
Getting Started with the
Domain Software Engineering
Environment (DSEE)

Getting Started with the
'Domain Software

Engineering Environment
(DSEE)

rl:tl HEWLETT
~~PACKARD

Order No. 008788-AOl

© Hewlett-Packard Co. 1986, 1988, 1991.

First Printing:
Last Printing:

March 1986
April 1991

UNIX is a registered trademark of UNIX System Laboratories Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the USA
and other countries.

NOTICE

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
~ copyright. All rights reserved. No part of this document may be photocopied,

reproduced or translated to another language without the prior written consent
of Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by
government is subject to restrictions as set forth in subdivision (c) (1) (ii) of
the Rights in Technical Data and Computer Software Clause at DF ARS
252.227.7013. Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA
94304

10 9 8 7 6 5 4 3 2 1

Preface

Getting Started with the Domain Software Engineering Environment
(DSEE) introduces the basic concepts and commands of the OSEE
facility. This manual also contains a sample OSEE session that dem­
onstrates how new OSEE users can become productive quickly on
projects currently managed by the OSEE facility.

The intended audience for this manual includes software engineers
who are already familiar with the Domain/OS system as described in
Getting Started with Domain/OS.

The Organization of This Manual

This manual includes a sample DSEE session that illustrates how you
can manage sources, build a program, create a release, and ~anage a
project with the DSEE facility.

Chapter 1

Chapter 2

Briefly describes the DSEE facility, the
DSEE desktop interface, the sample
program used in all the examples, and a
few miscellaneous commands.

Describes how to manage sources in the
DSEE facility using libraries, elements,
and branches.

Preface iii

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Glossary

Requirements

Explains a simple build procedure in the
DSEE facility and defines a system, a
system model, and a configuration
thread.

Discusses the rebuilding of a program af­
ter modifying its sources, system model,
and configuration thread. This chapter
also demonstrates the use of equiva­
lences and concurrent building on multi­
ple nodes.

Describes the release of an executable
program.

Explains the use of tasks, tasklists, and
monitors to aid project management.

Defines DSEE terminology.

Because this manual makes frequent references to online informa­
tion, we recommend that you read it while sitting at a node. The
node must have the following software:

• Domain Software Engineering Environment (DSEE),
Version 4.0 or higher

• Domain/C compiler

In addition, the node needs to have the following programs running
as server processes:

• Xapollo

iv Preface

If you're not sure whether these programs are running, issue the
UNIX shell command /hin/ps -ax (BSD) or ps -e (SysV), or the
Aegis shell command /com/pst. For information on installing DSEE
software, contact your system administrator or read the DSEE Soft­
ware Release Document.

Summary of Technical Changes

Getting Started with DSEE documents technical changes to the
DSEE facility that have been made since its last release, Version 3.0.
We have revised Getting Started with DSEE to show how to issue
commands using the new graphical interface based on the X Window
System and OSF /Motif. In addition, Chapter 1 introduces the
graphical interface.

For details about the technical changes to the DSEE facility, refer to
the DSEE Release Document.

Related Manuals

The file /install/doc/apoll%s. v.latest software release
number _manuals lists current titles and revisions for all available
manuals.

For example, at SR10.3 refer to /install/doclapollo/
os.v.l0.3_manuals to check that you are using the correct version
of manuals. You may also want to use this file to check that you have
ordered all of the manuals that you need.

(If you are using the Aegis environment, you can access the same
information through the Help system by typing help manuals.)

Refer to the Domain Documentation Quick Reference (002685) and
the Domain Documentation Master Index (011242) for a complete

Preface v

list of related documents. For more information about the Domain
system, refer to the following documents:

• Getting Started with Domain/OS (002348) describes the ba­
sics of the Domain/OS operating system.

• Using your Aegis Environment (0011021) is a detailed guide
to using the Aegis environment.

• Using your BSD Environment (0011020) is a detailed guide to
using the BSD environment.

• Using your SysV Environment (0011022) is a detailed guide to
using the SysVenvironment.

• Aegis Command Reference (002547) provides detailed infor­
mation about the Aegis shell.

• BSD Command Reference (005800) describes the BSD shell
commands supported by Domain/OS.

• SysV Command Reference (005798) describes the SysV shell
commands supported by Domain/OS.

For more information about the X Window System and how to
configure X resources, refer to the X Window System User's Guide
[O'Reilly Vol. III] (015534).

For more information about the DSEE facility, refer to the following
documents:

• Using the Domain Software Engineering Environment
(DSEE) (015798) describes the concepts behind the DSEE
facility, explains how to use DSEE functions, and provides
case studies that illustrate DSEE features. We refer to this
manual as Using DSEE throughout this book.

• Domain Software Engineering Environment (DSEE) Refer­
ence (003016) provides detailed information on DSEE

vi Preface

commands and the DSEE callable interface. We refer to
this manual as the DSEE Reference throughout this book.

You can order Apollo documentation by calling 1-800-225-5290. If
you are calling from outside the U.S., you can dial (508) 256-6600
and ask for Apollo Direct Channel.

Does This Manual Support Your Software?

This manual was released with software version 4.0 of the Domain
Software Engineering Environment. Version 4.0 runs on SR10.2, or
a later release of Domain/OS. To verify which version of operating
system software you are running, type:

bldt

To check the version of DSEE software, type:

/ com/ dsee -version

If you are using a later version of software than that with which this
manual was released, use one of the following ways to check if this
manual was revised or if additional manuals exist:

• Read Chapter 3 of the release document that shipped
with your product. The release document is online:
linstall/doc/apollo/dsee. v.4.0_notes. Check with your sys­
tem administrator if you cannot find the release document.

• Telephone 1-800-225-5290. If you are calling from outside
the U.S., dial (508) 256-6600 and ask for Apollo Direct
Channel.

• Refer to the lists of manuals described in the preceding sec­
tion, "Related Manuals."

Preface vii

To determine which of two versions of the same manual is newer,
refer to the order number that is printed on the title page. Every
order number has a 3-digit suffix; for example, -AOO. A higher suf­
fix number indicates a more recently released manual. For example,
a manual with suffix -A02 is newer than the same manual with suffix
-A01.

Problems, Questions, and Suggestions

If you have any questions or problems with our hardware, software,
or documentation, please contact either your HP Response Center or
your local HP representative.

Alternatively, you may use the Reader's Response Form at the back
of this manual to submit comments about documentation.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

literal values

user-supplied values

sample user input

output/source code

viii Preface

Bold words or characters in formats and
command descriptions represent commands
or keywords that you must use literally.
Pathnames are also in bold. Bold words in
text indicate the first use of a new term.

Italic words or characters in formats and
command descriptions represent values that
you must supply.

In interactive examples, information that the
user enters appears in color.

Information that the system displays appears
in this typeface. Examples of source code
also appear in this typeface.

{ }

< >

CTRL/

----88----

Square brackets enclose optional items in
formats and command descriptions.

Braces enclose a list from which you must
choose an item in formats and command de­
scriptions.

A vertical bar separates items in a list of
choices.

Angle brackets enclose the name of a key on
the keyboard.

The notation CTRL/ or A followed by the
name of a key indicates a control character
sequence. Hold down <CTRL> while you
press the key.

Horizontal ellipsis points indicate that you
can repeat the preceding item one or more
times.

Vertical ellipsis points mean that irrelevant
parts of a figure or example have been omit­
ted.

This symbol indicates the end of a chapter
or part of a manual.

----88----

Preface ix

Contents

Chapter 1 Introduction

Capabilities ; 1-2
Overview .. 1-2
Before You Begin 1-6
Invoking the DSEE Facility 1-7
U sing the Desktop Interface 1-8
Transcript Area Menu 1-15
Sample DSEE Session 1-16
DSEE Documentation 1-17
Exiting the DSEE Facility 1-18

Chapter 2 Managing Sources

Using Libraries 2-3
Setting Contexts .. 2-3
Exploring the Contents of a Library 2-6
Listing the Contents of a Library 2-10
Creating a Library .. 2-11

Using Elements 2-12
Examining Elements 2-13
Examining Element Histories 2-14
Modifying Elements . 2-15
Creating Elements 2-20

Contents xi

Creating Branches 2-22
Merging Branches 2-25
Naming Element Versions "\' 2-32
Deleting Elements ~ 2-34
Removing Icons 2-34

Command Summary 2-34
Related Information 2-37

Chapter 3 Building a Program

Preparing for a Build .. 3-2
The System 3-2
The System Model 3-3

Block Types 3-5
Declarations .. 3-6
Setting the Current System Model 3-8

The Configuration Thread 3-10
The Model Thread 3-14

Initiating a Build 3-15
What Happens During a Build 3-18
Examining a Build 3-20
Accessing Derived Objects 3-23
Related Information 3-28

Chapter 4 Modifying and Rebuilding
a Program

Modifying a Program 4-2
Modifying the System Model 4-4
Performing a Partial Build .. 4-7

Building a Single Component .. 4-7
Debugging Source Elements 4-9

Rebuilding the Program .. 4-11
Building on Several Nodes Concurrently 4-11
Rebuilding with Reserved Elements 4-14
Testing the Program 4-15
Promoting Derived Objects in a Reserved Pool. 4-16
Naming Versions Used in a Build 4-17

xii Contents

Rebuilding with Existing Components 4-21
Identifying Components Targeted for Rebuilding 4-22
Building BCTs Only 4-24
Comparing Builds 4-25
Specifying Equivalences 4-26
Rebuilding an Earlier Version of the Program 4-31

Editing the Configuration Thread 4-32
Rebuilding the Program 4-34

Command Summary 4-36
Related Information 4-37

Chapter 5 Managing Releases

Creating a Release .. 5-1
Command Summary 5-5
Related Information 5-6

Chapter 6 Managing a Project

U sing Tasks and Tasklists 6-2
Creating a Task 6-3
Editing a Task .. 6-5
Examining Tasklists .. 6-9
Recording Events in Tasks 6-10

Using Monitors .. 6-16
Creating a Monitor 6-16
Activating a Monitor .. 6-20
Deleting a Monitor 6-24

Command Summary 6-24
Related Information 6-25

Contents xiii

Figures

Figure 1-1. Representation of a Library 1-3
Figure 1-2. Representation of a Tasklist and Tasks .. 1-4
Figure 1-3. Representation of the Build Process. 1-S
Figure 1-4. The DSEE Desktop Interface. 1-7
Figure 1-S. Selecting Commands from the Help

Menu............................. 1-9
Figure 1-6. help Command Dialog Box. 1-10
Figure 1-7. Scroll Bars for the Transcript Area 1-11
Figure 1-8. Vertical Scroll Bar 1-12
Figure 1-9. Help Window for reserve Command 1-13
Figure 1-10. Selecting set shell 1-14
Figure 1-11. Transcript Area Menu. 1-1S

Figure 2-1. Selecting cd 2-4
Figure 2-2. The cd Dialog Box 2-4
Figure 2-3. Current Library and Directory Settings .. 2-S
Figure 2-4. Browsing the Current Library 2-7
Figure 2-S. Icons on the Desktop 2-9
Figure 2-6. Selecting show elements. 2-10
Figure 2-7. show elements -full Command. 2-11
Figure 2-8. Selecting the show history Command ... 2-14
Figure 2-9. The Branch Icon for test 2-17
Figure 2-10. The File Icon for test 2-17
Figure 2-11. The compare Dialog Box 2-19
Figure 2-12. reserve, replace, and compare

Commands 2-20
Figure 2-13. create element Command 2-21
Figure 2-14. Representation of Element test

with Branch 2-24
Figure 2-1S. Representation of a Merger 2-26
Figure 2-16. Query Box for merge Command 2-28
Figure 2-17. Restarting the Merger Process. 2-30
Figure 2-18. show derivation Window. 2-31
Figure 2-19. name version Query Box. 2-33

xiv Contents

Figure 3-1. set system Command 3-3
Figure 3-2. A System Model Block. 3-4
Figure 3-3. Block Structure of a System Model. 3-5
Figure 3-4. set model Command 3-9
Figure 3-5. set thread Command 3-12
Figure 3-6. build Command. 3-16
Figure 3-7. build Command. 3-17
Figure 3-8. Flow of Information During a Build 3-19
Figure 3-9. show builds Command. 3-21
Figure 3-10. examine build Command. 3-22
Figure 3-11. Browse Box for Build Units of

System Model 3-24
Figure 3-12. Build Unit Icon 3-24
Figure 3-13. Selecting display all builds. 3-25
Figure 3-14. Build Icon 3-25

Figure 4-1. Unsuccessful Build of Single Component. 4-8
Figure 4-2. Successful Build of Single Component. .. 4-10
Figure 4-3. DSEE Desktop During Concurrent Build. 4-13
Figure 4-4. Rebuild of Entire Program 4-15
Figure 4-5. Build Unit Icon. 4-17
Figure 4-6. Selecting display all builds. 4-18
Figure 4-7. name version Command and Build 4-19
Figure 4-8. Sample Libraries and Their

Element Versions
Figure 4-9. Canceled build -query Command
Figure 4-10. build -bct_only Command
Figure 4-11. Selecting display all builds
Figure 4-12. build -query Command with Equivalences
Figure 4-13. Sample Libraries and Their

Element Versions•........
Figure 4-14. Build without -dbs Translation Option ..

Figure 5-1. create release Command
Figure 5-2. Structure of Release Directory order_rls .

Figure 6-1. Creating a Task
Figure 6-2. Task Editor
Figure 6-3. Editing a Task

Contents

4-20
4-23
4-24
4-25
4-30

4-34
4-35

5-3
5-4

6-5
6-6
6-8

xv

Figure 6-4. Examining a Tasklist 6-10
Figure 6-5. Checking off an Active Item. 6-13
Figure 6-6. A Task Is Noted in Element History 6-14
Figure 6-7. Automatic Cross-Referencing. 6-15
Figure 6-8. A Monitor's Activation List 6-19
Figure 6-9. Activating a Monitor 6-22
Figure 6-10. An Alarm Window 6-23
Figure 6-11. A Tasklist with a New Task 6-23

Glossary

Index

-------88-------

xvi Contents

Prerequisites to Chapter 1

Before you perform any of the exercises in this chapter, please make
sure that you have

• Installed OSEE software, Version 4.0 or higher, on your
node.

• Installed an up-to-date version of the Oomain/C compiler
on your node.

Chapter 1

Introduction

Large-scale software development efforts typically involve many
engineers working on different components of the same system. At
times, several engineers might even work on the same component
simultaneously. In such circumstances, the members of a
development team often adopt common coding conventions and
establish formal channels of communication to coordinate their
efforts. Despite the best of attempts, however, significant and
avoidable complications frequently arise.

The Domain Software Engineering Environment (OSEE) provides a
structured but flexible environment for software development.
Besides handling many of the mundane chores that you seldom have
time for and would rather avoid, the OSEE facility also streamlines
many important functions. Consequently, you have more time to
devote to program development.

This chapter presents an overview of some basic DSEE concepts,
introduces the DSEE desktop interface, and describes the sample
program used in all the examples presented in this book.

Introduction to the DSEE Environment 1-1

Capabilities

The DSEE facility helps you to:

• Archive previous versions of sources and other text files

• Control access to all versions of these files

• Document the history of each file

• Accommodate alternative versions of files

• Organize work assignments

• Monitor changes to specified files

• Build programs and individual components

• Rebuild programs with previously built components

• Distribute builds over many nodes

• Concurrently build program components

• Manage program releases

Overview

The DSEE facility helps to manage and control access to text files by
storing them as elements in a library.

An element differs from a text file in several respects. You cannot
edit an element directly; instead, you edit a copy of the element. The
DSEE facility then uses the edited copy to create a new version of the
element. By repeating this process with the latest version of the
element, you create a sequence of versions, or generations, called
the element's main line of descent. If you wish, you can also create
an alternate line of descent (called a branch) for the element.

1-2 Introduction to the DSEE Environment

A library is a OSEE database that contains elements normally
related by function or form, such as a program's source files, include
files, or chapters of documentation. A software development project
may use several OSEE libraries. Every library has its own set of
protection attributes for controlling access to the library and its
contents. (Figure 1-1 illustrates a OSEE library.)

main
line of descent

Figure 1-1. Representation of a Library

The OSEE facility helps to organize and coordinate a software
development effort with tasks, tasklists, monitors, and forms.

A task is a multi-step process that you define. For instance, you
might define the task "Fix bug 122," which has the steps "Locate
error," "Fix code," and "Release fixed code." Tasks act as both "to
do" lists and as records of things that have been done. The OSEE
facility maintains a transcript inside the task of the completed items,
adding information about elements and libraries impacted by your
progress through the task. If several people use the same task, then
the task's transcript records their combined efforts.

A tasklist helps you to organize and refer to tasks, as illustrated in
Figure 1-2. The OSEE facility automatically creates a tasklist for
every user and two for every library. You can create additional
tasklists in any directory.

Introduction to the DSEE Environment 1-3

Fix bug 32

.V Active Items:
Alibb~ · Edit include file

Task 3: · Fix broken code

Fix bug 32
~ IooAdd oPtion .. Active Items: Task 2:

Add option • Edit parser
• Add new module

Task 1: Write spec Write spec
Active Items:

tasklist · Talk to project eng.
· Write up notes

tasks

Figure 1-2. Representation of a Tasklist and Tasks

A monitor "watches" one or more elements. When someone
modifies or deletes a monitored element, the DSEE facility responds
by alerting the users and/or executing the shell commands specified
by the monitor's creator.

A form typically contains a description of a standard procedure. You
can use a form as a template for creating tasks.

In addition to managing sources and improving communications, the
DSEE facility also helps to automate system building. Prior to
building a system for the first time, you:

• Construct a system model describing the system's
components, their dependencies (elements, files, and other
components), tool requirements, and build procedures

• Write a configuration thread specifying build options and
particular versions of the elements identified in the system
model

• Create a system directory to serve as a database for the
build

1-4 Introduction to the DSEE Environment

Except for changes in the system's design or when building different
configurations of the system, your system model and configuration
thread generally remain the same for successive builds of the system.
As for the system directory, you typically create one at the beginning
of a project. You use this system directory throughout the life of that
project.

Figure 1-3 demonstrates the build process. At the start of a build, the
OSEE facility synthesizes a complete build specification for the
system from the system model and configuration thread. The DSEE
facility then compares the system's specification against the
specifications of previously built components stored in a binary pool
(a storage area in which the DSEE facility places the results of
builds) . When the specifications of an existing component and a
proposed component match, the DSEE facility reuses the existing
component; otherwise, it builds the proposed component. Finally,
the DSEE facility stores the results of the build in the binary pool.

system
model

D
D

configuration
thread

build
specification

component A

component B
(reuse)

translator

binarY
pool

Figure 1-3. Representation of the Build Process

This method of building components only when necessary can save
significant amounts of time when rebuilding a system. If your
modifications affect only a few components, then the DSEE facility
rebuilds only those components. You can also direct the DSEE
facility not to rebuild specific components when you know them to be
functionally equivalent, though not identical, to existing
components.

Another time-saving option in the building process is concurrent
building. You can identify many nodes to be used to build
components. The DSEE facility then determines which components

Introduction to the DSEE Environment 1-5

can be built concurrently and distributes them among your builder
nodes.

The DSEE facility is especially useful for building complex systems
involving numerous and diverse sources, multiple contributors,
different system configurations, and multiple platforms. With the
DSEE facility, you can achieve:

• Concurrent system development and maintenance

• Isolated testing and debugging environments

• Conditional processing of a system model to build systems
for different target machines, including workstations other
than Domain/OS workstations

The DSEE facility also helps to manage the release of a finished
system or system component. When you declare the results of a
particular build to be released, the DSEE facility copies all specified
built components to a release directory where they can be accessed
for general use. In addition, the DSEE facility creates a build map
for each released binary and stores the build map with the binary in
the release directory.

For more information about the DSEE concepts described in this
overview, consult Using DSEE.

Before You Begin

Before you can use the DSEE facility, you need to have the proper
software installed and running on your node. See the
"Requirements" section of the Preface for more information.

In order to use the tutorial this manual is based on, you need to
install some sample programs. To install the sample programs, enter
the following command at the shell prompt:

install_dsee_examples

The install procedure creates the subdirectory dsee_examples in the
directory from which you entered the command.

1-6 Introduction to the DSEE Environment

Invoking the DSEE Facility

Invoke the DSEE facility from any shell by typing:

dsee

By default, the dsee command invokes the desktop interface shown
in Figure 1-4. (As described in Using DSEE, you can opt to work
with the command line interface, instead.)

Icon Area

Transcript Area

Figure 1-4. The DSEE Desktop Interface

Introduction to the DSEE Environment 1-7

The desktop interface is based on the X Window System and
OSF/Motif. You can use X resources to change the appearance of
the desktop. (See DSEE Reference for details.)

The desktop interface has context banners at the top of the window,
which indicate your current settings. Your current settings are those
that were in effect when you last used the DSEE facility. They
constitute the working context for OSEE commands executed from
the desktop interface. The desktop interface always displays your
working directory. Other settings can include your current system,
system model, library, tasklist, and task. The OSEE facility requires
your current system, system model, and configuration thread settings
for a build and requires a library setting when you work with
elements.

If you haven't invoked the OSEE facility before, the directory
displayed in the context banner area will be the same as the directory
from which you invoked the OSEE facility. On subsequent
invocations, the working directory will be the one that was in effect
the last time you exited from the OSEE facility.

Just below the context banner area are menu titles from which you
can display menus and issue commands. You can also issue most
commands from the command line at the bottom of the desktop
interface.

The icon area displays icons for different kinds of objects, such as
libraries and elements. When you need to enter the names of objects
as arguments to OSEE commands, you can often simply click on
these icons instead of typing the object's name.

The desktop interface also has a transcript area. The OSEE facility
uses the transcript area to echo the commands you issue, to display
messages, and, where appropriate, to display the results of
commands.

Using the Desktop Interface

In this section, we describe how to use some basic features of the
OSEE desktop: how to make menu selections, scroll text, copy and
paste text, and use pull-down and pop-up menus. We use the help
command to demonstrate these features.

1-8 Introduction to the DSEE Environment

The help command lets you view information on OSEE commands
and other subjects. To invoke the help command, perform the
following steps:

1. Select the pull-down menu for the help command: using
the mouse, point to the Help menu title and click (press and
release) <M:'> (the leftmost mouse button).

2. When the menu appears, point to commands and click
<M1> (see Figure 1-5).

1~lelll

Figure 1-5. Selecting Commands from the Help Menu

Because commands is followed by three ellipsis points (...),
the OSEE facility displays a dialog box, as shown in
Figure 1-6. (If a menu entry is, instead, followed by a
triangle (II:;;!!), the OSEE facility displays a submenu.) A
dialog box is a window that appears on your screen. You
can use the dialog box to select options and enter command
arguments.

Introduction to the DSEE Environment 1-9

To get help on a command, you would enter the
command's name in the text entry box. The text entry box
is the rectangular space with a text cursor in Figure 1-6.

Figure 1-6. help Command Dialog Box

Dialog boxes have buttons. A typical dialog box has a
Confirm button, which accepts the information in the dialog
box and proceeds with the command, a Cancel button,
which closes the dialog box without executing the
command, and a Help button, which displays information
about the command.

3. Lea ve the text entry box empty. Point to the Confirm
button at the bottom of the dialog box and click <M1>.
Because you didn't enter a command name, the DSEE
facility displays a list of help topics in the transcript area.

As the DSEE facility lists help topics in the transcript area, many of
the topics scroll up and out of view. Use the scroll bars to view this
information. Scroll bars, shown in Figure 1-7, let you view more
text than will fit in the window at a time.

1-10 Introduction to the DSEE Environment

recover
rename
set

prompts
pwd
reformat
replace
share shel

protecti
read

directory-pathname
servers
show

tag
thread_syntax
von

task list specifier
version_specifier
watch wd

task number
voff-

Figure 1-7. Scroll Bars for the Transcript Area

To view hidden text in the transcript area, use the transcript area's
vertical scroll bar (see Figure 1-8):

1. Using the mouse, position the cursor over the up-arrow at
the top of the transcript area's scroll bar and click <M 1>
three or four times. Notice that the text moves one line for
each click of the mouse button.

2. Point to the down-arrow and click <M1> to move the text
one line at a time in the opposite direction.

Introduction to the DSEE Environment 1-11

up-arrow (click to
scroll up one line
at a time)

down-arrow (click
to scroll down one
line at a time)

position indicator
(drag to scroll text)

Figure 1-8. Vertical Scroll Bar

To move the text more quickly, move the position indicator inside
the vertical scroll bar. The position indicator, shown in Figure 1-8,
shows the relative position of the text you're viewing with respect to
the entire text in the transcript area.

1. Point to the position indicator.

2. Press and hold <M1>. Move the mouse to drag the position
indicator up or down. The text scrolls as you move the
position indicator.

3. Release <M1>.

You can copy any of the text in the transcript area and paste it into
the text entry box of a dialog box, or the input window for command
lines. For example, to view a help file for the reserve command, try
copying reserve from the transcript area and pasting it into the help
dialog box as follows:

1. Select commands from the Help menu to display the help
dialog box.

2. Highlight reserve in the transcript area: place the cursor in
front of the word reserve, press and hold<Ml>, drag the
cursor to the end of reserve, and release <M1>.

3. Paste reserve in the text entry box of the help dialog box:
point to the text entry box and click <M2> (the middle
mouse button).

1-12 Introduction to the DSEE Environment

4. Point to the Confirm button and click <Ml>.

5. The DSEE facility displays a window of information on the
reserve command (see Figure 1-9). This is the same
information you can find if you look up "reserve" in the
DSEE Reference manual. Use the scroll bars to see this
information.

When you are finished viewing the help file, point to the
Dismiss button and click <Ml>. Dismiss buttons appear on
windows that simply display text.

Reserves a line of descent and creates an editable copy of the latest version.

MENU PATH

Branch -:. reserve

FORMAT

reserve element_name[/branch_path] [-into pathnamel] [-r]
[-comment { text I <pathname2 }] [-nc] [-nq]

element_name The name of a OSEE element without any library specification

branch_path The path to a line of descent. Much like a flle·s pathname.
a branch_path describes the path to a line of descent by
listing all the branches that lead to the desired branch.
beginning with the first branch off the main line of descent
Branch names are separated by slashes. The branch.J)ath
ends with the name of the desired line of descent. For
example. the branch_path brllbr2/br3 represents branch
br3 off of branch br2 off of branch brl off of an element"s
main line of descent

Figure 1-9. Help Window for reserve Command

Introduction to the DSEE Environment 1-13

You can also display help files from the dialog box that appears when
you invoke a DSEE command. For example, display the help file for
the set shell command:

1. Point to the icon area and press and hold <M3>. This
displays the pop-up Misc. menu. (You can display other
pop-up menus after you place icons in the icon area, as we
describe in Chapter 2.)

By moving the mouse while pressing and holding <M3>, you
can drag the cursor to select an item instead of pointing and
clicking <M3>. Both pull-down and pop-up menus allow
you to make selections by pointing and clicking or by
dragging the cursor.

2. Select set shell from the Misc. menu (see Figure 1-10):
slide the cursor off the menu to the right of Shell, point to
set shell on the submenu that appears, then release <M3>.

Figure 1-10. Selecting set shell

3. When the dialog box for set shell appears, point to the Help
button and click <Ml>.

4. The DSEE facility displays a window of information on the
set shell command. When you've finished looking at the
information, point to the Dismiss button and click <Ml>.

5. Cancel the set shell command: point to the Cancel button
and click <M 1>.

1-14 Introduction to the DSEE Environment

Transcript Area Menu

The transcript area menu, shown in Figure 1-11, contains
commands that manipulate text in the transcript area, interrupt
DSEE commands, and exit the transcript area.

Figure 1-11. Transcript Area Menu

The transcript area menu is available in pop-up form only. You can
display it by pointing the cursor anywhere within the transcript area
and pressing and holding <M3>.

The transcript area menu offers the following selections:

Hold

Search

Save

Stops the transcript area from scrolling up when you
issue commands. This enables you to view text in
the transcript area while a command is in progress.
To deselect Hold, select Release Hold from the
transcript area menu. (When you select Hold,
Release Hold appears on the menu in place of
Hold.)

Searches forward or backward in the transcript area
for a text string that you specify.

Writes the contents of the transcript area into a file
that you specify.

Interrupt DSEE
Cancels a DSEE command that is already in
progress.

Clear Transcript
Remov~ all text from the transcript area. Clear
Transc~ipt is useful when a large amount of text in
the tran~ript area makes it difficult to scroll through
the text.

Introduction to the DSEE Environment 1-15

Sample DSEE Session

Earlier in this chapter you selected a working directory and installed
the online portion of this manual as the subdirectory
dsee_examples. This subdirectory contains a library (which, in turn,
contains nine elements), a system directory, and the subdirectory
update (which is for administrative purposes only).

The objects in dsee_examples represent the starting point for the
sample OSEE session, which runs the entire length of this manual.
The sample session uses these objects to demonstrate how you can
develop a program in the OSEE facility using relatively few
commands. To duplicate the sample session, execute all commands
as described in this manual.

The sample OSEE session begins with the following scenario:

You are a software engineer who has just joined a development
project managed by the OSEE facility. Your goal is to build, test,
modify (if necessary), and release the program order. In its current
form, the program accepts a string of real numbers and displays them
in descending order.

