LISA TOOLKIT
SELF—PACED TRAINING

Pretace

This self—paced training comprises eleven self—study segments. The intent of
these segments is to get you started designing applications with the ToolKit.
Although the initial segments have no code associated with them, the latter
segments include fabs allowing you to experiment with actual application code.

A single application is used as the context for this training. This is the Boxer
application. Boxer is implemented in stages over 8 of the eleven segments. The
result is an application that exhibits the essential features of typical ToolKit
applications. What those are is the subject of this training.

CONTENTS
' The following table lists the segments, labs, and the code associated with
them:
segment ;
nunber segment name lab code stage
— Conceptual Foundation of the ToolKit no
1 Introduction to the ToolKit no
2 What is a Document? no
3 Creating from the Generic Application yes 1Boxer
4 BlankStationery | no
5 Intro to the Boxer Application yes 2Boxer
6 Selections and Highlighting in Boxer yes 3Boxer
7 Moving Boxes yes 4Boxer
8 Creating a Box, A Second Selection Class yes SBoxer
3 Recoloring. Duplicating. and Clear All yes 6Boxer
Commands with Undo
10 Filters yes 7Boxer
11 Cut & Paste and Mouse Key Events yes 8Boxer

as Commands; Advanced Commands.

The recommended sequence of segments is to start with "Conceptual
Foundation of the ToolKit", and then continue sequentially with segments 1 through
1.

PREREQUISITES

You are expected to have read the following documents before starting this
self—study:

o Introduction to Clascal

o WorkShop Manual, especially the QuickDraw and Pascal language
sections

To your future as a great ToolKit application designer!

ConCeptual Foundation of
the ToolKit

The ToolKit is an object-oriemted development system. This means that the

~ code to be executed is selected through the data, which is packaged into record-like

constructs called odyjects. This is in direct contrast to a procedure-oriented system.

In that kind of system the code to be called is fixed by the designer. The data must
fit the called code, rather than vice versa

The following discussion and slides provide a conceptual foundation for an
object-oriented system, and how it contributes to the structure of the ToolKit.

Conceptual Foundations

TOOLKIT APPLICATION DESIGN

The ToolKit is best described as a collection of interlocking hierarchies of
clesses. One special ToolKit class, TObject, is the ancestor of every other cless.

_ As the slide: The Toolkit Application Model shows, & user applicetion is a
collection of classes as well. Specifically it is & layer of class hierarchies descended
from those of the ToolKit.

The user application layer may either abut the ToolKit layer directly, or have
one or more bwilding block layers of insulation. In either case, the user application
may create subclesses from any clesses in or above its layer.

(The leyered gpproach is &iso iliustrated in & general wsy in the slide: The
ToolKit Application Design Modell

TPROCESS

From an application's point of view, one class has especiel significance -
TProcess. An application must define its own subclass of TProcess (TAppProcess in
the slide). It is only through that subclass that the ToolKit is able to establish
access to the user application's code.

The first epplication object created must be one descended from TProcess.
That object initiates the creation of every other object in the application. Only if the
process object is of your subcless, will it be able to create and reference instances
of your classes.

The mechanism uses the fact that all of TProoms methods are inherited by
the subclass. The subclass only needs to override one method to provzde access to
the rest of the application's classes.

THE GENERIC APPLICATION

The Generic Application is the application defined by the methods of the
ToolKit's classes. The Generic Application initiates method calls to your methods
through objects of your classes. This is illustrated in the slide: How Aoplicstion
Lode Gets Calleq

- The primary responsibility of the Generic Application is to route user events,
such as mouse downs or keypresses to appropriate methods of your application. It
processes all user-generated events directly, freeing you from having to code tedious
input/output processing. This also insures that all i/o will be handled consistently
from one ToolKit application to the next.

Most significently, the Generic Application imparts standerd behavior to user
applications. What it does specifically and how it does this is the subject of the
"ToolKit Self-Paced Treining".

Conceptual Foundations

The ToolKit Application Maodel

ToolKit Classes

(mm intricate hierarchy)

®

(UOkject & Generic Application) '

<:::><:?5*"

4

e

2

Building Block Classes

>

——

! :&—?—_)

I
User Application Classes

<>

S

<

>
\\""\-‘.

<D

s S

e

C_TAppPTI oc_ez:l

<O

The first object created is a process
(in this case, an appProcess).

It provides the hook to create 0. .1
okbjects from your classes, instead
of from the defqult ToolKit classes.

The Taanit Application Design Model

(a loyered approach)
Clszscal " Deskiop Operating
QuickDraw Library Libraries System

General Okject Classes

ToolKit Classes and Procedures

Generic Application Classes

~ (optional) '~

— ToolKit Building Blocks e

User Bpplication Classes and Procedures

How Application Code Gets Called
(from the Generic Application)

Generic Application
(ToolKit)

TSelectiva R -— - Tt ierw

HighLight e Draw

4 N

... :i BighLight ! ... iiDrawi A
1

TSelection i -
@ Wiew ToolEit Classes

v y gdppiiea'u'on Classes
§... ::Bighlight! §... 1 Draw; {;

TMgSelection C MuView) '

A 7
Class Relationships

If the object wus created from one of your classes,
then the method selected will ke of that class.

- CONCLUSION
This concludes the conceptual foundation of the ToolKit.

Plesse continue with module 1 [Introductxon to the ToolKit] of the "Toolet
Selr-Paced Training".

Conceptual Foundations

[Segment 1]

Introduction to the ToolKit |

Purpose of this segment:
To introduce the ToolKit and the Generic Application.

How To use this segment:

This is the first segment of the ToolKit architecture self—paced series. This
segment should be only started after having read the Introduction to Clascal
document.

WHAT THE TOOLKIT IS

The ToolKit is an application development environment for the Lisa 7/7
Office System. Simply stated, it is a package of subroutines and related design aids
for developers of software.

The ToolKit enables developers, you, to implement power ful,
graphics—oriented applications fully integrated with the Lisa desktop. You use it in
the Workshop to design applications that will run on the desktop.

THE GENERIC APPLICATION CONCEPT

The heart of the ToolKit is the Gener/c Applicat/ion The Generic Application
is a fully functional desktop application. It opens and closes documents. It creates
new documents. It tracks the mouse. It recognizes when keys are pressed. It
displays menus. |t understands menu commands. It can splits its window into panes.
It can even scroll back and forth through the window. It could even print if it had
data to manage. But the Generic Application has no user data to manage. You and
your users must add the data.

Your job, as a designer, is to customize the Generic Application to manage and
~ display the kinds of data your application will support. The Generic Application is
conceived to enhance your productivity in implementing powerful, integrated,
user—friendly applications. You just add what is unique to your application on top of
the behavior supplied by the Generic Application.

CLASCAL

Apple enhanced the Pascal language to make possible the ToolKit's Generic
Application. This enhanced Pascal, called Clascal, supplies a unique structure that

ToolKit Generic Application

‘ Menu handling done autometically
Prit Famat and Printing
done automeatically

[

couples a data type with code defining the behavior of the variables of that type.
The structure is called a c/ass

Classes are the primary data structures in the Generic Application. With
Clascal. you customize the Generic Application by defining new classes on top of
those it supplies. The class mechanism greatly simplifies your implementation of
Lisa—like applications.

You always define a new class in terms of an existing class. Many of your
application‘s classes are derived directly from those in the Generic Application.

INHERITING BEHAVIOR

A new class inherits both the structure and the behavior the class it was
descended from. You are free to add new behavior or to redefine any that was
inherited.

Inherited class behavior is implemented by sharing code, not copying it. A
new class only specifies code unique to the variables of that class.

AN EXAMPLE OF CUSTOMIZING

Let's consider a modification to the Generic Application that you, yourself,
might want to make.

You want to implement a document security mechanism. You desire to
encode data upon closing a document, and decode data upon opening the document.
You start by defining a new class from the ToolKit class, TDocManager.

TDocManager supplies two behaviors of immediate interest to you: Open and
Close. In your new docManager class you need to simply redefine Open and Close.
The rest of TDocManager's behaviors will be inherited by your new class.

You could rewrite the entire code for Open and Close to include your
encryption mechanism, but this is both difficult and unnecessary. For one thing, you
may not have access to the sources for either Open or Close. For another, Clascal
offers a better way to refine the two. You can reference the inherited Open and
Close from within your new Open and Close, respectively!

Here is how it works. When one of your users selects c/ose from the
document's File/Print menu, the Generic Application calls the current docManager’s
Close code. Since the current docManager is yours, it uses your Close. First, your
Close tells the document’s data to encrypt itself. 7h/is /s easy /f each type of data
/s @ class. Next your Close calls the Close for TDocManager. which is Generic
Application code. In this fashion you have modified the Generic Application’s
behavior without having to know any details of the code. At many development
systemns suypport that!

To implement Open, you first call TDocManager's Open code, before
commanding your data to decode itself. Your Open is called automatically whenever
the user selects gpenfrom the File/Print menu of one of your application's
documents.

THE MOST GENERAL CLASS — TObject

Often a new application class will be completely unrelated to any in the
Generic Application. Consider a class that describes the behavior of a clock, for
instance. To create this kind of class and others, the ToolKit supplies a base class,
TObject. TObject is the ancestor of every class in the Generic Application.

The class TObject provides the basic behavior needed by the /astances ot any
class. The behavior inherited from TObject aliows each instance to: duplicate
itself, free up any memory it uses, read its value from a character stream, and
write its value to a character stream.

TOOLKIT APPLICATION DESIGN

A ToolKit application is fundamentally a hierarchy of classes. You build up
the application class by class, sometimes redefining. sometimes enhancing generic
behavior. Effectively you layer the new onto the old.

This layering technique is made more powerful by the w?/¢mechanism of Lisa
Pascal (which includes Clascal). Units enable your application to use previously
compiled classes and data types. There is no need to recompile them into your
application.

A new application is composed of a four line main program and one or more

units referencing ToolKit units. Within each unit is a hierarchy of classes and their
implementations.

With a suitable class hierarchy you can maximize the code shared among
diverse data types. A well—designed h:erarchy can form the base for future
applications, as well.

The Generic Application is such a hierarchy. |ts classes supply the
fundamental behavior of Lisa—like applications. These capabilities include: resizing.
scrolling, and updating windows; opening, suspending, and closing application
documents; automatic printing of text and graphics; previewing what is to be
printed; simplified use of menus and the mouse; and cutting/pasting of information
between applications.

BUILDING BLOCKS

Besides the Generic Application, the ToolKit also encompasses application
building blocks. Each building block is a unit containing an integrated set of classes.
Building blocks provide specialized apphcatton features such as: text editing and

formatting. graphics edltmg and desugn data inquiry dialogs, and international
formatting.

You can layer building blocks on top of the Generic Application and underneath
your own units. Building blocks enable you to include just the capability you need and
nothing more.

1-3

The TealKit Application Iesign Model

(a layered approach)
. l I Clascal | Desktop Operating
QuickDraw Library , Libraries System

General Okject Classes

ToolKit Classes and Procedures

Generic Application Classes

L__WWM_J

(Dphoml)

User Application Classes and Procedures

In addition to building blocks, the ToolKit also supplies: a high—level debugger
specially tailored for ToolKit applications, automated tools for compiling
applications™and installing them onto the desktop, and utilities for managing
numeric, string, and graphics data.

OVERVIEW

The ToolKit is a power tool for application design. Its Generic Application
substantially reduces the time needed to create Lisa—like applications.

Harnessing the power of Clascal, the ToolKit maximizes the code shared
among your data types. In the multiple process environment of the Lisa, the ToolKit
enhances system performance by sharing Generic Application code among
concurrently executing applications.

The components of the ToolKit include:

the Generic Application

application building blocks

high—level symbolic debugger

automated tool for compiling applications

desktop installation tool

utilities for dynamic allocation/deallocation of data
classes and procedures for data conversion and management
classes and procedures to support large documents

[Segment 2]

‘What is a Document?

Purpose of this segment:

To introduce documents and their structure as a foundation for understanding
the function of the Generic Application.

How to use this segment:

This is the second segment in the ToolKit architecture self—paced series.
This segment should be started after the segment "Introduction to the ToolKit". It
should be completed before moving on to "Creating from the Generic Application”.

INTRODUCTION TO DOCUMENTS

Rarely do end users invoke desktop applications directly. They use them
indirectly through documents. The structure of the Generic Application is in large
part due to the role that documents play on the Lisa desktop.

Lisa documents are special desktop files that you can open, work on, and put
away when done. As with other items on the desktop, documents are represented by
icons. The document's name is displayed below the icon.

Every document is associated with exactly one application. Typically a
document contains data entered during one or more sessions. The document's
application determines how this data will be entered, organized, and displayed as
information.

A given application may have many documents associated with it. Documents
of the same application are represented by the same icon. Each document. of course.
can have its own name and its own data.

The data contained within a document can be text, graphics. tables. or any
combination thereof. Different applications are able to handle different forms of
data. A spreadsheet, for example, excels at processing data in tables. A word
processor on the other hand is happiest when working with text, yet may also
accommodate graphics.

As for names, each document has two of them. One appears below the
document'’s icon on the desktop. That name wn/ess 7t /s “Unt/t/ed”is supplied by the
user. The other name is not displayed. It is supplied by a built—in desktop tool
called the Desktop Manager or Filer. This name associates the document with its
application, distinguishes it from all other documents on the same disk, and helps the
operating system locate the files that comprise the document.

- Documents can vary widely in size. A new graphics document will be virtually
empty. A large word processing document may contain hundreds of pages worth of
information. = 7he ToolKit is currently able to sugport @ maximum of 768K bytes in
a RAM—based docurment. This can transiate into anything from a 163 page
single—spaced ‘paragraph” (o & double—spaced manuscript exceeding 800 pages. By
overriding TDocManager, larger disk—based documents can be implemented.

Documents are subject to the whim of their users. Their contents can be
changed; their displayed names can be modified. They can be created or destroyed,
opened or closed, all at the discretion of the user.

As far as the Desktop Manager is concerned, a document is composed of its
data and some related structure. A ToolKit document, for instance, contains user
data as well as all the control information needed to manage it intelligently on the
desktop. This additional information ensures that the user interface to the data will
be simple, straightforward, and consistent.

Let's follow a moment in the life of an icon to help shed some light on the
nature and structure of ToolKit documents. /Warning: this story may be offensive
to hard—care engrneers.]

A Moment in the Life of an lcon

Imagine, if you will, that you are back at the office. You are sitting in your
private (five guys around you, and they call it private!) cubicle preparing to do some
useful work on your Lisa. You bring up the Office System, and grab a cup of coffee
while it is setting up. Ah! The coffee is particularly good this morning. You grab
your mouse and send your cursor in search of the icon you clicked on last week.
There! There it is, "Memo 1073" (you like to produce memos). ‘A quick double
ctick on "Memo 1073" and things really start to happen.

A window materializes, and the icon disappears. It doesn't even appear that
the icon has left a shadow this time. Ah well, nothing to break your heart. You
wait a few seconds, and presto, the window fills up with words and pictures. There
are some dark black lines splitting up your window. You've tried to get rid of them,
but they just won't go away. After that great cup of coffee, though, they don't seem
to bother you as much now. Finally! The name in the top bar of the window has
changed to inverse video. And, next, the cursor makes its debut. You start typing
~ and mousing merrily away. You are hoping to finish this memo by tonight.

Eleven AM arrives, and you are still busy on “Memo 1073". Your boss walks
in. Looks fike she has something on her mind. Good god, you forgot to turn in your
monthly status report! But first, better put the memo away. Why concern her with
the deal you're trying to make — with her boss. You double click on the icon in the
top bar of the window; and heave a sigh of relief as the evidence quickly disappears.
"Hi Mary! Bet you want that status report now, huh? Yes, | was just ..." The look
on her face tells you she's heard this all before. You do derive some comfort,
though, that “Memo 1073" is a mere icon again. Amazing how those little icons can
hold so much information! But the thought fades quickly as your boss clears her
throat....

2—2

THE INTERNALS OF A DOCUMENT

The whole system is rather ingenious, when you think about it. The w/ndow
defines where the document data will be displayed. The window is also apparently
able to scroll over the data if it can't all be displayed at once.

With some documents you can even have the same data presented in several
different ways, simultaneously! The window will be split to display the different
representations. For example, LisaGraph documents present their data as both a
table of numbers and a araph. ‘ ,

Each representation is framed by its own border. The border belongs to

something calied a pane/ Each panei provides a unique view of the document’s data.
The window is the owner of the panels.

Every panel has at least one pane Usually, there is one pane per panel. If the
user has split the view, there will be more than one pane. It is really through the
pane that a document’s data is displayed.

Scrolling within a pane allows you to see different portions of your document.
The total of everything that you could see through that pane is called the wew At
any one time the pane displays only part of the view. The effect is sort of like
looking at the scenery through the window of your car. As the car moves what you
actually see changes. But the total landscape is always there. The view, as with the
pane, is owned by the panel.

In some panels of some applications, panes can be split (producing more pain).
This is done by moving one of the skewers (the stubby, black bar at the end of a
panel's scroll bar). Moving the skewer splits both the pane and its rectangle on the
view. |f there is a scroll bar, it, too, is split to allow each of the newly created
panes to focus on a different portion of the view. For example, a top pane could
display the start of a document while a bottom pane displays the end.

What about the data? The data is typically associated with the view. Yet, if
different representations of the data are to be displayed it is more sensible to keep
the data with the window. It is each view, though, that determines how the data is
represented. The form of the data, of course, varies with the application.

So far you have seen that documents contain not just data, but also objects
such as: windows, panels, panes, scroll bars, scrollers, and views. In addition, there
are still other objects that play a role in the document.

Users nearly always want to add to or modify a document's data. Modifying
data requires that two more objects be part of the document: se/ect/ons and
commanas.

A selection keeps track of that part of the data the user desires to change.
Typically, the user uses the mouse to indicate the data to be changed. This may be
data that is to be replaced (such as a paragraph), or an insertion point where data is

2-3

to be added. A selection always exists, even when no data is to be changed. The
selection beloags to the panel. Each panel has a selection.

A command describes how to make a specific change on the data refered to by
the selection. Typically, a command is created when the user chooses an action
from a menu. For example, one of the menus of a graphics editor may include a
rotateaction. |t is up to the command to perform the rotate action correctly
upon whatever graphic object was selected. Only one command is active at any one
time. The currently active command belongs to the window.

You have now been introduced to the major components of a document. Here
is a diagram of what the inside of the document might look like. The order of the
objects in memory may vary from the diagram; what is fixed are the inter—object
references shown by the arrows.

Organization of a Document

mummmmmimmmm

ez other header |

HEAPS

As you have seen, a document is composed of a window, panels, panes, views,
selections, commands, and data. What you may not know is that this data is grouped
together into something called a Aean

A heap is a contiguous span of random—access memory (RAM) where data is
stored. The actual size of a heap may vary during execution. All references are
relocatable within the heap. This means that the application can access data within
the heap without knowing where it is actually stored. This allows the heap manager
to dynamically organize heap space in the most efficient way, without disrupting an
application's ability to access a document's data.

The language of the ToolKit, Clascal, provides a special feature to refer to
data within heaps. This feature is called a sano/e. A handle is a double indirect
reference to data. The application refers to a document's data through handles. The
handle provides a reliable reference to data whose actual address (within the heap)
may vary.

Heaps are associated with one or more /ogica/ data segments. The logical
data segments provide an address space for the data. |t is often useful to have the
address of a piece of data, but since the data can be relocated at any time, it is
much safer to use a handle. Below is a diagram illustrating the relationship between
a handle and the heap data it refers to.

2=5

- A Document and its Heap

L > ™™

window

view

Document Heap

A document comtains & hesp and & docurnert prelude.

The heap comtains the data and the objects needed to
manage and display the data. ,

The prelude contains the information needed to initislize
the heap frorn the docurnent's disk rile.

PUTTING A DOCUMENT AWAY

The end user can put a document away using a command in the File/Print
Menu. The document heap (holding the view, the panel, the window, and whatever
else had 3 hand in managing your document’s data) is copied into a file. Then the file
gets closed. Finally, the window frame goes away. leaving an icon as the sole
reminder of the document.

To assure that a document can be closed and opened at any time, all the state
of the document must be in the heap between commands. In particular, no state
should be in global variables. Some applications may keep part of the document
state in files they manage. An application doing so is responsible to close/open those
files when the user puts away/opens the document.

SUMMARY

A document is a user—originated set of files used with a specific application.
In addition to data entered by the user, a document also contains the objects needed
to supply a Lisa—like user interface to the data. These objects control how the data
is displayed and how modifications are performed.

Opening a document brings up a window. The window displays at least one
panel. The panel displays one or more panes. Each pane displays a portion of the
view associated with a particular panel. The view determines how the data is
represented on the screen. Since the view is typically larger than the display area,
the pane can scroll over the view. There may be several panes, each displaying a
different area of the view.

Closing the document saves the data and the objects that manage and display
the data. Thus, the document contains all the information needed to restore its
state when later reopened.

2—b

' [Segment 3]
Creating from the Generic
Application

(Getting Started)

Purpose of this segment:

1) To identify the process, docManager, and window methods that you must
override to give the ToolKit access to your application’s code.

2) To survey the roles of the process, docManager, and window in your
documents.

3) To explain how the Generic Application calls application code in response
to user events. ,

How to use this segment:

This segment includes a tutorial and a lab. You should read the tutorial and
answer the questions, before proceeding to the "Getting Started” lab.

You should start this segment after the “What is a Document?" segment. You
should complete this segment before proceeding to the “BlankStationery” segment.

Terms assumed:

Generic Application, process, window, view, panel, pane, selection,
command

INTRODUCTION

The way a ToolKit application works can be stated quite simply — 74¢
Generic Application calls application code in response to user events. This
“application code” is used loosely, since it includes both overidden and inherited
methods.

The basic function of the Generic Application is to do as much for you as
possible. This includes taking care of standard document behavior: printing, scrolling,
and opening, closing, and resizing windows. But, often, it needs to call your code to
do so (e.g. drawing a view). '

3-1

The key to enabling the Generic Application to call your code is to initialize
its data structures so that they refer to your objects. Your classes’ methods can
then be called through those objects.

The following sections describe how to initialize the Generic Application to be
able to access your code through your objects.

GETTING STARTED

Every ToolKit application starts by creating a process object. It is from the
process that every other object gets created in a new document,

The process is created in the main program block of the application. As you
can see from the sample below, the main program exists primarily for creating,
initializing, and faunching the process.

3-2

PROGRAN MySample;

USES
{The following units contain Toolkit procedures and classes)
{$U uUobject } UObject, {allocation, deallocation, collection classes)
{$U QuickDraw)} QuickDraw, {» needed by UDraw *}
{$V UDraw } UDraw, {internal representation to screen conversions}
{$U uascC } uaBC, {the classes of the Generic Application}

{This unit contains the classes (interfaces and implementations) of
the sample application}

{$U UnySample } UnySample:

BEGIN
{One of the application classes is THyProcess. It is defined as:
TYPE
THyProcess = SUBCLASS OF TProcess

END.)
{process is & global object reference variable allocated by UODject.
It is defined as follows:
VAR

process: TProcess;}

process := THyProcess. CREATE;

process. Cornnence; {initializes global variables related to process}
process. Run; {enters the Generic Application event loop}
{1! The first event queued when 3 new document is opened is a FfI/efpen
event 11}
process. Conplete (TRUE), {completes with an "all is well" indication}
ENRD.

The first object that the process creates is a docManager. The next object
created is the window. It is created by the docManager; and is the first object
belonging properly to the document.

The window bears the responsibility for creating most of the other document
objects. These include: the selection, the view, and the other display objects.

Below are the methods that must be overridden to create the docManager and
window objects from your classes.

{creates a new process}
FUNCTION TProcess.CREATE: TProcess;

{returns a newly created docmanager}
FUNCTION TProcess. NewDocManager(volumePrefix: TFilePath: openAsTool: BOOLEAN)
: TDocManager;

{creates & new docmanager}

i FUNCTION TDocHanager. CREATE (object: TObject; iisﬂeao: THeap, itsPathPrefix:
TFilePath)

: TDocHanager:

{returns a newly created window}
FUNCTION TDoctanager. NewWindow (heap: THeap: wagriD: TWindowID): TWindow:

{creates a new window}

FUNCTION Twindow.CREATE (object: TObject; itsHeap: THeap: wagri0: TuindowlD):
Tuindow;

3-4

Links Document Objests

view]‘ B
panel
view view
\selectuon > -
panel selection
panel
4 panes wmdow window
N anl selectPanel
{
window J
~ selectWindow | lastCmd
panel W
view pane command ——
L , image
KEY: fieldName

CA D—=pB D

A can access B through f/e/dName

fieldName@list

»(8 D

Acan access £ through an element of the list 77e/dName

The method below creates the initial display objects (panel, pane, and view) and the
selection. This, along with the CREATE method below, must be overridden to
create a view object from your TView subclass.

{initializes the document blank stationery}
PROCEDURE Tuindow.BlankStationery:

{creates & new view)

FUNCTION TView CREATE (object: TObject; itsHeap: THeap; itsPanel: TPanel: itsExtent:
LRect; itsPrintHanager: ‘TPnntn,anaaer: itsDfltHargins: LRect; itsFitPagesPerfectly: BOOLEAN:
itsRes: Point; itsHainview: BOOLEAN): TView;

BiankStationery plays a major role in initializing the data structures of the Generic
Application. 7he next segment “BlankStationery ", covers this in more detarl. Yet,
these so—called "data structures” are actually a network ot cross—referencing
objects. What BlankStationery does is to create view, panel, pane, and selection
objects which cross—reference each other and the window.

The key to having the Generic Application call your code is to insure that the
view (and, later on, the selection) is created from one of your classes.

| LINKS AMONG DOCUMENT OBJECfS

The slide £ /nks Between Document Jbjects depicts the linkages among
document objects. They include: the view, the panel, the pane, the window, the
selection, and the command. All of the objects, except for window and command,
are created by the window's BlankStationery method.

A detailed account of the order of objects created and linked by
BlankStationery follows.

1) The panel is created as an instance of TPanel.
2) An empty list for the panes is created.
3) An initial pane is created, and appended to the list.

4) The panel appends itself to the window's list of panels. If the panel
is the first to be appended, it also becomes the select panel for the
window. [The select panel is discussed in the segment on selections.]

5) The view is created as an instance of a subclass of TView.
6) The panel points tu the view.

The pane points to the view.
The view points to the panel.
7) An instance of TSelection (the initial selection) is created.
The panel points to that selection.
The selection points to the view and to the panel.

THE STARTING THREE: Process. DocManager. Window

These three objects get your application started; and they play other
important roles as well.

process

The process is the heart of the application. There is one and only one process
in any ToolKit application.

The process creates one docManager to be responsible for each document. The
process, while active, is also owner of the clipboard and the menu bar.

The primary purpose of the process is to direct user events (such as mouse
presses, key downs, menu and file events) to the appropriate recipient. Possible
recipients are:

the window of the current document,
the dialog box of the active document,
the docManager of the current document, = -
the selection of the select panel of the current window,
the menu bar,
or the clipboard.

docManager

The primary functions of the docmanager are: to manage the memory used by
its document, and to respond to all file events atfecting the document.

There is exactly one docmanager for each document owned by a process. The
docmanager is responsible for opening, setting aside, resuming, and closing the
document.

If the document is newly created, the docmanager allocates space. It then
tells the document’s window to execute its BlankStationery method to create the
initial display objects.

window

Each document has a window. Active documents may have an additional
window called a dialog box. The window defines the area that the document occupies
on the desktop.

The window transmits mouse events received from the process to one or more
of its panels. From the panel, these events reach the current selection or view.

USER EVENTS

The heart of the Generic Application is an event loop that identifies and
routes user events. Your application’s code will be called to process some of these
events. The slides, 7he Flow of Lser Evem‘s indicate some of the methods in your
code that could be called.

User events are queued up by the Window Manager and the Filer.

The Window Manager routes mouse downs and key presses to the
gopropriate application. [t sends ypdate events to gpplications whose
docurments become exposed on the desktop. Activate events are sent when
the user clicks into an inactive window or c/icks out of an active one.

The Filer sends file events, such as fileOpen or fileClose, to the
aopropriate aoplication.

Most user events are handled automatically by the Generic Application. These
include: file, menu (mouse presses on the menu bar) update, and activate events.
Those that remain, the mouse and key events, are intended to be handled by your
-application. ;

After processing an event the Generic Application does something very
important. It updates the window. A window update refreshes and redraws the
document's display as needed. It is during the update that your application's display
code is called. The update tells your view to draw, and your selection to highlight.

TRUE NATURE OF THE GENERIC APPLICATION

Your application does not call its own display code. The Generic Application
does it for you, automatically. This is just one many instances when your code is
called automatically. Such is the nature of the Generic Application.

Unlike other programming environments, where you determine when your code
will be called, the ToolKit is quite different. Mastering the ToolKit boils down to
knowing how and when the Generic Application will call you.

In the accompanying diagrams, “"Window" represents your subclass of TWindow,
while "TWindow" means the generic class definted in the ToolKit. These diagrams
are conceptual. A more detailed diagram is found on the Flow of Control Poster.
The ultimate authority is, of course, the ToolKit source code.

3-7

Orcer of Creation

o=
Y

(Goomanage)

Window

View

The Flow of User Events
(mouse downs)

MenuBar go [irst - 1
[Panel]
Selection |« / '
NewCornmand event

The Flow of User Events
(key presses)

[Selectlon]

lw

Selection J

KeyChar
KeyEnter
KeyRetum
 KeyTab
KeyClear

The Flow of User Events
(applekey presses)

[MenuBar_ |

| Mouse downs in the menu bar i [Window]
rollow the flow from here

TSelection] -l [Selection]

‘Neowmmd o NewCommand

(oo)<= (o)

‘ NewCommeand NewComman

Questions:
1) What is the relationship between the window and your view?
What role do updates play?
2) Which is created first — the docManager or window? Why?
3) Which is the first application object to receive events?
4) Where are /mouse downs routed?

3-8

Getting Started Lab

Purpose of the lab:

1) To provide hands—on experience compiling and installing a simple ToolKit
application.

What you are about to do:
1) Review the "Code components of a ToolKit application”.

2) Scan the listings for the four files in the sample application base. These
are included in the appendix, "Code Samples for this Segment"”.

3) Copy the following files onto your prefix volume:
UlBoxer. TEXT
UlBoxer2. TEXT
MiBoxer. TEXT
P1Boxer. TEXT

4) Compile, install, and run the sample application, 1Boxer. Use 41 as the
tool number. Agpendix A (turn page) describes how to compile and install
a Too/Kit agplication.

a) Split the panel into panes.
b) Scroll to the end of the view.

The materials you will start with:

1) The code listings for the sample application base /see “Code Samples for
this Segment/

2) The following application source files on your disk (or diskette):
UlBoxer. TEXT
U1Boxer?2. TEXT
M1Boxer. TEXT
P1Boxer. TEXT

3) The ToolKit (must be installed on your disk).

3/1ab—1.

CODE COMPONENTS OF A TOOLKIT APPLICATION

The code for a ToolKit application is typically partitioned into four files. The
file naming conventions, below, use YowrApp as the name of the application. Typical
contents of each of the four files is included.

The main program outer block (This file is named M YouwrApp TEXT)

This file lists the units used, and includes a 4 line outer block. One
of the units must be U YourApp.

The application interface part (This file is named U YowrApaTEXT).

This file is the interface for the Pascal unit, UYourApp. This file
has an include line for the file UYourApp2 . TEXT.

The application implementation part (This file is named U YourAp® . TEXT).
This file is the implementation for the unit, UYourApp.
The phrase file (This file is named P YourApgTEXT).

This file contains the application's menus, warnings and error
messages.

Question on the lab:

You compile a new ToolKit application named MyApp. You create three
files named: MMyApp. TEXT, UMyApp.TEXT, and UMyApp2. TEXT. You
make and install the program correctly, but it doesn't run. What is the
problem?

3/lab—2

| Appendix A:
Building and Installing a ToolKit Application

Building an Application

To build a ToolKit application, you use the MAKE exec file. This is supphed
with your ToolKit system files.

The MAKE exec command line accepts several arguments. For most
applications you need to supply only the first two: the application name, and the
tool number. For example, the Workshop command line below will build an
application named 1Boxer and save the object file as Tool 41 on the desktop.

RCMAKE (1Boxer, 41)

The above command causes MAKE to check for any changes in any of the
following four files since the last build:
M1Boxer. TEXT
P1iBoxer. TEXT
U1Boxer. TEXT
UlBoxer2. TEXT

Since, the creation dates of the various files are checked to determine what needs to
be recompiled. make sure that your clock is set correctly.

The third argument to MAKE is the volume to put the too! on. The default /s
the prefix volume. The final four arguments specity any adoitional units or burlding
blocks that your gpplication uses. The order of these units is critical. With the
exception of the application unil _a listed unit must preceec any that refer to /t.

When you build your application for the first time, be sure to delete any old
copy of the tool (eg. {T41}0BJ) and the phrase file (eg. {T41}PHRASE). This forces
the exec file to relink your application.

3/1ab-3

Installing an-application

Once you have built your application, you must install it on the desktop with
the INSTALL program. Just run the program and answer the dialog.

For example, if your application was linked as {T41}OBJ, and you wish to
install it as the Sample tool on PARAPORT, then you would supply the following
responses to the dialog:

INSTALL prompt your response
device to install tool on: PARAPORT
too! id number: 41

too! creates documents? [press RETURN (for yes)]
tool handles more than one

document at a time? [press RETURN (for no)]
change initial stationery

rectangle? [press RETURN (for no)]
tool name: Sample

3/1ab—4

VAN

seesisdds SR A~ S

.8 Rug 1984 15:58:81

X1BOXER. TEXT

—

41
SLOT2CHAN1
;no assembler files

$

yno building bl ocks
;no 1inks

$
y
y
n
Boxer Number 1

9 Rug 1984 15:56:02

P1BOXER. TEXT

rage

[

—~

H PBOXER. TEXT for Boxer
:1Phnso file for Boxer class example

2500
$-*#BOOT-TK/PABC

1000
1Boxer

; Other appl ication slerts can be included hsre,
0

1

File/Print

Set Aside Everything#®101
Set Aside®102

Save & Put Auay®103
Save & Cont inue®107
Revert to Previous Version®108

Format for Printer ... #104
Print ... #0S
Honitor the Printer ... #106

100
Buzzwords
Set Aside fDocument 1#109

o

i Apple building bl.ock phrase files can be included here

numbered betueen 1001 and 32000

9 Pug 1884 15:53:12 MIBOXER. TEXT

~
PROGRAM MiBoxer;
USES
{SVU UOb ject } Uob ject,
{$IFC 1 ibraryversion <= 20}
UFont) UFont,
{
- {$U QuickDrau QuickDrau,
$U UDrav Uraw,
$U UABC UABC,
{$U ulBoxer } UlBoxer
CONST
phraseVersion = 1;
BEGIN
process : = TBoxProcess. CREATE;
process. Commence{ phrasevers ion);
process. Run;,
process. Compl ete(TRUE):
END.

21 Rug 1884 12:31:24 ULBOXER. TEXT Page

/NN NI RIN N RIRI A AR RI R A RSN RIAIAI NI AIAI NI RIAI NI NI RI AT NI AI NI NI AI NI NI AT AT NI AT NI RI R 1 8 hob 1 ot st b b b o Db b o b o b b b b b b e b b b o b o o ek b e o et o et o b o b o b o e et s b e b e b 0

WRNNUT BN -

fLisaBoxen box-drawing appl icat ion for the Tool Kit}
Copyright 1983, Apple Computer Inc.]}

UNIT UlBoxer;

INTERFACE
USES
$U UOb ject) Uob ject,
$U QuickDraw} QuickDrau,
$U UDraw} UDrau,
$U UABC} UABC;
TYPE

TBoxProcess = SUBCLASS OF TProcess

{Creat ion/Dest ruct jon}
FUNCTION TBoxProcess. CREATE: TBoxProcess;
FUNCTION TBoxProcess. NewDocHanager{ vol umePrefix: TFilePath, openAsTool: BOOLEAN)
END : TDocHanager; OVERRIDE;

TBoxDocManager = SUBCLASS OF TDocManager

{Creat ion/Dest ruct ion)
FUNCTION TBoxDocManager. CREATE(ob ject: TObject; itsHeap: THeap; itsPathPrefix: TFilePath)
: TBoxDocHanager;
E%CT ION TBoxDocHanager. Newlindow(heap: THeap; wmgrlD: TWindowID): TWindow; OVERRIDE;

TBoxWindow = SUBCLASS OF TuWindow

{Creat jon/Dest ruct ion}
FUNCTION TBoxWindou. CREATE(ob ject: TObject; itsHeap: THeap; itsUimgriD: TWindowlD): TBoxUindow;

{Document Creat ion}
PROCEDURE TBoxWindow. BlankStationery; OVERRIDE;

END; -

TBoxVieuw = SUBCLASS OF TView

{Creat jon /Dest ruct ion}
FUNCTION TBoxView. CREATE(obje%fé: Eiject; itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
: oxView;

{Display}
PROCEDURE TBoxView. Drau; OVERRIDE;

IHPLEMENTAT ION

{$1 UlBoxer2. text}
{uiBoxer2}

METHODS OF TBoxProcess;

;EU!&‘CI:LION TBoxProcess. CREATE: TBoxProcess;
gSIFc fTrace}lBP(11); PENDC]
ELF : = TBoxProcess(1Process. CREATE(NewOb ject(ma inHeap, THISCLASS), ma inHeap)):
{SIFC fTrace)EP; { SENDC]

s

, ;gg(l:;« ION TBoxProcess. NewDocManager{ vol umePrefix: TFilePath; openAsTool: BOOLEAN): TDocHanager

&:m: fTrace)BP(11); { SENDC}))
wDocHanager : = TBoxDocHanager. CREATE(NIL, wainHeap, volumePref ix);
END {$IFC fTrace)EP; { SENDC}

END {Hethods of TBoxProcess};

HETHODS OF TBoxDocHanager:

FUNCTION TBoxDocHanager. CREATE(ob ject: TObject; itsHeap: THeap, itsPathPrefix: TFil ePath)
BEGI : TBoxDocHanager;
GIN

$IFC ﬂnccz‘BP(n): { $ENDC}
F object = NIL THEN

object := NewObject(itsHeap, THISCLASS);)
SELF .= TBoxDocManager{ TDocManager. CREATE(ob ject, itsHeap, itsPathPrefix));
END {$IFC fTrace]EP; { SENDC

FLR;!I:LION TBoxDocHanager. Newll indou(heap: THeap; wmgriD: TWindowlID): Tuindow;
SIFC fTrace)BP(11); { SEND!

C
Wil indow : = TBoxWindow. CREATE(N!L, heap, umgrliD);
END {SIFC fTrace)}EP; { SENDC}

END {METHODS OF TBoxDocHanager];

HETHODS OF TBoxW indouw;

[

~

Lol oat NISTNININENTST ST NN ST NE NI NI NENNENTNTNTNTSENT NI ST NENENTNENT ST ST STNTSYSTST RSN SYNTRTSTSINTNTRTSTISYSTN NNV RN

o-
-0

>

D>

END

21 Rug 1884 12:31:24 ULBOXER. TEXT Page

FUNCLION TBoxl indow. CREATE(ob ject: TOBject; itsHeap: THeap, itsumgriD: - TWindowID): TBoxWindow;

BEGI
SSIFC fTrlcez‘BP(10); {SENDC}
F object s NIL THEN
ob ject : = NewOb ject(itsHeap, THISCLASS);
SELF := TBoxWindou(TWindow. CREATE(ob ject, itsHeap, itsWmgriD, TRUE));
END {$SIFC fTrace}EP; { SENDC) :

PROCEDURE TBoxWindow. Bl ankStat ionery;
VAR vieuwLRect: LRect;

panel: TPanel;

boxView: TBoxVieu;

BEGIN
- {$IFC fTrace} BP(10); {S$ENDC) -
gset the vieu extent LRect}
SetLRect(vieulLRect, 0, 0, 5000, 3000);

panel :s TPanel. CREATE(NIL, SELF.Heap, SELF, 0, O,
[aBar, aScroll, aSpl it], [aBar, aScroll, aSpl it]);

{mn ial ize the boxView}
boxView : = TBoxView CREATE(NIL, SELF.Heap, panel, zeroLRect);
END(SIFC fTrace} EP; {$ENDC)

{Hethods of TBoxWindou);

METHODS OF TBoxView;

END

END.

FUNCTION TBoxView. CREATE(object: TObject: itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)

TBoxView;
BEGIN
SSIFC fTraceLBP(11%; { $ENDC}
F object = NIL THEN

ob ject : = NewOb ject(itsHeap, THISCLASS);

SELF := TBoxvieuiusPanel.Newiau(object. itsExtent, NIL, stdMargins, FALSE));
{SIFC fTracelEP; { SENDC)

END;

PROCEDURE TBoxView. Drauw;

BEGIN

tsxrc fTrace}BP(lD);&SENDC]
o $IFC fTrace}EP; {$ENDC)

g

{METHODS OF TBoxView): ’

21 Rug 1884 12:31:24

ULBOXER. TEXT

Page

(

1. ulboxer. TEXT
2. UlBoxer2. text

-B-
Bl ankStat ionery

-c-
CREATE

-D-
Draw

~N-
NewDocManager
Neull indow

-Q-
QuickDraw

-T-
TBoxDocHanager
TBoxProcess
TBoxView
TBoxU indou
TDocHanager
TProcess
TView
TWindou

~U-
UlBoxer
UABC
UBraw
Uob ject

*** End Xref

19 id's

(1) S4+(1)
(1) 64+(2)
1 28 (1
(3 &ty
(1) 100°(2)
1 14+(2
(3 3
(1)
1 29 (1
1 19(1
1 51 (1
1 38 (1
1 5 (1
1 9(2
1 ‘
1 35 (1)
1
1
1
1
67 references

38
74

i

¥ %ty

2

)

2) 25+(2
2 6(2
2) 78 (2
2) 50 2
2) 342
2) s8(2

[420232 bytes /4380 id /42569 refs]

(g 2

28 (2 34 (2)
9(2

87+(2 90 (2
53 i 25 58 E 23

17 (2)

9% (2)

28+(2)

34 (2

&2 (2)

[Segment 4]

BlankStationery:
The View of a New Document

Purpose of this segment:
1) To describe how a new document is initialized.
2) To introduce the coordinate system of thé view.

3) To describe how a document's contents are spatially arranged and
displayed.

How to use this segment:

This is the fourth segment in the ToolKit architecture self—paced series. This
segment should be started after the segment “Creating from the Generic
Application®. It should be completed before moving on to the “Intro to Boxer®
segment. : :

THE VIEW OF A NEW DOCUMENT

Each application initializes new documnents in its own way; The docurment’s
display is drawn within the window by the view. The view generates the displayed
representation of a document’s data.

The initial views of new documents can vary widely. For example, tearing off
a sheet of LisaWrite paper yields a completely blank view. Tearing off a sheet of
LisaDraw paper displays a drawing palette and a grid.

In each of your ToolKit applications, you will need to determine how new
documents are to be displayed. This segment presents a BlankStationery boilerplate
to help you do so. .

BLANK STATIONERY

The objects in a ToolKit—based document are Clascal objects. As such each
object has a class. The Generic Application contains the superclasses for many of a
typical document’s classes. For instance, window objects are of the Generic
Application class, TWindow. Views are of the class, TView.

A special method of the window, BlankStationery, is called by the Generic
Application to initialize the view of a new document. Your application will subclass
TWindow and override BlankStationery to initialize its documents.

INITIALIZING A DOCUMENT
the user interface

A user tears off a sheet from an application's stationery pad. An icon named
“Untitled” is displayed on the desktop; the user may edit the name. The user opens
the icon and the application proceeds to create and initialize a new document.

The window frame is painted for the new document. (f the application that
owns the stationery is not already running, it is started at that time.

the internals

A process object is created when the application starts. Once it has
initialized itself, the process creates a doc/Manager object for each opened window.
Both the process and the abc/vlanager objects reside on & separate hegp — the
process heap.

The first things the docmanager does are to: make the document heap, and
place a new w/ndowobject on that heap. 7here /s a separate document heap for
each window.

The window's BlankStationery method creates the panels and the initial view
of the document. BlankStationery must do the following things to initialize the -
view: |

a) create a panel. The panel, in turn, creates an initial pane.
b) create a view. The new view is then linked to the panel.
¢) create an initial selection 7he default is an instance of TSelection.

After returning from BlankStationery, the Generic Application tells the
window to activate itseif. This causes the window to update. The window update
frames the panel and pane, then draws the view.

After drawing the view, the Generic Application highlights the window's title
bar, and waits for the next user event. The user is now able to work on the new
document.

4-2

THE VIEW COORDINATE SYSTEM
some definitions
inner rect: the coordinates of the inner boundary of an object.

TypicaHly this is one pixel less all around than the outer boundary, Inner
rects are expressed in 16—bit Q/ickDraw coordinates.

LRect: the 32—bit analogue of QuickDraw’s Rect type.
Each coordinate is a long integer.
extent LRect: an LRect defining the logical boundaries of the view.

The extent LRect imposes a 32—bit coordinate system upon the view.
Only a portion of the extent LRect may be visible at any moment.
[See the diagram “View wrs. Pane".]

viewed LRBect: the portion of the view visible through a specific pane.

Each pane has an inner rect and a viewed LRect. The viewed LRect
encloses that portion of the view that is to be displayed in the pane’s
inner rect.

The pane performs a mapping from the 32—bit coordinates of the view
to the 16—bit coordinates of the window's grafport.

The coordinate system of the viewed LRect is the same as that of the
view's extent LRect. [See the diagram “View vrs. Pane".]

the mechanics of drawi he view

If you recall, QuickDraw is the Apple 32 graphics utility. QuickDraw
performs all of its drawing in a 16—bit coordinate space. This means that drawing
is limited to between —32768 and 32767 units in either the X or Y direction.

in a typical document, the data objects are arranged by coordinates. For
example, a box enclosing text may be defined by the Rect [100, 100, 500, 300]. The
first line of text might start ata(t 10, 120). This is done both to interrelate data
objects spatially within the document, and to allow objects to be drawn inside the
window's grafport.

Unfortunately, a 16—bit coordinate space supports, for example, nc more than
40 pages of text data. There are no more unused points in the coordinate space to
associate new text with.

The ToolKit remedies that problem by supporting 32—bit coordinates. in the
case of text, a 32—bit coordinate space supports more than a million pages. 74/ /s
much more then a docurnent can actually hold.

ToolKit views support objects specified in 32—bit coordinates. The view
extent L Rect describes the subset of the 32—bit coordinate space in which objects
can be defined and through which the view can be scrolled.

4-3

Drawing objects expressed in 32—bit coordinates into a 16—bit grafport.v
though, poses a bit of a problem. A transiation must be performed upon the 32—bit
coordinates before drawing is possible. That is where the pane steps in.

The pane displays a subset of the view. The pane‘s /mer rectresides in the
16—bit coordinate space of the window's grafport. To display 32—bit data objects,
the pane also has a wiewed LAect This viewed LRect is a viewport into the view's
coordinate space. The pane's viewed LRect is a subset of the view's extent LRect.

Typically with the same dimensions as the inner rect, the viewed LRect makes
possible a one—to—one mapping of points from a 32—bit view to the 16—bit screen.

Scrolling through the document changes the coordinates of the viewed LRect,
enabling other portions of the view to be mapped to the screen.

"~ SAMPLE CODE

Sample code for a window BlankStationery method and view CREATE
function are listed below. The listing assumes that TMyWindow is created as a
subclass of TWindow; and that TMyView is created as a subclass of TView.

PROCEDURE {TtwwWindow.) BlankStationery;

VAR nyView: MyView;
panel: TPanel;
ninHeight,

ainkidth: INTEGER;

extentlRect: LRect;

docHesp: THesp,

itsPrintigr: TPrinthenager {the print nanager for the view)

BEGIN
{Beer in nind that SELF represents the window object)

docHeap = SELF Heap.

{create the panel with two scroll bars. The pane in the panel will
be able to be scrolled and split both horizentally and
vertically.)

ninMeight := 0; {minimum height of the panel inner rect)
ninklidth := 0; {wdnimum vidth of the panel inner rect)
panel ;= Wml.GREAIE(NIL. docHeap, SELF, minHeight, minWidth, -

[eBar. aScroll, asplit], [ebar,ascroll,asplit));

{create the view)
{define the view extent rect)
SetLRect(extentiRect, {its left), (its top), {its rigmt), {its betton)).
myView := ThyView. Creste(NIL, docHeap, panel, extemtiRect):

B0 {TWindow. BlankStationery);

(lllllllmlIIIHIlulmlllumlHllIlullllmlmlllmullllllllmmullmlhlllnlmll)

FUNCTION {Thyview.) CREATE {(object: TObject; itsHeap: THeap; panel: TPanel; itsExtent: LRect)
: TiyWiew)

COMST itsFitPerfectlyOnPages = TRUE; {will resize the view extent rect to fit perfectly
on pages)

: View vrs. Pane

View
ExtentLRect
(32-bit coaxrdinates) :
00 400,0 1000,0

0,1000 1000,1000
Pane Pane
ViewedLRect InnerRect
(32-bit view coardinates) |
00 00,0 (16-bit window coardinates)

0,350 400,350

maoping from view to window

VAR itsPrinthgr: TPrintienager:
{stamargins: LRect; (global margin settings in screen pixels))}

IF object = NIL THEN {creste 3 new object of this class}
{The compiler construct, THISCLASS, supplies the class pointer
atonstically)
object := NewObject(itsHeap, THISCLASS).

{creste a default print mansger}
{This print manager will allow general primting capabilities,
except for margins and headings) '
itsPrinthgr := TPrinthgr. CREATE(NIL, docHeap):

{create s new standard view)
{the view will be crested as a main view (not a printed or
paginated view) vith horizontsl and verticel resolutions
the same 85 the screen)

SELF := TMyView(panel.Newview(object, itsExtent, itsPrinthgr, stdMargins,
itsFitPerfectlyonPages));
{1t NOTE 1!
The construct, ThyView(_), is a ope cast
A type cast treats its argument as if it were of the specified
class or type. The aethod, TPanel.MewView, returns 4
value of class Tview. This result is type cast, because
SELF must be assigned 8 value of class Thyview.

€D {TryView.Create).

4-6

[Segment 5] |
Intro to the Boxer Application

Purpose of this segment:
1) To introduce the Baxer application.

2) To demonstrate how to draw boxes.

How to use this segment:

This segment includes a tutorial and a lab. You should read the tutorial and
~answer the questions before proceeding to the lab. ,

You should start this segment after the “BlankStationery™ segment. You should
complete this segment before the "Selections & Highlighting™ segment.

INTRODUCTION TO THE BOXER APPLICATION

. The Baoxer application displays and edits boxes. We shall implement Boxer in
stages, over the next seven segments.

in Boxer documents the data are boxes, baxes, and baxes. A /istis used to
store the baxes. The list is maintained as a field in the view. '

With a list we are able to access any box easily. Using a /is¢ scamna we can
access each box in sequence. The list scanners also provides easy insertion and
deletion of baxes (or any atject)

Each bax is represented internally as an object with several fields. A bax's
primary attribute, its dimensions, is conserved as a ToolKit LRect. LAects arr
uniquely defined by four long integer coardinates.

As with any document. we must make provision for displaying the data. To
display a box, we just draw a frame around its LRect. To display the data in the
view. we use a list scanner to step through the list and draw each box. Actual
drawing occurs in the view's panel.

