=}
E

z
®ymmmm

1989
DSP
PRODUCTS
DATABOOK

©Analog Devices, Inc., 1989
Al Rights Reserved

ANALOG
DEVICES

General Information

DSP Processors

Microcoded Support Components
Floating-Point Components
Fixed-Point Components
Package Information

Application Notes

Appendix

ANALOG
DEVICES

DSP PRODUCTS DATABOOK
April 1989

© Analog Devices, Inc., 1989
All Rights Reserved

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility
is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.

Products in this book may be covered by one or more of the following patents. Additional patents are pending.

u.s.:

RE29,619, RE29,992, RE30,586, RE31,850, DES. 233,909, 3,007,114, 3,278,736, 3,355,670, 3,441,913, 3,467,908,
3,500,218, 3,530,390, 3,533,002, 3,685,045, 3,729,660, 3,793,563, 3,803,590, 3,842,412, 3,868,583, 3,890,611,
3,906,486, 3,909,908, 3,932,863, 3,940,760, 3,942,173, 3,946,324, 3,950,603, 3,961,326, 3,978,473, 3,979,688,
4,016,559, 4,020,486, 4,029,974, 4,034,366, 4,054,829, 4,092,698, 4,123,698, 4,136,349, 4,141,004, 4,213,806,
4,250,445, 4,268,759, 4,270,118, 4,286,225, 4,309,693, 4,313,083, 4,323,795, 4,338,591, 4,349,811, 4,363,024,
4,374,314, 4,383,222, 4,395,647, 4,399,345, 4,400,689, 4,400,690, 4,427,973, 4,439,724, 4,460,891, 4,475,103,
4,475,169, 4,476,538, 4,481,708, 4,484,149, 4,485,372, 4,491,825, 4,511,413, 4,521,764, 4,543,560, 4,543,561,
4,647,766, 4,547,961, 4,556,870, 4,558,242, 4,562,400, 4,565,000, 4,586,019, 4,586,155, 4,590,456, 4,596,976,
4,601,760, 4,604,532, 4,608,541, 4,622,512, 4,626,769, 4,639,683, 4,644,253, 4,646,056, 4,646,238, 4,678,936,
4,684,922, 4,685,200, 4,694,276, 4,697,151, 4,703,283, 4,707,682, 4,709,167, 4,717,883, 4,722,910, 4,742,331,
4,751,455, 4,752,900 4,761,636, 4,769,564, 4,771,011, 4,774,685, 4,791,551

France:
111.833, 70.10561, 75.27557, 76 08238, 77 20799, 78 10462, 79 24041, 80 00960, 80 11312, 81 02661, 81 14845,
8209758,8303140

Japan:
1,092,928, 1,242,936, 1,242,965, 1,306,235, 1,337,318, 1,401,661, 1,412,991

West Germany:
2,014034, 2540451.7, 2611858.1

U.K.:

1,310,591, 1,310,592, 1,537,542, 1,590,136, 1,590,137, 1,599,538, 2,008,876, 2,032,659, 2,040,087, 2,050,740,
2,054,992, 2,075,295, 2,081,040, 2,100,081, 2,103,884, 2,104,288, 2,107,951, 2,115,832, 2,118,386, 2,119,139,
2,119,547, 2,126,445, 2,126,814, 2,135,545, 2,137,787

Canada:

984,015, 1,006,236, 1,025,558, 1,035,464, 1,054,248, 1,141,034, 1,141,820, 1,142,445, 1,143,306, 1,150,414,
1,153,607, 1,157,571, 1,159,956, 1,177,127, 1,177,966, 1,184,662, 1,184,663, 1,191,715, 1,192,310, 1,192,311,
1,192,312, 1,203,628, 1,205,920, 1,212,730, 1,214,282, 1,219,679, 1,219,966, 1,223,086

Sweden:
7603320-8

General Information
Contents

Page
General Introduction L e e e e e e e e e e e 1-2 -
1-3

Table of CONtENLS v v v v v ottt e

GENERAL INFORMATION 1-1

Introduction

DSP AT ANALOG DEVICES

Analog Devices is the industry’s leading supplier of high
performance signal processing integrated circuits. As the leader,
Analog Devices was quick to recognize the important opportuni-
ties made possible by the growth of digital signal processing. In
1983, the DSP Division introduced the industry’s first CMOS
fixed-point multipliers and multiplier-accumulators. These
matched the speed of bipolar alternatives while cutting power
requirements by a factor of twenty. This breakthrough shifted
the focus of the industry from bipolar to CMOS for high speed
VLSI circuits.

PRODUCT GROWTH & INNOVATION

From a base in industry-standard components, we brought out
a complete line of building block VLSI processors for high end
DSP and numeric processing systems. These include several 64-
bit IEEE floating-point chipsets and a single-precision (32-bit)
version of one of the same chipsets. Other products in the fam-
ily are an address generator, two program sequencers and a reg-
ister file.

In 1986 we introduced the first full off-chip Harvard architec-
ture DSP microprocessor, the ADSP-2100, complemented by a
superior set of interactive development tools.

TECHNOLOGY GROWTH

From our original CMOS wafer fabrication in 5 micron geo-
metries we moved, in 1985, to 1.5 micron double-layer metal
CMOS. We are currently in production with both the 1.5
micron and our newer 1.0 micron CMOS processes. Our
12.5MHz ADSP-2100A is the 1.0 micron version of our original
1.5 micron ADSP-2100, for example. Analog Devices continues
to develop advanced processes such as specialized bipolar and
gallium arsenide both internally and through our strategic
investments.

Our manufacturing facilities include factories in Wilmington,
Massachusetts and assembly in the Philippines. Our digital
VLSTI test capability is located in Norwood, Massachusetts, the
Division’s headquarters.

APPLICATIONS & SUPPORT GROWTH

Analog Devices supports its products with a technically strong
direct sales force and readily available applications assistance.
Our Applications Engineering staff in Norwood, Massachusetts;
Santa Ana, California; Tokyo, Japan; Newbury, UK and other
locations worldwide understands the specialized requirements of
designing and supporting DSP systems. Our quarterly DSP
applications newsletter, DSPatch, brings you up-to-date applica-
tions information and is available free by request.

DSP PRODUCTS DATABOOK
This book provides complete technical data on DSP products
from Analog Devices. Included are:

® Comprehensive Data Sheets on some 20 significant product
families

® Selection Guides for rapid product finding
® DSP Application Notes

1-2 GENERAL INFORMATION

® List of available Technical Publications on real-world analog
and digital signal processing

©® Worldwide Service Directory
® Index.

Besides this Databook, the present series includes a Linear
Products Databook and a Data Conversion Products Databook;
like this book, the latest versions of both are available free upon
request.

TECHNICAL SUPPORT

Our extensive technical literature discusses the technology and
applications of products for precision measurement and control.
Besides tutorial material and comprehensive data sheets, includ-
ing a large amount in our Databooks, we offer Application
Notes, Application Guides, Technical Handbooks (at reasonable
prices), and several serial publications; for example, Analog Pro-
ductlog provides brief information on new products being intro-
duced, and Analog Dialogue, our technical magazine, provides
in-depth discussions of new developments in analog and digital
circuit technology as applied to data acquisition, signal process-
ing, control, and test. We maintain a mailing list of engineers,
scientists, and technicians with a serious interest in our prod-
ucts. In addition to Databook catalogs, we also publish several
short-form catalogs on specific product families. You will find
typical publications described on pages 8-2 and 8-3 at the back
of the book.

SALES OFFICES

Backing up our design and manufacturing capabilities and our
extensive array of publications is a network of sales offices and
representatives throughout the United States and most of the
world. They are staffed by experienced sales and applications
engineers, and many of them maintain a local stock of Analog
Devices products. Our Worldwide Service Directory, as of the
publication date, appears on pages 8-6 and 8-7 at the back of the
book.

RELIABILITY

The manufacture of reliable products is a key objective at Ana-
log Devices. We maintain facilities that have been qualified
under such standards as MIL-M-38510 for ICs in the U.S. and
Ireland and MIL-STD-1772 for hybrids. A growing number of
our products have qualified for JAN part numbers; others are in
the process. Most of our ICs are available in versions that com-
ply with MIL-STD-883C Class B.

We publish a Military Products Databook for designers who spec-
ify ICs and hybrids for military contracts (the 1987 issue con-
tains data on nearly 150 available product families). A newslet-
ter, Analog Briefings, provides current information about the
status of reliability at ADI.

PRICES

Accurate, up-to-date prices are an important consideration in
making a choice among the many available product families.
Since prices are subject to change, current prices lists and/or
quotations are available upon request from our sales offices.

Table of Contents

Page
DSPProcessors—Section2 2-1
Introduction e e e e e e e 2-2
ADDS-21XX DSP Software Development Tools o v vt vt ittt e e e e e e e e 2-5
ADDS-21XX DSP Hardware Development Tools i i ittt it ittt it e e e e e 2-11
ADSP-2101 In-Circuit Emulator e e e e e e e e e e 2-17
ADSP-2100/ADSP-2100A 12.5 MIPS DSP MICIOPIOCESSOT « « « & v v v v v v v e e et e e et e e et e e et e e 2-19
ADSP-2101/ADSP-2102 12.5 MIPS DSP MiCrOCOMPUIET . . + & v v v v v v v e e e e e e e e et e e e e e et e a 2-53
Microcoded Support Components—-Section3 3-1
Introduction e e e e e e e e 3-3
Selection GUIde o e e e e e 3-4
ADSP-1401 - Word-Slice Program SeqUENCEr o v v v vttt e e e e e e e e e e e e e e e e e 3-5
ADSP-1402 ~ Word-Slice Program SeqUENCEr o v v v vt e e e e e e e e e e e e e e e e e 3-25
ADSP-1410 — Word-Slice Address GENETator v v v v v v v e it e e e e e e e e e e e e e e e 3-29
ADSP-3128A ~ Multiport Register File e e e 3-45
Floating-Point Components—Section4 4-1
Introduction L e e e e e e e e e e e e e e e e 4-3
Selection GUIde o e e e e e e e e 4-4
ADSP-3201/ADSP-3202 — 32-Bit IEEE Floating-Point Chipset o v v v v vt et e i et et e e 4-5
ADSP-3210/ADSP-3211/ADSP-3220/ADSP-3221 — 64-Bit IEEE Floating-Point Chipsets 4-39
ADSP-3212/ADSP-3222 — 64-Bit IEEE Floating-Point Chipset v v v v v v vt e e e it e e e et e e 4 -85
Fixed-Point Components—SectionS 51
Introduction L e e e e e 5-3
Selection Guide e e e e e e e e 5-4
Industry Standard Fixed-Point Components
ADSP-1080A — 8 x 8-Bit Twos Complement CMOS Multiplier it i it et it e n 5-5
ADSP-1081A - 8 x 8-Bit Unsigned-Magnitude CMOS Multiplier o v v v v v v v e et et e e e 5-11
ADSP-1012A — 12 x 12-Bit CMOS Multiplier o it e e e e e e e e e e e e e e e e 5-15
ADSP-1016A — 16 x 16-Bit CMOS Multiplier v i it e e e e e e e e e e e e 5-21
ADSP-1008A — 8 x 8-Bit CMOS Multiplier/Accumulator v v v v v vt e e e e e e e e 5-27
ADSP-1009A - 12 x 12-Bit CMOS Multiplier/Accumulator o v v v v e vt e e e e e e e e 5-33
ADSP-1010A - 16 x 16-Bit CMOS Multiplier/Accumulator o v it i e e e e e e e 5-39
ADSP-1010B - 16 x 16-Bit CMOS Multiplier/Accumulator vt v v v v v e e et . e 5-45
Enhanced Fixed-Point Components
ADSP-1024A - 24 x 24-Bit CMOS Multiplier o i e e e e e e e e e e e 5-51
ADSP-1110A - 16 x 16-Bit CMOS Single Port Multiplier/Accumulator« v v v v v e v v et e e v 5-59
ADSP-1101 - Integer Arithmetic Unit o o i i it e e e e e e e e e e e e e e e 5-73
Package Information—Section6 6-1

GENERAL INFORMATION 1-3

Application Notes—Section7, 7-1
Introduction v v v i o e e e e e e e e e e e e e e e e 7-2
Sharing the Output Bus of the ADSP-1401 Microprogram SEqUENCEr v ¢ ¢ v v v v v v v v v vt e v e oo o s 7-3
Implement a Writeable Control Store in Your Word-Slice System o 7-5
Replacing the Am2910 with the ADSP-1402 Program SEqUENCEL v v v v v v v v v v v v v v b e e e e e e e 7-9
Loading an ADSP-2101 Program via the Serial Port o o i it e e e 7-13
Disk Drive Head Positioning with the ADSP-2101 o o v v i i ittt e e e e e ettt e 7-17
Digital Filtering with the ADSP-2100A o vt ettt e e et e e e e e e 7-19
Power and Ground Connection Guidelines for Pin Grid Afrays v v v v v v v v o v v oo v vt e e 7-23
Appendix—-Section8 8-1
Technical PUblications o v v i s e e e e e e e e e e e e 8§-2
Ordering GUIAE v v v v i e 8-4
Worldwide Service Directory v v v i i i e e e e e e e e e e e e e 8-6
Product Index v v v v e Inside Back Cover

1-4 GENERAL INFORMATION

DSP Processors
Contents

Page
Introduction i i e 2-2
ADDS-21XX DSP Software Development ToOIs v v v v i i it e e e e e 2-5
ADDS-21XX DSP Hardware Development Tools i i i i i ittt it it it e e 2-11
ADSP-2101 In-Circuit Emulator o i i e e e e e e e e e e e e 2-17
ADSP-2100/ADSP-2100A 12.5 MIPS DSP MIiCrOPIrOCESSOT . . » v v ¢ v v v v v o o b v v v v e vt e e e e e e it 2-19
ADSP-2101/ADSP-2102 12.5 MIPS DSP MiCroCOMPULET . . &« & v v v v v v v v v v v v e e o v b oo e e e e e 2-53

DSP PROCESSORS 2-1

Introduction

The ADSP-2100 family of digital signal processors provides a
core architecture optimized for digital signal processing and
other high speed numeric processing applications. The family
consists of the ADSP-2100 and ADSP-2100A microprocessors
and the ADSP-2101 and ADSP-2102 microcomputers. All
devices share the core set of features:

1. Easy-to-Attain High Performance
The ADSP-2100 core integrates an arithmetic/logic unit
(ALU), multiplier-accumulator (MAC), barrel shifter, data
address generators and a program sequencer in a single
device. It incorporates modified Harvard architecture (that is,
data can also be stored in program memory) for efficient
access to program and data memories. The result combines
the functions and performance of a bit-slice or building block
system with the ease-of-design and development of a general-
purpose microprocessor.

2. Easy-to-Understand Instruction Set
The ADSP-2100 family instruction set uses an algebraic syn-
tax, similar to high level languages, making it easier to write
and understand source code. This results in easier and faster
code development and maintenance.

3. Easy-to-Use Development Tools & Support
The complete set of development tools available for the fam-
ily (including a C Compiler, Simulator and In-circuit Emula-
tor each described later in this section) minimizes both
design time and effort. Your application is up and running
faster with this powerful development. In addition, our
Applications Engineering Group supports only DSP with
application notes, applications handbooks, a customer
newsletter, a bulletin board service and excellent telephone
support.

4. Easy-to-Design System Interface
The advanced design of the ADSP-2100 family allows simple
interconnections of memories and I/O devices, minimizes the
external logic required to handle interrupts and supports
straightforward host interface and multiprocessing designs.

ADSP-2100/ADSP-2100A Microprocessor

The microprocessor members of the family include the ADSP-
2100 and the 1.0 micron ADSP-2100A which are pin and code-
compatible. In addition to the core, these devices offer the
following:

® Modified off-chip Harvard architecture. The processor can
access up to 16K words of 16-bit data memory and up to 32K
24-bit words of program memory containing both instructions
and data.

2-2 DSP PROCESSORS

® A 16-instruction on-chip cache memory with allows the pro-
cessor to fetch two operands in parallel when executing out of
the cache. Since the instruction set supports a high degree of
parallelism, the loops of many algorithms can be efficiently
coded in 16 instructions or less.

A sample set of benchmarks for the 12.5MHz ADSP-2100A is
shown in the table below.

ADSP-2101/ADSP-2102 Microcomputer

The microcomputer members of the family include the RAM-

based ADSP-2101 and the mask programmable ROM-based

ADSP-2102. Both are upwardly code compatible with the

ADSP-2100 and ADSP-2100A. In addition to the core, these

devices offer the following:

® Modified on-board Harvard architecture. The processor has
2K words of (24-bit) program memory RAM and 1K of 16-bit
data memory RAM on-chip. Off-chip memories share one
address and one data bus which can be used to fetch instruc-
tions, data and to boot the processor from external memory.

® A 16-bit programmable timer with an 8-bit prescaling factor
that generates its own interrupt.

® Two serial ports offering a wide set of possible framing and
timing options for interfacing easily to any serial device. Com-
panding is supported in hardware.

The diagram on the following page graphically shows the micro-
processor and microcomputer devices.

ADSP-2100 Family Benchmarks

Algorithm Performance @ 12.5MHz

FIR Filter 80ns per Tap (1 cycle per Tap)
Complex FIR Filter 320ns per Tap (4 cycles per Tap)

Biquad Filter Section ~ 560ns per Section (7 cycles per Section)

Lattice Filter Section 400ns per Section (5 cycles per Section)

1024-point Complex

FFT (Radix-2) 2.9ms
4096-point Complex

FFT (Radix-2) 19.8ms

ADSP-2100/ADSP-2100A

CACHE —
MEMORY
—] INSTRUCTION
@ @ REGISTER
DATA DATA 1"1
ADDRESS ADDRESS
PROGRAM
GENERATOR GENERATOR
2 SEQUENCER
Z PMA
PMA BUS 14,
[Z 1
7
DMA
DMA BUS 14, N/
L ,T
PMD BUS 24,
L V4]
7
I PMD
BUS
EXCHANGE
omD
16, N\ _ DMD BUS
7 1
@ ,
INPUT REGS INPUT REGS INPUT REGS
ALY MAC SHIFTER

OUTPUT REGS OUTPUT REGS

R BUS <|l7 16y
—Z

OUTPUT REGS

7

Core
o ALU, MAC and Barrel Shifter

® Two Data Address Generators, one with bit-reversing
capability

® Separate Program Memory and Data Memory address and
data buses

® Powerful Sequencer for Zero Overhead looping and single-
cycle branches

® Bus Grant and Bus Request Signals for host interfacing

o Highly Readable Source Code for ease of development and
maintenance

ADSP-2100/ADSP-2100A Specific Features
o All Program and Data Memory buses extended off-chip

@ Single-cycle access to external memory
® Up to 16K of 16-bit word data memory

® Up to 32K of 24-bit word program memory (may also hold
data)

® Data Memory Acknowledge Signal (DMACK) for interfacing
to slow, memory-mapped peripherals

® On-chip instruction cache for three bus performance
® Four interrupt request lines
® 100-pin PGA and 100-lead PQFP packages

DSP PROCESSORS 2-3

ADSP-2101/ADSP-2102

¥

¥

—
INSTRUCTION
REGISTER
PROGRAM DATA
SRAM SRAM ADDRESS
DATA DATA 2K X 24 1K X 16 GENERATOR
aEneRaTon | | cEnemkTo
GENERATOR
i o SEQUENCER
EXTERNAL
14, PMA BUS ADDRESS
2
"’ 14
Mux #:[>
) 14 owA BUs
L4 — 1 ’—
24, PMD BUS \Z L N EXTEANAL
Z = DATA
[4 BUS
24
16, N2 /
-
7 DMD BUS
A4 A\
INPUT_REGS INPUT_REGS INPUT REGS COMPANDING
CIRCUITRY
ALY MaC SHIFTER CONTROL yivER
LOGIC | ['Transmit Rey Transmit Reg
OUTPUT_REGS OUTPUT REGS OUTPUT_REGS Receive Reg Recelve Reg
SERIAL SERIAL
R BUS 18, PORT 0 PORT 1

Core
® ALU, MAC and Barrel Shifter

® Two Data Address Generators, one with bit-reversing
capability

ADSP-2101/ADSP-2102 Specific Features
® 2K of 24-bit on-chip program memory RAM

® 1K of 16-bit on-chip data memory RAM

® Up to 16K of 16-bit word data memory using external _
® Separate Program Memory and Data Memory address and memory

data buses @ Up to 16K of 24-bit word program memory using external
® Powerful Sequencer for Zero Overhead looping and single- memory

cycle branches ® Up to three memory accesses (one may be off-chip) in a single

® Bus Grant and Bus Request Signals for host interfacing cycle

® Highly Readable Source Code for ease of development and
maintenance

® Timer interrupt with programmable period and prescaler
® Two complete serial ports with companding in hardware
® 68-pin PGA and 68-lead PLCC packages

2-4 DSP PROCESSORS

ANALOG
DEVICES

DSP Software Development Tools

ADDS-21XX

FEATURES
Release 1.5 Supports the ADSP-2100 and ADSP-2100A
DSP Microprocessors

C COMPILER

Programming in C Eases Development of Applications
Software

Supports In-Line Assembly Code

Provides FRACT Data Type (1.15 Format) for DSP
Algorithms

Complete Calling Interface to Assembly Language
Routines

Produces ROMable Code

Floating Point Emulation Support

Conforms to ANSI Draft Standard (X3J11)

SYSTEM BUILDER
Architecture Description File Specifies Target
Hardware

ASSEMBLER

Supports High Level Constructs
Supports Flexible Macro Processing
Encourages Modular Code Development
Provides a Full Range of Diagnostics

LINKER
Library Support
Maps Assembler Output to Target Hardware

PROM SPLITTER
Formats ROM Memory Image for Uploading to PROM
Programmers

SIMULATOR

Interactive User-Friendly Interface
Full Symbolic Disassembly
Simulates Hardware Configuration
Simulates Port I1/0 Handling

Flags lllegal Operations

GENERAL DESCRIPTION

The ADSP-2100 Cross-Software Development tools allow the
programmer to develop applications software for implementation
on ADSP-2100 and ADSP-2100A DSP microprocessors. The
software tools include the C compiler, System Builder, Assem-
bler, Linker, PROM Splitter and Simulator.

C COMPILER

The C Compiler supports the development of application pro-
grams in the C programming language. Consisting of a Prepro-
cessor and Compiler which conform to the ANSI draft standard
(X3]11), the C Compiler produces ADSP-2100 assembly lan-
guage source code. Applications written in C are then compiled,
assembled and linked to produce code that can be simulated
using the Simulator or executed on the Emulator or Evaluation
Board.

The Preprocessor supports the complete ANSI draft standard
set of options, and reads directives such as #include. The
#pragma directive supports in-line assembly code in a C pro-
gram. This allows the user to execute efficient assembly lan-
guage routines within the C environment.

From the code produced by the Preprocessor, the compiler
creates a stack-oriented run-time environment using the Data
Address Generators to implement the stack. The stack may be
located in program or data memory RAM. It is used for param-
eter passing and local and temporary storage. Because the
ADSP-2100 cannot write an immediate value to program mem-
ory, locating the stack in data memory is usually more efficient.

DSP PROCESSORS 2-5

The example in Figure 1 illustrates how a simple function
implemented in ADSP-2100 source code is interfaced to a C
function call.

nt i,7,k;

main()

k =add(i,j);

add(x,y)
{

#pragma ADSP2100
{ Function add (x,y)
{ intxy;

{

{ Returns: z=x+y;
dm(i4,m7) = ay0;
dm(i4,m7)=ar;
6=1;
modify(i6,m4);
ax0=dm(i6,mS);
ay0 =dm(i6,mS);
ar=ax0+ay0;
ax0=ar;
16=-1;
modify(i6, m4);
ay0=dm(i6,m7);
ar=dm(i6,m7);

#pragma ADSP2100

}

Figure 1. Assembly Language to C Language Interface

{ save registers }

{ get first parameter }

{mS=1, i6 points to 2nd parameter }
{ get second parameter }

{ perform addition }

{ return 16-bit values in ax0 }

{ restore registers }

The stack is managed by a frame pointer and stack pointer. The
following diagram illustrates the implementation of the stack
during a call. The previous frame pointer and local variables are
popped unto the stack.

High Memory High Memory
p! pt
p0 po
frame pointer (md)-»{ previous frame pointer previous frame pointer
local0
localt

frame pointer (m4)-»]

stack pointer (14)-+].7:

A

Figure 2. Stack Implementation in ADSP-2100 Memory
Space

Though the ADSP-2100 is a 16-bit processor, the C Compiler
supports certain 32-bit operations. The following arithmetic data
types are supported directly:

int 16-bit twos-complement value

long int 32-bit twos-complement value
unsigned int 16-bit unsigned value

unsigned long int 32-bit unsigned values

fract 16-bit fractional value (1.15 format)
float 32-bit real.

Type fract is not a standard C data type but is an extension cre-
ated to support the 1.15 data format used in digital signal pro-
cessing applications. The compiler also supports all standard
storage classes, types and modifiers.

2-6 DSP PROCESSORS

Classes auto, extern, register, static, typedef
Types All including void
Modifiers const, volatile plus pm, dm, ram, rom

Register values, though accepted by the compiler, are not imple-
mented as actual processor registers. The modifiers pm, dm, rom
and ram are extensions that are supported. In addition, the fasts-
witch statement, an extension to the language, has been added to
support the DO UNTIL capability of the processors. It is syn-
tactically identical to the standard switch statement but produces
faster ADSP-2100 assembly code.

SYSTEM BUILDER

The System Builder translates a user-defined description of the
target hardware system into a form which can be utilized by
other Cross-Software Modules. The Cross-Software Modules
require knowledge of the target hardware system for the Linker
to place relocatable segments, the Simulator to simulate external
memory configurations, and for the PROM Splitter to generate
separate program and data files. The user specifies the target
program memory, data memory and I/O port configurations by
writing a System Specification Source File. The System Builder
translates this into an Architecture Description File which is
read by the other Cross-Software Modules. For example, the
Linker resolves the references in the source code and the actual
addresses by reading the Architecture File.

The Architecture File is comprised of the following directives
that define the ADSP-2100 system:

.SYSTEM first statement in .ACH file, specifies the name
of the system

.ENDSYS last statement in .ACH file, specifies the end of
the file

.CONST defines constants

.PORT declares memory-mapped 1/O ports

.SEG specifies the type of memory in the system

(program or data, RAM or ROM).

The following example of an architecture (.ACH) file shows the
use of the directives:

SYSTEM fir_system, {system name for fir_system}
SEG/ROM/ABS = 0/PM/CODE program_mem([4096] {declare code space}
SEG/RAM/ABS =4096/PM/DATA coeff_storage[15] {declare coeff table}
SEG/RAM/ABS =0/DM/DATA delay lne[15] {declare data memory}
PORT/ABS = 16382 ad_sample {declare 1/o ports}
ENDSYS {indicates end of file}

The .SYSTEM directive defines the name of the ADSP-2100
system. This name is used by the other software modules. The
.SEG directive declares memory segments specifying the physi-
cal address, segment length, memory area (PM, DM), memory
type (RAM, ROM) and memory attributes (CODE, DATA or
both). In the above example, program_mem is a 4K-word buffer
located in program memory ROM beginning at address 0 con-
sisting of program code. The buffer, coeff_storage, is fifteen
words of data located in program memory RAM beginning at
address 4096. Finally, delay_line is a 15-word buffer located in
data memory RAM starting at address 0. The .PORT directive
declares memory-mapped I/O ports by specifying a name for the
port and the absolute physical address. In the example, an
analog-to-digital converter named ad_sample occupies location
16382 in data memory space.

ADDS-21XX

ASSEMBLER

The Assembler translates source code modules into relocatable
object code modules. The user creates an assembler source code
module using the ADSP-2100 Assembly Language and defining
variable data buffers and symbolic constants using the Assem-
bler Directives. An assembly module becomes a unit of the com-
plete system source code. Separately assembled object code
modules are linked together to form the final running system
using the Linker.

Assembler directives support a variety of data and program
structures. Invocation switches modify the assembly process.

.MODULE defines the beginning of an assembly module

.ENDMOD the last statement in a source code file

.VAR declare variables and data buffers, the
/CIRC qualifier defines circular buffers

.CONST declare constants

.PORT declares a memory-mapped I/0 port in
data memory

INIT use to initialize declared variables and
data buffers

INCLUDE use to read another source file

.MACRO defines the beginning of a macro

.ENDMACRO terminates a macro

.LOCAL use only within a macro, directs the
Assembler to create a unique label with
local scope

EXTERNAL assigns external attribute to identifiers
declared in other modules

.GLOBAL assigns the global attribute to ports,
variables and buffers

.ENTRY assigns entry attribute to label names

Macros can be created using the .MACRO directive. For exam-
ple, the macro shown below is a general purpose memory trans-
fer routine which can transfer data buffers from one memory
area (program or data memory) to the other.

{MACRO declaranon}

.MACRO memory_transf (%0, %1, %2, %3, %4);
.LOCAL transf;

{pass five arguments}

14 =%0; {set 14 to source start address}
15=%]I; {set IS to destination start address}
Mé=1; {set pomnter update to single increment}
CNTR =%2; {set length of buffer}

DO rransf UNTIL CE;
SI1="%3(14,M4);
wansf %4(15,M4)=SI;
ENDMACRO

{transfer data}
{transfer from type %3 memory}
{transfer from type %4 memory}

To call the macro within an assembly language program, execute:

memory_transf ("coeff_table, “buffer, buff length, PM, DM);

LINKER

The Linker generates the Program Memory/Data Memory Im-
age File, a complete executable program, by linking together
object-code modules which were assembled separately. The
hardware environment defined by the Architecture File is used

by the Linker to place program and data in the defined memory
area and location. This output file is used by the Simulator,
PROM Splitter, Emulator, and Evaluation Board. Another
Linker output, the Debug Symbol Table File, contains a list of
all symbols encountered by the Linker and enables the Simula-
tor to utilize user-defined source code level symbols in its inter-
face with user.

To aid the user in interpreting the Linker result, a Map Listing
file can be generated.

This file includes:

1. A cross-reference listing of all symbols encountered, arranged
by module. Information on each symbol such at memory
type, absolute address, length and symbol type is given.

2. A map of the memory sections and the attributes of each
section.

3. A map of the allocated segments in program memory, listed
sequentially from low order address to high order address.

4. A map of the allocated segments in data memory, listed se-
quentially from low order address to high order address.

5. Linker error messages.
6. A list of libraries searched and used.

PROM SPLITTER

The PROM Splitter extracts the address information and the
contents of the ROM portion of the PM/DM Image File and
formats the extracted images for uploading to PROM burners.
Commercially available PROM burners expect input data to
be eight bits wide. The PROM Splitter separates the memory
image into a byte-wide format. It creates three one-byte wide
PROM image files for the 24-bit program memory, and two
one-byte wide PROM image files for the 16-bit data memory.
Both program and data memory can be optionally output as a
single stream of one-byte wide file. The PROM image file is
generated in either Motorola S Record, Intel Hex Record or
Daisy VLA format. For one-byte wide files, the Motorola S2
format is supported.

SIMULATOR

The Simulator simulates the operation of the ADSP-2100 and
allows the user to observe the contents of the registers, buses,
stacks and program and data memories as a program is being
executed. The Simulator is user friendly, interactive and screen-
oriented. Figure 4 shows the basic Register Display.

r
ADSP-2100 Simulator V1 5 Analog Devices Inc FIR_SYSTEM

ALy Address Generator #1
MO 0001 LO 00OF
M1 uuuu L1 0000
M2 uuuu L2 0000
M3 uuuu L3 0000

AX0 uuuu
AX1 uuuu
AY0 uuuu
AY1 uuuu

AC O AQO
AR uuuu AN 0
AF uuuu AV 0
AZ O AS O
Multiplier-Accumulator

10 0009
I1 uuuu
12 uuuu
I3 uuuu

Addr
MX0 2000 Address Generator #2

MX1 uuuu MR2 00 MR1 004A MRO 0644 I4 1000 M4 0001 L4 O0OF
MYO FESC M 0000 IS uuuu M5 uuuu L5 0000
MY1 uuuu n o I6 uuuu M6 uuuu L6 0000
Shifter I7 uuuu M7 uuuu L7 0000
s1 2000 SE uu SR1 uuuu SRO uuvuu Addr
ta DM _004A 3CO0ES _PX 00

8B _uu 38 0

dspp_sim() ~CMD_INP_ACKL:

register

vvvvvyvy

Figure 3. Register Display

DSP PROCESSORS 2-7

By reading the Architecture Description File output of the Sys-
tem Builder, the Simulator configures itself to match the target
system hardware. This enables the Simulator to flag operations
such as attempting to write to ROM or nonexistent memory lo-
cations.

The Simulator supports full symbolic disassembly via the Debug
Symbol Table File output of the Linker.

The Simulator supports three execution modes: Emulator, Ex-
tend and Single-Step. In Emulator mode, the Simulator runs at
its fastest speed. The display is updated every 256 cycles. In
Extend mode, the display is updated every cycle. In Single-Step
mode the Simulator executes a single instruction per run com-
mand and updates the screen.

The basic format of the Simulator display includes a status line
containing information about the status words, program counter
and accumulated cycle time. It also provides a command win-
dow for interactive typing of commands and display of error
messages and warnings. The Simulator’s major informational
displays include the following:

Register The register display shows the basic
processor data registers (primary or
secondary bank), arithmetic status and
the state of the buses and data address

generators.

This window displays instructions in
fully symbolic form. The user can
change opcodes and instructions as
needed.

Program Memory

Data Memory This window displays the numeric con-

tents of data memory.

Data Memory Plot This window plots the contents of
a selected range of data memory on

hardware configurations that support

graphics.

Status This informational display shows break-
points, watchpoints, port status and
interrupt status.

Stack The four columns of the Stack window

each represent one of the four stacks
of the processor. The user can modify
the values through push and pop
operations.

This displays the history of up to 4K
states of the four external buses of the
processor.

Trace Buffer

Cache Memory This displays (symbolically) the con-
tents of cache memory and whether or
not an instruction in the cache is

deemed valid.

Cross Reference Displays the location of all symbol

names.
Modules Lists all available modules by name.
Help Displays a list of Simulator commands

and provides further information on
them as requested.

In addition, the Simulator allows the user to modify the con-
tents of most registers, memories and status words. Breakpoints
can be set in Program Memory and watchpoints in Data Mem-
ory. Command files can be created to execute the same set of

2-8 DSP PROCESSORS

commands. This is useful for repetitive commands to bring the
simulation to a specific starting condition.

User-defined addresses or values can be displayed symbolically.
The state of the Simulator can be saved and restored for future
simulation sessions. Contents of program and data memory can
be dumped to files for use with the hardware development tools.
The Simulator supports decimal and hexadecimal numeric for-
mats. I/O to and from ports reads and writes data files which
can later be analyzed.

Simulator Commands

Simulator commands allow the user to change the state of the
processor. A quick summary of Simulator commands is shown
below. Only the letters shown in caps must be entered to invoke
the command.

Display Control Commands

AlLternate displays secondary data registers

BACkup forces PM/DM/Trace displays to scroll back

BEep enables beeps on user’s terminal

CAche invokes cache display mode

DECimal forces all numbers to be displayed in deci-
mal format

DM invokes data memory display mode

FOrward forces PM/DM/Trace displays to scroll
forward

HELp displays command list for access to help
information

HEXadecimal forces all numbers to be displayed in hexa-
decimal (the default)

Modules displays all source modules

NOBeep suppresses beeps at the user’s terminal

NOSymbolic forces the simulator to be non-symbolic

PLotdm plots the contents of a selected section of
DM

PM invokes program memory display mode

PRimary displays primary data registers

REGister invokes register display mode

STACk invokes stack display mode

STATus displays Interrupt, Break and Port status

SYmbolic forces the simulator to be symbolic
(default)

TOggle toggles display of primary and secondary
register banks

TRace invokes trace display mode

Wipe rewrites current display

Xreference displays cross-reference list

Operation Control Commands

EMulator invokes emulator mode
EXTend invokes extend mode
SInglestep invokes single-step mode

Break Control Commands

CLEARBreak clears a PM break address

CLEARStoptime clears any stop times currently defined

CLEARWatch clears a DM access watch address

COunt sets iteration count and delay on break
points

SETBreak sets a PM break address

SETStoptime sets a time in ns for the processor to halt

SETWatch sets a DM access watch address

Context Control Commands
SETModule sets the module the Simulator uses for sym-
bolic context

ADDS-21XX

File Control Commands

COMnmfile executes simulator commands found in a
batch file

DUMPDm forces a DM image dump to a file

DUMPPm forces a PM image dump to a file

Load reads .EXE and .SYM files and sets default
module context

reads a memory image file

reads a symbol table file

READImage
READSymbol

Modify/Inspect Control Commands

CLEARTime clears the time display

CYCLetime sets the cycle period in ns

FINDDm finds the occurrence of a value in DM
FINDPm finds the occurrence of a value in PM
RESEtstack clears stacks and reset pointers

SETDm sets a segment of DM

SETPC sets the PC

SETPM sets a segment of PM

SETRegister sets a register value

Assembly Commands

ADdsymbol adds a user-defined symbol name

DELete deletes one line of assembly code from PM
EXEcute executes an assembly instruction

PAtch patches one line of assembly code into PM
REMovesymbol deletes a user-defined symbol name

Configuration Control Commands

BATch turns off screen update in Emulator mode

CHipreset simulates the hardware chip RESET

CLOse closes a DM memory mapped 1/O port

HArdware simulates hardware powerup and sets ROM
to undefined

Interrupts activates the interrupt source

Open opens a DM memory mapped 1/O port

POwerup simulates the hardware powerup condition

Execution Control Commands

RUn starts processor running in Extend and Em-
ulator modes

<cr> starts processor running in Single-step mode

Exit Command
EXIt exits from the Simulator and returns to the
host

ADDITIONAL INFORMATION

The ADSP-2100 Software Development System is available for
the PC-DOS*, MS-DOS, VAX/VMS* and UNIX* BSD 4.2 on
the Sun-3. The ADSP-2100 Cross-Software Manual provides
complete information on these tools.

Analog Devices offers a hands-on multiday workshop on pro-
gramming the ADSP-2100 family of processors. The workshop
is taught by our DSP Applications Engineering group and is
presented several times a year at the factory in Norwood, Massa-
chusetts. The fee includes all manuals and workbooks and lab
time. The workshop can also be conducted at your site; consult
us for site pricing.

ORDERING INFORMATION

Part Number Description

ADDS-2110 Cross-Software for VAX/VMS

ADDS-2121% System Builder, Assembler, Linker, PROM
Splitter for IBM-PC*

ADDS-2122% Simulator for IBM-PC

ADDS-2123-C Cross-Software for Sun-3 (UNIX BSD 4.2)

ADDS-2130 C Compiler and Cross-Software for
VAX/VMS*

ADDS-2131 C Compiler and Cross-Software for IBM-PC

ADDS-2133-C C Compiler and Cross-Software for Sun-3
(UNIX BSD 4.2)

ADDS-2190 ADSP-2100 Family Workshop

*PC-DOS and IBM PC are trademarks of International Business
Machines Corp. VAX/VMS is a trademark of Digital Equip-
ment Corp. UNIX is a trademark of AT&T.

1Note that ADDS-2121 and ADDS-2122 must both be ordered
to make up a complete IBM-PC Cross-Software system without
the C Compiler.

DSP PROCESSORS 2-9

2-10 DSP PROCESSORS

ANALOG
DEVICES

DSP Hardware Development Tools

ADDS-21XX

FEATURES

ADSP-2100A EVALUATION BOARD

Can Be Used to Benchmark Real-Time Performance

Interfaces to an IBM-PC or VAX Host via RS-232
Connectors

Operates at 8MHz

Same Interactive, Symbolic User Interface as the
Emulator and Simulator

Three Execution Modes: Single-Step, Extend, Emulator

Displays Contents of ADSP-2100A Registers, Program
Memory, Data Memory and Stack

Multiple Program Memory Breakpoints Supported

4K Program and 2K Data Memory Installed with
Sockets for Expanding to Full 32K Program and
16K Data Memory

Fully Documented Prototyping Expansion Connector to
Customize Evaluation Board to Your Application

Bidirectional Codec Channel to Process Real-World
Signals

12-Bit Linear DAC Provides an Oscilloscope Interface

Input Preamp with Microphone Jack and Output
Amplifier with Speaker Jack Directly Supports
Audio and Speech Applications

ADSP-2100A IN-CIRCUIT EMULATOR

Performs In-Circuit Emulation

Interfaces to an IBM-PC or VAX Host via Two RS-232
Connectors

Operates at 8MHz

Same Interactive, Symbolic User Interface as the
ADSP-2100 Simulator and Evaluation Board

Three Execution Modes: Single-Step, Extend, Emulator

Displays Contents of ADSP-2100A Registers, Program
Memory, Data Memory and Stack

Supports Multiple Program Memory Breakpoints

User-Selectable Program Memory Source: Emulator or
Target System

User-Selectable System Clock Source: Emulator,
Target System or External

OPTIONAL TRACE BOARD FOR IN-CIRCUIT EMULATOR

Buffers Up To 8K of Bus Activity for Display and
Analysis

Break Triggering on an Extensive Set of Possible Bus
Conditions

Buffer Can Be Uploaded to Host for Further Analysis

Installs Inside Emulator Case

GENERAL DESCRIPTION

The ADSP-2100A Hardware Development Tools support the
prototyping, development and debugging of applications in
hardware.

The Evaluation Board allows the user to benchmark real-time
performance by executing Analog Devices-supplied or
user-developed DSP routines.

The In-Circuit Emulator allows the user to debug code in the
actual target system.

The Trace Board enhances the In-Circuit Emulator by capturing
activity on the four external buses of the processor.

The Hardware Development Tools have the same interactive,
symbolic user interface as the Simulator. Single-step, extend and
emulator execution modes run the processor as required for your
debugging activity. Four major display modes enable users to
examine contents of ADSP-2100A registers, program memory,
data memory and stack. Multiple program memory breakpoints
are supported.

DSP PROCESSORS 2-11

ADSP-2100A EVALUATION BOARD

The Evaluation Board is an easy-to-use development tool for
evaluating the ADSP-2100A DSP Microprocessor in real-time
applications. It has three roles in the design process. As a dem-
onstration system, you can observe the ADSP-2100A’s real-time
performance in executing standard DSP benchmarks. As an
evaluation system, it can be used prior to designing hardware
for the real-time execution of your application routines. As a
simulation accelerator, application code can be executed in real
time for increased productivity of software developers.

The Evaluation Board is a stand alone system consisting of an
ADSP-2100A DSP Microprocessor, 4K words of (24-bit) pro-
gram memory, and 2K words of (16-bit) data memory. Addi-
tional program and data memory sockets are provided and can
be populated as desired up to the full 32K program and 16K
data memory address space.

Program EPrototy!oe >
Memory Code <> xpansion 12-Bit DAC
16K x 24 Bits
Scope Trigger [T CODEC
Program MData
Memory Data ADSP-2100 emory
16K x 16 Bits [P Singre.Chip, DSP 5 16K x 16 Bits
Microprocessor ke

External
Clock
Microprocessor [«
Interface
External
Interrupt
8088
| UART lagp»{ RS232
Microprocessor
External
Host

Figure 1. Evaluation Board Block Diagram

2-12 DSP PROCESSORS

ADDS-21XX

The Evaluation Board’s ADSP-2100A runs under the control of
an on-board host processor enabling the user to access a variety
of powerful debugging tools. When interfaced to an external
host computer system running the Cross-Software, the Evalua-
tion Board serves as a real-time development tool.

The emulator mode runs the processor at full speed. Extend
mode updates the screen every cycle during program execution.
Single-step mode executes a single instruction per carriage
return. In addition, multiple program memory breakpoints are
supported.

DATA MEMORY
DATA SPACE

%

The Evaluation Board has four major display modes: register,
program memory, data memory and stack. Register mode dis-
plays the contents of the ADSP-2100A’s primary and alternate
registers. Program memory mode displays the contents of pro-
gram memory. Data memory mode displays the contents of data
memory. Stack display shows the contents of the ADSP-2100A’s
program counter stack and count stack.

The Evaluation Board connects to a terminal and host computer
via two RS-232C serial connectors.

Moy RES%; D] D J3 EXTERNAL CLOCK
- OSCILLATOR
EBEEmEE
. D INTEHRUPT D] D J4 SCOPE VERTICAL
T o [\RG2 ouTPUT
e . S mmsnnsurB J5 SCOPE TRIGGER
pre— FAULT
'NSTRUS%T‘:‘;'E‘ - -] U PALT—] TP1D
1 Jesees u4s PAL] - POWER SUPPLY
— 1 1 Tp 200 | INPICATOR LEDS
. 1 ANALOG GND
+12V
I . Us1 CODEC [‘T'P__:]‘ v Dig @ P2 +12V ANALOG
— 1 S @ | -rev anaos
1 e wiol] @ [reesv ooma
PROGRAM I 2 au"s_emc @ | Ps piarTaL aND
MEMORY
SPACE
1 - - TP 5
cuni‘nsl. A - =] EI J8 MICROPHONE JACK
RS232 PORT I MEMORY MAP
CONFIGURATION L————| R32 OUTPUT AMPLIFIER GAIN
8.192MHz POSTS J9 EXTERNAL INT
J2
CHANNEL B] ':: INTERRUPT é ﬁ . ~ R34 INPUT AMPLIFIER GAIN
Reesn PoRT —1 CONFIGURAIOTS O I~ Re7 INPUT oFFseT ADJUST
U109 ™7
8088 HOST AL
PROCESSOR
ADSP-2100A EVALUATION BOARD
I
U108, U115, U123 J6

FIRMWARE PROTOTYPING

EXPANSION CONNECTOR

Figure 2. Evaluation Board

DSP PROCESSORS 2-13

Built-in analog interfaces provide access to real signals for easy
implementation of audio, speech and telecommunications appli-
cations. A bidirectional codec channel and an undedicated 12-bit
linear D/A converter process real-world signals. The prototyping
expansion bus allows you to construct custom hardware to
reflect or test the eventual hardware environment. In addition,
three BNC connectors interface to external instrumentation. An
integral microphone jack and input pre-amplifier, along with a
speaker jack and output amplifier, support speech and telecom-
munication applications.

With a microphone, speaker and oscilloscope you can easily
implement audio and speech applications. The microphone and
speaker are connected to the bidirectional codec channel via
jacks on the input preamp and output amplifier. The codec is
a National Semiconductor TP3051. It is a memory-mapped
peripheral of the ADSP-2100A that can be written to or read
from using the Data Memory Read and Data Memory Write
commands. The codec represents the input/output sample in an
8-bit binary form. By using the standard p.-law nonlinear trans-
formation, the codec’s effective dynamic range can be extended
to 13 bits. The codec samples data at a frequency of 8.192kHz
using a dedicated clock generator. Communication between the
codec and the ADSP-2100A is synchronized with the DMACK
signal. The codec rejects signals that do not fall in the range of
200Hz to 3400Hz and should be used only in speech or audio
applications in which telephone-quality signals are adequate. An
input pre-amplifier (Analog Devices AD741 operational ampli-
fier) and output audio amplifier (National Semiconductor
L.M338 Audio Power Amplifier) are connected to the input and
output of the codec.

To display processed data, the oscilloscope is connected to the
12-bit linear DAC via a BNC connector. The DAC is an Analog
Devices AD667 12-bit D/A converter. It is a memory-mapped
peripheral of the ADSP-2100A that can be written using the
Data Memory Write commands. The DAC is intended for use
as an analog output for the display of processed data on an oscil-
loscope. It is not intended as a means of reconstructing sampled
data processed by the ADSP-2100A; it lacks the deglitching cir-
cuitry and anti-imaging filtering required of such a system. The
user can construct a linear analog interface consisting of an A/D
converter, D/A converter, antialiasing filter and anti-imaging
filter using the prototyping expansion connector.

The prototyping expansion connector provides the data, address
and interface signals for customizing the Evaluation Board. For
example, analog circuitry composed of linear A/D and D/A con-
verters and antialiasing filters may be connected to the Evalua-
tion Board for implementing filtering applications. The
96-contact prototyping expansion connector brings out the fol-
lowing signals:

2-14 DSP PROCESSORS

Input Signals

EIRQ3 External Interrupt Request 3 (Highest Priority)

EIRQ2 External Interrupt Request 2

EIRQ! External Interrupt Request 1

EIRQO External Interrupt Request 0

EBR External Bus Request . Allows your target board
to request control of the data memory interface.

EDMACK Data Memory Acknowledge. Used for asynchro-
nous transfers across the data memory interface.

THALT Processor Halt by Target System. Assertion of
THALT halts the ADSP-2100A.

RESETOUT System Reset Output. The ADSP-2100A’s RE-

SET line is available at this contact as an output
only.

Output Signals

+12V +12V Analog

AGND Analog Ground

—-12V —12V Analog

GND Digital Ground

BG Bus Grant. Acknowledges an external bus re-
quest (BR).

DMAI13-0 Data Memory Address bits

DMRD Data Memory Read. Indicates a read operation
on the data memory interface.

DMWR Data Memory Write. Indicates a write operation
on the data memory interface.

DMS Data Memory Select. Signals a data memory
access on the data memory interface.

TRAP Indicates the execution of a TRAP instruction.
The ADSP-2100A halts execution and the
TRAP signal remains asserted until THALT is
asserted.

ECE8-1 External Chip Enables 8 through 1. These out-

puts are memory-mapped locations.

Bidirectional Signals

DMD15-0 Data Memory Data Bus

The Evaluation Board must be interfaced to an IBM-PC (with
VT100 emulation) or VAX/VMS system via the RS-232 connec-
tors. This host computer must also run the ADSP-2100 Cross-
Software. The board requires =12V and +5V power

supplies.

ADDS-21XX

ADSP-2100A IN-CIRCUIT EMULATOR

The In-Circuit Emulator allows you to debug code (developed
with the Software Development tools) in the actual target sys-
tem. The Emulator uses an ADSP-2100A to emulate the proces-
sor. It plugs into the target system’s ADSP-2100A socket and
operates at the ADSP-2100A’s cycle rate. The Emulator pro-
vides a software interface similar to the Cross-Software Simula-
tor and to the Evaluation Board.

Once your program has been debugged in the software environ-
ment you can further prove and debug in the hardware area
using the Emulator. It provides a variety of ways to download
your program into the actual hardware, executing out of emula-
tor program memory or target system program memory, for
example, or using any of three sources for the system clock.

The Emulator supports three execution modes. In emulator
mode the Emulator runs at the full processor speed and halts
only when a break condition is encountered. Break conditions
include breakpoints, traps, halt on keyboard interrupt and target
system voltage below 4.5V. While the Emulator is running in
emulator mode, only the program counter and elapsed time
information is updated. When the Emulator halts, the full
screen is updated.

Extend mode runs the processor in a continuous single-step
manner, updating the display after each processor cycle. Instruc-
tions are disassembled on the screen as they are executed. In
emulator and extend modes, emulation can be halted by setting
a breakpoint at a specified location in program memory.

In single-step mode, the Emulator executes one instruction and
halts. All display contents are updated and instructions are dis-
assembled as they are executed. The next instruction is executed
if you type a carriage return or enter the RUN command.

The Emulator has four major display modes (five with the Trace
Board installed). Register display shows the contents of the
ADSP-2100A’s primary and secondary registers. The program
memory and data memory displays show the contents of pro-
gram and data memories. Stack display shows the contents of
the ADSP-2100A’s program counter stack and count stack.

Using the same interactive, symbolic user interface as the Simu-
lator, the Emulator allows the user to modify the contents of
registers, program memory, data memory and the program
counter. Breakpoints can be set in the emulator-based program
memory. User-defined addresses and values can be displayed
symbolically. Numbers can be specified and displayed in either
decimal or hexadecimal format.

The Emulator has other features. The baud rate and parity set-
tings for communications between the Emulator and the host
computer can be specified by the user’s terminal. The Emulator
Pod can be activated and deactivated under software control.
The program memory source can be either the Emulator’s inter-
nal program memory RAM or the target system’s program
memory. Also, files can be downloaded from the host system.
The system clock can be selected from either the Emulator’s
internal clock, the target system’s clock or an external clock
generator.

Propagation Delays

Although the Emulator matches the ADSP-2100A closely in per-
formance for a few signals, its timing is degraded somewhat
from that of the processor. Propagation delays and, in some
cases, software overhead account for the delays. The signals
with degraded timing are:

e CLKIN

« [

e BR

e RESET

e HALT

e TRAP

e PMWR and PMRD

All other signals operate at essentially the same timing as the
processor in a non-emulator system. Complete information and
timing diagrams are given in Appendix B of the ADSP-2100
Emulator Manual.

TRACE BOARD FOR ADSP-2100A IN-CIRCUIT
EMULATOR

The Emulator supports an optional, factory-installed Trace
Board. The Trace Board keeps a running history of past exter-
nal bus states PMA, DMA and DMD in an 8K buffer. The
Trace Buffer Display shows the past external bus states of the
ADSP-2100A.

The Trace Board allows you to trigger on bus conditions. Emu-
lation can be halted after detecting a specified combination of
bus states. The IGNORE option turns off the trace during cer-
tain PMA ranges in order to skip over sections of code. The
Trace Board can trigger on the following eleven different bus
combinations:

PMA AND DMA

PMA AND DMD

DMA AND DMD

PMA AND DMA AND DMD

PMA OR (DMA AND DMD)

DMA OR (PMA AND DMD)

DMD OR (PMA AND DMA)

PMA OR DMA OR DMD

(PMA AND DMA) OR (PMA AND DMD)
(PMA AND DMA) OR (DMA AND DMD)
(PMA AND DMA) OR (DMA AND DMD)

In addition, the trace buffer can be uploaded from trace board
to host computer.

ADDITIONAL INFORMATION

Request the ADSP-2100 Emulator Manual or the ADSP-2100
Evaluation Board Manual from your Analog Devices Sales Engi-
neer for further information.

DSP PROCESSORS 2-15

2-16 DSP PROCESSORS

ORDERING INFORMATION

Part Number Description

ADDS-2150A* 8MHz ADSP-2100A In-Circuit Emulator
(110V)

ADDS-2150AE* | 8MHz ADSP-2100A In-Circuit Emulator
(220V)

ADDS-2151A* 8MHz ADSP-2100A In-Circuit Emulator
with Trace Board (110V)

ADDS-2151AE* | 8MHz ADSP-2100A In-Circuit Emulator
with Trace Board (220V)

ADDS-2160* 8MHz ADSP-2100A Evaluation Board
Upgrade Kits
ADDS-2161 Trace Board Upgrade for ADDS-2150

ADDS-2162 Trace Board Upgrade for ADDS-2150A

*A 12.5MHz version of this product is planned. Please contact factory for
further information.

ANALOG
DEVICES In-Circuit Emulator

ADSP-2101

FEATURES
Supports the ADSP-2101 DSP Microcomputer
Performs In-Circuit Emulation
Operates at the Full Clock Rate of the ADSP-2101
(12.5MHz)
Same Interactive, Symbolic User Interface as the
ADSP-2101 Simulator
Single-Step, Full Speed and Periodic Update Execution
Supports Breakpoints and Triggers
User Selectable Memory Source: Emulator or Target
System
User Selectable Clock Source: Emulator or Target
System
RS-232C Interface to Host System Supporting Up to
19.2 kb/s
8K Trace Buffer
On-Line Assembly/Disassembly windows. The contents of the ADSP-2101’s registers are dis-
Performance Analysis played including serial port control registers, interval timer con-
trol registers an%1 memrj%ma};pild registers. The t:en;;ril win-
R dows can show ¢’ ‘fonteénts of all memories on and off chip
M:LTI: ::Igasr downa':;a;:sBe:ﬁ:; 3‘;'1?;::) mpluding m miemidry. The trace display shows the contents of
y *,th@ 8K ewp truce buffer. The execution profile shows the use of
GENERAL DESCRIPTION ﬁrdﬁrafn modulgs to’measure the efficiency and performance of
The ADSP-2101 In-Circuit Emulator allows t.lwuser %o deﬁgg?, ode.
code developed with the ADSP-210X.- Crdssvﬁoftﬁa’;c Modules i in. 'r,TkG Mﬂator Qﬁow’s the user to modify the contents of registers
an actual target system. The Emulaﬁm v\f!&;chuses an A,D§P§@ ;/’» 5@\&? Gty. Breakpoints can be set and user-defined addresses
2101 to emulate the processor, plugs‘into the target sysﬁm s, , “"» iand values gan be displayed symbolically. For ease of use, the
ADSP-2101 socket and operates at the ADQ’I’»ZIO%’& cyMte) uswﬁn m specify decimal or hexadecimal format.
The Emulator supports three different types oimemorxes psowy, f@n hl% aseembly allows users to modify the code starting at a
gram memory, data memory and boot memory. All memon% k4 e ,ﬁ:, @&Clﬁed location and load instructions on a line-by-line basis.
can be downloaded by the user. The boot memory interface {§*” The disassembled contents of each address can be displayed
supported. The Emulator can operate from either emulator or before a new assembled instruction is stored.
target system based memory. The Emulator supports an 8192-frame deep trace buffer that

. stores data and address buses as well as control signals. Trigger-
The Emulator can run at the full processor speed updating the ing on bus events, control lines and serial ports is supported.

display only when execution halts. The Emulator can also run in These events can be logically ANDed, ORed or negated to
semi-real time updating the display at a predetermined rate up define a trigger event.

to every cycle. The user can also single-step through code from
the keyboard.

The Emulator displays information about the state of the emula-
tion in a variety of windows, similar to the ADSP-2101 Simula-
tor. These include register, memory, execution profile and trace

Histogram Profiling of Executing Code

/,,,,

Consult the factory for current status.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-17

2-18 DSP PROCESSORS

ANALOG
DEVICES

12.5 MIPS DSP Microprocessor

ADSP-2100/ADSP-2100A

FEATURES

Pin- and Code-Compatible DSP Microprocessors
ADSP-2100, 6.144MHz and 8.192MHz
ADSP-2100A, 10.24MHz and 12.5MHz

Separate Program and Data Buses, Extended Off-Chip

Single-Cycle Direct Access to 16K x 16 of Data Memory

Single-Cycle Direct Access to 32K x 24 of Program
Memory

Dual Purpose Program Memory for Both Instruction
and Data Storage

Three Independent Computational Units: ALU,
Multiplier/Accumulator and Barrel Shifter

Two Independent Data Address Generators

Powerful Program Sequencer

Internal Instruction Cache

Provisions for Multiprecision Computation and
Saturation Logic

Single-Cycle Instruction Execution

Multifunction Instructions

Four External Interrupts

80ns Cycle Time (ADSP-2100A)

790mW Maximum Power Dissipation (ADSP-2100A,
J and K Grades)

100-Pin Grid Array, 100-Lead PQFP (JEDEC Style)

APPLICATIONS

Optimized for DSP Algorithms Including
Digital Filtering
Fast Fourier Transforms

Applications Include
Image Processing
Radar, Sonar
Speech Processing
Telecommunications

GENERAL DESCRIPTION

The ADSP-2100 and ADSP-2100A are pin- and code-compatible
single-chip microprocessors optimized for digital signal processing
(DSP) and other high-speed numeric processing applications.
The ADSP-2100 and ADSP-2100A are both fabricated in a low-
power double-layer metal CMOS process. Together, they offer a
span of performance from 6MHz to 12.5MHz. All descriptions
of the ADSP-2100 in the text of this data sheet refer to both the
ADSP-2100A and the ADSP-2100 versions since they have
identical architectures and instruction sets. Timing and electrical
specifications differ as shown in those sections of the data sheet.

Both processors integrate computational units, data address
generators and a program sequencer in a single device. The
ADSP-2100 architecture makes efficient use of external memories
for program and data storage, freeing silicon area for increased

processor performance. The resulting processor combines the
functions and performance of a bit-slice/building block system
with the ease of design and development support of a general
purpose microprocessor.

The ADSP-2100A (K grade) operates at 12.5MHz. Every in-
struction executes in a single 80ns cycle. The ADSP-2100A (J
and K grades) dissipates less than 790mW while the ADSP-2100
dissipates less than 475mW.

The ADSP-2100’s flexible architecture and comprehensive in-
struction set support a high degree of operational parallelism.
Because all instructions execute in a single cycle, MHz = MIPS.
In one cycle the ADSP-2100 can:

® generate the next program address

® fetch the next instruction

® perform one or two data moves

® update one or two data address pointers
® perform a computational operation.

DEVELOPMENT SYSTEM

The ADSP-2100 and ADSP-2100A are supported by a complete
set of tools for software and hardware system development. The
Cross-Software System provides a System Builder for defining
the architecture of simulated systems under development, an
Assembler, a Linker and a interactive Simulator. An ANSI
(draft) Standard C Compiler supports program development in
this widely used programming language, producing ADSP-2100
Assembly code which may be assembled, linked and simulated
with the other development system tools. A PROM Splitter
generates PROM burner compatible files. An In-Circuit Emulator
is available for hardware debugging.

An Evaluation Board is available for quick assessment of actual
processor performance in a prepackaged hardware environment.

DSP PROCESSORS 2-19

ADDITIONAL INFORMATION

For additional information on the architecture and instruction
set of the processor, refer to the ADSP-2100 User’s Manual.
For more information about programming and the Development
System, refer to the ADSP-2100 Cross-Software Manual and the
ADSP-2100 Emulator Manual. For examples of applications
routines, refer to the ADSP-2100 Applications Handbook, Volume
1 or Volume 2. Manuals are available only from your local Analog
Devices sales office. There is also a quarterly newsletter,
DSPatch™, supporting Analog Devices’ digital signal processing
customers.

ARCHITECTURE OVERVIEW

Figure 1 is an overall block diagram of the ADSP-2100. The
processor contains three independent computational units: the
ALU, the multiplier/accumulator (MAC) and the Shifter. The
computational units process 16-bit data directly and have provi-
sions to support multiprecision computations. The ALU performs
a standard set of arithmetic and logic operations; division primitives
are also supported. The MAC performs single-cycle multiply,
multiply/add and multiply/subtract operations. The Shifter
performs logical and arithmetic shifts, normalization, denormali-
zation and derive exponent operations. The Shifter can be used
to efficiently implement any degree of numeric format control,
up to and including full floating point representations. The
computational units are arranged side-by-side instead of serially
for flexible operation sequencing. The internal result (R) bus

directly connects the computational units so that the output of
any unit may be the input of any unit on the next cycle.

A powerful program sequencer-and two dedicated data address
generators ensure efficient use of these computational units. The
program sequencer generates the next instruction address. To
minimize overhead cycles, the sequencer supports conditional
jumps, subroutine calls and returns in a single cycle. With
internal loop counters and loop stacks, the ADSP-2100 executes
looped code with zero overhead; no explicit jump instructions
are required to maintain the loop.

The data address generators (DAGs) handle address pointer
updates. Each DAG keeps track of up to four address pointers.
Whenever the pointer is used to access external data (indirect
addressing), it is modified by a prespecified value. A length
value may be associated with each pointer to implement automatic
modulo addressing for circular buffers. With two independent
DAGs, the processor can generate two addresses simultaneously
.for dual operand fetches.

Efficient data transfer is achieved with the use of five internal
buses.

® Program Memory Address (PMA) bus
® Program Memory Data (PMD) bus

® Data Memory Address (DMA) bus

® Data Memory Data (DMD) bus

® Result (R) bus

CACHE
MEMORY
1 INSTRUCTION
@ @ REGISTER
DATA DATA J\E
ADDRESS ADDRESS
PROGRAM
GENERATOR GENERATOR | SEQUENCER
VAN PMA
PMA BUS 184
L A]
7
DMA
DMA BUS 14y /
C ,I 1
PMD BUS 24,
L v A]
' d
I @D PMD
BUS
EXCHANGE
DMD
16, N\ _ DMD BUS
_— 4 J
@ S/ j ; N/ ' j t
INPUT REGS INPUT REGS INPUT REGS
ALU MAC SHIFTER

OUTPUT REGS

OUTPUT REGS

OUTPUT REGS

{; R BUS 4;

16 <”;
.

i

7

Figure 1. ADSP-2100 Block Diagram

DSPatch is a trademark of Analog Devices, Inc.

2-20 DSP PROCESSORS

ADSP-2100/ADSP-2100A

The program memory (PMD, PMA) buses and data memory
(DMA, DMD) buses extend off-chip to provide direct connections
to external memories. The DMD bus is the primary bus for
routing data internally and to/from external data memory. The
14-bit DMA bus provides direct addressing of 16K X 16 of external
memory. Although the primary function of the program memory
is for storing instructions, it can also store data. In this case, the
PMD bus provides a path for routing data to/from program
memory, permitting dual operand fetches. The 14-bit PMA bus
provides direct addressing of 16K X 24 of external memory,
expandable to 32K X 24 by using the program memory data
access (PMDA) signal as the 15th address line.

When a data fetch from program memory is required, an extra
memory cycle is automatically appended to enable the next
instruction fetch. To avoid this extra cycle, the ADSP-2100 has
an internal instruction cache (16 instructions deep) which serves
as an alternate source for the next instruction. The cache monitor
circuit transparently determines when the cache contents are
valid. When the next instruction is in the cache, no extra cycle

1S necessary.

Pin Description

The data memory interface supports slower memories and memory-
mapped peripherals with wait states. The data memory ac-
knowledge (DMACK) signal provides the necessary handshake.
External devices can gain control of program or data buses
independently with bus request/ grant signals (BR, and BG).

The ADSP-2100 can respond to four external interrupts, which
are internally prioritized, maskable and independently pro-
grammable as either edge- or level-sensitive. Additional external
controls are provided by the RESET, HALT and TRAP signals.
With both BR and RESET recognized, the ADSP-2100 idles,
consuming the least possible current.

The ADSP-2100 instruction set provides flexible data moves
and multifunction (data moves with a computation) instructions.
Every instruction can be executed in a single processor cycle.
The ADSP-2100 assembly language uses an algebraic syntax for
ease of coding and readability. A comprehensive set of development
tools supports program development.

A pin description and detailed discussion of each section of the
ADSP-2100 follows.

This section summarizes the pin description of the processor by interface. In this data sheet, when groups of pins are identified
with subscripts, as in PMD,3 o, the highest numbered pin (PMD,3) is the MSB.

Master input clock operating at four times the processor instruction rate. Nominally 50% duty

cycle. The phases of CLKIN define the eight internal processor states making up one instruction

Pin Name Type Function
Clocks:
CLKIN Input |

cycle.
CLKOUT Output

the internal processor states.

Interrupt Request Lines:

IRQs o Input

and individually maskable.

Control Interface:

Output clock operating at the processor instruction rate with a 50% duty cycle. Synchronized to

Interrupt Request lines that may be either edge triggered or level sensitive. Interrupts are prioritized

Master Reset must be asserted long enough to assure proper reset. When RESET is released,
Used to halt the processor. All control signals become inactive and the address and data buses are
Used to indicate the execution of a TRAP instruction. Remains asserted until HALT is asserted

Bus Request used by an external device to request control of the program and data memory interface.

Upon receiving BR the processor halts execution at the completion of the current cycle and relinquishes
the program and data memory interface by tristating PMA, PMD, PMS, PMWR, PMRD, PMDA,
DMA, DMD, DMS, DMRD and DMWR. The processor regains control when BR is released.

Bus Grant. Acknowledges a bus request (BR), indicating that the external device may take control.

RESET Input

execution begins at program memory location 0004.
HALT Input

driven for observation.
TRAP Output

by an external device.
BR Input
BG Output Bus s a t

BG is held asserted until BR is released.
Program Memory Interface:
PMA;3 ¢ Output Program Memory Address Bus; tristated when BG is asserted.
PMD;3 Bidirectional Program Memory Data Bus; tristated when BG is asserted.
PMS Output

Program Memory Select signals a program memory access on the PM interface. Usable as a chip

select signal for external memories. Remains asserted on successive program memory accesses. HI
only when the processor is halted or after execution of a TRAP instruction. Tristated when BG is

asserted.

DSP PROCESSORS 2-21

Program Memory Interface:

Program Memory Read indicates a read operation on the PM interface. Also usable as a read

Program Memory Write establishes the direction of data transfer on the PM interface. Also usable

PMRD Output 10N |

strobe or output enable signal. Tristated when BG is asserted.
PMWR Output

as a write strobe. Tristated when BG is asserted.
PMDA Output

Program Memory Data Access used to distinguish instruction and data fetches from PM. Asserted

high when data, as opposed to instruction, are accessed. Also usable as a fifteenth PM address bit.

Tristated when BG is asserted.
Data Memory Interface:

Data Memory Select signals a Data Memory Access on the Data Memory interface. Usable as a

chip select signal for external memories. Remains asserted on successive data memory accesses.
HI only when the processor is halted or after execution of a TRAP instruction. Tristated when

Data Memory Read indicates a read operation on the Data Memory interface. Also usable as a

DMA3 ¢ Output Data Memory Address Bus; tristated when BG is asserted.
DMDjs_g Bidirectional Data Memory Data Bus; tristated when BG is asserted.
DMS Output

BG is asserted.
DMRD Output eD

read strobe or output enable signal. Tristated when BG is asserted.
DMWR Output

Data Memory Write indicates a write operation on the Data Memory interface. Also usable as a

write strobe. Tristated when BG is asserted.

DMACK Input

Data Memory Acknowledge signal used for asynchronous transfers across the DM interface. Indicates

that data memory or memory-mapped peripherals are ready for data transfer. If DMACK is not
asserted when checked by the processor, wait states are automatically generated until DMACK is

asserted.
Supply Rails:

and logic functions: add, subtract, negate, increment, decrement,
absolute value, AND, OR, Exclusive OR and NOT. Two divide

Vbbb Supply Power supply rail nominally +5VDC. There are four Vpp pins.
GND Ground Power supply return. There are nine GND pins.
PMD BUS 24,
7
oMD BUS s, Y 16 (UPPER)
7

X X

Y

AX
REGISTERS
2x16

L mux I
X Y AF
Az 4— REGISTER
A <+
Al
AV <€— AL [—ci
AS €
AQ @
R
16
’/
16/
Mux
AR
REGISTER

16 % -
°/ R - BUS

7

Figure 2. ALU Block Diagram
Arithmetic/Logic Unit
Figure 2 shows a block diagram of the Arithmetic/Logic Unit
(ALU).
The ALU provides a standard set of general purpose arithmetic

2-22 DSP PROCESSORS

primitives are also provided to facilitate division. The ALU
takes two 16-bit inputs, X and Y, and generates one 16-bit
output, R. It accepts the carry (AC) bit in the arithmetic status
register (ASTAT) as the carry-in (CI) bit. The carry-in feature
enables multiprecision computations. Six arithmetic status bits
are generated: AZ (zero), AN (negative), AV (overflow), AC
(carry), AS (sign) and AQ (quotient). These status bits are
latched in ASTAT.

The X input port can be fed by either the AX register file or
any result registers on the R-bus (AR, MR0O, MR1, MR2, SRO,
or SR1). The AX register file contains two registers, AX0 and
AXI1. The AX registers can be loaded from the DMD bus. The
Y input port can be fed by either the AY register file or the
ALU feedback (AF) register. The AY register file contains two
registers, AYO and AY1. The AY registers can be loaded from
either the DMD bus or the PMD bus.

The register file outputs are dual ported so that one register can
drive the ALU input while either one simultaneously drives the
DMD bus. The ALU output can be latched in either the AR
register or the AF register.

The AR register has a saturation capability; it can automatically
output plus or minus the maximum value if an overflow or
underflow occurs. The saturation mode is enabled by a bit in
the mode status register (MSTAT). The AR register can drive
both the R-bus and the DMD bus and can be loaded from the
DMD bus.

The ALU contains a duplicate bank of registers shown in Figure
2 as a “shadow” behind the primary registers. The secondary
set contains all the registers described above (AX0, AX1, AYO,
AY1, AF, AR). Only one set is accessible at a time. The two
sets of registers allow fast context switching for interrupt servicing.
The active set is determined by a bit in MSTAT.

ADSP-2100/ADSP-2100A

Multiplier/Accumulator

The multiplier/accumulator (MAC) implements high-speed
multiply, multiply/add and multiply/subtract operations.
Figure 3 shows a block diagram of the MAC section.

PMD BUS 2'/
7 7

DMD BUS 15, A 16 (UPPER)
rd

MX
REGISTERS
2x16

X Y MF
MULTIPLIER REGISTER
P
40 2/ 16
__ﬁ /‘ 4

ADD / SUBTRACT I
MV
R2 R1 RO
I mux | I MuX I [mux J
oy 16y 16p
y A
| MR2 I | MR1 I | MRO I
REGISTER REGISTER REGISTER
4
all
u
ol x
i 16, i R - BUS i

Figure 3. MAC Block Diagram

The multiplier takes two 16-bit inputs, X and Y, and generates
one 32-bit output, P. The 32-bit output is routed to a 40-bit
accumulator which can add or subtract the P output from the
value in MR. MR is a 40-bit register which is divided into three
sections: MRO (bits 0-15), MR1 (bits 16-31), and MR2 (bits
32-39). The result of the accumulator is either loaded into the
MR register or into the 16-bit MAC feedback (MF) register.
The multiplier accepts the X and Y inputs in either signed or
unsigned formats. The result is shifted one bit to the left auto-
matically to remove the redundant sign bit for fractional justifi-
cation. The accumulator generates one status bit, MV, which is
set when the accumulator result overflows the 32-bit boundary.
A saturate command is available to change the content of the
MR register to the maximum or minimum 32-bit value when
MYV is set. The accumulator also has the capability for rounding
the 40-bit result at the boundary between bit 15 and bit 16.

The MAC and ALU registers are similar. The X input port can
be fed by either the MX register file (MX0, MX1) or any result
registers on the R-bus (AR, MR0O, MR1, MR2, SRO or SR1).

The MX register file is readable and loadable from the DMD
bus and has dual-ported outputs.

The Y input port can be fed by either the MY register file
(MYO0, MY1) or the MF register. The MY register file is readable
from the DMD bus and readable and loadable from both the
DMD and the PMD bus. Its outputs are dual ported.

The accumulator output can be latched in either the MR register
or the MF register. The MR register is connected to both the
R-bus and the DMD-bus. Like the ALU section, the MAC
section contains two complete banks of registers (MX0, MX1,
MY0, MY1, MF, MRO, MR1, MR2) to allow fast context
switching.

Shifter

The Shifter gives the ADSP-2100 its unique capability to handle
data formatting and numeric scaling. Figure 4 shows a block
diagram of the Shifter.

The Shifter can be divided into the following components: the
shifter array, the OR/PASS logic, the exponent detector and the
exponent compare logic. These components give the Shifter its
six basic functions: arithmetic shift, logical shift, normalization,
denormalization, derive exponent and derive block exponent.

The shifter array is a 16 X 32-barrel shifter. It accepts a 16-bit
input and can place it anywhere in the 32-bit output field, from
off-scale right to off-scale left. The Shifter can perform arithmetic
shifts (shifter output is sign-extended to the left) or logical shifts
(shifter output is zero-filled to the left). The placement of the
16-bit input is determined by the control code (C) and the HI/LO
reference signal. The control code can come from one of three
sources: directly from the instruction (immediate arithmetic or
logical shift), from the SE register (denormalization) or the
negated value of the SE register (normalization). The shifter
input can come from either the 16-bit SI register or any result
register on the R-bus. The 32-bit output of the shifter array is
fed to the OR/PASS circuit. The result can be either logically
OR-ed with the current contents of the SR register or passed
directly to the SR register. The SR register is divided into two
16-bit sections: SRO (bits 0-15) and SR1 (bits 16-31).

The shifter input is also routed to the exponent detector circuitry.
The exponent detector generates a value to indicate how many
places the input must be up-shifted to eliminate all but one of
the sign bits. This value is effectively the base 2 exponent of the
number. The result of the exponent detector can be latched into
the SE register (for a normalize operation) or can be sent to the
exponent compare logic. The exponent compare logic compares
the derived exponent with the value in the SB register and
updates the SB register only when the derived exponent value is
larger than the current value in the SB register. Therefore, the
exponent compare logic can be used to find the largest exponent
value in an array of shifter inputs.

The Shifter includes the following registers: the SI register, the
SE register, the SB register and the SR register. All these registers
are readable and loadable from the DMD-bus. The SR register
can also drive the R-bus. Like the ALU and MAC, the Shifter
contains two complete banks of registers for context switching.
Each set contains all the registers described above, but only one
set is accessible at a time. The active set is determined by a bit
in MSTAT.

DSP PROCESSORS 2-23

DMD BUS

SB
REGISTER

Sl
REGISTER

y

X
EXPONENT
COMPARE | DETECTOR *
Q | [X
HI/LO R SHIFTER
8 c ARRAY
y | [4 o o

_&j ’/gz

SE
REGISTER
NEGATE
- I

OR / PASS l
A6 pes
AR y
MUX I I Mux l

From
INSTRUCTION

SR1 SRO
REGISTER REGISTER
/16

y y

[}
A6 /

R - BUS

d A

V.7

Figure 4. Shifter Block Diagram

Data Address Generators
Figure 5 shows a block diagram of a data address generator.

The data address generators (DAGs) provide indirect addressing
for data stored in external memories. The processor contains
two independent DAGs so that two data operands (one in program
memory and one in data memory) can be addressed simultaneously.
The two data address generators are identical except that DAG1
has a bit reversal option on the output and can only generate

16 DMD-BUS
" 14 Mux
2
e 1 in
FROM ©
INSTR.
L | M 2
REGISTERS vt iad)
ax14 4x14 4x14 FROM
INSTR
14 ADD

REVERSE } DAG #10NLY

ADDRESS

Figure 5. Data Address Generator

2-24 DSP PROCESSORS

data memory addresses, while DAG2 can generate both program
and data memory addresses but has no bit reversal capability.

There are three register files in each DAG: the modify (M)
register file, the indirect (I) register file, and the length (L)
register file. Each of these register files contain four 14-bit registers
which are readable and loadable from the DMD-bus. The I
registers hold the actual addresses used to access external memory.
When using the indirect addressing mode, the selected I register
content is driven onto either the PMA or DMA bus. This value
is post-modified by adding the content of the selected M register.
The modified address is passed through the modulus logic.
Associated with each I register is an L register which may contain
the length of the buffer addressed by the I register. The L
register and the modulus logic together enable circular buffer
addressing with automatic wrap around at the buffer boundary.
The modulus logic is disabled by setting the length of the associated
buffer to zero.

Program Sequencer

The program sequencer incorporates powerful and flexible
mechanisms for program flow control such as zero-overhead
looping, single-cycle branching (both conditional and uncondi-
tional), and automatic interrupt processing. Figure 6 shows a
block diagram of the program sequencer.

The sequencing logic controls the flow of the program execution.
It outputs a program memory address onto the PMA bus from

ADSP-2100/ADSP-2100A

one of four sources: the PC incrementer, PC stack, instruction
register or interrupt controller. The next address source selector
controls which of these four sources are selected based on the
current instruction word and the processor status. A fifth possible
source for the next program memory address is provided by
DAG2 when a register indirect jump is executed.

The program counter (PC) is a 14-bit register which contains
the address of the currently executing instruction. The PC output
goes to the incrementer. The incremented output is selected as
the next program memory address if program flow is sequential.
The PC value is pushed onto the 16 x 14 PC stack when a CALL
instruction is executed or when an interrupt is processed. The
PC stack is popped when a return from subroutine or interrupt
is executed. The PC stack is also used in zero-overhead looping.

The program sequencer section contains five status registers.
These are the Arithmetic Status register (ASTAT), the Stack
Status register (SSTAT), the Mode Status register (MSTAT),
the Interrupt Control register ICNTL) and the Interrupt Mask
register (IMASK). These registers are described in detail in the
next section.

The interrupt controller allows the processor to respond to one
of four external interrupts with a minimum of overhead. The
interrupts are internally prioritized and are individually maskable.
Each interrupt can be set to be either edge- or level-sensitive.
Depending on a bit in the interrupt control register (ICNTL),
interrupt routines can either be nested, with higher priority
interrupts taking precedence, or processed sequentially, with
only one interrupt service active at a time. When responding to
an interrupt, the status registers ASTAT, MSTAT, IMASK are
pushed onto the status stack and the PC counter is loaded with
the appropriate vectored address. The status stack is four levels
deep to allow four levels of interrupt nesting. The stack is auto-
matically popped when return from interrupt is executed.

The vector addresses for each interrupt are fixed at the lowest
four addresses in the program memory space. Single-word,
single-cycle branch instructions may be placed at these locations
to transfer control to the appropriate interrupt service routine.

The down counter and the count stack implement a powerful
looping mechanism. The down counter is a 14-bit register with

DMD BUS 16,
A
COUNT STACK CONDITION CODE (4 bits)
4 4
X1 ADDRESS of JUMP (14 bits)
FUNCTION FIELD
COUNTER MUX LReT N8 TRUCTION
LOGIC |..‘1 LOOP (14 bits)
TERMINATION
DOWN CONDITION (4 bits)
COUNTER
CE__ our |
l i 18, From INSTRUCTION REGISTER
———————
18,
4 Loop sTACK
STATUS iy
STACK 4 T
4X18 7
.
l S1a
STATUS
2
LOGIC CONDITION
LooP
Logic 4 — comPARATOR
STATUS
aATENETS REGISTERS
18
/ ;’14

A4 (mask)

r
4, o INTERRUPT
————7/% CONTROLLER

PC STACK
16 X 14

PROGRAM
COUNTER

INCREMENT

1 l

—

NEXT ADDRESS MUX

NEXT
ADDRESS
OURCE

[&— s
SELECT

i PMA BUS 14
7

Figure 6. Program Sequencer

DSP PROCESSORS 2-25

auto-decrement capability. It is loaded from the DMD bus with
the loop count. The count is decremented every time the counter
value is checked; when the count expires, the counter expired
(CE) flag is set. The count stack allows the nesting of loops by
storing temporarily dormant loop counts. When a new value is
loaded into the counter from the DMD bus, the current counter
value is automatically pushed onto the count stack as program
flow enters a loop. The count stack is automatically popped
whenever the CE flag is tested and is true, thereby resuming
execution of the code outside the loop.

The DO UNTIL instruction executes a zero-overhead loop
using the loop stack and the loop comparator. For a DO UNTIL
instruction, a 14-bit termination address and a 4-bit termination
condition are pushed onto the 18-bit loop stack. The address of
the next instruction (which identifies the top of the loop) is
pushed onto the PC stack. The loop comparator continuously
compares the current PC value against the termination address
on the top of the loop stack. When the termination address is
detected, the processor checks if the termination condition is
met. If the termination condition is not met, then the top of the
PC stack is used as the next PC address, returning program
flow to the beginning of the loop. If the termination condition is
met, then the PC stack is popped, the current PC is incremented
by one, and program flow falls out of the loop. The loop stack
is four levels deep, permitting four levels of zero-overhead loop
nesting.

Instruction Cache Memory

The instruction cache memory is 16 levels deep and one instruction
(24 bits) wide. The cache memory maintains a short history of
previously executed instructions so they can be fetched internally
if they are needed again.

Every time an instruction is fetched from external memory, it is
also written into the cache memory. When the program enters a
loop which fits within the cache, all the instructions in the loop
are stored in cache during the first pass. On subsequent passes,
the instructions can be fetched from the instruction cache when
a program memory data access is required. This allows the
program memory to be used for data access without penalty.
The ADSP-2100 then becomes, in effect, a three-bus system
with two data buses and one program bus. For the multiply/ac-
cumulate operations typical of digital signal processing algorithms,
this gives significant speed advantages.

Instructions are fetched from cache memory only when a program
memory data fetch is required. The cache monitor circuit auto-
matically keeps track of when the next instruction is contained
in the cache. No maintenance or overhead is needed to store
externally fetched instructions in the cache or to read previously
fetched instructions from cache.