Your predecessor on the project left you with some indecipherable
notes, the system directory order_sys, and the library
sample_library containing the elements:

order_main.e The main module for the program order

order_sub1.e The submodule that reads real numbers from
standard input and stores them in an array

order_sub2.e The submodule that arranges the real numbers in
the array in descending order

order_sub3.e The submodule that writes the real numbers in the
array to standard output

order.h The include file shared by the main module and all
three submodules

1-16 Introduction to the DSEE Environment

order.sml The system model for the program order

test An element with no apparent function

merge_text An element with no apparent function

NOTE: The dsee_examples directory also
contains an element called
order_hem.sml, which is not part of the
sample DSEE session in this manual. The
element order_hcm.sml is a system
model for building the sample system
on multiple platforms. In Using
DSEE, we use order_hem.sml to
demonstrate heterogeneous configuration
management, that is, multiple-platform
software development using the DSEE
software. See Using DSEE for details.

DSEE Documentation

As you go through the examples in this book, you may find that you
want to know more about DSEE facilities. You may want to know
details about how certain functions work, for example, or you may
want to know more specific information about certain DSEE
commands. Answers to such questions can be found in other DSEE
books.

There are three books in the DSEE documentation set. (See the
Preface for information on ordering DSEE documents.)

• Getting Started with the Domain Software Engineering
Environment (DSEE) (this book)

• Using the Domain Software Engineering Environment
(DSEE)

• Domain Software Engineering Environment (DSEE)
Reference

Introduction to the DSEE Environment . 1-17

This book, Getting Started with DSEE, is a tutorial. We designed
this book for you to use once and then set aside. This is the first book
of the document set that you should use.

Using DSEE is a task-oriented look at the OSEE facility. It describes
OSEE software in detail and examines several engineering groups
that use OSEE software. Read this book both for a conceptual
overview of OSEE facilities and as an aid in using OSEE software to
perform certain tasks. Consult the book as you work in the OSEE
facility and wish to know how to best use the software.

DSEE Reference is the comprehensive reference manual of the
OSEE command interface. It contains complete information,
including all options and arguments, on all DSEE commands; the
DSEE system model, configuration thread, and model thread
languages; and OSEE administration. Use this book to learn how to
write system models, configuration threads, and model threads, and
how to administer a OSEE facility.

DSEE Reference also contains complete information about the
DSEE callable interface, which enables you to execute DSEE
commands and access DSEE information from within C and Pascal
programs.

In addition to these books, we provide online help files for DSEE
commands, system model language declarations, and conditional
processing directives. The help files also provide overviews of a
number of DSEE topics, such as OSEE administration and
protection.

We also provide a DSEE Release Document which has the latest
release information about installing DSEE, documentation, and
bugs.

Exiting the DSEE Facility

You can use the Quit menu or the quit command (from the
command line) to end your OSEE session at any time.

If you want to exit the OSEE facility now, point to the Quit menu title
and click <Ml>. From the resulting menu, select Confirm. When

1-18 Introduction to the DSEE Environment

you restart the DSEE facility to continue with this tutorial, your
current library and working directory settings will be just as you left
them.

If you want to continue with this tutorial now, turn to Chapter 2.

-------88-------

Introduction to the DSEE Environment 1-19

Prerequisites to Chapter 2

Before you perform any of the exercises in this chapter, please make
sure that you have

• Installed the online examples for this manual as directed in
Chapter 1.

• Invoked the DSEE environment as directed in Chapter 1.

Chapter 2

Managing Sources

As we mentioned in the previous chapter, the DSEE storage area for
source code, text, and other evolving work is a library. Each item
stored in a library is called an element. Elements can have several
lines of descent, and each line of descent can have many versions.

The DSEE facility manages sources through tight control on libraries
and elements. Every library has its own protection attributes, which
identify who can and cannot access elements in the library, and how
much access each user is allowed. A user who has permission to add
versions to element lines of descent is prevented from attempting to
add versions to the same line of descent at the same time as another
user: a user reserves a line of descent, creates the new version, and
then replaces the new version on the line of descent.

The DSEE facility has many commands that you can use to access
libraries and elements. However, there are only a few commands
that you need to know to get started with DSEE source management.
These commands, which will be described in this chapter, are:

compare

create branch

create element

create library

Managing Sources 2-1

delete element

merge

name version

read

replace

reserve

set library

show derivation

show elements

show history

We also discuss the following desktop commands and commands that
allow you to invoke or emulate shell commands from the desktop:

Browse Directory

Cut Icon

Edit File

shell

cd

pwd

wd

2-2 Managing Sources

Using Libraries

A OSEE library is a database containing elements and other objects
used by the OSEE facility.

A library resembles a directory. You can list its contents and read its
elements as if they were files. To create, modify, or delete an
element or other OSEE object within a library, however, you must
use OSEE commands.

Libraries also have protection attributes that determine who can do
what with their contents. There are four classes of OSEE users:
administrator, member, reader, and non-user. Generally, the
person who creates a library is its " administrator," which is the
highest of the four classes. You are an administrator of the sample
library that now exists in your working directory.

Setting Contexts

Earlier we said that when you invoke the OSEE facility, it restores
whatever settings were current during your previous session. Not
having had a previous session, you will need to establish at least one
setting-your current library. This is the library that contains
elements that you will be working with.

Your working directory is another important setting. Whenever the
OSEE facility creates a file (for instance, when it creates an editable
copy of one of the current library'S elements), it creates the file in
your working directory by default. Before you set your current
library, you need to set dsee_examples as your working directory.

You can use the UNIX cd command or the Aegis wd command to set
the working directory for the OSEE desktop. Use the cd command
to set the directory dsee_examples as your working directory for this
sample session. (You may find it easier to issue commands such as
cd from the desktop's command line. You can issue from the
command line any commands on the desktop menus that do not
begin with a capital letter. For example, you can enter pwd, but not
Browse Directory from the command line.)

Managing Sources 2-3

1. Select Directory from the Misc. menu.

2. From the submenu that appears, select cd (see
Figure 2-1).

Figure 2-1. Selecting cd

3. The DSEE facility displays the dialog box shown in
Figure 2-2.

Figure 2-2. The cd Dialog Box

With the cursor inside the dialog box, type

pathname/dsee_examples

where pathname is the pathname of the directory where you
installed dsee_examples.

2-4 Managing Sources

4. If you make an error entering text in the dialog box, you can
use <BACKSPACE> to delete the text. For a more
selective edit of text, use the mouse: point just past a
character you want to delete and click <M1>. Then use
<BACKSPACE> to delete the character.

Point to the Confirm button and click <M 1>.

After you click on the Confirm button, the DSEE facility updates the
working directory banner and displays an icon representing your
working directory. Figure 2-3 shows the working directory icon.