Though each box is always aFrawn at any given time. some boxes may not be
displayed. The actual display is determined by the panel’s panes. Within a pane, only
those boxes intersecting the pane‘s viewedLRect are displayed. And of those boxes,
only that portion contained within the viewed LRect is drawn on the screen. The
pane‘s viewed LRect acts as a temporary clip region. This mechanism is called
focusing When drawing in a panel. the Generic Application focuses each pane befare

changing bits on the screen.

Editing boxes follows the normal Lisa model. As with other data, boxes must
be selected to be operated upon. Among the editing operations we implement for

boxes are: box moves, color changes, duplicate, and cut & paste. £djting operations
ae /hw/enmted 0 subsequent segments.

BOX OBJECTS
Box objects have certain attributes. These are included in the table below.
Attributes of box objects

nodifisble constant
color ,
shape LRect size

) The coloris one of five standard colors (white, gray, light gray, dark gray,
black).

The siape LRAectdetermines both the location within the view space and the
sizeof the box. [See the “ToolKit Reference Manual” for more detalls on L Rects/.

The shape LRect can be offset, (this is how the box is moved within the view), but
it's dimensions remain constant.

A box's attributes are saved in its fields. This is indicated by the partial
_interface below. : : '

TPt
TColor = (colorwhite, colorLiSray. colorGray, colorOkiray, colorflack):

TBox = SUBCLASS OF TODject

{fiedds)
shapelRect: LRect:
color: TColor;
{nethods)
D;

As can be seen from the interface, box objects are instances of the class, TBox.

S-2

IMPLEMENTATION STRATEGY

In this segment we create two boxes, and insert them into the view. The view
maintains the boxes in an /ndkx//st Each created box is appended to the list.
Initially, a box's color and shape LRect wiil not change.

We have built upon the application code presented in the "Generic Application®
segment. | ‘

We have created a new class, TBox. Boxes are instances of TBox. Within this
class we have added the method {TBox.} Draw to enable each box to draw itself. 77%e
implementation for TBox Is included in the aapendix “Code Sample for this

Segrnent ",)
In addition to adding TBox, other application changes were made, most
notably in the view. The modifications are listed below:

5-3

New Classes

[vBex]
TOox = SUBCLASS OF TObject

{varisbles)
shapelhect: LRect;
color: TColor;

{Creation}
FUNCTION {TBox.) CREATE (object: TObject; itsHeap: THeap).

{Display}
PROCEDURE (TBox.) Draw;
EWD {of TBox).

New Methods (for existing classes)
(TBoxvies]

PROCEOURE {TDoxview.) InitBoxtist (itsHesp: THesp):

{TBoxView.linitBoxList creates an index list, then appends two
newly created boxes to the list.

Changed Methods
{T8oxtiindov]

~ PROCEOURE {TBoxitindow.} BlankStationery;

{TBoxWindow.]BlankStationery now creates the view and tells it
to initialize its list of boxes.

5-4

theory of operation

Because of the minimal user interface, 1Boxer operates quite simply. If
initializes the view in BlankStationery, then waits until the window updates to draw
the boxes in the view. The flow of control is depicted below:

| TBoxWindow.Update
| TBoxView.Draw
v TBox.Draw (for each box)

APPENDING OBJECTS TO A LIST [optional]

Appending objects to a list is fairly straightforward. Below, we show some
sample Clascal code that appends boxes to a list.

PROCEDURE ImitBoxList (boxlist: TList; itsHemp: THeap):
VAR box: TBox;

BEGIN |
{initialize the list with no elenents)
boxList := TList. Creste(NIL, itsHeap, 0):

box := TBox. Create(MIL, itsHeap); {create a box)
boxList. InsLast (box); {append the box to the list)

box := Thox.Create(N1L, itsHesp). {creste another box)
boxList. InsLast(box).: {append it to the list)

5$-5

DRAWING OBJECTS FROM A LIST [optional]:

The boxes in the view's list are drawn one at a time. A list scanner is the
best way to step through the objects in a list. The code segment below draws each
box in the list, boxList.

PROCEDURE Draw (boxList: TList):
VAR Dbox: TBox.
s: TListScanner;

BEGIN
{creste a list scanner for the List, hoxust}
s := boxList. Scanner;

{Orm each box in the list)
WHILE s.Scan{box) 0O
box.D1aw;
END;

HOW TO DRAW A BOX [optional]

As was stated before, a box is an object with a shape LRAect and a color. The
shape LRect is the shape of the box. This reduces the problem of drawing a box to
drawing an LRect.

DOrawing an LRect in the ToolKit is similar to drawing a Rect in QuickDraw.
The main difference is that LRects have 32—bit coordinates, rather than the 16—bit
coordinates of Rects.

Drawing a shape is a two step process. First you fill the shape, then you
frame it. The fill operation uses the ToolKit procedure, FillLRect. The frame
operation uses the ToolKit procedure, FramelLRect.

The FillLRect procedure is analogous to the QuickDraw procedure, FillRect.
FillLRect takes two parameters — an LRect and a pattern. The pattern must be of
the ToolKit type, LPattern. Fortunately, the ToolKit pre—defmes the following
color LPatterns: ‘

[1pstinite, 1PatBlack, 1PatSray, 1PstitSTay, 1PatDKray].

To fill an LRect named myLRect with the color black, you would use the following
procedure call:

filltRect {nyLRect, 1PatBlack)

5-6

The FramelLRect procedure is analogous to the QuickDraw procedure, FrameRect.
FramelLRect takes just one parameter, the LRect. To frame the LRect, mylLRect,
you would use the following call.

FramelRect (mylhect)

intro to Boxer Lab

Purpose of the lab:
To implement a simple Boxer docurnent.

What you are about to do:
1) Read the section "Desired Application Behavior®.

2) Scan the listings for the four files in the sample application. These are
included in the appendix, "Code Samples for this Segment”.

3) Copy the following files onto your prefix volume:
U2Boxer. TEXT
U2Boxer2. TEXT
H2Boxer. TEXT
PZBoxer. TEXT

4) Compale. instan and run the sample appllcation. ZBoxer Use 42 as the
tool number.

Try the following:
a) Split the panel into panes.
b) Scroll to the end of the view.

5) Try one or both of the following changes:
— display one gray box and one black box.
— draw a box that is bigger than the view extent LRect.

Desired application behavior:

After a piece of stationery is torn off of the 2Boxer pad. the new document
should display two boxes as shown in the attached screen shot.

The boxes will have the following attributes:
‘ ~ ghape Lhect celor
box #1 [(20.20), (100,100)] Gray
box #2 [(200,100), (300,130)] Gray
Note that the color is set to gray in the method {TBox.} CREATE.

5~lab—1

Questions:
1) Think about how you might select a box and indicate that it is selected.

S—lab-2

8 Bug 1884 15:58:08

X2BOXER. TEXT

Page

—

Ve

42
SLOT2CHANL
,no assembler files

. no building blocks

9 Rug 1884 15:56:24 P2BOXER. TEXT Page

Ve

: PBOXER. TEXT for Boxer
iPhrtsc file for Boxer class example

2500
$-%boot -tk /PABC
. Apple bullding block phrase files can be included here

1000
Boxer
Other appl ication alerts can be included here, numbered between 1001 and 32000

’

0

1

File/Print

Set Aside Everything#101
Set Aside®102

Save & Put Auay®103
Save & Cont inue®107
Revert to Previous Version#®108

Format for Printer ... %104
Print ... #05
Honitor the Printer ... #106

100
Buzzvords
Set Aside fDocument 1#109

0

9 Rug 1984 15:53:32 M2BOXER. TEXT

Page

1

PROGRAM M2Boxer;

USES
{$U UODb ject } UOb ject,

{$IFC libraryversion <= 2&'12J
éw UFont} - Font,
{sENOC]

$U QuickDraw QuickDraw,
$U UDrau UDraw,
$U UABC UABC,
[$U U2Boxer] U2Boxer:
CONST
phraseVersion = 1;
BEGIN

process : = TBoxProcess. CREATE;
process. Commence(phrasevVersion);
process. Run;

process. Compl ete(TRUE);

END.

21 Rug 1984 12:32:17 » U2BOXER. TEXT Page

(MNNNNNNNNNNNNNNNNNN"‘HF‘HF‘PO—‘HH!—IPNHNMHHPNHHHHNWD—‘.—‘HHHPMHHI—‘H.‘HHH‘-‘HND—‘HNMHF‘0-‘PWHHHHHFHP"PHHNMHD—‘MHHHHO—‘HHHH“HHHHHﬂHFP“HH \

ORI NN -

UNIT U2Boxer,
INTERFACE

USES
{$U UOb ject) Uob ject,

$IFC] ibraryversion <= 20
:é% UFont)W EFont

$U QuickDrav} QuickDraw,
$U UDraw} UDrau,
$U UABC) UABC;

CONST
colorWhite = 1;
coloritGray = 2,
colorGray = 3;
col orDkGray = 4;
colorBlack = 5;

TYPE
TColor = colorihite..colorBlack; {color of a box}

{New Classes for this Appl ication}
TBox = SUBCLASS OF TOb ject

{variables}
shapelLRect: LRect;
color: TColor;

{Creat fon /Dest ruct }
FUNCTION. TBox. caen E{ob ject: TObject; itsHeap: THeap): TBox;

{Dis g
PROCE URE TBox. Drau,
END;

g

TBoxVieu = SUBCLASS OF TView

{variables)}
boxList: TList;

{Creat ion/Destruct i

FUNCTION TBoxView. %REﬂTE(obJ%t vTObJect itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
oxView,

{Disp
OCEgaRE TBoxView. Draw:. OVERRIDE;
:ROCEDURE TBoxVieuw. InitBoxList(xtsHeap: THeap):

TBoxProcess = SUBCLASS OF TProcess
{Creat jon/Dest ruct ion}
FUNCTJON TBoxProcess. CREATE: TBoxProcess,

FUNCTION TBoxProcess. NewDocHanager({volumePrefix: TFilePath; openAsTool: BOOLEAN)
END : TDocHanager: OVERRIDE;

TBoxDocHanager = SUBCLASS OF TDocManager
{Creat ion/Dest ruct ion} .
FUNCTION TBoxDocHanager. CREATE(object: TObject; itsHeap: THeap; itsPathPrefix: TFilePath)

TBoxDocHanager,
EUNCTION TBoxDocManager. Neuwll indou(heap: THeap; umngD TwindowID): TuWindow, OVERRIDE;

TBoxWindow = SUBCLASS OF Téindouw

{Creat ion/Dest ruct ion} .
FUNCT]ON TBoinndou CREATE(ob ject: TObject; itsHeap: THeap; itsUmgriD: TWindouwID): TBoxUindou;

{Document Creat jon)
PROCEDURE TBoxWindow. BlankStat jonery, OVERRIDE;

END;

INPLEMENTAT JON

L&S’l U2Boxer2. text)
xer2)

METHODS OF TBox;

;ElléCTION TBox. CREATE(object: TObject; itsHeap: THeap): TBox;
SXFC ﬂn BP(11); { SENDC)
L uogje(ct(1!£Heap. THISCLASS);
UHHBEELF DO

shapelLRect : = zeroLRect;
color : = colorGray;

END;
(S!FC fTrace)EP; { SENDC)

LTMs draw a particular box)

ROCEDURE TBox. Draw;

2] Rug 1884 12:32:17 UZ2BOXER. TEXT : Page

/NN RN RDRRIRNRNRR RN RN NN RNRDRNNNRNRONRDARNNNRONRODNRNRONRNRNNNRNNRONNNODRORN)

- VAR | Pat: LPattem,;

0- A BEGIN

-- LSXFC fTrace}BP(10); { SENDC}

-- enNormal ;

I- {3 ngct&wislhl,e(SELF. shapeLRect) THEN {this box needs to be draun}
- {Get a Quickdrau pattern to represent the box's color]

2- ChSE SELF. color OF

b coloruhite: 1Pat := |Patuhite;

- coloritGray: 1Pat : =]PatlLtGray:

-- colorGray: 1Pat : = |PatGray;

- col orDkGray: 1Pat : = 1PatDkGray;

-— col orBl ack: 1Pat : = 1PatBlack;

-5 OTHERW ISE 1Pat :=]PatWhite; {this case should not happen}
- {Fill the box with the pattem, and draw a frame around it}

- Fill1LRect{ SELF. shapeLRect, 1Pat);

-; EﬂramLR-ct(SELF shapeLRect);

- {SIFC fTrace)EP; { SENDC)

-0 END;

-- END;

- HETHODS OF TBoxVieuw;

- A FUNCTION TBoxView. CREﬁTE(obj$c! vTOb ject; itsHeap: THeap; itsPanel: TPanel; itsExtent. LRect)
- : TBoxVieuw;

“0- A EGIN

-- $IFC anceABP(n%- { $ENDC)

Lt F object =

- object : = NeuwDbject(itsHeap, THISCLASS);

-- SELF := TBoxVieuw(itsPanel. NewView(object. itsExtent, TPrintManager. CREATE(NIL, itsHeap),
- stdMargins, TRUE));

- {SIFC fTrace)EP; { $ENDC}

-0 A ND;

- {7 hxs draus the 1ist of boxes)

-~ A OCEDURE TBoxView. Drau;

- W\R box: TBox; -

-- s. TList Scanner;

0- A GIN

- (SIFC fTrace)BP(10); { SENDC)

== SELF. boxList. Sc:nner

- UHILE s. l%can(box) Do

-- {snrc nnce}er; {$ENDC}

<0 A ND;

-- A PROCEDURE TBoxView. InitBoxList (itsHeap: THeap);

- VAR box: TBox;

a- boxList: TList;

- SIFC fTrace)}BP(10); { $ENDC)

-- oxList := TList. CREATE(NIL, itsHeap, 0);

- SELF. boxL ist : = boxList;

-- {cmate and append the first box}

- box := TBox. CREATE(NIL, itsHe

-- {$H-} SetLRect(box. shapeLRect, 20, 20 100, 100); {$H+}

- SELF. boxl ist. lnsLasz(box).

-- {create and append the second box}

.- := TBox. CREATE{NIL, {tsHeap);

- {sH-) SetLRect(box shapelRect, 200, 100, 300, 130); {$H+)

- SELF. boxL ist. lnsLnstgbox ;

-- {SIFC fTrace}EP; { SENDC

-0 A END;

-- END;

-- METHODS OF TBoxProcess;

ézz FUNCT 10N TBoxProcess. CREATE: TBoxProcess;

- SXFC nnce BP(ll) ;SENDC)

- TBox rocess(Process CREATE(NewOb ject(ma inHeap, THISCLASS), mainHeap));
- (Sch nnce]EP {$ENDC

-0 A

é: A ;’é’é?;lm TBoxProcess. NeuDocHanager({ volumePrefix: TFilePath; openAsTool: BOOLEAN): TDocHanager:
- A .
- SIFC fTrace}BP(11); { SENDC)

-- wDocManager : = T oxDocHanzger CREATE(NIL, mainHeap, volumePrefix);
-= {SIFC fTrace]EP; { SENDC]

-0 A 'END;

~-= END;

-- METHODS OF TBoxDocHanager:

-- A FUNCTION TBoxDorManager. CREA'E(ob;ect: TObject; itsHeap: THeap; itsPathPrefix: TFilePath)
E- R GIN : TBoxDocHanager;

-- &srrc ﬂnct}‘BP(ll ; {$ENDC}

-- F object =

21 Rug 1884 12:32:17 U2BOXER. TEXT Page

Lo g N LSS LSTSINTAYNENTNTNINENLNENEVENTNTNINENTNININSNTNTSTNE ST NI NTNTNISY NIRRT N NYNYRTNYSTNINTNYNY STRYNTNY \

END;

ob ject : = NewOb ject{ itsHeap, THISCLASS);
SELF :'» TBoxDocHanage TDocManager. CREATE{ ob ject, itsHeap, itsPathPrefix));
{SIFC fTrace)} EP; { SEND

seugtl:TION TBoxDocHanager. Newl indow(heap: THeap; wmgriD: TWindowlID): TWindow;

N

{SIFC fTr:ce)BP(ll):{SENDCé

Neull indow : = TBoxWindow. CREATE(NIL, heap, wmgriD);
{SIFC fTrace}EP; { SENDC}

g

METHODS OF TBoxWindou;

END;
END.

FUNCTION TBoxWindow. CREATE(ob ject: TObject; itsHeap:. THeap; itsumgriD: TWindowID): TBoxWindou;
CONST isRes izable = TRUE;

gSIFC ﬂncea‘BP(IE&‘ { SENDC}
F object =
objcct : = NewOb ject(itsHeap, THISCLASS);
SELF : = TBoxlindow Twmdou CREATE(ob ject, nsuaap, itsmgriD, isResizable));
END. {SIFC fTrace)EP; { SENDC

PROCEDURE TBoxWindow. Bl ankStat ionery;

VAR vieulLRect: LRect;
anel : TPanel;
oxView: TBoxView;

{SKFC fTrace} BP(10); {$ENDC}

Lset the vieu extent LRect}
SetLRect(vieuwlRect, 0, 0, 500
panel : = TPanel.CREAT E(L, SELF Heap. 8

[aBar, aScroll, aSpl x‘t). [aBar, aScroll, aspl 1t]);

{init ial ize the boxView}

boxView : = TBoxView CREATE(NIL, SELF.Heap, panel, viewLRect);
boxVieuw. InitBoxL isthLF Heap);

END{SIFC fTrace} EP,

21 Rug 1884 12:32:17

ULBUXLK. LLAL

*** End Xref: 37 id's

131 references

[417000 bytes/4962 id' $/42201 refs]

PR
-
1. u2boxer. TEXT
2. U2Boxer2. text
64°(1) B4(1)
-B-
Bl ankStat ionery at*i 1} 152’% 2}
boxList 48 1 69 (2 77+(2) 80={ 2) 81={ 2) 81 (2) 91 (2)
-C-)
color 35+ 1 13=(2 28 2 2
col orB] ack 22°(1 27 (1 33 (2
col orDkGray 21(1 32{ 2
col orGray 20°(1 13 (2 31 (2
coloritGray 19+(1 30 (2
colorthite 18+(1 27 (1 29 (2
CREATE 38+(1 S51¢(1 63 1 72 13 B1 2 1; G'E 2; 2 84 2 2
89 (2) 103<(2) 106 (2) 114 (2) 125-(2) 131 (2 2 171 2
175 (2 :
-D-
Draw 41+(1) 55¢(1) 19°(2) 64+(2) 71 (2)
-1~
InitBoxList 56°(1) 75+(2) 176 (2)
-l
LRect 34 (1) 163 (2)
-N-
NeuDocManager 64’{ 1; 111‘2 2; 114-{ 2§
Neuwll indow 74+(1) 136+(2) 139=(2
-0-
openAsTool 64=(1)
i} BUXCkDrau 12+(1)
-S-
shapelLRect 34 (1) 12=(2) 25 (2) 38 (2) 39 (2) 85 (2)
-1-
T8ox 31 1% 38 (1 3e(2 6 (2 65 { 2 76 2 2; 83 (2)
TBoxDocHanager 69°(1 73 1) 114 2) 122+(2) 126 (2) 131 (2
TBoxProcess 60 1 63 (1) 100°(2) 103 (2) 106 (2
TBoxVieuw 45<(1 52(1 49+(2 82 (2 57 (2) 165 { 2; 178 (2)
TBoxU indouw 7B‘$ 1 81 (1) 139 (2) 147-(2) 150 (2) 156 (2
IColor 27+(1 35 (1
TDocManager 65 (1 6s (1) 111 (2 131 (2
TFilePath 64 (1
TList 48 { 1 77 (2) 80 (2)
TOb ject 31 (1
TProcess 60 { 1) 106 (2)
TVieu 45 (1
TWindow 74 (1 78 (1) 136 (2) 156 (2)
-l
U2Boxer 1-(1
UABC 14+(1
UDrauw 13+(1
UFont 9+(1
Uob ject 6°{ 1
-=
vol umePrefix 64°(1) 114 (2)

A Y

[Segment 6]

Sele’ctio‘ns & Highlighting in Boxer

Purpose of this segment:
1) To introduce the concept of selections.
. 2) To describe how to highlight a box.

How to usé this segment:

This segment deals with selections. It includes a tutorial and a lab. Please
complete the tutorial before proceeding to the lab. ;

You should start this segment after the "intro to Boxer™ segment. You should
complete this segment before starting the "Box Moves™ segment.

In the previous segment you implemented drawing boxes in the view. The next
stage is to select a box, then perform actions (changing its color, moving it, etc.)
upon it. This segment covers how to select a box. and indicate that it is selected.

INTRODUCTION TO SELECTIONS

. Making a change to a Lisa document, you typically operate upon a particular
object (or objects) in the view. Since you select the object to be acted upon (by
using the mouse or other means), it is known as the se/ected atyect

A selectionis a ToolKit object that keeps track of the selected object. All
changes to a document are routed through selections. A selection verifies that a
desired change is appropriate for its selected object, before performing any
operation.

Selections in the ToolKit have the following structure:

TSelection = SUBCLASS OF TObject

{fields) '

vindow: - Tiindow; {the window in which it was nade)

panel: TPanel; {the panel in which it was nade)

view: TView; {the vieu (of the panel) in which it uss nade)
kind: INTEGER: {kind codes are defined by the application's view)

anchoriPt: LPoint; {the place where the mouse went down (view-relative)}
curriPt: LPoint; {the place the mouse ¥as last tracked (view-relative))
boundLRect: LRect; {the LRect bounding the selection (default is hugelRect -

6-1

an LRect vith bounds: 0, 0, $3FFFFFFF, $3FFFFFFF)}

?

{other internsl fielas)

A selection exists even if no object is selected. In that case, the selection is
null. The selection's kind field, indicates whether the selection is null or not. A
special ToolKit constant, nothingKind (egua/ fo 4] indicates a null selection.

The selection is either an instance or a descendant of TSelection. A selection
exists in each panel of the document.

The main role of the selection is to apply user actions such as mouse moves or
 menu commands to the selected object (or abjects).

SELECTION CONCEPTS

There are four concepts essential to successful implementation of selections
in your applications. These are: highlighting, deselection, anchor LPoint, and free and
replace.

highlighting

A selected object is distinguished by Aigh/ightingit. A highlight is a visible
mark on the object, indicating that it is selected.

The selection's Highlight method is used to both mark an object when it is
selected, and to remove the mark when the object is no longer selected. Each
subclass of TSelection should override the Highlight method.

deselection

An object that is no longer selected is said to be dese/ected A selected box,
for example, is deselected when one of the following occurs:

1) adifferent box is selected.
(for example, the user clicks on another box)
2) the user clicks where there is no box.

anchor LPoint

Users of Lisa applications typically select objects by clicking on them. For
this reason, every selection has an anchor LPoint. [An LPoint /s analogous to a
QuickDraw Point. but with 32-bit coordinates] The selection's anchor LPoint is
used to save the view—relative location where the mouse went down.

6-2

free and replace

Standard ToolKit behavior is to replace the selection after each time a mouse
press is detected in the view. This is tricky, since so many ToolKit objects
reference the selection. For this reason, selections are replaced using a special
method, FreedAndReplacedBy.

FreedAndReplacedBy replaces the selection while retalnlhg its original
Clascal handle. Thus, all references to the old selection object now point to the new
- one.

UPDATE REGION
Another concept important in our implementation is the ypdate region

The update region is an area within the document's window that needs to be
redrawn. Any time we change the view, we may need to define an update region to
modify the display. The update region is set by the window manager to be the
visRgn when the window updates. When the window update completes, the update
region is emptied, and the visRgn reverts to its previous state.

An update region is more efficient to refresh than the whole window. Fewer
bits need to be changed in the screen bit map. AMbdifying a few thousand extra bits
arter every change in the docurnent can turn a responsive apgplication into a real dog.

You have two options for updating the display. [f the change is trivial, you
can update the display in each pane directly. But, if the change affects parts of the
document besides the selected object, you need to build an update region. The
mBechamcs of building an update region are covered in the next Boxer segment -
“Box Moves"®. ;

PARTIAL INTERFACE OF TSELECTION

The partial interface of TSelection is listed below:
TSelection = SUBCLASS OF TObject

{methods)
{crestion}
FUNCTION (TSelection.} CREATE(object: TObject; heap: THeap; itsView: TWiew;
itskind: INTEGER; itsAnchorlPt: LPoint): TSelection;

{replaces one selection with another)
FUNCTION {TSelection.) FreedAndReplacedBy(selection: TSelection): TSelection;

{selecting)
{highlights the current selection)

PROCEDURE (TSelection. } Highlight(highTransit: THighTransit); DEFAULT;

{deselects the selected object, then
yeplaces it with Tview.NoSelection)
PROCEDURE {TSelection. } DeSelect; DEFAULT;

{called when the mouse is pressed)
PROCEDURE {TSelection. } MousePress(mouselPt: LPoint): DEFAULT:

{celled when the mouse moves)
PROCEDURE {TSelection.} Nousetove (nouseLPt: LPoint); DEFAULY;

{called when the mouse is relessed)
PROCEDURE {TSelection.) MouseRelesse; DEFAULT;

(Wote: DEFALLT indicates that the method is intended to be overridden in subclasses,
but sorme default behavior is implemented)

HIGHLIGHTING

in Boxer, the selected objects are boxes. Your application needs to supply a
Highlight method that marks a selected box.

Although you need to tell the Generic Application how to highlight, |t
determines when to highlight.

The Generic Application calls the current selection’s Highlight method to
highlight the selected object. This is done automatically during window updates
when the update region is not empty.

Highlight methods typically mark the selected object in a reversible way.
The same method is used to both paint handles on the selected box, and remove them
when the box is deselected.

To deselect your application must call Highlight itself.

The ToolKit defines several special pen states for painting highlights
reversibly. For boxes, the two pen states we shall be concerned with are:

hO#fToOn {makes highlight marks appear}
hOnToOff {makes highlight marks disappear}

A simple way to highlight a box is to paint tiny rectangles at its corners.
Those tiny rectangles are sometimes called Aand/es

IMPLEMENTATION STRATEGY

In this stage of Boxer we implement a particular kind of selection, a
boxSelection. We define the class, TBoxSelection, as a subclass of TSelection.

The user is allowed to select one of two boxes in the view. As the partial
interface below indicates, a special field, box, in the selection is used to keep track
of the selected box.

TBoxSelection = SUBCLASS OF TSelection

{fielas)
box: TBox: {the selected box, or NIL (if none is selected)) -

user interface
Two boxes are drawn on the screen. Either box may be selected by the user.

When the user clicks on a box, it is highlighted. Tiny handles appear at the
corners of the box. Any previously selected box is deselected. The handles of that
box disappear.

When the user clicks where there is no box, none is highlighted, but any
previously selected box is still deselected.

theory of operation

The Generic Application initializes the document, calling BlankStationery in the
process. When initialization is complete, the Generic Application waits for the first
user event. In the case of Boxer, that first event should be a mouse press. Once a
mouse press is detected, the following method calls are made:

pane.MouseTrack {TPane.}
view.MouseTrack {Timage.}
view.MousePress {Timage.} defau/t method
selection.MousePress {TBoxSelection.} ca//ed by T/mage.MousePress

Your code resumes from here.

1. Extract the mouse point where the button went down. This is done
in {TBoxSelection.MousePress.

2. Deselect the previously selected box.
3. Determine if the mouse point is inside of one your boxes.

If yes :hen make that box the one currently selected, and proceed to
step 4.

If no then do nothing.

After the mouse is released the Generic Application tells the window to update. The
update is performed only if the update region is not empty. During the update the
currently selected object is highlighted. When an update is performed this is the
flow of control:

window.Update {TWindow.}

For each pane, do

pane.Refresh {TPane.}
view.Draw {TBoxView.}
selection.Highlight {TBoxSelection.}

In this stage of Boxer though, the change is trivial. The application highlights
the selected box directly.

4. Highlight the currently selected box.
In your selection's Highlight code do the following:
: a. Set the QuickDraw pen to the appropriate pen state.
b. |f a box is setected, tell that box to paint its handles.

At this point the Generic Application resumes. The next mouse press event repeats
the cycle from step 1.

actual implementation

6-6

The actual implementation for 3Boxer is summarized below. The code for
2Boxer is used as a base for the changes and additions described.

New Constants
boxSelectionkind = 1;
If a box is selected, we set the kind field to boxSelectionKind.
If no box is selected, we set the field to nothingKind.
New Classes
[TBoxSelection)
TBoxSelection = SUBCLASS OF TSelection

{fields)
box: TBox:

{Creation}

FUNCTION {TDoxSelection.) CREATE(object: TObject; itsHeap: THeap; itsview: TvView;
itsKind: INTEGER; itsAnchortPt: LPoint)
: TBoxSelection;

{TBoxSelection.JCREATE creates a new boxSelection with the
given kind and anchor LPoint.

PROCEOURE {TBoxSelection.} HiphLight(highTransit: THighTransit). OVERRIOE:

{TBoxSelection.JHighlight sets the highlight pen state. [t then
calls SELF.box.PaintHandles to highlight the selected box.

PROCEDURE {TBoxSelection.} MousePress(mouselPt: LPoint); OVERRIDE

{TBoxSelection.MousePress deselects any previously selected
box; then calls SELF.view.BoxWith to return the current
selected box. The returned value is assigned to SELF.box. The
kind field is set to boxSelectionKind if a box was selected.

New Methods (for existing classes)
{TBoxview]
FUNCTION {TBoxview.) Doxwith(LPt: LPoint): TBOX;

{TBoxView.]BoxWith returns the box containing the LPoint where
the mouse went down. If no box contains the mouse LPoint, then
NIL is returned.

6-7

FUNCTION {TBoxView.)} MoSelection: TSelection; OVERRIODE;

{TBoxView.)NoSelection returns a null boxSelection (with kind
set to nothingKind).

(TBox]
PROCEDURE {TBox. } PaintHandles;
{TBox.}PaintHandles paints a 6x4 (pixel) handle rectangle at each
corner of the box's shape LRect. The highlight pen state is
assumed to be properly set.

Changed Methods
{TBoxWindow]
PROCEDURE {TBoxWindow. } BlankStationery;

{TBoxWindow.}BlankStationery replaces the default selection
with a null boxSelection.

WNote: The implementation in 3Boxer, the Boxer stage for this segment. differs
from the ToolKit guidel/ines in one respect — the selection is never freed and
replaced. In the special case e)ab/b/ted by this prograrm, only one kind of selection a

baxSelection, ever exists,)

HIGHLIGHTING IN MULTIPLE PANES

Managing displays in multiple panes is a simple matter usmg the ToolKit.
The code segment below uses the method {TPanel.}HighLight to take care of
highlighting a box that may be displayed in several panes.

PROCEDURE {TBoxSelection.) MousePress{(..)};
VAR panel: TPanel;
BECIN
{extract the panel containing the selection}

panel := SELF.panel:
{highlight the selection in every pane in the panel}
panel. Highlight (SELF, hOffTo0n);
0D,

When your document's wmdow has multiple panels call {TWindow.}Highlight instead.
This calls {TPanel.}Highlight for each of its panels.

The Generic Application calls {TWindow. jHighlight to turn down highlighting
when the window /s deactivated and (o turn up Highlighting when the window /s
reactivated,

Questions: ;
1) What is the relationship between the se/ectionand the selected object?
2) What is a null selection? '
How does an application indicate a null selection?

3) What kind of selection does the Generic Application first install in your
panel when initializing a document?

What method should your application use to replace that selection with an
instance of TBoxSelection?

4) When a document is initialized the update region is set to inner Rect of
the window to draw the initial view. When initialization is complete
what is the update region set to?

5) Diagram how a mouse press reaches the current selection. Start with the
window.

6) Since this stage of Boxer never alters the update region, is the currently
selected object ever highlighted during a window update?

7) When does your application need to deselect?
What method is called to deselect a box?

Selections Lab

Purpose:
To implement box selections.

What you will do in the lab:

You will compile and run 3Boxer, then optionally modify the source The
steps below describe what you should do:

1) Copy the following files onto your prefix volume:
U3Boxer. TEXT
U3Boxer2. TEXT
M3Boxer. TEXT
P3Boxer. TEXT

2) Compile, install, and run the sample application, 3Boxer. Use 43 as
the tool number.

3) Scan the listings of the four files in the sample application. These
are included in the appendix, "Code Smaples for this Segment®.

4) [Optional] The Lisa user interface recommends that applications
toggle the highlighting of the selected object when the mouse button
is pressed with the SHIFT key down. If the selected object is
already highlighted. it is deselected. Otherwise, the object is
selected and hnghhghted

The SHIFT/mouse press combination should not disturb the
highlighting of previously selected items. The result is that several
objects may comprise the selection.

In contrast, a normal mouse press (with the SHIFT key up), must
deselect all previously selected objects. This results in either a
newly selected object or a null selection.

The state of the shift key is supplied by the global ToolKit Boolean
variable, clickState.fShift. The variable is true only if the shift
key was down when the mouse press was detected.

Given the preceding information, implement the selection of
multiple boxes.

Things to look out for:

6—lab—1

— Highlighting never gets turned on.

~ Be sure you call the HighLight method of TBoxSelection to highlight
the newly selected object when a mouse press occurs.

= Highlighting never gets turned off.
Check to see if you deselect the old selection.
— When deactivating the window., highlighting goes away.

Make sure that the current selection, window.selectPanel.selection,
references the selected object.

— When activating the window., highlighting mysteriously aopears.
Check to see if you deselect the previously selected box.

- Highlighting gets turned off in some panes, but not others.
Make sure you deselect and highlight in all panes.

— Process aborts when you press the mouse.

Verify both that your kind field is set correctly, and that you are not
trying to highlight a nil or otherwise invalid box.

6—lab—2

Sy ";mmﬂm&m»

9 Bug 1884 15:53:23

X3BOXER. TEXT

Page 1
f)
43
SLOT2CHANL
gno assembler files
kno building bl ocks
. no 11inks ’
s
y
y
n

8 Rug 1984 15:56: 45 ' P3BOXER. TEXT ' Page

C PBOXER. TEXT for 8oxer
i"‘n“ file for Boxer class example

2500
$-9800T-TK/PABC
: Apple building block phrase files can be included hers

1000
Boxer

; Other appl icat jon alerts can be included hers, nusbered betueen 1001 and 32000
[+}

1
$-8800T-TK/PABC File/Print

2

Page Layout

Previeu Actual Pages®401
Preview Page Breaks®402
Don't Previeu Pages®403

100
Buzzuords
Set Aside tDocument 1#109

0

8 Rug 1984 15:53:53 M3BIXER. TEXT

e N

Ve
PROGRAM M3Boxer;

USES
{$U UCb ject } UOD ject,

{$IFC i ibraryVersion <= 20
U l.Fom} - e}mt‘

$U QuickDraw QuickDrav,
U UDrav U rau,
{SU u3Boxsr } USBoxer;
CONST
phraseVersion = 1;
BEGIN
process : » TBoxProcess. CREATE;
process. Commence(phraseVers jon);
process. Run;
process. Compl et @ TRUE);

END.

21 Aug 1884 12:33:27 U3BOXER. TEXT

Page

[o s b b Pt B B o (ot b e e e Db b fd Bk b o i ot o o o b et b b e e ol b o b o P (ot b B b o b b o b B b Bk o b o ok ok o ok b o ekt o o e o b b P b ok e b e ok o b ot b o o o il Db b b ok Db e b e o et ol e Bk Bt e Gk et Bk Bt ok et et)

GONOVI WA -

UNIT U3Boxer;

INTERFACE
USES
{$! UODb ject) UOb ject,
{SiFC 1 ibraryVersion <= 20
($U UFont} Elront.
$U QuickDraw] . QuickDrauw,
$U UDraw} Ubrau,
$U UABC) UABC;
CONST

colorvhite = 1,

coloritGray = 2;

colorGray = 3;

col orDkGray = 4;

colorBlack = 5;

boxSelect ionKind = 1;
TYPE

TColor = colorthite..colorBlack; {color of a box}

{Neu Classes for this Appl icat ion}
TBox = SUBCLASS OF TOb ject

{variasbles}
shapelRect: LRect;
color TColorm;

{Creat ion/Dest ruct ion‘
FUNCTION TBox. CREATE{ ob ject: TObject; itsHeap: THeap): TBox;

PROCEDURE TBox. PaintHandl es;
{Displ aé]
E:OCE URE TBox. Draw;

TBoxView = SUBCLASS OF TView

{variables}
boxL ist: TList;

{Creat jon/Dest ruct jon}

FUNCTION TBoxView. CREATE{object: TObject: itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)

TBoxVieu;
FUNCTION {TBoxView. }BoxWith(LPt: LPoint): TBox;
PROCEDURE TBoxView. Drau; OVERRIDE;
PROCEDURE TBoxView. InitBoxList(itsHeap: THeap);

)
FUNCTION TBoxView. NoSelection: TSelection: OVERRIDE:
EROCEDURE TBoxVieuw. HousePress(mouselLPt: LPoint); OVERRIDE;

d

TBoxSel ect ion = SUBCLASS OF TSeiection

{variables)
box: TBox;

{Creat jon/Dest ruct ion)

i
FUNCTION TBoxSelect ion. CREATE(ob ject: TOb ject; itsHea?:B THeap; itsView: TView, itsKind: INTEGER;
o

itsAnchorlPt: LPoint): xSel ect ion;

{Dnuing - per pad}
PROCEBURE TBoxSel ect ion. Highl ight{ highTransit: THighTransit); OVERRIDE;

END;

TBoxProcess = SUBCLASS OF TProcess

{Creat ion/Dest ruct ion} .
FUNCTION {TBoxProcess. JCREATE: TBoxProcess:
FUNCTION TBoxProcess. NeuwDocHanager(volumePrefix: TFilePath; openAsTool: BOOLEAN)
B : TDocManager; OVERRIDE;

TBoxDocHanager = SUBCLASS OF TDocManager

{Creat ion/Dest ruct ion} .
FUNCT ION TBoxDocManager. CRE&TE(obj;;t:omgject; itsHeap: THeap; itsPathPrefix: TFjilePath)
: oxDocHanager;
FUNCTION TBoxDocManager. Newlindou(heap: THeap, wmgrlD: TUindowlID): TWindow; OVERRIDE;

’

TBoxWindouw = SUBCLASS OF TWindow
{Creat ion/Dest ruct jon}

FUNCTION TBoxWindow. CREATE(ob ject: TObject; itsHeap: TH~=2; itsUmgrlID: TWindowlD): TBoxWindow;

{Document Creat ion}
PROCEDURE TBoxWindow. BlankStat ionery; OVERRIDE;

appia computar

21 Rug 1884 12:33:27 U3BOXER. TEXT Page

rNNNNNNNNNNNNNNNNN”NNNNNNNNNNNNNNMNNMMNNNNNNNNNNNNN?&FHvP \

-0

A

A
A

>

END;

IMPLEHENTAT ION

?1 U38°xer2 text]
{U3BOXER

HETHODS OF TBox;

ﬁv.

FUNCTJON TBox. CREATE(object: TOb ject: itsHeap: THeap): TBox;

N
swc ﬂncegBP(u) { SENDC}

: = NewOb ject(itsHeap, THISCLASS);
UXTHBEGL

shapelRect : » zerolLRect;
color : = colorGray,;

END;
{$IFC fTrace}EP; { SENDC]

D;

{This draus a particular box}

END;

PROCEDURE TBox. Draw:
YaR IPat: LPattem;
pxrc ﬂnce]BP(lD) { SENDC)

1F Lgect IsVisible(SELF. shapelRect) THEN {this box needs to be draun)

{Gct Quickdrau pattern to represent the box's color}
SE SELF. color OF

colorWhite: 1Pat : =]PatUhite:

colorLtGray: 1Pat : = IPatLtGray;

colorGray: 1Pat .= |PatGray;

col orDkGray: 1Pat : =] PatDkGray;

colorBlack: 1Pat : = |PatBlack;

gTHERUISE 1Pat : = lPatWhite; {this case should not happen}

{Fill the box with the pattem, and drau a frame around it}
FillLRect(SELF. shapeLRect. 1Pat);
FrameLRcct(SELF shapelRect);

END;
(SIFC ance]EP { $ENDC)
{This calls the DoToHandle Procedure once for each handle LRect; user of this method must

set up the pen pattern and mode before call ing
PROCEDURE TBox. PaintHand] es;

VAR hLRect,
shapeLRect LRect;
dh, dv: LONG lNT

ggc}gnuaz MoveHandl eAndPaint(hOffset, vOffset: LONGINT);

OffsetLRect{ hLRect, hOffset, vOffset);
ND PaintLRect(hiLRect);

GIN
glFC fTrace}BP(10; {SENDC}
tLRect(hLRect, 3,

shapelLRect := SELF. shapelLRect;
UITHBEE?peLRoct DO.

dh = right - left;
dv : = bottom - top;
HoveHand] ohnd?aint()eﬂ top); {drau top left handle)

END;
HoveHand] eAndPa in}dh. Og t then top right}

MoveHand) eAndPaint(0, dv then bottom right}
HMoveHand] eAndPa int { -dh, 03 finally bottom 1eft)
END {SIFC fTrace}EP; { SENDC)

HETHODS OF TBoxView;

FUNCTION TBoxView. CREhTE(object UEObject itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
: TBoxView;

GIN
SS IFC ‘ﬂ’rnct;‘BP(1&%‘ { SENDC}
F oh ect =
ob ject : = NeuwOb ject{ itsHeap, THISCLASS);
SELF : = TBoxVieuw(itsPanel. Neuvxeu(object itsExtent TPnntNanager CREATE(NIL, itsHeap),

stdrtargins, TRUE));
END {SIFC fTrace}EP; { SENDC]

{Yhismntums the box containing a certain point}

T ION TBoxV iou BoxWith{LPt: LPoint): TBox;

VAR box:
s T istScanner

BEGIN
{SIFC ﬂnct%BP(11); { SENDC)
boxbut NIL

;e SELF. boxList. Scanner;
UHILE s. Scan{box) DO
LPt lnLRoct(LPt. box. shapeLRect) THEN

{siFc ﬂnce}EP; '{'sanuc]
END;

21 Rug 1884 12:33:27 U3BOAER. TEXT Page

w

/RN NN RN RN RNAIN RN NN AR ANARN RN R RAINR R AR RRAIRIN RN AN RN RN NN RNRNRNDONONORORON

A

»>

{This draus the | ist of boxes]}

PROCEDURE TBoxView. Draw;
VAR box: TBox;
s: TListScanner;
BEGIN
{$1FC fTrace}BP(10): { SENDC}
s .= SELF. boxList. Scanner;
WHILE s. Scan{box) DO

box. Draw
END {$SIFC fTrace}EP; {SENDC)

PROCEDURE TBoxView. InitBoxList (itsHeap: THeap):
VAR box: TBox;
NboxList: TList;

BEG!
{sIFC fTraceEBP(lo&:(sENDC)
boxList := TList. CREATE(NIL, itsHeap, 0);
SELF. boxList : = boxlList;

{create and append the first box]
box : = TBox. CREATE(NIL, itsHeap):

{$H-) SetLRect(box. shapelRect, 20,20, 100, 100); {$H+}

SELF. boxL ist. InsLast(box);

{create and append the second box}
box : = TBox. CREATE(NIL, itsHeap):

{$H-] SetLRect{box. shapeLRect, 200, 100, 300, 130); {$H+}

I

END;

SELF. boxL ist, Ins ast&box):
ND {SIFC fTrace)EP; { $ENDC}

;EUN%ION TBoxVieu. NoSel ect jon: TSel ect jon;

G
{$IFC fTrace}BP(11); {SENDC}
NoSel ect ion : = TBoxSel ect ion. CREATE(NIL, SELF. Heap, SELF, nothingKind, zerolPt);
£ND {$IFC fTrace)EP; { SENDC}

This PROCEDURE makes a new selection, when the user presses the mouse button)
This procedure illustrates the “standard’ way of creating a neu selection}
PROCEDURE TBoxView. MousePress(mouselLPt: LPoint);
VAR neuSel ect ion: TSelect ion;
anel: TPanel;
ox: TBox,
BEGIN
{s1FC fTracclBP(ll);{SENDC)
panel : = SELF. panel;
panel. Highl ight(sel f. panel. select ion, hOntoOff); {Turn off the old highl ight ing}
neuSel ect jon : = sel f. panel. select ion. FreedAndRep] acedBy(TBoxSel ect ion. CREATE(NIL, SELF. heap, SELF,

boxSel ect ionKind,
mouseLPt});

sel f. panel. sel ect ion : = neuSelect fon;
neuSel ect jon. curriPt : = mouselPt;
box : = sel f. Boxtiith(mouselLPt); {Find the box the user cl icked on}
IF box = NIL THEN
EMUS.I ection kind : = nothingKind '

newSel ect ion. kind : = boxSelect jonKind;
TBoxSel ect ion(neuSe] ect fon). box : = box;

panel. Highl ight(neuSel ect ion, hOffToOn); {Turn on the highl ight ing for the neuly selected box}

se] f. panel. sel ect fon. HarkChanged; Allouw the document to be saved so that any changes made}
can become permanent}

{SIFC fTrace}EP; {$ENDC)
END;

HETHODS OF TBoxSel ect jon;

FUNCTION TBoxSel ect jon. CREATE(ob ject: TObject; itsHeap: THeap; itsView: TView; itsKind: INTEGER;
itsAanchoriPt: LPoint): TBoxSelection;

BEGIN
SIFC T racez‘BP(1&; { $ENDC)
F object = NIL THEN)
object : = NeuwOb ject(itsHeap, THISCLASS); .
SELF = TBoxSelect ion{ TSelect ion. CREATE(ob ject, itsHeap, itsView, itsKind, itsAnchoriPt));

SELF. box : = NIL:
END {$IFC fTrace)EP, { SENDC)

This draus the handies on the selected box]

[PROCEDURE TBoxSel ect ion. Highl ight(highTransit: THighTransit);

END;

METHODS OF TBoxProcess;

VAR box: TBox;
BEGIN
SSIFC fTrace}BP(11); { $ENDC}
F SELF. kind <> nothingKind THEN
BEGIN
box : = SELF. box; :))) o
thePad. SetPenToHigh! ight(highTransit); fset the drauing mode according to desired highl ight ing}
box. PaintHandl es; draw the handles on the box]

END;
{SIFC fTrace]}EP; { SENDC}
END;

21 Rug 1984 12:33:27 U3BOER. TEXT Page

[NI SIS STNTNTNININT ST NN NTASNTNI SN NI NESENINT NINENENTNINTNTNININTSENTNENINENTNI NI NTNININESENYNENENTNTSENTNINENTNINENTNTNTNISTNINYNINTNYSTSTSIN] NN 1

-

A Eiug(‘:T ION TBoxProcess. CREATE: TBoxProcess;

gSlFC ﬂnceLBP(ll) PENDC)
TBoxProcess(Process CREATE(NewOb ject(mainHeap, THISCLASS), mainHeap)):
A exo {$IFC fTrace)EP; { SENDC]

[;ggcnon TBoxProcess. NewDocManager{ volumePrefix: TFilePath; openAsTool: BOOLEAN): TDocManager;

{$IFC fTrace}BP(ng { $ENDC)
NeuwDocManager := T oxDocnanager CREATE(NIL, mainHeap, volumePrefix);
A END: {SIFC ﬂ'nce]EP { SENDC)

END;

METHODS OF TBoxDocManager;

FUNCTION TBoxDocManager. CREATE{ ob ject: TOb ject; itsHeap: THeap, itsPathPrefix: TFilePath)
: TBoxDocHanager;

$IFC fTrace BP(1:& { $ENDC)
F object =

object : = NeuOb)ect itsHeap, THISCLASS):
SELF := TBoxDocNanage TDocHanager. CREATE(ob ject, itsHeap, itsPathPrefix)):
{SIFC fTrace)EP; { SENDC

A ;lé!g(%TlON TBoxDocHanager. Newll indow(heap: THeap, wmgriD: TWindouwiD): TWindow;

{$IFC fTrace)}BP(11): (SENDC!
Neuwll indou : = TBoxl indow CREATE(NIL, heap, umgriD);
A ERD {$IFC fTrace}EP; { SENDC).

END;

METHODS OF TBoxuindow;
) ;gg%wn TBoxW indow. CREATE(ob ject: TObjecﬁ ftsHeap: THeap; itsUmgriD: TWindowlD): TBoxuindow,

SSIFC 7 nccz‘BP(loé: { $ENDC}
F object = NIL THEN

object : = NeuwOb ject(itsHeap, THISCLASS);
SELF : = TBoxWindou wmdou CREATE(ob ject, itsHeap, itsUmgrlD, TRUE));
[SXFC fTrace)EP; { SENDC)

PROCEDURE TBoxtl indow. Bl ankSt at ionery;
VAR vieulRect: L
anel: TPanel
oxView: TBoxV iau;
aSe] ect jon: TBoxSel ect jon;

[} BEGIN
{siFc fTrace)BP(lDL ‘SENDC)
panel : = TPanel.CREATE(NIL, SELF.Heap, SELF, 0, 0, [aScrol), aSplit], [aScroll, aSplit}]);
SetLRect{vieuwlRect, 0, 0, S000, 3000); . :
boxVieuw : = TBoxView. CREATE(NIL, SE.LF. Heap, panel, vieulLRect);
boxView. InitBoxL ist(SELF. Heap);

{SIFC fTrace)EP; { SENDC}
END;

END.

21 Rug 1984 12:33:27 U3BOXER. TEXT Page
s
1. u3boxer. TEXT
2. U3Boxerz. text
61<(1) 63~(1) 79+(1) ge~(1) 98-(1) 109+(1)
-B-
BlankStat jonery 109+(1) 270+(2
box R 72 { 1 92+(2 98 (2 99 (2) 100 (2 107'£ 23 112 i 23 113 E 2; 119’£ 23 127-E 2
128 2) 129 { 2) 132« 2) 133 (2) 134 2) 150°(2) 164=(2) 165 2 169=(2) 169 23
193=(2) 199°(2) 204={ 2) 204 (2) 206 (2)
boxL ist 53 1 87 { 2) 111 2) 120-(2) 123=(2) 124=(2) 124 (2) 128 (2) 134 (2)
boxSelect ionKind 23+(1 157 (2) 168 (2
BoxWith 59+(1 91<(2) 164 (2
-C_
color 37°(1 12={ 2 27E 22
col orBl ack 21+(1 27 { 1 32 (2
col orDkGray 20°(1 31 (2
col orGray 19°(1 12(2 30 (2)
colorLtGray 18+(1 29 (2
colortbhite 17+(1 27 (1 28 (2
CREATE A0°(-1 56°{ 1) 75<(1 B7 (1 9% (1 106 1 5’2 2; 78‘2 2; 84 s 23 123 2 2;
127 2? 132 { 2) 141 { 2) 156 { 2) 185-(2) 191 2) 216+(2) 219 (2) 227 (2) 237+(2
243 2) 251 2) 261<(2) 266 (2) 278 2) 281 2 :
..D-
Draw 45°(1) 61+(1) 18+(2) 106°(2) 113 (2)
-H-
heap 98~(1 156 (2) 251 2 2;
Highl ight 79+(1 154 (2) 171 2) 198+(2)
highTransit 79°(1) 205 (2
S
InitBoxList 62+(1) 118+(2) 282 (2)
_L-
LRect 36 (1) &47(2) 2711 {(2)
-M=
tHousePress 64°(1) 147+(2)
-N-
NeuDocManager 88°(1) 224-(2) 227«(2
Newl indou 98=(1) 248<(2) 251=(2
NoSe] ect ion 63°(1 138°(2) 141=(2
-0~
openAsTool 88+(1)
-P-
PaintHandl es 42+(1) 45+(2) 206 (2)
-Q-
QuickDrau 12°(1)
-S-
shapeLRect 36 E 1; 1ll= 2} 24 (2) 37 (2 38 (2) 47+(2) 60=(2) 60 (2) 61 (2) 99 { 2)
128 (2) 133 2
-T=
TBox 33-(1 40 (1 §8 (1 72 (1 3+{ 2) s (-2 81 (2) 92 (2 107(2 1119(2
127 (2) 132 (2) 180 (2) 199 (2
TBoxDocManager 93+(1 97 (1) 227 (2) 235+ 2) 238 (2) 243 (2)
TBoxProcess 84°(1 87 (1) 214-(2) 216 { 2) 219{ 2
TBoxSel ect ion 69°(1 76 1 141 2) 156 2 169 2) 182°(2) 186 & 2§ 191 (2) 274 (2)
TBoxView 50+(1 57 (1 76=(2 79 { 2 84 (2) 273 2) 281 2
TBoxUW indow 103¢(1) 106 (1 251 (2) 259+(2) 261 2) 266 { 2
TColor 27°(1 37(1
TDocHanager go (1 93 (1) 224 (2) 243 (2)
TFilePath 88 1
THeap 98 1
THighTransit 79 (1
TList 83 1 120 (2) 123 (2)
TOb ject 33 1 :
TProcess 84 (1) 219 E 2;
TSelect ion 63 (1 69 (1 138 ((2) 148 (2) 191 { 2)
TVieuw so (1
TW indow 98 1) 13 (1) 248 (2) 266 (2)
TWindowlD 98 (1
U=
U3Boxer 1+(1)
uABC 14+(1
UDraw 13<(1
UFont 9°(1
UOb ject 6-(1
-y-
vol umePrefix B88*(1) 227 (2)
-l
wmgrl1D 98=(1) 251 (2)

*e= End Xref: 52 id's

220 references

[412624 bytes /4947 id' s/41684 refs]

[Segment 7]
Moving Boxes

Purpose of this segment:
1) To describe how to move a box across the view.
2) To introduce the concept of invalidation.