PMD-DMD Bus Exchange

The PMD-DMD bus exchange circuit couples the PMD and
DMD buses. The PMD bus is 24 bits wide and the DMD bus
is 16 bits wide. The upper 16 bits of PMD are connected to the
DMD bus. An 8-bit register (PX) allows transfer of the full
width of the PMD bus. When data is read from the PMD bus,
the lower 8 bits of the PMD bus are loaded into PX. When
writing to the PMD bus, the contents of PX are appended to
the upper 16 bits, forming a 24-bit value. The PX register is
readable and loadable from the DMD bus.

2-26 DSP PROCESSORS

STATUS REGISTERS

The ADSP-2100 maintains five status registers, each of which
can be read over the DMD bus and four of which can be written.
These registers are:

ASTAT Arithmetic Status register
SSTAT Stack Status register (read-only)
MSTAT Mode Status register

ICNTL Interrupt Control register
IMASK Interrupt Mask register
ASTAT

ASTAT is 8 bits wide and holds the status information generated
by the computational sections of the processor. The bits in
ASTAT are defined as follows:

AZ (ALU result zero)
AN (ALU result negative)
AV (ALU overflow)

AC (ALU-carry)

(ALU X input sign)
AQ (ALU quotient flag)
MV (MACoverflow)

SS (Shifter input sign)

The bits which express a particular condition (AZ, AN, AV,
AC, MV) are all positive sense (1=true, 0=false). Each of the
bits are automatically updated whenever a new status is generated
by an arithmetic operation. As such, each bit is affected only by
a certain subset of arithmetic operations, as defined by the
following table:

NoOUVhAEWN—~O
»
[Z]

Status Bit Updated on:

AZ,AN,AV,AC Any ALU operation except division

AS ALU absolute value operation

AQ ALU divide operations

MV Any MAC operation except saturate MR
SS Shifter exponent detect operation
SSTAT

SSTAT is 8 bits wide and holds the status of the four internal
stacks. The bits in SSTAT are:

PC Stack Empty

PC Stack Overflow
Count Stack Empty
Count Stack Overflow
Status Stack Empty
Status Stack Overflow
Loop Stack Empty
Loop Stack Overflow

All of the bits are positive sense (1 =true, 0="false). The empty
status bits indicate that the number of pop operations for the
stack is greater than or equal to the number of push operations
(if no stack overflow has occurred) since the last reset. The
overflow status bits indicate that the number of push operations
for the stack has exceeded the number of pop operations by an
amount that is greater than the depth of the stack. When this
occurs, the item(s) most recently pushed will be missing from
the stack (old data is considered more important than new). The
stack overflow status bits “stick” once they are set, so that
subsequent pop operations have no effect on them. A processor
reset must be executed to clear the stack overflow status.

NV A WN-~O

ADSP-2100/ADSP-2100A

MSTAT

MSTAT is a 4-bit register that defines various operating modes
of the processor. The Mode Control instruction enables or disables
the four operating modes. The bits in MSTAT are:

0 Data Register Bank Select

1 Bit Reverse Mode (DAG1 only)
2 ALU Overflow Latch Mode

3 AR Saturation Mode

The data register bank select bit determines which set of data
registers is currently active (0= primary, 1=secondary). The
data registers include all of the result and input registers to the
ALU, MAGC, and Shifter (AX0, AX1, AYO0, AY1, AF, AR,
MX0, MX1, MY0, MY1, MF, MRO, MR1, MR2, SB, SE, SI,
SRO and SR1). At initialization, the data register bank select bit
is cleared.

The bit reverse mode, when enabled, bit-wise reverses all addresses
generated by DAGI. This is most useful for reordering the
input or output data in a radix-2 FFT algorithm.

The ALU overflow latch mode causes the AV (ALU overflow)
status bit to “stick” once it is set. In this mode, when an ALU
overflow occurs, AV will be set and remain set, even if subsequent
ALU operations do not generate overflows. AV can then only
be cleared by writing a zero into it from the DMD bus.

The AR saturation mode, when set, causes ALU results to be
saturated to the maximum positive (H#7FFF) or negative
(H#8000) values when an ALU overflow occurs.

IMASK
IMASK is four bits wide and allows the four interrupt inputs to
be individually enabled or disabled. The bits in IMASK are:

0 IRQO Enable

The bits are all positive sense (0 =disabled, 1 =enabled). IMASK
is set to zero upon a processor reset so that all interrupts are
disabled initially.

ICNTL
ICNTL is a 5-bit register configuring the interrupt modes of the
processor. The bits in ICNTL are:

0 IRQO Sensitivity
1 TRQI Sensitivity
2 TRQ2 Sensitivity
3 TRQ3 Sensitivity
4 Interrupt Nesting Mode

The IRQ sensitivity bits determine whether a given interrupt
input is edge- or level-sensitive (0= level-sensitive, 1 = edge-
sensitive). These bits are all undefined after a processor reset.

The interrupt nesting mode determines whether nesting of in-
terrupt service routines is allowed. When set to zero, all interrupt
levels will be masked automatically when an interrupt service
routine is entered. When set to one, IMASK will be set so that
only equal and lower priority interrupts will be masked, permitting
higher priority interrupts to interrupt the current interrupt
service routine. This bit is undefined after a processor reset.

CONDITION CODES

The condition codes are used to determine whether a conditional
instruction, such as a jump, trap, call, return, MAC saturation
or arithmetic operation, is performed. The sixteen composite
status conditions and their derivations are given in Table I.
Since arithmetic status is latched into ASTAT at the end of a
processor cycle, the condition logic outputs represent conditions
generated on a previous cycle.

1 IRQIEnable
2 TRQZEnable
3 TRQ3 Enable
Code Status Condition Truelf:
EQ ALU Equal Zero AZ=1
NE ALU Not Equal Zero AZ=0
LT ALU Less Than Zero AN .XOR.AV=1
GE ALU Greater Than or Equal Zero | AN .XOR.AV=0
LE ALU Less Than or Equal Zero (AN .XOR.AV).OR.AZ=1
GT ALU Greater Than Zero (AN .XOR.AV).OR.AZ=0
AC ALU Carry AC=1
NOTAC | NotALU Carry AC=0
AV ALU Overflow AV=1
NOTAV | Not ALU Overflow AV=0
MV MAC Overflow MV=1
NOT MV | Not MAC Overflow MV=0
NEG ALU X Input Sign Negative AS=1
POS ALU X Input Sign Positive AS=0
NOTCE | NotCounter Expired CE+#0
TRUE True Always True

Table . Condition Codes

DSP PROCESSORS 2-27

SYSTEM INTERFACE
Figure 7 shows a basic system configuration with the
ADSP-2100.

Clock Signals

The ADSP-2100 takes a TTL-compatible clock signal, CLKIN,
running at four times the basic processor cycle time as an input.
Using this clock input, the processor divides the internal processor
cycle into eight states, defined by the edges of the input clock.
The active processor cycle consists of states 1 through 7. State 8
is a dead zone to provide a neutral stopping point for halting

the processor.

A clock output (CLKOUT) signal is generated by the processor
to synchronize external devices to the processor’s internal cycles.
CLKOUT is high during states 8, 1, 2 and 3, and low during

states 4, 5, 6 and 7. Its frequency is one-fourth of that of CLKIN.
Except during RESET, the CLKOUT signal runs continuously.

Bus Interface

The ADSP-2100 can relinquish control of the memory buses to
an external device. When the external device requires access to
memory, it asserts the Bus Request (BR) signal. After completing
the current instruction, the processor halts program execution,
tristates the PMA, PMD, PMS, PMRD, PMWR and PMDA
output drivers and the DMA, DMD, DMS, DMRD and DMWR
output drivers, and asserts the Bus Grant (BG) signal. When the
BR signal is released, the processor re-enables the output drivers,
releases the BG signal, and continues program execution from
the point where it stopped.

Program Memory Interface

The Program Memory Interface supports two buses: the program
memory address bus (PMA) and the program memory data bus
(PMD). The 14-bit PMA bus directly addresses up to 16K
words. The PMD bus is bidirectional and 24 bits wide.

Since program memo:y can be used for both instruction code
and data storage, the Program Memory Data Access (PMDA)
signal is asserted whenever data, as opposed to an instruction
code, is fetched. There is no placement restriction for instruction
code and data in program memory area if less than 16K words
are used. Since the timing of PMDA is compatible with that of
the PMA lines, it may be used as a 15th address line if desired.
This effectively doubles the program memory area to 32K,
which must be split into 16K dedicated to instruction codes and
16K to data.

The program memory data lines are bidirectional. The Program
Memory Select (PMS) signal indicates access to the Program .
Memory and can be used as a chip select signal. The Program
Memory Write (PMWR) signal indicates a write operation and
can be used as a write strobe. The Program Memory Read
(PMRD) signal indicates a read operation and can be used as a
read strobe or output enable signal.

Although the processor internal data bus is only 16 bits, the
ADSP-2100 can write to the full 24-bit program memory using
the PX register.

Data Memory Interface

The Data Memory Interface supports two buses: the Data Memory
Address bus (DMA) and the Data Memory Data bus (DMD).
The 14-bit DMA bus directly addresses up to 16K words of
data. The DMD bus is bidirectional and 16 bits wide. The Data
Memory Select (DMS) signal indicates access to the Data Memory
and can be used as a chip select signal. The Data Memory Write
(DMWR) signal indicates a write operation and can be used as a
write strobe. The Data Memory Read (DMRD) signal indicates
a read operation and can be used as a read strobe or output
enable signal.

The ADSP-2100 supports memory-mapped I/O, with the peripher-
als memory mapped into the data memory address space and
accessed by the processor in the same manner as data memory.

cLock
Y — : -
CLKIN CLKOUT E
& f—— s WS [——> >0 DATA
OF lag——| FWED BMAD |—i [WE MEMORY
PROGRAM WE h@——— FWWR SR > N apon 16K X 16
MEMORY ADSP-2100 .
16/32k x 24 t——| PMDA DMACK fet——| <—>{ paTa
14 14
ADDR K—Z—] pma DMA —
24 o -
DATA [e——f—" PMD oMp [> —
c
_— o - GE
RESET HALT TRAP IRG BR B g
E PERIPHERALS
ﬁ f % ? # o AcK
4 | > aooR
) J<:> DATA

Figure 7. Basic System Configuration

2-28 DSP PROCESSORS

ADSP-2100/ADSP-2100A

To allow interfacing to slower peripherals, the data memory
acknowledge (DMACK) signal is provided. The ADSP-2100
checks the status of the DMACK signal at the end of each
processor cycle. If the DMACK signal is not asserted, the processor
extends the current cycle by another full cycle. This extension
occurs as many times as necessary until the DMACK signal is
asserted and the access is completed.

Interrupt Handling .
The ADSP-2100 provides four direct interrupt input pins, IRQq
to IRQ;. Each interrupt pin corresponds to a particular interrupt
priority level from 3 (highest) to 0 (lowest). The four interrupt
levels are internally prioritized and individually maskable.
These input pins can be programmed to be either level- or edge-
sensitive.

The ADSP-2100 supports a vectored interrupt scheme: when an
external interrupt is acknowledged, the processor switches program
control to the interrupt vector address corresponding to the
interrupt level (program memory locations 0000 to 0003). Inter-
rupts can optionally be nested so that a higher priority interrupt
can preempt the currently executing interrupt service routine.

Processor Control Interface

The processor control interface provides external control over
the activity of the processor. The control signals are RESET,
HALT and TRAP.

The RESET signal initiates a master reset of the ADSP-2100.
The RESET signal must be asserted after the chip is powered
up to assure proper initialization. The master reset performs the
following:

Initialize internal clock circuitry

Reset all internal stack pointers

Clear the cache memory monitor

If there is no pending bus request, PMA is driven with 0004
Mask all interrupts

Clear MSTAT register.

The HALT signal is used to suspend program execution tem-
porarily. When HALT is asserted, the processor stops at the
end of the current instruction. To ensure that the processor
always halts after completion of an instruction fetch, an external
fetch of the next instruction is forced even if the instruction is
available from internal cache memory. Since the processor always
stops after an external instruction fetch cycle, the controlling
device is able to observe the instruction address where the program
was stopped. The halt condition can be sustained for any length
of time, during which all signals generated by the processor will
remain static (maintaining the output at state 8). The processor
will continue normal execution when the HALT line is

released.

AN HA WN -

The TRAP signal is generated by the processor whenever a
TRAP instruction is executed. Assertion of the TRAP signal
indicates that the processor has stopped instruction execution
just after the end of the cycle which executed the TRAP instruction.
The TRAP state is identical to the HALT state, with the processor
output frozen in state 8. In this case, the processor PMA bus
contains the address of the instruction following the TRAP
instruction. The TRAP signal remains asserted until the HALT
signal is asserted externally. When the HALT signal assertion is
sensed, the processor releases the TRAP signal. However, the
processor remains in the halt condition until the HALT line is
released.

Multiprocessor Synchronization

Even when multiple ADSP-2100s are driven from the same
CLKIN signal, there is a phase ambiguity between the various
processors. This ambiguity can be prevented by using a single
master RESET signal synchronized to CLKIN. When the master
RESET is released, all the processors begin state 5 on the same
edge of CLKIN. Once initialized in this manner, the cycle
states of the processors remain synchronized with each other.

INSTRUCTION SET DESCRIPTION

The ADSP-2100 assembly language uses an algebraic syntax for
ease of coding and readability. The sources and destinations of
computations and data movements are written explicitly in each
assembly statement, eliminating cryptic assembler mnemonics.
Nevertheless, every instruction assembles into a single 24-bit
word and executes in a single cycle. The instructions encompass
a wide variety of instruction types along with a high degree of
operational parallelism. There are five basic categories of in-
structions: data move instructions, computational instructions,
multifunction instructions, program flow control instructions
and miscellaneous instructions. Each of these instruction types
is described briefly. The complete instruction set is summarized
in Table IV at the end of this section.

Data Move Instructions

Table II gives a list of all registers that are accessible using the
data move instructions. (Only the program counter (PC), the
instruction register, the arithmetic feedback register (AF) and
the multiplier feedback register (MF) are not on this list.) This
set of registers is denoted as reg in the instruction set summary
given in Table IV. A subset of the reg group associated with the
computational units, which generally hold data as opposed to
address or status information, is denoted as dreg.

The data move instructions include transfers between internal

registers, between data memories and internal registers, between

program memories and internal registers, and immediate value

loading of registers and data memories. The content of every reg
AX0,AX1 \
AY0,AY1

AR

MX0, MX1

MYO0,MY1

MRO, MR1, MR2

SI

SE

SRO, SR1

Data
Registers
(dreg)

SB

PX

10,11,12,13,14,15,16,17

MO, M1, M2, M3, M4, MS, M6, M7
L0,L1,12,13,14,15,L6,L7
CNTR

ASTAT

MSTAT

SSTAT

IMASK

ICNTL J

Accessible
Registers
(reg)

Table Il. Register Classification

DSP PROCESSORS 2-29

can also be loaded to any other reg. Every reg can be loaded
with an immediate value which is the full width of the particular
register being loaded.

Two addressing modes are supported for data memory transfers:
direct addressing and indirect addressing. In direct addressing,
the memory address is supplied from the instruction word. In
indirect addressing, one of the data address generators provides
the address. Using direct addressing, the content of a data memory
location can be written and read by any reg. Using indirect
addressing, the content of a data memory location can only be
written and read by a dreg. Immediate data load to data memory
is permitted with indirect addressing. Only the indirect addressing
mode is supported for program memory data transfers, and
contents of a program memory location can be read and written
to any dreg.

Computational Instructions

There are three types of operations associated with the computa-
tional units: ALU operations, MAC operations and shifter oper-
ations. With few exceptions, all these computational instructions
can be made conditional. (The permissible conditions are specified
in Table I.) Each computational unit has a set of input registers
and output registers. A list of permissible input operands and
result registers for each of the units is given in Table III.

Multifunction Instructions

Multifunction instructions execute one computational operation
with one or two data moves. All of the multifunction instructions
utilize various combinations of the computational and data move
operations described above. Since the instruction word is only
24 bits wide, only certain combinations are valid. In general,

the following rules are followed.

1 Only one unconditional computational operation can be

specified

2 Any memory transfer must use the indirect addressing
mode

3 Data move operations can only involve data registers
(dregs)

4 Only an ALU or a MAC operation can be specified with
two operand fetches, one from program memory and one
from data memory.

2-30 DSP PROCESSORS

Program Flow Control Instructions

Program flow control instructions include JUMP, CALL, return
from subroutine, return from interrupt, DO UNTIL and TRAP.
All of these instructions can be made conditional. The JUMP
and CALL instructions support both direct addressing, with the
destination address specified by the instruction word, and indirect
addressing, with the destination address specified by one of the
I registers in DAG2.

Miscellaneous Instructions
Miscellaneous instructions include indirect register modify,
stack control, mode control and NOP operations.

ALU
Source for Source for Destination for
X input port (xop) | Y input port (yop) | output port R
AX0, AX1 AY0,AY1 AR
AR AF AF
MRO, MR1, MR2
SRO, SR1
MAC
Source for Source for Destination for
X input port (xop) | Y input port (yop) | output portR
MXO0, MX1 MYO0,MY1 MR (MR2, MR1, MR0O)
AR MF MF
MRO, MR1, MR2

_SRO,SR1
Shifter
Source for Destination for
Shifter input (xop) Shifter output
SI SR(SR1, SR0)
AR
MRO, MR1, MR2
SRO, SR1

Table Ill. Computational Input/Output Registers

ADSP-2100/ADSP-2100A

These conventions are used in Table IV:

. All keywords are shown in capital letters.
. Brackets enclose optional parts of the syntax.
. Vertical lines indicate that one parameter must be chosen from those
enclosed.
. Table I defines the conditions for condition.
. Table II defines the set of registers for dreg and reg.
. Table III defines the set of registers for xop and yop.
. <data> represents an immediate value.
. <address> may be an immediate value or label.
. <comp>>, ina multifunction instruction, represents all legal ALU,
MAC or Shifter operations with these restrictions:
- All operations are performed unconditionally
- Shift Immediate operations are not allowed
-ALU division (DIVS, DIVQ) is not allowed

W N -

O 00NV

DATA MOVE INSTRUCTIONS
Register Move
reg = reg;
Load Register Inmediate
reg = <data>;

Data Memory Read (direct address)
reg = DM (<address>);

Data Memory Read (indirect address)
dreg = DM(]I0O[,|MO]);

Il M1
12 M2
3 M3
14 M4
I5 M5
I6 Mé
17 M7

Program Memory Read (indirect address)
dreg = PM(|I4]|,]| M4]|);

15 Ms
I6 Mé6
17 M7

Data Memory Write (direct address)
DM (<address>) = reg;

Data Memory Write (indirect address)

DM(|I0|,[MO0]) =] dreg H
I1 M1 <data>
12 M2
13 M3
14 M4
IS M5
16 M6
17 M7
Program Memory Write (indirect address)
PM (| 14| ,| M4|) = dreg;
I5 M5
16 M6
17 M7

COMPUTATIONAL INSTRUCTIONS: ALU
Add/Add with Carry

[IF condition] |AR = Xop +yop 5
AF +C
+yop+C

Subtract X-Y/Subtract X-Y with Borrow

[IF condition] | AR = Xop —yop 5
AF —yop+C—1
Subtract Y-X/Subtract Y-X with Borrow
[IFcondition] | AR = yop - Xop B
AF —x0p+C~1
AND, OR, Exclusive OR
[IF condition] | AR = Xop AND| yop ;
AF OR
XOR
Pass/Clear
[IFcondition] |AR = PASS | xop | ;
AF yop
Negate
[IF condition] | AR = - xop | 3
AF yop
NOT
[IF condition] IAR = NOT | xop | ;
AF yop
Absolute Value
[IF condition] | AR = ABS xop | ;
AF yop
Increment
[IF condition] I AR I = yop +1
AF
Decrement
[IF condition] | AR = yop -1
AF
Divide

DIVS yop, xop ;
DIVQ xop ;

Arithmetic Shift

COMPUTATIONAL INSTRUCTIONS: SHIFTER

[IFcondition] SR = [SROR]JASHIFT xop | (HI)
(LO)
Logical Shift
[IFcondition] SR = [SROR]LSHIFT xop | (HI)
(LO)
Normalize
[IF condition] SR = [SROR]NORMzxop | (HID)
(LO)
Derive Exponent
[IF condition] SE = EXPxop |(HI) {;
(LO)
(HIX)

Block Exponent Adjust
[IFcondition] SB = EXPAD]

DSP PROCESSORS 2-31

X0p ;

Arithmetic Shift Inmediate
SR = [SROR] ASHIFT xopBY <data> ,(m) ;

(LO)
Logical Shift Inmediate
SR =[SROR] LSHIFT xopBY <data> HD | 3
(LO)
COMPUTATIONAL INSTRUCTIONS: MAC
Multiply
[IFcondition] | MR | = =xop*yop (]SS)
MF SU
Us
1816)
RND
Multiply Accumulate
[IFcondition] | MR | = MR+xop*yop (| SS)
MF SU
Us
uu
RND
Multiply Subtract
[IFcondition] | MR | = MR-xop*yop (| SS)3
MF SU
Us
uu
RND
Clear
[IFcondition] | MR | = 0 ;
MF
Transfer MR
[IFcondition] | MR | = MR [(RND)] ;
MF

Conditional MR Saturation
IFMVSATMR ;

PROGRAM FLOW CONTROL INSTRUCTIONS

Jump
[IF condition] JUMP (| 14)
15
16
17
<address>
Call
[IF condition] CALL (| I4)
15
16
17
<address>
Return from Subroutine

[IF condition] RTS ;

Return from Interrupt
[IF condition] RTI ;

Do Until
DO <address> [UNTIL condition] ;

Trap
[IF condition] TRAP ;

MULTIFUNCTION INSTRUCTIONS

Computation with Memory Read
<comp> , dreg =|DM(|IO} , |MO])|;

11 Ml
12 M2
3 M3
14 M4
I M5
I6 Mé
17 M7
PM (|14 , | M4])
IS M5
16 M6
17 M7

2-32 DSP PROCESSORS

Computation with Data Register Move
<comp> , dreg = dreg ;

Computation with Memory Write
DM(|I0| , [MO]) = dreg, <comp> ;

11 M1
12 M2
13 M3
14 M4
15 M5
16 Mé
17 M7
PM(|I4] , | M4])
I5 M5
16 M6
17 M7

ADSP-2100/ADSP-2100A

Data & Program Memory Read
AX0|=DM(|I0] , |[MO]), |AYO] =PM (|14], |M4]);
AX1 1 M1 AY1 I5 M5
MXO0 12 M2 MYO 16 Mé
MX1 13 M3 MY1 17 M7

ALU/MAC Operation with Data & Program Memory Read*
<ALU>|, |[AX0| =DM(|I0] , |[MO]), |AYO| =PM (|I4], |M4]|) ;

<MAC>| [AX1 11 M1 AY1 5 M5
MXO0 12 M2 MYO0 I6 Mé
MX1 I3 M3 MY1 7 M7

*ALU Division operations not allowed.

MISCELLANEOUS INSTRUCTIONS

Stack Control
[|[PUSH| STS] [,POPCNTR] [,POPPC] [,POPLOOP] ;
(|popP
Mode Control
ENA BIT_REV][, ENA |AV_LATCH [, ENA| AR_SAT ||, ENA | SEC_REG |;
DIS DIS DIS DIS
Modify Address Register
MODIFY (|10],|MO|);
I M1
12 M2
13 M3
14 M4
15 M5
16 Mé6
17 M7
No Operation
NOP ;

Table V. Instruction Set Summary

DSP PROCESSORS 2-33

SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS

ADSP-2100/ADSP-2100A
J,K,AJ,AK | S,AS,AT
Grades Grades
Parameter Min | Max |Min |[Max |[Unit
Vpp Supply Voltage 4,75 | 5.25 [4.50 |5.50 |V
Tame Ambient Operating Temperature 0 +70 |—-55] +125|°C

ELECTRICAL CHARACTERISTICS

ADSP-2100
J&K S
Grades Grade
Parameter Test Conditions Min_| Max | Min | Max | Unit
Vin Hi-Level Input Voltage! @Vpp=max 2.0] 2.2
Vi Lo-Level Input Voltage' @Vpp=min 0.8 08 |V
Vou Hi-Level Output Voltage? @Vpp=min, Ioy= —1mA 2.4 2.4 \'
VoL Lo-Level Output Voltage? @Vpp=min, Io; =4mA 0.4 06 |V
I Hi-Level Input Current? @Vpp = max, Viy=max 10 10 pA
I Lo-Level Input Current? @Vpp=max, Vin=0V 10 10 pA
Iozu Tristate Leakage Current? @Vpp=max, Vi =max’ 10 10 wA
Iozr Tristate Leakage Current’® @Vpp=max, Vin=0V’ 10 10 nA
Ioz Tristate Pullup Current® @Vpp=max, Viy=0V 150 150 | pA
Ipp Supply Current (Power-Down)® @Vpp=max, Vi =0V®’ 10 15 mA
Ipp Supply Current (Dynamic) @Vpp=max, max clock rate® 90 100 | mA
ADSP-2100A
AJ&AK AS AT
Grades Grade Grade
Parameter Test Conditions Min | Max | Min | Max | Min | Max | Unit
Via Hi-Level Input Voltage! @Vpp=max 2.0 2.2 2.2 \Y
Viu Hi-Level Input Voltage at CLKIN @Vpp=max 2.2 2.4 2.4 \Y%
Vi Lo-Level Input Voltage' @Vpp=min 0.8 0.8 08 |V
Vi. Lo-Level Input Voltage at CLKIN @Vpp=min 0.8 0.8 0.8 v
Vou Hi-Level Output Voltage? @Vpp=min, Iogy= —1mA 2.4 2.4 2.4 A%
Vor Lo-Level Output Voltage? @Vpp=min, Io =4mA 0.4 0.6 06 |V
Iy Hi-Level Input Current? @V pp =max, Viy = max 10 10 10 rA
In. Lo-Level Input Current? @Vpp =max, Vin=0V 10 10 10 pA
Iozu Tristate Leakage Current* @Vpp = max, Viy=max’ 10 10 10 A
Iozi Tristate Leakage Current® @Vpp=max, Viy=0V’ 10 10 10 wA
Iozi. Tristate Pullup Current® @Vpp=max, Vi =0V’ 180 180 180 | pA
Ipp SupplyCurrent (Power-Down)® @Vpp =max, Vi =0V’ 10 15 15 mA
Ipp Supply Current (Dynamic) @Vpp = max, max clock rate® 150 130 180 | mA
NOTES

! Applies to pins: PMD,_ 2,,DMD0 15»BR, IRQ‘, 3, DMACK, RESET, HALT, (48 input pins for ADSP-2100A). Includes CLKIN for ADSP-2100 (49 input pins).
2Applies to pins: PMA,_, 13> PMS, PMD,_ ,,,PMRD PMWR, PMDA, BG, DMA, _,;, DMS, DMD,_,;, DMRD. DMWR, TRAP, CLKOUT (78 output pins).
3Applies to pins: BR, IRQO, 3» DMACK, RESET, HALT,CLKIN (9 nput-only pins).
4Applies to pins: PMA,_,;, PMS, PMD,_,, PMRD. PMWR, PMDA, DMA,_,;, DMS, DMD,_,;, DMRD. DMWR(75 tristateable pins).
SApplies to pins: PMA,_,;, PMDA, DMA, _; (29 tristateable pins w/o pullup).
$Applies to pins: PMD,_,,, PMS, PMRD. PMWR, DMD,_,;, DMS, DMRD. DMWR(46 tristateable pins w/pullup).

7Additional Test Conditions: Vix =0V on BRand RESET, CLKIN active, forces tristate condition.

8Additional Test Conditions: Outputs loaded TTL loads w/100pF capacitance, Vi = 2.4V, Vy = 0.4V, clock rate = max.
%“Power-down” refers toan idle state. While the processor does not have any special standby or low-power mode, these conditions represent the
lowest power consumption state.

2-34 DSP PROCESSORS

ADSP-2100/ADSP-2100A

ABSOLUTE MAXIMUM RATINGS*

................ -0.3Vio +7V
Input Voltage —0.3V to Vpp +0.3V
Output Voltage Swing —0.3V to Vpp +0.3V
Operating Temperature Range (Ambient) . . —55°C to +125°C
Storage Temperature Range -65°C to +150°C
Lead Temperature (10sec) PGA +300°C
Lead Temperature (5sec) PQFP

*Stresses above those listed under “Absolute Maximum Ratings” may
cause permanent damage to the device. These are stress rating only and
functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended

Supply Voltage

periods may affect device reliability.

ORDERING INFORMATION
Temperature Package

Part Number Speed(MHz) Range Package Outline
ADSP-2100JG 6.144 0to +70°C 100-Pin Grid Array G-100A
ADSP-2100KG 8.192 Oto +70°C 100-Pin Grid Array G-100A
ADSP-2100AJG 10.24 0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-2100AKG 12.50 Oto +70°C 100-Pin Grid Array ~ G-100A
ADSP-2100JP 6.144 0to +70°C 100-PQFP P-100
ADSP-2100KP 8.192 0to +70°C 100-PQFP P-100
ADSP-2100AJP 10.24 0to +70°C 100-PQFP P-100
ADSP-2100AKP 12.50 0to +70°C 100-PQFP P-100
ADSP-2100SG 6.144 —55°Cto +125°C 100-Pin Grid Array ~ G-100A
ADSP-2100ASG 8.192 —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-2100ATG 10.24 —55°Cto +125°C 100-Pin Grid Array ~ G-100A
ADSP-2100SG/883B 6.144 —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-2100ASG/883B 8.192 —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-2100ATG/883B 10.24 —55°Cto +125°C 100-Pin Grid Array ~ G-100A

ADSP-2100/ADSP-2100A Development Tools

Part Number Description

ADDS-2110 Cross-Software and Simulator (VAX/VMS)

ADDS-2121 Cross-Software (IBM PC/DOS)

ADDS-2122 Simulator (IBM PC/DOS)

ADDS-2123-C Cross-Software and Simulator (Sun 2/3, Unix BSD 4.2)

ADDS-2130 C Compiler, Cross-Software and Simulator (VAX/VMS)

ADDS-2131 C Compiler, Cross-Software and Simulator (IBM PC/DOS)

ADDS-2133-C C Compiler, Cross-Software and Simulator (Sun 2/3, Unix BSD 4.2)

ADDS-2150A ADSP-2100A 8MHz In-Circuit Emulator (110V)

ADDS-2150AE ADSP-2100A 8MHz In-Circuit Emulator (220V)

ADDS-2151A ADSP-2100A 8MHz In-Circuit Emulator (110V) with Trace Board

ADDS-2151AE ADSP-2100A 8MHz In-Circuit Emulator (220V) with Trace Board

ADDS-2161 Trace Board Option for ADDS-2150 or ADDS-2150E

ADDS-2160 ADSP-2100A 8MHz Evaluation Board

ADDS-2169 University Package (ADDS-2131 and ADDS-2160)

ADDS-2190 Three Day ADSP-2100 Workshop

ESD SENSITIVITY

The ADSP-2100 and ADSP-2100A feature proprietary input protection circuitry. Per Method 3015
of MIL-STD-883, the ADSP-2100 has been classified as a Class 1 device and the ADSP-2100A as a
Class 2 device.

WARNING!
=

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra-
dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and
discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

ESD SENSITIVE DEVICE

DSP PROCESSORS 2-35

SWITCHING CHARACTERISTICS

GENERAL NOTES

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While
this addition or subtraction would yield meaningful results for an individual part, the values given in this data sheet reflect statistical
variations and worst cases. Consequently, you cannot meaningfully add up parameters to derive or “verify” longer times.

TIMING NOTES

Switching characteristics specify how the processor is switching its signals, The user has no control over this operation. It is
dependent on the internal design. Timing requirements specify the timing of signals that the user has control over such as the
placement of data on the DMD bus as input for a read operation.

Timing requirements are used by a designer to guarantee that the processor operates correctly with another device while switching
characteristics inform the designer what the device is doing under any given circumstance. Switching characteristics are also
referenced to ensure that any timing requirement of a device connected to the processors (such as a memory) is satisfied.

SPECIFICATIONS
In this edition of the data sheet a number of specifications have been removed. The old parameter numbering has been retained
for continuity. The specifications in this data sheet are the only ones required to design with the ADSP-2100.

MEMORY REQUIREMENTS
This chart links common memory device specification names and ADSP-2100/ADSP-2100A timing parameters for your
convenience.

Parameter Parameter Common Memory Device
Number Name Specification Name
41 PMA Valid to PMWR Low Address Set Up Time
79 DMA Valid to DMWR Low Address Set Up Time
42 PMWR High to PMA Invalid Address Hold Time
80 DMWR High to DMA Invalid Address Hold Time
55 PMD Out Valid to PMWR High Data Set Up Time

91 DMD Out Valid to DMWR High Data Set Up Time

54 PMWR High to PMD Out Invalid Data Hold Time

90 DMWR High to DMD Out Invalid Data Hold Time

58 PMRD Low to PMD Input Valid Q_E to Data Valid

94 DMRD Low to DMD Input Valid OEto Data Valid

59 PMA Valid to PMD Input Valid Address Access Time
95 DMA Valid to DMD Input Valid Address Access Time

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade KGrade S Grade Derating
Clock Signals Code [Min | Max | Min | Max |Min | Max | Units |Factor
Timing Requirements

1 CLKIN Period’ A 40.5 30.5 40.5 ns

2 CLKIN Width Low A 11 8 11 ns

3 CLKIN Width High A 18 12 18 ns

Switching Characteristics

4 CLKIN Low (3-4) to CLKOUT Low B 13 34 13 29 11 34 ns

5 CLKIN Low (7-8)to CLKOUT High |B 6 24 6 20 5 24 ns

6 CLKOUT Width Low A 60 45 60 ns 4

2-36 DSP PROCESSORS

ADSP-2100/ADSP-2100A

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100A Test AJ Grade AK Grade ASGrade | AT Grade Derating
Clock Signals Code | Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Timing Requirements

1 CLKIN Period! A 24.4 20 30.5 244 ns

2 CLKIN Width Low A 7 4 8 7 ns

3 CLKIN Width High A 9 8 12 9 ns

Switching Characteristics

4 CLKIN Low (3-4)toCLKOUTLow | B 24 22 29 24 ns

5 CLKIN Low (7-8)toCLKOUT High | B 20 18 20 20 ns

6 CLKOUT Width Low A 36 28 45 36 ns 4

CLKIN

CLKOUT

NOTE

The Processor Cycle is Divided into 8 Internal States Determined by the Rising and Falling Edges
of CLKIN. CLKOUT is Synchronized to the Processor States as Shown Above.

Figure 8. Clock Signals

1'\|

L)
é%;
4

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating

Control Signals Code | Min | Max | Min | Max | Min | Max | Units| Factor

Timing Requirements

7 RESET Low to CLKIN High B 2 2 2 ns

8 CLKIN Highto RESET High B 6 | 36 4 | 26 6 | 36 ns 2 (max only)

9 RESET Width Low A 162 122 170 ns 8

ADSP-2100A Test AJ Grade AK Grade AS Grade | AT Grade Derating
Control Signals Code { Min | Max | Min | Max | Min | Max | Min ; Max | Units | Factor
Timing Requirements

7 RESET Low to CLKIN High B 2 2 2 2 ns

8 CLKIN High to RESET High B 4 20 4 16 6 | 26 4 20 ns 2 (max only)
9 RESET Width Low A 98 80 128 98 ns 8

- @ ® — 0

RESET yi

NOTE
The Reset signal determines the phase of the processor cycle.
The processor starts from state 4 after the release of the Reset signal.

Figure 9. RESET Signal

DSP PROCESSORS 2-37

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Control Signals Code| Min | Max | Min | Max | Min | Max | Units | Factor
Timing Requirements

10 HALT Valid to CLKIN Low (3-4) B 0 0 0 ns

11 CLKIN Low (3-4)to HALT Invalid B 12 10 12 ns

Switching Characteristics

12 CLKIN Low(7-8)to TRAP Valid B 25 20 25 ns

Interrupts

Timing Requirements

13 CLKIN Low (7-8) toIRQ Valid B 2 2 1 |ns

14 CLKIN Low(7-8)to IRQInvalid B 21 17 21 ns
ADSP-2100A Test | AJ Grade AK Grade AS Grade | AT Grade Derating
Control Signals Code| Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Timing Requirements

10 HALT Valid to CLKIN Low (3-4) B 2 2 2 2 ns
11 CLKIN Low (3-4)to HALT Invalid B 10 8 10 10 ns
Switching Characteristics

12 CLKIN Low (7-8)to TRAP Valid B 18 16 20 18 ns
Interrupts

Timing Requirements

13 CLKIN Low (7-8) to IRQ Valid B 1 1 1 1 |ns
14 CLKIN Low (7-8)to IRQ Invalid B 14 14 17 14 ns

CLKIN

s
s %IOIIOIOIOIOI'0IOIO10IOI0MOI010IOIOIOIOIOXOIOIOIOEIOIOIQI

TRAP

X

— IOI010101QIQMOIOIOI‘IOI’M01‘1(01%101‘1

NOTE

The Control Signals are Shown in Relationship to the Processor States in Which Thev are

Recognized or Asserted as Defined by CLKIN. There is No |

HALT, TRAP, and IRQ,_3.

2-38 DSP PROCESSORS

Figure 10. Control Signals

hip b

ADSP-2100/ADSP-2100A

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating

Bus Request Asserted Code| Min | Max | Min | Max | Min | Max |Units | Factor

Timing Requirements

15 BRValid to CLKIN Low (3-4) B 1 1 1 ns

16 CLKIN Low (3-4)to BR Invalid B 10 7 10 ns

Switching Characteristics

17 CLKIN Low (3-4)to BG Low B 38 30 38 ns

19 BG Low toxMxx Disable? D 22 17 22 |ns

ADSP-2100A Test AJ Grade AK Grade AS Grade | AT Grade Derating
Bus Request Asserted Code| Min | Max | Min | Max | Min | Max | Min | Max | Units| Factor
Timing Requirements

15 BR Valid to CLKIN Low (3-4) B 4 4 1 4 ns

16 CLKIN Low (3-4)to BR Invalid B 4 4 7 4 ns

Switching Characteristics

17 CLKIN Low (3-4) to BG Low B 26 24 30 26 ns

19 BG Low toxMxx Disable? D 16 16 17 16 ns

o/ \e /s

/L/\

/i \

.
.
.
.
.

g \\\\\\\\\\\\

J////////////////

xMxx

NOTE: RESET NOT PERMITTED DURING BR.

Figure 11. Bus Request Asserted

DSP PROCESSORS 2-39

Notes 1 and 2 and information about the Derating Factors and Test Codes appcar on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Bus Request Negated Code [Min {Max |Min |Max |Min |Max |Units | Factor
Timing Requirements
15 BR Valid to CLKIN Low (3-4) B 1 1 1 ns
16 CLKIN Low (3-4)to BR Invalid B 10 7 10 ns
Switching Characteristics
18 CLKIN Low(7-8)to BG High B 31 25 31 ns
20 xMxx Enable to BG High? F 12 10 12 |ns
ADSP-2100A Test | AJGrade AK Grade AS Grade | AT Grade Derating
Bus Request Negated Code | Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Timing Requirements)
15__BR Validto CLKIN Low (3-4) B 4 4 1 4 ns
16 CLKIN Low (3-4)to BR Invalid B 4 4 7 4 ns
Switching Characteristics
18 CLKIN Low(7-8)t0o BG High B 24 20 25 24 ns
20 xMsxx Enable to BG High? F 10 8 10 10 [ns
CLKIN 8/ 1 \2/3Fa/s \s/ 718/ 1\2/3\a/s

~
u i

ALY
| ~

— «0)

xMxx

454

Figure 12. Bus Request Negated

2-40 DSP PROCESSORS

ADSP-2100/ADSP-2100A

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Bus Request/Grant with RESET Low Code |Min | Max | Min | Max | Min | Max | Units |Factor
Switching Characteristics
21 BRLowtoBG Low during reset A 28 23 28 Ins
22 BRHighto BG High during reset A 21 18 21 |ns
ADSP-2100A Test | AJGrade AK Grade ASGrade | AT Grade Derating
Bus Request/Grant with RESET Low Code | Min | Max | Min | Max | Min | Max | Min | Max | Units |Factor
Switching Characteristics
21 BR Lowto BG Low during reset A 18 16 23 18 ns
22 BRHighto BG High during reset A 16 14 18 16 |ns
T
BR \ |
‘_""‘"'\ F
BG

NOTE

During Reset, the Processor Bus Ignores the CLKIN Signal and Therefore the Bus Request/Grant
Signals Operate Asynchronously.

Figure 13. Bus Request/Grant with RESET Low

DSP PROCESSORS 2-41

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Program Memory Read Code| Min | Max | Min | Max | Min | Max| Units| Factor
Switching Characteristics

31 PMRD Width Low A 60 45 60 ns 4

32 PMA Valid to PMRD Low A 18 11 18 ns 3

33 PMRD High to PMA Invalid A 20 16 20 ns 1

34 PMDA Valid to PMRD Low A 41 31 41 ns 3

35 PMRDHigh to PMDA Invalid A 23 18 22 ns 1

36 PMS Valid to PMRD Low A 55 40 55 ns 3

37 PMRD High to PMS Invalid A 16 12 16 ns 1

Timing Requirements

58 PMRD Low to PMD Input Valid A 45 37 45 ns 4

59 PMA Valid to PMD Input Valid A 57 50 57 |ns 7

60 PMS Valid to PMD Input Valid A 90 65 90 | ns 7

97 PMRD High to PMD Input Invalid A 0 0 0 ns

ADSP-2100A Test AJ Grade AK Grade ASGrade | AT Grade Derating
Program Memory Read Code| Min | Max | Min | Max | Min | Max| Min | Max | Units | Factor
Switching Characteristics

31 PMRD Width Low A 36 28 45 36 ns 4
32 PMA Valid to PMRD Low A 6 4 14 6 ns 3
33 PMRD High to PMA Invalid A 8 6 10 8 ns 1
34 PMDA Valid toPMRD Low A 20 18 24 20 ns 3
35 PMRD High to PMDA Invalid A 10 10 12 10 ns 1
36 PMS Valid to PMRD Low A 32 26 40 32 ns 3
37 PMRD High to PMS Invalid A 8 [3 8 8 ns 1
Timing Requirements

58 PMRD Low to PMD Input Valid A 28 20 33 28 |ns 4
59 PMA Valid to PMD Input Valid A 46 32 50 46 |ns 7
60 PMS Valid to PMD Input Valid A 50 45 65 50 |ns 7
97 PMRD High to PMD Input Invalid A 0 0 0 0 ns

2-42 DSP PROCESSORS

ADSP-2100/ADSP-2100A

.
:
'
—>
Lo
'
]
i
b
PMA
Lo
.
:
.
A
.
\
\
\
|
7o
.
HE
—
H
. \
I
Vo
.
I
.]
H
I
HE
Vo
HE
HE

\
\
ly

PMDA X
~ -0
ARARARMRRRRARRRE SRR

Figure 14. Program Memory Read

PMD

DSP PROCESSORS 2-43

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Program Memory Write Code | Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics

40 PMWR Width Low A 60 45 60 ns |4

41 PMA Valid to PMWR Low A 16 10 16 ns |3

42 PMWR High to PMA Invalid A |19 15 19 ns |1

43 PMDA Valid to PMWR Low A |39 29 39 ns |3

44 PMWR High to PMDA Invalid A 20 16 21 ns 1

45 PMS Valid to PMWR Low A 54 40 54 ns |3

46 PMWR High to PMS Invalid A 15 11 14 ns |1

51 PMWR Low to PMD Out Enable F 15 10 15 ns 1

52 PMWR High to PMD Out Disable D 43 37 43 |ms |1

53 PMWR Low toPMD Out Valid A 40 32 40 |ns |1

54 PMWR High to PMD Out Invalid A |23 18 21 ns |1

55 PMD Out Valid to PMWR High A [33 25 33 ns |3
ADSP-2100A Test | AJGrade AK Grade ASGrade | AT Grade Derating
Program Memory Write Code | Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics

40 PMWR Width Low A 36 28 45 36 ns |4
41 PMA Valid to PMWR Low A 8 4 12 8 ns |3
42 PMWR High to PMA Invalid A] 6 10 8 ns |1
43 PMDA Valid to PMWR Low A 20 16 28 20 ns |3
44__PMWR High to PMDA Invalid A__[10 8 12 10 ns_ |1
45 PMS Valid to PMWR Low A 32 26 40 32 ns |3
46 PMWR High to PMS Invalid A 3 ! 8 6 ns |1
51 PMWR Low to PMD Out Enable F 8 6 8 8 ns 1
52 PMWR High to PMD Out Disable D 32 29 38 32 |ns |1
53 PMWR Low to PMD Out Valid A 29 26 32 29 [ns [1
54 PMWR High to PMD Out Invalid A 10 8 12 10 ns 1
55 PMD Out Valid to PMWR High A 16 13 25 16 ns 3

2-44 DSP PROCESSORS

ADSP-2100/ADSP-2100A

PMA

nnnnnnn

PMDA

(2

o.

PMRD

w
PMD

Figure 15. Program Memory Write

DSP PROCESSORS 2-45

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Data Memory Read Code | Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics
67 DMRD Width Low A 60 45 60 ns 4
68 DMA Valid to DMRD Low A 21 16 21 ns 3
69 DMRD High to DMA Invalid A 19 15 19 ns 1
70 DMS Valid to DMRD Low A 35 27 35 ns 3
71 DMRD High to DMS Invalid A 22 18 21 ns 1
101 DMACK Low to CLKOUT High A 45 37 45 ns 1
Timing Requirements
74 DMRD Low to DMACK Valid A 31 21 31 ns 3
75 DMA Valid to DMACK Valid A 57 42 57 ns 6
94 DMRD Low to DMD Input Valid A 57 41 55 ns 4
95 DMA Valid to DMD Input Valid A 82 61 79 ns 7
96 DMS Valid to DMD Input Valid A 96 70 96 ns 7
98 DMRD High to DMD Input Invalid A 0 0 0 ns
100 DMACK Width A 81 61 81 ns
102 CLKOUT Lowto DMACK High A 28 19 28 ns 3
ADSP-2100A Test A]J Grade AK Grade AS Grade | AT Grade Derating
Data Memory Read Code | Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics
67 DMRD Width Low A 36 28 45 36 ns 4
68 DMA Valid to DMRD Low A 6 4 14 6 ns 3
69 DMRD High to DMA Invalid A 8 6 10 8 ns 1
70 _DMS Valid to DMRD Low A 18 14 27 18 ns 3
71 DMRD High to DMS Invalid A 8 6 10 8 ns 1
101 DMACK Low to CLKOUT High A 36 32 37 36 ns 1
Timing Requirements
74 _DMRD Low to DMACK Valid A 16 10 21 16 ns 3
75 DMA Valid to DMACK Valid A 30 20 42 30 ns 6
94 DMRD Low to DMD Input Valid A 30 20 37 28 ns 4
95 DMA Valid to DMD Input Valid A 48 32 59 46 ns 7
96 DMS Valid to DMD Input Valid A 52 45 67 50 ns 7
98 DMRD High to DMD Input Invalid A 0 0 0 0 ns
100 DMACK Width A 50 40 61 50 ns 4
102 CLKOUT Low to DMACK High A 17 12 19 17 ns 3
NOTE ON GENERATING WAIT STATES Specification #101 shows the time from the assertion of DMACK
Figuies 16a and 17a show the timing of DMACK relative to the until the rising edge of CLKOUT. DMACK should be held low
data memory bus and control signals. If DMACK is not asserted at least this amount of time if the rising edge of CLKOUT is
in this time frame, a wait state will result. Figures 16b and 17b used to latch the DMACK signal into your wait state logic.

provide additional timing for DMACK with respect to CLKOUT
so that any number of additional wait states can be introduced.
Since CLKOUT is the only output active during a wait state, it
can be used as a cycle counter to determine when the appropriate
number of wait states has elapsed. DMACK can be latched for
the appropriate number of cycles or a counter can be used to
count CLKOUT cycles.

Specification #102 indicates the maximum amount of time from
the falling edge of CLKOUT to when DMACK must be brought
high to terminate the wait state condition. The falling edge of
CLKOUT can be used to clear your wait state logic.

2-46 DSP PROCESSORS

ADSP-2100/ADSP-2100A

-—

|
\
v
\
f\
\
\
\
\
0
\
\

-
N

m
T

Figure 16a. Data Memory Read

\

\

\
\

Figure 16b. Data Memory Wait States Extended with DMACK

DSP PROCESSORS 2-47

Notes 1 and 2 and information about the Derating Factors and Test Codes appear on page 2-50.

ADSP-2100 Test J Grade K Grade S Grade Derating
Data Memory Write Code [Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics
78 DMWR Width Low A 60 45 60 ns 4
79 DMA Valid to DMWR Low A 24 17 24 ns 3
80 DMWR High to DMA Invalid A 20 15 19 ns 1
81 DMS Valid to DMWR Low A |37 28 37 ns |3
82 DMWR High to DMS Invalid A 22 19 22 ns 1
87 DMWR Low to DMD Out Enable F 14 9 14 ns 1
88 DMWR High to DMD Out Disable D 40 35 40 ns 1
89 DMWR Low to DMD Out Valid A 38 32 38 ns 1
v
90 DMWR High to DMD Out Invalid A 21 16 19 ns 1
91 DMD Out Valid to DMWR High A 33 21 33 ns 3
101 DMACK Lowto CLKOUT High A 45 37 45 ns 1
Timing Requirements
75 DMA Valid to DMACK Valid A 57 42 57 ns 6
99 DMWR Lowto DMACK Valid A 31 21 31 ns 3
100 DMACK Width A 81 61 81 ns 4
102 CLKOUT Low to DMACK High A 28 19 28 ns 3
ADSP-2100A Test | AJ Grade AK Grade AS Grade | AT Grade Derating
Data Memory Write Code | Min | Max | Min | Max | Min | Max | Min | Max | Units | Factor
Switching Characteristics
78 DMWR Width Low A 36 28 45 36 ns 4
79 DMA Valid to DMWR Low A 8 4 17 8 ns 3
80 DMWR High to DMA Invalid A 8 6 10 8 ns 1
81 DMS Valid to DMWR Low A 20 16 28 20 ns 3
82 DMWR High to DMS Invalid A 6 4 8 6 ns 1
87 DMWR Low to DMD Out Enable F 8 6 8 8 ns 1
88 DMWR High to DMD Out Disable D 32 29 38 32 ns 1
89 DMWR Low to DMD Out Valid A 29 26 32 29 ns 1
90 DMWR Highto DMD Out Invalid A 10 8 12 10 ns 1
91 _DMD Out Valid to DMWR High A 18 13 25 16 ns 3
101 DMACK Lowto CLKOUT High A 36 32 37 36 ns 1
Timing Requirements
75 DMA Valid to DMACK Valid A 30 20 42 30 ns 6
99 DMWR Low to DMACK Valid A 16 10 20 16 ns 3
100 DMACK Width A 50 40 61 50 ns 4
102 CLKOUT Lowto DMACK High A 17 12 19 17 ns 3
NOTE ON GENERATING WAIT STATES Specification #101 shows the time from the assertion of DMACK

Figures 16a and 17a show the timing of DMACK relative to the until the rising edge of CLKOUT. DMACK should be held low
data memory bus and control signals. If DMACK is not asserted at least this amount of time if the rising edge of CLKOUT is

in this time frame, a wait state will result. Figures 16b and 17b used to latch the DMACK signal into your wait state logic.
provide additional timing ff": DMAC_K with respect to CLKOUT Specification #102 indicates the maximum amount of time from
so that any number of additional wait states can be introduced. the falling edge of CLKOUT to when DMACK must be brought
s’“‘:;eCL]inUT 1 tlhe only outp gt active dux;ng :hwm state, ': high to terminate the wait state condition. The falling edge of
can be used as a cycle counter to determine when the appropriate CLKOUT be used to clear your wait state logic.

number of wait states has elapsed. DMACK can be latched for can be Y &

the appropriate number of cycles or a counter can be used to

count CLKOUT cycles.

2-48 DSP PROCESSORS

ADSP-2100/ADSP-2100A

DMA X
X

=)
\iiy

(o]
7]

N
e/
_/

B Lipde J7

DMACK _Zf !::::::::::m
—
DMD 'ncg——————-——

Figure 17a. Data Memory Write

cLKOUT \ / '\

DMACK m

Figure 17b. Data Memory Wait States Extended with DMACK

AN
s

DSP PROCESSORS 2-49

NOTES
'Rise and fall times <4ns for ADSP-2100A, Sns for ADSP-2100.
2xMxx” refers to PMAg_3, PMS, PMRD, PMWR, PMDA, DMA,_;3, DMS, DMRD and DMWR.

TEST CODES
Code | TestType Level Reference
A Inputs, Outputs | Low=0.8V, High=2.0V
B CLKIN 1.5V
to/from
Inputs, Outputs | Low=0.8V,High=2.0V
D Output Low=0.8V,High=2.0V
to
Output Disable | Low= Vg +0.5V,High=Vg,—0.5V
F Output Low =0.8V, High=2.0V
tol from

Output Enable Low=VT-0.1V,High=VT+0.1V

VT = 1.5V, the voltage to which tristated outputs are forced.

DERATING FACTOR

The value N in the Derating Column shows, for each timing
parameter affected, how many of the eight internal clock states
are used by this timing parameter; N, therefore, ranges between
1 and 8. The formula for changing any individual parameter T
uses timing parameter number one, CLKIN Period, shown as
P#1:

Taew = To + N (P#lnew = P#11q) /2)

You determine the new value of P#1 based on the derating you
wish to accomplish. If no N value is given for derating, that
timing parameter does not change with clock changes.

CAPACITANCE IN PGA PACKAGE

Input capacitance Cin 10pF typical
Output capacitance Cout 10pF typical

Note that output-only pads (PMA;3_g, PMDA and DMA;;_g)
and bidirectional pads (PMD;3_ and DMD5_g) have 50k}

(typical) pull-up resistors between the output and Vpp present
when the output driver is off.

T0
OUTPUT +1.5V
PIN

Figure 18. Normal Load for ac Measurements

100pF

o

2-50 DSP PROCESSORS

ADSP-2100/ADSP-2100A

13 12 1" 10 9 8 7 6 5 4 3 2 1
N | PMD18 | PMD20 | PMD21 | PMD23 | BG VDD | GND | GND | PMS | TRAP | HALT | RESET | DMAO
M| PMD16 | PMD17 | PMD19 | PMD22 | PMRD | BR | DMRD | DMWR | DMS | PMDA |DMACK| GND | DMA2
L | PMD14 | PMD15 CLKOUT| CLKIN | PMWR DMA1 | DMA3
K | PMD12 | PMD13 DMA4 | DMAS
J [PMD10 | PMD11 DMA6 | GND
H| GND | PMDs | PMD9 DMA?7 | DMA8 | VDD
G| vbp | PMD7 | PMD6 DMA10 | DMA11 | DMA9
F | PMD5 | PMD4 | PMD3 DMD15 | DMA13 | DMA12
E| aND | PMD2 DMD13 | DMD14
D | PMD1 | PMDO DMD11 | DMD12
C | PMAD | PMA2 PMA11 | IRG2 | iRQO ",‘,?NE X DMD9 | DMD10
B| PMA1 | PMA4 | PMA6 | PMA7 | PMA9 | PMA12 | 1RQ3 | iRQT | DMD1 | DMD3 | DMD6 | DMD7 | DMD8
Al PMA3 | PMAS | GND | PMA8 | PMA10 | PMA13 | VDD | GND | DMDO | DMD2 | DMD4 | DMD5 | GND

Figure 19. ADSP-2100 Pins, Top View, Pins Down

Function Location | Function Location | Function Location | Function Location
Voo A7 PMA1 B13 PMD12 K13 DMA9 G1
Voo G13 PMA2 c12 PMD13 K12 DMA10 G3
Voo H1 PMA3 A13 PMD14 L13 DMA11 G2
Voo N8 PMA4 B12 PMD15 L12 DMA12 F1
GND A1 PMAS A12 PMD16 M13 DMA13 F2
GND A6 PMAG B11 PMD17 M12 DMDO A5
GND A1 PMA7 B10 PMD18 N13 DMD1 B5
GND E13 PMAS A10 PMD19 M1 DMD2 A4
GND H13 PMA9 B9 PMD20 N12 DMD3 B4
GND 5 PMA10 A9 PMD21 N1 DMD4 A3
GND M2 PMA11 C8 PMD22 M10 DMD5 A2
GND N6 PMA12 B8 PMD23 N10 DMD6 B3
GND N7 PMA13 A8 PMS N5 DMD7 B2
CLKIN L7 PMDO D12 PMWR L6 DMD8 B1
CLKOUT L8 PMD1 D13 PMRD M9 DMD9 c2
BR ms PMD2 E12 PMDA M4 DMD10 C1
BG N9 PMD3 F11 DMAO N1 DMD11 D2
iRQO (] PMD4 F12 DMA1 L2 DMD12 D1
iRQ1 86 PMD5 F13 DMA2 M1 DMD13 E2
iR c? PMD6 G1n DMA3 L1 DMD14 E1
iRG3 B7 PMD7 G12 DMA4 K2 DMD15 F3
RESET N2 PMD8 H12 DMAS K1 DMS M5
TRAP N4 PMD9 H11 DMAG J2 DMWR Me
HALT N3 PMD10 J13 DMA7 H3 DMRD M7
INDEXPIN NC PMD11 U2 DMAS H2 DMACK M3
PMAO c13

Table V. ADSP-2100 Pins by Function - G-100A

DSP PROCESSORS 2-51

PIN FUNCTION | PIN FUNCTION | PIN FUNCTION | PIN FUNCTION | PIN FUNCTION
1 PMD6 21 PMA10 41 DMD9 61 DMA2 81 BG

2 Vpo 22 PMA1MU 42 DMD10 62 DMA1 82 PMRD
3 PMD5 23 PMA12 43 DMD11 63 DMAO 83 PMD23
4 PMD4 24 PMA13 44 DMD12 64 GND 84 PMD22
5 PMD3 25 iRQG3 45 DMD13 65 RESET 85 PMD21
6 GND 26 iRQ2 46 DMD14 66 DMACK 86 PMD20
7 PMD2 27 Vpp 47 DMD15 67 HALT 87 PMD19
8 PMD1 28 GND 48 DMA13 68 PMDA 88 PMD18
9 PMDO 29 iRQ1 49 DMA12 69 TRAP 89 PMD17
10 PMAO 30 IRQO 50 DMA11 70 DMS 90 PMD16
11 PMA1 31 DMDO 51 DMA10 71 PMS 91 PMD15
12 PMA2 32 DMD1 52 DMA9 72 PMWR 92 PMD14
13 PMA3 33 DMD2 53 Vpp 73 DMWR 93 PMD13
14 PMA4 34 DMD3 54 DMAS 74 GND 94 PMD12
15 PMAS 35 DMD4 55 DMA7 75 DMRD 95 PMD11
16 PMAG 36 DMD5 56 GND 76 CLKIN 96 PMD10
17 GND 37 DMD6 57 DMA6 77 GND 97 PMD9
18 PMA? 38 GND 58 DMAS 78 Voo 98 PMD8
19 PMAS 39 DMD7 59 DMA4 79 BR 99 GND
20 PMA9 40 DMDS8 60 DMA3 80 CLKOUT 100 PMD7

2-52 DSP PROCESSORS

Table VI. ADSP-2100 Pins by Function- P-100

ANALOG
DEVICES

12.5MIPS DSP Microcomputer

ADSP-2101/ADSP-2102

FEATURES

Complete DSP Microcomputer

ADSP-2100 Code & Function Compatible

2K Words of Program Memory RAM

ADSP-2102 Version Has Up to 2K Words of Mask
Programmable Program Memory

1K Words of Data Memory RAM

Separate Program and Data Buses On-Chip

Dual Purpose Program Memory for Both Instruction
and Data Storage

Three Independent Computational Units: ALU,
Multiplier/Accumulator and Barrel Shifter

Two Independent Data Address Generators

Powerful Program Sequencer
Zero Overhead Looping
Conditional Arithmetic Instruction Execution

Two Double-Buffered Serial Ports with Companding
Hardware and Automatic Data Buffering

Programmable Interval Timer

Programmable Wait State Generation

Automatic Booting from Byte-Wide External Memory,
e.g., EPROM

Provisions for Multiprecision Computation and
Saturation Logic

Single-Cycle Instruction Execution

Multifunction Instructions i

Three Edge- or Level-Sensitive External Interrupts

80ns Cycle Time

80mW Maximum Power Dissipation in Standby Mode

68-Pin PGA and 68-Lead PLCC

GENERAL DESCRIPTION

The ADSP-2101/ADSP-2102 is a single-chip microcomputer op-
timized for digital signal processing (DSP) and other high speed
numeric processing applications. Its instruction set is a fully
compatible superset of the ADSP-2100 instruction set. It com-
bines the complete ADSP-2100 architecture (three computa-
tional units, data address generators and a program sequencer)
with two serial ports, a programmable timer, extensive interrupt
capabilities and on-chip program and data memory SRAM (or
RAM and RCM in ADSP-2102). The ADSP-2101/ADSP-2102
surpasses other single-chip DSP microcomputers in both perfor-
mance and ease of design and development.

Fabricated in a high speed 1.0 micron double-layer metal CMOS
process, the ADSP-2101/ADSP-2102 operates at 12.5MHz. Ev-
ery instruction executes in a single cycle, resulting in a 12.5
MIPS processor. Fabrication in CMOS results in low power re-

quirements. The ADSP-2101/ADSP-2102 dissipates less than
1W under all conditions and no more than 80mW under
standby conditions.

The ADSP-2101 is a RAM based microcomputer with 1K words
of {16-bit} data memory and 2K words of (24-bit) program
memory. The ADSP-2102 is a mask programmable version al-
lowing any RAM loéation to be changed to ROM. In this data
sheet, all references to the ADSP-2101 are applicable to the
ADSP-2102 ex¢ept where noted.

The ADSP-2101’s flexible architecture and comprehensive in-
struction set support a high degree of operational parallelism. In
oné gycle the ADSP-2101 can:

® gengerate the next program address

® fetch the next instruction

® perform one or two data moves

® update one or two data address pointers

® perform a computational operation

® receive and transmit data via the two serial ports.

DEVELOPMENT SYSTEM

The ADSP-2101 is supported by a complete set of tools for
software and hardware system development. The cross-software
system is a set of modules. The System Builder provides a high
level method for defining the architecture of systems under de-
velopment. The Assembler produces object code and the Linker
combines object modules and library calls into an executable
file. The Simulator provides an interactive instruction level sim-
ulation with a reconfigurable user interface. A PROM splitter
generates PROM burner compatible files. The C Compiler gen-
erates ADSP-2101 assembly source code. An Emulator will be
available for hardware debugging of ADSP-2101 systems.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-53

ADDITIONAL INFORMATION

For additional information on the architecture and instruction
set of the processor, refer to the ADSP-2101/ADSP-2102 User’s
Manual. For more information about the development aystem
and ADSP-2101 programmer’s reference information, refer to
the ADSP-210X Cross-Software Manual and the (forthcoming)
ADSP-2101/ADSP-2102 Emulator Manual.

ARCHITECTURE OVERVIEW

Figure 1 is an overall block diagram of the ADSP-2101. For
compatibility with the ADSP-2100 processor, the additional fea-
tures of the ADSP-2101 appear in the form of new mode con-
trols, new processor registers and a group of memory mapped
control registers residing between data memory addresses
H#3FE0 and H#3FFF.

The processor contains three independent computational units:
the ALU, the multiplier/accumulator (MAC) and the shifter.
The computational units process 16-bit data directly and have
provisions to support multiprecision computations. The ALU
performs a standard set of arithmetic and logic operations; divi-
sion primitives are also supported. The MAC performs single
cycle multiply, multiply/add and multiply/subtract operations.
The shifter performs logical and arithmetic shifts, normalization,
denormalization, and derive exponent operations. The shifter
can be used to efficiently implement numeric format control
including multiword floating point representations.

The internal result (R) bus directly connects the computational
units so that the output of any unit may be the input of any unit
on the next cycle.

A powerful program sequencer and two dedicated data address
generators ensure efficient use of these computational usits.
The sequencer supports conditional jumps, subroutine calls and
returns in a single cycle. With internal loop counters and loop
stacks, the ADSP-2101 executes looped code with zero over-
head; no explicit jump instructions are required to maintain

the loop.

INSTRUCTION
REGISTER

The data address generators (DAGs) handle address pointer up-
dates. Each DAG keeps track of four addreéss pointers. When-
ever the pointer is used to access data (indirect addressing), it is
post-modified by the value of a specified modify register. A
length value may be associated with each pointer to implement
automatic modulo addressing for circular buffers. With two in-
dependent DAGs, the processor can generate two addresses si-
multaneously for dual operand fetches. The circular buffering
feature is also used by the serial ports for automatic data trans-
fers; these are described in the section on serial ports.

Efficient data transfer is achieved with the use of five internal
buses.

©® Program Memory Address (PMA) bus
® Program Memory Data (PMD) bus

® Data Memory Address (DMA) bus

® Data Memory Data (DMD) bus

® Result (R) bus

The two address buses (PMA and DMA) share a single external
address bus, and the two data buses (PMD and DMD) share a
single external data bus. The BMS, DMS and PMS signals indi-
cate which memory spacé for which the external buses are being
used. .

As in the AD$P-2100, program memory can store both instruc-
tions and data, permitting the ADSP-2101 to fetch two operands
in a single cycle, one froin program memory and one from data
memaery. Because the on«chip program memory is so fast, the
ADSP-2101-cast fetch an operand from program memory and

. the next instruction in the same cycle. (This eliminates the need

for the cache memory found on the ADSP-2100, as well as any
overhead cycles that were associated with initial loading of the
cache.) X

The r}xemory interface supports slow memories and memory-
mapped peripherals with programmable wait state generation.
External devices can gain control of buses with bus request/
grant signals (BR and BG). One execution mode allows the

PROGRAM BOOT

ADDRESS

DATA DATA 2K X 24 1K X 16 GENERATOR
ADDRESS ADDRESS
GENERATOR GENERATOR
=R R SEQUENCER aN 7
JL NN\ EXTERNAL
AODRESS
14, PMA BUS BUS
—— 14
mux %
' 1 141 DMA BUS
— — —]
7
PMD BUS \}

EXTERNAL
DATA

16

BUS

y
@ -

INPUT REGS

INPUT REGS INPUT REGS

ALU MAC SHIFTER

OUTPUT REGS OUTPUT REGS QUTPUT REGS

R BUS

DMD BUS

L3

CONTROL
LOGIC

COMPANDING
CIRCUITRY
Transmit Reg
Receive Reg

TIMER

Transmit Reg
Receive Reg

SERIAL

SERIAL
PORT 0 PORT 1

Z ¥

Figure 1. ADSP-2101/ADSP-2102 Block Diagram

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-54 DSP PROCESSORS

ADSP-2101/ADSP-2102

PIN DESCRIPTION

The ADSP-2101 is available in a 68-pin PGA and a 68-lead PLCC.

Pin Group # of

Name Pins Function

Address 14 Address output for program, data and
boot memory spaces

Data 24 Data I/O pins for program and data
memories. Input only for boot memory
space, with two MSBs used as boot
space addresses.

RESET 1 Processor reset input

IRQ2 1 External interrupt request #2 input

BR 1 External bus request input

BG 1 External bus grant output

PMS 1 External program memory select

DMS 1 External data memory select

BMS 1 Boot memory select

RD 1 External memory read enable output

WR 1 External memory write enable output
MMAP 1 Memory map select
CLKIN,
XTAL 2 External clock or quartz crystal input
CLKOUT 1 Processor clock output
SPORTO0 5 Serial Port 0 I/O pins
SPORT1 5 Serial Port 1 I/O pins
or
IRQI 1 External interrupt request #1 input
IRQ0 1 External interrupt request #0 input
SCLK 1 Programmable clock output
FO 1 Flag output pin
FI 1 Flag input pin
GND 4 Ground pins
Voo 3 Power Supply

Table I. ADSP-210% Pin List

ADSP-2101 to continue running while the buses are granted to
another master as long as an external memory operation is not
required. The other execution mode requires the processor to
halt while buses are granted.

The ADSP-2101 can respond to six interrupts. There can be up
to three external interrupts, configured as edge- or level-
sensitive. Internal interrupts can be generated by the Timer and
the Serial Ports (“SPORTS”). There is also a master RESET
signal.

The two serial ports provide a complete serial interface with
companding in hardware and a wide variety of framed and
frameless data transmit and receive modes of operation. Each
port can generate an internal programmable serial clock or ac-
cept an external serial clock.

Boot circuitry provides for loading on-chip program memory
automatically from byte-wide external memory. After RESET
three wait states are automatically generated. This allows, for
example, an 80ns ADSP-2101 to use an external 250ns EPROM
as boot memory. Multiple programs can be selected and loaded
from the EPROM with no additional hardware.

The ADSP-2101 instruction set provides flexible data moves and
multifunction (one or two data moves with a computation) in-
structions. Every instruction can be executed in a single proces-
sor cycle. The ADSP-2101 assembly language uses an algebraic
syntax for ease of coding and readability. A comprehensive set
of development tools supports program development.

Arithmetic/Logic Unit
Figure 2 shows the Arithmetic/Logic Unit (ALU).
The ALU provides a standard set of arithmetic and logic func-

tions: add, subtract, negate, increment, decrement, absolute
value, AND, OR, Exclusive OR and NOT. Two divide primi-

tives are also provided. The ALU takes two 16-bit inputs, X
and Y, and generates one 16-bit output, R. It accepts the carry
(AC} bit in the arithmetic status register (ASTAT) as the carry-
in (CI) bit. The carry-in feature enables multiword computa-
tions. Six arithmetic status bits are generated: AZ (zero), AN
(negative), AV (overflow), AC (carry), AS (sign) and AQ (quo-
tient). These status bits are latched in ASTAT.

PMD BUS 24,
7

oMD BUS 1, 16 (UPPER)

X

AR
REGISTER
16 % -
R - BUS

7

Figure 2. ALU Block Diagram

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-55

The X input port can be fed by either the AX register set or
any result register via the R bus (AR, MRO, MR1, MR2, SRO,
or SR1). The AX register set contains two registers, AX0 and
AXI1. The AX registers can be loaded from the DMD bus. The
Y input port can be fed by either the AY register set or the
ALU feedback (AF) register. The AY register set contains two
registers, AY0 and AY1. The AY registers can be loaded from
either the DMD bus or the PMD bus.

The register outputs are dual-ported so that one register can
provide input to the ALU while either one simultaneously drives
the DMD bus. The ALU output can be loaded into either the
AR register or the AF register.

The AR register has a saturation capability; it can be automati-
cally set to plus or minus the maximum value if an overflow or
underflow occurs. The saturation mode is enabled by a bit in
the mode status register (MSTAT). The AR register can drive
both the R bus and the DMD bus and can be loaded from the
DMD bus.

The ALU contains a duplicate bank of registers shown in Figure
2 as a “shadow” behind the primary registers. The secondary
set contains all the registers described above (AX0, AX1, AYO0,
AY1, AF, AR). Only one set is accessible at a time. The two
sets of registers allow fast context switching, such as for inter-
rupt servicing. The active set is determined by a bit in MSTAT,

Multiplier/Accumulator

The multiplier/accumulator (MAC) implements high speed mul-
tiply, multiply/add and multiply/subtract operations, Figure 3
shows a block diagram of the MAC section.

PMD BUS 24,
~7"

oMD BUS 1, /18 (UPPER)

TTTES L

L1
REGISTERS
2x16

MY
REGISTERS
2x18

|

e

r\jﬁvr’m"w o

Y, Ve -

Figure 3. MAC Block Diagram

The multiplier takes two 16-bit inputs, X and Y, and generates
one 32-bit output, P. The 32-bit output is routed to a 40-bit
accumulator which can add or subtract the P output from the
value in MR. MR is a 40-bit register which is divided into three
sections: MRO (Bits 0-15), MR1 (Bits 16-31), and MR2 (Bits
32-39). The result of the accumulator is either loaded into the

e

MR register or into the 16-bit MAC feedback (MF) register.
The multiplier accepts the X and Y inputs in either signed or
unsigned formats.

In the default operation (ADSP-2100 mode) the result is shifted
one bit to the left to remove the redundant sign bit for fractional
justification; an optional mode on the ADSP-2101 inhibits this
shift for integer operations. The accumulator generates one sta-
tus bit, MV, which is set when the accumulator result overflows
the 32-bit boundary. A saturate instruction is available to change
the contents of the MR register to the maximum or minimum
32-bit value if MV is set. The accumulator also has the capabil-
ity for rounding the 40-bit result at the boundary between Bit

15 and Bit 16.

The MAC and ALU registers are similar. The X input port can
be fed by either the MX register set (MX0, MX1) or any result
register via the R bus (AR, MR0O, MR1, MR2, SRO or SR1).
The MX register set is readable and loadable from the DMD
bus and has dual ported outputs.

The Y input port can be fed by either the MY register set
(MY0, MY1) or the MF register. The MY register set is read-
able from the DMD bus and readable and loadable from both
the DMD and the PMD bus. Its outputs are also dual ported.
The accumulator output can be loaded into either the MR regis-
ter or the MF register. The MR register is connected to both
the R bus and the DMI bus. Like the ALU section, the MAC
section contains two complgte banks of registers (MX0, MX1,
MY0, MY1, MF, MRO, MR1, MR2) to allow fast context
switching,

Shifter

The shifter gives the ADSP-2101 its unique capability to handle
data formatting and numeric scaling. Figure 4 shows a block
diagram of the shifter.

OMD BUS 18,

A X

A

EXPONENT
DETECTOR

sE
REGISTER
NEGATE

From
INSTRUCTION

e is
¥ Yy
Mux Mux
I‘::le F:J'm
REGISTER REGISTER
Yie P2

- Y3

Figure 4. Shifter Block Diagram
The shifter can be divided into the following components: the
shifter array, the OR/PASS logic, the exponent detector and the
exponent compare logic. These components give the shifter its
six basic functions: arithmetic shift, logical shift, normalization,
denormalization, derive exponent and derive block exponent.

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit
input and can place it anywhere in the 32-bit output field, from

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-56 DSP PROCESSORS

ADSP-2101/ADSP-2102

off scale right to off scale left. The shifter can perform arith-
metic shifts (shifter output is sign extended to the left) or logical
shifts (shifter output is zero filled to the left). The placement of
the 16-bit input is determined by the control code (C) and the
HI/LO reference signal. The control code can come from one of
three sources: directly from the instruction (immediate arith-
metic or logical shift), from the SE register (denormalization), or
the negated value of the SE register (normalization). The shifter
input can come from either the 16-bit SI register or any result
register via the R bus. The 32-bit output of the shifter array is
fed to the OR/PASS circuit. The result can be either logically
ORed with the current contents of the SR register or passed di-
rectly to the SR register. The SR register is divided into two
16-bit sections: SRO (Bits 0-15) and SR1 (Bits 16-31).

The shifter input is also routed to the exponent detector cir-
cuitry. The exponent detector generates a value to indicate how
many places the input must be up shifted to eliminate all but
one of the sign bits. This value is effectively the base 2 exponent
of the number. The result of the exponent detector can be
latched into the SE register (for a normalize operation) or can be
sent to the exponent compare logic. The exponent compare logic
compares the derived exponent with the value in the SB register
and updates the SB register only when the derived exponent
value is larger than the current value in the SB register. There-
fore, the exponent compare logic ¢an be used to find the largest
exponent value in an array of shifter inputs.

The shifter includes the following registers: the 8I register, the
SE register, the SB register and the SR register. All these regis-
ters are readable and loadable from the DMD bus. The SR reg«
ister can also drive the R bus. Like the ALU and MAC, the
shifter contains two complete banks of registers for context
switching. Each set contains all the registers described above,
but only one set is accessible at a time. The active set is deter-
mined by a bit in MSTAT.

Data Address Generators

Figure 5 shows a block diagram of a data address generator.

OMD BUS
FROM ! S
INSTRUCTION %x Mux 4
2 14 14 14 1
+; W v v Ve FROM
INSTRUCTION
I
L] M
REQISTERS moouLus REQISTERS REGISTERS [*—1
x4 Loaic Rl ax1a
Lo T ¢
1y A0D

i L }nm ONLY
ADDRESS

Figure 5. Data Address Generator Block Diagram

The data address generators (DAGs) provide indirect addressing
for data stored in the program and data memory spaces. The
processor contains two independent DAGs so that two data op-
erands (one in program memory and one in data memory) can
be addressed simultaneously. The two data address generators
are identical except that DAGI has a bit-reversal option on the
output and can only generate data memory addresses, while
DAG2 can generate both program and data memory addresses

but has no bit-reversal capability. Both DAGs can also be used
for serial port autobuffering.

There are three register files in each DAG: the modify (M) reg-
ister file, the index (I) register file and the length (L) register
file. Each of these register files contains four 14-bit registers
which are readable and loadable from the DMD bus. The I reg-
isters hold the actual addresses used to access external memory.
When using the indirect addressing mode, the selected I register
content is driven onto either the PMA or DMA bus. This value
is post-modified by adding the (signed) contents of the selected
M register. The modified address is passed through the modulus
logic.

Associated with each I register is an L register which contains
the length of the buffer addressed by the I register. The L regis-
ter and the modulus logic together enable circular buffer ad-
dressing with automatic wraparound at the buffer boundary.
Automatic wraparound is also used by the serial ports to gener-
ate the serial port interrupt when operating in autobuffering
mode. The modulus logic is disabled by setting the L register to
Ze10.

PMD-DMD Bus Exchange

The PMD-DMD bus exchange circuit couples the PMD and
DMD buses. The PMD bus is 24 bits wide and the DMD bus
i$ 16 bits wide, The upper 16 bits of PMD are connected to the
DMD bus. An 8-bit register (PX) allows transfer of the full
width of the PMD bus. When data (as distinct from an instruc-
tion) is read from the PMD bus, the lower 8 bits of the PMD
bus are loaded into PX. When writing to the PMD bus, the
contents of PX are appended to the upper 16 bits, forming a
24-bit value. The PX register is also readable and loadable from
the DMD bus.

Program Sequencer

The program sequencer incorporates powerful and flexible
mechanisms for program flow control such as zero overhead
looping, single cycle branching (both conditional and uncondi-
tional) and automatic interrupt processing. Figure 6 shows a
block diagram of the program sequencer.

ACORESS of JuMP (14 bits)

CONDITION CODE (4 Bits) FUNCTION FiELO
OMD BUS 1" o

DRSS of

T LABT INSTAUCTION
11008 (14)
Termnation
COMITION (4 bis)

|
From INSTAUCTION REQISTER

4 x 14 COUNT STACK

[y
COUNTER

7 x 21 STATUS STACK

.
ARITHMETIC STATUS REQISTERS
aTATUS

sk
D

Y| NTERRUSY
‘CONTROLLER

L)

SPORTO Transmit
BPORTD Maceive
SPORT1 Transmit o TG
SPORTO scaive o IRGY
tinen

NEXT ACDRESS Mux sounc

Vo,

Figure 6. ADSP-2101 Program Sequencer

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-57

The sequencing logic controls the flow of the program execu-
tion. It outputs a program memory address onto the PMA bus
from one of four sources: the PC incrementer, PC stack,
instruction register or interrupt controller. The next address
source selector controls which of these four sources are selected
based on the current instruction word and the processor status.
A fifth possible source for the next program memory address is
provided by DAG2 when a register indirect jump is executed.

The program counter (PC) is a 14-bit register which contains the
address of the currently executing instruction. The PC output
goes to the incrementer. The incremented output is selected as
the next program memory address if program flow is sequential.
The PC value is pushed onto the 1614 PC stack when a CALL
instruction is executed or when an interrupt is processed. The
PC stack is popped when the return from a subroutine or inter-
rupt is executed. The PC stack is also used in zero overhead
looping.

The program sequencer section contains six status registers.
These are the Arithmetic Status register (ASTAT), the Stack
Status register (SSTAT), the Mode Status register (MSTAT),
the Interrupt Control register (ICNTL), the Interrupt Mask reg-
ister (IMASK) and the Interrupt Force and Clear register (IFC).

Interrupts
The interrupt controller allows the processor to respond to the
six possible interrupts with a minimum of overhead. Individugl

interrupt requests are logically ANDed with the bits in IMASK;; ‘

the highest priority unmasked interrupt is then selected. -

The interrupt control register, ICNTL, allows each interrupt to
be set as either edge or level sensitive. Depending on.a bit'in
ICNTL, interrupt routines can either be nested with higher pri-

ority interrupts taking precedence or processed sequentially with

only one interrupt service active at a time.

The 12-bit interrupt force and clear register, IFC, contains a
force bit and a clear bit for each of the six possible interrupts.

When responding to an interrupt, the status registers ASTAT,
MSTAT, IMASK are pushed onto the status stack and the PC
counter is loaded with the appropriate vector address. The sta-
tus stack is seven levels deep to allow interrupt nesting. The
stack is automatically popped when a return from the interrupt
is executed.

The vector addresses for each interrupt are fixed. In the ADSP-
2101 each vector location identifies a block of four instructions.
Short service routines can be executed without an additional
JUMP, minimizing overhead.

IMASK
IMASK is six bits wide and allows the interrupt inputs to be
individually enabled or disabled. The bits in IMASK are:

Timer interrupt enable

IRQO or SPORT1 receive interrupt enable
IRQI or SPORT transmit interrupt enable
SPORTO receive interrupt enable

SPORTO transmit interrupt enable

1RQ2 interrupt enable.

WA WwN—=O

The bits are all positive sense (0 =disabled, 1=enabled).
IMASK is set to zero upon a processor reset so that all inter-
rupts are disabled initially.

. Bitl

ICNTL
ICNTL is a 5-bit register configuring the interrupt modes of the
processor. The bits in ICNTL are:

IRQO or SPORT! receive sensitivity
IRQI or SPORT! transmit sensitivity
IRQ2 sensitivity

Zero

Interrupt Nesting Mode.

WD —-O

The sensitivity bits determine whether a given interrupt input is
edge- or level-sensitive (0 = level-sensitive, 1 = edge-sensitive).

The interrupt nesting mode determines whether nesting of inter-
rupt service routines is allowed. When set to zero, all IMASK
bits are automatically set to zero when an interrupt service rou-
tine is entered. Previous IMASK values are pushed on the
stack. When set to one, IMASK is set so that equal and lower
priority interrupts are masked, permitting higher priority inter-
rupts to interrupt the current interrupt service routine.

Edge-triggered interrupts are automatically cleared when the
interrupt service routine is called. They can also be cleared by
writing a one to the appropriate IFC bit.

The timer and seria’l\port itsterrupts act as edge-sensitive inter-
rupts which can be ¥asked, cleared or forced with software. If
you force 4 level-sensitive interrupt in software, it is automati-
cally cleared. For propet operation, the SPORT1 sensitivity bits
must be set to-edge-sensitive,

¥C Lo

The IFC register is twelve bits wide and contains a bit for clear-
ing and & bit for forcing each of the six possible interrupts in
the ADSP-2101."The bits in IFC are defined as follows.

Bir'¢

‘Timer interrupt clear

SPORT!1 receive or IRQO interrupt clear
Bit 2 SPORT]1 transmit or IRQI interrupt clear
Bit 3 SPORTO receive interrupt clear
Bit4 SPORTO transmit interrupt clear
Bit 5 IRQ2 interrupt clear
Bit6 Timer interrupt force
Bit 7 SPORT1 receive or IRQO interrupt force
Bit 8 SPORT!1 transmit or IRQ1 interrupt force
Bit 9 SPORTO receive interrupt force
Bit 10 SPORTO transmit interrupt force
Bit 11 IRQ2 interrupt force.

Pending edge-sensitive interrupts can be cleared by writing a
one to the appropriate clear Bit (0-5) in IFC. Edge-triggered
interrupts are normally cleared automatically when the corre-
sponding interrupt service routine is called.