Library: Illush/libby/dsee_examples/sample_library
Directory: Illush/libby/dsee examples

~~~~!".'!' 

//lush/libby 
/dsee_examples 

//Iush/libby 
/dsee_examples 
/sample_library 

OSEE> cd dsee examples 
OSEE> set library dsee examples/sample library 

Library set to "//l~sh/libby/dsee_eiamples/sample_library 

Figure 2-3. Current Library and Directory Settings 

Managing Sources 2-5 



(You can also issue the UNIX pwd command directly from the 
DSEE desktop. To execute other shell commands use the DSEE 
shell command. See Using DSEE for details.) 

The set library command sets or clears your current library setting. 
To set the sample library in your working directory as your current 
library, perform the following steps: 

1. Select set library from the Library menu. 

2. The DSEE facility displays a dialog box. With the cursor 
inside the dialog box, type 

sample_library 

3. Point to the Confirm button and click <M 1>. 

The DSEE facility displays your current library setting in the context 
banner. It also displays a library icon representing your current 
library setting as shown in Figure 2-3. In the transcript area, the 
DSEE prompt ("DSEE>") precedes each command you enter. 

Exploring the Contents of a Library 

The Library menu's Browse command lets you view a list of all the 
elements in the current library. To view the contents of 
sample_library, 

1. Select Browse from the Library menu. 

2. From the submenu, select display elements. The DSEE 
facility displays the browse box shown in Figure 2-4. 

2-6 Managing Sources 



merge_text 
order.h 
order.sml 
order hom. sml 
order-main.o 
order-sub1.o 
order - sub2 .0 
order - sub3 . 0 
test -

Figure 2-4. Browsing the Current Library 

A browse box presents a list of objects that you can display as icons 
on the desktop. In this case, the browse box lists elements. Browse 
boxes can list other objects, such as reserved branches in a library or 
the most recent version on a branch. 

You can display icons for one or more of the objects listed in a 
browse box. First you need to select the items you want to display. 
To select items in the browse box, you can do any of the following 
(we suggest you experiment with these methods of selection): 

• To select one or more items while deselecting all previously 
selected items, point to an item you want to select and press 
and hold <M 1>. Highlight any adjacent items you want to 
select by dragging the cursor. Release <M1> when you've 
highlighted the items you want to select. 

• To select one or more items without deselecting previously 
selected items, point to an item you want to select and press 
and hold <CTRL> <M1>. Release <CTRL>. Highlight any 
adjacent items you want to select by dragging the cursor. 
Release <Ml> when you've highlighted the items you want 
to select. 

Managing Sources 2-7 



• To select two items and all items between the two items in 
the list, point to the first item and click <M 1>, then point to 
the second item, press and hold <SHIFT>, and click <Ml>. 

• To deselect one item without deselecting others, point to 
the item, press and hold <CTRL>, and click <Ml>. 

Display icons for elements other than order_hcm.sml in 
sample_library (as we mentioned in Chapter 1, order_hem.sml is 
not part of the sample DSEE session in this manual): 

1. Select the objects listed in the sample_library browse box 
except order_hem.sml using the preceding methods of 
selection. 

2. Once you have selected the names, point to the Confirm 
button and click <Ml>. 

As shown in Figure 2-5, eight element icons appear on your 
desktop, representing each of the eight elements. The DSEE facility 
may place some of the icons out of view. Use the icon area scroll bars 
to view the entire contents of the icon area. Notice that there are 
different icons to represent directories, DSEE libraries, and DSEE 
elements. 

2-8 Managing Sources 



Library: Illushllibby/dsee_examples/sample_library 
Directory: Illush/libby/dsee_examples 

//Iush/libby 
Idsee_examples a 

I.I]D 

order. sml order_main. c 

a 
It.Ii1 

a 
I.lW 

DSEE> cd dsee examples 
DSEE> set library dsee_examples/sample_library 

Library set to "//lush/libby/dsee_examples/sample_library 

Figure 2-5. Icons on the Desktop 

You can rearrange the icons on your desktop. Move the icons 
representing the elements test and merge_text away from the 
elements with names that begin with "order." 

1. Position the cursor on the merge_text icon, and press and 
hold down <M 1>. 

2. Move the mouse. Observe that an outline of the icon 
follows the mouse's movements. When you've positioned 
the outline to your satisfaction, release <M1>. The icon 
moves to the new position. 

3. Move the test icon in the same manner. 

Managing Sources 2-9 



Listing the Contents of a Library 

Now that you've displayed icons for elements in the current library, 
you can find out more about the elements using the show elements 
command. (This command, like most of the source management 
commands in the DSEE facility, requires a current library setting.) 

When you invoke it without arguments, the show elements 
command displays (in the transcript area) the names of all elements 
in your current library. You can also use show elements as follows to 
display any comments entered when the elements were created. 

1. If the test icon is selected, deselect it (point to an empty 
space in the icon area and click <M 1». 

2. Select show elements from the Element menu (see 
Figure 2-6). 

Figure 2-6. Selecting show elements 

3. When the dialog box appears, click on the small button next 
to the -full option. The -full option displays any 
comments entered at the time the elements were created. 
To show all the elements in a library, leave the text entry 
box empty. 

4. Point to the Confirm button and click <M 1>. 

2-10 Managing Sources 



Figure 2-7 shows part of the list of elements in sample_library and 
each element's associated comments. To view the entire list, use the 
transcript area's scroll bar. 

order.h 

- This element is used to demonstrate the DSEE 
merge facility. The second version of its 
branch, "bugs," will be merged into the main 
line of descent. 

- include file for sample program "order" 
order.sml 

- system model for sample program "order" 

main module for sample program "order" 

Figure 2-7. show elements -full Command 

Creating a Library 

The create library command creates a library and sets it as your 
current library. If you specify a leafname (that is, a name with no 
directory path) rather than a complete pathname for a new library, 
the DSEE facility creates it in your working directory. 

Create the library my_library in your working directory: 

1. Select create library from the Library menu. 

2. The DSEE facility displays a dialog box. With the cursor 
inside the dialog box, type 

3. Point to the Confirm button and click <M1>. 

Managing Sources 2-11 



4. The DSEE facility displays another dialog box, which asks, 
"What is the function of this Library?" Since you're going 
to use this library later in Chapter 4 to hold an element, you 
might want to enter the comment "Creating second library 
for system." Your comment is recorded in the DSEE 
facility's historical information about the library. 

5. When you're satisfied with your comment, click the 
Confirm button. 

In the transcript area, messages indicate that the new library has 
been created and that Domain/OS protections have been set up for 
it. In the context banner at the top of the DSEE window, the legend 
indicates that the new library is the current library. In the icon area, 
a new library icon appears, representing the new library. 

Using Elements 

An element is a text file stored inside a DSEE library. Every time you 
modify an element, the DSEE facility creates a new version of the 
element, assigns it a version number, and stores it in compressed 
form along with all previous versions of the element. You can recall 
any element version by specifying the version number with the 
element name. 

To examine the elements provided with this manual, set your current 
library context back to sample_library: 

1. Point to the icon for sample_library and click <Ml>. 

2. With the cursor in the icon area, display the pop-up menu 
by pressing and holding <M3> or by clicking <M3>. In 
Chapter 1 we mentioned that, when no icons are selected, 
the pop-up menu is the same as the Misc. pull-down menu. 
Now that you've selected a library icon, the pop-up menu 
will be the same as the Library pull-down menu. 

3. Select set library from the Library menu. 

4. When the dialog box appears, the path to sample_library is 
in the text entry box. Point to the Confirm button and click 
<Ml>. 

2-12 Managing Sources 



Examining Elements 

The read command can display a read-only copy of any element 
version stored in your current library. For example, to read the latest 
version of the element test, perform the following steps: 

1. Point to the icon for test and click <Ml>. 

2. Select the read command from the Version menu. 

3. The OSEE facility displays a dialog box seeded with the 
name "test." Point to the Confirm button and click <Ml>. 

The OSEE facility displays a read-only copy of test using 
the editor specified by the X resource Dsee*read. (The file 
/usr/Xll1lib/app-defaults/Dsee lists the X resources for 
the OSEE software. See DSEE Reference for details.) If 
you have not specified an editor, the OSEE facility invokes 
xedit by default. 

4. Once you have finished viewing test, exit the editor. 

To read an earlier version of test, you need to specify a version 
number. For example, to read version 1 of test, perform the 
following steps: 

1. Select the read command from the Version menu. 

2. When the dialog box appears, it is seeded with the name 
"test" because the test icon is still selected. Position the 
cursor immediately after the end of the name "test" and 
click <Ml>. This enables you to append text to the text 
already present in the dialog box. 

3. Type 

[1] 

4. Point to the Confirm button and click <Ml>. 

5. Once you have finished viewing test[I], exit the editor. 

Managing Sources 2-13 



Examining Element Histories 

Every time someone creates or modifies an element, the DSEE 
facility requests a comment on the operation. These comments, 
along with information supplied by the DSEE facility such as the date 
and time of the operation, constitute an element's history. 

You can examine the histories of elements in your current library 
with the show history command. For example, examine the history 
of order.sml: 

1. Point to the icon for order.sml and click <Ml>. 

2. With the cursor in the icon area, display the pop-up menu 
by pressing and holding <M3>. 

3. The DSEE facility displays the Element menu. Select show 
history and release <M3> (Figure 2-8). 

Figure 2-8. Selecting the show history Command 

4. The DSEE facility displays a dialog box seeded with the 
name "order. sm!. " Point to the Confirm button and click 
<Ml>. 

The DSEE facility displays the history of the order.sml element in 
the transcript area. 

2-14 Managing Sources 



Using wildcards, you can issue one command to examine the 
histories of several elements. Examine the histories of order's C 
source files: 

1. Display the pop-up menu by pressing and holding <M3>. 

2. Select the show history command and release <M3> 
(Figure 2-8). 

3. In the dialog box, point just past order.sml, click <M1>, 
and use <BACKSPACE> to erase the element name. Then 
type the following element name: 

order?*.c 

This element name uses the wildcard combination ?*, 
meaning "any characters." 

4. This time, display detailed histories by issuing the show 
history command with the -full option. Click on the 
button to the left of the -full option. 

5 . Point to the Confirm button and click <M 1>. 

The DSEE facility displays the histories of all of the C source modules 
in chronological order. The list of comments is longer than the 
length of the transcript area, so some of the text scrolls off the top of 
the transcript area. Use the scroll bars to view the text. 

Modifying Elements 

You cannot directly edit an element. Instead, you must edit a copy 
of the element and then convert the edited copy into a new version of 
the element. 

To modify an element, you must first use the reserve command. This 
command creates a copy of the element's latest version in your 
working directory. Once you've reserved an element, no one else 
can reserve it until you replace the element or cancel the reservation. 

Once the DSEE facility creates a copy of an element in your working 
directory, you can edit the copy just as you would edit any other file. 

Managing Sources 2-15 



Next, you use the replace command. The replace command copies 
the contents of the edited file to the reserved element, deletes the 
file, and releases the element for another reservation. 

Each time you reserve and replace an element, you create a new 
version of the element. This new version becomes the latest version 
in a series of versions that make up the main line of descent for that 
element. None of the previous versions of that element are lost 
(unless you explicitly delete them). 

(As we discuss later in this chapter, you can also create alternate lines 
of descent called branches.) 

NOTE: The DSEE desktop sometimes uses the 
term "branch" as a shorthand for "line of 
descent," which can mean either the main 
line or alternate line of descent. For 
instance, the desktop may prompt you to 
enter a branchyath, in which case you 
would have the choice of entering a main 
line or alternate line of descent. 
Technically speaking, however, the main 
line of descent is not a branch. 

Create a new version of the element test: 

1. Point to the icon for test and click <M1>. 

2. Select reserve from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with "test," 
the name of the test element's main line of descent. Point 
to the Confirm button and click <M1>. 

4. The DSEE facility displays another dialog box; this one 
prompts you to enter a comment about the reservation. 
Type an appropriate comment, such as 

Learning about reservations 

5. Point to the Confirm button and click <M 1>. 

The DSEE facility places a branch icon, shown in Figure 2-9, in the 
icon area. (Recall that you may have to scroll the icon area to reveal 

2-16 Managing Sources 



new icons.) The branch icon represents the reserved line of descent 
of the element test. 

test 

Figure 2-9. The Branch Icon for test 

You now have an editable copy of the element's latest version in your 
working directory. The name of the element and its corresponding 
editable file are the same by default. To edit the copy, first display an 
icon for the file: 

1. Point to the directory icon for dsee_examples and click 
<M1>. 

2. Select Browse Directory from the Misc. menu. From the 
submenu that appears, select display files. 

3. The DSEE facility displays a browse box containing the 
pathnames of all the files in dsee_examples. (The test file 
may be the only file in dsee_examples.) Point to the 
pathname for test and click <M1>. 

4. Point to the Confirm button and click <M 1>. 

The DSEE facility displays a file icon for test. The file icon is shown 
in Figure 2-10. 

//lush/libby 
/ dsee _examples 

/test 

Figure 2-10. The File Icon for test 

Managing Sources 2-17 



Now invoke an editor and edit the copy of test: 

1. Point to the file icon for test and click <M1>. 

2. Select Edit File from the Misc. menu. 

3. The OSEE facility displays a dialog box seeded with the 
pathname for test. Point to the Confirm button and click 
<M1>. 

The OSEE facility displays test using the editor 
the X resource Dsee*editor specifies. (The file 
lusr/Xll1lib/app-defaults/Dsee lists the X resources for 
the OSEE software. If you have not specified an editor, the 
OSEE facility invokes xedit by default. See the DSEE 
Reference for details.) 

4. Because the actual contents of test have no significance in 
this exercise, just add some text, then save and close the 
file. 

Now replace the updated file as the new version of the element test: 

1. Point to the branch icon for test and click <M 1>. 

2. With the cursor in the icon area, display the pop-up menu 
by pressing and holding <M3>. 

3. The OSEE facility displays the Branch menu, since the icon 
you selected is a branch icon. Select replace and release 
<M3>. 

4. The OSEE facility displays a dialog box seeded with "test." 
Point to the Confirm button and click <M1>. 

5. The OSEE facility displays another dialog box; this one 
prompts you to enter a comment about your modifications 
to the element. The dialog box is seeded with the comment 
you entered when you reserved the element. Edit the 
comment if you wish; when it's satisfactory, point to the 
Confirm button and click <M1>. 

The OSEE facility replaces the main line of descent for test and 
deletes the file test from your working directory. Your edited copy of 
test becomes the main line's latest version. The icon for test, 

2-18 Managing Sources 



however, remains in the icon area. (Icons remain in the icon area 
unless you explicitly remove them.) 

To compare the differences between the two versions, use the 
compare command. By default, this command shows differing lines 
side by side; if the lines do not fit in the transcript area, they are 
truncated. To avoid this problem, you can either make your window 
wider before executing the compare command, or you can use the 
-serial option to the command. This option ensures that you will see 
all of every differing line (rather than just a partial line) in the 
transcript area. 

1. Select the branch icon for test if it isn't already selected. 

2. Select compare from the Version menu. 

3. The DSEE facility displays the dialog box shown in 
Figure 2-11. The dialog box contains three windows for 
entering text. The top window is seeded with "test" 
(because the test icon is still selected). Position the cursor 
immediately after the end of the name "test" and click 
<M1>. Type 

[2] 

Figure 2-11. The compare Dialog Box 

Managing Sources 2-19 



4. Point to the second empty window just below the top 
window, click <M1>, and type 

test[3] 

5. Click on the button next to the -serial option. 

6. Point to the Confirm button and click <M1>. 

Figure 2-12 shows the messages resulting from the reserve and 
replace commands, plus the compare command display. 

OSEE> reserve test 
"test" has been reserved and generation [2] copied. 

OSEE> replace test 
"test" has been replaced, generation [3] created. 

OSEE> compare test[3] test[2] -serial 
<= //lush/libby/dsee_examples/sample_library test[2] 
=> //lush/libby/dsee_examples/sample_library test[3] 

-----[ inserted before 11 ] -------------[ 11-12 ]--------

Give a hoot. Don't pollute. 

Figure 2-12. reserve, replace, and compare Commands 

Creating Elements 

When you create an element with the create element command, the 
DSEE facility looks in your working directory for a file with the same 
name as the element. If the file exists, the DSEE facility copies the 
file's contents to the initial version of the new element in your current 
library and deletes the file. Otherwise, the DSEE facility creates and 
reserves an empty element without creating a corresponding file in 
your working directory. 

2-20 Managing Sources 



To create and reserve the empty element mine in your current 
library, perform the following steps: 

1. If the test icon is still selected, deselect it (point to an empty 
space in the icon area and click <M 1» . 

2. Select create element from the Element menu. 

3. When the dialog box appears, type 

mine 

and click on the Confirm button. 

4. As with most other DSEE commands that create objects, 
the DSEE facility displays another dialog box and requests a 
comment on the purpose of the element. (Had a file named 
mine existed in your working directory when you issued the 
command, the DSEE facility would have displayed a second 
dialog box for a comment on the first version of the 
element.) Enter your comment. 

5. Click on the Confirm button to continue creating the 
element. The DSEE facility displays a branch icon for mine 
in the icon area. Figure 2-13 shows the output in the 
transcript area. 

DSEE> create element mine 
(WARNING) The source file "mine" was not found 
(WARNING) An empty initial element will be created and 
reserved. 

Element "mine" created and reserved. 

Figure 2-13. create element Command 

Managing Sources 2-21 



Creating Branches 

Repeated reserve and replace operations on an element create a line 
of descent. An element's line of descent consists of the latest version 
of that element and all previous versions. 

An element can also have alternate lines of descent called branches. 
Branches typically develop because someone has reserved the 
element's main line of descent or because you need to make changes 
to an older version of the element. Like the element's main line of 
descent, a branch may also consist of mUltiple versions created by 
successive reserve and replace operations. 

When you create a branch with the create branch command, you 
specify the branch name and the element version from which the 
branch originates. The DSEE facility creates the branch, reserves it 
in your name, and copies the specified element version to an editable 
file in your working directory. Note that the editable file has the 
same name as the element and not the branch. 

As an example of why you might create a branch, suppose that the 
element test in your sample library is one of the source files of a 
software product. The current release of the product uses test [2] . 
You have already modified the element for the next version of the 
product, thus creating test[3]. 

Someone in the field reports a serious bug in test[2]. Because your 
modifications in test[3] represent a significant shift in design, you 
cannot fix the bug by creating a new version in the element's main 
line of descent. Instead, you must modify the version currently used 
in the field. 

You therefore use the create branch command to create a branch 
called bugfix growing from the element version test[2]. 

1. Point to the branch icon for test and click <M 1>. 

2. Select create branch from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with the 
name "test." Position the cursor immediately after the end 
of the name "test" and click <M1>. This enables you to 

2-22 Managing Sources 



append text to the text already present in the dialog box. 
Type 

[2] 

4. Point to the empty text entry box next to "branch name:" 
and click <M1>. Now type 

bugfix 

5. Point to the Confirm button and click <M 1>. 

6. The DSEE facility displays a dialog box requesting a 
comment on the purpose of the branch. Type an 
appropriate comment, such as, "Fix bug 345." and click on 
the Confirm button. A branch icon representing 
test/bugfix appears in the icon area. 

The DSEE facility creates an empty branch and copies the specified 
element version to a file named test in your working directory. You 
make the necessary changes to the file (edit and close the file) and 
issue the replace command for the branch. 

1. Point to the branch icon for test/bugfix and click <M1>. 

2. Select replace from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with the 
name "test/bugfix." Click on the button next to the -nc 
option. The -nc (no comment) option tells the DSEE 
facility that you don't want to comment on the operation. 

4. Point to the Confirm button and click <M1>. 

The DSEE facility makes your modified file test the initial version of 
the branch test/bugfix and issues a message confirming the creation 
of the new branch's first version. You then recompile the released 
product using test/bugfix[l] and send the results out to the field. 

Figure 2-14 illustrates the current state of the element test. Note 
that, except at creation time, you refer to a branch in DSEE 
commands with the syntax element_namelbranch_name (for 
example, test/bugfix). 

Managing Sources 2-23 



To see how the DSEE facility has recorded information about the 
branch in the library's history database, issue the show history 
command: 

1. Point to the element icon for test and click <M1>. 

2. Select Show from the Element menu. 

3. From the submenu that appears, select show history. 

4. The DSEE facility displays a dialog box seeded with "test." 
Since you selected the -full option the last time you issued 
the show history command, -full is still selected (unless 
you exited and restarted the DSEE facility). Deselect the 
-full option. 

5. Point to the Confirm button and click <M 1>. 

main line 
of descent 

I test[1] 

alternate line 
of descent 

(branch) 

I test [2] 

test[3] 

- - - - -~ bugfix[1] 

-

Figure 2-14. Representation oj Element test with Branch 

2-24 Managing Sources 



Merging Branches 

If you're working on both a branch line of descent and the main line 
of descent, eventually you may want to bring all of the work together. 
For example, in the situation described above, in which you made 
bug fixes on a branch, you'd probably want to make sure that those 
bug fixes were incorporated in the work done on the main line of 
descent. 

The DSEE merge command gives you the ability to merge lines of 
descent. It incorporates the contents of a version on one line of 
descent (called the source version) into another line of descent of 
the same element (called the target line of descent). The result is a 
new version on the target line of descent. 

The merge command tries to build the new version of the element 
for you automatically. If it can't automatically decide what to do at 
any point in the merger, the DSEE facility asks you to intervene. 
During the merger, and after the merger is complete, the DSEE 
facility reserves the new version and displays its contents in an edit 
window. Once you've reviewed the text, you can replace it in the 
main line of descent with the replace command. 

The merger algorithm works as follows: the DSEE facility compares 
the source version and the most recent version on the target line of 
descent to the youngest ancestor of the two ( called the base 
version). If you were merging the bug fixes in test/bugfix[l] in the 
last section into the main line of descent of the test, your base 
version would be test [2] , since it's the youngest ancestor of both the 
source version (test/bugfix[1]) and the target line of descent's most 
recent version (test[3]). (Figure 2-15 depicts a base version, a 
source version, and a target line of descent on an element.) 

The DSEE facility builds the merged version by reading the base 
version and the other two versions from top to bottom. Where the 
three versions are the same, the merged version contains that text. If 
either the source version or the most recent version on the target line 
of descent contains a change or addition to a part of the text of the 
base version, the DSEE facility puts the changed or added text into 
the merged version. If both the source version and the most recent 
version on the target line of descent differ from the base version, but 
they also differ from one another, the DSEE facility asks you which 
of the changed lines you want in the merged version. 

Managing Sources 2-25 



In order to give you some practice with the merger process, we've 
placed an element named merge_text in the sample library. It has a 
branch named bugs. To practice a merger, you will merge 
merge_text/bugs[2] into the main line of descent. Figure 2-15 
shows a representation of the current state of merge_text and the 
state of merge_text after the merger. 

main line of 
descent 

(target line 
of descent) 

merge_text [ 1 ] 

, .......... . 
I merge_text[4] : 
I 

I 

I I 

••••••••••• J 

branch 

- - -~ bugs[1] I 

.... .. 
..... .. .... 

bugs[2] 
(source version 
of merger) 

.... 

Figure 2-15. Representation of a Merger 

Before you perform the merger, you need to place an icon for the 
merge_text/bugs branch in the icon area. You can list branches 
with the name bugs using the Browse command. 

1. If the test icon is still selected, deselect it. 

2. Select Browse from the Library menu. 

3. From the submenu that appears, select display branch 
paths with a particular branch name. 

4. When the dialog box appears, type 

... /bugs 

indicating any branch path that ends with "bugs." 

2-26 Managing Sources 



5. Point to the Confirm button and click <M 1>. 

6. When the browse box appears, select merge_text/bugs. 

7. Point to the confirm button and click <M1>. The DSEE 
facility places a branch icon for merge_text/bugs in the 
icon area. 

Now you can merge merge_text/bugs into the main line of descent. 

1. Select the icon for merge_text/bugs. 

2. Select Merge from the Version menu. 

3. From the submenu that appears, select merge -reserve. 
The keyword -reserve tells the DSEE facility to put the 
merged text into a reserved version of the element. 

4. The DSEE facility displays a dialog box seeded with the 
latest version of the bugs branch and the main line of 
descent (merge_text). 

5. Point to the Options button and click <M1>. This displays 
all the options available. 

6. Click on the button next to the -serial option. The -serial 
option tells the DSEE facility to show differing lines one 
after the other rather than side by side. 

7. Point to the Confirm button and click <Ml>. 

8. The DSEE facility displays a dialog box that is seeded with 
some information about the merge and that asks why you 
are merging the versions. Type a comment about the 
merger, then click on the Confirm button. 

NOTE: When the DSEE facility can make 
automatic decisions, the merger will 
proceed very quickly. The process is 
suspended only when the DSEE facility 
can't make an automatic decision. To 
find out about decisions that have been 
made automatically, scroll up through the 
transcript area. 

Managing Sources 2-27 



When you click on the Confirm button, the merger process 
creates an edit window into which the merged text 
will be written. It is the transcript area, however, that 
displays the changed lines in merge_text [3] and 
merge_text/bugs[2] and the automatic decisions that the 
DSEE facility makes about these lines. 

If the DSEE facility cannot automatically determine which 
version's text to put into the merged version, it will tell you 
in the transcript area why it can't decide and display a query 
box asking you which lines it should use. Figure 2-16 shows 
what happens the first time that the DSEE facility can't 
make an automatic decision in this example. 

h source: lllerse_text!bugs[21 
0..-.-..... with: lllerse_text[31 

base: Illerse_text£21 

Four score and ~ 
conceived in Lit 

Now we are ~ 
concei ved and $( 

war. We have cc 

None of the 1 ines in the first set were present in the base version. 
None of the 1 ines in the second set were present in the base version. 
Conflicting changes were !!lade to this part of the file. 
CAUTION: No autOlllatiC decision can be !lade. 

Figure 2-16. Query Box for merge Command 

2-28 Managing Sources 



9. The query box asks, "( 0008) Do you want to keep the 
second set of lines?" (The "0008" indicates that the 
merger stopped at the eighth line of text.) Point to the Yes 
button and click <M1>. 

NOTE: The edit window may obscure the 
differing lines of text displayed in the 
transcript area. Move the edit window to 
view the text. 

10. The DSEE facility displays another query box; this one 
asks, "(0009) Do you want to keep the first set of lines?" 
Point to the No button and click <M1>. 

After you've answered, the DSEE facility tells you (in the 
transcript area) that you might want to edit the file directly, 
and it suspends the merger process so that you can make 
any changes. This gives you an opportunity to make 
adjustments to the merged text right away. (The ability to 
edit on the spot is very useful and important. In many 
instances in which both texts in the merger differ from the 
base version, you'll need to edit the final text to ensure 
accuracy. For example, if you're merging differing versions 
of source code, the text that gets constructed during a 
merger might contain compilation errors.) 

The DSEE facility also displays the dialog box shown in 
Figure 2-17. You will use this dialog box later to restart the 
merger process. 

11. The edit window contains all of the text of the merged 
version that the DSEE facility has constructed to this point. 
You'll see that "It is very fitting and proper" is the last line 
of the text. 

To change the word "very" to "altogether," position the 
cursor after the word "very" and click <M1>. Use 
<BACKSPACE> to remove the word "very," then type 

altogether 

Managing Sources 2-29 



12. To restart the merger process, point to the Oismiss button 
and click <M 1> (see Figure 2-17). 

Figure 2-17. Restarting the Merger Process 

13. This example contains two instances in which the OSEE 
facility can't automatically decide what to put in the merged 
text. You've just completed the first. In the second 
situation, tell the OSEE facility to use the lines that contain 
the word "people" instead of the lines that contain the word 
"citizens." You won't need to edit this line afterwards; 
simply restart the merger process as you did in step 12. 

14. Once the OSEE facility has merged the text, you can still 
make further edits. Move the cursor to the edit window and 
make changes you wish. When you're done, point to the 
edit window's Confirm button and click <M 1>. 

Now that you've closed the edit window, you need to replace the new 
version of merge_text in the library. 

1. Point to the branch icon for merge_text and click <M1>. 

2. Select replace from the Branch menu. 

3. The OSEE facility displays a dialog box seeded with 
"merge_text." Since you selected the -nc option when you 
last issued the replace command, -nc should still be 
selected. If not, select it now. 

4. Point to the Confirm button and click <Ml>. 

2-30 Managing Sources 



Once you're done with the merger, you may want to see a graphic 
representation of the changes to the element. 

1. Select show derivation from the Branch menu. 

2. When the dialog box appears, it is seeded with 
"merge_text" since the merge_text icon is still selected. 
Point to the Confirm button and click <M1>. 

3. The DSEE facility opens the window shown in Figure 2-18. 
The window displays a graphic representation of changes to 
the element. When you finish viewing the picture, point to 
the Dismiss button and click <M1>. 

merge_text 

Main Line 

.............. ~ 

Dismiss I Print 

Figure 2-18. show derivation Window 

Managing Sources 2-31 



The merge command enables you to combine versions on different 
lines of descent in many ways. Any version on a line of descent can 
be merged into another line of descent-you don't have to merge in 
the most recent version, as we've done here. Also, you can perform 
"incremental" mergers, incorporating changes performed on one 
line of descent into another at several stages in the development 
process. This technique minimizes the number of differences 
between the source version and the most recent version on the target 
line of descent at the final merger. As a result, you will have less work 
to do to make the merged versions compatible. 

Naming Element Versions 

So far, you've referred to element versions by name and number, for 
example, test[l]. Because the elements in your sample library 
consist of only one version each, remembering which element 
versions make up the program order is a simple matter. However, as 
you develop new versions of your program, associating the correct 
versions of elements with those programs becomes more complex. 

For this reason, among others, the DSEE facility supports version 
names. If you assign one version name to a group of related element 
versions, for example, you can refer to those element versions later 
using their common version name. (Note that you cannot assign one 
version name to two versions of the same element; however, you can 
assign different version names to the same element version.) 

The name version command assigns a version name to one or more 
element versions. Use it to assign the version name sample to the 
latest version (indicated by "[]") on the main line of descent of all 
elements in your current library. 

1. If the merge_text icon is still selected, deselect it (point to 
an empty space in the icon area and click <M 1» . 

2. Select name version from the Version menu. 

3. The DSEE facility displays a dialog box. In the top text 
entry box, type 

?* [] 

2-32 Managing Sources 



4. Still in the dialog box, point to the text entry box next to the 
words "version name:" and click <M1>. Type 

sample 

5. Point to the Confirm button and click <M1>. 

6. The DSEE facility displays the query box shown in 
Figure 2-19. The query box requests confirmation for the 
elements matching the wildcard specification. You can 
either click on the Yes button to assign the version name to 
one element at a time, or you can click on the Go button to 
assign the version name to all the elements at once. 

Point to the Go button and click <M1>. The DSEE facility 
assigns the version name sample to all the elements in 
sample_library but one. (The element mine has no 
version-because you created it and never replaced it-and 
is therefore ignored.) 

Figure 2-19. name version Query Box 

You can use the show version command to display all element 
versions associated with the version name sample. 

1. Select show version from the Version menu. 

2. In the top text entry box, type 

?* [sample] 

(Note that there is no blank space between the asterisk and 
the left square bracket.) 

3. Point to the Confirm button and click <M1>. 

This command, besides displaying names, provides additional 
information on each element version involved. 

Managing Sources 2-33 



Deleting Elements 

To delete the practice elements mine and test, use the delete 
element command. 

1. Select the element icon for test. 

2. Select delete element from the Element menu. 

3. When the dialog box appears, it is seeded with "test" since 
the test icon is still selected. Point to the Confirm button 
and click <M 1>. 

4. The OSEE facility displays the element's history in the 
transcript area. The OSEE facility also displays a query box 
that asks if you're sure that you want to delete test. Point to 
the Yes button and click <M1>. 

5. Repeat the procedure for the elements mine and 
merge_text. 

Removing Icons 

Even though you deleted the elements test, mine, and merge_text, 
the icons for those elements are still displayed in the icon area. To 
remove the icons, use the Cut Icon command. 

1. Point to the icon for mine and click <M1>. 

2. To select mUltiple icons, use <SHIFT>. Press and hold 
<SHIFT>, and click on each of the icons for test and 
merge_text (including test/bugfix and merge_text/bugs). 

3. Select Cut Icon from the Branch menu. 

Command Summary 

All of the commands described in this chapter have one or more 
options. To learn about the options available with a particular 
command, consult the DSEE Reference or use the OSEE help 
command. 

2-34 Managing Sources 



Here is a brief list of the commands that you've used in this chapter 
and their definitions. We group the commands according to the 
menus from which you can invoke them. 

create branch Creates an alternate line of descent for an element. 

Cut Icon 

replace 

reserve 

Removes selected icons from the desktop icon area. 
(Desktop menu only.) 

Creates a new version of an element from an edited 
copy. 

Reserves a line of descent and creates an editable 
copy of the latest version. 

show derivation 
Graphically shows an element's lines of descent, 
mergers, and named versions. 

show history Shows the histories of one or more elements. 

create element 

delete element 

111i.~~I~111 

Creates a new element in the current library. 

Deletes an element and its history from the current 
library. 

show elements Displays one or more elements. 

Managing Sources 2-35 



Browse Displays icons on the desktop that represent various 
types of objects. (Desktop menu only.) 

create library Creates a DSEE library. 

set library 

Edit File 

cd 

pwd 

wd 

shell 

2-36 Managing Sources 

Sets or clears the current library setting. 

Displays a file for editing. Edit File invokes 
the editor that you specify with the X resource 
Dsee*editor. The default editor is xedit. 

Sets the current working directory. 

Displays the current working directory. 

Sets or displays the current working directory. 

Enters a shell interactively or executes shell 
commands from the DSEE facility. 



compare Displays the differences between two versions, two 
files, or a version and a file. 

name version Assigns a name to a particular version of one or 
more elements, or deletes a previously assigned 
version name. 

read 

merge 

Displays a read-only copy of the specified element 
or branch version using the editor that you specify 
with the X resource Dsee*read The default editor is 
xedit. 

Merges element versions, branch versions, or files. 

Related Information 

There are many other DSEE commands pertaining to the use of 
libraries and elements than we've presented here. In general, you 
would use these commands with less frequency than the o!,!es 
described in this chapter. We group these commands according to 
the menus from which you can invoke them. 

cancel obsolete 
Activates a line of descent that was previously 
deactivated. 

cancel reserve Cancels a reservation of a line of descent. 

delete branch Deletes a branch and its sub-branches. 

Managing Sources 2-37 



obsolete Declares a line of descent obsolete. 

rename branch 
Renames a branch. 

set environment 
Sets or clears the source reference environment for 
one or more elements. 

show environment 
Displays the current source reference environment 
for one or more elements. 

rename element 
Renames an element. 

show status Shows the status of one or more elements. 

delete library Deletes the current library. 

protect library 

recover library 

2-38 Managing Sources 

Sets or shows the current library's protection 
attributes. 

Brings the current library's database and history files 
into a consistent state after a crash or network 
failure. 



recover user Cleans up incomplete library operations of the 
specified user. 

reforn1at library 

share 

show users 

show branches 

Converts a library database to suit new DSEE 
software. 

Allows other users to access the current library, or 
prevents them from accessing the current library. 

Displays information about the users accessing the 
current library. 

Displays the branch leafnames used by one or more 
elements. 

show reservations 
Displays reserved elements in the current library. 

delete version Deletes versions on a line of descent. 

fetch Retrieves a read-only copy of an element version. 

-------88-------

Managing Sources 2-39 





Prerequisites to Chapter 3 

Before you perform any of the exercises in this chapter, please make 
sure that you have 

• Set your current working directory to the dsee_examples 
subdirectory as directed in Chapter 2. 

• Used the DSEE set library command to set your current 
library to sample_library as directed in Chapter 2. 



Chapter 3 

Building a Program 

Given a system directory, a system model, and a configuration 
thread, the DSEE facility can automatically build an entire program 
or a single component upon request. 

During a build, the DSEE facility extracts information from both the 
system model and the configuration thread to locate sources and 
produce derived objects. The DSEE facility also creates a detailed 
build map or Bound Configuration Thread (BCT) for each derived 
object it builds. The DSEE facility then stores the derived objects 
and their corresponding BCTs in a binary pool for use during 
rebuilds. 

The commands discussed in this chapter are: 

build 

edit thread 

examine build 

examine thread 

export 

set model 

Building a Program 3-1 



set system 

set thread 

show builds 

Preparing for a Build 

Before you can build all or part of a program in the DSEE facility, 
your working context must include a current system, a current system 
model, and a current configuration thread (all of which will be 
explained in this chapter). The DSEE facility requires you to set the 
system first, then the system model, and finally the configuration 
thread. 

The System 

In general, a system is a collection of software modules combined to 
produce one or more executable programs. The sample program 
order is a system by this definition. 

In the DSEE facility, the term "system" also refers to a directory. 
The DSEE facility uses a system (directory) to store the internal 
information and objects needed during a build. Every program you 
build in the DSEE facility must have its own system. 

The set system command sets an existing system as your current 
system. The command also restores any working context settings 
(for example, your current system model and current library) that 
were in effect the last time you used the system. 

The installation procedure in Chapter 1 created the system 
order_sys in your working directory. To set order_sys as your 
current system, perform the following steps: 

1. Select set system from the System menu. 

2. The DSEE facility displays a dialog box. With the cursor in 
the dialog box, type 

3. Point to the Confirm button and click <M1>. 

3-2 Building a Program 



As Figure 3-1 indicates, the DSEE facility identifies your current 
system in the context banner. 

System: Illush/llbby/dsee_examples/order_sys 
Library: Illush/libby/dsee_examples/sample_library 
Directory: IIlush/llbby/dsee examples 

/ /Iush/libby 
/dsee_examples 
/my_library 

order.h 

I /Iush/l ibby 
/dsee_examples 
Isample_library 

DSEE> set system order_sys 

/Ilush/libby 
Idsee_examples 

order.sml 

ordecsub2.c order_sub3.c 

Library currently set to "//lush/libby/dsee examples 
!sample_library 

Figure 3-1. set system Command 

The System Model 

Once you've established a current system, you then set your current 
system model. 

A system model tells the DSEE facility how to build a particular 
program. It identifies the sources, tools, and building procedures 
required to generate an executable version of the program. More 
precisely, a system model describes: 

Building a Program 3-3 



• The components of a program (the source, include, and 
executable files used in building the program) 

• The dependencies of each component (the files and 
subcomponents used in building the component) 

• The rules for translating the components into executable 
files (for example, compiler and binder commands or shell 
command files) 

The DSEE facility provides a special language for writing system 
models. Like many programming languages, the system model 
language is symbolic and block-structured. Figure 3-2 and 