How to use this segment:

- This is the seventh segment of the self—paced introduction to the ToolKit.
This segment immediately follows the "Selections™ segment. The next segment
after this is "Creating A Box".

~ This segment concerns moving (or dragging) existing boxes across the screen.
It comprises a tutorial and a lab.

So far you have been able to select and deselect one of a fixed number of
boxes in your document. That capability will be enhanced in this segment to include
the ability to drag a box, wharrmed from one place to another.

INTRODUCTION TO DRAGGING (moving an object)

With the aid of the mouse, users are able to drag objects within a window.
This is very convenient way to organize items within a document.

The dragging procedure we will study involves the following steps:
1) Identify the selected box at the mouse down event.
2) At each mouse move event:
a) Determine the box’s new paosition.
b) Erase the box at its old position.
¢) Redraw the box at its new position.

As you can see dragging is actually erasing and redrawing. An alternative procedure
that we will not study erases on mouse down, redraws on mouse up, and XOR's twice
at each mouse move. [t is faster, but less impressive.

The Lisa user interface suggests a nice way to implement box dragging using
the mouse. The mechanism is similar, though not identical. to that used by

LisaDraw. The procedure is to move the box the distance that the mouse moves. If
the mouse cursor is dragged past a panel border, the view scrolls so the user can
move the box further.

" MOUSE MOVEMENTS

As moves the-mouse s0 move our boxes. This section explains how mouse
movements are detected and processed by the Generic Application.

Mouse movements are detected only while the mouse button is down. Once
the mouse button is depressed, it is the panel's job to track movements of the
mouse.

The panel translates mouse movements into mouse move events. Bear /n
mind that these are not events in the strictest sense, since they are not generated by
the window manager. From the panel mouse move events flow to either the view
or the selection.

Although the panel detects very minute movements of the mouse, the first
few movements are not transiated into events. The main reason for this is
nysteresis.

hysteresis

"Behind cancer, hysteresis is the number two killer in this country.”
quack.

Hysteresis may sound bad, but it is really quite harmiess. Quite simply,
hysteresis is the distance the mouse must move before dragging can begin. (tis a
distance allowance for unsteady hands. This user friendly feature allows all but the

most inept users to jiggle the mouse with the button down without disturbing the
view.

Specifically, hysteresis is a set of two numbers. Each number represents a
distance in pixels. These distances are applied to movements of the mouse to
determine whether the first mouse move has occurred. One distance is applied
horizontally, the other is applied vertically. The ToolKit constants, below, indicate
the default hysteresis values:

Stdiysteresis = 9;: {jiggle allowance horizontally)
Staviysteresis = 6; {jiggle allowance vertically}

If the mouse movement exceeds neither hysteresis value, horizontally or
vertically, the mouse cursor coordinates reported are those of the original position
(the selection's anchor LPoint).

Now that you know about mouse maves, the next concept essential to dragging
boxes is /nvalidation

INVALIDATION

1-2

Invalidation

(20000, 10000)
; N
e it BoxView
Box to be invalidated
(33800, 3B170)
=
I
QI ks Bz iniassd oo Pl
k
(33100, 35000)
(33000, 32960) ' L p

Invalidation lets you erase and redraw boxes, or other graphical objects, in a
clean and simple way. Particularly important when erasing, invalidation lets you
easily restore the view obscured by the box.

Changes such as moving a box around in the view make the window’s current
display invalid. All or part of the display may need to be redrawn to reflect the
altered contents of the view. Specifically, what will be changed are thase portions

of the screen displaying the areas of the view that the application has declared
invalid.

(WNote: Scrolling also invalidates the display, but it is taken care of automatically by
the Generic Application. See the section ‘Scrolling” below for @ more detailed
explanation,)

Invalidation indicates the parts of the window'that have become invalid
because of a change in the view. Recall that the view is 3 Clascal object controlling
the data objects to be displayed. The boxView's boxList field, for example, holds a
list of boxes to be drawn. A box can be added to or removed from the list without
immediately affecting the screen.

As you may have guessed, invalidation is intimately related to the window
update region.

from LRect to Rect

Invalidation starts in the view, but ends in the window's update 'reg'coh As
the illustration: “Invalidation™ shows, a 32—bit LRect in the view is invalidated by
the application. This might be a box's shape LRect, for instance. .

Next, for each pane in the view's panel the following occurs:

The intersection of the invalid LRect with the pane‘s viewed LRect is
translated into a corresponding 16—bit Rect (in window coordmates)
This invalid Rect is a piece of the screen area to be updated in the
window.

If not empty, that invalid Rect is added to the update region. Aeca//

that the update region is initially emply. It is set to emply after each
window ypdate.,

Invalidation is complete when the last pane has added its invalid Rect to the
update region.

building the update region

The application builds up the update region by invalidating one or more LRects
in the view. As you recall from the previous segment, the update region is the area
drawn into when the window updates the display.

The ToolKit method, {TPanel.}invalLRect is used to invalidate an LRect in the
view. The fragmented code below illustrates how this method is used:
PROCEDURE (ThySelection.) Mousetove{(mouselPt: LPoint)}: (moves the box the distance
that the mouse has moved}
VAR Dbox: TBox:
panel: TPanel:

BEGIN
box := SELF.Dox, {get the selected dbox)
panel := SELF.panel; '

{invalidate the old position of the box)
panel. InvallRec t{box. shapeliect):

{corpute the distance the mouse hes moved (code omitted)
conpute hev position of the box (code omitted)
offset the box's shape LRect appropriately (code omitted))

{invalidate the new position of the: box)
panel. InvalLRec t(box. shapelRect); ‘
{..})
00

DETAILS OF THE WINDOW UPDATE

Once the update region has been built, the window is updated. After a mouse
move event, the update is immediate.

One of the most relevant features of the update for box moves is that the
update area is erased before redrawing occurs within it. This means that you only
need to invalidate a moving box at its former position to erase it. To redraw, you
simply invalidate the box at its new position.

The details of how the update works are listed below.
1. Install the update region as the visRgn; save the former visRgn.

2. If the update region is empty, then restore the former visRgn, and
return to process the next event.

Otherwise,
Prepare to highlight if needed.
Erase the update region by filling it with white.
Refresh the window frame (only parts within the update region).
Tell its panels to refresh themselves, each of which:
tells its visible panes to refresh themselves, each of which:

a. Frames itself, and focuses (Yocusing clips to the
intersection of the pane’s imer Rect with the visfign)

. Positions the view frame properly within the pane.
Has the view draw itself. (View.Oraw)

Has the selection highlight itself, if needed.
(selection. Highlight)

U A o

a oo

e. Restores the former focus area (this restores the clip
region to its former state).

7. Restore the former visRgn, and return to process the next event.

IMPLEMENTATION STRATEGY

Wwe modify the previous stage of Boxer 3Boxer, to support dragging. The user
interface is summarized below.

user_inter face

Two boxes are displayed in the window. The dser depresses the mouse button
to sefect a box.

The user keeps the mouse button depressed to move the selected box. Once
hysteresis is satisfied, each movement of the mouse causes the selected box to be
moved propor tionately.

The user releases the mouse button when finished moving the box. The box
remains at its final position. .
, ' theory of operation
The implementation of dragging foliows the algorithm below:

To move a box the application must do the following.

1. When the mouse button is pressed, set the selection anchor LPoint

and current LPoint (the current LPoint is the last place the mouse

was tracked. Initially it is the same as the anchor LPoint.)
Determine the selected box.

The Generic Application takes over here. When hysteresis has been satisfied, it sends
a mouse move event to the selection according the following flow of control:

pane.MouseTrack {TPane.}
view.MouseTrack {Timage.}
view.MouseMove {Timage.} default method

selection.MouseMove {TBoxSelection.}
Your code is called from here.

-2. Extract the current mouse LPoint. Compute the amount the mouse
has moved since the last mouse move event. This is done in

{TBoxSelection. MouseMove.
3. I the mouse has moved, then do the following:

a. Update the selection’s current LPoint.

b. Invalidate the box's old shape LRect (the erase phase).
c. Offset the box's shape LRect by the movement of the mouse.
d. Invalidate the bax's new shape LRect.

The Generic Application now updates the window. As long as the mouse is down it
continues to generate mouse move events. When the mouse button is released, the
Generic Application makes the following calls:

pane.MouseTrack {TPane.}

view.MouseRelease {Timage.} dievau/t method
selection.MouseRelease {TSelection.} defau/t method

The default action in {TSelection.}MouseRelease is to do nothing. Your code does
not need to change that.

actual implementation

The actual implementation for 4Boxer is summarized below. The code for
3Boxer is used as base for the changes.

New Classes .
none

New Methods (for existing classes)
none

Overridden Methods

(Thexselection]

PROCEDURE {TBoxSelection. } nMouseove {((mouseiPt: LPoint));
{TBoxSelection.JMousetMove saves the mouse LPoint in
SELF.currLPt, a field inherited from TSelection. Before it does
that, though, it computes the difference between mousel.Pt and
SELF.currLPt. This is the amount that the box's shape LRect
will be offset.

OFFSETTING A BOX

Offsetting a box means offsetting its shape LRect. The line below uses the
ToolKit procedure, OffsetLRect, to offset a box by 30 pixels horizontally and 20
pixels vertically.

VAR yourBox: TBox;

($4-}

7-6

OffsetLiect (yourBox. shapeiRect, 30.20).
(S}

In 4Boxer the distance is computed as a point. This point is the difference
between the mouse LPoint (mouselLPt) and the current LPoint (selection.currLPt).
The ToolKit procedure, LPtMinusLPt, is used to compute the difference.

PROCEDURE {TBoxSelection.) MouseMove{(nouselPt: LPoint)):

VAR distance: LpPoint; ’

{..}
{the second LPoint is subtracted from the first to yield the difference,
which is Teturned as the third I.rgi.ng)

LPUtinusLPt(mouselPt, SELF.currlPt, diffiPt);

The following line now offsets the box, yourBox, by the distance computed above.

OffsetiRect(SELF. box. shapelRect, GLFFLPL.N, GiffLPL.v);

SCROLLING (Optional)

If the cursor passes the panel boundary and the panel was created with the ability

to scroll, then the Generic Application scrolls automatically before each call on your
mouse move method.

Questions:
1) Does dragging occur while the mouse button is up or down?

2) What is the difference between the selection's current LPoint and its
anchor LPoint?

3) Requiring that the mouse moves a minimum distance is known as

~ "enforcing hysteresis®. While the mouse button is depressed, how often is
hysteresis enforced?

4) Why invalidate a box's shape LRect to erase it instead of erasing the box's
shape LRect directly?

5) How many invalidations are needed to move a box? |
What does the update region look like after that (those) invalidations?
6) How is an invalid LRect converted to an invalid Rect?

Box Move Lab

Purpose:)
To implement dragging & box.

What you are about to do:

You will compile and run 4Boxer, then optionally modify the source. This
should be done in the following steps:

1) Copy the following files onto your prefix volume.

4 Boxer .TEXT
4UBoxer2 . TEXT
4MBoxer .TEXT
4PBoxer . TEXT

2) Compile, install, and run the sample application, 4Boxer. Use 44 es
the tool number.

3) Scan the listings of the four files in the sample application. These
are included in the appendix, “Code Samples for this Segment”. -

4) [Optional] Extend the application you designed in step 4 of the
"Selections" lab to support dragging multiple boxes.

Plesse review the "Selections" lab.

Things to look ot for:
- Little black squares strewn all over the screen.
Remember to erase the box highlighting when erasing any box.
- Box can be moved only a shart distance.
Check whether you update selection.currLPt.
- Boxes multiply like rabbits.
Check what you are actually invalidating.

7-1ab-1

9 Rug 1984 15:58:40

X4BOXER. TEXT

Page

[

'

23
SLOT2CHANL
;no assembler files

;no building bl ocks

8 Rug 1984 15:57:07 P4BOXER. TEXT v Page 1

- . ™

: PBOXER. TEXT for Boxer
;Phrase file for Boxer class sxample
1

2500
$- #800T-TK/PABC
; Apple building block phrase files can be included here

1000
Boxer
Other appl icat ion alerts can be included here, numbered betueen 1001 and 32000

0
1
$-#B00T-TK/PRBC File/Print

2

Page Layout

Previeuw Actual Pages®401
Preview Page Breaks?®402
Don't Preview Pages®403

100
Buzzwords
Set Aside tDocument 1¥109

0

9 Rug 1984 15:54:1S ' MABOXER. TEXT

Page 1
< R
PROGRAM M4Boxer;
USES

{SU UOb ject } UObject,
{$IFC | ibraryVersjon <= 20
UFont} afont.

U
{SLNDC)
$U QuickDrau QuickDraw,
SU UDraw UDrau,
$U UABC UABC,
{$uU U4Boxer } UéBoxer;
CONST
phraseVersion = 1;
BEGIN

process : = TBoxProcess. CREATE;
process. Commence(phraseversion};
process. Run;

process. Compl ete{ TRUE);

END.

21 Rug 1884 12:34:58 U4BOXER. TEXT . Page 1
é - UNIT U4Boxer;
2 - INTERFACE
§ -~ USES
g - {$U LoD ject} Uob ject,
8 -~ {SIFC |l ibraryVersion <= 2()&F
9 -- éw UFont} ont,
ig - {$ENDC}
12 -- $U QuickDraw) QuickDraw,
13 -~ $U UDraw} UDrau,
ig - $U UABC} UABC;
16 -~ CONST
17 =-- colorihite = 1;
18 -~ colorLtGray = 2;
19 -- colorGray = 3;
20 -—- colorDkGray = 4;
g% - colorBlack = §;
gi - boxSel ect fonKind = 1;
gg -- TYPE
g; - TColor = colorthite.. colorBlack; {color of a box}
gg -- {Neu Classes for this Appl icat jon)
;% -- TBox = SUBCLASS OF TOb ject
33 - {variables}
34 -- shapelRect: LRect;
§§ - color TColor;
37 -- {Creat ion/Dest ruct ion)r
gg - FUNCTION TBox. CREATE(ob ject: TObject; itsHeap: THeap): TBox;
40 -- PROCEDURE TBox. PaintHandl es;
4] -- PROCEDURE TBox. Draw;
42 -~ END;
43 --
44 --
:g - TBoxView = SUBCLASS OF TVieuw
47 -- {Variabl es}
:g - boxL ist: TList;
S0 -~ {Creat ion/Dest ruct ion}
81 -- FUNCTION TBoxView. CREATE(object: TObject; itsHeap: THeap; {tsPanel: TPanel; itsExtent: LRect)
g§ - ¢ TBoxView;
glsa - FUNCTION TBoxView. BoxUWith(LPt: LPoint): TBox;
56 -- PROCEDURE TBoxView. Draw:. OVERRIDE;
£7 - PROCEDURE TBoxVieu. InitBoxList(itsHeap: THeap):
58 -- FUNCTION TBoxView. NoSelection: TSelection; OVERRIDE;
59 -~ END;
& -
g% - TBoxSel ect ion = SUBCLASS OF TSelection
64 —- {variables)
22 - box: TBox;
67 -- {Creat ion/Dest ruct ion}
68 -- FUNCTION TBoxSel ect ion. CREATE(ob ject: TObject; itsHeap: THeap: itsView: TView; itsKind: INTEGER;
gg -- itsAnchortPt: LPoint). TBoxSelection;
71 -- {Drauing - per pad}
;g - PROCEDURE TBoxSelect ion. Highl ight{highTransit: THighTransit); OVERRIDE;
74 -- {Select ion - per pad) .
75 -- PROCEDURE TBoxSel ect jon. HousePress{mouseLPt: LPoint); OVERRIDE;
;_6, -- END PROCEDURE TBoxSel ect jon. Mousetove{ mouselLPt: LPoint); OVERRIDE;
78 -- '
79 --
gtli - TBoxProcess = SUBCLASS OF TProcess
82 -~ {Creat ion/Dest ruct ion}
83 -- FUNCTION TBoxProcess. CREATE: TBoxProcess;)
B4 -- FUNCTION TBoxProcess. NeuDochanager(vol umePrefix: TFilePath; openfAsTool: BOOLEAN)
85 -~ : TDocHanager; OVERRIDE;
86 -~ END;
o
gg - TBoxDocManager = SUBCLASS OF TDocHanager
g1 -- {Creat jion/Dest ruct ion}) .
92 -- FUNCTION TBoxDocManager. CREATE(ob ject: TObject;. fitsHeap: THeap; itsPathPrefix: TFil ePath)
83 -~ . TBoxDocHanager;
gg - EUNCT]ON TBoxDocHanager. Neuwll indow(heap: THeap, wmgrlD: TWindowlD): Tuindouw; OVERR IDE;
-- ND;
96 ~=
97 --
98 --
133 -- TBoxWindou = SUBCLASS OF TWindow
101 -- {variables} ’
1% = {Creat fon/Dest ruct fon)
-- reat jon /Dest ruct fon
104 -- FUNCTION TBoxUindou. CREATE(ob ject: TOb ject; itsHeap: THeap; itsbimgriD: TWindowlD): TBoxWindouw;
105 -~
106 -~ {Document Creat ion})
107 -- PROCEDURE TBoxWindow. Bl ankStat ionery; OVERRIDE
108 -- i
1% -
1 -

(4 1 1t 1t 1t 1 1ot B 1 10 s 0t et 0 Bt Bttt b Bttt Bttt et b bt b i o b e b b et b b e e e e e R i R e S e e)

21 Rug 1884 12:34:58 U4BOXER. TEXT Puge

7 RONNRNRRRINNRIRNN RN RN NN R RN RN AR NN RN RN RMRNRRAIRAR RN N AR N RN RN RN AR RN RN RIRIA RN AR R AR R RN - 4 - ™

111
112
113

-
QOVONOVIDWN-

>

>

IHPLEMENTAT ION
$1 UéBoxerZ text
(b !

BOXER2}

METHODS OF TBox;

ggnccllmu TBox. CREATE(object: TObject; itsHeap: THeap): TBox;

SIFC ﬂ'nceaBP(u) {seENnDC}
ELF : = NeuwOb ject(itsHeap, THISCLASS);
WITH SELF DO

BEGIN

shapelRect : = zeroLRect;

color : = colorGray;

END;
END: {SIFC 1 race)EP; { SENDC)

{This draus a particular box}
PROCEDURE TBox. Draw;
UAR lPat LPattemn;

LS IFC ﬂnce] BP(10); { SENDC}
enNormal

IF LsEét IsVis ibl e(SELF. shapeLRect) THEN {this box needs to be draun)

{Get a Quickdrau pattemn to represent the box's color}
CﬁSE SELF. color OF

colorthite: 1Pat : =]PatUhite;

coloriLtGray: 1Pat : = |PatLtGray;

col orGray: 1Pat : = [PatGray;

col orDkGray: 1Pat : = |PatDkGray;

col orBi ack 1Pat : =]PatBlack;

OTHERY ISE 1Pat : = lPatUhite, {this case should not happen)

{Fill the box with the pattern, and drau a frame around it}
FillLRect(SELF. shapeLRect, 1Pat);
FrameLRect(SELF. shapeLRect);

END;
{SIFC 1race)EP; { SENDC)

{Thls calls the DoToHandle Procedure once for each handle LRect; user of this method must
set up the pen pattern and mode before call ing)
PROCEDURE TBox PaintHand] es;
VAR hLRect,
shapaLRect; LRect;
dh, dv: LONGINT;

'B’Egt}:EDURE HoveHand! eAndPaint (hOffset, vOffset: LONGINT);

OffsetLRect(hLRect, hOffset, vOffset);
END PaintLRect(hLRect);

BEGIN
g IFC fTrace)BP(10; (ti.NDC]
tLRect{ hLRect,
shapeLRect : = SELF shapeLRect.
WITH BzgalpeLRect

dh := right - left;
dv : = bottom - top;
HoveHand! eAndPa xnt(left top); {drav top left handle}

END;

HoveHand] eAndPaint(dh, 0); then top right}
HoveHand] eAndPa int(0, dv); then bottom right}
HoveHand] eAngPa int (-dn,_ 0); finally bottom left)
{SIFC fTrace]EP; { SENDC)

0;

END;

METHODS OF TBoxView;

FUNCTION TBoxView. CREaTE(obJegt EObJect itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)

GIN
SSIFC ﬂncaLBP(11! { SENDC)
F object =
object : = NeuOb ject(itsHeap, THISCLASS): .
SELF :'= TBoxVieuw(nsPane) Neuvuu(object itsExtent, TPrintManager. CREATE(NIL, itsHeap),

stdlargins, TRUE));
END {SIFC fTrace}EP; { SENDC}

{This returns the box containing a certain point}
FUNCTION TBoxView. BoxWith(LPt: LPoint): TBox;
VAR box: TBox;

s: TListScanner;
BEGIN

{sIFC Nnco{BP(n) { $SENDC}

boxwit

;s SELF. boxL {st. Scanner;
UHLE s. Scan{ box) DO
IF I..Pt lnLR.ct(L:t box. shapelLRect) THEN
1= boX;
{slrc nr-cc}EP {sennc)

{YMs draus the] ist of boxes}
OCEDURE. Tsoxwou Draw;
\MR box:
s TListScanner.

21 flug 1984 12:34:58 U4BOXER. TEXT Page

/NIRRT RN RN RN RN RAR AR RN RN RN RN RNNNONNNRONRNNNNRNRNODNRNRNND)

0-

-0
0-

BEG
{sxrc ance]BP(lD) { $ENDC}
: = SELF. boxL ist. Scanner;
WlLE s. Scan(box) bo

box. Drauw;
{$IFC fTrace)EP; [SENDC)
END;

PROCEDURE TBoxVieu. InitBoxList (itsHeap: THeap);
VAR box: TBox,
boxblist: TList;

IN

{$IFC fTrace)BP(10); { SENDC]

boxList := TList. C EATE(NIL itsHeap, 0);
SELF. boxList := boxList;

{create and append the first box]
box : = TBox. CREATE{NIL, itsHeap);
{$H-] SetLRect(box. shapelRect, 20,20, 100, 100); {$H+)
SELF. boxL ist. lnsLast(box),

{create and append the second box]
;.= TBox. CREATE(NIL, itsHeap);
{$H-} SetLRect(box shapelRect, 200, 100, 300, 130); {S$H+}
SELF. boxlL ist. InsLast(box),
END {SIFC fTrace}EP; { SENDC)

;gN?TION TBoxVieuw. NoSel ect ion: TSelection;

{$IFC nnce]BP(ll) $ENDC)
NoSel ect fon ;= TBox3el ect ion. CREATE(NIL, SELF. Heap, SELF, nothingKind, zeroLPt);
END: {$IFC fTrace}EP; { SENDC)

END;

METHODS OF TBoxSel ect jon;

FUNCTION TBoxSel ect ion, CREATE(obJect TOb ject; itsHeap: THeap, itsVieuw TView, itsKind: INTEGER;
itsAnchorlPt: LPoint): TBoxSelect ion;

SIFC fTrace BP(ll {$£NDC}
F object -
object : = NeuObgect(itsHeap, THISCLASS);
SELF := TBoxSelect ion(TSelection. CREATE(obJe:t itsHeap, itsView, itsKind, itsAnchoriPt));

SELF. box : =
END: {SIFC fTrace]EP { SENDC}

This draws the handles on the selected box}
BEg(:EDURE TBoxSel ect ion. Highl ight(highTransit: THighTransit);
SSIFC fTracc}BP(n) { $ENDC)
F Ssézlhind <« nothmngnd THEN
thePad. SetPenToHighl ight(highTransit); {sot the drawing mode according to desired highl ight ing}
SELF. box. PaintHand] es; draw the handles on the box)

END;
b {SIFC fTrace}EP; { SENDC}

Just keep the old selection object and replace its data fields with new values. This isn't the)
ndard paradigm for creating neuw selection objects, but it certainly works (at least in this case).}

t?h!s fs another wvay to make a neuw selection, when the user presses the mouse button]
PROCEDURE TBoxSel sct ion. HousePress(mouselPt: LPoint);

VAR boxView: TBoxVieu;
aSelect jon: TSelection;
anel: TPanel ;
ch ox: TBox;
{a}rc ﬂnce%BP(ll) ; {SENDC}
EGIN

anchorLPt : = mouselPt;
curriPt : = mouselPt;

END; .
boxVieuw : = TBowa(SELF view);
panel := SELF, p:
pln.l Highl ight(SELF hontoOff); {Tum off the old highl ight ing)
box : = boxView. Boxmth(museLPt) {Find the box the user cl icked on}

IF box = NIL THE
SESELF kind : = nothtngKmd

SELF. kind : = boxSelect ionKind;
SELF. box : = box;

pane]. Highl ight(SELF, hOffToOn); {Turn on the highl ighting for the neuly selected box}
se] f. MarkChanged, {Allou the document to be saved so that any changes made can become permanent}

ND($IFC fTrace}EP; { SENDC}

{This is called when the user moves the mouse after pressing the button}
PROCEDURE TBoxSel ect fon. MouseMove(mouseLPt: LPoint);
VAR diffLPt: LPoint;

shapeLRect: LRect;

PROCEDURE 1nval TheBox(invalRect: LRect);

appia compatar

21 Bug 1884 12:34:58 U4BOXER. TEXT

Page

0-

-0 B

0- A

1-

[S IFC fTrace}BP(11); { SENDC}

lnsetLRoct(inval Rect, -3, -2 Emed to expand the inval idation rectangle to inval idate }

SELF. pane] lnva)LR?ct(inval ect).

highl ighting as well as box
ESIFC fTrace}EP; { SEND g fantina !

EG
{leC ﬂ’roce)BP(ll) { SENDC]
IF SELF. kind <> nothingKmd THEN

BEGIN
{Hou far did mouse move?
LPtHinusLPt(mouseLPt, SELF.curriPt, diffLPt);

{Move it if delta is nonzerc
IF NSEGElqual LPt(diffLPt, zomLPt) THEN

SELF. currlPt :'= nouseLPt
shapelRect : = SELF. box. shapelLRect;

{Co mpute old and new positions of box)

Inval TheBox(shapel.Rect);
OffsetiRect{shapeLRect, diffLPt. h, diffLPt.v);
Inval TheBox{ shapeLRect);

EEBF box. shapslLRect :« shapelLRect;
END:
ND {$SIFC fTrace)EP; { SENDC)

END;

METHODS OF TBoxProcess;
FUNCTION TBoxProcess. CREATE: TBoxProcess;
ggIFC ﬂnca;BP(ll) $ENDC)

;= TBox
{SIFC fTrace)}EP; { SENDC

EEECT ION TBoxProcess. NeuDocManager{volumePrefix: TFilePath; openAsTool: BOOLEAN):
{SIFC fTrace)BP(11 { $SENDC}
NewDocHanager : = ox Docnanager CREATE(NIL, mainHeap, volumePrefix);

END: {$IFC ance] EP; ($EN

END;

METHODS OF TBoxDocManager;

rocess{ Process CREATE(NeuwOb ject{mainHeap, TH lSCLaSS) . mainHeap));

TDocHanager;

FUNCTION TBoxDocManager. CREATE(object: TObject: itsHeap: THeap; itsPathPrefix: TFilePath)

TBoxDocHanager;

GIN
$IFC fTrace}BP(11); { SENDC)
EF ob}ect - 24 NE
bject : = NauOh)cct jitsHeap, THISCLASS);
SELF : = TBoxDocManager{ TDocHanager. CRE.ATE(obJect. itsHeap, itsPathPrefix));
ND: [Sch fTrace)EP; { SENDC

FUNCT ION TBoxDocHanager. Neuli indou(heap: THeap, umgriD: TWindowlD): TWindou,

gIFC ﬂnco}BP(ll) {SENDRE
+'=_TBoxd indou. C! ATE(NIL, heap, wmgriD);
{s1FC H’ncc]EP { SENDC}

END;

METHODS OF TBoxWindow;

FUNCT!ON TBoxWindou. CREATE(ob ject: TObject; itsHeap: THeap; itsWmgriD: TWindowlD):

SIFC fTrace BP(IU) (SENDC}
F object = NIL T
- object := NewOb oct(itsHeap, THISCLASS);
SELF :'= TBoxW indoul Tmndou CREATE(ob ject, itsHeap, itsWmgriD, TRUE));
ND: {SIFC fTrace}EP; { SENDC

PROCEDURE TBoxU indow. Bl anksnt ionery;
VAR vieulLRect: LR
anel : TPanel
oxV isuw: TBoxView;
aSel ect ion: TBoxSel sct jon;

BEGIN
{sIFC nncu)BP(lD% PENDC)
panel := TPanel. CREA

SetLRect(viewlLRect, 0, 0, 5000, 3000);
boxView : = TBoxView. CREATE{NIL, SELF.Heap, panel, vieulRect);
boxVieu. InjtBoxL ist({ SELF. Hcap),

{SIFC fTrace)EP; { SENDC}
END;

E(NIL, SELF.Heap, SELF, O, O, [aScroll, aSplit]}, [aScroll,

TBoxW indouw;

aspl it]);

21 Rug 1984 12:34:58 U4BOXER. TEXT

Page
-
2 328 -- END;
2 329 --
114 --
115 -~ END.
J

(

*** End Xref: 43 id's

208 references

21 Rug 1984 12:34:58 U4BOXER. TEXT Page
1, uvdboxer, TEXT
2. U4Boxer2 text
B
Bl ankStat jonery 107+(1) 311<(2
box 65 1 91¢(2 97 2 98 2 99{ 2; IDS'E 2; 111 2; 112i 2; 118‘& 2; 126-§ 23
127 (2) 128 (2) 131«(2) 132 (2) 133 (2) 1%59=(2) 1N 2) 184-(2) 197«(2) 198 { 2
202=(2) 202 (2} 237 (2) 243 2
boxL ist A8.{ 1 96 (2) 110 (2) 119°(2) 122=(2) 123=(2) 123 (2) 128 (2) 133 (2)
boxSel ect ionKind 23°(1) 201 2
" BoxWith S4+(1 90 2} 197 (2)
-Ce-
color 35+(1 12«(2 27 2;
col or8l ack 21°(1 27 (1 32 (2
col orDkGray 20°(1 31(2
colorGray 19°(1 12 (2 30 (2)
coloriiGray 18+(1 29 (2)
colorthite 17°(1 27 (1 28 (2
CREATE - 38 1 Si+{ 1 68(1 83 (1 92 { 1) 104 2 12 S’{ 2} 77‘; 2; 83 é 2} 122E 23
126 (2) 131 2) 141 2) 151+(2} 157 (2) 255-(2) 258 (2) 266 (2) 276+(2) =282 (2
290 (2) 300°(2) 305 (2) 319{(2) 322(2
-.D-
Drav 41<(1) s6=(1) 18+(2) 105°(2) 112 (2)
Highl ight 72+(1) 165°(2) 195 (2) 204 { 2)
]
InitBoxL ist 57°(1) 117+(2) 323 (2)
-L- .
LRect 34 (1) 47 (2) 215 (2) 217 (2) 312 (2)
-
HouseHove 76’% 13 213’2 23
HousePress 75+{ 1) 180°(2
-N-)
NeuwDocManager B4 1) 263<(2) 266=(2
Neul! indouw 94+(1) 287+(2) 290«{ 2
NoSel ect ion 58+(1) 138<(2) 141=(2
-P-
PaintHandl es 40+(1) 45°(2) 171 (2
QuickDraw 12¢(1)
" shapeLRect B0 T3 208 8 Y LAY A T 8 Y
127 (2) 132 (2) 215°(2) 237={ 2) 237 (2) 239 (2) 240 (2} 241 2} 243=(2) 243 { 2
-T-)
TBox 31+ 1 38(1 84 (1 65 (1) 3+(2) s(2) 90 (2) 81 (2) 106 (2) 118 (2)
126 (2) 131(2) 184 (2
TBoxDocHanager 89¢(1 93 1 266 (23 274°(2) 277 2) 282 (2)
TBoxProcess 80'} 1 83 (1) 253+(2) 255 (2) 258 2
TBoxSel ect ion 62°(1 69 (1 141 2) 149+(2) 182 (2) 157 (2 3152 22
TBoxVieuw 45°(1 82 (1 75+(2 78 { 2 83 (2) 181 2) 193 (2} 314 (2) 322(2)
TBoxW indow 99°(1 104 (1 290 (2) 298+ 2) 300 2) 305 (2
TColor 27°(1 35 (1
TDocManager 85 { 1 89 (1) 263 é 2} 282 (2)
TList 48 (1 119 (2) 122 (2
T0b ject 31({1
TProcess 80 { 1) 258 s 23
TSelect ion s8 {1 62 (1) 138 (2) 157 (2) 182 { 2)
TVieuw 45 (1
TWindow 94 (1 99 (1) 287 (2) 305 (2)
el= .
UABoxer 1°(1
UABC 14+(1
UDrauw 13+(1
UFont 9+(1
UODb ject -6 1

[412360 bytes /4956 id' s/41633 refs]

[Segment 8]

Creating a Box
(A-Second Selection Class)

Purpose of this segment:
1) To add the ability to create a box.
2) To present the conditions warranting multiple selection classes.
3) To explain how to use the view to arbitrate among selections.

How to use this segment:

This is the eighth segment of the self—paced introduction to the ToolKit.
This segment follows the segment, “Moving Boxes®, and precedes the segment on
commands with undo.

This segment implements multiple selections. It explains when multiple
selection classes are useful; and how to specify them.

Having just implemented dragging, the next stage in the Boxer application is
to enable users to create new boxes. Once created, those boxes can be selected and
dragged around the window.

Mare so than the previous segments, in this one the user interface plays a
critical role in the application design. We start by considering the probiem of
creating a box.

CREATING A BOX

; ~ Users of this stage of Boxer are to be able to create boxes. The design task
at hand is to make the creation of boxes both natural and intuitive for the user.

We start by considering how people create boxes on a universally fammar
medium — drawing paper.

Tanya /s about to draw sorme boxes for a garden design project. The
Tirst bax she /s adding /s the outer boundary of the garden. She locates a
suitable starting point on the sheet of paper, and sketches a box of the desired

size. Notice that she has control over both the location and the size of the
box.

She now starts to add a second box. This will be a planting area for
beans. [t will reside within the first box and will be appreciably smaller. As
with the first box, she /locates a starting paint, then sketches the new box.
She follows this basic procedure with every box she adds to the garden design.

Two application design options come to mind. The first is to mimic the
above process as closely as possible. This means that users can create boxes of
arbitrary size from any starting point on the screen. The second option is more
limiting. It allows users to sketch a box, but only from a starting point not within
any other box.

We consider the first option — creating a box anywhere on the screen.
user_interface options

There are two kinds of places where the user can locate the starting point of a
box. The starting point can be either inside of a box or not inside of any box. |f
the starting point is not enclosed by any other box, then we can proceed to sketch it
without reservation.

- Yet if the starting point is inside of another box, we have a problem. Unless
we know beforehand that the user is creating a box, we have no way of distinguishing
it from a box selection of the type dealt with in the previous two segments. Can
the user let us know that she will be drawing a box before she actually does it? And
if so, then how?

The answer to the first question is yes; and several proposals arise in answer
to the second. Of these, we can immediately dismiss using a menu command to
initiate a box creation mode. For reasons best explained in the Lisa User Interface
Guidelines, this is prohibited. A more likely proposal is to implement a control
which, minimally, would have two states — box creation and box selection.

A control is a special figure or table that the user can edit or adjust to pass
information to an application. Typically controls are used to communicate
information that will not be used immediately.

A good example of a control we could use is the pallette in LisaDraw. For
Boxer we would only need the box createand arag indicators. All things considered
though, a pallette is a good idea for a more complex application, but for Boxer, it is
a bit excessive. A simpler control, such as a two position gauge would be more
appropriate. ’

Yet, despite the advantages. a control is not implemented in Boxer. Instead
we pursue the design simplicity of the second implementation option — creating a
box only where none exists. LisaProject works this way.

With this option the criterion for creating a box is reduced to a simple test.
Is there or is there not a box at the mouse press LPoint? If a box is present, we

interpret the mouse press to be a box selection. |f none is present, the mouse press
is the starting point for creating a box.

CREATING A BOX

Conceptually a box exists at the moment of creation. Initially this box has no
dimensions, since it contains only a single point — the mouse press LPoint.

To grow the box, we follow the example of LisaDraw. We retain the mouse
press point as one corner of the box, and use mouse moves to position the far corner
of the box. '

We use the mouse release to indicate the final position of the box's far
corner. At this point the creation is now a full—fledged box. As with other boxes it
can be selected, highlighted, and dragged.

Because the responses to mouse moves and mouse releases diverge from those
of box selections, box creation is handied as a new class of selection. This is the
recommended application design. The table below lists the major behavioral
differences between box creation selections and box selections.

v box_creation box selection
CREATE create a new box refer to selected box
mouse move grow the box : move the box
mouse release end box creation (no action)
highlighting frame growing box draw handles around box

IMPLEMENTATION STRATEGY

We modify the previous stage of the Boxer application, 4Boxer, to enable
users to create boxes. The user interface is summarized below.

user interface

No box is initially in the view. The user must create all the boxes he or she
will use.

The user presses the mouse button at a point inside of no other box to initiate
box creation. The box starts as a single point. With the mouse button down, the one
corner of the box follows the movements of the mouse. The other corner remains
fixed where the mouse went down.

A temporary frame is drawn around the box boundaries after each mouse
move. When the user releases the mouse button, the floating corner of the box is
fixed at the last mouse move point. As with LisaDraw, if this corner is not a
minimal distance from the fixed corner, the creation is nullified, and the screen is
restored to its former state.

8-3

, If of suitable size, a permanent frame is drawn around the box. It is colored
the default color, gray. The new box immediately becomes the selected box. As
such it is highlighted with tiny handles at its corners.

design considerations

What is the relationship between our two classes of selections? Is one a
subclass of the other, or are they both direct descendants of TSelection? The
subclassing rule of thumb is that if capabilities are not clearly shared between two
classes, then make the new class a subclass of the nearest ancestor. In the case of
our two selection classes, that ancestor is TSelection.

arbitrating between selections

The mouse press determines the class of the selection to be created. We use
a built—in ToolKit mechanism to arbitrate between the two selections. As the flow
of control below indicates, we can use the MousePress method of the view to
create the appropriate selection.

[the mouse is pressed]

pane.MouseTrack {TPane.}
view.MouseTrack {TView.} I
view.MousePress {TBoxView.} averrides the default method in TView

Once the selection is created, mouse move events are then routed to that
selection.

theory of operation
The implementation of box creation follows the algorithm below:

1. When the mouse button is depressed, determine whether any box is
selected. The determination is done by {TBoxView.}JBoxWith. The
mouse press is processed by {TBoxView.fMousePress.

If one is selected, then free—and—replace the current selection with
a new instance of TBoxSelection.

If none is selected, then free—and—replace the current selection
with a new instance of TCreateBoxSelection. This selection
creates a box object as one of its data fields. The selection anchor
point becomes the fixed vertex of the box.

The Generic Application then routes any mouse move events to that selection. For
createBoxSelections the algorithm proceeds as follows:

2. |f the mouse has moved then:

a. Undraw the frame of the box at its current size. This has no
effect if the box's shape LRect is a zero LRect.

b. Set the box's far vertex to the mouse LPoint.
¢. Draw the frame of the resized box.

The Generic Application now updates the window. The process repeats from step 2
as long as the mouse button is down. When the mouse button is released the steps
proceed as follows:

3. Undraw the frame of the box at its current (and final) size.
4. Invalidate the box's shape LRect for the window update.

5. Free—and—replace the createBoxSelection with a new instance of
TBoxSelection, whose anchor LPoint is the fixed corner of the box.

6. If the box is not big enough then throw it away. This is done by
setting the kind fieid of the boxSeIectlon to nothingKind; and by
freeing the undersized box.

Otherwise append the box to the view's box list.

When the Generic Application updates the window at this point, the newly created
box is drawn with its default color, then highlighted. If the box was thrown away,
the update restores the display underneath the shape LRect of the freed box.

actual implementation

The actual implementation for SBoxer is summarized below. The code for
4Boxer is used as the base for all changes.

New Constants
createBoxSelectionkind = 2:

New Classes
{TCreatenoxselection]
TCreateBoxSelection = SUBCLASS OF TSelection
{fielas)
box: TBox: {references the box being created)
{Creation}

FUNCTION {TCreateBoxSelection.)} CREATE(object: TODject: itsHeap: THeap: itsview: TvView:
itsAnchorlPt: LPoint): TCreateBoxSelection;
{TCreateBoxSetection.}CHEATE creates a createBoxSelection

with the given anchor LPoint and with kind,
createBoxSelectionKind.

PROCEDURE {TCreateBoxSelection. } Mousefove(mouselPt: LPoint):

{TCreateBoxSelection.}JMouseMove ties the far (diagonal) corner
of the box to the mouse LPoint. It unframes the box using its
old size, and reframes the box using its new size.

PROCEDURE {TCreateBoxSelection. } MouseRelease:

{TCreateBoxSelection.}MouseRelease unframes the box and
prepares to redraw it as a normal box. The selection replaces

itself with a new boxSelection referring to the newly created
box. -

New Methods (for existing classes)

[TBox]
PROCEDURE {YBox.} Drauframe;
{TBox.]JDrawFrame frames the box being created in a reversible

way. It uses the QuickDraw pen pattern, patXOr. The framing is
per formed by FrameLRect.

[TBoxViev] . .
PROCEDURE {TBoxView.} InvalBox(invallRect: LRect):

{TBoxView.}invaiBox invalidates the created box's shape LRect
and enough border to include the highlighting. This allows the
invalidation code to be shared.

Overridden Method
[TBoxview]
PROCEDURE (TBoxView.} MousePress(mouseiPt: LPoint);

{TBoxView.JMousePress finds the box the user clicked on. f NIk
then it creates a new createBoxSelection. Otherwise it creates a
box selection,

Modified Method
[TBoxSelection]
PROCEDURE {TBoxSelection. Hlousetiove(mouseLPt: LPoint):

{TBoxSelection.jMouseMove now uses {TBoxView.}InvalBox to
invalidate boxes.

Deleted Method
[TBoxSelection]
PROCEDURE {TBoxSelection. HlousePress{mouselPt: LPoint);

obviated by {TBoxView.MousePress.

FRAMING IN MULTIPLE PANES

Editing operations such as framing a box must work correctly even if the user

chooses to split the panel into several panes. A special method in the ToolKit is
supplied specifically for this purpose. That method is {TPane!.}JOnAllPadsDo. Its
declaration is listed below:

PROCEDURE {TPanel. YOnA11PadsDo(PROCEDURE DoOnThePad):
The sole parameter to OnAllPadsDo is a procedure, a parameterless

procedure. When called, this method executes that procedure on each of the panes in
the panel. Each pane that is visible will be focused before executing the procedure.

8-6

OnAllPadsDo is typically used to draw reversibly on the display. The code excerpt
below demonstrates such a use.

PROCEDURE {TCreateBoxSelection. Youselove{(mouselPt: LPoint))};
VAR Dbox: TBoX;

PROCEDURE FrameTheBox,
BEGIN

box. Drawframe
END;

BEGIN
box := SELF.Dox; {get the box under creation}

{...}

SELF.panel. OnA11PadsDo(FrameTheBox): {undraw the existing frame in all panes}
{compute the new frame} ’

SELF. panel. OnAl1PadsDo(FrameTheBox); {draw the new frame in gll panes)

{..}
END;

Questions for thought:
1. In general, what conditions warrant the creation of a new subclass?.
How does the view arbitrate between selections?
Why is {TBoxSelection.MousePress no longer needed?
Why use FreedAndReplacedBy to replace one selection with another?

Although it wasn't done in this segment, how would you get the Generic
Application to frame the box when it highlights the current selection?

o w N

8-7

Box Creation Lab

Purpose:
To implement box creation.

What you are about to do:

You will compile and run SBoxer, then optionally modify the source. This
should be done in the following steps:

1) Copy the following files onto your prefix volume.
SUBoxer. TEXT

SUBoxer2. TEXT
SHBoxer. TEXT
SPBoxer. TEXT

2) Compile, install, and run the sample application, 5Boxer. Use 45 as
the tool number.

3) Scan the listings of the four files in the sample application. These
are included in the appendix. "Code Samples for this Segment”.

4) [Optional/] \nstead of merely framing the box, try drawing the box
completely during the creation phase. This involves framing and
filling the box with an appropriate color.

~ Things to look out for:
— Bax is not drawn unti/ the mouse is released.

Remember to invalidate every time the mouse is moved.
— Bax cannot be undrawn.

Check to see if your Highlight method draws the box being created
properly.

~ Boaxes multiply like rabbrts.
Check what you are actually invalidating.

8-—lab—1

9 Rug 1984 15:58:56
—

XSBOXER. TEXT

Page

24
SLOT2CHAN1
i no assembler files

N
; no building blocks
;no 1 inks)

$
y
y
n
B

8 Bug 1884 15:57:28 PSBOXER. TEXT

Page

1

-

H PBOXER. TEXT for Boxer
iPhrasn file for Boxer class example

2500
$-#800T-TK/PABC
;. Apple building block phrase files can be included here

1000
SBoxer

. Other appl ication alerts can be included here, numbered betuween 1001 and 32000
0

1
$-*BOOT-TK/PABC File/Print

2

Page Layout

Preview Actual Pages®401
Previeuw Page Breaks®#402
Don't Preview Pages®403

100
Buzzwords
Set Aside tDocument 1#109

0

9 Rug 1984 15:54:36 MSBOXER. TEXT Page 1
4 N
PROGRAM MSBoxer;
us!

£S
{$U UODb ject }. Uob ject,

{$IFC | ibraryVersion <= 20
s‘(_SU UFont} JJFont.
{seNDC}

$U QuickDraw i QuickDrauw,
Taw UDrauw,
$U UABC UABC,

{$U USBoxer } USBoxer;
CONST

phraseVersion = 1;
BEGIN

process : = TBoxProcess. CREATE;
process. Commence{ phraseVersion);
process. Run;

process. Compl ete{ TRUE) ;

END.

