as -k.

All directory names resulting
from filename generation have a
trailing I appended.

Same as -me

Same as -no

Same as -f.
Same as -u.

Same as -po

Same as -v.

Same as -h.

Enters into insert mode of a vi
style inline editor until the es-
cape character 033 is used. This
enables the move mode. A RE­
TURN sends the line.

Each character is processed as it
is typed in v i mode.

Same as -x.

If no flag option name is sup­
plied, then the current settings
are printed.

Resets the PATH variable to the default value, dis­
ables processing of the $HOME/. profile file,
and uses the file letc/suidyrofile instead
of the ENV file. This mode is automatically en­
abled whenever the effective user ID (or group ID)
is not equal to the real user ID (or group ID).

February, 1990
RevisionC

kSh(l)

-S

-t

-u

-v

-x

kSh(l)

Sorts the positional parameters.

Exits after reading and executing one command.

Treats unset parameters as an error when substitu­
tion is necessary.

Prints shell input lines as they are read.

Prints commands and their arguments as they are
executed.

Turns off -x and -v flags and stops examining ar­
guments for flags.

Does not change any of the flags; useful in setting
$1 to a value beginning with -. If no arguments
follow this flag, then the positional parameters are
unset.

Using + rather than - causes these flags to be turned off.
These flags can also be used upon invocation of the shell.
The current set of flags may be found in $ -. The remaining
arguments are positional parameters and are assigned, in ord­
er, to $1 $2 If no arguments are given then the values of
all names are printed on the standard output.

t shift [n]
The positional parameters from $n+1 ... are renamed $1
... ; default n is 1. The parameter n can be any arithmetic ex­
pression that evaluates to a non-negative number less than or
equal to $-#.

test [expr]
Evaluate conditional expression, expr. test evaluates the
expression expr and, if its value is true, returns a zero (true)
exit status; otherwise, a nonzero (false) exit status is returned;
test also returns a nonzero exit status if there are no argu­
ments. The superuser is always granted execute permission
even though (1) execute permission is meaningful only for
directories and regular files, and (2) exec requires that at
least one execute mode bit be set for a regular file to be exe­
cutable. The following primitives are used to construct expr.

-r file True iffile exists and is readable.

-w file True if file exists and is writable.

February, 1990
RevisionC

33

ksh(l)

34

-x file

-ffile

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-kfile

-s file

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

ksh(l)

True if file exists and is a character special file.

True if file exists and is a block special file.

True iffile exists and is a named pipe (FIFO).

True iffile exists and its set-user-ID bit is set.

True iffile exists and its set-group-ID bit is set

True if file exists and its sticky bit is set.

True if file exists and has a size greater than
zero.

-t [lildes] True if the open file whose file descriptor
number is fildes (1 by default) is associated with
a terminal device.

- z sl True if the length of string sl is zero.

-n sl True if the length of the string sl is nonzero.

sl = s2 True if strings sl and s2 are identical.

sl ! = s2 True if strings sl and s2 are not identical.

sl True if sl is not the null string.

nl -eq n2 True if the integers nl and n2 are algebraically
equal. Any of the comparisons: -ne, -gt,
-ge, -It, and -Ie may be used in place of

-a

-0

(expr)

-eq.

These primaries may be combined with the fol­
lowing operators:

Unary negation operator.

Binary AND operator.

Binary OR operator (-a has higher precedence
than -0).

Parentheses for grouping.

Notice that all the operators and flags are
separate arguments to test. Notice also that
parentheses are meaningful to the shell and

February, 1990
RevisionC

kSh(l)

-Lfile

kSh(l)

therefore, must be escaped.

test is typically used in shell scripts as in the
following example, which prints the message
"foo is a directory" if it is found to
be one when test is run.

if test -d foo
then

echo "foo is a dir"
fi

the arithmetic comparison operators are not res­
tricted to integers. They allow any arithmetic
expression. Four additional primitive expres­
sions are allowed:

True, iffile is a symbolic link.

filel -ntfile2 True, iffilel is newer thanfile2.

filel -otfile2 True, iffilel is older thanfile2.

filel -ef file2 True, if file 1 has the same device and inode
number asfile2.

times
Prints the accumulated user and system
times for the shell and for processes run
from the shell.

trap [arg] [sig] ...
The command arg is to be read and execut­
ed when the shell receives signal(s) sig.
(Note that arg is scanned once when the
trap is set and once when the trap is taken.)
Each sig can be given as a number or as the
name of the signal. Trap commands are ex­
ecuted in order of signal number. Any at­
tempt to set a trap on a signal that was ig­
nored on entry to the current shell is inef­
fective. If arg is omitted or is -, then all
trap(s) sig are reset to their original values.
If arg is the null string then this signal is ig­
nored by the shell and by the commands it
invokes. If sig is ERR then arg will be exe­
cuted whenever a command has a nonzero
exit code. This trap is not inherited by

February, 1990
Revision C

35

ksh(l)

36

ksh(l)

functions. If sig is 0 or EXI T and the
trap statement is executed inside the body
of a function, then the command arg is exe­
cuted after the function completes. If sig is
o or EXIT for a trap set outside any func­
tion, then the command arg is executed on
exit from the shell. The t rap command
with no arguments prints a list of commands
associated with each signal number.

tt typeset [-HLRZfilprtux [n] [name [=value]] ...]
When invoked inside a function, a new in­
stance of the parameter name is created.
The parameter value and type are restored
when the function completes. The follow­
ing list of attributes may be specified:

- H This flag provides NUX to host
namefile mapping on non-UNIX®
machines.

- L Justifies left and removes leading
blanks from value. If n is nonzero, it
defines the width of the field, otherwise
the width is determined by the width of
the value of first assignment. When
the parameter is assigned to, it is filled
on the right with blanks or truncated, if
necessary, to fit into the field. Leading
zeros are removed if the - Z flag is also
set. The - R flag is turned off.

-R Justifies right and fills with leading
blanks. If n is nonzero, it defines the
width of the field, otherwise the width
is determined by the width of the value
of first assignment. The field is filled
with blanks or truncated from the end
if the parameter is reassigned. The L
flag is turned off.

- Z justifies right and fills with leading
zeros if the first nonblank character is a
digit and the - L flag has not been set.
If the - L flag has been set, the field is

February, 1990
Revision C

ksh(l)

February, 1990
Revision C

ksh(l)

left adjusted and any leading zeros are
removed. If n is nonzero, it defines the
width of the field; otherwise the width
is determined by the width of the value
of first assignment.

-f The names refer to function names
rather than parameter names. No as­
signments can be made and the only
other valid flags are -t, which turns on
execution-tracing for this function and
-x, to allow the function to remain in
effect across shell procedures executed
in the same process environment.

-i Parameter is an integer. This makes
arithmetic faster. If n is nonzero it
defines the output arithmetic base, oth­
erwise the first assignment determines
the output base.

-1 All uppercase characters converted to
lowercase. The uppercase flag, -u is
turned off.

-p The output of this command, if any, is
written onto the two-way pipe.

-r The given names are marked read only
and these names cannot be changed by
subsequent assignment

-t Tags the named parameters. Tags are
user-definable and have no special
meaning to the shell.

-u All lowercase characters are converted
to uppercase characters. The lower­
case flag, -1 is turned off.

-x The given names are marked for au­
tomatic export to the environment of
subsequent! y-executed commands.

Using + rather than - causes these flags to
be turned off. If no name arguments are
given but flags are specified, a list of names
(and optionally the values) of the parame-

37

ksh(l)

38

kSh(l)

ters which have these flags set is printed.
(Using + rather than - keeps the values to
be printed.) If no names and flags are
given, the names and attributes of all
parameters are printed.

ulimit [-f] [n]

-f Imposes a size limit of n 512-byte
blocks on files written by child
processes (files of any size may be
read). This is the default If n is not
given, the current limit is printed.