Figure 3-3 illustrate the block structure of a system model. 

NOTE: Project programmers should have a basic 
understanding of the structure and 
function of a system model in case they 
need to add or change a dependency in 
the model. The only person who normally 
needs to know more about system models 
is the one who writes the model. 

declarations 

end of block_id; 

Figure 3-2. A System Model Block 

In general, a block is a group of declarations that describe a 
buildable component of the program. A block begins with a keyword 
identifying the block type followed by the block ID and an equal 
sign. A block ends with the keyword end followed by a semicolon, or 
the keywords end of followed by the block ID and a semicolon. 

3-4 Building a Program 



model program_name = 
declarations 

I element element yame = 

I~ 

external 'fullyathname' = 

declarations 

end of leafname; 

.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~::.:::... 

1.1 agg~;!~iEi;;:::name = 

end of aggregate_name; 

end of program_name; 

Figure 3-3. Block Structure of a System Model 

Block Types 

A system model consists of a Model block enclosing any number and 
combination of Element, External, and Aggregate blocks. 

Building a Program 3-5 



The Model block encompasses the entire program. The Model 
block contains information that applies to the program as a whole, 
such as the system directory associated with the model. A Model 
block starts with the keyword model followed by the name of the 
program (the block ID). 

An Element block represents a component whose source file or 
primary source dependency is an element in a DSEE library. An 
Element block starts with the keyword element followed by the name 
of the element (the block ID). 

An External block represents a component whose primary source 
dependency is a regular file (rather than an element). An External 
block starts with the keyword external followed by the file's 
pathname enclosed in single or double quotation marks (the block 
ID). 

An Aggregate block has no primary source dependency. Rather, an 
Aggregate block consists of subordinate Element, External, andlor 
Aggregate blocks. The components represented by these subordinate 
blocks may be combined to form a single component. or they may be 
separate but related components brought together for easy reference 
within the system model. An Aggregate block starts with the 
keyword aggregate followed by a user-selected block ID. 

NOTE: Your sample library contains an element 
named order.sml, which is the system 
model for the program order. We have 
simplified and annotated this functional 
system model as an adjunct to the 
following discussion. To display 
order.sml, use the read command on the 
Version menu. 

Declarations 

The declarations inside a block typically specify a component's 
translation rule and direct dependencies. 

The translate declaration declares a component's translation rule, 
which is the command sequence required to bind, compile, 
assemble, or otherwise process the component. The translate 
declaration starts with the keyword translate and ends with the 
special symbol %done. 

3-6 Building a Program 



A component's direct dependencies are its primary source 
dependency (identified by the block IDs of Element and External 
blocks) plus any include files, tools, and other components required 
to build that component. All of a component's direct dependencies 
must be available before the DSEE facility can build the component. 
The DSEE facility targets a component for rebuilding if any of its 
direct or indirect dependencies change. 

The declarations that identify a component's direct dependencies 
are: 

depends_source 
This declaration generally identifies the include files 
required by the component's primary source 
dependency. 

depends_tools This optional declaration identifies the tools (such 
as compilers and binders) used in the component's 
translation rule. 

depends_result 
This declaration identifies the subcomponents 
whose derived objects are required by the 
component. 

When the same declarations apply to more than one block, you can 
group the declarations together by means of an optional default 
declaration. An unqualified default declaration (one that starts with 
the keyword default followed by an equal sign) applies to all 
sub-blocks of the block containing the default declaration. A 
qualified default declaration (one that starts with the keywords 
default for followed by a wildcard specification and an equal sign) 
applies only to sub-blocks whose block IDs match the wildcard 
specification. 

If an Element or External block has no declarations (for example, 
you may have declared them in a default declaration), then you can 
represent the block in an abbreviated form. This form consists of the 
keyword element or external, the block ID, and a semicolon. The 
abbreviated forms of the declarations are: 

element element_name; 

external 'fullyathname'; 

Building a Program 3-7 



In addition to the declarations already described, the Model block 
contains a unique set of declarations for describing the properties of 
the program as a whole. These declarations include: 

alias This optional declaration declares aliases for the 
system model. 

environment This optional declaration declares environment 
variables for the DSEE process and for builds. 

host_type This declaration identifies the type of computer on 
which an element will be built. 

library This declaration identifies the program's source 
libraries and assigns them logical names. 

shell This declaration identifies the shell environment 
where translation rules will be executed. 

system This declaration identifies the system directory 
associated with the system model. 

title This optional declaration identifies descriptive 
comments about the program. 

Setting the Current System Model 

Now that you are familiar with the basic purpose and structure of a 
system model, set the most recent version of the element order. sml 
as your current system model with the set model command. 

1. Point to the icon for order.sml and click <Ml>. 

2. Select set model from the Model menu. 

3. The DSEE facility displays a dialog box seeded with 
"order.sml." Point to the Confirm button and click <Ml>. 

The DSEE facility validates a new or modified system model before 
setting it as your current model. Validation includes checking the 
model's syntax and semantics, plus verifying that all objects referred 
to in the model (such as the system, libraries, elements, files, and 
tools) already exist. If the DSEE facility discovers any errors, it 
reports them and aborts the command. 

3-8 Building a Program 



At this point, the DSEE desktop interface should resemble 
Figure 3-4. Note that the context banner displays your current 
model setting. 

System: J lIushllibbyJdsee_examplesJorder _sys 
Model: order.sml[1] @ JllushllibbyJdsee_examplesJsample_library 
Library: J lIushllibbyJdsee_examplesJsample_library 
Directory: J lIushllibbyJdsee_examples 

//lush/libby 
/dsee_examples 
/my_library 

//Iush/libby 
/dsee_examples 
/sample_library 

//Iush/libby 
/dsee_examples 

DSEE> set model order.sml 

fmJI 
I.IiiI 

System model requires validation 
No syntax errors in model. 
No semantic errors in model. 

m. 
IU.!J] 

No errors detected during model validation. 

fmJI 
IiI.W 

Set Model of "order.sml[l] @ //lush/libby/dsee_examples/ 
sample library" has been successfully performed. 

Figure 3-4. set model Command 

Building a Program 3-9 



The Configuration Thread 

Having set your current system and current system model, you can 
now set your current configuration thread. 

A configuration thread specifies the element versions and translation 
options required for a particular build. When the DSEE facility 
builds a component, it uses the system model to determine the name 
of the component's source element and the configuration thread to 
determine the version of that element. The DSEE facility also uses 
the translation options specified in the configuration thread; these 
options must appear among the allowable options listed in the 
model's translation rule for the component. 

NOTE: Because files that are not DSEE elements 
do not have distinct versions, 
configuration threads do not contain 
version information about such files. 

A configuration thread is a list of rules written in the configuration 
thread language, with each rule occupying a single line in the thread. 
These rules and their order determine which element versions to use 
in a build and which translation options to use in a build. 

A configuration thread rule can contain one or more of the following 
parts: a rule qualifier, a version rule, a build option rule, and a 
build-ID-based rule. How you combine these parts determines the 
nature of a configuration thread rule; that is, whether a rule applies 
only to components built from Element blocks, only to source 
elements, or only to buildable components. 

The optional rule qualifier determines what components or source 
elements can be affected by the rule. For example, a configuration 
thread rule might be limited to source elements. A rule qualifier can 
limit the rule's applicability even further by specifying one or more 
particular source elements. 

A version rule applies to source elements and can specify a version 
number, a version name, a reserved version, a pathname, or one of 
several other alternatives. 

3-10 Building a Program 



A build option rule applies to buildable components and can specify 
any translation option allowed by the component's translation rule in 
the system model. (For example, if the component's translation rule 
invokes the Pascal compiler, the compiler's -dbs option might be a 
recognized build option.) The OSEE facility uses the options 
identified by the build option rule when building the component. 

A build-ID-based rule tells the OSEE facility to use the version 
specifications and/or build options of an earlier build. 

Before building a component, the OSEE facility consults the system 
model to determine if the build involves a OSEE element and/or a 
translation rule. If building the component involves an element, then 
the OSEE facility searches the configuration thread for the first 
applicable version rule. If the component has a translation rule, then 
the OSEE facility searches the thread for the first applicable build 
option rule. 

You set and validate your current configuration thread with the set 
thread command and one of its options. If the OSEE facility finds 
validation errors, it reports the errors and sets the thread. However, 
you must correct the thread before you can build with it. 

The command option -from and a pathname tells the OSEE facility 
to set the thread stored in the specified file. 

The command option -none tells the OSEE facility to set your 
current configuration thread to nil. 

The command option -default tells the OSEE facility to set the 
default configuration thread as your current thread. The default 
thread consists of the following configuration thread rules: 

-reserved 
[ ] 

The -reserved version rule in the first configuration thread rule 
directs the OSEE facility to use reserved element versions in your 
working directory. Because there is no rule qualifier for this rule, the 
OSEE facility applies the rule to all source elements. 

Building a Program 3-11 



If the DSEE facility does not find a reserved version of a source 
element in your working directory, it applies the second 
configuration thread rule. The empty brackets ([l) version rule in 
this configuration thread rule directs the DSEE facility to use the 
latest version on the main line of descent of the element. 

To set the default thread as your current configuration thread, 
perform the following steps: 

1. Select set thread from the Thread menu. 

2. When the dialog box appears, point to the button next to 
the -default option and click <Ml>. 

3. Point to the Confirm button and click <Ml>. 

Figure 3-5 shows the message that appears in the transcript area 
after the DSEE facility successfully validates and sets your current 
configuration thread. 

DSEE> set thread -default 
The thread has been set current and validated. 

Figure 3-5. set thread Command 

3-12 Building a Program 



Now use the examine thread command to display your current 
configuration thread in the transcript area. 

1. Select examine thread from the Thread menu. 

2. When the dialog box appears, point to the Confirm button 
and click <Ml>. 

Your current configuration thread requires one more rule to be 
compatible with the build procedure later in this chapter. To edit the 
thread, use the edit thread command. 

1. Select edit thread from the Thread menu. 

2. When the dialog box appears, point to the Confirm button 
and click <Ml>. 

3. The DSEE facility displays another dialog box. This one 
contains the text of your current configuration thread 
(which is the default thread) and asks you to enter the 
desired configuration thread. Insert the following build 
option as the first configuration thread rule: 

-for ?*.c -use_options -dbs 

Your thread should read: 

-for ?*.C -use_options -dbs 
-reserved 
[] 

(By default, the edit thread command displays the thread 
using a dialog box. However, you can use the X resource 
Dsee*threadEditor to cause edit thread to display the 
thread using an editor of your choice. The file 
/usr/Xll1Iib/app-defaults/Dsee lists the X resources for 
the DSEE software. See the DSEE Reference for details.) 

The flag -use_options in the first configuration thread rule 
directs the DSEE facility to build with the -dbs option. 
(This option, which tells the compiler to prepare its output 
for debugging, is allowed because it appears in the system 
model's default translation rule.) The rule qualifier 
-for?*.c indicates that the rule applies to every component 
whose name ends in ".c". 

Building a Program 3-13 



When resolving version specifications, the OSEE facility 
goes to the first version rule in the thread (-reserved). If 
this version rule does not apply, then the OSEE facility uses 
the next version rule ([]) to resolve a version specification. 

4. Point to the Confirm button and click <Ml>. The OSEE 
facility sets and validates the text as your current 
configuration thread and issues the same message it issued 
after set thread (shown in Figure 3-5). 

The Model Thread 

There is one setting that you won't need to build this system, but 
which you should know about. This is the model thread setting. A 
model thread is used when your system model source consists of 
more than one OSEE element. Like a configuration thread, a model 
thread identifies the versions of the elements containing model 
threads that the configuration manager should use when setting the 
model. (For this reason, you must set your current model thread 
before you set your current model.) 

Model threads are also used in conjunction with the system model 
language's conditional processing feature. In the thread, you identify 
which predicates you want the configuration manager to use when 
compiling the system model. These predicates are used to determine 
the compile-time values of if-then-else statements in the model. 

Because your current model contains no if-then-else directives and 
isn't broken into modules and stored in several elements, you don't 
need to specify a model thread setting for this exercise. 

3-14 Building a Program 



Initiating a Build 

Having set your current system, current system model, and current 
configuration thread, you can now build your program with the build 
command. 

In its simplest form, the build command directs the DSEE facility to 
build the entire program. To build the program order, perform the 
following steps: 

1. If the order. sml icon is still selected, deselect it (point to an 
empty space in the icon area an click <M 1». 

2. Select build from the Bcomp (short for "buildable 
component") menu. 

3. When the dialog box appears, the text entry box should be 
empty. (If the text entry box isn't empty, then delete the 
text in it.) Point to the Confirm button and click <M1>. 
The DSEE facility displays a small window during the build 
that shows the build's progress. 

During the build, the DSEE facility displays a window that contains 
statistics about the building process, as shown in Figure 3-6. Use the 
scroll bar at the bottom of the window to display any text that 
exceeds the width of the window . You can also enlarge the DSEE 
window to view more text. 

Building a Program 3-15 



5 builds required, 2 pending, 
2 completed successfully, 0 f 

One build Is In progress: 
order _ sub2 . c on apollo I/lush 

Illush/libby 
Idsee_examples 

a 
IiW 

Build order subl.c!Sl-Jun-l990.l4:l4:20 
No errors, no warnings, C compiler Rev 6.8 

Building "order_sub2. c" . . . 
Build order sub2.c!Sl-Jun-1990.14:14:28 
Building on-apollo //LUSH (ADl) 

Figure 3-6. build Command 

order.sml 

Figure 3-7 shows the messages resulting from a simple, successful 
build of your program. The first messages displayed in the transcript 
area pertain to the .dsee_builder_list file. The DSEE facility looks 
for the names of builder nodes in .dsee_builder_list. When the 
DSEE facility can't find a configured .dsee_builder_list file, it 
defaults to performing the build on the node from which the DSEE 
facility is invoked. (For information on the .dsee_builder_list file, 
see Using DSEE.) 

Notice that the messages issued by the configuration manager include 
the name of the node on which each build unit is built. In the next 
chapter, we show you how to build a system on several nodes 
concurrently. 

3-16 Building a Program 



DSEE> build 
The builder config file "/sys/dsee/dsee config . . . 
/. dsee builder list" needs to be validated ... 
?(DSEE) Error In builder config file "/sys/dsee ... 
/dsee config/.dsee builder list": No valid entries found. 
(WARNING) The builder config file could NOT be validated. 
(WARNING) The builder has been set to -NONE. 

No working directory copies of reserved elements were 
requested 
5 builds are required. 

Building "order_main.c" 
Build order_main.cl31-Jun-1990.14:14:08 
Building on apollo //LUSH (AD1) 
No errors, no warnings, C Compiler, Rev 6.8 

Building "order sub3.c" 
Build order sub3.Cl31-Jun-1990.14:14:34 
Building on apollo //LUSH (AD1) 
No errors, no warnings, C Compiler, Rev 6.8 

Building "order" . . . 
Build orderl31-Jun-1990.14:14:37 
Building on apollo //LUSH (AD1) 
All Globals are resolved. 

Figure 3-7. build Command 

Observe that the DSEE facility displays a build unit specifier and a 
full build name for every component it builds. In DSEE terminology, 
a build unit is a buildable component and a build unit specifier is 
the ID of a system model block representing a build unit. In 
Figure 3-7, build unit specifiers appear in boldface type. (The 
configuration manager counts each build unit that needs to be 
translated as a "build." That's why the messages displayed when you 
type the build command say" 5 builds are required.") 

A full build name identifies the result of building a component or an 
entire program (for example, a binary or formatted text file). A full 
build name in our example consists of a build unit specifier, an 
exclamation point, and a build version (the date and time of the 
build). 

Building a Program 3-17 



In Figure 3-7, the first four build units are the compiled 
subcomponents of the program. The last build unit is the executable 
version of the program created by binding the subcomponents 
together. 

What Happens During a Build 

Figure 3-8 illustrates what happens when the DSEE facility builds a 
component. Before we examine the building process, however, we 
need to define some more DSEE terms. 

Building a component results in one or more derived objects (for 
example, binaries and listing files) and a bound configuration 
thread (BeT). A BeT specifies which element versions, regular 
files, tools, and translation rules and options were used in building a 
derived object. Every derived object has a corresponding BeT. 

The DSEE facility stores the derived objects and their BeTs in a 
reserved area called a binary pool. You can create your own binary 
pool(s) or use the default binary pool in your system directory. 

3-18 Building a Program 



(1 ) 

(4) 

specifications 

configuration 
thread 

system (directory) 

results 

sources 

compiler 

binder 

(2) 

translation 
(3) 

Figure 3-8. Flow of Information During a Build 

When the DSEE facility builds a component, it first combines the 
component's description in the system model with the version and 
option information in the configuration thread. The resulting 
specification, called a desired BeT, specifies exactly which element 
versions, regular files, tools, and translation rules and options are 
needed to build the component. 

The DSEE facility then compares the desired BeT with the BeTs of 
earlier builds in the binary pool. If a BeT in the binary pool matches 
the desired BeT, the DSEE facility reuses the derived object 
associated with that BeT. If there is no matching BeT, the DSEE 
facility builds a new derived object and BeT and stores them in the 
binary pool. 

Building a Program 3-19 



A binary pool has limit and age parameters that affect the lifespan of 
a derived object in the pool. The limit parameter specifies the 
number of versions of a derived object allowed in the pool. The age 
parameter specifies the minimum length of time (in hours) that a 
derived object must stay in the pool before becoming a candidate for 
automatic deletion. When the number of versions of a derived 
object exceeds the pool's limit, the OSEE facility deletes the excess 
on a least-recently-used basis, provided they have reached the 
minimum age. 

Examining a Build 

You can examine the build map of a particular build with the 
examine build command. A build map is essentially a readable 
form of a BCT and includes: 

• Date and time of the build (build version) 

• System model setting 

• build command line 

• Subject Identifier (SID), node 10, and full name of the 
person responsible 

• Translation rules used in the build 

• Element versions and files used in the build 

The first four items constitute the build map header. 

When issuing the command, you must specify the build's full build 
name. You can use the show builds command to display the full 
build names of one or more derived objects in your binary pool(s). 

1. Point to the icon for order_main.c and click <Ml>. 

2. Select show builds from the Bcomp menu. 

3. The OSEE facility displays a dialog box seeded with 
"order_main.c." Point to the Confirm button and click 
<Ml>. 

3-20 Building a Program 



This form of the show builds command requests the build map 
header (including the full build name) of the derived object 
represented by the build unit order_main.c. Figure 3-9 shows the 
resulting display. 

OSEE> show builds order_main.c 
order main.c: 

Build order main.c!31-Jun-1990.14:14:08 
stored in pool "//lush/libby/dsee examples/order sys/ ... 

dseepool" --
31-Jun-1990 14:15 Chris Libby at //LUSH (libby.none. eng. ADl) 

Model setting was: order_sm[l] @ //lush/libby/ ... 
sample_library 

command line was: build [[reference path: //lush; apollo 
builder: //lush (ADl)]] 

Produced derived object: order_main. bin 

Figure 3-9. show builds Command 

The full build name in your transcript area has a different date and 
time (build version) than the one in Figure 3-9. The build version 
shown in Figure 3-9 is 

order_main.cl31-Jun-1990.14:14:08 

Use your build version when issuing the examine build command 
below. 

1. If the icon for order_main.c is still selected, deselect it. 

2. Highlight the build version in the transcript area: place the 
cursor in front of "order," press and hold <Ml>, move the 
cursor to the end of the build version, and release <Ml>. 

3. Select examine build from the Build menu. 

Building a Program 3-21 



4. The DSEE facility displays a dialog box. Paste the build 
version in the top text entry box: point to the top text entry 
box and click <M2>. 

5. Point to the Confirm button and click <M 1>. 

Figure 3-10 shows the resulting build map. 

OSEE> examine build order_main.C!31-Jun-1990.14:14:08 
order_main.c: 

Build order_main.C!31-Jun-1990.14:14:08 
Stored in pool "//lush/libby/dsee_examples/order_sys/dseepool 
31-Jun-1990 14:15 Chris Libby at //LUSH 

(libby.none.eng.A01) 
Model setting was: order_sm[l] @ //lush/libby/sample_library 
Command line was: build 
Produced derived object: .bin 

Element "order main.c" uses: 
Build order main.c!31-Jun-1990.14:14:08 
Translate r~le: 
/com/cc %source %option(-dbs) -b %result @ 
-systype any 
order.h[l] @ smplib 
order_main.c[l] @ smplib 

Figure 3-10. examine build Command 

3-22 Building a Program 



Accessing Derived Objects 

The derived objects in the binary pools have encoded names that 
allow the DSEE facility to quickly locate and identify the objects. 
When you need to access a derived object, you simply specify the 
object's full build name and the DSEE facility locates the object for 
you. 

Besides having encoded names, derived objects are liable to be 
deleted from their binary pool. This will happen as successive build 
commands place multiple versions of derived objects in the pool. As 
the pool gets crowded, the DSEE facility will use the pool's age and 
limit parameters to delete objects from the pool. 

To simplify access to a derived object and to save it from possible 
deletion, use the export command. This command copies derived 
objects to your working directory or to any specified directory. It can 
also create links to derived objects in a binary pool for short-term 
access to those objects. 

The export command requires the full build name of the derived 
object. If necessary, you can use the show builds command to 
display this information. You also have the option of using the 
Browse command to display an icon for the full build name. For 
example, to display an icon for the full build name of the executable 
version of order in your default binary pool, you need to do the 
following: browse the system model for the build unit (or buildable 
component) order, then browse for the builds associated with order. 

1. Select Browse from the Model menu. 

2. From the submenu that appears, select display direct child 
buildable components. 

3. The DSEE facility displays a browse box. Select order and 
click on the Confirm button (see Figure 3-11). 

Building a Program 3-23 



order 
order main.c 
order-subl.c 
order-sub2.c 
order=sub3.c 

Figure 3-11. Browse Box for Build Units of System Model 

4. The DSEE facility displays the build unit icon shown in 
Figure 3-12. Point to the build unit icon for order and 
click <M1>. 

g 
order 

Figure 3-12. Build Unit Icon 

5. Now browse for the builds associated with the build unit 
order. Follow the menu path shown in Figure 3-13 to 
select display all builds from a submenu of the Bcomp 
menu. 

3-24 Building a Program 



Figure 3-13. Selecting display all builds 

6. The DSEE facility displays a browse box containing the full 
build name for order. Point to the full build name and click 
<M 1> to select it. 

7. Point to the Confirm button and click <M1>. The DSEE 
facility displays a build icon for order (see Figure 3-14). 

~iiiiiiiii~ 

,.!'~ 
order!31-Jun-1990 
.14:14:40.11001AD1 

Figure 3-14. Build Icon 

Now use the export command and its -link option to create a link in 
your working directory pointing to order. 

1. Select the build icon for order. 

2. Select export from the Build menu. 

3. The DSEE facility displays a dialog box seeded with the full 
build name for order. Point to the button next to the -link 
option and click <M 1>. 

Building a Program 3-25 



4. Point to the Confirm button and click <Ml>. The transcript 
area displays the message: 

Link "order" created 

5. To use the link and invoke order, enter, in any shell, 

pathname/dsee_examples/order 

where pathname is the pathname of the directory where you 
installed dsee_examples. You can either respond to the 
program order as directed or abort it by interrupting the 
process. 

Command Summary 

The commands discussed in this chapter accept a variety of options. 
In particular, the options for the build command offer a great degree 
of control over the building process. You should therefore consult 
complete descriptions of these commands in the DSEE Reference 
before building a system of your own. 

Here is a brief list of the commands that you've used in this chapter 
and their definitions. We group the commands according to the 
menus from which you can invoke them. 

build 

show builds 

Builds the current system model or system 
component. 

Displays build map headers of one or more derived 
objects in the current set of pools. 

3-26 Building a Program 



ili~~i~i, II~~~B~IIIIIIIIIIIIIII!~II 
display all builds 

Displays builds associated with a build unit. You 
need to select a build unit icon before issuing this 
command. 

examine build Displays a full build map. 

export 

lil~i~~11 
set model 

111~i~~11 

Exports the derived objects produced from a 
particular build. 

Sets the current system model. 

display direct child buildable components 

iIIIRII, 
set system 

Displays a list of child buildable components in the 
current model. 

Sets the current system and sets the current working 
context. 

Building a Program 3-27 



edit thread Edits the text of the current configuration thread. 

examine thread 

set thread 

Displays the contents of the current configuration 
thread. 

Sets the current configuration thread (or current 
model thread). 

Related Information 

System models and configuration threads are explained in great 
detail in the Using DSEE. The manual also contains several 
examples of system models that you might want to look at. 

The next chapter continues investigating the DSEE build process. 

-------88-------

3-28 Building a Program 



Prerequisites to Chapter 4 

Before you perform any of the exercises in this chapter, please make 
sure that you have 

• Set your current working directory to the dsee_examples 
subdirectory as directed in Chapter 2. 

• Used the OSEE create library command to create the 
my_library library as directed in Chapter 2. 

• Used the OSEE set library command to set your current 
library to sample_library as directed in Chapter 2. 

• Used the OSEE set system command to set your current 
system to order_sys as directed in Chapter 3. 

• U sed the OSEE set model command to set your current 
system model to order.sml as directed in Chapter 3. 

• Used the OSEE set thread and edit thread commands to 
set and edit your current configuration thread as directed in 
Chapter 3. 

• U sed the OSEE build command to build the order program 
as directed in Chapter 3. 



Chapter 4 

Modifying and Rebuilding 
a Program 

Modifying a program typically involves modifying some but not all of 
its components. For example, you might create a new source 
element and edit several others. When you rebuild the program, the 
DSEE facility then rebuilds every component having a dependency 
on the new or modified elements. For all other components, the 
DSEE facility reuses existing derived objects corresponding to those 
components. 

At present, your program consists of four components: 

Each of these components has a primary source dependency on the 
element of the same name and a source dependency on the element 
order.h. Ever since the build in Chapter 3, derived objects 
corresponding to these components and the program order have 
existed in your default binary pool. 

Modifying and Rebuilding a Program 4-1 



In this chapter, you will modify your program by adding the 
component order_sub4.c and modifying the component 
order_main.c. In the process, you build a single component, 
declare an equivalence, and rebuild the program using the build 
command and the following new commands and options: 

build -bet_only 

build -query 

compare builds 

set builder 

Modifying a Program 

Use the following procedure to create the element order_sub4.c and 
modify the element order_main.c. 

1. Select the icon for my_library. 

2. Select set library from the Library menu. 

3. The DSEE facility displays a dialog box seeded with 
"my_library." Click on the button next to "library" if it 
isn't already selected, then click on the Confirm button. 

4. Select create element from the Element menu. 

5. When the dialog box appears, remove any text in the top 
text entry box and type 

and click on the Confirm button. 

6. The DSEE facility displays another dialog box and requests 
a comment on the purpose of the element. Type 

Input module 

and click on the Confirm button. A branch icon 
representing the reserved branch order_sub4.c appears in 
the icon area. 

4-2 Modifying and Rebuilding a Program 



7. Select the icon for sample_library. 

8. Select set library from the Library menu. 

9. The OSEE facility displays a dialog box seeded with 
"sample_library." Point to the Confirm button and click 
<Ml>. 

10. Point to the icon for order_main.c and click <Ml>. 

11. Select reserve from the Branch menu. 

12. The OSEE facility displays a dialog box seeded with 
"order_main.c." Point to the Confirm button and click 
<M1>. 

13. The OSEE facility displays another dialog box; this one 
prompts you to enter a comment about the reservation. 
Type 

Add order_sub4.c 

and click on the Confirm button. A branch icon 
representing the reserved branch order_main.c appears in 
the icon area. 

If you were adding a module to a real system, you would now edit the 
file order_main.c and create the file order_sub4.c in your working 
directory. However, for this example, we've supplied a OSEE 
command file that does the editing and file creation for you. (We've 
done this so that you can spend your time learning the OSEE facility, 
not writing sample code.) Simply run the script sources in the 
update directory with the following command. The left angle bracket 
«) directs the OSEE facility to use the specified file as input. At the 
OSEE command line, enter 

<update/sources 

While the commands in update/sources are in progress, the DSEE 
prompt to the left of the command line fades. When the OSEE 
prompt no longer appears faded, the commands have completed. 
(Any time you invoke a OSEE command, the OSEE prompt remains 
faded while the command is in progress.) 

Modifying and Rebuilding a Program 4-3 



To display edited copies of the reserved elements in your working 
directory (order_sub4.c and order_main.c), use the Edit File 
command from the Misc. menu. (The read command cannot 
display reserved elements in your working ?irectory.) 

1. Click on the icon for order_sub4.c. 

2. Select Edit File from the Misc. menu. 

3. Point to the Confirm button and press <Ml>. 

4. The DSEE facility displays order_sub4.c using the editor 
the X resource Dsee*editor specifies. When you finish 
viewing order_sub4.c, exit from the editor and repeat the 
procedure to display order_main.c. 

Do not issue replace commands to replace order_sub4.c and 
order_main.c at this point. The DSEE facility will leave both 
elements reserved, with their edited copies in your working directory. 
This allows you to freely edit the copies when rebuilding and 
debugging the program. (The DSEE facility uses the copies when 
rebuilding the program.) 

If you were to rebuild the program now using your current system 
model and current configuration thread, the DSEE facility would 
(among other things) rebuild the component order_main.c and 
completely ignore order_sub4.c. In the first case, your model and 
thread together would necessitate a rebuild of the component 
order_main.c because you reserved the element order_main.c and 
placed its copy in your working directory. In the latter case, since 
your model contains no reference to order_sub4.c, the DSEE 
facility would have no reason to build a new component of that 
name. 

Modifying the System Model 

Adding a component to your program requires a corresponding 
change to your system model. You now reserve the element 
order.sml, edit it, and replace it. Again, we've supplied a DSEE 
command file (update/system_model) that will do the editing for 
you. The following procedure reserves the element, runs the editing 
script, and replaces a new version of order. sml in your current 
library. 

4-4 Modifying and Rebuilding a Program 



1. Point to the icon for order.sml and click <M1>. 

2. Select reserve from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
" order. sml." Point to the Confirm button and click <M 1>. 

4. The DSEE facility displays another dialog box; this one 
prompts you to enter a comment about the reservation. 
Type 

Add order_sub4.c 

and click on the Confirm button. A branch icon 
representing the reserved branch order.sml appears in the 
icon area. 

5. At the DSEE command line, enter 

<update/system_model 

6. Select replace from the Branch menu. 

7. The DSEE facility again displays a dialog box seeded with 
"order.sml." If the -nc option is selected, deselect it, then 
point to the Confirm button and click <M 1>. 

8. The DSEE facility displays another dialog box; this one is 
seeded with the comment you entered when you reserved 
the element. Add the following additional comment: 

order_sub4.c added 

and click on the Confirm button. 

Use the read command to examine the latest version of your system 
model. 

1. Select read from the Version menu. 

2. When the dialog box appears, it is seeded with the name 
"order.sml" (assuming that the order.sml icon is still 
selected). Point to the Confirm button and click <M1>. 
The DSEE facility displays a read-only copy of the most 
recent version of order.sml. 

Modifying and Rebuilding a Program 4-5 



The model contains two additional lines. The first of these lines, 

mylib = 'my_library'; 

augments the library declaration near the top of the system model. 
The declaration now identifies two source libraries for the elements 
specified in the model. Previously, the model identified only 
sample_library and assigned it the library 10 smplib. 

The second line, 

ELEMENT order_sub4.c @ mylib; 

is an additional Element block declaration near the bottom of the 
system model. This abbreviated form of the Element block, like the 
others above it, represents a component whose primary source 
dependency is a OSEE element. The element, of course, is 
order_sub4.c. The library specifier @ mylib tells the OSEE facility 
that unlike the other elements in the model, this element resides in 
the library my_library. Notice that placing an explicit library 
specifier in a block overrides the default library specifier (in the 
model's first default declaration) declared for that block. 

Now set the model's most recent version as your current system 
model. 

1. If you haven't closed the order.sml file, close it now. 

2. Select set model from the Model menu. 

3. The OSEE facility displays a dialog box seeded with 
"order.sml" (assuming that the order.sml icon is still 
selected). Point to the Confirm button and click <M1>. 

The OSEE facility responds by validating and setting the new system 
model. 

Before rebuilding your program, verify that your current 
configuration thread contains the correct thread rules for the rebuild. 

1. Select examine thread from the Thread menu. 

2. When the dialog box appears, point to the Confirm button 
and click <M1>. 

4-6 Modifying and Rebuilding a Program 



The DSEE facility displays the thread in the transcript area. The 
thread contains the following rules (we've added the line numbers to 
refer to each rule easily in the text): 

-for 7*.c -use_options -dbs (1) 
-reserved (2) 
[] (3) 

Reviewing the thread, you see that the -reserved version rule on line 
2 requires the DSEE facility to use working directory copies of 
reserved elements. This version rule, combined with the component 
information in your current system model, ensures that the desired 
BeT (bound configuration thread) for order will include the working 
directory copies of the reserved elements order_main.c and 
order_sub4.c. For the unreserved elements specified in your 
model, the version rule on line 3 ensures that the desired BCT for 
order will include the elements' most recent versions in the library. 

Performing a Partial Build 

Having modified and set your current system model and reviewed 
your current configuration thread, you proceed to build only the new 
component order_sub4.c. Your intention is to find and fix 
compilation errors in the new component before rebuilding the entire 
program. 

Building a Single Component 

To build only one component, you issue the build command and 
specify the component's build unit specifier. 

1. Point to the icon for order_sub4.c and click <Ml>. 

2. Select build from the Bcomp menu. 

3. The DSEE facility displays a dialog box seeded with 
"order_sub4.c." Point to the Confirm button and click 
<Ml>. 

Modifying and Rebuilding a Program 4-7 



Because you have a current configuration thread setting, the DSEE 
facility validates and resets the thread. Also, the DSEE facility, 
finding the element order_sub4.c reserved, creates a reserved pool 
in your working directory as indicated in the transcript area shown in 
Figure 4-1. 

OSEE> bui ld order sub4. c 
The current thread needs to be validated . . . 
The current thread has been validated. 
The working directory copies of these reserved elements 
were requested: 

order_sub4.c @ mylib 
Creating reserved pool "//lush/libby/dsee examples" 
Reserved pool set to "/!1ush/libby/dsee_e~amples". 

1 build is required. 

Building "order_sub4.c " ... 
Build order sub4.c!31-Jun-l990.l5:57:06 
Building on-apollo //LUSH (ADl) 

(0052) if «nums_file = fopen{numsyath, "r"» == 0) 
******** Line 52: [Error $023] "numsyath" has not been 

declared. 
(0054) fprintf( (&_iob[2]) , "bogus data file 

******** Line 54: [Error $023] "numsyath" has not been 
declared. 

2 errors, no warnings, C Compiler, Rev 6.8 
(WARNING) Translate rule execution failed. 
(WARNING) Component has not been 

Figure 4-1. Unsuccessful Build of Single Component 

A reserved pool is for derived objects produced from working 
directory copies of reserved elements. The DSEE facility 
automatically creates a reserved pool in your working directory 
during the build. Derived objects remain in the reserved pool until 
you replace all of the elements used in building those objects. The 
DSEE facility then promotes the derived objects by moving them 
from the reserved pool to the appropriate nonreserved (shared) 
pool. 

4-8 Modifying and Rebuilding a Program 



Figure 4-1 also shows error messages returned by the C compiler 
and the DSEE facility. As you can see, the build was unsuccessful 
because of a missing variable declaration in the component. Because 
all the components of your program use order. h for their common 
variable declarations, you start your investigation of the problem by 
looking at the element's latest version. 

1. Point to the icon for order.h and click <M1>. 

2. Select read from the Version menu. 

3. When the dialog box appears, it is seeded with the name 
"order.h." Point to the Confirm button and click <Ml>. 
The DSEE facility displays a read-only copy of the most 
recent version of order.h. 

Debugging Source Elements 

The include file does not contain the new variable declaration 
required by order_sub4.c and order_main.c. You therefore 
reserve the element order. h and edit its copy in your working 
directory. (The DSEE command file edits the copy for you.) 

1. If you haven't closed the order.h file, close it now. 

2. Select reserve from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
"order.h." Point to the Confirm button and click <M1>. 

4. The DSEE facility displays another dialog box; this one 
prompts you to enter a comment about the reservation. 
Type 

Add nums_path variable 

and click on the Confirm button. A branch icon 
representing the reserved branch order. h appears in the 
icon area. 

5. At the DSEE command line, enter 

<update/include_file 

Modifying and Rebuilding a Program 4-9 



The working directory copy of order.h now contains the required 
variable declaration. (If you want to read the working directory copy 
of order.h, you can use the Edit File command. You can seed the 
Edit File dialog box by selecting an element, branch, or file icon.) 
Leaving the element reserved, you try again to build the component 
order_sub4.c. 

1. Point to the icon for order_sub4.c and click <Ml>. 

2. Select build from the Bcomp menu. 

3. When the dialog box appears, it is seeded with the name 
"order_sub4.c." Point to the Confirm button and click 
<Ml>. 

As indicated in the transcript area shown in Figure 4-2, you 
succeed. The derived object and BeT built with copies of the 
reserved elements order_sub4.c and order.h now reside in the 
reserved pool in your working directory. 

DSEE> build order_sub4.c 
The versions requested for these elements and files differ 
from the ones requested previously: 

order.h @ smplib 
The working directory copies of these reserved elements 
were requested: 

order_sub4.c @ mylib 
order.h @ smplib 

1 build is required. 
Building "order sub4.c" 
Build order_sub4.C!31-Jun-1990.16:07:55 
Building on apollo //LUSH (AD1) 
No errors, no warnings, C Compiler, Rev 6.8 

Figure 4-2. Successful Build of Single Component 

4-10 Modifying and Rebuilding a Program 



Rebuilding the Program 

Having successfully built the new component order_sub4.c, you 
prepare to rebuild the program. Your current situation is as follows: 

• The current system model declares order. h as a source 
dependency for all components of order (as indicated by 
the depends_source declaration in the system model's 
default for ?*.c declaration) 

• The current configuration thread specifies the working 
directory copy of reserved elements and the most recent 
version (in the library) of all other elements (as indicated by 
the last two lines of your configuration thread) 

• The elements order.h, order_main.c, and order_sub4.c 
are reserved (because of create element and reserve 
commands you performed earlier in this chapter) 

• The derived object corresponding to the component 
order_sub4.c already exists in your reserved pool (because 
of the last build command you issued) 

Building on Several Nodes Concurrently 

This review of your current situation tells you that all of the 
components of order except order_sub4.c will be rebuilt when you 
issue your next build command. In order to speed up your build and 
take up fewer of your own node's CPU resources, you decide that 
you want to build the system in parallel on several nodes. 

The DSEE facility looks for the names of builder nodes in a file 
named. dsee builder list. However, as we describe in this section, 
you can also specify the names of builder nodes using the 
set builder command. (For information on the .dsee_builder_list 
file, see Using DSEE.) 