21 Rug 1884 12:36:41 USBOXER. TEXT Page 1
—
i % ~- UNIT USBoxer; W
% i -- INTERFACE
1 5 -- USES
% ; -- {SU UODL ject} Uob ject,
1 8 -- {$IFC 1 ibraryVersion <= 2025
1 9 -- $U UFont} ont,
1. 10 -- { SENDC)
1 11 --
1 12 -- $U QuickDrauw} QuickDrauw,
1 13 -- $U UDrau} UDrau,
1 14 -- $U UABC) UABC;
1 15 --
1 16 -~ CONST
1 17 -- colorhite = 1;
1 18 -- colorLtGray = 2;
1 19 -- colorGray = 3;
1 20 -- col orDkGray = §;
1 21 -- colorBlack = 5;
1 22 --
1 23 -- boxSel ect jonKind = 1,
% gé - createBoxSel ect ionKind = 2;
1 26 -- TYPE
1 27 -- '
:{ gg - TColor = colorthite. .colorBlack; {color of a box}
} gg - {Neuw Classes for this Appl ication}
i §§ - TBox = SUBCLASS OF TOb ject
1 34 -- {variables}
1 35 -- shapelRect: LRect;
i gg -- color: TColor;
1 38 -- {Creat fon/Dest ruct ion¥ .
1. ig -- FUNCTION TBox. CREATE(ob ject: TObject; itsHeap: THeap): TBox;
1 41 -- { Highl ight ing support }
i 2§ -— PRSCEDURE Tgox. aintHandl es;
1 44 -- { Framing while creating)
i 22 - PROCEDURE TBox. Drauf rame;
1 47 -- {Displ ag)
1 48 -~ PROCEDURE TBox. Drau;
1 49 -- END;
1 50 --
1 651 --
i gg - TBoxView = SUBCLASS OF TView
1 54 -- {variables}
1 85 -~ boxList: TList;
1 56 --
1 57 -- {Creat jon/Dest ruct ion%
1 58 -- FUNCTION TBoxView. CREATE(object: TObject; itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
i gg -- : TBoxView;
1 61 -- FUNCTION TBoxView. BoxWith(LPt: LPoint): TBox;
% g’;‘ - PROCEDURE TBoxView. inval Box(invalLRect: LRect);
% gg - PROCEDURE TBoxView. MousePress(mouselPt: LPoint); OVERRIDE;
1 66 -- {Dispiay)
1 67 -- PROCEDURE TBoxVieu Draw; OVERRIDE;
1 68 -- PROCEDURE TBoxView. InitBoxList(itsHeap: THeap):
1 69 ~- FUNCTION TBoxView. NoSelection: TSelection;, OVERRIDE;
1 70 -- END;
1 71 --
1 72 --
i ;2 - TBoxSel ect ion = SUBCLASS OF TSelection
1 75 -- {variables}
1 76 -- box: TBox;
1 77 ==
1 78 -- {Creat jon/Dest ruct jon}
1 79 -- FUNCTION TBoxSelect ion. CREATE(ob ject: TObject; itsHeap: THeap, ftsView TView; itsBox: TBox;
{ glli -- itsKind: INTEGER; itsAnchoriPt: LPoint): TBoxSelection;
1 82 -~ {Draving - per pad}) .
i. gz - PROCEDURE TBoxSe!ect fon. Highl ight(highTrans it: THighTransit); OVERRIDE;
1 85 -- {Select ion - per pad)
i gg -- PROCEDURE TBoxSel ect ion. HouseMove(mouseLPt: LPoint); OVERRIDE;
i 88 -- '
1. 89 - ,
% gg - TCreateBoxSel ect fon = SUBCLASS OF TSelection
1 92 -- {variables}
1 93 -- box: . TBox;
1 94 --
1 95 -- {Creat ion/Dest ruct ion}
1 96 -- FUNCTION TCreateBoxSelect fon. CREATE(obiect: TObject, itsHeap: THeap: itsView TView
1 97 -- tsAnchorlPt: LPoint): TCreateBoxSelection;
1 98 --
1 99 -- Select jon - per pad} _
1 100 -- PROCEDURE. TCreateBoxSel ect ion. MouseMove(mouselLPt: LPoint); OVERRIDE;
1 101 -- PROCEDURE TCreateBoxSelect ion. MouseRel ease; OVERRIDE;
1 102 -- END;
1 103 --
1 104 --
} %gg - TBoxProcess = SUBCLASS OF TProcess
1 107 -- {Creat ion/Dest ruct ion)
1 108 -- FUNCTION TBoxProcess. CREATE: TBoxProcess;
1 109 -- FUNCTION TBoxProcess. NewDocHanager(vol umePrefix: TFi] ePath: openAsTool: BOOLEAN)
1 110 --) . TDocHanager, OVERRIDE:
(¥ —

appia cormpubar

21 Aug 1884 12:36: 41 "~ USBOXER. TEXT Page

/70N IO RN A A D R AN R R A A A RI A DRI NI I D D A NN A D A0 A A A A R RO NI RS A R A AN RO A A A AR NI A A0 AR I A A A NI AR NI N NI D NI A D NI NI R D N NI D AT NI ND NI N NI) P b b ot b b b b b i o o e e Bt b b Db b Bt B Bt e et)

>

>>

END;

TBoxDocManager = SUBCLASS OF TDocHanager

{Creat ion/Dest ruct ion} .
FUNCT ION TBoxDocManager. CREATE(ob ject: TObject; {tsHeap: THeap; itsPathPrefix: TFilePath)
) TBoxDocHanager -
Eugct JION TBoxDocManager. Newl indou(heap: THeap, wmgrlD. TWindowlD): TWindow; OVERRIDE;

TBoxWindow = SUBCLASS OF TuWindou

{Creat jon /Dest ruct ion}
FUNCT ION TBoxWindouw. CREATE(ob ject: TObject; itsHeap: THeap; itsUmgriD: TWindowID): TBoxWindow;

{Document Creat jon)
EROCEDURE TBoxmndou BlankStat ionery, OVERRIDE;

IHPLEMENTAT ION

$] USBoxer2. text}
{ USBOXER2)

METHODS OF TBox;
FUNCTION TBox. CREATE(ob ject: T0bject; itsHeap: THeap): TBox;

gsch fTrace}BP(11); { SENDC}
ELF : = NewOb ject(nsHeap. THISCLASS);
MTHBEELI.F Do

shapelLRect : = zerolRect;
color : = colorGray;

END
(sxrc fTraco}:P { $ENDC}

{ Drau this box &
PROCEDURE TBox. Draw;
VAR lPat LPattem;

LSIFC fTrace}BP(10); { SENDC}
enNormal

IF ngzt"!(wis ibl e SELF. shapeLRect) THEN {this box needs to be draun)

{Get a Quickdrau pattern to represent the box's color}
CASE SELF. color OF
colortbhite: 1Pat : =]PatUhite;
colorltGray: 1Pat := 1PatLtGray;
col orGray: 1Pat : =]PatGray;
col orDkGray: 1Pat := 1PatDkGray;
1PatBl ack;

col orB] ack: 1Pat
STHERIMSE Pat lPatuhne, {this case should not happen}

{Fill the box with the pattern, and draw & frame around it}
FillLRect({ SELF. shapelLRect, lPat);
FrameLRect (SELF. shapelRect);

END;
(s:;n fTrace}EP, { SENDC}

{ Frame a particular box}
SggCEDURE TBox. Drauf rame;

$IFC fTrace}BP(10); { SENDC)
enNormal ;

Pentode{ Pat ;
FrameLRect(SEL shapeLRect)
END: {SIFC fTrace]EP; ($£N

{This procedure paints the handie rectangles for high! ight ing; user of this method must
set up the pen pattern and mode before call ing}

PROCEDURE TBox. PaintHandl es;

VAR hiRect,
shapeLRect: LRect;
dh, dv: LONGINT;

Eggtl:EDURE HoveHandl eAndPaint{ hOffset, vOffset: LONGINT);

OffsetLRect(hLRect, hOffset, vOffset)
END: PaintLRect(hLRect);

BEGIN
gxrc ance)BP(m {SENDC]
t LRect(hLRect, 2);
shapoLRnct HL SELF shapeLRect
UlTHagga!peLR.ct Do

dh := right - un
dv := bottom - to
MoveHand] .andP-int(left top): {drau top l1eft handle)

END;
HoveHand] eAndPa 1nzdh O; lthen top right}

gfnme with reversible ink}

MoveHand! eAndPa int (0, dv then bottom right}
MoveHand] sAndPa int(-dh_ 0); finally bottom left}
END {$IFC fTrace)EP; {)

NDC

END;

_ [N]

21 Rug 1984 12:36:41 USBOXER. TEXT Page

NN RN NN RN AR RN RRRNRANDAINRNINR RN RONNNRNRNRNDNONMRNRNNONRDONN)

> >

b 2

A

D>

>

>

METHODS OF TBoxView;

FUNCTION TBoxView. CREATE(obJegt uTOb;;ecl: itsHeap: THeap; {tsPanel: TPanel; itsExtent: LRect)
oxView;

SIFC ance&BP(llé; { SENDC}
F object =

object : = NcuOb?uct(itsHeap, THISCLASS):
SELF ": = TBoxView(itsPanel. NewVieu(ob ject, itsExtent, TPrintManager. CREATE(NIL, itsHeap),

stdtargins, TRUE));
ND: {SIFC fTrace)EP; { SENDC}

{This returns the box containing a certain point or NIL {f point is not within a box}
FUNCTION TBoxView. BoxWith(LPt: LPoint): TBox;
VAR box: TBox;

: TListScanner

GIN
{$1FC ﬂnce%BP(ll) {$ENDC)
boxthh N
= SELF. boxLxst Scanner,
UHILE s. Scan{ box)
IF L:t lnLR:ct(L:t box. shapeLRect} THEN
.= DOX,
(slrc fTrace}EP; { SENDC)

{This draus the] ist of boxes]
PROCEDURE TBoxView. Draw;
VAR box: TBox;
bec s- TListScanner.

{SIFC fTrace}BP{10); { $ENDC}
SELF. boxL ist. Scanner;
lHILE s Scan(box) DO

x. Dra
\D. {s:rc m—.cajsp; { SENDC)

;ROCEDURE TBoxView. Inval Box{ inval LRect: LRect);

SSIFC fTrace}BP(10): { SENDC]
nsetLRect(inval LRect, -3, -2);

SELF. panel. Inval Lﬁect(inval LRect)
END: {SIFC ﬂnc')EP { $ENDC)

gThis determines uwhich type of selection to create}
PROCEDURE TBoxVieu. MousePress(mouselPt: LPoint);
VAR aSelection: TSelection;

anel: TPanel;

oX: TBox;

BEG
{sxrc fTrace BP(n? { SENDC)
panel : = SELF. pane
gane} Highl 1ght(panel select jon, hOntoON) {Tum off the old highl ight ing}
] oxWith{ mouselPt); {Find the box the user cl icked on}

IF box = NIL THEN
{Create an instance of TCreateBoxSelect jon}
aSelection : = panel. select ion. F reedAndRepl acedBy(
ELSE TCreateBoxSel ect ion. CREATE(NIL, SELF. heap, SELF, mouselPt))

{Create an instance of TBoxSe!ect ion}
aSelect fon : = panel. sel ect ion. F reedAndRepl aceng
TBoxSel ect jon. CREATE(NIL, SELF. heap, SELF, box, boxSelectionKind, mouselLPt)):

panel. Highl ight(panel. sel ect ion, hOffToOn): {Turm on the highl ight ing for the neuly selected box}
sel] f. panel . sel ect ion. HarkChanged; fﬁllou the document to be saved so that any changes made}
can become permanent}
ND{S]FC fTrace}EP, { SENDC)

PROCEDURE TBoxView. InitBoxList (itsHeap: THeap):
VﬁR boxList TList;

[SIFC fTﬂce;BP(ll) $ENDC)

boxList := TList, CREATE(NIL, itsHeap, D0);
SELF. boxL ist : = boxList;

5 {$IFC fTrace}EP; { SENDC}

3

;IEJNCTION TBoxVieuw. NoSel ect ion. TSel ect ion;

IN

{SIFC fTrace}BP(11}); gsENDC

NoSelect ion : = TBoxSelect ion. CREATE(NIL, SELF.Heap, SELF, NIL, nothingKind, zeroLPt):
"o {$IFC fTrace}EP, { SENDC}

END;

METHODS OF TBoxSel ect fon;

FUNCTION TBoxSelect fon. CREATE(ob ject: TObject; itsHeap: THeap;, itsView: TView; itsBox: TBox;
itsKind: INTEGER, itsAnchoriPt: LPoint): TBoxSelect ion;

SIFC fTrace BP(12.& { $ENDC}
F ob ject =
object : = NcuObgectglitanp. THISCLASSL)
SELF :- TBoxSel ect ion{ TSel ect ion. CREATE(ob ject, itsHsap, itsView, itsKind, itsAnchoriPt)});

F.box . := jtsBo
{SlFC fTrace}EP; {SENDC}

i DMy ADO% 140041 USBOXER. TEXT Page 4
195 -0 A END;
196 -~
197 -- {This draus the handles on the selected box} :
%gg a- 2 EEOCEDURE TBoxSelect ion. Highl ight(highTransit: THighTransit);
200 -- $IFC fTrace)BP(11); (‘SENDc]
201 -- F SELF. kind <> nothingKind THEN
202 1- BEGIN
203 -~ thePad. SetPenToHigh! ight(highTrans it); set the drauwing mode according to desired highl ightin
%gg -I gﬁbF box. PaintHandl es; drau the handles on the box}
206 -- {$1FC fTrace)EP; { SENDC}
207 -0 A ND;
208 --
209 -~
210 -- {This is called when the user moves the mouse after pressing the button}
211 -- A PROCEDURE TBoxSel ect ion. Mousetove{ mouselLPt: LPoint);
212 -- VAR diffLPt: LPoint;
213 -~ boxView: TBoxView;
214 -- shapeLRect: LRect;
215 0- A GIN
216 -~ {$IFC ﬂncc;BP(ll) gSENDC]
%%'é’ - boxView : = TBoxVieuw(SELF. view);
219 -- {Hou far did mouse move?)
ggg - LPmmusLPt(museLPt SELF. currlPt, diffLPt);
222 -- {Move it if delta is nonzero)
223 -- IF NOT EqualLPt(diffLPt, zeroLPt) THEN
224 1- BEGIN
ggg - SELF. currlPt : = mouselPt;
227 -~ shapelRect ;= SELF. box. shapelRect;
228 -~ {Compute old and neu positions of box}
229 -- boxView. Inval Box(shapeLRect): {inval idate old box (causes it to be erased)}
230 -- OffsetLRect(shapelLRect, diffLPt. h, diffLPt
gg% - boxVieuw. Inval Box(shapeLRect) { inval idate new box (causes it to be drauwn) }
233 -- SELF. box. shapeLRect : = shapelRect;
234 -1 END;
235 -- {S$IFC fTrace)EP; { SENDC)
236 -0 A ND;
237 --
238 ~- END;
239 -~
240 --
g:g -- METHODS OF TCreateBoxSelect ion;
243 -- A FUNCTION TCreateBoxSelect ion. CREATE{ ob ject: TObject; {itsHeap: THeap: itsVieu. TView;
244 -~ itsAnchoriPt: LPoint): TCreateBoxSel ect ion;
245 -- VAR box: TBox;
246 0- A BEGIN
247 -- gsxrc ﬁncoa‘BP(u%- { SENDC)
248 -~ F object =
249 -~ obj : = NeuwOb ject(itsHeap, THISCLASS):
250 -- SELF : = TCrntcBox el ect ion(TSel ect jon. CREATE(object itsHeap, itsVieuw, createBoxSelectionKind,
251 -~ nshnchorLPt))
252 ~-- box : = TBox. CREATE(NIL SELF. heap);
253 -~ SELF. box : =
254 -~ {SIFC ﬂnco)EP { $ENDC)
%2 -0 A ND;
257 -~ {This is called when the user moves the mouse sfter pressing the button}
258 -~ A PROCEDURE TCreateBoxSel ect fon. ﬂouseﬂove(nouseLPt LPoint);
259 -~ VAR maxBoxlLRect: LRect;
260 -- diffLPt: LPoint
261 -- boxView: TBoxVieu;
262 -~ box: TBox;
263 -~
264 -- B PROCEDURE DrawTheF rame;
265 0- B BEGIN
266 -- box. DravF rame;
267 -0 B 3
268 --
269 C- A GIN
270 -- {SIFC fTrace}BP(11); { SENDC]
271 -~ boxView := T oxViw(ELF. vieuw);
g;g - box : = SELF. box;
274 -~ { ln Boxer it is possible to drav a box greater than allouwed by a 16 bit rectangle. These three
275 -- 1 ines force the rectangle to within 16 bits.)
276 -- {$H-) WITH SELF. anchorLPt DO
277 -- SetLRect(maxBoxLRect, he10-MAXINT, ve10-MAXINT, h+MAXINT-10, veMAXINT-10);
g;lg -- {$H+] LRectHavelPt(maxBoxLRect, mouselPt):
280 -~ LPtMinusLPt(mouselLPt, SELF. currLPt diffLPt);
281 -~ IF NOT Equal LPt(diffLPt, zerolLPt) T
282 1- BEG
ggi - SELF currLPt := mouseLPt;
285 -- boxVisu. panel. OnAl] PadsDo(DrauThef rame);
286 -~ BITH box DO
287 2- BEGIN
288 -- shapeLRect. topLeft : = SELF. anchorlPt;
289 -- shapelLRect. botRight : = mouselLPt;
gg -2 END;
292 -- {$H-} RectifyLRect{box. shapeLRect); {$H+)
’gi -; boxViou pane!] . OnAl 1 PadsDo(DrauThef rame);
295 -- {sxrc nncc)EP { $ENDC}
296 -0 A
297 --
298 -~
299 -- A PROCEDURE TCreateBoxSel ect ion. HouseRel sase;
300 -~ VAR thisBox: TBox;
301 -- boxView: TBoxVieu;
302 -- draunlRect: LRect;
303 -~ aSelect jon: TSelect jon;
304 -- panel: TPanel ; y

/NIRRT RN RRIAIRN R ANIA AN N RN AIRIRI A A R RIRIRIAINI A RI A A AT R AIRI AR A R A AT A D A AI RS A N R A R R RS I R NI R RS A D R D A R R RN R NI R R A N N R A RS R RN R RS R R R A D DRI NI R N I N \

21 Rug 1884 12:36:41 USBOXER. TEXT Page 5
-
2 305 --
2 306 -- B PROCEDURE DrawTheF rame;
2 307 0-8B BEGIN
2 308 ~-- thisBox. Drauf rame;
2 309 -08B ND;
2 310 --
2 311 0-A BEGIN
g ;g -- {$SIFC fTrace}BP(11); [SENDC}
2 314 -- boxView : = TBoxView(SELF. view);
2 315 -- panel := boxVieuw. panel;
2 316 -- thisBox := SELF. box;
2 317 -- panel . OnAl 1 PadsDo(DrawThef rame);
g ;ig -- draunLRect : = thisBox. shapelLRect;
2 320 -- { Independant of whether we threu the box away or not we must create an instance of TBoxSelection
2 321 -- to repiace the now useless instance of TCreateBoxSelection using the kind set above. }
2 322 -- aSelect fon : = SELF. FreedAndRepl aceb 2
2 323 -- TBoxSel ect ion. CREATE(NIL, SELF.heap, boxView, thisBox, boxSelectionKind,
g ggg - drawnLRect. topleft));
g ggg -- boxV jew. Inval Box{ draunLRect);
2 328 -- If the box is not big enough then throu it auvay, otheruise put it in the 1ist}
g ;gg I- F (g&u}:RLRect. right - draunlLRect.left <(=4) OR (draunLRect. bottom - drawnLRect. top <=4} THEN
2 331 -- aSelect jon. kind : = nothingKind,
2 332 -- thisBox. Free;
2 333 -1 END
2 334 -- ELSE
2 335 -- boxView. boxL ist. InsLast(thisBox);
2 336 -- {$IFC fTrace)EP; { SENDC}
2 337 -0 END;
2 338 --
2 339 -- END;
2 340 --
2 341 --
% g:g -- METHODS OF TBoxProcess;
2 344 -- A FUNCTION TBoxProcess. CREATE: TBoxProcess;
2 345 0- A BEGIN
2 346 -- §SIFC ﬂnce;BP(11); ;SENDCJ
2 347 -- ELF : = TBoxProcess(1Process. CREATE(NeuOb ject(mainHeap, THISCLASS), mainHeap));
2 348 -- {SIFC fTrace]EP; { SENDC}
2 343 -0 A END; ’ :
2 1
g ggg E- : Egg%lw TBoxProcess. NeuDocManager{ vol umePrefix: TFilePath; openAsTool: BOOLEAN): TDocHanager;
2 354 -- {SIFC nnce}EP(llé; { $ENDC)
2 355 -- NewDocHanager : = TBoxDocHanager. CREATE(NIL, mainHeap, volumePrefix);
2 356 -- {SIFC fTrace)EP; { SENDC}
2 357 -0 A END;
2 358 --
2 358 -- END;
2 360 --
2 361 -~
2 362 -~
g ;22 -- METHODS OF TBoxDocManager,
2 365 -- A FUNCTION TBoxDocManager. CREATE(ob ject: TObject: itsHeap: THeap, itsPathPrefix: TFilePath)
2 366 -~ : TBoxDocHanager;
2 367 0- GIN
2 368 -- PIFC nnchBP(né; { SENDC}
2 369 -- F object = NIL THEN
2 370 -~ ob ject : = NeuwOb ject(itsHeap, THISCLASS);
2 371 -- SELF = TBoxDocManager{ TDocHanager. CREATE{ ob ject, itsHeap, itsPathPrefix});
2 372 -- {$IFC fTrace)EP; { SENDC
2 373 -0 A END; :
2 374 --
2 375 --
2 376 -~ A FUNCTION TBoxDocHanager. Newl indouw{ heap: THeap; wmgrlD: TWindowlD): TWindouw;
2 3770-4A BEGIN
2 378 ~- $IFC fTrace]BP(11): {SENDCE
2 379 -- wil indow : = TBoxWindow. CREATE(NIL, heap, wmgrlD);
2 380 -~ {SIFC fTrace)EP; { SENDC}
2 381 -0 A END;
2 382 --
2 383 -- END;
2 384 --
2 385 --
2 386 -~
% ;gg -- HMETHODS OF TBoxWindouw;
% ggg a-) Fggfi;lbﬂ TBoxW indow. CREATE{ ob ject: TObject; itsHeap: THeap, ftsumgriD: TWindowID): TBoxWindow;
- A
2 391 -- sSIFC fTrace BP(la&; { $ENDC)
2 392 -- F object = NIL THEN
2 393 -- ob ject : = NewOb ject(itsHeap, THISCLASS);
2 394 -- SELF ;= TBoxWindow(TWindow. CREATE(ob ject, itsHeap, itsumgriD, TRUE)):
2 395 -- {SIFC fTrace)EP; { SENDC)
2 396 -0 A END;
2 397 --
2 398 --
2 399 -- A PROCEDURE TBoxt indou. Bl ankStat ionery:
2 400 -- VAR vieuwlLRect: LRect;
2 401 -- anel : TPanel;
2 402 -- oxVieuw: TBoxVieu;
2 403 -- aSel ect jon: TSel ect jon;
% 28; b BEGI?:XFC T 1BP(10); { SENDC}
- race ;

2 :05 - panel : = TPaml.CAEgTE(NIL. SELF. Heap, SELF, 0, 0, [aScroll, aSplit], [aScroll, aSplit]);
2 407 --
2 408 -- SetiRect(viewlLRect, 0, 0, 5000, 3000);
2 409 -- boxVieu : = TBoxView. CREATE(NIL, SELF. Heap, panel, vieuLRect);
% :10 -- boxView. InitBoxL ist(SELF. Heap);

11 --
2 412 -- {$IFC fTrace)EP; { SENDC}
2 413 -D A END;
E 414 --

21 Aug 1884 12:36:41 USBOXER. TEXT Page 6

Ve
2 415 -- END; \
2 416 --.

1 137 --

1 138 -- END.

\ _/

21 Rug 1884 12:36:41 USBOXER. TEXT Page 7
(R
1. uSboxer. TEXT
2. USBoxer2. text
«-B-
BlankStat jonery 130°(1) 399¢{ 2
box 76 { 1 93 (1) 102*(2) 108 (2) 109 (2) 110 { 2) 116+(2) 121 (2) 122 { 2; 139+(2
145={ 2) 147 (2) 154 (2) 193=(2) 204 (2) 227 (2) 233 (2) 245+ 2) 252=(2 2ss-é 23
. 283 (2) 262°(2) 266 (2) 272=(2) 272 (2} 286 { 2) 292 { 2) 316 (2
boxL ist §5 (1) 107 (2) 120 (2) 164~(2) 167=(2) 168=(2) 168 { 2) 335 (2
boxSelect ionKind 23°(1) 154 (2) 323 (2 .
BoxWith 61°(1) 101+(2) 145 (2
-C-
color 36°(1 12«(2 27 { 2;
colorBl ack 21+(1 28 (1 32 (2
colorDkGray 20 1 31 (2
col orGray 19%(1 12 (2 30 (2)
coloritGray 18+(1 29 (2
colorhite 17+(1 28 (1 28 (2
CREATE 39+(1 s8+(1 79°(1 96+(1) 108 (1) 117 (1) 127 (1 S 2 88*(2 94 (2
150 { 2) 154 (2) 167 (2) 176 { 2) 185-(2} 191 (2) 243+(2) 250 (2) 252 (2} 323 (2
344 2? 347 (2) 355 (2) 365°(2) 371 (2) 379 (2) 383<(2) 394 (2) 406 (2} 409 (2
createBoxSelecti 24°(1) 250 (2
-D..
Draw 68'2 1} 57'5 13 18'5 2; 115'2 23 122 (2)
Drauwf rame 45+ 1 44+(2) 266 { 2) 308 (2
-H~
Highl ight 83°(1) 144 (2) 156 (2) 198+(2)
-1-
InitBoxL ist 68‘£ 1; 163’2 2; 410 2 2;
Inval Box 62°(1) 126°(2) 229 (2) 231 (2) 326 (2)
-L-
LRect 35 (1) 58 (2 214(2) 259 (2) 302(2 400 (2)
H
MouseMove 86-(1 100+(1 211-(2) 258-(2)
MousePress 64+ 1) 136°(2
HouseRel ease 101+ 1) 299+(2
=N~
NewDocHanager 109+{ 1) 352<(2) 355« 2
Neull indow 119+(1) 376<(2} 379=(2
NoSel ect ion 69°(1) 173+(2) 176=(2
-P-
PaintHandl es 42°(1) 56°(2) 204 (2)
. SUXCkDrau 12+(1)
-S-
shapelRect 38 (1 11e 24 { 2 37 { 2; 38 g 23 S0 { 2} SB'S 2; 70-5 23 70 5 2; 71 % 23
108 (2) 214 2) 227=(2) 227 (2) 229 (2) 230 (2) 231 (2) 233=(2) 233 (2) 288 (2
289 (2) 292 (2) 318 (2 .
-T=
TBox 32¢(1 39(1 61 (1 76 (1 93 (1 3+(2) 5 (2 101(2 102(2) 116 (2)
139 (2) 245 (2) 282 (. 2) 262 (2) 300 (2 :
TBoxDocManager 114+(1) 118 (1) 355 (2) 363+(2) 366 (2) 371 (2)
TBoxProcess 105°{ 1) 108 { 1) 342(2) 344 (2) 347 (2
TBoxSel ect ion 73+ 1 80 (1) 154 { 2) 176 { 2} 183-(2) 186 2 2; 181 g 23 323 E 2;
TBoxView 52¢(1 S9(1 86(2 89 (2 94 (2) 213 (2) 217 (2) 261 (2) 271 (2) 301 (2)
314 (2) 402 (2) 409 (2
TBoxUW indow 124°(1) 127 (1) 379 { 2) 387-(2) 389 (2) 3% (2)
TColor 28°(1 36 {1
TCreateBoxSelect 90*(1 97 (1) 150 (2 241'2 23 264 (2) 250 (2)
TDocManager 10(1) 114 (1) 352 (2) 371 (2
TList §s (1) 164 (2) 167 (2
TOb ject 32(1
TProcess 105 (1) 347 2 23
;SQlection gg i 73 90 (1) 137 (2) 173 (2) 191 (2) 250 (2) 303 (2) 403 (2)
ieu .
TWindow 119 (1) 124 (1) 376 (2) 394 (2)
-U-
USBoxer 1*(1
UABC 14° 1%
UDraw 13~(1
UFont 9(1
UOb ject 6°(1
*es End Xref: 48 id's 253 references [408600 bytes /4951 id s/41173 refs]
\ J

[Segment 9]

Recoloring. Duplicating. and Clear
- All

Commands with Undo

Purpose of this segment:
1) To introduce commands.
2) To present the four phases of commands: do. undo. redo. commit.
3) To discuss command generation and command procesging.

4) To be able to recolor and duplicate a selected box; and undo these
-operations. To be able to clear al boxes in a simple, but undoable fashion..

How to use this segment:

This is the ninth segment of the self—paced introduction to the ToolKit. This
segment follows the “Creating Boxes™ segment; and precedes the segment. “Filters”.

The next three segments are devoted to responding to events and creating fully
undoable commands. This segment considers only the simplest implementation of
undo. This stage of Boxer, bBoxer, is able to undo selected menu events. The
remaining two segments provide the tools to make nearly any operation undoable.

INTRODUCTION TO COMMANDS

With few exceptions. all applications allow users to make changes to a
document. The ToolKit supplies a special object to manage such changes. This
object is known as a command .

: You are already familiar with such commands as “Cut®, “Paste®, and
“Duplicate”. You select some data to be changed, then indicate the operation to
perform upon it. For example, you cutselected portions of a LisaDraw document to

the clipboard; you ap/icate a selected document on the Desktop.)

what do commands do?
Lisa commands are used in many different ways. Lisa commands may:
— Change a selected portion of a document. (eq. cut. paste. type style)

— Change the view in a panel or window. (eg. cfrono/ogical, preview pages)

— Use the entire document as data, without changing it. (eq. save and put
away, print. sexch)

— Bring up a dialog box, especially when more information is required to
make a change. (eq. farmat for printer)

— Display orhide a control. (eg. A/iae margin ruler, show document size)
— Set a control for subsequent changes. (eq. scale of ruler. set tab)
— Make a new selection. (eq. select a// of document)

Normally, a command needs a selection to operate upon. But a command,
such as "Save and Put Away” or "Print™, may, instead, operate upon the entire
window or document, ignoring the current selection.

) Both types of commands are legitimate. Both have similar beginnings (and
ends).

birth of a command

Commands are born from events. As mouse events give rise to selections, so
commands arise from menu events. Certain keyboard events (eg. apple—key
combinations) also appear to create commands, but these are actually converted to .
menu events 4y the Menu NMeanager before generating any commands.

Application users generate the menu events that precede commands. When the
user clicks on the menu bar and releases on a menu item, a menu event is born. This
menu event goes immediately to the current selection, which normally generates a
command. /f g selection creates the command, the cormmand is given the currently
selected obect to operate ypon.

doing a command

A command changes a document by operating upon the selected object.
Typically, the change is made to the view. The window updates the display of the
view to reflect the change before processing the next event.

A command may also operate upon the entire document or window. This is
particularly applicable when there is no selected object.

undoing a command

To undo an operation performed by a command, the simplest method is to
save in the command object the document data that will be changed. You simply
undo the command by restoring the document's state from the data saved in the
command.

The mechanism is similar to making change for a dollar. Suppose that you,
playing the role of the command, have a dollar. Your friend, playing the role of the
document, displays some change. In response to a friendly request, you swap some of
his change for your dollar. Now your friend displays a dollar in place of the change.
But, for reasons unknown, your friend desires to undo the transaction. Since you

wisely retained his change, you happily restore your friend to his previous currency
state.

That simple technique of implementing undo is sufficient for this stage of
Boxer. But, as the amount of information needed to restore a document to its
pre—changed state grows, more sophisticated undo strategies will be needed. 7/4ese
strategies are discussed in the subseguent segment, “Filters”.

Whenever possible, all commands should be undoable. This is an extremely
useful application feature. Especially important is the ability to restore the
selection to what it was before the command. That way the user can proceed from
where he or she left off with minimum delay. To this end, the ToolKit provides a
simple, but power ful structure for doing and undoing commands.

MENU EVENTS

Menu events are generated by the Menu Manager in response to mouse presses
in the menu bar.

The menu closest to the mouse press gets ouw//ed—down The pulled—down
renu displays a list of menu items. Releasing the mouse over one of these items .
generates a menu event with an associated item number. This item number is used
to identify the event to the application.

If the menu event's number is legitimate and an object is selected, a command
may be generated. But if the current selection is a null selection (kind equals
nothingKind), a command may not be able to be performed. The menu event may
generate a warning instead. Warnings are displayed in alert boxes.

Understandably, from the user's point of view, a menu item should be disabled
if it cannot be performed. The ToolKit supports this reasoning.

Before a menu is displayed the selection can tell the Generic Application
which menu items it will enable and which it will not. 7Ais /s the recommended
proceadure in all applications. If not enabled, the menu item is grayed. Grayed
menu rtems cannot generate events.

COMMAND CONCEPTS

The following concepts are essential to successful implementation of
commands: command phase, phrase file, command number, revelation, image. and
fiftering

command phase

There are four phases of commands. These are: goFN3IsE undoFhase
redoPhase, and commit The diagram: Command FPhases illustrates their
interrelationships.

does cormnand initially

doPhase
undo event
(ot undo)
redo event
undoPhase redoPhase
undo event

the menu item switches from “undo® to redo®
depending upon the cormrnend state

The ToolKit defines the following command phase constants:
TCndPhase = (doPhase, undoPhase, redoPhase):

Commands are performed during those three phases only. The comm/tphase
terminates the command.

The dbFhase is the initial command phase. It is entered immediately after
the command is created. The command is initially performed during this phase.

The wndoPhase undoes the command. It is entered when the user initiates an
undo menu event during the dbFhaseor the redoFhase When the command is
performed during the wrdbFhase the command’s previous changes are undone.

The redoFhase undoes an undo. It is entered when the user initiates a redo
menu event during the wraoFhase. When the command. is per formed during this
phase, the command's initial changes are reinstated.

The ToolKit allows only single—level undo. Only the most recently performed
command may be undone or redone. When a command is committed it is
completed, and can no longer be undone or redone. Redo and undo events switch the
command phase between wrdofFhase and redoFhase.

Most events other than redo or undo terminate the current command. If the
current command phase is doFhase or redoFhase the command enters the commit
phase. The commit fixes the command's changes into the document, then deallocates
(or frees) the command. [f the current command phase is wdbFPhase the command -
is simply deallocated. ‘

Some events do not terminate a command, e.g., scroiling, splitting, resizihg,
and selecting. They do not affect the command phase.

phrase file

The phrase file contains an application’s menus, alerts, text, and name on the
Desktop. Each application has a phrase file associated with it. Phrase files are
covered in a separate document. 7he phrase file is also known as an alert and meny
file.

command number

The command number is typically the number of the menu item that initiates
the command. Menu item numbers are defined both in the application phrase file
and in the application code. This enables the Menu Manager to communicate menu
events to the application. A menu item's number uniquely distinguishes it from
other items in the phrase file.

reveiation

Revelation is the amount to reveal the current selection before performing
the current phase of the command.

It is often desirable to scroll the whole selection into view to observe the
effects of a command. Sometimes (clearing the screen, for example) you don't care.
And other times only part of the selectnon 8'ecotormg a box, for example) is needed
to convey the change.

The ToolKit supplies the following revelation constants:
TRevelation = (revealNone, revealSome, YevealAll):
Revelation tells the Generic Application how much to scroll to reveal the current

selection's bound LRect. Scrolling is done in a pane selected by the Generic
Application.

Reveal/None per forms no scrolling. Aevea/Some scrolls 1o reveal at least a
30x20 pixel portion of the bound LRect. Aewvea/d//scrolls 1o reveal the maximum
possible portion of the selection‘s bound LRect.

imaage

An image is an area within a view. The command's image defines the portion
of the view that the command can affect. Typically.the image will be the same as
the view. Images have two fields, one of which is the view in which it lies. Images
are of the class Tlmage. 7View /s a subclass of Timage.

TInage = SUBCLASS OF TObject

{fields) ;
extentlRect: LRect; {the bounds of the image}
view: Tview; {the view containing the image (or SELF))

_ . filtering :
Filtering is a way to make a change to a document without affecting the
document's data. A F//tered commandchanges the display of the document, but not
the document itself. Filtering is like editing an overhead slide by making changes to

a sheet of plastic covering the slide. The slide's display is changed without the slide
itself being altered.

Only when a filtered command is committed are its effects made permanent
in the document. :

THE STRUCTURE OF COMMANDS

Commands are descended from the class, TCommand. They have the
foliowing structure:

TCommand = SUBCLASS OF TObject

{fielas)
CAdNURDET : TCmaNumber: {the comnand number of the associated menu item)
inage: TInage; {the inage or view affecting filtering}
undoable: BOOLEAN; {TRUE 1ff the command iS undosble}

© doing: BOOLEAN; {TRUE iff command is in doPhase or redoPhase}
revelation: TRevelation; {how much of the selection to reveal before performing

the comnand)
unHiliteBefore: ARRAY[TCmdPhase] OF BOOLEAN {if TRUE, ToolKit unhighlights all

selections before performing command)
hilitepafter: ARRAY[TChdPhase] OF DOOLEAN {if TRUE, ToolKit highlights all
selections after performing command)

Some commands, such as "Show Page Ruler”, can be made not undoable.
Typically, in such cases, a compiementing menu item, such as "Hide Ruler®, is
provided in lieu of undoability.

Some of the relevant methods of commands are listed below:

{creation}

FUNCTION {TCommand.)} CREATE(object: TObject; heap: THeap; itsCmdNumber: TCAdNumber:
1tsInage: TImage; iWLe: BOOLEAN; itsRevelation: TRevelation)
. TCommand; St

{destruction)

PROCEDURE {TCommand. } Free OVERRIDE: {frees temporary fields if 1ast phase was undoPhase)}

{command execution}

PROCEDURE {TCommand.} Commit; DEFAULT: {commits the commend (default is & no-op))

PROCEOURE (TCommand. } Perform(cadPhase: TCmdPhase): DEFAULT: (performs the command in the

given phase (default is a no-op))

{filtering} : ‘ g
{those methods are covered in the “Filtering” segment}

In this stage of Boxer, we only need to be concerned with CREATE, Free and
Perform.

COMMAND GENERATION

The ToolKit's raechanism for generating and processing commands is simple
and smart. The Generic Application takes care of everything that you don't. You
need to only handle commands specific to your data. The Generic Application handles
the rest. For example, in Boxer, you might handle just recoloring and duplicating
boxes, while leaving such things as printing or saving the document to the Generic
Application.

. Your code gets the first opportunity to generate a command in response to a
menu event. Your application’s selection gets to perform the initial honors.

role of the selection

From the moment the user clicks on the menu bar, the menu event is destined
for the selection. Two methods of your selection are particularly important —
CanDoCommand and NewCommand. The default declarations of those methods are
listed below.

FUNCTION {TSelectlon } canoocm(camm: TCadNumber; VAR checkIt: DOOLEAN)
- DOOLEAN; DEFAULT; {indicates command availability}
ﬂ.llcTION {Tselection. } NewCoNRand (CRONURDET - TCRONUADEY). TCommand; OEFAULT;
{returns the.created command}

Before the target menu is displayed, the selection is called upon to indicate
which menu items are available to the user. The flow of control below includes the
method CanDoCommand. This method tells the Generic Application which items
are enabled and which are not at the moment of the menu click.

window.MenuEventAt {TWindow.}
window.SetUpMenus {TWi_r;,dqw.}
menuBar .BuildCmdName {TMenuBar.}

selection.CanDoCommand {TBoxSelection.}

Graying the items that the selection says are not enabled, the window and the menu
bar set up the menu.

As the user moves the mouse over the menu, enabled items under the mouse
are highlighted. it the mouse is released over an enabled item, the menu item
number is returned. Otherwise zero is returned.

From a nonzero menu item number the selection generates the command. The
method NewCommand creates the command and returns it to the window. This is
indicated in the flow of control below.

selection.CanDoCommand {TBoxSelection.}

menuBar.DownAt , {TMenuBar.} returns menu itern #
window.DoCommand {TWindow.}
selection.NewCommand {TBoxSelection.} returns carmmand

which class command?

The NewCommand method creates commands in response to menu events.
There are four choices of how to process a menu event. These are:

1) Create and return an undoable command.

You must have defined a subclass of TCommand (for example,
TRecolorCmd) for the particular command. The created command is an
instance of that subclass. The undoable parameter must be set to true.
The Perform method of the command will be called by the Generic
Application after committing the last active command.

2) Return NIL, rather than a command object for events that are not
commands.

View— altermg events such as “hide ruler” or “select all of document” do
not need to be processed as commands. Returning NIL for a menu event

preserves the last active command. |f undoable, it can still be undone or
redone.

Please read the section “"Guidelines for Converting Menu Events Into
Commoanas ™ for more insight ypon this.

3) Pass an unrecognized menu item to the Generic Application for processing.
4) Create and return a command that cannot be undone.

Typically you define such a command as an instance of the ToolKit class,
TCommand, with the undoable parameter set to false. Before returning
you call a method of your creation to execute the command. You may
need to commit the last command before the body of your command is
executed. Upon return from NewCommand the last active command is
committed, if you have not already committed it yourself.

This is done by calling SUPERSELF.NewCommand.

Note: Fach type of undoable cormmmand should be an instance of a unigue subcl/ass of
TCommand, since each type makes distinct changes to the docurnent. The Perform
method of each ¢/ass should reflect the unique way It's instances do and undo changes
lo & document’s data.

‘standard commands

While the selection directly generates commands specific to the application,
the Generic Application generates commands standard to all applications (eq. Save
and Put Away and Frint).

The selection calls the Generic Application to handle menu item numbers it
does not recognize. As the flow of control below shows, the selection's
NewCommand method calls SUPERSELF.NewCommand to invoke the Generic
Application. '

- selection.NewCommand {TBoxSelection.}
SUPERSELF.NewCommand {TSelection.} Generic Agp/ication
window.NewCommand {TBoxWindow.}

SUPERSELF.NewCommand {TWindow.} Generic App/ication

The first thing that TSelection.NewCommand does is give the selection’s
co—selection a chance to generate the command. 7he co—selection /s & specis/
selection create by a Too/K7t building block to handle events specrfic to the builoing
block, For example. @ co—selection created by UText (the text building block) would
handle menu events such as formatting text or changing typestyles. The
co—selection /s assigned to the anplication selection’s cosSelection field.

If the co—selection does not recognize the menu event, the Generic
Application passes the event to the application's window. The window is typically
used to handle commands that affect a whole document (such as clear all boxes),
rather than a single selected object.

Finally, any menu items not handled by the window are passed back to the
Generic Application. It is at this point that a Ar/ntcommand, for example, is
generated. ‘

summary of command generatno

1. The selection gets the menu item number. The selection handles
application specific commands affecting the selected object.

The selection calls the Generic Application to handle any other commands.

2. The Generic Application passes the menu item number to the selection's
co—selection. The co—selection handles building block specific commands
affecting the (co—selection’s) selected objeet.

The Generic Application calls the window to handle what the co—selection
does not.

J. The window handles application specific commands‘ affecting the whole
document.

The window calls the Generic Application to handle any other commands.
4. The Gereric Application handles standard commands.

If the Generic Application does not recognize the menu item number it
alerts the user.

/t puts up a "No Selection” alert for null selections;
otherwise It puts yp an “Unknown Command” alert.

Note: The flow of contro/ app/y/'ng to NewCommand applies to CanbDoCommand
as well.

THE ROLE OF THE WINDOW

The Generic Application makes the window the owner of the generated
command. Per the Lisa User Interface conventions only one command is active at a
time.

The following partial interface lists the fields and methods of TWindow that
apply specifically to commands.
Téindow = SUBCLASS OF TObject
{fields applying to commands)
lastCnd: TCommand; {the last active (uncommitted) command}

{methods applying to commands}
FUNCTION {TWindow. YCanDoComnand(cmdNumber: TCmdNumber: VAR check{t BOOLEAN)

. DOOLEAN; DEFAULT; {calls currentWindow.CanDoStdCommand}
FUNCTION {Twindou. }CanDOStaCoMMaNd{CAdNURDET : Tmr: VAR checkIt. BOOLEAN)

The Flow of User Events

(menu events)

Widow (process]

Manager
[window]

MenuEventAt
L menuBar J
go next
DownAt
returns the menu ' :
item number window
DoCommand

| ISelection]% [selection

l NewCommand NewCommand

7f item not fournd

[window J%&[TWindow J

no

NewCommand NewCommand

: DOOLEAN; DEFAULT: {standard command availability}
PROCEDURE {TWindow.)CommitLast; DEFAULT: (commits and frees the last active comand)
PROCEDURE {Twindow. }DoConnand(cadNunber: TCmONURDET): DEFAULT: {creates and performs the
comnand associated with the given menu item number}
PROCEDURE {Tuindow. HienutventAt(mousePt: Point). DEFAULY; {identifies the menu item number
' and calls currentWindow. DoCommand}
FUNCTION {TWindow. HNewComnand(cadiumber: TCadNumber): TCommand; OEFAULT;
{calls currentiWindow. NewStdCommand)
FUNCTION {Twindow. }NeuStdCommand(chaNuaber: TCmdNumber): TCommand: DEFAULT:
{returns 3 created command)}
PROCEDURE {Twindow. }PerfornComnand(newComnand: TCommand): {COMMitS 1ast command, then performs
the new command} &
PROCEDURE {TWindow. }PerformLast{cmdPhase: TCadPhase): {perforas the current command in the
given command phase)
PROCEDURE {TWindow. }SaveComnand(comnand: TCommand): {saves the command as SELF.lastCmd)
PROCEDURE {TWindom. }SetUpMenus; {sets up menus before allowing user to select a meru item}
PROCEDURE {TWindow. YundoLast: {undoes or redoes the 1ast command}

Note that a tield of the window. lastCmd, keeps track of the /ast act/‘ve_’ command.

The window is primarily responsible for handling undo and redo events, and
committing commands.

As you can see from both the diagram: 7pe Flow of User Events (menu events)
and the following section, the window plays a major role in processing cornmands.

PROCESSING COMMANDS

The selection creates a command. The window processes it. The important
role that the window plays during the various command phases is conveyed by the

following flow of control diagrams.

the doPhase (command creation)

The doPhase creates a new command, and commits the last active command
before per forming the new command. The flow of control in 6Boxer is as follows:

process.ObeyTheEvent
window.MenuEventAt
window.DoCommand
selection.NewCommand
window.PerformCommand
window.CommitLast
(window.lastCmd).Commit
(window.lastCmd).Free
window.SaveCommand
window.PerformLast
window.HighLight
selection.Highlight
window.RevealSelection
selection.PerformCommand
command.Perform
window.Update
window.Highlight
selection.Highlight

{TProcess.}

{Twindow.} =2 menv item number
{Twindow.}

{TWindow.} - (returns) crnd
{TWindow.}

{TWindow.}

{«}

(=) |
{TWindow.} emd —> window./astCmd
{TWindow.} <phase = doPhase)
{TWindow.} twrns highlighting off
{TBoxSelection.}

{Twindow.}

{TSelection.} default

{*} sphase = doPhase)
{TWindow.} arews the moditied view
{TWindow.} twrns highlighting on
{TBoxSelection.}

{*} — the command's class

Note: By defau/t. the Generic Application turns highlighting off before and on after
performing the commeand. This can be deactivated in the commaeand'’s CREATE

method.

the undoPhase

The Generic Application applies the wndbFhase to the command created in the
doPhase. The undoFhaseis entered when the menu item number returned from

{TMenuBar.]JDownAt equals the ToolKit constant, uUndoLast. The flow of control is
listed below:.

window.MenuEventAt | {TWindow.} retwns ulUndol ast
window.DoCommand {Twindow.}
- window.UndoL ast {TWindow.}
window.PerformLast {TWindow.} <phase = undoPhase>
{.}
command.Perform {*} Cphase = undoFhase)
{.}

Note: [t is uyp to the command’s Perform method to define the results for the
dgifferent phases. If not undoable, & command 1s nerther performed in this phase nor
the redoFhase.

the redoPhase

The redoFhasseundoes the wndoFhase. Its flow of control is similar to that for
the undoFhase. The same menu item number, uUndoL ast, is used to indicate undo
and redo events. The command's doing field differentiates the two events. The
revoFPhase is entered only if command.doing is false. '

window.MenuEventAt {TWindow.} returns uUndoL ast
window.DoCommand {TwWindow.}
window.UndoL ast {TWindow.}
window.PerformLast {TWindow.} <prase = redoFhasse>
{..}
command.Per form {*} (phase = redoPhase’

{.}

RECOLORING, DUPLICATING, AND CLEAR ALL (In Boxer)

Three commands are implemented in this stage of Boxer. These are reco/or,
ayplicate and clear a/l

recolor

Recoloring allows the user to change the color of the selected box. This
operation is undoable. The command object needs to remember the original color of
the box to be able to undo a color change.

If no box is selected, the recolor menu items are disabled (grayed).

User interface: A separate menu for colors will be displayed. The user will be able
to choose any of the following colors from the menu: white, light gray, gray, dark
gray, and black. The color selected will be the new color of the selected box.
Undoing the command restores the box’s original color.

duplicate

| Duplicate allows the user to duplicate the selected box. The newly created
duplicate becomes the selected box. This box will have the same shape and color as
the original.

This operatlon is undoable. The command needs to keep track of both the new
box and the original box to be able to undo and redo itself.

If no box is selected, the ap/icate menu item is disabled.

User interface: A adup/icatemenu item will be displayed in the Edit menu. When the
user chooses this menu item, a duplicate of the selected box will be created and
selected. Undoing the command erases the duplicate and reselects the original box.

clear all

Clear all allows the user to clear the boxView of all boxes. For this stage of
Boxer this operation is not undoable. As such, a warning needs to be supplied to the
user to verify whether the command should be performed.

Since c/ear a//operates upon the entire window, and does not depend upon the
selection, it is always enabled.

User interface: A c/ear a//menu item will be displayed in the Edit menu. When the
user chooses this menu item, an alert box is immediately posted. The alert box
warns the user that the command cannot be undone. The user is given the choice to
cancel the command or perform it. [f performed, the window and the view are
cleared of all boxes.

Note: According to the Lisa User Interface Standards, C/ear A//should not be
a separate command. The user should choose Se/ect A//and then C/ear. However,
for pedagogical reasons, we implement C/ear A// in this segment.

IMPLEMENTATION

We modify the previous stage of Boxer, SBoxer, to implement the reco/or,
oyplicate and c/ear a// commands.

With the exception of the CanDoCommand and NewCommand methods in
the seiection and the window, we can implement each command separately. This is,
in fact, what we do.

implementation of Dupl/icate:
To implement diplicatewe need to:
1. Insert a auyp/icate menu item into the Edit menu in the phrase file.

2. Insert the menu item number of ayp/icate into the interface. Menu item
constants generally begin with a lower case "u” (e.g. uDuplicate).

3. Define a new command class, TDuplicateCmd. This class defines two
fields: oldBox for the old box, and newBox for the duplicate box.

4. Modify {TBoxSelection.JCanDoCommand to enable the aip//icate menu
itemn when a box is selected.

5. Modify {TBoxSelection.NewCommand to generate an ins'téncé of .
TDuplicateCmd when the menu item number supplied is uDuplicate.

- To define the class, TDuplicateCmd, we include the following methods:
{TDuplicateCmd.JCREATE

Creates a aup/icate command object. Also duplicates the old box.
Duplicating the box in the CREATE method simplifies the Per form code.

{TDuplicateCmd.}Free
Frees the command. Frees the duplicate if the last phase was wrdbFhase.
{TDuplicateCmd.}Per form '
Performs the command in the three phases.
| in the dbPhase
Append the new box to the boxView's boxList.
Remake the selection to highlight the new box, not the original.
invalidate the new box’'s LRect.
' in_the wndoFhase
Delete the new box from the boxList.
Remake the selection to highlight the old box, not the new.
Invalidate the new box's LRect.

in the redoPhase
(sarme as the doFhase)

theory of operation (duplicate)
The operation_of the au//cate command proceeds as follows:

The Generic Application is waiting in the event loop for an event. When the user
depresses the mouse on the menu bar, the Generic Application sets up the menus. It
requests information about your menus and menu items by calling:

selection.CanDoCommand {TBoxSelection.}

1. Indicates which of your selection—dependent menu items are enabled
or disabled. If the command number passed to you is not one your
selection handles, then call SUPERSELF.CanDoCommand to give
control back to the Generic Application.

Since you are not using any building blocks, and thus have no co—selections, the
Generic Application promptly calls:

window.CanDoCommand {TBoxWindow.}

2. Indicates which of your selection—independent menu items are
enabled or disabled. f the command number is not one your window
handles, call SUPERSELF.CanDoCommand to give control back to
the Generic Application.

The Generic Application then processes standard menu items to complete setting up
the menus. The Generic Application then passes control to the Menu Manager. The
Menu Manager returns the number of the menu item the user released the mouse on.
/f no menu rtem was chosen, 2ero I1s returnéd.

The Generic Application application gives you the first opportunity to identify
the newly generated menu event. It calls:

selection.NewCommand {TBoxSelection.}

3. Compares the menu item number supplied with those that your
application will process directly. If the menu item number equals
uDuplicate, then:

Creates a new instance of TDuplicateCmd. You supply the
handie of the currently selected box, which is saved as
SELF.oldBox. {TDuplicateCmd.}JCREATE duplicates the selected
box and assigns the duplicate to SELF.newbox.

4. Returns the ap/icate command to the Generic Application.
[From this point on the menu event is assumed to be uDuplicate.]

The Generic Application commits and frees the last command. It then installs
ouplicate in the window's lastCmd field. Next, it calls your code to unhighlight the
current selection before performing awp/icate:

selection.Highlight {TBoxSelection.}

Now the Generic Application reveals the selection as specified in the command's
revelation field. /7 revealing the selection requires scrolling it calls view.Oraw as
needed. It then calls your code to perform the abPhase of the command:

lastCmd.Per form {TDuplicateCmd.}

5. Makes the duplicate the new selected object. Invalidates the
duplicates's shape LRect. Returns.

The Generic Application now updates the window and highlights the current selection.
The duplicate box is thus drawn and highlighted.

Successive undo and redo menu events cause the Generic Application to call your
command'’s Per forrn method with the respective phase. .

When a menu event is received that generates a new command, the Generic
Application attempts to commit the last command. It does the commit only if the
last command phase was doFhase or redoPhase.

To commit a command, the Generic Application executes the command's Commit
method. In the case of aup/icate that method is {TCommand.}JCommit, which is a
no—op. Next, the Generic Application frees the last command. It needs to call
your code to do so: ,

lastCmd.Free {TDuplicateCmd.}
6. Frees the duplicate if the last phase was wndoPhase. Next frees
itself.

The Generic Application then proceeds with the new command.

Implementation of AeCo/or:
To implement reco/orwe need to:
1. Add a Color menu to the phrase file, including the following menu items:
white .~ light gray gray dark gray black
2. Insert their menu item numbers into the interface.

3. Define a new command class, TRecolorCmd. This class defines two fields:
color for the new color, and box for the selected box.

4. Modify {TBoxSelection.}JCanDoCommand to enable the recolor menu
iterns when a box is selected.

5. Modify {TBoxSelection.]NewCommand to generate an instance of
TRecolorCmd when one of the recolor menu item numbers is supplied.