When using the ulimi t feature, a
regular user is only allowed to bring
resource limits down. However, only
the superuser can return the limit to a
higher status.

umask [nnn] The user file-creation mask is set to nnn
(see umask(2». If nnn is omitted, the
current value of the mask is printed.

unalias name ...
The parameters given by the list of names
are removed from the alias list

unset [-f] name ...
The parameters given by the list of names
are unassigned. That is, their values and at­
tributes are erased. Read only variables
cannot be unset If the flag, -f, is set, then
the names refer to function names.

wai t [n] Waits for the specified child process and re­
ports its termination status. If n is not given
then all currently active child processes are
waited for. The return code from this com­
mand is that of the process waited for.

whence [-v] name ...
For each name, indicate how it would be in­
terpreted if used as a command name.
ThPc A!lCY -u nrnifll('p~!l mnrp vprhn~p rp_ - .. - "--0' "'.t'- ------ - _. - .. -- ---- .. --

port

February, 1990
Revision C

ksh(l) ksh(1)

Invocation
If the shell is invoked by exee(2), and the first character of argu­
ment zero ($ 0) is -, then the shell is assumed to be a login shell
and commands are read from fete/profile and then from ei­
ther . profile in the current directory or $HOME/ . profile,
if either file exists. Next, commands are read from the file named
by performing parameter substitution on the value of the environ­
ment parameter ENV if the file exists. If the -s flag is not present
and arg is, then a path search is performed on the first arg to
determine the name of the script to execute. The script arg must
have read permission and any setuid and setgid settings will
be ignored. Commands are then read as described later; the fol­
lowing flags are interpreted by the shell when it is invoked.

-e string If the -e flag is present then commands are read from
string.

-s If the -s flag is present or if no arguments remain,
then commands are read from the standard input.
Shell output, except for the output of the "Special
Commands" listed earlier, is written to file descriptor
2.

-i If the -i flag is present or if the shell input and output
are attached to a terminal (as told by ioetl(2» then
this shell is interactive. In this case TERM is ignored
(so that kill 0 does not kill an interactive shell)
and INTR is caught and ignored (so that wai t is in­
terruptible). In all cases, QUIT is ignored by the
shell.

- r If the - r flag is present, the shell is a restricted shell
and is used to set up login names and execution en­
vironments whose capabilities are more controlled
than those of the standard shell. The actions of the
restricted shell are identical to those of ksh, except
that changing the directory, setting the value of
SHELL, ENV, or PATH, specifying path or command
names containing /, and redirecting output (> and
> >) are disallowed.

The restrictions above are enforced after. profile and the ENV
files are interpreted.

February, 1990
Revision C

39

ksh(l) ksh(l)

When a command to be executed is found to be a shell procedure,
the restricted shell invokes ksh to execute it Thus, it is possible
to provide to the end-user shell procedures that have access to the
full power of the standard shell, while imposing a limited menu of
commands; this scheme assumes that the end-user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the . profile,
by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory), has com­
plete control over user actions.

The system administrator often sets up a directory of commands
(for example, /usr / rbin) that can be safely invoked by the res­
tricted shell. Some systems also provide a restricted editor red.

The remaining flags and arguments are described under the set
command earlier.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell
to return a nonzero exit status. Otherwise, the shell returns the
exit status of the last command executed (see also the exi t com­
mand earlier). If the shell is being used noninteractively, then ex­
ecution of the shell file is abandoned. Runtime errors detected by
the shell are reported by printing the command or function name
and the error condition. If the line number that the error occurred
on is greater than one, then the line number is also printed in
square brackets ([]) after the command or function name.

FILES
/bin/ksh
/ete/passwd
fete/profile
/ete/suid-profile
$HOME/.profile
/tmp/ksh*
/dev/null

SEE ALSO

40

eat(l), esh(l), eeho(l), ed(I), env(1), newgrp(l), sh(l),
vi(I), dup(2), exee(2), fork(2), ioetl(2), lseek(2),
pipe(2), umask(2), ulimi t(2), wai t(2), rand(3), sig­
nal(3), a. out(4), profile(4), environ(5).
"Korn Shell Reference" inA/UX User Interface.

February, 1990
RevisionC

ksh(l) ksh(l)

CAVEATS
If a command which is a tracked alias is executed, and then a
command with the same name is installed in a directory in the
search path prior to the directory where the original command was
found, the shell will continue to exec the original command. Use
the -t option of the alias command to correct this situation.

Some very old shell scripts contain a ... as a synonym for the pipe
character I.

If a command is piped into a shell command, then all variables set
in the shell command are lost when the command completes.

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command .file reads the whole file before any com­
mands are executed. Therefore, alias and unalias com­
mands in the file will not apply to any functions defined in the file.

February, 1990
Revision C

41

last(l) last(l)

NAME
1 a s t - display login and logout times for each user of the
system

SYNOPSIS
last [name ... J [tty •.• J

DESCRIPTION
1 a s t will look back in the wtmp file which records alilogins and
logouts for information about a user, a terminal or any group of
users and terminals. Arguments specify names of users or termi­
nals of interest Names of terminals may be given fully or abbre­
viated. For example, last 0 is the same as last ttyO. If
multiple arguments are given, the information which applies to
any of the arguments is printed. For example, last root
console would list all of "root's" sessions as well as all ses­
sions on the console terminal.

1 a s t reports the sessions of the specified users and terminals,
most recent first, indicating start times, duration, and terminal for
each. If the session is still continuing or was cut short by a reboot,
1 a s t so indicates.

EXAMPLES
last reboot

will give an indication of mean time between reboots of the sys­
tem.

last with no arguments prints a record of alllogins and logouts,
in reverse order. Since last can generate a great deal of output,
piping it through the more program for screen viewing is advised.

If last is interrupted with an Interrupt signal, (generated by
CON1ROL-C) it indicates how far the search has progressed in
wtmp. If interrupted with a quit signal (generated by a
CON1ROL-\), last exits and dumps core.

CON1ROL-D (EOp) signal does nothing. Therefore exit gracefully
from 1 a s t with an interrupt signal.

FILES
/usr/bin/last
/etc/wtmp

1 February, 1990
RevisionC

last(l)

SEE ALSO
acct(IM), utmp(4).

February, 1990
Revision C

last(l)

2

launch(l) launch(l)

NAME
launch - execute a Macintosh binary application

SYNOPSIS
launch -[it] filename [document ...]
launch -p[i t] filename document .. .

DESCRIPTION

1

launch executes a Macintosh binary file in NUX.
filename is the name of the application to be executed. document
is an individual document to be opened.

The filename and document parameters are set up as if they were
icons selected through the Macintosh FinderTM. Thus, the NUX
command

launch macpaint

is equivalent to double clicking on the icon for MacPaint. The
NUX command

launch macpaint mydwg

is equivalent to double clicking on the icon for the MacPaint docu­
mentmydwg.

If your application is in a pair of AppleDouble files, the two files
must be in the same directory. You do not specify both filenames;
launch automatically looks for the associated header file when
you launch an AppleDouble data file.

You can specify one or both of these two options:

-i Initializes QuickDraw™, the Dialog Manager, and TextEdit.
You must specify this option if the application does not expli­
citly initialize these libraries. (In the native Macintosh en­
vironment, the Finder initializes these libraries during startup.
Therefore, some Macintosh applications do not explicitly ini­
tialize them.)

-t Sets up and maintains the Ticks, Time, and KeyMap low­
memory global variables, which are not ordinarily supported
in the NUX Toolbox.

The -t option uses the Vertical Retrace Manager to set up a
task that is invoked at every tick of the clock. Therefore, this
option uses a lot of CPU time and should be used only if you
are running a Macintosh binary fiie that requires to use one or
more of these low-memory global variables.