Modifying and Rebuilding a Program 4-11 



In order to build on several nodes concurrently, issue the 
set builder command before your next build command. Using the 
set builder command, you identify: 

• The names of all of the possible nodes to be used to build 
parts of the system (listed in order of most to least 
preferred). This list can contain as many as 1000 nodes. 
The configuration manager will use as many as 20 of them 
concurrently. (See the limits help file for current limits.) 

• The name of the reference path. This is the directory that 
you want the configuration manager to use to resolve all 
node-relative pathnames in the system model (for example, 
system include files). 

Issue the set builder command as follows: 

1. Select set builder from the Builder menu (a submenu of 
the Misc. menu). 

2. When the dialog box appears, click on the button next to 
"Set apollo builders," then click on the Builders button. 

3. The DSEE facility displays a second dialog box; this one 
prompts you to enter a builder list. Enter either names of 
nodes (for example, III us h) separated by spaces, or the 
pathname of a file, preceded by an asterisk (*). The 
named file must contain the names of builder nodes, each 
one on its own line. 

4. When you've finished entering a builder list, point to the 
Confirm button and click <M1>. 

5. Now click on the button next to the -reference path 
option. 

6. With the cursor in the dialog box, enter the name of a 
reference node (your own node, for example). 

7. Point to the Confirm button and click <M1>. 

4-12 Modifying and Rebuilding a Program 



Each one of the nodes in the builder list must be running the 
server_process_manager in order to be used as a builder. Issue the 
BSD shell command /bin/ps -ax //node_name, the SysV shell 
command /bin/ps -e //node_name, or the Aegis shell command 
/com/pst //node_name to determine whether a particular node is 
running the server process manager. 

During subsequent builds, the configuration manager will display the 
name of the node building each component of the system in the 
transcript. It will also display a pane within the DSEE transcript 
window that contains statistics of the building process. Figure 4-3 
shows an example of a DSEE window during a concurrent build on 
multiple nodes. 

5 builds required, 3 pending, 
o completed successfully, 
o failed. 

2 builds are in progress: 
order_main.c on apollo IIONYX 
order_sub1.c on apollo IIRUBY 

ples/order_sys 
lIibby/dsee_examples/sample_library 
pies/sample_library 
mpJes 

~. 
Ishllibby order!31-Jun-1990 
!_examples .14: 14:40. 11001AD1 

Figure 4-3. DSEE Desktop During Concurrent Build 

Modifying and Rebuilding a Program 4-13 



Figure 4-4 in the next section contains sample output from a set 
builder command and illustrates the display of builder node names 
during builds. 

Your builder settings last until you exit from the DSEE facility. 

Rebuilding with Reserved Elements 

You now build the modified version of the program order with the 
build command. 

1. If the order_sub4.c icon is still selected, deselect it (point 
to an empty space in the icon area an click <M 1» . 

2. Select build from the Bcomp menu. 

3. When the dialog box appears, delete any text in the text 
entry box. (You can delete text by first highlighting the text, 
then pressing <DELETE>. To highlight text, position the 
cursor at the far right of the text, press and hold <M1>, drag 
the cursor to the far left of the text, and release <M 1>.) 

4. Point to the Confirm button and click <M 1>. 

As indicated in Figure 4-4, the DSEE facility rebuilds all 
components except order_sub4.c (a suitable derived object already 
existed for this component) . In addition, all derived objects 
produced by the build reside in the reserved pool in your working 
directory because they each have one or more reserved 
dependencies. 

4-14 Modifying and Rebuilding a Program 



OSEE> set builder //onyx //diamond //ruby -ref //lush 
Builders specified in the SET BUILDER command are overriding 

the builder list file. 
New builder settings were successfully established for 

OSEE> build 
host type "apollo". 

The versions requested for these elements and files differ 
from the ones requested previously: 

order.h @ smplib 
The working directory copies of these reserved elements 
were requested: 

order sub4.c @ mylib 
order~h @ smplib 
order_main.c @ smplib 

6 builds are required. 
Building "order_main.c" 
Build order_main.C!1-Sep-1987.8:27:55 
Building on apollo //ONYX (E17) 

Completed" order" on apollo //ONYX (E17) 
Build order!1-Sep-1987.8.29:32 
All Globals are resolved. 
Build completed. 

Figure 4-4. Rebuild of Entire Program 

Testing the Program 

To test the program, export a link to order and run the program. 

1. Select export from the Build menu. 

2. The DSEE facility displays a dialog box. If you haven't 
exited DSEE, the dialog box contains the last build unit 
specifier you entered. Remove the previous specifier, then 
type 

order! 

Using only a build unit specifier and an exclamation point 
(!) for a full build name indicates the last build of that 
component (for example, order!). 

Modifying and Rebuilding a Program 4-15 



3. The button for the -link option should still be selected from 
the last time you issued the export command. If not, click 
on the button now. 

4. Point to the button next to the -r option and click <Ml>. 
The -r option directs the DSEE facility to replace an 
existing link with the new link. 

5. Point to the Confirm button and click <Ml>. 

Promoting Derived Objects in a Reserved Pool 

Upon testing the program, you determine that none of the reserved 
elements require modification. You therefore replace all of the 
reserved elements used in the previous build. As a consequence, you 
also promote all derived objects produced during that build (that is, 
they are automatically moved from your reserved binary pool to your 
default binary pool). 

1. Point to the icon for order_main.c and click <Ml>. 

2. Select replace from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
"order.sml." Point to the Confirm button and click <Ml>. 

4. The DSEE facility displays another dialog box; this one is 
seeded with the comment you entered when you reserved 
the element. With the cursor in the dialog box, add the 
following additional comment: 

order_sub4.c added 

and click on the Confirm button. 

5. Replace order.h in the same way you replaced 
order_main.c, but add the comment 

instead of "order_sub4.c added." 

6. Set your library to my_library: Click on the icon for 
my_library, then select set library from the Library menu. 
When the dialog box appears, click on the Confirm button. 

4-16 Modifying and Rebuilding a Program 



7. Now replace order_sub4.c in the same way you replaced 
order_main.c, but add the comment 

File input 

instead of "order_sub4.c added." 

8. Now set your library back to sample_library in the same 
way that you set your library to my_library. 

Notice that the DSEE facility promotes the program's derived object 
only after promoting all of its components. If you had deleted any of 
the program's subcomponent builds from the reserved pool prior to 
this time, the DSEE facility would not have promoted the program's 
derived object. 

Naming Versions Used in a Build 

In Chapter 2, you used the name version command to assign the 
version name sample to the element versions supplied with this 
manual. The command can also assign a version name to the 
element versions used in a particular build, even when the element 
versions reside in different libraries. 

Before you can assign a version name to the element versions used in 
the last build, you need to browse for its full build name. (The DSEE 
facility changed the build's full build name to indicate the date and 
time that it was promoted from the reserved binary pool to the 
default binary pool.) 

1. In Chapter 3 you browsed for the buildable component 
order and displayed a build unit icon for it. Point to the 
build unit icon for order (see Figure 4-5) and click <M 1>. 

o 

order 

Figure 4-5. Build Unit Icon 

Modifying and Rebuilding a Program 4-17 



2. Now browse for the builds associated with the build unit 
order. Select display all builds from the Bcomp menu 
(see Figure 4-6). 

Figure 4-6. Selecting display all builds 

3. When the browse box appears, select the most recent build 
(the last build listed). 

4. Point to the Confirm button and click <M1>. The OSEE 
facility displays a build icon for the latest build of order. 

Now assign the version name revO 1 to the element versions used in 
the last build of order. 

1. Point to the build icon for the most recent build and click 
<M1>. 

2. Select name version from the Version menu. 

3. The OSEE facility displays a dialog box seeded with the full 
build name for order. Point to the empty text entry box 
next to the words "version name:" and click <M1>. Type 

rev01 

4. Point to the Confirm button and click <M 1>. 

Figure 4-7 shows the messages in the transcript area resulting from 
the name version command. 

4-18 Modifying and Rebuilding a Program 



DSEE> name version orderll-Sep-1987:9:l8:3l.3500l89f9 
Looking up versions used in the specified build 
Processing library 

"/ /lush/libby/dsee_examples/my_library". 
1 elements were given the name "revOl". 

Processing library 
"//lush/libby/dsee examples/sample library". 

5 elements were-given the name "revOl". 
Naming model source versions . . . 

Processing library "//lush/libby ... 
sample library". 
version order.sml[2] has been named "revOl". 

Figure 4-7. name version Command and Build 

Modifying and Rebuilding a Program 4-19 



Figure 4-8 illustrates the current state of the element versions in 
your libraries. 

[sample] 

[rev01 ] 

[SamPle]j 

[rev01] 

[sample] 

[rev01 ] 

[sample] I 
[rev01] 

[sample] 

[rev01] 

[samPle]l 

[rev01] 

... 

sample_library 

Figure 4-8. Sample Libraries and Their Element Versions 

4-20 Modifying and Rebuilding a Program 



Rebuilding with Existing Components 

At this point, you have 

• A satisfactory version of the program order 

• Derived objects in the default binary pool for the program 
order and all of its components 

• No reserved elements 

As a finishing touch, you decide to add a version identifier to the 
program. This involves adding a printf statement to the element 
order_main.c and a define declaration to the element order.h. 
You therefore reserve the elements and edit their copies in your 
working directory. (As before, we supplied command files that edit 
these files for you to simplify this tutorial.) 

1. Point to the icon for order_main.c and click <Ml>. 

2. Select reserve from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
"order_main.c." Point to the Confirm button and click 
<Ml>. 

4. The DSEE facility displays another dialog box; this one 
prompts you to enter a comment about the reservation. 
Type 

Adding version ID 

and click on the Confirm button. 

5. Reserve order.h in the same way you reserved 
order_main.c, but add the comment 

Adding ID constant 

instead of "Adding version ID." 

Modifying and Rebuilding a Program 4-21 



6. At the DSEE command line, enter 

<update/sources_again 

7. At the DSEE command line, enter 

<update/include_file_again 

Use the Edit File command from the Misc. menu to examine the 
reserved files (order_main.c and order. h) in your working 
directory. 

Having modified the program, you decide to rebuild and test it. 

Identifying Components Targeted for Rebuilding 

At present, the following conditions exist: 

• All of the components defined in your current system model 
have a direct dependency on the include file order.h 

• Your current configuration thread specifies the working 
directory copies of reserved elements 

• You have reserved the elements order_main.c and 
order.h, and copies of these elements exist in your working 
directory 

To the best of your knowledge, your modifications affect only the 
component order_main.c; the DSEE facility can reuse derived 
objects for the other components. 

To be certain, however, you invoke the build command with its 
-query option. This form of the command initiates an interactive 
build session that begins with a display of the components targeted 
for rebuilding. 

1. Deselect the icon for order.h. 

2. Select build from the Bcomp menu. 

3. When the dialog box appears, the text entry box should be 
empty. Click on the Options button to display all options. 

4-22 Modifying and Rebuilding a Program 



4. Point to the button located to the right of the option, build 
querier set to:, and click <M1>. 

5. The DSEE facility displays three more options. Point to the 
button next to the -query option and click <M1>. 

6. Point to the Confirm button and click <M1>. 

The DSEE facility displays a dialog box that contains the 
build unit specifiers of components targeted for rebuilding. 
They are: 

order_main.c 
order_subl.c 
order_sub2.C 
order_sub3.c 
order_sub4.c 

7. At this point, you decide that you want to know why the 
DSEE facility intends to rebuild all these components when 
your modifications only affected order_main.c. You cancel 
the build command and rebuild the program later. 

To cancel the build and close the dialog box, point to the 
Cancel button and click <M 1>. Figure 4-9 shows the 
resulting messages in the transcript area. 

"//lush/libby/dsee_examples". 
The versions requested for these elements and files differ 
from the ones requested previously; 

order.h @ smplib 
order_main.c @ smplib 

The working directory copies of these reserved elements 
were requested; 

order.h @ smplib 
order_main.c @ smplib 

6 

Figure 4-9. Canceled build -query Command 

Modifying and Rebuilding a Program 4-23 



Building BeTs Only 

To discover exactly why a component needs rebuilding, you can 
generate a BeT of the desired build and compare it with the BeT of a 
previous build. (As you may recall, a BeT contains detailed 
information about the components of the build, the element versions 
used in the build, and build options used in the build.) 

Normally, building a component produces one or more derived 
objects and an associated BeT. However, you can request a BeT 
without a derived object with the -bet_only option of the build 
command. This option directs the DSEE facility to produce a BeT 
without executing any translation rules, and thus without producing 
derived objects. 

Executing a build without translation rules requires much less time 
than a normal build. The result of such a build is a BeT specifying 
the exact element versions, files, and derived objects to be used in 
building the prospective component or program. 

As indicated in Figure 4-10, use the build command with its 
-bet_only option to create a BeT for the program order. 

1. Select build from the Bcomp menu. 

2. When the dialog box appears, deselect the -query option: 
click on the -query button, then click on the no queries 
option from the small menu that appears. 

The working directory copies of these reserved elements 
were requested: 

order.h @ smplib 
order_main.c @ smplib 

6 builds are required. 

The new BeT is associated with the build 
order!1-Sep-1987.9:20:32 

Figure 4-10. build -bet_only Command 

4-24 Modifying and Rebuilding a Program 



3. Click on the button next to the -bct_only option. 

4. Point to the Confirm button and click <M 1>. 

Comparing Builds 

The compare builds command displays the differences between the 
build maps of two builds (as mentioned earlier, a build map is a 
readable version of a BCT). 

This command requires two full build names. (Specify the full build 
name of the older build first to ensure a more readable display.) 
Browse for the builds associated with order to find the full build 
names of builds in your binary pool. 

1. Point to the build unit icon for order and click <Ml>. 

2. Select display all builds from the Bcomp menu (see 
Figure 4-11). 

Figure 4-11. Selecting display all builds 

3. When the browse box appears, select the most recent build 
(the last build listed). (You should already have icons for 
the previous builds displayed in the icon area. If not, then 
also select the first build in the list, which is the build you 
performed in Chapter 3.) 

4. Point to the Confirm button and click <M1>. The DSEE 
facility displays a build icon for the latest build of order. 

Modifying and Rebuilding a Program 4-25 



Now use the compare builds command to display the differences 
between the BCT you just created and the BCT for the build you 
performed in Chapter 3. 

1. Select the build icon that represents the most recent build. 

2. Using the pop-up menu, select Copy Icon Name. This 
command allows you to copy a selected icon name and 
paste it in dialog boxes or on the command line. 

3. Select the build icon that represents the build you 
performed in Chapter 3 (the build with the oldest date). 

4. Select compare builds from the Build menu. 

5. The DSEE facility displays a dialog box seeded with the 
name of the older build. Position the cursor in the text 
entry box that is second from the top and click <M2> to 
paste the newer build version in the text entry box. 

6. Point to the Confirm button and click <M1>. 

The build map that you created with the command build -bct_ only 
is a representation of what components the DSEE facility thinks it 
needs to rebuild and why. By looking at the comparison between this 
new build map and the build map for your earlier build, you see that 
the DSEE facility thinks it needs to rebuild the components other 
than order_main.c because they require the reserved copy of the 
include file order. h in your working directory. Because the 
modifications you made to the include file affect only the component 
order_main.c, you decide to reuse the derived objects from the 
previous build for the remaining components. 

Specifying Equivalences 

When you want the DSEE facility to reuse an existing derived object 
instead of building a comparable one, but the facility thinks that it 
needs to rebuild, you must declare an override or an equivalence. 
Equivalences and overrides let you explicitly identify older builds to 
reuse. 

An override applies only to the current build command. When 
command execution ends, so does the override. 

4-26 Modifying and Rebuilding a Program 



You generally use an override for short-lived builds, such as when 
you modify a program and rebuild it to test the changes. Then you 
would probably want to reuse as many derived objects as possible, 
even though some of the components they represent might need 
rebuilding. 

An equivalence can affect other users of the system long after the 
current build command. The DSEE facility stores an equivalence 
like a BeT, which means that the equivalence can last indefinitely. 

You generally use an equivalence when there is no reason to rebuild a 
particular component now or in the foreseeable future. Because 
other users of the system might also use the component, this 
condition should hold true for them as well. If you find yourself 
declaring equivalences for more than a few components, you should 
probably isolate your work from that of others on the project by 
altering your current configuration thread. 

There are two types of overrides and equivalences: substitute version 
specification and substitute build specification. Both types use the 
configuration thread language. 

With substitute version specification, you identify substitute 
versions for some of a component's dependencies. For example, 
suppose that you tell the DSEE facility not to rebuild the component 
order_sub1.c. You then declare that for this component, element 
versions order.h[2] and order.h[3] are equivalent. Rather than 
rebuild the component with order.h [3], the DSEE facility reuses the 
component's derived object built with order.h [2]. 

With substitute build specification, you specify the full build name 
of a substitute build. The DSEE facility then reuses that build instead 
of rebuilding. (This type of equivalence or override can be 
destructive because you may unwittingly displace someone else's 
work. We therefore recommend that you use substitute build 
specifications only with overrides, which are the default for this 
type.) 

You declare an override or an equivalence during an interactive build 
session initiated with the build command and its -query option. As 
you've already discovered, invoking the command with this option 
causes the DSEE facility to open a dialog box seeded with the names 
of components needing to be rebuilt. 

Modifying and Rebuilding a Program 4-27 



Having determined why the DSEE facility targeted all the 
components for a rebuild, you can now proceed with rebuilding the 
program order. Deciding to declare an equivalence for all 
components except order_main.c, you invoke the build command 
with the -query option. 

1. Select build from the Bcomp menu. 

2. When the dialog box appears, the text entry box should still 
be empty, all options still displayed, and the -bet_only 
option still selected. Deselect the -bet_only option. 

3. Point to the button located to the right of the option, "build 
querier set to:", and click <M1>. 

4. The DSEE facility displays three more options. Point to the 
button next to the -query option and click <M1>. 

5. Point to the Confirm button and click <M1>. 

6. Once again, the DSEE facility displays a dialog box 
containing the following build unit specifiers: 

order_rnain.c 
order_subl.c 
order_sub2.c 
order_sub3.c 
order_sub4.c 

Delete all the names except order_main.c and click on the 
Confirm button. (You can delete text by highlighting the 
text you want to delete and pressing <DELETE>. To 
highlight text, press and hold <M 1>, drag the cursor across 
the text, then release <M 1>.) 

The DSEE facility opens another dialog box for overrides or 
equivalences involving substitute versions. The dialog box 
contains a comment and the following identifiers: 

-EQUIVALENCE 
# -override 

When you insert a version substitution specification in this 
dialog box, you must accompany it with one of these 
identifiers. The default identifier is -equivalence. To use 
the -override identifier, you must remove the # sign that 

4-28 Modifying and Rebuilding a Program 



precedes it and either delete or comment out the 
-equivalence identifier. Because you intend to declare an 
equivalence, you leave the identifiers untouched. 

7. Now use the configuration thread language to write a 
version substitution specification in the dialog box. For the 
last line in the dialog box, type 

-for order.h [] 

This specification directs the DSEE facility to reuse derived 
objects built with the most recent version of order. h (in the 
library), rather than rebuild the objects using the copy of 
order.h in your working directory. This specification 
applies only to the components whose names you deleted in 
the previous dialog box. 

The contents of the dialog box are now: 

-EQUIVALENCE 
# -override 
-for order.h [] 

8. Click on the Confirm button to close the dialog box. The 
DSEE facility then records the equivalences and rebuilds 
the program as indicated in Figure 4-12. 

Your equivalence declaration makes existing builds of the indicated 
components equivalent to the desired builds, but only in the reserved 
pool. Because the build involves equivalences and copies of reserved 
elements, the DSEE facility stored the equivalences and the derived 
objects in the reserved pool. When you replace the elements used in 
the build, the DSEE facility will then promote both the equivalences 
and the derived objects. 

Modifying and Rebuilding a Program 4-29 



build -query 
The working directory copies of these reserved elements 
were requested: 

order_main.c @ smplib 
order.h @ smplib 

6 builds are required. 
Recording equivalence for "order_sub1.e " 

Build order_subl.c!1-Sep-1987.9:32:39 
Recording equivalence for "order sub2.e " 

Build order_sub2.C!1-Sep-1987~9:32:40 
Recording equivalence for "order sub3.e" 

Build order_sub3.C!1-Sep-1987~9:32:41 
Recording equivalence for "order_sub4.e" 

Build order_sub4.C!1-Sep-1987.9:32:42 
2 builds are now required. 
Building "order_main.e" . . . 
Build order main.c!1-Sep-1987.9:32:42 
Building on-apollo //ONYX (E17) 

Completed "order_main.e" on apollo / /ONYX (E17) 

Completed "order" on apollo / /ONYX (E17) 
Build orderll-Sep-1987.9:33:08 

Figure 4-12. build -query Command with Equivalences 

Now that you have a new version of the program order, you export a 
link to the executable version in the reserved pool and test the 
program. Use only the build unit specifier order and an exclamation 
point (!) to indicate the last build. 

1. Select export from the Build menu. 

2. The DSEE facility displays a dialog box. With the cursor in 
the dialog box, type 

order! 

3. If the -link option is not selected, select it now. 

4-30 Modifying and Rebuilding a Program 



4. If the -r option is not selected, select it now. The -r option 
directs the DSEE facility to replace an existing link with the 
new link. 

5. Point to the Confirm button and click <Ml>. 

You test the new order and deem it satisfactory. You therefore 
replace the reserved elements. 

1. Point to the icon for order_maiD.c and click <Ml>. 

2. Select replace from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
"order_main.c." Point to the Confirm button and click 
<Ml>. 

4. The DSEE facility displays another dialog box; this one is 
seeded with the comment you entered when you reserved 
the element. Add the following additional comment: 

Added version ID 

and click on the Confirm button. 

5. Replace order. h in the same way you replaced 
order_maiD,c, but add the comment 

Added ID constant 

instead of "Added version ID." 

The DSEE facility replaces the elements and promotes the 
equivalences and derived objects to the default binary pool. 

Rebuilding an Earlier Version of the Program 

The time has come to build a version of order for wider distribution. 
You select the earlier revOl version of the program because of its 
relative stability. 

Modifying and Rebuilding a Program 4-31 



When you originally built this version of the program, you assigned 
the version name revO 1 to the program's constituent element 
versions. You now want to rebuild the program using only those 
element versions. You also want to rebuild without the -dbs option 
specified in your current configuration thread. 

Editing the Configuration Thread 

Your current system model remains unchanged from that previous 
build. Only your current configuration thread needs editing. 

1. Select edit thread from the Thread menu. 

2. When the dialog box appears, point the Confirm button and 
click <Ml>. 

3. The DSEE facility displays another dialog box containing 
the following text: 

-for ?*.c -use_options -dbs (1) 
-reserved (2) 
[] (3) 

The thread rule on line 1 requires the -dbs translation 
option when building any component with a build unit 
specifier ending in ".c". Every derived object in your 
reserved and default pools (except the derived object 
corresponding to order) has been built with this option. 

In order to rebuild the entire program order without the 
-dbs option, change the thread rule to read: 

-for ?*.c -exact -use_options 

Simply removing the -dbs option would allow the DSEE 
facility to reuse derived objects built with that option. The 
reason for this stems from the translation rule in your 
current system model. The translation rule looks something 
like this (on one line): 

/com/cc %SOURCE -idir . %OPTION(-dbs) -b 
%RESULT -systype bsd4.3 

The %option keyword in the translation rule identifies the 
-dbs option as noncritical; that is, the option is not a crucial 

4-32 Modifying and Rebuilding a Program 



attribute of a derived object. This means that the DSEE 
facility could reuse a derived object built with the -dbs 
option even when you remove it from your configuration 
thread. Using the -exact flag with -use_options tells the 
DSEE facility to build" .c" components with exactly no 
options. 

4. Because you want to build with element versions in the 
libraries, delete the thread rule on line 2. If you did have 
any of the elements reserved, this thread rule would specify 
the wrong version. 

5. Also delete the thread rule on line 3. Some of the element 
versions named revO 1 are previous, not most recent, 
versions of elements in the libraries. 

6. Finally, add a thread rule that reads: 

[revOl] 

The version rule [revOl] specifies the named version of all 
elements used in the build (see Figure 4-13). 

Normally, you include the -When_exists flag with a version 
rule to tell the DSEE facility to use the specified element 
version only when that version exists. Without this flag, the 
DSEE facility reports a thread validation error if a required 
element lacks the specified version. Because you want to 
know if a required element lacks a revOl version, you 
therefore omit the -when_exists flag. 

7. The configuration thread in the edit window should now 
read: 

-for ?*.c -exact -use_options 
[revOl] 

When you've entered the text exactly as shown, click on the 
Confirm button. (Note that the version name revOl 
contains a zero.) The DSEE facility then validates and sets 
the text as your current configuration thread. 

Modifying and Rebuilding a Program 4-33 



[sample] [sample] [sample] 

[rev01] [rev01 ] [rev01] 

order_sub1.c order_sub2.c order _sub3. c 

[sample] I [sample] I [sample] I 
[rev01] I [rev01] I [rev01] 

[3] [3] -.... 
... 

order.sml 

order.h 

sample_library 

my_library 

Figure 4-13. Sample Libraries and Their Element Versions 

Rebuilding the Program 

You now rebuild the revOl version of the program. Because you 
specified exactly no options, the DSEE facility rebuilds all of the 
components rather than reuse the derived objects in the default 
binary pool. 

1. If any icons are selected, deselect them. 

2. Select build from the Bcomp menu. 

3. When the dialog box appears, the text entry box should be 
empty. Deselect the -query option: click on the -query 

4-34 Modifying and Rebuilding a Program 



button, then click on the no queries option from the small 
menu that appears. 

4. Point to the Confirm button and click <M1>. 

Figure 4-14 shows the resulting messages in the DSEE window. 

The versions requested for these elements and files differ 
from the ones requested previously: 

order.h @ smplib 
order_main.c @ smplib 

No working directory copies of reserved elements were 
requested. 

6 builds are required. 

Building "order_main.c " 
Build order_main.C!1-Sep-1987.10:47:52 
Building on apollo //ONYX (E17) 
Building "order_sub1.c " . . . 
Build order_subl.C!1-SEP-1987.10:47:58 
Building on apollo //DIAMOND (12D) 

Completed "order" on apollo //RUBY (766) 
Build order!1-Sep-1987.10:49:08 
All Globals are resolved. 

Build completed. 

6 builds were required. 
all were completed successfully. 

Figure 4-14. Build without -dbs Translation Option 

Modifying and Rebuilding a Program 4-35 



Command Summary 

In this chapter you used several variations of the build command as 
well as two other commands. The following list summarizes the 
commands and variations that you used. We group the commands 
according to the menus from which you can invoke them. 

build Builds the current system model or a system 
component. 

build -bet_only 
Produces a BCT for a build. 

build -query Allows you to identify equivalences or overrides for 
builds. 

Copy Icon Name 
Copies the name of the selected icon so that you can 
paste the name in a dialog box or on the command 
line. 

11~~;I~11 i!~~~B~!i!i!i!i!i!i!i!i~!1 
display all builds 

. Displays builds associated with a build unit. You 
need to select a build unit icon before issuing this 
command. 

compare builds 
Displays the differences between two build maps. 

4-36 Modifying and Rebuilding a Program 



set builder Specifies one or more build servers, the reference 
node, and the desired concurrency. 

Related Information 

This chapter addresses only some of the options available with the 
build command. Discussions of other commands and such concepts 
as equivalences, overrides, and reserved pools also require more 
elaboration. You should therefore consult Using DSEE for complete 
descriptions of the concepts and commands mentioned here before 
building a system of your own. 

We list other commands pertaining to configuration management 
below. We group the commands according to the menus from which 
you can invoke them. 

promote Promotes derived objects stored in a reserved pool 
to a system pool. 

create environment 
Creates a new shell in which the source reference 
environment is set to the element version used in a 
previous build. 

delete build Deletes an existing build. 

Modifying and Rebuilding a Program 4-37 



il"I~~I~~~lilil!lil!I!I~!1 

show builders Shows information about build server settings and 
translation rule execution. 

111~1~~11 
show model Displays information about the current system 

model. 

configure pool Configures a physical binary pool. 

create pool Creates a physical binary pool. 

delete pool Deletes a physical binary pool. 

purge pool Reclaims space in a binary pool by forcing cleanup. 

recover pool Recovers a binary pool. 

show pool Displays information about the current system's 
binary pools. 

create system Creates a system directory. 

delete system Deletes a system directory. 

show system Displays the current system setting. 

For a comprehensive discussion of all DSEE commands, consult the 
DSEE Reference. 

-------88-------

4-38 Modifying and Rebuilding a Program 



Prerequisites to Chapter 5 

Before you perform any of the exercises in this chapter, please make 
sure that you have 

• Set your current working directory to the dsee_examples 
subdirectory as directed in Chapter 2. 

• Built, modified, and rebuilt the order program as directed 
in Chapters 3 and 4. 



Chapter 5 

Managing Releases 

In an earlier chapter, we discussed how the DSEE facility 
automatically purges the contents of binary pools based on the age 
and limit parameters of those pools. Additional factors such as the 
number of people using a particular pool and build frequency make it 
difficult to predict the actual lifespan of a derived object inside a 
binary pool. 

Since your objective in developing, testing, and modifying a program 
is to release it eventually, you need the ability to move the executable 
version of a finished program (that is, one or more derived objects in 
a binary pool) to a stable location. In the DSEE facility, releasing a 
program involves copying selected derived objects and their BeTs 
from a binary pool to a release directory with the create release 
command. 

Creating a Release 

The create release command safeguards all or part of a previously 
built program. When you issue the command, the DSEE facility 

• Declares the specified build of the program or its 
subcomponents to be released and assigns a name to the 
release 

Managing Releases 5-1 



• Creates a release directory 

• Copies the release's derived objects and BCTs to the release 
directory 

• Creates a user-readable build map for each derived object 
in the release 

To create a release using your last build session in Chapter 4, perform 
the following steps: 

1. Select create release from the Release menu. 

2. The OSEE environment displays a dialog box. In the top 
text entry box you need to identify the build session that 
generated the derived objects and BCTs you want to 
release. Specify the full build name for your last build 
session in Chapter 4. Type 

order! 

3. You also need to specify the name of the release and 
pathname of the release directory. Click on the text entry 
box next to the words "release directory pathname," then 
type 

This tells the OSEE facility to create the release directory 
order_rls in your working directory. 

4. The button next to the -export option is selected by 
default. The -export option identifies the derived objects 
and BCTs you want to release. 

Click on the text entry box for the -export option, then 
type 

?* 

This tells the OSEE facility to copy all of the derived objects 
and BCTs generated during the build (indicated by the 
wildcards ?*) into the release directory. Alternatively, you 
could have specified a list or file of build unit specifiers 
representing the derived objects and BCTs generated by 
those build units. 

5-2 Managing Releases 



Identifying derived objects and BCTs by their 
corresponding build units in the system model simplifies the 
identification process. When you use a build unit specifier, 
the DSEE facility automatically knows that you mean the 
derived objects and BCT generated by building that build 
unit. 

5. Point to the Confirm button and click <M 1>. 

6. The DSEE facility displays another dialog box, seeds it with 
creation information such as the date and time, and 
requests a description of the release. Enter a suitable 
comment (for example, "alpha test release of ORDER") 
and click on the Confirm button. 

Figure 5-1 shows part of the DSEE facility's response to the create 
release command. 

create release order_rls -from order! -export 
Exporting component "order!1-Sep-1987.10:49:08 

"// ... /order rls/exports/order/order" copied. 
"// ... /order:=rls/exports/order/order.bct" copied. 
"// ... /order_rls/exports/order/order.bld" copied. 

Exporting component 
"order/order main.c!1-Sep-1987.10:47:52" 

"// ... /order ris/exports/order main.c/order main.bin" 
copied. - - -

"// ... /order rls/exports/order main.c/order main.bct" 
copied. - - -

"// ... /order rls/exports/order main.c/order main.bld" 
copied. - - -

Figure 5-1. create release Command 

As illustrated in Figure 5-2, the DSEE facility then creates the 
release directory order_rls and a subdirectory named exports. 
Inside exports, the DSEE facility also creates one directory for each 
build unit specified in the -export clause of the create release 
command (your command string used ?* to signify all build units). 

Managing Releases 5-3 



exports 

order _sub4. bin 

order_sub4.bet 

order_sub4. bid 

order 

order.bet 

order.bld 

Figure 5-2. Structure oj Release Directory order_rls 

To each build unit's directory, the DSEE facility then copies the 
corresponding derived objects, BCT, and user-readable build map. 
Each item copied is assigned the name of the build unit and an 
extension. If the name of the build unit already ends with a file 
extension, the DSEE facility strips it off before adding the new 
extension. The DSEE facility assigns the. bet extension to BCTs, the 
. bId extension to user-readable build maps, and whatever 
extensions apply for the derived objects (.bin, .doc, .Ipt, .Ist, .txt, 
etc.). 

5-4 Managing Releases 



Among the subdirectories of exports shown in Figure 5-2 is one 
named order. This directory corresponds to the build unit order 
(the Model block in the system model order_smI) and therefore 
contains the executable version of the program, plus the associated 
BCT and user-readable build map. Thus, the pathname of the 
executable version of order in your release directory is 
order_rIs/exports/order/order. 

At this point, you may wish to examine the user-readable build maps 
in your release directory. To do so, use the Edit File command or 
invoke an editor outside the DSEE facility, and specify an 
appropriate pathname. (For example, specifying the pathname 
order_rIs/exports/order/order. bId will display the build map for 
the entire program.) Each component's build map contains 
information such as the component's full build name, the system 
model setting at the time of the build, the build command line, and 
the applicable translation rule. 

Most of the DSEE commands that require full build names (such as 
the examine build and compare builds commands) treat a release 
as any other build. To construct the full build name of a released 
build, specify the appropriate build unit specifier, an exclamation 
point (I), and the pathname of the release directory (for example, 
order!//Iush/libby/dsee_examples/order_rls). You can also use a 
released build as a build-ID-based rule in a configuration thread. 

Command Summary 

In this chapter, we have discussed the most commonly used form of 
the create release command. The command also has options for 
saving only BCTs and saving the source and/or tool dependencies of 
a specific build. 

create release Creates a release area for built system components. 

Managing Releases 5-5 



Related Information 

Other commands pertaining to release management are listed below. 
For details of all DSEE commands, consult the DSEE Reference. 

delete release Deletes a release. 

edit release Adds to an existing release. 

examine release 
Displays information about a release. 

recover releases 
Updates release area information. 

show releases Lists releases of the current system. 

-------88-------

5-6 Managing Releases 



Prerequisites of Chapter 6 

Before you perform any of the exercises in this chapter, please make 
sure that you have 

• Set your current working directory to the dsee_examples 
subdirectory as directed in Chapter 2. 



Chapter 6 

Managing a Project 

Taking software from implementation to release involves many steps, 
as we've seen in the previous chapters. Some, but not all, of these 
steps involve changes to DSEE elements. Each of these events is 
recorded in the history database of the element's library. 

The DSEE facility provides a mechanism that helps you organize and 
record all the steps involved in a process. This mechanism, known as 
the task manager, lets you define multi-step processes, known as 
tasks. Tasks act as both "to do" lists and as records of things that 
ha ve been done . You can assign and organize tasks on lists called 
tasklists. 

Another aspect of the DSEE facility that aids project management is 
the monitor manager. Using the monitor manager, you can monitor 
one or more elements in a DSEE library. When someone creates a 
new version of a monitored element, or renames or deletes a 
monitored element, your monitor is activated. When activated, a 
monitor can create a new task and add it to tasklists. A monitor can 
also execute shell commands; for example, it can send mail notifying 
team members of a change to an element. 

The commands discussed in this chapter are: 

create monitor 

create task 

Managing a Project 6-1 



delete monitor 

edit task 

examine task 

examine tlist 

set tlist 

Before you begin, we suggest that you cut all icons from your icon 
area other than the library icons and the directory icon. You do not 
need the other icons to perform the exercises in this chapter. 

Using Tasks and Tasklists 

The create task command enables you to create a task. A task is an 
object that describes the steps required to accomplish some specific 
function, such as fixing a bug in a program or adding a new module. 
When you issue a create task command, the OSEE facility stores 
your new task in your current library. 

Your current task setting is part of your working context, like your 
current system and current library settings. The create task 
command will set your current task, if you wish. 

A task has three parts: 

• A title (for example, "Fix bug reported in User Report 
99"). 

• A list of active items (that is, a "to do" list, or the steps 
required to accomplish the task that have yet to be 
executed). 

• A transcript, or list of completed items. This list contains 
items moved from the list of active items once they've been 
executed. 

The task transcript also contains element change records, 
which the OSEE facility adds automatically. These element 
change records describe certain OSEE procedures 
performed while the task is set as the current task. 

6-2 Managing a Project 



These three parts of a task identify the key advantages of tasks. The 
title allows you to identify the goal of your work (for example, "Get 
new product ready for shipment"). The list of active items lets you 
plan your work. The transcript lets you record events related to your 
work. 

Tasks are organized on tasklists. You can use a tasklist to identify all 
the tasks related to one person, one project, one group of people, 
one deadline, etc. A task can be listed on any number of tasklists. 

Like your current task, your current tasklist is part of your working 
context. More than one person can share the same current task or 
current tasklist setting at one time. 

You can create a tasklist with the create tlist command. In addition, 
the DSEE facility automatically creates three types of tasklists: one 
personal tasklist for each user, one active tasklist for each library, 
and one master tasklist for each library. The library tasklists are 
generally used for record-keeping. 

Your personal tasklist serves as a list of all the tasks you personally 
have to perform, so you will probably use it more often than any 
other type of tasklist. You refer to your personal tasklist with the 
syntax "Auserid" (for example, "libby). 

Creating a Task 

You generate the parts of tasks with the DSEE task editor, a 
menu-based facility that is tailored for use with tasks. You can 
invoke the task editor as part of the create task procedure. 

Here is a hypothetical situation that will guide you through creating 
and editing a task. 

Now that you've learned how to use the DSEE facility to manage 
sources and build systems, suppose that your manager asks you to 
write up a document telling other new people how to use the DSEE 
facility. Your manager wants this document to be the first in a group 
of documents on project procedures and protocol. 

Managing a Project 6-3 



Create a task that describes the activities involved in writing up this 
new documentation. 

1. Select create task from the Task menu. 

2. Click on the button next to the -title option. 

3. In the text entry box next to "task title text:" type 

Document DSEE learning procedure. 

4. Point to the Confirm button and click <M 1>. 

5. In the transcript area, the OSEE facility tells you it has 
stored the task and added it to your personal tasklist. The 
OSEE facility also displays a query box that asks whether 
you want to set your new task as your current task. 

Point to the Yes button and click <M1>. The name of the 
new task is then added to the context banner area. 

6. Next, the OSEE facility displays a query box that asks 
whether you want to edit the task. Point to the Yes button 
and click <Ml>. The task editor takes control of the OSEE 
window and displays the contents of the task. 

Figure 6-1 shows the process of creating a task. 

6-4 Managing a Project 



System: Illush/llbby/dsee_exampies/order_sys 
Model: order.sml[2] @ IIlush/libby/dsee_examples/sample_library' 
Library: Illush/libby/dsee_examples/sample_library 
Task: Document OSEE learning procedure. 
Directory: Illush/ilb dsee_exam s 

/ /Iush/libby 
/dsee_examples 
/my_library 

Editing a Task 