To define the class, TRecolorCmd, we include the following methods:
{TRecolorCmd.}JCREATE

Creates a reco/or command object. Sets the color field to the color
chosen,

{TRecolorCmad.}Per form
Performs the command in the three phases.
in the doFhase
Swap the color of the box with the command‘s color field.
Invalidate the selected box's LRect.
in the wndoFhase
(same as the doFPhase)
(the effect is that the original color Is restored)

in the redofPhsse
(same as the a’aP/)ase)v

Implementation of C/ear A//:

The implementation is a little different here, since ¢/egr 4//is not undoable.
The main change is that no new command class is defined. Instead we create the
command as an instance of TCommand. We add a special method to the boxWindow
to perform the command. 743t method Is adoed to the boxWindow. because the
command 1s Indepenadent of the boxSelection.

To implement c/ear a//we need to:

1. Insert a c/ear a//menu item into the Edit menu in the phrase file.

2. Insert the menu item number of c/ear a//into the interface. Use the
menu item constant, uClearAll.

3. Insert an alert into the phrase file warning the user that c/ear a//cannot

be undone. Before the cormmand is performed we want to give the user a
chance ta cancel; since 1t 1s not going to be undoable.

To insert the following alert: "The Clear All command cannot be undone”,
you must: ‘

a. Put the following text into the phrase file. Along with the alert it
defines a corresponding alert number and alert type.

: PROCEDURE {TBoxwindow. }NewCommand {Where the alert is called from}

; cantUndo = 1001; {vValue of the alert constant}
1001 caution cancel alert

You will not be able to undo Clearall

This Is & caution cancel alert. It gives the user the option to cancel
the named gperation, or to continve. To make this alert

parameterized by the command name. you could type “You will not
e avle towmo C. "

b. Put a corresponding alert constant into the interface.
cantindo = 1001;

4, Add a method to the window, {TBoxWindow.]}ClearAll. This method deletes

every box in the boxView's boxList; and replaces the selection with the
null selection.

5. Modify {TBoxWindow.}CanDoCommand to always enable the c¢/ear a//
menu item.

6. Modify {TBoxWindow.JNewCommand to generate an instance of
TCommand when the menu item number supplied is uClearAll. Next put

up the alert. If the user does not cancel the alert, call SELF.ClearAll to
clear the boxes.

Note: Returning an instance of TCommand will cormmit the /ast
command autormnatically. The Generic Application will also call
[TCommand. fPer form, but this method is @ no—op. That is why

NewCommand explicitly calls special code to perform commands that
cannot be unaone.

To put up t'hg alert defined above, you must make the following call:
process. Caution(cantUndo): {puts up the caution alert, cantUndo}

implementation Summary

The actual implementation for 6Boxer is summarized below. The code for
SBoxer is used as the base for all changes.

New Constants
{menus}
White = 1006;
uttGray = 1007;
uray 1008;
uDkGray = 1009;
uBlack 1010;
ubuplicate = 1011;
uClesrAll = 1012;
{phrases}
cantUndo = 1001;

New Classes

{TRecolorCad]

FUNCTION {TRecolorCmd. JCREATE(object: TObject: itsHeap: THeap:; itsCmaNumber:
TCmaNumber ; ‘

itsview: TBoxView; itsBox: TBox: itsColor: TColor)
. TRecolorCmd;

PROCEDURE {TRecolorCRd. }Perforn: OVERRIDE:

[TouplicateCnd] v
FUNCTION {TOuplicateCmd. JCREATE{object: TObject: itsHeap: THeap:
itsCagNumber: TCmoNumber: itsView: TBoxView;
itsBox: TBox): TOuplicateCmd :

PROCEDURE {TDuplicateCnd. }Free; OVERRIDE

PROCEDURE {TDuplicateCnd. }Perform: OVERRIDE:

New Methods (for existing classes)

[TBoxSelection] ,
PROCEDURE {TBoxSelection. JCanBoConnand(cadNunber: TCmdNumber; VAR checkIt: BOOLEAN)
: DOOLEAN; OVERRIDE:

- PROCEDURE {TBoxSelection. YNeuConnand(chdNunber: TCadNumber): TCommand: OVERRIDE:

PROCEDURE {TBoxSelection. MiouseRelease; OVERRIDE:

If the mouse moved with the button down (a mouse move event)
{TBoxSelection.JMouseRelease commits the last command.
Otherwise it returns.

[TBoxWindow] :
PROCEDURE {TBoxWindow. }CanDoConnand(cmdNumber: TCmdNumber: VAR checkIt: BOOLEAN)
- BOOLEAN: OVERRIDE:

PROCEDURE {TBoxWindow. YNewConnand(cadhumber: TCmdNumber): TCommand; OVERRIDE:

PROCEDURE {TBoxWindow. }Clearall;

Modified Method

[TCreateBoxselection]
PROCEDURE {TCreateBoxSelection. }MouseRelease OVERRIDE;

{TCreateBoxSelection.MouseRelease now commits the last
command before adding the newly created box to the view.

,Somethihg to think about: If box creation did not commit the last command
then what would the following series of events do?

1. Duplicate a box
2. Create a box
3. Undo
Hint: Does creating a box normally affect window.lastCmd?

GUIDELINES FOR CONVERTING MENU EVENTS TO COMMANDS (optional)

Recolor, auyplicate and clear a/[as with all commands, should be undoable. It
is only for demonstration purposes that clear all is not undoable in this segment.

in general, menu events that change the document, such as cutand paste
should be undoable. Exceptions can be made if the cost is too great, as in revert fo
previous version

Menu events that only change the selection or view, such as sefect a//or hide
rufer. should not be undoabie.

Consider the following example. A user cuts an object from a document, then
selects the entire document. Suddenly she chooses to undo the last command. The
last command is the cui not the se/ect a// Therefore the cutis undone

Sometimes menu events make such drastic changes to the display that it
would be confusing to undo the last command. For example, within a bar graph in
LisaGraph a user might change the text on the X—axis label, then immediately
change the graph to a pie chart. Even though changing to a pie chart does not change

the document, undoing the text change at this point would be confusing to the user
because the context is gone.

If a menu event changes an entire view, as opposed to just the selection, it
should be made into a command. There are actually no hard and fast rules for what
kind of events should be cormmands. Just use your best judgerent.

Questions:

Commands Lab

Purpose:

- To implement redo and duplicate commands with undo. To implement clear all
command without undo. ‘

Whet you are about to do:

You will compile and run 6Boxer, then optionally modify the source. This
should be done in the following steps:

1) Copy the following files onto your prefix volume.

6UBoxex . TEXT
6UBoxer2. TEXT
6MBoxer . TEXT
6PBoxer .TEXT

2) Compile, install, and run the sample application, 6Boxer. Use 46 as
the tool number.

3) Scan the listings of the four files in the sample application. These
ere included in the appendix, "Code Samples for this Segment”.

Study the edit and color menus in the phrase file.
4) [Optionsl] Msake the clear all command undoable.

Hint: Think sbout how you would save the view during the doFPhase
and the redofhase.

warning: Be very careful abok what gets restored a&s the selected
object aduring the undoFhase.

Things to look out for:
- Frevious command is not committed.
You must creste a command in response to a clear &/l menu event.
- Boxes disappear. bk do not resppesr.

Are you saving the view's list of boxes when doing the command.
- Boxes do not disappear.

Check what you are actually invalidating.
Does your command's Perfarm method change the view?

9-lab-1

o By K AP OTotkoadtason R de

X

XBBOXER. TEXT

8 Aug 1984 16:00:12 Page 1
4)
26
SLOT2CHANL
;sno assembler files
:sno building blocks
i no 1inks ’

3
y
y
n
BoxNumé
_ I

8 Rug 1884 15:57:49 PSBOXER. TEXT

Page

1

—

1
3

2500
$-#BOOT-TK/PABC
: Apple building block phrase files can be included hers

1000
6Boxer

PROCEDURE { TBoxll indow. }NewCommand
cantUndo = 1001; :

1001 caut ion cancel alert
You will not be able to undo ClearAll.

0

1

$-#B00T-TK/PABC™F ile/Print
2

Edit

Undo Last Change#205

Dupl icate/D¥1011
Clear All /2#1012

3

Shades
Uhite#1006
Light Gray#1007
Gray#1008

Da Gray#1009
Bl ack#1010

s

$-#BOOT-TK/PABC~Page Layout
99

$-#B00T~TK/PABC Debug

100

$-#BOOT-TK/PABC Buzzwords
Create Box¥2000

Move Select ion¥2001

0

9 Bug 1884 15:54:58

MEBOXER. TEXT Page 1

PROGRAM HEBoxer,

USES
{SU UOb ject } uobject,
{$IFC 1ibraryVersion <= 20}
S?U UFont} UFont,
{ SENDC)

$U UDrau UDraw,
$U UABC UABC,

{$uU UeBoxer } USBoxer;
CONST
phraseVersion = 1;
BEGIN
process : = TBoxProcess. CREATE;
process. Commence(phraseVersion};
process. Run;
process. Compl ete{ TRUE);

END.

{SU QuickDrav i QuickDraw,

4L HUG 1854 L4 3844 UBBUXER. TEXT Page 2
~
1 -
2 -~ [This segment of Boxer implements commands with undo)
.:» - Copyright 1983, Appie Computer Inc.}
2 -- UNIT UéBoxer;
Z -~ INTERFACE
9 -~ ES
ig -- {$U Uob ject} Uob ject,
12 -- (SIFC Hbrary\larsion (= zoa‘r
13 -- é ont
o
16 -- su OuickDrau} OuickDrau
17 -- SU UDrau Wrav,
18 -- UABC;
19 --
20 -~ CONST
21 -- colorihite = 1;
22 -~ coloritGray = 2;
23 -- colorGray = 3;
24 -- col orDkGray = 4;
gg - colorBlack = §;
27 -- { selection kinds }
28 -~ boxSel ect jonKind = 1;
§g - createBoxSel ect ionKind = 2;
31 -~ { Henus]
32 -~ ublhite = 1006;
33 - ultGray = 1007,
34 -- uGray = 1008,
35 -~ uDkGray = 1009;
36 -~ uBlack » 1010;
37 -~ uDupl icate = 1011;
gg -- uClearall = 1012;
40 -~ { Phrases }
:é - cantUndo = 1001;
:34 -- TYPE
:2 - TColor = coloruhite.. colorBlack; {color of a box]
:g - {Neu Classes for this Appl icat ion}
gg - TBox = SUBCLASS OF TOD ject
§1 -- {variables}
82 -- shapelRect: LRect;
gi - colon TColor;
£5 -- {Creat jon /Dest ruct ion
3_6, - FUNCTION TBox. CREATE(ob ject: TOb ject; itsHeap: THeap): TBox;
58 -- { Highl ight ing support }
23 -- PROCEDURE TBox. PaintHand! es;
61 -~ { Framing while creating }
g§ - PROCEDURE TBox. DrauF rame;
64 -~ {Displav}
65 -- PROCEDURE TBox. Draw
66 -- END;
67 -~
68 --
gg -- TBoxView = SUBCLASS OF TView
71 -- {variables} -
;§ -- boxList: TList;
74 -- {Creat jon/Dest ruct ion &R
;2 - FUNCTION TBoxView. EME(object VTObject itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
- BoxVieuw,
77 -~
;g - FUNCTION TBoxView. BoxWith({LPt: LPoint): TBox;
80 -- { Inval idat ion&
g% -- PROCEDURE TBoxVieuw. InvalBox(invalLRect: LRect);
gi - PROCEDURE TBoxView. HousePress{mouselLPt: LPoint); OVERRIDE;
85 -~ {Displ aya
gg - PROCEDURE TBoxView. Draw; OVERRIDE
88 -- {Init ia) izat fon}
89 -- PROCEDURE TBoxVieuw. InitBoxL ist{ itsHeap: THeap):
90 ~-- FUNCTION TBoxView. NoSelect ion: TSelect fon OUERRIDE
9] -- END;
92 -~
93 --
gg - TBoxSel ect fon = SUBCLASS OF TSelect ion
96 -- {variables}
g‘é - box: TBox;
99 -- {Creat ion/Dest ruct ion}
100 -~ FUNCTION TBoxSel ect ion. CREATE(ob ject: TObject: itsHeap: THeap; itsView: TView; itsBox: TBox;
ig% -- itsKind: INTEGER; itsAnchoriLPt: LPoint): TBoxSelection;
103 -- [Dnuing per pad}
igg - PROCEDURE TBoxSel ect jon. Highl ight(highTransit: THighTransit); OVERRIDE;
106 -- {Sel ect ion - per pad}
107 -- PROCEDURE TBoxSel ect ion. MouseMove(mouseLPt: LPoint); OVERRIDE;
%gg - PROCEDURE TBoxSel ect ion. HouseRel ease; OVERRIDE;
110 -- {Command Dispatch})

(10 1 s 1t bt 5t B Bk b b ot Dt b b b 6 Bk ek ek b b e o Bk e ke b b o b e b b b b b B e e e B b ot o b b o b o B e e o e ek e bl ot B ot ot e e ok b b ek e o e b b b e e B B B e e o B e ok e e e o ot et et B)

21 ﬂug 1984 12:38:44 UBBOXER. TEXT Page

77NN NI NI N A NI AR NI A RN NI RI NI N NI NI RI D D NI D b 5 b b B b Bt b b Bd b §d 0 b b ok b b b o od o Bt o o i o e b d ok b b b o Bt e ok o Bk ot ek Bt b o b Bt e o b e ot b Bk ot o ok o b B e e o b 1 s s b Bt e b ek b (b B b Bt

FUNCT JON TBoxSe! ect jon. NeuCommand(cmdNumber: TCmdNumber): TCommand; OVERR IDE:
FUNCT ION TBoxSel ect jon. CanDoCommand(cmcdNumber: TCmdNumber. VAR check It: BOOLEAN)
- : BOOLEAN, OVERRIDE;

TCreateBoxSel ect fon = SUBCLASS OF TSelection

{Variabl es}
box: TBox;

{Creat ion/Dest ruct ion)
FUNCTION TCreateBoxSelect ion. CREATE(obiect TOb ject: itsHeap: THeap: {tsView: TView;
tsAnchorlPt; LPoint): TCreateBoxSelect ion;

{Select jon - per pad)
PROCEDURE TCreateBoxSelect ion. MouseMove(mousel.Pt: LPoint); OVERRIDE;
END PROCEDURE TCreateBoxSel ect ion. MouseRel ease; OVERRIDE;

{ This command recolors the selected box and is not undoable}
TRecol orCmd = SUBCLASS OF TCommand

Box: TBox;
colorr TColor
{Creat o

n}
FUNCTION TRecol orCmd. CREATE(obJect TObject; itsHeap: THeap: itsCmdNumber: TCmdNumber;
itsView: TBoxView; itsBox: TBox; itsColor TColor): TRecolortCmd,

EagCEDURE TRecol orCmd. Perform{ cmdPhase: TCmdPhase); OVERRIDE;

{ This command dup! icates the selected box and is undoable }
TDupl icateCmd = SUBCLASS OF TCommand
ol dBox, newBox: TBox;

{Creat jon]
FUNCT ION “ TDupl icateCmd. CREATE(ob ject: TOb ject: itsHeap: THeap: itsCmdNumber: TCmdNumber,
itsView: TboxView, itsBox: TBox): TDupl icateCmd;

{Command Execut fon}
PROCEDURE TDup! icateCmd. Per form{ cmdPhase: TCndPhase) OVERRIDE;

TBoxProcess = SUBCLASS OF TProcess
{Creat ion/Dest ruct fon}
FUNCT JON - TBoxProcess. CREATE: TBoxProcess;

FUNCTION TBoxProcess. NeuDocnanager(vo}umePrefix: TFilePath; openAsTool: BOOLEAN)
END : TDocHanager; OVERRIDE;

TBoxDocHanager = SUBCLASS OF TDocManager
{Creat ion/Dest ruct on}
FUNCTION TBoxDocHanager. CREATE(ob ject: TObject; itsHeap: THeap; itsPathPrefix: TFilePath)

: TBoxDocHanager;
EUSCTION TBoxDocHanager. Neuumdou(heap THeap; wmgriD: TwindowlD): TwWindow; OVERRIDE;

TBoxWindow = SUBCLASS OF TWindow

{Creat jon/Dest ruct ion}
FUNCTION TBoxUWindow. CREATE{ ob ject: TObject; itsHeap: THeap; itsUmgrliD: TWindowID): TBoxUindow,

Document Creat ion}
PROCEDURE {TBoxWindow.] BlankStationery; OVERRIDE;

{ Commands
PROCEDU E TBoxWindou. Clearall:
FUNCT ION TBoxWindouw. NauCommand(cmoNumber: TCmdNumber): TCommand;, OVERRIDE:

E%CTION TBoxW indow. CanDoCommand(cmdNumber: TCmdNumber; VAR check It: BOOLEAN): BOOLEAN; OVERRIDE;

IMPLEMENTAT ION
LSI USBoxerz text}
{ueB

HETHODS OF TBox;
;lélgtl:TION TBox. CREATE(ob ject: TObject; itsHeap: THeap): TBox,
SIFC ﬂncclBP(ll) { SENDC}
ELF : = NeuwOb ject{ itsHeap, THISCLASS);
UIYHBEGL

shapeLRect : = 2erolLRect;
color : = colorGray;

END;
{SIFC fTrace)EP; { SENDC}
($1Fc fDebugHet hods }
;ng]:%DURE Box. F iel ds(PROCEDURE F iel d(nameAndType: $255));
F iel d(' shapeLRect: LRect');
Field(color: INTEGER);
Field(' ');

END;
{ SENDC)

21 Aug 1884 12:38:44 USBOXER. TEXT Page

(NNNNNNNMMNNNNNNNMNNNMNNNNNMNNNNNMNNNNNNNNN N

0-

This drauws a garticular box}
A PROCEDURE TBox.
VAR lPat LPattemn;

LS]FC fTrace}BP({10); { SENDC}
enNormal ;

IF nggtIsUlsAblo(SELF.shapeLRect) THEN {this box needs to be draun}

{Get a Quickdrau pattern to represent the box's color]
CASE SELF. color OF

colorihite: 1Pat : =]PatUhite

colorltGray: 1Pat : = |PatLtGray;

colorGray: 1Pat : = 1PatGray,

col orDkGray: 1Pat : = 1PatDkGray;

colorBl ack: 1Pat : =]PatBlack;

g;gERWISE 1Pat : = 1Patuhite; {this case should not happen]

{Fill the box uith the pattern, and draw a frame around it}
Fil1LRect(SELF. shapeLRect, 1Pat);
FrameLRect(SELF shapeLRect);

END,
(SIFC fTrace) EP; { SENDC)

Frame a particular box]
A P OCEDURE TBox. DrauF rame;

lerc fTrtce}BP(lO) { $ENDC)
enNormal ;

Panode(PatXOrg

FrameLRect(SEL shapeLRect)
A END: {SIFC fTrace]EP; { SENDC]

{This calls the DoToHandle Procedure once for each handle LRect; user of this method must
set up the pen pattern and mode before call ing}
A PROCEDURE TBox. PaintHandles
VAR hLRect,
shapelLRect: LRect:
dh, dv: LONG INT

B ggg?EDURE MoveHand]l eAndPa int(hOffset, vOffset: LONGINT);

OffsetLRect(hLRect, hOffset, vOffset)
B END: PaintLRect(hLRectL

A BEGIN
gSIFC fTrace]BP(lO% {SENDC}
etLRect(hLRect
shapelLRect : = SELF. shapeLRect
WITH shapelLRect DO
BEGIN

dh := right - left;
dv := bottom - top;
MoveHandl eAndPaint(left, top); {drav top left handle]}

ND;
HoveHand] eAndPaint(.dh, D}. then top right}
MoveHand] eAndPaint(0, dv); then bottom right)
MoveHand] eAndPa int{-dh,_ 0); finally bottom left]}
. END {SIFC fTrace]EP; { SENDC)

END;

HMETHODS OF TBoxView;

FUNCTION TBoxView. CREATE(obJ$§t vIObject; itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
: ew;

» >

GIN
&S]FC fTrace BP(llé { $ENDC)
F object = NIL
object : = NeuOb{ect(itsHeap, THISCLASS);
SELF : = TBoxView(itsPanel. NewView(object, itsExtent, TPrintManager. CREATE(NIL, {tsHeap)

stdfargins, TRUE));
ND {SIFC fTrace}EP; { SENDC}

{Sch fDebugHet hods }
BEOIEDU E TBoxVieu. F iel ds{ PROCEDURE F iel d(nameAndType: $255)):

TVieu. Fields(Fie)d)
Fiel d(' boxList: TList')

A END;
{ SENDC}

“This returns the box containing a certain point}
A UNCTION TBoxVieuw. BoxWith(LPt: LPoint): TBox;
VAR box: TBox;

s TListScanner
A BEGIN

{SIFC ﬂnco%ﬂ?(11); { $ENDC)

bointh N

:w SELF. boxL ist. Scanner
UHXLE s. Scan(box) D
IF LPtlnLRect(LPt box. shapelLRect) THEN

ith : =
{$1FC anca]EP; {sswoc}
A END;
This drauws the }ist of boxes}
A ROCEDURE TBoxViou Draw;
VAR box: TBox
$: TListScanner
A BEGIN

21 Rug 1984 12:38:44 UBBOXER. TEXT Page &
~
137 -~ {SIFC fTrace}BP(10); {SENDC)
138 -~ s : = SELF. boxList. Scanner;
138 -- WHILE s. Scan(box) DO
140 -~ box. Drauy; -
141 -- {SIFC fTrace)EP; [SENDC)
142 -0 A END;
143 -~
144 -- -
145 -- &This determines which type of selection to create}
146 -- A PROCEDURE TBoxView. MousePress(mouselLPt: LPoint);
147 -~ VAR aSel ect jon: TSel ect jon;
148 -- anel: TPanel;
149 -- ox: TBox;
150 --
151 0~ A BEGIN
152 -- {SIFC fTrace BP(II?; { $ENDC}
153 - panel := SELF. panei; .
154 ~- anel . Highl ight(panel. sel ect ion, hOntoOff); {Tum off the old highl ight ing)
igz - ox := SELF. BoxWith{mouselLPt); {Find the box the user cl icked on}
187 -- IF box = NIL THEN
158 -- {Create an instance of TCreateBoxSel ect ion)
159 -- aSelect ion : = panel. select ion. F reedAndRep] acedBy(
igg - ELSE TCreateBoxSel ect ion. CREATE(NIL, SELF. heap, SELF, mouselPt))
162 -~ {Create an instance of TBoxSel ect ion]
163 -~ aSslection : = panel. sel ect ion. FreedAndRepl acedag(
}gé - . TBoxSel ect ion. CREATE{NIL, SELF. heap, SELF, box, boxSelectionKind, mouselPt));
igg - panel. Highl ight(panel. sel ect ion, hOffTo0On); {Turn on the high! ight ing for the neuwly selected box)
168 -~ se] f. panel. sel ect ion. MarkChanged; {ﬁllou the document to be saved so that any changes made]
169 -- can become permanent}
170 -- {SIFC fTrace)EP; { SENDC)
171 -0 A END;
172 -~
173 --
174 -- A PROCEDURE TBoxView, InvalBox(inval LRect: LRect);
175 0~ A BEGIN
176 -- SSIFC fTrace}BP(10); { SENDC)
177 -- nsetLRect(inval LRect, -3, =2);
178 -- SELF. panel. Inval LRect{ invalLRect);
179 -- {SIFC fTrace}EP; { SENDC}
180 -0 A END;
181 --
182 -~
183 -- PROCEDURE TBoxView. InitBoxList ({tsHeap: THeap);
184 -- VAR boxList: TList;
185 O- BEGIN
186 ~-- {$IFC ﬂnce%BP(ll); SENDC}
187 -- boxList := TList. CREATE(NIL, itsHeap, 0);
188 -~ SELF. boxL ist := boxlList;
189 -- {SIFC fTracelEP; { SENDC]
190 -0 A END;
191 --
182 --
193 -- A FUNCT ION TBoxView. NoSelect ion: TSelection;
194 0- A BEGIN
195 -- {SIFC fTrace)BP(11); {SENDC}
196 -- NoSel ect fon ; = TBoxSel ect jon. CREATE(NIL, SELF. Heap, SELF, NIL, nothingKind, zeroLPt};
197 -- {SIFC fTrace}EP; { SENDC}
198 -0 A END;
199 --
200 --
201 --
202 --
ggi - METHODS OF TBoxSelection;
205 -- A FUNCTION TBoxSelect ion. CREATE{ object: TObject; i{tsHeap: THeap;, itsView TView: itsBox: TBox;
206 -- itsKind: INTEGER;, itsAnchorLPt: LPoint): TBoxSelection;
207 0- A EGIN
208 ~-- gSIFC ﬂncez‘BP(néz { $ENDC)
209 ~-- F object = NIL THEN
210 -- ob ject : = NewObject{ itsHeap, THISCLASS);
31% .- SELF = TBoxSelect lon(TSeiect ion CREATE(object, itsHeap, itsView, itsKind, itsAnchorlPt));
1 -
213 -- SELF. box : = jtsBox;
214 -~ {S$IFC fTrace]EP; { SENDC)
215 -0 END;
216 --
217 -- {SIFC fDebu Hethods}
218 -~ A PROCEDURE TBoxSel ect jon. F iel ds{ PROCEDURE F iel d{ nameAndType: S255));
219 0- A BEGIN
220 -- TSelect ion. F jel dsSFiel d);
221 -- Field(' box: TBox'}:
222 -0 A END;
223 -- {SENDC)
224 --
225 -- .
226 -- This draws the handles on the selected box}
227 -- A PROCEDURE TBoxSelect ion. Highl ight{ highTransit: THighTransit);
228 0- A BEGIN
229 -- SSIFC fTrace}BP(11); { $ENDC}
ggg i- F Sgliz.]hind <> nothingKind THEN
232 -- thePad. SetPenToRighl ight(highTransit); set the drauing mode according to desired highl ight ing}
ggi - giléF. box. PaintHandl es; draw the handies on the box}
-1 ND;
235 -- {SIFC fTrace)EP; { SENDC)
236 -0 A END;
%6 -
239 -~ LThis is called when the user moves the mouse after pressing the button}
240 -- A ROCEDURE TBoxSe] ect ion. HouseHove{ mouselPt: LPoint);
241 -- VAR diffLPt: LPoint;
242 -- boxV jew: TBoxVieu;
243 -- shapeLRect: LRect;
244 0O- BEGIN
245 -~ {SIFC fTrace}BP(11); ;SENDC]
246 -- boxView : = TBoxView(SELF. view);

770 0 RN A NI N A RN AT A A R A A D A A RI A N R A NI RS A RIS R A A R A AR NI A R R R A AT R AR R A A R R A R NI N IR A R R RS RS R RIS NI A R R A RO N R R R RS R A R R R N R RIN RN N RN NN RN)

RN RIN RN NI R RN R RN RN RN AR NN RN RN RN RN RN RN RN NN RN NN NN \

{Hou far did mouse move?)
LPtMinusLPt (mouselPt, SELF. curriPt, diffLPt);

Move it {f delta is nonzero}
IF Bgc%ﬁu"LPt(d”ﬂ’Pt' zeroLPt) THEN

SELF. currLPt : = mouselPt;

shapeLRect : = SELF. box. shapeLRect;

{Compute old and neuw positions of box}
boxVieuw. Inval Box(shapeLRect):
OffsetLRect{shapeLRect, diffLPt. h, diffLPt.v);
boxVisu. Inval Box(shapel.Rect);

EELF. box. shapelLRect : = shapelLRect;
{SIFC fTrace}EP; { $ENDC)
END;

PROCEDURE TBoxSel ect ion. MouseRel sase;
BEGIN

{SIFC fTrace}BP(11); [SENDC])
1t the mouse moved then commit any outstanding command)}
IF NOT EquallLPt(SELF. currLPt, SELF. anchorlPt) THEN
SELF. window, Commitlast;
5 {$SIFC fTrace)EP; { SENDC}

EN
FUNCTION TBoxSel ect ion. NewCommand(cmdNumber: TCmdNumber): TCommand;
VAR boxView: TBoxView;
heap: THeap;
BEGI

?sxrc fTrace}BP(11): { SENDC}

boxVieu : = TBoxView(SELF. view);
heap : = SELF. Heap;

CASE cmdNumber OF
ulthite, ultGray, uGray. uDkGray, uBlack:
NeuCommand : = TRecol orCmd. CREATE({NIL, heap, cmdNumber, boxView, SELF. box,
cmdNumber - ulhite « colorthite):;

uDupl icate:
NeuCommand : = TDupl icateCmd. CREATE(NIL, heap, cmdNumber, boxVieu, SELF. box);

OTHERWISE
NewCommand : = SUPERSELF. NeuCommand(cmdNumber);

END;
{$I1FC fTrace)EP; { SENDC]
END;

FUNCTION TBoxSel ect ion. CanDoCommand(cmdNumber: TCmdNumber; VAR checkIt: BOOLEAN): BOOLEAN;

BEGIN
gIFC fTrace}BP(11); [$ENDC})
SE cmdNumber OF
ulhite, uLtGlraiy, uGray, uDkGray, uBlack,
cate:
CanDoCommand : = SELF. kind <> nothingKind;

OTHERWISE K
CanDoCommand : = SUPERSELF. CanDoCommand(cmdNumber, checklIt);

END;
{$IFC fTrace}EP; { SENDC}
END;

END;

METHODS OF TCreateBoxSelect ion;

FUNCTION TCreateBoxSelection. CREATE(ob ject: TObject; itsHeap: THeap: itsView TVieu,
itsAnchoriPt: LPoint): TCreateBoxSelection;
VAR box: TBox;
mNSIFC 12} BP(11); { SENDC}
race H
SF ob ject = LIL THEN

object := NtuObgsct(itsHeap, THISCLASS); o
SELF : = TCreateBox3el ect fon{TSel ect ion. CREATE(object, itsHeap, itsView, createBoxSelect ionKind,

itsAnchoriPt));
box : = TBox. CREATE(NIL, SELF. heap);

SELF. box : = box;
END {SIFC fTrace}EP; { SENDC)

{$IFC fDebugHethods})
:Eg(i‘sou £ TCreateBoxSelect jon. F iel ds(PROCEDURE F iel d(nameAndType: S$255));

TSel ect fon. F jel dss Field);
Field(box: TBox'

END;
{$ENDC}
ghis is callied when the user moves the mouse after pressing the button)

OCEDURE TCreateBoxSel ect ion. Housetove(mouselPt: LPoint);
VAR maxBoxLRect: LRect:
diffLPt. LPoint;
boxView: TBoxV jeu,
box: TBox;

PROCEDURE DrawTheF rame;
BEGIN

box. DraufF rame;
END;

BEGIN
{$IFC fTrace}BP(11); { SENDC)

21 Hug 1884 14:35:44 UUDUALK. LEAL - 5 uyc

7NN IR R RN RN RN R RN AR R R R RN AR AT A AR R R RIRIR R R RN R R R RN R R R R NI AR R A RI R R RN AN R R R R R DRI RN AR N R RN RN R RN RNRRNONR AN NN)

0-

>» W oo

A
A

A
A

A

boxView : = TBoxView(SELF. vieuw);
box := SELF. box;

{ In Boxer it is possible tc drau s box grester than allowed by a 16 bit rectangle. These three
1ines force the rectangle to within 16 bits.)} :
{$H-] WITH SELF. anchoriPt DO
SﬂLRectgmxBoxLRact. he10-MAX INT, ve10-MAXINT, heMAXINT-10, veMAXINT-10);
{$H+] LRectHavelPt({maxBoxLRect, mouselLPt);

LPtHinusLPt(mouselLPt, SELF. currlPt, diffLPt);
IF NOEGEXgUClLPt(dHﬂ.Pt. zeroLPt) THEN .

SELF. curriPt : = mouselPt;

boxView. panel. OnAl | PadsDo(DrauTheF rame); {erase old frame}
WITH box DO .

BEGIN

shapelLRect. toplLeft : = SELF. anchoriPt;

E;}BpeLRect. botRight : = mouselPt;

{$H-] RectifylLRect(box. shapetRect); {$H-]
boxView. panel. OnAl 1 PadsDo(DrauThefF rame); {drau neu frame}

END;
. {$IFC firace)EP; { SENDC}
END;

PROCEDURE TCreateBoxSel ect jon. MouseRel ease;
VAR thisBox: TBox;

boxVieu: TBoxView,;

drauwnLRect: LRect;

aSel ect jon: TSel ect jon;

panel: TPanel;

PROCEDURE DrauThef rame;
BEGIN

thisBox. DrauF rame;
END;

N

{SIFC fTrace}BP(11): { SENDC}
boxView : = TBoxVieuw(SELF. vieu);
panel : = boxVieu. panel;

thisBox : = SELF. box;

panel. OnAl 1 PadsDo(DrauThef rame);
draunLRect : = thisBox. shapeLRect;

BEG]

{ Independant of whether ve threw the boxed auay or not ue must create an instance of TBoxSelection
to replace the nou useless instance of TCreateBoxSelection using the kind set above.
aSelection : = SELF. FreedAndRepl acebEE
TBoxSe! ect ion. CREATE(NIL, SELF. heap, boxView, thisBox, boxSelectionKind,
draunlRect. topleft)};

boxView. Inval Box(draunLRect);

SH the box is not big enouph then throu it auvay, otherwise put it in the]ist]
F (gggumLRect. right - draunLRect.left <(=4) OR (draunLRect. bottom ~ drawnLRect.top <(=4) THEN

aSel ect jon. kind : = nothingKind;
thisBox. Free;
END
ELSE BEGIN
Commit any outstanding command }
LF. window. CommitLast;

boxView. boxList. InsLast(thisBox);

END;
{SIFC fTrace)EP; { $ENDC}
END;

END;

METHODS OF TRecol orCmd;

FUNCTION TRecol orCmd. CREATE(ob ject: TObject; itsHeap: THeap, itsCmdNumber: TCmdNumber;
itsView: TBoxVieu; f{tsBox: TBox; itsColor TColor): TRecolorCmd,
BEGIN
‘S
F

IFC ﬂncez‘BP(mg: { SENDC}
object = NIL THEN
object := NewObject(itsHeap, THISCLASS):)
SELF :'= TRecol orCmd(TCommand. CREATE(ob ject, itsHeap, itsCmdNumber, itsView, TRUE, revealAll));
SELF. color : = {tsColor
SELF. box : = {tsBox;
£ND {SIFC fTrace}EP; { SENDC}

{$IFC fDebu Helhods}
;FE!%EE‘DU E TRecol orCmd. F iel ds{ PROCEDURE F iel d(nameAndType: S$255));

TCommand. F ields(Field);
Fiel dé‘Color. INTEGER') ;
Field(box: TBox');

END,
{ SENDC)

PROCEDURE TRecol orCmd. Perform{ cmdPhase: TCmdPhase);
VAR boxVieu: YBoxVieuw;

tempColor: TColor

box: TBox;

BEGIN
{SIFC fTrace)BP(12); { SENDC)
boxVieu : = TBoxView{SELF. image);
box := SELF. box;

CASE cmdPhase OF
undoPhase, redoPhase, doPhase:

“h MY 4D04Y L& D0 44

UBBOXER. TEXT Page

TIRNRON RN RN RN RN RN RRBRRRRNNRRRRNRDNNNNONNONRONNNRNNN NN RRBRRNRRNNN RN NN RN RN RN)

2- BEGIN

-- Color : = SELF. color;

- SELF. color : = box. color

-- box. color : = tempCo

== boxV isu. Inval Box(box shapeLRect)

-2 END

-1 END {CASE}:

- sel f. image. vieuw. panel sel ect ion. HarkChanged; {allow this document to be saved]
-- {SIFC fTrace}EP; { SEND

-0 A END;

-- END;

-- METHODS OF TDupl icateCmd;

-~ A FUNCTION TDupl icateCmd. CREﬁTE(obi'ect: TOb ject; itsHeap: THeap; itsCmdNumber: TCmdNumber;
- tsView: TBoxView, ftsBox: TBox)}: TDupl icateCmd;

- VAR box: TBox;

G- A GIN

- ES]FC fTraco BP(lO {SENDC)

- F object =

- object : = NeuObgect itsHeap, THISCLASS);

- SELF := TDupl icateCmd(TCommand. CREATE(obJect, ftsHeap, itsCmdNumber, itsView, TRUE, revealAll)).
- SELF. oldBox : = itsBox,

- box : = TBoxE itsBox, c1 one(SELF. hnp;)

- {$H-} gé‘LfSetLRgct box. shapeLRect 20, 20 {$H-]

- {SIFC ﬂnco]EP [$ENDC]

-0 A ND;

-~ A PROCEDURE TDupl icateCmd. F ree;

0~ A BEGIN

~- PIFC ance)BP(m}r ESENDC]

- F NOT SELF doing

- Free(SELF mu ox);

- SELF. FreeOb j

A {$IFC ﬂ’ncc]EP { SENDC}

-- {$IFC fDebui Hethods)

a- 2 ;ggclgou E TDupl icateCmd. F iel ds{ PROCEDURE F iel d(nameAndType: S255));

- TCommand. Fiel ds(F iel d);

- FScldE oldBox: TBox');

- Field(’ newBox: TBox'

-0 A

- {SENch

-- A PROCEDURE TDup! icateCmd. Perform{ cmdPhase: TCmdPhase);

- VAR boxVieuw: TBoxView,

- box: TBox:

5- A IthisSel ect ion: TBoxSel ect ion;

-- {$IFC fTrace)BP(12); gSENDC]

- boxVieuw := T oxvieu(ELF. imag e%

-- thisSelect ion : = TBoxSel ect ion{ boxVieu. panel. sel ect ion);

- The current selection is unhighl ighted before perfoming the command as the result
-- of the following command fields set by TCommand. CREATE:

-- unHil iteBefore{ doPhase. . redoPhase] <- TRUE

- The resulting selection is highl ighted after performing the command as the result of the
- following command fields set by TCommand. CREATE:

-- hiliteAfter [doPhase.. redoPhase] <- TRUE)
1- CASE cmdPhase OF

-- doPhase, redoPhase:

2= BEGIN

- thisSel ect fon. box : = SELF. neuBox;

-5 boxView. boxList. InsLast{SELF. newBox);

== undoPhase:

2- BEGIN

- boxView. boxL ist. DelLast{FALSE);

- WITH thisSel ect ion DO

- box : = SELF. ol dBox;

-2 END;

-1 END {CASE};

- boxView. Inval Box(SELF. neuBox. shapelRect);

- se] f. image. vieu. panel. sel ect jon. HarkChanged; {allov this document to be saved)
- {SIFC fTrace)EP, f

-0 A END;

~= END;

- METHODS OF TBoxProcess;

a- 2 FUNCT ION TBoxProcess. CREATE: TBoxProcess;

-~ Sch fTrace)BP{11); PENDC

- ELF := TBox rocess(Process CREATE(NewOb ject(mainMHeap, THISCLASS), mainHeap));
-- (lec fTrace)EP; { SENDC

-0 A

- A FUNCTION TBoxProcess. NewDocHanager{volumePrefix: TFilePath, openAsTool: BOOLEAN): TDocManager:

appia cormpatar

21 Rug 1884 12:38B:44 ‘ UBBOXER. TEXT

Page 8

rNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNMNNNMNNNNNNNNNNNMNNNNNNNNNI\)NNNNMNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNN N

0-
-0

A

0- A

SIFC fTrace}BP(11); { SENDC)
euDocHanager := T oxDocnanager CREATE(NIL, mainHeap, volumePrefix);
END: {SIFC fTrace)EP; { SENDC}

END;

METHODS OF TBoxDocManager,

FUNCTION TBoxDocManager. CREATE(object TOb ject; itsHeap: THeap; itsPathPrefix: TFilePath)
TchDocnanager

GIN
stc ﬂncea‘BP(llé; { $ENDC)
F object =
object : = NewOb ject{ itsHeap, TﬁlSCLASS%:
SELF :'= 'lBoxDocHanage TDocHanager. CREATE{ ob ject, itsHeap, itsPathPrefix));
(SXFC fTrace}EP; {SEND

ggNCTION TBoxDocHanager. Newll indow(heap: THeap; wmgrlID: TWindowlID): TWindow;
{SIFC fTrace}BP(11); {senaz
Newliindow : = TBoxWindow. CR ATE(NIL, heap, uwgrlD).

END {SIFC fTrace}EP; { SENDC

END;

METHODS OF TBoxWindouw;

FUNCTION TBoxW indou. CREATE(obJect TObject; itsHeap: THeap; itsWmgrID: TWindouwID): TBoxWindow;

SIFC fTrace BP(I'\‘)% { $ENDC}
F object =

object : = NewObject(itsHeap, THISCLASS);
SELF : = TBoxWindouw Thhndou CREATE(ob ject, itsHeap, ftsWmgrlD, TRUE));
{Sch fTracelEP; {

PROCEDURE TBoxW indou. Bl ankStat ionery;
VAR vieuwlLRect: LRect;
anel: TPanaI
oxVieu: TBotheu;
aSel ect fon: TSel ect ion;
BEGIN
{$IFC fTrace}BP(10); { SENDC}

panel := TPanel. CREATE(NlL SELF. Heap, SELF, 0, 0, [aScroll, aSpl it], [aScroll, aSplit]);

Set_Rect{viewLRect, 0, 0, 5000, 3000);
boxVieuw : = TBoxView. CREATE(NIL, SELF. Heap, panel, vieuLRect);
boxView. InitBoxL ist(SELF. Heap);

ND: {SIFC fTrace)}EP; { SENDC)

PROCEDURE TSoxhl indow. ClearAll;
VAR boxVieuw TBoxView;
nel: Tpanel;
ox TBox;
TListScanner;
G uSeI ect jon: TSelect ion;

{SIFC fTrace}BP(10); { SENDC)

gane] := SELF, selectPanel;
oxView : = TBoxView(panel. vieu);
s : = boxVieuw boxList. scanner;
WHILE s. Scan{box) DO
s. Del ete(TRUE);
aSelect ion : = panel. sel ect ion. F reedAndRepl aceby{ boxVieuw. NoSel ect ion);

nel. Inval idate;
Y;IFC fTrace}EP; {SENDC)

EEEETION TBoxW indouw. NewCommand(cmdNumber: TCmdNumber): TCommand;
N
{$IFC fTrace)BP(11); {$ENDC)
CASE cmdNumber OF
uClearAll:
put up an alert saying that this will not be undoable }
F parggc]:ls caut jon{cantindo) THEN
NeuCommand : = TCommand. CREATE(N]L SELF. heap. c¢mdNumber, SELF. selectPanel.
FALSE, revealNone);
SELF.Clearall;
END;
OTHERWISE
NeuCommand : = SUPERSELF. NeuCommand(cmdNumber);

END;
{SIFC fTrace)EP; {SENDC)
END;

FUNCTION TBoxkindow. CanDoCommand(cmcdNumber: TCmdNumber; VAR checkIt: BOOLEAN): BOOLEAN,
N
gyrc ﬂnce)BPSll); { SENDC)
SE cmcdNumber OF
uClearall:

view,

&4 AUY ATO4 1L S0 44

UbBUXLK. TEXT

Page 10

=ERNNORONNNNON)

2-
-2
-1
-0

END;

END.

BEGIN
CanDoCommand : = TRUE;

END;
OTHERUWISE

EN CanDoCommand : = SUPERSELF. CanDoCommand(cmdNumber,
- {SIFC fTrace)EP; { SENDC}
END;

check It});

21 Rug 1884 12:3B: 44 ' UBBOXER. TEXT Page 11
(

1. ubboxer. TEXT
2. UtBoxer2. text

-8..
glankSLationery 1;2' } 623+(2)
oX 4
box . 97 (1 120 (1 119+(2) 125 2) 126 2) 127 2) 134-(2) 139 (2) 140 2 149+(2
165«(2) 157 (2) 164 2) 2i3s(2) 233 2) 256 (2) 262 (2) 289 (2) 293 2 323=(2
330«(2) 331s(2) 331.(2) 348+(2) 352 { 2) 358=(2) 358 (2) 372(2) 378 (2) 401 (2
A42=(2] 459°(2) 463=(2] 463 2) 469 (2) 470 2) 4711 2) 487+ 2) 495={ 2) 496 (2
497 (2) 524~ 2) S44=(2} S52=(2) 643~{ 2) 653 2
boxList ng % 124 (2) 138 (2) 184-(2) 187«(2) 188=<(2) 188 (2) 423 (2) 545 (2) 550 (2)
boxSel ect ionKind 28°(1] 164 E 2; 408 2;
BoxUWith 78-(1 118+(2) 155 2
-C- :
Canﬂsggmmand 1%?‘ i ég;‘ % 302-(2) 308=(2) 311«(2) 311 (2) e682°(2) 688=(2) 691=(2) €31 (2)
cantUndo .
Clearall 185+(1) 640°(2) 672 (2
color §3¢(1) 135<(1 12«(2 37 (2) 441s=(2) 468 (2) 469=(2) 469 (2) 470=(2)
col o) ack 25+(1 45 { 1 42 { 2
col orDkGray 24+ 1 41 (2
co%orﬁrgy g;' } %g % 40 (2)
colorltGray -
colorihite 21+(1 45 (1 38(2) 2% (2
CREATE s6-(1 75°(1 100=(1 123<(1) 138<(1) 1S0-(1 161 1) 170 1 179 (1 Se(2
97+(2] 103 2) 160 (2) 164 (2) 1B7 (2) 1%6 { 2) 205+(2) 211 2) 289 (2) 293 (2
X21+(2) 328 (2) 330 (2) 408 2) 434+(2) 440 2) 485+(2) 492 (2) See-(2) 571 2
575.0 2 geef 2 595 (2 603 2) 130 2) els(2) e30(2) ex2(2) 670(2
createBoxSelecti 29+(1) 328 (2
-p-
Drau ss-E 1; as-i 13 za-é 23 135-{ 2; 140 (2)
Drauf rame 62-(1) 54-(2) 352 (2) 394 (2
-F-
Fields Sig.g gi 109°(2) 111 (2) 218°(2) 220 (2) 336°(2) 338 (2) 447-(2) 443 (2) S13+(2)
Free s802+(2) 506 (2)
-H-
Highl ight 104+(1) 154 (2) 166 (2) 227*(2)
_[-
InitBoxL ist 89'2 1; 183'{ 2; 634 { 23
Inval Box B8i°(1) 174<(2) 258 2) 260 (2) 411 (2) 471 (2) 556 (2)
-L- !
LRect §2 (1) 67 (2) 243 (2) 345 (2) 388 (2) €24 (2)
-M-
HouseMove 107+ 1) 127+(1) 240<(2) 344-(2)
HousePress 83=(1) 146°(2
HouseRel ease 108+(1) 128=(1) 268<(2) 385~(2)
-N-
newBox 147 1 497-{ 2; 506 { 2; S44 g 23 545 23 556 E 2;
NeuwCommand %;é‘ % 186+(1) 278+(2) 289=(2} 293=(2) 2%6={ 2) 296 (2) 661°(2) 670=(2) 676=(2)
NeuDocManager 162+(1 576’§ 2} S79-§ 2}
Neuwl 1ndou 172=(1) 600*(2) 603«(2
NoSe] ect jon - 90-(1) 193<(2) 1%6=(2) 655 (2)
-0~
ol dBox 147 (1) 494=(2) 852 (2)
-P-
PaintHandl es 59’§ 13 65'5 2} 233 i 23
Perform 141-(1 154+(1 456+(2) 522+(2)
-Q-
QuickDrau 16<(1)
-S-
shapelLRect 52 1 11={ 2 34 2 47 2 48 2 89 (2 67’5 23 79-5 23 79 2 23 B8O % 23
126 (2) 243~(2) 256=(2) 256 { 2) 258 2] 289 (2) 260 (2) 262=(2} 282 (2} 374 { 2
375 2 378 (2) 403 (2) 471 2) 49 (2) 556 (2
7=
TBox 49+(1 56 (1 78 § 1; 97 { 12 120 i 1} 134 E 1; 147 s lg 3’§ 2} i Zg 118 g 22
%%2 g ézg g 148 (2) 323 2) 330 (2) 348 (2) 386 (2) 459 (2) 487 (2) 495 { 2
fogmmer il GG g mg g (D
TB:;S;?:::?on 94«(1 101 { 1 164 (2) 196 (2) 203-(2) 206 (2) 211 2) 4Q8 2) 525 (2) 528 (2
TBoxVieuw 69+(1 76 { 1 95+(2 98 2) 103 (2) 242 (2) 246 (2) 279 (2) 284 2) 3474{ 2
37 (2) 387 (2) 395 (2) 457 (2) 462 (2) 523 (2) 528 (2) 626 (2) 633 2) BAL { 2
650 (2
e TN iy sy gy (0 e
olor . .
TCommand %%% % 133 (1) 146 (1 186 { 1) 278 (2) 440 (2) 449 (2) 492 (2) 515 (2) 661 (2)
TCreateBoxSelect 117¢(1 124 (1 160 (2) 319°(2) 322 (2) 328 (2)
TDocManaper 163 (1 167 (1) 576 (2} 8595 2
TDup! icateCmd 146+ 1 151 1) 293 (2) 483-(2) 486 (2) 492 (2)
}%gﬁt ¢ zg i 184 { 2) 187 (2
ec
TProcess 158 (1) 571 (2
TRecol orCmd 133+(1 136 { 1 289 { 2 452'5 2; 435 2 23 440 E 2})
TSelection sgg % Szg é 117 (1 147 { 2) 193 2 211 2) 220 (1 2) 328 (2) 338 (2) 38%{ 2)
TView 69 (1 111 2
TWindow 172 (1) 176 { 1) 600 (2) 618 (2)
"U'
UEBoxer S+(1
UABC 18-(1
uBl ack 36+(1 288 23 306 § 23
K uClearAll 38(1) 666 (2) 686 (2 y

21 Bug 1884 12:38:44 UBBIXER. TEXT Page 12
4 T
uDkGray 35+(1 288 (2) 306 (2)
UWrav 17¢(1
ubupl icate 37°(1) 282 (2) 307 (2)
UFont 13+ 1
uGray 34+{ 1 288 2 2; 306 2 2;
ultGray 33+(1 288 (2) 306 (2
Uob ject 10+(1
ubthite 32+(1 288 (2) 290 (2) 306 (2)
=+ End Xref. 68 id's 419 references [400264 bytes /4931 id s/40171 refs)
/

[Segment 10]

Filters

Purpose of this segment:
1. To introduce filters and filtered commands.
2. To reimplement reco/orand duyp/icate to utilize filters.
3. To make c/ear a//an undoable command using filters.

How to use this segment:

This is the tenth segment in the self—paced introduction to the ToolKit. This
segment follows the segment on commands, and precedes the segment on advanced
commands with cut & paste.

This segment presents a way to undo commands that make major changes to a
document. This undo strategy is based upon the concept of filters.

INTRODUCTION TO FILTERS

When implementing undo there are two basic strategies. The first we used in
the previous segment — let the command save the information necessary to
restore the document before changing it.

It is easy to imagine cases where this strategy is too complicated to
implement or where it requires too much space. For instance, to undo a shade
command in LisaDraw you must remember the original color of every box that was
affected by the command. To undo a cut in LisaDraw you must remember the
objects themselves, their positions in the list, and any reiatlon they have with other
objects in the document.

Whenever the size or the complexity of the information necessary to restore
the document becomes unreasonable there is a second undo strategy available. The
second undo strategy involves a concept called a 7//ter:

Filters provide a way to change the display of a document without making any
changes to the document’s data.

There are basically two types of filters: fransparenc/esand s/eves The
following scenarios illustrate the two types.

10-1

transparencies

Ferd Berfel is trying to design a house. He has a blueprint and wants to try
out different changes to the blueprint without a damaging it. He lays a
transparency, with the changes he is considering on it, over the blueprint. Then,
when he views the blueprint through the transparency, he sees the blueprint as if the
change were actually made. What he is seeing is the w/rfua/blueprint. 7he actua/
blueprint has not been changed.