February, 1990
RevisionC

launch(l) launch(1)

Alternatively, you can specify the print option

-p Prints the specified document The -p option requires a do­
cument name in the command line. U sing the -p option is
equivalent to selecting a document through the Macintosh
Finder and then choosing Print from the File menu.

If all of the application's code resides in an AppleDouble header
file in A/UX (see Appendix B of the A/UX Toolbox document),
you can make the associated data file either a copy of launch or
a link to launch, setting up the simplest and most natural way to
run a Macintosh application. For example, consider an application
named xyz; the AppleDouble data file of xyz has the A/UX
filename xyz and is a link to launch. The AppleDouble header
file of xyz has the A/UX filename %xyz and contains a binary
copy of the resource fork of the Macintosh file xyz.

To launch xyz, type this command

xyz

To launch xyz and specify a document file abc, type this com­
mand

xyz abc

Entering this command is equivalent to double-clicking the icon
for the file abc from the Macintosh Finder.

EXAMPLES
The command

launch macpaint

executes the Macintosh binary application MacPaint®.

launch macpaint demo

executes MacPaint and opens the document demo.

FILES
/mac/bin/launch

February, 1990
RevisionC

2

lav(l) lav(l)

NAME
1 a v - display load average statistics

SYNOPSIS
lav

DESCRIPTION
lav displays the average number of jobs in the run queue over the
last 1, 5, and 15 minutes.

FILES
/usr/bin/lav

SEE ALSO
ruptime(I), uptime(1).

1 February, 1990
RevisionC

i~

Id(l) Id(l)

NAME
Id -link editor for'common object files

SYNOPSIS
Id [-eepsymJ [-fjill] [-Ix] [-m] [-oou¢leJ [-r] [-s] [-t]
[-usymname] [-x] [-z] [-F] [-Ldir] [-M] [-N] [-V] [-VSnum]
jile ...

DESCRIPTION
Id combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information
for symbolic debugging. In the simplest case, the names of
several object programs are given, and Id combines them, pro­
ducing an object module that can either be executed or used as in­
put for a subsequent Id run. The output of Id is left in a. out.
This file is executable if no errors occurred during the load. If any
input file,jilename, is not an object file, Id assumes it is either a
text file containing link editor directives or an archive library.

If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining
an unresolved external reference are loaded. The library (archive)
symbol table (see ar(4)) is searched sequentially with as many
passes as are necessary to resolve external references that can be
satisfied by library members. Thus, the ordering of library
members is unimportant.

FLAG OPTIONS
The following flag options are recognized by 1 d:

-eepsym
Set the default entry-point address for the output file to be
that of the symbol epsym.

-fjill
Set the default fill pattern for holes within an output section
as well as initialized bs s sections. The argument jill is a 2-
byte constant.

-Ix Search a library libx. a, where x is up to seven characters.
A library is searched when its name is encountered, so the
placement of a -1 is significant. The default library location
is /lib.

-m Produce a map or listing of the input/output sections on the
standard output.

February, 1990
Revision C

1

Id(l) Id(l)

2

-ooutfile
Produce an output object file by the name outfile. The name
of the default object file is a. out.

-r Retain relocation entries in the output object file. Relocation
entries must be saved if the output file is to become an input
file in a subsequent Id run. The link editor does not com­
plain about unresolved references.

-s Strip line-number entries and symbol-table information from
the output object file.

-t Turn off the warning about multiply-defined symbols that are
not the same size.

-usymname
Enter symname as an undefined symbol in the symbol table.
This is useful for loading entirely from a library, because ini­
tially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine.

-x Do not preserve local (nonglobal) symbols in the output sym­
bol table; enter external and static symbols only. This option
saves some space in the output file.

-z Load the text segment at an offset from 0 so that null pointer
references generate a segmentation violation.

-F Create a demand-paged executable.

-Ldir
Change the algorithm of searching for 1 ibx . a to look in dir
before looking in /1 ib and / u s r / 1 ib. This flag option is
effective only if it precedes the -1 flag option on the com­
mand line.

-M Produce an output message for each multiply-defined exter­
nal definition. However, if the objects being loaded include
debugging information, extraneous output is produced. (See
the -g option in cc(1).

-N Put the data section immediately following the text in the out­
put file. Note that the -N option must be used either with
/usr/lib/unshared.ld or with a user-supplied .ld
file.

-v Produce an outvut a message giving information about the
version of Id .,eing used. - - -

February, 1990
RevisionC

Id(l) Id(l)

-VSnum
Use num as a decimal version stamp identifying the a. out
file that is produced. The version stamp is stored in the op­
tional header.

The following information about section-alignment and MMU re­
quirements should be considered at system installation.

The default section alignment action for Id on M68000 systems is
to align the code (. text) and data (. data and .bss combined)
separately on 512-byte boundaries. Since MMU requirements
vary from system to system, this alignment is not always desir­
able. This version of Id provides a mechanism to allow the
specification of different section alignments for each system, al­
lowing you to align each section separately on n-byte boundaries,
where n is a multiple of 512. The default section-alignment action
for Id on this system is to align the code (. text) at byte 0 and
the data (. data and . bss combined) at the 4 megabyte boun­
dary (byte 10487576).

When all input files have been processed (and if no override is
provided), Id searches the list of library directories (as with the
-1 flag option) for a file named default.ld. If this file is
found, it is processed as an Id instruction file (or ifile). The
default .ld file should specify the required alignment as out­
lined below. If it does not exist, the default section-alignment ac­
tion is taken.

The default .ld file should appear as follows, with <align­
ment> replaced by the alignment requirement in bytes:

SECTIONS {
. text : {}
GROUP ALIGN «alignment>) : {

. data { }

. bss { }
}

Note: This system requires a data rounding that is an even
multiple of 1 megabyte (1 megabyte is the segment size).

For example, a default .ld file of the following form would
provide the same alignment as the default (512-byte boundary):

February, 1990
RevisionC

3

ld(l) ld(l)

SECTIONS {
. text : {}
GROUP ALIGN(512) : {

. data {}

.bss {}
}

To get alignment on 2K-byte boundaries, the following
default .ld file should be specified:

SECTIONS {
. text : {}
GROUP ALIGN(2048) : {

. data : {}

. bss : {}
}

Note that this system requires a data rounding that is an even mul­
tiple of 1 megabyte (1 megabyte is the segment size).

For more information about the format of ld instruction files or
the meaning of the commands, see "ld Reference" in AIUX Pro­
gramming Languages and Tools. Volume 2.

FILES
/bin/ld
/lib/*
/usr/lib/*
a.out default output file

SEE ALSO
as(I), cc(1), a. out(4), ar(4),
"ld Reference" in AIUX Programming Languages and Tools,
Volume 2.

WARNINGS

4

Through its flag options and input directives, the common link ed­
itor gives you great flexibility; however, if you use the input direc­
tives, you must assume some added responsibilities. Input direc­
tives should insure the following properties for programs:

C defines a zero pointer as null. A pointer to which zero has
been assigned must not point to any object To satisfy this,
you must not place any object at virtual address zero in the
data space.

February, 1990
RevisionC

Id(l) Id(l)

When you call the link editor through cc(l), a startup rou­
tine is linked with your program. This routine calls exit()
(see exi t(2» after execution of the main program. If you
call the link editor directly, you must insure that the pro­
gram always calls exi t(), rather than falling through the
end of the entry routine.

February, 1990 5
Revision C

leave(l) leave(l)

NAME
leave - remind you when you have to leave

SYNOPSIS
lea ve [hlunm]

DESCRIPTION
leave waits until the specified time, then reminds you that you
have to leave. You are reminded 5 minutes and 1 minute before
the actual time, at the time, and every minute thereafter. When
you log off, leave exits just before it would have printed the
next message.