~~~~~~~~~~~~~ 

Figure 6-1. Creating a Task

As we mentioned above, the task editor is menu-based and tailored
for use with tasks. It is composed of three main parts, as shown in
Figure 6-2.

Managing a Project 6-5

title area --...,

task area

Figure 6-2. Task Editor

The title area displays the task's title, the date and time the task was
created, and the task's creator. So far, these are the entire contents
of the task.

The task area displays a list of active items and completed items.
You will add items to the task area below.

The menu bar offers four pull-down menus, two of which are
disabled (as indicated by the faded lettering of the Active and
Completed menu titles). You must select an active item in the task
area to use the Active menu or a completed item to use the
Completed menu.

The steps required to document the DSEE learning procedure are
the steps that should appear in the task's active items list. The first

6-6 Managing a Project

entry on your list of active items should be the first step that you need
to take to achieve the goal of the task. In this example, the first step
that you'll need to take is to create the new library that will hold the
project's process documentation.

To create an active item, perform the following steps:

1. Select enter new item from the Edit menu.

2. The task editor displays a dialog box that asks you to type in
the text of the new active item. Type

Create library to hold project procedure documents.

3. Point to the Confirm button and click <M1>. The task
editor places your active item in the task.

You can also create an active item using the Active menu.

1. Point to the text of the active item you just created and click
<M 1>. The task editor highlights the active item and
enables the Active menu.

2. Select enter new item from the Active menu.

3. The task editor displays a dialog box that asks you to type in
the text of the new active item. Type

Create an element in the new library for the DSEE
learning document.

4. Point to the Confirm button and click <M 1>.

The task editor places your new item at the top of the list of active
items. To move it to the bottom, perform the following steps:

1. Point to the text of the first active item on the list and click
<Ml>. The task editor highlights the active item and again
enables the Active menu.

2. Select change priority of item from the Active menu.
(Changing the priority of any active item other than the first
one moves the item to the top of the list. Changing the
priority of the active item at the top of the list moves it to the
bottom.)

Managing a Project 6-7

Now create a list of active items:

3. Add new items to the list and change their priority until your
task looks like the one in Figure 6-3. When you add a new
item, it appears directly above the active item you selected
before adding the item.

ACTIVE ITEMS
o Create library to hold project procedure documents.

o Create an element In the new library for the
OSEE learning document.

o Finish reading "Getting Started with OSEE."

o Talk to other OSEE users on the project.

o Write the learning document.

o Replace the element.

Figure 6-3. Editing a Task

4. Experiment a little by selecting some of the other choices on
the active item menu. When you're done experimenting,
leave your task looking like the one in Figure 6-3.

5. Select exit from the File menu. The task editor writes the
contents of the task out to its storage area. (The abort
selection onthe File menu ends the edit without saving your
changes to the task.)

6-8 Managing a Project

Examining Tasklists

When you issued the create task command above, the OSEE facility
issued a message saying that it had added the task to your personal
tasklist. You should look at your personal tasklist now to see the
result. In order to do so, you must set your personal tasklist as your
current tasklist.

1. Select set tlist from the Tasklist menu.

2. The OSEE facility displays a dialog box. In the text entry
box, type

"userid

where userid is your userid. (The caret (") identifies this as
a personal tasklist, for example, "libby.)

3. Point to the Confirm button and click <M1>.

Now examine your tasklist with the examine tlist command.

1. Select examine tlist from the Tasklist menu.

2. The OSEE facility displays a dialog box. Point to the
Confirm button and click <M1>. (By not specifying a task
list specifier in the text entry box you are indicating that you
want to display all the tasks in the tasklist.)

Figure 6-4 illustrates the results. (Note that your personal tasklist's
name is added to the context banner area.)

Managing a Project 6-9

see_examp r_sys
order.sml[2] @ IIlush/libby/dsee_examples/sample_lIbra
Illush/libby/dsee_examples/sample_"brary
"'libby
Document OSEE learning procedure.