Interrupts can be forced under program control by writing a one
to the force Bit (6-11) corresponding to the desired interrupt.
This causes the interrupt to be serviced once, unless masked.
The timer and SPORT interrupts behave like edge-sensitive in-
terrupts and can be masked, cleared and forced.

Loop Mechanisms

The DO UNTIL instruction executes a zero overhead loop us-
ing the loop stack and the loop comparator. For a DO UNTIL
instruction, a 14-bit termination address and a 4-bit termination
condition are pushed onto the 18-bit loop stack. The address of
the next instruction (which identifies the top of the loop) is
pushed onto the PC stack. The loop comparator continuously

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-58 DSP PROCESSORS

ADSP-2101/ADSP-2102

compares the current PC value against the termination address
on the top of the loop stack. When the termination address is
detected, the processor checks if the termination condition is
met. If the termination condition is not met, then the top of the
PC stack is used as the next PC address, returning program flow
to the beginning of the loop. If the termination condition is met,
then the PC stack is popped, the current PC is incremented by
one and program flow falls out of the loop. The loop stack is
four levels deep, permitting four levels of zero overhead loop
nesting.

The down counter and the count stack also support this power-
ful looping mechanism. The down counter is a 14-bit register
with auto decrement capability. It is loaded from the DMD bus
with the loop count. The count is decremented every time the
counter value is checked; when the count expires, the counter
expired (CE) flag is set. The count stack allows the nesting of
loops by storing temporarily dormant loop counts. When a new
value is loaded into the counter from the DMD bus, the current
counter value is automatically pushed onto the count stack, as
program flow enters a loop. The count stack is automatically
popped whenever the CE flag is tested and is true, thereby
resuming execution of the code outside the loop .

Status Registers

The ADSP-2101 maintains six status.r sters, svhlchscan be
accessed over the DMD bus (one i§m n!y and one 1s wme‘
only, however). These registers ares, N
ASTAT Arithmetic Status Register . .
SSTAT Stack Status Register (Read-Only) .
MSTAT Mode Status Register

ICNTL Interrupt Control Register

IMASK Interrupt Mask Register

IFC Interrupt Force and Clear. (Write-Only)

The interrupt registers are described in a previous section; the
other three are discussed below.

ASTAT

ASTAT is 8 bits wide and holds the status information gener-
ated by the computational sections of the processor. The bits in
ASTAT are defined as follows:

AZ (ALU Result Zero)
AN (ALU Result Negative)
AV (ALU Overflow)

AC (ALU Carry)

(ALU X Input Sign)
AQ (ALU Quotient Flag)
MV (MAC Overflow)

SS (Shifter Input Sign).

The bits are positive sense (1 =true, 0= false). They are
automatically updated when a new status is generated by the
arithmetic operations affecting them, as defined by the following
table:

NOWVMAEWN~O
»>
%]

Status Bit Updated On

AZ, AN, AV, AC Any ALU operation except division

AS ALU absolute value operation

AQ ALU divide operations

MV Any MAC operation except saturate MR
SS Shifter exponent detect operation.

SSTAT
SSTAT is 8 bits wide and holds the status of the four internal
stacks. The bits in SSTAT are:

PC Stack Empty

PC Stack Overflow
Count Stack Empty
Count Stack Overflow
Status Stack Empty
Status Stack Overflow
Loop Stack Empty
Loop Stack Overflow.

NO WV A WN - O

All of the bits are positive sense (1=true, 0="false). The empty
status bits indicate that the stack is empty. The overflow status
bits indicate that the stack has overflowed. Since the stack over-
flow status bits “stick” once they are set, subsequent pop opera-
tions have no effect on them. This means that the stack can be
both overflowed and empty under certain circumstances. A pro-
cessor reset or a software, reboot must be executed to clear the
stack overflow statuts. ©

MSTAT .-

'1 MSTAT is a 7-bit register that defines various operating modes
“of the processpr, The mode control instruction enables or dis-
ables the opergting mades. The bits in MSTAT are:

9. _ - Data’Register Bank Select
1" " Bit-Reverse Mode (DAG1 Only)
2 . ALLU Overflow Latch Mode
3 AR-Sataration Mode
4 MAC Result P Placement Mode
5 Timer Enable
6 Go Mode.

The data register bank select bit determines which set of data
registers is currently active (0= primary, 1=secondary). The
data registers include all of the result and input registers to the
ALU, MAC and shifter (AX0, AX1, AY0, AY1, AF, AR,
MX0, MX1, MY0, MY1, MF, MRO, MR1, MR2, SB, SE, SI,
SRO and SR1). At RESET, the data register bank select bit is
cleared.

The bit-reverse mode, when enabled, bit-wise reverses all ad-
dresses generated by DAG1. This is most useful for reordering
the input or output data in a radix-2 FFT algorithm.

The ALU overflow latch mode causes the AV (ALU overflow)
status bit to “stick” once it is set. In this mode, when an ALU
overflow occurs, AV will be set and remain set, even if subse-

quent ALU operations do not generate overflows. AV can then
only be cleared by writing a zero into it from the DMD bus.

The AR saturation mode, when set, causes ALU results to be
saturated to the maximum positive (H#7FFF) or negative
(H#8000) values when an ALU overflow or underflow occurs.

The MAC Result P Placement bit, when set to 0, results in the
ADSP-2100 result placement of the multiplier product in the
MR register (one bit shift). When this bit is 1, no shift occurs.
The Timer Enable bit, when set to 1, enables the timer decre-
ment mechanism.

The Go Mode bit, when set to 1, allows the processor to con-
tinue operations internally (when possible) while the external
address and data buses are tristated during a bus grant.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-59

CONDITION CODES

The condition codes are used to determine whether a conditional
instruction, such as a jump, trap, call, return, MAC saturation
or arithmetic operation, is performed. The 16 basic composite
status conditions and their derivations are shown in Table II.
Since arithmetic status is latched into ASTAT at the end of a
processor cycle, the condition logic represents conditions gener-
ated on the previous cycle.

Code Status Condition True If

EQ ALU Equal Zero AZ =1

NE ALU Not Equal Zero AZ=0

LT ALU Less Than Zero AN .XOR. AV=1

GE ALU Greater Than or Equal AN .XOR. AV =0
Zero

LE ALU Less Than or Equal (AN .XOR. AV)
Zero OR.AZ =1

GT ALU Greater Than Zero (AN .XOR. AV)

.OR. AZ =0

AC ALU Carry AC=1

NOT AC Not ALU Carry AC=0

AV ALU Overflow AV=1

NOT AV Not ALU Overflow AV=0

MV MAC Overflow MvV=1

NOT MV Not MAC Overflow MV=0

NEG ALU X Input Sign Negative AS=1

POS ALU X Input Sign Positive AS#=9

NOT CE Not Counter Expired 7 CE=D

FOREVER Always P

© Always True

Table Il. Condition Codes -~ - .

s

In addition to the basic 16 conditions, the JUMP and CALL

instructions also support the use of the FI pin as a conditional -

flag. This pin is one of the five used for serial port 1. It is avail- ~
able if serial port 1 is not configured.

FLAG_IN FI Pin Last Sampled 1
NOT FLAG_IN FI Pin Last Sampled 0

Table lll. Additional Condition Codes For JUMP and CALL

Timer

A programmable interval timer can generate periodic interrupts.
When the decrementing mechanism is enabled, a 16-bit count
register (TCOUNT) is decremented every n cycles, where n-I is
a scaling value stored in an 8-bit register (TSCALE). When the
value of the count register reaches zero, an interrupt is gener-
ated and the count register is reloaded from a 16-bit period reg-
ister (TPERIOD). Timer interrupts can be masked, cleared and
forced in software if desired.

The ADSP-2101 8-bit prescaler allows periodic interrupts over a
wide range of possible times. In a processor with an 80ns cycle
time, for example, the timer interrupt could occur as infre-
quently as every 1.34 seconds if a maximum scaling value is
used. With a minimum scaling value a maximum period of
5.24ms can be timed.

SERIAL PORTS

The ADSP-2101 incorporates two complete serial ports
(SPORTO0 and SPORTY1) for serial communications and multi-
processor coordination.

Each serial port has a 5-pin interface consisting of the following
signals.

Signal Name Function

SCLK Serial Clock I/O

RFS Receive Frame Synch I/O
TFS Transmit Frame Synch I/O
DR Serial Data Receive

DT Serial Data Transmit.

Here is a brief list of the capabilities of the ADSP-2101
SPORTs. Figure 7 shows a simplified block diagram of a single
SPORT.

® Bidirectional: each SPORT has a separate transmit and re-
ceive section.

® Double buffered: each SPORT section (both receive and
transmit) has a data register accessible to the user and an
internal transfer register. The double buffering provides
additional time to service the SPORT.

® Flexible clocking: each SPORT can use an external serial
clock (up to the full processor cycle rate) or generate its own
(from 94Hz up to ope half the processor cycle rate).

o Flexible framing: ‘each SPORT section (receive and transmit)
¢an rus in an unframed mode; with internally generated or
externally generated frame synch signals; with active high or
inverted frérhe $ighals;, with either of two pulse widths/

. timings. Framing for the receive and transmit sections is

.. . indepeprdent but shares the same serial clock.
‘» Flexible word length: each SPORT supports serial data word

_ Jenigths from three to sixteen bits.

#® (ompending in hardware: each SPORT provides optional
A-law and p-law companding according to CCITT recommen-
dation G.711. Different companding can be used for each
SPORT, for example, A-law for SPORTO and p.-law for
SPORT]1.

® Flexible interrupt scheme: each SPORT section (receive and
transmit) can generate a unique interrupt upon completing a
data word transfer or after transferring an entire buffer (see
next item).

® Autobuffering with single cycle overhead: using the ADSP-
2101 DAGs, each SPORT can receive and/or transmit an en-
tire circular buffer of data with an overhead of only one cycle
per data word. Transfers to and from the SPORT and the
circular buffer are automatic in this mode and do not require
additional programming. An interrupt is generated only when
pointer wraparound occurs in the circular buffer.

® Multichannel capability: SPORTO provides a multichannel
interface for selective receipt and transmission of arbitrary
data channels from a 24- or 32- word, time division multi-
plexed, serial bitstream. This is especially useful for T1 or
CEPT interfaces or as a network communication scheme for
multiple processors.

® Alternate configuration: SPORT]1 can be configured as two
external interrupt inputs (IRQO and IRQ1) and the Flag In
and Flag Out signals. The internally generated serial clock
may still be used in this configuration.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-60 DSP PROCESSORS

ADSP-2101/ADSP-2102

OMD Bus o

the widely used algorithms for companding: A-law and p-law.
The type of companding can be independently selected for each
SPORT.

Companding
Hardware

The TXn and RXn registers are identified by name in the
ADSP-2101 assembly language, not memory-mapped. TXn and
RXn can be read and written (like other non-data registers) with

Xn

Receive Dats Register

4

the following instructions: read/write to data memory (direct

Serial
Contro!

address), load non-data immediate, and internal (register-to-

DT TFS SCLK

Figure 7. Serial Port Block Diagram

SPORT OPERATION
Each SPORT has a receive and a transmit register; SPORTO’s
registers are RX0 and TX0; SPORT1’s are RX1 and TX1.
Companding (a contraction of COMpressing and exPANDing) is
the process of logarithmically encoding data to minimize the
number of bits that must be sent. Both SPORTS share the ¢om
panding hardware: one expansion and one compression opera-
tion can occur in each processor cycle. Iri ‘the évént ¢f gonten-
tion, SPORTO has priority. The ADSP-#101 spports both of -/

I
Internal
Serial
Clock

register) moves. They cannot be accessed by instructions that
require indirect addressing, i.e., addresses generated by the
DAGs.

There are two ways to generate the SPORT interrupts after the
transmission or receipt of (1) each data word or (2) each com-
plete buffer of data words.

Normal (Word by Word) Operation

Writing to the TXn register readies the SPORT for transmis-

sion; the TFS signal ipitiates it. The value in TXn is shifted

into the ingernal transmit, register, and after framing synchroni-
; 2atiorkhag; obgurted Gif required), the bits are sent, MSB first.
:%éx‘?ﬂxé"ﬁrst bit hs been transferred, the SPORT generates
2 ’ﬂxe"tranm; mtaru}f\; TXn is now available for the next
piedg of data, evelHodgh the transmission of the first is not

"
CLKIN XTAL cLKOUT "yz;n/ GND RFS Senal Dot
eral evice
SERIAL | TFS
—=» RESET
PORT 0 [* o7 ©
— iRG2 DR
. ADSP-2101
56 SCLK
" RFS or TRGD Senal Devi
—| mmar oA I* s or AT erial Device
DT or FO
T i — Optional,
PMS RD WR ADDRESS DATA DMS &W3 OR or FI for !
18], 24
/L A
14, 2
24 A 8
pe 18 P d
A D CS A D (s A o T3
o€ 3 »|0E
WE WE 8007
EPROM
(Optional) (Optional) 2764
PROGRAM 27128
DATA
MEMORY 27256
MEMORY 27512
PERIPHERALS
250ns
NOTE: The two MSBs of the Boot EPROM Address are also the two MSBs (DB@ 2)
3

of the Data Bus. This is only required for the 27256 and 27512,

The eight data bits of the Boot Memory Space correspond to L

The sixteen data bits of the Data Memory Space correspond to D“ N

Figure 8. ADSP-2101 Basic System Configuration

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-61

In the receiving section, bits accumulate as they are received in
an internal receive register. When a complete word has been
received, it is shifted into the RXn register and the receive in-
terrupt for that SPORT is generated. RXn may then be read.

Autobuffered Operation

In autobuffered operation, the interrupt is not generated until a
complete buffer of data words has been received or transmitted.
To do this, the user sets up a circular buffer in data memory
and identifies the I and M registers in the DAG used to point to
this buffer. The SPORT automatically transfers each data word
to or from the buffer, stealing a single cycle for each word. (For
example, to buffer 16 words of data would require just 16 addi-
tional cycles.) When the modulus logic detects buffer wrap-
around, the SPORT interrupt is generated. Transmitting in au-
tobuffered mode must be started by explicitly writing the first
word of the transmit buffer to TXn. The transmission of this
word starts the automatic cycling through the transmit buffer.

These serial port features, in conjunction with other features of
the ADSP-2101, make it possible to interface to most codecs,
A/Ds, DACs and to additional ADSP-2101s with no additional
hardware and limited software overhead.

SYSTEM INTERFACE

Figure 8 shows a basic system configuration with the ADSP-
2101, two serial codecs, a boot EPROM and optional external
program and data memories. Up to 16K words of data memory
and 16K words of program memory can be supported. Program-
mable wait state generauon allows the pmcasot to interface
easily to slow memories. .

The ADSP-2101 also provides one extemal intersupt aod two
serial ports or three external interrupts and one serial port.

Clock Signals
The ADSP-2101 takes a TTL-compatible clock signal, CLKIN;

running at the instruction rate. Because the ADSP-2101 contain$ ’

an internal oscillator, an external crystal may be used in place of
an external clock oscillator. A clock output (CLKOUT) signal is
generated by the processor synchronized to the processor’s inter-
nal cycles. The rising edge of CLKOUT is aligned with the ris-
ing edge of CLKIN. CLKIN may not be halted, changed dur-
ing operation or operated below the specified frequency.

Bus Interface

The ADSP-2101 can relinquish control of the data and address
buses to an external device. When the external device requires
access to memory, it asserts the bus request (BR) signal. After
completing the current instruction, the processor halts program
execution, tristates the data and address bus, the PMS, DMS,
BMS, RD, WR output drivers and asserts the bus grant (BG)
signal. When the BR signal is released, the processor releases
the BG signal, re-enables the output drivers and continues pro-
gram execution from the point where it stopped.

If the Go mode is set, the processor continues execution (from
internal memory) while the bus is granted. In this mode, while
BG is asserted, the processor only halts if an external memory
access is required.

Wait States

The ADSP-2101 can be easily interfaced to slow memories
using its programmable wait state generation capability. Three
registers control wait state generation for the boot, program and
data memory interface. Wait states for boot memory default to 3
cycles at RESET, while program and data memory each default

to 7 cycles. You can specify 0 to 7 wait states for each memory
interface.

PROGRAM MEMORY INTERFACE

The program memory address bus (PMA) and the program
memory data bus (PMD) are multiplexed with DMA and
DMD, sharing the external data and address bus. The 14-bit
address bus directly addresses up to 16K words of which 2K is
on chip. The data bus is bidirectional and 24 bits wide to exter-
nal program memory.

There is no placement restriction for instruction code and data
in the program memory space, except for the locations used for
interrupt and restart vectors.

The program memory data lines are bidirectional. The program
memory select (PMS) signal indicates access to the program
memory and can be used as a chip select signal. The write (WR)
signal indicates a write operation and can be used as a write
strobe. The read (RD) signal indicates a read operation and can
be used as a read strobe or output enable signal.

Although the processor internal data bus is only 16 bits, the
ADSP-2101 can write to the full 24-bit program memory using
the PX register.

. Program Memory Maps

‘Prégram memory can be mapped in two ways, depending on the
staté of the MMAP pin. Figure 9 shows the two configurations.
When MMAP =0, internal RAM occupies 2K words beginning

.- at-address 6000; external program memory uses the remaining
... 14K words beginning at address H#0800. In this configuration,
" the boot lgadin%uence (described below) is automatically

initiated when RESET is released.

When MMAP = 1, 14K words of external program memory be-
gin at address 0000 and internal RAM is located in the upper
2K words, beginning at address H#3800. In this configuration,
program memory is not loaded although it can be written to and
read from under program control.

ADSP-2102 ROM Memory

In the ADSP-2102 ROM-based system, both program memory
maps are available, selected by the MMAP pin as above. Auto-
matic boot loading is optional.

INTERNAL 0000 oooo
RAM or ROM
RAM
LOADED from
EXTERNAL
STORAGE |o7gF
0800
EXTERNAL EXTERNAL
37FF
INTERNAL 3800
RAM or ROM
NOT
LOADED
3FFF 3IFFF
MMAP=0 MMAP=1

Figure 9. ADSP-2101/ADSP-2102 Program Memory Maps

Boot Memory Interface
The boot memory space consists of an external 64K by 8 space,

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-62 DSP PROCESSORS

ADSP-2101/ADSP-2102

divided into eight separate 8K by 8 pages. Three bits in the sys- At RESET, the ADSP-2101 generates three wait states while

tem control register select which page is loaded by the boot booting. This allows a 12.5MHz processor to use a slow (250ns),
memory interface. Another bit in the system control register low-cost EPROM for program storage. Program memory is
allows the user to force a boot loading sequence under software loaded a byte at a time and converted to 24-bit words.

control. The boot loading after RESET is initiated if BR is recognized during the booting sequence. The bus is
MMAP=0. granted after the completion of loading the current byte. BR

during booting may be used to implement booting under the
control of a host processor.)

The ADSP-210X Assembler and Linker support the creation of
programs and data structures requiring multiple boot pages
during execution. Table IV shows the state of various processor
registers after RESET and after a software forced boot.

The boot memory interface defaults to three wait states after
RESET and can be set to any value in the range 0 to 7.

The BMS and RD signals are used to select and strobe the boot

memory interface. Only 8-bit data is read over the data bus. To

accommodate up to eight pages of boot memory, the two MSBs

of the data bus are used in the boot memory interface as the two
MSBs of the boot space address.

Control Field Description RESET Reboot
Data Registers s, ", ,‘

PX PMD-DMD Bus exchange _ jz. “apdefin undefined
All others < % \;g;, changed unchanged
Status Registers S S S %

IMASK _ dnterrept sefyice enables . DOy G 0

ASTAT o r . % Brithmetie sthtus . Aindefined no change
MSTAT el uMode staus ¢ 3 0 no change
SSTAT by Stack status” " . H#55 H#55
Control Registers (Memory-Mapped) < A o \%:;' ;; 4,

BWAIT ‘A'Boot“memorgg) wait sm@ 20 T3 no change
BPAGE Boot page ;¢ 0 no change
SPORT 1 configure Configuration * 1 no change
SPEO SPORTO enable 0 no change
SPE1 SPORT]1 enable 0 no change
DWAIT04 Data memory wait states 7 no change
PWAIT Program memory wait 7 no change
TCOUNT Timer count register undefined no change
TPERIOD Timer period register undefined no change
TSCALE Timer scale register undefined no change
Serial Port Control Registers (Memory-Mapped, One Set Per SPORT)

ISCLK Internal serial clock 0 no change
RFSR, TFSR Frame sync required 0 no change
RFSW, TFSW Frame sync width 0 no change
IRFS, ITFS Internal frame sync 0 no change
INVRFS, INVTFS Invert frame sense 0 no change
SLEN Serial word length 0 no change
MCE Multichannel enable 0 no change
MCL Multichannel length 0 no change
SCLKDIV Serial clock divide undefined no change
RFSDIV RFS divide undefined no change
Multichannel word enable bits undefined no change
FO Flag Out value undefined no change
RBUF, TBUF Autobuffering enable 0 0

Table IV. RESET and Software Boot Machine State

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-63

Data Memory Interface

The data memory. address bus (DMA) and the data memory
data bus (DMD) are multiplexed with PMA and PMD, sharing
the external data and address bus. The 14-bit address bus
directly addresses up to 16K words of data. The data bus is
bidirectional and 16 bits wide.

The data memory select (DMS) signal indicates access to the

_ data memory and can be used as a chip select signal. The write
(WR) signal indicates a write operation and can be used as a
write strobe. The read (RD) signal indicates a read operation
and can be used as a read strobe or output enable signal.

The ADSP-2101 supports memory-mapped I/O, with the
peripherals memory mapped into the data memory address space
and accessed by the processor in the same manner as data
memory.

Data Memory Map

The on-chip data memory RAM resides in the 1K words of data
memory beginning at address H#3800, as shown in Figure 10.
In addition, data memory locations from H#3C00 to the end of
data memory at H#3FFF are reserved. Control registers for the
system, timer, wait state configuration and serial port operations
are located in this region of memory.

The remaining 14K of data memory is external. External data
memory is divided into five zones associated with five different
wait states. This allows slower peripherals to be mapped. into
zones of data memory with more wait states. Figure 10 shows
these zones. . .

3 0000
1K External
DWAITO 0400 -
1K External
DWAIT1
0800
EXTERNAL
RAM 10K External
DWAIT2
3000
1K External
DWAIT3
3400
1K External
v DWAIT4
3800
INTERNAL 1K Internal
RAM 3C00
Memory Mapped
Registers
And Reserved
v 3FFF

Figure 10. ADSP-2101 Data Memory Map

Interrupt Handling

The ADSP-2101 provides up to three external interrupt input
pins, IRQD to IRQZ. IRQ? is always available as a dedicated
pin; IRQI and IRQ0 may be alternately configured as part of

Serial Port 1. Each interrupt pin corresponds to a particular in-
terrupt priority level from 2 (highest) to 0 (lowest).

The ADSP-2101 also supports internal interrupts from the timer
and the two serial ports. The interrupt levels are internally pri-
oritized and individually maskable. These input pins can be pro-
grammed to be either level- or edge-sensitive. The priorities of
all six interrupts are shown in Table V.

The ADSP-2101 supports a vectored interrupt scheme: when an
interrupt is acknowledged, the processor shifts program control
to the interrupt vector address corresponding to the interrupt
level. Interrupts can optionally be nested so that a higher prior-
ity interrupt can pre-empt the currently executing interrupt ser-
vice routine. Each interrupt vector location is four instructions
in length, so that simple service routines can be coded entirely
in this space. Longer routines require an additional JUMP or
CALL.

Source of Interrupt Interrupt Vector

IRQ2 (external pin) 0004 (highest priority)

SPORTO Transmit (internal) 0008
SPORTO Receive (internal) 000C
SPORT1 Transmit {intersal) or

IRQ! (external) 0010
SPORT1 Receive (internal) or

IRQO (externat) 0014

Timer (igiternal} 0018 (lowest priority)

Table V. Interrupts & Interrupt Vector Addresses

RESET Signal.

“The RESET signal initiates a master reset of the ADSP-2101.
‘The RESET signal must be asserted after the chip is powered
up to assure proper initialization. If RESET follows initial
power-up, it must be held long enough to allow the internal
clock to stabilize. If RESET is activated subsequently, the clock
continues and does not require this stabilization time. The mas-
ter reset performs the following:

1. Initialize internal clock circuitry, if necessary

. Reset all internal stack pointers to empty stack condition
. Mask all interrupts

. Clear MSTAT register

. When RESET is released, if there is no pending bus request,
execute the boot-loading sequence (if configured)

6. Drive PMA with the restart vector, H#0000.

Interprocessor Communication

The serial ports provide a way to bidirectionally link two
ADSP-2101s in a system with no additional hardware required.
Figure 11 shows a typical system configuration with two
ADSP-2101 processors.

wm AW N

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-64 DSP PROCESSORS

ADSP-2101/ADSP-2102

STy

S
CLKIN CLKOUT V. V.. ; it P ¢ ANALOG IN
—-»1 RESET ? :; 323"‘. :: *
ou!
9 scik T CLKA ANALOG out '{ ’r T
- CLKX FSr RFS S
ADSP-2101 ANALOG IN lsira) e ok 5 CLKOUT CLKIN
i -] PCMin ot R i
TFS| oR T le—
° 5 ANALOG OUT CLKR)‘_] sotk 0
OR CLKX
BW3 DATA ADDRESS RD I SCLK ADSP-2101
TFs S
A P
sy 'j’ bR H
T T
— scLk 1 BWS DATA ADDRESS RD
gs o A T
o€ 13
8
BOOT 7 /1
EPROM
¢s o A
2764 —
OF
250ns BOOT
EPROM
: 4 2764
X 280ns
B&‘%J@; Systém C‘onf:guratran
R A

Figure 11. Multtg
INSTRUCTION SET DESCRIPTION "-f‘ % 2’:3'"&;«?

The ADSP-2101 assembly language, | »31,90 8, uses
an algebraic syntax for ease of cog,ng dibitity. "The,
sources and destinations of compufa tionsan da@moﬁm %

cryptic assembler mnemonics. Every inst

single 24-bit word and executes in a single cﬂcle
tions encompass a wide variety of instruction types along wﬁth - 3¢
high degree of operational parallelism. There are five basic Baté-
gories of instructions: data move instructions, computational
instructions, multifunction instructions, program flow control
instructions and miscellaneous instructions. Each of these in-
struction types is described briefly. The complete instruction set
is summarized at the end of this section. The ADSP-2101 User’s
Manual gives an overview and the ADSP-210X Cross-Software
Manual contains a complete reference to the instruction set.

ADSP-2100 Compatibility

ADSP-2101 source code is a superset of the ADSP-2100 instruc-
tion set. The ADSP-2101 is source and object code compatible
with the ADSP-2100. An ADSP-2100 program may need to be
relocated to utilize internal memory and conform to the new
interrupt vector placement.

are written explicitly in each assembly sta)
Tug on

The TRAP instruction, however, is not supported since the
ADSP-2101 does not have the TRAP/HALT signals.

Data Move Instructions

Table VI gives a list of all registers that are accessible using the
data move instructions. This set of registers is denoted as reg in
the instruction set summary given in Table IX at the end of this
publication. A subset of the reg group associated with the com-
putational units, which generally hold data as opposed to ad-
dress or status information, are denoted as dreg. Memory-
mapped control registers are treated as data memory locations,
not as registers.

The data move instructions include transfers between internal
registers, between data memories and internal registers, between
program memories and internal registers, and immediate value

mtoa oy, M iienﬁ
he msteum y,

E %’loadmqu;f reﬁgrs@nd data memories. The content of every reg

cam‘%l@ be l%tmﬁy other reg.

da;dﬁ%ﬁsmg modes are supported for data memory transfers:
irect add;essmg and indirect addressing. In direct addressing,
f%;csidress is supplied from the instruction word. In

d%ct sing, one of the data address generators provides

2 "%he dddress. Using direct addressing, the contents of a data

memory location can be written and read by any reg. Using indi-
rect addressing, the contents of a data memory location can only
be written and read by a dreg. Immediate data load to data
memory is permitted with indirect addressing. Only the indirect
addressing mode is supported for program memory data trans-
fers and contents of a program memory location can be read and
written to any dreg.

AXO0, AX1)
AY0, AY1

AR

MX0, MX1

MY0, MY1 Data
MRO, MR1, MR2 Registers
SI (dreg)

SE

SRO, SR1

SB

PX

10, 11, 12, 13, 14, IS, 16, 17
MO0, M1, M2, M3, M4, M5, M6, M7 Accessible
Lo, L1,L2,L3, L4,L5, L6, L7 P> Registers
CNTR (reg)
ASTAT
MSTAT
SSTAT
IMASK
ICNTL
RX0, TX0
RX1, TX1 _J

Table VI. Register Classification

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-65

Memory-Mapped Registers

In addition to the registers listed in the table above, the ADSP-
2101 provides a set of memory-mapped registers for controlling
system features, serial ports and the timer. The table below
summarizes these registers.

Memory

Location Register Use

3FFF System control

3FFE Data memory wait state control register
3FFD Timer period

3FFC Timer count

3FFB Timer scaling factor

3FFA & 3FF9 SPORTO multichannel receive word enables
3FF8 & 3FF7 SPORTO multichannel transmit word enables
3FF6 SPORTO control

3FF5 SPORTO serial clock divide modulus

3FF4 SPORTO receive frame sync divide modulus
3FF3 SPORTO autobuffer control

3FF2 SPORT1 control

3FF1 SPORT!]1 serial clock divide modulus

3FF0 SPORT]1 receive frame sync divide modulus
3FEF SPORT1 autobuffer control

Table VIl. Memory-Mapped Registers

Computational Instructions

There are three types of operations assogiated with the c&nputa- /

tional units: ALU operations, MAC operations dnd shifter oper~
ations. With few exceptions, all these cgmputational ipstructions
can be made conditional. (The permissible conditions are speci-
fied in Table II.) Each computational unit has a $et of input reg-
isters and output registers. A list of permissible iriput operands
and result registers for each of the units is given in Table VIII.

ALU

Source for Source for Destination for
X Input (xop) Y Input (yop) Output Port R
AXO0, AX1 AYO0, AY1 AR

AR AF AF

MRO, MR1, MR2

SRO, SR1

MAC

Source for Source for Destination for
X Input (xop) Y Input (yop) Output Port R
MX0, MX1 MY0, MY1 MR (MR2, MR1, MRO)
AR MF MF

MRO, MR1, MR2

SRO, SR1

Shifter

Source for Destination for
Shifter Input (xop) Shifter Output
SI SR (SR1, SR0)
AR

MRO, MR1, MR2

SRO, SR1

Table VIll. Computational Input/Output Registers

Multifunction Instructions

Multifunction instructions execute one computational operation
with one or two data moves. All of the multifunction instruc-
tions utilize various combinations of the computational and data
move operations described above. Since the instruction word is
only 24 bits wide, only certain combinations are valid. In gen-
eral, the following rules are followed.

1. Computation must be unconditional.
2. Any memory transfer must use the indirect addressing mode.
3. Data move operations can only use data registers (dregs).

Program Flow Control Instructions

Program flow control instructions include JUMP, CALL, return
from subroutine, return from interrupt, DO UNTIL, SET,
CLEAR and TOGGLE the FLAG_OUT, and IDLE. All except
the IDLE and FLAG_OUT instructions can be made condi-
tional. The JUMP and CALL instructions support both direct
addressing, with the destination address specified by the instruc-
tion word, and indirect addressing, with the destination address
specified by one of the I registers in DAG2. JUMP and CALL
also accept the additional condition based on the state of the FI
(Flag In) pin with direct addressing

II}LE puts the processor into a low-power, wait-for-interrupt
mode of operation.

Miscellaneous Ingtruétions

* Migcellaneous inisttuctions include indirect register modify, stack

control, mode control and NOP operations. Mode control allows
the user to eggble or disable bit-reversal (DAG1), ALU overflow
latching, AR register saturation, use of secondary register set,
Go mode; MAC format adjust mode and the timer.

Table IX Instruction Set Summary
The following conventions are used in this table:

—

. All keywords are shown in capital letters.
2. Brackets enclose optional parts of the syntax.

w

. Vertical lines indicate that one parameter must be chosen
from those enclosed.

. Table VI defines the set of registers for dreg and reg.
. Table VIII defines the set of registers for xop and yop.
. Tables II and III define the conditions for <condition>.

N N v B

. <data> represents an immediate value or a pointer to (/\) or
length of (%) operator used with an identifier.

oo

. <address> may be an immediate value or label.

9. <comp>, in a multifunction instruction, represents all legal
ALU, MAC or shifter operations (the restrictions are detailed
in the ADSP-210X Cross-Software Manual).

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-66 DSP PROCESSORS

ADSP-2101/ADSP-2102

MULTIFUNCTION INSTRUCTIONS

<ALU™> |, | AX0 | =DM (] 10 |, MO |),| AY0 [=PM(| 14 |, | M4 |);

<MAC> AX1 11 |, | Ml AY1 IS |, | MS
MXO0 12 |, | M2 MYO0 16 |, | M6
MX1 I3 |, M3 MY1 17 |, | M7

AX0O | =DM (] I0 |, MO [),] AYO | =PM (] 14 |, | M4 |);

AX1 InjJ,| Ml AY1 Is |, | MS

MXO0 12 |, M2 MYO0 I6 |, | Mé

MX1 131, M3 MY1 17 |, | M7

<ALU> ,dreg=| DM (| I0

3
<MAC> nj,
<SHIFT'> 121,

3y,
14|,
5],
16 | 5
171,
e ()b |
. P [G B
~,xf§ 2
) 7],
DM(|10 |, |MOf)| = dreg, [wALE> '};
1], | Ml L «<MAC>
12 |, | M2 <SHIFT>
3], | M3
I4 |, | M4
IS |, | MS
16 |, | M6
17 |, | M7
PM(|14}, 1 M4)
I5 |, | MS
16 |, | M6
17 |, | M7
<ALU> ,dreg = dreg;
<MAC>
<SHIFT>

*All computation is unconditional; ALU division and shift immediate operations prohibited.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-67

ALU INSTRUCTIONS

[IF condition] AR I xop + yop H

AF +C
+ yop + C
[IF condition] AR | = =xop - yop 5
AF -yop+ C-1
[IF condition] AR | = yop - Xop ;
AF -x0p+ C-1
[IF condition] AR | = =xop AND yop 5
AF OR
XOR
= PASS| xop H

[IF condition] AR
AF

[IF condition] I AR

[IF condition]

DIVS yop, xop ; %, §
DIVQ xop ; "
MAC INSTRUCTIONS
[IF condition] MR I = xop *yop (SS)3
MF SU
Us
uu
RND
[IF condition] MR| = MR + xop*yop (| SS)3
MF SU
us
610}
RND
[IF condition] I MR| = MR-xop*yop (]| SS)s
MF SU
us
uu
RND

[IF condition] = 0

| e |

MF

[IF condition] MR|] = MR[(RND)J;
e

IF MV SAT MR;

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-68 DSP PROCESSORS

ADSP-2101/ADSP-2102

SHIFTER INSTRUCTIONS

[IF condition] SR = [SR OR] ASHIFT xop (|HI I)3
LO

[IF condition] SR = [SR OR] LSHIFT xop (|HI I)s
LO

[IF condition] SR = [SR OR] NORM xop (|HI ')3
LO

[IF condition] SE = EXP xop (|HI)
LO
HIX

[IF condition] SB = EXPAD] xop;

SR = [SR OR] ASHIFT xop BY <data> (|HI l)s
LO

SR = [SR OR] LSHIFT xop BY <data> (|HI I)3
LO

MOVE INSTRUCTIONS
reg = reg; 7",
reg ' DM C&aﬂdressa) P
dreg Tl 104 Mo |y
1, | M
{12 fy i M2
13 f, M3
g ‘14 |, | M4
, v 5 |, | Ms
16 |, | M6
17 |, | M7
DM (I0],|MO]) = |[dreg H
111, |Ml <data>
2], | M2
3], | M3
4|, | M4
IS |, | MS
16 |, | M6
17 |, | M7
DM (<address>) = reg;
reg = <data>;
dreg = PM(4], M4}]);
IS |, | MS
16 |, | M6
17 |, | M7
PM (4], M4]) = dreg H
IS], | MS
I6{, | M6
7], | M7

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

DSP PROCESSORS 2-69

PROGRAM FLOW CONTROL INSTRUCTIONS

(IF condition] ~ JUMP (14) ;
(&)
(16)
an
<address>
(IF condition] =~ CALL (14) ;
aIs)
ae)
an
<address>
IF FLAG IN | CALL <address> ;
NOT FLAG_IN
IF FLAG_IN] JUMP <address> ;
NOT FLAG_IN
[IF condition] ~ RTS LT
[IF condition] ~ RTI R
DO <address> [UNTIL termination] ... - " ~ ;
IDLE ; SN ST “
SET - {j‘i o R L i v, ‘ 4
CLEAR § & “FLAGOUT ¢ = % ;
TOG&”" ¥ B "fw;;? Bt T
¥ PR A S .
W TR A it b,.
MlscsLLAmg?u\smmf: NS SO
‘ B N vl L
NOP; v, A O
PUSHISTS [, POP CNTR] [, POP PC] [, POP LOOP] ;
POP
ENA| [BITREV |[[,...] ;
DIS | |AV_LATCH
AR_SAT
SEC_REG
TIMER
GO_MODE
MODIFY (|10 |, |M0]|);
|, |Mi
2|, M
B, |M3
], M4
Is |, |Ms
I6 |, | M6

Table IX. Instruction Set Summary

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

2-70 DSP PROCESSORS

Microcoded Support Components
COntents

Page
Introduction L e e e e e e e e e e e e 3-3
Selection Guide L L L L e e e e e e e e e e e 3-4
ADSP-1401 — Word-Slice Program SeqUeNCEr v v v v v v v v v v vt e e e e e e e e e e e e 3-5
ADSP-1402 — Word-Slice Program Sequencer ittt e e e e e e e 3-25
ADSP-1410 — Word-Slice Address Generator o v vt ittt e e e e e e e e e e e e e 3-29
ADSP-3128A — Multiport Register File L e e 3-45

MICROCODED SUPPORT COMPONENTS 3-1

3-2 MICROCODED SUPPORT COMPONENTS

Introduction

GENERAL INFORMATION

Support for microcoded systems is provided by the Word-Slice®
family of microcoded building blocks. The current members of
the Word-Slice family of microcode components include the
ADSP-1401 and ADSP-1402 Program Sequencers, the ADSP-
1410 Address Generator and the ADSP-3128A Flexible Register
File. The program sequencers and address generator feature the
Look-Ahead pipeline which eliminates the need for external
microcode pipeline registers by internally latching instructions
and addresses. The ADSP-3128A Register File has five ports
and fast access times to maximize computational throughput of
microcoded systems using high speed floating-point components.
The ADSP-3128A also provides flexible shared memory for mul-
tiprocessing systems using the ADSP-2100 family of micropro-
cessors. The ADSP-1401 and ADSP-1410 are fabricated in a fast
1.5um CMOS process. The ADSP-1402 and ADSP-3128A are
fabricated in a 1pm CMOS. These components improve perfor-
mance, reduce board space and ease development compared to
bit-slice and byte-slice solutions.

ADSP-1401 and ADSP-1402 PROGRAM SEQUENCERS
The ADSP-1401 and ADSP-1402 are 16-bit microprogram
sequencers with many high performance features such as single-
cycle branching. This makes them ideal for the demanding
sequencing tasks found in digital signal processors and high
speed, general purpose computers. In addition to high speed,
these sequencers feature on-chip storage and control of ten pri-
oritized and maskable interrupts; four decrementing event
counters; absolute, relative and indirect addressing capability;
and a dynamically configurable 64-word RAM. The ADSP-1402
is fully code-compatible with the ADSP-1401 but offers higher
speed and more I/O pins for interrupts, traps and reset than the

ADSP-1401. The ADSP-1402 can support 20MIPS (million
instructions per second) operation. The ADSP-1401 can be used
in 11, 1MIPS systems.

ADSP-1410 ADDRESS GENERATOR

The ADSP-1410 is a fast, flexible address generator that rapidly
generates the data memory addresses required by operations
such as digital filters, FFTs, matrix operations and DMAs. The
ADSP-1410 features a 16-bit ALU, a comparator and thirty 16-
bit registers. In a single cycle the ADSP-1410 can output a 16-
bit memory address, modify this address and detect when the
value has crossed a preset boundary and conditionally loop back
to the top of a circular buffer.

A 255-page Word-Slice User’s Manual covers all aspects of pro-
gramming with the ADSP-1401, ADSP-1402 and ADSP-1410.
Third-party support is available in the form of meta-assemblers,
development systems and behavioral models. Contact Analog
Devices for further information on third-party support.

ADSP-3128A MULTIPORT REGISTER FILE

This 12816 or 6432 register file provides high speed local
storage for our floating-point components and microprocessors
while also providing flexibility in operand data transfers with its
five-port structure. The register file is fast enough to provide
full computational throughput rates for our latest 1.0um
floating-point parts. The ADSP-3128A contains on-chip latches
for a multitude of system interfacing configurations without the
need for external glue logic. On-chip multiplexers automatically
sequence double-precision data transfers.

Word-Slice is a registered trademark of Analog Devices, Inc.
Look-Ahead is a trademark of Analog Devices, Inc.

MICROCODED SUPPORT COMPONENTS 3-3

Selection Guide

ADSP-1410 ADDRESS GENERATOR

Clock-to-
Data Memory Address Size Address Minimum | # of Address | Total # of Package Logic
Grade Single-Precision Double-Precision | Valid Delay’ | Cycle Time | Registers Registers | Ipp’ | Options® | Process | Type
Commercial J | 16 Bits / 64K Words | 30 Bits / 1 Gigaword 35 100ns 16 30 75mA | D,N,P | CMOS | TTL
K] 16 Bits / 64K Words | 30 Bits / 1 Gigaword 30 90ns 16 30 7SmA | D,N,P | CMOS | TTL
Military S | 16 Bits / 64K Words | 30 Bits / 1 Gigaword 45 125ns 16 30 100mA | D CMOS | TTL
T | 16 Bits / 64K Words | 30 Bits / 1 Gigaword 35 100ns 16 30 100mA | D CMOS | TTL
NOTES
'ns, max @ +70°C commercial, +125°C MIL.
2mA maximum, fe, =max, over full V5, range, @ +70°C commercial,+125°C MIL.
3D=ceramic 48-pin DIP, N=plastic 48-pin DIP, P=52-contact PLCC.
ADSP-1401/ADSP-1402 PROGRAM SEQUENCERS
CI Lk-to-Add Mi H
Program Valid Delay’ Cycle Time Number of Ipp? No. of| Package Logic
Model Address Size Comm MIL Comm MIL Interrupts | Comm MIL Pins | Options® | Process | Type
ADSP-1402 | 16 Bits / 64K Words | K=17*| (Note 5) | K=50ns | (Note 5) 10 (Note 5) | (Note 5) |84 G CMOS | TTL
ADSP-1401 | 16 Bits / 64K Words | J=35 §=45 J=%0ns S$=110ns 10 75 100 48 D,N CMOS | TTL
K=25 | T=35 K=70ns | T=90ns 52 P
NOTES

Ins, max @ +70°C commercial, +125°C MIL.
’mA max, f; x=max, over full Vp, range, @ +70°C commercial, +125°C MIL.
3D=ceramic 48-pin DIP, N=plastic 48-pin DIP, P=52-contact PLCC.
“Preliminary specification.

*Contact factory.

3-4 MICROCODED SUPPORT COMPONENTS

ANALOG
DEVICES

Word-Slice
Program Sequencer

ADSP-1401

FEATURES
16-Bit Microcode Addressing Capability
Look-Ahead™ Pipeline
Extensive Interrupt Processing, With Ten On-Chip
Interrupt Vectors
70ns Cycle Time; 25ns Clock-to-Address Delay
64-Word RAM for Storing:
Subroutine Linkage
Jump Addresses
Counters
Status Register
375mW Maximum Power Dissipation with
CMOS Technology
48-Pin Ceramic or Plastic DIP and
52-Lead Plastic Leaded Chip Carrier

GENERAL DESCRIPTION

The ADSP-1401 is a high-speed microprogram controller op-
timized for the demanding sequencing tasks found in digital
signal processors and general purpose computers. In addition to
high speed (25ns clock-to-address delay) and large addressing
range (64K of program memory), this Word-Slice® component
has unique features that make it highly versatile:

® on-chip storage and control of ten prioritized and
maskable interrupts

® four decrementing event counters

® absolute, relative and indirect addressing capability

® download capability (writeable control store) and

® a dynamically configurable 64-word RAM.

The ADSP-1401 microprogram sequencer’s main task is to
provide the appropriate microprogram addressing to support
programming requirements (e.g., looping, jumping, branching,
subroutines, condition testing and interrupts). An internal Look-
Ahead pipeline, controlled by both phases of the clock, allows
the ADSP-1401 to satisfy these requirements at very high speed.

During each micro-instruction, the ADSP-1401 monitors the
conditions and instructions to determine the next microprogram
address. This address can come from one of several sources: the
stack, the jump address space in the RAM, the data port, the
interrupt vectors, or the microprogram counter. An extensive
set of conditional instructions are also available, including jumps,
branches, subroutines, interrupts, and writeable control store.

Look-Ahead is a trademark of Analog Devices, Inc.
Word-Slice is a registered trademark of Analog Devices, Inc.

-

WORD-SLICE® MICROCODED SYSTEM WITH ADSP-1401

DATA BUS

The ADSP-1401’s internal 64-word RAM is user-configurable
into three regions; subroutine stack, register stack and indirect
jump address space. The subroutine stack is used for linking
interrupts and subroutines and, during their execution, allow
storage of system states. The register stack allows association of
unique jump addresses with various levels of interrupts and
subroutines (both local and global stacks are provided). Indirect
jump capability is also supported, addressing for which is provided
at the data port.

Interrupts are handled entirely on chip. The ADSP-1401’s internal
interrupt control logic includes registers for eight external (user)
interrupt vectors, a mask register, and a priority decoder. Two
additional vectors are reserved for internally-generated interrupts
resulting from counter underflow and stack limit violation. A
stack limit violation is caused by stack overflow, underflow or
collision. A mechanism is provided for recovering from stack viola-
tions.

The ADSP-1401’s four decrementing 16-bit counters are used to
track loops and events. These counters generate a signal when
negative. This negative condition is used by several conditional
instructions and can also trigger an internal interrupt.

MICROCODED SUPPORT COMPONENTS 3-5

16
L 7
L 7 ZN ZN
af l
A STATUS J L j E
REGISTER —
STACK T /. CONTROL COUNTERS
LIMIT SIGN 6
{ N
32 SIGN A\
mijca VecToRs. ‘
| Rram ADDRESSING MUX | J L
8418 ADDER
RAM
COMPARE JULJdb L J I l
OVRFL | MICROPROGRAM ADDRESS MULTIPLEXER | | FROGRAM
EXTERNAL 44 —— N
NTERRUPT
INTERRUPTS NToaic NSELECT | l g I
INSTRUCTION | >+..7 b SIGN v g
(lg.0) ; m
§ INSTR. 2
DECODE T
FLAG| >——g H;‘ & é ik
INTERNAL
L CONTROLS
CLK TTR CLK Yiso
Figure 1. ADSP-1401 Block Diagram
ADDRESSING MODES ADSP-1401 PIN ASSIGNMENTS
Direct: both absolute and relative .)
Indirect: from internal RAM Pin Name Delcnptlol.l .) .
Is-Io The 7-bit microinstruction controlling the
HARDWARE FEATURES ADSP-1401.
Instruction Port Yis-Yo Output bus which provides addresses to the micro-
Bidirectional Data Port program memory.
Four Input Address Multiplexer Dy<—D Bidirecti .
s 1s—Do idirectional Data bus for transferring data to or
Three Stack Pointers from the ADSP-1401.
Four Event Counters
Condition Flag EXIR,_; Four external interrupt request lines. Note that in-
Eight Prioritized and Maskable User Interrupts ternal circuitry supports 8 interrupts with the aid of
TTR Pin: an external 2 to 1 multiplexer.
Trap CLK External clock input
{he;‘f' State FLAG An input used for conditional instructions. Its
source is usually a condition multiplexer.
INSTRUCTION TYPES TTR A multi-purpose pin accommodating traps, output
Jumps and Branches disable and reset.
Stack Operations
Status Register Operations Voo +3 Voltsupply.
Counter Operations GND Ground.
Interrupt Control
Relative Address Width Controls
Instruction Hold Control
Writeable Control Store
Dedicated Counter Underflow Interrupt
Dedicated Stack Overflow Interrupt

3-6 MICROCODED SUPPORT COMPONENTS

ADSP-1401

1.0 ARCHITECTURE

1.1 Look-Ahead Pipeline

Logically, the Look-Ahead pipeline is split into two halves: the
first, located at the instruction and data ports; and the second,
located at the address port. Each half of the pipeline (input vs.
output) has a transparent latch which operates out of phase with
the other; the address latch is transparent during the first half
of the cycle (clock HI), while the input latches (instruction and
data) are transparent during the second half of the cycle (clock
LO). This complementary arrangement allows new instructions
to be decoded (in preparation for the following cycle) while the
program address for the current cycle is held steady.

1.2 Instruction Port

The instruction port receives 7-bit instructions defining the next
operation to perform from microcode. The ADSP-1401 has a
built-in Look-Ahead pipeline latch, eliminating the need for an
external microcode latch to hold instructions. This implementation
has the further benefit of allowing instruction “look-ahead”; the
sequencer is able to decode the next instruction during execution
of the current cycle. During the “look-ahead” period, the sequencer
precalculates the next address, allowing its output as early as
possible in the next cycle.

External instructions are internally latched during clock HI, and
passed directly to the instruction decoder during clock LO
(transparent phase); thus, implementing the first half of the
Look-Ahead pipeline latch.

The use of the instruction hold mode (see: Instruction Set De-
scription, 2.7; and Instruction Hold Control, appendix 4.1)
allows an instruction to be held in the instruction latch for
execution over several cycles (freeing microcode for use by other
devices).

1.3 Address Port and Multiplexer Sources

The address port provides 16-bit program addresses with three-
state drivers designed for driving large microcode memories.
Addresses come from a four-to-one microprogram address mul-
tiplexer. Between the multiplexer and output port is a transparent
latch which is transparent during clock HI and latched during
clock LO, permitting addresses to be output as early as possible
during phase one (clock HI) while holding the address constant
during phase two (clock LO) - implementing the second half of
the Look-Ahead pipeline latch.

Inputs to the microprogram address multiplexer are the:

® 16-Bit Program Counter
® 16-Bit Adder

® Interrupt Vector File and
® Internal 64-Word RAM.

Addressing Modes

The ADSP-1401 supports two addressing modes: direct and
indirect. The direct addressing mode uses the internal adder to
generate either absolute addresses from the data port (without
modification) or relative addresses from the program counter
(with or without extension: see Status Register, 1.4.4). The
indirect addressing mode uses the lower order bits at the data
port to access the contents of internal RAM for output.

Output Drivers

The address port output drivers are always active unless placed
in the high-impedance state by the IDLE instruction or appro-
priately asserting the TTR pin (see TTR Pin, 1.7). This allows
other devices to supply microcode addresses, which is particularly
useful in multi-tasking or context switching applications where
several ADSP-1401s may be sharing common microcode
memory.

1.3.1 Program Counter

The program counter (PC) consists of a 16-bit incrementing
counter. For most instructions, the PC is incremented by the
end of the cycle (post-increment) as follows:

PC <=output address + 1.

1.3.2 Adder and Width Control
For absolute jumps, data from the data port is passed unchanged 3
through the adder directly to the microprogram address port.
For relative jumps, a twos complement offset is supplied from
the data port and added with the 16-bit PC. Since the PC normally
points to the next instruction, the jump distance is (offset + 1)
from the jump instruction. See Status Register (1.4.4) for more
details.

The width control block permits microcode width to be reduced
in systems not requiring full, 16-bit jump distances. Internal
width control logic sign-extends reduced offsets of 8- and 12-bits
to full 16-bit precision, accommodating jumps in either direction
(positive or negative displacement).

1.3.3 Interrupt Vector File

Ten prioritized interrupt vectors may be stored in the interrupt
vector file. The associated interrupts are internally latched and
may be individually masked or entirely disabled by the “Disable
Interrupts” (DISIR) instruction. The highest priority interrupt
vector displaces the usual address on the next cycle following its
detection. See Interrupts (1.4.3) for more details.

1.3.4 Internal RAM
Any of the 64 words of RAM may be output on the address
port. Four distinct address sources may access the RAM:

® Local Stack Pointer
® Global Stack Pointer
® Subroutine Stack Pointer and
® Lower Order Data Port Bits.

The use of internal RAM and its various address sources are
described in section 1.4.2.

1.4 Bidirectional Data Port

The 16-bit bidirectional data port (D;s_o) supplies direct or
indirect jump addresses and permits loading or dumping of all
internal registers. The input data latch freezes incoming data
(for counter or register writes executed during that cycle) during
the first half-cycle (clock HI) and is transparent for the remainder
of the cycle. The output data driver asserts output data only
during the first half-cycle of a data output instruction and is
independent of the address port drivers. This complementary
I/O arrangement permits data to be output from the sequencer
(as in a read register instruction) during the first half-cycle
while accommodating external data setups (for the next cycle)
during the second half-cycle.

MICROCODED SUPPORT COMPONENTS 3-7

Direct addressing via the data port may be either relative or
absolute. For indirect addressing, the six LS data bits (Ds_o)
are used to address internal RAM, containing the desired jump
address (see Internal RAM, 1.4.2).

1.4.1 Counters

Four independent 16-bit counters are provided for maintaining
loops and event tracking. These counters hold twos complement
values that may be decremented or preloaded through dedicated
instructions. The sign bit associated with the most recently used
counter, prior to its decrement, is always saved in the status
register (SR;). Simultaneously, the sign bit is also made available
to control various conditional instructions or for asserting the
lowest priority interrupt, IRy, reserved for counter underflow
(see: Instruction Set Description, 2.0; and Interrupts, 1.4.3).

Note that interrupt IR, is primarily used for ending writeable
control store downloads (see Instruction Set Description — WCS,
2.7). Use of IR, in the context of a “Decrement Counter and
Interrupt on Underflow” operation represents the worst case
instruction and flag setup times because of the additional overhead
in processing the interrupt after determining whether the counter
was underflowed. These setup times are specified two ways:

1. all conditions and
2. IRp masked.

The source of SIGN (applied to the condition test) depends
upon the type of instruction used (see Instruction Set Description,
2.1). Two possibilities exist:

1. If an explicit counter is selected, then the sign applied is that
of the counter, prior to the decrement.

2. If no counter is selected, then the sign applied is implicitly
that of the status register, SR,.

1.4.2 Internal RAM

The ADSP-1401’s internal 64-word RAM implements two distinct
stacks: a Subroutine Stack (SS) and a Register Stack (RS). The
subroutine stack has a dedicated, Subroutine Stack Pointer
(SSP), while the register stack shares two pointers: the Local
Stack Pointer (LSP) and the Global Stack Pointer (GSP). The
three stack pointers are each held in 6-bit, preloadable, up/down
counters.

Upon reset, (TTR pin held HI for three cycles, see TTR Pin,
1.7) the SSP is initialized to 0 (top of RAM). The RS pointers
(LSP and GSP) are typically configured as shown in Figure 2
using the “Write RSP” instruction (WRRSP). The SSP pushes
down while the RS pointers push up. Selection of the active RS
pointer (LSP or GSP) is made in the status register.

Stack overflow detection is provided via a stack limit register to
protect software integrity and allow stack expansion (see In-
struction Set Description — SLRIVP, 2.5).

Each RS pointer may be explicitly initialized by performing the
“Write RS Pointer” (WRRSP) instruction. The LSP should be
located above the GSP, allowing the local stack to grow upwards
as the level of nested subroutines increases. Finally, indirect
jump address space (as needed) should be reserved below the
global stack.

The sequencer will generate a stack underflow interrupt whenever
RAM location zero is popped. This facility may be used in
support of stack paging. IV, should be masked if not using
stack paging, allowing location zero to be used as the first stack
location without interrupting. When using paged stacking, location
zero must be reserved as an underflow buffer to avoid a subsequent

3-8 MICROCODED SUPPORT COMPONENTS

stack POP (which may otherwise occur, depending upon the
next instruction) prior to the interrupt routine saving the stack.

TOP OFRAM

00 UNDERFLOW BUFFER ~=— SSP
o (PUSH)
02

L]

L]

(]
XX ~-— SLR

[]

L]

L]
33
34] (PUSH)
35
36 --— LSP
37
3 t (PUSH)
39
3A --— GSP
3B INITIALIZED
3C FOR
3D INDIRECT
3E ADDRESSING
3F (AS NEEDED)

BOTTOMOFRAM

Figure 2. Typical RAM Initialization

Register Stack Pointers (LSP and GSP)

Upon entering a routine, up to four jump addresses may be
pushed onto the register stack. A Push onto the register stack
first decrements the RS pointer (either LSP or GSP, depending
upon the status register) and then writes the appropriate data to
RAM. A Pop from the register stack first reads the RAM location
and then increments the RS pointer (LSP or GSP).

Four registers are available within context of any routine which
are addressed relative to the stack pointer (LSP or GSP) by

the two LSBs of the relevant instruction. For example, the
instruction:

IF CONDITION, JMP R,

accesses the location (LSP+2 or GSP+2) in RAM as the condi-
tional address source. Prior to exiting a routine, local or global
registers can be effectively removed from the RS by the “ADD i
TO RSP” (AIRSP) instruction (see Instruction Set Description,
2.2).

Often, the same set of jump addresses are used by several different
routines. The GSP is available for addressing these common
registers — conserving RAM space and eliminating repeated
stack pushes and pops. Global registers can be pushed, popped,
and used by conditional instructions in the same way that local
registers are handled. In addition, the GSP can itself be pushed
and popped to/from the subroutine stack, allowing different
routines to access different subsets of the global stack area.

Subroutine Stack Pointer (SSP)

A Push onto the SS (jump subroutine or interrupt) first increments
the SSP and then writes the return address to RAM. A pop
from the SS first reads the return location and then decrements
the SSP, effectively removing the data from the stack (although
the data remains in RAM). For interrupts, the return address is
the one that would have been output in the cycle when the

ADSP-1401

interrupt vector was output. For subroutine jumps, the return
address is the instruction immediately following the subroutine
call. For further information, see: Return from Interrupt with
Pending Interrupt, appendix 4.2; and the Instruction Set De-
scription, 2.0.

The subroutine stack can also be used to save key program
parameters such as the status register, GSP, or counter values.
After entering a new routine, critical parameters from the calling
routine are pushed onto the stack, thus freeing the associated
hardware for use by the new routine. Prior to the end of the
routine, the original parameters are restored with their former
values for continued use by the calling routine.

The Stack Usage Example (appendix 4.3) illustrates the state of
RAM after three subroutine calls.

Stack Limit Register and Stack Overflow

The preloadable Stack Limit Register (SLR) and associated
circuitry warns the user of impending stack overflows, permitting
stack overflow recovery. The highest priority interrupt, IRy, is
assigned to stack overflow, although it may be masked. A stack
overflow interrupt will occur under any of the following three cir-
cumstances:

® a push causing the SSP to increment to the value in the
stack limit register

® a pop from SS location 00 (underflow)

® a push causing the RS pointer (LSP or GSP) to decre-
ment to the value in the stack limit register +3.

The three location buffer between the SLR and the RS pointer
allows for three extra pushes that may occur (in a worst case)
prior to entering the stack overflow service routine. These pushes
would be:

1. the push causing the initial overflow
2. a possible push operation while IVj is output and
3. the IR, return address push.

See: Interrupts, 1.4.3; and Three Stack Pushes on Stack Overflow
(appendix 4.2.5) for more details.

The SLR is only 4-bits wide and is compared to the 4 MS bits
of the 6-bit RAM address. Therefore, stack limits may only be
set at integer multiples of 22, i.e., RAM locations 0, 4, 8, 12,

.. . 60. The SLR is right-filled the additional two bits with
zeros or ones, depending upon the direction of the push being
performed (‘00° for SS pushes and ‘11’ for RS pushes, see In-
struction Set Description — SLRIVP, 2.5). In the cycle following
a stack overflow, the highest priority interrupt vector IRVj (also
used for trapping; see TTR Pin, 1.7) is output. To determine
the cause of this interrupt, both SS and RS pointers must be
tested in the first several cycles of the service routine. Prior to
returning from the overflow interrupt routine, the SLRIVP
instruction must be executed, to clear the calling IR, from the
interrupt latch.

1.4.3 Interrupts

The ADSP-1401 processes eight external and two internal inter-
rupts. All external interrupts are level sensitive (positive logic:
see IR Latch, this section) and are processed by the interrupt
logic block. The block elements (see Figure 4) are comprised of
an interrupt de-multiplexer followed by an interrupt latch, masking
logic and priority decoder for selecting the most urgent interrupt
(IRs having the highest priority, and IR, the lowest), and special
one-shot to override the address multiplexer with the interrupt

vector (IVy_o) on the cycle following the interrupt request.

The external interrupts (IRg_;) may be used for any purpose,
however, unused inputs must not be left floating (i.e., tie them
to logic LO so as to preclude the associated interrupt). Two
additional interrupts which are internal are reserved for stack
overflow — IRy (see Stack Limit Register and Stack Overflow,
1.4.2) and counter underflow — IR, (see Counters, 1.4.1). See
Counters (1.4.1) for implications of using IR, for other than
writable control store downloading.

Interrupt vectors are always output (assuming interrupts are
enabled and the associated interrupt is not masked) on the cycle
immediately following the acceptance of the interrupt request.
Contextual saves (stacking and storing) should be made im-
mediately upon entering the interrupt service routine and restored
immediately prior to its exit.

Up to four external interrupts may be connected directly to the
external interrupt pins, EXIR,_,, and are treated as interrupts
IRg_s, respectively. Lower priority interrupts, IR4_;, must be

masked out in this case.

Up to eight external interrupts may be accommodated using
time-division multiplexing. An external 2:1 multiplexer reduces
the eight external interrupts to two groups of four (see Figure
3). An internal de-multiplexer automatically restores the external
interrupts back to eight.

The interrupt vector file may be directly read and written via
the data bus with the aid of the Interrupt Vector Pointer (see
Instruction Set Description, Interrupts, 2.5).

IRQ8 ~——nq 1A
IRQ7 ——a] 24
1RQs —={ 3a v EXIR4
— 74F257
1RQ5 | 4n 2v EXIR3 ADSP-1401
21
Ras —=fis QU402 3v Exigz SEQUENCER
IRQ3 —==1 28 ay EXIR1
IRQ2 —={ 38 CLK
IRQ1 ——=={ 4B sEe
cLOCK i

Figure 3. Expanding External Interrupts

IR Latch

Interrupt requests IRg_s are latched during the first half-cycle
(clock HI), while IR4_; are latched during the second half-cycle
(clock LO). Once latched, external interrupt requests are held
until processed, even if the external request signal goes away.
This latching technique allows removal of external interrupt
sources after they have been recognized by the sequencer.

Lartched user interrupt requests (IRg_;) are held until: i) the
interrupt is processed and a “Return from Interrupt” (RTNIR)
instruction is executed; ii) the interrupt service routine executes
a “Clear Current Interrupt” instruction (allowing nested inter-
rupts); or, iii) a “Clear All Interrupts” instruction is executed.
Reserved interrupts (IR and IR) are cleared from the interrupt
latch by utilizing the SLRIVP and CLRS instructions, respectively.
See Internal IR Control Logic (1.4.3) for details.

The user may bypass the interrupt latch with the “Select Trans-
parent Interrupts” (STIR) instruction (setting status register bit
SRy). In the transparent mode, the interrupting device must
assert the interrupt request until the interrupt service routine
resets the request source.

MICROCODED SUPPORT COMPONENTS 3-9

MASK BITS (SR9-0)

10
a
1 e 10
B INTERRUPT 8 PRIORITY
LATCH — DECODER
8, (
7%= RESET
SIGN(SR1) RVP_IRQ
TRAP
10
‘/
OVRFL
(IRS) UNDRFL
(IR0)
TRANS- 8,
LATCH 7
, N RTNIR
. CCiR
tRve-n A8 f R
SELA
10 ,f (IRV-0)
SR2
cLock s INTERRUPTIN
INTERRUPT | TRap PROGRESS (IRIP)
VECTOR ab—
FILE
(IV8-0) R
RTNIR
CcCIR

MICROPROGRAM ADDRESS MULTIPLEXER

SELA

TO ADDRESS PORT

Figure 4. Internal Interrupt Control Logic

IR Mask

All ten interrupts may be independently masked using status
register bits SR;s_g (corresponding to interrupts IRg_¢). Setting
a particular mask bit prevents the interrupt from being executed.
Note that the status register may be read or written via the Data
port, and also pushed and popped to/from the subroutine stack,
allowing nesting and servicing of interrupts in any desired order
(see: Internal IR Control Logic, 1.4.3; and Status Register,
1.4.4).

Two instructions allow bitwise clearing or setting of the interrupt
mask. “IR Mask Bit Clear” (IRMBC) will clear those mask bits
for which the corresponding data bits (D)s_g, as applied to
IRo_o) are set, while “IR Mask Bit Set” (IRMBS) will set those
mask bits for which the corresponding data bits are set. In both
cases, zeros in the data field will preserve the corresponding
mask bit. See Instruction Set Description ~ Status Register, 2.3.

IR Priority Decoder

Unmasked interrupts are passed to the priority decoder which
determines the most urgent, valid interrupt and generates an
internal Interrupt Request Signal (IRS). The corresponding
vector is then fetched from the interrupt vector file and passed
to the address port.

Minimum IR Servicing Requirements

Interrupt vectors are output on the cycle following the acceptance
of an interrupt request. Interrupt jumps differ from subroutine
jumps in that subroutine jumps push the return address in the
same cycle as the jump address is output, whereas interrupt
return addresses are not pushed until the following cycle. This is

3-10 MICROCODED SUPPORT COMPONENTS

because the instruction executing while the interrupt vector is
output may be utilizing RAM and must complete its execution
prior to pushing the interrupt return address. Thus, the PC
(interrupt return address) is pushed automatically in the first
cycle of the interrupt service routine, i.e., the cycle following the
interrupt request acceptance.

For this reason, the first instruction of any interrupt service
routine is always ignored; it must be a no-op (CONT). Note that
a minimum interrupt service routine would be a CONT followed
by a RTNIR.

Internal IR Control Logic

The interrupt enable bit of the status register, SR,, must be set
for interrupt servicing to occur. Interrupt servicing may be
inhibited by clearing this bit, although external interrupt requests
will continue to be latched.

Only one interrupt is ever active at a time. Additional interrupts
are “locked out” by an internal “Interrupt In Progress” signal
(IRIP) during interrupt servicing (except for TRAP), although
they continue to be latched. The IRIP signal is automatically
reset upon the “Return from Interrupt” (RTNIR) instruction
which pops the return address from the subroutine stack to the

Normally, multiple interrupts are accumulated in the interrupt

latch. Whenever a valid interrupt is pending, the internal signal
“Interrupt Request” (IRQ) is asserted. Upon each RTNIR, the
highest priority, unmasked, pending interrupt is serviced.

ADSP-1401

Nested interrupts are supported with two instructions: “Clear
Current Interrupt” (CCIR) or “Clear All Interrupts” (CAIR).
The CCIR instruction clears the IRIP signal and interrupt latch
bit for the interrupt in progress. This action re-enables inter-
rupting, relegating the interrupt in progress to a subroutine
status. If an external interrupt is pending, the associated IR
vector will be output on the cycle following CCIR. To cancel all
pending interrupt requests, the CAIR instruction clears the
IRIP signal and the entire interrupt latch.

Normally, it is good practice to convert interrupts to subroutines.
This can be done by executing the “Clear Current Interrupt”
(CCIR) instruction (resetting IRIP) and should be done as early
as possible in the interrupt service routine. There are two reasons
for changing the status of an interrupt to that of a subroutine.
Firstly, if IRIP is allowed to remain active throughout the interrupt
service routine, then the occurrence of either internal interrupt
(stack overflow or counter underflow, IR or IRy, respectively)
will remain undetected until the current interrupt concludes;
the user will be unaware of these interrupt requests.

When using the TRAP capability (see TTR Pin, 1.7), there is a
second reason to clear IRIP. Because TRAP must have the
highest priority, interrupt IRy (when invoked by a TRAP request)
is not locked out by IRIP. This allows TRAP to displace an
interrupt in progress, but also means that upon completion of
the trap service routine, IRIP will be cleared by the RTNIR
instruction; re-enabling interrupting in spite of the incomplete
interrupt which TRAP displaced.

Either of these instructions (CCIR or CAIR) require an “extra”
cycle before a pending interrupt vector may be output. A typical
scenario being an interrupt in progress, IR,, (containing a CCIR
instruction), with a interrupt pending, IR,:

CCIR Exampl
nCode Instruction Output
1 . E . Add c
n IR, Routine n+1 IR, Pending
n+1l CCIR n+2 Clear IRIP
n+2 IR, Routine IVn IRy Recognized
IV IR, Routine| IVp+1 e

1.4.4 Status Register

The ADSP-1401 has a 16-bit status register for storing various
operational modes. The ten MS bits of this register (SR;s_¢)
comprise the interrupt mask for interrupts IRg_o, respectively.
The remaining six LS bits (SRs_o) control the operational modes
as shown below.

Status Register Bit Assignments
Bit# Function (HVLO)
SRs IR, Mask Bit
SR IR, Mask Bit
SRs_4 Relative Jump Width Selection:
00’ = 16-bit relative address width
‘01’ = 8-bit width
10’ =IHC Mode (8-bit width)
‘11’ = 12-bit width
SR, Select GSP/LSP
SR; Enable/Disable Interrupts
SR, Set/Clear Sign Bit
SRy Select Transparent/Latched Interrupts

The status register can be directly read and written via the data
port and also pushed and popped to/from the subroutine stack.
In addition, status register bits SR;s_¢ (the interrupt mask) may
be bitwise cleared or set with dedicated instructions. See: In-
struction Set Description — Status Register, 2.3; and Interrupts
- IR Mask, 1.4.3.

1.5 Clock

The input clock employs both HI and LO levels to control the
various transparent latches throughout the device. Generally,
the clock should be symmetric; however, in some instances the
clock may be stretched during the second half-cycle (LO) to
accommodate unusual circumstances such as a cache memory
miss (see: TTR Pin - Trap, 1.7).

1.6 External Flag

The external flag input may be used to control conditional in-
structions. FLAG is latched similarly to instructions (latched
during clock HI and transparent during clock LO), but requires
less setup time. Two instructions make explicit use of FLAG as
their condition (JPCOF and JPCNF), while others employ a
condition mode selection (UNCONDITIONAL, NOT FLAG,
FLAG, or SIGN; see Instruction Set Description, 2.0) to be
specified as part of their opcode.

1.7 TTR Pin (Trap, Three-State and Reset)
The Trap, Three-State and Reset pin (TTR) is a time-multiplexed,
three-purpose pin used to

® provide program trap capability

® control the address port output drivers and

® reset the ADSP-1401.

If the TTR pin is held HI for an entire cycle, the RESET sequence
begins and TTR must be held HI for at least two more complete
cycles (RESET requires three cycles to complete). If trap and
three-state control capabilities are also needed, the combination
of the 1401’s internal circuits and the external circuitry shown
in Figure 5 can be used to effectively time-multiplex the TTR
pin.

TRAP

74r257 ADSP-1401

RESET Y p——u=d TTR
MUX SEQUENCER

THREE-
STATE

SELB CLK

CcLocK J

Figure 5. External Logic for TTR Pin

Trap

For a trap to occur, the TTR pin must be asserted during clock
LO only. The primary reason to invoke a trap is in support of
cache memory systems, or in case of system emergencies. Cache
memory systems generally utilize a large microcode memory
space, of which only a small area (that currently under execution)
is comprised of high-speed RAM (the balance consisting of
slower, less costly memory). The high-speed RAM is directly
accessible by the sequencer, whereas the bulk of (slow) memory
is usually accessible indirectly (via a cache memory controller
which controls downloads of code to the cache memory area).

MICROCODED SUPPORT COMPONENTS 3-11

In a cache-based system, microcode is generally executed from
the high-speed cache. If an access is attempted to code not
resident in the cache area, the cache memory controller must
detect the discrepancy and generate an exception to the access (a
“cache miss”). Then, the missing code segment must be down-
loaded to the cache memory area (see: Instruction Set Description
— Weriteable Control Store, 2.7).

When a cache miss occurs, the cache memory control logic
asserts the TTR pin while stretching the system clock LO.
Upon detecting the trap request, the sequencer immediately
generates the highest priority interrupt, IRy, replacing the current
address (that causing the cache miss). The cache miss address is
pushed on the subroutine stack and popped after the interrupt
service routine has reloaded the cache area with the missing
code segment.

Note: Trap requests which occur on the first cycle of an interrupt
service routine are not recognized. The ADSP-1401 always executes
a CONT instruction in this cycle, and ignores its instruction
port and therefore trap requests as well.

The trap interrupt differs from the standard interrupt protocol
in three ways:

1. The interrupt vector, IVy, is output asynchronously, i.e., it
occurs trgap after asserting the Trap signal and must occur
before the next cycle! To accomplish this, a clock stretch
cycle may be needed to allow enough time to fetch the new
instruction.

2. The current address is pushed onto the SS for later restoration
(after the cache miss is resolved), whereas standard interrupts
push the current address+ 1.

3. Trap interrupts cannot be masked or disabled. Note that if
IR, is also used for stack overflow and underflow, the service
routine must discriminate which actually occurred.

Caution: because trapping is asynchronous, spikes on the TTR
pin wider than 3ns during clock LO may initiate inadvertent
trapping.

Three-State

The address port is placed in a high-impedance state when the
TTR pin is HI during clock HI and LO during clock LO. The
TTR signal is latched during clock LO and transparent during
clock HI. This facilitates full cycle, three-state control. (Note
that the IDLE instruction can also place the address port in a
high-impedance state.)

Reset

The TTR pin may be used to initialize the ADSP-1401 by asserting
it (HI for both clock phases) for at least three full cycles. Use of
the reset operation alone does not require the multiplexing
described above. However, if the trap and/or three-state controls
are also needed, they must not occur in the same cycle (this
would be an abnormal situation), as this constitutes a reset. The
RESET signal forces a zero output address, places the data port
in the high-impedance state, and resets internal registers as
follows:

Sequencer Status after RESET Operation

Parameter Reset Condition

Program Counter wrCode Location 0000,6
Subroutine Stack Pointer (SSP) | RAM Location 00,0

Local Stack Pointer (LSP) Undefined

Global Stack Pointer (GSP) Undefined

Stack Limit Register (SLR) RAM Location 32,

RAM Data No Change

Counters No Change

Interrupt Mask (SR;s_¢) All Bits to ‘0’ (Unmasked)
Interrupt Vector File No Change

Interrupt Vector Pointer IVP) | Undefined

SRs_4 ‘00’ (16-Bit Relative Offsets)
SR; ‘0’ (LSP Selected)

SR, ‘0’ (Interrupts Disabled)
SR, ‘0’ (Sign Bit Cleared)

SRy ‘0’ (Latched Interrupt Mode)
Writeable Control Store Mode Cleared

NOTE:

The first instruction (microcode location 0000,s) must be a “CONT”.

2.0 INSTRUCTION SET DESCRIPTION

The instruction set is divided into seven categories pertaining to
generic operation (see data sheet outline or Mnemonics and
Opcodes, 4.5).

Several instructions employ two instruction bits (I; and Io) to
specify a counter (Cs_o) and/or a local register (R3_o, relative to
the RSP) as arguments. Nine of the conditional instructions use
another two instruction bits (I3 and I,) to select one of the four
condition modes:

‘000 UNCONDITIONAL
‘or NOT FLAG

‘10 FLAG

ar SIGN

The sign bit of the status register, SR;, may also be used to
(implicitly or explicitly) store an external condition. This is
useful if the condition results from an operation performed in
the middle of a loop, but is not tested until the end; the loop is
exited with an “If Sign: Jump” instruction. Recall that any
subsequent counter operations will overwrite SR;.

2.1 Jump and Branch Instructions

Jump and branch instructions provide flow control of microcode
execution, offering three-way branches, jumps, subroutine calls,
returns, and addressing mode selection (see Figure 6). These

3-12 MICROCODED SUPPORT COMPONENTS

instructions support conditional control, allowing addressing
from the register stack, the data port, or the indirect jump
address space in the RAM. Generally, they are of the form:

If Condition: Do Operation; Else, Continue.

JPCOF IFFLAG: JUMPPC

The address is not incremented while the flag is at a logic HI,
i.e., PC<=PC. If the flag is LO, the next address is (PC + 1).

JPCNF IFNOT FLAG: JUMPPC

The address is not incremented while the flag is at a logic LO,
i.e., PC<=PC. If the flag is HI, the next address is (PC+1).

JTWO IF CONDITION: JUMPPC +2

If the condition specified is met, this instruction causes the next
sequential microprogram address to be skipped. This instruction
allows single instruction bypassing or interleaving without need
to provide explicit addressing.

JDA IF CONDITION: JUMP DATA, ABSOLUTE

If the specified condition is met, this instruction causes a jump
to the absolute address at the data port. If the condition is not
met, the next sequential instruction will be executed.

ADSP-1401

16 16 17
17 17
TRUE FALSE
13 TRUE 1
" FALS 19
20
JPCOF JPCNF JTWO
DATA=40 FOR ABS., 22 FORREL | DATA=13 RAM (13)=40 DATA=10
16 16 16 10
17 17 17
TRUE TRUE TRUE | Ci<=Ri
FALSE FALSE FALSE
18 a0 18 18
Ci<=Ci-1
JDA, JDR Joi JDRST

RSP =26, i=2, RAM (28)=R2=40
"

16 12
17 16

17
18 40

<

RSP=26, 1=3, RAM (29)=R3=12,
C3=2**15+N-1

FALSE
C3<=C3-1

DATA =40 FOR ABS., 22 FOR REL.

16

JRC JRS JSA, JSR
SSP=37, RAM (37)=40 RSP =26, i=2, RAM (28)=R2=40, DATA =83
16 DATA=75
16 17 wcs
” TRUE 83
€co<=C0-1
WAIT z
FALSE TRUE ol PC<=PC+1
‘ FLAG TRUE
18 " FALSE FALSE
18 75 Va0
c2<=C2-1
RTN BRANCH wcs

Figure 6. Instruction Flow Charts

JDR IF CONDITION: JUMP DATA,RELATIVE

If the condition specified is met, the address at the data port
will be added to the PC and output (jump distance is offset plus
one). The offset width is determined by the address width selection
(8, 12, or 16-bits). If the condition is not met, the next sequential
instruction will be executed.

JDI IF CONDITION: JUMP DATA, INDIRECT

If the condition specified is met, this instruction will output the
address stored in the RAM address given by bits Ds_g of the
data port. If the condition is not met, the next sequential instruction
will be executed.

JDRST IF SIGN OF C;: JUMP DATA,Ci<=R;;
ELSE,Ci<=C,—-1

This instruction first tests the sign of the counter, C,. If negative,
the address at the data port is output and the counter is re-initialized
(reset) with the data in the register pointed to by (RSP +1i). If
the sign is positive, the counter is decremented and the next
sequential address is output. The register and counter use the
same subscript, i.

JRC IF CONDITION: JUMPR;. (COND # SIGN)

If the condition specified is met, output the address in RAM at
the location (RSP +1i), where i is given by I;_, of the instruction.
The selected condition may not be SIGN, as this is the JRS
instruction. The PC may be pushed on the register stack and
referenced as a register thus allowing a “jump to stack” instruction
which is useful for looping.

JRS IF SIGN OF C;: JUMPR,,C,<=C,-1;
ELSE,Ci<=C;-1

This instruction first tests the sign of counter, C,. If negative,
output the address in RAM at location (RSP +1). If the sign is
positive, the next sequential microprogram address is output.
The counter is always decremented after the test.

JSA IF CONDITION: JUMP SUBROUTINE,
ABSOLUTE

If the condition specified is met, the 16-bit absolute address at
the data port is output and the PC will be pushed onto the
subroutine stack. If the condition is not met, the next sequential
instruction will be executed.

MICROCODED SUPPORT COMPONENTS 3-13

JSR IF CONDITION: JUMP SUBROUTINE,
RELATIVE

If the condition specified is met, the address at the data port is
added to the PC and output (jump distance is offset plus one)
and the PC is pushed onto the subroutine stack. The offset
width is determined by the address width selection (8, 12, or
16-bits). If the condition is not met, the next sequential instruction
will be executed.

RTN IF CONDITION: RETURN FROM
SUBROUTINE

This instruction is used to return from subroutines. If the condition
specified is met, the subroutine stack is POPped, which outputs
the return address and decrements the SSP. If the condition is
not met, the next sequential instruction will be executed.
BRANCH IFSIGN OF C;: JUMPR;,Ci<=C;-1;
ELSE, IF CONDITION:
JUMPDATA,Ci<=C;—1;
ELSE, C;<=C;—1(COND # SIGN)

This instruction implements a three-way branch with the address
source from the data port, register R;, or the PC. The instruction
first tests the sign bit of the counter C;; if negative, the output
address is given by R;, i.e., RSP +i. If the sign was not true,
but the specified condition is true, the address source is the data
port. If the sign was not true and the condition is not met, the
next sequential instruction is executed.

The counter and the register use the same subscript value i.
The counter is always decremented. Note that this instruction
uses only absolute data addresses; relative addressing is not
available with the three-way branch instruction.

2.2 Stack Operations

Subroutine Stack

Subroutine Stack Pointer (SSP) instructions are used for main-
taining the subroutine stack. These instructions may also be
used to upload or download the entire RAM for examination,
stack expansion or context switches.

PSDSS PUSHDATA ONTO SS

Increments the stack pointer and then loads the RAM location
specified by the SSP with the data at the data port.

PPSSD POP SS TO DATAPORT

Transfers the contents of the stack location given by the stack
pointer to the data port and decrements the stack pointer.

WRSSP WRITE SSP
Loads the SSP with bits Ds_g of the data port.

RDSSP READ SSP

Read the 6-bit subroutine stack pointer. This allows the value of
the stack pointer to be saved or examined. Bits Ds_g of the data
port correspond to bits 5-0 of the SSP. The 10 MSB’s of the
data port (D;s_g) are undefined.

DSSP DECREMENT SSP
Decrements the stack pointer without reading.

Register Stack

Register Stack Pointer (RSP) instructions are used to upload
and download the entire RAM for initialization, examination, or

3-14 MICROCODED SUPPORT COMPONENTS

context switching and to maintain the RAM space allocated to
local and global jump registers. As previously discussed, register
stack instructions refer to either the Local Stack Pointer (LSP)
or the Global Stack Pointer (GSP), depending upon the status
register (SR;). If SR; is LO, register stack instructions pertain
to the LSP. If SR; is HI, register stack instructions pertain to
the GSP.

SGSP SELECT GSP

Select the Global Register Stack Pointer. Set Status bit SR;
(HD).

SLSP SELECTLSP

Select the Local Register Stack Pointer. Clear Status bit SR3
(LO).

RDRSP READRSP

Transfers the RSP to the data port bits Ds_g for examination o1
storage. The 10 MSBs (D;s5_¢) of the D port are undefined.

WRRSP WRITERSP

Preload the selected RSP (LSP or GSP) with bits Ds_g of the
data port.

PSPC PUSHPCONTORS

Decrements the RSP and writes the PC to the register stack.
This instruction may be used to set up a JRC loop (IF
CONDITION: JUMP R;=PC).

PSGSP PUSHGSPONTO SS

Increment the SSP and write the GSP onto the subroutine
stack.

PPGSP POP GSPFROM SS
Write the subroutine stack to the GSP and decrement the SSP.