The time of day is in the form hhmm, where hh is a time in hours
(on a 12 or 24 hour clock) and mm is a time in minutes. All times
are converted to a 12 hour clock, and assumed to be in the next 12
hours.

If no argument is given, leave prompts with When do you
have to leave? A reply of newline causes leave to exit,
otherwise the reply is assumed to be a time. This form is suitable
for inclusion in a . login or . profile.

leave ignores interrupts, quits, and terminates. It sends mes­
sages while other programs are running. To get out of leave,
you should either log off or use kill -9, giving its process ID.

FILES
/usr/ucb/leave

SEE ALSO
calendar(I).

1 February, 1990
RevisionC

lex(1) lex(1)

NAME
1 ex - generate programs for simple lexical tasks

SYNOPSIS
lex [-c] [-n] [-t] [-v] [file] ...

DESCRIPTION
lex generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and expres­
sions to be searched for, and C text to be executed when strings
are found.

A file lex. yy. c is generated which, when loaded with the li­
brary, copies the input to the output except when a string specified
in the file is found; then the corresponding program text is execut­
ed. The actual string matched is left in yytext, an external char­
acter array. Matching is done in order of the strings in the file.
The strings may contain square brackets to indicate character
classes, as in [abx-z] to indicate a, b, x, y, and z; and the
operators *, +, and ? mean, respectively, any nonnegative
number of, any positive number of, and either zero or one oc­
currences of, the previous character or character class. Thus
[a-zA-Z]+ matches a string of letters. The character . is the
class of all ASCII characters except newline. Parentheses for
grouping and vertical bar for alternation are also supported. The
notation r {d,e} in a rule indicates between d and e instances of
regular expression r. It has higher precedence than I, but lower
than *, ?, +, and concatenation. The character " at the beginning
of an expression pennits a successful match only immediately
after a newline, and the character $ at the end of an expression re­
quires a trailing newline. The character / in an expression indi­
cates trailing context; only the part of the expression up to the
slash is returned in yytext, but the remainder of the expression
must follow in the input stream. An operator character may be
used as an ordinary symbol if it is within" symbols or preceded
by\.

Three subroutines defined as macros are expected: input () to
read a character; unput (c) to replace a character read; and
output (c) to place an output character. They are defined in
terms of the standard streams, but you can override them. The
program generated is named yylex () , and the library contains a
main () which calls it. The action REJECT on the right side of

February, 1990
Revision C

1

lex(1) lex(1)

the rule causes this match to be rejected and the next suitable
match executed; the function yymo re () accumulates additional
characters into the same yytext; and the function yyless (p)
pushes back the portion of the string matched beginning at p,
which should be between yytext and yytext+yyleng. The
macros input and output use files yyin and yyout to read from
and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes % %, it is copied into the external
definition area of the lex. yy. c file. All rules should follow a
% %, as in Y ACC. Lines preceding % % which begin with a non­
blank character define the string on the left to be the remainder of
the line; it can be called out later by surrounding it with { }. Note
that curly brackets do not imply parentheses; only string substitu­
tion is done.

The external names generated by lex all begin with the prefix yy
orYY.

The flags must appear before any files. The -c flag option indi­
cates C actions and is the default, -t causes the lex. yy. c pro­
gram to be written instead to standard output, -v provides a one­
line summary of statistics of the machine generated, -n will not
print out the summary. Multiple files are treated as a single file.
If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set
in the definitions section:

%p n number of positions is n (default 2(00)
%n n number of states is n (500)
%t n number of parse tree nodes is n (1000)
%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v
flag option, unless the -n flag option is used.

EXAMPLES

2

D [0-9]
%%
if
[a-z]+
O{D}+
{D}+
n++n
n+n

printf("IF statement\nn);
printf(tltag, value %s\ntl,yytext);
printf(tloctal number %s\ntl,yytext);
printf(tldecimal number %s\ntl,yytext);
printf(tlunary op\ntl);
printf(tlbinary op\ntl);

February, 1990
Revision C

lex(l) lex(1)

"/*" loop:
while (input() != '*');

FILES
/usr/bin/lex

SEE ALSO

switch (input ())
{

case ' /': break;
case '*': unput('*');
default: go to loop;
}

awk(1), grep(l), sed(l), yacc(I), malloc(3X).
"lex Reference" in the AIUX Programming Languages and
Tools, Volume 2.

BUGS
When given an illegal flag option, lex reports the fact that it has
been given an illegal flag option but then continues to execute
with the default options, rather than stopping the execution and
printing a usage statement.

February, 1990
Revision C

3

line(1) line(l)

NAME
line -read one line

SYNOPSIS
line

DESCRIPTION
line copies one line (up to a newline) from the standard input
and writes it on the standard output. It returns an exit code of 1 on
EOF and always prints at least a newline. It is often used within
shell files to read from the user's terminal.

EXAMPLES
line
Hello world

will return

Hello world

In the Bourne shell (sh(l»:

a='line'
hi there
echo $a

will return

hi there

In the C-shell (csh(I»:

set a='line'
bye bye
echo $a

will return

bye bye

FILES
/bin/line

SEE ALSO
csh(I), ksh(1), sh(1), read(2).

February, 1990
RevisionC

lintel) lintel)

NAME
lin t - a C program checker

SYNOPSIS
lint [-a] [-b] [-Dname[=dej]] [-h] [-rdir] [-Ix] [-n] [­
o lib] [-p] [-u] [-Uname] [-v] [-x]file ...

DESCRIPTION
lint attempts to detect features of the C program files that are
likely to be bugs, nonportable, or wasteful. It also checks type
usage more strictly than the compilers. Features currently detect­
ed include unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, function usage is checked to
find functions that return values in some places and not in others,
functions that are called with varying numbers or types of argu­
ments, and functions whose values are not used or whose values
are used but not returned.

Arguments whose names end with . c are taken to be C source
files. Arguments whose names end with .In are taken to be the
result of an earlier invocation of lint with the - 0 flag option
used. The .In files are analogous to .0 (object) files that are
produced by the cc(l) command when given a . c file as input.
Files with other suffixes are warned about and ignored.

lint will take all the . c, .In, and llib-Ix.ln (specified by
-Ix) files and process them in command line order. By default,
lint appends the standard C lint library (llib-Ic .In) to
the end of the list of files. However, if the -p flag option is used,
the portable C lint library (llib-port .In) is appended in­
stead. The second pass of lint checks this list of files for mutual
compatibility.

Any number of lint flag options may be used, in any order, in­
termixed with filename arguments. The following flag options are
used to suppress certain kinds of complaints.

-a Suppresses complaints about assignments of long values to
variables that are not long.

-b Suppresses complaints about break statements that can­
not be reached. (Programs produced by I ex or ya c c will
often result in many such complaints).

-h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

February,1990
Revision C

I

lint(l) lint(l)

2

-u Suppresses complaints about functions and external vari­
ables used and not defined, or defined and not used. (This
flag option is suitable for running lint on a subset of files
of a larger program).

-v Suppresses complaints about unused arguments in func­
tions.

-x Does not report variables referred to by external declara­
tions but never used.

The following arguments alter the behavior of lint .

-Ix Includes an additional lint library, llib-lx.ln. For
example, you can include a lint version of the Math Li­
brary llib-lm.ln by inserting -1m on the command
line. This argument does not suppress the default use of
llib-lc .In.

These lint libraries must be in the assumed directory.
This flag option can be used to reference local lint li­
braries and is useful in the development of multifile pro­
jects. To generate llib-lX .In from llib-lX, use

cc -E -c -Dlint llib-lX I \
/usr/lib/lintl -vx -H/tmp/lint$$ > llib-1X.ln

rm -f /tmp/lint$$

-n Does not check compatibility against either the standard or
the portable lint library.