: Illush/llbby/dsee_exampies
~~~~~~~~~~~~~~~~~I 

/ /lush/libby 
/dsee_examples 
/my_library 

/ /lush/libby 
/dsee_examples 
/sample_1 ibrary 

DSEE> set tlist Alibby 
Tasklist set to "Alibby" 

DSEE> examine tlist 

/ /lush/libby 
/dsee_examples 

The following tasks are on the tasklist "Alibby": 
1. Created 3-Dec-1990 11:08 in library 

"//lush/libby/dsee examples/sample library": 
Document DSEE learning procedure. -

Figure 6-4. Examining a Tasklist 

Every task on a tasklist is assigned a number. (In our example, the 
task "Document DSEE learning procedure." is task number 1 on 
your personal tasklist.) Whenever you want to refer to any task other 
than the current task (for example, in commands like delete task), 
you use the task's number on the current tasklist. 

Recording Events in Tasks 

As we mentioned earlier in this chapter, tasks serve as records of 
events completed as well as lists of things to do. The component of a 
task that provides its record-keeping abilities is the task transcript 
(or list of completed items). 

6-10 Managing a Project 



When you looked at the menu of operations to perform on an active 
item, you may have noticed the choice check off item. If you 
selected this choice, the task editor would move the active item into 
the task transcript, marking it as completed. 

Perform the first two steps on the active item list of your current task. 
The first is to create a library to hold all of the documentation on 
project procedures and protocol. 

1. Select create library from the Library menu. 

2. The DSEE facility displays a dialog box. In the text entry 
box, type 

and click on the confirm button. 

3. The DSEE facility displays another dialog box. This one 
asks you to enter the function of the new library. Type 

Documentation library 

4. Point to the Confirm button and click <Ml>. 

Once you've created the library, you can edit the task and move the 
first item on the list of active items to the transcript. Use the edit 
task command to do this. 

1. Select edit task from the Task menu. 

2. The DSEE facility displays a dialog box. In the top text 
entry box, type 

1 

3. Point to the Confirm button and click <M1>. 

(Notice that you can edit the task even though it's not 
stored in the current library. In general, where a task is 
stored has no effect on how you use it.) 

Managing a Project 6-11 



4. When the task editor displays the task, point to the active 
item "Create library to hold project procedure documents" 
and click <M1>. 

5. Select check off item from the Active menu. 

You can also record items in the transcript that have not appeared on 
the list of active items. If, for example, you want to keep a note to 
yourself about a conversation you had with your manager about the 
new project procedure documentation library, you can record it in 
the task transcript. To record an item in the task transcript, you can 
use the Edit menu, or you can use the transcript menu as follows: 

1. Point to the completed item in the task transcript and click 
<M1>. This enables the Completed menu. 

2. Select enter transcript item from the Completed menu. 

3. The DSEE facility displays a dialog box that asks you to 
enter the text of the item. Type in a comment, such as 

Spoke to manager on 3/4. Manager's thoughts on 
project procedure organization are in /update/notes. 

4. Point to the Confirm button and click <M1>. The task 
editor places the new item in the transcript. 

Figure 6-5 illustrates the task at this point. 

5. Select exit from the File menu. 

Tasks are integrated with the history facility. When you create a new 
version of an element, the DSEE facility records the event in the 
transcript of your current task. It also records the name of the 
current task in the history of the element version. This 
cross-reference helps you associate work in progress (in this case, 
version creation) with the tasks that require it. 

6-12 Managing a Project 



ACTIVE ITEMS 
o Create an element in the new library for the 

OSEE learning document. 

o Finish reading "Getting Started with OSEE." 

o Talk to other OSEE users on the project. 

o Write the learning document. 

o Replace the element. 

COMPLETED ITEMS 
x Create library to hold project procedure documents. 

Completed: 4-0ec-1990 13:45 
Completor: Chris Libby on / /LUSH (A01) 

x Spoke to manager on 3/4. Manager's thoughts on 
project procedure organization are in /update/notes. 
Completed: 4-0ec-1990 13: 50 
Completor: Chris Libby on / /LUSH (A01) 

Figure 6-5. Checking off an Active Item 

Your manager now wants you to put the notes on proj ect procedure 
organization into the new library that you created. For this you 
would use the -from option to the create element command. The 
-from option tells the DSEE facility to create your new element using 
the contents of a specified file as the element's first version. 

1. Select create element from the Element menu. 

2. The DSEE facility displays a dialog box. In the top text 
entry box, type 

Managing a Project 6-13 



3. Click on the -from option. In the second text entry box, 
type 

update/notes 

4. Point to the Confirm button and click <M 1>. 

5. The DSEE facility displays another dialog box. This one 
asks you to describe the purpose of the element. Type 

Element to contain manager's notes on project 
procedure organization. 

6. Point to the Confirm button and click <M1>. 

7. When the DSEE facility displays the next dialog box in 
which you are to describe the initial version of the element, 
you'll notice that the dialog box already contains text, as 
shown in Figure 6-6. 

You can edit this text, or you can supplement it with more 
information on the initial version. Because we want to keep 
the information about the current task in the element's 
history, do not change the text the DSEE facility has 
supplied. Click <M 1> on the line below the supplied text 
and type 

Original document from manager. 

8. Point to the Confirm button and click <Ml>. 

As part of the task entitled: 
Document DSEE learning procedure 

Figure 6-6. A Task Is Noted in Element History 

6-14 Managing a Project 



Once you've created the element and the initial version, issue the 
examine task (which displays a task) and show history commands 
to see what has happened. Figure 6-7 contains an example. Notice 
that the task transcript contains a new entry for the first version of the 
new element. This entry includes the comment you provided as well 
as other information about the event. 

cre ele mgr note -from /update/notes 
Element 'igr note" created 

and replaced as part of your current task. 
DSEE> examine task 

Updating task transcripts . . . 
Title: Document DSEE learning procedure. 

Completed Items 

x Replaced mgr_note[l] in library 
"//lush/libby/dsee examples/project doc" 

As part of the task entitled: -
Document DSEE learning procedure. 

Original document from manager 
Completed: 4-Dec-1990 16:07 
Completor: Chris Libby on //LUSH (AD1) 

DSEE> show history mgr_note 
Replace mgr_note[l] 

4-Dec-1990 16:07 Chris Libby at //LUSH 
(chris.none.eng.AD1) 

As part of the task entitled: 
Document DSEE learning procedure. 

Original document from manager. 
Create Element mgr_note 

Figure 6-7. Automatic Cross-Referencing 

Managing a Project 6-15 



Using Monitors 

When you're working on a project with many other people, you can't 
always count on them to let you know when their work may affect 
you. What you can do is use the DSEE monitor mechanism to 
"watch" elements on which your own work depends. When a 
monitored element is renamed, deleted, or given a new version (by a 
replace command), the DSEE facility can let you (or anyone else) 
know of the event. 

When a monitor is activated, it can execute one or more shell 
commands and/or add tasks to tasklists. The benefits of monitors 
that execute shell commands are great. You can have the DSEE 
facility do such things as send mail and copy files automatically 
whenever an element is modified. Monitors that create and add 
tasks to tasklists are also very useful, especially when you consider 
that a change to an element generally means that you should perform 
some task. For example, every time someone changes an include file 
that you use, you should probably investigate the change and 
evaluate its impact on your work. You can create a monitor that 
watches the include file and adds to your tasklist a task with the 
active items "Investigate change" and "Evaluate impact" whenever 
the include file was changed. 

By default, the alarm_server program creates a new window and 
sounds a "beep" whenever a new task is added to your personal 
tasklist. If your personal startup file executes alarm_server every 
time you login, you will always see an alarm window whenever a 
monitor adds a new task to your personal tasklist. 

NOTE: In order for a node to receive alarms from 
the alarm_server program, the Display 
Manager must own the background (root) 
window of the node. 

Creating a Monitor 

A monitor is associated with two libraries: the one that's current 
when the monitor is created, and the one containing the element or 
elements being monitored. The first library is said to own the 
monitor; the second library is said to hold the monitor. 

6-16 Managing a Project 



Because monitors are associated with two libraries, you can monitor 
elements in libraries that belong to other development groups. If, for 
example, your system depends on an include file that is maintained 
by people in another project, you may want to have a monitor on the 
element containing the include file. You would create the monitor 
while one of your own project's libraries was set as the current 
library; this library would be the owner of the monitor. The library in 
which the include file resides would be the holder of the monitor. 
(It's not necessary, though, to have two different libraries. One 
library can both hold and own a monitor.) 

You can create a monitor that watches one or more specific 
elements, or you can create a monitor that watches a group of 
elements whose names match a wildcard. When you create a 
monitor that watches elements whose names match a wildcard, the 
monitor will also watch any new elements added to the library whose 
names match the wildcard. 

You create a monitor with the create monitor command. When you 
create a monitor, the DSEE facility asks you for several pieces of 
information: 

• The purpose of the monitor 

• The tasklists to which new tasks are to be added and/or the 
shell commands to be executed when the monitor is 
activated (known collectively as the activation list) 

• The title of the task to be added to tasklists (if you put any 
tasklists in the activation list) 

If your monitor will create a task, the DSEE facility next asks 
whether you want to edit the task. If you respond by selecting Yes, 
the DSEE facility invokes the DSEE task editor, and you edit the task 
as described earlier in this chapter. (This task is actually a template 
for the tasks that the monitor will create when it is activated. Each 
time the monitor is activated, the DSEE facility uses this template as 
the text of the new task that it adds to the specified tasklists.) 

A monitor that watches the project documentation library you 
created earlier in this chapter would help you keep abreast of any 
changes to project procedures and protocol. You can create a 
monitor that watches all of the elements (the present ones and any 

Managing a Project 6-17 



created in the future) in this new library by issuing the create 
monitor command as follows: 

1. Select create monitor from the Monitor menu. 

2. The OSEE facility displays a dialog box. By default, the 
buttons next to monitor is associated with the current 
library and for anyone are selected. In the top text entry 
box type 

?* 

3. Point to the Confirm button and click <Ml>. 

4. The OSEE facility displays another dialog box. This one 
asks you to enter the purpose of the monitor. Type 

This monitor watches all the elements in the project 
documentation library and lets me and my manager 
know when one is added, changed, or deleted. 

5. Point to the Confirm button and click <Ml>. 

6. The next dialog box asks you to enter an activation list. 
Figure 6-8 shows an example of this step in the monitor 
creation process. As shown in the figure, the OSEE facility 
helps you out by telling you (in the transcript area) the 
format of entries in the activation list. 

In the example, the monitor being created will do two things 
when activated: it will create a task (using the template 
defined a little later in the monitor creation process) and 
add it to the tasklist "libby, and it will copy the most recent 
version of the element being added, changed, or deleted to 
the directory //lush/libby. 

Notice the .. dsee_element in the dialog box in the figure. 
This is called an activation string. When someone activates 
the monitor, the OSEE facility substitutes the accurate value 
for any activation strings in the monitor. In this case, the 
OSEE facility substitutes the name of the element being 
created, revised, or deleted when the monitor is activated. 
(Other activation strings are explained in the description of 
the create monitor command in the DSEE Reference.) 

6-18 Managing a Project I 



System: Illush/libby/dsee_exampies/order_sys 
Model: order.sml[2] @ IJlush/libby/dsee_examples/sample_1 
Library: Illush/llbby/dsee_examples/sample_library 

: Tasklist: "'libby 

//lush/project_doc/'dsee_element //lush/libby 

DSEE> create monitor ?* 
A monitor's Activation List is composed of one or more 

of the following entry types: 
Ausername(a personal task list which will receive 

a copy of the Monitor Task) 
tasklist~athname (another task list which will 

receive a copy of the Monitor Task) 
activation command (a shell command beginning with 

~$" or "&" and optionally containing DSEE 
substitution strings) 

Figure 6-8. A Monitor's Activation List 

Modify the activation list items shown in Figure 6-8 for 
your own system. Type in the name of your own personal 
tasklist ('"'userid). You can also enter a UNIX shell /bin/cp 
command like the one in the example, or an Aegis 
/ com/ cpr command to copy the most recent version of the 
element into your home directory. Give the full pathname 
of the project_doc library as the first argument to the cp 

Managing a Project 6-19 



command, and give the pathname of your home directory 
as the second argument. Precede the cp command with an 
ampersand, as in the example. (The ampersand (&) causes 
the cp command to be executed as a background process 
rather than as a foreground process.) 

7. When you've finished your activation list, point to the 
Confirm button and click <Ml>. 

8. The next dialog box asks you to supply a title for the task 
that will be added to your personal tasklist when the 
monitor is activated. Type 

Investigate change to element 

9. Point to the Confirm button and click <M1>. 

10. Finally, the DSEE facility displays a query box that asks you 
whether you want to edit the new task. Selecting Yes 
invokes the task editor; you can enter anything in the task 
that you want. However, you needn't edit the task at all. In 
that case, the new task added to your tasklist each time the 
monitor is activated will contain only a title. 

Activating a Monitor 

There are two aspects to activating a monitor: what the person 
activating the monitor sees, and what operations the monitor 
performs when it is activated. Because you will be activating a 
monitor that adds a task to your personal tasklist, you will see both 
aspects of the process. 

Any DSEE command that causes a change in an element (that is, any 
command that creates a new element version, renames an element, 
or deletes an element) can activate a monitor. To make sure that you 
know about a monitor before you create a new version of an element, 
commands that activate monitors tell you if you will activate a 
monitor. In addition, commands that prepare you to create new 
versions of elements (such as reserve, which would be followed by 
replace) tell you about any monitors on target elements. 

6-20 Managing a Project 



If you want an automatic alarm window to appear every time a new 
task is added to your personal tasklist, make sure that your personal 
startup file contains a cpo command to execute the alarm_server. 
The command can have one or more options; however, at the 
minimum it should look like this: 

cpo /sys/alarm/alarm_server 

NOTE: In order for a node to receive alarms from 
the alarm_server program, the Display 
Manager must own the background (root) 
window of the node. 

Once alarm_server has been notified about a new task on your 
personal tasklist, it will continue to notify you of that new task by 
popping up an alarm window each time you login until you issue the 
examine tlist command and examine your personal tasklist. 

To activate your monitor, reserve the element mgr_note in order to 
add some information about the new library you created. Figure 6-9 
illustrates the DSEE responses to the reserve command. 

1. Point to the branch icon for mgr_note and click <M1>. 

2. Select reserve from the Branch menu. 

3. The DSEE facility displays a dialog box seeded with 
mgr_note. Point to the Confirm button and click <M1>. 

4. The DSEE facility displays another dialog box. This one 
asks you to comment on the reservation. Append the 
following comment to the text in the dialog box: 

Adding library information 

5. Point to the Confirm button and click <M 1>. 

Managing a Project 6-21 



OSEE> reserve mgr_note 
A REPLACE of the element will activate the following 

monitors: 
Monitor on 7* owned by the current library 
created 5-0ec-1990 11:10 Chris Libby at //LUSH 

(chris.none.eng.A01) 
This monitor watches all the elements in the 
project documentation library and lets me 
know when one is added, changed, or deleted. 

Activation list: 
A libby 
& /bin/cp //lush/project_doc/'dsee_element //lush/libby 

Monitor Task: 
Investigate change to element 

"mgr_note" has been reserved and generation 

Figure 6-9. Activating a Monitor 

Edit the copy of the element in your working directory to reflect the 
creation of the new library for project procedure documents. 

Replace the element mgr_Dote. 

1. Select replace from the Branch menu. 

2. The DSEE facility displays a dialog box seeded with 
mgr_Dote. Select the -DC option. 

3. Point to the Confirm button and click <M1>. 

When you replace the element, the DSEE facility tells you (in the 
transcript area) that it is activating the monitor. 

Some time soon after you've replaced the element, alarm_server 
will place a window on your screen. If you are running the Display 
Manager, the window will look like the one shown in Figure 6-10. 

6-22 Managing a Project 



DSEE TASKLIST ALARM 
1 new task on tasklist: 

"libby 
*** Pad Closed *** 

Figure 6-10. An Alarm Window 

You can scroll this window to view its full contents, which include 
information about the operation that activated the monitor. You can 
also see this same information by examining your tasklist, as 
illustrated in Figure 6-11. 

examine 
The following tasks are on the tasklist "-libby": 

2: created 5-Dec-1990 14:45 in library 
"//lush/libby/dsee examples/project doc": 
Investigate change-to element -

Monitor 1* owned by library 
"//lush/libby/dsee examples/project doc" 

Replace mgr_note[2] in library -
"//lush/libby/dsee examples/project doc" 

5-Dec-1990 14:45-chris Libby at //LUSH 
(chris.none.eng.AD1) 

As part of the task entitled: 
Document DSEE learning procedure. 

Adding library information 

1. Created 4-Dec-1990 11:08 in library 
"/ !lush/libby /dsee_examples/sample_library": 
Document DSEE learning procedure. 

Figure 6-11. A Tasklist with a New Task 

Managing a Project 6-23 



Deleting a Monitor 

If you determine that a monitor is no longer useful, you can delete it. 
The delete monitor command deletes an existing monitor. 

In order to identify the monitor you want to delete, you must use 
exactly the same wildcard or element name that you used when you 
created the monitor. 

1. Select delete monitor from the Monitor menu. 

2. The DSEE facility displays a dialog box. In the top text 
entry box, type 

?* 

This is the same wildcard you used when you issued the 
create monitor command. 

3. Point to the Confirm button and click <Ml>. 

4. The transcript area displays the creation comments, 
activation list, and (if applicable) the title of the monitor 
task. Also, the DSEE facility displays a query box that asks 
if you want to delete the monitor. Point to the Yes button 
and click <Ml>. 

Command Summary 

This chapter presents only part of the DSEE project management 
facility. Here are the commands that we presented in this chapter. 
You can obtain more information about them from the DSEE 
Reference. 

create monitor 

delete monitor 

Creates a monitor and sets it on one or more 
elements. 

Deletes a monitor previously set on one or more 
elements. 

6-24 Managing a Project 

I 

I 



I~~~~II 
create task Creates a new task. 

edit task Invokes the DSEE task editor for editing a task. 

examine task Displays the current state of a task. 

examine tlist Displays the current state of a tasklist. 

set tlist Sets or clears the current tasklist setting. 

Related Information 

There are many other DSEE commands that deal with tasks, 
tasklists, and monitors. Brief descriptions follow. More information 
is available in the DSEE Reference. 

create form Creates a form. 

delete form Deletes a form. 

edit form Invokes the DSEE task editor to edit a form. 

examine form Displays the current state of a form. 

Managing a Project 6-25 



1!~~~11 

edit monitor Invokes the DSEE task editor to edit one or more 
monitor task templates. 

recover monitor 

show monitors 

add task 

delete task 

set task 

show task 

tag task 

Deletes a monitor held by the current library when it 
cannot be deleted normally with the delete monitor 
command. 

If invoked with the held option, displays monitors 
that are currently set to watch elements in the 
current library. If invoked with the owned option, 
displays monitors that were created in the current 
library. 

Adds a task reference to a tasklist. 

Deletes a task from a tasklist. 

Sets or clears the current task setting. 

Displays information about the current task. 

Tags a version of an element with the current task, 
or with no task. 

create tlist Creates a new tasklist. 

delete tlist Deletes a tasklist. 

protect tlist Sets or shows protection attributes for a tasklist. 

recover tlist Updates the task references on a tasklist. 

6-26 Managing a Project 



show tUst Displays the name of the current tasklist. 

watch tUst Specifies tasklists to be watched by alarm_server. 

-------88-------

Managing a Project 6-27 



; 
; 

I 



Glossary 

access rights 

A user's authority to examine and/or modify DSEE libraries and 
tasklists. See protection attributes. 

activation command string 

A generic argument that can be used in an executable entry in a 
monitor's activation list. Activation command strings allow you to 
compose shell commands that manipulate DSEE objects, and to 
specify a particular object as a variable to be resolved at the time of 
execution. 

activation list 

A list of the tasklists and/or executable shell commands associated 
with a monitor. See also task. 

active item 

active task 

A "to-do" step within a task. 

A task that appears on one or more personal or library tasklists. 
An active task usually has at least one active item. 

Glossary G L-l 



administrator 

age limit 

The highest user class in the DSEE protection hierarchy. An 
administrator has full access to DSEE objects. Administrators can 
view a library, modify and delete its contents, delete the library, 
and change its protection. Also refers to a person who assumes the 
tasks of maintaining DSEE systems. Typically, an administrator 
creates and maintains libraries and system models, and may also 
perform other tasks to coordinate DSEE projects. 

The amount of time, in hours, that a particular set of build results 
must sit in a pool before it becomes a candidate for deletion. The 
create pool and configure pool commands allow you to define 
this parameter. 

aggregate block 

A system model block that does not represent any source 
component. Typically, an aggregate block contains subordinate 
blocks. An aggregate block starts with the keyword aggregate. 

alarm_server 

A Domain/OS system server process that monitors a variety of 
system conditions, including additions to DSEE tasklists. In 
response to one of these conditions, alarm_server displays an 
alarm window. 

alarm window 

alias 

A window, created by alarm_server, that displays information 
about the event that triggered alarm_server. 

In a system model, a substitute name for a text string. The alias 
declaration defines aliases. 

alternate line of descent 

See branch. 

GL-2 Glossary 



base version 

Bcomp 

BCT 

An element version that is the youngest common ancestor of two 
versions being merged into a line of descent. The DSEE facility 
uses the base version to help resolve differences between the two 
objects being merged. 

See buildable component. 

See bound configuration thread. 

binary pool 

block 

block ID 

See pool. 

A group of system model declarations that describes an element, 
external, aggregate, or model. The hierarchically arranged units 
of a system model. A block begins with the keyword element, 
external, aggregate, or model. 

The name by which blocks refer to another block. The name of a 
block. 

bound configuration thread 

branch 

An output of a build that describes the sources that were used to 
perform the build. A bound configuration thread states which 
element versions and which translator options were used to build a 
component. The DSEE facility produces a bound configuration 
thread for each component it builds. Also called a BCT. 

A line of descent other than an element's main line of descent. 
Also called alternate line of descent. 

Glossary GL-3 



branch name 

The name you assign to a branch. You name a branch when you 
create it with the create branch command; you can change its 
name with the renam' ,ranch command. 

branch path 

The path to a branch, used as an argument in some DSEE 
commands. Much like a file's pathname, a branch path describes 
the path to a branch by listing all the branches that lead to that 
branch. Branch names in a branch path are separated by slashes. 
For example, Ibrllbr2/br3 is the path to branch br3. 

browse box 

build 

build 

build map 

A dialog box displayed by the Browse command which presents a 
list of objects that you can display as icons on the desktop. 

To translate a component according to the translation rules 
specified in the system model and using the versions and options 
specified in the configuration thread. A build always produces a 
bound configuration thread; it may produce one or more derived 
objects, as well. 

The act of building a component. ("I'm about to initiate a 
build.") Also, an occurrence of building. ("What were the results 
of that build?") 

A user-readable form of a BeT. The show builds command 
displays build map headers. 

build name 

See full build name. 

build process 

The process in which a build begins executing. This process may 
reside on the command node or on a helper node. 

G L-4 Glossary 



build results 

The BeT and derived objects, if any, produced by a build. 

build specifier 

build unit 

In a configuration thread, a descriptor that identifies a specific 
build. 

See buildable component. 

build unit specifier 

The ID of a system model block representing a build unit. 

build version 

The date and time of a build as displayed by the show builds 
command. 

buildable component 

builder 

An element, aggregate, external, or model that's defined in a 
system model and has a translation rule (defined by the keywords 
translate or nil_translation). Anything that can legally serve as 
an argument to the build command. Also called Bcomp and build 
unit. 

A computer on which a translation executes. 

builder list 

A file named .dsee_builder_list, located in your working 
directory, your home directory, your -/user_data directory, or the 
Isys/dsee/dsee_config directory. The builder list identifies the 
candidate builders and other information for each host type. Also, 
a list of candidate builders specified by the set builders command. 

Cancel button 

A DSEE desktop button which closes a dialog box without 
executing a command. 

Glossary GL-5 



command node 

comment 

The computer on which the DSEE software is running. 

A user-supplied text string describing an object (such as a library) 
or event (such as a build). By default, the DSEE facility asks you 
for a comment whenever you create or change a DSEE object. 
Comments become part of the history that the DSEE facility 
records for each object. 

completed item 

See transcript item. 

component 

An element, aggregate, external, or model defined by a block in a 
system model; any element, file. or tool referenced as a 
dependency in a system model. 

configuration manager 

The part of the DSEE facility that allows you to build and maintain 
versions of entire systems. The configuration manager enables 
different users to build systems simultaneously, share common 
object code, and rebuild systems. 

configuration thread 

A list of rules that identify the element versions and translator 
options to be used during builds. 

Confirm button 

context 

A DSEE desktop button which accepts the information in a dialog 
box and proceeds with the command. 

Within a system model. the objects visible from a particular block. 

GL-6 Glossary 



context banner 

A banner at the top of the DSEE desktop interface or Display 
Manager interface that indicates a current setting, such as the 
current library, system model, or directory. 

current configuration thread 

The configuration thread associated at present with the current 
system. When you build a component, the DSEE facility uses the 
current configuration thread to determine which element versions 
and which translator options to use. The set thread command sets 
a current configuration thread. 

current library 

The library in which a user is currently working. The set library 
command sets a current library. 

current model thread 

The model thread associated at present with the current system. 
When you set a current system model, the DSEE facility uses the 
current model thread to determine which versions of model 
fragments to use in composing the system model. The set thread 
command sets a current model. See also model thread. 

current system 

The system directory that contains internal information about the 
system on which a user is currently working. The set system 
command sets the current system. 

current system model 

The system model associated at present with the current system. 
You can build a component that is defined in the current system. 
The set model command sets the current system model. 

curren t task 

The task on which a user is currently working. When you replace a 
line of descent, the DSEE facility records that activity in the 
current task. The set task command sets the current task. 

Glossary GL-7 



current tasklist 

The tasklist from which a user is currently working. The set tlist 
command sets the current tasklist. 

default declaration 

A system model declaration that pertains to multiple components. 
Default declarations are identified by the keyword default. 

dependency 

A source file, build result, or translator required for building a 
system model component. See direct dependency, primary source 
dependency, result dependency, source dependency, tools 
dependency. 

derived object 

An object produced by a translation. Part of a build result. 

desired BeT 

desktop 

dialog box 

The BCT required to build a particular component. The DSEE 
facility determines a component's desired BCT based on the 
component's description in the system model and the version 
information in the current configuration thread. 

A DSEE interface based on the X Window System and OSF Motif. 
The desktop is the default DSEE interface. 

A window displayed by the DSEE desktop in which users select 
command options and enter command arguments. The DSEE 
desktop displays a dialog box in response to the selection of a 
command. 

direct dependency 

The items explicitly listed as a component's dependencies: those 
listed in its depends_source, depends_tools, and/or 
depends_result declarations, and/or its primary source 
dependency. The DSEE facility uses direct dependencies to 

GL-8 Glossary 



determine whether to build a component. See result dependency, 
source dependency, tools dependency. 

Dismiss button 

DSEE 

element 

A DSEE desktop button which closes windows that simply display 
text. 

Domain Software Engineering Environment. 

A user-defined, versioned file that resides in a DSEE library. 

element block 

A system model block, identified by the element keyword, that 
represents an element in a DSEE library. The element is known as 
the block's primary source dependency. 

element change record 

A notice of a change to a library element. The DSEE facility places 
element change records in the transcript of the current task. An 
element change record notes the operation performed on the 
element, who performed it, and when. Any comments written by 
the user describing the operation are also included. 

element version 

See version. 

equivalence 

export 

external 

An eXIstmg derived object that is interchangeable with the 
not-yet-created derived object described by the desired BeT. 
You can declare equivalences when you issue the build command. 

To copy derived objects from a pool to a stable directory. 

A system model language declaration that defines an external 
block. 

Glossary G L-9 



external block 

filename 

form 

A system model block, identified by the external keyword, that 
represents an ordinary file (not a DSEE element). The file is 
known as the block's primary source dependency. 

The name of a file, without any directory specification. For 
example, the filename of the file / /philadelphia/joe/myfile is 
myfile. Also leafname. 

A user-defined description of a standard procedure. A form can 
be used as a template for a task with the -from option to the 
create task command. 

full build name 

history 

hold 

host type 

The name of an existing build. The name consists of two parts, 
separated by an exclamation point (!). The left side of the 
exclamation point identifies the component that was built. The 
right side identifies either the date and time when the build was 
performed, or the release directory in which the build is stored. 
The show builds command displays the full build names of all 
builds whose results are currently stored in pools. 

The element change records and comments associated with a 
library, its elements, and their branches. The show history 
command displays the history of a library or of one or more 
elements. 

To contain the elements watched by a monitor. ("The color_lib 
library holds the monitor that watches blue, green, and red.") 

A class of computer on which a buildable component is to be built. 
By default, this host type is apollo, but you can specify, in your 
system model, other host types for buildable components. Host 
types are defined in the file, /sys/dsee/dsee_config/hosts. 

GL-IO Glossary I 



icon 

icon area 

leafname 

library 

limit 

A graphic symbol that represents a DSEE object. The DSEE 
desktop interface can display icons to represent individual 
libraries, elements, versions, lines of descent, buildable 
components, build results, files, pools, and translators. 

An area of the DSEE desktop that displays icons for different 
kinds of objects, such as libraries and elements. 

The name of a file or element, without any directory or library 
specification. For example, the leafname of the file 
/ /philadelphia/joe/myfile is myfile. Also called filename. 

A directory that you instruct the DSEE facility to create. A library 
contains elements, tasks, and tasklists. 

The maximum number of build results of a single component that 
a pool can contain before the least recently used versions become 
candidates for deletion. The create pool and configure pool 
commands allow you to define this parameter. 

line of descent 

<Ml> 

<M2> 

<M3> 

A path of development of an element. Every element has a main 
line of descent. You can create alternate lines of descent, known 
as branches. 

The leftmost mouse button. 

The middle mouse button. 

The rightmost mouse button. 

Glossary GL-ll 



main line of descent 

The central path of development of an element. It begins with the 
initial version of the element and continues up through the most 
recent version of the element. It does not include any branches 
that may exist off the main line of descent. 

master tasklist 

member 

merge 

merge file 

A tasklist that references all current and deleted tasks in a library. 
The DSEE facility creates a master tasklist for a library when it 
creates the library. A master tasklist's name is the library's 
pathname followed by -master. 

Second highest ranking user class in the DSEE protection 
hierarchy. In general, a member can view and modify elements, 
tasks, tasklists, and monitors. 

To interleave the text of two versions, the text of a version and 
another file, or the text of two files. The result is a file called the 
merge file. The merge -fetch command performs this type of 
merge. Also, to interleave the text of a version on one line of 
descent with the most recent version on another line of descent (of 
the same element). The result is a file called the merge file, and 
the reservation of the second line of descent. Replacing the line of 
descent makes the merger file the latest version on that line of 
descent. The merge -reserve command performs this type of 
merge. 

Also, the act of merging. 

The file created by a merge. 

model thread 

A list of rules that identify the versions of model fragments to use 
for the system model, and the conditional processing variables to 
define for the system model. See also current model thread. 

GL-12 Glossary 

I 

I 

I 

I 



monitor 

A flag set on an element that directs the DSEE facility to watch 
that element and add a task to a tasklist and/or execute shell 
commands when that element is changed. The create monitor 
command sets the monitor flag on one or more elements. 

noncritical translator option 

non-user 

obsolete 

override 

own 

An option to a translation rule that does not become a key 
attribute of the resulting derived object. The presence or absence 
of noncritical options does not affect whether the DSEE facility 
considers an existing derived object to be a suitable match for the 
desired derived object. 

The lowest ranking user class in the DSEE protection hierarchy. A 
non-user has no access to DSEE objects. A person is a non-user if 
his or her Subject IDentifer (SID) is omitted from a library or 
tasklist's protection attributes or explicitly paired with the 
non-user class (an explicit non-user). 

Applied to a line of descent, closed to the addition of any new 
versions. The obsolete command makes a line of descent 
obsolete. The cancel obsolete command reactivates an obsolete 
line of descent. 

An identifier used with the build command that specifies that an 
existing derived object is interchangeable with the not-yet-created 
derived object described by the desired BeT. An override differs 
from an equivalence in that the override is in effect only during a 
specific build. An equivalence is in effect indefinitely. 

To have been the current library when a monitor was created. 
("The color_lib library holds the monitor that watches blue, 
green, and red, but the draw_lib library owns the monitor.") 

Glossary GL-13 



personal tasklist 

pool 

A tasklist that the OSEE facility creates for every new user in the 
user_data subdirectory of the user's home directory. The name 
of your personal tasklist is your account name preceded by a caret 
in the form "name. This tasklist generally contains references to 
all of your assigned tasks. 

A storage area for derived objects and BeTs. The OSEE facility 
automatically creates a default pool for each system. You can 
create alternate pools with the create pool command. 

pop-up menu 

A menu selected by pointing the cursor in the icon area of the 
OSEE desktop and pressing or clicking <M3>. 

primary source dependency 

promote 

The element, file, or model represented by an element block, 
external block, or model block in a system model. (Aggregate 
blocks don't have primary source dependencies.) A block's 
primary source dependency is considered one of its direct source 
dependencies, even though it isn't explicitly listed in the block's 
depends_source statement. 

To make the direct dependencies of one system model component 