The transparency with its additions is the filter through which the blueprint is
perceived. In Boxer, the blueprint would be the document's view object. 77 view,
of course, Is displayed through the window. The virtual view is the actual view plus
the changes made by the cornmand. '

Transparencies are used by commands, such a8 dup/icate that add boxes to the
display.

To undo a change, the document’s window is updated with the filter removed.
To redo a change, the window is updated with the filter reinstated. When Ferd is
satisfied with a change, he commits the change to the blueprint.

sieves

Ferd Berfel is now trying to modify the recipe of the pie baked by a
pie—making machine. The pie—making machine has various compartments, each _
holding a single ingredient éuch as flour, butter, pecans, etc.). To make the pie, the
machine measures out, in sequence, appropriate quantities of each ingredient in the
recipe. During the process various ingredients are mixed together and layered into a
pie pan. Finally the pie is baked. o

Ferd Berfel decides that pecans are not needed for this pie: so he blocks the
hole to the compartment holding the pecans. None the wiser, the pie—making
machine proceeds to make another pie. The pie pops out of the oven without pecans.

The recipe for the pie without pecans is a virtva/recipe. The actual recipe
uses all of the original ingredients in the compartments of the machine. Blocking
the compartment is like using a sieve to filter out that ingredient. Effectively, Ferd
used a sieve to filter out the pecans. st as easily Ferds sieve could have filtered
out the pecans and inserted peanuts instead: thus producing a different virtual recipe.

The sieve is the filter through which the ingredients in the recipe are
delivered to the pie. The pie is like a document's display; the recipe is the analogue
of the document's view; the ingredients are like the objects in the view. The display
(the pie)of the virtual view (the virtual recipe)may exclude some of the objects
(the ingredients)in the actual view (the actual/ recipe)

In Boxer, sieves are used by commands that modify a box (eg. recolor) or
remove it from the display. '

When Ferd is satisfied with his virtual pie, he commits the change to the
recipe by replacing the contents of the pecan compartment (either with nothing or
with peanuts).

10-2

WoplEALE,

Fikared comynerd is genersied to dplicate box b

(dplicatz box not yet pert of actual view)

plicate would go @

when done ar redone the fNkered cormmeand
yielas thts virtual view

(¢

Facumkmmwmwbm

fAictual
View
(Criginal)

Ae new colar is not yet part of the actual view)

when the comrnand is undone
the actual view is displsyed

Virtual and Actual Parts

Any document can be broken down into its component parts. The document
can be enumerated by listing all of those parts. But a distinction must be made
between the parts actually in the document and those added, modified, or removed by
the filter.

The parts actually in the document are called gctua/ parts Those passed
through by the filter are called v/rtua/ parts Virtual parts become actual parts
when they are committed to the document.

In Ferd Berfel's pie making machine the ingredients are components of the
recipe. Those that are currently in the compartments are the actual ingredients
Those that end up in the pie due to the filtering action of the sieve are the virtual
ingredients. When Ferd replaces the contents of the'blocked compartment with the
ingredient (or lack thereof? supplied by the sieve, he is committing the change. He
no longer needs the sieve. :

filtering in applications

Once an application has been structured to suppor{ filtering, any
application—defined command can use filters, though none is required to.

Filtering is something your application never needs to worry about. The
Generic Application makes sure that filtering only occurs during the ogboFPhase and the
redoFhase. The filter is turned off during the wbPhase When the command is -
committed, the changes induced by the filter are made permanent in the document.

Note: Many edrting commands are more easily implermented without filters. [t /s
not the purpose of this segment to suggest that all commanos should be use filters.
Just keep 1n mind that for many commands, It Is easier and more efficient (o usé
them.

STRUCTURING APPLICATIONS TO USE FILTERS

Filtering can occur whenever the document, typically its view (or window), is
enumerating its parts. Drawing is a prime example of this. In Boxer, for example,
the application enumerates the objects in the document by stepping through the
view's boxList. To draw, the view has each of its objects draw themselves. Drawing
can be easily restructured for filtering.

Up until now our views have always implictly drawn their actual parts. To
support filters, ways must be explicitly established to draw both the actual parts of
the view and its virtual parts.

the actual parts of the view

Defining an EachActualPart method to enumerate the actual parts of the
view is the first step. The sample boxView method below enumerates the parts (the
boxes) of the view:

PROCEDURE {TBoxview.} EachActualPart{(PROCEDURE DoToObject(obj: TObject))}:
BEGIN ’
{SELF refers to the boxview)}

10-3

{The following line supplies each box in the boxList as the sole parameter to
, the procedure - DoToObject)
SELF. boxList. Each(DoTOOD ject)

END:

{view.JEachActualPart performs some action upon each of the enumerated
objects. The complementary method, {view.JEachVirtualPart, is the entry to the
filter mechanism. 7h/is method defined by the ToolKit is rarely redefined by the
aoplication.

filters at the command level

it is only natural that the command does the &ctual filtering. The second step
in supporting filters is defining the method of filtering for each command.

Each command class that implements filters must define one of two methods:
EachvirtualPart or FilterAndDo. '

{command.}EachVirtualPart is most often used to implement
transparency—type filters. Code for the ayp/icate command's EachVirtualPart
method is listed below:

{This method adds the duplicate box as & virtual part.

The duplicate box is refered to by SELF.newBox} ‘ .
PROCEDURE {TDuplicateCnmd. YEachVirtualPart{(PROCEDURE DoToObject(filteredddj: TObject))}:
BEGIN

{This is a transparency-type filter}

{First perform the action, DoToObject. upon the actual parts of the view)

SELF.image. EachactualPar t(DoTo0bject);

{Next, perform the action on the part to be added}
DoToObject(SELF. newBox);
END;

{command.}FilterAndDo is typically used to implement sieve—type filters.
Code for the reco/or command's FilterAndDo method is listed below:
{This method recolors the selected box.
The selected box is referred o by SELF.box)
PROCEDURE {TRecolorCad. }FilterAndDo{(actualOdj: TObject;
PROCEDURE DoToObject(filtered0dj: TObject))}:
VAR tempColor: TColor:
box: TBox;
BEGIN
{This is a sieve-type filter}
box := TBox(actualobj): {coerce the actusl part to be a box}
{Check the box to see if it is the one to be modified (or filtered out)}.

10-4

{If it is the box to be modified, then substitute & new color}
~ IF box = SELF.box THEN
BEGIN
tempColor = SELF.box.color; {save the box's original actual color}
SELF.box.color := SELF.color; {replace the box's color, with the virtual color}

DoTo0bjec t(SELF. box); {draw the box with the virtual color}
SELF.box.color := tempColor: {restore the box's actual color)
END
{Othervise pass the box through unchanged}
ELSE
DoToObject(box):;
END;

Code for a hypothetical ae/efecommand's FilterAndDo method is listed below:

{This method deletes the selected box}
PROCEDURE {TDeleteCnd. }ilterAndDo{(actualObj: TObject:
PROCEDURE DoTo0bject(filteredObj: TObject))):
VAR box: TBox;
BEGIN
{This is a sieve-type filter} '
box := TBox(actualObj); {coerce the actual part to be a box)
{Check the box to see if it is the one to be filtered out (or modified)}
{If it is the box to be filtered out, then do not pass it through)
IF box <> SELF.box THEN
DoToObject(box);
END.

ACCESSING A VIRTUAL DOCUMENT

Accessing a virtual document is very different from accessing a document's
actual parts. The main reason is that the view has no idea what the virtual parts
are. Only the current filtering command knows which parts are in the virtual
document.

Take drawing boxes for example. The code below only accesses the actual
boxes in a Boxer document:
{version of Draw that draws the actual parts only)
_PROCEDURE {TBoxView. Yoraw;
PROCEDURE DrawBox(obj: TObject):
BEGIN
T80x(00j). Draw;
END; ‘
BEGIN

10-5

SELF.boxList. Each(DrawBox); {equivalent to: SELF.EachaActualPart(DrawBox))
-END;

Whereas the following code is needed to access the boxes in a virtual Boxer
document
{version of Draw that draws the virtusl parts)
PROCEDURE {TBoxView. Y0raw.
PROCEDURE DrawBox(obj: TObject):
BEGIN
TBox(obj). Draw;
END:
BEGIN
SELF. EachVirtualPar t(Drawbox);
END;
Note: When filtering is not active the virtual document is the same as the actua/
adocument.

If your application Only needs to operate upon a specific object in the virtual
document, there is a special method for that — FilterAndDo.

{view}.FilterAndDo is a single object filter routine. It performs some action.
on a specified object once it has been passed through the active filter.

whenever you want to access the virtual document, you must now call
EachVirtualPart or FilterAndDo and pass in a DoToObject procedure parameter.
The key points to remember with procedure parameters are:

1. The procedure passed usually is local to the method that initially passes it.

2. The parameter inside that procedure is of type TObject and must be
coerced to be used.

filtering flow of control

EachVirtualPart passes the document's parts through the current filter,
according to the following flow of control:

view.EachVirtualPart v DrawProc {Timage.}
window.FilterDispatch v DrawProc {TWindow.}
- command.EachVirtualPart v DrawProc {*}

If the current command has overridden EachVirtualPart (providing
transparency—type filtering), then the flow of control stops here. Otherwise it
proceeds as follows:

command.EachVirtualPart v DrawProc {TCommand.}
{ FilteredDrawProc: SELF.FilterAndDo(actuslObj, OrawProc))

10-6

view.EachActualPart v FilteredDrawProc {TBoxView.}

"boxList.Each v FilteredDrawProc {TLinkList.}
{for each box in the box list} ‘
-> command.FilterAndDo v box v DrawProc {*}

This results in sieve—type filtering if the current command has overridden
- FilterAndDo. Otherwise the actual parts are passed, unchanged, to DoToObj.

If the current filter is not active (the phase is wndoFhase), the flow of
control is as follows:

view.EachVirtualPart v DrawProc {TImage.}
window.FilterDispatch v DrawProc {TWindow.}
view.EachActualPart v DrawProc {TBoxView.}

summary of virtual document access methods
(window and view) |
The virtual document access methods in the view and the ones in the window

are equivalent. Two sets are provided for convienence. Use the methods of the view
when your view controls your data, and the methods of window when your window
controls the data.

These methods are summarized below:
PROCEDURE {TWindow. }EachActualPart(PROCEDURE DoToObject(filtered0bj: TObject)): DEFAULT;
PROCEDURE {TInage. YrachaActualPart(PROCEDURE DoToObject(filteredobj: TObject)): DEFAULT;

EachActualPart enumerates the actual parts of the document, passing each
part to the procedure DoToObject. This must be overridden by the
application.
PROCEDURE {TWindow. }EachVirtualPart(PROCEDURE DoToObject(filteredObj: TObject)); DEFAULT;
PROCEDURE {TImage. YEachvirtualPart(PROCEDURE DoToObject(filteredObj: TObject)); DEFAULT;

EachVirtualPart, via the active filter, enumerates all the virtual parts ot
the document, passing each part to DoToObject. When no filter is active,
only the actual parts are passed to DoToObject. This method should not be
reimplemented.
PROCEDURE {TWindow.}FilteranaDo(actualObj: TObject. PROCEDURE DoToObject(filteredsdj: TObject)):
PROCEDURE {TImage.}FilterAndDo(actualObj: TObject; PROCEDURE DoToObject(filteredobj: TObject)):

10-7

FilterAndDo should also never be reimplemented. It takes a part and the
DoToObject procedure parameter and passes them to any active filter. if
no filter is active, it passes the part directly to DoToObject.

Outside of specifying an EachActualPart method for the view, the bulk of the
implementation rests with the command classes.

command filter methods
In addition to implementing two new methods, FilterAndDo and
EachVirtualPart, we need to modify the function of Perform and Commit.
PROCEDURE {TCommand.} EachVirtualPart(PROCEDURE DoTodbject(filtered0bj: TObject)):
EachVirtualPart passes each actual paft of the view (or window) to

DoToObject; then passes any parts added by the command (the virtual
parts) to DoToObject as well.

PROCEDURE {TCommand.} FilterandDo(actualObj: TObject:
PROCEDURE DoToObject(filteredddj: TODject)):
FilterAndDo passes only those actual parts of the view (or window) to
DoToObject that are not affected by the command. The part or parts

that are operated on by the command, may either be filtered out or
modified. ,

PROCEDURE {TComnand.)} Perform(cmdPhase: TCmdPhase): DEFAULT

Perform typically does very little now. On each of the command
phases any document state information that was not saved by the
CREATE must be saved; and the screen area that needs to be updated
should be invalidated.

PROCEDURE {TCommand.} Commit;
Commit performs the actual changes to the document.

IMPLEMENTATION

; We modify the previous stage of Boxer, 6Boxer, to implement filtered
recolor, auplicate and cfear a// commands.

user_interface

The user interface for this stage of Boxer, 7Boxer, has changed in only one
respect — the c/ear a//command is now undoable.

10-8

implementation of Filtered Jup/icate

To modify the implementation of dyp/icate to support filtering, we need to add or
modify the following methods:

{TDupli _cateCmd.}CFlEATE

CREATE must commit the last command before duplicating. This, for
example, insures that the duplicate of a box which has just been recolored
will have that box's new color and not its old color.

{TDuplicateCmd.}Per form

Perform is now very simple. The o’aP'/)ase‘aqd‘ redoPhase are equivalent;
and merely reset the selection to the duplicate. The wndoPhaseresets the
selection to the original box. All phases invalidate the newly selected box.

{TDuplicateCmd.JEachVirtualPart

EachVirtualPart passes to DoToObject all the actual boxes of the
document. [t does this by calling: view.EachAcutalPart(DoToObject).
Next it passes the duplicate box by calling: DoToObject(SELF.newBox).

{TDuplicateCmd.}JCommit

- Commit now has the honor of inserting the duplicate box into the view's -
boxList.

Since duplicate does not change any actual box, we do not need to reimplement
FilterAndDo.

Implementation of Filtered Aeco/or

To modify the impiementation of reca/orto support filtering, we need to add or
modify the following methods:

{TRecolorCmd.}Per form
Perform simply invalidates the selected box to force a redraw.
{TRecolorCmd.}JFilter AndDo

If the box passed to FilterAndDo is the selected box, its color is changed
before being passed to DoToObject, then restored when DoToObject
completes.

{TRecolorCmd.}JCommit
Commit now has the honor of changing the box's color.

Since reco/or does not add any boxes, we do not need to implement
EachVirtualPart.

10-9

implementation of Fnltered Clear All

To modify the implementation of c/ear a// to be undoable and support tiltering. we
need to add or modify the following methods:

{TClearAl l.}CBEATE

Creates a c/ear a//command object. Sets its kind field to the kind of the
current seiection.

{TClearAll.}Perform

Resets the selection's kind to nothingKind on the doFhase and redoFhase.
Resets it to SELF.kind on the wadbFhase All phases invalidate the panel.

{TClearAll.}EachVirtualiPart

EachVirtualPart does nothing; since no boxes are in the virtual document.
{TClearAll.}JCommit

Commit deletes all the boxes in the view.

Since c/ear a//does not modify any actual bbx. we do not need to reimpiement
FilterAndDo. Aote: Clear A/l does delete actual boxes, but it is a blanket
operation rather than one applied to selected boxes.

Implementation Summary

The actual implementation for 7Boxer is summarized below The code for
BbBoxer is used as the base for all changes.

New Classes
[TClearAllCnd]
FUNCTION {TClearAllCmd.)CREATE(object: TObject; itsHeap: THeap;
1tsCndNumber: TCmoNumber: itsView: TBoxView)
. TClearAllCAd; '

PROCEDURE {TClearAllCmd. }Commit: OVERRIDE:

PROCEDURE {TClearAllCnd. JPerform; OVERRIDE:
PROCEDURE {TClearAl1Cmd. YEachVirtualPart(PROCEDURE DoToObject(filteredobj: Tobject));

New Methods (for existing classes)
[TBoxvien] ,
PROCEDURE (TBoxView. JEachAc tualPar t(PROCEDURE DoToObject(filtereddbj: TObject)):

10-10

OVERRIDE ;

{TBoxView.JEachActualPart passes each box in the view's
boxList to DoToObject. It calls:
SELF.boxList.Each(DoToObject).
[TDuplicateCnd]
PROCEDURE {TDuplicateCad. YEachVirtualPart(PROCEDURE DoToObject(filteredobj: Tobject)):
OVERRIDE ;
PROCEDURE {TDuplicateCnd. YCommit: OVERRIDE:

[TRecolorcad] ‘
PROCEDURE {TRecolorCnd. }¥ilterAndDo(actualobj: ,T0bject;
PROCEDURE DoToObject(filtered0bj: TObject)):
OVERRIDE;
PROCEDURE {TRecolorcmd. }Commit; OVERRIDE;

Modified Methods
[TBoxWindow]
PROCEDURE {TBoxWindow. HiewConnand: OVERRIOE:

{TBoxWindow.INewCommand now creates a ¢/ear a//command
in response to a c/ear a//menu event.

[TOuplicateCnd]
PROCEDURE {TDuplicateCnd. }Perform{cadPhase: TCmdPhase); OVERRIDE:

[TRecolorCad]
PROCEDURE {TRecolorCmd. YPerform{cmdPhase: TCmdPhase): OVERRIOE:

Deleted Method

[TBoxuindou]
PROCEDURE {TBoxWindow. }ClearAll;

10-1

9 Rug 1884 16:00:28

X7BOXER. TEXT

Page

-

27
SLOT2CHANL
.no assembler files

;no building blocks

s
; no 1inks

$
y
y
n
B

1N

9 Rug 1884 15:88:11 P7BOXER. TEXT

Page

[

—
1
3
2500

$-%8007-TK/PABC

; Apple building block phrase files can be included here

1000
L isaBoxer

PROCEDURE { TBoxW indou.] NeuCommand
B cantUndo = 1001;

1001 caut ion cance] alert

You will not be able to undo ClearAll.

0

1
$-#BOOT-TK/PABC™F il e/Print

Edit

Undo Last Change®205
Dup! icate/D¥1011
Clear All /Z#1012

3

Shades
White#1006
Light Gray#i007
Gray*1008

Dark Gray®1009
Black®1010

S

$-*B00T-TK/PABC™Page Layout
99

$-#B00T-TK/PABC Debug

100
$-*B00T-TK/PABC™Buzzuords
Create Box¥2000

Move Select ion®2001

0

9 Rug 1984 15:55:19 M7BOXER. TEXT Page 1
4 R
PROGRAM M7Boxer;

USES
{$U UOb ject } UOb ject,
{$IFC 1 ibraryVersijon <= 20}
éw UFont} UFont,
{sENDC}
$U QuickDrau QuickDraw,
$U UDrau UDrau,
$U UABC UABC,
{$U U7Boxer } U7Boxer;
CONST
phraseVersion = 1;
BEGIN
process : = TBoxProcess. CREATE;
process. Commence(phraseVersion);
process. Run;
process. Compl ete{ TRUE);
END.
g J

110 -- {Command Dispatch)

21 Bug 1984 12:42:07 U7BOXER. TEXT Page

—~

1 1 -- This segment of the LisaBoxer sample program implements Filtered Undo

1 2 -- t Cop;sfright 1983, Apple Computer lInc.} e)

% i - { $€ ERRORS. TEXT}

i 2 -- UNIT U7Boxer;

1 7 -- INTERFACE

1 8 -~

1 9 -- USES

i ig - {sU UOb ject} Uob ject,

1012 -- {$IFC | ibraryVersion <= 203,F

113 -- é&u UFont} ont,

i ig -- { SENDC) v

1 16 -- $U QuickDraw) ‘QuickDrauw,

1 17 -- $U UDraw)} UDrau,

1 18 -- {$U UABC} UABC;

1 19 -- .

1 20 -- CONST

1 21 -- colorhite = 1;

1 22 -- colorLtGray = 2;

1 23 -- colorGray = 3;

1 24 -- colorDkGray = §;

1 25 -- colorBlack = §5;

1 26 --

1 27 -- { selection kinds }

1 28 -- boxSel ect fonKind = 1;

i gg -- createBoxSel ect ionKind = 2;

1 31 -- { Henus }

1 32 -~ uhite = 1006,

1 33 -- ulLtGray = 1007;

1 34 -~ uGray = 1008,

1 35 -~ uDkGray = 1009;

1 36 -- uBlack = 1010;

1 37 -- uDupl icate = 1011;

1 38 -- uClearAll = 1012,

1 39 -~

1 40 -- TYPE

1 41 --

% 2§ - TColor = colorihite, . colorBlack; {color of a box}

} :g -- {Neu Classes for this Appl ication}

i :g -- TBox = SUBCLASS OF TOb ject

1 48 -- {Variables}

1 49 -- shapelRect: LRect;

i .‘gg - colon TColor;

1 52 -- {Creat ionmestmction}

% 22 -- FUNCTION TBox. CREATE(ob ject: TObject; itsHeap: THeap): TBox;

1 585 -- Highl ight ing support }

% ég - t PRgCEDgRE Tgox. PaintHandl es;

1 88 -- { Framing while creating }

% Ss)g - PROCEDURE TBox. Drauf rame;

1 61 -- {Display}

1 62 -- PROCEDURE TBox. Draw;

1 63 -- END;

1 64 --

1 65 --

J{ gg - TBoxView = SUBCLASS OF TView

1 68 -- {variables}

1 69 -- boxL ist: TList;

1 .70 --

1 71 -- {Creat jion/Dest ruct ion}

1 72 -- FUNCTION TBoxView. CREATE(object: TObject; itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)

i ;2 -- : TBoxView;

i ;2 -- FUNCTION TBoxView. BoxWith(LPt: LPoint): TBox;

1 77 -- { Inval idat ionL

i ;g -- : PROCEDURE TBoxVieuw. Inval Box(invalLRect: LRect);

i g? -- PROCEDURE TBoxVieuw. HousePress(mouselPt: LPoint); OVERRIDE;
{1 82 -- {l)isplagej

i gi - PROCEDURE TBoxView. Draw; OVERRIDE;

1 85 -- {Filtortng} '

} g; - PROCEDURE ~ TBoxView. EachActual Part(PROCEDURE DoToOb ject(filteredObj: TObject)); OVERRIDE:

1 88 -- { Init ja) izat fon}

1 89 -~ PROCEDURE TBoxView. InjtBoxList(itsHeap: THeap);

1 80 -- FUNCTION TBoxVieuw. NoSelection: TSelection; OVERRIDE;

1 91 -- END;

1 92 --

1 93 -~)

% gg - TBoxSel ect ion = SUBCLASS OF TSelect fon

1 9 -- {Variables}

1 97 -- box: TBox;

1 98 ~--

1 99 -- {Creat ion/Dest ruct ion} .

1 100 -- FUNCTION TBoxSelect ion CREATE(object: TObject: itsHeap: THeap: itsVieu: TVjeuw. {tsBox: TBox;

% lgé -- itsKind: INTEGER; itsAnchorlLPt: LPoint): TBoxSelection;

1 - .

1 103 -- (Dnuing - per pad})

% %gg - PROCEDURE TBoxSel ect jon. Highl ight(highTransit: THighTransit). OVERRIDE;

1 106 -- {Select jon - per pad} .

1 107 -- PROCEDURE TBoxSe] ect ion. HouseMove(mouselLPt: LPoint); OVERRIDE;

1 108 -- PROCEDURE TBoxSel ect ion. HouseRel ease; OVERRIDE;

1

1

AN

2] Bug 1884 12:42:7 U7BOXER. TEXT Page

N

(NM”NNH&HHP”HHMHMHHHHHMMH!—'HHHVHPHMP‘*‘MO—‘I—‘HMHl-ﬂHHHFHMHHHHHHHHHD—‘MMHHHHHHHHHP‘HMHNMHHHHHHb-lO-‘HHHHH)‘HHHHHHHMHHFHHHHHHHH“H N\

A

FUNCT ION TBoxSel ect ion. NeuCommand(cmdNumber TCmdNumber): TCommand; OVERRIDE;
FUNCT ION TBoxSel ect ion. CanDoCommand{ cmdNumbe r~: TcmNumber VAR check It: BOOLEAN)
END . BOOLEAN, OVERRIDE;

TCreateBoxSelect fon = SUBCLASS OF TSelection

{variables)
box: TBox;

{Crest ion/Dest ruct fon)
FUNCTION TCreateBoxSelect ion. CREATE(ob i’ect: TOb ject: itsHeap: THeap: itsView TVieu,
tsAnchorlPt: LPoint): TCreateBoxSelect ion;

{Select ion - per pad}
PROCEDURE TCreateBoxSel ect ion. Mousetove(mouselLPt: LPoint); OVERRIDE;
END. PROCEDURE TCreateBoxSelect ion. MouseRel ease; OVERRIDE;

{ This command recolors the selected box and is undoable)
TRecolorCmd = SUBCLASS OF TCommand
Box: TBox;
colon TColor,

{Creat ion}
FUNCTION TRecol orCmd. CREME(obJect TOb ject; itsHeap: THeap:; {tsCmdNumber: TCmdNumber;
itsView: TBoxView, itsBox: TBox; itsColor: TColor): TRecolorCmd;

{Comand Execut jon}
PROCEDURE TRecolorCmd. Commit; OVERRIDE;
PROCEDURE TRecol orCmd. Per form{ cmdPhase: TCmdPhase) OVERRXDE
PROCEDURE TRecol orCmd. F il terAndDo(actual Obd
END PROCEDURE DoToObject(filteredObj: TObject)); OVERRIDE;

{ This command dupl icates the selected box and is undoable }
TOupl icateCmd = SUBCLASS OF TCommand
ol dBox, neuBox: TBox;

{Creat fon
FUNCTIOZ! TDupl icatelmd. CRE.ATE(object TOb ject; itsHeap: THeap; itsCmdNumber: TCmdNumber,
itsView: TboxView; itsBox: TBox): TDupl icateCmd;

{Command Execut jon}
PROCEDURE TOup! icateCmd. Commit; OVERRIDE;
PROCEDURE TDupl icateCmd. Perform({ cmdPhase:. TCmdPhase): OVERRIDE:
E:OCEDURE TOupl icateCmd. EachVirtual Part(PROCEDURE DoToOb ject(f il teredob j; TObject)); OVERRIDE;

{ This command clears the viev and is undoable }
TClearAll1Cmd_= SUBCLASS OF TCommand
{Variables)
kind: INTEGER;

{Creat ion
FUNCTIOL TClearAl) Cmd. CREﬁTE(obiect T0b ject; itsHeap: THeap: itsCmdNumber: TCmdNumber;
View: box\)ieu) TClearAllCmd;

{Command Execut ion}
PROCEDURE TClearA]]Cmd. Commit; OVERRIDE;
PROCEDURE TClearAllCmd. Perform(cmdPhase: TCmdPhase); OVERRIDE:
EROCEDURE TClearAll1Cmd. EachVirtual Part(PROCEDURE DoTo0b ject(filteredObj: TObject)); OVERRIDE;

TBoxProcess = SUBCLASS OF TProcess

{Creat ion/Dest ruct fon})
FUNCTION TBoxProcess. CREATE: TBoxProcess;
FUNCTION TBoxProcess. NewDocHanager{ volumePrefix: TFilePath, openAsTool: BOOLEAN)
b : TDocManager; OVERRIDE;
END;

TBoxDocHanager = SUBCLASS OF TDocManager

{Creat ion/Dest ruct ion} .)
FUNCTION TBoxDocHanager. CREATE(obJegt DTO:Ject itsHeap: THeap; itsPathPrefix: TFilePath)
: oxDoctanager;
ENUQCT JION TBoxDocManager. Newlindou(heap: THeap, umgrlD: TWindowID): TWindow, OVERRIDE;

TBoxhlindou = SUBCLASS OF TWindou

Creat jon/Dest ruct ion
{F UNCT ION TBoxUmdol CREATE(ob ject: TObject; itsHeap: THeap;, itsWmgriD: TWindowlID): TBoxUWindow;

{Document Creat ion}
PROCEDURE TBoxWindouw. Bl ankStat ionery, OVERRIDE;

(Comnds;‘
FUNCTION TBoxlWindouw. NeuCommand(cmdNumber: TCmdNumber): TCommand; OVERRIDE;

EUNCT ION TBoxWindou. CanDoCommand(cmdNumber: TCmdNumber; VAR checkIt: BOOLEAN): BOOLEAN, OVERRIDE;

IMPLEMENTAT ION

sﬂ U750xer2 text}
{U7BOXER2

HETHODS OF TBox;
FUNCTION TBox. CREATE(ob ject: TObject; itsheap: THeap): TBox;

appia compatar

—- ey aeUT dl R W U/DUALK. ALAL rage

77NN R A RO R I A R A R A R A A I R A R R R AR NI A RS R R A RN RI A NI R A R IR I R A A A R R R AR R RN R R R R R R R AR A R R AN AR RN RN N RN RN RN

0-
1-
-1
-0
0-
-0

0- A

1-
2~

0-

>

A
A

-0 A

IN

$1FC fTrace}BP(11); { SENDC}

ELF : s NeuwOb ject(1i sHeap. THISCLASS);
WITH SELF DO

BEGIN
shapeLRect : = zerolLRect;
color : = colorGray;

END;
ND: {$SIFC fTrace)EP; {SENDC}

{SIFC fDebugMethods ?
sgg(;ﬁDURE Box. F {e] ds(PROCEDURE F jel d{ nameAndType: $255));

Field(’ shapeLRect: LRect'):;
Field(’ col or: INTEGER);
Field(’

($ENDC]

This draus a Sarticul:r box}
PROCEDURE TBox. Drauw;
UﬁR lPat LPattemn;

Lsnrc ﬂrace)BP(10); { SENDC])
enNormal

If LEEEIX'SSWS ibl e{ SELF. shapeLRect) THEN {this box needs to be draun}

{Get a Quickdraw patterm to represent the box's color]
CASE SELF. color OF

colorthite: 1Pat : = |Patiihite;

colorLtGray: 1Pat := lPatlLtGray;

colorGray: 1Pat : = [PatGray;

c¢ol orDkGray: 1Pat : = |PatDkGray;

col orBl ack: 1Pat : = JPatBlack;

(E)THERMISE 1Pat : = lPawhlte. {this case should not happen}

{Fil]l the box with the pattern, and drau a frame around it}
Fil1LRect(SELF. shapelLRect, Pat):
F rameLRect(SELF. shapeLRect)

END,
(SlFC fTrace)EP; { SENDC)

L Frame a particular box]
P OCEDURE TBox. DrauF rame;

Lsxrc ﬂraca}BP(lO), {senDC}
enNormal ;
Penttode(PatXOr%
FramelLRect (SEL shapeLRect)
END. {$IFC fTrace)EP; { SENDC}

{This calls the DoToHandle Procedure once for each handle LRect; user of this method must
set up the pen pattern and mode before call ing)
PROCEDURE TBox. PaintHandl es;

VAR hlLRect,
shapelRect: LRect;
dh, dv: LONGINT;

gggEEDURE MoveHandl eAndPaint(hOffset, vOffset: LONGINT);

OffsetLRect(hLRect, hOffset, vOffset);
END PaintLRect(hLRect);

BEGIN
gleC f‘Trace]BP(m; {SENDC}
etLRect(hLRect 2)
shapelLRect : = SELF. shapeLRect
WITH shapelRect DO
BEGIN

dh := right - left
dv := bottom -
MoveHand] eAndPa sm.(left' top); {drau top left handie}

END;
HoveHand] eAndPa int{ dh, D; then top right}
HoveHand] eAndPaint (0, dv then bottom right}
MoveHand! eAndPaint({ -dh, O); finally bottom left)

IFC f7 EP; NDC
"D, {s race} EP; { SENDC}

END;

HETHODS OF TBoxView;

FUNCTION TBoxVieu. CREATE(object VTObject itsHeap. THeap; itsPanel: TPanel; itsExtent: LRect)
: TBoxVieu;

GIN
SSIFC ﬂnceLBP(ll)- { $ENDC}
F object =
object : = NeuOb ject(itsHeap, THISCLASS);))
SELF": = TBoxView(itsPanel. NeuVieu(object, jtsExtent, TPrintHanager. CREATE(NIL, itsHeap),

stdHargins, TRUE));
" {$IFC fTracel}EP; {SENDC}

{s IFC fDebuaHet hods

CEDURE Taoxv)uu F iel ds(PROCEDURE F ie] & nameAndType: S255));

GX
TView. F el ds(Field):
Fiel d(' boxList: TList');

END;
{sENDC)'

21 Rug 1884 12:42:07 U7BOXER. TEXT ' Page

RN RN AR RN RN RRNRRRDNRNRNNRIRRNRIRNRNRRNRRNNRRNAR RN RN RN NN RDNRON RN NRNRON I

W

o>

>

END;

& his retums the box containing a certain point}
FUNCTION TBoxView BoxWith(LPt: LPoint): TBox;
PROCEDURE F indBox{ob}: TOb ject);

VAR Sox: TBox;
BEGIN
box : = TBox(ob'}
IF LPt InLRect{(Pt, box. shapelRect) THEN
END: BoxWith : = box; {last one found (front one) is returned)
IN
SIFC ance%BP(ll) { SENDC}
oxWith

SELF. EachVirtual PanBF indBox);
ND {SIFC fTrace}EP; { SENDC)

This draus the] ist of boxes}
PROCEDURE TBoxView. Draw;
PROCEDURE DrauwBox{obj: TOb ject)
VAR box: TBox;
BEGIN
box : = TBox(obj);
box. Drauw;

N
LSIFC fTraca]BP 10).{$ENDC}
ELF. EachVirtual Part(DrawBox);
END; {$IFC fTrace}EP; { SENDC]

EROCEDURE TBoxView. Eachhctual Part{ PROCEDURE DoToOb ject(fil teredObj. TOb ject));

LSIFC fTrace}BP(11 E #SENDC}
ELF. boxL ist. Eoch&i oObJect).
{SIFC fTrace)EP; {

LYhis determines which type of selection to create}
PROCEDURE TBoxVieu. HousePressquseLPt LPoint);
VAR aSelection: TSelection;

anel: TPanel;

ox: TBox;

EGIN
{$IFC n‘race;BP(11); { $ENDC}
panel := SEL
ganel Hsghl ight(panel select ion, hOntoOff); {Tum off the old highl ight ing}
ox : LF. BoxWith(mouselPt}; (Find the box the user cl icked on}

IF box = NIL THEN

{Create an instance of TCreateBoxSel ection}

aSelect ion ;= panel. sel ect ion. FreedAndRep!l acedByv(
ELSE TCreateBoxSel ect jon. CREATE(NIL, SELF. heap, SELF, mouselPt))
L

{Create an instance of TBoxSelection}
aSelect ion : = pane]. sel ect ion. FreedAndRep! acedBy(
TBoxSel ect fon. CREATE(NIL, SELF heap, SELF, box, boxSelectionKind, mouselPt)});

panel . Highl ight(panel. select ion, hOffToOn); {Turn on the high! ighting for the neuly selected box}
sel f. panel. select ion. MarkChanged; Allou the document to be saved so that any changes made}
can become permanent
ND{SIFC fTrace}EP; {SENDC)

;ROCEDURE TBoxVinu Inval Box{ inval LRect: LRect};

gsxrc 7 race}BP(10): { SENDC)
nsetLRect(inval LRect, -3,

SELF. panel. Inval LRect(invalLRect)
END: {sIFC fTrace)EP; { SENDC}

PROCEDURE TBoxVieuw. InitBoxList (itsHeap: THeap);
VAR hoxLlst TList;

(SIFC "ncc}BP(11): {SENDC)

boxList := TList.CR ATE(NIL itsHeap, 0);
SELF. boxList := boxlList:

enD {SI1FC fTracelEP; {SENDC]

sgmxn ION TBoxVieuw. NoSel ect ion: TSel ect ion;

{SIFC fTrace}BP(11); { SENDC])
NoSelect ion ; = TBoxSel ect ion. CREATE(NIL, SELF. Heap, SELF, NIL, nothingKind, zerolPt);
END: {SIFC fTrace}EP; { SENDC}

HETHODS OF TBoxSel ect ion;

FUNCTION TBoxSel ect ion. CREME(object TOb ject; itsHeap: THeap; itsVieu: TVieuw: itsBox: TBox;
ftsKind: INTEGER; itsAnchorLPt: LPoint): TBoxSelection;

GIN
SS!FC ﬂractLBP(11)' {$ENDC}
F object =
object : = NcuObiect(jitsHeap, THISCLASS):)
SELF : = TBoxSelect on{ TSel ect ion. cREﬁTE(obJect itsHeap, itsVieu, itsKind, itsAnchoriPt}):

appia compatxar

.21 Rug 1884 12:42:07 U7BOXER. TEXT Page

5

(NNNN’MNNMNNNNNNNNNNNMNNNNNMMNNNNNNMMNNMNNNNNNNNNNNNMNNNMNNNMNNNNNNMNN \

>>

>>

D>

SELF.box := its
{SIFC fTrace}EP; {SENDC]
END,

{$1FC fDebugMethods

SREEEDUR TBoxSe? ect ion. F iel ds(PROCEDURE F iel d(nameAncType: S255));

TSelect ion. F ie} dsg Field);
Field(box: TBox'

{szuoc}

END;

This draus the handles on the selected box}
PRD EDURE TBoxSel ect ion. Highl ight{highTransit: THighTransit);

VIFC fTrace}BP(11); gsiNDC}
F Sgléglkind <> nothingKind THEN

thePad. SetPenToHighl ight(highTransit); {set the drawing mode according to desired highl ight ing)
SELF. box. PaintHandl es; drav the handles on the box}

END;
(SXFC fTrace)EP; { SENDC)

This is called when the user moves the mouse after pressing the button}
ROCEDURE TBoxSel ect jon. MouseMove{ mouselLPt: LPoint);
VAR diffLPt: LPoint;

boxView: TBoxUXeu;

’ahapeLRect LRect;

{SIFC fTrace}BP(11); gSENDC}
boxView : = TBoxView(SELF. view);

{Houw far did mouse move?)
LPtMinusLPt{ mousel.Pt, SELF. currtPt, diffLPt);

{Hove it if delta is nonzero}
IF Ngchxﬁ“al LPt(diffLPt, 2eroLPt) THEN

SELF. curriPt : = mouselPt;

shapeLRect : = SELF. box. shapelRect;

{Compute old and neu positions of box}
boxVieuw. Inval Box(shapel.Rect);
OffsetLRect(shapelRect, diffiLPt.h, diffiLPt.v);
boxView. Inval Box(shapeLRect);

EELF. box. shapelLRect : = shapelLRect;
5 {$IFC fTrace}EP; { $ENDC}
PRO(I:EDURE TBoxSel ect ion. HouseRel ease;
{$IFC fTrace)}BP(11); {SENDC}
{ 1f the mouse moved then commit any outstandmg command }
IF NOT EqualLPt(SELF currlPt, SELF. anchoriPt) THEN

SELF. windou. CommitLast;
ND {$IFC fTracel}EP; { SENDC}

FUNCTION TBoxSelect ion. NewCommand(cmdNusber: TCmodNumber): TCommand;

VAR boxView: TBoxView;
heap: THeap;
BEGIN

{$IFC fTrace}BP(11); { SENDC]

boxView : = TBoxView{SELF. vieu);
heap : = SELF. Heap,

CASE cmcdNumber OF
ubhite, uLth'ay, uGray, uDkGray. uBlack:
NeuCommand : = TRecolorCmx CREATE(NIL, heap, cmdNumber, boxView, SELF. box,
cmoNumber - ubhite « colorthite):

uDup! icate:
NeuCommand : = TDupl icateCmd. CREATE(NIL, heap, cmdNumber, boxView, SELF. box);

OTHERWISE
NewCommand : = SUPERSELF. NewCommand(cmdNumber);

END;
oo {SIFC fTrace}EP; { SENDC}

;ngT ION TBoxSel ect ion. CanDoCommand(cmdNumber: TCmdNumber, VAR checkIt: BOOLEAN): BOOLEAN;

$IFC ance]BP(n) { $SENDC]
ASE cmdNumber O
ulhite, uLtGray uGray, ubDkGray, uBlack,
uDupl icate:
CanDoCommand : = SELF. kind <> nothingKind

OTHERUW ISE
CanDoCommand : = SUPERSELF. CanDoCommand(cmdNumber, checkit);

END;
{SIFC fTrace)EP; { SENDC)
END;

METHODS OF TCreateBoxSelect jon;

21 Rug 1884 12:42:07 U7BOXER. TEXT Page

o

-
336 -- A FUNCTION TCreateBoxSelection CREATE(object: TObject; itsHeap: THeap; itsVieuw: TVieu;
337 -- itsAnchoriPt: LPoint): TCreateBoxSelection;
338 -~ VAR box: TBox;
339 0- A BEGIN
340 -~ Ssxrc fTrace}8P(11); { SENDC)
341 -- F object = NIL THEN
342 -~ . object : = NouObg’:ct(itsHeap, THISCLASS): .
34T - SELF :'= TCreateBox3elect ion(7Selection CREATE(ob ject, itsHeap, itsVieuw, createBoxSelect ionKing,
344 - itsAnchoriPt));
345 -- box :» TBox. CREATE(NIL, SELF. heap);
346 -~ SELF. box = box;
347 -~ {SIFC fTrace)EP; { $ENDC]
248 -0 A END; ’
349 -~
350 --
351 -- {$IFC fDebugHethods

}
352 -- A PROCEDURE TCreateBoxSelect ion. F iel ds{ PROCEDURE Fiel d(nameAndType: S255));
353 0- A BEGIN

354 -~ TSel ect ion. F fel dsSFiel d);

385 -- Field(box: TBox');

356 -0 A END;

357 -- {$ENDC)

3 -

360 -~ This is called when the user moves the mouse after pressing the button}
361 -- A ROCEDURE TCreateBoxSel ect jon. MouseMove(mouseLPt: LPoint);
362 ~- VAR maxBoxLRect: LRect; :

363 -~ diffLPt: LPoint;

364 -~ boxView: TBoxView;

365 -- box: TBox;

367 -- B PROCEDURE DrauTheF rame;

368 0- B BEGIN

369 -~ box. Drawf rame;

370 -0 B END;

371 --

372 0- A BEGIN

373 -- {$SIFC fTrace}BP(11); { SENDC})

374 -- boxView :s TBoxView(SELF. vieu);

;;2 - box := SELF. box;

377 -- { In Boxer it is possible to draw a box greater_ than alloued by a 16 bit rectangle. These three
378 -- 1ines force the rectangle to within 16 bits. }
379 -- {$H-} WITH SELF. anchorLPt DO

380 -- SetLRect{mxBoxLRect. h+10-MAX INT, v+10-HAXINT, heMAXINT-10, v+MAXINT-10);
.’;g% -- {$H+] LRectHavelPt{maxBoxLRect, mouselLPt);

383 -- LPtHinusLPt{ mouselLPt, SELF. currilPt, diffLPt);
384 -- IF NOT EquallPt{diffLPt, zerolPt) THEN

385 1~ BEGIN

ggg - SELF. curriPt : = mouselLPt;

388 -~ boxVieu. panel. OnAl)l PadsDo({ DrawTheF rame);
389 -~ WITH box DO

390 2- BEGIN

191 -- shapel.Rect. topleft .= SELF. anchoriPt;
392 -- EhapaLRect.botRxgm i = mouseLPt;

394 -

395 -~ {$H-} RectifylRect(box. shapeLRect): = {$H+}
396 -- boxVieu. panel. OnAl | PadsDo{ DrauThef rame);
397 -1 END;

398 -- {$IFC fTrace)EP; { SENDC})

399 -0 A END;

400 ~--

401 -~

402 -- A PROCEDURE TCreateBoxSelect ion. HouseRe] ease;

403 -~ VAR thisBox: TBox;

404 -~ boxView: TBoxVieu;

405 -~ draunLRect: LRect;

406 -~ aSelect jon: TSel ect jon;

407 -~ panel: TPanel ;

409 -- B PROCEDURE DrauTheF rame;
410 0- B BEGIN
411 -- thisBox. Drawf rame;
412 -0 B END;
413 -~
414 0- A BEGIN
415 -- {$IFC fTrace}BP(11); { SENDC)
416 -- boxView : = TBoxView(SELF. view);
417 -- pane]l := boxVieu panel;
418 -~ thisBox : = SELF. box;
419 -- panel. OnAl 1 PadsDo(DrauThef rame);
:gg -- draunLRect : = thisBox. shapelLRect;
422 -~ { Independant of whether we threu the boxed auay or not we must create an instance of TBoxSel ect ion
423 -- to replace the nou useless instance of TCreateBoxSelection using the kind set above.
424 -- sSelection : s SELF. FreedAndRep] aceb . .)
425 -- TBoxSel ect ion. CREATE{NIL, SELF. heap, boxVieuw, thisBox, boxSelectionKind,
226 .- draunlLRect. topleft));
27 -- \
gg -- boxView. Inval Box{draunLRect);
430 -- ﬂlf the box is not big enough then throu it away, otheruise put it in the 1ist}
231 -- F (draunLRect. right - draunlRect.left <=4) OR {dnunLRect. bottom - draunLRect.top <=4) THEN
32 1- BEGIN
433 -- aSel ect ion. kind : = nothingKind;
434 -- thisBox. Free;
435 -1 END
436 1- ELSE BEGIN
437 -- Commit any outstanding command)
2?8 - F. windouw. CommitLast;
8 w-
440 -- boxVieuw. boxL ist. InsLast(thisBox);
441 -1 END;
442 -- {SIFC fTrace)EP; { SENDC)
443 -0 A END;

445 -~ END;

RN RIRIRI R AN R R AR R AR R RN RN RN R R R AI N R AR AR R R A NI R R RN RN RN RN R RN AN RN NN RN RRIRRRNRRARNRNRRNN RN DN RN RN RN NN
W
0
w
1
N

21 Rug 1884 12:42:07 U7BOXER. TEXT Page

¢ NRRNRNRNRNNRNRRNNNARRNRRN RN AORARNANNDNANNRANRRNNRNRNNNRRNRDARNRNNRRNNRRNNANNNRNANNNRNRRNNRNRONNNORNRNRNNNRNNRNNNRNN)

A
L]

W >

>

>»>>

HETHODS OF TRecol orCmd;

FUNCTION TRecol orCmd. CREATE(ob ject: TObject; itsHeap: THeap, itsCmdNumber: TCmdNumber;
itsVieuw: TBoxView; itsBox: TBox; itsColor: TColor}: TRecolorCmd;

S IFC fTraceLBP(12& { $ENDC]

F objcc
bject : = NewOb ject(itsHeap, THISCLASS):
SELF H TRocolorcm(TComand CREATE(ob ject, itsHeap, itsCmdNumber, itsView, TRUE, revealAll));
SELF. color : = ltsCol or;
SELF. box : = {ts
END: {SIFC ance]EP [SENDC)

{Sch fDebu Methods}
sgggﬁou E TRecolorCmd. Fiel ds{ PROCEDURE Fiel d(nameAndType: S255));
TCommand. F iel ds(F iel d};
Fiel ag' Color: INTEGER);
Field(' box: TBox');

END;

{ SENDC)
PROCEDURE TRecol orcmd. Commit;
BEGIN

glFC fTrace}BP{12), { SENDC}
LF.box. col or : = SELF, color;
[SIFC fTrace}EP; { SENDC}

PROCEDURE TRecol orCmd. Perform{ cmdPhase: TCmdPhase);
VAR boxVieu: TBoxView;
tempColor: TColor

GIN

{SIFC fTrace)BP(12); gSENDc]

boxView : = T oineu(ELF. image);

boxView. Inval Box(SELF. box. shapeLRect)

sel f. image. vieuw. panel. select ion HarkChanged; {allouw this document to be saved)
END: {$IFC fTrace}EP; YSENDC

PROCEDURE TRecol orCmd. F il terAndDo(actual 0bj: TOb ject; PROCEDURE DoToOb ject(filteredOb j: TOb ject));
VAR :aveCol or: }golon
ox: oX;

(SIFC fTrace}BP(12); [SENDC}

box : = TBox(actualObj);

IF box = SELF. box THEN
BEGIN

saveColor : = box. color

box. color : = SELF, Colon
DoToOb ject(box);

box. color : = saveColor;

END

ELSE
DoToOb ject{box);
{SIFC fTrace]EP; { SENDC)

D;

END;

HETHODS OF TDup! icateCmd.