-p Attempts to check portability to other dialects (mM and
GCOS) of C. Along with stricter checking, this option
causes all nonexternal names to be truncated to eight char­
acters and all external names to be truncated to six charac­
ters and one case.

-0 lib
Cause 1 i n t to create a new 1 i n t library that has the
name llib-llib.ln. The lint library produced is the
input that is given to the second pass of lint.

The -0 flag option simply causes this file to be saved in
the named lint library. To produce a llib-llib.ln
without extraneous messages, use of the -x flag option is
suggested.

The -v Hag option is useful if the source file(s) for the
lint library are just external interfaces (for example, the

February, 1990
Revision C

lint(l) lint(l)

way the file llib-le is written). These flag option set­
tings are also-available through the use of lint comments
(as shown later in this section).

The -D, -U, and - I flag options of epp(1) and the -g and -0
flag options of ee(l) are also recognized as separate arguments.
The -g and -0 flag options are ignored, but, by recognizing these
flag options, the behavior of lint is closer to that of the ce(1)
command. Other flag options are warned about and ignored. The
pre-processor symbol lint is defined to allow certain question­
able code to be altered or removed for lint. Therefore, the sym­
bollint should be thought of as a reserved word for all code that
is planned to be checked by 1 i n t.

Certain conventional comments in the C source will change the
behavior of 1 in t.

/*NOTREACHED*/
stops comments about unreachable code at appropriate
points. (This comment is typically placed just after calls to
functions like exi t(2».

/*vARARGSn*/
suppresses the usual checking for variable numbers of argu­
ments in the function declaration that follows it. The data
types of the first n arguments are checked; a missing n is as­
sumed to be O.

/*ARGSUSED*/
turns on the -v flag option for the next function.

/*LINTLIBRARY*/
at the beginning of a file, shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x flag options.

lint produces its first output on a per-source-file basis. Com­
plaints pertaining to included files are collected and printed after
all source files have been processed. Finally, information gath­
ered from all input files is collected and checked for consistency.
At this point, if it is not clear whether a complaint stems from a
given source file or from one of its included files, the source
filename will be printed followed by a question mark.

February, 1990 3
Revision C

lint(l) lint(l)

EXAMPLES
The command

lint -b myfile .. c

checks the consistency of the file myfile. c. The -b flag option
indicates that unreachable break statements are not to be
checked. This flag option might well be used on files that lex(l)
generates.

FILES
/usr/bin/lint
/usr/lib

/usr/lib/lint[12]
/usr/lib/llib-lc.ln

/usr/lib/llib-port.ln

/usr/lib/llib-lm.l

/usr/tmp/*lint*

the directory where the
1 in t libraries specified by
the -Ix flag option must ex­
ist
first and second passes
declarations for C Library
functions (binary fonnat)
declarations for portable
functions (binary fonnat)
declarations for Math Li­
brary functions (binary for­
mat)
temporaries

SEE ALSO
cc(I), cpp(1), make(1),
"lint Reference" in A/UX Programming Languages and Tools.
Volume 1.

BUGS

4

exi t(2), longjmp(3C), and other functions that do not return
are not understood; this causes various lies.

February, 1990
RevisionC

In(1) In(l)

NAME
In - make links

SYNOPSIS
In [-s] namel [name2]

In name ... directory

In -f directoryl directory2

DESCRIPTION
A link is a directory entry referring to a file; the same file (togeth­
er with its size, all its protection information, and so forth) may
have several links to it

There are two kinds of links: hard links and symbolic links. By
default In makes hard links. A hard link to a file is indistinguish­
able from the original directory entry; any changes to a file are ef­
fective, independent of the name used to reference the file. Hard
links may not span file systems and (unless created with the -f
option by the superuser) may not refer to directories.

The -s flag option causes In to create symbolic links. A symbol­
ic link contains the name of the file to which it is linked. The
referenced file is used when an open(2) operation is performed
on the link. A stat(2) on a symbolic link will return the linked­
to file; an lstat(2) must be done to obtain information about the
link. The readlink(2) call may be used to read the contents of
a symbolic link. Symbolic links may span file systems and may
refer to directories.

In may be invoked with one, two, or more than two arguments. If
given one argument, In creates a link in the current directory to
namel. The file named by namel must not already exist in the
current directory, or In will exit with the message namel: File
exists.

Given two arguments, In creates a link to an existing file namel
having the name name2. The argument name2 may also be a
directory in which to place the link. If only the directory is
specified, the link will be made to the last component of namel. If
namel is not found, In will so indicate and no link will be creat­
ed. If name2 already exists, it will not be overwritten.

Given more than two arguments, In makes links to all the named
files in the named directory. The links made will have the same
name as the files being linked to.

February, 1990
Revision C

1

In(l) In(l)

The - f flag option causes 1 n to make a hard link to an existing
directory. Any files or directories located in directory] will also
be found in directory2. Moreover, new files created in either
directory will appear in the other. Only the superuser is permitted
to use this option.

FILES
/bin/ln

SEE ALSO

2

cp(l), mv(I), rm(I), link(2), lstat(2}, readlink(2},
stat(2), symlink(2}.

February, 1990
Revision C

login(l) login(l)

NAME
login - sign on

SYNOPSIS
login [name [env-var ... J]

DESCRIPTION
The login command is used at the beginning of each terminal
session and allows you to identify yourself to the system. It may
be invoked as a command or by the system when a connection is
first established. Also, it is invoked by the system when a previ­
ous user has terminated the initial shell by typing a CONTROL-D to
indicate an "end-of-file".

If login is invoked as a command, it must replace the initial
command interpreter. This is accomplished by typing

exee login

from the initial shell, if it is the Bourne shell, sh(I). For the C
shell, esh(I), and the Korn shell, ksh(l), you may just type:

login [user]

login asks for your user name (if not supplied as an argument),
and, if appropriate, your password. Echoing is turned off (when
possible) during the typing of your password, so it will not appear
on the written record of the session.

At some installations, a flag option may be invoked that will re­
quire you to enter a second dialup password. This will occur only
for dialup connections, and will be prompted by the message

dialup password:

Both passwords are required for a successful login.

If you do not complete the login successfully within a certain
period of time (for example, one minute), you are likely to be
disconnected silently. Note that login does a sleep to settle
the line and waits for a few seconds before accepting your input.
If it misses the first character of your input, type it slower.

After a successful login, accounting files are updated, the pro­
cedure jete/profile is performed for users whose login shell
is either sh(l) or ksh(1), and the message-of-the-day, if any, is
printed. Then, the user ID, the group ID, the working directory,
and the command interpreter are initialized, according to
specifications found in the / et e / pa s swd file entry for the user.

February, 1990
Revision C

1

login(l) login(l)

If the command interpreter is sh(I), the file. profile, if it ex­
ists, in the initial working directory is executed. To indicate that
this invocation of the com~and interpreter is the login shell, the
name of the interpreter is prefixed with a minus sign, -, (for exam­
ple, -sh). If the last field in the password file is empty, then the
default command interpreter, the Bourne shell (/bin/ sh) is
used. If the last field is *, then a ehroot(2) is done to the direc­
tory named in the directory field of the entry. At that point lo­
gin is re-executed at the new level, which must have its own root
structure, including fete/login and /ete/passwd.

The basic "environment" (see environ(5» is initialized to

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-oJ-passwd-entry
MAIL=/usr /mail/your-login-name
T Z =timezone-specification

The environment may be expanded or modified by supplying addi­
tional arguments to login, either at execution time or when lo­
gin requests your login name. The arguments may take either
the form xxx or xxx=yyy. Arguments without an equals sign are
placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a
new variable name is required. Variable definitions containing an
= are placed into the environment without modification. If they
already appear in the environment, then they replace the older
value. login will not change the variables PATH and SHELL in
order to prevent users from spawning secondary shells with fewer
security restrictions. Both login and getty understand simple
single-character quoting conventions. Typing a backslash in front
of a character quotes it and allows the inclusion of such things as
spaces and tabs.