become direct dependencies of any other component that 
references the first component. The system model 
promote_depends declaration instructs the OSEE facility to 
promote a component's dependencies. Also, to move a derived 
object from a reserved pool to a user-defined pool or to a default 
pool. The OSEE facility automatically promotes a component's 
derived objects when all of the component's element 
dependencies are replaced. You can also use the promote 
command to promote derived objects explicitly. 

GL-14 Glossary 



protection attributes 

DSEE protection rights for libraries and tasklists. Each protection 
attribute consists of a DSEE user class (administrator, member, 
reader, non-user) and a corresponding Subject IDentifier (SID). 

pull-down menu 

reader 

A menu selected by pointing the cursor at a menu title in the menu 
bar of the DSEE desktop and pressing or clicking <Ml>. 

Third highest ranking user class in the DSEE protection hierarchy. 
A reader can read elements and the contents of tasklists, but 
cannot modify them. 

reference node 

The computer intended as the single reference point for all relative 
pathnames interpreted by a single host type. See reference path. 

reference path 

release 

The directory, on the reference node, intended as the single 
reference point for all relative pathnames interpreted by a single 
host type. You define reference paths for each host type in the 
builder list. 

To copy derived objects and BeTs from pools to release areas. 
The create release and edit release commands release build 
results. 

Also, a set of build results that have been released. 

release area 

A tree of directories constructed by the DSEE facility to hold 
releases. A release area is referred to by the name of the release 
directory that you create with a create release command. 

release directory path name 

The name of a release directory, which you define using the create 
release command. 

Glossary GL-15 



replace 

reserve 

To un-reserve a line of descent. When you replace a line of 
descent, the DSEE facility creates a new version on that line of 
descent. As the contents of the new version, the DSEE facility 
uses the contents of a file in your current working directory with 
the same name as the line of descent's element. (When you 
reserved the line of descent, the DSEE facility created that file in 
your working directory. You may have revised it before replacing 
the line of descent.) 

To express your intent to create a new version on a line of descent. 
When you reserve a line of descent, the DSEE facility prevents 
anyone else from reserving it, and creates a copy of its most recent 
version in your working directory. (You can modify the copy, then 
add it to the line of descent as a new version by issuing the replace 
command.) 

reserved pool 

A pool created by the DSEE facility to store derived objects that 
used reserved versions (that is, derived objects that used the 
copies created by the DSEE facility when you reserved lines of 
descent) . 

result dependency 

rule 

A component whose build results are required in order to build 
another component. The system model depends_result 
declaration identifies result dependencies. ("The component 
book has a result dependency on the component chapter. The 
component chapter is a result dependency of the component 
book.") 

A statement in a configuration thread that identifies which 
element versions to use in a build and which translation options to 
use in a build. Also, a statement in a model thread that identifies 
the versions of model fragments to use for the system model, and 
the conditional processing variables to define for the system 
model. 

GL-16 Glossary 



scroll bar 

seed 

The part of the DSEE desktop that enables you to view more text 
than will fit in the transcript area at a time, or view icons that are 
outside the viewing area of the icon area. 

To insert information into an edit pad or a dialog box, based on 
information previously supplied by the user. 

server process 

An auxiliary process that performs a supporting service for one or 
more other pieces of software. The DSEE facility requires that 
these server processes run on command nodes: d3m_server, 
mbx_helper, and sf_helper. The DSEE facility can make use of 
the optional server process alarm_server. Builder nodes must run 
the server_process_manager. 

source dependency 

A source file required to build a component. Each component has 
a source dependency on the element, external, or model that it 
represents; this dependency is known as the primary source 
dependency. All other source dependencies are listed in the 
component's depends_source declaration. 

source reference environment 

Within a process, the default versions of all elements, that is, the 
versions that the DSEE facility will access if you specify element 
names without specifying any branches or versions. The default 
source reference environment is the most recent version on each 
element's main line of descent. You can change the source 
reference environment in a process by issuing the set environment 
command. You can create a new process with a specific source 
reference environment by issuing the create environment 
command. 

NOTE: The source reference environment does 
not affect the versions used during a build; 
those versions are determined by the 
configuration thread. 

Glossary GL-17 



source version 

system 

A version that is being merged into another line of descent of the 
same element. 

A collection of interacting or interrelated software modules. See 
also system directory. 

system component 

See component. 

system directory 

A subdirectory that the DSEE facility creates, at your request, to 
store the internal information and objects required to build a 
system. A system directory also can contain references to release 
areas that hold released builds of the system's components. 

system model 

A user-defined specification for a system build that lists the 
components of the system, their dependency relationships, and 
the translation rules (such as compiler, binder, and formatter 
command lines) required to build them. A system model can be 
an ordinary Domain/OS file or a DSEE element. 

target line of descent 

task 

The line of descent on which the DSEE facility creates a new 
version as a result of a merge -reserve command and a 
subsequent replace command. 

A definable job or chore. The work of a programming project can 
be expressed in the DSEE facility in terms of the tasks involved. A 
DSEE task consists of a header (title and creation information), a 
user-defined list of the low-level steps required to complete the 
high-level activity (its active items), and a transcript consisting of 
completed items and element change records relating to the 
high-level activity. 

GL-18 Glossary 



task editor 

A graphics-based program that enables users to modify the 
contents of a task, monitor template, or a form through menu 
choices. 

task number 

An integer that identifies a task's relative position on a tasklist. 
The examine tlist command displays tasks with their numbers. 

task template 

A prototype, or model, for a task. A task template consists of a 
user-supplied title, creation information, and, optionally, active 
items. When you activate a monitor, the DSEE facility uses the 
monitor's task templates to instantiate (create editable copies of) 
actual tasks. 

task transcri pt 

tasklist 

thread 

The portion of a task containing completed items and element 
change records. 

A list of tasks maintained for a given user (personal tasklist), for a 
given library (active tasklist and master tasklist), or for the project 
in general (a nonlibrary tasklist). 

See configuration thread and model thread. 

tools dependency 

transcript 

A translator, shell script, or other tool used in the translation rule 
of a system component. A component's tools dependencies are 
listed in the system model in a depends_tools declaration. 

To record an operation on an element in the transcript area of the 
current task. 

Glossary GL-19 



transcript area 

The part of the DSEE desktop that the DSEE facility uses to echo 
the commands you issue, to display messages, and, where 
appropriate, to display the results of commands. 

transcript item 

A task item that you've moved from the task's active list to its 
completed list (typically after completing the item). The DSEE 
facility also records replace operations as completed items in the 
current task. 

translation rule 

user class 

version 

version 

The specification of the sequence of shell commands required to 
bind, compile, assemble, or otherwise process a system 
component. A translation rule is declared in a system model 
translate declaration. Each translation rule includes all the 
required and potential options to perform the translation. 

A DSEE user's access classification. The DSEE facility defines 
four user classes: administrator, member, reader, and non-user. 
A user's class determines to what extent he or she can access 
DSEE libraries and tasklists. 

An instance of an element. Each time you reserve and then 
replace an element, the DSEE facility creates a new version to 
represent the new instance of the element. Older instances of the 
element still exist as previous versions. You can access a version 
by specifying the element name followed by the version number or 
version name. For example, you can access version 20 of element 
beta.pas by specifying beta.pas[20], or version "revOl" of 
element gamma. pas by specifying gamma.pas[revOl]. 

Also, to maintain separate instances of. ("The DSEE facility 
versions elements.") Also, to retrieve appropriate versions of. 
("The DSEE facility versions elements that are declared as source 
dependencies. ") 

GL-20 Glossary 



version name 

A name assigned with the name version command that identifies 
an element version. Users typically choose version names that 
suggest a common characteristic of a group of element versions. 
For example, you might assign the version name srS to the 
element versions that constitute Software Release 5.0. 

version number 

An integer in square brackets, often appended to an element 
name. A version number identifies a version by identifying which 
instance of the element it is. 

version specifier 

The representation of a specific version of a DSEE element. A 
version specifier can be a version number, a branch path followed 
by a version number, or a version name (enclosed in square 
brackets) . 

working context 

A working environment within a DSEE session. Your working 
context consists of one or more of the following parameters: 
current library, current task, current tasklist, current system, 
current system model, current configuration thread, current 
model thread, current source reference environment, and current 
shell. The DSEE facility remembers and restores your last working 
context when you enter the DSEE facility and changes your 
working context when you issue the set system command. You 
can save and reuse working contexts with the set system 
command's -into and -from options. 

X resources 

A set of customizable features for an application that you can 
specify using X Window System procedures. 

X Window System 

A network-based graphical windowing system developed by MIT. 

-------88-------

Glossary GL-21 





Index 

Symbols are listed at the beginning of the index. 

Symbols 
[ ] (square brackets), 3-12 

% (percent sign), 3-6, 4-32 

I (slash), 2-23 

A 

abbreviating, blocks, 3-7 

aborting commands, 3-8 

activation list, 6-19 
See also monitors, activation 

list 

activation string. See monitors, 
activation string 

active items, 6-2 

add task command, 6-26 

administrator of a library, 2-3 

age parameter, 3-20 

aggregate blocks, 3-5 

aggregate keyword, 3-6 

alarm_server, 6-16, 6-21 
for non-personal tasklists, 

6-27 
stopping automatic alarm 

windows, 6-21 

alias declaration, 3-8 

aliases in system model, 3-8 

alternate lines of descent, 2-22 

B 

base version, 2-25 

BCT, 3-1 

-bct_only option (build 
command), 4-24 to 4-25 

BCTs 
as sole product of build, 

4-24 to 4-25 
BeT lookup during builds, 

3-19 
comparing, 4-26 
copied to a release directory, 

5-4 

Index 1 



definition of, 3-18 
desired BCT, 3-19 
examining, 3-20 
in reserved pools, 4-10 
storing, 5-1 to 5-6 

binary pools 
accessing contents of, 3-23 

to 3-26 
changing parameters of, 4-38 
cleaning up, 4-38 
creating, 4-38 
default binary pool, 3-18 
definition of, 3-18 
deleting, 4-38 
displaying information about, 

4-38 
lifespan of contents, 3-23 
lifespan of objects within, 

3-20 
parameters, 3-23 
parameters of, 3-20 
promoting derived objects to, 

4-37 
promoting from reserved 

pools to, 4-8, 4-16 to 
4-17 

recovering after system 
failure, 4-38 

types 
default, 3-18 
reserved, 4-8 
reserved pool, 4-29 

block. See system model, block 

bound configuration thread. See 
BCT 

branches 
creating, 2-22 to 2-24 
deactivating, 2-38 
deleting, 2-37 
displaying icons for, 2-16 
displaying leaf names, 2-39 
merging, 2-25 to 2-32 

2 Index 

names, 2-23 
reactivating, 2-37 
renaming, 2-38 
replacing versions on, 2-23 
syntax for referring to, 2-23 
why they are useful, 2-22 

browse box, 2-7 

Browse command, 2-36 
browsing a library, 2-6 
browsing for build units, 

3-23, 3-27 
browsing for builds, 3-23, 

3-27, 4-18, 4-25, 4-36 
browsing the system model, 

3-23, 3-27 
displaying elements, 2-6 
listing branches with a 

particular name, 2-26 

build command, 3-15 to 3-18, 
3-26, 4-7, 4-36 
-bct_only option, 4-24 to 

4-25, 4-36 
-query option, 4-22 to 

4-23, 4-27 to 4-31, 
4-36 

build map, 3-20 

build maps 
comparing, 4-26 
header, 3-20 
reading, 5 - 5 
storing, 5-2, 5-4 

build option specifications, 4-32 

build servers, 4-38 

build unit specifier, 4-15 
definition of, 3-17 

build units 
browsing the system model 

for, 3-23, 3-27 
definition of, 3-17 
displaying an icon for, 3-24 



build version, 3-20, 3-21 

build versions, definition of, 
3-17 

builder list, 4-12 

builds, 3-1 to 3-28, 4-1 to 
4-38 
BeT only, 4-24 to 4-25 
browsing for, 4-18, 4-25 
build process, 3-18 to 3-20 
build versions, 3-17 
building systems, 3-15 to 

3-18 
comparing, 4-25 to 4-26 
concurrent builds, 4-11 to 

4-14 
deleting, 4-37 
determining what needs to be 

built, 4-22 to 4-23 
displaying an icon for, 3-24, 

4-18, 4-25 
examining, 3-20 to 3-23 
executing built programs, 

3-23 
exporting, 4-15 
for release, 4-31 to 4-36 
full build names, 3-17 
full build names using 

released builds, 5-5 
how model and thread are 

used, 3-10, 3-19 
how older builds are used, 

3-19 
identifying person who built, 

3-20 
identifying substitute builds, 

4-27 
initiating, 3-15 to 3-18 
introduction, 1-4 
map. See build maps 
names (for most recent. 

builds), 4-15 
names after promotion, 4-17 

naming versions used in, 
4-17 to 4-21 

obtaining information about 
concurrent, 4-38 

obtaining names of, 3-21 
overriding, 4-26 
parallel, 4-11 to 4-14 
partial builds, 4-7 to 4-11 
prerequisites, 3-2 
reconstructing older builds, 

4-31 to 4-36 
referring to in configuration 

threads, 3-11 
reserved element builds, 4-8, 

4-14 
reusing older builds, 4-14, 

4-21 to 4-36 
simple builds, 3-15 to 3-18 
single component builds, 4-7 

to 4-9 
specification, 3-19 
speeding up, 4-11 to 4-14 
storage area for. See binary 

pools 
storing, 3-23, 5-1 to 5-6 
storing results of, 3-18 
system rebuilds, 4-11 to 

4-21 
unsuccessful builds, 4-9 
using versions in a shell, 

4-37 
with reserved versions, 4-4 
without translation options, 

4-32 

c 
callable interface (DSEE), 1-18 

cancel obsolete command, 2-37 

cancel reserve command, 2-37 

Index 3 



capabilities of DSEE 
environment, 1-2 

cd command, 2-3, 2-36 

classes of DSEE users, 2-3 

Clear Transcript command, 
1-15 

command files, 4-3 

comments, suppressing requests 
for, 2-23 

compare builds command, 4-25 
to 4-26, 4-36, 5-5 

compare command, 2-19, 2-37 
-serial option, 2-19 

components 
definition of, 3-4 
dependencies, 3-4 
selecting for rebuilding, 4-27 

to 4-28 

concurrent building, obtaining 
information about, 4-38 

concurrent builds, 4-11 to 4-14 

configuration threads, 1-18, 
3-10 to 3-14 
build option rules, 3-11, 

3-13 
build-ID-based rules, 3-11 
clearing current setting, 3-11 
default thread, 3-11 
definition, 1-4 
editing, 3-13 to 3-14, 4-32 

to 4-34 
examining, 3-13 
examining current, 4-6 
for reconstructing older 

builds, 4-32 to 4-34 
how used during builds, 3-19 
how used in builds, 3-11 
language, 3-10 

in equivalence panes, 
4-29 

4 Index 

referring to released builds, 
5-5 

rule qualifiers, 3-10, 3-13 
rules, 3-10 
setting current, 3-11 
syntax of rules, 3-10 
using instead of equivalences, 

4-27 
using named versions, 4-33 
using stored threads, 3-11 
validating, 3-11 
version rules, 3-10 
-When_exists flag, 4-33 

configure pool command, 4-38 

context banner, 1-8, 2-5, 2-6, 
2-12, 3-3 

context banners in the DSEE 
window, 6-4, 6-9 

contexts, setting, 2-3 to 2-6 

Copy Icon Name command, 
4-26, 4-36 

copying and pasting text, 1-8, 
1-12, 3-21 

create branch command, 2-22 
to 2-39 

create element command, 2-20 
to 2-39 

create environment command, 
4-37 

create form command, 6-25 

create library command, 2-11 
to 2-39 

create monitor command, 6-18, 
6-24 

create pool command, 4-38 

create release command, 5-1 to 
5-5 

create system command, 4-38 



create task command, 6-2 to 
6-27 

create tUst command, 6-3, 
6-26 

current 
configuration thread, 3-12 
library, 2-3 
settings, 1-8 
system, 3-2 
system model, 3-8 

Cut Icon command, 2-34, 2-35 

D 

.dsee_builder_list file, 3-16, 
4-11 

declarations 
aggregate, 3-6 
alias, 3-8 
default, 3-7 

overriding, 4-6 
definition of, 3-6 
depends_result, 3-7 
depends_source, 3-7 
depends_tools, 3-7 
element, 3-6 
element (abbreviated form), 

4-6 
environment, 3-8 
external, 3-6 
external (abbreviated form), 

3-7 
host_type, 3-8 
library, 3-8, 4-6 
model, 3-6 
shell, 3-8 
system, 3-8 
title, 3-8 
translate, 3-6 

default 
binary pool, 3-18 
configuration thread, 3-11 

default declaration, 3-7 
overriding, 4-6 
qualified, 3-7 
unqualified, 3-7 

delete branch command, 2-37 

delete build command, 4-37 

delete element command, 2-34, 
2-35 

delete form command, 6-25 

delete library command, 2-38 

delete monitor command, 6-24 

delete pool command, 4-38 

delete release command, 5-6 

delete system command, 4-38 

delete task command, 6-26 

delete tlist command, 6-26 

delete version command, 2-39 

deleting text, 4-28 

dependencies, 3-4 
component, 3-5 
direct, 3-7 
primary source, 3-6 
primary source dependency, 

4-1 
result, 3-7 
source, 3-7 
source dependencies, 4-1 
tool, 3-7 

depends_result declaration, 3-7 

depends_source declaration, 
3-7 

Index 5 



depends_tools declaration, 3-7 

derived objects 
accessing, 3-23 to 3-26 
copying to release directory, 

5-4 
creating links to, 3-23 
definition of, 3-18 
in reserved pools, 4-10 
lifespan, 3-23 
lifespan of, 3-20 
names assigned to, 3-23 
of reserved elements, 4-8, 

4-14, 4-16 to 4-17 
promoting from reserved 

pool, 4-37 
reusing, 4-27 to 4-31 
storing, 5-1 to 5-6 

desired BeT, 3-19 

desktop interface 
context banner, 1-8 
position indicator, 1-12 
scroll bars, 1-10 
using, 1-8 to 1-15 

direct dependencies, 3-7 

displaying 
branch icons, 2-16 
build icons, 3-25, 4-18, 

4-25 
element icons, 2-6 
icons for build units, 3-24 

documentation (DSEE), 1-17 to 
1-18 

%done keyword, 3-6 

DSEE callable interface, 1-18 

dsee command, 1-7 

DSEE commands 
add task, 6-26 
Browse, 2-6 to 2-9, 2-26, 

2-36, 3-23 

6 Index 

build, 3-15 to 3-18, 3-26, 
4-7, 4-36 
-bet_only option, 4-24 

to 4-25 
-query option, 4-23, 

4-27 to 4-31 
cancel obsolete, 2-37 
cancel reserve, 2-37 
cd, 2-3, 2-36 
compare, 2-19, 2-37 
compare builds, 4-25 to 

4-26, 4-36, 5-5 
configure pool, 4-38 
Copy Icon Name, 4-26, 

4-36 
create branch, 2-22 to 2-39 
create element, 2-20 to 

2-39 
create environment, 4-37 
create form, 6-25 
create library, 2-11 to 2-39 
create monitor, 6-18, 6-24 
create pool, 4-38 
create release, 5-1 to 5-5 
create system, 4-38 
create task, 6-2 to 6-27 
create tlist, 6-3, 6-26 
Cut Icon, 2-34, 2-35 
delete branch, 2-37 
delete build, 4-37 
delete element, 2-34, 2-35 
delete form, 6-25 
delete library, 2-38 
delete monitor, 6-24 
delete pool, 4-38 
delete release, 5-6 
delete system, 4-38 
delete task, 6-26 
delete tlist, 6-26 
delete version, 2-39 
Edit File, 2-36 
edit form, 6-25 
edit monitor, 6-26 



edit release, 5-6 
edit task, 6-11, 6-25 
edit thread, 3-13, 3-28, 

4-32 
examine build, 3-20 to 

3-28, 5-5 
examine form, 6-25 
examine release, 5-6 
examine task, 6-15, 6-25 
examine thread, 3-13, 

3-28, 4-6 
examine tlist, 6-9, 6-21, 

6-25 
export, 3-23, 3-27, 4-15, 

4-30 
fetch, 2-39 
help, 1-9 to 1-15 
merge, 2-25 to 2-32, 2-37 
name version, 2-32, 2-37, 

4-18 
obsolete, 2-38 
online help about, 1-9 to 

1-15 
promote, 4-37 
protect library, 2-38 
protect tlist, 6-26 
purge pool, 4-38 
pwd, 2-36 
quit, 1-18 
read, 2-13, 2-37 
recover library, 2-38 
recover monitor, 6-26 
recover pool, 4-38 
recover releases, 5-6 
recover tlist, 6-26 
recover user, 2-39 
reformat library, 2-39 
rename branch, 2-38 
rename element, 2-38 
replace, 2-16, 2-30, 2-35, 

6-20 
reserve, 2-15 to 2-39, 6-20 
set builder, 4-12 to 4-13, 

4-37 

set environment, 2-38 
set library, 2-6, 2-36 
set model, 3-8 to 3-28 
set system, 3-2 to 3-28 
set task, 6-26 
set thread, 3-11, 3-12, 

3-28 
set tlist, 6-9, 6-25 
share, 2-39 
shell, 2-6, 2-36 
show branches, 2-39 
show builder, 4-38 
show builds, 3-20 to 3-28 
show derivation, 2-31, 2-35 
show elements, 2-10 to 

2-11,2-35 
show environment, 2-38 
show history, 2-14, 2-24, 

2-35 
show model, 4-38 
show monitors held, 6-26 
show monitors owned, 6-26 
show pools, 4-38 
show releases, 5-6 
show reservations, 2-39 
show status, 2-38 
show system, 4-38 
show task, 6-26 
show tlist, 6-27 
show users, 2-39 
show version, 2-33 
tag task, 6-26 
watch tlists, 6-27 
wd, 2-3, 2-36 

DSEE documentation, 1-17 to 
1-18 

dsee_examples directory 
contents, 1-16 
installing, 1-6 

Index 7 



DSEE facility 
capabilities, 1-2 
context banner, 2-6, 3-3, 

6-4 
current settings, 1-8 
invoking, 1-7 
overview, 1-2 
purpose, 1-1 
sample session description, 

1-16 to 1-17 
terminating a session, 1-18 
user classes, 2-3 
version required by sample 

session, iv 
window 

context banner, 2-12 
context banners, 6-9 

DSEE limits, 4-12 

E 
Edit File command, 2-36 

edit form command, 6-25 

edit monitor command, 6-26 

edit release command, 5-6 

edit task command, 6-11, 6-25 

edit thread command, 3-13, 
3-28, 4-32 to 4-34 

Element blocks, 3-5, 3-7, 4-6 

elements 
branches, creating, 2-22 to 

2-24 
building with reserved 

elements, 4-14 
cancelling reservation of, 

2-37 
comparing two versions of, 

2-19 
creating, 2-20 to 2-21 
creating new versions, 2-16 

8 Index 

deactivating lines of descent, 
2-38 

debugging, 4-9 to 4-11 
definition, 1-2 
deleting, 2-34, 6-20 
deleting branches of, 2-37 
deleting versions of, 2-39 
displaying an icon for, 2-6 to 

2-9 
displaying branch leaf names, 

2-39 
displaying information about, 

2-10 
displaying reservations, 2-39 
displaying source reference 

environment for, 2-38 
displaying status of, 2-38 
examining, 2-13 
examining histories, 2-14 to 

2-15 
examining history of, 2-24 
examining history of 

(graphically), 2-31 
histories, 2-14 to 2-15 
lines of descent, 2-1 
listing, 2-10 
merging lines of descent, 

2-25 to 2-32 
modifying, 2-15 to 2-20 
monitoring, 6-16 to 6-24 
naming versions of, 2-32 to 

2-33 
protection of, 2-1 
reactivating a line of descent, 

2-37 
reading versions of, 2-13, 

2-39 
renaming, 2-38, 6-20 
renaming branches, 2-38 
replacing, 2-16 
replacing after merger, 2-30 
reserving, 2-15 to 2-20 
setting source reference 

environment, 2-38 



showing monitors on, 6-26 
summary of commands, 2-35 

to 2-39 
using, 2-12 to 2-34 
versions. See versions, 

version names 
watched by monitors, 6-20 

end keyword, 3-4 

end of keywords, 3-4 

environment declaration, 3-8 

environment variables in system 
model, 3-8 

equivalences, 4-26 to 4-31 
for many components, 4-27 
function of, 4-26 
lifespan of, 4-27 
specifying, 4-26 to 4-31 
types, 4-26 
where stored, 4-29 

error messages, from compiler, 
4-9 

-exact flag, 4-33 

examine build command, 3-20 
to 3-28, 5-5 

examine form command, 6-25 

examine release command, 5-6 

examine task command, 6-15, 
6-25 

examine thread command, 
3-13, 3-28, 4-6 

examine tlist command, 6-9, 
6-21, 6-25 

examples for sample DSEE 
session, 1-16 

export command, 3-23, 3-27, 
4-15, 4-30 

exports subdirectory, 5-3 

External blocks, 3-5, 3-7 

external keyword, 3-6 

F 
fetch command, 2-39 

file as component dependency, 
3-6 

flags 
-exact, 4-33 
-when_exists, 4-33 

forms 
creating, 6-25 
definition, 1-4 
deleting, 6-25 
editing, 6-25 
examining, 6-25 

full build name, changed after 
promotion, 4-17 

full build names 
abbreviated form for latest 

build, 4-15 
definition of, 3-17 
displaying, 3-20 
displaying an icon for, 3-23, 

4-18, 4-25 
obtaining, 3-21, 3-23 
using in equivalences, 4-27 
using released builds, 5-5 
using to name versions, 4-17 

H 
header of a build map, 3-20 

help command, 1-9 to 1-15 

Help menu, 1-9 

Index 9 



history 
examining element history, 

2-14, 2-24 
library history, 2-12 

Hold command, 1-15 

host_type, identifying in system 
model, 3-8 

host_type declaration, 3-8 

I 

icons 
copying an icon name, 4-26 
display area for, 1-8 
displaying 

branch icons, 2-16 
build icons, 3-25, 4-18, 

4-25 
build unit icons, 3-24 
element icons, 2-6 to 

2-9 
removing, 2-34 

IDs for 
blocks, 3-4, 3-5, 3-7, 3-17 
libraries, 4-6 

include file dependencies, 3-7 

include files, changes to, 4-9 

initial, version 
of a branch, 2-23 
of an element, 2-20 

input, redirecting, 4-3 

installing the sample system, 1-6 

interrupting DSEE commands, 
1-15 

10 Index 

K 

keywords 
aggregate, 3-6 
alias, 3-8 
default, 3-7 
default for, 3-7 
depends_result, 3-7 
depends_source, 3-7 
depends_tools, 3-7 
element, 3-5 
end, 3-4 
end of, 3-4 
environment, 3-8 
external, 3-6 
host_type, 3-8 
library, 3-8 
model, 3-5 
%option, 4-32 
shell, 3-8 
system, 3-8 
title, 3-8 
translate, 3-6 

L 

language 
for configuration threads, 

3-10 to 3-14 
for equivalences, 4-27, 4-29 
for system models, 3-4 to 

3-9 

libraries 
administrator of, 2-3 
and monitors, 6-16 
cleaning incomplete 

operations, 2-39 



contents, 2-10 to 2-11 
controlling concurrent access 

to, 2-39 
creating, 2-11 to 2-12 
current 

definition, 2-3 
setting, 2-3 

declaring in system model, 
4-6 

definition, 1-3, 2-3 
deleting, 2-38 
examining the users of, 2-39 
history, 2-12 
identifying in system model, 

3-8 
IDs in system model, 4-6 
listing the contents of, 2-10 

to 2-11 
member of, 2-3 
non-user of, 2-3 
protecting, 2-38 
protection attributes, 2-1, 

2-3 
reader of, 2-3 
recovering after crash, 2-38 
reformatting for new 

software, 2-39 
setting, 2-12 
showing monitors on 

elements in, 6-26 
specifier, 4-6 
summary of commands, 2-36 

to 2-39 
using, 2-3 to 2-12 

library declaration, 3-8 

limit parameter, 3-20 

limits, 4-12 

lines of descent, 2-1 
See also branches 
deactivating, 2-38 
deleting, 2-37 
displaying leaf names, 2-39 

merging, 2-25 to 2-32 
reactivating, 2-37 
renaming, 2-38 
target line of descent (in 

merger), 2-25 

M 

main line of descent, 2-22, 
2-25 

member of a library, 2-3 

menus 
Help, 1-9 
Misc., 1-14 
transcript area, 1-15 

merge command, 2-25 to 2-32, 
2-37 
-serial option, 2-27 
query box, 2-28 
replacing element after 

merge, 2-30 

merge_text, 2-26 to 2-32 
description, 1-17 

merge_text/bugs branch, 2-26 

mine element, 2-21, 2-34 

Misc. menu, 1-14 

model. See system models 

Model blocks, 3-5 
declarations, 3-8 
definition of, 3-6 

model keyword, 3-6 

model threads, 1-18, 3-14 

monitor commands, command 
summary, 6-24 to 6-27 

monitors, 6-16 to 6-24 
activating, 6-20 to 6-23 
activation list, 6-17 to 6-27 

Index 11 



activation string, 6-18 
creating, 6-16 to 6-20 
definition, 1-4 
deleting, 6-24 
deleting after failure, 6-26 
displaying, 6-26 
editing task templates, 6-26 
libraries associated with, 

6-16 

my_library library, 2-11 

N 

name version command, 2-32 
to 2-33, 2-37, 4-18 
query box, 2-33 

named versions, from builds, 
4-17 to 4-21 

names. See version names 

names of 
branches, 2-22, 2-23 
builds, 3-17 
element versions, 2-32 

See also version names 

nodes, using several in builds, 
4-11 to 4-14 

noncritical option, 4-32 

non-user of a library, 2-3 

o 
obsolete command, 2-38 

%option keyword, 4-32 

order program, introduction, 
1-16 

order.h, description, 1-16 

order.sml, description, 1-17 

12 Index 

order_main.c, description, 1-16 

order_sub1.c, description, 1-16 

order_sub2.c, description, 1-16 

order_sub3.c, description, 1-16 

order_sub4.c, description, 4-3 

order_sys directory, 
introduction, 1-16 

overrides, 4-26 to 4-31 
function of, 4-26 
types, 4-27 

overview of DSEE, 1-2 

p 

parallel builds, 4-11 to 4-14 

personal tasklist. See tasklists, 
personal 

pools. See binary pools 

position indicator, 1-12 

prerequisites for a build, 3-2 

primary source dependency, 
3-6, 4-1 

program 
components, 3-4 
modifying, 4-2 to 4-4 
rebuilds, 4-11 to 4-21 
releasing, 5-1 

promote command, 4-37 

promoting builds, 4-8, 4-16 to 
4-17 
hierarchy of promotion, 4-17 

promoting derived objects, and 
changed build names, 4-17 

protect library command, 2-38 

protect tlist command, 6-26 



protection 
classes, 2-3 
of DSEE libraries, 2-1, 2-3 

protection of elements, 2-1 

purge pool command, 4-38 

pwd command, 2-36 

Q 

qualified default declaration, 3-7 

-query option (to build 
command), 4-22 

quit command, 1-18 

R 

read command, 2-13, 2-37 

reader of a library, 2-3 

recover library command, 2-38 

recover monitor command, 
6-26 

recover pool command, 4-38 

recover releases command, 5-6 

recover tlist command, 6-26 

recover user command, 2-39 

reference node, 4-12 

reformat library command, 
2-39 

release directory. See releases 

releases 
adding to, 5-6 
creating, 5-1 to 5-5 
deleting, 5-6 

displaying information about, 
5-6 

examining, 5-6 
introduction, 1-6 
managing, 5-1 to 5-6 
referring to in configuration 

threads, 5-5 
referring to in full build 

names, 5-5 
structure of, 5-3 
updating information on, 5-6 

removing icons, 2-34 

removing text, 4-28 

rename branch command, 2-38 

rename element command, 
2-38 

replace command, 2-16, 2-30, 
2-35, 6-20 

required 
settings, 1-8 
software for sample session, 

iv 

reserve command, 2-15 to 
2-39, 6-20 
cancelling, 2-37 
displaying reserved elements, 

2-39 

reserved elements, building with, 
4-14 

reserved pool, 4-8 

reserved pools, 4-10, 4-14, 
4-16 
promoting from, 4-8, 4-16 

to 4-17 
promoting objects from, 4-37 

-reserved version rule, 3-11 

Index 13 



reserved versions, building with, 
4-4 

result dependencies, 3-7 

s 
sample DSEE session, 

introduction, 1-16 

sample_library library, initial 
contents, 1-16 

Save command, 1-15 

scripts, 4-3, 4-4, 4-9 

scroll bars, 1-10 

Search command, 1-15 

-serial option (compare, merge 
commands), 2-19, 2-27 

server process manager, 4-13 

server processes, needed for 
running DSEE, iv 

set builder command, 4-12 to 
4-13. 4-37 

set environment command. 
2-38 

set library command. 2-6. 2-36 

set model command. 3-8 to 
3-28 

set system command. 3-2 to 
3-28 

set task command. 6-26 

set thread command. 3-11. 
3-12. 3-28 

set tlist command. 6-9. 6-25 

settings 
current configuration thread, 

3-12 
current library, 2-3 

14 Index 

current model thread. 3-14 
current system, 3-2 
current system model, 3-8 to 

3-28 
current task, 6-2, 6-3, 6-4 
current tasklist, 6-3 

share command, 2-39 

shell command, 2-6, 2-36 

shell commands 
executed by monitors, 6-19 
executing from within DSEE 

environment, 2-6 

shell declaration. 3-8 

shells 
creating with a source 

reference environment. 
4-37 

identifying in system model, 
3-8 

show branches command. 2-39 

show builder command. 4-38 

show builds command. 3-20 to 
3-28 

show derivation command. 
2-31, 2-35 

show elements command. 2-10 
to 2-11. 2-35 
-full option. 2-10 

show environment command. 
2-38 

show history command. 2-14 to 
2-39 

show model command. 4-38 

show monitors held command. 
6-26 

show monitors owned 
command. 6-26 



show pools command, 4-38 

show releases command, 5-6 

show reservations command, 
2-39 

show status command, 2-38 

show system command, 4-38 

show task command, 6-26 

show tlist command, 6-27 

show users command, 2-39 

show version command, 2-33 

source dependencies, 3-7, 4-1 

source dependency, 3-6 

source management, 2-1 to 
2-39 

source reference environment, 
4-37 
displaying, 2-38 
setting, 2-38 

source version, 2-25 

spm (server process manager), 
4-13 

subsitute version specification, 
4-27 

substitute build specification, 
4-27 

system declaration, 3-8 

system directories, introduction, 
1-5 

system directory. See systems 

system model, block, 3-4 to 3-9 
block types, 3-5 to 3-6 

system model language, 3-4 to 
3-9 

system models, 1-6, 3-3 to 3-9 
block types 

Aggregate, 3-6 
Element, 3-7 
External, 3-7 
Model, 3-6 

blocks 
abbreviated form, 3-7 
definition of, 3-4 
ID, 3-6 to 3-7 
keywords, 3-5 to 3-7 

conditional processing of, 
3-14 

declarations, 3-6 to 3-8 
aggregate, 3-6 
alias, 3-8 
default, 3-7 
depends_result, 3-7 
depends_source, 3-7 
depends_tools, 3-7 
element, 3-6 
element (abbreviated 

form), 3-7 
environment, 3-8 
external, 3-6 
external (abbreviated 

form), 3-7 
host_type, 3-8 
library, 3-8 
model, 3-6 
shell, 3-8 
system, 3-8 
title, 3-8 
translate, 3-6 

definition, 1-4 
displaying information about, 

4-38 
how used during builds, 3-19 
identifying title, 3-8 
modifying for new 

components, 4-4 

Index 15 



parts of, 3-3 
setting current, 4-6 
setting current model, 3-8 to 

3-9 
stored in mUltiple elements 

or files, 3-14 
translation rule, 3-6, 3-10, 

3-20 
validating, 3-8, 4-6 
writing, 1-18 

systems, 3-2 to 3-3 
building, 3-15 to 3-18 
creating, 4-38 
definition of, 3-2 
deleting, 4-38 
displaying information about 

releases of, 5-6 
displaying the current system 

setting, 4-38 
identifying in system model, 

3-8 
introduction, 1-5 
setting current system, 3-2 to 

3-3 

T 
tag task command, 6-26 

target line of descent, 2-25 

task editor, 6-4, 6-5 to 6-8 
aborting, 6-8 
exiting, 6-8 
invoked by create monitor, 

6-17 
menus, 6-6 to 6-8 

task title, 6-2 

task transcript, 6-2 

tasklists, 6-2 to 6-16 
active tasklist (library), 6-3 
adding tasks to, 6-26 
as organizational tools, 6-3 

16 Index 

command summary, 6-25 to 
6-27 

creating, 6-3, 6-26 
current tasklist, 6-3 
definition, 1-3 
deleting, 6-26 
displaying name of current, 

6-27 
examining, 6-9 to 6-10 
identifying for alarm_server, 

6-27 
library tasklist, 6-3 
master tasklist, 6-3 
numbering of tasks on, 6-10 
personal tasklist, 6-3, 6-16, 

6-21 
and monitors, 6-19 
examining, 6-9 to 6-10 

protecting, 6-26 
setting current, 6-9 
updating task references on, 

6-26 
using, 6-2 

tasks, 6-2 to 6-16 
active items 

changing order of, 6-7 
checking off, 6-11 
creating, 6-6 
definition, 6-2 

adding to tasklists, 6-26 
advantages of, 6-3 
and history facility, 6-12 
automatically created by 

monitors, 6-16 
command summary, 6-25 to 

6-26 
creating, 6-3 to 6-5 
creating forms for, 6-25 
current task, 6-3 
definition, 1-3 
deleting, 6-26 
deleting forms for, 6-25 



displaying information about, 
6-26 

editing, 6-4, 6-5 to 6-8 
editing forms for, 6-25 
examining forms for, 6-25 
parts of, 6-2 
recording events in, 6-10 to 

6-16 
referring to by number, 6-10 
setting current task, 6-26 
storage of, 6-11 
tagging element version with 

a task, 6-26 
task transcript, 6-10 to 6-16 

automatic entries in, 
6-12 to 6-16 

title, definition, 6-2 
transcript, definition, 6:-2 
updating references to on 

tasklists, 6-26 
using, 6-2 to 6-16 

test, description, 1-17 

test/bugfix branch, 2-23 

text deletion, 4-28 

threads. See configuration 
threads, model threads 

title declaration, 3-8 

tools dependencies, 3-7 

transcript area 
clearing, 1-15 
copying text, 1-12 
holding, 1-15 
menu, 1-15 to 1-16 
searching for text, 1-15 
writing to a file, 1-15 

translate keyword, 3-6 

translation options, 3-10 
specifying in configuration 

thread, 4-32 

translation rule, 3-6, 3-10 

translation rules, 3-20 
obtaining information about 

execution, 4-38 
options in, 4-32 

u 
unqualified default declaration, 

3-7 

update directory, 4-3, 4-4, 4-9 
information about, 1-16 

user classes, 2-3 

v 
version names, 2-32 to 2-33 

displa ying all element 
versions with a name, 
2-33 

using in configuration 
threads, 4-33 

version of DSEE software, iv 

version specifications, named 
versions, 4-33 

versions 
activating monitors when 

creating, 6-20 
and tasks, 6-12 to 6-16 
base version (in merger), 

2-25 
comparing differences 

between, 2-19 
creating a shell using build 

versions, 4-37 
deleting, 2-39 
displaying source reference 

environment, 2-38 

Index 17 



identifying substitutes for 
builds, 4-27 

identifying those used in 
builds, 3-20 

most recent on main line of 
descent, 2-32 
using in builds, 3-12 

naming, 2-32 to 2-33 
naming versions, 4-17 to 

4-21 
numbers, 2-12 
reading, 2-39 
reserved, using in builds, 

3-10, 3-11 
setting source reference 

environment, 2-38 
source version (in merger), 

2-25 
specifying for builds, 3-10 
specifying named versions in 

threads, 3-10 

tagging with a task, 6-26 
using named versions in 

threads, 4-33 

w 
watch tlists command, 6-27 

wd command, 2-3, 2-36 

-when_exists flag, 4-33 

wildcard specifications, 2-33, 
3-7, 5-2, 6-17 

window (DSEE) 
context banner, 6-4 
context banners, 6-9 

working context, 3-2 

working directory, 2-36 
setting, 2-3 to 2-39 

-------88-------

18 Index 



Reader's Response 

Please take a few minutes to give us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: Getting Started with DSEE 

Order No.: 008788-AOI 

User Profile 
Your Name _______________ Title __________ _ 

Company ___________________________ _ 

Addre~ ___________________________ ___ 

Telephone number ~ __________ Date ________ _ 

When you use the HP/Apollo system, what job(s) do you perform? 

o Programming o Application End User 

o Hardware Engineering o System Administration 

o Other (describe) __________ _ 

Characterize your level of experience in using the HP I Apollo system: 

o Experienced user (2+ yrs.) 0 New user (6 mos. or less) 

o Moderately experienced user (6 mos.-2 yrs.) 

What programming languages do you use with the HP/Apollo system? 

Distribution 

How do you know what manuals are available to support the products you're using or want to 
use? 

What is a major concern for you in ordering books? 

How would you evaluate this book? 

Completeness 

Accuracy 

Usability 

Additional Comments: 

Excellent 

1 2 

No postage necessary if mailed in the U.S. 

Average Poor 

3 4 5 



i 
1 

n l 
5.1 
01 
~I 

II 
11)1 
gl :1 
II 
=1 
il 

I 
I 
I 
I 
I 
I 

~ I 

·---------------------I--II--I-I-----~~----T 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

Apollo Systems Division 
Hewlett-Packard Company 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

IF MAILED 
IN THE 

UNITED STATES 

.---------------------------------------+ ::>Id 



Reader's Response 

Please take a few minutes to give us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: Getting Staned with DSEE 

Order No.: 008788-AOl 

User Profile 
Your Name ______________ TItle _________ _ 

Company ___________________________ __ 

Addre~ ___________________________ ___ 

Telephone number L-) __________ Date ________ _ 

When you use the HP/Apollo system, what job(s) do you perform? 

o Programming o Application End User 

o Hardware Engineering o System Administration 

o Other (describe) _________ ___ 

Characterize your level of experience in using the HP I Apollo system: 

o Experienced user (2+ yrs.) 0 New user (6 mos. or le~) 

o Moderately experienced user (6 mos.-2 yrs.) 

What programming languages do you use with the HP/Apollo system? 

Distribution 

How do you know what manuals are available to support the products you're using or want to 
use? 

What is a major concern for you in ordering books? 

How would you evaluate this book? 

Completeness 

Accuracy 

Usability 

Additional Comments: 

Excellent 

1 2 

No postage necessary if mailed in the U.S. 

Average Poor 

3 4 5 



i 
1 

0 1 
sl 
01 
"'1 
~I 
e!.1 
gl 
~I 
~I 
~I 
=1 
~I 

1 
I 
1 
1 
1 
1 

~ 1 

----------------------I--II-I-I-I-----~~~;---T 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD. MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

Apollo Systems Division 
Hewlett-Packard Company 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

IF MAILED 
IN THE 

UNITED STATES 

----------------------------------------+ old 