PSDRS PUSHDATA ONTORS

Decrement the RSP and then write the data at the data port
into the location specified by the updated RSP.

PPRSD POPRS TODATAPORT

Transfers RAM data pointed to by the RSP to the data port and
then increments the RSP.

AIRSP ADDiTORSP

Add i to the register stack pointer. Note that i=0, 1, 2, or 3 in
this instruction corresponds to 4, 1, 2, or 3, respectively. This
instruction effectively removes up to four registers from the
stack.

SIRSP SUBTRACT ONE FROM RSP

Subtract 1 from the RSP without a write. This instruction is
used to modify the RSP without explicitly reloading it.
S4RSP SUBTRACT FOUR FROM RSP

Subtract four from the RSP without a write. This instruction
may be used to modify the RSP without explicitly reloading it.

2.3 Status Register Operations
The status register bits, SR;s_o, contain ten mask bits, SR;s_¢,
for masking interrupts IRg_o, and six control bits, SRs_o (see

ADSP-1401

Bidirectional Data Port, 1.4). The entire status register can be
read or written via the data port, or pushed or popped to/from
the subroutine stack. Upon RESET, the entire status register is
initialized to zero.

RDSR READSR

The entire status register (SR;5_o) is output over the data port
(D15-0)-

WRSR WRITE SR
Werite the data port (D;s_o) to the status register (SRys_o).

PSSR PUSHSRONTOSS

Increment the SSP and then write the status register to the
subroutine stack.

PPSR POP SR FROM SS

The top of the subroutine stack is written into the status register,
and then the SSP is decremented.

2.4 Counter Operations

Counters may be pushed and popped to/from the subroutine
stack or loaded directly from the data port. The counters may
be read externally by pushing the counters onto the subroutine
stack then popping the subroutine stack to the data port. The
device has four counters, denoted C;, which are indexed by the
two LSBs of the instruction.

If a jump is required after N events (until sign), the counter
should be loaded with two less than the number of events desired
(N —2). If a jump is required for N events (while sign), the
counter is loaded with 2! + N— 2= 8000,6+ N— 2.

Care must be taken when using the counter underflow interrupt
(IR, see 1.4.3) to clear the sign bit before the IRy mask bit is
cleared.

WRCNTR WRITEC;
Write to the selected counter, C;, from the data port.

CLRS CLEAR SIGN BIT
Clear status register bit SR;.
SETS SET SIGN BIT

Set status register bit SR;.

PSCNTR PUSHC; ONTOSS

Increment the SSP and write the specified counter onto the
subroutine stack. .

PPCNTR POP C;FROM S8

Transfer the data from the subroutine stack to the counter
specified by the instruction, then decrement the SSP.

DCCNTR DECREMENTC;
Unconditionally decrement counter C;.

IFCDEC IF CONDITION: DECREMENT C,

Decrement counter Cy on condition. If the sign condition is
selected, the sign is taken from the status register bit SR, rather

than from the counter sign (which normally provides the sign
condition).

Normally, if the counter underflow interrupt (IRo) is enabled, it
is activated by the counter sign bit going HI. However, if IFCDEC
is used to decrement Co, the IR, interrupt is activated by the
SR, bit, rather than the sign bit of Co. Since the SR, bit goes
HI only after Cy has underflowed, IFCDEC must be executed
once more after the Cy underflow to generate the IR, interrupt.
Alternatively, the preloaded value of Cy may be reduced by one.

2.5 Interrupt Control

Detailed interrupt operation is described in the Interrupts section
(1.4.3). Here, specific interrupt operations such as interrupt
clearing, IRV read/write, interrupt mask manipulation, etc., are
described.

CCIR CLEAR CURRENT INTERRUPT

Allows nesting of user interrupts IRg_; on subsequent instructions
by clearing both the interrupt latch bit currently being serviced
and the interrupt in progress signal (IRIP), re-enabling interrupts.
If an external interrupt is pending, the associated IR vector

will not be output until the cycle following CCIR. Internal
interrupts (IRy and IRy) are not cleared by CCIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,
respectively.

CAIR CLEAR ALL INTERRUPTS

Clears external interrupt latches IRg_, and re-enables the interrupt
interface (IRIP cleared LO). The next sequential instruction

will be executed prior to the jump to a pending interrupt. Internal
interrupts (IRg and IRg) are not cleared by CAIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,

respectively.

RTNIR RETURN FROM INTERRUPT

Clears the current interrupt latch for IRg_;, re-enables interrupts
(IRIP cleared LO), and pops the return address from the sub-
routine stack. The next sequential instruction will be executed
prior to the jump to a pending interrupt routine. Internal interrupts
are not cleared and the IRy and IR, interrupt latches must be
cleared explicitly through the SLRIVP and CLRS instructions,
respectively.

RDIV READIRV AND INCREMENT IVP

Outputs the interrupt vector currently pointed to by IVP to the
data port and then increments the IVP. Interrupts should be
disabled when writing or reading interrupt vectors.

WRIV WRITEIRV AND INCREMENT IVP
Writes the interrupt vector currently pointed to by the IVP

from the data port and then increments the IVP. Interrupts
should be disabled when writing or reading interrupt vectors.

IRMBC IR MASK BITWISE CLEAR

Allows selected IR mask bits to be cleared. Data port bits D)s_g
are applied to status register bits SR15-6 (corresponding to
mask bits for IRy_g). Those data bits which are HI will clear
the mask bit, while those data bits which are LO will leave the
mask bit intact. Data port bits Ds_g are ignored.

MICROCODED SUPPORT COMPONENTS 3-15

IRMBS IR MASK BITWISE SET

Allows selected IR mask bits to be set. Data port bits D;5_g are
applied to status register bits SR;s_¢ (corresponding to mask
bits for IRy_¢). Those data bits which are HI will set the mask
bit, while those data bits which are LO will leave the mask bit
intact. Data port bits Ds_ are ignored.

DISIR DISABLE INTERRUPTS

Disables the execution of all further interrupts by clearing the
enable interrupt flag (SR,). External interrupts continue to be
latched.

ENAIR ENABLE INTERRUPTS

Enables execution of interrupts by setting the enable interrupt
flag (SRy).

SLIR SELECT LATCHED INTERRUPTS

Places the interrupt request latches in the latched mode for
interrupts IRg_; (SRy LO). Interrupts are latched if they are
valid at the appropriate clock edge. Interrupts IRs_s are latched
at the positive going clock edge while IR,_; are latched at the
negative going clock edge.

STIR SELECT TRANSPARENT INTERRUPTS

Places the interrupt request latches in the transparent mode
(SRo HI) for interrupts IRg_;. The interrupt request is only
valid while the external interrupt inputs are high. Interrupts are
still processed on the next cycle, so long as they meet the minimum
interrupt setup specification. Note that selecting transparent
interrupting will clear any pending interrupts stored in the
interrupt latch.
SLRIVP WRITESLRWITHDs_,,
ANDIVPWITHD;s_;,

Loads the 4-bit stack limit register (SLR) and the 4-bit interrupt
vector pointer (IVP) from the data port. This instruction also
clears the stack overflow interrupt request IRs.

For stack overflow detection, the active 6-bit stack pointer
(SSP, LSP or GSP) is compared to a 6-bit word comprised of
the 4-bit SLR (MSBs) and the two LSBs determined by the
instruction type, as follows:

‘00’ for subroutine stack push (PSDSS); or,
‘11’ for register stack push (PSDRS).

For example, if a stack limit of 36,¢ and positioning of the IVP
at IRV; is desired, the value ‘0111xxxxxx1001xx’ is provided at
the data port. Note that the SLR and IVP cannot be read.

The interrupt vector pointer (IVP) addresses the vector file for
reading or writing interrupt vectors. To write interrupt vectors
IRVy_o, the IVP must first be initialized by SLRIVP. The
WRIV instruction (see above) is then used to write the interrupt
vector pointed to by the IVP, which is then incremented
automatically.

2.6 Relative Address Width Controls

The width control instructions allow reduction of microcode
when Jump Data Relative and Jump Subroutine Relative in-
structions need less than the full, 16-bit range. Use these in-
structions to sign extend the 8, 12 or 16-bit wide jump data
presented at the data port. The jump width may be selected by
the explicit instructions or by directly setting the status register
bits SRs_4 as described below. Any of these three instructions

3-16 MICROCODED SUPPORT COMPONENTS

will reset the Instruction Hold Control mode (see Misc. Instruc-
tions - IHC, 2.7).

Note that selection of 8-bit width can be made with or without
IHC. For all relative jumps, the jump distance is the offset +1.

REL16 SELECT 16-BIT RELATIVE JUMPS

Select the 16-bit relative jump. This adds D;s_o at the data port
to the PC to obtain the jump address. The status bits SRs_4 are
set to ‘00’

RELI12 SELECT 12-BIT RELATIVE JUMPS

Selects the jump data from D;;_o. The offset is sign-extended
allowing relative jumps in the range +2047 to —2048. The
status bits SRs_4 are set to ‘11°.

RELS SELECT 8-BIT RELATIVE JUMPS

Selects the jump data from D;_o. The offset is sign-extended
allowing relative jumps in the range +127 to —128. The status
bits SRs_4 are set to ‘O1’.

2.7 Miscellaneous Instructions

CONT CONTINUE

Increment and output the next location in microcode memory
without any other changes. Allows straight line microcode
execution.

IDLE DISABLEOUTPUTS AND JUMPPC

Places the address port into the high-impedance state, inhibiting
program counter (PC) increments. Useful in applications where
multiple sequencers share a common microcode address bus.

This instruction causes the ADSP-1401 to behave as if the clock
had stopped. The IDLE instruction may be latched internally
by using IHC, freeing microcode for use by another device.

External interrupt requests must be inhibited during IDLE. If
interrupts are not inhibited, the ADSP-1401 will attempt to
process an interrupt that goes active. However, it will be unable
to output an interrupt vector because the IDLE instruction
places the address port in the high-impedance state; more im-
portantly, it will set its IRIP flag, which will inhibit further
interrupt processing even after the IDLE state is exited.

Interrupts can be inhibited using the interrupt mask or the
DISIR instruction. While inhibited, interrupt requests will still
be latched in the interrupt latch.

IHC ENABLE INSTRUCTION HOLD CONTROL

Sets SRs_4 to ‘10’ and redefines the function of IR, to allow a
subsequent instruction to be held for repeated execution, regardless
of the instruction port. Use of the IHC mode requires that the
mask bit for IR, be set. See Instruction Hold Control, appendix
4.1 for more details.

While in the IHC mode, asserting IR, HI (prior to the second
half-cycle of any instruction) will hold that instruction and
disable all interrupts (although they continue to be latched)
until IR, is brought LO again (again, prior to the second half-cycle
of any instruction).

It is recommended that IR, be dedicated to control of the IHC
mode (if needed). However, if it must also be used for subsequent
interrupting, then the CAIR instruction should be executed
before unmasking IR, (to clear the interrupt request resulting
from use of IR, as the IHC control).

ADSP-1401

Use of IHC is constrained to 8-bit relative addressing (see Relative
Address Width Controls, 2.6) and clearing THC is accomplished
by executing any of the relative address width control instructions
(changing status register bits SRs_y).

wCs WRITE CONTROL STORE

Provides sequential addressing during microcode downloads to a
RAM based microcode store. The instruction may be interpreted
as:

JUMP DATA;
IF FLAG: DECREMENT C, AND CONTINUE UNTIL
INTERRUPTED.

Upon initiation of the WCS instruction, the sequencer outputs
the address found at the data port (that of the first instruction
to be downloaded). The external flag is then used to gate sub-
sequent sequential addressing for the download and decrementing
of counter C,. This action continues until an interrupt is detected
(from either a Cy underflow, externally or the chip is RESET).
Instructions at the instruction port are 1gnored during WCS,
until the interrupt or reset occurs.

The external flag allows synchronization of an external memory
with the sequencer. FLAG should be asserted HI as each new
wcode word is made available for writing to pcode memory.

Notes on Using a Writeable Control Store:

o If a counter interrupt is desired, counter Cy must be in-
itialized with rwo less than the length of microcode seg-
ment to be downloaded.

o If counter interrupting is to be used to exit the WCS
mode, IRV, should be unmasked and initialized with the
address of the instruction to be executed upon WCS com-
pletion (see Interrupts, 1.4.3 for timing).

® Since interrupting is used to exit the WCS mode, the last
address downloaded is pushed onto the SS stack as an in-
terrupt return address. However, because it is not actually
a return address, the SS should be popped immediately
by decrementing the SSP (DSSP) to clear it of this last
address.

® Since FLAG is used to gate the download, it should not
become active until after the WCS instruction is executed.

See application note “Writeable Control Store using the
ADSP-1401.”

3.0 SPECIFICATIONS

This section describes the ADSP-1401’s performance parameters.
The Specifications Table lists the device’s relevant electrical and
switching characteristics, while Figure 7 presents the corres-
ponding timing diagram.

|— tyy ——|<— L0 —)

cLock | 1
i !

ey TRRX XRERXRX XXX

| = e = | |

oATAIPUTS

—| tos = |]

OQUTPUT ADDRESS | | x I 7 l

| —] typ f— | = |
< D

JEN YW — l.‘f.“s

etaa mpur PO IRQOOKXX T XXXXX

|] f—tes |] f—tw |

s

L e | ot |

|
e | XRRRX TR HTRIHIR)

|
|
ADDRESS PORT I | i
|

OUTPUT DATA

IDLE-TO-THREE- T
STATE |

'
TTRPIN FOR l___/_\—__ ltvssl
THREE-STATE |

| ——| ‘——hsovl |
ADDRESS PORT :D——(|
o] trse ja— = tao fm— |

| |

|
I

CLOCK
{STRETCHED) I

}
TTRPIN I_/|

FORTRAP | |ty |
OUTPUT ADDRESS M %) | X wva+1 |
|<— tmn——l ——l tao |<—

Figure 7. ADSP-1401 Timing Diagram

-+
__E*V_

HIGH IMPEDANCE

—
N

Figure 8. Three-State Reference Levels

ORDERING INFORMATION
Temperature Package

Part Number Range Package Outline
ADSP-1401JN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401KN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401JP 0to +70°C 52-Lead PLCC P-52
ADSP-1401KP 0to +70°C 52-Lead PLCC P-52
ADSP-1401]JD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401KD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A

MICROCODED SUPPORT COMPONENTS 3-17

SPECIFICATIONS'
RECOMMENDED OPERATING CONDITIONS

J & K Grades S & T Grades?

Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 A%
Tamg Ambient Operating Temp. 0 70 -55 125 °C
ELECTRICAL CHARACTERISTICS

Test J & K Grades S & T Grades?
Parameter Conditions Min Max Min Max Unit
Viy Hi-Level Input Voltage Vpp =max 2.0 2.0 \%
Vmc Clock Input Hi-Level Input Voltage Vpp = max 3.0 3.5 A%
Vi Lo-Level Input Voltage Vpp=min 0.8 0.8 \%
Vou Hi-Level Output Voltage Vpp=min, Ioy= —1mA 2.4 2.4 \Y%
Vor Lo-Level Output Voltage Vpp=min, I5; =3mA 0.6 0.6 \Y%
Iy Hi-Level Input Current, All Inputs Vpp =max, Viy=5V 10 10 rA
I Lo-Level Input Current, All Inputs Vpp=max, Viy=0V 10 10 nA
Iozy Three-State Leakage Current Vpp = max, Vg =max 50 50 RA
Ioz1. Three-State Leakage Current Vpp =max, Viy=0 50 50 RA
Ipp Supply Current max clock rate, TTL inputs 90 115 mA
Ipp Quiescent Supply Current Vin=2.4V 50 65 mA

ABSOLUTE MAXIMUM RATINGS

Supply Voltage -0.3Vto 7V
Input Voltage —0.3V to Vpp
Output Voltage Swing —0.3Vto Vpp
Operating Temperature Range (Ambient) . . —55°C to +125°C
Storage Temperature Range —65°C to +150°C
Lead Temperature (10 Seconds) 300°C
ESD SENSITIVITY

The ADSP-1401 features proprietary input protection circuitry. Per Method 3015 of MIL-STD-883, WARNING!
the ADSP-1401 has been classified as a Class 1 device. :

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra- W
dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and
discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

—

£SO SENSITIVE DEVICE

3-18 MICROCODED SUPPORT COMPONENTS

ADSP-1401

SWITCHING CHARACTERISTICS®

J Grade K Grade S Grade? T Grade®
Parameter Min Max Min Max Min Max | Min Max Unit
tyr Clock HI 50 40 60 50 ns
tio ClockLO 40 30 50 40 ns
tis Instruction Setup Time 36 30 45 40 ns
tps Data Setup Time 10 * 15 15 ns
Uy Input Signal Hold Time 3 * * * ns
tap Address Delay* (C=50pF) 35 25 45 35 ns
tay Address Hold Time 3 * 1 1 ns
pp Output Data Delay (C = 30pF) 50 35 60 45 ns
toj
topris Output Data Disable Time 20 15 25 20 ns
tirsm Input Flag Setup Time (IR0 masked) 15 10 20 15 ns
tirsy Input Flag Setup Time
(no constraints) 30 26 35 30 ns
tyrs Upper Interrupts (IRg_s) Setup Time | 30 25 35 30 ns
tyrs Lower Interrupts (IR4_,) Setup Time | 20 15 25 20 ns
trss Three-State (TTR) Setup Time 10 * 15 15 ns
trsov Three-State (TTR) Overlap Time
(With Trap) 13 13 5 5 ns
trsg Three-State (TTR) Disable Delay 20 15 25 20 ns
tips IDLE-to-Three-State Disable Delay 20 15 25 20 ns
trrov Trap (TTR)Overlap Time
(With Three-State) 10 8 10 10 ns
trrap Trap (TTR)to Address Delay 60 45 70 55 ns
NOTES
*Specifications same as] grade.
'All specifications are over the recommended operating conditions.
28 and T grade parts are available processed and tested in accordance with MIL-STD-883B. The processing and test methods used
for §/883B and T/883B versions of the ADSP-1401 can be found in Analog Devices’ Military Databook.
3Input levels are GND and 3.0V. Rise times are 5ns. Input timing reference levels and output reference levels are 1.5V
except for three-state reference levels, which are shown in Figure 8. For capacitive loads greater than 100pF,
we recommend the use of external buffers.
4Address delays may be derated from the specified SOpF test loading shown in Figure 12 by adding 7ns/S0pF for
i d capacitive loadi
Specifications subject to change without notice.
lou
Voo
Voo
¥ ouwag +15V
o PIN
INPUT
l T ouTPUT
= lon
Figure 9. Equivalentinput Figure 10. Normal Load for Figure 11. Equivalent Output
Circuit ac Measurements Circuit

MICROCODED SUPPORT COMPONENTS 3-19

4.0 APPENDICES

4.1 Instruction Hold Control (IHC)

The IHC function allows external microcode width to be reduced
by allowing the 1401’s microcode field to be shared with another
device. This sharing is accomplished by temporarily latching an
instruction that is used repetitively within the ADSP-1401 and
re-directing its microcode to a different device. Control of the
latching is accomplished by the IHC instruction, which re-assigns
the function of interrupt signal IR, becoming the latch/unlatch
control line.

To use this mode, execute the IHC instruction, which sets
status register bits SRs_4 to ‘10°. Interrupt line IR, now controls
the instruction hold mode (not interrupt), so IR, must be masked.
The shared signal, IR (recall, IRg_s and IR4_; share the same
pins), is still used normally, since it is active during clock low.

To initiate an instruction hold, execute the instruction to be
repeated, while asserting IR, (HI) prior to the clock falling edge
of the same cycle. For so long as IR, is kept high (on the falling
edge of the clock), the instruction will repeat. All interrupts are
automatically disabled while the instruction is held.

When IR, is needed for interrupts (instead of controlling the
instruction hold mode) the IHC mode may be disabled by:
executing one of the relative jump width control instructions;
or, by changing status register bits SRs_4 directly. Prior to
unmasking IR, execute the CAIR (clear all interrupts) instruction
to clear the interrupt latch.

4.2 Programming Examples
The following examples are given to illustrate some fine points
of programming the ADSP-1401.

4.2.1 Jump Register (See Figure 13a)

In this example, three jump registers (R3_;) are loaded with
external data and one (R) is loaded with the program counter,
enabling a jump to the top-of-stack.

Current Instruction Output
Address Executed Address Comments RSP
20 PSDRS 21 PushR; 57
21 PSDRS 22 PushR, 56
22 PSDRS 23 PushR, 55
23 PSPC 24 PushPC(Ro=24) 54
24 Startof Loop . . . 25
30 - .
31 JRC(Ry) 32/24 Cond. Jumpto

[Ro] =24
32/24

4.2.2 Return from Interrupt with Pending Interrupt (See Figure
13b)

This example shows the program flow when two interrupts
occur in the same cycle or an interrupt is latched while another
interrupt is being executed. The “Return from Interrupt” in-
struction (RTNIR) will execute one instruction of the mainline
routine before servicing a pending interrupt since interrupts are
not re-enabled until the end of the cycle. Here, IV,=60 and
IV;=21.

3-20 MICROCODED SUPPORT COMPONENTS

C0=2**15+5 60
= ‘ PUSHPC % ‘/1 61 R7
24 91 : ROUTINE
. 8
H Loop 92 .
3 TRUE | 6TIMES o 2
2 IR3
FALSE 9 ! ROUTINE
32 s 28

A. JUMP REGISTER B. PENDING INTERRUPT ONRTNIR

65 SUBRTN 13 93

o 66 RTN&IRS " ‘

20 H SAVE

¢ IR7ROUTINE

93 21 RS 15 S RESTORE
H ROUTINE

9% 16 128

D. INTERRUPT USING GLOBAL REGS
150 IRROUTINE

posnes | *°
PUSHCO 10) A SUBROUTINE
(OVRFLI g7 15 % : o

160 M

\

29

C INTERRUPT ONRTN

PUSHC1

50 RTN
F INTERRUPT ON JUMP SUBROUTINE

E. THREEPUSHES ON OVRFL

Figure 13. Programming Examples

Current Instruction Output

Address Executed Address Comments

89 e 90 e

] . 91 Interrupts I, & I3 valid.

91 e 60 IV;output. Instruction 91
still executed.

60 CONT 61 92 is pushed on stack.

61 Ce 62 Ce

81 RTNIR 92 92 popped and interrupts
re-enabled.

92 e 21 IV;output. Instruction 92
still executed.

21 CONT 22 93 pushed on stack.

22 A 23 .

28 RTNIR 93 93 is popped from stack.

93 RN

4.2.3 Interrupt on a Return from Subroutine (See Figure 13c)
If an interrupt occurs on a subroutine return, no instructions in
the main program are executed prior to servicing the interrupt
routine. Here, IVs=20.

Current Instruction
Address Executed

Output
Address Comments

91 - 92 ce

92 JSR 65 Jump o 65. 93 pushed.

65 . 66 IRs becomes valid.

66 RTN 20 IVsaddress output. 93
popped.

20 CONT 21 93 pushed.

29 RTNIR 93 93 popped.

93

ADSP-1401

4.2.4 Interrupt Routine using Global Registers (See Figure
13d)

Current Instruction Output

Address Executed Address Comments

12 e 13 Mainline . . .

13 N 14 IR; occurs here.

14 CONT 93 Output IV;.

93 PSSR 94 Push status register.

94 PSCNTR(C3) 95 Save previous values . . .

95 PSCNTR(C,) 96

96 PSGSP 97 R

97 WRSR 98 Werite new values . . .

98 WRCNTR(C3) 99

9 WRCNTR(C,) 100

100 WRRSP 101 Ce

101 . 102 Begin interrupt servicing . .

123 e 124 End of interrupt service
routine.

124 PPGSP 125 Pop in reverse order of
pushes . . .

125 PPCNTR(C,) 126

126 PPCNTR(C;) 127

127 PPSR 128 e

128 RTNIR 15 Jump back to mainline.

15 N 16 e

4.2.5 Three Stack Pushes on Stack Overflow (See Figure 13¢)
The four register buffer between the subroutine stack and the
register stack will be filled with three values whenever the stack
push that caused the overflow is followed by another instruction
that causes a stack push. The second stack push occurs since
the instruction that is interrupted (the second stack push) must
complete internally to preserve the correct state of the ADSP-1401
after the interrupt. The third push occurs to provide the return
address to the main program. The sequence is illustrated below.
Assume that the address of the stack overflow service routine
(IVy) is at 150.

Current Instruction Output

Address Executed Address Comments

86 Ce 87

87 PSCNTR (Cy) 88 The push causes a stack
overflow.

88 PSCNTR(C,) 150 The interrupted instruc-
tion executes.

150 CONT 151 89 is pushed onto the stack.

151

4.2.6 Interrupt on Jump Subroutine Instruction (See Figure
13f)

Current Instruction
Address Executed

Output
Address Comments

86 A 87 Interrupt occurs to loca-
tion 150

87 JSA (40) 150

150 CONT 151 40 Pushed on stack

e e 160 -

161 RTNIR 40 Return from interrupt

40 Ce 41

4.3 Use of RAM by Multiple Subroutines

This diagram (Figure 14) shows the state of RAM after three
nested subroutine calls.

Prior to the first subroutine call, the RSP was used to preload
the bottom portion of the RAM with indirect jump addresses.
Next, global jump registers were preloaded. In the mainline
program, only global jump registers are used.

UNDERFLOW BUFFER
RETURN ADDR
o
] SUBROUTINE #1
osp
STATUSREGISTER
$TACK RETURNADDRESS
o1
]
Gsp
RETURN ADDRESS
55— STATUS REGISTER
.
SLR —
H
LS~ RO
Rt
socay R2
STAC r
[
A1
H
.
GSP - RO
A1 SUBROUTINE #2
GLOBAL L
STACK H SUBROUTINE #1
.
H MAINLINE
H
INDIRECT JUMP
ADDRESSES

Figure 14. RAM Status after Subroutine Calls

The instruction calling the first subroutine pushes the return
address of the main program onto the subroutine stack. The
values of counters 1 and 3 are also pushed onto the stack to free
counters 1 and 3 for use in subroutine #1. The GSP is saved
since different routines will require different GSPs. Similarly,
the status register of the main program is saved. As shown,
routine #1 uses both global and local jump registers. It selects
the GSP or LSP at the appropriate times in the routine by executing
SGSP or SLSP instructions.

Routine #2 saves the return address, some counters, and the
GSP for routine #1. Since no local registers are used in routine
#2, none are loaded.

Routine #3 saves the return address and the status register.
Since the GSP and counters are not used in this routine, they
are not saved. After the new status register is loaded (selecting
the LSP), local registers are pushed onto the stack.

4.4 Bus Drive Considerations with the Word-Slice Family
The various members of Analog Devices’ Word-Slice family are
designed with high-speed drivers on all output pins. This capability
means that large peak currents may pass through the ground
and Vpp pins when all the bus lines are simultaneously charging
their load capacitance from LO to HI, or vice versa.

To calculate the peak current for a typical family member (such
as the ADSP-1401 Program Sequencer), we assume that all
output drivers are switching from a HI to a LO state. From a

MICROCODED SUPPORT COMPONENTS 3-21

The internal ground and supply lines may undergo a large dis-
turbance during this transition unless the ADSP-1401 is tied to
a solid ground plane and good high frequency decoupling is
used (0.1pF ceramic between GND and Vpp as close as possible
to the device). Otherwise, is it possible that internal data in the
ADSP-1401 may be lost.

fall time and capacitance measurement, we can determine that
the peak current in each driver is:

IM=Cm'AV/At,
where AV/At is the initial slew rate.
In the case of the program sequencer, for an external load capaci-
tance of SOpF and a measured slew rate of 0.6V/ns, the peak

current will be about 30mA. Since there are 16 such drivers, the
total peak current may approach 480mA!

4.5 Mnemonics and Opcodes —_— Status Register Bit Assi
Opcode bits “ii” select the relevant register (R3_o) and/or counter ._g‘l;# Funct 1(",'!"-0)
(Cs_o)- Opcode bits “cc” select the condition to be applied: s TR, Mask Bit
‘000 UNCONDITIONAL ° *
0 NOTFLAG : . Mack Bi
‘1 FLAG Py Rk Bi
SRs_4 Relative Jump Width Selection:
‘11’ SIGN ‘00’ =16-bit relative address width
.. . . ‘01’ = 8-bit width
The SIGN condition is precluded from instructions prefixed €10’ =IHC Mode (8-bit width)
with “*”, ‘11’ =12-bit width
SR; Select GSP/LSP
SR, Enable/Disable Interrupts
SR, Set/Clear Sign Bit
SRy Select Transparent/Latched Interrupts
Mnemonic Opcode (Is_¢) Description Sult(msl:ﬁmr Operations:
Jump and Branch Instructions: D 010 1110 READ SR
JPCOF 0010101 IF FLAG: JUMP PC (self) ;‘g‘;:“ g‘l’(l) 533‘1’ PUWRISHI Es:lt)m' oss
PCNF 0110101 IF NOT FLAG: JUMP PC
I el u PPSR 0100010 POP SR FROM SS
JTWO 101 cc01 IF COND: JUMP PC+2 (skip) .
JDA 111ccll IF COND: JUMP DATA, Counter Operations:
ABSOLUTE WRCNTR 011 10ii WRITEC,
JDR 111cc0l IF COND: JUMP DATA, CLRS 0010100 CLEAR SIGN BIT
RELATIVE SETS 0110100 SET SIGN BIT
JDI 101ccl0 IF COND: JUMP DATA, PSCNTR 000 10ii PUSH C,ONTO S
INDIRECT PPCNTR 001 10ii POP C, FROM S§S§
DCCNTR 011 00ii DECREMENT G;

JDRST 100 11ii

*JRC 110 ccii
JRS 110 11ii
JSA 111 cc00
JSR 111 cc10
RTN 101 ccl1

*BRANCH 100 ccii

Stack Operations:
Subroutine Stack
PSDSS 001 1110
PPSSD 011 1110
WRSSP 000 1110
RDSSP 010 1100
DSSP 000 0010

Register Stack
SGSP 000 0111
SLSP 000 0110

RDRSP 010 1111
WRRSP 000 1100
PSPC 010 0011
PSGSP 000 0101
PPGSP 000 0100
PSDRS 001 1111
PPRSD 011 1111
AIRSP 010 10ii
SIRSP 000 1111
S4RSP 011 1100

IF SIGN OF C;: JUMP DATA,
Ci<=R; ELSE, C<=C;-1
IF COND: JUMP R,

IF SIGN OF C;: JUMPR,,
C<=C,-1

IF COND: JUMP SUB,
ABSOLUTE

IF COND: JUMP SUB,
RELATIVE

IF COND: RETURN FROM
SUB

IF SIGN OF C;: JUMP R;;
ELSE, C,<=C,-1, IF COND:
JUMP DATA

PUSH DATA ONTO §§
POP SS TO DATA PORT
WRITE SSP

READ SSP
DECREMENT SSP

SELECT GSP

SELECT LSP

READ RSP

WRITE RSP

PUSH PC ONTO RS
PUSH GSP ONTO §§
POP GSP FROM §§
PUSH DATA ONTO RS
POP RS TO DATA PORT
ADD i TO RSP
SUBTRACT 1 FROM RSP
SUBTRACT 4 FROM RSP

8-22 MICROCODED SUPPORT COMPONENTS

IFCDEC 101 cc00 IF COND: DECREMENT C,
Interrupt Control:
CCIR 001 0001 CLEAR CURRENT
INTERRUPT
CAIR 000 0001 CLEAR ALL INTERRUPTS
RTNIR 000 0011 RETURN FROM
INTERRUPT
RDIV 010 1101 READ INTERRUPT VECTOR
AND INCREMENT IVP
WRIV 000 1101 WRITE INTERRUPT
VECTOR AND INCREMENT
IvP
IRMBC 001 0011 IR MASK BITWISE CLEAR
IRMBS 001 0010 IR MASK BITWISE SET
DISIR 001 0110 DISABLE INTERRUPTS
ENAIR 0110110 ENABLE INTERRUPTS
SLIR 001 0111 SELECT LATCHED
INTERRUPTS
STIR 011 0111 SELECT TRANSPARENT
INTERRUPTS
SLRIVP 001 1101 WRITE SLR<=Ds_, AND
IVP<=Dys_12
Relative Address Width Controls:
REL16 010 0100 SELECT 16-BIT RELATIVE
ADDRESSING
REL12 010 0111 SELECT 12-BIT RELATIVE
ADDRESSING
RELS 010 0110 SELECT 8-BIT RELATIVE
ADDRESSING
Miscellaneous Instructions:
CONT 000 0000 CONTINUE

IDLE 001 0000 IDLE

IHC 010 0101 ENABLE INSTRUCTION
HOLD CONTROL
wcs 010 0000 WRITE CONTROL STORE

ADSP-1401

ADSP-1401 PIN CONFIGURATIONS

DIP
D-48A
N-48A
PIN FUNCTION | PIN FUNCTION
1 D7 48 D6
2 D8 47 D5
3 D9 46 D4
a4 D10 45 D3
5 DM 4 D2
6 D12 43 D1
7 D13 42)
8 D14 a1 CLK
9 D15 40 FLAG
10 EXIR1 39 16
1 EXIR2 38 15
12 GND 37 Voo
13 EXIR3 36 7y
14 EXIR4 35 13
15 TTR 34 12
16 Y15 33 n
17 Y14 32 10
18 Y13 31 Yo
19 Y12 30 Y1
20 Y11 29 Y2
21 Y10 28 Y3
22 Y9 27 Y4
23 Y8 26 Y5
24 Y7 25 Y6
PLCC
P-52
PIN FUNCTION | PIN FUNCTION
1 D7 52 D6
2 D8 51 D6
3 D9 50 D4
4 D10 49 D3
5 D11 a8 D2
6 D12 a7 D1
7 GND 46 GND
8 D13 45 Do
9 D14 4 CLK
10 D15 a3 FLAG
1 EXIR1 a2 16
12 EXIR2 M 15
13 GND 40 Voo
14 EXIR3 39 4
15 EXIR4 38 13
16 TTR 37 12
17 Y15 36 "
18 Y14 35 10
19 Y13 34 Yo
20 GND 33 GND
21 Y12 32 Y1
22 Y11 31 Y2
23 Y10 30 Y3
24 Yo 29 Ya
25 Y8 28 Ys
26 Y7 27 Y6

MICROCODED SUPPORT COMPONENTS 3-23

3-24 MICROCODED SUPPORT COMPONENTS

ANALOG
DEVICES

Word-Slice
Program Sequencer

ADSP-1402

FEATURES
16-Bit Microcode Addressing Capability
Look-Ahead™ Pipeline
Extensive Interrupt Processing with Eleven On-Chip
Interrupt Vectors
Four Event Counters to Support Looping
Absolute, Relative and Indirect Addressing
50ns Cycle Time
64-Word RAM for Storing:
Subroutine Linkage
Jump Addresses
Counters
Status Register
1pm CMOS Technology
84-Pin Grid Array Package

GENERAL DESCRIPTION
The ADSP-1402 Program Sequencer is an instruction-

» " Microcode Memory I
rmicrocode
fidikian * microcode instruction
address ADSP-1402 ADSP-1410
Program Address Generator
Sequencer
address
] Data
Units | Memory

Data Bus

Word-Slice® Microcoded System with ADSP-1402

3222 Floating-Point ALU and the ADSP-3128A Register File.
The ADSP-1402 is functionally identical to the ADSP-1401, ex-

compatible upgrade to the ADSP-1401. It can be used with high cept for the changes described in this section. A block diagram

speed arithmetic units and provides many features to simplify
the design of microcoded systems. Among the devices it sup-

of the ADSP-1402"is shawn below. For a detailed description of
the architecture and-instruction set of the ADSP-1402, see the

ports are the ADSP-3212 Floating-Point Multiplier, the ADSP- erd—Slzm® User’s Manual and the ADSP-1401 Data Sheet.

§0OT FESEY WALy

???

nternal Bus

A
A N N
o ol
Reaister

sign
Status o
Register [<—

RAM Address Multiplexer

(54 15 B8it

Words)

Counters.
@)

Overflow

Controls

Interrupts
rap

Program vactars
Counter (11)
[Microprogram Address Multiplexer]

Instruction

T-Latch o[CLK

REPEAT I, FLAG, o FSEL, o
Instruction
Port

Overflow —gm]
Interrupt
Sion el Tiogic

s TRAP EXIR,, IRIP
Address External

Interrupts

ADSP-1402 Block Diagram

Look-Ahead is a trademark of Analog Devices, Inc.
Word-Slice is a registered trademark of Analog Devices, Inc.

This information applies to a product under development. Its

characteristics and specifications are subject to change without notice.

Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-25

The ADSP-1402 is a high speed microprogram controller opti-
mized for the demanding sequencing tasks found in digital
signal processors and general purpose computers. In addition to
high speed and large addressing range (64K of program mem-
ory), this Word-Slice component has unique features that make
it highly versatile:

® On-chip storage and control of ten prioritized and maskable
interrupts plus a nonmaskable trap,

® Four decrementing event counters,

® Absolute, relative and indirect addressing capability,
® Download capability (writeable control store) and

® A dynamically reconfigurable 64-word RAM.

The ADSP-1402 microprogram sequencer’s main task is to
provide the appropriate microprogram addressing to support
programming requirements, such as looping, jumping, branch-
ing, subroutines, condition testing and interrupts. An internal
Look-Ahead pipeline, controlled by both phases of the clock,
allows the ADSP-1402 to satisfy these requirements at very high
speed.

During each microinstruction, the ADSP-1402 monitors the
conditions and instructions to determine the next microprogram
address. This address can come from one of several sources: the
stack, the jump address space in the on-chip RAM, the data
port, the interrupt vectors or the microprogram counter. In afl
cases, the next address is available in a single eycle. An exten-
sive set of conditional instructions is also available, including
jumps, branches, subroutines, interrupts and writeable controt
store. Eight multiplexed flag inputs can be used as external con-
ditions for these instructions.

The ADSP-1402’s internal 64-word RAM is user configurable
into three regions: subroutine stack, register stack and indirect
jump address space. The subroutine stack is used for linking
interrupts and subroutines and, during their execution, allowing
the storage of system states. The register stack can be used to
store sets of jump addresses; each set can be associated with a
particular level of interrupt or subroutine (both local and global
stacks are provided). Indirect jump capability is also supported,
addressing for which is provided at the data port.

Interrupts are handled entirely on chip. The ADSP-1402's inter-
nal interrupt control logic includes registers for eight external
(user) interrupt vectors, a mask register and a priority decoder.
Two additional vectors are reserved for internally generated in-
terrupts resulting from counter underflow and stack limit viola-
tion, and a special vector is provided for the nonmaskable trap
interrupt. A stack limit violation is caused by stack overflow,
underflow or collision. A mechanism is provided for recovering
from stack violations. Trap interrupts have the highest priority
of all interrupts, and the stack limit violation interrupt has the
second highest priority.

The ADSP-1402’s four decrementing 16-bit counters are used to
track loops and events. These counters generate a signal when
negative. This negative condition is available to several condi-
tional instructions and can also trigger an internal interrupt.

CHANGES FROM THE ADSP-1401

TTR Input

The ADSP-1401 TTR (Trap/Tristate/Reset) input is eliminated
in the ADSP-1402. In its place are separate RESET and TRAP
control pins. The tristate function is implemented with the the
IDLE pin as described under fdle and Halt, below.

Reset

The default reset function in the ADSP-1402 is similar to that of
the ADSP-1401. While RESET is LO and IDLE is HI, the
ADSP-1402 outputs H#0000 on its address port. When RESET
goes HI, the address port remains at H#0000 for one clock
cycle (the first cycle of normal operation). As with the ADSP-
1401, the first ADSP-1402 instruction must be a CONT
instruction.

The ADSP-1402 also provides an alternate reset function in
which the address port is placed in a high impedance state. If
the IDLE input is asserted LO during reset, the address port is
tristated rather than outputting H#0000. Asserting IDLE dur-
ing reset does not affect internal operation, only the address
port. When RESET goes HI, the ADSP-1402 outputs H#0000
for one clock cycle.

Boot (WCS)

The ADSP-1401 and ADSP-1402 implement a WCS (Writeable
Control Store} instruction. This instruction places the ADSP-
1401 or ADSP-1402 in & mode in which an active FLAG input
increments the program counter (PC), decrements the C,
counter and outputs the PC to the address port. This operation
is used to synchronize address sequencing for downloading mi-
crocode from a host. The usual way to exit this mode is by an
interrupt, from either an external interrupt or the internal
counter undagﬁow (of C, in this case).

The ADSP-1402 also provides a pin that allows external hard-
ware control of a download. The BOOT input of the ADSP-
1402 controls the operation for downloading microcode in much
the same way as the WCS instruction. The boot operation, al-
though slightly more restricted compared to the WCS operation,
requires no external circuitry.

Note: IDLE must be HI and TRAP must be LO while the
boot function is being used. RESET must be active when
BOOT is asserted and remain active until BOOT is
deasserted.

In the cycle that BOOT is asserted, the ADSP-1402 outputs
H#0000 on the address port and sets the PC to H#0000. When
FLAGq, is asserted, the PC is incremented and its new value is
output on the address port. The ADSP-1402 remains in this
mode until the BOOT pin is deasserted. Thus, no interrupt is
required to end the download.

The system clock must be stable and RESET must be asserted
for a minimum number of cycles before BOOT is asserted and
after BOOT is deasserted. IDLE must be HI and TRAP must
be LO for the entire time that BOOT is asserted. When BOOT
is active, FLAG, is edge-sensitive (therefore, it cannot be as-
serted more than every other cycle). FLAG, must also meet
minimum setup and hold times.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-26 MICROCODED SUPPORT COMPONENTS

ADSP-1402

Trap

The ADSP-1402 trap function is controlled by the TRAP input.
The TRAP signal must be asserted at least tpg before the next
rising clock edge and must be held at least tyy after the rising
clock edge. In addition, TRAP must not change state (HI or
LO) tg before or try after the rising clock edge, and it must
meet a minimum pulse width specification.

The nonmaskable TRAP input on the ADSP-1402 has a dedi-
cated interrupt vector (IV,,) that is separate from the IR, (stack
over/underflow) vector (unlike the ADSP-1401, in which Trap
and IR, share the same vector). As with the ADSP-1401, the
TRAP signal may require a clock skip to allow time to fetch a
new instruction. A block diagram of an example circuit for im-
plementing a clock skip is shown in Figure 1. TRAP aborts the
current instruction and pushes its address onto the subroutine
stack.

— Microcode
Memory
Yis-0 IR ’
ADSP-1402
Program Sequencer
CLK TRAP lag— Exception
t Rest of System
ClockOut

Clock Generator

StopClock ja————

Figure 1. Example Clock Skip Circuit

External Interrupts

The eight external interrupts of the ADSP-1402 are input on
eight separate pins, EXIR; , (whereas the eight external inter-
rupts of the ADSP-1401 are time-multiplexed into four inputs).
All external interrupts are latched on the rising edge of the
clock. The ADSP-1402 outputs the interrupt vector address in
the same clock cycle in which the interrupt is latched.
Interrupt masking and enabling in the ADSP-1402 is the same
as in the ADSP-1401. Interrupts on the ADSP-1402 are priori-
tized in descending numerical order; Trap has the highest prior-
ity, IR, has the next highest, and IR, has the lowest.

>

Interrupt In Progress (IRIP)

The ADSP-1402 has an internal Interrupt In Progress (IIP) bit
that indicates when it is processing an interrupt (IRg-IR,). The
ADSP-1402 also has an internal Trap In Progress (TIP) bit that
indicates when a trap is being processed. The IRIP output flag
is the logical OR of the IIP and TIP bits.

If TIP is set, the CCIR (Clear Current Interrupt) and RTNIR
(Return From Interrupt) instructions reset TIP without affecting
IIP. If TIP is not set, however, then executing one of these in-
structions resets IIP. Executing the CAIR (Clear All Interrupts)
instruction resets both TIP and IIP. Thus, unlike in the ADSP-
1401, a trap service routine can be nested inside an interrupt
service routine; the return from the trap service routine will not
eliminate the Interrupt In Progress status.

Flag Inputs

The ADSP-1402 has eight external flag inputs (FLAG,_;). These
eight input flags are multiplexed on-chip into one signal that is
equivalent to the FLAG input on the ADSP-1401. Three exter-
nal contrel bits select ofie of the eight input flags. The multi-
plexed flag signal islatched during clock HI and transparent
during:clock LO. During a Boot or Writeable Control Store op-

‘eration, the multipléxer automatically selects FLAG,.

Idle and Halt, "

*The ADSP:1402 has two controls for stopping internal opera-

tidn, one which tristates the address and data ports (IDLE) and
one which does not (HALT). Both perform functions similar to
that of the ADSP-1401 IDLE instruction, which is functional

., but gbsolete on the ADSP-1402.

Note: The IDLE instruction must 7ot be input to the ADSP-
1402 with either IDLE or HALT asserted; otherwise, the
ADSP-1402 will not function properly.

The IDLE pin is useful for implementing multitasking in sys-
tems with multiple sequencers. IDLE removes the ADSP-1402
from the address and data buses, allowing another sequencer to
drive them.

IDLE requires a minimum setup and hold time to the rising
clock edge. When IDLE is asserted, the ADSP-1402 finishes
executing the current instruction, and then the internal clock of
the ADSP-1402 is stopped, freezing internal operation. At the
next rising edge of the CLK input, both the address port and
the data port are tristated, and the next instruction is latched
but not executed. Fetching and execution of new instructions
are inhibited until IDLE is deasserted. Interrupts are not
latched, and traps are ignored as well. When IDLE is
deasserted, normal operation continues at the next rising clock
edge with the previously latched instruction.

The ADSP-1402 HALT input can be used to stretch the inter-
nal ADSP-1402 clock. HALT is primarily intended to imple-
ment wait states or to be used in conjunction with TRAP to
handle exceptions.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-27

HALT stops internal operation without tristating the address Power and Ground

and data ports. It halts internal operation at the next rising edge The ADSP-1402 has nine power pins and nine ground pins.
of the CLK input after HALT is asserted. The address port and

the data port are not updated; both ports maintain the states

current at a time when HALT is asserted. No new instruction is

latched. During HALT, fetching and execution of new instruc- PIN LIST
tions are inhibited. Interrupts are not latched; however, unlike
during IDLE, active TRAP inputs are recognized and pro- Name Type Function
cessed. The ADSP-1402 latches and executes its next instruction —
and updates the address and data ports at the next rising clock Diso Bidirectional | Data Port
edge after HALT is deasserted. Y50 Output Address Port
IRIP Output Interrupt in Progress
Repeat . I o Input Instruction Port
The REPEAT input causes the ADSP-1402 to repeat the next EXIR, , | Input External Interrupts
instruction (the one being set up at the same time as REPEAT) FLAG,_, | Input Flags
for one clock cycle. This input performs the same function as FSEL,, | Input Flag Select
the ADSP-1401 IR, input in IHC (Instruction Hold Control) CLK Input Clock
mode. The ADSP-1402 repeats the instruction as long as TRAP Input Trap
REPEAT stays asserted. RESET Input Reset
Interrupts cannot be serviced while the REPEAT pin is active IDLE Input Idle
because the ADSP-1402 ignores its instruction port; however, REPEAT | Input Repeat Instruction
interrupt requests are still latched. Because TRAP is not HALT Input - Halt
latched, it should not be used while REPEAT is active. BOOT Tnput Boot (WCS) Mode
The REPEAT input is dedicated to the repeat function; the RN
ADSP-1402 has no IHC mode. In the ADSP-1401, the IHC in-,, .= - . - « o

struction activates the IHC mode and selects an 8-bit relative-..
jump offset width. For compatibility, the IHC mssrﬂctxé"g in &e;
ADSP-1402 also selects an 8-bit relatwg mmp oﬁ'seb mdfh the’
same effect as the RELS instruction). B

Data Port i s -,',‘; v 7

The ADSP-1402 has a full-cycle data port rathier tharf ﬁle I‘hﬁf* "
cycle data port of the ADSP-1401. Instructions that wilte data R
out of the ADSP-1402 drive the bus for a full cycle. Instructions . .>"~~

that read data into the ADSP-1402 require data to be valid a
specified time before and after the clock rising edge. To avoid
bus contention, therefore, an ADSP-1402 instruction that out-
puts data on the data port cannot be followed by an instruction
that reads data from the port; a NOP cycle must occur between
the two instructions.

The data port output drivers are tristated unless a data output is
being performed.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-28 MICROCODED SUPPORT COMPONENTS

ANALOG
DEVICES

Word-Slice
| Address Generator

ADSP-1410

FEATURES
16-Bit Addresses with Higher Precision Options
30ns Address Output Delay @ 11.1MHz Operation
Look-Ahead™ Pipeline
Versatile Addressing Hardware:
30 16-Bit Registers
16-Bit ALU with Left/Right Shift & Carry /O
Comparator
Bit Reverser
Dual Ports
Powerful Single-Cycle Looping Instructions
375mW Maximum Power Dissipation with
CMOS Technology
48-Pin DIP, 52-Lead PLCC

GENERAL INFORMATION

The ADSP-1410 is a fast, flexible address generator optimized
for digital signal/array processors and other high-performance
computers. This low-power CMOS device rapidly generates the
data memory addresses required by routines such as digital
filters, FFTs, matrix operations, and DMAs. With its 16-bit
architecture, registers, dual ports, and speed, this Word-Slice®
component improves performance and reduces board space
substantially relative to bit-slice solutions.

The ADSP-1410’s architecture features a 16-bit ALU, a com-
parator, and 30 16-bit registers. The registers are organized into
four files: sixteen address (R) registers, six offset (B) registers,
four compare (C) registers, and four initialization (I) registers.

The ADSP-1410 rapidly executes key address generating opera-
tions. In a single instruction cycle, the device can:
® output a 16-bit memory address;
©® modify this memory address; and,
® detect when the address value has moved to or beyond a
pre-set boundary and conditionally loop back to the
top of a circular buffer.
Consequently, circular buffers and modulo addressing for data
memories can be implemented without overhead.

The ADSP-1410’s 10-bit microcode instructions include com-
mands for looping, register read/writes, internal data transfers,
and logical/shift operations. Instructions are normally supplied
from an external source. However, an internal Alternate In-
struction Register (AIR) can provide the instruction under external
control, allowing microcode to be conserved in many
applications.

Look-Ahead is a trademark of Analog Devices, Inc.
Word-Slice is a registered trademark of Analog Devices, Inc.

ADEP-140%

WORD-SLICE® MICROCODEDVSVSTEM WITH ADSP-1410

The ADSP-1410 has a 16-bit address (Y) port for outputting
addresses and a 16-bit data (D) port for I/O between internal
and external registers. Also, an internal path allows external
data, provided via the D port, to serve as an ALU source and/or
to be directly output over the Y port for a DMA capability.

Double-precision (30-bit), single-cycle addressing can be per-
formed by cascading two ADSP-1410’s, with the MSB of each
chip’s D and Y port dedicated to interchip communication.
Alternatively, a single AG can provide double-precision addresses
at a rate of one per two clock cycles.

The Look-Ahead pipeline eliminates the need for an external
microcode pipeline register by internally latching instructions
and addresses; microcode bits may be directly routed to the
ADSP-1410 from microcode memory. Logically, the Look-Ahead
pipeline is split into two halves: the first, located at the instruction
(and data) port; and the second, located at the address port.
Each half of the pipeline (input vs. output) has a transparent
latch which operates out of phase with the other: the address
latch is transparent during the first half of the cycle (clock HI),
while the input latches (instruction and data) are transparent
during the second half of the cycle (clock LO). This complementary
arrangement allows new instructions to be decoded (in preparation
for the following cycle) while the program address for the current
cycle is held steady.

MICROCODED SUPPORT COMPONENTS 3-29

ADSP-1410 OVERVIEW

Digital Signal Processing (DSP) and array processing systems
require fast, flexible address generation circuitry. An Address
Generator (AG) supplies the address of a location in data or
coefficient memory. The value residing at the specified address
is fetched and fed to an arithmetic unit for processing. The AG
must then modify the address pointer in anticipation of the next
data fetch. For algorithms that repetitively loop through data
buffers, the AG may need to compare the address to a buffer
end and conditionally loop back to the top of the buffer. Finally,
to maximize throughput, an AG must perform its addressing
tasks rapidly and without overhead.

With the ADSP-1410, 16-bit pointers to memory are stored in
an address (R) register file. Since an AG must track several
pointers concurrently, sixteen R registers, denoted R,,, are pro-
vided. If we denote Y as the address port, the operation “Y <— R,,”
corresponds to the AG supplying an address from register R,.

After supplying an address, the AG must update the pointer for
the next memory fetch. The updating may be as simple as an
increment but, more generally, involves adding or subtracting
an arbitrary offset value. Also, algorithms generally access several
different offset values. To this end, the AG provides six offset

registers, denoted B, and can execute in a single-cycle the core
operation:
Y<—R,;; R,<«—R,+B,,.

In DSP applications, data arrays are often addressed as circular
buffers. That is, when addressing reaches the buffer end, it
wraps back to the beginning of the buffer. To implement this
looping, the AG compares the supplied address to one of four
compare registers, denoted C;. If the address has moved to or
beyond the end of the boundary (R,=C;), the device can
transfer an initialization register value, denoted I;, to the register
(R, I)); otherwise, it is updated in normal fashion

(R R, +B,,). To minimize overhead, the AG can execute
normal updates while also performing conditional re-initializations;
again, in one core operation:

Y-<R,; IF (R,=C)): R,<—I;; ELSE R,<— R, +Bp,.
Since the above instruction handles the looping required of
circular buffer addressing, it is termed a looping instruction. To
a large extent, the ADSP-1410’s architecture and instruction set
revolve around efficient implementation of this instruction.
However, many variations of this instruction are supported on
the device and spelled out in the following sections.

ADDRESS SOURCES
— Sixteen internal R registers
— External data provided over the D port

OFFSET SOURCES
- Six internal B registers
— Data Port

OFFSET OPERATIONS
— Increment Rp<— R, +1)
— Decrement Ry« R,—1)
~ Add Offset (Ry<— R, +B,)
— Subtract Offset Rp<—R,—B,)
- Single-Bit Left/Right

Shifts

— Logical Operations (AND, OR, XOR)

CONDITIONAL RE-INITIALIZATION
— Independent Inhibit/Enable for each of four
initialization registers
— Conditional AIR execution (used for true
modulo addressing)

OUTPUT/UPDATE SEQUENCE
— Normal (Pre-Update) Mode (output the address
before update)
— Post-Update Mode (output the address after
update)
PRECISION
— Single chip supplies 16-bit addresses
— Two chips cascaded provide 30-bit addresses
— One chip provides 30-bit addresses in two
cycles

3-30 MICROCODED SUPPORT COMPONENTS

ADSP-1410 PIN ASSIGNMENTS
PIN NAME DESCRIPTION

Yis-Yo The address (Y) output port. In single-chip/double-
precision mode, the MSB (Ys) indicates whether
the supplied address is the MSW or LSW (see
Precision Modes). In two-chip/double-precision
mode, the MSB conveys the carry/shift bit from
the Least Significant (LS) to the Most Significant
(MS) chip.

The bi-directional data (D) port. In two-chip/dou-
ble-precision addressing mode, the MSB (D,s) of
this port conveys CMP status from the partner
chip.

The instruction port.

Dys - Do

I-1p
CMP/Z A dual function pin. Looping instructions, which
compare address register values to compare
register values, assert this pin HI to convey
CMP status if i) R=C for positive offsets, or

ii) R=C for negative offsets. Logical/Shift in-
structions assert this pin HI to convey the ZERO
status of the result.

DSEL Data Select control. Asserting this control HI
causes data set up on the data port to substitute

for the R value specified in the instruction.

AIR Enable Alternate Instruction Register control. Asserting
this control HI causes the device to execute an
instruction stored in the internal AIR, rather
than the instruction set up on the instruction
port

CLK Clock

Vaa +5 Volt Power Supply

GND Ground

ADSP-1410

015-0

K

T-LATCH EN CLK
16

INTERNAL BUS |

7
16
. ¢ d INIT
A |16 Al A |16 \-REGS
(4)
|~=—CMP
s Z

OFFSET ADDR
B-REGS R-REGS CLK
(6) (16)

1]

CONTROLS

IR

INSTR
DECODE

AIR
ENABLE

INTERNAL
BUS

INSTRUCTIONS

Figure 1. ADSP-1410 Functional Block Diagram

MICROCODED SUPPORT COMPONENTS 3-31

ARCHITECTURE

After discussing the architecture of the ADSP-1410, different
operating modes of the ADSP-1410 are detailed, followed by a
description of the ADSP-1410’s method of operation: including
timing concerns and instructions. Brief applications information
is then presented, and the data sheet concludes with a section
on MNEMONICS AND OPCODES.

The ADSP-1410’s architecture (Figure 1) features four register
files, an ALU, a Comparator, an Alternate Instruction Register
(AIR), and a Control register. External interfaces include a 10-
bit instruction port, a 16-bit data (D) and address (Y) ports, a
DSEL (Data Select) control pin, an AIR Enable control pin,
and a status flag.

Instruction Port

The microcode controlling the ADSP-1410 is supplied over the
10-bit wide INSTRUCTION PORT. The instruction word,

Is o, is latched prior to the instruction decoder during phase one
(clock HI) and is passed during phase two (clock LO). In addition
to the microcode, two dedicated control pins affect the device’s
operation: the DSEL pin (see Y Port, D Port, and DSEL Control
Pin); and the AIR Enable pin (see Alternate Instruction Register
and AIR Enable). These pins are considered instruction bits,
and latched as described above.

Y Port, D Port, and DSEL Control Pin

The ADSP-1410 has two 16-bit ports: a DATA (D) PORT and
an ADDRESS (Y) PORT. The output drivers of both ports are
three-state disabled unless an instruction specifies an output.

Addresses supplied to external data memory are output over the
unidirectional Y port. The address supplied may come from one
of three sources: an internal address (R) register, the data (D)
port, or the ALU, The DSEL (Data Select) pin controls whether
an R register (DSEL LO) or external data (DSEL HI) is the
address source. The address source can either be directly output
over the Y port, or passed through the ALU for modification
prior to output (see Pre-Update Mode versus Post-Update Mode).
Hardware three-state output control of the Y port is possible
(see note in “Alternate Instruction Register and AIR Enable”
section). Finally, the address being output (direct or modified
source) may be bit-reversed (see Bit Reverser).

The Y port has two modes of operation (see Transparent Mode
versus Latched Mode). In the more commonly used latched
mode, addresses are latched during phase two (clock LO). The
transparent mode disables the output latch and may be used in
conjunction with stopping the clock LO, allowing data to be
passed through (directly, or modified by the ALU) the AG
without performing updates.

Any internal register may be read or written via the ADSP-1410’s
D port. Also, external data can be supplied to the chip over this
port for immediate addressing purposes.

Note:

The ADSP-1410 may power-up driving the data bus. Caution
should be used to avoid creating a bus contention with other
devices which may be sharing this bus. To prevent bus contention,
the CLK input may be forced LO during power-up (disabling
the output data drivers). During this time, a RESET instruction
should be setup at the instruction port to be executed as the
first operation when the clock starts up.

3-32 MICROCODED SUPPORT COMPONENTS

Registers

The ADSP-1410 has 30 16-bit registers, organized into four
banks. Single-cycle transfers between certain register banks are
supported.

Sixteen ADDRESS (R) REGISTERS hold memory address
pointers. In the same cycle that a 16-bit R value is output over
the address (Y) port, it may be incremented, decremented,
offset, modified by a logical operation, or left/right shifted by
one bit. The updated value is then written back into the original
R location (pre-update mode). In post-update mode, the address
is output after being modified. Any R value (or data, using
DSEL) may be bit-reversed on output.

Six OFFSET (B) REGISTERS furnish a second operand to the
ALU (the other, provided by an R register or the data bus) for
modifying the address to be output. The B registers are partitioned
into two, user-selectable (see Control Register: B Bank Select)
banks and external data can substitute as an offset value whenever
B3 (bank one) or B; (bank two) is used (see Table IV).

Four COMPARE (C) REGISTERS supply one source to the on-
chip comparator, whose other source is the address being output.
When an address moves to or beyond a boundary set by the C
value, the CMP flag goes active (HI).

Four INITIALIZATION (I) REGISTERS can—conditional on
the CMP flag going active—overwrite any R value, allowing
overhead-free branches to the top of an addressing loop. Note
that I and C registers are always paired. Conditional re-initializing
of R registers may be independently inhibited for individual I
registers (see Control Register CR3).

ALU and Shifter

The ADSP-1410’s 16-BIT ALU performs adds, subtracts, and
logical operations. Usually, one source is an offset (B) register,
while the other is an address (R) register. However, external
data provided via the D port may substitute either for an R
register (under the control of the DSEL pin), or a B register
(using B3 or B7).

For two-chip/double-precision ALU operations, CARRIES into
the MS chip and out of the LS chip (CS,, and CS,,,,) are conveyed
via the Y5 pin (see Precision Modes).

The ALU also contains the logic required for single-bit SHIFTS
of a supplied R register. Left shifts are logical, while right shifts
are arithmetic. In two-chip/double-precision shift operations, the
Y5 pin conveys the shifted bit. In single-precision operation,
the carry/shift status of the device cannot be monitored.

The destination of an ALU or shift result is always the source R
register location specified in the instruction—even if external
data is the source. If the post-update mode is used, the ALU/shift
result is sent directly over the address (Y) port on the current
cycle (in addition to being returned to the source R location).

Alternate Instruction Register and AIR Enable

The ALTERNATE INSTRUCTION REGISTER (AIR) is a
10-bit register which may be loaded with any instruction. On
any cycle that the AIR Enable pin is asserted, the device will
execute the instruction held in the AIR, rather than the instruction
set up on the instruction pins (except for the RST instruction).

The AIR’s principal purpose is to conserve microcode. One way
to conserve microcode is to load a frequently-used instruction
(e.g., a looping instruction) into the AIR, Then, this instruction
is executed simply by asserting the device’s AIR Enable pin—
temporarily suspending the need for external microcode.

ADSP-1410

The AIR can also conserve microcode in applications using
multiple AGs (e.g., double-precision or high-throughput systems).
If the AGs generally execute identical instructions, external
microcode may be significantly reduced if they share a common
microcode instruction field. During some cycles, however, it
may be crucial for an AG to execute an instruction different
from the common instruction—something which the AIR and
its enable pin allow. For example, a NOP instruction can be
loaded into an AG’s AIR; anytime the AIR Enable pin is asserted,
the AG will be selectively “put to sleep” (I/O pins three-state
disabled; no change in internal state).

The AIR register may be read over the data port (Dg o) in a
single cycle. As Table I shows, the AIR may be written via the
data port (Dg_g) or the instruction port. If the instruction written
into the AIR is provided via the instruction port, two cycles are
required. This method allows the AIRs of two or more AGs
sharing microcode to be selectively loaded by differentially as-
serting their DSEL pins. Note that if the DSEL pin is LO
during the entire second phase (clock LO) of the LDA instruction,
no AIR loading occurs. This implicitly requires that DSEL be
setup accordingly prior to the start of the LDA instruction, as it
is latched during phase one (clock HI).

INSTRUCTION LOADED INTO THE AIR VIA THE:
DATAPORT INSTRUCTION PORT

1. Execute “Load AIR” instr.
2. Provideinstr. on instr. port
and assert DSEL pin.

1. Execute “Write AIR” instr.

Table . Options for Reading and Writing the AIR

A second method exists for executing the instruction in the
AIR. Looping instructions compare an address (R) value to a
compare (C) value and, if the address has moved to or beyond a
pre-set boundary, the CMP flag goes HI. If CR; (see Control
Register and Conditional AIR Execute Mode) is set, a true
comparison causes the device to execute its next instruction
from the AIR (see Table III.) This capability facilitates no-overhead
modulo addressing (see application note: Modulo Addressing).

Note:

The AIRE pin may be used to control the Y port output drivers
by loading a NOP into the AIR register; the AIRE pin becomes
dedicated to three-state control of the Y port. This technique
supports connection of multiple address sources to the same
bus.

Flags and Comparator

The ADSP-1410 has two internal flags—CMP and ZERO—that
share the external CMP/Z pin. The CMP flag, set by the com-
parator, is affected by looping instructions. The ZERO flag is
set whenever a Logical/Shift instruction has a zero result. In
cycles that do not affect the CMP or ZERO flag, the CMP/Z
flag pin defaults LO.

As Table II shows, the CMP flag goes HI whenever the supplied
address moves to or beyond a boundary set by the specified C
register. The address that is compared to the C value is always
the address that is output—even in post-update mode. R, C,
and B values are treated as unsigned integers by the
Comparator.

Twos-Complement Offsets

Negative offsets are generally handled by the R«—R —B in-
struction. However, if for some reason the user is interpreting
offset values as negative twos complement numbers, the instruction
R<«—R +B will cause the comparator to sense whether R=C
(when the condition R=C is of interest). The user may account
for this reversal (e.g., by monitoring for the CMP flag going
LO, rather than HI), but looping instructions cannot be fully uti-
lized.

ARITHMETIC OPERATION CMPFLAG HIGHIF:
R, <R, + 1(YINCinstruction) R,=C

R, <R, - 1(YDECinstruction) R,=C,

R, <—R, +B_, (YADD instruction) R, =

R, <—R, - B, (YSUB instruction) R,=C

Table ll. CMP Flag Truth Table

Alternating Offsets

If the microprogram switches between different offsets and the
AG is in the normal, pre-update mode, the comparator logic
may produce seemingly erroneous results because comparisons
are not made until the cycle following the update. In pre-update
mode, when a routine switches between positive and negative
offsets, the comparator will check for wrong condition because
the comparison is not made until the following cycle. The value
in the compare register must anticipate the comparator sense
reversal by one cycle.

Bit Reverser

Addresses can be bit-reversed as they are output, which is useful
in algorithms such as the Fast Fourier Transform. The bit-reverse
mapping is as follows, where K, and Y; denote the j* bit of K
(either an address register or the data bus) and Y (the address
port), respectively.

Ko = Y5
K, =Yy,

Kis—>Yo

Bit reversal only affects the value that appears on the address
port; it does not affect the value returned to the R register
location. The hardware bit reverser operates only on single-pre-
cision, 16-bit addresses. For details on software reversal of N-
bit (N<16) fields, see the application note: Variable-Width Bit
Reversing.

Control Register

The ADSP-1410’s 11-bit CONTROL REGISTER (CR;q_o) may
be read or written via the device’s data port, D, . Dedicated
instructions are used to read or write the entire control register,
or to set and clear individual bits (see Instruction Group 4). On
power-up, the RST instruction clears the control register to all
zeros automatically.

MICROCODED SUPPORT COMPONENTS 3-33

The following list shows the control register organization. If the
bit(s) is set (HI), the specified mode is operative.

CR
3-0

Bit Assignment

Re-Initialization Mask: For looping instructions, enables
conditional re-initialization of R registers with I registers.
For example, setting bit 2 of the CR allows I, to re-in-
itialize the selected R register if the address has moved
to or beyond the boundary set by C,.

Precision Select:
00 = single-precision mode;
01 = double-precision mode, LS chip;
10 = double-precision mode, MS chip;
11 = double-precision mode, single-chip.
6 Transparent Mode: Sets the address (Y) port to the

transparent mode: otherwise, the Y port is latched
during phase two.

7 R Bank Select: Selects the upper eight R registers as
address sources for the YADD and YSUB instructions.

8 B Bank Select: Selects the upper four B registers as
offset sources for all instructions.

9 Post-Update Mode: Sets the post-update mode (addresses
supplied after updating).

10 | Conditional AIR Execute: Sets the conditional AIR
mode: allowing looping instructions to (conditional
upon the CMP status going true) be fetched from the
AIR on the next instruction, rather than the instruction
port. Using this mode disables conditional re-initializa-
tion (of R by I on CMP) and forces the default update
of R.

ADSP-1410 OPERATING MODES

The flexibility of the ADSP-1410 is enhanced by several optional
modes of operation. These modes, governed by the control
register, are discussed in detail in this section.

Precision Modes

Typically, the ADSP-1410 provides single-precision (16-bit)
addresses. If greater addressing range is needed, double-precision
(30-bit) addresses can be supplied. Two double-precision modes
are supported—one with two chips cascaded and the other with
a single chip. Specific instructions set these modes. Double-pre-
cision (single- or two-chip) bit-reversing is not supported.

Two-Chip/Double-Precision

(CRs_4="01" for LS chip; “10” for MS chip). In this mode,
two ADSP-1410’s are cascaded to generate double-precision
addresses at a rate of one per cycle. Each address may be output,
incremented, decremented or modified by an offset value, com-
pared to a double-precision value, and conditionally re-initialized
by a double-precision word. Alternately, double-precision logical/
shift operations may be performed.

The Y and D ports of each chip are restricted to the lower 15
bits, freeing the MSBs of both devices to convey carry/shift and
CMP status, respectively (see Figure 2). For double-precision
adds/subtracts, the LS chip sends carry/borrow status over the
Y5 pin; the MS chip uses Y;s to accept carry/borrow status
from the LS. For left (right) shifts, the LS (MS) conveys the
shifted bit over the Y,s pin.

Double-precision, conditional re-initializations are implemented
by dedicating the D5 pin on each device’s data port to receive
the CMP status from the other. When performing a looping

3-34 MICROCODED SUPPORT COMPONENTS

instruction, the MS chip generates a valid CMP flag on its
CMP/Z output. For a logical or shift instruction, the CMP/Z
outputs from both the LS and MS chips must be ANDed to
produce a single valid ZERO flag. To ensure that this flag is
valid on the next low-to-high transition of the clock, the output
of the AND gate should be latched as shown in Figure 2. The
ZERO flag is latched on the falling edge of the clock and held
by the latch until the next falling edge.

qr

CMP/Z (MS) }-——
CMP/Z (LS) b Q ZERO FLAG
‘F74

cLocK _DO_L

RESET

Figure 2. Valid Two-Chip Double-Precision ZERO
(Logical Instructions)

In this mode, all values are 15-bit words. The 30-bit address is
supplied in two 15-bit words over the Y4_¢ pins of the two
devices. Internally, the MS bit of each operand is zeroed prior
to ALU operations, the MSB of the result then becoming the
carry/shift bit. External data provided over the D port must be
segmented with the 15 LSBs going to the LS chip and the 15
MSBs to the MS chip.

In two-chip/double-precision mode, both chips may share the
same microcode instruction. The only complication to this sharing
is in differentially initializing the MS and LS chips. Internal
logic allows this initialization to be accomplished. Both chips are
fed the instruction designating it as the LS chip. The assertion
of DSEL on the intended MS chip during the SETP instruction
reverses the two LS instruction bits (those defining the chip
configuration to the control register), allowing both MS and LS
designations to be performed simultaneously.

Single-Chip/Double-Precision

(CRs_4=“11"). In this mode, double-precision (30-bit) addresses
are generated at a rate of one every two cycles. Each address
may be output, incremented or decremented, and compared to a
double-precision compare (C) value. Logical/shift operations are
also supported. Conditional re-initialization with I registers and
the conditional AIR mode are not supported.

LSW operations are executed first, followed by MSW operations
(with the exception of right shifts). Even-numbered R registers
are reserved for LSWs, while odd registers are assumed to be
MSWs. No such restrictions apply to B or C registers; MS or
LS words may be held in any B or C register, but such allocation
must be tracked by the user. After an operation involving LSW
registers, the device stores the carry/shift bit (as appropriate)
needed to complete the double-precision operation. On the next
operation involving MSW registers, this intermediate value is
utilized. Storage of the carry/shift bit occurs only on LSW oper-
ations, except for double-precision right shifting, which starts
with the MSW. If non-addressing operations intervene, the
intermediate value is not disturbed. The comparator will generate
a meaningful CMP signal after each MSW operation.

In this mode, only the 15 LSBs of any register are used. The
LSW and MSW addresses that are supplied are both 15-bit
words. The Y;s (MSB) pin of the 16-bit address port designates

whether the address is the LSW (=0) or MSW (=1), and may
be used to control an external mux. Note that the MSB of values
provided via the data (D) port is not meaningful in this mode.

Transparent Mode

(CRg HI). In this mode, the address port is made transparent
during the entire cycle, rather than only phase one. The transparent
mode may also be used in conjunction with stopping the clock
(LO), in which case the entire device behaves asynchronously
and no updates are written internally.

Latched Mode
(CRg LO). In latched mode, output values are enabled during
phase one and latched at the address (Y) port during phase two.

Use of the latched mode guarantees that outputs remain stable
throughout the current cycle regardless of changes at the in-
struction port. This, in contrast to the transparent mode, in
which such changes may occur quickly enough to alter the
output before cycle end.

Post-Update Mode

(CRy HI). Addresses are output after the update operation. The
delay between the start of phase one and output of a valid address
is extended in this mode to allow for updating. The addresses
output are equivalent to the values written back into the specified
address (R) register. In this mode, external data may be brought
on chip, modified and output—in a single clock cycle.

Pre-Update Mode

(CRy LO). This is the normal update mode in which addresses
are output over the address (Y) port prior to update operations
(increment, decrement, offset, shift, and logical)}—allowing
addresses to be generated at maximal speed. Note however, that
this mode requires two cycles to bring external data on chip,
modify it, and supply it as an address.

Conditional AIR Execute Mode

(CRyo HI). In this mode, a valid CMP flag on looping instructions
causes the next instruction to be executed from the AIR. The
MODULO ADDRESSING section highlights a particularly
valuable use of this mode.

Note that conditional re-initialization of address registers is
disabled when using the conditional AIR execute mode. The
default (ELSE clause) is performed unconditionally whether or
not the instruction is from the instruction port or the AIR.

(CRyo LO). Conditional AIR execution is disabled. Conditional
re-initialization is fully operational, contingent upon the re-in-
itialization mask (CR3_g).

Table III summarizes the different ways the CMP status affects

operation of the AG as a function of the conditional AIR execute
mode control bit, CR,, and the re-initialization mask, CR;_.

1 1

D15 D15
MS 1410 LS 1410
Y15 CMP/Z CMP/Z Y15

L ° il

Figure 3. Two-Chip/Double Precision Handshaking

CRy,LO
CMP
STATUS CR,LO CR,HI CR,oHI
LO No Effect No Effect No Effect
HI CMP/Z goes | CMP/Z goes CMP/Z goes

HI HI; HI;

Ry« Nextinstr.
executed from
AIR

Table Ill. Effect of Compare (CMP) Status for Looping
Instructions; Note: j=3-0, the Re-Initialization Mask.

INSTRUCTION SET DESCRIPTION

The ADSP-1410’s instruction set is partitioned into six groups,
which are discussed below. First, however, issues spanning
several instruction groups are discussed.

Most of the instruction groups contain instructions using one of
the chip’s six offset (B) registers. Without exception, these
instructions have just two bits available for selecting the B register.
Consequently, offset registers are partitioned into two banks.
The upper/lower bank seclection is maintained in the control
register (CRg) and is set or cleared by dedicated instructions.
Whenever the “fourth” B register of either bank is specified

(Bs or B;), the ALU’s offset source becomes external data (see
Table IV).

CRg & TWO-BIT | OFFSET
OFFSET (B) SOURCE
REGISTER

FIELD
000 BO
001 Bl
010 B2
x 11 Data Port*
100 B4
101 BS
110 B6
x 11 Data Port*

Table IV. Offset Value Structure

*Explicit use of DSEL is unnecessary when using B3 or B; offsets; the offset
data is sourced from the data bus by default.

In several instruction groups (see mnemonics and opcodes for
details), address (R) registers are used. In all cases, asserting the
DSEL pin allows external data to be substituted for an R value
as both output and update data.

MICROCODED SUPPORT COMPONENTS 3-35

Two instruction groups (looping and logical/shift) both supply
and update the address. Normally, addresses are supplied prior
to updating (pre-update). In post-update mode however, the
addresses are output after the update operation is performed.
CRy controls this mode of operation.

For all instructions accessing an offset register, the MS bit of
the three-bit offset register address (B, of Bbb) is fetched from
the control register and is programmed by the SELB instruction.
This is also the case for the YADD and YSUB instructions
(group 1) as pertains the MS bit of the four-bit address register
address (R, of Rrrr), programmed by the SELR instruction. In
both cases, it is incambent upon the programmer to ensure the
appropriate register bank is selected.

The Y port is only driven on output instructions (mnemonic
form Yxxx, see MNEMONICS AND OPCODES). Otherwise,
the Y port defaults to a high-impedance state.

Instruction Group 1: Looping

Instructions in the looping group supply the contents of a selected
address (R) register to the address (Y) port and then overwrite
the R location with an updated value.

All instructions in this group generate an internal CMP status
indicating whether the supplied address has moved to or beyond
the boundary specified by the compare register. This status may
be monitored externally via the CMP/Z pin. Internal to the
chip, the CMP status can i) be ignored, ii) be used to control
re-initialization of the R register value with a selected I register
value (e.g., to restart an addressing loop), or iii) control execution
of an instruction located in the AIR on the next cycle. Individual
control register bits determine which option is enforced (see
Control Register).

YINC Output & Increment/Init.
Pre-Update Mode: Y<—R;;
IF (R,=C)):
THEN Rye—1;,
ELSE R,<—R_ +1.
Post-Update Mode: Y «— R, +1;
IF(Y=C):
THEN R, <1,
ELSE R,<—R_ +1.

Output an address (R) register on the address (Y) port and
compare it to one of the compare (C) registers. If the address is
less than C;, the R location is simply updated with an incremented
value. However, if R,=C; , CMP status goes HI and the R
register is re-initialized with the I; value, provided the initialization
mask (CR3_o) is enabled for I;. Note that other modes of operation
allow CMP status to be ignored (e.g., the instruction executed is
simply “Y <= R,; R,<— R+ 1”) or to cause the AIR instruction
to execute on the next cycle.

YDEC Output & Decrement/Init.
Pre-Update Mode: Y<«—R;
IF(R,=C):
THEN Ry<—1I,
ELSE R,<«—R;-1.
Post-Update Mode: Y «<—R,-1;
IF(Y=<C):
THEN R,<1I;,
ELSE R,<«—R,-1.

Same as above except the R value is decremented instead of
incremented; CMP is valid if the R value is less than or equal to
the C value.

3-36 MICROCODED SUPPORT COMPONENTS

YADD Output & Add Offset/Init.
Pre-Update Mode: Y «<—R;
IF (R,=C):
THEN R,<—1I,
ELSE R,<—R,+B,_.
Post-Update Mode: Y <—R,+B,;
IF(Y=C)):
THEN R,<I,
ELSE R,<—R,+B,.

Same as YINC except the R value is summed with the contents
of a selected offset (B) register.

The R register bank select bit (CR;) is used in both the YADD
and YSUB (offset) instructions.

YSUB Output & Subtract Offset/Init.
Pre-Update Mode: Y «<—R;
IF(R,=<C):
THEN R, <1,
ELSE R,<—R,-B,.
Post-Update Mode: Y «—R,-B;
IF(Y=C):
THEN R, <1,
ELSE R,<—R,-B,.

Same as YADD except the selected offset (B) register is subtracted
from the R value.

Instruction Group 2: Register Transfers

Instructions in the register transfer group support internal register
transfers, as well as transfers between internal and external
registers. Internally, any I or B register may be written directly
to any R register. Also, any R register may simultaneously be
output and written directly to a B or C register. For an R-to-R
transfer, the source R register can first be written to a B register,
followed by a write of the B register to an R register on the next
cycle.

Internal registers are read or written externally via the bi-directional
data port. There are explicit instructions to read any of these
registers; however, only the I registers have an explicit Write
instruction. The R, B, and C registers may be written with
external data by executing a transfer instruction (YRTR, YRTB,
and YRTC) and asserting the DSEL pin, substituting the external
data for the designated R value.
YRTR Output & Transfer Addr. Reg. to Self
Y <R,

Outputs selected address (R) register over the address (Y) port.

When DSEL is asserted, data port values are output and, in the

same cycle, written into the selected R register.

YRTB Output & Transfer Addr. Reg. to Base Reg.
Y<—R;B, <R,

Outputs selected R register over the Y port and copies it into a

selected B register. When DSEL is asserted, data port values

are output and, in the same cycle, written into the selected B

register.

YRTC Output & Transfer Addr. Reg. to Comp. Reg.
Y<R;;C <R,

Same as above, except that values are written to a C register.

ADSP-1410

DTI Transfer Data Bus to Init. Reg.

L <D

Loads selected I register from data (D) port.
ITR Transfer Init. Reg. to Addr. Reg.
R, <« I,
Selected R register is loaded from an I register, allowing a
microprogram to restart a loop at any time.
BTR Transfer Base Reg. to Addr. Reg.
R,<B,
Loads an R register from a B register. Once in the R register,
the B value may be modified and then returned to the B file
(using a YRTB instruction). Recall, use of B3 or B; will access
the data port as the offset source, allowing R registers to be
initialized directly from the data port.
RTD Transfer Addr. Reg. to Data Bus
D <R,

Supplies selected R register to data (D) port.
CTD Transfer Comp. Reg. to Data Bus
D« C

Supplies selected C register to data (D) port.
BTD Transfer Base Reg. to Data Bus
D <«B,

Supplies selected B register to data (D) port.
ITD Transfer Init. Reg. to Data Bus
D=

Supplies selected I register to data (D) port.

Instruction Group 3: Logical & Shift
Instructions in the logical/shift group supply a value from a
selected address (R) register to the address (Y) port and then
unconditionally overwrite the selected R location with a modified
version of the output. Modify operations include logical (AND,
OR, and XOR) and shift (one-bit left/right) operations. All
instructions in this group affect the ZERO flag, which goes HI
if the result of the modification is zero. The ZERO flag status is
available externally over the CMP/Z pin.
YOR Output & Logical OR to Addr. Reg.
Y < R,;R,< (R,ORB,)

Selected R register is supplied to the address (Y) port; the specified

R location is then overwritten with the logical OR of the B

register and original R value.

YAND Output & Logical AND to Addr. Reg.
Y<—R,;R,< (R,ANDB,)

Same as above, except that a logical AND is performed.

YXOR Output & Logical XOR to Addr. Reg.

Y< R;R,<« (R, XORB,)
Same as above, except that a logical XOR is performed.

Output & Arithmetic Right Shift to Addr. Reg.
Y < R;R, «<-ASR(R))

Selected R register is supplied to the address (Y) port; the specified
R location is then overwritten with the original R value arithmeti-
cally shifted right (ASR) by one bit (the MSB is repeated).

YASR

YLSL Output & Logical Left Shift to Addr. Reg.

Y <«R,;R,«LSLR,)

Selected R register is supplied to the address (Y) port; the specified
R location is then overwritten with the original R value logically
shifted left (LSL) by one bit (the LSB is zero-filled).

Instruction Group 4: Control Register

Instructions in the control register group reset, read, and write
the entire control register or individual control register bits (see
Control Register).

Note the use of “x” and “pp” to denote values supplied within
the opcode field (sse MNEMONICS AND OPCODES). A
positive logic convention is used throughout.

RST Reset Control Reg.

CR=<—0

Clears the entire control register (CR)9_o). The RST instruction

has dedicated decoding logic so that it takes precedence even

over the second instruction of a conditional AIR sequence.

DTCR Transfer Data Bus to Control Reg.
CR<«D

‘Writes the entire control register (CR;o_¢) from the data port,

Djo-o.

CRTD Transfer Control Reg. to Data Bus
D« CR

Outputs the entire control register (CR;0_o) over the data port,
Djo-o.

SETI Set/Clear Conditional Init. on CMP Flag
CR; <-x
Enables conditional re-initialization of an R location, subject to
CMP status (see Control Register). This instruction loads the x
value into the control register bit specified by jj. Conditional re-
initialization of address registers by the C;/I;; pair is inhibited if
the corresponding CR;; is cleared.
SETP Set Chip precision
CRy_, < pp

Loads a 2-bit code (pp) into control register bits 5 and 4, specifying
the addressing mode of the device:

00 = single-precision mode;

01 =double-precision mode, LS chip (10 if DSEL);

10 =double-precision mode, MS chip;

11=double-precision mode, single-chip.
If the instruction “SETP, 01” is supplied and the MS chip’s
DSEL pin is asserted, the CRs_, bits are reversed, i.e., the MS
chip is loaded with “10”, not “01” (see Precision Modes). This
is useful if the MS and LS chips share a common instruction
bus.