EXAMPLES

2

At the beginning of each terminal session, the following sort of
message is displayed on the screen

Apple Computer A/UX

login:

to which a user name is the appropriate response.

February, 1990
Revision C

login(l)

FILES
/bin/login
/etc/utmp
/etc/wtmp
/etc/motd
/etc/passwd
/etc/profile

/etc/cshrc

$HOME/.profile

$HOME/.login

$HOME/.cshrc
$HOME/.logout

/usr/mail/name

SEE ALSO

accounting
accounting
message-of-the-day
password file

login(l)

systemwide personal profile
(sh(l) and kSh(l»
systemwide personal c s h
startup (csh(l»
personal profile (sh(l) and
ksh(l»
personal csh startup used at
login time (csh(l»
personal csh startup (csh(l»
personal c s h logout used at
logout time (csh(l»
mailbox for user name

csh(l), ksh(1), mail(l), newgrp(l), rlogin(l), sh(l),
su(l), getty(1M), init(lM), passwd(4), profile(4), en­
viron(5).
A/UX Essentials.
A/UX User Interface.

DIAGNOSTICS
Login incorrect
If the user name or the password cannot be matched.

No shell
cannot open password file
no directory
Consult a system administrator.

No utmp entry.
You must exec login from the lowest level
sh.
If you attempted to execute login as a command without using
the shell's exec internal command (sh(l) only) or from other
than the login shell (sh(l) and kSh(l».

February, 1990
Revision C

3

logname(l) logname(l)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
logname returns the contents of the environment variable
$ LOGNAME, which is set when a user logs into the system.

EXAMPLES
logname

displays the $ LOGNAME of the user logged into the system on the
current port.

FILES
/bin/logname
fete/profile

SEE ALSO
env(l), login(1), printenv(I), logname(3X), en­
viron(5).

1 February, 1990
Revision C

lookbib(l) lookbib(l)

NAME
lookbib - find references in a bibliography

SYNOPSIS
lookbib [-n] database

DESCRIPTION
lookbib uses an inverted index made by indxbib(l) to find
sets of bibliographic references. A bibliographic reference is a set
of lines, constituting. fields of bibliographic information. Each
field starts on a line beginning with a %, followed by a key-letter,
then a blank, and finally the contents of the field, which may con­
tinue until the next line starting with %.

lookbib reads keywords typed after the > prompt on the termi­
nal and retrieves records containing all these keywords. If nothing
matches, nothing is returned except another> prompt.

lookbib will ask if you need instructions and will print some
brief information if you reply y. The -n flag option turns off the
prompt for instructions.

It is possible to search multiple databases, as long as they have a
common index made by indxbib~ In that case, only the first ar­
gument given to indxbib is specified to lookbib.

If lookbib does not find the index files (the . i[abe] file~), it
looks for a reference file with the same name as the argument,
without the suffixes. It creates a file with a . i g suffix, suitable
for use with fgrep. It then uses this fgrep file to find refer­
ences. This method is simpler to use, but the . i g file is slower to
use than the . i[abe] files, and does not allow the use of multiple
reference files.

FILES
/usr/ueb/lookbib
x. ia. x. ib. x. ie. where x is the first argument, or if these are
not present, then x . ig .

SEE ALSO
addbib(l), indxbib(l), refer(l), roffbib(1), sort­
bib(1).

February,1990
RevisionC

1

lorder(l) lorder(l)

NAME
lo rde r - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
lorder produces a global cross-reference, given a list of object
modules (.0 files), which can then be passed to tsort(l} to pro­
duce a properly ordered archive file. The input is one or more ob­
ject or library archive files (see ar(l». The standard output is a
list of pairs of object filenames, meaning that the first file of the
pair refers to external identifiers defined in the second. The output
may be processed by tsort(l) to find an ordering of a library
suitable for one-pass access by ld(1).

Note: The link editor ld(l) is capable of multiple passes
over an archive in the portable archive format (see ar(4»
and does not require that lorder(l) be used when build­
ing an archive.

Use of the lorder(l) command may, however, allow for a
slightly more efficient access of the archive during the link edit
process.

EXAMPLES
ar cr library \ lorder *.0 I tsort \

builds a new library from existing . 0 files.

FILES
/bin/lorder
*symref
*symdef

SEE ALSO
ar(I), ld(I), tsort(I), ar(4),

BUGS
Object files whose names do not end with .0, even when con­
tained in library archives, are overlooked. Their global symbols
and references are attributed to some other file.

1 February, 1990
RevisionC

lp(l) lp(1)

NAME
lp, cancel - send or cancel requests to a line printer for a
Berkeley file system (4.2)

SYNOPSIS
lp [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle]
[-w] [file ...]

cancel jobno... [printers]

cancel printers [jobno] ...

DESCRIPTION
lp arranges for the named files and associated information to be
printed by a line printer. Note that files must be readable by the
1 p user account since / u s r /bin / 1 P is set to change the effec­
tive user ID to lp. If the permissions on files do not allow lp to
read them,files must be piped to lp(l) to print them. (For exam­
ple, catfilesllp).

If no filenames are mentioned, the standard input is assumed. The
filename - stands for the standard input and may be supplied on
the command line in conjunction with named files. The order in
which files appear is the same order in which they will be printed.

lp associates a uniquejobno with each request and prints it on the
standard output. This jobno can be used later to cancel (described
later in this section) or find the status (see lpstat(l)) of the re­
quest.

The following flag options to 1 p may appear in any order and may
be intermixed with filenames.

-c Makes copies of the files to be printed immediately
after lp is invoked. Normally, files will not be
copied, but will be linked whenever possible. If the
-c flag option is not given, then the user should be
careful not to remove any of the files before the re­
quest has been printed in its entirety. It should also
be noted that in the absence of the -c flag option,
any changes made to the namedfiles after the request
is made but before it is printed will be reflected in
the printed output.

-ddest Chooses dest as the printer or class of printers select­
ed to do the printing. If dest is a printer, then the re­
quest will be printed only on that specific printer. If
dest is a class of printers, then the request will be

February, 1990 1
RevisionC

lp(l) lp(l)

printed on the first available printer that is a member
of the class. Under certain conditions (printer una­
vailability, file space limitation, and so forth), re­
quests for specific destinations may not be accepted
(see accept(1M) and lpstat(1». By default,
dest is taken from the environment variable LPDEST
(if it is set). Otherwise, a default destination (if one
exists) for the computer system is used. Destination
names vary between systems (see Ipstat(I».

-m Sends mail via mail(l) after the files have been
printed. By default, no mail is sent upon normal
completion of the print request.

-nnumber Prints number copies (default of I) of the output.

-ooption Specifies the printer-dependent or class-dependent

-s

-ttitle

options. Several such options may be collected by
specifying the -0 key character more than once. For
more information about what is valid for options, see
"Models" in Ipadmin(lM).

Suppresses messages from 1 p(1) such as
request id is

Prints title on the banner page of the output.

-w Writes a message on the user's terminal after the
files have been printed. If the user is not logged on,
then mail will be sent instead.

cancel cancels line printer requests that were made by the lp(l)
command. The command line arguments may be either request
ids (as returned by Ip(I» or printer names (for a complete list,
use Ipstat(1». Specifying a request id cancels the associated
request even if it is currently printing. Specifying a printer can­
cels the request which is currently printing on that printer. In ei­
ther case, the cancellation of a request that is currently printing
frees the printer to print its next available request.

NOTES

2

Ip is an AT&T command originally intended for use with line
printers, but flexible enough to be useful with other devices.
Ipr(1) performs a parallel function, but is nevertheless a distinct
command.