FUNCTION TDup! icateCmd. CREATE(ob ject: TObject; jtsHeap: THeap, itsCmdNumber: TCmdNumber,
itsView. TBoxView; itsBox: TBox): TDupl icateCmd;
PROCEDURE CloneBox(filteredObj: TOb ject);
VAR box: TBox;
BEGIN
box := TBox(filteredOb j. Clone(itsHeap));
SELF. newBox : = box;

GIN
SS!FC fTraceLBP(lO)' { $ENDC}

F object =

ob_wct : = NewOb ectgusﬂeap THISCLASS);
SELF := TDupl icateCma(TCommand CREME(obJect itsHeap, itsCmdNumber, itsView, TRUE, revealAll));
;goxvu SE F. 1Tage) F il terAndDo(itsbox, Cl oneBox);
;= {tsBox;

{$H-} OH'SetLRect(SELF neuBox. shapeLRect, 20, 20); {$H+}

{SIFC fTrace}EP; { SENDC}

s

PROCEDURE TDupl icateCmd. F ree;

lsm: fTrace}BP(10); { SENDC)
ree(SELF. mueox}

SELF. FreeOb
ENp, {siFc nnce}EP { $ENDC)

{$SIFC fDebugHethods)
EEOCEDU E TDupl icateCmd. F iel ds(PROCEDURE F iel d(nameAndType: $255)):
TCommand. F iel ds(F iel d);
Fiel ds ol dBox: TBox');
Field(neuwBox: TBox'

END
{ ssnoc)

21 Rug 1984 12:42:07 U7BOXER. TEXT Page 8
556 -~
57 --
658 -- PROCEDURE TDupl icateCmd Commit;
gég a- VAR box\hau TBoxVieuw;
561 -~ (SIFC anctLBP(lZ) gSENDC]
562 -~ boxView TBoxVieuw(SELF. image):
ggz - boxvmu goxList lnsLast(SELF newBox);
- neuBox ;=
565 -- {SlFC fTrace) EP; [SENDC)
566 -0 A END;
-
S69 -~ A PROCEDURE TDupl icateCmd. Perform{ cmdPhase: TCmdPhase);
570 -~ VAR boxvleu ’faoxvxeu,
571 -- box TBox;
572 -~ tMsSelect ion: TBoxSel ect ion;
5§73 0~ A N
874 -~ SIFC nnceLBP(lz) gSENDC]
575 -- oxView : » TBoxVieuw(SELF. imag ez
g;g - thisSelect ion : = TBoxSel ect ion{ boxVieu. panel. select ion);
578 -- -——
£79 -- The current selection is unhighl ighted before performing the command as the result
580 -~ of the following command fields set by TCommand. CREATE:
gg% - unHil iteBefore| doPhase. . redoPhase] <~ TRUE
583 -~ The resulting selection is highl ighted after performing the command as the result of the
584 -~ following command fields set by TCommand. CREATE:
ggg - hiliteAfter [doPhase.. redoPhase] <- TRUE)
587 --
588 -- WITH thisSelect ion DO
589 1~ CASE cmdPhase OF
590 -- doPhase, redoPhase:
591 -- box : = SELF. newBox;
592 -~ undoPhase:
593 -- box : = SELF. ol dBox;
ggg -1 END {CASE):
ggg - boxView. Inval Box(SELF. newBox. shapelLRect);
598 -- sel f. image. vieu. panel. sel ect ion. MarkChanged; {allouw this document to be saved)
599 -- {SIFC fTrace)EP; f DC)
600 -0 A END;
g0
ggi a- 2 PROCEDURE TDup! icateCmd. EachVirtual Part(PROCEDURE DoToOb ject(filteredObj: TOb ject));
605 -- ‘SIFC n‘nce;BP(IZ) { SENDC)
606 -- BoxV ieu(SELF. image). Eachﬁctua!Part(DoToOb ject);
607 -~ DoToOb#ct(SELF neuBox
608 -- {$IFC fTrace)EP; { SENDC
609 -0 A
610 --
611 -- END;
612 ~--
613 -~
614 -~
2}2 -~ HETHODS OF TClearAllCmd;
617 -- A FUNCTION TClearAllCmd. CREATE(object: TObject: {itsHeap: THeap: j{tsCmdNumber: TCmdNumber;
618 -- itsView: TBoxView): TClearAllCmd;
61% b- A GIN
620 -~ S$IFC ﬂnce;‘ (10% { SENDC)
621 -- F object =
€22 -~ object : = NeuObject(itsHeap, THISCLASS); .
623 -~ SELF := TC]nrRHC:d(TComnd CREATE{ ob ject, itsHeap, itsCmdNumber, itsView, TRUE, revealNone));
624 -- SELF. kind : = SELF. image. vieuw. panel. sel ect jon. kind;
625 -- {sxrc fTrace}EP; [SENDC)
626 -0 A
627 --
628 --
629 -- {$IFC fDebugMethods}
630 -- A PROCEDURE TClearAllCmd. F fel ds(PROCEDURE F iel d(nameAndType: S255)):
631 0- A BEGIN ,
632 ~-- TCommand. F iel ds(Fiel dg;
633 -- Field(' kind. INTEGER);
634 -0 A END;
635 -- {ssnuc)
636 -~
637 --
638 -- A PROCEDURE TClearAllCmd Commit;
639 0- A BEGIN
640 -- $IFC ﬂncelBP(lZ) { $ENDC)
641 -- BoxV ieuw(SEL| boxLlst Del Al1{ TRUE);
842 -- {SIFC fTrace}EP; {
643 -0 A END,
gis =
646 -- A PROCEDURE TCl sarAllCmd. Perform{ cmdPhase: TCmdPhase):
647 -- VAR thisSelect ion: TSelection;
648 -- boineu TBoxView;
649 0-
650 -~ (SlFC ﬂr‘c. BP(lZ) $ENDC)
651 -~ boxVieuw : = TBoxView(SELF. image);
ggg - thisSelect lon ‘- boxvuu panel . sel ect lon;
654 -- WITH thisSel ect jon DO
655 1- CASE cmdPhase OF
656 -- doPhase, redoPhase:
657 -~ kind : = nothingKind;
658 -~ undoPhase:
659 -- kind : = SELF. k ind;
660 -1 END;
661 --
662 -- { Inval idate the vhole panel }
222 -- boxVieu. panel. Inval idate;
665 -- sel f. image. vieu. panel. sel ect fon. HarkChanged; {allou this document to be saved}

RN RN AR RN NIRRT N RN NN RN RN RN NN NNNRNRNNNRNRRNRNRNNNNONNONNRODRN)

Qpgic cormputar

[RR T SV VEVINNP OV, 03 rage

GNNNNMNNNNNNNNMMMNMNNNNNNNMNNNMNNNNNNMNNNNMNNNMNMMMNNMNNNNNNMMNNNNNNNNNMNNMNNNMNNMNNMNNNNNNNNNNNNNNNNNNNNNNNNN \

N, {SIFC fTrace)}EP, { SENDC}

A ggg?EDURE TCl earAl 1 Cmd. EachVirtual Part{ PROCEDURE DoToOb ject{ filteredObj: TObject));
$IFC 7 raco} BP({12); gSENDC}
SIFC fTrace}EP; [$ENDC)

END;

METHODS OF TBoxProcess;
A E%ELION TBoxProcess. CREATE: TBoxProcess;
$IFC fTrace)BP(11); {SENDC}

ELF : = TBoxProcess{ Process CREATE(NewOb ject (ma inHeap, THISCLASS), mainHeap));
{$SIFC fTracelEP; { SENDC

A END;
2 Eggz}:TlON TBoxProcess. NeuDocHanager(volumPrebfix: TFilePath, openAsTool: BOOLEAN): TDocManager;
{$IFC nnce]BP(llg {$ENDC}
NeuwDocHanager : = T oxDocHanager CREATE(NIL, mainHeap, volumePrefix);
{$IFC fTrace}EP; { SENDC}
A END;)
END;

METHODS OF TBoxDocManager;

A FUNCTION TBoxDocHanager. CREATE(ob]ect TOb ject; itsHeap: THeap, itsPathPrefix: TFilePath)
: TBoxDocHanager;

SIFC ﬂucc;BP(llE {SENDC}
F object =

object : = NewOb ject(itsHeap, THISCLASSZ
SELF :'= TBoxDocHanager({ TDocHanager. CREATE(ob ject, itsHeap, itsPathPrefix));
{$IFC fTrace}EP; { SENDC

A END;
2 ; \E.lgCI:T ION TBoxDocManager. Newllindow(heap: THeap; wmgriD: TWindowID): TWindow;

RSIFC fTrace}BP(11); {SENDC&
eullindow : = TBoxwmdou CREATE(NIL, heap, wmgriD);
A ErD: {$IFC fTrace}EP; { SENDC}

END;

METHODS OF TBoxWindow,
A ;LEJECY ION TBoxWindow. CREATE({ ob ject: TObject; itsHeap: THeap; itsWmgriD: TWindowID): TBoxWindow;

SSIFC fTrace BP(ID) (SENDC]
F object = NIL T

object : = NeuOb ect(itsHeap. THISCLASS);
SELF = TBoxlindouw(TWindow. CREATE(ob ject, itsHeap, itsUmgriD, TRUE});
{$IFC fTrace)}eP; { SENDC}

A END;
A PROCEDURE TBoxUindow. Bl ankStat ionery,
VAR vieulRect: LRect;
anel: TPanel;
oxVieu: TBoxVieuw;
aSel ect ion: TSel ect ion;
A BEGIN
{SIFC ﬂnce}BP(10& NDC?_)
pane! := TPanel. CREATE(NIL, SELF.Heap, SELF, 0, O, [aScroll, aSplit], [aScroll, aSplit]);

SetLRect(viewLRect, 0, 0, 5000, 3000);
boxVieu : = TBoxVieu CREATE(NIL. SELF, Heap, panel, vieuLRect);
boxView. InitBoxL ist{ SELF. Heap);
{SIFC fTrace}EP; { SENDC}
A END;
A FUZ(I:LION TBoxll indow. NewCommand(cmdNumber: TCmdNumber): TCommand
{SIFC fTrace}BP{11); { SENDC}
CASE cmdNumber OF
uClearAll:

NeuCommand : = TClearAllCmd. CREARTE(NIL, SELF. heap, cmdNumber,
TBoxVicu(SELF. selectPanel. vieu));

OTHERUWISE
NeuCommand : = SUPERSELF. NewCommand(cmdNumber);

END,;
{SIFC fTrace}EP; { SENDC)
A END;

FUNCTION TBoxk indow. CanDoCommand(cmoNumber: TCmdNumber; VAR checkIt: BOOLEAN): BOOLEAN;
GIN
gwc fTrace}BP(11); { SENDC)
SE cmdNumber OF

uClearal l:
CanDoCommand : = TRUE;

>

21 Aug 1884 12:42:07

U7BOXER. TEXT

Page 10

782 -- END; -
217 -- END.

HHEUNNNNON)

OTHERUISE
CanDoCommand : » SUPERSELF. CanDoCommand{ cmdNumber, checkIt);

END;
779 -- END {SIFC fTrace}EP; { SENDC)

T

21 Rug 1884 12:42:07 U7BOXER. TEXT Page 11

’

1. u7boxer. TEXT
2. U7Boxer2. text

-B-
BlankStat ionery 204<(1) 737+(2)
Box 134 (1
b:x 97 1 120 1 121 2 123=(2 124 2 128 2 138+(2 140=(2 141 2) 162+(2
©o1eB={ 2) 170 (2) 177 (2) 227=(2) 247 (2) 270 (2) 276 (2) 303 2) 307 2) 338+(2
345« 2) 346=(2) 346 (2) 365°(2) 369 (2) 375=(2) 375 2) 389 (2) 395 2) 418 (2
CSD-} 2) 478 2) 489 (2) 497+(2) 6500«({ 2) SO01 2) so1r{ 2) 503 2) 504 2) S80S 2
§06 { 2) 509 (2) 522+(2} S524=(2) 825 (2) 6S71~(2) 591s(2} 593« 2
boxL ist 69 (1 183 (2) 197+(2) 200=(2) 201=(2) 201 2) 440 2) 6563 2) 641 (2)
R SHE A - e
oxl 1 - - -
-C-
CanDoCommand 112+(1 208+(1 316°(2) 322=(2) 325«(2) 325 2) 770+(2) 775=(2} 777=(2) 777 (2
color 50<(1 135+(1 12-; 2; 37 E 2} 459-2 2; 478-i 23 478 5 23 503 2 2; 504-§ 2; SDG-% 2;
colorBl ack 25+(1 42 (1 42 (2
S < EE
colorGra -
cenity EIH BIR . s
| t A4
ggm:lt e 142¢(1 158<(1 174°(1 475-{ 2) S58-(2) 638+ 2
CREATE 53+(1 72°(1 100°(1 123+(1 138+(1) 154-{ 1 170-(1 183 1 192 (1) 201 (1
. 5+{ 2 97«(2] 103 (2) 173 (2) 177 { 2) 200 2) 209 (2) 219+(2} 225 2) 303 (2
307 (2) 336°(2) 343 (2) 345 (2) 425 (2) 452+(2) 4S8 2] 5i9+(2) 531 2) 617+(2
623 2) 682+(2) 685 2) 693 (2) 703-(2) 709 (2) 717 (2} 727°(2) 732 (2) 744 (2
747 zg 760 (2
createBoxSelecti .29*(1) 343 (2
..D-
Drav 62‘5 1; 85'2 1; 28’& 2; 136’{ 2; 141 (2)
Drauf rame s9+(1 S4(2} 369 (.2) 411 (2
-E-
EachActualPart 86~(1) 150-(2) 606 (2
EachVirtual Part 150‘2 1; 176‘2 13 130 { 2} 145 (2) 603~(2) 670+(2)
-F-
Fields el g 110e 2 gg{ g; 232-(2) 234 (2) 352+(2) 354 (2) 466-(2) 468 (2) 549°(2)
F i} terAndDo 144+(1) 495°(2) 832 (2
Free §39+(2) 542 (2
“Highl ight 106+(1) 167 (2) 179 (2) 261*(2)
-]
InitBoxL {st 89'€ lg 196'5 2; 748 2}
Inval Box 78+(1) 187 2) 272 (2) 274 (2) 428 (2) 489 (2) 896 (2)
-k
kind 167 (1) 264 (2) 322 (2) 433=(2) 624=(2) 624 (2) 657=(2) 659=(2) 653 (2)
-L-
LRect 49 (1) 67 (2) 257 (2) 362 (2) 405 (2) 738 (2)
-"..)
MouseMove 107-(1) 127<(1) 254-(-2) 361+(2)
MousePress 80~(1) 159+(2
HouseRel ease 108{ 1) 128<(1) =282+(2) 402-(2)
-N~
newBox 181 1 §26=(2} 534 2 842 2) 563 2 S64=(2 591 2 596 2 607 2
NewCommand %2%’ % 207'5 1; 292'{ 2; 303=€ 23 307=§ 2; 310-2 23 310 E 2; 754'E 23 760=E 2; 764=(2)
NewDocHanager 184°(1) 690<(2) 693=(2
Neuwll indow 194+(1 7i4=(2} 717=(2
NoSel ect ion 90+(1) 206+(2} 209«(2
-0~)
ol dBox 151 (1) 533=(2) 593 (2)
-p-
PaintHandies S6+(1 65°(2) 247 (2
Perform 145‘§ 1; 159'5 1; 175'5 13 483+(2) 569-(2) 646-(2)
-0~
QuickDrauw 16+(1)
-S-
shapelRect 1 11={ 2 34 (2 47 (2 48 2 s9 (2 67+(2 79=(2 79 (2 80 (2
P 124 (2 257’§ 2§ 270-§ 2} 270 2§ 272 g 2§ 273 (2) 274 { 22 276-E 2; 276 $ 23 391 5 2}
382 (2} 395 (2) 420 (2) 489 (2) 534 2) 5% (2
-1-
TBo 46°(1 53 1 75 (1 97 (1 120 (1) 134 1 151 1 3+(2 s 2) 118 { 2
* 121 23 %gg g %32 g égg g 162 f 2; 338 é 2; 345 2 2; 365 { 2} 403 é 2; 497 2 2}
00
TBoxDoctanager igS‘ f 1§§ % ggg % Zgé' g 282 g 709 (2)
;Bg:Pr?cess n : 2" ! 101 1 177 (2) 209 (2) 217-(2) 220 (2) 22% 2) 425 2) 5722 (2) 576 (2
BoxSel ect io 9 1)1 s 5
TBoxVieu 66°(1 73 { 1 95+(2 98 (2) 103 (2) 256 (2} 260 (2} 293 (2} 298 { 2 570 2
R IEIEE IR IR O R A R
TBoxW indouw 198~ 1{ 201 1) 717 (2) 728+(2 727 (2) 732{ 2
U SRR R R
olor .
TCommand 111 (1 133 (1) 150 (1 165 (1) 207 (1) 292 (2) 458 (2) 468 (2) 531 (2) SS51 (2
623 ({ 2) 632 (2) 754 (2
;grtateBOxSelact i%;' i< ig; % é;g g ;g;’ gi 337 (2) 343 (2)
ocHanager
;f?g{ica%eCmd lgg‘ i‘ %g; é ;gg g 517-({ 2) 520 (2) 531 (2)
;gbjecl 138 { % %gg 5 137 (2) s21 (2) .
rocess
TR lorCmd 133+(1 139 1 303 2 450+(2 453 2) 458 2
TS:T:cggon S0 (1 94 (1 117 1; 160 2; 206 2; 225 23 234 (2) 343 (2) 354 (2) 406 (2
647 (2) 741 (2
.

21 Rug 1884 12:42.07 U7BOXER. TEXT rage 1s
4 ™
TWieu 66 1; 112 2;
TWindow 194 (1) 198 (1) 714 (2) 732 (2)
U=
U7Boxer 5=(1
UABC 18+(1
uBl ack 36°(1) 302 (2) 320(2
uClearall 38+(1) 759 ¢(2 774 (2
ubkGray 35+(1) 302 (2) 320 (2
UDrauw 17¢(1
ubup! fcate 37¢(1) 306 (2) 321 (2)
UFont 13+ 1
uGray 34+(1) 302 5 23 320 i 2;
ultGray 33«(1) 302 (2) 320 (2
Uob ject 10¢(1
ulthite 32+(1) 302 (2) 304 (2 320(2)
**+ End Xref. 72 id's 472 references [398352 bytes /4927 id' s/39940 refs)
_ _J

[Segment 11]
Advanced Commands
with
Cut & Paste

Special Note: The style and structure of this segment differs from the
previous ten.

Purpose of this segment:

This segment presents three separate but related topics completmg the
self—paced introduction to the ToolKit.

1. Implementlng cut, copy. and paste wnthm Boxer

2. Creating command objects from non—menu events, such as mouse and key
events.

3. Responding to the tab and clear keys.

How to use this segment:

This is the last segment in the self—paced introduction to Boxer. Try to
follow the discussion, and carefully study the sample program.

THE CLIPBOARD

The clipboard is used for intraprocess data transfer and interprocess
communication. The clipboard only contains one piece of information at a time but
it has 3 parts, all containing different representations of that information.

1) application specific part

If a ToolKit application created the current contents of the clipboard then
this representation is a minimum ToolKit document. [t contains at least a
window, panel, view, and selection. |f a non—ToolKit application created
the current contents of the clipboard then this part is specific to that
application. This part of the clipboard contains the most information about
its contents.

2) universal picture part

This is a QuickDraw picture of of the contents of the clipboard. There are
no easily accessible semantics associated with a picture. However,
LisaDraw or the graphics building block will be able to parse a picture into
its component graphical objects.

3) universal text part

This is a text data format understood by all desktop applications. It
contains the text and text descriptors, such as font, format, margin, and
tab information.

Every time you cut to the clipboard as many nepresentations as possible are
generated. The application is responsible for generating the application specific
portion (as you will learn). The ToolKit generates the universal picture. If you use
the Text Building Block it will automatically generate universal text for any text
that is cut or copied.

Every time you paste from the clipboard you may choose which one of the
representations you want to paste. Whenever possible this will be the Application
specific representation. :

FLOW OF CONTROL FOR CUT AND PASTE

Cut, Copy, and Paste are unique commands because they read from or wite to
the clipboard. Since there is magic that must be performed to deal with the
clipboard, there are two subclasses of TCommand that must be subclassed —
TCutCopyCommand (for cut and copy) and TPasteCommand (for paste). The flow
of control is the same as other commands except that applications do not
reimplement Perform. Instead they reimpiement DoCutCopy or DoPaste. Both
take as parameters the command phase and the clipboard's selection. For ToolKit
cut and paste the selection is used to access all the objects on the clipboard. From
the selection it is easy to get to the view, window, or panel.

The Commit, Free, and all the filter methods can be implemented using
techniques already discussed. This segment will implement cut, copy. and paste with
filters becuase it is easier, and because it provides another good example of how to
use filters. Do not worry about freeing any of the objects placed on the Clipboard,
the Clipboard will clear itself on every cut.

IMPLEMENTING CUT AND COPY

To implement cut and copy make a subclass of TCutCopyCommand and
override DoCutCopy. On the dbPhase DoCutCopy must create a new view and
selection on the clipBoard, then move into it the data being cut or copied. To do
this a new view of type TBoxView is created (with boxList and boxes), and passed to
{TBoxSelection.JCREATE. ClipSelection, which is a dummy object, is freed and
replaced with the new selection. On a cut the data must be removed from the

document. If filters are used then Commit and EachVirtualPart must check
SELF.isCut since copying doesn't change the document. As an interesting example
B8Boxer's implementation of the cut and copy filters implements both
EachVirtualPart and FilterAndDo.

IMPLEMENTING PASTE

To implement paste make a subclass of TPasteCommand and override
{TPasteCommand.}JDoPaste. Instead of freeing and replacing clipSelection with a
new selection (as in cut and copy), we retain it. It now points to the data we want
to paste. For this section we are only interested in pasting from other Boxer
documents. Therefore we will only paste from clipSelection when it is of class
TBoxSelection. [t is possible to paste from other ToolKit applications but that is
left for another segment. It is also easy to paste from universal pictures. See the
appendix at the end of this segment on pasting from other applications. To paste
from clipSelection: |

1. On the doFhase first check if it is of class TBoxSelection using the
ToolKit function, InClass, as follows:

IF InClass(clipSelection, TBoxSelection) THEN

This fbnction returns TRUE only if clipSelection is an instance of
TBoxSelection, or an instance of one of its subclasses. '

2. |f clipSelection is of some other type, put up the Can't Do /talert.

3. Otherwise simply copy the data from the view that clipSelection points
to. ‘

4. Now you must properly handle the coordinates of the pasted box, since it is
always located in the upper left hand corner of the Clipboard. For Boxer
we want to paste the box centered around the last place the mouse was
pressed (if no box was selected), or centered within the selected box.
TView has a field, clickLPt, which contains the location of the last
mouse press.

5. Again, once the box has been copied into the document the do, undo, and
redo phases handle the selection, highlighting, and invalidation using
existing techniques.

FLOW OF CONTROL FOR COMMANDS NOT ORIGINATED FROM THE MENU
BAR

In this section we are going to convert the existing mouse events into
command objects. We will also respond to two keyboard events, one which will be
converted into a command.

When impiementing keyboard or mouse events as commands, we need a
mechanism for installing the new command object since we will not be in
NewCommand when the event occurs.

{window.}Per formCommand takes as argument the command object to be
performed. Calling PerformCommand with a command object produces the same
result as returning a command object to NewCommand. As you can glean from the
flow of control for commands [see segment 8], Per formCommand is the next
method called after NewCommand.

FLOW OF CONTR(jL FOR MOUSE COMMANDS

To convert our existing mouse events to commands we implement command
classes for the mouse events we want to be undoable. The identifiable mouse events
that edit the document are: bax move and box create Upon mouse release in both
of these events we want to create an appropriate command object. It will perform
the event as a command, and pass the command object to Per formCommand.

IMPLEMENTING MOUSE COMMANDS

For box move each mouse move event edits the document. The original state
is saved in {selection.JanchorLPt. With a little forethought, it is easy to see that
box move should be an unfiltered command. The original state is simple to
remember and restore, and doing the command with a filter would be more
complicated than doing it without one. The abPhase for this commmand does nothing
since the mouse move code has already edited and properly displayed the document. -
The undo and redo phases should move the box to the correct location and invalidate.

Suggestion: Move the code in {TBoxSelection.}MousetMove that moves a box to a
new method of TBox. Then call the new method from both MouseMove and
{TMoveBoxCmd. }Per form. ~

For box create the mouse move and mouse release code already act as a
filter through which the document is viewed. The newly created box is not inserted
into boxList until the end of {TBoxCreateSelection.JMouseRelease. By replacing the
InLast(SELF.box) line in MouseRelease with a call to PerformCommand, we can
easily create a filtered command. This command shall be implememnted as
TCreateCmd. [t turns out that TCreateCmd is very similar to TDuplicateCmd.

FLOW OF CONTROL FOR KEY COMMANDS

Keyboard events go directly from the process to {selection.]DoKey. DoKey
then farms it out to the appropriate method of the selection. For our example,
there is no need to override DoKey, since the default mapping of keys to methods is
acceptable. We will reimplement {selection.}iKeyTab and {selection.j)KeyClear, each
of which is called by DoKey depending upon the key pressed. Since striking the tab
key will not edit the document (it only changes the selection), we will not turn it
into a command. We will, though, make the clear key event a command. In
addition, we will also provide a menu item that is equivalent to striking the clear
key.

selection.DoKey
 case of

enter, arrowkeys: selectionKeyEnter

“clear key: selection.KeyClear
backspace key: selection.KeyBack
Shift backspace. selection.KeyForward
returnkey: selection.KeyReturn
tab key: selection.KeyTab
atherwise selection.KeyChar

IMPLEMENTING THE TAB KEY

{TSelection.lKeyTab is the selection method that responds to the tab key. The
tab key is not undoable, and does not need a command object, but implementing it is
an interesting excercise in list managment. Apte: Beware of virtual obects.

IMPLEMENTING THE CLEAR KEY

{TSelection.lKeyClear responds to clear key events. KeyClear calls
PerformCommand with a command object that implements clearing a box. This
same command class is also used for the menu version of clear. The semantics of -
c/ear are close enough t0 cw? to be a subclass of TCutCopyCommand.

OTHER CHANGES THAT WERE REQUIRED
Changes to NewCommand and CanDoCommand for cui paste and c/ear.

Added {TBox.}MoveBox to allow sharing of box move code between
{TBoxSelection.;MouseMove and {TMoveBoxCmd.}Perform.

Reimplemented TDuplicateCmd as a subclass of TCreateCmd. introduced a
new method, UpdateSelection, that updates the selection on undo and redo
phases.

Defined two new command constants, uCreateBox and uMoveBox.

Appendix A
Cut and Paste between Applications

PASTING FROM ANOTHER TOOLKIT DOCUMENT
Works as described above.

PASTING FROM A NON—TOOLKIT DOCUMENT

When clipSelection = NIL, or clipboard.hasView = FALSE, there will always
‘be a universal picture to paste from and there will often be universal text to paste.
The type of your application and the context being pasted into will determine which
one is appropriate.

If your application is largly textual then paste the universal text. If your
application is strictly graphical and has no text then paste from the universal
picture. Universal text only exists when something textual was cut or copied. But a-
universal picture is always generated. If universal text is present and you are capable
of taking text then paste it instead of the picture.

PASTING A UNIVERSAL PICTURE

Do not just grab the handle, since the picture it points to is in the clipboard's
heap. That heap will be unbound from the applications data space immediately after
the paste, thus invalidating the handle. Instead, copy the picture onto the document's
heap. There are several ways to copy a picture, the simplest is: ’

1. Save the clipboard heap. The global variable, theHeap, refers to it.

tempHeap <- theHeap;

2. Reset the global heap variable, theHeap, to the document's heap.

SetHeap (SELF. heap) .
3. Open a picture to copy the clipboard picture into.
ayPicture ;= OpenPicture(thisRect):
4. Draw the clipboard picture. This effectively copies the picture.
Drawpicture(pic);
5. Close the picture.
ClosePicture;
6. Restore theHeap to the clipboard heap.
Setheap (tenpHeap).

PASTING UNIVERSAL TEXT

The Text Building Block pastes from universal text whenever clipSelection =
NIL, and universal text is present.

9 Aug 1984 16:00: 44 XBBOXER. TEXT Page 1
(" ™\

28
SLOT2CHANL
;no assembler files

s
. no building blocks
:no 1inks

3
S
y
y
n
8

9 Rug 1884 15:58:33

PBBOXER. TEXT

Page

1

/»
i PBBOXER. TEXT
3
2500

$-#B800T-TK/PABC

;. Apple building block phrase files can be included here

1000
8Boxer

0

1
$-#B00OT-TK/PABC"F il @/Print
2

Edit

Undo Last Change®#20S
Cut /X %202

Copy /C#¥201

Paste /V#203
Dupl icate/D#1011

Clear Box#208 -
Clear All /Z#1012

3

Shades
White®1006
Light Gray#*1007
Gray#1008

Dark Gray#®1009
Black #1010

s

$-#800T-TK/PABC™Page Layout
99

$-#B00T-TK/PABC™Debug

100

$-#B00T-TK/PABC Buzzwords
Create Box#2000

Move Box¥2001

]

; Other appl ication alerts can be included here, numbered betueen 1001 and 32000

8 Rug 1884 15:55:41 ‘ MBBOXER. TEXT

Page 1
f ™
PROGRAM MBBoxer;
USES
{$U LoD ject } UOb ject,
{$IFC 1 ibraryVersion <= 202":
éw UFont} ont,
{$ENDC) :
$U QuickDrauv QuickDrauw,
$U UDrauw UDraw,
$U URABC UABC,
{su usBoxer } uBBoxer;
CONST
phraseVersion = 1;
BEGIN
process : s TBoxProcess. CREATE;
process. Commence{ phraseVers ion);
process. Run;
process. Compl ete(TRUE);
END.
_/

21 Rug 1884 12:45:38 UBBOXER. TEXT Page

I 1t et 1 e b B (e (8 0 8 e Bt b [et Db (B o b b ek h h o b et b b [b B b b B o et b et e b o o s b et o b b b d b e e b o b b i b b b e b o o e e b e o e 0 e Do ok b e b D b 0 o e e o o et e B et e ot s b et b b b

VOIS WA -

This LisaBoxer sample implements cut and paste, move and create unde, Tab and clear keys with undo)
Copyright 1983, Apple Computer Inc.}

UNIT U8Boxer:;
INTERFACE
USES
{$U UOD ject} Uob ject,
SIFC] ibraryVersion <s 20
: $U UFont} lront.
$U QuickDray) QuickOrau,
$U UDrav} UDraw,
$U UABC} UABC;
CONST

colorthite = 1;
coloriLtGray = 2;
colorGray = 3;
col orDkGray = 4;
colorBlack = 5;

{ selection kinds }
boxSel ect jonKind = 1;
createBoxSel ect ionKind = 2; -

{ Henus }

ubhite = 1006;
ultGray = 1007;
uGray = 1008;
uDkGray = 1009;
uBlack = 1010;
ubupl icate = 1011;
uClearAll = 1012;

{ Impl ied commands }
uCreateBox = 2000;
uMoveBox = 2001;
TYPE
TColor = coloréhite. . colorBlack; {color of a box}
{Nev Classes for this Appl icat ion})

TBox = SUBCLASS OF TOb ject

{variables}

shapelLRect: LRect;

color TColor;
{Creat ion/Dest ruct on;

FUNCTION TBox. CREATE(ob ject: TOb ject; itsHeap: THeap): TBox;
{ Displa

PROCEDERE TBox. Draw;
PROCEDURE TBox. Drauf rame;

{ Editing and Display }
PROCEDURE TBox. Hovoaox(boxView: TBoxView; deltalLPt: LPoint);

{ Highl ight ing support }
ER CEDURE TBox. PaintHandl es

TBoxView = SUBCLASS OF TView

{variables}
boxList: TList;

{Creat ion /Dest ruct tl.RE
FUNCTION TBoxV iw ATE(ob joct 11’0b ject; it sHoap. THeap; {itsPanel: TPanel; itstxtent: LRect)
FUNCTION TBoxView. BoxWith(LPt: LPoint): TBox;

(Invul idat 1onlo
OCEDURE TBoxView. Inval Box(invalLRect: LRect);

PROCEDURE TBoxView. MousePress{mouseLPt: LPoint); OVERRIDE;

Oisph
A &RE TBoxView. Draw; OVERRIDE;

Filte
{ ROCEDURnE TBoxView. EachActual Part(PROCEDURE DoToOb ject(filteredObj: TObject)); OVERRIDE:

{Init ial {zat jon}
PROCEDURE TBoxView. InitBoxList(itsHeap: THeap);
EngCT ION TBoxVieuw. NoSel ect ion. TSel ect fon; IDE;

TBoxSel ect ion = SUBCLASS OF TSelection

{v:ri-bl es}
box: TBox;

{Creat jon/Dest ruct fon

FUNCT ION TBOXS.I.C{SOB. CREATE(obioct: TOb ject; itsHeap: THoag: {tsView: TView; itsBox: TBox;
tsKind INTEGER; itsAnchoriPt: LPoint): TBoxSslection;

{Dravi r pa z
PROCE| URE TBoxSl sct ton. Highl ight(highTransit: THighTrans it); OVERRIDE;

Select ion - p~r pad
{ on - por pad} |

appia computar

21 Rug 1884 12:48:38 UBBOXER. TEXT Puge

(10 18 1 e b e e e b 8 1 e o e e e e e e e o e b (b b b Bk Bk D £ e b o (8 b Bk b b B B b 1 1 b b (0 b o o e b b b bt 0 0 1 b 10 8 e Bt 0 1 B 5h ek e b et e B (e (o B Bh o 8 1 18 00 18 b e B (b 1 B b b g)

PROCEDURE TBoxSel ect ion. Mousetove(mouselPt: LPoint); OVERRIDE;
PROCEDURE TBoxSelsct jon. MouseRel ease; OVERRIDE;

{Command Dis atch?
FUNCT ION TBoxSe] ect ion. NeuwCommand{ cmdNumber: TCmdNumber): TCommand; OVERRIDE;
FUNCTION TBoxSel ect ion. CanDoComnd(cmNuwer TCndNunhar VAR checkIt: BOOLE&N)
ENO: . BOOLEAN, OVERRIOE;

TCreateBoxSel ect fon = SUBCLASS OF TSelection

{variabl es)
box: TBox;

{Creat jon/Dest ruct ion

on) :
FUNCTION TCreateBoxSelect ion. CREATE(ob 1.Ct TOb ject; itsHeap: THeap; IitsView: TView;
tsAnchoriPt: LPoint): TCreateBoxSel ection;

{Select ion - per pad}
PROCEDURE TCreateBoxSel ect ion. Mousetove{ mouselPt: LPoint); OVERRIDE;
END: PROCEDURE TCreateBoxSel ect ion. MouseRel ease; OVERRIDE;

{ This command recolors the selected box and is not undoable
should it instead return an instance of YCommand }
TRecol orCmd = SUBCLASS OF TCommand
Box: TBox;
color: TColor

X

{Cna
CHOL TRecol orCmd. cREATE(obio TOb ject; itsHeap: THeap; itsCmdNumber: TCmdNumber,
tsView: BoxView; itsBox: TBox; itsColox TColor): TRocolorCmd.

PROCEDURE TRecol orCmd. Perform{ cmdPhase: TCndPhnso) WERR IDE;
PROCEDURE TRecol orCmd. F il terAndDo{ act ual ob g
OCEDURE DoToOb ject(filteredobj: TOb ject));

OQVERRIDE;
END;

TCreateCmd = SUBCLASS OF TCommand

{variabl cs}
newBox: TBox;

{Creat ion and Destruct i l .
FUNCTION TCreateCmd. CREATE(ob foct: fob ‘]]oct, itsHeap: THeap, itsCmdNumber: TCmdNumber;
tsView: TBoxView; itsBox: TBox): TCreateCmd;
PROCEDURE TCreateCmd. Commit; OVERRIDE;
PROCEDURE TCreateCmd. Perform cmdPhase: TCmdPhase); OVERRIDE;
PROCEOURE TCreateCmd. UpdateSel ect 1on$ thisSelect fon: TBoxSelect ion; cmdPhase: 'rcm E
ESgCEDURE TCreateCmd. EachVirtual Part{ PROCEDURE DoToOb ject{ filtersdObj: TObject)); O 1DE;

{ This command dupl icates the seslected bex and is undoable }
TOupl icateCmd = SUBCLASS OF TCreateCmd

{variables}
ol dBox: TBox;

{Creat jon} .
FUNCT[ON TDupl icateCmd. CREATE(ob joct TOb ject; itsHeap: THoa?; itsCmdNumber: TCmdNumber;
tsView: TboxView; itsBox: TBox): TDupl icateCmd;

{Command Execut ion}
PROCEDURE TDupl icateCmd. UpdateSel ect ion(thé\s}ésﬁgé ion: TBoxSelect Xon cmdPhase: TCmdPhase);

END;

TBoxCut CopyCmd = SUBCLASS OF TCutCopyCommand

{variables}
sel TopLeft: LPoint;
box: . TBox;
{Creat iol

n
FUNCTIO& TBoxCut CopyCmd. CREO\TE(ob*oct' TOb ject; itsHeap: THeap, i{tsCmdNumber: TCmdNumb
tsVieuw: Vlw, isCutCmd: BOOLEAN; {tsBox: TBox): TBoxCUtCopycm

Command Execut ion}

PROCEDURE TBoxCutCopyCmd. Commit; OVERRIDE;

PROCEDURE TBoxCutCopyCmd. DoCutCopy(cl ipScl oct ior:m;g;:‘oct)ion del ueongxnal' BOOLEAN;
cmdPhase: ase

ERNgCEDURE TBoxCut CopyCmd. EachVirtual Part({ PROCEDURE DoToOb ject(futerocmbj T0b ject)); OVERRIDE;

TBoxPasteCmd = SUBCLASS OF TPasteCommand

{variables}
pasteH: LONGINT;
pasteV: LONG INT;
pasteBox: TBox;

{Creation and Destruct ion‘l’RE
FUNCTION TBoxPasteCmd. ME(ohfoct TOb ject; itsHeap: THeap; itsCmdNumber: TCmdNumber
tsView: Boxvm.r 1tsH, itsV: LONGINT): TBoxPasteCmd;

PROCEDURE TBoxPasteCmd. Free; OVERRIDE;

{Command Execut ion}
PROCEDURE TBoxPasteCmd. Commit; OVERRIDE;
PROCEDURE TBoxPasteCmd, DoPasu(cl ipSoloct jon: TSelection; pic: PicHandle; cmdPhase: TCndPhase)

PROCEDURE TBoxPasteCmd. EachVirtual Part(PRDCEDURE DoToOb ject(filteredobj: TObject)); OVERRIDE;
END,

d

w

21 Rug 1984 12:45:38 UBBOXER. TEXT Page
—
221 -- { This command dup! icates the selected box and is undoable }
222 -- TClearAl1Cmd_ = SUBCLASS OF TCommand
223 -- (varnblosL
224 -~ kind: INTEGER;
225 -~
226 -- (CrlIH 0}‘
227 -- . FUNCT] TClearfl 1 Cmd. CREAYE(ob{oct TOb ject; itsHeap: TH..F itsCmdNum'r TCmdNumber;
%gg - tsView: TboxView): TClearallCmd;
230 -- {Command Execut fon}
231 -- PROCEDURE TClearAllCmd. Commit; OVERRIDE:
232 ~-- PROCEDURE TCl sarAllCmd. Perform{ cmdPhase: TCmdPhase); OVERRIDE;
%gi - E:gCEDURE TCl earAl 1 Cmd. EachVirtual Part(PROCEDURE M ° »Ob ject(filteredOb f: TObject)); OVERRIDE;
235 -- '
236 -~
gg; - TClearCmd & SUBCLASS OF TBoxCutCopyCmd
239 ~-- {Cru 2‘
240 ~- UNCTION TClearCmd CREhTE(obio TOb ject; itsHeap: THuge ltsCmdNunbar TCmcdNumber;
221 - tsView: TBoxVisw; itsBox: TBox): TClearCmd
242 -~
243 -- {Command Execut ion t
g:g - EﬁgCEDURE TClea Perform{ cadPhase: TC-dPhaso) OVERRIDE;
246 -~)
247 --
g:g - THoveBoxCmd = SUBCLASS OF TCommand
250 -- {Variabl es}
251 -- hOf fset: LONGINT;
252 -- vOffset: LONGINT;
253 -- movedBox: TBox;
254 --
285 -- {cre 02‘
256 -~ FUNCTI THMoveBoxCmd. CREATE(ob*ect TO0b ject; itsHeap: THng itsCmcdiNumber: TCmdNumb
257 -- tsView: TBoxView; itsBox: TBox; itsHOffset, 1tsvoffsat LONGINT)
ggg - : THoveBoxCmd;
260 -- {Command Execut ion}
ggé - Ezg EDURE THoveBoxCmd. Perform{ cmdPhase: TCmdPhase); OVERRIDE;
263 - '
264 --
ggg -—- TBoxProcess = SUBCLASS OF TProcess
267 -- {Creat ion/Dest ruct ion}
268 -- FUNCTION TBoxProcess. CREATE: TBoxPrecess;)
269 -~ FUNCTION TBoxProcess. NewDocHanager{ volumePrefix: TFil ePath; openAsTool: BOOLEAN)
270 -- : TDocManager; OVERRIDE;
271 == END;
272 --
273 --
%;2 - TBoxDocManager = SUBCLASS OF TDocHanager
276 -- {Creat jon/Dest ruct ion}
277 -~ FUNCTION TBoxDocManager. CREATE(ob ject TOb ject; itsHeap: THeap; itsPathPrefix: TFilePath)
278 -- TBoxDocHanager;
279 -- EUNCT ION TBoxDocHanager. Neuwl indou(heap: THeap; wmgrlD: TWindowID): TWindow; OVERRIDE;
281 -- '
282 -~
ggi - TBoxWindow = SUBCLASS OF TWindow
285 -- {Creat ion/Dest ruct ion}
%g? - FUNCTION TBoxWindow. CREATE{ ob ject: TObject; itsHeap: THeap; {tstmgrID: TWindowID): TBoxWindow;
288 ~- {Document Creat ion}
ggg - PROCEDURE {TBoxWindow.] BlankStat ionery; OVERRIDE;
291 -- { Command s&
292 -- FUNCT ION - TBox4 indow. NewCommand(cmdNumber: TCmdNumber): TCommand; OVERRIDE;
293 -~ FUNCTION TBoxblindow. CanDoCommand{ cmdNumber: TCmdNumber; VAR check It: BOOLEAN) BOOLEAN; OVERRIDE

294 -- END;

298 -- IMPLEMENTATION

300 -- $1 USBoxer2. text}
1 -- {USBOXER2}

== METHODS OF TBox;
" FUNCTION TBox. CREATE(object: TObject; itsHeap: THeap): TBox;

WAV B WA
[]
1
D>

0- BEGIN
- SIFC fTracc BP(11); { SENDC)
- . wog Ject(itsHeap, THISCLASS);
9 -- HITH
10 1- BE
11 -- shaanRnct : = zeroLRect;
12 -- color : = colorGray;
13 -1 END;
14 -- {$SIFC fTrace}EP; { SENDC}
ig -0 A END;
17 -- {SIFC fDebu; Hothods)
%g 8- A sggCEDURE Box. F ie] ds(PROCEDURE F iel & nameAndType: S255});
20 -- Field(' shapelLRect: LRect');
21 -- Field{' color INTEGER');
2 -~ Fiel
23 -0 P END:
24 -~ {SENDC}
S -
26 -~
27 -- This draus a particul ar box}
28 -- A OCEDURE TBox.
29 -- VAR]Pat: LPattern;
30 0- A BEGIN

/IO RN NS N A AR N RO A NI A NI A AIAI NI NI I A D A ND I NI RD D b 8 b (b o ot b b e B b ko ek e e o o Dt ot b b o o b e Db e o e B b o et Bk b ek b e ek e e bt (b (b b e ok ot ot B (ot b b o ot b ok b B b b o B b (b Db e b ok b ok b
[X]
®
o
i
|

21 Rug 1984 12:45:38

UBBOXER. TEXT

Page

-~
2 31 -- LSIFC fTrace}BP{10); { SENDC)

% gg -- enNormal ;

% ;g ;- 1F ngo(c;ti'ithsiblo(SELF. shapelRect) THEN {this box needs to be drawn)
2 36 -- {Get a Quickdraw pattern to represent the box's color}
2 37 2- CASE SELF. color OF

2 38 -- colorwhite: 1Pat : = 1PatWhite;

2 39 -- coloritGray: 1Pat : = |PatLtGray;

2 &0 -- col orGray: 1Pat := |PatGray;

2 A} -~ col orOkGray: 1Pat := 1PatDkGray;

2 A2 -- col orBl ack: 1Pat : = 1PatBlack;

2 A3 -- OTHERW ISE 1Pat : = |PatWhite; {this case should not happen}
% :; -2 ENO;

2 A6 -- {Fill the box with the pattern, and drau a frame around it}
2 A7 -- Fir1LRect(SELF. shapelLRect, 1Pat);

2 48 -- FrameLRect(SELF. shapeLRect);

2 49 -1 END;

2 650 -- {SIFC fTrace)EP; { SENDC)

2 S51-0A END;

2 52 --

2 83 -- & Frame a ganicular box}

2 54 --A PROCEDURE TBox. Drauf rame;

2 550-A BEGIN

2 56 -- $IFC fTrace}BP(10); { SENDC)

2 87 -- enNormal;

2 58 -- Pentode(PatXOr);

2 §9 -- FrameLRect (SELF. shapeLRect);

2 60 -- {$IFC fTrace}EP; { SENDC)

2 61 ~-0A END;

3 &

2 64 -- A PROCEDURE TBox. MoveBox(boxView: TBoxView; deltalPt: LPoint);
2 650-A BEGIN

2 66 -- {$SIFC fTrace)BP(10); {$ENDC}

2 67 -- WITH SELF DO

2 68 1- {$H-1 BEGIN

2 69 -- boxVieu. Inval Box(shapelLRect);

2 70 -- OffsetLRect(shapeLRect, deltalPt.h, deltalPt.v);

2 71 -- boxVisu. Inval Box(shapelRect);

2 72 -1 {ﬁ%; END;

2 7% -- {$IFC fTrace}EP; { SENDC}

2 74-0A END;

L

2 77 -- {This calls the DoToHandle Procedurs once for sach handls LRect; user of this msthod must
2 78 -- st the psn pattem and mode befors call ing}

2 79 --A PROCEDURE TBox. PaintHand] es;

2 80 -- VAR hLRect,

2 81 -- shapelRect: LRect;

% gg - . dh, dv: LONGINT;

2 84 --8 PROCEDURE MoveHand] eAndPaint{hOffset, vOffset: LONGINT);
2 B85 0-8B BEGIN .

2 86 -- OffsetLRect(hLRect, hOffset, vOffset);

2 87 -~ PaintLRect(hLRect);

2 88 -08 END;

2 89 --

2 90 0- BEGIN

2 91 -- strc fTrace}BP("°§ { $ENDC)

2 92 -- F NOT EmptylRect(SELF. shapelLRect) THEN

2 93 1- BEGIN

2 94 -- SetLRect(hLRect, -3, -2, 3, 2);

2 95 -- shapelLRect : = SELF. shapelLRect;

2 96 -- WITH shapelLRect DO

2 97 2- BEGIN

2 98 -- dh .= right - left;

2 99 -- dv := bottom - top;

g {gg -5 ggatﬂandloﬁndhim(loft, top); {drau top left handle)
2 102 -- MoveHandl eAndPaint(dh, 0); then top right}

2 103 -- MoveHand] eAndPaint(0, dv): then bottom right}
2 1084 -- MoveHand] eAndPaint(-oh, 0); finally bottom left]}
2 105 -1 END;

2 106 -- {$IFC fTrace)EP; {SENDC]

2 107 -0 A END;

2 108 --

2 109 -- END;

2 110 --

2 111 --

2 112 --

% H.i -=- HMETHODS OF TBoxView;

2 115 -- A FUNCTION TBoxVieuw. CREATE({ob ject: TObject; itsHeap: THeap; itsPanel: TPanel; itsExtent: LRect)
2 116 -- : TBoxView;

2 117 0- A BEGIN

2 118 -- ﬁsxrc ﬂncokBP(l&: { $ENOC)

2 119 -- F object = NIL THEN

2 120 -- object : = NcuObioct(itsHeap, THISCLASS);

2 121 -- SELF : = TBoxVieuw(itsPanel. NeuVisu(ob ject, itsExtent, TPrintManager. CREATE(NIL, itsHeap),
2 122 -- stdiargins, TRUE));

2 123 -- {SIFC fTrace)EP; { SENDC)

2 124 -0 A END;

2 125 --

2 126 --

2 127 -- {SIFC fDebugMethods)

% }gg a- 2 PRg(I:EDU E TBoxVieuw. F isl ds(PROCEDURE F iel &{ nameAndType: S255));
2 130 -- SUPERSELF. Fisl ds(F isl d);

2 131 ~- Field(‘ boxList: TList');

2 132 -0 A END;

2 133 -- { SENDC}

2 134 --

2 135 --)

2 136 -~ &r‘hls returns the box containing a certain point}

2 137 -- A FUNCT] TBoxView. Boxtith(LPt: LPoint): TBox;

2 138 -- 8 PROCEBURE F indBox(ob j. TOb ject);

2 139 -- VAR box: TBox;

2 140 0- B BEGIN

o

21 Bug lvv4 12:45:38 UBBUXER. TEXT Page

(NN NN NRRNNRRNRRRNNRNRRNA RN RN \

L 4

A
A

:» TBox(ob
IF LPt lnLR.ct(t box. shapoLR-ct{ THEN
END BoxWith : = box; {last one found (front one) is returned}
N

]
{s1FC ﬂnco%ﬁ?(ll) ; { SENDC}
boxbith N
SELF. Eachvirtual Part(F indBox);
N {SIFC fTrace}EP; { }

[Thls draus the Itst of boxes}
EDURE TBoxView. Dra

PROCEDURE DrawBox(ob J: TObject);
VAR box: TBox;

BEGIN -
box : = TBox(obj);
box. Draw;

PRO!

S

LSIFC fTrace}BP(10); { $SENDC)
ELF. EachVirtual Part(Draudox);
[S[Fc fTracs}EP; { SENDC]

PROCEDURE TBoxView. Eachactual Part{ PROCEDURE DoToObjcct(filteredObj: TOb ject));

gtch ﬂ’race)BP(n& pENDc} °
ELF. boxL ist Each&o o0b ject);
{SIFC fTrace)Ep; {

This determines which type of selection to create}
PROCEDURE TBoxView. HousePress{mouselLPt: LPoint);
VAR aSelection: TSelection;

anel: TPanel;

ox: ' TBox;

BEGIN
{SIFC fTrace BP(ll? { $ENDC]
panel := SELF. pane
panel. Hi h t(panel. select jon, hOntoOff): {Turn off the old highl ight ing}
box : = oxunh(mouseLPt); (Ftnd the box the user cl icked on}

IF box = NIL THEN . e
{Create an instance of TCreateBoxSel sct fon}
aSel ect fon : = panel. sel ect ion. FreedAndRepi acedBy(

ELSE TCreateBoxSel ect fon. CREATE(NIL, SELF. heap, SELF, mouselLPt)})

{Create an instance of TBoxSelect jon}
aSelect ion : = panel. se] ect ion. FreedAndRep! acodag
TBoxSel ect ion. CREATE(NIL, SELF.heap, SELF, box, boxSelectionKind, mouselPt)});

anel . Highl ight(anel scl ection, hOffToOn); {Turn on the highl ighting for the neuly selected box}
END&IFC fTracl?EP F

gggCEDURE TBoxView. Inval Box{ inval LRect: LRect);

gSIFC fTrace}EPpO) { $ENDC)
nsetLRect(inval LRect, -3,

SELF. panel. InvalLRect !nva!LRoct).
N {sxrc fTrace}EP; ()

PROCEDURE TBoxVieuw. InitBoxList (itsHeap: THeap):
gAR boxList: TList;

{sxrc fTrace]BP(11); ssnoc]l

boxList := TList, CR ATE(NIL, itsHeap, 0);
SELF. boxList : = boxList;

0 {$IFC fTrace)EP; { SENDC}

FUN%ION TBoxVieuw. NoSel ect ion: TSel ect ion;

{$S1FC fTrace}BP{11); { SENDC]}

NoSelect fon : = TBoxSel ect ion. CREATE(NIL, SELF.Heap, SELF, NIL, nothingKind, zerolLPt);
END: {SIFC fTrace}EP; [$ENDC}

END;

METHODS OF TBoxSelect ion;

FUNCTION TBoxSel ect fon. CREATE(ob ject: TObisct: itsHeap: THeap: itsView TView; itsBox: TBox;
1tsKind: INTEGER; {tsAnchoriPt: LPoint): TBoxSelection;
SIFC fTrace BP(I&& { SENDC}
F ob oct =
Mgtct itsHeap, THISCLASS);
SELF :- TchSaloct on{ 1Sel ect jon. CREATE(joct itsHeap, 1itsView, itsKind, itsAnchoriPt));
F.box := itsBo
{SlFC fTrace}EP; (m)
(wc fDebugHet hods
;EggEDUR TBoxSe}oct ion. F 1e! ds{ PROCEDURE F il d{ nameAndType: 5255)),

SUPERSELF. Fiel ds(F ield);
Field(’ box: TBox');

21 Bug 1984 12:45:38 USBOXER. TEXT Puge

(NNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNMNNNNNNMNNNMNNNNNMNMNNNNNNNNNNNNNMNNNNNNMNNNN \

-0 A

>»>»

END;
{ seNoC)

E‘rhis draus the handles on the selected box)
ggo EDURE TBoxSelect ion. Highl ight(highTransit: THighTransit);

SSIFC fTrace}BP(11}, &SEPOC)
SEIEE ‘:ind <> nothingKind THEN

B
thePad. SetPenToHighl ight(highTransit); set the drauing mode according to desired highl ight i
SELF. box. Pnlmﬂandg?cs.w (high)i { drau the hand?gs on the box] ° onl tont ing)

END;
ND: {SIFC fTrace}EP; {$ENDC)

PROCEDURE TBoxSel ect ion. KeyClear; .

gslrc ﬂncc; (’12) [SENDJ
ELF. windou TClearCmd. CREATE(NIL, SELF. Heap, uClear, TBoxVieuw(SELF. view), SELF.box));
END: SIFC ﬂrac.]EP { $ENDC)

PROCEDURE TBoxSel sct ion. KeyTab;
VAR thisPanel: TPanel;
nextBox: TBox;
boxView: TBoxView;
Get TheNextBox: BOOLEAN;

PROCEDURE DoYoOb ject(filteredObj. TOb ject);
VAR box:
BEGIN
box : = TBox(futondou)
IF GetTheNextBox = T THEN
BEGIN

nextBox : = box;
g:‘tt’ThoNoxtBox 1= FALSE;

IF box = SELF. box THEN
Get TheNextBox : = TRUE;

BEGIN
{sIFC nnco)BP(lz) (SNDC}
;hisﬁi’aml :;B Vi SELF fou
oxVieuw : = TBox v ®
IF SELF. kind = nc:u(t HLN
SELF. cantDolt
ELSE
BEGIN
Get TheNextBox : = FALSE;
nextBox : = NIL
boxView. EachVirtual Part(DoTo0b ject);
IF noxgzta?gx = NIL THEN

B
Get TheNextBox : = TRUE:
ga;\) iew. EachVirtual Part(DoToOb ject);

END;
thisPanel. Highl ight(SELF, hOnToOff);
SELF. box : = g:‘xtgh ¢
thisPanel. Hl?hli ht(SELF ROffToon);
END {$SIFC fTraceJEP; ?