MICROCODED SUPPORT COMPONENTS 3-37

SETY Set Y Port to Transparent/Latched Mode

CRg <—x

Uses the LS instruction bit to set the address (Y) port to the

transparent (HI) or latched (LO) mode. This status is maintained

in control register bit 6.

SELR Select Upper/Lower Addr. Reg. Bank
CR; <x

The LS bit of this instruction provides the missing Address (R)

register select bit required by the YADD and YSUB instructions.

This selection is maintained in control register bit 7.

SELB Select Upper/Lower Base Reg. Bank
CRg - x

The LS bit of this instruction provides the missing B register

select bit required by all instructions utilizing offset (B) registers.

This selection is maintained in control register bit 8.

SETU Set Update Mode (Post/Pre)
CRy <« x

Setting this bit causes the chip to output address values after

updating them (post-update mode). The LS bit of this instruction

determines the value of control register bit 9.

SETA Set/Clear Conditional AIR Execute Mode
CRjg< x

Setting this bit causes Looping instructions—conditional on
CMP status being HI—to execute the following instruction from
the AIR on the next cycle. In this mode, conditional re-initialization
of R by I on CMP is inhibited. The LS bit of this instruction
determines the value of control register bit 10.

Instruction Group 5: AIR Control

Instructions in the AIR group write and read the Alternate

Instruction Register (AIR). The AIR may be written or read

over the data bus in one cycle or written via the instruction port

in two cycles (see Table I). The instruction contained in the

AIR is executed whenever the AIR Enable pin is asserted or on

the next cycle in the conditional AIR execute mode.

WRA Werite AIR with Data Bus
AIR< D

Write the AIR from the data (D) bus (Dy_g).
RDA Read AIR at Data Bus
D<= AIR

Read the AIR over the data (D) bus (Dy_g).
LDA Load AIR from Instruction Port on Next Cycle
(Requires DSEL HI)

AIR <« Instruction Port

This instruction is the first of a two-cycle sequence that loads
the AIR via the instruction port. On the cycle following the
execution of LDA, the instruction at the instruction port is
loaded into the AIR (and not executed). DSEL must be asserted
with the LDA instruction (meeting the same setup and hold
time requirements); otherwise, the AIR is not loaded. In systems
with multiple ADSP-1410s sharing microcode instructions, this
feature allows you to select particular devices for AIR loading.

3-38 MICROCODED SUPPORT COMPONENTS

Instr Group 6: Miscell
YDTY Pass Data Bus to Y Port
Y<«—D

Data (D) port values are supplied directly to the address (Y)

port. Note that internal address (R) registers are not affected by

this instruction.

YREV Output Addr. Reg. in Bit-Reversed Format
Y<—YREVR,); R,<—R,+B_,

The selected address (R) register is bit reversed at the output
port. The original (unreversed) R value is added to the selected
offset (B) register, and written back into the specified R location.
Condition testing is not performed. Bit reversing affects only
output data, not register contents.

NOP No Operation

Prevents any changes to the internal conditions of the AG. All
1/0 pins go to the three-state disable mode.

ADDRESS GENERATOR APPLICATIONS

The ADSP-1410 has a wide range of uses in high-speed digital
signal processing and general purpose computer applications. In
particular, this AG can be used in implementing the following:

Circular Data Buffers

— FIR filter tapped delay lines

— Correlator delay lines

- Image processing delay lines

- Recirculated data I/O for transient data capture or stimulus
source

Memory Management
— Fast Fourier Transform data and twiddle factors
— Matrix computations

Table Look-Ups
Masking and table address mapping with AND/OR and bit
reverse capabilities.

Variable-Width Bit Reversing

The internal bit-reversing multiplexer of the AG accommodates
only full, 16-bit addresses (64K FFTs). For smaller FFTs,
(utilizing a right-justified subset of the 16-bit address field), a
zero-overhead software approach may be employed. The details
of this approach may be found in the application note: “Variable-
Width Bit Reversing with the ADSP-1410 Address Generator.”
Essentially, the technique is this: an R register is intialized with
the bit-reversed value of the 16-bit starting address (a “pre-re-
versed” version of the first data point location) and a B register
with the value K+2!6-N, where K is the step size between samples
and N is the order of the FFT. Now, repeated execution of the
YREYV instruction will output the appropriate bit-reversed ad-
dresses; updating the R register each time.

Multi-Tasking Operations
Context switching allowed by large number of on-chip registers
or by instructions allowing all registers to be saved and restored.

16-Bit ALU/Accumulator

By substituting external data for a B register and operating in
post-update mode, ALU operations can be performed at high
speed. ALU sources are the external data and any one of sixteen
internal R registers. Results are stored on-chip in these R registers.
Two chips may be cascaded for double-precision operations.

ADSP-1410

Unclocked (Flow-Through) Applications

When operating in transparent and post-update modes with the
DSEL line asserted, the device serves as an unclocked ALU.
Digital Differential Analyzer

— Sine and cosine generation

— Graphics/Line drawing

~ Control and guidance

Modulo Addressing

Hardware on the ADSP-1410 allows the addressing of circular
buffers to be implemented without overhead. The Conditional
re-initialization structure handles the simple case of returning to
the top of a loop.

Some applications require robust modulo addressing of a circular
buffer with an arbitrary starting point, ending point, and increment
between addresses. To implement true modulo addressing with
the ADSP-1410, consider a buffer of length L. First, R, is
initialized with the start address n, B, is initialized with m, a
constant increment or step between addresses, and B, is initialized
with (L —m), to implement a modulo jump to the beginning of
the buffer. Then a compare register C, is loaded with the value
(n+L —2m) for pre-update mode, or the value (n+ L —m) for
post-update mode. Bit CR of the Control Register is set to
enable conditional AIR execution. The instruction “YADD R,
C, B,,” is then executed repeatedly, from the instruction port.
This outputs R, and updates it (for pre-update mode — or updates
R, and then outputs it for post-update mode) by summing it
with the offset B,,. The comparator monitors whether
R,=(n+L-2m), for pre-update mode, or R,=(n+ L —m), for
post-update mode. When such an event occurs, the instruction
in the AIR is executed in the next cycle. This should be the
negative offset instruction “YSUB R, C, B,” which updates R,
with a negative offset of (L —m), causing a modulo L jump
back to the beginning of the buffer. In this fashion, true modulo
addressing can be implemented for arbitrary buffer boundaries
and offsets.

SPECIFICATIONS

The specification tabies contain the electrical and switching
characteristics of the ADSP-1410. Figure 7 is the accompanying
timing diagram for the device.

The clock input to the ADSP-1410 is a single, two-phase clock
with cycle time: tcy.

The setup and hold times for the instruction inputs are tig and
tiy, respectively. Input instructions consist of the 10-bit microcode
instruction, the DSEL control, and the AIRE control: all of
which are latched during phase one (clock HI).

The timing of internal register reads from the data port is specified
by topp and tppys. Assuming a data output instruction is executing,
the data drivers are activated only during phase one (clock HI).
Therefore, output data becomes valid topp into phase one (clock
HI) and remains valid for a portion of phase two (clock LO).
tppis specifies how long into phase two the data drivers take to
disable. If data outputs are followed by data inputs, tpprs estab-
lishes the timing required to avoid bus contention.

If the device is in the transparent mode, the DSEL pin may be
asserted to open the path between the data port and the address
port. Assuming data is properly setup on the D port, tran or
trap (for pre- or post-update modes, respectively) specifies the
interval from DSEL assertion to a valid address appearing at the
Y port. Note that changes on the DSEL pin (or any instruction
pin) are not recognized during phase one (clock HI).

Latched Mode Parameters have a Sliding Window

Output delays for addresses and the CMP/Z flag depend upon
whether the device is in the pre-update (normal) mode or post-up-
date mode and upon the use of a latches vs. transparent mode
of operation. In the latched mode, a “sliding window” effect is
apparent, resulting from the internal Look-Ahead pipeline (see
Figure 3). The sliding window effect is described to facilitate

tis DELAY tis DELAY

/ \

a. Minimum Output Delay b. Minimum Setup Time

Figure 4. Boundary Cases of “Sliding Window"’ Effect:
Minimum Output vs. Minimum Setup

exact calculation of guaranteed Clock-to-Output delays as a
function of faster or slower instruction setup times. Latched
mode guaranteed Clock-to-Output delays are given as a min/max
pair. The user may vary the output delays within these limits by
adjusting the instruction setup time.

As the instruction setup time is increased beyond the minimum
(is=min[ts]), the corresponding guaranteed Clock-to-Output
delay will be reduced (see Figure 3a) toward its minimum value.
Conversely, as the instruction setup time is reduced toward its
minimum (tys —» min[tys]), the corresponding Clock-to-Output
delay will increase (see Figure 3b) toward its maximum value.

The required instruction setup time for the fastest latched output
delay is simply the difference between the minimum and maximum
guaranteed Clock-to-Output specifications plus the minimum
instruction setup time, e.g., an instruction setup time of {max[ty an]
—min[ty on] +min[tg]} is required to realize min[ty a,].

For intermediate cases (in which neither min/max limits apply),
output delays may be calculated by subtracting the actual in-
struction setup time from the sum of the minimum instruction
setup time and the maximum guaranteed Clock-to-Output
specifications, as the following example shows (in which

Ysmn = 15ns and 30ns=<ty o, =35ns):

Actual Guaranteed Clock-to-Output Delay
s (max(tpaa] +minftis] —ts)

5 n/a Invalid (minimum tyg violated)

10 n/a Invalid (minimum t;s violated)

15 35 Minimum Setup, Maximum Delay
16 34 Sliding Window Dominant

17 33 Sliding Window Dominant

18 32 Sliding Window Dominant

19 31 Sliding Window Dominant

20 30 Maximum Usable Setup, Minimum Delay
25 30 Minimum t; o, Dominant

30 30 Minimum t; 4, Dominant

etc. etc. etc.

Transparent Mode Par ters

The transparent mode of operation is entirely dissociated from
clock edges. Hence, the relevant parameters are referenced to
the instruction becoming valid rather than the clock edge; only
maximum Valid-instruction-to-Output Delay specifications
pertain.

(continued on page 3—42)

MICROCODED SUPPORT COMPONENTS 3-39

SPECIFICATIONS'

RECOMMENDED OPERATING CONDITIONS

J & K Grades S & T Grades®
Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 \'
Tams Ambient Operating Temp. 0 70 -55 125 °C
Test J & K Grades S & T Grades?
Parameter Conditions Min Max Min Max Unit
Viy Hi-Level Input Voltage Vpp =max 2.0 2.0 \%
Vme ClockInput Hi-Level Input Voltage Vpp=max 3.0 35 \%
Vi Lo-Level Input Voltage Vpp =min 0.8 0.8 \Y%
Vou Hi-Level Output Voltage Vpp =min, [gy= —1mA 24 24 \%
VoL Lo-Level Output Voltage Vpp=min, Io; =3mA 0.6 0.6 v
Iy Hi-Level Input Current Vpp =max, Viy=5V 10 10 rA
I Lo-Level Input Current Vpp =max, Vpy=0V 10 10 rA
Iy Clocks & Control Inputs Vpp =max, Viy=5V 10 10 pA
Hi-Level Input Current
In Clocks & Control Inputs Vpp =max, Viy=0V 10 10 pA
Lo-Level Input Current
Iozy Three-State Leakage Current Vpp =max, Vyy =max 50 50 pA
Iozi Three-State Leakage Current Vpp=max, ViNy=0 50 50 pA
Ipp Supply Current max clock rate, TTL inputs 75 100 mA
Ipp Quiescent Supply Current ViN=2.4V 35 50 mA
ORDERING INFORMATION
Temperature Package
Part Number Range Package Outline
ADSP-1410]N 0to +70°C 48-Pin Plastic DIP N-48A
ABSOLUTEMAXIMUM RATINGS ADSP-1410KN 0to +70°C 48-PinPlasticDIP N-48A
Supply Voltage -0.3Vto 7V ADSP-1410JP 0to +70°C 52-Lead PLCC P-52
Input Voltage —0.3V to Vpp igg‘i:}gﬁ;’ 8‘0 :;gg Zg-ll;‘eadc PLCC oI 11:;-5428A
. _ - to ° -Pin Ceramic -

2“‘5“& Voltage Swing 03V “2’0‘31’1‘3 ADSP-1410KD 0to +70°C 48-PinCeramic DIP D-48A

oad Lapacitance . . . - - s St 4 ADSP-1410SD ~55°Cto +125°C 48-Pin Ceramic DIP D-48A
Operating Temperature Range (Ambient) . . —55°Cto +125°C Apgp.1410TD ~55°Cto +125°C 48-Pin Ceramic DIP D-48A
Storage Temperature Range —65°Cto +150°C ADSP-1410SD/883B —55°Cto +125°C 48-PinCeramicDIP D-48A
Lead Temperature (10 Seconds) 300°C ADSP-1410TD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A

ESD SENSITIVITY

The ADSP-1410 features proprietary input protection circuitry. Per Method 3015 of MIL-STD-883,

the ADSP-1410 has been classified as a Class 1 device.

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra-
dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and

discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

WARNING!

A

ESD SENSITIVE DE

VICE

3-40 MICROCODED SUPPORT COMPONENTS

SWITCHING CHARACTERISTICS® ADSP-1410

J Grade K Grade S Grade? T Grade?
_Parameter Min Max Min Max Min Max Min Max Unit
s Instruction Setup Time* 20 15 30 20 ns
ty Instruction Hold Time S 4 5 4 ns
tcy Instruction Cycle Time 100 90 125 100 ns
tips Input Data Setup Time 10 10 10 10 ns
tpy Input Data Hold Time 5 5 6 6 ns
topp Guaranteed Clock-to-Data Delay® |35 55 30 50 45 70 40 60 ns
tpena Output Data Enable Time® 30 50 25 45 40 65 35 55 ns
tppis Output Data Disable Time 20 20 25 20 ns
tapis Output Address Disable Time 30 25 45 40 ns
Latched Mode,
Guaranteed Clock-to-Output Delays:
tian Pre-Update Address Delay® 35 45 30 35 40 55 35 45 ns
tyra Pre-Update CMP/Z Flag Delay®
(C=25pF) 45 55 35 45 60 75 45 60 ns
tap Post-Update Address Delay® 35 60 30 50 40 75 35 55 ns
tur, Post-Update CMP/Z Flag Delay®
(C=25pF) 45 70 35 55 60 95 45 75 ns
Transparent Mode,
Valid-Instruction-to-Output Delays:
tra, Pre-Update Address Delay 50 45 65 55 ns
trps Pre-Update CMP/Z Flag Delay
(C=25pF) 65 55 90 70 ns
tap Post-Update Address Delay 75 65 95 80 ns
tyr, Post-Update CMP/Z Flag Delay
(C=25pF) 90 75 115 95 ns
Supplemental Parameters for
Double-Chip/Double-Precision Operation®:
tesp Valid Instruction-to-Carry/Shift
Output Delay 65 57 80 72 ns
tess Carry/Shift Input Setup Time 35 28 40 35 ns
tysp Carry/Shift Input to Valid MS
Address (Post-Update Only) 45 40 55 48 ns
tezpe Valid Instruction to MS CMP/Z
(Compare) Flag Delay 115 105 120 115 ns
tczr Clock High to CMP/Z (Compare)
Invalid Delay 4 4 4 4 ns
tezp, Valid Instruction to CMP/Z (Zero)
Flag Delay 80 70 85 80 ns
typ Instruction Invalid to CMP/Z (Zero)
Invalid Delay 10 10 10 10 ns
NOTES
! All specifications are over lhe ded d
2§ and T grade parts il d and tests d with MIL-STD-883B. The processing and test methods used for S/883B and T/883B versions

of the ADSP-1410 can be found i m Analog Devices’ M duar;v Products Databook.
3Input levels are GND and 3V. Rise times are 5ns. Input timing reference levels and output timing reference levels are 1.5V For capacitive loads greater than
100pF, we recommend the use of external buffers.
“Instruction setups beyond the clock LO period (into the p cycle) will not be ized dless of latched or P mode, as the
latch isalways fmm during clock HI. Also, the clock HI period must always exceed the guaranteed Clock-to-Output/Data delay
pertain to usable instruction setups, while maximum specifications pertain to absolute mimmum nstruction setups
See d|scuss|on of “sliding window”” under Specifications.
SThe Instruction Cycle Time, tcy, does not apply to DCDP operation. Clock HI and LO relationships for DCDP operation are described in the Specifications
textunder DCDP Parameters: ty; is derived from the tcsp, tesss tmsp, and tys parameters, and the inequality, ty o =t;s, must also hold
Specifications subject to change without notice.

Veo Voo
E 3 OUTPIl? +15V
° PIN
INPUT © l ouTPUT 50pF
"1 '
lon

Figure 5. Equivalent Figure 6. Equivalent Figure 7. Normal Load
Input Circuits Output Circuits for ac Measurement

MICROCODED SUPPORT COMPONENTS 3-41

(continued from page 3—-39)

Data Output Parameters

Data output parameters are independent of operating modes.
Data drivers are asserted only during phase one (clock HI). The
guaranteed Clock-to-Data Delay is, again, subject to the sliding
window phenomenon; the min/max specifications pertain to
maximum usable and absolute minimum instruction setup times,
respectively.

Double-Chip/Double-Precision Parameters

The double-chip/double-precision (DCDP) mode of operation
utilizes the Y;s pin to commute the interchip carry/borrow/shift
information, and D;s, the CMP/Z status (see Figure 2).

Pre-Update DCDP
Normally, (as is the case with any pre-update operation) pre-update
DCDP operations have only to output the previously calculated
result. However, because the carry/shift output delay is asyn-
chronous, the clock cycle time becomes a function of how soon
the instruction is valid; increasing DCDP instruction setups
decreases the required clock cycle time.

The carry/shift output delay, tcsp, is referenced to the valid
instruction, while the carry/shift setup time, tcss, is referenced
to the clock falling edge. Together, they comprise the minimum
time required from the valid instruction to the falling edge of
the clock. Therefore, the sum of the carry/shift I/O operations
(tcsp + tcss) less the instruction setup time, tys, defines the
minimum clock HI period; tyr=(tcsp + tcss) — tis, as referenced
in footnote 6 of the switching characteristics table. The clock
LO duration must accommodate the instruction setup time;
tLo=ts.

Post-Update DCDP

Because post-update DCDF operation of the ADSP-1410 requires
calculation of the address prior to its output, the additional
parameter for the MS word output delay, tysp, is necessary in
specifying this mode. In post-update DCDP mode, tysp supplants
tcss for Clock HI determination; ty=(tcsp + tmsp) — Us.

SINGLE-CHIP TIMING PARAMETERS:

aock 4 NV
tey !
T I
INSTRUCTION QOOCOOOOOOL 1)OOXX
i le—tin
INPUT DATA OORRRK

OUTPUT DATA

LATCHED ADDRESS

LATCHED CMP/Z FLAG

TRANSPARENT ADDRESS
I

L trax

! | taois |

! |
TRaNspaRenT cwpiz uac | XORERORX XX

| —————»|
Figure 8. Timing Diagram

DCDP

|

DCDP

(|
1o to—ste— t...l——:

INSTRUCTION (

REX
"“lsl‘-l=| !

DCDP -
carrv/sHIFT 1o Q0000000 | T XXXX
[|
1

>l tess e
DCDP MS ADDRESS [e—teso—s{ | | 1
DELAY (FOR POST-
UPDATE MODE ONLY)
1

DCDP CMP/Z

!
rane s e KXEXXRRON LXK

DCDP CMP/Z

(& tczoc —

: —Di tez la—
1

zeRo) BOTH cHips XXAXXXXXXAN QRXIAXX
]

[1
1o tczo,—o| |@—tio-y

Figure 9. Supplemental Parameters for Double-Chip/Double-Precision Operation

3-42 MICROCODED SUPPORT COMPONENTS

ADSP-1410

125
100
—

" —
w? 5
2
§ o //
3

25

-55 -25 0 25 50 75 100 126
AMBIENT TEMPERATURE - °C
Figure 10. Clock Cycle Time vs. Temperature

MNEMONICS AND OPCODES

The following list gives the instruction mnemonics and opcodes.
Various parameters are substituted by the user, defining register
numbers or control bits. The notation convention is this:

R = Addressregister

B = Base (offset) register

C = Compare register

I = Initialization register

D = Databus

CR = Control register

rrrr = Four-bit address register number

rrr = Three-bitaddress register number

bb = Two-bitbase (offset) register number
cc = Two-bit comparison register number
i = Two-bitinitialization register number
pp = Two-bitprecision code

X = One-bit control bit

*External data may substitute for R using DSEL.
{Operable in either pre- or post-update mode.

[ERN

TYPICAL CURRENT CONSUMPTION - mA

~—

[———

10ns 100ns

1ps 10ps

CLOCK TIME

Figure 11. Typical Ipp vs. Frequency of Operation

Instr. Opcode (Iy_¢)
Looping Instructions
YINC*t: 101lccrrrr
YDEC*}: 1010ccrrrr
YADD*}: llccbblrrr
YSUB*t: 1lccbbOrrr
Register Transfer Instructions
YRTR*: 00010lrrrr
YRTB*: 001lbbrrrr
YRTC*: 0010ccrrrr
DTIL: 00001111ii
ITR: 1000iirrrr
BTR: 0100bbrrrr
RTD: 000100rrrr
CTD: 00001100cc
BTD: 00001101bb
ITD: 00001110ii

Logical and Shift Instructions
YOR*{: Olllbbrrrr
YAND*t: 0110bbrrrr
YXOR*t: 0101bbrrrr

YASR*{: 00011lrrrr
YLSL*f: 000110rrrr
Control Register Instructions
RST: 0000000001
DTCR: 0000101110
CRTD: 0000101111
SETIL: 0000100iix
SETP: 00001010pp
SETY: 000001001x
SELR: 000001101x
SELB: 000001100x
SETU: 000001011x
SETA: 000001010x
AIR Instructions
WRA: 0000101100
RDA: 0000101101
LDA: 0000011110
Misc. Instructions
YDTY: 0000011111
YREV*t: 1001bbrrrr
NOP: 0000000000

Description

output & increment/init
output & decrement/init
output & add offset/init
output & subtract offset/init

output & xfrRtoR
output & xfrRto B
output & xfrRtoC
xfrDtol

xfrItoR

xfrBtoR
xfrRtoD
xfrCtoD
xfrBtoD
xfrItoD

output & OR B with/toR
output & AND Bwith/toR
output & XOR Bwith/toR
output & arith SRRtoR
output & logical SLRtoR

reset CR

xfrDtoCR

xfrCRtoD

set cond re-init on CMP mode
set chip precision

set Y port to trans/latched mode
select upper/lower R bank
select upper/lower B bank

set post/pre update mode
setcond AIR mode

write AIR withD
read AIRatD
load AIR on next cycle

pass Dto Y port
output R in bit-reverse format
no operation

MICROCODED SUPPORT COMPONENTS 3-43

ADSP-1410 PIN CONFIGURATIONS

DIP
D-48A
N-48A
PIN FUNCTION | PIN FUNCTION
1 14 48 15
2 13 47 16
3 12 46 17
4 n 45 I8
5 10 44 19
6 CLK 43 DSEL
7 CMP/Z 42 AIRE
8 Y15 41 D15
9 Y14 40 D14
10 Y13 39 D13
n Y12 38 D12
12 GND 37 Voo
13 Y1 36 D11
14 Y10 35 D10
15 Y9 34 D9
16 Y8 33 D8
17 Y7 32 D7
18 Y6 31 D6
19 Y5 30 D5
20 Y4 29 D4
21 Y3 28 D3
22 Y2 27 D2
23 Y1 26 D1
24 YO0 25 DO
PLCC
P-52
PIN FUNCTION | PIN FUNCTION
1 GND 52 15
2 14 51 6
3 13 50 17
4 12 49 i8
5 n 48 19
6 10 47 DSEL
7 CLK 46 AIRE
8 CMP/Z2 45 D15
9 Y15 44 D14
10 Y14 43 D13
n Y13 42 D12
12 Y12 41 Voo
13 GND 40 Voo
14 GND 39 [22})
15 Y11 38 D10
16 Y10 37 D9
17 Y9 36 D8
18 Y8 35 D7
19 Y7 34 D6
20 Y6 33 DS
21 Y5 32 D4
22 Y4 31 D3
23 Y3 30 D2
24 Y2 29 D1
25 Y1 28 DO
26 Y0 27 GND

3-44 MICROCODED SUPPORT COMPONENTS

ANALOG
DEVICES Multiport Register File

FEATURES
128x16 or 64x32 Register File Organization
Flexible “Crossbar” Data Routing via Five Ports MJ Microcode Memory J
TW o Input memory * ‘microcode instruction ‘
Two Output address ADSP-1401/2 ADSP-1410
One Bidirectional Sequencer Mevepen Address
Cascadable Horizontally and Vertically Aosp_';;:; Files e oss
Supports 20MHz Operation from Single 1xClock Floating-Point
18ns Clock-to-Valid Output (Registered) YT "l emery
35ns Address-to-Valid Output (Transparent) f mm;“:r; t
Flexible Latching Modes at Address and Data Ports: Data Bus
Transparent, Latched, Registered
Prioritized Write Ports . . .
Write Inhibit Control on Each Write Port Word-Slice® Floating-Point Microcoded System
B B evor Transtory ot and Port Select with ADSP-3128A Multiport Register Files
Three-State Outputs

::Isl-ypisnust:dO‘{:;:tnon bandwidth of a fast-arithmetic processor. (See Figure 1 for the
ADSP-3128A’s Functional Block Diagram.) The ADSP-3128A
APPLICATIONS also simplifies proce sign by permitting flexible data rout-
High Speed Temporary Data Storage in data ports: two input ports, two out-
Digital Signal Processing port. This register file comple-

Numeric ProcessingGraphics) ; @ et ” ing-point and fixed-point multipliers and ALUs
Floating-Point and Fixed-Point ” ER ; A 2 Devxces Because of its flexibility, how-
b ’{f; N a broad range of processor designs.
GENERAL DESCRIPTION w5 &Szﬂ PO

The ADSP-3128A Multiport Regfgzep;&m Versatile * data
storage component that can greatly%xparﬁ the con&put?ﬁenﬁv

CLK BS DP +5V GND
8
A waam
Ewinh
Eh, 7 Asdrg
Ent 2 , ‘:‘ E 8s
D= e
LI Five-Port RAM T il
Edata 7 ve-Port 7, Eadr
i) _3_ 128x16 or 64x32 P § - <
& Elait]
= 7 Badr
- ©
x z Dadr
H] —— "

Ciri Cdata,., CDtran Odata ., Ot

Figure 1. ADSP-3128A Multiport Register File Functional Block Diagram

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-45

The ADSP-3128A is configurable via a control pin as either a
128% 16 register file or a 6432 register file. In the Single-
Precision 128X 16 configuration, the ADSP-3128A is best suited
for fixed-point and single-precision (32-bit) floating-point data
storage. For single-precision floating-point, two register files
should be used “horizontally” yielding 128 words of 32-bit
storage. The 64 x32 Double-Precision configuration is intended
for double-precision (64-bit) floating-point, again with two regis-
ter files in a horizontal architecture. In this Double-Precision
mode, the register files will each transfer 16-bits in each phase
of the clock, 32-bits of data per port in a one-cycle write or read
operation. Microcode need only be applied to the register file at
the system’s 1Xclock rate.

To accommodate critical system timing requirements, the
ADSP-3128A offers a variety of latching modes on both data
and address ports. The prioritized write data ports have control
lines that define the input data latching mode for Single-
Precision as (a) latched on clock HI, (b) transparent or (c) regis-
tered on the clock’s falling edge. However loaded, data can also
be held at the input latches for subsequent cycles.

In Single-Precision mode, the Multiport Register File’s five ports
allow five 16-bit data transfer operations per cycle. The input
and output latches transfer data to and from the ADSP-3128A’s
RAM using 16-bit internal buses. The bidirectional Edata-Port

reads in clock LO per cycle. Register-to-register transfers are
made via the bidirectional Edata-Port (which can be accom-
plished in two sequential clock phases by following a read with
a write). See the Applications Note, “Reglstet-xo-'Regls(@r
Transfers with the ADSP-3128A.”

In Double-Precision mode, the Multiport Register File’s five ports
allow five 32-bit data transfer operations per cycle for a total
bandwidth of 160 bits per cycle. The input and output latches
transfer data to and from the RAM via 32-bit internal buses.
The input data latching modes allow either an early input or a
late input mode. With early input, the Y_Word (Y_W) is pre-
sented to the input data latches in clock HI and the X_Word
(X_W) in clock LO. With late input, the Y_Word is presented
to the input latches in clock LO and the X_Word in clock HI of
the next cycle. For data transfers with a slower system bus, the
Edata-Port allows both input and output values to be transferred
more slowly than the ADSP-3128A’s clock rate (Edata Slow
Input and Edata Slow Read). Register-to-register transfers are
made via the bidirectional Edata-Port.

Each write data port of the ADSP-3128A has an independent
write-inhibit control that disables the write operation that nor-
mally occurs during clock HI. Write-inhibit allows cancelling a
write based on an external condition.

The read data ports have control lines that define the output
data latching mode for Single-Precision as (a) registered on the
clock’s rising edge or (b) transparent. In Double-Precision
mode, the output data latching modes allow either an early read
or a late read. With early read, the Y_Word can be output in
clock LO and the X_Word in clock HI of the next cycle. With
late read, the Y_Word can be output in clock HI and the
X_Word in clock LO of the same cycle. Each read data port has
an independent tristate control that allows putting that output
port into a high impedance state.

The 7-bit write address latches corresponding to the write ports
can be mutually defined to latch addresses in one of two ways.
Either (a) write addresses are latched to the address latches on
clock HI, or (b) the address latches are transparent. The 7-bit
read address latches can be mutually defined to latch addresses in
one of two different ways. Either (a) read addresses are regis-
tered to the address latches on the clock’s rising edge, or (b) the
address latches are transparent. In Double-Precision mode, there
are half as many words that are twice as wide. For Double-
Precision addressing, the (unneeded) highest order address bits
function as Port Select lines. Port Select (the most significant
address bit) enables or disables individual ports consistent with
their pipelines.

Bank Select enables or disables an entire ADSP-3128A consis-
tent with all read and write pipelines. Bank Select and Port
Select allow the user to expand register file storage “vertically”
for more than 128 single-precision or 64 double-precision data
words.

The ADSP-3128A is fabricated in double-metal 1.0um CMOS.
Each chip consumes 51gmﬂcantly less power than comparable
bipolar solutions.

The ADSP-3128A is available for both commercial and extended
tempgrature ranges. Extended temperature range parts are avail-

. , . . able ptocessed’ ‘fully to MIL-STD-883, Class B. The ADSP-
can be directly controlled to either write or read. Normal opgra~ _ -

. . 3128A is pack d 145-lead id
tion allows up to three 16-bit writes in clock HI and thrge 16-bit ! s pac agedma geramic ead pin grid array.

. 'FABLE OF CONTENTS PAGE
"GENERAL DESCRIPTIONovveennnnn... 345
ADSP-3128A4 MULTIPORT REGISTER 347
PIN LIST (Positive True Logic Convention) 3-47
FUNCTIONAL DESCRIPTION 347
SCBONTROLS .ottt it e e i 3-48
ADDRESS LATCHES FOR BOTH SINGLE-
AND DOUBLE-PRECISION MODES. 3-51
SINGLE-PRECISION OPERATION 3-51
SPReadsovviiiiinnininnnennennn 3-51
SPWEIES . « v v vttt e it i ittt et et e 3-52
SP Bidirectional Edata-Port. 3-52
SP Input to Input Latchesand Hold.3-52
SPBank Select.t 3-52
DOUBLE-PRECISION OPERATION. 3-53
DPNormalReads.coiivvnnen.. 3-53
DPWItes. . . . oo v it e it i ittt ei e i 3-54
DP Edata-Port Slow Input and Slow Read 3-54
DP Input to A&B Data-Port Input Latches and Hold. . .3-54
DP Bank Select and Port Select 3-54
DP/SPChangeoverovvivviineinnennenn 3-55
DESIGN CONSIDERATIONScoo0.u 3-55
Power Up......cvviiiiiiii ittt 3-55
Power Supply Decoupling.cvvun.nn 3--55
ADDENDUM: KEY CHANGES FROM JUNE 1988
ADSP-3128 PRELIMINARY DATA SHEET........ 3-56
SPECIFICATIONSttt ittt i i i i e ienes 3-57
TIMINGDIAGRAMScivvvunnn v 3260
PINOUT.........oov.n. B 2!

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-46 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

ADSP-3128A MULTIPORT REGISTER FILE
PIN LIST (POSITIVE TRUE LOGIC CONVENTION)

Pin Name Description

DATA PORTS

Adata;s_ o Write Adata-Port Input Data

Bdata,s_, Write Bdata-Port Input Data

Cdata;s_o Read Cdata-Port Output Data

Ddata,s_q Read Ddata-Port Output Data

Edata,s_, Bidirectional Edata-Port Input and Output Data

ADDRESS PORTS

Aadrg_, Address Port for Adata-Port Writes

Badrg_, Address Port for Bdata-Port Writes

Cadrg_, Address Port for Cdata-Port Reads

Dadr, Address Port for Ddata-Port Reads

Eadrg , Address Port for Edata-Port Writes and Reads
and for Register-to-Register Transfers

GENERAL CONTROLS

BS Bank Select (registered or asynchronous,
depending on address port Latches)

DP Double-Precision Mode (registered) .

ADDRESS LATCH CONTROLS

Wadtrn Write Address Lateh. Transpargnt (regmtered)

Radtrn Read Address Latch Trapsparetit (regxstered)

DATA INPUT AND WRITE CONTROLS
ABlt, ABht Input Latch Controls for Both Adata-l%n and
Bdata-Port (registered)

Elt, Eht Input Latch Controls for Edata-Port (registeredy

Awinh Inhibit Write to RAM from Adata-Port Input -
Latches (asynchronous)

Bwinh Inhibit Write to RAM from Bdata-Port Input
Latches (asynchronous)

Ewinh Inhibit Write to RAM from Edata-Port Input

Latches (asynchronous)
DATA READ AND OUTPUT CONTROLS

CDtran Output Latch Controls (Make Transparent) for
Both Cdata-Port and Ddata-Port (registered)

Etran Output Latch Controls (Make Transparent) for
Edata-Port (registered)

Rfltran Clock-On-Rising/Falling Select for Slow Inputs
in Double-Precision Mode (registered)

Eio Edata-Port Slow Read Control in
Double-Precision Mode (registered)

Ctri Cdata-Port Three-State Control (asynchronous)

Drtri Ddata-Port Three-State Control (asynchronous)

Etri Edata-Port Three-State Control (asynchronous)

MISCELLANEOQUS

CLK Clock

GND Ground (Eight Lines)

Vb +5V Power Supply (Three Lines)

FUNCTIONAL DESCRIPTION

The ADSP-3128A Multiport Register File consists of a high
speed static RAM (configurable as either 12816 or 64x32) sur-
rounded by the latches and control logic needed for simple sys-
tem interfacing (see Figure 1). Six internal data paths, all 32-bits
wide, connect this RAM with multiplexers (muxes) and latches.
Three are read data paths; three are write data paths. Three 7-
bit internal address paths connect this RAM with muxes and
address latches. These three address paths are internally time-
multiplexed to allow the presentation of six addresses to the
RAM per cycle.

Three addresses are presented to RAM in clock HI from the
Aadr, Badr and Eadr address latches. These are RAM write
addresses. They are prioritized in case of conflict. Three
addresses are presented to RAM in clock LO from the Cadr,
Dadr and Eadr address latches. These are RAM read addresses.
Three simultaneous reads, even from the same RAM location,
are possible for clock. L& reads. The Eadr—Port feeds both a
write (clock HI) address latch and a read (clock LO) address
latch, which cati be indépendently set to latched or transparent
modes,

“Writes to the RAM occur in clock HI when Awinh and/or

Bwinh and/or Ewinh-are LO. Note that data writen in clock HI
is-available 1o be read in the same clock cycle.

The DP control determines whether the Register File is in
Double-Precision mode (HI) or Single-Precision mode (LO). In
Single-Precision mode, all data paths between RAM and data
latches behave as if they were 16 bits. The data latches also
behave like 16-bit latches. The register file is organized 12816
in Single-Precision mode, and each location is addressed with
seven bits. DP can be changed dynamically, consistent with

the constraints imposed in the timing diagrams (Figures 4
through 13).

In Double-Precision mode, the Register File is organized
6432, and each location is addressed with six bits. In Double-
Precision mode, all data paths between RAM and data latches
are 32 bits, as are the data latches. Writes (32-bit) to the RAM
occur in clock HI and reads (32 bit) from the RAM occur in
clock LO. Multiplexers between the latches and the 16-bit data
ports alternately select Y_Word and X_Word. Note that when
ADSP-3128A Register Files are configured in horizontal pairs
for Double-Precision operation, the Y_Words from the pair will
make up half the external 64-bit double-precision word and the
X_Words the other half. See Figures 14 and 15.

In Single-Precision mode, the input latches can be configured to
latch input data at clock HI, register input data on the falling
clock edge, be made transparent, or hold the most recent data.
The output latches can be configured to register data from the
RAM on the rising clock edge or to be transparent clock LO
and latched clock HI. The bidirectional Edata-Port can be con-
figured to do either one read or one write each cycle. Each read
port has an independent three-state enable control.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-47

In Double-Precision mode, the input latches can be configured mode, the unused high-order address bit is interpreted as Port

for an early input, a late input, a slow input on the Edata-Port Select. Port Select and Bank Select (BS) are treated as part of
(for transfers from slow devices), or a hold of the most recent the address field so that their write-disable and three-state
data on the A&Bdata-Ports. Early and late inputs are effects properly track the selected pipeline delays.
distinguished by a one-half clock cycle difference between when

the Y_Word and X_Word are written to the input latches. The CONTROLS

output latches can be configured for an early read, a late read or The ADSP-3128A Register File has 18 control lines. Their

a slow read on the Edata-Port (for transfers to slow devices). functional descriptions are summarized in mode Tables I
Early and late reads are distinguished by a one-half clock cycle through III.

difference between when the Y_Word and X_Word are read
from the output latches. To accomplish late inputs and early
reads, the latches are transparent for 16 bits of the data transfer,
allowing either a direct write of the X_Word to RAM or a direct
read of the Y_Word from RAM, respectively.

Most control lines are registered, as indicated in the “Pin List”
and in Figure 1. All registered controls meet the timing require-
ments of Figure 2. The timing requirements for the three asyn-
chronous three-state controls, Ctri, Dtri and Etri, are shown in
Figure 3. The timing for the remaining asynchronous controls
The write address latches can be made transparent or latched in are illustrated in timing diagrams Figures 2 through 13.

clock HI. The read address latches can be made transparent or

registered with the clock’s rising edge. In Double-Precision

l— { —ble— 1, —

ty

Clock RAMREAD | RAMWRITE | RAMREAD

Registered
Controls -

A

Figure 2. ADSP-3128A Registered Controls. Timing

5

L— 15V \ *15V
C/D/Etri Control _/ T
Vou v,

V_ -05V
: OH \ +01V
C/D/E Read Data Ports trstate

v v -0
i tnstate wstate
VOL +05V >
Vv, » oL
o * 1o tena \._

-t —» tena
measured
Output Disable Time Measurement Output Enable Time Measurement

Figure 3. ADSP-3128A Three-State Disable and Enable
Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-48 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

BS DP AB&Elt AB&Eht A&B&Einh Rfltran Description

0 X X X X X Disable chip (consistent with pipelines) but advance pipelines
with clock cycle

1 0 0 0 X X Register write data at A&B or Edata input latches on falling
edge

1 0 0 1 X X Hold most recent data at A&B or Edata input latches for the
next cycle

1 0 1 0 X X Latch write data at A&B or Edata input latches at clock HI

1 0 1 1 X X Make transparent A&B or Edata input latches

1 X X X 0 X Allow write to RAM from the A, B and Edata input latches

1 X X X 1 X Inhibit write to RAM from the A, B and Edata input latches

1 1 0 0 X X Early Input to A&B or Edata input latches: register Y_W on
falling edge to input latches and latch X_W to input latches
in clock HI

1 1 1} 1 X X Late Input to A&B or Edata input latches: latch Y_W to

input latches in clock HI and make input latches transparent
for X_W in clack HI

1 1 1 X X X Hold most recent data at A&B input latches for the
next cycle

1 1 1 1-0 X 0 Edata Slow Input? register Y_W to Edata input latch on next
falling edge (Eht only)

1 1 1 0—1 X 1] Edata Stow Input: register X_W to Edata input latch on next
falling edge (Eht only)

1 1 1—-0 1 X 1 Edata Stow Input: register Y_W to Edata input latch on next

rising edge (Elt only)

1 1 0—1 1 X 1 Edata Slow Input: register X_W to Edata input latch on next
rising edge (Elt only)

Table I. ADSP-3128A Summary of Data Input and Write
Control Modes

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-49

BS DP CD&Etran Rfltran C&D&Etri Eio Description

0 X X X X X Disable chip (consistent with pipelines) but advance
pipelines with clock cycle

1 X X X 0 X Drive data from output latches through C or D or
Edata-Port

1 X X X 1 X Three-state (high impedance) output C or D or
Edata-Port

1 0 0 X X X Register data from RAM to C&D or Edata output
latches on rising edge

1 0 1 0 X X C&D or Edata output latches are transparent clock
LO, latched clock HI

1 0 X X X 0 Edata-Port is configured for one read or one write
per cycle

1 1 0 0 X 0 Configured for Late Read at C&D or Edata-Port: regis-

ter Y_W & X_W from RAM to output latches on ris-
ing edge; output Y_W in clock HI, output X_W on
next clock LO

1 1 1 0 X 0 Configured for Early Read at C&D or Edata-Port: out-
put Y_W fromm RAM through transparent output
latches in clock LO; latch X_W to output latches and
oftput in clock HI

1 1 0 0 X o1 " Configured for Edata Slow Read: hold RAM read data

- R at Edata outplit latch; output Y_W at clock HI
1 1 1 (I S | ~Contfigured for Edata Slow Read: hold RAM read data
: . * ° at Edata Output Latch; output X_W at clock HI
1 1 X 1 X X Defines ‘Clock-On-Rising/Falling mode for Edata Slow
. Inputs

Table li. ADSP-3128A Sun}mdry of Data Read and Output
Control Modes

BS DP Wadtrn Radtrn A/B/C/D/Eadr (Port Select) Description

0 X X X X Disable chip (consistent with pipelines) but advance
pipelines with clock cycle

1 X 0 X X Latch A or B or Eadr write addresses at clock HI

1 X 1 X X A or B or Eadr write address latches are transparent

1 X X 0 X Register C or D or Eadr read address latches on the
rising edge

1 X X 1 X C or D or Eadr read address latches are transparent

X 1 X X 0 Disable A/B/C/D/Edata-Port

1 1 X X 1 Enable A/B/C/D/Edata-Port

Table lll. ADSP-3128A Summary of Address Control Modes

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-50 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

ADDRESS LATCHES FOR BOTH SINGLE- AND
DOUBLE-PRECISION MODES

The three read (clock HI) address latches and three write (clock
LO) address latches hold the seven bits required for Register
File addressing, Port Select and Bank Select. Radtrn controls
whether the three read address latches are transparent or
latched; Wadtrn controls whether the three write address latches
are transparent or latched. When Radtrn/Wadtrn is HI,
addresses presented at the read/write address ports are trans-
ferred directly to the RAM with no pipeline delay. When
Radtrn is LO, addresses presented at the read address ports are
registered on the rising edge of the clock, to be used during the
next clock LO. When Wadtrn is LO, addresses presented at the
write address ports are latched on the rising edge of the clock,
to be used immediately during the next clock HI.

Both Radtrn and Wadtrn latch controls are registered and affect
the configuration of the address latches on the rising clock edge
in which they are registered. They remain in effect until the
next rising edge.

Transparent addresses must be valid at least tgy before the end
of the phase in which they are used. The setup time for latghed
or registered addresses is tygg. All addresses must be held valid
tan after the end of the phase in which they are assexted. -

Output delays for transparent dats reads from transparent
addresses are referenced from address valid. However, an
address valid prior to the clock LO in which the RAM is read
provides no additional benefit. The output delay, toprr, is ref-
erenced from address valid or the clock falling edge — whichever
is later. The transparent read address must be held valid ’
throughout the RAM read phase.

SINGLE-PRECISION OPERATION

Single-Precision mode is determined by the registered DP con-
trol being LO. Single-Precision mode must be asserted as shown
in the timing diagrams to insure that the high-order single-
precision address bits are not misinterpreted as Double-Precision
Port Select bits and that latch controls are given their proper
Single-Precision interpretation. A general discussion of dynamic
switching between Single- and Double-Precision modes can be
found below in “DP/SP Changeover.” In Single-Precision mode,
the Register File is configured as 128 words that are 16 bits in
width. The 128 words are addressed by 7-bit addresses from the
five address ports. All data paths and data latches behave as if
they were 16 bits wide.

Up to five 16-bit data transfers per cycle are possible in Single-
Precision mode. These transfers can be comprised of three
writes and two reads, or two writes and three reads.

SP Reads

The operations of transferring data from RAM to a latch and
from a latch to the output pins are logically distinct with the
ADSP-3128A. Transfers from RAM to latch are called “reads”
in this data sheet; transfers from latch to output port are called
“outputs.”

Read addresses can be transparent or registered (Figure 4). In
all timing diagrams, the phase in which an address causes a
RAM read or write is indicated by a Greek letter. For Figure 4's
reads, all addresses shown cause a read in phase o. Not all con-
trols are shown on this or other timing diagrams as explicit
waveforms. In Figure 4, for example, the expression
“Radtrn=1" at a rising edge implies that Radtrn was asserted
HI before that edge and met the standard setup and hold time
requirements of Figuze 2 for controls.

The output-latches can be set transparent via registered controls
CDtran HI andfor Etran HI. Note that one control, CDtran,
affects both Cdata-Port and Ddata-Port output latches. From a
transparent read address (Radtrn HI), read data when the out-
put Jatches are transparent will be valid toprp after a valid read

. address.or after the clock falling edge — whichever is later. From

2 fransparent read address, read data will be valid topc after the
rising clock edge when the output latches are in registered mode
frot the C&Ddata-Ports and/or the Edata-Port.

P When the read addresses are registered (Radtrn LO), the data

output timing is very similar except that the output delay for a
transparent read is now referenced from a clock edge rather than
address valid. The transparent read data will be valid toprT
after the falling clock edge.

Note that in all four combinations of address and output latch-
ing modes, the read from RAM took place in phase a. Specify-
ing registered output latches simply introduces an additional
clock phase of pipelining. Note also that for all Single-Precision
reads, the data out is held valid throughout the phase after the
data became valid. In the case of transparent data reads, the
latch is actually holding the data valid for this phase. Data will
be held valid topyy after the clock edge for all reads (in all
modes).

Each read port has its own asynchronous three-state control:
Ctri, Dtri and Etri. See Figure 3 for enable and disable
timing.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-51

SP Writes

Single-Precision mode must be asserted as shown in Figure 5 to
insure that the high-order single-precision address bits are not
misinterpreted as Double-Precision Port Select bits and that
latch controls are given their proper Single-Precision interpreta-
tion. The operations of transferring data from a port to a latch
and from a latch to the RAM are logically distinct with the
ADSP-3128A. Transfers from port to latch are called “inputs”
in this data sheet; transfers from latch to RAM are called
“writes.”

Write addresses can be transparent (Wadtrn HI) or registered
(Wadtrn LO), exactly as with read addresses (Figure 5).

The Adata-Port and Bdata-Port input latches can be set to trans-
parent, latched or clock-on-falling mode via the ABlt and ABht
controls (Table I and Figure 5). The Edata-Port input latch can
be set to transparent, latched or clock-on-falling mode via the
Elt and Eht controls. When the “It” and “ht” controls are both
asserted HI, the latches are transparent (“t””). When only “It” is
asserted, the latches are in latched mode (“1’). When only “ht”
is asserted the latches are in hold mode (“h”). When both con-
trols are LO, the latches are in clock-on-falling mode.

Note that one set of controls, ABIt and ABht, affects both
Adata-Port and Bdata-Port input latches. (These controls also
permit holding the most recent write data at the input latches. .
See “SP Input to Input Latches and Hold” below.) These con- ¢
trols are always registered on the rising edge and become effeds .
tive as of the next falling edge. When the input latéhes are
transparent, write data must be valid tger before the end of the,
write phase. When the input latches are.in latched mode, #rife
data must be valid thgg before the beginning of the write phase.
When the input latches are in clock-on-falling mode, wrife data
must be valid tpgy before the falling clock edge prior to the
write phase. In all cases, the write data presented at write data .
ports must be held ty;; after the next clock edge.

The operations of inputting data to an input latch and writing
data from the input latch to RAM are distinct. To write input
data to the RAM, the asynchronous Write Inhibit Controls
(Awinh, Bwinh, and/or Ewinh) must be LO as shown in
Figure 5. Writes should be enabled no later than tygy before
the falling edge.

Note that a write can be enabled later than a write can be inhib-
ited. If you might want to inhibit a write to the Register File as
late as the very phase in which a write is attempted, you can
keep the A/B/Ewinh controls normally HI, i.e., write inhibited,
and bring them LO every time you actually want to write.
Alternatively, for simplicity, the A/Bwinh controls can be wired
LO (write enable) and dummy writes be performed to an
unused RAM location in every clock HI.' Write addresses must
always be stable, however, whenever the Write Inhibit controls
are LO. In general, do not hardwire Ewinh LO; any Edata-Port
output data will be written back to unintended RAM locations.

The write ports are prioritized with the Edata-Port of highest
priority, followed by the Adata-Port, followed by the Bdata-
Port. If writes to the same RAM location are attempted in a
given clock HI phase, the data presented at the higher priority
enabled write data port will be the data written to RAM.

-

SP Bidirectional Edata-Port

The Edata-Port will behave like any write port if treated as such
according to the timing diagrams. Alternatively, it will also
behave like any read port if treated as such. The Edata-Port can
be used as a write port in one cycle, a read port in the next and
a write port in the third cycle, as long as the Edata-Port is dis-
abled to high impedance before setting up write data.

SP Input to Input Latches and Hold
Data input to the input latches can be held at those latches with
the ABIt and ABht and Elt and Eht controls (Table I). These
controls are always registered on the rising edge and become
effective at the next falling edge. Figure 6 shows how data writ-
ten to the latches in any of the three input modes can be held at
a latch as long as desired. As of the falling edge after hold is
asserted, data at the write data port is ignored and will be
ignored until the next falling edge after one of the three input
modes is asserted. The hold feature allows the input latches to
be used for temporary data storage. Examples of using this fea-
ture include delaying a write to the RAM to avoid overwriting
some data currently in the RAM or writing the same data to
multiple RAM locations.

SP Bank Select -,
Bank Select i§ treaté iti exagtly the same way in both Single-
Precision and I ‘Diétible-Precision modes (Figure 12). The BS con-

ol 4s ot mgistered in general but rather follows the addresses
- thrdlgh the addrea %atc&es (Flgure 1). Hence, its setup require-

ment is* tﬁﬂ and Ma the Setup requirement for read and write

. ai;fdt‘c%e& for. tginsparent and latched/registered modes respec-
 tivelyr Al apphcable requirements must be met. Flowing with
'addresses ﬁll

Bank Select to track all read and write pipelines

as show 12. When LO, writes will be disabled and

v aglfﬁm ps;rts put in high impedance.
¢ Wxth Bank Select, the user’s register file space can be extended

““vertically” beyond 128 single-precision words to whatever reg-
ister file space is desired. The user would typically use more
than seven bits for addressing, decoding the high-order bits to
select a horizontal row of ADSP-3128As that produce a single
“word” and applying the low-order seven bits to the address
ports in all rows.

The only restriction on extending the register file address space
using Bank Select is that all reads and writes in a given cycle
must be from the same horizontal row of ADSP-3128As. (Port
Select removes this restriction for Double-Precision mode). In
Single-Precision mode, the user can select/deselect individual
ports, even if in different rows, using the asynchronous Write
Inhibit and Three-State controls. The user would have to apply
these with timing based on the latch modes currently selected to
properly track the pipelines.

Note that the timing requirements for Bank Select are simple if
write addresses are latched but are more complicated for trans-
parent write addresses because of the way BS flows with the
write address. For a Bank Deselect, the BS control must be LO
in the clock HI write phase B (Figure 12). If writes are
currently enabled, BS must be set up in phase a; if they’re
inhibited, BS is not needed LO until phase B to disable writes.
The Write Inhibit controls for the three write data ports are
independent. Therefore, if any Write Inhibit is LO (write
enable) in phase o, BS will have to be LO in phase a to disable
all writes.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-52 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

DOUBLE-PRECISION OPERATION

Double-Precision mode is determined by the registered DP con-
trol being HI. A general discussion of dynamic switching
between Single- and Double-Precision modes can be found
below in “DP/SP Changeover.” In Double-Precision mode, the
Register File is configured as 64 words that are 32 bits in width.
The 64 words are addressed by 6-bit addresses from the five
address ports. The seventh, high-order bit used in Single-
Precision addressing becomes a Port Select bit. All data paths
between RAM and data latches are true 32-bit paths. That is, all
32-bit reads from the RAM 'to the latches and 32-bit writes to
the RAM from the latches take place in a single read or write
clock phase. The ports, however, are 16-bits wide. Data trans-
fers through the ports are time-multiplexed.

The ADSP-3128A automatically controls the multiplexing
through the data ports once the DP control is HI. The user only
supplies one address to reference the two 16-bit halves of the
data word transferred through the data ports. In Edata-Port
Slow Input and Slow Read modes, however, the user has direct
control over these multiplexers to allow communication with
slower devices.

Up to five 32-bit data transfers per cycle are p sx
Precision mode. These five transfers can
writes and two reads or two write
on whether the Edata-Port is use

Double-Precision mode is intend
that use ume-multlplexed 64-bit data,

Floatmg-Pomt ALUs. Normally, two ADSP-3128A Multi; x%% ;
Register Files would be used “horizontally” to communica ®
with 32-bit buses.

In the descriptions that follow, one 16-bit half of a given ADSP-
3128A’s 32-bit word is referenced as an “Y_Word,” the other
half as an “X_Word.” Note that normally a user would put
together the Y_Words from two ADSP-3128As to create a 32-bit
half of a 64-bit double-precision floating-point number. Simi-
larly, the floating-point number’s other 32-bit half would be
constituted from the X_Words of two ADSP-3128As.

controls CDtran
£

3

%o %mes for Early Reads, as for all other kinds, is topgy. AS

What is called a “Y_Word” in this data sheet is simply the 16-
bit half of a 32-bit field that is written to the Register File first
and read from the Register File first. But it is nothing more
than a semantic convention; what are called here “Y_Words”
can be used used to make up either Most Significant or Least
Significant Words, depending on system requirements. The key
point is that whichever half is written first will be the half read
first.

DP Normal Reads

Double-Precision mode must be asserted as shown in Figure 7
to insure that the Port Select bits are not misinterpreted as
Single-Precision address bits and that latch controls are given
their proper Double-Precision interpretation. Addresses can be
transparent or registered (Figure 7), just as in Single-Precision
mode.

The two normal read options in Double-Precision mode are
Early Read and Late Read. They are controlled via registered
tran, which can make the output
ched. The effect in Double-Precision
pipelining options. Note that one control,
both Cdata-Port and Ddata-Port output latches.

e%rated when CDtran and/or Etran are HI.

e sparently from the RAM in phase vy
put data port with delays, topr and toprr,
oniding to registered and transparent read addresses

. The X_Word is also read from the RAM in phase
at the 32-bit output latch to be multiplexed out the
port in the next phase with output delay topc. Data

described in “Address Latches,” the transparent address can be
set up before the RAM read phase but toprr will then be refer-
enced from the falling clock edge rather than address valid.

Late Reads are generated when CDtran and/or Etran are LO.
As with Early Reads, both the Y_Word and X_Word are read
from the RAM to the 32-bit output latches in phase +y. In the
case of Late Read, the Y_Word is held at the output latch until
the next phase, when it is driven off chip with delay topc. The
X_Word follows in the phase after that with the same delay
characteristic of registered reads.

Each read port has its own asynchronous three-state control:
Ctri, Dtri and Etri. See Figure 3 for enable and disable timing.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-53

DP Writes

Double-Precision mode must be asserted as shown in Figure 8
to insure that the Port Select bits are not misinterpreted as
Single-Precision address bits and that latch controls are given
their proper Double-Precision interpretation. Addresses can be
transparent or registered (Figure 8), just as with Double-
Precision reads.

The two normal write options in Double-Precision mode are
Early Write and Late Write. They are exactly analogous to
Early Read and Late Read in that they offer two pipelining
options. They are controlled via registered controls ABIt, ABht,
Elt and Eht as shown in Figure 8 and Table II. Note that one
set of controls, ABIt and ABht, affects both Adata-Port and
Bdata-Port input latches. These controls become effective as of
the falling edge after they are registered.

In Early Write, both Y_Word and X_Word are input to the 32-
bit input latches before they are both written to RAM in phase
8. Both Y_Word and X_Word have the setup time requirement,
tpsgr, characteristic of latched-mode data inputs. Data hold
requirements for Early Write and all other writes is tpy.

With Late Write, the user can input the Y_Word and X_Word
into the Register File latches one half cycle later for a write to
RAM in the same phase 8. The Y_Word is latched with setup
time tpgg. The X_Word, however, is transparently written to ., .
RAM in phase 3. Note that the setup reqmrement on thc
X_Word is therefore tpgy. .

The actual write to RAM occurs in thé’ smglephase 8. Hence
the Write Inhibit controls in Double- Prcc1s1on work exactly as-
they do in Single-Precision. To write mput data to-the RAM,
the asynchronous Write Inhibit Controls (Awmh, Bwﬁlh andlor
Ewinh) must be LO as shown in Figure 8. Writes should be
enabled no later than tygy before the falling edge.

<

e
Note that a write can be enabled later than a write can be inhib-""’

ited. If you might want to inhibit a write to the Register File as
late as the very phase in which a write is attempted, you can
keep the A/B/Ewinh controls normally HI, i.e., write inhibited,
and bring them LO every time you actually want to write.
Alternatively, for simplicity, the A/Bwinh controls can be wired
LO (write enable) and dummy writes be performed to an
unused RAM location in every clock HI. Write addresses must
always be stable, however, whenever the Write Inhibit controls
are LO. In general, do not hardwire Ewinh LOj; any Edata-Port
output data will be written back to unintended RAM locations.

The write ports are prioritized with the Edata-Port of highest
priority, followed by the Adata-Port, followed by the Bdata-
Port. If writes to the same RAM location are attempted in a
given clock HI phase, the data presented.at the higher priority
enabled write data port will be the data written to RAM.

DP Edata-Port Slow Input and Slow Read

The bidirectional Edata-Port is intended to be the port inter-
faced to a system bus, which may run more slowly than local
buses. To simplify the interface for Double-Precision, the
ADSP-3128A provides a mode for loading the Y_Word and
X_Word into the input latches over multiple ADSP-3128A clock
cycles (Figure 9). Also a mode is provided for multiplexing
Y_Word and X_Word read data from the output latches over
multiple clock cycles (Figure 10).

For a Slow Input (Figure 9), the input latches are updated when
there is a transition in a desi d control input from one clock
rising edge to the next clock rising edge. Both Clock-on-Falling
and Clock-on-Rising Slow Input modes are supported. Rfltran
LO indicates that data is to be loaded on the clock’s falling
edge, Rfltran HI indicates rising edge. In the case of Clock-on-
Falling, the transition in Eht updates the latches while Elt is
concurrently HI (Hold mode). Call Eht the “transition control”
for Clock-on-Falling and Elt the “background control”. Clock-
on-Rising reverses the role of these two controls; the transition
in Elt causes the latches to update while Eht is concurrently HI.
In other words, for Clock-on-Rising, Elt becomes the transition
control, Eht the background control. Regardless of which clock
edge is loading the data, it must be set up to the input latches
with set up time tpgg as shown.

When the transition control goes from HI to LO, the external
data will be input to the Y_Word position in the Edata input
latch and be held there. When the transition control goes from
LO to HI, the external data will be input to the X_Word posi-
tion in the Edata input latch and be held there. A write to RAM
can be enabled (with Ewinh §.0) at the next clock HI from
either latched or trwré%éﬂiadr

For a Slow R% rqued“control Eio, when asserted HI in
‘coﬁgw with Double-Precision (DP HI), configures the
Eda;a@ortsfoi' a Slow Rgad. When Eio goes HI, data at the out
*2 put fatch is - hrFiglire 10, this is the 32-bit data read at
phaswy.}*% a Sl & Sutput delays will be topc. Data will
., b hel K@ﬁ?f the clock edges shown in Figure 10. When
’l confi gﬁi for Slow Read, the ADSP-3128A’s registered Etran
“¢ontrol _becomies,a direct, asynchronous controller of the Edata-
Port’ s”Déubléﬁteglslon output multiplexer. When Etran is LO,
&e Y W&d fead from RAM in phase vy will be driven through

: éie Edam Port (if enabled with Etri). When Etran is HI, the

X_Word read from RAM in phase vy will be driven through the
Edata-Port (if enabled with Etri). The outputs will be driven as
long as Eio is HI and Etran doesn’t change.

DP Input to A&B Data-Port Input Latches and Hold

Data input to the A&Bdata-Port input latches can be held at
those latches with the ABIt and ABht, controls (Table I). These
controls are always registered on the rising edge and become
effective as of the next falling edge. Figure 11 shows how data
written to the latches in either Early Write or Late Write modes
can be held at a latch as long as desired. As of the falling edge
after hold is asserted with ABIt HI, data at the write data port is
ignored. It will continue to be ignored until the next falling edge
after ABIt goes LO. The hold feature allows the input latches to
be used for temporary data storage. Note that the Edata-Port
supports Input-and-Hold in SP only, since Elt is used in DP for
Slow Edata-Port inputs.

DP Bank Select and Port Select

Bank Select is treated in exactly the same way in both Single-
Precision and Double-Precision modes (Figure 12). The BS con-
trol is not registered in general but rather follows the addresses
through the address latches (Figure 1). In Double-Precision, the
seventh address bit (not needed for Double-Precision address-
ing) is redefined to function as Port Select for the ports being
addressed. DP must be asserted HI as shown in Figure 13 to
insure that these bits are interpreted as Double-Precision Port
Selects and not Single-Precision address bits (and that latch con-
trols are given their proper Double-Precision interpretation).

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-54 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

Behaving as addresses, both BS and A/B/C/D/Eadr, have setup
requirements of tygr, and tagg,, the setup requirement for read
and write addresses for transparent and latched/registered
modes, respectively. All applicable requirements must be met.
Flowing with addresses allows Bank Select and Port Select to
track all read and write pipelines as shown in Figures 12 and 13.
When LO, writes will be disabled and output ports put in high
impedance.

The only restriction on extending the register file address space
using Bank Select is that all reads and writes in a given cycle
must be from the same horizontal row of ADSP-3128As. Port
Select removes this restriction for Double-Precision mode (only).
Like Bank Select, the Port Select controls track the ADSP-
3128A’s internal pipelines. But since every port can be indepen-
dently selected or deselected, reads can be made from and writes
made to any combination of locations in the user’s register file
space. They need not be all made from the same horizontal row.

Note that the timing requirements for Bank Select and Port
Select are simple if write addresses are latched but are more
complicated for transparent write addresses because of the way

BS and A/B/Eadr, flow with the write address. For a Bank or ~%. >

Port Deselect, the BS or A/B/Eadr, control must - be LO: in
clock HI write phase B (Figures 12 and 13). Hwrite ¥
rently enabled, BS or A/B/Eadr 1£,,xhsy*fe hifﬂ‘fegl;‘fﬂsvor
A/B/Eadr, is not needed LO unuf@ase‘ﬁ 't6 disdble Wm?t)gsé
Since the Write Inhibit controls fof.the three write da¥a ports "
are independent, if any is enabled in phase(a, BB@? ﬁ,@/,ﬁa&r
will have to be LO in phase a to disable allswnt&«

DP/SP Changeover &
Many controls are interpreted and internal states affected by&h‘e
DP control. The timing diagrams show when DP must be HI
and when it must be LO to accomplish the operation described
in each timing diagram. For times when the state of DP is not
explicitly shown, it can be changed. That is, the user can
dynamically reconfigure the ADSP-3128A from Single-Precision
to Double-Precision and conversely as long as these restrictions
are observed.

Internal RAM Organization

It may be useful to know that a 32-bit word in Double-Precision
mode consists of two 16-bit words that can be addressed in
Single-Precision mode with seven bit addresses by the six bit
address used in double precision mode (#) and that address plus
64 (n+64). The Y_Word of the double-precision word will be in
n; the X_Word in n+64. By switching from Double- to Single-
Precision, the user can independently access the Y_Word and
the X_Word.

DESIGN CONSIDERATIONS

Power Up

At power up, any or all of the three output ports, Edata-Port,
Cdata-Port or Ddata-Port, may be driving off chip. Because of
pipelining, Bank Select should not be used to serve a reset or
“chip select” function unless no other devices on the buses
driven by these ports could themselves possibly be driving.
Bank Select will tristate these ports, but they cannot be
guaranteed to be in a high impedance state until tp,g into the
second cycle after the rising edge at which BS is LO (Fig-

ure 12).

Any ADSP-3128A output port that shares a buses should be
forced into a high impedance state at power up using the Etri/-
Ctri/Dtri controls. The bits driving these pins from microcode
can be gated with the user’s general system reset control.

Power Supply Decoupling
The ADSP-3128A register file is designed with high speed
drivers on all ou utﬁ This means that large peak currents

0

ver ground and Vpp, pins, particularly
are simultaneously charging their load
4 smon, whether from LO to HI or vice versa.
T&se’\pe?\k curren@can cause a large disturbance in the ground
“and supply lings; elp isolate the effects of this disturbance,
the’ }N@P-Slw es separate pins for driver GND and

® ; »¥po$ nd logic GND and Vpps.

T‘ﬁe ADSP-3128A’s GND and Vpp, pins must be tied directly
to, sotid ﬁ"&md and Vppplanes and properly bypassed. Lead
‘,lengzhs a¥id trace lengths should be as short as possible. The

',",”ground plane should tie to driver GND in particular with a very

low inductance path. High frequency bypass capacitors (0.1puF
ceramic) should be located as close as possible to the V,p, pins.
Low frequency bypass capacitors (20.F tantalum) should be
located outside the chip perimeter (not directly under the chip).
System noise immunity can be improved by careful design of
Vpp and GND planes. See the Applications Note, “Power and
Ground Connection Guidelines for Pin Grid Arrays” for layout
suggestions.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-55

KEY CHANGES FROM JUNE 1988 ADSP-3128A

A PRELIMINARY DATA SHEET

The ADSP-3128A is a pin-compatible speed-upgrade to the
ADSP-3128 with the following qualifications:

1.

The specification ty;yy has been added and the specification
twin has been redefined to make it easier to use. The Write
Inhibit Delay (twyy) is the maximum time after the rising
edge of the clock before the A/B/Ewinh pin must be high to
inhibit a write to the register file. The new specification
Write Inhibit Control Hold Time (twpyy) is the minimum
hold time required after the falling edge of the clock to
insure that the enable write or inhibit write has occurred.
New versions of Figure 5 and Figure 8 show this timing.

. The Elt and Eht lines are reversed in Figure 9 and the last

two entries of Table I in the June 1988 Data Sheet for Dou-
ble Precision Clock-on-Rising Slow Inputs to the E-port.
Figure 9 and Table I have been corrected. Paragraph two of
DP Edata-Port Slow Input and Slow Read on Page 3-54 has
also been changed.

. The specifications t,gr and t,sg have been separated for

reads and writes. The new specifications are:

Transparent Address Setup — Read tagrr

Transparent Address Setup — Write tagrw
Registered Address Setup — Read TASRR
Registered Address Setup — Write

tasrw |

. The low-level input voltage level on the Clock line is 0.6V

maximum. On all other lines it remains 0.8V maximum.

. Ipp Supply Current is 600mA maximum.
. The Edata-port can function in any one cycle as either a read

port or a write port. It cannot both read and write in one
cycle.

. Extra reads from the C, D and Edata-ports are no longer

allowed.

. The following specifications have been removed:

tepIs Three-State E Port Auto-Disable

tHIER Clock Period HI — Write Plus Extra Read

toprru Clock Address-to-Transparent Delay — Extra Reads
teLk Clock Period - Clocked Reads

tceks Clock Period — Trans Reads

tcrxa Clock Period - Transparent I/O
tastgs Trans. Clk HI Bank Select Setup
topce Clk-to-Data Output Delay — Eport

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-56 MICROCODED SUPPORT COMPONENTS

SPECIFICATIONS'

ADSP-3128A

RECOMMENDED OPERATING CONDITIONS

ADSP-3128A
J and K Grades S and T Grades®
Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 v
Tams Operating Temperature (Ambient) 0 +70 -55 +125 °C
ELECTRICAL CHARACTERISTICS
ADSP-3128A
J and K Grades S and T Grades®
Parameter Test Conditions Min Max Min Max Unit
Viz High-Level Input Voltage @ Vpp=max 2.0 v
Viua High-Level Input Voltage, CLK @ Vpp=max 2.2 v
and All Asynchronous Control
Inputs
Vi Low-Level Input Voltage @ Vpp=min v
Vi Low-Level Input Voltage (CLK) @ Vpp=min .-, : v
Vou High-Level Output Voltage @ Vpp —mm;& Lm" -i OmA 24 A
Vor Low-Level Output Voltage @ vnp min & IOL—4 OmA L, 04 A
I High-Level Input Currem, . ’ A
All Inputs : @ VDD =max &Ym ﬂé&V 10 pA
In Low-Level Input Current,)
All Inputs L@ VDD*max & Vi =0.0V° - 10 pA
Ioz Three-State Leakage Current * @Vpp=max;, High’ z, V'
=0Vormax . 50 pA
Ipp Supply Current® @ max Clock Rate:- TTL Inputs
(CLK=0, 3V) 600 mA
Ippq Supply Current-Quiescent All V=24V 100 mA
ORDERING INFORMATION
Temperature
Part Number Range Package
ADSP-3128A)JG 0 to +70°C 144-Pin Grid Array
ADSP-3128AKG 0 to +70°C 144-Pin Grid Array
ADSP-3128ASG —55to +125°C 144-Pin Grid Array
ADSP-3128ATG —55to0 +125°C 144-Pin Grid Array
ADSP-3128ASG/883B —55 to +125°C 144-Pin Grid Array
ADSP-3128ATG/883B —55 to +125°C 144-Pin Grid Array

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS

3-57

SWITCHING CHARACTERISTICS

ADSP-3128A

J Grades K Grades S Grades?® T Grades®

0 to +70°C 0to +70°C | —55to +125°C | —55 to —125°C
Parameter Min Max Min Max Min Max Min Max Unit
t Clock LO Period 20 ns
ty Clock HI Period 22 ns
tes Control Setup 10 ns
tey Control Hold 1 ns
tastr Transparent Address Setup — Read 18 ns
tasTw Transparent Address Setup — Write 30 ns
taskr Registered Address Setup — Read 4 ns
tasrw Registered Address Setup — Write 11 ns
tay Address Hold 3 ns
tgna Three-State Enable Delay 2 21 ns
tprs Three-State Disable Delay 11 ns
tpises Three-State Disable Delay — Bank & Port Sel 24 ns
toprr Trans Adr-to-Trans Output Delay 39 ns
topc Clk-to-Data Output Delay — C & Dports 18 ns
toprr Clkd Adr-to-Trans Output Delay 40 ns
topg Output Data Hold 3 ns
tpsg Latched Data Setup 7 ns
tpst Transparent Data Setup S 18 ns
tpsy Clock-on-Falling Data Setup ; N : 12 ns
tpy Input Data Hold I : 1. ns
twen Write Enable Setup o ’] ns
twin Write Inhibit Delay A : Tt0 ns
tarpe 1rans Adr to Write Enable L 1 ns
twing Write Inhibit Control Hold Time =~ * ° : 6 .
NOTES .

*All min and max specifications are over power-supply and temperature rasge 'Bxdic:ited. Input levels are GND and 3.0V. Rise times are 5ns. Input timing
reference levels and output reference levels are 1.5V, except for tgyas tpys 81 tpsps Which are as indicated in Figures 3, 12 and 13.

2§ and T grade parts are available processed in accordance with MIL-STD-883, Class B. The processing and test methods used for $/883B and T/883B

versions of the ADSP-3128A can be found in Analog Devices’ Military Data Book. Regular S and T grade parts are tested at +125°C.
3Worst-case with all outputs switching twice per cycle. (Example: DP Reads)

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage. —0.3Vto +7V
Input Voltage. —0.3V to Vpp +0.3V
Output Voltage Swing —0.3V to Vpp +0.3V

Operating Temperature Range (Ambient). . . .—55°C to +125°C
Storage Temperature Range—65Cto +150°C
Lead Temperature (10sec) PGA+300°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. These are stress ratings only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.

This information applies to a product under development. its characteristics and specifications are subject to change without notice.

Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-58 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

ESD SENSITIVITY
The ADSP-3128A features proprietary input protection circuitry. Per Method 3015 of
MIL-STD-883C, the ADSP-3128A has been classified as a Class 1 device.

Proper ESD precautions are strongly recommended to avoid functional damage or perfor- WARNING!

mance degradation. Charges as high as 4000 volts readily accumulate on the human body é
and test equipment and discharge without detection. Unused devices must be stored in /w
conductive foam or shunts, and the foam should be discharged to the destination socket ESD SENSITIVE DEVICE

before devices are removed. For further information on ESD precautions, refer to
Analog Devices’ ESD Prevention Manual.

3 " 10
.o Lo “outpPut sV
PIN
- OUTPUT
. 40pF

INPUT

Equivalent Input Circuits Equivalent Output Circuits Normal Load for ac Measurements

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-59

- et —D
L
RAM READ RAMWRITE | RAM READ

Clock

phase & phase B phase ¥
Reads

Double-Precision
(DP) Control

Not

T){u//y Trans

Rfitran
Control

f

”
vy

Transparent C/D/E

}

Read Addresses Radirme
Transparent Read Data Transparent
CDtran/Etran=1 Address
Clocked Read Dat
=0,
Clocked C/D/E
Read Addresses
Transparent Read Data Clocked
Address

CDtran/Etran=1

Ol | DATAOUT

Clocked Read Data
\CDtran/Etran=0

Figure 4. ADSP-3128A Single-Precision Read Output
Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-60 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

[t —dle—t, —b

RAM READ | RAMWRITE | RAMREAD

Clock

phase @& phase P phase Y

t
Double-Precision o

(DP) Control

Controls for All Modes

e
Latched A/B/E ot ASRW{ AH |
Write Addresses R

N,

Addressing Modes

Transparent A/B/E
Write Addresses

Latched Write Data

Transparent Write Data Write Data
ABIt/Elt=1
ABht/Eht=1
Clock-on-Falling
Write Data
ABIY/Eit=0
ABht/Eht=0

Write Inhibit (LO for enable)
(A/B/Ewinh)

Write Enable
and Inhibit

Write Inhibit (HI for inhibit)
(A/B/Ewinh)

* inhibit

Figure 5. ADSP-3128A Single-Precision Write Input Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-61

— t; —le— t, —
RAMWRITE | RAMREAD | RAMWRITE | RAMREAD | RAMWRITE | RAMREAD
Clock
-
Double-Precision Controls for
(DP) Control Y All Modes
B
< >
tospi tom! Data In Ignored
i
Latchetg \{‘VZS Data (x oATA INX
Latch , ABEN-1 Hold ABIVEI=0 i La;shled
= ht/Eht=1 i
ABhYERt Hold effective here to Hold
Id ! ~N
Input Latch Contents ! X DATA
t
S Data In Ignored
Transparent Wnte Data X DATAIN y DATAIN
to Hold
ABIYEt=1 Holg _ ABIVEIt=0
Transparent pphyent=1 o BahYERt-1 Transparent
Hold slfecltlvs here to Hold
14
Input Latch Contents 1§ x DATA
Clock-on-Falling
Wnte DataClod(-an-Fallmg ABIVEIt=0 h X
to Hold 'ABht/Eht=0 * ABMY/Eht=1 . Clocked-on-Falling
x Hold effective here to Hold
Input Latch Contents 4 . x DATA
Hold to Hold
ABIVEIt=0 AB&IVEI=0
H
1 pBhyEntat Hold pghyent-1
H ! Hold sustained here .
i Poed e 8 Sustained Hold
Input Latch Contents X DATA y
\
h
H Data In Ignored i tosr! tou
old to 7 * =
Latched Write Data L T & Kz oAan
ABIVEIt=0 Latch ABIVEIt=1
Hold pphy/Ent=1 :c ABhY/Eht=0 Hold to
i Latched
Input Latch Contents x DATA i z DATA
Data In Ignored ‘osT
)ata In Ignoi
Hold to <—
Transparent Write Data - y DATAIN 2 DATAN Hold t
Holg . ABIVEIt=0 Transparent ABIVEIt=1 00 9
ABhYEht=1 1 ABUEt=1 Transparent
)
Input Latch Contents x DATA
&l
Data In Ignored tosn to
Hold to <Xy DATAIN z DATAIN
Clock-on-Falling ABIVEIt=0 | Cjock-on-Faling ABIVEIt=0
Write Data Hold pghyEnt=1 \ PABhUERt-0 Hold to)
! Clock-on-Falling

Input Latch Contents

x DATA

Figure 6. ADSP-3128A Single-Precision Write to Input
Latches and Hold Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-62 MICROCODED SUPPORT COMPONENTS

e— t|, —la— ty >
Clock RAMREAD | RAMWRITE | RAM READ]
phase @ phase B phase Y
—>
) tes | tom Controls for
Double-Precision 7=—=F W e All Modes
(DP) Control i /) Double Precision \ S S5
Ei0=0
SR 1an
Clocked C/D/E =)(y READA)DX"—:' = Clocked
Read Addresses - Ee— e Read Address
ladtrn=
C/D/Eadr6=1}
CDtran/Etran ==
Early Read
Early Double-Precision Read
CDtran/Etran
Late Read
Late Double-Precision Read
Téanzpi:je:t C/DIE = (7 ;A::D Tr: ansparent
ea resses Radtrn=1 - C/D/Eadr6=1 Read AddfeSS
CDtran/Etran L Y Early Repd
Early Read
Early Double-Precision Read
CDtran/Etran

Late Double-Precision Read

Timing

Figure 7. ADSP-3128A Double-Precision Read Output

Late Read

~—

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-63

-t —ble— !y

Clock RAMREAD | RAMWRITE | RAMREAD RAM WRITE ‘

phase o phase B phase Y phase s

tcs

Double-Precision

(DP) Control Controls for

All Modes
ABIVEIt
-
t t, 4
Latched A/B/E ASRW | AH| _
Write Addresses : L
Wadtrn=0 i
A/B/Eadré=1| 14— >T=‘; Addressing Modes
Transparent A/B/E —= ASTW] a4}

‘
\
\

\
\

K5 WRITE A
B/Eadr6=1

Write Addresses

27

<]
At
iy
§

"

ABht/Eht

Early Write

Early Double-Precision Write

ABht/Eht
Late Write

Late Double-Precision Write

Write Inhibit (LO for enable)

. Write Enable
(A/B/Ewinh) and Inhibit
-« b
Write Inhibit (HI for inhibit) t

(A/B/Ewinh) i
write
' inhibit

Figure 8. ADSP-3128A Double-Precision Write Input
Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-64 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

-t —bia— 'y

Clock RAMREAD | RAMWRITE | RAMREAD | RAMWRITE | RAMREAD | RAMWRITE
ocl

phase & phase B phase ¥ phase 8 phase €

Ewinh Control CAOI;"AC?OIZ efgf
Latched E
Write Addresses Addressing
Modes
Transparent E
Wnite Addresses

Double-Precision

(DP) Control
Elt ’
e Afitran must remain LO at
Rfitran every nising edge i to and including
which $he RAM 15 written
Eht SN i
1=0 b
=0 [reansiton Slow Input
bf Y_Word
Clock-on-Falling Z Clock -on-Falling
Input of Y_Word = Slow Inputs
Eht
>l Slow Input
tosal topy | pf X_Word
Clock-on-Falling il

Input of X_Word

Double-Precision).ﬁ)‘ﬁ_
(DP) Control v Clock-on-Rising
_ Slow Inputs
Ent 54 P
= Note Rifitran must remain Hl at
Rfitran y every nising ed;em:ﬁ mnmc;dmg
i the cycle duning which the RAM is written
Elt ~.>/
Slow Input
of Y_Word
Clock-on-Rising
Input of Y_Word
Ex LZmS
0=1 Transition Slow Input
of X_Word
Clock-on-Rising

Input of X_Word

* See Figure 9 for the complete set of conditions for Ewinh

Figure 9. ADSP-3128A Double-Precision Slow Edata-Port
Input Timing

This information applies to a product under development. Its characteristics and specifications are subgect to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-65

- t, —Die— 'y —»

Clock RAMREAD | RAMWRITE | RAM READ RAMWRITE | RAM READ RAMWRITE | RAM READ RAM WRITE

phase Y phase 3 phase € phase g phase M

. tcs
Double-Precision 2%
(DP) Control = . %ubl@Prscrsion '

Clocked E
Read Addresses 0
Radtrn=0 .
Eadré=1 4——04’!
t, t,,.¢
Transparent E b AST i AHY _
Read Addresses = READ ADDK'
Radtrn=1 Eadré=1f

Eio

Etran

Slow DP Output

Figure 10. ADSP-3128A Double-Precision Slow Edata-Port
Read Output Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-66 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

— ty —Ple— 'L —p
Clock RAMWRITE | RAMREAD | RAMWRITE | RAMREAD | RAMWRITE | RAM READ
e
Double-Precision {—Qﬁ— ke Controls for All
(DP) Control ouble-Precision ¥ Transitions to Hold
Early DP Write Data Early Writ
to Hold ABIt=0 arly Write
Early Wite ABht=0; ABht=0 or 1 to Hold
Hold effective here
Input Latch Contents (__avw XY aY_WaxX W)
Late DP Write Data]
to Hold Late Write
Late Wrte ~ ABIt=0 DP Hold ABIt=1 s % to Hold
ABht=1 ABht’=‘0 Q” Hold ellet,;rlve here
&
Input Latch Contents FY . aVWaa XW
o o p -
Y% . e,y
%:;‘
Hold to Hold At | "« ABier .
DPHold pamegor 1] PP Mo Kpiumchanged Y g Sustained
i " 2 '3, o . Ssust aLlne ere] Hold
Input Latch Contents saY N +aX W
Double-Precision
(DP) Control >4 Controls for Hold
to DP Write
iebledi
Hold to Data In Ignored
Early DP Write Data
P Hold ABIt=1 Hold to

ABht=unchanged Early Write

J
|
J

Input Latch Contents

————

Data In Ignored }
Hold to 5 m I\ T\ e
Late DP Write Data ABitet i hur =N N
It= = g
bp Ho’dAthunchanged Late ?’m ABht=1} Late Write
H]
1 1 .
input Latch Contents ay WraX W) {7 oYW o wexwh

Figure 11. ADSP-3128A Double-Precision Write to Input
Latches and Hold Timing (Adata-Port and Bdata-Port only)

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-67

<ty Pt —P

RAMREAD | RAMWRITE | RAMREAD | RAMWRITE

Clock
phase * | phase B | phase T | phase 8 Bank Select
; Write Disable
Bank Select (BS) : ;;s:gss
ith Latched Write Addi -
with Latc rite Addresses Wadtre0' Latched Write Address
Write Disable
T
€
Bank Select (BS) —| 'AsTW

with Transparent Write Addresses
Write Currently Enabled Write Enabled A/B/Ewinh=0 Wadtrn=1

Bank Select (BS)
with Transparent Write Addresses L

Wnite Currently Inhibited wite inmibited A/B/Ewinh=1 Wadtrn=1

Transparent Write Address

:Cﬁran/ﬂra_n.-?)
1

-~
Bank Select (BS) AS n
e i s Output Disaple
tDISBS!
Early Read at «—>!
C&D/E Read Data Ports
CDtran/Etran=1 Tra nsparent
Read Address
Late Read at
C&D/E Read Data Ports
Early Read at & S 17
C&D/E Read Data Ports o Sheh o
; # Clocked
i iy 3 Read Address
Late Read at [! §w R HIZ Vv
CA&DJE Read Data Ports | %wk N
|
1

.

t AsRR OF tASTR , depending on address latch modes

Figure 12. ADSP-3128A Bank Select Timing

This information applies to a product under deve'vupment. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-68 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

— 1 —bia— Yy —

Clock l RAM READ | RAMWRITE | RAMREAD | RAMWRITE]

phase * | phase B phase ¥ phase O

Double-Precision
Port Select
Write Disable

Double-Precision : =
(DP) Control R >Double-Preclsmn< .