February, 1990
RevisionC

Ip(l)

FILES
/usr/bin/lp
/usr/bin/cancel
/usr/spool/lp/*

SEE ALSO
enable(l), Ipq(1), Ipr(l), Ipstat(1), mail(l),
accept(lM), Ipadmin(lM), Ipsched(1M).

Ip(l)

"Managing Peripherals" in A/UX Local System Administration.

February, 1990
RevisionC

3

1pq(l) 1pq(1)

NAME
1 pq - spool queue examination program

SYNOPSIS
1pq [+[n]] [-1] [-Pprinter] [job # ...] [user ...]

DESCRIPTION
1pq examines the spooling area used by 1pd(lM) for printing
files on the line printer and reports the status of the specified jobs
or all jobs associated with a user. 1pq invoked without any argu­
ments reports on any jobs currently in the queue.

For each job submitted (for example, an invocation of 1pr(1»
1pq reports the user's name, current rank in the queue, the names
of files comprising the job, the job identifier (a number which may
be supplied to 1prm(1) for removing a specific job), and the total
size in bytes.

If 1 pq warns that no daemon is present due to some malfunction,
the 1pc(lM) command can be used to restart the printer daemon.

FLAG OPTIONS
The following flag options are interpreted by 1 pq:

-P Specifies a particular printer, otherwise the default line
printer is used (or the value of the PRINTER variable in the
environment).

+n Displays the spool queue until it empties. Supplying a
number immediately after the + sign indicates that 1pq
should sleep n seconds in between scans of the queue.

-1 Prints information about each of the files comprising the job.
Normally, only as much information as fits on one line is
displayed. Job ordering is dependent on the algorithm used
to scan the spooling directory and is supposed to be FIFO
(First in First Out). Filenames comprising a job may be una­
vailable when 1 p r(1) is used as a sink in a pipeline, in which
case the file is indicated as "(standard input)".

All other arguments supplied are interpreted as user names or job
numbers to filter out only those jobs of interest.

FILES
/etc/termcap

To manipulate the screen for repeated display

/etc/printcap
To determine printer characteristics

1 February, 1990
RevisionC

Ipq(1) Ipq(1)

/usr/spool/*
The spooling directory, as determined from print cap

/usr/spool/*/cf*
Control files specifying jobs

/usr/spool/*/lock
The lock file to obtain the currently active job

SEE ALSO
Ipr(I), Iprm(1), Ipc(1M), Ipd(1M).

BUGS
Due to the dynamic nature of the information in the spooling
directory Ipq may report unreliably. Output formatting is sensi­
tive to the line length of the terminal; this can result in widely
spaced columns.

DIAGNOSTICS
Ipq may report that it is unable to open various files.

The lock file may be malformed.

Garbage files found in the spooling directory may be printed when
no daemon is active.

February, 1990 2
RevisionC

1pr(l) 1pr(l)

NAME
1 P r - off line print

SYNOPSIS
1pr [-pprinter] [-inum] [-c class] [-J job] [-T title]
[-i [numcolsll [-1234font] [-wnum] [-p1tndgvcfrmhs]
[name ...]

DESCRTPTION

1

1pr uses a spooling daemon to print the named files when facili­
ties become available. If no names appear, the standard input is
assumed. The -P option may be used to force output to a specific
printer. Normally, the default printer is used (site dependent), or
the value of the environment variable PRINTER is used.

The following single letter options are used to notify the line
printer spooler that the files are not standard text files. The spool­
ing daemon will use the appropriate filters to print the data accord­
ingly.

-p Use pr(1) to format the files (equivalent to print).

-1 Use a filter which allows control characters to be printed and
suppresses page breaks.

-t The files are assumed to contain data from troff(l) (cat
phototypesetter commands).

-n The files are assumed to contain data from di troff (device
independent troff).

-d The files are assumed to contain data from tex(l) (DVI for­
mat from Stanford).

-g The files are assumed to contain standard plot data as pro­
duced by the p1ot(3X) routines (see also p1ot(lG) for the
filters used by the printer spooler).

-v The files are assumed to contain a raster image for devices
like the Benson Varian.

-c The files are assumed to contain data produced by
cifp1ot(I).

-f Use a filter which interprets the first character of each line as
a standard FORTRAN carriage control character.

The remaining single letter options have the following meaning.

February, 1990
RevisionC

Ipr(l) Ipr(l)

-r Remove the file upon completion of spooling or upon com-
pletion of printing (with the -s option).

-m Send mail upon completion.

-h Suppress the printing of the burst page.

-s Use symbolic links. Usually files are copied to the spool
directory.

The -C option takes the following argument as a job classification
for use on the burst page. For example,

Ipr -C EECS foo.c

causes the system name (the name returned by hostname(l)) to
be replaced on the burst page by EECS, and the file faa. c to be
printed.

The -J option takes the following argument as the job name to
print on the burst page. Normally, the first file's name is used.

The -T option uses the next argument as the title used by p r(1)
instead of the file name.

To get multiple copies of output, use the -# nwn option, where
num is the number of copies desired of each file named. For ex­
ample,

Ipr -#3 foo.c bar.c more.c

would result in 3 copies of the file faa. c, followed by 3 copies
of the file bar. c, etc. On the other hand,

cat foo.c bar.c more.c I Ipr -#3

will give three copies of the concatenation of the files.

The -i option causes the output to be indented. If the next argu­
ment is numeric, it is used as the number of blanks to be printed
before each line; otherwise, 8 characters are printed.

The -w option takes the immediately following number to be the
page width for p r.

The -s option will use symlink(2) to link data files rather than
trying to copy them so large files can be printed. This means the
files should not be modified or removed until they have been print­
ed.

February, 1990
Revision C

2

Ipr(l) Ipr(l)

The option -1234 Specifies a font to be mounted on font position
i. The daemon will construct a . railmag file referencing
/usr/lib/vfont/name.size.

FILES
/etc/passwd

personal identification

/etc/printcap
printer capabilities data base

/usr/lib/lpd*
line printer daemons

/usr/spool/*
directories used for spooling

/usr/spool/*/cf*
daemon control files

/usr/spool/*/df*
data files specified in "cft files

/usr/spool/*/tf*
temporary copies of tt cft files

SEE ALSO
Ipq(I), Iprm(1), pr(1), symlink(2), printcap(4),
Ipc(IM),lpd(IM).

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. Ipr ob­
jects to printing binary files. If a user other than root prints a file
and spooling is disabled, Ipr prints a message saying so and does
not put jobs in the queue. If a connection to Ipd on the local
machine cannot be made, 1 p r says that the daemon cannot be
started. Diagnostics may be printed in the daemon's log file re­
garding missing spool files by 1 pd.

BUGS

3

Fonts for troff and tex reside on the host with the printer. It is
currently not possible to use local font libraries.

February, 1990
RevisionC

1prm(l) 1prm(l)

NAME
Iprm - remove jobs from the line printer spooling queue for a
Berkeley file system (4.2)

SYNOPSIS
1prm [-pprinter] [-] Uobno] ... [user] ...

DESCRIPTION
1prm removes a job, or jobs, from a printer spool queue. Since
the spooling directory is protected from users, using 1prm is nor­
mally the only method by which a user may remove a job.

1prm without any arguments deletes the currently active job if it
is owned by the user who invoked 1prm.

Specifying a user's name or list of users' names causes 1prm to
attempt to remove any queued jobs belonging to that user (or
users). This form of invoking Iprm is useful only to the super­
User.

A user may remove an individual job from a queue by specifying
its job number. This number may be obtained from the 1pq(1)
program, for example,

% 1pq -1

ken : 1st [job 013ucbarpa]
(standard input) 100 bytes
% 1prm 13

1prm announces the names of any files it removes and is silent if
there are no jobs in the queue that match the request list

Iprm kills off an active daemon, if necessary, before removing
any spooling files. If a daemon is killed, a new one is automatical­
ly restarted upon completion of file removals.