This is called wuhen the user moves the mouse after pressing the button]
PROCEDURE TBoxSelsct ion. Mousetove{ mouseLPt: LPoint);
gAR diffLPt: LPoint;

($1FC ﬂ'rlco}BP(ll) { $SENDC}
Hou mouse move?}
LPtH nusLPt(nouscLPt SELF. currlPt, diffLPt);

{Move it if delta is nonzero}
IF Ngé Ea.nlLPt(diffLPt, zerolPt) THEN

SELF. curript :
SELF box nochox(TBoxU Iw(SELF. visw), diffLPt);

(SIF% 1T race]EP; [SENDC)

PROCEDURE TBoxSel ect ion. HouseRel sase;
geﬂ del talPt: LPoint;

($|FC ﬂ’nc.)BP(u) {$ENOC)
If the mouss moved then commit an outstanding command }
IF NOT EaualLPt(SELF currlPt, SELF. a Pt) 7

BEGI

LPtHinusLPt(SELF. curriPt, SELF. anchoriPt, deltalLPt);

SELF. windou. PerformCommand(THoveBoxCad. CREATE(NIL, SELF. Heap, uMoveBox, TBoxVieu(SELF.view),
SELF. box, deltalPt.h, deltalPt.v));

END;
\O: {SIFC fTrace]EP; {SENDC)

FUNCTION TBoxSelect ion NeuCommand(cmdNumber: TCmdNumber): TCommand;
VAR boxView: TBox iow;

hesp: f
BEGIP”"H' pastw' ONG INT;

{SIFC fTrace}BP(11); { SENDC]

boxVieu : » TBoxView(SELF. vieu);
heap : = SELF. Heap;

21 Rug 1984 12:45:38 UBBOXER. TEXT ' Page

-3

(NN SMANNNRNRBRNNRARNRNNNNRNRNRNRARRANNRR NN RN RNRRRRNONONNNRRNRMONRNRNANNRNRNRNRNNRRNORRBRRNNNNNONNONONNNONON)

CASE cmdNumber OF
ubthite, uLtGray, uGray, uDkGray, uBlack:
NewCommand : = TRecolorCmd. CREATE(NKL heap, cmcNumber, boxVieu, SELF. box,
ol cmdNusber - ubhite + colorthite);
sar
: = TClearCmd. CREATE(NIL, heap, cmdNusber, boxVieu, SELF.box);

uCut, uCopy:
NeuCommand : = TBoxCut CopyCmd. CREATE(gélL_F 2”?' cmcNumber, boxView, cmiNumber e uCut,
. box);

¢l ipboard. lnsg:ct;

IF cl ipboard. hasView THEN
BEGIN
WITH SELF DO

1F kérggl- nothingKind THEN

pasteH : = boxVieu. cl fckLPt. h;
Et.o“v ;= boxView. cl {ckLPt. v;

SE
WITH box. shapeiLRect DO
BEGIN peL

pasteH : = {leﬂ « right) DIV 2;
asteV : top + bottom DIV 2

'EO;SComnd = TBoxPasteCamd. CREATE(NIL. hup. cmiNumber, boxView, pasteH, pasteV);
ELSE
NO: process. Stop(phUnkCl ip);

uDupl icate:
NeuCommand : = TDupl icateCmd. CREATE(NIL, heap, cmdNumber, boxView, SELF. box);

OTHERW ISE
NewCommand : = SUPERSELF. NewCommand(cmiNumber);

END;
(SIFC fTrace)EP; { SENDC}

;gz!;? ION TBoxSel ect ion. CanDoCommand{ cmdNumber: TCmdNumber; VAR checklt: BOOLEAN): BOOLEAN;
ESIF C fTrace} BPS%l) ; {SENOC}
cmdNumbe

uhite, uLtGray, uGray, uDkGray, uBlack,
uCl ear,
uDupl icate,
uCut, uCopy:
CanDoCommand : « SELF. kind <> nothingKind;

cl ipboard. Inspect;
E&D mmand : = cl ipboard. hasView;

OTHERWISE
Can0oCommand : = SUPERSELF. CanDoCommand(cmdNumber, checkIt);

END;
o {SIFC fTrace}EP; { SENDC)

METHODS OF TCreateBoxSelect fon;

FUNCTION TCreateBoxSel ect ion. CREATE(ob ject: TOb ject; ft sHea THeap: itsVieuw: TView;
itsAnchoriPt: LPoint TCreateBoxSe] ect ion;
ggg box: TBox;

SIFC fTrace BP(J.}& { $ENDC}
F object =

ob ject : = NeuOb ject(itsHeap, THISCLAS
SELF :'= TCreateBoxSelect ion{ TSel ect jon. ATE(objoct itsHeap, itsView, createBoxSelectionKind,

ltshnchorLPt))
box : = TBox. CREATE(NIL, SELF. heap);
SELF. box : = box;
END {$IFC fTrace)EP; { SENDC}

{sIFC mobugnﬂ hods)
A PROCE TCreateBoxSe! ect ion. F il ds(PROCEDURE F iel d(nameAndType: S255));

]

BEGIN
SUPERSELF. F iel Qs(Field);
Field(' box: TBox');

END
{seNoc)

’Th s 1s called when the user moves the mouse after pressing the button]
EDURE TCreateBoxSel sct ion. Housetove{ mouselPt: LPoint);
VAR maxBoxLRect: LRect;
diffLPt: LPoint:
boxView: TBoxV ieu
box: TBox;

PROCEDURE DrawTheF rame;
BEGIN

box. DrawF rame;
ND;

GIN
{$IFC fTrace)}BP(11); { SENDC)

21 Rug 1884 12:45:38 UBBOXER. TEXT Page

(NNNNNNNNNNNMNNN!\)NNNNNNNNNNNNNNMNNNMMNNNNNNNNMNNNNNNNNNNNNMNNNNNNNNMNNN ™

> U O®

>>

boxView : = TBoxVisw(SELF. vieu);
box : = SELF. box;

{ ln Boxor ft is possible to drau a box greater than allowed by a 16 bit rectangls. These thres
rce the rectangle to uithin 16 bits. }

{sn-) unn SELF anchon.Pt Do

{$H+} LRectHavelLPt

END;

Set Ltht{anoxLR.ct he10-MAXINT, v+10-MHAXINT, heMAXINT-10, veHAXINT-10);
maxBoxLRect, mouselLPt);

LPtMinusLPt(mouseLPt, SELF. currl.Pt dif fLPt);
IF NOT Egual LPt(dHﬂ.Pt. 2erolPt) T

SELF curriPt : = mouselPt;
boxV iw panel. OnAl 1 PadsDo{ DrauTheF rame) ;
WITH box DO
BEGIN
shapsLRect. topLeft : = SELF. anchorlPt;
Enapd.koct. botRight : = mouselLPt;

{$H-} RectifylLRect(box. shapeLRect); {$H+}
boxv iew. panel. OnAl 1 PadsDo(OrauTheF rame);

{SIFC ?’Tnc.}EP { sENOC)

PROCEDURE TCreateBoxSel ect ion. MouseRel iast.

VAR thisBox: TBox;
boxView: TBoxV uu'
drauniLRect: LRec
aSel ect fon: TS.l ect ion;
panel: TPanel;

PROCEDURE DrauTheF rame;
BEGIN

thisBox. DrawF rame;

'y

BEGIN
{sIFC anchBP(n) gssnocx
boxView : = TBoxView(SELF. vieuw);
panel : = boxVieu. pam!
thisBox : = SELF. b
panel. OnAll Padsoo(DnuThoF rame);
draunLRect : = thisBox. shapoLRcct - . : T .

{ Independant of whether we threuw the boxed away or not we must cresate an instance of TBoxSselsction
to replace the now useless instance of TCreateBoxSelect ion using the kind set above. }
aSelect ion : = SELF. FreedAndRepl aceb 2
TBoxSel ect ion. CREATE(NIL, SELF. heap, boxView, thisBox, boxSelectionKind,
draunLRect. topl eft));

boxV iew. Inval Box(draunLRect);

Slf the box is not big enough then throuw it away, otheruise put it in the 1ist}
F (dnunLRoct right - drauniLRect. left <(=4) OR (draunLRect. bottom - draunLRect. top <=A4) THEN

aSeI ect ion. kind : » nothingKind;
E%saox Free;

ELSE
. windou. PtrfomComand(TCreateCmd. CREATE(NIL, SELF. Heap, uCreateBox, boxVieu, thissox));
END {SXFC fTracc]EP { SENDC}

METHODS OF TRecol orCmd;

FUNCTION TRecol orCmd. CREATE(objoct TObject: itsHeap: THeap: itsCmdNumber: TCmdNumber;
itsView: TBoxView, itsBox: TBox; itsColor TColor): TRecol orCmd;

SS IFC 7 {acoLBP(1&;‘{ $ENDC]

object : = NewOb ject(itsHeap, THISCLASS);
SELF : = TRecolo TCommand. CRE»TE(objoct. itsHeap, itsCmdNumber, itsVieu, TRUE, revealAll));
SELF. color : - 1ts¢o or;
SELF. box : =
(Sch ﬂracn]EP* {SENDC}

(s IFC ﬂ)ebu ethods

E TReco}orCnd. F ie) ds(PROCEDURE F iel d{ nameAndType: S255));

TCommand. F {el ds(Field);
Field(' Color: INTEGER);
Field(box: TBox');

END;
{SENDC}

PROCEDURE TRecol orCmd. Commit;
BEGIN

gSIFc f‘l‘nc-]BP(12%:(SENDC}
ELF, box. color : LF. color;
[stFC fTrace]EP; { SENDC

PRgCISDURE TRecol orCmd. Perform{ cedPhase: TCmdPhass);

SIFC fTrace}BP(12); { SENDC
‘Boxv i SEL; 1‘&;15 ! Inval on(SELF. box. shapelLRect);

appia cormputar

21 Rug 1884 12:45:38 UBBOXER. TEXT Page

581 -- sel 1. image. view. panel. select fon MarkChanged; allow this document to be saved
5, ool et o] ‘ !

586 -- A PROCEDURE TRecol orCmd. F il terandDo{ actualObj: TOb ject; PROCEDURE DoToOb ject(filteredObj: TOb ject)):
587 -- - VAR saveColor: TColor; :

Ve
2
2
2
2
2
2
2
2 588 -- box: TBox;
2 589 0- A
2 590 -- gSIFC fTrace}BP{12); SENDC)
2 591 -- b : = TBox(actualOb
2 592 -- IF box = SELF. box
2 593 1- BEGIN
2 5% -- saveColor : = box. color
2 595 -- box. color : = SELF. Color;
2 596 -- DoTqOb 1Ju:v.(bm:)
2 597 -- box. co. = saveColor;
2 598 -1
2 &0 - B poToob ject (b
- o0b ject(box);
2 601 -- {$IFC nnce}é;{gﬂx}
2 602 -0 A END;
2 603 --
2 604 -- END;
2 605 --
2 606 --
2 607 --
g ggg -~ HETHODS OF TCreateCmd;
2 610 -- A FUNCTION TCreateCmd. cREﬂTE(obioct: TOb ject; itsHeap: Tﬂngo itsCmdNumber: TCmdNumber;
2 611 -- tsView: TBoxView; itsBox: x): TCreateCmd;
2 6120- A BEGIN
2 613 -- VIFC ""C'meé: { $ENDC)
2 614 -- F object = NIL THEN
2 615 -- object : = NewOb ject(uchag THISCLASS);
2 616 -- SELF : = TCreateCmd| TCounand. CREATE(ob ject, itsHeap, fitsCmdNumber, itsView, TRUE, revealall));
2 617 -- SELF. neuBox : = itsBo
2 618 -~ {sIFc anco}EP {SENDC]
2 619 -0 A END;
2 620 ~-
2 621 -- A PROCEDURE TCreateCmd. Free;
2 622 0- A
2 623 -- ésxsc T race}BP(10); { SENDC)
2 624 -- ree(SELF. muaox),
2 625 -- SELF. FreeOb
2 626 -—- {SIFC ﬂnco}EP {SENDC}
2 627 -0 A END;
2 628 -~ e .
2 629 --
2 630 -- {SIFC fDebugﬂothods}
% gg% a- 2 S’égti‘.ﬁDUR TCreateCmd. F iel ds(PROCEDURE F iel d{ nameAndType: S255));
2 633 -- SUPERSELF. F {el dsgitl d);
2 634 -- Field(' newBox: TBox');
2 635 -0 A
2 636 -- (szuoc)
2 637 --
2 638 --
2 639 -- A PROCEDURE TCreateCmd, Commit;
2 640 -- VAR boxView: TBoxView;
2 641 0- A BEGIN
2 642 -- $IFC fTracl}BP(lz) { $ENDC)
2 643 -- BoxV iew(SE imao boxList. InsLast(SELF. newBox);
2 644 -- SELF. newBox : =
2 645 -- {sIFc ancn}EP. {SENDC}
g 8; -0 A END;
g g:g a- 2 ;E?;CIEDURE TCreateCmd. UpdateSel ect ion{ thisSel ect ion: TBoxSelect ion; cmdPhase: TCmdPhase);
2 650 -- {SIFC ﬂnco}BP(lS):Dsml
2 651 -- WITH thisSelect ion
2 652 1- CASE cmdPhase OF
2 653 -- doPhase, redoPhase:
2 654 -- kind : = boxSel ect ionKind;
Z &% - o hingK ind:
-- 1= pothi n
2 657 -1 " }
2 658 -- {SIFC race}EP; { SENDC}
2 659 -0 A END;
2 660 --
2 661 -~
2 662 -~ A PROCEDURE TCreateCmd Perform{ cmdPhase: TCmdPhase);
2 6863 -- VAR boxView: TBoxView;
2 664 -- box: T8ox;
2 665 -- thisSelect ion: TBoxSel ect ion;
$ 6 h BESIirc rrace)sp(12): [sENOC)
- race
2 668 -- : boxView : = Lo gELP
2 669 -- thisSslection : = TBoxSclocH hoxVicmg:‘:ol sslect ion);
2 670 -- SELF. UpdateSsel ect ion{ thisSel ect fon,
g 2;% -- boxVieu. Inval Box(SELF. newBox. shapeLRect);
2 673 -- sel 1. image. vieu. panel. sel ect jon. HarkChanged; {allow this document to be saved]
2 674 -- {SIFC fTrace}EP; f SENOC)
2 675 -0 A END;
L E
g g;g a- : PROCEDURE TCreateCmd. EachVirtual Part{ PROCEDURE DoToOb ject(filteredobj: TOb ject));
2 680 -- #SIFC nracozBP(IZ) { $ENDC)
2 681 -- BoxV tew(SEL EachActualPan(DoToObJoct)
2 682 -~ DoToOb ject { SELF. ox):
2 683 -- {SIFC ITrace}EP; { SENDC
2 684 -0 A END;
2 685 --
2 686 -- END:
2 687 --
2 688 --
2 689 --
2 690 -- MHETHODS OF TDupl icateCmd;
.

2] fug 1884 12:45:38 UBBOXER. TEXT Page 10

(NN RN NRNORN RN RN RN ANRNNRANRNRNA RN AN NN NSRRI NN NRNORDONNRNNRNNRNNRNONRNNRNNDNNNA)

]

>»>»

FUNCTION TDupl icateCmd CREME(ochct TOb ject: itsHeap: THeap, itsCmdNumber: TCmdNumber;
tsView: TBoxView; itsBox: TBox): TDupl icateCmt;
Vﬁz nouBN ox: TBox;

1
SIFC fTrace BP(IP& { $ENOC)
F object =
object : = éoct itsHeap, THISCLASS);
SELF : = TDupl icatelmd(TCommand. CREME(objoct. itsHeap, itsCmdNumber, itsView, TRUE, revealAll}};
SELF. ima - viw. panol window. CommitLast;
SELF. ol = {tsBox
neuBox : = TBox(1tsBox Clone(itsHeap));
SELF. neuBox : = neuBox
{$H-] OffSetLRect(newBox. sha eLRect, 20, 20); {$H-}
{SIFC flrace}EP; { SENDC

{$IFC fDebughethods)
Egg?iDUR TOupl icateCmd. F iel ds(PROCEDURE F isl o nameAndType: S255));

SUPERSELF. F iel ds(F iel d);
Field(oldBox: TBox');

END
(sENoc)

SEOCEDURE TDupl icateCmd. UpdateSelect ion{thisSelect ion: TBoxS#lection; cmdPhase: TCmdPhase);
{SIFC fTrace}BP(13); { SENDC)
WITH thisSo!lct fon Ds
CASE cmdPhase OF
doPhase, redoPhass:
box : = SELF. neuBox;
undoPhase:
:=» SELF. ol dBox;

box
IFC f“ nce} EP; { SENDC}
END;

METHODS OF TBoxCutCopyCmd;

FUNCT ION TBoxCutCopyCmd. CREME(object TObject; itsHeap: THeap; itsCmdNumber: TCmdNumb
ftsView: TView; isCutCmd: BOOLEAN; itsBox: TBox): TBoxCutCopycm:

GIN
SIFC fTrace}BP(10); [SENDC
SFobect-}l(Hé[)
ob ject : = NeuwOb jectg itsHeap, THISCLASS); :
gEtg b- TBoxCutgopyCm TCut CopyCommand. CREﬂTE(object. itsHeap, {tsCmdNumber, itsVieuw, isCutCmd));
ox : =
[SIFC fTrace} EP; { SENDC)

$IFC fDebugMethods)
RDCEDURE TBoxCut CopyCmd. F iel ds(PROCEDURE F iel d(nameAndType: S255));

SUPERSELF Fields(Field);
Field(' box: TBox');

END;
{SENDC)

PROCEDURE TBoxCutCopyCmd. Commit;
Tlégst Scanner;
X;

SSIFC ﬁnct}BP(lZ) { $ENDC)
F SELF isCut T S

GIN
:- TBoxUlou(SELF. iuge) boxl ist. Scanner;
NHILE s. Scan{ box
IF box = box THEN
BEGIN
s. Del ste{ TRUE);
s. Done;

3

END; '
{SIFC fTrace)EP; {SENDC)
END;

PROCEDURE TBoxCutCopyCmdl DoCutCopy{cl ipscl ect jon: TSelect ion; deleteOriginal: BOOLEAN;
cmdPhase: TCmdPhase);

VAR boxVisu: TBoxView;
thisBoxSelect fon: tBoxSol oct ion;
cl ipHeap: THeap;

[3} 1p80xList TList;

cl ipBoxView: TBoxVieuw;
cl ipBoxSel sct jon: TSel ect ion;
cl ipBox: TBox;

del taH: LONG INT;

del taV: LONG INT;

$1FC fTrace]BP(12
goxviw w7 oxslim)a(gﬂ.F image);

IF cmdPhase = doPhase THEN
BEGIN

fr-pan to cop ;
cl ipHeap : = cl ipSel sct fon. Heap;

21 Rug 1984 12:45:38 UBBXER. TEXT

Page 11

77 NN NN RRNRNN RN RN NN AR NARNANRNRRRNRNNRNRNANRDNNNNNNRRNNONNRORNNRNRNNRNRNNRNNONON)

del taH : = SELF. box. shapelLRect. left;
del taV : = SELF. box. shapslLRect. top;

{Copy the box to the scrap} .
¢l ipBox : = TBox(SELF. box. Clonc(c]l ap)):
“{$H-} O!fsotLRoct(cl ipBox. shapsiRect, -dclt.aH. -del taV); {$H¢]

cl ipBoxL ist :» TList. CREATE;NIL, cl ipHeap, 0);
cl ipBoxL ist. InsLast(cl ipBox

{make Peu cl ipboard select
cl ipBoxView : = TBoxView. CREATE(N L, cl ipHeap, cl ipSelect ion. pansl, cl ipBox. shapstRect);
cl ipBoxVieu. boxList : = cl ipBoxL ist;
cl ipBoxSel ect ion : = clége eoct ion. Fmdﬁndaapl acedBy(
ENG: TBoxSel ect ion.

{ 1f this is a cut then remake the selection and inval idate the cut box. }
IF Sgtgzniscu t THEN
thisBoxSel ect ion : = TBoxSel ect ion{ boxVieuw. panel. sel ect ion);
WITH thisBoxSelsction DO
CASE cmdPhase
Kind : = nothmv(lnd;
ase:
END Kind : = boxSel ect jonKind;
{$H-) E%vm. Inval Box(SELF. box. shapeLRect); {S$He}
sel 1. image. vieu. anol select ion. mrkcmnmd {allou this document to be saved}
{SIFC fTrace}EP; { $ENDC)
A END;
A ;SggEDURE TB8oxCut CopyCmd. EachVirtual Part({ PROCEDURE DoToOb ject({ filteredOb j: TOb ject));
SSIFC fTrac-}BP(lz) {senoc)
F SELF. isCut THEN
SUPERSELF. EachVirtual Part{DoToOb ject)

e. EacMctml Part(DoToOb ject);
{SIFC nncc?EP { SENDC

ATE(NIL, cl ipHeap, cl tpeoxauu, cl ipBox, boxSelect jonKind, zerolPt)});

A PROCEDURE TBoxCut CopyCmd. F il terAndDo(actual Obj: TOb ject; PROCEDURE DoToOb ject(filtersdObj: TObject));

VAR box: TBox;

($1FC ﬂnco}BP(lZ) { $SENDC}
box : = TBox(actualOb §);
IF (box <> SELF. box) OR NOT SELF. isCut THEN
DoToOb jecthctualObj ;
{$IFC fTrace}El
A END;

END;

METHODS OF TBoxPasteCmd;

A FUNCTJON TBoxPasteCmd. CREATE(objoct TOb ject; itsHeap: THeap; itsCmdNumber: TCmdNumber;
A itsVieuw: YBoxVicv. itsH, itsV: LONGINT): TBoxPasteCmd;

GIN
SSIFC ﬂncn}‘BP(IOE- { $ENDC}
F object =
object : = Newobj cct&itsHeap. YHISCLﬁssz:
SELF :'= TBoxPaanmd(T asteCommand. CREATE(ob ject, itsHeap, itsCmdNumber, itsView});
WITH SELF DO
BEGIN
pasteH : = ftsH;
pasteV : = fjtsV;
pasteBox : = NIL;

END;
{SIFC fTrace)EP; { SENDC}
) END;
(S!Fc mabugﬂcthods
RE TBoxPasteCmd. F isl ds{ PROCEDURE F iel d{ nameAndType: S255)):

SUPERSELF Fields(Fiel d)
Ftcl:% pasted: LONGINT

»>»

Fiel d(' pasteV: LONGINT

Fiel o' pasteBox: TBox)
A END;
{ $ENDC)

2 SESCEEDURE TBoxPasteCad Fres;
P IFC anc-] s:gzg { $ENDC)

(sxrc nnct}EP. { $ENDC)
ND;

A :EOCEDURE TBoxPasteCmd. Commit;

$IFC fTrace 89(12) { $ENDC]
8 ou(SE! ngoz boxList. InsLast(SELF. pasteBox);

oBo
(SIFC nuco)EP- { SENDC)

[.] PROCEDURE TBoxPasteCmd. DoPaste(cl ipSel ect ion: TSelection; pic: PicHandle; cmdPhase: TCmdPhase):

appia compahar

21 Rug 1984 12:45:38 UBBOXER. TEXT Page 12

/RN RN NN RIRAINNIARIR RN R R RN R RRNA RN RN RNNRRR DR R NN R RN RN RN R RATR NIRRT RN RN RN R AR RN NN RN NN NN

- A
%11 -- VAR boxView: TBoxView;
912 -~ panel : TPanel ;
913 -- ¢l ipBoxSel ect ion: TBoxSel ect ior;
914 -~ thisBoxSel ect ion: TBoxSel act ion;
915 -- ¢l ipBoxView: TBoxVieu;
916 -~ del tak: LONGINT;
917 -~ del tav: LONG INT;
918 -- s: TListScanner;
919 -- ¢l {pBox: TBox;
920 -- box: TBox;
921 --
922 0- A
923 -~ ($IFC ﬂncu)BP(lZZSESENOC]
924 == boxView : aTBoxVieuw(SELF. image);
ggg - panel : = boxVieu. panel;
927 -- 1F cmdPhasu = doPhase THEN
928 1- BEGIN
929 -~ { 1f the cl ipboard selection is of class TBoxSelection then we can paste it into document,
930 -- otheruise we have to do other trun?
931 -~ IF NOT InClass(cl ipSelect 1on. TBoxSelect ion) THEN
ggg -- panol select fon. CantDolt
934 2- BE
gzg - cl 1pBoxSox ectjon : = TBoxSelect ion{cl ipSel ect fon);
937 -- f Place the box around the point indicated b(v- pasteHd and pasteV ?.
gzg ;- {$H-}) UITHBEGmBoxScl ect jion. box. shapeLRect DO {hox..shapelRect. topLeft = zerolPt}
940 ~-- deltaH : » Max(O0, Mn(SELF pasteH - (right DIV 2},
941 -- boxVijeuw. extentLRect. right - right)).
942 -~ deltaV : = Max(0, Min{SELF. pasteV - (bottom
943 -- boxVieu. extentLRect. bottom - bottom)).
g:; -3 {$H+} END;
946 -~ box : = TBoxgcl ipBoxSel ect {on. box. Cl one(boxVieu. Heap));
947 -- {$H-} Offsﬂ.LR-ct box. shapeLRect, deltaH, deltav); {$H)
948 -~ SELF. pasteBox : = box;
949 -2 END;
ggg -1 END;
952 -~ thisBoxSel ect ion : = TBoxSel ect ion(panel. select fon);
953 -- sanel Highi ight(th!sBoxSeloct ion, hOnToOff)
954 -~ ITH thisBoxSel ect ion DO
955 1- E cmdPhase OF
956 -- doPhase redoPhase:
957 2- BEGIN
958 -- kind : = boxSel ect ionKlnd:
959 - box : = SELF. pasteBox;
960 -2 0;
961 -~
962 -- undoPhase:
963 -- kind : = nothingKind;
ggg -1 END;
ggg - {$H~} boxVieu. Inval Box(SELF. pasteBox. shapeLRect); {$H+]
968 ~-- sel f. image. vieu. panel sel ect ion. MarkChanged; {allow this document to be saved)
968 -- {SIFC fTracelEP; { SEN)
870 -0 A END;
% -
g;lz 6- 2 ;ROCEDURE TBoxPasteCmd. EachVirtual Part(PROCEDURE DoToOb ject(filteredOb j: -TObject));
975 -~ gSIFC anco]BP&é f &o
976 -~ ELF. image. EachActualPart(DoToOb ject);
977 ~-- DoTOOB;?ct(SELF astaBox).
978 -- race}EP; f
979 -0 A
980 -~
981 -- END;
982 ~--
983 --
984 ~--
ggz ~- HETHODS OF TClearAllCmd;
987 -- A FUNCTION TClearAllCmd. CREATE(ob ject: TOb ject; itsﬂoa?‘. THeap; itsCmdNumber: TCmdNumber;
ggg a- R itsView TBoxeeu) ClearAllCmd;
990 -- S$IFC fTrace)BP(10); { SENOC)
390 " e,
992 -~ ob ject :- NouObjoct usuoap. TH]SCLASS)
993 -- SELF : = TClearAliCmd(T nd. CREATE(ob ject, usﬂnp, itsCmdNumber, itsView, TRUE, revealNone));
994 -- SELF. kind : = SELF, 1N08‘ vieu, panel. sel ect fon. king;
995 -- {SIFC fTrace)}EP; { SENDC}
9396 -0 A -
987 --
998 -~
999 -- {SIFC f‘Debu Het hods}
iggg a- A ;RO TCl earAl 1 Cmd. F jel ds{ PROCEDURE F iel d(nameAndType: S255)):
- A
1002 -- Tcomnd Fislds(F el d}
1003 -~ Field(' kind: INTEGER
1004 -0 A END;
1005 -- {SENDC}
1006 --
1007 --
1008 -- A PROCEDURE TClesarAllCmd Commit;
1009 0- A BEGIN
1010 -- SIFC ﬂnc.;BP(lz) { $eENDC)
1011 ~- BoxV jeuw(SEL in e). boxLlst Del Al1(TRUE);
1012 -- {$IFC fTracs)EP; {
1013 -0 END,;
1014 --
1015 -~
1016 -- A PROCEDURE TCl earAl1Cmd. Perform{ cmdPhase: TCmdPhase);
1017 -- VAR thisSelect jon: TSelection;
1018 -~ boxV jew: TBoxView;
1019 o- BEGIN
1020 -- {SIFC fTrace)BP(12); { SENDC})

21 Rug 1884 12:45:38 UBBIER. TEXT Page

13

NN RN RANNRDRNRRN AR RN RN RN ADAIRNNNNRRNRNANRNMNNRNNRNRAONNNRUNRNNANNRONNNNRR

boxVisuw : = TBoxth(SiLF image);
thisSelect ion : = boxVieu. panel. select iom;

WITH thisSel ect ion DO
CASE cmdPh:

ase OF
se, redoPhase:
. kind : = nothingKind;

se:
kind : = SELF. kind:
ENOD;

{ Inval idate the whole panel }
boxView. panel. Inval idate;

sel f. image. vieu. panel. select ion. MarkChanged; {allow this document to be saved]
{s1FC nncolvf $SENDC)

PROCEDURE TCl sarAllCmd. EachV irtual Part(PROCEDURE DoToOb ject(filteredobj: TObject));

IN
[i2 ArlE s

METHODS OF TCl earCmd;

FUNCTION TClearCmd. CREhTE(object TOb ject; {tsHeap: THeap. {tsCmdNumber: TCmdNumber;
tsView: TBoxView; itsBox: TBox): TClearcmd;

GIN
Ssrrc nnc-)ap(xaz { $ENDC)
F object =
ob ject : = NewOb ectéitsﬂoap, TH!SCLASS&
SELF : = TClearCmd| Box ut CopyCmd. CREATE(ob ject, itsHeap, 1gsCrnc!Nunber, itsView, TRUE, itsBox));
(leC fTrace}EP; {

PROCEDURE TCl sarCmd. Perform{ cmdPhase: TCmdPhase);
VAR boxView: TBoxV iew;
thisBoxSel ect fon: TBoxSel ect fom;
panel ; _ TPanei;
BEGIN
{SIFC ﬂnco BP(12) -L’SENDC}
bolew ;= TBoxVi ou(ELF. image);
panel : = boxVieu. pannl'
thisBoxSel ect ion : = TBoxSel ect ion{ panel. select ion);

WITH thisBoxSslect ion DO
CASE cmdPhase OF
doPhase, redoPhase:
Kind : = nothingKind;
undoPhass:
Kind : = boxSel ect fonKind;

END;
boxView. Inval Box(SELF. box. shapelRect);
sel f. image. vieu Etnel sel ect jon. MarkChanged; {allow this document to be saved}

{SIFC fTrace)EP;
END;

HETHODS OF TMoveBoxCmd;

FUNCTION THoveBoxCmd. CREATE(ob ject: TObject. itsHeap: THeap;, {itsCmdNumber: TCmdNumb
itsView: TBoxView; itsBox: TBox; 1tsHOffset, ltsvoffsct LONGINT)

: ThoveBoxCmd;

GIN
PIFC nncol‘eP(lsé' { $ENDC}
F object =
ob ject : NouObjoct(itsHeap, THISCLASS); .
SELF :'» mov.eoxcm{ TCommand. CREATE{ ob ject, itsHeap, itsCmdNumber, itsVieu, TRUE, revealAll));
WITH SELF DO
BEGIN
hOffset := ftsHOffset;
vOffset : s ftsVOffset;
movodBox 1= jtsBox;

m(sxrc ancn]EP;[siﬂoc)

as IFC fDebugMethods}
OCEDURE THoveBoxCmd. F 11 ds(PROCEDURE F isl d{ nameAndType: $255));

TComnd. Flel ds(Field);
Field(' hOffset: LONGINT);
Field(' vOffset: LONGINT');
Field(' movedBox: TBox');

END;
{ SENDC)

PROCEDURE TMoveBoxCmd. Perform{ cmdPhase: TCadPhase);
VAR diffLPt: LPoint;

BEG
FC fTrace}BP(12
{sl n) t(); m]msm since the box has al ready been moved }
IF :- <> se THEN

BEGIN
{$H-1 WITH SELF DO
CASE cmdPhase OF

21 Rug 1884 12:45:38 UBBOXER. TEXT

Page 14

mNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNMNN”NNNNNN N\

-2

1~

> >

redoPhase:
SetLPt(diffLPt, hOffset, vOffsst);
£ A
. SetLPt(diffLPt, -hOffset, -vOffset);
SELF. movedBox, MoveBox(TBoxView(SELF. image), diffLPt);

g

. (3]

seol f. image. v aml solocnon HarkChanged; allow this document to be saved
{ $IFC nncc]EPf {)

END;

HETHODS OF TBoxProcess;
FLmCTlON TBoxProcess. CREATE: TBoxProcess;
SXFC fTrace}BP(11); { SENDC

)
ELF : = TBox rocoss(Procoss CREATE(NewOb ject (mainHeap, THISCLASS), mainHeap));
[SIFC fTrace}EP; { SENDC

FUNCTION TBoxProcess. NeuDocHanager{ volumePrefix: TFilePath; openAsTool: BOOLEAN): TDocManager;

BEGIN

{$IFC nnc-}sp(ngo{ssnoq

NeuwDocManager : s xDocnanagor CREATE(NIL, mainHeap, volumePrefix);
END: {SIFC fTrace}EP; { SENDC

END;

METHODS OF TBoxDocManager;

FUNCTION TBoxDocHanager. CREATE(oh ject: TObject; itsHeap: THeap; itsPathPrefix: TFilePath)
TBoxDocHanager;

SIFC ﬁncokBP(1‘1:%: { SENDC)
F ob}cct =
b ject : = NeuwOb ject({tsHeap, THISCLASS);
T. TBoxDocmnage TDocHanager. CREATE(ob ject, itsHeap, itsPathPrefix));
{slrc fTrace}EP; { SEND

Sggct ION TBoxDocHanager Newd indow{ heap: THeap; wmgrlD: TWindowID): TWindow;
{SIFC fTrace}BP(1l); {SENDCL
Neullindow : =_ TBoxWindow. CR ATE(NIL, heap, wmgriD);

£ND {SIFC fTrace}EP; { SENDC}

END;

HETHODS OF TBoxUWindow:

;gg!}:;ION TBoxWindouw. CREATE(ob ject: TObject; itsHeap: THeap; itsuWmgriD: TWindowlID): TBoxWindow;

PIFC f’TracoABP(10)' { SENDC}
F object =

object : = NeuOb ect(itsHeap, THISCLASS):
SELF : = TBoxW indou(TWindou, CREATE(ob ject, itsHeap, itsWmgriD, TRUE));
{$IFC fTrace}EP; { SENDC)

PROCEDURE TBoxWindou. Bl ankStat fonery;
VAR vieuLRect: LRect;
anel: TPanel H
oxView: TBoxVieu;
aSel ect for: TSel ect fon;
BEGIN
{sIFC nnc-}anm NDC}

panel : s
SetLRect(viewlRect, 0, 0, S000, 3000);
boxView : = TBoxView. CREATE(NIL, SELF. Heap, panel, vieutLRect);
boxVieu. InitBoxL ist(SELF. Heap);
. {SIFC fTrace}EP; { SENOC)
END;
FUN(KZ:"ION TBoxW indow. NeuCommand(cmdNumber: TCmdNumber): TCommand,
{$IFC fTrace)BP(11); [SENDC)
CASE cmdNumber OF
uClearal l:
NeuCommand : = TClearAll Cad, CREATE(NIL SELF. heap, cmdNumber,
TBoxV iew(SELF. sel ectPanel. view));

OTHERW ISE
NewCommand : = SUPERSELF. NewCommand(cmdNumber);

END;
ND: {SIFC fTrace)EP; { SENDC)

FUNCTION TBoxW¥indou. CanDoCommand(cmdNumber: TCadNumber; VAR checkIt: BOOLEAN): BOOLEAN
BEGIN

SSIFC ﬂnco)BF&%&); { $SENDC}

ASE cmdNumber

TE(NIL, SELF.Heap, SELF, 0, 0, [aScroll, aSplit], [aScroll, aSplit]);

41 Hug 1984 12:45:38 UBBUAEKR. TEXT Page 1S

- I
2 1241 -- uClearall:

2 1242 -- CanDoCommand : = TRUE;

2 1243 -- OTHERW ISE

g g:; —I END: CanDoCommand : = SUPERSELF. CanDoCommand(cmdNumber, checklIt);

2 1246 -- {SIFC fTrace}EP; {SENDC]

2 1247 -0 A END;

2 1248 --

2 1249 -- END;

1 301 -~

1 302 -- END.

21 Bug 1984 12:45:38 UBBOXER. TEXT Page 16

4 . ™
1. uBboxer. TEXT
2. UBSBoxer2 text

=B
BlankStat fonery 289+ 1) 1204<(2)
Box - 139 (1
box 101 (1} 124 (1) 187+ 1) 139+ 2) 141«{ 2) 142 (2) 143 (2) 156<(2) 158s{ 2) 159 (2
180+(2} 186=(2) 188 (2) 195 (2) 242«(2) 262 { 2) 271 (2} 283(2) 28Se(2) 288 { 2
281 (2) 291 (2) 313«(2) 331 { 2) 346 (2) 368 (2) 367 (2) 371 {(2} 384 (2} 396 (2
A3Se{ 2) AA2«(2) AA3e(2} 443 2) 462°(2) 466 (2) 472=(2) 472 (2) 486 (2) 492 (2
515 2) 553=(2) S71(2) 579 (2) 6588°(2) 591«(2) 592 (2} 592 (2) 594 (2) 595 (2
596 { 2) 597 (2) 600 (2) 664=(2) 725=(2] 727=(2} 745« 2) 761i~(2) 767 (2) 768 { 2
768 (2) 801 (2) 802 (2) 805 (2] 829 (2} 849~ 2) 852« 2) 853 (2) 853 (2) 920°(2
938 { 2) 94 2) 946 (2) 947 (2) 948 (2) 959={ 2) 1080 (2
boxL ist m‘ﬁ é 171 (2) 212+(2) 215=(2] 216=(2) 216 (2) 643 { 2) 766 (2) 813«(2) 904 (2)
boxSel ect ionKind 27°(1} 195 f 2; 522i 2; 654{ 2; 815 (2) 827 (2) 958 (2) 1078 { 2)
Box@ith 79°(1) 137+(2) 143=(2) 186 (2
-C-
CanDoCommand 1%:2' é 293°(1) 405°(2) A13=(2) A18s{ 2) 422=(2) 422 (2) 1237+ 2) 1242=(2) 1244s=(2)
co} olx_‘m K gi‘ i 1:2‘ % ig-i gg 37 (2) S52=(2) S71=(2) 571 (2) 594 (2) 595=(2) 597« 2)
colorBlac .
col orDkGray 23+{ 1) 4 (2
col orGray 22°(1 12(.2 40 (2)
colorLtGray 21+(1 39(2
colorthite 20°(1 45 (1 38(2 365 (2 N .
Commit 160" 1 194": 1) 214+(1} 231<(1) 6S68<(2) 639°(2) 759°(2) 901+(2) 1008+(2
CREATE 56+(1 76(1) 104<{ 1) 127+(1) 143«(1) 158°(1 174+(1 190<(1 209(1) 227+ 1
240 { 1 256°} 1 8 1) 277 (1) 286 (1 S+{ 2) 115-(2) 121 2) 191 2) 195 ¢{ 2
215 (2) 224 (2) 234+(2) 240 (2) 271 (2) 345 (2) 364 (2) 367 (2) 370{ 2) 389 { 2
396 (2) 433°(2} 440 (2) AA2 (2) S22 (2) 534 (2) S45+(2) 551 (2} 610+ 2) 616 { 2
692+(2) 699 (2) 738<(2) 744 (2) 808 (2) 812 (2) 8IS { 2 864+(2) 870 { 2) 987+ 2
993 s 2) 1082+(2) 1058 (2) 1092°(2) 1099 (2) 1149+(2} 1152 { 2) 1160 { 2) 1170+{ 2) 1176 { 2
1184 (2) 1194<(2) 1199 (2) 1211 (2) 1214 (2) 1227 (2
createBoxSelecti 28°(1) 440 { 2
«D- .
DoCutCo 198-(1) 778+(2
DoPasupy 215°(1) 910°*(2
Drauw 69+(1 87+ 1 28‘{ 2; 154‘{ 23 159 (2)
DravF rame 60°(1 SA*(2) 466 (2) So08 (2
-E-
EachActual Part SO~ 168<(2) 681 2) 8A3 (2) 976 (2 .
EachVirtualPart %‘6&' % %;;‘ % lgig. % 233+(1) 1 163 (2) 305 (2) 309 (2) €78*(2) 837« 2)
<F-
Fields 18+ 2 128'2 2} 1502 2; 247‘§ 23 2l9§ 2; 4k9°§ 2; 4515 2} 559'$ 2; S61 é 2 631"% 2}
lﬁg % 710 2) 712 (2) 751<(2) 753 (2) 882+{ 2) 884 (2) 1000-(2) 1002 (2) 1111+{ 2
FilterAndDo 147-(1 SGS‘{ 2; 8#8‘2 2;)
Free 211+(1) 531 (2) 621°(2) 624 (2) 892°(2) 895 { 2)
-H-
Highl ight 108=(1 185 (2) 197 2) 256+(2) 312 (2) 314 2) 953 (2)
hogfsnt 251 § 1; 8#‘2 23 86 2; 1102-2 2} 1132{ 2; 11542 2}
-1~
InitBoxL ist 93‘{ 13 211 2; 1215 2;
Inval Box 82+ 1 69 (2 71 (2) 202°(2) 525(2) 579 (2 671 (2) 829 (2) 966 (2) 1080 { 2)
K-
KeyCl ear 268+(2
KeyTab 276+(2
kind ggzt éi 35922 %} 1(2}3;& Sg 13;3-5 g 13:1; %g 630=(2) 654s(2) 656=(2) 958e{ 2) 963s{ 2)
-L-
LPoint 186% 1; 321 2} 338 i 23 4605 2} 1122& 2;
LRect 52(1 81 {(2) 459 (2) 502 (2) 1205 (2
-t
Housetiove 111+(1) 131°(1) 320<(2) 4s8-(2)
HousePress B4°(1) 177¢(2
gl %5% R AEEAL
veBox . .
movedBox 2563+(1) 1104s=(2} 1136
“N= i
newBox 186 (1 617-? 2) 624 (2) 643 (2) 644s(2) 671 (2) 682 (2) 694°(2) 702=(2) 703«{ 2)
703 (2) 704 (2} 725 (2)
NeuwCommand 115+(1) 292+(1) 352+ 2 36&-5 2; 367=(2) 370s=(2) 389s(2) 396s(2) 399« 2) 392 (2)
1221+ 2) 1227«(2) 1231={ 2) 1231 { 2
NeuwDocManager . 269+(1) 1157<(2) 1160=(2 :
Nosel sct AR R e
oSel ect ion . . -
-0-
ol dBox 171 (1) 701=(2) 727 (2)
-
PaintHandl ss 66°(1 79°(2) 262 (2
pasteBox 206+(1) 875={ 2} 895 2) 904 { 2) 90S=(2) 94A8e(2 959& 2} 966 (2) 977 (2)
pasteH 204 (1) 355°(2) 380e(2) 386={ 2) 389 (2) 873« 2) 940 (2
pasteV 205(1) 3585<(2) 387s{ 2) 389 { 2) 874={ 2) 94 2
Perform 146°(1 161°(1) 232+(1) 244-(1) 261<(1) 576~(2) e62+(2) 1016~(2) 1063~(2) 1i2i*({ 2)
QuickDrau 15+(1)
-S-
sel ToplLeft 186 (1 -
shapoER.ct s2(1 11 2 34 (2 A7 (2 48 (2 59 (2 69 (2 70 { 2 71 (2 B1~{ 2
: 92 (2) 95«(2) 95 (2} 96(2) 142 (2) 384 (2) 488 (2) 48B3 (2) 492 (2) Siv({ 2
579 (2) 671 (2) 704 (2) 801 (2) 802 { 2) 806 (2) 812(2) 829 (2) 938 (2] 947 ({ 2}
966 (2) 1080 (2
L W,

21 Rug 1984 12:45:38

f§
H
ég

(

.
TBox 49+(1 56 (1 79 (1) 101 1 124 (1) 139 (1 158 1) 171 1) 187 (1) 206
253 { 1 3e 2* S 21 137 (2} 139 (2) 141 (2) 156 (2) 158 (2} 180 (2) 278
283 2 S (2) 435 2) 482 (2) 462 (2) S00(2) 588 (2) 591 (2) 664 { 2) 694
702 (2) 761(2) 786 (2) 805 (2) 849 (2) 852 (2) 919 (2) 920 { 2] 946 { 2}
TBoxCut CopyCmd 183+ 1) 191 (1) 237 { 1) 370 (2) 736~(2) 739 (2) 744 (2) 1058 { 2
oG RE R R B
xPas .
78oxProcess 265°(1) 268 (1) 1147+(2) 1149 (2) 1152 (2
TBoxSel ect ion 98+(1) 108 1) 195 2) 224 (2) 232°(2) 235 (2) 240 (2) 522 (2) 66S 2) 669 (2
781 2) 815 (2) 821 2) 913 (2) S14¢(2) 931 2) 935 2‘ 952 (2) 1065 2) 1071 (2
TBoxView 70~(1 77(1 113«(2) 116 (2) 121 (2) 271 (2) 279(2) 298 { 2) 331 2) 345 (2
353 2) 359 (2) 461 2) 471 (2) 501 2) S13(2) S79(2) 640 (2) 643 2) 683 (2
668 2) 681 (2) 766 (2) 780 (2) 784 (2) 793 (2) 812 (2) 904 { 2) 911 2) 915 ¢(2
924 { 2) 1011 2) 1018 2) 1021 2) 1064 (2) 1069 (2) 1136 (2) 1207 (2) 1214 { 2) 1228 (2
TBoxWindow 283°(1) 286 (1) 1184 2) 1192+(2) 1194 (2) 1199 (2
TClearAl 1 Cmd 222+(1) 228 1 98S+(2) 988 (2) 993 (2) 1227 { 2
;gllcarcm Zi;' i 2;% i fz(l) % ;g; g 1050+{ 2) 1053 (2) 1058 (2)
olor . :
Teommand el X BRI M jal Hasssta SRSy B2 s s asl
TCreateBoxSelect 121°{ 1) 128 (1) 191 (2) 431 2% 434 (2) 440 (2
TCreateCmd 162+(1) 159 (1 168 (1 §34 (2) e08+(2) 611 (2) 616 (2)
TCutCopvCommand 183 (1) 744 (2
TDocHanager 270 { 1) 274 (1) 1157 (2) 1176 { 2
TDupl icateCmd 168°(1) 175 (1) 396 (2} 690°(2} €93 (2) €99 (2)
TList 73 (1) 212 2) 25 (2) 783 (2) 808 { 2
THoveBoxCmd 248*(1) 258 1) 345 (2) 1090°(2} 1094 (2) #0932 (.2)
T0b ject 49 (1 138 2) 155 (2) 282 (2
;:asuComnd gg% i lgg 3
rocess
TReco] orCmd 138+(1} 144 (1 364 (2 Sb!'% 2} Slsi 2; 551 23
TSel ect ion 123: % 9 (1) 121 1 178 (2) 221 2) 240 (2) 440 (2) SO3 (2) 785 (2) 1017 {
TView 70(1
TWindou 279 (1) 283 (1) 1181 (2) 1193 (2)
-U-
UBBoxer 4+(1
UABC 17+(1
uBl ack 35+(1} 363 (2) 409 g 2}
uClearAl 1 37°(1) 1226 (2) 1241 2
uCreat eBox 40°{ 1) 534 (2
ubkGray 34+(1) 363 (2) 409 (2)
UWrau 16°(1
uDupl icate 36+(1} 395 (2) 411 (2)
UFont . 12+ 1
uGray 33-(1 363 2) 409 2 2}
ulLtGray 32+(1) 363 (2) 409 (2
uMoveBox 41°(1) 345 (2
Uob ject 9°(1
UpdateSelection 162°(1 178’{ 1; 6&8'5 2} 670 é 23 718+(2)
ulbhite 31+(1 363 (2) 365 (2) 409 (2
-U=
voffset 252+(1) 84+(2) 86 (2) 1103=(2) 1132 (2) 1134 (2)
‘{e-= End Xref. 95 id's 725 references [380384 bytes /4904 id' s/37740 refs]
-

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-04a
	02-05
	02-05a
	02-06
	03-01
	03-02
	03-03
	03-04
	03-04a
	03-05
	03-06
	03-07
	03-07a
	03-07b
	03-07c
	03-07d
	03-08
	03-lab-01
	03-lab-02
	03-lab-03
	03-lab-04
	03-lab-05
	03-lab-06
	03-lab-07
	03-lab-08
	03-lab-09
	03-lab-10
	03-lab-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-05a
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-lab-01
	05-lab-02
	05-lab-03
	05-lab-04
	05-lab-05
	05-lab-06
	05-lab-07
	05-lab-08
	05-lab-09
	05-lab-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-lab-01
	06-lab-02
	06-lab-03
	06-lab-04
	06-lab-05
	06-lab-06
	06-lab-07
	06-lab-08
	06-lab-09
	06-lab-10
	06-lab-11
	07-01
	07-02
	07-02a
	07-03
	07-04
	07-05
	07-06
	07-07
	07-lab-01
	07-lab-02
	07-lab-03
	07-lab-04
	07-lab-05
	07-lab-06
	07-lab-07
	07-lab-08
	07-lab-09
	07-lab-10
	07-lab-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-lab-01
	08-lab-02
	08-lab-03
	08-lab-04
	08-lab-05
	08-lab-06
	08-lab-07
	08-lab-08
	08-lab-09
	08-lab-10
	08-lab-11
	08-lab-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-lab-01
	09-lab-02
	09-lab-03
	09-lab-04
	09-lab-05
	09-lab-06
	09-lab-07
	09-lab-08
	09-lab-09
	09-lab-10
	09-lab-11
	09-lab-12
	09-lab-13
	09-lab-14
	09-lab-15
	09-lab-16
	10-01
	10-02
	10-02a
	10-02b
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-lab-01
	10-lab-02
	10-lab-03
	10-lab-04
	10-lab-05
	10-lab-06
	10-lab-07
	10-lab-08
	10-lab-09
	10-lab-10
	10-lab-11
	10-lab-12
	10-lab-13
	10-lab-14
	10-lab-15
	10-lab-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-lab-01
	11-lab-02
	11-lab-03
	11-lab-04
	11-lab-05
	11-lab-06
	11-lab-07
	11-lab-08
	11-lab-09
	11-lab-10
	11-lab-11
	11-lab-12
	11-lab-13
	11-lab-14
	11-lab-15
	11-lab-16
	11-lab-17
	11-lab-18
	11-lab-19
	11-lab-20
	11-lab-21