Port Select
(A/B/Eadrg)
with Latched Write Addresses Latched Wnte Address
>
>

Port Select (/B/Eadr) ¢
with Transparent Write Addresses -
Write Currently Enabled White Enabled A/B/Ewinhi

Port Select (A/B/Eadr) ¢ ' Transparent Write Address
with Transparent Write Addresses
Write Currently Inhibted whte Inhibited A/B/Ewinh=1

Port Select (C/D/Eadrg)

for All Modes Double-Precision

Port Select

Double-Precision (DP) Output Disable
Control for Early Read from

Transparent Addresses

WW/SW G

Early Read at
C&D/E Read Data Ports CDtran/Etran=1

Double-Precision

Transparent
(DP) Control for All Others 5

Read Address

Late Read at
C&D/E Read Data Ports with
Transparent Read Addresses

Early Read at
C&D/E Read Data Ports with [—— ' Clocked
Clocked Read Addresses 'oisag Read Address

HIZ

Late Read at
C&D/E Read Data Ports with DA
Clocked Read Addresses

*t

&

ort

ASTR depending on address latch modes

ASRR

Figure 13. ADSP-3128A Double-Precision Port Select Timing

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-69

2x Clock

] 3
A B 47 A&B&Eadr
System 32 - M
Bus <+——~1 ZolE ADSP-3128A JiZ | csoear [0 e
i v
C D X |e d
/ / selA e
32
Y 32 ¥ | I____]
v ¥ 1x Clock
% ADSP- ADSP-
4| 321x 322x 2)
Multiplier ALU
[L1 L
1x Clock

Figure 14. ADSP-3128A Single-Precision Application with

ADSP-32XX

Muxing the read addresses allows two-geads {at }X¢lock) for
loading the input ports of both the ASDP-321X and ADSP-
322X with two 32-bit words per 32XX cycle {at IXM) while

1% CLK

- still usmz 1 code rates. In this application, write data is

latched on clock HI and read data is registered on the rising
edge. Write addresses are latched; read addresses are
tpansparent., -

1x CLK

1 W
L

h N

System 5,
Bus <+~ 2|E ADSP.3128A

C D
wy oy =
A y 32)
/
] ADSP-
1x CLK 32xx
Multiplier

|

A B e ‘7 addresses ';
% 4 E ADSP-3128A °
7 d
c D — e
32
’I 32’/ 1x CLK
A \
ADSP- | ek
32xx *
ALU

Figure 15. ADSP-3128A Seven-Port Double-Precision

Application with ADSP-32XX

Double-Precision mode allows transfer of both MSW and LSW
in a single cycle while still using pcode at the same cycle rate.
Pairing pairs of ADSP-3128As creates a seven-port register file
for unconstrained data transfers. The same data is always writ-
ten to both the right and left pairs (therefore, the same A, B
and Eadrs go to both pairs). In this application, Early Writes

are used at the input ports for the simplest interface to the
floating-point chipset’s output. The data read from the two
sides is generally distinct, so the C and Dadrs for each pair are
distinct. Late Reads match the input loading requirements of
these chips and are, therefore, used on the rightmost pair of
ADSP-3128As.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

3-70 MICROCODED SUPPORT COMPONENTS

ADSP-3128A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q | Bdatas | Boatas | Boata2 | Boata0 | Adatat3 | Adatat0 | Adatad | Adata? | Adata4 | Adatad | Eht | ABN | ABH | Awnh IQ
P |Bdatat2 | Bdalad | Boatab | Bdalaé | Bdalat | Adatat4 | Adatat2 | Adata8 | Adata2 | Adatal | EN | DP | Bwnh | INermall aaq]p
N | Edatats | Bdatatd | Boatat0 | Boata7 | Béatad | Adatal | Adatait | Adatas | Adata | Adatao | Ewnn | ernal | internal) sy N
%

M | Edatatd | Bdatat5 | Boatat Aadrt | Aadré M
L | Edatat2 | Edatat3 | Bdatats Aadrs | Bad0 | Badd ff L
K | Edata8 | Edatal0 | Edatalt Badr2 | Badr3 | Cad0 § K
J | Edata? | Edatad | Edatag Bad6 | Badr5 | Cadri I J
H | Edatad | Edatad | Edata5 Cadrd | Cadr2 | Cadr3

G | Edataz | Ddatats | Edatad Cad5 | Dadrt | Cadb

F | Edatal | Ddata13 | Ddata12 Dadr3 | Dadr2 | Dadr0 lF
E |Ddatat4 | Ddata10 | Data8 Ead2 | Dadrs | Dadré IE
D | Datatr | Tl | dver | drver Eadrs | Eadrl l D
C | Deatas | Doata7 | Doatas | Doatad | Daata0 | Catato| ey | U | Cotat | B | Wt | G | M| Eaas | Eao0 o
B | 40T | odatas | Doatat | Cdatats | Caatat2 | Cdatad | Cdate8 | Cdatad | Cdatad | COtan | Cin | Radtm | Riivan | Eacrs | Eads | B
A | Ddataé | Ddata2 | Cdatal4 | Cdatal3 | Cdatatt | Cdata7 | Cdata6 | Cdata5 | Cdata3 | Cdata2 | Etran Dtn BS Eio CLK A

w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADSP-3128A Pinout

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

MICROCODED SUPPORT COMPONENTS 3-71

3-72 MICROCODED SUPPORT COMPONENTS

Floating-Point Components
Contents

Page
Introduction L 4-3
Selection Guide e 4-4
ADSP-3201/ADSP-3202 — 32-Bit IEEE Floating-Point Chipset v o v v v v v it e et e e e e e e 4-5
ADSP-3210/ADSP-3211/ADSP-3220/ADSP-3221 — 64-Bit IEEE Floating-Point Chipsets 4-39
ADSP-3212/ADSP-3222 — 64-Bit IEEE Floating-Point Chipset v v i it 4 -85

FLOATING-POINT COMPONENTS 4-1

4-2 FLOATING-POINT COMPONENTS

Introduction

Since the introduction of our first floating-point chips in 1984,
Analog Devices has been a leader in supplying fast floating-point
arithmetic units. We currently produce four floating-point
chipsets, each consisting of a multiplier and an ALU. All parts
implement the IEEE Standard 754 for Binary Floating-Point
Arithmetic. All deliver the highest performance in throughput
and latency with the advantages of CMOS processing. Our
floating-point chips are supported by our Word-Slice product
line which includes address generators, microcode program
sequencers and a five-port register file, the ADSP-3128A. All of
these parts are described in the “Microcode Support Compo-
nents” section of this databook.

The floating-point units provide performance to 40 MFLOPS
and precision to 64-bits. With only one internal pipeline regis-
ter, all attain high pipelined throughput while minimizing
latency. The key advantages of each chipset are summarized
below and in the Selection Guide on the next page.

ADSP-3210 & ADSP-3211 DOUBLE-PRECISION
MULTIPLIERS

ADSP-3220 & ADSP-3221 DOUBLE-PRECISION ALUs
These chips process operations on three data formats: 32-bit
1EEE single-precision, 32-bit fixed-point and 64-bit IEEE
double-precision. There are two multipliers and two ALUs in
this group; either ALU can be used with either multiplier.

ADSP-3210/ADSP-3211 Multipliers

The ADSP-3211 is a three-port multiplier with an I/O structure
identical to the ADSP-3220/ADSP-3221. Throughput for the
ADSP-3211LG is 20 MFLOPS single-precision, 5 MFLOPS
double-precision and 20 MIPS fixed-point. The ADSP-3211
operates directly on both twos-complement, unsigned-magnitude
and mixed-mode fixed-point numbers. The ADSP-3210 offers
the capability to conserve on-board space and cost with a two-

port structure while still maintaining full pipelined throughput.
Throughput with the ADSP-3210 reaches 16.6 MFLOPS single-
precision, 4 MFLOPS double-precision and 16.6 MIPS fixed-
point. The ADSP-3210’s fixed-point computations are twos-
complement only.

ADSP-3220/ADSP-3221 ALUs

The ADSP-3220 and ADSP-3221 ALUs both have a three-port
structure and attain 10 MFLOPS throughput for single- and
double-precision floating-point and 10 MIPS for fixed-point
number formats. The ADSP-3221 is pin-compatible with the
ADSP-3220 and can compute the IEEE exact division and
square root functions completely on-chip.

ADSP-3201/ADSP-3202 SINGLE-PRECISION CHIPSET
The ADSP-3201 Floating-Point Multiplier and the ADSP-3202
Floating-Point ALU offer the capability to build a high-
performance, single-precision only system at minimum cost.
Both chips offer the same three-port structure as the
ADSP-3211/ADSP-3221 and both process 32-bit floating-point
and 32-bit fixed-point numbers. The chips reach 10MHz
throughput for single and fixed-point operations. The compati-
bility of the single-precision parts with the ADSP-3211 and
ADSP-3221 provides an upgrade path to double-precision.

ADSP-3212 MULTIPLIER & ADSP-3222 ALU

These next generation 1.0pm CMOS upgrades to the
ADSP-3211 and ADSP-3221 build on their key features: full
IEEE 754 arithmetic, only one internal pipeline register, low
power CMOS technology and MIL-STD-883B processing. The
one micron process used yields a throughput of 40 MFLOPS.
Because of minimal pipelining, latency is about 150ns. Exact
division is computed at a 300ns (single-precision) or 600ns
(double-precision) rate. Exact square root is also supported.

FLOATING-POINT COMPONENTS 4-3

Selection Guide

Pipelined

FLOATING-POINT COMPONENTS

IEEE Exact
Divide (ps)

IEEE Exact
Square Root (ps)

Number Throughput (ns) Latency (ns) Single Double Single Double
Part Grade | of Ports | 32-Bit 64-Bit 32-Bit 64-Bit | Precision Precision | Precision Precision
ADSP-3211 L 3 50 200 140 315
Multiplier K 3 100 400 240 590
] 3 125 500 300 738
U 3 70 280 190 400
T 3 125 500 300 738
S 3 150 600 360 885
ADSP-3210 L 2 60 240 190 370
Multiplier K 2 100 400 290 590
J 2 125 500 363 738
U 2 75 300 238 463
T 2 125 500 363 738
S 2 150 600 435 885
ADSP-3212 K 3 50 50 130 155 0.3 0.6
Multiplier/ J 3 60 60 157 187 0.36 0.72
Divider T 3 58 58 150 179 0.345 0.69
S 3
ADSP-3221 K 3 100 100 240 290 1.6 3 2.9 5.8
ALU J 3 125 125 300 363 2 3.75 3.63 7.25
T 3 125 125 300 363 2 3.75 3.63 7.25
S 3 150 150 360 435 2.4 4.5 4.35 8.7
ADSP-3220 K 3 100 100 240 290
ALU J 3 125 125 300 363
T 3 125 125 300 363
S 3 150 150 360 435
ADSP-3222 K 3 50 50 130 155 0.8 1.5 1.45 2.9
ALU J 3 60 60 157 187 0.96 1.8 1.74 3.48
T 3 58 58 150 179 0.92 1.725 1.67 3.34
S 3
ADSP-3201 K 3 100 240
Multiplier] 3 125 300
T 3 125 300
S 3 150 360
ADSP-3202 K 3 100 240 1.6 2.9
ALU J 3 125 300 2 3.63
T 3 125 300 2 3.63
S 3 150 360 2.4 4.35

4-4 FLOATING-POINT COMPONENTS

ANALOG
DEVICES

32-Bit IEEE Floating-Point Chipset

ADSP-3201/ADSP-3202

FEATURES

Complete Chipset Implementing Floating-Point
Arithmetic

Fully Compatible with IEEE Standard 754

Arithmetic Operations on Three Data Formats:
32-Bit Single-Precision Floating Point
32-Bit Twos-Complement Fixed-Point
32-Bit Unsigned-Magnitude Fixed-Point

Pin-Compatible Single-Precision Versions of the
ADSP-3211 Multiplier and ADSP-3221 ALU

Only One Internal Pipeline Stage

Single-Precision and Fixed-Point Multiplier and ALU
Pipelined Throughput Rates to 10 MFLOPS

Low Latency for Scalar Operations
240ns for 32-Bit Multiplier and ALU Operations

IEEE Divide and Square Root

Either One or Two Input-Port Configuration Modes

750mW Maximum Power Dissipation per Chip with
1.5pm CMOS Technology

144-Lead Pin Grid Array

Available Specified to MIL-STD-883, Class B

APPLICATIONS

High-Performance Digital Signal Processing
Floating-Point Accelerators

Array Processors

Graphics Numerics Processors

GENERAL DESCRIPTION

The ADSP-3201 Floating-Point Multiplier and the ADSP-3202
Floating-Point ALU are high-speed, low-power, 32-bit arithmetic
processors conforming to IEEE Standard 754. This low-cost
chipset comprises the basic computational elements for imple-
menting a high-speed, single-precision numeric processor. Oper-
ations are supported on three data formats: 32-bit IEEE single-
precision floating-point, 32-bit twos-complement fixed-point,
and 32-bit unsigned-magnitude fixed-point.

The high throughput of these CMOS chips is achieved with
only a single level of internal pipelining, greatly simplifying
program development. Theoretical MFLOPS rates are much
easier to approach in actual systems with this chip architecture
than with alternative, more heavily pipelined chipsets. Also, the
minimal internal pipelining in the ADSP-3201/3202 results in
very low latency, important in scalar processing and in algorithms
with data dependencies. To further reduce latency, input registers
can be read into the chips’ internal computational circuits at the
rising edge that loads them from the input port (formerly called
“direct operand feed”).

rmicrocode

Microcode Memory

]; microcode instruction l
memory
address [ADSP-1401 ADSP-1410
Program ADSP-3128A Address Generator
Five-Port
Register Files data
ADSP-3202 adaress
Floating-Point
ALU Data
ADSP-3201 Memory
Multl;uov
Data Bus

Word-Slice® Microcoded System
with ADSP-3201/3202

In conforming to IEEE Standard 754, these chips assure complete
software portability for computational algorithms adhering to
the Standard. All four rounding modes are supported for all
floating-point data formats and conversions. Five IEEE exception
conditions — overflow, underflow, invalid operation, inexact
result, and division by zero — are available externally on status
pins. The IEEE gradual underflow provisions are also supported,
with special instructions for handling denormals. Alternatively,
each chip offers a FAST mode which sets results less than the
smallest IEEE normalized values to zero, thereby eliminating
underflow exception handling when full conformance to the
Standard is not essential.

The instruction sets of the ADSP-3201/3202 are oriented to
system-level implementations of function calculations. Specific
instructions are included to facilitate such operations as floating-
point divide and square root, table lookup, quadrant normalization
for trig functions, extended-precision integer operations, logical
operations, and conversions between all data formats.

The ADSP-3201 Floating-Point Multiplier is a pin-compatible,
32-bit version of the 144-lead ADSP-3211 Floating-Point Multi-
plier. Like the ADSP-3211, it has two input ports and eight
input registers. It executes all ADSP-3210 and ADSP-3211 32-
bit operations. The ADSP-3201 supports twos-complement,
unsigned-magnitude, and mixed-mode 32-bit fixed-point
multiplications.

Word-Slice is a registered trademark of Analog Devices, Inc.

FLOATING-POINT COMPONENTS 4-5

The ADSP-3202 Floating-Point ALU is a pin-compatible, 32-bit
version of the 144-lead ADSP-3221 Floating-Point ALU. Like
the ADSP-3211, it has two input ports and eight input registers.
It executes all ADSP-3220 and ADSP-3221 32-bit operations,
including IEEE division and square root.

The ADSP-3201/3202 chipset is fabricated in double-metal
1.5um CMOS. Each chip consumes 750mW maximum, signifi-
cantly less than comparable bipolar solutions. The differential
between the chipset’s junction temperature and the ambient

temperature stays small because of this low-power dissipation.
Thus the ADSP-3201/3202 can be safely specified for operation
at environmental temperatures over its extended temperature
range (—55°C to +125°C amblent)

The ADSP-3201/3202 are avallable for both commercial and
extended temperature ranges. Extended temperature range parts
are available processed fully to MIL-STD-883, Class B. The
ADSP-3201 and ADSP-3202 are packaged in ceramic 144-lead
pin grid arrays.

TABLE OF CONTENTS
GENERAL DESCRIPTION 4-5

FUNCTIONAL DESCRIPTION OVERVIEW 4-6
PIN DEFINITIONS AND FUNCTIONAL BLOCK
DIAGRAMS o 4-8
METHOD OF OPERATION 4-10
DATAFORMATS 4-10
Single-Precision Floating-Point Data Format 4-10
Supported Floating-Point Data Types 4-11
32-Bit Fixed-Point Data Formats 4-11
CONTROLS 4-12
FAST/IEEECONTROL 4-13
RESETCONTROL 4-13

PORT CONFIGURATION - IPORT CONTROLS . . 4-13
INPUT REGISTER LOADING AND OPERAND

STORAGE - SELA/B CONTROLS 4-14
DATA FORMAT SELECTION - SP CONTROL . . 4-14
INPUT DATA REGISTER READ SELECTION -

RDA/B CONTROLS
ABSOLUTE VALUE CONTROLS - ABSA/B 4-15
WRAPPED INPUT CONTROLS - WRAPA/B

(and INEXIN and RNDCARI on the ADSP-3202) . 4-15
TWOS-COMPLEMENT INPUT CONTROLS -

TCA/B(ADSP-3201) 4-15
ROUNDING - RND CONTROLS 4-15
STATUSFLAGS 4-16

Denormal Input 4-17

Invalid Operation and NAN Results 4-17

Division-by-Zero 4-17

Overflow 4-17

Underflow 4-17

Inexact 4-18

Less Than, Equal, Greater Than, Unordered 4-18

Special Flags for Unwrapping 4-18
INSTRUCTIONS AND OPERATIONS 4-19

Fixed-Point Arithmetic ALU Operations 4-20

Logical ALU Operations 4-21

Floating-Point ALU Operations 4-21
OUTPUT CONTROL - SHLP, OEN, MSWSEL,

and HOLD 4-23

TIMING i 4-23
GRADUAL UNDERFLOW 4-24
SPECIFICATIONS 4-34
ORDERING INFORMATION 4-35
PINOUTS i ittt it 4-36

4-6 FLOATING-POINT COMPONENTS

FUNCTIONAL DESCRIPTION OVERVIEW

The ADSP-3201/3202 share a common architecture (Figure 1)
in which all input data is loaded to a set of input registers with
both rising and falling clock edges. These registers can be read
to the chip’s computational circuitry as they are loaded on a
rising edge. At the end of first processing clock cycle, partial
results and most controls are clocked into a set of internal pipeline
registers. In most cases, only a second clock cycle is required to
conclude processing. (The exceptions are division and square
root.) At the end of this second processing cycle, results are
clocked into an output register. The contents of the output
register can then be driven off-chip. An output multiplexer
allows driving both halves of a 64-bit fixed-point multiplication
result off-chip through the 32-bit output port in one output

T

D iNnpuT REGISTERS |

| READ SELECTION MuxEes |

L FIRST STAGE PROCESSING

Figure 1. ADSP-3201/3202 Generic Architecture

Because all input and output data is internally registered and
because of the single level of internal pipeline registers, operations
can be overlapped for high levels of pipelined throughput. Figure
2 illustrates a typical sequence of pipelined operations. Note
cycle #4 of Figure 2 after the data transfer and internal pipelines
are full. While the final A results of the first operation are being
driven off-chip, B processing can be concluding at the second

ADSP-3201/ADSP-3202

stage, C processing beginning at the first stage, and D data
loading to the input registers.

All three-port members of this chipset can be configured for
two-port operations, thereby reducing system busing require-
ments. However configured, the ADSP-3201/3202 can load data
on rising edges of the clock and on falling edges of the clock,
subject to constraints described in “Method of Operation.” The
port configuration chosen determines which registers load data
on which edges. All input registers have their own independent
load selection controls, allowing the same data to be loaded to
multiple registers simultaneously.

A set of read selection multiplexers feeds input data from the
input registers to the computational circuitry. These muxes can
select data that was just loaded at the clock’s rising edge (“direct
operand feed”), if desired, with no throughput or cycle-time
penalty.

All control signals need only be supplied to the chips at their
cycle rate. This approach avoids requiring that the sequencing
control cycle time be faster than the chipset’s major processing
cycle rate. Less expensive microcode memory can therefore be
used. For this reason, load selection controls for registers to be
loaded on the clock’s falling edge need only be valid at the

previous rising edge. (The designer may choose to supply the
asynchronous output multiplexer and tristate controls at a higher
rate, however.)

The ADSP-3201/3202 fully supports the gradual underflow
provisions of IEEE Standard 754 for floating-point arithmetic.
The Floating-Point ALU can operate directly on both normals
and denormals, except in division and square root. The Floating-
Point Multiplier operates on normals but cannot operate on
denormals directly. Denormals must first be “wrapped” by an
ALU to a format readable by a Multiplier. Several flags are
available for detecting and handling exceptions caused by loading
a denormal to a Floating-Point Multiplier. Information about
rounding and inexact results generated by the Multiplier is
needed by the ALU to produce results in conformance to Standard
754. All ADSP-3201/3202 chips include a “FAST” control that
flushes all denormalized results to zero, avoiding the system
delays of IEEE exception processing for gradual underflow.

All status output flags except denormal detection are registered
at the output in parallel with their associated results. The asyn-
chronous denormal flag allows an early detection of a denormalized
number loaded to a Floating-Point Multiplier, speeding exception
processing.

time Load First-Stage | Second-Stage Output
(cycles) i Input Data | Processing Processing Resuit
1 Data Set A
2 Data Set B Data Set A
3 Data Set C Data Set B Data Set A
4 Data Set D Data Set C Data Set B Data Set A
5 Data Set E Data Set D Data Set C Data Set B
v

Figure 2. Typical Pipelining with the ADSP-3201/3202

FLOATING-POINT COMPONENTS 4-7

PIN DEFINITIONS AND FUNCTIONAL BLOCK

DIAGRAMS

asynchronous (ASYN).

PINNAME

Data Pins
AIN3
BIN3;0
DOUT;3,4

Control Pins
RESET
HOLD

IPORTO
IPORT1
SELAO
SELAIl
SELA2
SELA3
SELBO
SELBI1
SELB2
SELB3
RDAO
RDA1

PINNAME DESCRIPTION

RDBO Register Bx Read Selection Control 0
All control pins are active HI (positive true logic naming con- RDBI1 Register Bx Read Selection Control 1
vention), except RESET and HOLD. Some controls are registered WRAPA Wrapped Contents in Register Ax
at the clock’s rising edge (REG); other controls are latched in WRAPB Wrapped Contents in Register Bx
clock HI and transparent in clock LO (LAT); and others are TCA Twos-Complement Integer in
Register Ax
ADSP-3201 Floating-Point Multiplier Pin List TCB Twos-Complement Integerin
Register Bx
DESCRIPTION TYPE ABSA Read Absolute Value of Ax
ABSB Read Absolute Value of Bx
. SP Single-Precision Floating-Point Mode
32-Bit Data Input DP Double-Precision Mode
32-Bit DataInput RNDO Rounding Mode Control 0
32-Bit Data Output RNDI Rounding Mode Control 1
FAST Fast Mode
Reset ASYN SHLP Shift Left Fixed-Point Product
Hold Control ASYN MSWSEL Select MSW of Output Register
Input Port Configuration Control 0 ASYN OEN Output Data Enable
Input Port Configuration Control 1 ASYN
Load Selection for A0 LAT S nexact Result
Load Selection for Al LAT OVRFLO Overflowed Result
Load Selection for A2 LAT UNDFLO Underflowed Result
Load Select}on for A3 LAT INVALOP Invalid Operation
Load Selection for BO LAT DENORM Denormal Output
Load Selection for B1 LAT RNDCARO Round Carry Propagation Out
Load Selection for B2 LAT) Ty Fropagd
Load Selection for B3 LAT Miscellaneous
Register AxRead Selection Control0 REG CLK Clock Input .
Register Ax Read Selection Control1 ~ REG Vop + 5V Power Supply (Four Lines)
GND Ground Supply (Eight Lines)
cLK LU BIN, o Vpp GND Controls
0§ § 98
[PorT cone Tion}—JrorT Tion | o —

4

%

(] 1'23 4
T-Latch

SELA/BO 3

CLK

SELB3

CONTROLS

|Exponent A
ra

Aea

SELA/BO 3
RDA/BO 1
spP

32 x 32 PARALLEL MULTIPLIER ARRAY

TCA/B
ABSA/B

PIPELINE REGISTER

64

PIPELINE REGISTER

sCONTﬂOI. PIPELINE REG!STEﬂl

I

Aot

EXPONENT

FAST, RNDO

1

CIRCUITRY

&
[EKCEPTION PROCESSING I

SHLP

INVALOP
RNDCARO

Status DENORM

4-8 FLOATING-POINT COMPONENTS

MSWSEL

DOUT,, 4

Figure 3. ADSP-3201 Functional Block Diagram

TYPE
REG
REG
REG
REG
REG

REG

REG
REG
REG
REG
REG
REG
REG
REG
ASYN
ASYN

ADSP-3201/ADSP-3202

ADSP-3202 Floating-Point Multiplier Pin List

PIN NAME

Data Pins
AIN3,
BIN3;
DOUTs;;

Control Pins
RESET
IPORTO
IPORT1
SELAO
SELALl
SELA2
SELA3
SELBO
SELB1
SELB2
SELB3
RDAO
RDAL
RDB0
RDB1

DESCRIPTION TYPE PIN NAME DESCRIPTION
Iz o ALU Instruction
32-Bit Data Input RNDO Rounding Mode Control 0
32-Bit Data Input RND1 Rounding Mode Control 1
32-Bit Data Output FAST Fast Mode
MSWSEL Select MSW of Output Register
Reset ASYN OEN Output Data Enable
Input Port Configuration Control 0 ASYN Status In
Input Port Configuration Control 1 ASYN INEXIN Inexact Data In
Load Selection for A0 LAT RNDCARI1 Round Carry Propagation In
Load Selection for A1 LAT Status Out
Load Selection for A2 LAT INEXO Inexact Result
Load Selection for A3 LAT OVRFLO Overflowed Result
Load Selection for BO LAT UNDFLO Underflowed Result
Load Selection for B1 LAT INVALOP Invalid Operation
Load Selection for B2 LAT Miscellaneous
Load Selection for B3 LAT
Register Ax Read Selection Control0 REG CLK Clock Input
L N A + 5V Power Supply (Four Lines)
Register Ax Read Selection Control 1 REG GND Ground Supply (Four Lines)
Register Bx Read Selection Control0 ~ REG ° PRy
Register Bx Read Selection Control 1 REG
CLK V,, GND AN, o BIN, o Controls
? ?‘l g gz 32 4’33
[PORT CONFIGURATION] _{PORT TION | IPORTO 1
Aoz 12 Aa2 RESETH
(] Ao N
e ¢k - T-Latch

Ao
32

SELAO |SELA1

732
SELA2 | SELA3
i 32 32 32

| REGISTER Ax READ SELECTION MUX |~ RDAO 1

Exponent A
4

IMantissa A

Ao *0

PIPELINE REGISTER

24

&-BIT ARITHMETIC & LOGIC UIV

24
PIPELINE REGISTER

SCONYROL PIPELINE REGISTERI

SELA/BO 3
10 8

RDA/BO.1
ABSA/B
FAST
RNDO 1
RNDCAR!
INEXIN

!

24

EXPONENT I

[CIRCUITRY

I FAST, RNDO 1,ANDCARIINEXIN

l_ s

OVRFLO
UNDFLO
INEXO
INVALOP

P status | D OuTPUT REGISTER |
P

&
I EXCEPTION PROCESSING r

MSWSEL

Status

oouT,, o

Figure 4. ADSP-3202 Functional Block Diagram

FLOATING-POINT COMPONENTS 4-9

TYPE

REG
REG
REG
REG
ASYN
ASYN

REG
REG

METHOD OF OPERATION

DATA FORMATS

The ADSP-3201/3202 chipset supports single-precision floating-
point data formats and operations as defined in IEEE Standard
754-1985. 32-bit twos-complement fixed-point data formats and
operations are also supported by all four chips. 32-bit unsigned-
magnitude data formats and operations are supported by the
ADSP-3201 Multiplier and ADSP-3202 ALU. This chipset
operates directly on 32-bit fixed-point data. (No time-consuming
conversions to and from floating-point formats are required.)

Single-Precision Floating-Point Data Format
IEEE Standard 754 specifies a 32-bit single-precision floating-point
format,

Sign | Exponent (e) Fraction (f)
M e |.f2 fo
bit31 30 23

122 0
Binary Point

Figure 5. Single-Precision Floating-Point Format

which consists of a sign bit s, a 24-bit significand, and an 8-bit
unsigned-magnitude exponent e. For normalized numbers, this
significand consists of a 23-bit fraction f and a “hidden” bit of 1
that is implicitly presumed to precede f,, in the significand. The
binary point is presumed to lie between this hidden bit and f5,.
The least significant bit of the fraction is fy; the LSB of the
exponent is ey. The hidden bit effectively increases the precision
of the floating-point significand to 24 bits from the 23 bits actually
stored in the data format. It also insures that the significand of
any number in the IEEE normalized-number format is always
greater than or equal to 1 and less than 2.

The unsigned exponent e for normals can range between 1=e<254
in the single-precision format. This exponent is biased by +127
in the single-precision format. This means that to calculate the
“true” unbiased exponent, 127 must be subtracted from e.

The IEEE Standard also provides for several special data types.
In the single-precision floating-point format, an exponent value
of 255 (all ones) with a nonzero fraction is a not-a-number (NAN).
NAN:S are usually used as flags for data flow control, for the
values of uninitialized variables, and for the results of invalid
operations such as 0-c. Infinity is represented as an exponent of
255 and a zero fraction. Note that because the fraction is signed,
both positive and negative INF can be represented.

The IEEE Standard requires the support of denormalized data
formats and operations. A denormalized number, or “denormal,”
is a number with a magnitude less than the minimum normalized
(“normal’”) number in the IEEE format. Denormals have a zero
exponent and a nonzero fraction. Denormals have no hidden
“one” bit. (Equivalently, the hidden bit of a denormal is zero.)

The unbiased (true) value of a denormal’s exponent is — 126 in
the single-precision format, i.e., one minus the exponent bias.
Note that because denormals are not required to have a significant
leading one bit, the precision of a denormal’s significand can be
as little as one bit for the minimum representable denormal.

ZERO is represented by a zero exponent and a zero fraction. As
with INF, both positive ZERO and negative ZERO can be
represented.

The IEEE single-precision floating-point data types and their
interpretations are summarized in Table I.

The ADSP-3201/3202 chipset also supports two data types not
included in the IEEE Standard, “wrapped” and “unnormal.”
These data types are necessitated by the fact that the ADSP-3201
Multiplier and the ADSP-3202 ALU during division and square
root do not operate directly on denormals. (To do so, they
would need shifting hardware that would slow them significantly.)
Denormal operands must first be translated by the ADSP-3202
ALU to wrapped numbers to be readable by the Multiplier.
Wrapped and unnormal Multiplier products must also be un-
wrapped by an ALU before an ALU can operate on these results
in general. (See “Gradual Underflow and IEEE Exceptions.”)

The interpretation of wrapped numbers differs from normals
only in that the exponent is treated as a twos-complement number.
Single-precision wrapped numbers have a hidden bit of one and
an exponent bias of +127. All single-precision denormals can
be mapped onto wrapped numbers where the exponent e ranges
between —22=<e=<0. WRAPA and WRAPB controls on the
ADSP-3201 tell the Multiplier to interpret a data value as a
wrapped number.

The ranges of the various single-precision floating-point data
formats supported by the ADSP-3201/3202 are summarized in
Table II.

The multiplication of two wrapped numbers can produce a
number smaller than can be represented as a wrapped number.
Such numbers are called “unnormals.” Unnormals are interpreted
exactly as are wrapped numbers. They differ only in the range
of their exponents, which fall between — 171=e= — 23 for single-
precision unnormals. The smallest unnormal is the result of
multiplying WRAP.MIN by itself. Unnormals, because they are
smaller than DRNM.MIN, generally unwrap to ZERO.
(UNRM.MAX can unwrap to DRNM.MIN, depending on
rounding mode.)

The underflow flag should be thought of as an implicit most
significant ninth bit, the sign bit. For unnormals for which
—171=e< — 128, the most significant bit in the eight-bit exponent
field (e;, bit 30) will be zero, but the underflow flag understood
as weighted by —256 allows their representation without ambi-
guity. This sign bit is implicitly assumed by the ALU to be
present when unwrapping unnormals, making this convention
for very small unnormals transparent to the user.

Mnemonic | Exponent | Fraction Value Name IEEE Format?
NAN 255 non-zero | undefined not-a-number yes
INF 255 zero (—1)S(infinity) infinity yes
NORM | 1thru2s4 | any ~1)5(1.92°7'%7 | normal yes
DNRM 0 non-zero (—1f(o.f)2'126 denormal yes
ZERO 0 zero (=1)SOAO zero yes
WRAP | -22thruo | any 1> (192%% | wrapped no
UNRM |-171 thru —23} any 1%(1.62°'%" | unnormal - no

Table I. Single-Precision Floating-Point Data Types and
Interpretations

4-10 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

Data name|exponent| Exp. datalExponent|Hidden| Fraction Unbiased
(positive) type bias bit (binary) | absolute value
NORMMAX | 254 | unsigned | +127 I
NORM MIN 1 unsigned | +127 1 fooo ...00f ,71%6
DNAM.MAX 0 unsigned | +126 0 fr11.a1f 1%, R
DNRM.MIN 0 unsigned | +126 0 jooo...o01] 7% , B
WRAP.MAX 0 2sempimt | +127 U LR I Y
WRAPMIN | -22 | 2scmpimt | +127 1 |o0o......00} ,714°
UNRMMAX | -23 | 2scmpimt | +127 U L P Y
UNRMMIN | -171 | 2scmpimt | +127 1 jooo...00f ,72%8

Table Il. Single-Precision Floating-Point Range Limits

Supported Floating-Point Data Types

The direct floating-point data types support provided by the

members of this chipset can be summarized:

Normals
Denormals
Normals Wrappeds'
Wrappeds Unnormals
ADSP-3201 ADSP-3202
Floating-Point Floating-Point
Multiplier ALY
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3
Unnormals?
1 for unwrapping, division, and square root
2 for unwrapping only
3 from wrapping and division
4 from dvision

Figure 6. Data Types Directly Supported by the ADSP-3201/
3202

Not every member of the ADSP-3201/3202 chipset supports all
the data types described above directly. See the section below,
“Gradual Underflow and IEEE Exceptions,” for a full description
of how the chips work together to implement the IEEE Standard.
For systems not requiring full conformance to Standard 754, the
section below, “FAST/IEEE Control,” describes a simplified
operation for this chipset that avoids denormals, wrappeds, and
unnormals altogether.

32-Bit Fixed-Point Data Formats

The ADSP-3201/3202 chipset supports two 32-bit fixed-point
formats: twos-complement and unsigned-magnitude. With the
ALU, the output data format is identical with the input data
format, i.e., 32 bits wide. In contrast, the Multiplier produces a
64-bit product from two 32-bit inputs.

The 32-bit twos-complement data format for Multiplier inputs
and ALU inputs and outputs is:

Sign
WEIGHT _2k¢31 2k¢30 2k029 - 2k
VALUE| iy, 130 lag [
POSITION | 31 30 29 0

Figure 7. 32-Bit Twos-Complement Fixed-Point Data
Format

The MSB is i3;, which is also the sign bit; the LSB is ip. Note
that the sign bit is negatively weighted in twos-complement
format. The position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
signed fractional numbers (binary point between bit positions 31
and 30) are represented when k =31. The value of k is for user
interpretation only and in general does not affect the operation
of the chips. The only exceptions are the ALU conversion oper-
ations between floating-point and fixed-point. For these opera-
tions, the fixed-point format is presumed to be twos-complement
integers, i.e., k=0.

The ADSP-3201 Multiplier produces a 64-bit product at its
Output Register. The ADSP-3201 will produce results in the
format of Figure 8 at the DOUT port if the Shift Left Fixed-Point
Product (SHLP) control (described below in “Output Control”)
is LO:

Sign
WEIGHT _2r063 21‘82 .. zrdz 21031 2'.1 2'
VALUE { i, ig2 TS VY Iaq I [
POSITION | 63 62 oo 32 31 LECE B | 0

N~ I~

Most Signiticant Product Least Significant Product

Figure 8. 64-Bit Twos-Complement Fixed-Point Data Format
at Multiplier Output Register with SHLP LO

The weighting of the product bits is given by the integer r.
When kj represents the weighting of operand A and kg the
weighting of operand B, then r=k, +kg.

FLOATING-POINT COMPONENTS 4-11

When HI, the SHLP control shifts all bits left one position as
they are loaded to the Output Register. The results will then be
in the format:

If SHLP is HI, the data at the Output Register will have been
shifted left one position and zero-filled in the format:

N~— I~

Most Significant Product Least Significant Product

Figure 9. 64-Bit Twos-Complement Fixed-Point Data Format
at Multiplier Output Register with SHLP HI

The LSB becomes zero and ig; moves into the sign bit position.
Normally ig3 and is, will be identical in twos-complement products.
(The only exception is full-scale negative multiplied by itself.)
Hence, a one-bit left-shift normally removes a redundant sign
bit, thereby increasing the precision of the Most Significant
Product. Also, if the fixed-point data format is fractional (k= — 31
in Figure 7), then a single-bit left-shift will renormalize the
MSP to a fractional format (because r=2'k = 2:(31)= —-62).

For unsigned-magnitude data formats, inputs to the ADSP-3201
Multiplier and inputs and outputs from the ADSP-3202 ALU
will be 32 bits wide. The 32-bit unsigned-magnitude data
format is:

WEIGHT | 2 k+31 zk.:w 2k¢29 2k
VALUE| iy, g0 [iy
POSITION | 31 30 29 o

Figure 10. 32-Bit Unsigned-Magnitude Fixed-Point Data
Format

Again, the position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
unsigned fractional numbers (binary point left of bit position
31) are represented when k= —32. The value of k is for user
interpretation only and, except for conversions to fixed-point,
does not affect the operation of the chips.

The ADSP-3201 Multiplier discriminates twos-complement
from unsigned-magnitude inputs with TCA and TCB controls.
(See “Controls.”) When TCA and TCB are both LO, the ADSP-
3201 produces a 64-bit unsigned-magnitude product at its Output
Register. The ADSP-3201 will produce results in this format if
SHLP is LO:

WEIGHT | o r+63 zusz .. 2?&32 21.31 w12 r+1 2!’
VALUE | i, [U Iy, D A ls
POSITION | 63 62 e 32 31 e b1 0

N~ I~

Most Significant Product Least Significant Product

Figure 11. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP LO

Again, the weighting of the product bits is given by the integer

r. When kj represents the weighting of operand A, and kg the
weighting of operand B, then r=kj +kg.

4-12 FLOATING-POINT COMPONENTS

crm WEIGHT | 2 "+62 2r»61 U PN PLC L IO IFLIN Mol

- v
WEIGHT |_pf+62 | ,+61 | | [red1 1 re30 |] o1 et ALUE i, | e e |y Lo e fe O
VALUE |, sy [30 O N 0 POSITION | 63 62 32 31 CEON I | 0
POSITION | 63 62 e | 32 31 | | 0 N~ I~

Most Significant Product Least Significant Product

Figure 12. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The ADSP-3201 also supports mixed-mode multiplications, i.e.,
twos-complement by unsigned-magnitude. These are valuable in
extended-precision fixed-point multiplications, e.g., 64 X 64 and
128 x 128. The result of a mixed-mode multiplication will be in
a twos-complement format. Unlike twos-complement multiplica-
tions, however, mixed-mode results do not in general have a
redundant sign bit in is;. Hence, mixed-mode results should be
read out with SHLP LO as in Figure 8.

CONTROLS

The controls for the ADSP-3201/3202 (see Pin Lists above) are
all active HI, with the exceptions of RESET and HOLD. The
controls are either registered into the Input Control Register at
the clock’s rising edge, latched into the Input Control Register
with clock HI and transparent in clock LO, or asynchronous.
The controls are discussed below in the order in which they
affect data flowing through the chipset.

Registered controls, in general, are pipelined to match the flow
of data. All data and control pipelines advance with the rising
edge of each clock cycle. For example, to perform n optional
fixed-point one-bit left-shift on output with the product of X
and Y, you would assert the registered, pipelined control SHLP
on the rising edge that causes X and Y inputs to be read into
the multiplier array. Just before the result was ready to be loaded
to the Output Register, the pipelined SHLP control would
perform the proper shift. After the initiation of a multicycle
operation, registered control inputs are ignored until the end of
the operation time. (See “Timing” below for a precise definition
of “operation time.”)

Because this chipset uses CMOS static logic throughout and
controls are pipelined, the clock can be stopped as long as desired
for generating wait-states, diagnostic analysis, or whatever.
These chips can also be easily adapted to “state-push” im-
plementations. The machine’s state can be pushed forward one
stage by simply providing a rising edge to the clock input when
desired.

The only controls that are latched (as opposed to registered) are
the Load Selection Controls. They are transparent in clock LO
and latched with clock HI. Load Selection Controls are setup to
the chips exactly as if they were registered, with the same setup
time. The fact that they are transparent in clock LO allows
them to select input registers in parallel with the setup of data
to be loaded on the rising edge. Because they are latched with
clock HI, microcode need only be presented at the clock rate,
though data is loaded on both clock rising and falling edges.

A few controls are asynchronous. These controls take effect
immediately and are thus neither registered nor pipelined. Each
has an independently specified setup time.

ADSP-3201/ADSP-3202

FAST/IEEE CONTROL (REG)

FAST is a pipelined, registered control. It affects the interpretation
of data read into processing circuitry immediately after having
been loaded to the input control register. FAST affects the
format of results in the rounding & exception processing pipeline
stage. FAST also affects the definition of some exception flags.
(See “Exception Flags.”)

IEEE Standard 754 requires a system to perform operations on
denormal operands (which are smaller in magnitude than the
minimum representable normalized number). This capability to
accommodate these numbers is known as “gradual underflow”.
For floating-point systems not requiring strict adherence to the
IEEE Standard, the ADSP-3201/3202 provides a FAST mode
(FAST control pin HI) which consistently flushes post-rounded
results less than NORM.MIN to ZERO. This approach greatly
simplifies exception processing and avoids generating the denor-
mal, wrapped, and unnormal data types described above. When
in FAST mode, the Multiplier will treat denormal inputs as
ZERO and produces a ZERO result. The ALU will treat denormal
inputs exactly as it does in IEEE mode but still flush post-rounded
results less than NORM.MIN to ZERO.

Systems implementing gradual underflow with the ADSP-3201/
3202 must treat the multiplication of operands that include a
denormal as an exception to normal process flow. FAST should
be LO on all chips. See the section below, “Gradual Underflow
and IEEE Exceptions,” for a fuller discussion of the details of
implementing an IEEE system with this chipset.

RESET CONTROL (ASYN)

The asynchronous, active LO RESET control clears all control
functions in the ADSP-3201/3202. RESET should be asserted
on power up to insure proper initialization. RESET will abort
any multicycle operation in progress. Status flags are cleared by
RESET. No input register contents are affected by RESET;
however, the output register can be invalidated if RESET is
asserted LO during a multicycle operation. All load selection
controls (SELA/B) must be LO at RESET.

PORT CONFIGURATION - IPORT CONTROLS (ASYN)
This chipset offers several options on its input port configuration.
The options are controlled by the two asynchronous lines,
IPORTO:1. They are intended to be hardwired to the desired
port configuration. If the user wants to change the port config-
uration under microcode control, the timing requirements of
Figure 14 must be met.

The first and last configurations in Figure 13 are called “two-port”
configurations; the middle pair, “one-port” configurations.
Whether an input register loads its data on a rising or falling
clock edge will depend in general on whether the chip is wired
in a one-port or two-port configuration.

In one-port configurations, the unused port effectively becomes

a no-connect, reducing the number of external buses required to
operate these chips. The full pipelined throughput can be main-
tained for the Multiplier and the ALU in the one-port configuration
for all 32-bit operations.

IPORT1 |IPORT0 | PORT CONFIGURATION

AIN BIN

two
port

I

[A registers] [B registers]

AIN BIN

one
port

|

[A registers] [B registers]|

AIN BIN

[

[A registers| [B registers]

one
port

AIN BIN
two

port
[A registers] [B registers]

Figure 13. ADSP-3201/3202 Input Port
Configurations

The port configuration of the ADSP-3201/3202 can be changed
under microcode control. However, as described in the section
below, “Input Register Loading”, the selected port configuration
affects whether a given register loads on rising or falling clock
edges. The transition between port configurations can cause
inadvertent data loads, destroying data held in input registers.
Therefore, all input registers must be deselected for data loading
(all SELA/B controls must be held LO throughout the period
when IPORTO:1 are changing; see “Input Register Loading”)
during both the cycle in which IPORT bits are changed and the
cycle following:

Change

IPORT bits
old port here new port

configuration /’J\ configuration
CLK | I

bt ot

All Al Resume
SEL SEL normal
Lo L0 data loading

Figure 14. Timing Requirements for Changing the
ADSP-3201/3202 Input Port Configurations

Thus, data loading will be interrupted for two cycles whenever

changing the ADSP-3201/3202’s port configuration. All other
processing is unaffected.

FLOATING-POINT COMPONENTS 4-13

INPUT REGISTER LOADING AND OPERAND
STORAGE - SELA/B CONTROLS (LAT)

The chipset’s 32-bit input registers are selected for data loading
with the latched Load Selection Controls, SELA/B0:3. Since
each input register has its own control, the Load Selection Controls
are independent of one another. Multiple registers can be selected
for parallel loads of the same input data, if desired. The Load
Selection Controls’ effects on data loading are summarized:

register
SEL control | loaded
SELAO A0
SELA1 Al
SELA2 A2
SELA3 A3
SELBO BO
SELB1 B1
SELB2 B2
SELB3 B3

Figure 15. ADSP 3201/3202 Load Selection Controls

Restrictions on Register Loading

Input port configuration affects whether input registers load
data on rising or falling edges. Devices in one-port configurations
load A registers on rising edges and B registers on falling edges.
Devices in two-port configurations load even-numbered registers
on rising edges and odd-numbered registers on falling edges
(which is typically simpler to implement). Devices in the two-port
configuration load data:

A0 A1 B0 B1
L v | [v]
A2 A3 B2 B3

L4 v | [

Figure 16. ADSP-3201/3202 Clock Edge for Data Loading —
Two Port Configuration

Eight-register devices (ADSP-3201/3202) in the one-port config-
uration load data to A registers on the rising edge and B registers
on the falling edge:

A0 A1 B0 B1

L1] [[% |

A2 A3 B2 B3

I I O B 2 B

Figure 17. ADSP-3201/3202 Clock Edge for Data Loading -
One Port Configuration

Restrictions on Register Storage

For single-precision and fixed-point data, any convenient register
can be used. The only restriction is that the register being loaded
is not currently in use by the chip’s processing elements. For all
single-precision Multiplier and most ALU operations, input
registers are only read into the computational circuits for one
cycle. Do not load a register for 32-bit operations on the clock’s
falling edge when that register has been selected to feed the
chips processing circuits in that same cycle (with the RDA/B
controls described in “Input Data Read Selection”). Pick a
register not in use.

The ADSP-3202 ALU is capable of two multicycle operations:
IEEE floating-point division and square root. For single-precision
floating-point division, the dividend can be stored in any A
register and the divisor can be stored in any B register. Single-
precision operands for IEEE square root can be stored in any B
register. The registers selected to the computational circuits for
these operations must be stable until the end of the operation
time. (See “Timing” and the timing diagrams below for a precision
definition of “operation time.”)

DATA FORMAT SELECTION - SP CONTROL (REG)
The two data formats processed by the ADSP-3201/3202 chipset
are single-precision floating-point and fixed. With the ADSP-3201
Multiplier, the data format is indicated explicitly by the states
of the SP registered control:

SPiData Format Selection
0 fixed
1 single-precision

Figure 18. ADSP-3201 Multiplier Data Format Selection

The state of the SP control at the rising edge when data is read
into the Multiplier Array determines whether the data is interpreted
as single-precision floating-point or fixed-point. Once initiated,
the state of SP doesn’t matter until the next data is read to the
processing circuitry.

For the ADSP-3202 ALU, data format selection is implicit in
the ALU instruction, Ig o. (See “ALU Operation” section
below.)

INPUT DATA REGISTER READ SELECTION -

RDA/B CONTROLS (REG)

The Register Read Selection Controls, RDA/BO:1, are registered
controls and select the input registers that are read into the
chipset’s processing circuitry. Any pair of input registers can be
read into the processing circuitry. (For single-operand operations,
the state of the Selection controls for the unused register bank
doesn’t matter.) Data loaded to an input register on a rising
edge can be read into the processing circuitry on that same edge
(“direct operand feed”).

For the ADSP-3201/3202, register read selection is defined:

SP & Fixed: SP & Fixed::

A register B register ;

RDA1{RDAO | selected RDB1:RDBO selectedwi
0 0 A2 0 0 B2 i
0 1 A3 0 1 B3 ;

1 0 A0 1 0 BO ‘

1 1 A1 1 14 B1

Figure 19. ADSP-3201/3202 Input Register Read

Selection

4-14 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

After the initiation of multicycle operations, the RDA/B controls
are ignored. The chips themselves take over the sequencing of
register read selection until the multicycle operation is
completed.

ABSOLUTE VALUE CONTROLS - ABSA/B (REG)

The registered Absolute Value Controls convert an operand
selected by the Read Selection Controls to its absolute value
before processing. Asserting ABSA (HI) causes the A operand
to be converted to its absolute value; asserting ABSB (HI) causes
the B operand to be converted to its absolute value. The contents
of the input registers remain unaffected.

With the ADSP-3202 ALU, the ABSA/B controls are effective
with most fixed-point and all single-precision operations. If the
ABSA/B controls are asserted in logical operations, the results

will be undefined.

For the ADSP-3201 Multiplier, the absolute value operation is
available on single-precision floating point operands only. If the
ABSA/B controls are asserted with a Multiplier for a fixed-point
operation, the results will be undefined.

WRAPPED INPUT CONTROLS - WRAPA/B (REG)

(and INEXIN and RNDCARI on the ADSP-3202)

The ADSP-3201 cannot operate directly on denormals; denormals
to be multiplied must first be converted by an ALU to the
“wrapped” format. (See “Gradual Underflow and IEEE Excep-
tions” below). The Multiplier must be told that an input is in
the wrapped format so that its exponent can be interpreted
properly as a twos-complement number.

The registered WRAPA/B controls inform a Multiplier that a
wrapped number has been selected as an operand (RDA/B controls)
to the multiplier array. WRAPA indicates (HI) that the selected
A register contains a wrapped number; WRAP B, that the selected
B register contains a wrapped number.

The ALU in general operates directly on denormals and hence
don’t need a similar set of controls. However, for ADSP-3202
IEEE division and square root operations, the ALU cannot
operate directly on denormals. Like the Multiplier, it needs
denormals to be converted to wraps before processing. To indicate
that the dividend in the A register is a wrapped, INEXIN should
be asserted (HI) exactly as WRAPA would be asserted on the
Multiplier. To indicate that either the divisor in a B register or
a square root operand in a B register is a wrapped, RNDCARI
should be asserted (HI). Except for unwrap, division, and square
root operations, both INEXIN and RNDCARI should be held
LO.

TWOS-COMPLEMENT INPUT CONTROLS -

TCA/B (REG)

The registered ADSP-3201’s Twos-Complement Input Controls
inform the Multiplier to interpret the selected fixed-point inputs

in the twos-complement data format. (See “32-Bit Fixed-Point
Data Formats” above.) TCA HI indicates that the selected A
register is twos-complement; TCB HI indicates a twos-complement
B register. A LO value on either control for fixed-point multi-
plication indicates that the selected input is in unsigned-magnitude
format. Mixed-mode (twos-complement times unsigned-mag-
nitude) multiplications are permitted. The TCA/B controls are
operative in fixed-point mode only; in floating-point mode, they
are ignored.

ROUNDING - RND CONTROLS (REG)

For floating-point operations, the ADSP-3201/3202 chipset
supports all four rounding modes of IEEE Standard 754. These
are: Round-to-Nearest, Round-toward-Zero, Round-toward-Plus-
Infinity, and Round-toward-Minus-Infinity. For fixed-point
operations, two rounding modes are available: Round-to-Nearest,
and Unrounded.

Rounding is involved in all operations in which the precision of
the destination format is less than the precision of the intermediate
results from the operation. Multiplications internally generate
twice as many bits in the intermediate result significand as can
be stored in the destination format. Data conversions to a desti-
nation format of lesser precision than the source also always
force rounding unless the source value fits exactly.

Rounding with the ADSP-3201/3202 chipset is controlled by a
pair of pipelined, registered round controls, RNDO:1. They
should be setup with the input data whose result is to be rounded.
Rounding is performed in the last stage of processing; the Output
Register always contains rounded results. The effects of the
Round Controls are defined in Figure 20.

The four floating-point modes of the IEEE Standard can be
summarized as follows. In all cases, if the result before rounding
can be expressed exactly in the destination format without loss
of accuracy, then that will be the destination format result,
regardless of specified rounding mode.

Round-toward-Plus-Infinity (RP): “When rounding toward

+ o, the result shall be the format’s value (possibly +) closest
to and no less than the infinitely precise result.” (Std 754-1985,
Sec. 4.2) If the result before rounding (the “infinitely precise
result”) is not exactly representable in the destination format,
then the result will be that number which is nearer to positive
infinity. Round-toward-Plus-Infinity is available in floating-point
operations only. If the result before rounding is greater than
NORM.MAX but not equal to Plus Infinity, the result will be
Plus Infinity. If the result before rounding is less than
—NORM.MAX but not equal to Minus Infinity, the result will
be —NORM.MAX. For fixed-point destination formats, the
results of RP are undefined.

Mnemonic | RND1/RNDO| Floating-Point Fixed-Point
RN 0 0 g Round-to-Nearest Round-to-Nearest
RZ 0 1 i Round-toward-Zero Unrounded
RP 1 0 Round-toward-Plus-Infinity illegal state
RM 1 1 Round-toward-Minus-Infinity illegal state

Figure 20. Round Controls

FLOATING-POINT COMPONENTS 4-15

Round-toward-Minus-Infinity (RM): When rounding toward

— o, the result shall be the format’s value (possibly —) closest
to and no greater than the infinitely precise result.” (Std 754-1985,
Sec. 4.2) If the result before rounding is not exactly representable
in the destination format, the result will be that number which
is nearer to Minus Infinity. Round-toward-Minus-Infinity is
available in floating-point operations only. If the result before
rounding is greater than NORM.MAX but not equal to Plus
Infinity, the result will be NORM.MAX. If the result before
rounding is less than — NORM.MAX but not equal to Minus
Infinity, the result will be Minus Infinity. For fixed-point desti-
nation formats, the results of RM are undefined.

Round-toward-Zero and Unrounded (RZ): “When rounding
toward 0, the result shall be the format’s value closest to and no
greater in magnitude than the infinitely precise result.” (Std
754-1985, Sec. 4.2) If the result before rounding is not exactly
representable in the destination format, the result will be that
number which is nearer to zero. The Round-toward-Zero operation
is available in floating-point operations only. It is equivalent to
truncation of the (unsigned-magnitude) significand. If the result
before rounding has a magnitude greater than NORM.MAX but
not equal to Infinity, the result will be NORM.MAX of the
same sign.

For fixed-point destination formats, the RZ mode is Unrounded.
For fixed-point operations, RZ has no effect on the result at the
Output Register and should be specified whenever unmodified
fixed-point results are desired. (Treating the unrounded Most
Significant Product as the final result and throwing away the
LSP is logically equivalent to Round-toward-Minus-Infinity for
twos-complement numbers and equivalent to Round-toward-Zero
[truncation] for unsigned-magnitude numbers.)

Round-to-Nearest (RN): When rounding to nearest, “the repre-
sentable value nearest to the infinitely precise result shall be
delivered; if the two nearest representable values are equally
near, the one with its least significant bit zero shall be delivered.”
(Std 754-1985, Sec. 4.1) If the result before rounding is not

- NORM.MAX

exactly representable in the destination format, the result will be
that number which is nearer to the result before rounding. In
the case that the result before rounding is exactly half way between
two numbers in the destination format differing by an LSB, the
result will be that number which has an LSB equal to zero.If
the result before rounding overflows, i.e., has a magnitude
greater than or equal to NORM.MAX + 1/2LSB in the destination
format, the result will be the Infinity of the same sign.

Round-to-Nearest is available in both floating-point and fixed-
point operations. In fixed-point, Round-to-Nearest treats the
Most Significant Product after having been shifted in accordance
with SHLP (see Figures 8, 9, 11, and 12) as the destination
format.

The four rounding modes are illustrated by number lines in
Figure 21. The direction of rounding is indicated by an arrow.
Numbers exactly representable in the destination format are
indicated by “*”s. In subdividing the number lines, square
brackets are inclusive of the points on the line they intersect.
Note that brackets intersect points representable in the destination
format except for Round-to-Nearest, where they intersect the
line midway between representable points. Slashes are used to
indicate a break in the number line of arbitrary size.

Note that Round-to-Nearest is unique among the rounding
modes in that it is unbiased. The large-sample statistical mean
from a set of numbers rounded in the other modes will be displaced
from the true mean. The other three modes will exhibit a large-
sample statistical bias in the direction of the rounding operation
performed.

STATUS FLAGS

The ADSP-3201/3202 chipset generates on dedicated pins the
following exception flags specified in the IEEE Standard: Overflow
(OVRFLO), Underflow (UNDFLO), Inexact Result (INEXO),
and Invalid Operation (INVALOP). The IEEE exception condi-
tion Division-by-Zero is flagged by the simultaneous assertion of
both OVRFLO and INVALOP pins. The five IEEE exceptions
are defined in accordance to the default assumption of Std 754
of nontrapping exceptions.

NORM.MAX

B WL VEPEUE UCUE BE vis W

Round to Plus Infinity (RP)

— NORM.MAX
—00

R e e A e

NORM.MAX
400

Round to Minus Infinity (RM)

— NORM.MAX

NORM.MAX

B S DEDE PSS IS sl S

Round to Zero (RZ)

— NORM.MAX

—00
LSB=0 LSB=1

LSB=1 LSB=0 LSB=1

NORM.MAX

poft00

LSB=1 LSB=0

Round to Nearest (RN)
(for RN, brackets intersect at mid-points between LSBs)

Figure 21. IEEE Rounding Modes

4-16 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

These four flag results are registered in the Status Output Register
when the results they reflect are clocked to the Output Register.
They are held valid until the next rising clock edge. The IEEE
Standard specifies that exception flags when set remain set until
reset by the user. For full conformance to the standard, the
status outputs from this chipset should be individually latched
externally.

Denormal Input

In addition to the IEEE status flags, the ADSP-3201 Multiplier
has a DENORM output flag that signals the presence of a de-
normalized number at one of the input registers being read into
the multiplier array. This denormal must be wrapped by the
ALU before the Multiplier can read it. To minimize the system
response time to a denormal input exception, the DENORM
flag comes out earlier than the associated IEEE status flags.
DENORM is normally in an indeterminate state. For single-
precision multiplications, DENORM goes HI during the cycle
after a denormal was read into the array (with the RDA/B controls).
(See Figure T4.) The Multiplier produces ZERO results under
these conditions. The DENORM flag is asserted in both IEEE
and FAST modes.

Some multiplications with denormal operands do not require
wrapping and therefore do not cause the assertion of the DENORM
flag. These are DNRM*ZERO, DNRM-INF, and DNRM-NAN.
Multiplication of a finite number by zero always yields zero —
the result the Multiplier will produce anyway — so there is no
need to signal an exception. Any finite number multiplied by
INF should yield INF, and the ADSP-3201 Multiplier will
produce this result with a DNRM operand, hence no wrapping
is required. And multiplication of any number by a NAN produces
a NAN (and the INVALOP flag); no wrapping is necessary for
the Multiplier to produce this correct IEEE result.

Note that the ALU in general operate directly on denormals and
therefore do not flag any exception. The ADSP-3202 ALU,
however, cannot operate directly on denormals in its division
and square root operations. For these operations, denormal
inputs will cause the simultaneous assertion of UNDFLO and
INVALOP in IEEE mode. For divisions, INEXO HI indicates
that the dividend is a DNRM; INEXO LO indicates that the
divisor or both operands are DNRMs. In FAST mode, only
INVALOP will be asserted. This denormal exception information
becomes available with the status outputs, i.e., at the end of an
attempted multicycle division or square root. In both modes for
both division and square root, a properly signed all-ones NAN
will be produced.

Invalid Operation and NAN Results

INVALOP is generated whenever attempting to execute an
invalid operation, as defined in Std 754 Section 7.1. The IN-
VALOP output is also used in conjunction with other pins to
indicate the Division-by-Zero exception and denormal divisor or
dividend. The default nontrapping result is required to be a
quiet NAN. Except when passing a NAN with PASS or copying
a sign bit to a NAN, the ADSP-3201/3202 chipset will always
produce a NAN with an exponent and fraction of all ones as a
result of an invalid operation.

Conditions that cause the assertion of INVALOP are:

® NAN input read to computational circuitry (except for logical
PASS)

® Multiplication of either +INF by either + ZERO

o In FAST mode, multiplication of either +INF by either
+ DNRM

® Subtraction of liked-signed INFs or addition of opposite-signed
INFs

@ Conversion of a NAN or INF to fixed-point

® Wrapping an operand that is neither a denormal nor ZERO

® Division of either = ZERO by either = ZERO or of either
+INF by either + INF

® Attempting the square root of a negative number

@ In conjunction with OVRFLO, the Division-by-Zero
exception

o In FAST mode, a denormal divisor or dividend. In IEEE
mode, in conjunction with UNDFLO, a denormal divisor or
dividend

® In conjunction with UNDFLO, a denormal input operand to
square root.

Division-by-Zero

The Division-by-Zero exception is generated whenever attempting
to divide a finite nonzero dividend by a divisor of zero (Std 754
Section 7.2). The Division-by-Zero exception is indicated on the
ADSP-3202 ALU by the simultaneous assertion of both OVRFLO
and INVALOP. The ALU result is always a correctly signed
INF.

Overflow

OVRFLO is generated whenever the unbounded (i.e., supposing
hypothetically no bounds on the exponent range of the result),
post-rounded result exceeds in magnitude NORM.MAX in the
destination format, as defined in Std 754 Section 7.3. Note that
the overflow condition can occur both during computations and
during data format conversions. The result will be either +INF
or * NORM.MAX, depending on the sign of the result and the
operative rounding mode. (See “Rounding — RND Controls”
above.) The OVRFLO pin is also used to signal additional
exception conditions.

Conditions that cause the assertion of OVRFLO are:

® Unbounded, post-rounded result exceeds destination format
in computation or conversion

@ In conjunction with INVALOP, the Division-by-Zero exception
on the ADSP-3202 ALU

® Comparison when operand A is greater than operand B

o Exponent subtraction when the resultant exponent is more
positive than can be represented in the destination format

o Twos-complement fixed-point additions and subtractions that
overflow.

Note that OVRFLO is always LO when the ADSP-3201 Multiplier
is in fixed-point mode.

Underflow

Underflow is defined in four ways in Std 754 Section 7.4. The
IEEE Standard allows the implementer to choose which definition
of underflow to use and provides no guidance. The first option
is whether to flag underflow based on results before or after
rounding. Consistent with the definition of overflow, underflow
is always flagged with this chipset based on results after rounding
(except for the operations of conversion from floating-point to
fixed-point and logical downshifts). Thus, a result whose infinitely
precise value is less than NORM.MIN yet which rounds to
NORM.MIN will not be considered to have underflowed.

The second option is how to interpret what the Standard calls
an “extraordinary loss of accuracy.” The first way is in terms of
the creation of nonzero, post-rounded numbers smaller in mag-
nitude than NORM.MIN. The second way is in terms of loss of

FLOATING-POINT COMPONENTS 4-17

accuracy when representing numbers as denormals. With the
ADSP-3201/3202 chipset, the conditions under which UNDFLO
is asserted depend on whether the chip in question can generate
denormals in its current operating mode. If the chip cannot
generate denormals, the definition in terms of numbers smaller
in magnitude than NORM.MIN will apply; if it can generate
denormals, the definition in terms of inexact denormals will
apply. Thus, which definition applies will depend on whether
chipset is operating in IEEE or FAST mode, whether the result
is generated by a Multiplier or an ALU, and whether the operation
is division or not.

With the ADSP-3201 Multiplier, UNDFLO is generated whenever
the unbounded, post-rounded, nonzero result is of lesser mag-
nitude than NORM.MIN in the destination format, both in
FAST and IEEE modes. In FAST mode, the data result will be
ZERO; in IEEE mode, the data result will be in the wrapped
format. An exact ZERO result will never cause the assertion of
UNDFLO.

With the ADSP-3202 ALU in the FAST mode, UNDFLO is
also generated whenever the unbounded, post-rounded, nonzero
result is of lesser magnitude than NORM.MIN in the destination
format for standard ALU operations as well as for division and
square root. For FAST mode underflows, the ALU result will
always be ZERO. The only exception to this rule is for sums of
and differences between DNRMs; if the unbounded, post-
rounded, non-zero result of (DNRM * DNRM) is of lesser
magnitude than NORM.MIN in FAST, then UNDFLO will
not be set. The ALU result will still be ZERO.

With the ADSP-3202 ALU in IEEE mode, UNDFLO is generated
(except for divisions) whenever the unbounded, infinitely precise
(i.e., supposing hypothetically no bounds on the precision of the
result), post-rounded result is a denormal and does not fit into
the denormal destination format without a loss of accuracy. In
other words, UNDFLO will be generated whenever an inexact
denormal result is produced. (See “Inexact” below.) If the result
is a denormal and does fit exactly, neither UNDFLO nor INEXO
will be asserted. Note that additions, subtractions, and compari-
sons cannot generate this underflow condition (since no operand
contains significant bits of lesser magnitude than DNRM.MIN).
IEEE-mode ALU underflow exceptions occur only during con-
versions and divisions.

The division operation is treated like a multiplication operation
in IEEE mode rather than an ALU operation in the definition
of underflow. A quotient from division smaller in magnitude
than NORM.MIN will always be flagged as underflowed with
the ADSP-3202 ALU. The data result will be in the wrapped
format. Note that V(DNRM.MIN)=NORM.MIN. Therefore,
square root will never underflow with operands greater than or
equal to DNRM.MIN.

Conditions that cause the assertion of UNDFLO are:

® With the ADSP-3201 Multiplier, whenever the unbounded,
post-rounded, nonzero result is of lesser magnitude than
NORM.MIN in the destination format

® With the ADSP-3202 ALU in the FAST mode, whenever the

unbounded, post-rounded, nonzero result is of lesser magnitude

than NORM.MIN in the destination format

With the ADSP-3202 ALU in IEEE mode, whenever an

inexact denormal is produced or whenever the unbounded,

post-rounded, nonzero quotient from division is of lesser

magnitude than NORM.MIN in the destination format

@ Conversions to integer if the magnitude of the floating-point
source before rounding is less than one

® Comparison when operand A is less than operand B

@ Attempting to wrap a ZERO

4-18 FLOATING-POINT COMPONENTS

o Unwrapping if there is a loss of accuracy

® Exponent subtraction when the resultant exponent is more
negative than can be represented in the destination format

® Logical downshift that before rounding would have shifted all
bits out of the destination format

® In conjunction with INVALOP, a denormal divisor or
dividend

® A quotient from division less than NORM.MIN

® In IEEE mode, in conjunction with INVALOP, a denormal
input operand for square root.

Inexact

The inexact exception is defined in Std 754 Section 7.5 as the
loss of accuracy of the unbounded, infinitely precise result when
fitted to the destination format. It is signalled on the ADSP-3201/
3202 chipset by INEXO.

For fixed-point operations, the ADSP-3201 Multiplier will assert
INEXO HI if and only if any of the least-significant 32-bits of
the pre-rounded 64-bit product are ones. It never asserts INEXO
for logical operations. The ADSP-3202 ALU never asserts INEXO
for fixed-point or logical operations.

In an ADSP-3202 division operation, either a denormal divisor
or a denormal dividend will cause the simultaneous assertion of
UNDFLO and INVALOP. INEXO will, in that context, signal
which of the two was the denormal: INEXO LO indicates that
the divisor is a denormal; INEXO HI indicates that the dividend
is a denormal.

Conditions that cause the assertion of INEXO are:

® Loss of accuracy when fitting result to destination format

@ For fixed-point operations, the prerounded multiplier 64-bit
product contains ones in the least-significant 32-bits

e In IEEE mode, in conjunction with both UNDFLO and
INVALOP, dividend is a denormal (HI) or divisor is a denormal
or both are denormals (LO).

Less Than, Equal, Greater Than, and Unordered

For comparison operations in the ALU, the OVRFLO, UNDFLO,

and INVALOP status outputs are used to indicate the four

comparison conditions of IEEE Std 754, Section 5.7. They are

defined as follows:

® “Less than” is signalled by the assertion of UNDFLO (while
OVRFLO is LO)

o “Equal” is signalled by not asserting either OVRFLO or
UNDFLO (i.e., both LO)

® “Greater than” is signalled by the assertion of OVRFLO
(while UNDFLO is LO))

® “Unordered” is signalled by the assertion of INVALOP,
caused by attempting a comparison with at least one NAN
operand.

The data result from a comparison operation is identical to
subtracting operand B from operand A. See Tables VIII
and IX.

In IEEE comparisons, the data types are always ordered in
ascending sequence: —INF, —NORM, —DRNM, ZERO,
DNRM, NORM and INF. Comparisons between like signed
INFs will generate the “Equal” status condition. Comparisons
between signed ZEROs will also generate the “Equal” status.
Any comparison to a NAN will also cause INVALOP and produce
an all-ones NAN. Even in FAST mode, DNRMs will be compared
based on their true value (rather than all being treated as
ZEROs).

Special Flags for Unwrapping
The ADSP-3201 generates a Round Carry Propagation Out flag,

ADSP-3201/ADSP-3202

RNDCARO, that indicates whether or not a carry bit propagated
into the destination formats fraction during the Multipliers
floating-point rounding operation. The rounding that the Multi-
plier does in creating the wrapped or unnormal result may cause
a carry bit into the LSB in the destinations formats fraction.
This rounding position will not in general be correct for a properly
rounded denormal. Thus, when the underflowed Multiplier
result is unwrapped to a denormal, the ALU has to undo the
Multipliers rounding and re-round to achieve the properly rounded
denormal.

To do this, the ALU has to know if any carry bits in the Multiplier’s
rounding operation propagated into the fraction of the result.
This information 1s provided in the Multiplier’s RNDCARO
flag. The ALU also needs to know if the Multiplier’s rounded
result caused a loss of accuracy when expressed in its destination
wrapped format, indicated by the Multiplier’s Inexact Result
(INEXO) flag.

The ADSP-3202 ALU has a corresponding pair of flag status
input pins: Round Carry Propagation In (RNDCARI) and Inexact
Data In (INEXIN). In an unwrap operation, these flags are
used by the ALU when converting from a WNRM to a DNRM
to obtain the properly rounded result. RNDCARI and INEXIN
should be setup to the ALU with the instruction for the unwrap
operation. Both Multiplier and ALU must be using the same
rounding mode.

The ADSP-3202 ALU itself generates WNRM:s in underflowed
division operations. These WNRMs must be fed back to the
ALU to be unwrapped to DNRMs. The ADSP-3202, unlike the
Multiplier, does not have a RNDCARO pin to signal whether
or not a carry bit propagated into the destination format on
rounding. For this reason, WNRMs produced by the ADSP-3202
ALU in division are rounded differently than they are on the
Multiplier; underflowed (only) quotients are always truncated
(Round-toward-Zero) to the destination wrapped format. Hence
there is no carry bit propagation. When unwrapping a WNRM
produced in division, RNDCARI should always be held LO.
INEXIN should reflect the status of INEXO when the ALU
produced the underflowed wrapped quotient.

The ADSP-3202 ALU also uses the RNDCARI and INEXIN
pins to indicated wrapped A and B operands, respectively, to
division and square root operations. Both RNDCARI and INEXIN
should be held LO except for unwrap, division, and square root
operations.

INSTRUCTIONS AND OPERATIONS

The ADSP-3201 Multiplier executes the same instruction every
cycle: multiply. It need not be specified explicitly in microcode.
The data format of resuits and status flags from multiplication
are shown in Tables VI and VII.

Denormal input operands will generally cause the DENORM
exception (see “Status Flags” above) and correctly signed ZERO
results. FAST mode suppresses the DENORM exception. In
either FAST or IEEE, DNRM*ZERO will be ZERO without
exception. DNRMCINF will be a correctly signed INF without
exception in IEEE mode and a NAN and INVALOP in FAST
mode. DNRM*NAN will be a correctly signed NAN with IN-
VALOP asserted. The sign bit of the NAN generated from any
invalid operation will depend on the operands. (The IEEE Standard
does not specify conditions for the sign bit of a NAN.) On the
ADSP-3201 Multiplier, the sign of a NAN result will be the
exclusive OR of the signs of the input operands.

The product of INF with anything except ZERO or NAN is a
correctly signed INF. INFZERO will cause INVALOP and
yield a NAN. NAN times anything will also cause INVALOP
and yield a NAN.

The ADSP-3202 ALU, in contrast to the Multiplier, is instruction-
driven with the operation specified by Is . The ALU instructions
fall into three categories: Fixed-Point, Logical, and Single-
Precision Floating-Point. Instructions are summarized in

Tables III through V and described below. The data format of
results and status flags from the various ALU operations are
shown in Tables VIII and IX. Division is shown in Tables X
and XI; square root in Table XII. Conversions from single-
precision floating-point to two-complement integer are illustrated
in Table XIII.

The ADSP-3202 Fixed-Point Arithmetic Operations are:

Mnemonic Instruction (Ig_o) Description

Is Is_3 I o
IADD 001 000 011 Fixed-point A+ B
ISUBB 001 001 011 Fixed-pointA - B
ISUBA 001 000 111 Fixed-pointB — A
IADDWC 001 010 011 Fixed-point A + B with carry
ISUBWBB 001 011 011 Fixed-point A — B with borrow
ISUBWBA 001 010 111 Fixed-point B — A with borrow
INEGA 001 000 101 Fixed-point —A. ABSA/B must be LO.
INEGB 001 001 010 Fixed-point —B. ABSA/B must be LO.
IADDAS 001 100 011 Fixed-point |A + B|
ISUBBAS 001 101 011 Fixed-point |A — B| ABSA/B must be LO.
ISUBAAS 001 100 111 Fixed-point B — A| ABSA/B must be LO.

Table lll. ADSP-3202 Fixed-Point ALU Operations

FLOATING-POINT COMPONENTS 4-19

The ADSP-3202 Logical Operations are:

Mnemonic Instruction (Is_o) Description
Is s Iss Lo
COMPLA 000 000 101 Ones-complement A
COMPLB 000 001 010 Ones-complement B
PASSA 000 000 001 Pass A unmodified. Set no flags.
PASSB 000 000 010 Pass B unmodified. Set no flags.
AANDB 000 010 010 Bitwise logical AND
AORB 000 100 010 Bitwise logical OR
AXORB 000 110 010 Bitwise logical XOR
NOP 000 000 000 Nooperation. Preserve status flags and Output contents.
CLR 100 000 000 Clear all status flags. Data register contents are unaffected.

Table IV. ADSP-3202ALU Logical Operations

The ADSP-3202 Single-Precision Floating-Point Operations are:

Mnemonic Instruction (Is o) Description
Iy s Is s Lo
SADD 111 000 011 SPFligPt (A +B)
SSUBB 111 000 111 SP FligPt (A —-B)
SSUBA 111 001 011 SPFltgPt(B—A)
SCOMP 1 001 111 SP FligPt comparison of A to B. Resultis (A —B)

Greater Than=OVRFLO HI
Equal=(OVRFLO LO & UNDFLOLO)
Less Than=UNDFLO HI
Unordered=INVALOP HI

SADDAS 011 000 011 SPFligPt|A +B|

SSUBBAS 011 000 111 SPFligPt|A - B|

SSUBAAS 011 001 011 SPFligPt|B—A|

SFIXA 011 001 101 Convert SP FligPt A to twos-complement Integer

SFIXB 011 001 110 Convert SP FligPt B to twos-complement Integer

SFLOATA, 011 100 101 Convert twos-complement integer A to SP FltgPt

SFLOATB 011 100 110 Convert twos-complement integer B to SP FltgPt

SPASSA 011 110 001 Pass SP FligPt A. NANSs cause INVALOP.

SPASSB 011 110 010 Pass SP FligPt B. NANs cause INVALOP.

SWRAPA 011 100 001 Wrap SPDNRM A to SP WNRM

SWRAPB 011 100 010 Wrap SP DNRM B to SP WNRM

SUNWRAPA 011 010 001 Unwrap SP WNRM A to SPDNRM

SUNWRAPB 011 010 010 Unwrap SP WNRM B to SP DNRM

SSIGN 011 111 101 Copy sign from SP FltgPt B to SP FltgPt A. Resultis
[sign B, exponent A, fraction A].

SXSUB 011 111 001 Subtract B exponent from A exponent. Result is

[sign A, (expt A — expt B), fraction A] for all data types.
If the unbiased exponent = + 128, INF results.
If the unbiased exponent is < — 127, ZERO results.
SITRN 011 010 101 Downshift SP FltgPt A mantissa (with hidden bit) logically by the
unbiased SP FltgPt B exponent to a 32-bit
unsigned-magnitude integer. Use RZ only.

Use RZ only:
SDIV 011 110 111 SPFligPt(A+B)
SSQR 111 110 110 SP FltgPt VB

Table V. ADSP-3202 ALU Single-Precision Floating-Point Operations
Fixed-Point Arithmetic ALU Operations Absolute Value Controls
The negation operation is a twos-complementing of the input Absolute value controls (ABSA/B) cannot be used with all operands
operand. input to all fixed-point ALU operations. ABSA/B must be LO
The OVRFLO flags can be set by fixed-point ALU operations. for negation (INEQA/B) and absolu‘te difference (ISUBBAS/
The twos-complement data format is presumed in the definition ISUBAAS) operations, or results will be undefined. Absolute

of fixed-point overflow. value controls can be used with all other fixed-point operations.

4-20 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

Extended-Precision Fixed-Point Arithmetic

The ADSP-3202’s integer ALU operations include three operations
for extended fixed-point precision: addition with carry and two
subtractions with borrow. The carry bit generated by an addition
or subtraction is latched internally for one cycle only.

To illustrate, these instructions can be used to add two 64-bit
fixed-point numbers. The two least-significant 32-bit halves can
be added with IADD. Any carry bit generated would be latched
internally in the ADSP-3202. On the next cycle, the most-
significant 32-bit halves can be added with IADDWC, which
would also add in the carry bit from the previous operation, if
any. The two fixed-point results will be latched in the Output
Register in consecutive cycles. As with all fixed-point results,
they will appear in consecutive cycles in the most-significant
32-bits of the Output Register (bit positions 63 through 32).

Extended-precision fixed-point subtraction is exactly analogous.
The least-significant 32-bit halves can be subtracted with either
ISUBA or ISUBB. On the next cycle, the most-significant 32-bit
halves can be subtracted with either ISUBWBA or ISUBWBB.

Fixed-Point Zero and Equality Tests

The ADSP-3202 do not directly support fixed-point zero-test or
comparison operations. However, both can be accomplished
using other ALU operations. A zero-test will result from executing
a single-precision floating-point wrap instruction (SWRAPA/B)
on the fixed-point data in question. UNDFLO will be asserted
if and only if the operand is ZERO, which is bitwise equivalent
to an operand of all zero bits.

A fixed-point test for equality will result from a bitwise XOR of
A and B operands (AXORB) followed by the zero-test using
SWRAPA/B described in the previous paragraph. In this context,
UNDFLO will flag fixed-point equality.

Logical ALU Operations

The ones-complement instructions (COMPLA/B) change every
one bit in the operand to a zero bit and every zero bit in the
operand to a one bit. Ones-complementing is equivalent to a
bitwise logical NOT operation on the 32-bit operand. The pass
instructions (PASSA/B) pass all operands unmodified, including
NANSs, without signaling an INVALOP exception. PASSA/B
set no flags.

The logical AND, OR, and XOR (AANDB, AORB, AXORB)
operate bitwise on all 32-bits in their pair of operand fields to
produce a 32-bit result.

NOP will advance the ALU pipeline one cycle. Status flags and
Output Register contents will be preserved. CLR simply resets
all status flags. Note that CLR is pipelined and takes effect one
cycle after it is presented. All data register contents, including
the Output Register, remain unaffected.

Do not assert the absolute value controls (ABSA/B) with logical
operations. The results will be undefined.

Floating-Point ALU Operations

The data types and flags resulting from single-precision floating-
point additions, subtractions, comparisons, absolute sums, and
absolute differences are shown in Tables VIII and IX. The
INEXO flag is not shown explicitly in these tables (or any other)

since it may or may not be set, depending on whether the result
is inexact.

Absolute Value Controls
Absolute value controls (ABSA/B) can be used with all operands
input to all floating-point ALU operations.

Sign of NAN Results

On the ADSP-3222, the sign of a NAN resulting from any
operation (except division) involving at least one NAN operand
will be the sign which would be produced if the magnitude
portion (sign plus fraction) of the NAN operand(s) were treated
as normal numbers.

Some ALU operations with two INF inputs can cause INVALOP
and generate NANs. The assignment of sign to the NAN is
analogous to additions with signed zeros:

(£INF)+ (£INF)=(£INF)-(FINF)- = INF

(zINF)+ (FINF)=(xINF)- (= INF)-»+NAN
(RN, RZ, RP rounding modes)

(£INF) +(FINF)= (% INF) - (£ INF)-» - NAN
(RM rounding mode)

In this notation, the first line refers to either +INF + INF or
—INF - INF. The second and third lines refer to +INF—INF
or —INF +INF.

Comparisons

Comparison generates the data result, (operand A minus operand
B). The flags, however, are defined to indicate the comparison
conditions rather than the flag conditions for subtraction. Signed
INFs will be compared as expected. A NAN input to the com-
parison operation will cause the unordered flag result INVALOP)
and the production of an all-ones NAN. Even in FAST mode,
the ALU will accept denormals as inputs to the comparison
operation. See “Less Than, Equal, Greater Than, and Unordered”
in the “Status Flag” section above for a complete discussion of
these flags in comparison operations.