FLAG OPTIONS
The following flag options are interpreted by 1prm:

-pprinter
Specifies the queue associated with a specific printer, other­
wise the default printer, or the value of the PRINTER vari­
able in the environment is used.

Removes all jobs that a user owns. If the superuser employs
this flag, the spool queue is emptied entirely. The owner is
determined by the user's login name and host name on the
machine where the 1pr command was invoked.

February, 1990 1
Revision C

Iprm(1)

FILES
/etc/printcap
/usr/spool/*
/usr/spool/*/lock

SEE ALSO
Ipd(IM), Ipr(1), Ipq(1).

DIAGNOSTICS

Printer characteristics file
Spooling directories

Iprm(1)

Lock file used to obtain the process ID of the
current daemon and the job number of the
currently active job

A "Permission denied" is received if the user tries to remove files
other than his own.

BUGS

2

Since there are race conditions possible in the update of the lock
file, the currently active job may be incorrectly identified.

February, 1990
RevisionC

Ipstat(1) Ipstat(1)

NAME
Ipsta t - print LP status information

SYNOPSIS
Ipstat [-a[list]] [-c[list]] [-d] [-o[list]] [-p[list]] [-r] [-s]
[-t] [-u[list]] [-v[list]]

DESCRIPTION
Ipstat prints information about the current status of the LP line
printer system.

If no flag options are given, then Ipstat prints the status of all
requests made to Ip(1) by the user. Any arguments that are not
flag options are assumed to be request IDs (as returned by Ip).
Ipstat prints the status of such requests. Flag options may ap­
pear in any order and may be repeated and intermixed with other
arguments. Some of the options below may be foll@wed by an op­
tionallist that can be in one of two forms: a list of items separated
from one another by a comma, or a list of items enclosed in dou­
ble quotes and separated from one another by a comma and/or one
or more spaces. For example:

-u userl, user2, user3

The omission of a list following such options causes all informa­
tion relevant to the options to be printed, for example:

Ips tat -0

prints the status of all output requests.

-a [list] Print acceptance status (with respect to Ip) of destina­
tions for requests. list is a list of intermixed printer
names and class names.

-c[list] Print class names and their members. list is a list of
class names.

-d Print the system default destination for Ip.

-0 [list] Print the status of output requests. list is a list of inter-
mixed printer names, class names, and request IDs.

-p[list] Print the status of printers. list is a list of printer names.

-r Print the status of the LP request scheduler.

-s Print a status summary, including the status of the line
printer scheduler, the system default destination, a list of
class names and their members, and a list of printers and
their associated devices.

February, 1990
Revision C

1

Ipstat(1) Ipstat(1)

-t Print all status information.

-u[list] Print status of output requests for users. list is a list of
login names.

-v [list] Print the names of printers and the pathnames of the dev­
ices associated with them. list is a list of printer names.

FILES
/usr/bin/lpstat
/usr/spool/lp/*

SEE ALSO
enable(I), Ip(1), Ipq(1).

2 February, 1990
RevisionC

15(1) 15(1)

NAME
15 -list contents of directory

SYNOPSIS
15 [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L] [-n] [-0] [-g] [-r]
[-t] [-u] [-c] [-p] [-F] I-b] [-q] [-i] [-5] [names]

DESCRIPTION
For each directory argument, 15 lists the contents of the directory;
for each file argument, 15 repeats the filename and any other in­
formation requested. The output is sorted alphabetically by de­
fault. When no argument is given, the current directory is listed.
When several arguments are given, the arguments are first sorted
appropriately, but with file arguments appearing before directory
arguments and their contents.

There are three major listing formats. The default format is to list
one entry per line, the -C and -x flag options enable multicolumn
formats, and the -m flag option enables stream output format, in
which files are listed across the page, separated by commas. In
order to determine output fonnats for the -c, -x, and -m flag op­
tions, 15 uses an environment variable, COLUMNS, to determine
the number of character positions available on one output line. If
this variable is not set, the t e rmi n f 0 database is used to deter­
mine the number of columns, based on the environment variable
TERM. If this information cannot be obtained, 80 columns are as­
sumed.

There are many flag options, as follows.

-R Recursively list subdirectories encountered.

-a List all entries; usually entries whose names begin with a
period (.) are not listed.

-d If an argument is a directory, list its name only (not its con­
tents); often used with -1 to get the status of a directory.

-L If an argument is a symbolic link, list the file or directory the
link references rather than the link itself.

-C Multicolumn output with entries sorted vertically.

-x Multicolumn output with entries sorted horizontally, rather
than down the page.

-m Stream output format.

February, 1990
Revision C

1

Is(l) Is(l)

2

-1 List in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file (see below). If the file is a special file, the size field will
contain the major and minor device numbers, instead of a
size. If the file is a symbolic link, the pathname of the
linked-to file is printed preceded by ->.

-n The same as -1, except that the owner's user ID and group's
group ID numbers, rather than the associated character
strings, are printed.

-0 The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

- r Reverse the order of sort to get reverse alphabetic or oldest
first, as appropriate.

-t Sort by time modified (latest first), instead of by name.

-u Use time of last access, instead of last modification, for sort-
ing (with the -t flag option) or printing (with the -1 flag op­
tion).

-c Use time of last modification of the i-node (file created, mode
changed, and so forth) for sorting (-t) or printing (-1).

-p Put a slash (/) after each filename if that file is a directory.

-F Put a slash (/) after each filename if that file is a directory, an
asterisk (*) after each filename if that file is executable, and
an (@) after each filename if that file is a symbolic link.

-b Force printing of nongraphic characters to be in the octal
\ ddd notation.

-q Force printing of nongraphic characters in filenames as the
character (?).

-i For each file, print the i-number in the first column of the re-
port.

-5 Give size in blocks, including indirect blocks, for each entry.

The mode printed under the -1 flag option consists of 10 charac­
ters that are interpreted as follows:

The first character is:
d if the entry is a directory
b if the entry is a block special file

February, 1990
RevisionC

Is(l)

e if the entry is a character special file
1 if the entry is a symbolic link
p if the entry is a fifo (named pipe) special file
- if the entry is an ordinary file

Is (1)

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the file; and the last to
all others. Within each set, the three characters indicate permis­
sion to read, to write, and to execute the file as a program, respec­
tively. For a directory, "execute" permission is interpreted to
mean permiSSion to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;
- if the indicated permission is not granted.

The group-execute permission character is given as s if the file
has set-group-ID mode; likewise, the user-execute permission
character is given as s if the file has set-user-ID mode. The last
character of the mode (normally x or -) is t if the 1000 (octal) bit
of the mode is on; see chmod(l) for the meaning of this mode.
The indications of set-ID and 1000 bits of the mode are capital­
ized (s and T, respectively) if the corresponding execute permis­
sion is not set.

When the sizes of the files in a directory are listed, a total count of
blocks, including indirect blocks, is printed.

EXAMPLE
Is -1 fete

will list all entries in / etc in long format, as, for example,

-rw-r--r- 1 root bin 115 Mar 17 1986 mtab

where the fields represent the file's permissions, number of links,
owner, group, size in bytes, date of last modification, and name,
respectively.

FILES
/bin/ls
/ete/passwd to get user IDs for Is -1 and

Is -0

February, 1990 3
RevisionC

ls(l)

fete/group

/usr/1ib/terminfo/*

SEE ALSO

ls(l)

to get group IDs for 1 s -1 and
ls -g
to get tenninal infonnation.

ehgrp(I), ehown(1), ehmod(1), find(1).

BUGS

4

Unprintable characters in filenames may confuse the columnar
output options.

February, 1990
RevisionC

THE APPLE PUBUSHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh® computers and troff running on A!UX.
Proof and ftnal pages were created on Apple
LaserWriter® printers. POSTSCRIPT®, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0781