Conversions: Floating to Fixed

Conversions from floating-point to twos-complement integer
(SFIXA/B) are considered “floating-point™ operations, and all
four rounding modes are available. If the operand after rounding
overflows the destination format, OVRFLO will be set, and the
results will be undefined. Thus, OVRFLO for fixed-point oper-
ations is treated exactly as it is for floating-point operations.

If the nonzero operand before rounding is of magnitude less than
one, UNDFLO will be set in a conversion to integer. The mag-
nitude of the result may be either one or zero, depending on the
rounding mode. Conversion to integer is the only operation
where UNDFLO depends on the pre-rounded result. The reason
for this is that the infinitely precise result could be almost one
integer unit away from the post-rounded result, potentially a
large difference. We have chosen to flag underflow whenever
the magnitude of the source operand is less than one, thereby
alerting the user to a potentially significant loss of accuracy.

INEXO will be asserted if the conversion is inexact. NANs and
INFs will convert to a same-signed single-precision floating-point
all-ones NAN. INVALOP will be asserted. The twos-complement
integer interpretation of +NAN is full-scale positive and of
—NAN, minus one. See Table XIII for illustrations of fixing
single-precision floating-point numbers.

FLOATING-POINT COMPONENTS 4-21

Conversions: Fixed to Floating

All four rounding modes are also available for conversions from
twos-complement integer to floating-point. For conversion to
single-precision floating-point (SFLOATA/B), the numerical
result will always be IEEE normals. The only flag ever set is
INEXO. INEXO will be set if and only if the source integer
contains more than 24 bits of significance. “Significance” is
defined as follows: For positive twos-complement integers, the
number of significant bits is ([32 minus the number of leading
zeros] minus the number of trailing zeros). “Leading zeros” are
the contiguous string of zeros starting from the most significant
bit. “Trailing zeros” are the contiguous string of zeros starting
from the least significant bit. For negative twos-complement
integers, the number of significant bits is ([33 minus the number
of leading ones] minus the number of trailing zeros).

Pass

Pass instructions (SPASSA/B) pass all operands unmodified.
Unlike the PASSA/B instructions, the floating-point pass in-
structions will cause INVALOP if a NAN is passed. The NAN
will pass unmodified. INFs are passed without setting any flags.
The absolute value controls can be used with the floating-point
pass instructions to reset the unmodified NAN’s sign bit to
zero.

Wrap

Wrap instructions (SWRAPA/B) convert a denormal to a wrapped
number readable by a Multiplier or the ADSP-3202 ALU in
division and square root operations. Since the wrapped format
has an additional bit of precision (the hidden bit), all wrapping
is exact. If the operand is ZERO, then UNDFLO will be set. If
the operand is neither a DNRM nor ZERO, INVALOP will be
set.

Unwrap

Unwrapping instructions (SUNWRAP/B) convert a wrapped
number to the IEEE denormal format. After rounding, the
result may turn out to be NORM.MIN or ZERO. WRAP.MAX,
whose infinitely precise value is between NORM.MIN and
DNRM.MAX, will round to NORM.MIN or DNRM.MAX,
depending on rounding mode:

+ WRAP.MAX—-NORM.MIN (RN, RP modes)

+ WRAP.MAX—+DNRM.MAX (RZ, RM modes)
—WRAP.MAX-NORM.MIN (RN, RM modes)
~ WRAP.MAX-DNRM.MAX (RZ, RP modes).

INEXO will always be set when unwrapping WRAP.MAX. If
the unwrapping operation, after rounding, shifts all ones out of
the DNRM destination format, ZERO will result. Whenever
this happens, UNDFLO and INEXO will always both be set.

The UNDFLO condition for unwrapping is based on the IEEE
definition in terms of loss of accuracy when representing a denormal
(see “Underflow” in “Status Flags” above.) That is, UNDFLO
will only be set when the unbounded, post-rounded result cannot
be expressed exactly in the destination denormal format. UN-
DFLO will always be set in conjunction with INEXO when
unwrapping.

Inexactness can be caused by a loss of accuracy when unwrapping
the operand supplied to the ALU. The ADSP-3202 also considers
whether the multiplication, division, or square root that generated
the wrapped number caused a loss of accuracy. It determines
this information by reading the INEXIN flag input to the ALU.

The INEXIN is essential to the unwrapping operation in the
ALU. The state of INEXIN input when wrapping should reflect

4-22 FLOATING-POINT COMPONENTS

the state of INEXO when the wrapped number was generated
during multiplication, division, or square root. The ADSP-3202
uses this information to determine if the operation creating the
wrapped number was inexact. When the ADSP-3202 unwraps a
wrapped number, its INEXO will be asserted if either the originat-
ing operation or the unwrapping operation caused a loss of
accuracy.

Copy Sign

The SSIGN operation copies the sign of the B operand to the A
operand. The result is (sign B, exponent A, fraction A). Rounding
modes have no effect on this operation since the precision of the
result is exactly that of the source, i.e., all “roundings” are
exact. The only condition that generates a flag is a NAN as the
A operand; INVALOP will be set. This instruction is useful for
quadrant normalization of trigonometric functions. Trigonometric
identities allow mapping an angle of interest to a quadrant for
which lookup tables exist. SSIGN simplifies this mapping. For
example, sin (—37°) = —sin (37°). By looking up sin (37°) and
transferring the sign of the angle (—37°, the B operand) to the
value from the lookup table (0.60182, the A operand), the correct
result is obtained (—0.60182).

Exponent Subtraction

Exponent subtraction (SXSUB) subrracts the exponent of the B
operand from the A operand. The A operand is the destination
format: (sign A, [expt A — expt B], fraction A). INFs and
NAN:Ss are valid inputs to the SXSUB operation; INVALOP is
never asserted. If the unbounded result is greater than that of
NORM.MAX, INF will be produced and OVRFLO will be set.
If the unbounded result is less than that of NORM.MIN, ZERO
will be produced and UNDFLO will be set.

Exponent subtraction is useful as the first step in the Newton-
Raphson division by recursion algorithm. This operation allows
an improved implementation of this algorithm. For the details,
see the Application Note, “Floating-Point Division using Analog
Devices ADSP-3210 and ADSP-3220”, available from Analog
Devices’ DSP Applications Engineering.

Logical Downshift

The mantissa of a floating-point A operand (with hidden bit
restored) can be downshifted logically to an unsigned-magnitude
integer destination format using the SITRN operation (see Figure
22). The source mantissa is treated as a right-justified unsigned
integer. The unbiased (i.e., the “true” exponent after the bias
has been subtracted) exponent of the B operand determines the
amount of the downshift. The unbiased B exponent is interpreted
as an unsigned number which indicates how many bit positions
the mantissa should be downshifted. (A negative unbiased expo-
nent will cause a very large downshift. The mantissa will be
completely shifted out of range, and the result will be zero.)
The result will a be left-zero-filled unsigned-magnitude integer.
Like all fixed-point results, it will appear in the most significant
bit positions of the Output Register.

Logical downshift is only defined for NORMs. Results from
operands that are not normals are undefined. A NAN A-operand
input to SITRN will cause INVALOP and produce all-ones
NANS of the same sign. Round-toward-Zero (RZ) must be
specified for SITRN. Ctherwise, the result is undefined. If the
shifted result before rounding is all zeros, UNDFLO will be set.
(Actually, with RZ, the shifted result before rounding is the
same as the shifted result after rounding.) If any bits are shifted
out of the range of the destination format, INEXO will be set.

ADSP-3201/ADSP-3202

32-Bit A Register 32-Bit B Register

Ls] e |] | Ls[e | []
1. P S—
HB 23-Bit Fraction 8-Bit Biased Exponent
24-Bit Source
[_e-127 |
- Zero-Fliled N o
\un to 32-Bit Logical Downshift Shift Amount

MSW |
I 32-Bit Unsigned-Magnitude Imegcr] Output n.:uur

Figure 22. ADSP-3202 SITRN Instruction

The logical downshift operations can be useful to generate table
lookup addresses. In this application, the most-significant mantissa
bits would be used as table addresses. Because different B expo-
nents can be applied to the same A mantissa, the same datum
can be used to address multiple tables with differently sized
address fields.

Division and Square Root

The ADSP-3202 ALU support multicycle division (SDIV) and
square root (SSQR) operations. Tables X and XI illustrate the
resultant data types and status conditions for division. Table
XII serves a similar role for square root. Neither operation can
accept denormal inputs directly; they must be wrapped to the
wrapped data format first. Denormal inputs to division and
square root operations will cause the simultaneous assertion of
UNDFLO and INVALOP in IEEE mode. For divisions, INEXO
HI indicates that the dividend is a DNRM; INEXO LO indicates
that the divisor or both operands are DNRMs. In FAST mode,
only INVALOP will be asserted. In both modes for both division
and square root, a properly signed all-ones NAN will be
produced.

The square root of any non-negative normal or wrapped number
will be an IEEE normal number. The square root of a negative
number is an all-ones —NAN. The square root of +INF is
+INF without exception. The square root of a NAN is a same-
signed all-ones NAN.

Division can produce wrappeds and unnormals; these must be
passed back to the ALU for unwrapping. INF dividends cause
correctly signed INFs without flags except when the divisor is
also an INF. Either +INF divided by either =+ INF or any
NAN input will generate INVALOP and an all-ones NAN. For
ADSP-3202 division operations, the sign of the NAN will be
the exclusive OR of the signs of the dividend and the divisor.

OUTPUT CONTROL - SHLP (REG), OEN (ASYN),
MSWSEL (ASYN), and HOLD (ASYN)

Both members of the ADSP-3201/3202 chipset have a 64-bit
Output Register. The Output Registers are clocked every cycle,
except for multi-cycle operations (division and square root),
when HOLD is LO on the ADSP-3201, and when the ADSP-3202
is executing NOP. Output Registers are clocked at the conclusion
of multicycle operations and not before.

Results appear in the Multiplier’s Output Register as follows:

Bit 63 32 |31 0
SP FltgPt Product

FxdPt Most Significant Product
Figure 23. ADSP-3201 Multiplier Output Register

not meaningful
FxdPt Least Significant Product

‘When the destination format from multiplication is single-precision
floating-point, the fraction bits that are less than the least-
significant bit in the destination format are stored in the least-
significant half of the Output Register.

The Multiplier has a pipelined, registered fixed-point shift-left
control, SHLP. When HI, SHLP will cause a one-bit left shift
in the 64-bit product that appears in the Multiplier’s Output
Register. The least-significant bit in the Qutput Register will be
zero. See “32-Bit Fixed-Point Data Formats” above for more
details of the effects of SHLP. SHLP has no effect on floating-point
multiplications. Note that SHLP should be setup at the clock
edge when the multiplication operands are read into the multiplier
array.

Results appear in the ALU’s Output Registers as follows:

Bit 63 32 131 0
SP FitgPt Product

FxdPt Result
Figure 24. ADSP-3202 ALU Output Register

All members of this chipset have an asynchronous output enable
control, OEN. When HI, outputs are enabled; when LO, output
drivers at DOUTS3,_ are put into a high-impedance state. Note
that status flags are always driven off-chip, regardless of the
state of OEN. See Figure T1 for the timing of OEN.

All members of this chipset also have an asynchronous MSW
select control, MSWSEL. When outputs are enabled and
MSWSEL is HI, the most-significant half (bits 63 through 32)
of the Output Register will be driven to the output port,
DOUT3;. When outputs are enabled and MSWSEL is LO,
the least-significant half (bits 31 through 0) of the Output Register
will be driven to the output port, DOUT;3;_. The operation of
MSWSEL is illustrated in all timing diagrams where 64-bit
outputs are produced.

The ADSP-3201 Multiplier has an asynchronous, active LO
control, HOLD, that prevents the Output Register from being
updated. HOLD must be set up prior to the clock edge when
the Output Register would have otherwise been updated. See
Figure T3. For normal operations where the Output Register is
updated, HOLD must be held HI.

TIMING

Timing diagrams are numbered Figures T1 through T7. Three-
state timing for DOUT is shown in Figure T1. Output disable
time, tpys, is measured from the time OEN reaches 1.5V to the
time when all outputs have ceased driving. This is calculated by
measuring the time, tyeasured, from the same starting point to
when the output voltages have changed by 0.5V toward +1.5V.
From the tester capacitive loading, Cy , and the measured current,
i, the decay time, tpgcay, can be approximated to first order
by:

not meaningful

not meaningful

CL*0.5V

lpecay = i

from which
IS = Umeasured = IDECAY

is calculated. Disable times are longest at the highest specified
temperature.

The minimum output enable time, minimum tgna, is the earliest
that outputs begin to drive. It is measured from the control

FLOATING-POINT COMPONENTS 4-23

signal OEN reaching 1.5V to the point at which the fastest
outputs have changed by 0.1V from Vg toward their final
output voltages. Minimum enable times are shortest at the lowest
specified temperature.

The maximum output enable time, maximum tgny, is also meas-
ured from OEN at 1.5V to the time when all outputs have
reached TTL input levels (Vog or Vor). This could also be
considered as “data valid.” Maximum enable times are longest
at the highest specified temperature.

Reset timing is shown in T2. RESET must be LO for at least
trs. In addition, RESET must return HI at least tgy before the
first rising clock edge of operation. Hold timing is shown in T3.
HOLD must go LO tys before the rising edge at which the
Output Register is not updated. HOLD must also be held tyy;y
after the clock edge.

All data, registered and latched controls, and instructions shown
in T4 through T7 must be set up tps before the rising edge and
held tpy. Both input-port configurations are shown in most of
these diagrams. Data is shown loaded for minimum latency.
Other sequencing options are possible and may be more conven-
ient, depending on the system. These other options, however,
require that data be loaded to the input registers earlier than as
shown in these diagrams and not overwritten. See “Input Register
Loading and Operand Storage” above for constraints on register
loading and operand storage that must be observed.

The operation time, topp, is the time required to advance the
internal pipelines one stage. It reflects the pipelined throughput
of the device for that operation. The latency, t; op, is the time it
takes for the chip to produce a valid result at DOUT from valid
data at its input ports. (Latency is the true measure of the internal
speed of the chip.) Latency is referenced from data valid of the
earliest required input to data valid of the first 32-bit output.

The asynchronous MSWSEL control’s delay is tgno. The
maximum specification for tgno is the delay which guarantees
valid data. The minimum specification for tgno is the earliest
time after the MSWSEL control is changed that data can
change.

Status flags have a maximum output delay of tgo referenced
from the clock rising edge. All status flags except the Multiplier’s
DENORM are available in parallel with their associated output
results. DENORM is available earlier to speed up recovery from
a denormal input exception. Note that DENORM is indeterminate
(not necessarily LO) except in the cycles indicated in T4. DE-
NORM should therefore not be used by itself to externally
trigger a denormal input exception processing routine.

Note that for all operations (Figures T4 through T7) a new
operation can begin the cycle before output results and status
flags (other than DENORM) results from the previous operation
are driven off chip. This feature leads to improved pipeline
throughput.

GRADUAL UNDERFLOW AND IEEE EXCEPTIONS

The data types that each chip operates on directly is shown in
Figure 25.

Denormals are detected by the Multiplier when read into their
processing circuitry. The ADSP-3201 will produce a flag output,
DENORM, when one or both of the operands read into the
array are denormals. The occurrence of DENORM should trigger
exception processing. (See Status Flags above for a discussion of
DENORM and its timing.) Controlling hardware must recover
the denormal(s) that was input to a Multiplier and present it to
an ALU for wrapping.

The ADSP-3202 ALU will also detect denormals when read into
internal circuitry for division or square root operations. The

4-24 FLOATING-POINT COMPONENTS

Normals

Denormals
Normals Wrappeds'
Wrappeds Unnormals
ADSP-3201 ADSP-3202
Floating-Point Floating-Point
Multiplier ALU
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3
Unnormals*

1 for unwrapping, division, and square root

2 for unwrapping only

3 from wrapping and division

4 from division
Figure 25. Data Types Directly Supported by the
ADSP-3201/3202

UNDFLO and INVALOP flags will both be asserted on the
ADSP-3202 to signal the presence of a denormal input to these
operations. INEXO will indicate whether the denormal input is
the A operand or B operand. (See “Status Flags” above for a
fuller discussion of denormal detection in the ADSP-3202.)

The ALU wraps denormals with its SWRAP instruction. Note
from Table II that any denormal can be represented as a wrapped
without loss of precision (hence triggers no exception flags in
the ALU).

The wrapped equivalent from the ALU must now be passed to
the Multiplier for multiplication or the ADSP-3202ALU for
division or square root. The controlling system must tell the
Multiplier to interpret the wrapped input as wrapped by asserting
WRAPA/B when it is read into the Multiplier’s processing cir-
cuitry. For division and square root, the controlling system
must tell the ALU to interpret the wrapped operand A as wrapped
by asserting INEXIN when it is read into the ALUs processing
circuitry and to interpret the wrapped operand B as wrapped by
asserting RNDCARI. The result of the multiplication or division
can be a normal, a wrapped, or an unnormal (see Tables VI,
VII, X, and XI). Square root on IEEE numbers only produces
normals (see Tables VIII and IX). An underflowed result (wrapped
or unnormal) from either Multiplier or ALU will be indicated
by the UNDFLO flag and must be passed to the ALU for
unwrapping.

For full conformance to the IEEE Standard, all wrapped and
unnormal results must be unwrapped in an ALU (with the
SUNWRAP instruction) to an IEEE sanctioned destination
format before any further operations on the data. If the result
from unwrapping is a DNRM, then that data will have to be
wrapped before it can be used in multiplication, division, or
square root operations.

The reason why WNRMs and UNRMs should always be un-
wrapped upon their production is that the wrapped and unnormal
data formats often contain “spurious” accuracy, i.e., more preci-
sion than can be represented in the normal and denormal data
formats. If WNRMs or UNRMs produced by the system were
used directly as inputs to multiplication, division, or square root
operations, the results could be more accurate than, and hence
incompatible with, the IEEE Standard.

When unwrapping, additional information about underflowed
results must accompany their input to the ALU. See “Special
Flags for Unwrapping” in “Status Flags” above for details of
how INEXO and RNDCARO status flag outputs must be used
with INEXIN and RNDCARI inputs.

ADSP-3201/ADSP-3202

A final point about conformance with IEEE Std 754 pertains to
NANSs. The Standard distinguishes between signalling NANs
and quiet NANs, based on differing values of the fraction field.
Signalling NANs can represent uninitialized variables or special-
ized data values particular to an implementation. Quiet NANs
provide diagnostic information resulting from invalid data or

results. The ADSP-3201/3202 generally produce all-ones outputs
from invalid operations resulting from NAN inputs. So a system
that implements operations on quiet and signalling NANs will
have to modify the NAN output from these chips externally.
See Section 6.2 of Std 754-1985 for the details of these
operations.

B operand
ZERO DNRM WRAP NORM INF NAN
Aoperand | rocuit status | resut status | resut staus | result status result status {result status
ZERO | zERO ZERO ZERO ZERO NAN [INVALOP | NAN [INVALOP
DNRM | ZERO ZERO |DENORM | ZERO |DENORM } ZERO DENORM | INF NAN |iINvAaLOP
WRAP | ZERO ZERO |DENORM { UNRM |UNDFLO | NORM INF NAN |INvALOP
WRAP UNDFLO
UNRM UNDFLO
NORM | ZERO ZERO | DENORM | NORM INFNORMMAX ' JOVRFLO | INF NAN |INvALOP
WRAP |UNDFLO § NORM
UNRM |UNDFLO | WRAP UNDFLO
INF NAN | INVALOP{ INF INF INF INF NAN |INVALOP
NAN | NAN | INVALOPINAN |INVALOP| NAN |INVALOP | NAN INVALOP] NAN [INVALOP { NAN |INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”
Table VI. ADSP-3201 Floating-Point Multiplication
(IEEE Mode)
B operand
ZERO DNRM NORM INF NAN
Aoperand { oot stas | result status | result status result status {result status
ZERO | zemo ZERO ZERO NAN | INvALOP} NAN | iNnvALOP
DNRM | zero ZERO |DENORM | ZERO DENORM | NAN | INVALOP] NAN | INVALOP
1
NORM | 7cro ZERO |DENORM i INFNORMMAX = | OVRFLO | INF NAN | INVALOP
NORM
ZERO UNDFLO
INF NAN [INVALOP { INF |INVALOP/ INF INF NAN | INVALOP
NAN | NAN [INVALOP | NAN |INVALOP{ NAN INVALOP{ NAN | INVALOP| NAN |INVALOP

1. Either INF or NORM MAX, depending on rounding mode See “Round Controls "

2. In FAST mode, WRAP inputs are illegal

Table VIl. ADSP-3201 Floating-Point Multiplication

(FAST Mode)

FLOATING-POINT COMPONENTS 4-25

B operand

ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO | zepe? DNRM NORM INF NAN | INVALOP
DNRM | DNRM NORM INF.NORMMAX' | OVRFLO | INF NAN | INVALOP
DNRM NORM
ZERO DNRM
NORM | NORM INFNORMMAX' | ovRFLO | INFNORMMAX | OvRFLO | INF NAN | INVALOP
NORM NORM
DNRM DNRM
ZERO
INF INF INF INF |NF33 NAN | INVALOP
NAN INVALOP
NAN NAN | INVALOP | NAN INVALOP | NAN INVALOP | NAN INVALOP | NAN | INVALOP
1. Either INF or NORM.MAX, depending on rounding mode See “Round Controls "
2 (+ZERO)+ (+ ZERO) = (:ZERO)~(3ZERO) =+ ZERO
(+ ZERO)+(F ZERO) = (:ZERO)(+ZERO)=> + ZERO (RN, RZ, RP rounding modes)
(+ ZERO)+(F ZERO) = (+ZERO)}~(*ZERO)=> — ZERO (RM rounding mode)
3. (2 INF)+(INF) = @INF)~(FINF) = + INF
(+ INF)+(z INF) = (£INF)~(£INF) = +NAN (RN, RZ, RP rounding modes)
(£ INF)+(F INF) = (xINF)—(+INF) = —NAN (RM rounding mode)
4. | DNRM result 1s inexact, UNDFLO will be set.
Table VIll. ADSP-3202 Floating-Point Addition/Subtraction
(IEEE Mode)
B operand
ZERO DNRM NORM INF NAN
A operand
resuft status result status result status result status result status
ZERO | zER0® ZERO NORM INF NAN | INVALOP
DNRM | ZERO NORM INFNORMMAX | OVRFLO | INF NAN | INVALOP
ZERO NORM
ZERO UNDFLO
1
NORM | ZERO INF.NORMMAX' | OvRFLO INFNORMMAX | OVRFLO | INF NAN | INVALOP
NORM NORM
ZERO UNDFLO ZERO, UNDFLO
ZERO
INF INF INF INF 1NF33 NAN | INVALOP
NAN INVALOP
NAN NAN | INVALOP § NAN INVALOP { NAN INVALOP § NAN INVALOP NAN | INVALOP

-

. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”

2 +ZERO* ZERO = + ZERO

+ZERO ¥ ZERO= + ZERO (RN, RZ, RP rounding modes)
+ ZERO ¥ ZERO = - ZERO (RM rounding mode)

. £INF £INF = +INF

+INF ¥ INF= +NAN (RN, RZ, RP rounding modes)

+ INF ¥ INF= -NAN (RM rounding mode)
Exact result

Table IX. ADSP-3202 Floating-Point Addition/Subtraction

(FAST Mode)

4-26 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

B operand
ZERO DNRM WRAP NORM INF NAN
A operand
result status result status result status result status result status result status
ZERO NAN | INVALOP ZERO ZERO ZERO ZERO NAN | INVALOP
DNRM | INF' | ovrrLoz | Nan | unDFLO& | NAN UNDFLO | NAN UNDFLO | ZERO NAN | INVALOP
INVALOP INVALOP INVALOP INVALOP
WRAP INF1 OVRFLO& § NAN | UNDFLO& § NORM NORM ZERO NAN | INVALOP
INVALOP INVALOP WRAP UNDFLO
UNRM UNDFLO
1
NORM INF1 OVRFLO& § NAN | UNDFLO& INF.NOF!M.MAX1 OVRFLO § INF.NORM.MAX | OVRFLO } ZERO NAN | INVALOP
INVALOP INVALOP § NORM NORM
WRAP UNDFLO
UNRM UNDFLO
INF INF INF INF INF NAN | INVALOP § NAN | INVALOP
NAN NAN { INVALOP NAN | INVALOP § NAN INVALOP § NAN INVALOP § NAN | INVALOP § NAN | INVALOP

1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”

Table X. ADSP-3202 Floating-Point Division (A+B)

(IEEE Mode)
B operand
ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status

ZERO NAN | INVALOP § NAN INVALOP | ZERO ZERO NAN | INVALOP

DNRM NAN | INVALOP { NAN INVALOP { ZERO ZERO NAN | INVALOP

NORM | INF |OVRFLO& | INF OVRFLO& | INFNORMMAX |OVRFLO | ZERO NAN | INVALOP

INVALOP INVALOP { NORM
ZERO UNDFLO
INF INF INF INF NAN [INVALOP} NAN | INVALOP
NAN NAN | INVALOP | NAN INVALOP { NAN INVALOP { NAN |[INVALOP} NAN | INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”
Table XI. ADSP-3202 Floating-Point Division (A+B)
(FAST Mode)
B operand

B<ZERO +ZERO +DNRM +WRAP +NORM +INF +NAN
Mode

result status result status § result status result status § result status | result status } result status
IEEE | -NAN | INVALOP{ +ZERO +NAN UNDFLO& } NORM NORM +INF NAN | INVALOP

INVALOP

FAST | -NAN | INVALOP} +ZERO +ZERO NORM NORM +INF +NAN | INVALOP

Table XIl. ADSP-3202 Floating-Point Division Square
Root \V/B)

FLOATING-POINT COMPONENTS 4-27

Sign|HB | f22...11} f0 Unbiased Source Name Sign | 30| i29] i28| i27] i26) i25] i24] i23}i22 . i71i6]| i5] i4f i3| i2| i1| i0| Rounding Stagus Flags

3 Expnt y) Modes
0 1 X:.\ X{X|2** {128 +NAN 0 it T T{rprfrjtigal INVALOP
0 1 0. 0 J0 |2** {128 +INF 0 TV vy e .. Tjprprlryrpejrrfan INVALOP
0 1 0 .. 0]0 2% |31 U* (U|U|U|U|UujUjU U fU. vpuvjulujujuiufufal OVRFLO
0 1 ... 1}l j2** |30 0 T e jrjrjr |11 110({0f0f0j0f0]0]al
0 1 Too. 11 f2s* 123 0 0 [0]0 o [0 [0 O |1 {I. Ty rprprrnyai
0 1 0... 010 |2*~ 123 0 0100 |0 f0 jojo |1 Jo . 0]0j0]0j0]0OO0|O0}all
L] 1 oot~ 122 0 0 (0 0 jo oo jo |1 jo . 0]0j0]10]0]0}0]}0]RNRP INEXO
0 1 1o o1 f1 [2** 122 0 0 {0 {0 |0 o fo}0 (0 fI.. Tprprprprj1r]r 1 RZRM INEXO
0 1 0... 0f0¢2** 10 one 0 010 fo |0 o jo o jo [O.. 0Ojojojofojojoq1jal
0 1 1. Tl j2aee | -1 one — ILSB 0 0 {0 |0 [0 |0 |00 (O |O.. 0{010]0{0]0]|0}1}RNRP UNDFLO,INEXO
0 1 oo L1 jas* -1 one — ILSB 0 01010 0 J0 j0 |0 {0 jO.. 0(0{0{0}j0|0]0]0]RZRM UNDFLO,INEXO
[B 0... 01 j2* {1 12 +1LSB 0 o |0 (0o fo]o oo fo.. 0/0]0f0|0[0f0]|1]|RNRP UNDFLO,INEXO
0 i O... 01 f2%% {1 1/2 +1LSB 0 0 |0 fo fo fo [0]o [0 fo.. 0]10/0{0|0}0|O0]O0]|RZRM UNDFLO,INEXO
0 1 0... 010 2+ | -1} 12 0 0]0 {0 |0 |0 j0 jOo jo joO . 0j0j0}0j0}0)0}1]|RP UNDFLO,INEXO
0 1 0... 010 2%~} -1 12 0 0 {0 jo {0 o Jo jo |0 fo . 0f0Jojojojo o]0 RMRNRZ| UNDFLO,INEXO
0 1 0.. 00 f2**|-126 +NORM.MIN 0 0]0 0 |0 {0 {0 |O O fO.. ofojojojojojfo|t]RP UNDFLO,INEXO
0 1 0... 0}0 f2*|-126 +NORM.MIN [] 0 |0 {0 j0 [0 |00 O {0.. 0{0fo|oj0}O0}0{f0fRMRNRZ | UNDFLO,INEXO
[0 0... 011 j2**1-126 +DENORM.MIN | |0 010 0 |0 o jOo JO |0 fO . 0Ofojofojojo|Oo|1]|RP UNDFLO,INEXO
L] 0 0... 01 j2** | -126 +DENORMMIN | | 0 0 0 {0 {0 {0 j0 JO O |O.. 0jojojojofojo|o]RMRNRZ | UNDFLO,INEXO
0 [} 0... 010 0 +ZERO 0 0 10 0 |0 [0 [0 j0 |0 fo . ojo0jofojojofo]oal
1 0 0... 0|1 j2** | -126 -DENORMMIN | |1 ORI RN U U B 5 B O TV}l RM UNDFLO,INEXO
1 [0 .. 01 j2|-126 —DENORM.MIN | |0 0 {0 {0 |0 {0 {0 {0 {0 fO.. 0(0j0]j0O)j0f0]0]|0]}RPRNRZ UNDFLO,INEXO
1 1 0... 00 2% | -126 ~NORM MIN 1 DN R U O U B O B O Tt f1|RM UNDFLO,INEXO
1 1 0... 010 2%~ 1-126 ~NORM.MIN 0 0 |0 [0 |0 {0 |0 O O fo.. 0j0jof{0o{0|0|0]0]RPRNRZ UNDFLO,INEXO
1 1 0... 00 2%~} -1 -2 1 3 B T B 6 B BN {1111 |1{1|RM UNDFLO,INEXO
1 1 0... 00 f2** | -1 -2 0 0 {0 f0 |0 [0 {0 JO {0 fO.. 0fojojojojofofo]RPRN,RZ UNDFLO,INEXO
1 1 0... 01 2+~ |1 —1/2-1LSB 1 D1 |t 1 11 1 ji.. TPt RMRN UNDFLO,INEXO
1 1 0... 0}t 2 |- -1/2-1LSB 0 0 |0 jo |o jo jo {0 |0 jo . 0j0jc}0}j0}]0}j0)0]RPRZ UNDFLO,INEXO
1 1 Tooo b jae | -1 —one +1LSB 1 U DU DU DU B B DU DU B L1frfrj1rjurf1jt]RMRN UNDFLO,INEXO
1 1 oo, L 2%~ | -1 —one +1LSB 0 0 |0 jO |0 jO jO jO |O [O.. 0jojojojojojo|o}RPRZ UNDFLO,INEXO
1 1 0... 00 2%~ }0 —one 1 DU U O O U O B B B Tyl pirfnrfn1jan
1 1 Tooo b 2w 122 1 11§11 q1r 1 f1 1 jo.. 0]0]0]0]0}]0|0]0}RMRN INEXO
1 1 Tooo 11 ja= |22 1 |1 j1 f1 f1r {1 {1 j1 jo 0J0jojojojojo |1 §RPRZ INEXO
1 1 0... 00 2% |23 1 1 j1 1 Jr fr jrjr fr o 0jo0jo0jojofo]ofofal
1 1 oo 1 Q1 j2** §23 1 T fr dr fr 1t 1 fo jo.. ojojojfojojofoqunjal
1 1 To.o.o 1 J1 j2* |30 1 0 [0 fo {0 10 |0 |0 [0 JO.. ofojojojojoyjof1fal
1 1 0... 00 j2* 131 1 0 {0 {0 jO O O (O jO0 |O. 010f0j0}j0f0]O{0}all
1 1 0... 0 |1 j2** }31 U |(ujujujujulufuiuiu UjUjuUluUjujujUjufail
1 1 0 . 00 J2* f128 ~INF 1 1§ p1 jr jr 1 pr 1. Pirjrprprprfnfai INVALOP
1 1 X... X} X2 J128 ~NAN 1 g jrjr g qn g, Ljprjrjrjrjrjigngal INVALOP

-

(4
*“U" denotes an undefined result.

Table Xlll. Conversion of 32-Bit Single-Precision Floating- Point to 32-Bit Twos-Complement Integer

OEN OEN
A\ 1.5V L 1.5V
AN /)
Vo Vou e~
v o™ 0.5V
: v VTrlsta!e+ 0.1v
4 Tristate Vrristate™ %1V
VOL+ 0.5v »
Vv oL
oL ni < >
* toe m tena K_
Maximum t < -»>
measured ENA
Output Disable Time Measurement Output Enable Time Measurement
Figure T1. ADSP-3201/3202 Three-State Disable and Enable
Timing
CHy: g CLy <SHpiq
Clock Clock
tRS ‘t Sy,
RESET Control N) 4 HOLD Control N

Figure T2. ADSP-3201/3202 Reset Timing

4-28 FLOATING-POINT COMPONENTS

Figure T3. ADSP-3201 Multiplier Output Register Hold

Timing

ADSP-3201/ADSP-3202

Clock 0 1 2 3 4 5

SP (for SP FitgPY) :

SP (for FxdPt)

One Input-Port’
Configuration

Twozlnput-'Port
: Configuration

B"\':31-0.
RNDO:1, and
SHLP Controls
RDAO:1 Read 3
Selection Controls =

RDBO:1 Read =
Selection Controls &

MSWSEL Control :

pouT,,

DENORM Status

Output N
Status Outputs : : : : C T XK | status
(except DENORM) : : : : : DI /ANISER A

* See "Timing” section for additional sequencing options.

Figure T4. ADSP-3201 32-Bit Single-Precision Floating-
Point and Fixed-Point Multiplications

FLOATING-POINT COMPONENTS 4-29

o
-
N
w
IN
(3]

Clock

c:)ne Inbut-Pc:th

Configuration
Two Ihput-Port
Configuration
BINg, o* :
ABSA/B, RNDO:1,
INEXIN, and
RNDCARIt
RDAO:1 Read
Selection Controls
RDBO:1 Read 3
Selection Controls =
MSWSEL Control : : :
DOUT410 2 X o (A1Bi) X op (AKBKDC
e - |
S S § I
Status Outputs oo ZEX jstatus Xk status DK

* See “Timing” section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T5. ADSP-3202 32-Bit Single-Precision Floating-
Point Logical, and Fixed-Point ALU Operations

4-30 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

Clock 19 20

Two Inpui-Pod
Configuration :

BIN,, o° ‘
ABSA/B, RNDO:1, :
INEXIN,and
RNDCARIt

RDAQ:1 Read
Selection Controls =

RDBO:1 Read %=
Selection Controls +

:topp:

MSWSEL Control :

DOUT31~0

Lap

4

it

| status

Status Outputs : : : previous status =

* See “Timing" section for additional sequencing options.
1+ RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T6. ADSP-3202 32-Bit Single-Precision Floating-
Point Division — Two Input-Port Configuration

FLOATING-POINT COMPONENTS 4-31

Clock 32 33

8-0

SELB]

: Twozlnput-:Port
- Configuration

BIN, o
ABSB, RNDO:1,
INEXIN,and
RNDCARIt

RDBO:1 Read 3
Selection Controls

MSWSEL Control :

DOUT,M_0 :
: Moo -
: : : : : : : : : sl :
Status Outputs : : : : : : : : : previous status . x j status

* See “Timing” section for additional sequencing options.
1 RNDCARI! and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T7. ADSP-3202 32-Bit Single-Precision Floating-
Point Square Root — Two Input-Port Configuration

4-32 FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

Voo Voo
—_—
|NPUTcI 3—«: OUTPUT
U 1
Figure 26. Equivalent Input Circuits Figure 27. Equivalent Output Circuits
lou
T0
OUTPUT +1.5V

PIN
40pF

I

lon

Figure 28. Normal Load for ac Measurements

FLOATING-POINT COMPONENTS 4-33

SPECIFICATIONS'

RECOMMENDED OPERATING CONDITIONS

ADSP-3201/3202
Jand K Grades S and T Grades?
Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 \4
Tame Operating Temperature (Ambient) 0 +70 -55 +125 °C
ELECTRICAL CHARACTERISTICS ADSP-3201/3202
Jand K Grades S and T Grades®

Parameter Test Conditions Min Max Min Max Unit
Viu High-Level Input Voltage @ Vpp = max 2.0 2.0 \Y%
Viua High-Level Input Voltage, @ Vpp = max 2.6 3.0 v

CLK and Asynchronous Controls
Vi Low-Level Input Voltage @ Vpp =min 0.8 0.8 \'
Vou High-Level Output Voltage @Vpp=min&Ioy=—-1.0mA | 2.4 2.4 v
VoL Low-Level Output Voltage @ Vpp =min & Io;. =4.0mA 0.5 0.6 \4
Iy High-Level Input Current, @ Vpp=max & Viy=5.0V 10 10 RA

AllInputs
I Low-Level Input Current, @ Vpp=max & Viny=0V 10 10 pA

All Inputs
Ioz Three-State Leakage Current @ Vpp=max; HighZ; 50 50 pA

Vin=0V or max
Ipp Supply Current @ max clock rate; TTL inputs 150 200 mA
Ipp Supply Current-Quiescent AllViy=2.4V 50 60 mA
SWITCHING CHARACTERISTICS’
ADSP-3201/3202
J Grade K Grade S Grade? T Grade?
0to +70°C 0to +70°C ~55°Cto +125°C | —55°Cto +125°C

Parameter Min Max Min Max Min Max Min Max Unit
tcy ClockCycle 125 100 150 125 ns
tc ClockLO 20 20 30 30 ns
tcu ClockHI 20 20 30 30 ns
tps Data & Control Setup 20 15 25 20 ns
tpg Data & Control Hold 3 3 3 3 ns
tpo DataOutput Delay 30 25 35 30 ns
tso Status Output Delay 30 25 35 30 ns
teno MSWSEL-to-Data Delay 25 20 30 25 ns
tpis Three-State Disable Delay 18 15 25 20 ns
tena Three-State Enable Delay 3 25 3 20 2 30 2 25 ns
tsu RESET Setup 20 15 25 20 ns
tRs RESET Pulse Duration 50 50 50 50 ns
tys HOLD Setup 20 15 22 18 ns
tyy HOLDHold 3 3 3 3 ns
torp Operation Time

32-Bit Multiplication 125 100 150 125 ns

32-Bit ALU Operations 125 100 150 125 ns

32-Bit Division (3202) 2.0 1.6 24 2.0 s

32-Bit Square Root (3202) 3.625 2.9 4.35 3.625 | pus

4-34

FLOATING-POINT COMPONENTS

ADSP-3201/ADSP-3202

ADSP-3201/3202
J Grade K Grade S Grade? T Grade?
0to +70°C 0to +70°C —55°Cto +125°C | —55°Cto +125°C

Parameter Min Max Min Max Min Max Min Max Unit
tap Total Latency

32-Bit Multiplication 300 240 360 300 ns

32-Bit ALU Operation 300 240 360 300 ns

32-Bit Division 2.175 1.74 2.61 2.175 us

32-Bit Square Root (3202) 3.8 3.04 4.56 3.8 us

NOTES

'All min and max specifications are over power-supply and temperature range indicated.

28 and T grade parts are available processed and tested 1n accordance with MIL-STD-883B. The processing and test methods used
for S/883B and T/883B versions of the ADSP-3201/3202 can be found in Analog Devices’ Military Databook.

*Input levels are GND and +3.0V. Rise times are Sns. Input tming reference levels and output reference levels

are 1.5V, except for 1) tina and tyy;q which are as indicated 1n Figure T1 and 2) tyy and tyyy

which are measured trom clock V4 to data mput Vyy; or Vyp crossing points.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS n
Supply Voltage —-0.3Viwo +7V Operating Temperature Range (Ambient) . . —55°C to +125°C
Input Voltage -0.3Vto Vpp Storage Temperature Range -65°C to +150°C
Output Voltage Swing -0.3V o Vpp Lead Temperature (10Sec) +300°C
ESD SENSITIVITY

The ADSP-3201/3202 feature proprietary input protection to dissipate high energy discharges (Human
Body Model). Per Method 3015 of MIL-STD-883, the ADSP-3201/3202 have been classified as
Class 1 devices.

WARNING!]
A

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra- £SO SENSITIVE DEVICE

dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and
discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

ORDERING INFORMATION
Package
Part Number Temperature Range Package Outline
ADSP-3201JG 0to +70°C 144-Pin Grid Array = G-144A
ADSP-3201KG 0to +70°C 144-Pin Grid Array ~ G-144A
ADSP-3201SG —55°Cto +125°C 144-Pin Grid Array G-144A
ADSP-3201TG —55°Cto +125°C 144-Pin Grid Array = G-144A
ADSP-3201SG/883B —55°Cto +125°C 144-Pin Grid Array G-144A
ADSP-3201TG/883B —55°Cto +125°C 144-Pin Grid Array ~ G-144A
ADSP-3202]G 0to +70°C 144-Pin Grid Array G-144A
ADSP-3202KG 0to +70°C 144-Pin Grid Array G-144A
ADSP-32028G —55°Cto +125°C 144-Pin Grid Array G-144A
ADSP-3202TG —55°Cto +125°C 144-Pin Grid Array G-144A
ADSP-3202SG/883B —55°Cto +125°C 144-Pin Grid Array = G-144A
ADSP-3202TG/883B —55°Cto +125°C 144-Pin Grid Array G-144A

Contact DSP Marketing in Norwood concerning the availability of other package types.

FLOATING-POINT COMPONENTS 4-35

Q AIN1B AIN1S AIN12 AIN10 AIN7 AIN4 AIN3 AIN1 BIN30 BIN29 BIN25 BIN23 BIN22 BIN1B BIN14
P AIN22 AIN1S AIN16 AiN14 AINt1 AINB AING AIN2 BIN28 BIN27 BIN24 BIN21 BIN19 BIN15 BINT1
N AIN26 AIN23 AIN20 AINT7 AIN13 AING AINS AINO BIN31 BIN26 BIN20 BIN17 BIN16 BIN12 BINB
[7] AIN27 AIN25 AIN21 BIN13 BIN1O BING
L AIN29 AIN28 AIN24 BIN9 BIN7 BIN3
K IPORTO AIN31 AIN30 BINS BIN4 BINO
J SELA3 1PORT1 SELA1 BINt BIN2 SELB3
H SELAO RDA1 SELA2 BOTTOM VIEW SELBO SELB1 SELB2
G RDAO FAST WRAPA ROB1 ABSB RDBO
F | aBsa |mswseL| oen GNo | cik | wrape
E | sHe | unorio| invaLor aNo | 6N sp
D ToA GND vag | "X vdd | RESET | AND1
¢ | ovario | oenorm| poutas | boutzs | poutas | boutis | ono | eno | poutio | bouts | poutz | vag vad | ono | ANDo
B GND DOUT30 | DOUT26 | DOUT24 | DOUT21 | DOUT18 | DOUT17 | DOUT13 | DOUT9 DOUT? DOUT4 DOUT1 INEXO ﬁFl.T‘) TCB
A DOUT3t | DOUT27 | DOUT23 | DOUT22 | DOUT20 | DOUT16 | DOUTS | DOUT14 | DOUTI2 | DOUTI1 DOUT8 DOUTS DOUT3 DOUTO {RNDCA!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4-36 FLOATING-POINT COMPONENTS

ADSP-3201 Multiplier Pinouts

ADSP-3201/ADSP-3202

Q AIN18 AIN1S AIN12 AIN10 AIN7 AIN4 AIN3 AIN1 BIN30 BIN29 BIN2S BIN23 BIN22 BIN18 BIN14
P AIN22 AIN1S AIN16 AIN14 AIN1Y AINB AING AIN2 BIN28 BIN27 BIN24 BIN21 BIN19 BIN15 BIN11
N AIN26 AIN23 AIN20 AIN17 AIN13 AINS AINS AINO BIN31 BIN26 BIN20 BIN17 BIN16 BIN12 BIN8
M AIN27 AIN25 AIN21 BIN13 BIN1O BING
L AIN29 AIN28 AIN24 BINS BIN7 BIN3
K RND1 AIN31 AIN30 BINS BING BINO
J RNDCARI RNDO CLK BINY BIN2 IPORT1

H ABSB ABSA RESET BOTTOM Vl Ew RDAO | IPORTO | RDA1

G 10 13 12 SELAO | SELA3 | SELA1
F n 15 16 RDBO RDB1 SELA2
E 14 18 FAST NIC SELB1 SELBO
D 7 GND vdd '":::" vad NC | sels2
c INEXIN | OVRFLO| INEXO | DOUT31 | DOUT28 | DOUT22 | GND GND | DOUTI3 | DOUTS | DOUTS | Vdd Vdd |MSWSEL | SELB3
B GND | UNDFLO | DOUT29 | DOUT27 | DOUT24 | DOUT21 | DOUT20 | DOUT16 | DOUTI2 | DOUT10 { DOUT? | DOUT4 { DOUT2 | DOUTO | OEN

A | INVALOP | DOUT30 | DOUT26 | DOUT25 | DOUT23 | DOUT1S | DOUT18 | DOUTI7 | DOUT15 | DOUT14 | DOUTI1 | DOUTS | DOUTE | DOUT3 | DOUTY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADSP-3202 ALU Pinouts

FLOATING-POINT COMPONENTS 4-37

4-38 FLOATING-POINT COMPONENTS

ANALOG

DEVICES 64-Bit IEEE Floating-Point Chipsets

ADSP-3210/3211/3220/3221

FEATURES
Complete Chipsets Implementing Floating-Point
Arithmetic: Two Multiplier Options and
Two ALU Options
Fully Compatible with IEEE Standard 754
Arithmetic Operations on Four Data Formats:
32-Bit Single-Precision Floating-Point
64-Bit Double-Precision Floating-Point
32-Bit Twos-Complement Fixed-Point
32-Bit Unsigned Fixed-Point
Only One Internal Pipeline Stage
High-Speed Pipelined Throughput
Single-Precision and Fixed-Point Multiplication
Rates to 20 MFLOPS
Double-Precision Multiplication Rates to
5 MFLOPS
Single-, Double-, and Fixed-Point
ALU Rates to 10 MFLOPS
Low Latency for Scalar Operations
140ns for 32-Bit Multiplier Operations
315ns for 64-Bit Multiplier Operations
240ns for 32-Bit ALU Operations
290ns for 64-Bit ALU Operations
IEEE Divide and Square Root (ADSP-3221 ALU)
Flexible I/O Structures:
ADSP-3211/3220/3221: Either One or Two
Input-Port Configuration Modes
ADSP-3210: One Input Port
750mW Maximum Power Dissipation per Chip with
1.5um CMOS Technology
100-Lead Pin Grid Array (ADSP-3210 Multiplier)
144-Lead Pin Grid Array (ADSP-3211/3220/3221)
Available Specified to MIL-STD-883, Class B

APPLICATIONS

High-Performance Digital Signal Processing
Engineering Workstations

Floating-Point Accelerators

Array Processors

Mini-Supercomputers

RISC Processors

GENERAL DESCRIPTION

The ADSP-3210/3211 Floating-Point Multipliers and the
ADSP-3220/3221 Floating-Point ALUs are high-speed, low-power
arithmetic processors conforming to IEEE Standard 754. A
chipset consisting of either Multiplier used with either ALU
contains the basic computational elements for implementing a
high-speed numeric processor. Operations are supported on four
data formats: 32-bit IEEE single-precision floating-point, 64-bit
IEEE double-precision floating-point, 32-bit twos-complement
fixed-point, and 32-bit unsigned-magnitude fixed-point.

r Microcode Memory]
microcode rmicrocode instructon
‘memory ‘ {
address ADSP-1401 ADSP-1410

e - Address Generato
Sequencer Az?vp‘}‘::‘al ress Generator
Gata
E-

Register Files
ADSP-3220/3221
Point

g
ALUs Data

ADSP-3210/3211 Memory
Floating-Point
Multipliers

k Data Bus y

Word-Slice® Microcoded System
with ADSP-3210/3211/3220/3221

The high throughput of these CMOS chips is achieved with
only a single level of internal pipelining, greatly simplifying
program development. Theoretical MFLOPS rates are much
easier to approach in actual systems with this chip architecture
than with alternative, more heavily pipelined chipsets. Also, the
minimal internal pipelining in the ADSP-3210/3211/3220/3221
results in very low latency, important in scalar processing and in
algorithms with data dependencies. To further reduce latency,
input registers can be read into the chips internal computational
circuits at the rising edge that loads them from the input port
(formerly called direct operand feed).

In conforming to IEEE Standard 754, these chips assure complete
software portability for computational algorithms adhering to
the Standard. All four rounding modes are supported for all
floating-point data formats and conversions. Five IEEE exception
conditions — overflow, underflow, invalid operation, inexact
result, and division by zero — are available externally on status
pins. The IEEE gradual underflow provisions are also supported,
with special instructions for handling denormals. Alternatively,
each chip offers a FAST mode which sets results less than the
smallest IEEE normalized values to zero, thereby eliminating
underflow exception handling when full conformance to the
Standard is not essential.

The instruction sets of the ADSP-3210/3211/3220/3221 are oriented
to system-level implementations of function calculations. Specific
instructions are included to facilitate such operations as floating-
point division and square root, table lookup, quadrant normali-
zation for trig functions, extended-precision integer operations,
logical operations, and conversions between all data formats.

The ADSP-3210 Floating-Point Multiplier is a one input- and
one output-port device with four input registers. The ADSP-3211

Word-Slice is a registered trademark of Analog Devices, Inc.

FLOATING-POINT COMPONENTS 4-39

Floating-Point Multiplier adds a second input port and doubles
the number of input registers to eight. It executes all ADSP-3210
operations. The ADSP-3210 supports 32-bit twos-complement
fixed-point multiplications. The ADSP-3211 adds support for
unsigned-magnitude and mixed-mode integer multiplications.
Finally, the ADSP-3211 adds a HOLD control that prevents the
updating of the output data and status registers.

The ADSP-3220 and ADSP-3221 Floating-Point ALUs differ
only in that the ADSP-3221’s instruction set is extended to
include exact IEEE floating-point division and square root oper-
ations. The ADSP-3221 is pin-compatible with the ADSP-3220.
Both ALUs are three-port, 144-lead devices with eight input
registers.

The ADSP-3210/3211/3220/3221 chipset is fabricated in double-
metal 1.5um CMOS. Each chip consumes 750mW maximum,
significantly less than comparable bipolar solutions. The differ-
ential between the chipset’s junction temperature and the ambient
temperature stays small because of this low power dissipation.
Thus, the ADSP-3210/3211/3220/3221 can be safely specified for
operation at environmental temperatures over its extended tem-
perature range (—55°C to + 125°C ambient).

The ADSP-3210/3211/3220/3221 are available for both commercial
and extended temperature ranges. Extended temperature range
parts are available processed fully to MIL-STD-883, Class B.
The ADSP-3210 Multiplier is packaged in a ceramic 100-lead
pin grid array. The ADSP-3211, -3220, and -3221 are packaged
in a ceramic 144-lead pin grid array.

TABLE OF CONTENTS PAGE
GENERAL DESCRIPTION 4-39
FUNCTIONAL DESCRIPTION OVERVIEW 4-40
PIN DEFINITIONS AND FUNCTIONAL BLOCK
DIAGRAMS e 4-42
METHOD OF OPERATION
DATA FORMATS
Single-Precision Floating-Point Data Format 445
Double-Precision Floating-Point Data Format 446
Supported Floating-Point Data Types 4-47
32-Bit Fixed-Point Data Formats 4-47
CONTROLS 448
FASTAIEEECONTROL 4-49
RESETCONTROL 4-49

PORT CONFIGURATION - IPORT CONTROLS . . 449
INPUT REGISTER LOADING AND OPERAND

STORAGE - SELA/BCONTROLS 4-49
DATA FORMAT SELECTION - SP & DP

CONTROLS i 4-51

INPUT DATA REGISTER READ SELECTION -
RDA/BCONTROLS 4-51
ABSOLUTE VALUE CONTROLS - ABSA/B 4-52
WRAPPED INPUT CONTROLS - WRAPA/B (and

INEXIN and RNDCARI on the ADSP-3221) 4-52
TWOS-COMPLEMENT INPUT CONTROLS -

TCAB . . . e 4-52
ROUNDING - RND CONTROLS 4-52
STATUS FLAGS

Denormal Input 4-54

Invalid Operation and NAN Results 4-54

Division-by-Zero 4-54

Overflow 4-54

Underflow 4-54

Imexact 4-55

Less Than, Equal, Greater Than, Unordered 4-55

Special Flags for Unwrapping 4-56
INSTRUCTIONS AND OPERATIONS 4-56

Fixed-Point Arithmetic Operations 4-58

Logical Operations 4-59

Floating-Point Operations 4-59
OUTPUT CONTROL - SHLP, OEN, MSWSEL,

andHOLD 4-61
TIMING 4-62
GRADUAL UNDERFLOW 4-62
SPECIFICATIONS 4-78
ORDERING INFORMATION 4-81
PINOUTS i 4-82

4-40 FLOATING-POINT COMPONENTS

FUNCTIONAL DESCRIPTION OVERVIEW

The ADSP-3210/3211/3220/3221 share a common architecture
(Figure 1) in which all input data is loaded to a set of input
registers with both rising and falling clock edges. (Note that the
ADSP-3210, however, has a single input port.) These registers
can be read to the chip’s computational circuitry as they are
loaded on a rising edge. At the end of first processing clock
cycle, partial results and most controls are clocked into a set of
internal pipeline registers. In most cases, only a second clock
cycle is required to conclude processing. (The exceptions are
division, square root, and double-precision multiplication.) At
the end of this second processing cycle, results are clocked into
an output register. The contents of the output register can then
be driven off chip. An output multiplexer allows driving both
halves of a 64-bit double-precision result off chip through the
32-bit output port in one output cycle.

R

D _INPuT REGISTERS |

| reap seLecTion muxes |

——d___L__

M FIRST-STAGE PROCESSING |

——— —_——m

> PIPELINE REGISTER |

I T SECOND-STAGEPROCESSING __

—— — — —— — — — — —S—

|

D outpur ReGister | [status |

Figure 1. ADSP-3210/3211/3220/3221 Generic Architecture

ADSP-3210/3211/3220/3221

Because all input and output data is internally registered and
because of the single level of internal pipeline registers, operations
can be overlapped for high levels of pipelined throughput.
Figure 2 illustrates a typical sequence of pipelined operations.
Note cycle #4 of Figure 2 after the data transfer and internal
pipelines are full. While the final A results of the first operation
are being driven off chip, B processing can be concluding at the
second stage, C processing beginning at the first stage, and D
data loading to the input registers.

All three-port members of this chipset can be configured for
two-port operations, thereby reducing system busing require-
ments. However configured, the ADSP-3210/3211/3220/3221
can load data on rising edges of the clock and on falling edges
of the clock, subject to constraints described in “Method of
Operation.” The port configuration chosen determines which
registers load data on which edges. All input registers have their
own independent load selection controls, allowing the same data
to be loaded to multiple registers simultaneously.

A set of read selection multiplexers feeds input data from the
input registers to the computational circuitry. These muxes can
select data that was just loaded at the clocks rising edge (“direct
operand feed”), if desired, with no throughput or cycle-time
penalty.

All control signals need only be supplied to the chips at their
cycle rate. This approach avoids requiring that the sequencing
control cycle time be faster than the chipset’s major processing

cycle rate. Less expensive microcode memory can therefore be
used. For this reason, load selection controls for registers to be
loaded on the clocks falling edge need only be valid at the previous
rising edge. (The designer may choose to supply the asynchronous
output multiplexer and tristate controls at a higher rate,
however.)

The ADSP-3210/3211/3220/3221 fully supports the gradual
underflow provisions of IEEE Standard 754 for floating-point
arithmetic. The Floating-Point ALUs can operate directly on
both normals and denormals, except in division and square root.
The Floating-Point Multipliers operate on normals but cannot
operate on denormals directly. Denormals must first be “wrapped”
by an ALU to a format readable by a Multiplier. Several flags
are available for detecting and handling exceptions caused by
loading a denormal to Floating-Point Multiplier. Information
about rounding and inexact results generated by the Multipliers
is needed by the ALUs to produce results in conformance to
Standard 754. All ADSP-3210/3211/3220/3221 chips include a
“FAST” control that flushes all denormalized results to zero,
avoiding the system delays of IEEE exception processing for
gradual underflow.

All status output flags except denormal detection are registered
at the output in parallel with their associated results. The asyn-
chronous denormal flag allows an early detection of a denormalized
number loaded to Floating-Point Multiplier, speeding exception
processing.

time Load First-Stage | Second-Stage Output
(cycles) { Input Data { Processing Processing Result
1 Data Set A
2 Data Set B Data Set A
3 Data Set C Data SetB Data Set A
4 Data Set D Data Set C Data Set B Data Set A
5 Data Set E Data Set D Data Set C Data Set B
v

Figure 2. Typical Pipelining with the ADSP-3210/3211/3220/

3221

FLOATING-POINT COMPONENTS 4-41

PIN DEFINITIONS AND FUNCTIONAL BLOCK

DIAGRAMS

All control pins are active HI (positive true logic naming con-
vention), except RESET and HOLD. Some controls are registered
at the clocks rising edge (REG), other controls are latched in
clock HI and transparent in clock LO (LLAT), and others are
asynchronous (ASYN).

ADSP-3210 Floating-Point Multiplier Pin List

PINNAME

Data Pins
DIN3;0
DOUT3,,

Control Pins
RESET
SELAO
SELA1
SELBO

DESCRIPTION TYPE PINNAME DESCRIPTION TYPE
32-Bit Data Input RNDI1 Rounding Mode Control 1 REG
32-Bit Data Output FAST Fast Mode REG
SHLP Shift Left Fixed-Point Product REG
MSWSEL Select MSW of Output Register ASYN
Reset ASYN
Load Selection for A0 LAT OEN Output Data Enable ASYN
Load Selection for Al LAT Status Out
Load Selection for BO LAT INEXO Inexact Result
Load Selection for B1 LAT OVRFLO Overflowed Result
Register Ax Read Selection Control 0 REG UNDFLO Underflowed Result
Register Bx Read Selection Control 0 REG INVALOP Invalid Operation
Wrapped Contents in Register Ax REG DENORM Denormal Qutput
Wrapped Contents in Register Bx REG RNDCARO Round Carry Propagation Out
Read Absolute Value of Ax REG Miscellaneous
R‘ead Absoh'.lt.e Value of Bx REG CLK Clock Input
f)mg{;-l’;ecxs‘lo_n MN(;dZ igg Vob + 5V Power Supply (Three Lines)
'ouble-1'recision Mode GND G dS Iy (Th Li
Rounding Mode Control 0 REG round Supply (Three Lines)
CLK VBD GND DINu_ Controis
? g ? ”‘ ’
2 RESET—
2 /'v « A
32 32 —
’I 'I CLK—{ T-Latch
SIEI.AD Sik“ SELBO SELB1 SELAO:
A0 Al) B1 PeonTrois
32 32 32 32
REGISTER Ax READ SELECTION MUX RDAC REGISTER Bx READ SELECTION MUX RDBO
A A Exponent 8 Mantisss 8~ €¢——]
A Aeu T V. seLBo:

32 x 32 PARALLEL MULTIPLIER ARRAY

64
!PIPEIE 1EGISTEH | ! PIPELINE REGISTER I

s CONTROL PIPELINE ﬂEdlSTEN'

EXPONENT

|

CIRCUITRY

ROUNDING &

L

FAST, ANDO:1

EXCEPTION

SHLP

Psrarus |

OVRFLO
UNDFLO
INEXO
INVALOP
RNDCARO

Status

DENORM

MSWSEL

bouT,
310

Figure 3. ADSP-3210 Functional Block Diagram

4-42 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

ADSP-3211 Floating-Point Multiplier Pin List

PINNAME DESCRIPTION TYPE PINNAME DESCRIPTION TYPE
DataPins
AIN;y o 32-Bit Data Input TCB Twos-Complement Integer in REG
BIN3, o 32-Bit Data Input Register Bx
DOUT;,0 32-Bit Data OQutput ABSA Read Absolute Value of Ax REG
Control Pins ABSB R‘ead Absoltln-e Value of Bx REG
SP Single-Precision Mode REG
RESET Reset ASYN .
HOLD Hold Control ASYN DP Double-Precision Mode REG
IPORTO Input Port Configuration Control 0 ASYN RNDO Roundfng Mode Control 0 REG
IPORT1 Input Port Configuration Control 1 ASYN RND1 Rounding Mode Control 1 REG
SELAO Load Selection for A LAT FAST FastMode REG
SELA1 Load Selection for Al LAT SHLP Shift Left Fixed-Point Product REG
SELA2 Load Selection for A2 LAT MSWSEL Select MSW of Output Register ASYN
SELA3 Load Selection for A3 LAT OEN Output Data Enable ASYN
SELBO Load Selection for B0 LAT Status Out
SELBI Load Selection for Bl LAT INEXO Inexact Result
SELB2 Load Selection for B2 LAT OVRFLO Overflowed Result
SELB3 Load Selection for B3 LAT UNDFLO Underflowed Result
RDAO Register Ax Read Selection Control 0 REG INVALOP Invalid Operation
RDAl Register Ax Read Selection Control 1 REG DENORM Denormal Output
RDB0 Register Bx Read Selection Control 0 REG RNDCARO Round Carry Propagation Out
RDB1 Register Bx Read Selection Control 1 REG .
WRAPA Wrapped Contents in Register Ax REG ’g";*;ge“"‘““ Clock Input
¥VRAPB Wral?ped Contentsin Reglst'er Bx REG Vob + 5V Power Supply (Four Lines)
CA qus-Complement Integerin REG GND Ground Supply (Seven Lines)
Register Ax
cLK AN, o BIN, o Vpp GND Controls
? 32 32 ? ? 4’30
|PorT_conricuraTioN |—]PoRT Tion | o
2 4 ’3) RESET —’
8 A2 A3
¢k {T-Laten
SELB2 SELB3
REGISTER Bx READ SELECTION MUX RDBO 1
(Mantissa A [Exponent B Mantissa B8 ——
£ i Ao SRDABD 1
TCADI :
32 x 32 PARALLEL MULTIPLIER ARRAY ABSA/B
WRAPA/B
FAST
s e

PIPELINE REGISTER PIPELINE REGISTER CONTROL PIPELINE REGISTER
! %

EXPONENT l ROUNDING & 1 FAST RNDO 1

CIRCUITRY I EXCEPTION PI |

RNDCARO

Status DENORM DOUT,,

Figure 4. ADSP-3211 Functional Block Diagram

FLOATING-POINT COMPONENTS 4-43

ADSP-3220 and -3221 Floating-Point ALUs Pin List

PIN NAME

Data Pins
AIN3; 5
BINz; o
DOUT3;9

Control Pins
RESET
IPORTO
IPORT1
SELAO
SELAl
SELA2
SELA3
SELBO
SELBI1
SELB2
SELB3
RDAO
RDAl
RDBO0
RDBI
ABSA

DESCRIPTION TYPE PINNAME DESCRIPTION
32-Bit Data Input ABSB Read Absolute Value of Bx
32-Bit Data Input Iso ALU Instruction
32-Bit Data Output RNDO Rounding Mode Control 0
RNDI1 Rounding Mode Control 1
Reset ASYN FAST Fast Mode .
Input Port Configuration Control 0 ASYN MSWSEL Select MSW of Output Register
Input Port Configuration Control 1 asyN OEN Output Data Enable
Load Selection for A0 LAT Status In
Load Selection for Al LAT INEXIN Inexact Dataln)
Load Selection for A2 LAT RNDCARI Round Carry Propagation In
Load Selection for A3 LAT Status Out
Load Selection for BO LAT INEXO Inexact Result
Load Selection for Bl LAT OVRFLO Overflowed Result
Load Selection for B2 LAT UNDFLO Underflowed Result
Load Selection for B3 LAT INVALOP Invalid Operation
Register Ax Read Selection Control 0 REG .
Register Ax Read Selection Control 1 REG gx‘slgelhneous Clock Input
Regsir Bx Resd Seection ool |~ REG 0P +5V Power Supply (Fou Lines)
GND Ground Supply (Four Li
Read Absolute Value of Ax REG round Supply (Four Lines)
CLK Vg, GND BIN,. o Controls
? ? ? 9 = "33
|PORT conFiauraTioN]_fPORT co AATION | IPORTO:1
p 2 Aoz RESET
s AN S
75z 757 K
SELAO |SELA1 SELA2 SELA3 SlELBO SE]LB‘ SELB2 SELB3 SELA/BO:3
A0 Al A2 A3 Dcontrots
32 32 32 32
[ReGISTER Ax READ SELECTION MUX |- RDA0-1 RDBO:1
A 4 P 8) -
4 / il A SELA/BO:3
ADA/BO
\ N/ / ABSA/B
54-BIT ARITHMETIC & LOGIC UNIT FAST
RNDO:1
RNDCARI
INEXIN

SPGPELINE REGISTER

54

PIPELINE REGISTER

SCONTROL PIPELINE REGISTER

¢

54

EXPONENT ROUNDING & FAST, RNDO:1,RNDCARI,INEXIN
CIRCUITRY EXCEPTION PROCESSING
s
pstatus | B ouTPUT REGISTER |
32 .faz
v K4
[OUTPUT MUX | MswseL
OVRFLO 32
UNDFLO
INEXO OEN
INVALOP
32
Status DOUT:”.O

Figure 5. ADSP-3220/3221 Functional Block Diagram

4-44 FLOATING-POINT COMPONENTS

TYPE

REG
REG
REG
REG

ASYN
ASYN

REG
REG

ADSP-3210/3211/3220/3221

METHOD OF OPERATION

DATA FORMATS

The ADSP-3210/3211/3220/3221 chipset supports both single-
and double-precision floating-point data formats and operations
as defined in IEEE Standard 754-1985. 32-bit twos-complement
fixed-point data formats and operations are also supported by all
four chips. 32-bit unsigned-magnitude data formats and operations
are supported by the ADSP-3211 Multiplier and both ALUs.
The ADSP-3210 Multipliers can perform fixed-point multiplica-
tion only on twos-complement numbers. All four chips operate
directly on 32-bit fixed-point data. (No time-consuming conver-
sions to and from floating-point formats are required.)

Single-Precision Floating-Point Data Format
IEEE Standard 754 specifies a 32-bit single-precision floating-point

Sign | Exponent (e) Fraction (f)

M & §.f» fo

bit31 30 23 22 0

Binary Point
Figure 6. Single-Precision Floating-Point Format

format, which consists of a sign bit s, a 24-bit significand, and
an 8-bit unsigned-magnitude exponent e. For normalized numbers,
this significand consists of a 23-bit fraction fand a “hidden” bit
of 1 that is implicitly presumed to precede f, in the significand.
The binary point is presumed to lie between this hidden bit and
f52 . The least significant bit of the fraction is fp; the LSB of the
exponent is ep. The hidden bit effectively increases the precision
of the floating-point significand to 24 bits from the 23 bits actually
stored in the data format. It also insures that the significand of
any number in the IEEE normalized-number format is always
greater than or equal to 1 and less than 2.

The unsigned exponent e for normals can range between 1=e=<254
in the single-precision format. This exponent is biased by + 127
in the single-precision format. This means that to calculate the
“true” unbiased exponent, 127 must be subtracted from e.

The IEEE Standard also provides for several special data types.
In the single-precision floating-point format, an exponent value
of 255 (all ones) with a non-zero fraction is a not-a-number
(NAN). NANS are usually used as flags for data flow control,
for the values of uninitialized variables, and for the results of
invalid operations such as 0 ¢ . Infinity is represented as an
exponent of 255 and a zero fraction. Note that because the
fraction is signed, both positive and negative INF can be
represented.

The IEEE Standard requires the support of denormalized data
formats and operations. A denormalized number, or “denormal,”
is a number with a magnitude less than the minimum normalized
(“normal”) number in the IEEE format. Denormals have a zero
exponent and a non-zero fraction. Denormals have no hidden
“one” bit. (Equivalently, the hidden bit of a denormal is zero.)
The unbiased (true) value of a denormal’s exponent is —126 in
the single-precision format, i.c., one minus the exponent bias.
Note that because denormals are not required to have a significant
leading one bit, the precision of a denormals significand can be
as little as one bit for the minimum representable denormal.

ZERO is represented by a zero exponent and a zero fraction. As
with INF, both positive ZERO and negative ZERO can be
represented.

The IEEE single-precision floating-point data types and their
interpretations are summarized in Table I.

The ADSP-3210/3211/3220/3221 chipset also supports two data
types not included in the IEEE Standard, “wrapped” and “un-
normal.” These data types are necessitated by the fact that the
ADSP-3210/3211 Multipliers and the ADSP-3221 ALU (during
division and square root) do not operate directly on denormals.
(To do so, they would need shifting hardware that would slow
them significantly.) Denormal operands must first be translated
by an ADSP-3220/3221 ALU to wrapped numbers to be readable
by a Multiplier. Wrapped and unnormal Multiplier products
must also be unwrapped by an ALU before an ALU can operate
on these results in general. (See “Gradual Underflow and IEEE
Exceptions.”)

Mnemonic | Exponent | Fraction Value Name IEEE Format?
NAN 255 non-zero | undefined not-a-number yes
N 255 | zero | (t)sofinity) Linfinty | yes
NORM | 1thru2s4 | any (-1)5(1.62°'%7 | normal yes
oNRM |0 non-zero | (-1°(0)2 1 _ | denormal ves
ZERO 0 zero (-1)50.0 zero yes |
WRAP 22 thru 0 any (--1)5(1,f)2e_127 wapped | no
UNRM |-171 thru -23] any (-1)5(1.f)2e_127 unnormal no

Table I. Single-Precision Floating-Point Data Types and

Interpretations

FLOATING-POINT COMPONENTS 4-45

Data namelgxponenJExp. data[Exponent Hiddenj Fraction Unbiased
(positive) type bias bit (binary) { absolute value
NORMMAX | 254 | unsigned | +127 1 P Y
NORM.MIN 1 unsigned | +127 1 o126
DNRM.MAX unsigned | +126 0 21%,412038
DNRM.MIN unsigned | +126 0 2716, B
WRAP.MAX 2scmpimt | +127 1 P Y
WRAPMIN | 22 | 2scmpimt | +127 1 o149
UNRMMAX | -23 | 2scmpimt | +127 1 P
UNRMMIN § -171 | 2scmpimt | +127 1 57298

Table Il. Single-Precision Floating-Point Range Limits

The interpretation of wrapped numbers differs from normals
only in that the exponent is treated as a twos-complement number.
Single-precision wrapped numbers have a hidden bit of one and
an exponent bias of + 127. All single-precision denormals can
be mapped onto wrapped numbers where the exponent e ranges
between —22=e=<0. WRAPA and WRAPB controls on the
ADSP-3210/3211 tell the Multiplier to interpret a data value as
a wrapped number.

The ranges of the various single-precision floating-point data
formats supported by the ADSP-3210/3211/3220/3221 are sum-
marized in Table II.

The multiplication of two wrapped numbers can produce a
number smaller than can be represented as a wrapped number.
Such numbers are called “‘unnormals”. Unnormals are interpreted
exactly as are wrapped numbers. They differ only in the range
of their exponents, which fall between — 171=<e= — 23 for single-
precision unnormals. The smallest unnormal is the result of
multiplying WRAP.MIN by itself. Unnormals, because they

are smaller than DRNM.MIN, generally unwrap to ZERO.
(UNRM.MAX can unwrap to DRNM.MIN, depending on
rounding mode.)

The underflow flag should be thought of as an implicit most
significant ninth bit, the sign bit. For unnormals for which
—171=e< — 128, the most significant bit in the eight-bit exponent
field. (e7, bit 30) will be zero, but the underflow flag understood
as weighted by —256 allows their representation without ambi-
guity. This sign bit is implicitly assumed by the ALU to be
present when unwrapping unnormals, making this convention
for very small unnormals transparent to the user.

Double-Precision Floating-Point Data Format

IEEE Standard 754 specifies a 64-bit double-precision floating
point format:

Sign | Exponent (e) Fraction (f)
S | 8 € | fs5 fo
bit 63 62 52 51 0

Binary Point
Figure 7. Double-Precision Floating-Point Format

The key differences with the single-precision format are that the
exponent ¢ is now 11 bits in length and the fraction fis now 52
bits in length, yielding a 53-bit significand for double-precision
normals. Double-precision, like single-precision, has an implicit
hidden bit, in this case the hidden bit precedes fs;. The binary
point comes between the hidden bit and f5;. The exponent bias
for double-precision floating-point normals is + 1023 (2046+2).

In other respects, IEEE double-precision floating-point is exactly
analogous to single-precision, with the same data types whose
values can be summarized in Table III. '

The unbiased value of a denormal’s exponent is — 1022 for
double-precision denormals, i.e. one minus the bias. Because of
the extended width of the double-precision fraction, the exponent
of double-precision wrapped numbers can range from —51<e=<0.
The exponent of unnormals can range from —1125<e=<-52.
Again, the smallest unnormal is the result of multiplying the
smallest wrapped number by itself.

Note that e= — 1024 is the smallest double-precision exponent
that is directly representable in the 11-bit IEEE twos-complement
exponent field. The underflow flag should be thought of as a
most-significant twelfth bit, the sign bit, as explained above for
single-precision unnormals.

The ranges for the various double-precision data types are sum-
marized in Table IV.

IMnemonic Exponent | Fraction Value Name IEEE Format?
NAN 2047 non-zero }undefined not-a-number yes
INF 2047 zero (~1)S(infinity) infinity yes
NORM 1 thru 2046 | any (_1)5(1_1)29'1023 normal yes
DNRM 0 non-zero |(-1)%(0.)2"1%%% | denormal yes
ZEﬁO 0 zero (-1)so‘o zero - yes
WRAP -51 thru 0 any (-1)5(1,f)29"'°23 wrapped no i
UNBM F1125 thru —55 a—;;' (_1)5(11)29‘1023 —wunnormal e T N

Table lll. Double-Precision Floating-Point Data Types and

Interpretations

4-46 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

Data namefgxponem Exp. dataiExponent Hidden] Fraction Unbiased
(positive) type bias bit (binary) a_gsolute value |
NORMMAX | 2046 | unsigned | +1023 | 1 fi1....11] 3%, 053
NORM MIN 1 | unsigned | +1023 1 Jooo.... .0o] %%

DNRM.MAX 0] unsigned | +1022 0 jii 11 g9 4579
DNRMMIN 0 |unsigned | +1022 | 0 Jooo....o1] 519 .2
WRAP.MAX 0 | 2scmpimt | +1023 1 Hit.1] 219800
WRAPMIN | -51 | 2scmpimt | +1023 1 looo.....0o0] 17

UNRMMAX | -52 | 2sompimt | +1028 | 1 li11..11] 200 cp0 2 |
UNRMMIN | -1125 | 2scmpimt | +1023 | 1 Jooo......00] 22'4®

Table IV. Double-Precision Floating-Point Range Limits

Supported Floating-Point Data Types
The direct floating-point data types support provided by the
members of this chipset can be summarized:

The 32-bit twos-complement data format for Multiplier inputs
and ALU inputs and outputs is:

Normals

Denormals
Normals Wrappeds’
Wrappeds Unnormals?

d

ADSP-3210/3211
Floating-Point

ADSP-3220/3221
Floating-Point

Muitipliers ALUs
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3

Unnormals*

H W=

. from division

for unwrapping, division, and square root
for unwrapping only
. from wrapping and division

Figure 9. 32-Bit Twos-Complement Fixed-Point Data
Format

The MSB is i3y, which is also the sign bit; the LSB is ig. Note
that the sign bit is negatively weighted in twos-complement
format. The position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
signed fractional numbers (binary point between bit positions 31
and 30) are represented when k= —31. The value of k is for
user interpretation only and in general does not affect the operation
of the chips. The only exceptions are the ALU conversion oper-
ations between floating-point and fixed-point. For these opera-
tions, the fixed-point format is presumed to be twos-complement
integers, i.e., k=0.

Sign
WEIGHT | _g**31] 30 | Je2e| ~ n
VALUE| I, [[Iy
POSITION | 31 30 29 o

Figure 8. Data Types Directly Supported by the ADSP-3210/
3211/3220/3221

Not every member of the ADSP-3210/3211/3220/3221 chipset
supports all the data types described above directly. See the
section below, “Gradual Underflow and IEEE Exceptions” for a
full description of how the chips work together to implement
the IEEE Standard. For systems not requiring full conformance
to Standard 754, the section below, “FAST/IEEE Control,”
describes a simplified operation for this chipset that avoids
denormals, wrappeds, and unnormals altogether.

32-Bit Fixed-Point Data Formats

The ADSP-3211/3220/3221 chipset supports two 32-bit fixed-point
formats: twos-complement and unsigned-magnitude. The ADSP-
3210 Multiplier supports twos-complement only. With the ALUs,
the output data format is identical with the input data format,
i.e., 32-bits wide. In contrast, the Multipliers produce a 64-bit
product from two 32-bit inputs.

The ADSP-3210/3211 Multipliers produce a 64-bit product at
their Output Registers. The ADSP-3210/3211 will produce
results in the format of Figure 10 at the DOUT port if the Shift
Left Fixed-Point Product (SHLP) control (described below in

“Output Control”) is LO:
Sign
WEIGHT |_5 r+63 2!062 2r032 21.31 e 2u1 21
VALUE
‘53 iG2 aee I32 '31 e I‘ l°
POSITION | 63 62 e | 32 31 | |1 [}

Most Significant Product Least Significant Product

Figure 10. 64-Bit Twos-Complement Fixed-Point Data
Format at Multiplier Output Register with SHLP LO

FLOATING-POINT COMPONENTS 4-47

The weighting of the product bits is given by the integer r.
When kj represents the weighting of operand A and kg the
weighting of operand B, then r=ku +kg.

When HI, the SHLP control shifts all bits left one position as
they are loaded to the Output Register. The results will then be
in the format:

Sign
WEIGHT |_» r+62 2 r+61 zr.:n 21’.30 R 2r-1
\Z E i i
ALY ‘62 i61 - ‘34 NS e lig 0
POSITION | 63 62 .- 32 31 1 0

N~ I~

Most Significant Product Least Significant Product

Figure 11. 64-Bit Twos-Complement Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The LSB becomes zero and is; moves into the sign bit position.
Normally is3 and i, will be identical in twos-complement products.
(The only exception is full-scale negative multiplied by itself.)
Hence, a one-bit left-shift normally removes a redundant sign
bit, thereby increasing the precision of the Most Significant
Product. Also, if the fixed-point data format is fractional (k= —31
in Figure 9), then a single-bit left-shift will renormalize the
MSP to a fractional format (because r=2k =2+ —31)= —62).

For unsigned-magnitude data formats, inputs to the ADSP-3211
Multiplier and inputs and outputs for both ALUs will be 32-bits
wide. The 32-bit unsigned-magnitude data format is:

WEIGHT | 2%#31| 30 fke2s |] &
VALUE| iy, [e iy
POSITION| 31 30 29 °

Figure 12. 32-Bit Unsigned-Magnitude Fixed-Point Data
Format

Again, the position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
unsigned fractional numbers (binary point left of bit position
31) are represented when k =32. The value of k is for user
interpretation only and, except for conversions to fixed-point,
does not affect the operation of the chips.

The ADSP-3211 Multiplier discriminates twos-complement
from unsigned-magnitude inputs with TCA and TCB controls
(see “Controls”). When TCA and TCB are both LO, the ADSP-
3211 produces a 64-bit unsigned-magnitude product at its Qutput
Register. The ADSP-3211 will produce results in this format if
SHLP is LO:

WEIGHT | 5 1463 zusz . 2“32 2r031 e 2”1 2r
VALUE |

's3 's2 e | 32 EI B 'o

POSITION | 63 62 |32 31 | |1 0

N~] I~

Most Significant Product Least Significant Product

Figure 13. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP LO

4-48 FLOATING-POINT COMPONENTS

Again, the weighting of the product bits is given by the integer
r. When ka represents the weighting of operand A and kg the

weighting of operand B, then r=ka +Kkg.

If SHLP is HI, the data at the Output Register will have been

shifted left one position and zero-filled in the format:

WEIGHT | p+62 |, ORI LI PLECE IO P
VALUE i N .
l62 Tsq i34 i3 e g 0
POSITION | 63 62 wes 32 31 .o 1 0

e

Most Significant Product Least Significant Product

Figure 14. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The ADSP-3211 also supports mixed-mode multiplications, i.e.,
twos-complement by unsigned-magnitude. These are valuable in
extended-precision fixed-point multiplications, e.g. 64 X 64 and
128 x 128. The result of a mixed-mode multiplication will be in
a twos-complement format. Unlike twos-complement multiplica-
tions, however, mixed-mode results do not in general have a
redundant sign bit in is,. Hence, mixed-mode results should be
read out with SHLP LO as in Figure 10.

CONTROLS

The controls for the ADSP-3210/3211/3220/3221 (see Pin Lists
above) are all active HI, with the exceptions of RESET and
HOLD. The controls are either registered into the Input Control
Register at the clocks rising edge, latched into the Input Control
Register with clock HI and transparent in clock LO, or asyn-
chronous. The controls are discussed below in the order in
which they affect data flowing through the chipset.

Registered controls, in general, are pipelined to match the flow
of data. All data and control pipelines advance with the rising
edge of each clock cycle. For example, to perform an optional
fixed-point one-bit left-shift on output with the product of X
and Y, you would assert the registered, pipelined control SHLP
on the rising edge that causes X and Y inputs to be read into
the multiplier array. Just before the result was ready to be loaded
to the Output Register, the pipelined SHLP control would
perform the proper shift. After the initiation of a multicycle
operation, registered control inputs are ignored until the end of
the operation time. (See “Timing” below for a precise definition
of “operation time.””)

Because this chipset uses CMOS static logic throughout and
controls are pipelined, the clock can be stopped as long as desired
for generating wait-states, diagnostic analysis, or whatever.
These chips can also be easily adapted to “state-push’ im-
plementations, The machine’s state can be pushed forward one
stage by simply providing a rising edge to the clock input when
desired.

The only controls that are latched (as opposed to registered) are
the Load Selection Controls. They are transparent in clock LO
and latched with clock HI. Load Selection Controls are setup to
the chips exactly as if they were registered, with the same setup
time. The fact that they are transparent in clock LO allows
them to select input registers in parallel with the setup of data
to be loaded on the rising edge. Because they are latched with
clock HI, microcode need only be presented at the clock rate,
though data is loaded on both clock rising and falling edges.

A few controls are asynchronous. These controls take effect
immediately and are thus neither registered nor pipelined. Each
has an independently specified setup time.

ADSP-3210/3211/3220/3221

FAST/IEEE CONTROL (REG)

FAST is a pipelined, registered control. It affects the interpretation
of data read into processing circuitry immediately after having
been loaded to the input control register. FAST affects the
format of results in the rounding & exception processing pipeline
stage. FAST also affects the definition of some exception flags.
(See “Exception Flags.”)

IEEE Standard 754 requires a system to perform operations on
denormal operands (which are smaller in magnitude than the
minimum representable normalized number). This capability to
accommodate these numbers is known as “gradual underflow.”
For floating-point systems not requiring strict adherence to the
IEEE Standard, the ADSP-3210/3211/3220/3221 provides a
FAST mode (FAST control pin HI) which consistently flushes
post-rounded results less than NORM.MIN to ZERO. This
approach greatly simplifies exception processing and avoids
generating the denormal, wrapped, and unnormal data types
described above. When in FAST mode, the Multipliers will
treat denormal inputs as ZERO and produce a ZERO result.
The ALUs will treat denormal inputs exactly as they do in
IEEE mode but still flush post-rounded results less than
NORM.MIN to ZERO.

Systems implementing gradual underflow with the ADSP-3210/
3211/3220/3221 must treat the multiplication of operands that
include a denormal as an exception to normal process flow.
FAST should be LO on all chips. See the section below, “Gradual
Underflow and IEEE Exceptions”, for a fuller discussion of the
details of implementing an IEEE system with this chipset.

RESET CONTROL (ASYN)

The asynchronous, active LO RESET control clears all control
functions in the ADSP-3210/3211/3220/3221. RESET should be
asserted on power up to insure proper initialization.RESET will
abort any multicycle operation in progress. Status flags are
cleared by RESET. No input register contents are affected by
RESET; however, the output register can be invalidated if
RESET is asserted LO during a multicycle operation. All load
selection controls (SELA/B) must be LO at RESET.

PORT CONFIGURATION - IPORT CONTROLS (ASYN)
The three-port members of this chipset (ADSP-3211/3220/3221)
offer several options on their input port configuration. The
options are controlled by the two asynchronous lines, IPORTO:1.
They are intended to be hardwired to the desired port config-
uration. If the user wants to change the port configuration under
microcode control, the timing requirements of Figure 16 below
must be met.

The first and last configurations in Figure 15 are called “two-port”
configurations; the middle pair, “one-port” configurations.
Whether an input register loads its data on a rising or falling
clock edge will depend in general on whether the chip is wired
in a one-port or two-port configuration.

In one-port configurations, the unused port effectively becomes
a no-connect, reducing the number of external buses required to
operate these chips. The full pipelined throughput can be main-
tained for the Multipliers in the one-port configuration for all
operations. The ADSP-3210 Multiplier has only one physical
input port, so is always in a “one-port” configuration. The
ALUs will, in contrast, become input-bandwidth-constrained at
the input ports for double-precision operations in a one-port
configuration. They are capable of operating on a pair of 64-bit

IPORT1 | IPORTO | PORT CONFIGURATION
AIN BIN two
0 0 port
[A registers]| [B registers]

AIN BIN
one
0 1 port
[A registers] [B_registers]

AIN BIN
one
1 0 port
[A registers] [B registers]

AIN BIN
two
1 1 port
[A registers] [B registers]

Figure 15. ADSP-3211/3220/3221 Input Port
Configurations

operands at the clock rate, but a single input port could not
accept operands at that rate.

The port configuration of the ADSP-3211/3220/3221 can be
changed under microcode control. However, as described in the
section below, “Input Register Loading,” the selected port
configuration affects whether a given register loads on rising or
falling clock edges. The transition between port configurations
can cause inadvertent data loads, destroying data held in input
registers. Therefore, all input registers must be deselected for
data loading (all SELA/B controls must be held LO while IPORT
bits change; see “Input Register Loading™) during both the
cycle in which IPORT bits are changed and the cycle following:

Change
IPORT bits
old port here new port

configuration /_/\ configuration

CLK |

oot ot

L

Al Al Resume
SEL SEL normal
Lo Lo data loading

Figure 16. Timing Requirements for Changing the
ADSP-3211/3220/3221 Input Port Configurations

Thus, data loading will be interrupted for two cycles whenever
changing the ADSP-3211/3220/3221’s port configuration. All
other processing is unaffected.

INPUT REGISTER LOADING AND OPERAND STORAGE
— SELA/B CONTROLS (LAT)

The chipsets’ 32-bit input registers are selected for data loading
with the latched Load Selection Controls, SELA/B0:3 (on the
ADSP-3210, SELA/BO:1). Since each input register has its own
control, the Load Selection Controls are independent of one
another. Multiple registers can be selected for parallel loads of

FLOATING-POINT COMPONENTS 4-49

the same input data, if desired. The Load Selection Controls
effects on data loading are summarized:

register
SEL control | loaded
SELAO A0
SELAt A1
SELA2 A2
SELA3 A3
SELBO BO
SELB1 B1
SELB2 B2
SELB3 B3

Figure 17. ADSP 3210/3211/3220/3221 Load Selection
Controls

Restrictions on Register Loading

Input port configuration affects whether input registers load
data on rising or falling edges. Devices in one-port configurations
load A registers on rising edges and B registers on falling edges
(which minimizes double-precision latency). Devices in two-port
configurations load even-numbered registers on rising edges and
odd-numbered registers on falling edges (which is typically
simpler to implement). Devices in the two-port configuration
load data:

A0 A1 BO B1
s v | [$] % |
A2 A3 B2 B3

L v | [1%

Figure 18. ADSP-3211/3220/3221 Clock Edge for Data
Loading - Two-Port Configuration

Eight-register devices (ADSP-3211/3220/3221) in the one-port
configuration load data to A registers on the rising edge and B
registers on the falling edge:

A0 A1l B0 B1

(1] [%]

A2 A3

2 B3
L] ¢ [%]

Figure 19. ADSP-3211/3220/3221 Clock Edge for Data
Loading — One-Port Configuration

The ADSP-3210 Multiplier loads data like the two-input-port
devices in a one-input port configuration. That is, the ADSP-3210
loads data to A registers on the rising edge and B registers on
the falling edge:

A1l A0 B1 BO

(o] [+]

Figure 20. ADSP-3210 Clock Edge for Data Loading

4-50 FLOATING-POINT COMPONENTS

Restrictions on Register Storage

For single-precision and fixed-point data, any convenient register
can be used. The only restriction is that the register being loaded
is not currently in use by the chip’s processing elements. For all
single-precision Multiplier and most ALU operations, input
registers are only read into the computational circuits for one
cycle. Do not load a register for 32-bit operations on the clock’s
falling edge when that register has been selected to feed the
chip’s processing circuits in that same cycle (with the RDA/B
controls described in “Input Data Read Selection”). Pick a
register not in use.

The ADSP-3221 ALU is capable of two multicycle operations:
IEEE floating-point division and square root. For single-precision
floating-point division, the dividend can be stored in any A
register and the divisor can be stored in any B register. Single-
precision operands for IEEE square root can be stored in any B
register. The registers selected to the computational circuits for
these operations must be stable until the end of the operation
time, whether single-precision or double-precision. (See “Timing”
and the timing diagrams below for a precision definition of
“operation time”.)

With 64-bit double-precision data, there are constraints on which
registers hold which 32-bit halves of operands. 64-bit data must
be loaded in adjacent pairs of 32-bit registers as shown in Figures
21 and 22. The 32-bit Most Significant Word (MSW) will be in
one register and the 32-bit Least Significant Word (LSW) in its
neighbor. The four-register ADSP-3210 has different double-
precision operand storage requirements from the other mem-
bers of this chipset. Double-precision operand storage for the
ADSP-3211/3220/3221 is:

A0 A1 BO B1
IMSWA [LSWAJ |MSWB I LSWBJ

A2 A3 B2 B3
IMSWc I LSW, ‘ IMSWD | LSWDJ

Figure 21. ADSP-3211/3220/3221 Operand Storage for
Double-Precision Operations

For the four-register ADSP-3210, operands for double-precision
operations should be stored as shown in Figure 22. Note that
the MSWs are in Al and Bl, in contrast with 64-bit data storage
with the other members of this chipset.

A1 A0 B1 BO
LMSWA J LSW, l MSWB I LSWy I

Figure 22. ADSP-3210 Operand Storage for Double-
Precision Operations

Restrictions on Register Stability

With 64-bit data — as with 32-bit data - registers should not be
loaded that are currently in use by the processing elements (i.e.,
selected by the RDA/B controls). Half the 32-bit registers in
any pair of 64-bit operands will loaded on the falling edge (re-
gardless of port configuration) with all members of this chipset.

To operate the ALUs at full throughput in single-cycle double-
precision operations, 64-bit register sets should be alternated
every cycle. For example, A0 & Al and B2 & B3 could be
loaded with new operands while A2 & A3 and B0 & B1 were
feeding the computational circuits (and were not changing). In

ADSP-3210/3211/3220/3221

this way, data loading will not disturb the contents of registers
in use.

The ADSP-3221 ALU includes two double-precision multicycle
operations in its instruction set: IEEE division and square root.
For double-precision floating-point division, the 64-bit dividend
can be stored in either pair of A registers consistent with
Figure 21. The divisor can be stored in either pair of B registers,
also consistent with Figure 21. Double-precision operands for
IEEE square root can be stored in either pair of B registers
consistent with Figure 21. Registers containing operands in use
must remain unchanged until the end of the operation time.

The ADSP-3210/3211 Multipliers perform double-precision
multiplications at a four-cycle throughput rate. This process
requires computing four cross-products, and the only requirement
on operand registers is that they remain stable, i.e., unchanged,
for the cycles in which they are used. For this reason, the ADSP-
3210 can maintain full four-cycle double-precision multiplication
throughput even though it has only two pairs of 32-bit registers.
The sequence of operations for double-precision multiplications
and the requirements on register stability are as follows:

ADSP-3210 | A1 A0 B1 BO
ADSP-3211 | A0,A2 |A1,A3 |B0,B2 |B1,B3
Cycle Operation MSW LSwW MSW | LSW
1 Asw ® Blsw stable stable
2 | Aysw® Blgw | stable | stable stable
3 Asw ® Busw | stable | stable | stable
4 AMSW L4 BMSW stable stable

Figure 23. ADSP-3210/3211 Double-Precision Multiplication
Input Register Requirements

To achieve maximum throughput with the ADSP-3210 Multiplier,
the two LSWs from the operands to multiplied should be loaded
first (to BO followed by A0Q). The actual double-precision multi-
plication can begin as soon as both are loaded to A0 and BO
(beginning of cycle 1 in Figure 23). At the midpoint and end of
cycle 1, the MSW's can be loaded (though only the MSW in Al
is actually needed in cycle 2). At the end of cycle 2, the LSW

in BO can be overwritten with an LSW needed in the next
multiplication. At the end of cycle 3, the LSW in AO can be
overwritten.

The ADSP-3211 Multiplier has additional registers and therefore
fewer constraints on data loading and storage than the ADSP-3210

Multiplier. The only requirements that must be observed are
those indicated in Figures 21 and 23.

DATA FORMAT SELECTION - SP & DP CONTROLS
(REG)

The three data formats processed by the ADSP-3210/3211/3220/
3221 chipset are single-precision floating-point, double-precision
floating-point, and fixed. With the ADSP-3210/3211 Multipliers,
the data format is indicated explicitly by the states of the DP
and the SP registered controls:

SPIDP| Data Format Selection
0}0 fixed

011 double-precision

110 single-precision

141 illegal mode

Figure 24. ADSP-3210/3211 Multipliers Data Format
Selection

The state of the SP and DP controls at the rising edge when n

data is read into the Multiplier Array determines whether the
data is interpreted as single-precision floating-point, double-
precision floating-point, or fixed-point. Double-precision multi-
plication is a multicycle operation; once initiated, the states of
SP and DP don’t matter until the next data is read to the processing
circuitry.

For the ADSP-3220/3221 ALUs, data format selection is implicit
in the ALU instruction, Iz . (See “ALU Operation” section
below.)

INPUT DATA REGISTER READ SELECTION -~ RDA/B
CONTROLS (REG)

The Register Read Selection Controls, RDA/BO0:1 (on the ADSP-
3210, RDA/BO, are registered controls and select the input
registers that are read into the chipset’s processing circuitry.
Any pair of input registers can be read into the processing circuitry.
(For single-operand operations, the state of the Selection controls
for the unused register bank doesn’t matter.) Data loaded to an
input register on a rising edge can be read into the processing
circuitry on that same edge (“direct operand feed”).

The data format selected affects the interpretation of the RDA/B
controls. The four-register ADSP-3210 Multiplier needs only
two Register Read Selection Controls, which are defined below
separately.

For the ADSP-3211/3220/3221, register read selection is defined:

SP & Fixed: DP: SP & Fixed: DP:
A register |A registers B register ;B registers
RDA1 RDAO | selected selected RDB1.RDBO | selected selected
0 0 A2 illegal state 0 0 B2 ilegal state
0 1 A3 A2, A3 [¢] 1 B3 B2, B3
1 0 A0 illegal state 1 0 BO illegal state
1 1 A1 AQ, A1 1 1 B1 BO, B1

Figure 25. ADSP-3211/3220/3221 Input Register Read

Selection

FLOATING-POINT COMPONENTS 4-51

For the ADSP-3210, register read selection is defined:

SP & Fixed: DP: SP & Fixed: DP:
A register {A registers B register | B registers
RDAO | selected selected RDBO | selected selected
0 A1l illegal state 0 B1 illegal state
1 A0 A1, A0 1 BO B1, BO

Figure 26. ADSP-3210 Input Register Read Selection

After the initiation of multicycle operations, the RDA/B controls
are ignored. The chips themselves take over the sequencing of
register read selection until the multicycle operation is
completed.

ABSOLUTE VALUE CONTROLS - ABSA/B (REG)

The registered Absolute Value Controls convert an operand
selected by the Read Selection Controls to its absolute value
before processing. Asserting ABSA (HI) causes the A operand
to be converted to its absolute value; asserting ABSB (HI) causes
the B operand to be converted to its absolute value. The contents
of the input registers remain unaffected.

With the ADSP-3220/3221 ALUs, the ABSA/B controls are
effective with most fixed-point and all single-precision and double-
precision operations. If the ABSA/B controls are asserted in
logical operations, the results will be undefined.

For the ADSP-3210/3211 Multipliers, the absolute value operation
is available on single-precision and double-precision floating
point operands only. If the ABSA/B controls are asserted with a
Multiplier for a fixed-point operation, the results will be
undefined.

WRAPPED INPUT CONTROLS - WRAPA/B (REG) (AND
INEXIN AND RNDCARI ON THE ADSP-3221)

The ADSP-3210/3211 cannot operate directly on denormals;
denormals to be multiplied must first be converted by an ALU
to the “wrapped” format. (See “Gradual Underflow and IEEE
Exceptions” below.) The Multipliers must be told that an input
is in the wrapped format so that its exponent can be interpreted
properly as a twos-complement number.

The registered WRAPA/B controls inform a Multiplier that a
wrapped number has been selected as an operand (RDA/B controls)
to the multiplier array. WRAPA indicates (HI) that the selected
A register contains a wrapped number; WRAPB, that the selected
B register contains a wrapped number.

The ALUs in general operate directly on denormals and hence
don’t need a similar set of controls. However, for ADSP-3221
IEEE division and square root operations, the ALU cannot
operate directly on denormals. Like the Multipliers, it needs
denormals to be converted to wraps before processing. To indicate
that the dividend in the A register is a wrapped, INEXIN should
be asserted (HI) exactly as WRAPA would be asserted on a
Multiplier. To indicated that either the divisor in a B register or
a square root operand in a B register is a wrapped, RNDCARI

should be asserted (HI). Except for unwrap, division, and square
root operations, both INEXIN and RNDCARI should be held
LO.

TWOS-COMPLEMENT INPUT CONTROL - TCA/B
(REG)

The registered ADSP-3211’s Twos-Complement Input Controls
inform the Multiplier to interpret the selected fixed-point inputs
in the twos-complement data format. (See “32-Bit Fixed-Point
Data Formats” above.) TCA HI indicates that the selected A
register is twos-complement; TCB HI indicates a twos-complement
B register. A LO value on either control for fixed-point multi-
plication indicates that the selected input is in unsigned-magnitude
format. Mixed-mode (twos-complement times unsigned-
magnitude) multiplications are permitted. The TCA/B controls
are operative in fixed-point mode only; in floating-point mode,
they are ignored.

ROUNDING - RND CONTROLS (REG)

For floating-point operations, the ADSP-3210/3211/3220/3221
chipset supports all four rounding modes of IEEE Standard

754. These are: Round-to-Nearest, Round-toward-Zero, Round-
toward-Plus-Infinity, and Round-toward-Minus-Infinity. For
fixed-point operations, two rounding modes are available: Round-
to-Nearest, and Unrounded.

Rounding is involved in ail operations in which the precision of
the destination format is less than the precision of the intermediate
results from the operation. Multiplications internally generate
twice as many bits in the intermediate result significand as can
be stored in the destination format. Data conversions to a desti-
nation format of lesser precision than the source also always
force rounding unless the source value fits exactly.

Rounding with the ADSP-3210/3211/3220/3221 chipset is con-
trolled by a pair of pipelined, registered round controls, RNDO:1.
They should be setup with the input data whose result is to be
rounded. Rounding is performed in the last stage of processing;
the Output Register always contains rounded results. The effects
of the Round Controls are defined as shown in Figure 27.

The four floating-point modes of the IEEE Standard can be
summarized as follows. In all cases, if the result before rounding
can be expressed exactly in the destination format without loss
of accuracy, then that will be the destination format result,
regardless of specified rounding mode.

Mnemonic | RND1/RNDO Floating-Point Fixed-Point
RN 0 0 Round-to-Nearest Round-to-Nearest
RZ 0 1 Round-toward-Zero Unrounded
RP 1 0 Round-toward-Plus-Infinity illegal state
RM 1 1 Round-toward-Minus-Infinity illegal state

Figure 27. Round Controls

4-52 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

Round-toward-Plus-Infinity (RP): “When rounding toward

+ o, the result shall be the format’s value (possibly +) closest
to and no less than the infinitely precise result” (Std 754-1985,
Sec. 4.2). If the result before rounding (the “infinitely precise
result”) is not exactly representable in the destination format,
then the result will be that number which is nearer to positive
infinity. Round-toward-Plus-Infinity is available in floating-point
operations only. If the result before rounding is greater than
NORM.MAX but not equal to Plus Infinity, the result will be
Plus Infinity. If the result before rounding is less than
—NORM.MAX but not equal to Minus Infinity, the result will
be —NORM.MAX. For fixed-point destination formats, the
results of RP are undefined.

Round-toward-Minus-Infinity (RM): “When rounding toward
— o, the result shall be the format’s value (possibly — ©) closest
to and no greater than the infinitely precise result” (Std 754-1985,
Sec. 4.2). If the result before rounding is not exactly representable
in the destination format, the result will be that number which
is nearer to Minus Infinity. Round-toward-Minus-Infinity is
available in floating-point operations only. If the result before
rounding is greater than NORM.MAX but not equal to Plus
Infinity, the result will be NORM.MAX. If the result before
rounding is less than — NORM.MAX but not equal to Minus
Infinity, the result will be Minus Infinity. For fixed-point desti-
nation formats, the results of RM are undefined.

Round-toward-Zero and Unrounded (RZ): “When rounding
toward 0, the result shall be the format’s value closest to and no
greater in magnitude than the infinitely precise result” (Std 754-
1985, Sec. 4.2). If the result before rounding is not exactly
representable in the destination format, the result will be that
number which is nearer to zero. The Round-toward-Zero operation
is available in floating-point operations only. It is equivalent to
truncation of the (unsigned-magnitude) significand. If the result
before rounding has a magnitude greater than NORM.MAX but
not equal to Infinity, the result will be NORM.MAX of the
same sign.

For fixed-point destination formats, the RZ mode is “Unrounded.”
For fixed-point operations, RZ has no effect on the result at the
Output Register and should be specified whenever unmodified

- NORM MAX

fixed-point results are desired. (Treating the unrounded Most
Significant Product as the final result and throwing away the
LSP is logically equivalent to Round-toward-Minus-Infinity for
twos-complement numbers and equivalent to Round-toward-Zero
[truncation] for unsigned-magnitude numbers.)

Round-to-Nearest (RN): When rounding to nearest, “ . . . the
representable value nearest to the infinitely precise result shall
be delivered; if the two nearest representable values are equally
near, the one with its least significant bit zero shall be deliver
(Std 754-1985, Sec. 4.1). If the result before rounding is not
exactly representable in the destination format, the result will be
that number which is nearer to the result before rounding. In
the case that the result before rounding is exactly half way between
two numbers in the destination format differing by an LSB, the
result will be that number which has an LSB equal to zero. If
the result before rounding overflows, i.e,. has a magnitude
greater than or equal to NORM.MAX + 1/2LSB in the destination
format, the result will be the Infinity of the same sign.

Round-to-Nearest is available in both floating-point and fixed-
point operations. In fixed-point, Round-to-Nearest treats the
Most Significant Product after having been shifted in accordance
with SHLP (see Figures 10, 11, 13, and 14) as the destination
format.

The four rounding modes are illustrated by number lines in
Figure 28. The direction of rounding is indicated by an arrow.
Numbers exactly representable in the destination format are
indicated by “”’s. In subdividing the number lines, square
brackets are inclusive of the points on the line they intersect.
Note that brackets intersect points representable in the destination
format except for Round-to-Nearest, where they intersect the
line midway between representable points. Slashes are used to
indicate a break in the number line of arbitrary size.

Note that Round-to-Nearest is unique among the rounding
modes in that it is unbiased. The large-sample statistical mean
from a set of numbers rounded in the other modes will be displaced
from the true mean. The other three modes will exhibit a large-
sample statistical bias in the direction of the rounding

operation performed.

NORM MAX

—’—}—//—3—>—34/—}—>§—>3—//—3—>3#—3—>— oo

Round to Plus Infinity (RP)

- NORM MAX
—oo

NORM MAX

+00

Round to Minus Infimty (RM)

— NORM MAX

NORM MAX

—oo—»—}—//—}—h-}—//—}—»‘*—{—//—{*—f—;#%— +00

Round to Zero (RZ)

- NORM MAX
-—00
LSB=0 LSB=1

LSB=1 LSB=0 LSB=1

NORM MAX

#-o-fot-00

LSB=1 LSB=0

Round to Nearest (RN)
(for RN. brackets intersect at mid-points between LSBs)

Figure 28. IEEE Rounding Modes

FLOATING-POINT COMPONENTS 4-53

STATUS FLAGS

The ADSP-3210/3211/3220/3221 chipset generates on dedicated
pins the following exception flags specified in the IEEE Standard:
Overflow (OVRFLO), Underflow (UNDFLO), Inexact Result
(INEXO), and Invalid Operation (INVALOP). The IEEE ex-
ception condition Division-by-Zero is flagged by the simultaneous
assertion of both OVRFLO and INVALOP pins. The five
IEEE exceptions are defined in accordance to the default as-
sumption of Std 754 of nontrapping exceptions.

These four flag results are registered in the Status Output Register
when the results they reflect are clocked to the Output Register.
They are held valid until the next rising clock edge. The IEEE
Standard specifies that exception flags when set remain set until
reset by the user. For full conformance to the standard, the
status outputs from this chipset should be individually latched
externally.

Denormal Input

In addition to the IEEE status flags, the ADSP-3210/3211 Mul-
tipliers have a DENORM output flag that signals the presence
of a denormalized number at one of the input registers being
read into the multiplier array. This denormal must be wrapped
by the ALU before the Multiplier can read it. To minimize the
system response time to a denormal input exception, the DE-
NORM flag comes out earlier than the associated IEEE status
flags. DENORM is normally in an indeterminate state. For
single-precision multiplications, DENORM goes HI during the
cycle after a denormal was read into the array (with the RDA/B
controls). See Figure T4. For double-precision multiplications,
DENORM goes HI during the third cycle after a denormal was
read into the multiplier array. See Figure TS. Both Multipliers
produce ZERO results under these conditions. The DENORM
flag is asserted in both IEEE and FAST modes.

Some multiplications with denormal operands do not require
wrapping and therefore do not cause the assertion of the DENORM
flag. These are DNRM*ZERQO, DNRM-INF, and DNRM*NAN.
Multiplication of a finite number by zero always yields zero -
the result the Multiplier will produce anyway — so there is no
need to signal an exception. Any finite number multiplied by
INF should yield INF, and the ADSP-3210/3211 Multipliers
will produce this result witha DNRM operand, hence no wrapping
is required. And multiplication of any number by a NAN produces
a NAN (and the INVALOP flag); no wrapping is necessary for
the Multipliers to produce this correct IEEE result.

Note that the ALUs in general operate directly on denormals
and therefore do not flag any exception. The ADSP-3221 ALU,
however, cannot operate directly on denormals in its division
and square root operations. For these operations, denormal
inputs will cause the simultaneous assertion of UNDFLO and
INVALOP in IEEE mode. For divisions, INEXO HI indicates
that the dividend is a DNRM; INEXO LO indicates that the
divisor or both operands are DNRMs. In FAST mode, only
INVALOP will be asserted. This denormal exception information
becomes available with the status outputs, i.e., at the end of an
attempted multicycle division or square root. In both modes for
both division and square root, a properly signed all-ones NAN
will be produced.

Invalid Operation and NAN results

INVALOP is generated whenever attempting to execute an
invalid operation, as defined in Std 754 Section 7.1. The
INVALOP output is also used in conjunction with other pins to
indicate the Division-by-Zero exception and denormal divisor or
dividend. The default nontrapping result is required to be a
quiet NAN. Except when passing a NAN with PASS or copying
a sign bit to a NAN, the ADSP-3210/3211/3220/3221 chipset

4-54 FLOATING-POINT COMPONENTS

will always produce a NAN with an exponent and fraction of all
ones as a result of an invalid operation.

Conditions that cause the assertion of INVALOP are:

® NAN input read to computational circuitry (except for logical
PASS)

® Multiplication of either +INF by either + ZERO

® In FAST mode, multiplication of either + INF by either
+DNRM

© Subtraction of liked-signed INFs or addition of opposite-signed
INFs

® Conversion of a NAN or INF to fixed-point

©® Wrapping an operand that is neither a denormal nor ZERO

@ Division of either +ZERO by either +ZERO or of either
+INF by either = INF

® Attempting the square root of a negative number

® In conjunction with OVRFLO, the Division-by-Zero
exception

® In FAST mode, a denormal divisor or dividend. In IEEE
mode, in conjunction with UNDFLO, a denormal divisor or
dividend

@ In conjunction with UNDFLO, a denormal input operand to
square root

Division-by-Zero

The Division-by-Zero exception is generated whenever attempting

to divide a finite non-zero dividend by a divisor of zero (Std 754

Section 7.2). The Division-by-Zero exception is indicated on the

ADSP-3221 ALU by the simultaneous assertion of both OVRFLO

and INVALOP. The ALU result is always a correctly signed

INF.

Overflow

OVRFLO is generated whenever the unbounded (i.e., supposing
hypothetically no bounds on the exponent range of the result),
post-rounded result exceeds in magnitude NORM.MAX in the
destination format, as defined in Std 754 Section 7.3. Note that
the overflow condition can occur both during computations and
during data format conversions. The result will be either +INF
or = NORM.MAX, depending on the sign of the result and the
operative rounding mode. (See “Rounding — RND Controls”
above.) The OVRFLO pin is also used to signal additional
exception conditions.

Conditions that cause the assertion of OVRFLO are:

® Unbounded, post-rounded result exceeds destination format
in computation or conversion

© In conjunction with INVALOP, the Division-by-Zero exception
on the ADSP-3221 ALU

® Comparison when operand A is greater than operand B

® Exponent subtraction when the resultant exponent is more
positive than can be represented in the destination format

® Twos-complement fixed-point additions and subtractions that
overflow

Note that OVRFLO is always LO when the ADSP-3210/3211
Multipliers are in fixed-point mode.

Underflow

Underflow is defined in four ways in Std 754 Section 7.4. The
IEEE Standard allows the implementer to chose which definition
of underflow to use and provides no guidance. The first option
is whether to flag underflow based on results before or after
rounding. Consistent with the definition of overflow, underflow
is always flagged with this chipset based on results after rounding
(except for the operations of conversion from floating-point to
fixed-point and logical downshifts). Thus, a result whose infinitely
precise value is less than NORM.MIN yet which rounds to
NORM.MIN will not be considered to have underflowed.

ADSP-3210/3211/3220/3221

The second option is how to interpret what the Standard calls
an “extraordinary loss of accuracy.” The first way is in terms of
the creation of non-zero, post-rounded numbers smaller in mag-
nitude than NORM.MIN. The second way is in terms of loss of
accuracy when representing numbers as denormals. With the
ADSP-3210/3211/3220/3221 chipset, the conditions under which
UNDFLO is asserted depend on whether the chip in question
can generate denormals in its current operating mode. If the
chip cannot generate denormals, the definition in terms of numbers
smaller in magnitude than NORM.MIN will apply; if it can
generate denormals, the definition in terms of inexact denormals
will apply. Thus, which definition applies will depend on whether
the chipset is operating in IEEE or FAST mode, whether its
result is generated by a Multiplier or an ALU, and whether the
operation is division.

With the ADSP-3210/3211 Multipliers, UNDFLO is generated
whenever the unbounded, post-rounded, non-zero result is of
lesser magnitude than NORM.MIN in the destination format,
both in FAST and IEEE modes. In FAST mode, the data result
will be ZERO; in IEEE mode the data result will be in the
wrapped format. An exact ZERO result will never cause the
assertion of UNDFLO.

With the ADSP-3220/3221 ALUs in the FAST mode, UNDFLO
is also generated whenever the unbounded, post-rounded, non-zero
result is of lesser magnitude than NORM.MIN in the destination
format for standard ALU operations as well as for division and
square root. For FAST mode underflows, the ALU result will
always be ZERO. The only exception to this rule is for sums of
and differences between DNRMs; if the unbounded, post-
rounded, non-zero result of (DNRM = DNRM) is of lesser
magnitude than NORM.MIN in FAST, then UNDFLO will
not be set. The ALU result will still be ZERO.

With the ADSP-3220/3221 ALUs in IEEE mode, UNDFLO is
generated (except for divisions) whenever the unbounded, infi-
nitely precise (i.e., supposing hypothetically no bounds on the
precision of the result), post-rounded result is a denormal and
does not fit into the denormal destination format without a loss
of accuracy. In other words, UNDFLO will be generated whenever
an inexact denormal result is produced. (See “Inexact” below.)
If the result is a denormal and does fit exactly, neither UNDFLO
nor INEXO will be asserted. Note that additions, subtractions,
and comparisons cannot generate this underflow condition (since
no operand contains significant bits of lesser magnitude than
DNRM.MIN). IEEE-mode ALU underflow exceptions occur
only during conversions and divisions.

The division operation is treated like a multiplication operation
in IEEE mode rather than an ALU operation in the definition
of underflow. A quotient from division smaller in magnitude
than NORM.MIN will always be flagged as underflowed with
the ADSP-3221 ALU. The data result will be in the wrapped
format. Note that V(DNRM.MIN)=NORM.MIN. Therefore,
square root will never underflow with operands greater than or
equal to DNRM.MIN.

Conditions that cause the assertion of UNDFLO are:

® With the ADSP-3210/3211 Multipliers, whenever the un-
bounded, post-rounded, non-zero result is of lesser magnitude
than NORM.MIN in the destination format

® With the ADSP-3220/3221 ALUs in the FAST mode, whenever
the unbounded, post-rounded, non-zero result is of lesser
magnitude than NORM.MIN in the destination format

©® With the ADSP-3220/3221 ALUs in IEEE mode, whenever
an inexact denormal is produced or whenever the unbounded,
post-rounded, non-zero quotient from division is of lesser
magnitude than NORM.MIN in the destination format

e Conversions to integer if the magnitude of the floating-point
source before rounding is less than one

® Conversions from DP floating-point to SP floating-point

whenever the unbounded, post-rounded, non-zero result is

less than SP DNRM.MIN or whenever an inexact denormal

is produced.

Comparison when operand A is less than operand B

Attempting to wrap a ZERO

Unwrapping if there is a loss of accuracy

Exponent subtraction when the resultant exponent is more

negative than can be represented in the destination format

Logical downshift that before rounding would have shifted all

bits out of the destination format

In conjunction with INVALOP, a denormal divisor or

dividend

@ A quotient from division less than NORM.MIN

o In IEEE mode, in conjunction with INVALOP, a denormal
input operand for square root

Inexact

The inexact exception is defined in Std 754 Section 7.5 as the
loss of accuracy of the unbounded, infinitely precise result when
fitted to the destination format. It is signalled on the ADSP-3210/
3211/3220/3221 chipset by INEXO.

For fixed-point operations, the ADSP-3210/3211 Multipliers will
assert INEXO HI if and only if any of the least-significant 32
bits of prerounded 64-bit products are ones. They never assert
INEXO for logical operations. The ADSP-3220/3221 ALUs
never assert INEXO for fixed-point or logical operations.

In an ADSP-3221 division operation, either a denormal divisor
or a denormal dividend will cause the simultaneous assertion of
UNDFLO and INVALOP. INEXO will, in that context, signal
which of the two was the denormal: INEXO LO indicates that
the divisor is a denormal; INEXO HI indicates that the dividend
is a denormal.

Conditions that cause the assertion of INEXO are:

® Loss of accuracy when fitting result to destination format

® For fixed-point operations, the prerounded multiplier 64-bit
product contains ones in the least-significant 32 bits

o In IEEE mode, in conjunction with both UNDFLO and
INVALOP, dividend is a denormal (HI) or divisor is a denormal
or both are denormals (LO)

Less Than, Equal, Greater Than, and Unordered

For comparison operations in the ALUs, the OVRFLO,
UNDFLO, and INVALOP status outputs are used to indicate
the four comparison conditions of IEEE Std 754, Section 5.7.
They are defined as follows:

® “Less than” is signalled by the assertion of UNDFLO (while
OVRFLO is LO)

® “Equal” is signalled by nor asserting either OVRFLO or
UNDFLO (.e., both LO)

® “Greater than” is signalled by the assertion of OVRFLO

(while UNDFLO is LO)

“Unordered” is signalled by the assertion of INVALOP,

caused by attempting a comparison with at least one NAN

operand

FLOATING-POINT COMPONENTS 4-55

The data result from a comparison operation is identical to
subtracting operand B from operand A. See Tables X1 and
X11.

In IEEE comparisons, the data types are always ordered in
ascending sequence: —INF, —NORM, —DRNM, ZERO,
DNRM, NORM, and INF. Comparisons between like signed
INFs will generate the “Equal” status condition. Comparisons
between signed ZEROs will also generate the “Equal’ status.
Any comparison to a NAN will also cause INVALOP and produce
an all-ones NAN. Even in FAST mode, DNRMs will be compared
based on their true value (rather than all being treated as
ZERO:s).

Special Flags for Unwrapping

The ADSP-3210/3211 generates a Round Carry Propagation Out
flag, RNDCARO, that indicates whether or not a carry bit
propagated into the destination format’s fraction during the
Multiplier’s floating-point rounding operation. The rounding
that the Multiplier does in creating the wrapped or unnormal
result may cause a carry bit into the LSB in the destinations
format’s fraction. This rounding position will not in general be
correct for a properly rounded denormal. Thus, when the un-
derflowed Multiplier result is unwrapped to a denormal, the
ALU has to undo the Multiplier’s rounding and re-round to
achieve the properly rounded denormal.

To do this, the ALU has to know if any carry bits in the Multipliers
rounding operation propagated into the fraction of the result.
This information is provided in the Multiplier’s RNDCARO
flag. The ALU also needs to know if the Multiplier’s rounded
result caused a loss of accuracy when expressed in its destination
wrapped format, indicated by the Multipliers Inexact Result
(INEXO) flag.

The ADSP-3220/3221 ALUs have a corresponding pair of flag
status input pins: Round Carry Propagation In (RNDCARI)
and Inexact Data In (INEXIN). In an unwrap operation, these
flags are used by the ALU when converting from a WNRM to a
DNRM to obtain the properly rounded result. RNDCARI and
INEXIN should be setup to the ALU with the instruction for
the unwrap operation. Both Multiplier and ALU must be using
the same rounding mode.

The ADSP-3221 ALU itself generates WNRMs in underflowed
division operations. These WNRMs must be fed back to the
ALU to be unwrapped to DNRMs. The ADSP-3221, unlike the
Multipliers, does not have a RNDCARO pin to signal whether
or not a carry bit propagated into the destination format on
rounding. For this reason, WNRMs produced by the ADSP-3221
ALU in division are rounded differently than they are on the

Mnemonic Instruction (Is o)
Iz s Is 3
IADD 001 000
ISUBB 001 001
ISUBA 001 000
IADDWC 001 010
ISUBWBB 001 011
ISUBWBA 001 010
INEGA 001 000
INEGB 001 001
IADDAS 001 100
ISUBBAS 001 101
ISUBAAS 001 100

Multipliers; underflowed (only) quotients are always truncated
(Round-toward-Zero) to the destination wrapped format. Hence
there is no carry bit propagation. When unwrapping a WNRM
produced in division, RNDCARI should always be held LO.
INEXIN should reflect the status of INEXO when the ALU
produced the underflowed wrapped quotient.

The ADSP-3221 ALU also uses the RNDCARI and INEXIN
pins to indicated wrapped A and B operands, respectively, to
division and square root operations. Both RNDCARI and INEXIN
should be held LO except for unwrap, division, and square root
operations.

INSTRUCTIONS AND OPERATIONS

The ADSP-3210/3211 Multipliers execute the same instruction
every cycle: multiply. It need not be specified explicitly in micro-
code. The data format of results and status flags from multiplication
are shown in Tables IX and X. Note that double-precision
floating-point multiplications are multicycle operations. Data
must be available in the input registers as shown above in
Figure 23.

Denormal input operands will generally cause the DENORM
exception (see “Status Flags™ above) and correctly signed ZERO
results. FAST mode suppresses the DENORM exception. In
either FAST or IEEE, DNRM-ZERO will be ZERO without
exception. DNRMCINF will be a correctly signed INF without
exception in IEEE mode and a NAN and INVALOP in FAST
mode. DNRM+*NAN will be a correctly signed NAN with IN-
VALOP asserted. The sign bit of the NAN generated from any
invalid operation will depend on the operands. (The IEEE Standard
does not specify conditions for the sign bit of a NAN.) On the
ADSP-3210/3211 Multipliers, the sign of a NAN result will be
the exclusive OR of the signs of the input operands.

The product of INF with anything except ZERO or NAN is a
correctly signed INF. INF-ZERO will cause INVALOP and
yield a NAN. NAN times anything will also cause INVALOP
and yield a NAN.

The ADSP-3220/3221 ALUs, in contrast to the Multipliers, are
instruction driven with the operation specified by Ig 4. The
ALU instructions fall into four categories: Fixed-Point, Logical,
Single-Precision Floating-Point, and Double-Precision Floating-
Point. Instructions are summarized in Tables V through VIII
and described in this section below. The data format of results
and status flags from the various ALU operations are shown in
Tables XI and XII. Division is shown in Tables XIII and XIV;
square root in Table XV. Conversions are illustrated in Tables
XVI, XVII, and XVIII.

The ADSP-3220/3221 Fixed-Point Arithmetic Operations are:

Description

Lo

011 Fixed-pointA+B

011 Fixed-point A — B

111 Fixed-pointB—A

011 Fixed-point A + B with carry

011 Fixed-point A — B with borrow

111 Fixed-point B — A'with borrow

101 Fixed-point — A. ABSA/B must be LO.
010 Fixed-point — B, ABSA/B must be LO.
011 Fixed-point |A + B|

011 Fixed-point |A — B ABSA/B must be LO.
111 Fixed-point |B — A| ABSA/B must be LO.

Table V. ADSP-3220/3221 Fixed-Point ALU Operations

4-56 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

The ADSP-3220/3221 Logical Operations are:

Mnemonic Instruction (I o) Description
I s Iss Lo

COMPLA 000 000 101 Ones-complement A

COMPLB 000 001 010 Ones-complement B

PASSA 000 000 001 Pass A unmodified. Set no flags.

PASSB 000 000 010 Pass B unmodified. Set no flags.

AANDB 000 010 010 Bitwise logical AND

AORB 000 100 010 Bitwise logical OR

AXORB 000 110 010 Bitwise logical XOR

NOP 000 000 000 No operation. Preserve status flags. Preserve Output Register
contents with ADSP-3221 only.

CLR 100 000 000 Clear all status flags. Data register contents are unaffected.

Table VI. ADSP-3220/3221ALU Logical Operations

The ADSP-3220/3221 Single-Precision Floating-Point Operations are:

Mnemonic Instruction (Iz o) Description
Ies Is 3 Lo
SADD 111 000 011 SPFligPt (A +B)
SSUBB 111 000 1381 SP FligPt (A —B)
SSUBA 111 001 011 SPFltgPt(B—A)
SCOMP 111 001 111 SP FltgPt comparison of A to B. Resultis (A — B)

Greater Than=(OVRFLO HI)
Equal=(OVRFLO LO & UNDFLO LO)
Less Than=(UNDFLO HI)
Unordered=INVALOP HI

SADDAS 011 000 011 SP FligPt|A + B|

SSUBBAS 011 000 1 SPFligPt|A —B|

SSUBAAS 011 001 011 SPFligPt|B—A|

SFIXA 011 001 101 Convert SP FligPt A to twos-complement Integer

SFIXB 011 001 110 Convert SP FltgPt B to twos-complement Integer

SFLOATA 011 100 101 Convert twos-complement integer A to SP FligPt

SFLOATB 011 100 110 Convert twos-complement integer B to SP FligPt

DOUBLEA 011 101 101 Convert SP FligPt A to DP FligPt

DOUBLEB 011 101 110 Convert SP FltgPt B to DP FligPt

SPASSA 011 110 001 Pass SP FligPt A. NANs cause INVALOP.

SPASSB 011 110 010 Pass SP FltgPt B. NANs cause INVALOP.

SWRAPA 011 100 001 Wrap SPDNRM A to SP WNRM

SWRAPB 011 100 010 Wrap SP DNRM B to SP WNRM

SUNWRAPA 011 010 001 Unwrap SP WNRM A to SP DNRM

SUNWRAPB 011 010 010 Unwrap SP WNRM B to SP DNRM

SSIGN 011 111 101 Copy sign from SP FligPt B to SP FltgPt A. Result is
[sign B, exponent A, fraction A].

SXSUB 011 111 001 Subtract B exponent from A exponent. Resultis

[sign A, (expt A —expt B), fraction A] for all data types.
If the unbiased exponent = + 128, INF results.
If the unbiased exponent is < — 127, ZERO results.

SITRN 011 010 101 Downshift SP FltgPt A mantissa (with hidden bit) logically by the
unbiased SP FltgPt B exponent to a 32-bit
unsigned-magnitude integer. Use RZ only.

ADSP-3221 ALU only:
SDIV 011 110 111 SP FligPt (A + B)
SSQR 111 110 110 SPFltgPt VB

Table VIl. ADSP-3220/3221ALU Single-Precision Floating-Point Operations

FLOATING-POINT COMPONENTS 4-57

The ADSP-3220/3221 Double-Precision Floating-Point Operations are:

Mnemonic Instruction (Ig_o) Description
Iss Iss Lo

DADD 110 000 011 DPFltgPt(A+B)

DSUBB 110 000 111 DPFltgPt(A-B)

DSUBA 110 001 011 DPFltgPt(B—-A)

DCOMP 110 001 111 DP FltgPt comparison of A to B. Resultis (A —B).
Greater Than=(OVRFLO HI & UNDFLO LO)
Equal=(OVRFLO LO & UNDFLOLO)
Less Than=(OVRFLO LO & UNDFLO HI)
Unordered=INVALOP HI

DADDAS 010 000 011 DPFligPt| A +B|

DSUBBAS 010 000 111 DP FltgPt|A - B|

DSUBAAS 010 001 011 DP FltgPt|B - A|

DFIXA 010 011 101 Convert DP FltgPt A to twos-complement integer

DFIXB 010 011 110 Convert DP FltgPt B to twos-complement integer

DFLOATA 010 100 101 Convert twos-complement integer A (even A register sources
only) to DP FligPt

DFLOATB 010 100 110 Convert twos-complement integer B (even B register sources
only) to DP FligPt

SINGLEA 110 011 101 Convert DP FligPt A to SP FltgPt

SINGLEB 110 011 110 Convert DP FltgPt B to SP FltgPt

DPASSA 010 110 001 Pass DP FligPt A. NANs cause INVALOP.

DPASSB 010 110 010 Pass DP FligPt B. NANs cause INVALOP.

DWRAPA 010 100 001 Wrap DP DNRM A to DP WNRM

DWRAPB 010 100 010 Wrap DP DNRM B to DP WNRM

DUNWRAPA 010 010 001 Unwrap DP WNRM A to DP DNRM

DUNWRAPB 010 010 010 Unwrap DP WNRM B to DP DNRM

DSIGN 010 111 101 Copy sign from DP FligPt B to DP FligPt A. Resultis
[sign B, exponent A, fraction A].

DXSUB 010 111 001 Subtract B exponent from A exponent. Resultis
[sign A, (expt A — expt B), fraction A] for all data types.
If the unbiased exponent = + 1024, INF results.
If the unbiased exponent is =< — 1023, ZERO results.

DITRN 010 010 101 Downshift DP FltgPt A mantissa (with hidden bit) logically by the
unbiased DP FltgPt B exponent to a 32-bit
unsigned-magnitude integer. Use RZ only.

ADSP-3221 ALU only:

DDIV 010 110 111 DPFligPt(A +B)

DSQR 110 110 110 DPFligPt VB

Table Vill.. ADSP-3220/3221 ALU Double-Precision Floating-Point Operations

Fixed-Point Arithmetic ALU Operations
The negation operation is a twos-complementing of the input
operand.

The OVRFLO flags can be set by fixed-point ALU operations.
The twos-complement data format is presumed in the definition
of fixed-point overflow.

Absolute Value Controls

Absolute value controls (ABSA/B) cannot be used with all operands
input to all fixed-point ALU operations. ABSA/B must be LO
for negation (INEGA/B) and absolute difference (ISUBBAS/
ISUBAAS) operations, or results will be undefined. Absolute
value controls can be used with all other fixed-point operations.

Extended-Precision Fixed-Point Arithmetic

The ADSP-3220/3221s integer ALU operations include three
operations for extended fixed-point precision: addition with
carry and two subtractions with borrow. The carry bit generated
by an addition or subtraction is latched internally for one cycle
only.

4-58 FLOATING-POINT COMPONENTS

To illustrate, these instructions can be used to add two 64-bit
fixed-point numbers. The two least-significant 32-bit halves can
be added with IADD. Any carry bit generated would be latched
internally in the ADSP-3220/3221. On the next cycle, the most-
significant 32-bit halves can be added with IADDWC, which
would also add in the carry bit from the previous operation if
any. The two fixed-point results will be latched in the Output
Register in consecutive cycles. As with all fixed-point results,
they will appear in consecutive cycles in the most-significant 32-
bits of the Output Register (bit positions 63 through 32).

Extended-precision fixed-point subtraction is exactly analogous.
The least-significant 32-bit halves can be subtracted with either
ISUBA or ISUBB. On the next cycle, the most-significant 32-bit
halves can be subtracted with either ISUBWBA or ISUBWBB.

Fixed-Point Zero and Equality Tests

The ADSP-3220/3221 do not directly support fixed-point zero-test
or comparison operations. However, both can be accomplished
using other ALU operations. A zero-test will result from executing
a single-precision floating-point wrap instruction (SWRAPA/B)

ADSP-3210/3211/3220/3221

on the fixed-point data in question. UNDFLO will be asserted
if and only if the operand is ZERO, which is bitwise equivalent
to an operand of all zero bits.

A fixed-point test for equality will result from a bitwise XOR of
A and B operands (AXORB) followed by the zero-test using
SWRAPA/B described in the previous paragraph. In this context,
UNDFLO will flag fixed-point equality.

Logical ALU Operations

The ones-complement instructions (COMPLA/B) change every
one bit in the operand to a zero bit and every zero bit in the
operand to a one bit. Ones-complementing is equivalent to a
bitwise logical NOT operation on the 32-bit operand. The pass
instructions (PASSA/B) pass all operands unmodified, including
NANSs, without signaling an INVALOP exception. PASSA/B
set no flags.

The logical AND, OR, and XOR (AANDB, AORB, AXORB)
operate bitwise on all 32-bits in their pair of operand fields to
produce a 32-bit result.

NOP will advance the ALU pipeline one cycle. Status flags will
be preserved, but Output Register contents will not with the
ADSP-3220. The ADSP-3221 preserves both flags and output
register contents during NOP. CLR simply resets all status
flags. Note that CLR is pipelined and takes effect one cycle
after it is presented. All data register contents, including the
Output Register, remain unaffected.

Do not assert the absolute value controls (ABSA/B) with logical
operations. The results will be undefined.

Floating-Point ALU Operations

The single-precision and double-precision floating-point opera-
tions are exactly analogous and both will be discussed here. The
data types and flags resulting from additions, subtractions,
comparisons, absolute sums, and absolute differences are shown
in Tables XI and XII. The INEXO flag is not shown explicitly
in these tables (or any other) since it may or may not be set,
depending on whether the result is inexact.

Absolute Value Controls
Absolute value controls (ABSA/B) can be used with all operands
input to all floating-point ALU operations.

Sign of NAN Results

On the ADSP-3222, the sign of a NAN resulting from any
operation (except division) involving at least one NAN operand
will be the sign which would be produced if the magnitude
portion (sign plus fraction) of the NAN operand(s) were treated
as normal numbers.

Some ALU operations with two INF inputs can cause INVALOP
and generate NANs. The assignment of sign to the NAN is
analogous to additions with signed zeros:
(£INF)+ (= INF)=(=INF) - (¥INF)- £ INF
(£ INF)+(FINF)=(xINF) - (*INF)- + NAN
(RN, RZ, RP rounding modes)
(= INF)+(FINF) =(=INF)-(*INF)-»-NAN
(RM rounding mode)

In this notation, the first line refers to either +INF +INF or
—INF - INF. The second and third lines refer to +INF —INF
or —INF+INF.

Comparisons

Comparison generates the data result (operand A minus operand
B). The flags, however, are defined to indicate the comparison
conditions rather than the flag conditions for subtraction. Signed
INFs will be compared as expected. A NAN input to the com-
parison operation will cause the unordered flag result INVALOP)
and the production of an all-ones NAN. Even in FAST mode,
the ALUs will accept denormals as inputs to the comparison
operation. See “Less Than, Equal, Greater Than, and Unordered”
in the “Status Flag” section above for a complete discussion of
these flags in comparison operations.

Conversions: Floating to Fixed

Conversions from floating-point to twos-complement integer
(SFIXA/B and DFIXA/B) are considered “floating-point” oper-
ations, and all four rounding modes are available. If the operand
after rounding overflows the destination format, OVRFLO will
be set, and the results will be undefined. Thus, OVRFLO for
fixed-point operations is treated exactly as it is for floating-point
operations.

If the non-zero operand before rounding is of magnitude less than
one, UNDFLO will be set in a conversion to integer. The mag-
nitude of the result may be either one or zero, depending on the
rounding mode. Conversion to integer is the only operation
where UNDFLO depends on the pre-rounded result. The reason
for this is that the infinitely precise result could be almost one
integer unit away from the post-rounded result, potentially a
large difference. We have chosen to flag underflow whenever
the magnitude of the source operand is less than one, thereby
alerting the user to a potentially significant loss of accuracy.

INEXO will be asserted if the conversion is inexact. NANs and
INFs will convert to a same-signed single-precision floating-point
all-ones NAN. INVALOP will be asserted. The twos-complement
integer interpretation of +NAN is full-scale positive and of
—NAN, minus one. See Tables XVI and XVII for illustrations
of fixing single- and double-precision floating-point numbers.

Conversions: Fixed to Floating

All four rounding modes are also available for conversions from
twos-complement integer to floating-point. For conversion to
single-precision floating-point (SFLOATA/B), the numerical
result will always be IEEE normals. The only flag ever set is
INEXO. INEXO will be set if and only if the source integer
contains more than 24 bits of significance. “Significance” is
defined as follows: For positive twos-complement integers, the
number of significant bits is [(32 minus the number of leading
zeros) minus the number of trailing zeros]. “Leading zeros” are
the contiguous string of zeros starting from the most significant
bit. “Trailing zeros” are the contiguous string of zeros starting
from the least significant bit. For negative twos-complement
integers, the number of significant bits is [(33 minus the number
of leading ones) minus the number of trailing zeros).

FLOATING-POINT COMPONENTS 4-59

For conversion from twos-complement integer to double-precision
floating-point (DFLOATA/B), the numerical result will always
be an IEEE normal. No flags will be set. Only even-numbered
registers (A0, A2, B0, or B2) can be sources for the DFLOAT
operation.

Conversions: Floating to Floating

For conversion from single-precision to double-precision

+ (DOUBLEA/B), all single-precision normals and denormals will
convert without exceptions. A single-precision NAN will convert
to a double-precision all-ones NAN; the INVALOP flag will be
set. Single-precision INF converts to'double-precision INF; no
flags are set. Single-precision ZERO converts to double-precision
ZERO; no flags are set.

Conversions from double-precision to single-precision floating-
point (SINGLEA/B) can cause exceptions because overflow,
underflow, and inexact status can result in mapping to the smaller
destination format. See Table XVIII for illustrations. A double-
precision NAN will convert to a single-precision all-ones NAN;
the INVALOP flag will be set. DP INFs convert to SP INFs;
no flags are set. Finite numbers greater in magnitude than single-
precision NORM.MAX will result in SP INF or SP NORM.MAX,
depending on the rounding mode. (See “Round Controls” above.)
Non-zero, post-rounded operands whose magnitudes are between
SP NORM.MAX and SP NORM.MIN inclusive will be SP
NORMs. In IEEE mode, operands between SP DNRM.MAX
and SP DNRM.MIN inclusive will be SP DNRMs; in FAST
mode, ZERO will result with UNDFLO and INEXO set.

For both normals and denormals, INEXO will be asserted if the
conversion from double-precision to single-precision floating-point
is inexact. If the conversion to denormals is inexact, both INEXO
and UNDFLO will be set, in accordance with the IEEE definition
in terms of loss of accuracy when representing a denormal. (See
“Underflow” in “Status Flags” above.) Post-rounded, non-zero
numbers less than SP DNRM.MIN will convert to ZERO;
UNDFLO and INEXO will be set. DP ZERO converts to SP
ZERO without exception.

Pass

Pass instructions (SPASSA/B and DPASSA/B) pass all operands
unmodified. Unlike the PASSA/B instructions, the floating-point
pass instructions will cause INVALOP if a NAN is passed. The
NAN will pass unmodified. INFs are passed without setting any
flags. The absolute value controls can be used with the floating-
point pass instructions to reset the unmodified NAN’s sign bit
1o zero.

Wrap

Wrap instructions (SWRAPA/B and DWRAPA/B) convert a
denormal to a wrapped number readable by a Multiplier or the
ADSP-3221 ALU in division and square root operations. Since
the wrapped format has an additional bit of precision (the hidden
bit), all wrapping is exact. If the operand is ZERO, then UNDFLO
will be set. If the operand is neither a DNRM nor ZERO,
INVALOP will be set.

Unwrap

Unwrapping instructions (SUNWRAPA/B and DUNWRAPA/B)
convert a wrapped number to the IEEE denormal format. After
rounding, the result may turn out to be NORM.MIN or ZERO.
WRAP.MAX, whose infinitely precise value is between
NORM.MIN and DNRM.MAX, will round to NORM.MIN or
DNRM.MAX , depending on rounding mode:

+WRAP.MAX—-NORM.MIN (RN, RP modes)

+WRAP.MAX-»DNRM.MAX (RZ, RM modes)
-~ WRAP.MAX-+NORM.MIN (RN, RM modes)
—WRAP.MAX-+DNRM.MAX (RZ, RP modes).

4-60 FLOATING-POINT COMPONENTS

INEXO will always be set when unwrapping WRAP.MAX. If
the unwrapping operation, after rounding, shifts all ones out of
the DNRM destination format, ZERO will result. Whenever
this happens, UNDFLO and INEXO will always both be set.

The UNDFLO condition for unwrapping is based on the IEEE
definition in terms of loss of accuracy when representing a de-
normal. (See “Underflow” in “Status Flags” above.) That is,
UNDFLO will only be set when the unbounded, post-rounded
result cannot be expressed exactly in the destination denormal
format. UNDFLO will always be set in conjunction with INEXO
when unwrapping.

The ADSP-3220 and ADSP-3221 differ slightly in how inexactness
is defined for unwrapping. With the ADSP-3220, inexactness is
determined solely by whether or not there was a loss of accuracy
when unwrapping the operand supplied to the ALU. The ADSP-
3221 goes beyond the ADSP-3220 in also considering whether
the multiplication, division, or square root that generated the
wrapped number caused a loss of accuracy. It determines this
information by reading the INEXIN flag input to the ALU.

The INEXIN is essential to the unwrapping operation in both
ALUs. The state of INEXIN input when wrapping should
reflect the state of INEXO when the wrapped number was
generated during multiplication, division, or square root. The
ADSP-3220 uses INEXIN only for this purpose. The ADSP-3221
also uses this information to determine if the operation creating
the wrapped number was inexact. When the ADSP-3221 unwraps
a wrapped number, its INEXO will be asserted if either the
originating operation or the unwrapping operation caused a loss
of accuracy.

Copy Sign

The SSIGN and DSIGN operations copy the sign of the B
operand to the A operand. The result is (sign B, exponent A,
fraction A). Rounding modes have no effect on this operation
since the precision of the result is exactly that of the source,
i.e., all “roundings” are exact. The only condition that generates
a flag is a NAN as the A operand; INVALOP will be set. This
instruction is useful for quadrant normalization of trigonometric
functions. Trigonometric identities allow mapping an angle of
interest to a quadrant for which lookup tables exist. SSIGN and
DSIGN simplify this mapping. For example, sin (—37°) =
—sin (37°). By looking up sin (37°) and transferring the sign of
the angle (—37°, the B operand) to the value from the lookup
table (0.60182, the A operand), the correct result is obtained
(—0.60182).

Exponent Substraction

Exponent subtraction (SXSUB and DXSUB) subtracts the expo-
nent of the B operand from the A operand. The A operand is
the destination format: [sign A, (expt A —expt B), fraction A].
INFs and NANs are valid inputs to the SXSUB/DXSUB opera-
tions; INVALOP is never asserted. If the unbounded result is
greater than that of NORM.MAX, INF will be produced and
OVRFLO will be set. If the unbounded result is less than that
of NORM.MIN, ZERO will be produced and UNDFLO will
be set.

Exponent subtraction is useful as the first step in the Newton-
Raphson division by recursion algorithm. This operation allows
an improved implementation of this algorithm. For the details,
see the Application Note, “Floating-Point Division using Analog
Devices’ ADSP-3210 and ADSP-3220,” available from Analog
Devices’ DSP Applications Engineering.

Logical Downshift
The mantissa of a floating-point A operand (with hidden bit
restored) can be downshifted logically to an unsigned-magnitude

ADSP-3210/3211/3220/3221

integer destination format using the SITRN and DITRN opera-
tions. (See Figures 29 and 30.) The source mantissa is treated as
a right-justified unsigned integer. The unbiased (i.e., the “true”
exponent after the bias has been subtracted) exponent of the B
operand determines the amount of the downshift. The unbiased
B exponent is interpreted as an unsigned number which indicates
how many bit positions the mantissa should be downshifted. (A
negative unbiased exponent will cause a very large downshift.
The mantissa will be completely shifted out of range, and the
result will be zero.) The result will a be left-zero-filled unsigned-
magnitude integer. Like all fixed-point results, it will appear in
the most significant bit positions of the Output Register.

32-Bit A Register 32-Bit B Register

[sl e [f 1 sl e [!]
l:l 23-Bit Fraction

-~
8-Bit Blased Exponent
24-8it Source

Zero-Filled

NBI(to 32-Bit Logical Downshift

MSW |
[32-Bit Unsigned-Magnitude |nlager] Output n.:m.r

Shift Amount

Figure 29. ADSP-3220/3221 SITRN Instruction

32-Bit MS A Register 32-Bit LS A Register

[s] e | 1]| L t i
M 52-Bit Fraction >

53-Bit Source

32-Bit MS B Register

[sl_ e [t |

11-Bit Biased Exponent

Nﬂl(to 32-Bit Logical Downshift

| 32-Bit_Unsigned-Magnitude Integer | Ou!p’:lsv:lcl:lcu
v

Shift Amount

Figure 30. ADSP-3220/3221 DITRN Instruction

Logical downshift is only defined for NORMs. Results from
operands than are not normals are undefined. A NAN A-operand
input to SITRN/DITRN will cause INVALOP and produce all-
ones NANS of the same sign. Round-toward-Zero (RZ) must be
specified for SITRN and DITRN. Otherwise, the result is
undefined. If the shifted result before rounding is all zeros,
UNDFLO will be set. (Actually, with RZ, the shifted result
before rounding is the same as the shifted result after rounding.)
If any bits are shifted out of the range of the destination format,
INEXO will be set.

The logical downshift operations can be useful to generate table
lookup addresses. In this application, the most-significant mantissa
bits would be used as table addresses. Because different B expo-
nents can be applied to the same A mantissa, the same datum
can be used to address multiple tables with differently sized
address fields.

Division and Square Root

The ADSP-3221 ALU supports multicycle division (SDIV and
DDIV) and square root (SSQR and DSQR) operations. Tables
XIII and XIV illustrate the resultant data types and status con-
ditions for division. Table XV serves a similar role for square
root. Neither operation can accept denormal inputs directly;
they must be wrapped to the wrapped data format first. Denormal
inputs to division and square root operations will cause the
simultaneous assertion of UNDFLO and INVALOP in IEEE
mode. For divisions, INEXO HI indicates that the dividend is a
DNRM; INEXO LO indicates that the divisor or both operands
are DNRMs. In FAST mode, only INVALOP will be asserted.

The square root of any non-negative normal or wrapped number
will be an IEEE normal number. The square root of a negative
number is an all-ones —NAN. The square root of +INF is
+INF without exception. The square root of a NAN is a same-
signed all-ones NAN.

Division can produce wrappeds and unnormals; these must be
passed back to the ALU for unwrapping. INF dividends cause
correctly signed INFs without flags except when the divisor is
also an INF. Either +INF divided by either = INF or any
NAN input will generate INVALOP and an all-ones NAN. For
ADSP-3221 division operations, the sign of the NAN will be
the exclusive OR of the signs of the dividend and the divisor.

OUTPUT CONTROL-SHLP (REG), OEN (ASYN),
MSWSEL (ASYN), AND HOLD (ASYN)

All members of the ADSP-3210/3211/3220/3221 chipset have a
64-bit Output Register. The Output Registers are clocked every
cycle, except for multicycle operations (double-precision multi-
plication, division, and square root) when HOLD is LO on the
ADSP-3211 and when the ADSP-3221 is executing NOP. Output
Registers are clocked at the conclusion of multicycle operations
and not before.

Results appear in the Multipliers Output Registers as follows:

Bit 63 32 |31 0
SP FitgPt Product

not meaningful

DP FitgPt Most Significant Product
FxdPt Most Significant Product

DP FitgPt Least Significant Product
FxdPt Least Significant Product

Figure 31. ADSP-3210/3211 Multiplier Output Registers

'When the destination format from multiplication is single-precision
floating-point, the fraction bits that are less than the least significant
bit in the destination format are stored in the least significant
half of the Output Register.

The Multipliers have a pipelined, registered fixed-point shift-left
control, SHLP. When HI, SHLP will cause a one-bit left shift
in the 64-bit product that appears in the Multiplier’s Output
Register. The least significant bit in the Output Register will be
zero. See “32-Bit Fixed-Point Data Formats” above for more
details of the effects of SHLP. SHLP has no effect on floating-point
multiplications. Note that SHLP should be setup at the clock
edge when the multiplication operands are read into the multiplier
array.

FLOATING-POINT COMPONENTS 4-61

Results appear in the ALUs Output Registers as follows:

Bit 63 32 |31 0
SP FltgPt Product

not meaningful

DP FltgPt Most Significant Product
FxdPt Result

DP FltgPt Least Significant Product
not meaningful

Figure 32. ADSP-3220/3221 ALU Output Registers

All members of this chipset have an asynchronous output enable
control, OEN. When HI, outputs are enabled; when LO, output
drivers at DOUT3,_ are put into a high-impedance state. Note
that status flags are always driven off-chip, regardless of the
state of OEN. See Figure T1 for the timing of OEN.

All members of this chipset also have an asynchronous MSW
select control, MSWSEL. When outputs are enabled and
MSWSEL is HI, the most significant half (bits 63 through 32)
of the Output Register will be driven to the output port,
DOUT;3;_9. When outputs are enabled and MSWSEL is LO,
the least significant half (bits 31 through 0) of the Output Register
will be driven to the output port, DOUT3;_o. The operation of
MSWSEL is illustrated in all timing diagrams where 64-bit
outputs are produced.

The ADSP-3211 Multiplier has an asynchronous, active LO
control, HOLD, that prevents the Output Register from being
updated. HOLD must be setup prior to the clock edge when
the Output Register would have otherwise been updated. See
Figure T3. For normal operations where the Output Register is
updated, HOLD must be held HI.

TIMING
Timing diagrams are numbered Figures T1 through T12. Three-
state timing for DOUT is shown in Figure T1. Output disable
time, tpys, is measured from the time OEN reaches 1.5V to the
time when all outputs have ceased driving. This is calculated by
measuring the time, tyeasured, from the same starting point to
when the output voltages have changed by 0.5V toward +1.5V.
From the tester capacitive loading, C; , and the measured current,
i, the decay time, tpgcay, can be approximated to first order
by:
Cp 0.5V

tpECAY = T
from which

IDIS = Umeasured = IDECAY

is calculated. Disable times are longest at the highest specified
temperature.

The minimum output enable time, minimum tgNa, is the earliest
that outputs begin to drive. It is measured from the control
signal OEN reaching 1.5V to the point at which the fastest
outputs have changed by 0.1V from Vg toward their final
output voltages. Minimum enable times are shortest at the lowest
specified temperature.

The maximum output enable time, maximum tgNa, is also meas-
ured from OEN at 1.5V to the time when all outputs have
reached TTL input levels (Voy or Vor). This could also be
considered as “‘data valid.” Maximum enable times are longest
at the highest specified temperature.

Reset timing is shown in Figure T2. RESET must be LO for at
least tgs. In addition, RESET must return HI at least tsy before
the first rising clock edge of operation. Hold timing is shown in
Figure T3. HOLD must go LO tys before the rising edge at

4-62 FLOATING-POINT COMPONENTS

which the Output Register is not updated. HOLD must also be
held tyy after the clock edge.

All data, registered and latched controls, and instructions shown
in Figures T4 through T12 must be setup tps before the rising
edge and held tpy. Both input-port configurations are shown in
most these diagrams. Data is shown loaded for minimum latency.
Other sequencing options are possible and may be more conven-
ient, depending on the system. These other options, however,
require that data be loaded to the input registers earlier than as
shown in these diagrams and not overwritten. See “Input Register
Loading and Operand Storage” above for constraints on register
loading and operand storage that must be observed.

The operation time, topp, is the time required to advance the
internal pipelines one stage. It reflects the pipelined throughput
of the device for that operation. The latency, tyap, is the time it
takes for the chip to produce a valid result at DOUT from valid
data at its input ports. (Latency is the true measure of the internal
speed of the chip.) Latency is referenced from data valid of the
earliest required input to data valid of the first 32-bit output.

The asynchronous MSWSEL control’s delay is teno. The
maximum specification for tgno is the delay which guarantees
valid data. The minimum specification for tgno is the earliest
time after the MSWSEL control is changed that data can
change.

Status flags have a maximum output delay of tso referenced
from the clock rising edge. All status flags except the Multipliers
DENORM are available in parallel with their associated output
results. DENORM is available earlier to speed up recovery from
a denormal input exception. Note that DENORM is indeterminate
(not necessarily LO) except in the cycles indicated in Figures
T4 and T5. DENORM should therefore not be used by itself to
externally trigger a denormal input exception processing

routine.

Note that for all operations (Figures TS through T12) a new
operation can begin the cycle before output results and status
flags (other than DENORM) results from the previous operation
are driven off chip. This feature leads to improved pipeline
throughput.

GRADUAL UNDERFLOW AND IEEE EXCEPTIONS
The data types that each chip operates on directly is shown in
Figure 33.

Normals

Denormails
Normals Wrappeds'
Wrappeds Unnormals

4 d

ADSP-3210/3211 ADSP-3220/3221
Floating-Point Floating-Point

Multipliers ALUs
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3

Unnormals®

. for unwrapping, division, and square root
for unwrapping only
from wrapping and division
from division

s WM =

Figure 33. Data Types Directly Supported by the
ADSP-3210/3220/3221

ADSP-3210/3211/3220/3221

Denormals are detected by the Multipliers when read into their
processing circuitry. The ADSP-3210/3211 will produce a flag
output, DENORM, when one or both of the operands read into
the array are denormals. The occurrence of DENORM should
trigger exception processing. (See “Status Flags” above for a
discussion of DENORM and its timing.) Controlling hardware
must recover the denormal(s) that was input to a Multiplier and
present it to an ALU for wrapping.

The ADSP-3221 ALU will also detect denormals when read into
internal circuitry for division or square root operations. The
UNDFLO and INVALOP flags will both be asserted on the
ADSP-3221 to signal the presence of a denormal input to these
operations. INEXO will indicate whether the denormal input is
the A operand or B operand. (See “Status Flags” above for a
fuller discussion of denormal detection in the ADSP-3221.)

The ALU wraps denormals with its SWRAP or DWRAP in-
structions. Note from Tables II and IV that any denormal can
be represented as a wrapped without loss of precision (hence
triggers no exception flags in the ALU).

The wrapped equivalent from the ALU must now be passed to
the Multiplier for multiplication or the ADSP-3221 ALU for
division or square root. The controlling system must tell the
Multiplier to interpret the wrapped input as wrapped by asserting
WRAPA/B when it is read into the Multiplier’s processing cir-
cuitry. For division and square root, the controlling system
must tell the ALU to interpret the wrapped operand A as wrapped
by asserting INEXIN when it is read into the ALU’s processing
circuitry and to interpret the wrapped operand B as wrapped by
asserting RNDCARI. The result of the multiplication or division
can be a normal, a wrapped, or an unnormal. (See Tables IX,
X, XIII and IV.) Square root on IEEE numbers only produces
normals. (See Tables XI and XII.) An underflowed result (wrapped
or unnormal) from either Multiplier or ALU will be indicated
by the UNDFLO flag and must be passed to the ALU for
unwrapping.

For full conformance to the IEEE Standard, all wrapped and
unnormal results must be unwrapped in an ALU (with the
SUNWRAP and DUNWRAP instructions) to an IEEE sanctioned
destination format before any further operations on the data. If
the result from unwrapping is a DNRM, then that data will
have to be wrapped before it can be used in multiplication,
division, or square root operations.

The reason why WNRMs and UNRMs should always be un-
wrapped upon their production is that the wrapped and unnormal
data formats often contain “spurious” accuracy, i.e., more pre-
cision than can be represented in the normal and denormal data
formats. If WNRMs or UNRMs produced by the system were
used directly as inputs to multiplication, division, or square root
operations, the results could be more accurate than, and hence
incompatible with, the IEEE Standard.

When unwrapping, additional information about underflowed
results must accompany their input to the ALU. See “Special
Flags for Unwrapping” in “Status Flags™ above for details of
how INEXO and RNDCARO status flag outputs must be used
with INEXIN and RNDCARLI inputs.

A final point about conformance with IEEE Std 754 pertains to
NANSs. The Standard distinguishes between signalling NANs
and quiet NANs, based on differing values of the fraction field.
Signalling NAN’s can represent uninitialized variables or special-
ized data values particular to an implementation. Quiet NANs
provide diagnostic information resulting from invalid data or
results. The ADSP-3210/3211/3220/3221 generally produce all-
ones outputs from invalid operations resulting from NAN inputs.
So a system that implements operations on quiet and signalling
NANSs will have to modify the NAN output from these chips
externally. See Section 6.2 of Std 754-1985 for the details of
these operations.

B operand
ZERO DNRM WRAP NORM INF NAN

Aoperand { oot stas | result status | resut status | result status result status result status
ZERO | ZERO ZERO ZERO ZERO NAN |INVALOP { NAN |INVALOP
DNRM | ZERO ZERO |DENORM j ZERO |DENORM } ZERO DENORM { INF NAN |INVALOP
WRAP | ZERO ZERO |DENORM { UNRM [UNDFLO i NORM INF NAN |INVALOP

WRAP UNDFLO

UNRM UNDFLO
NORM ! zERO ZERO |DENORM i NORM INENORMMAX ' [OVRFLO | INF NAN |INVALOP

WRAP [UNDFLO { NORM

UNRM |UNDFLO § WRAP UNDFLO
INF NAN | INVALOP | INF INF INF INF NAN |INVALOP
NAN | NAN |INVALOP{ NAN |INVALOP{ NAN |INVALOP i NAN INVALOP § NAN |INVALOP ! NAN |INVALOP

1 Either INF or NORM MAX. depending on rounding mode. See “Round Controls "

Table IX. ADSP-3210/3211 Floating-Point Multiplication

(IEEE Mode)

FLOATING-POINT COMPONENTS 4-63

B operand

ZERO DNRM NORM INF NAN
Aoperand | oot stats | resut status | resut status result status | result status
ZERO | zpo ZERO ZERO NAN | INvALOPI NAN | iNvALOP
DNRM | zerO ZERO |DENORM | ZERO DENORM | NAN | INVALOP} NAN |INVALOP
NORM | 7er0 zero | oenorm | iINFNORMMAX | | ovRrLo | INE NAN | INVALOP
NORM
ZERO UNDFLO
INF NAN |INVALOP | INF | INVALOP} INF INF NAN | INVALOP
NAN | NAN |INVALOP | NAN |INVALOP] NAN INVALOP{ NAN | INVALOP! NAN | INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”
2. In FAST mode, WRAP inputs are illegal.
Table X. ADSP-3210/3211 Floating-Point Multiplication
(FAST Mode)
B operand
ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO | zepc? DNRM NORM INF NAN | invaLoP
DNRM | DNRM NORM INFNORMMAX' | OVRFLO | INF NAN | INvALOP
DNRM NORM
ZERO DNRM
NORM | NORM INFNORM MAX | ovRFLO | INFNORMMAX | ovRFLO | INF NAN | INVALOP
NORM NORM
DNRM DNRM
ZERO
INF INF INF INF INF3 NAN | INvALOP
Nan® | INvaLoP
NAN NAN | INVALOP | NAN INVALOP | NAN INVALOP | NAN INVALOP | NAN | INVALOP

-

2. (+ ZERO)+ (+ ZERO) = (+ZERO)~(3ZERO) =+ ZERO
(+ ZERO)+(7 ZERO) = (+ZERO)-(xZERO)= + ZERO (RN, RZ, RP rounding modes)
(+ ZERO)+(¥ ZERO) = (+ZERO}~(+ZERO)= — ZERO (RM rouncing mode)

3. (£ INF)+(£ INF) = (£INF)~(7INF) = * INF
(2 INF)+(% INF) = (£INF)~(£INF) = +NAN (RN, RZ, RP rounding modes)
(£ INF)+(% INF) = (£INF)~(£INF) = —NAN (RM rounding mode)

4. If DNRM result is inexact, UNDFLO will be set

Either INF or NORM MAX, depending on rounding mode See “Round Controls "

Table XI. ADSP-3220/3221 Floating-Point Addition/
Subtraction (IEEE Mode)

4-64 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

B operand
ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO ZERO® ZERO UNDFLO NORM INF NAN INVALOP
DNRM ZERO | UNDFLO | NORM |NF,N0F!MAM/»(1 OVRFLO | INF NAN INVALOP
ZERO NORM
ZERO UNDFLO
1 1
NORM | NORM INF,NORM MAX' | OVRFLO INF.NORM MAX | OVRFLO | INF NAN INVALOP
NORM NORM
ZERO UNDFLO ZERO, UNDFLO
ZERO
INF INF INF INF INF33 NAN | INVALOP
NAN' INVALOP
NAN NAN INVALOP § NAN INVALOP NAN INVALOP | NAN INVALOP NAN INVALOP
1 Esther INF or NORM MAX, depending on rounding mode See “Round Controls "
2 (+ZERO)+ (+ ZERO) = (+ZERO)~(3ZERO) = + ZERO
(£ ZERO)+(F ZERO) = (+ZERO)~(+ZERO)= + ZERO (RN, RZ, RP rounding modes)
(+ ZERO)+(F ZERO) = (:ZERO)~(+ZERO)=> — ZERO (RM rounding mode)
3. (£INF)+(* INF) = (£INF)~(FINF) = INF
(2 INF)+(% INF) = (£INF)-(£INF) = +NAN (RN, RZ, RP rounding modes)
(£ INF)+(F INF) = (£INF)—(+INF) = —NAN (RM rounding mode)
4. Exact result.
5. In FAST mode, WRAP inputs are illegal
Table XIl. ADSP-3220/3221 Floating-Point Addition/
Subtraction (FAST Mode)
B operand
ZERO DNRM WRAP NORM INF NAN
A operand - o L I —
result status result status result status result status " result status éwresult status
ZERO | NAN | INVALOP } ZERO ZERO ZERO " zERO £ NaN | INvALOP
AN v PR
DNRM | INF' | OVRFLO& | NAN | UNDFLO& i NAN UNDFLO § NAN UNDFLO | ZERO ? Nan | invaLop
INVALOP INVALOP | INVALOP INVALOP ¢) ,éw
WRAP | INF | OVRFLO& | NAN | UNDFLO& | NORM NORM ! zERO | nan | invaLoe
INVALOP INVALOP WRAP UNDFLO # :
o o~ . b e ve v o UNAM UNDF.LC ,': o v e o
; 1
NORM | INF | OVRFLO& | NAN | UNDFLOZ | INFNORMMAX' | OVRFLO § INF.NORM MAX | OVRFLO ; ZERO NAN | INVALOP
INVALOP INVALOP } NORM { NORM .
i { WRAP UNDFLO
H UNRM UNDFLO
ROV RS SRR RDY WRRPORHINS Sty Wi s
INF INF INF iINF é INF . NAN | INVALOP { NAN | INVALOP
s ans v o o a0 e o s oo s s o oo
NAN NAN | INVALOP § NAN | INVALOP NAN INVALOP ¢ NAN INVALOP * NAN INVALOP | NAN INVALOP%
I S PPN IR TS T P e P

1 Either INF or NORM MAX depending on rounding mode See “Round Controls *

Table XIll. ADSP-3221 Floating-Point Division (A~+B) (IEEE Mode)

FLOATING-POINT COMPONENTS 4-65

B operand

ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO NAN | INVALOP NAN INVALOP § ZERO ZERO NAN INVALOP
DNRM NAN | INVALOP NAN INVALOP § ZERO ZERO NAN INVALOP
NORM INF1 OVRFLO& INF‘ OVRFLO& § INF,NORM MA)(1 OVRFLO ZERO NAN INVALOP
INVALOP INVALOP § NORM
ZERO UNDFLO
INF INF INF INF NAN [INVALOP| NAN | INVALOP
NAN NAN | INVALOP NAN INVALOP § NAN INVALOP NAN INVALOP NAN INVALOP
1 Either INF or NORM MAX, depending on rounding mode See “Round Controls "
2 In FAST mode, WRAP inputs are illegal
Table XIV. ADSP-3221 Floating-Point Division (A+B) (FAST Mode)
B operand
B<ZERO +ZERO +DNRM +WRAP +NORM +INF +*NAN
Mode
result status result status % result status result status § result status i result status i result status
IEEE § —NAN | INVALOP; +ZERO +NAN UNDFLO& ; NORM i NORM +INF HNAN INVALOP
INVALOP E
FAST { -NAN | INVALOP; ZERO +ZERO NORM z NORM +INF *NAN INVALOP

Table XV. ADSP-3221 Floating-Point Division Square Root (VB)

Sign|HB| 22...01| M Unbrased Source Name Sign|i30] i29] 28] i27) iz6 izs] i2a| i23)i22 ... i7] i6| 15| ia] i3] i2] 1] i0] Rounding | StatusFiags

31 Expnt Y Modes
o [1 [x" Ux[x[a=]zs +NAN o hhph e e T T [T INVALOP
o |1 {o ofo|2=] +INF o frfifrfrfufifi vlafafratafafaan INVALOP
o |1t o ofola=]n ur [ululufufulu|ujulu . uvlv|lulu|ujulu]ufan OVRFLO
o |t |1 NERESREY o |rfrfirrprr i 1]ofofojojofo]o]an
o |t |1 1 fae |23 o |ofofo]ofofofol[1 1 ool frfaan
o |1 [o .ofo]a|2 o |ofo]ojolofolo]1]o. ojolofolo]ofolo]an
o |1 | IRERESR P! o Jofo]o]ofofofo]|1]o. olofolojo|o]o]o]|RrRNRe INEXO
o |1 |1 V1o |22 o Jofofo]o]ofo]ofo[s vfrfrfafafrfr|r|rzRrM INEXO
o {1t [o ofofae]o one o fo]o o fofofofo]o o olojojojofojo]1]an
o |1 |1 ER RSN IS one — 1LSB o lo]ofofofo]ofo]o[o. ofofofofo]ofof1]|RNRP UNDFLO,INEXO
o |1 |1 Ve |21 one - ILSB o Jofoo]o]ofofofo o ololofofo|ofofo]|rRzRM UNDFLO,INEXO
o (1 Jo. ofr]a|1 12 +1LSB o |ofo]o]ofofolo]oo. ofo|ofofofofof1|rRNrP UNDFLO,INEXO
o |1 fo o] 12 +1LSB o |ofofo]o]oo]olo|o. ofojofo|o]o|o]o]|RrzRrM UNDFLO,INEXO
o [1 Jo oo f-1 12 o ofoo]o]o oo oo o|ofofofojofof1]rp UNDFLO,INEXO
o f1 Jo oo |-1 12 o fo]o o fofofofo]ofo ojolofofo|o|ofo]|RMRNRZ | UNDFLO,INEXO
o [t Jo oo |-126 +NORM MIN o 1o o lo o {ofo]o o fo. oflojolofofjolof1 UNDFLO,INEXO
o |1 Jo ofofa]|-12 +NORM MIN o o fofo]o]ofo]o|ofo. ojoflofofo|o]ofo]|RMRNRZ | UNDFLO,INEXO
o fo Jo o1 f-12e +DENORM MIN | [0 fo {o [0 o fo [o [0 |o |o. olofofofolofo]1]|rp UNDFLO,INEXO
o fo Jo ofr]2ef-126 +DENORMMIN | [o o |o |o [0 o [0 Jo [0 [o. ojofofofo]ofo]o|RMRNRZ | UNDFLO,INEXO
o fo jo . ofo 0 +ZERO o oo to]o]ofo]ofo]o o|olofofojofofo]an
1o Jo.. o1 fae]-126 -DENORMMIN | {1 {1 Jt |1 f1 |1 |1 |1 |1 |1, pfrfrfafrfrfrfr|rm UNDFLO,INEXO
1ofo Jo o o fr]ae|-126 ~DENORM.MIN | [0 o [0 |o |o |o o |o |o [o.. ojofofofo]ofofo]|RPRNRZ | UNDFLO,INEXO
o[Jo. oo |-126 ~NORM MIN vo e fe fe pe e o o e RERER AR R ER A UNDFLO,INEXO
1o Jo . oo |- - NORM MIN o foofofoo]ofolo o oloflofofo]ofo|o]|RPRN,RZ | UNDFLO,INEXO
1o fo. oo fae |-t -12 Ve i tlofafrfafrfr]i]RrM UNDFLO,INEXO
Vol Jo oo fae -1 -12 o oo fo]o oo fofo]o.. ofojofofo|ofo|o]|RPRNRZ | UNDFLO,INEXO
[T PR FO P B -12-1LSB o b e e o o tfrfafafr]rfr]r|RMRN UNDFLO,INEXO
I I S F P ~12-1LSB o o fo]ofo]o]o]o]o{o. ofofofofofofofo]|rrRrz UNDFLO,INEXO
I E RN B —~one +1LSB Vonfr oo o e i vfrfuefrfifrfifr|RMRN UNDFLO,INEXO
BT E 1|2 |1 -one +1LSB o oo fo folo]ofo [0 fo. ofolofofofolofo]rrRrz UNDFLO,INEXO
1o Jo . ool -one vofr e e oo o e vl jan
I P B Ve |22 vofr e e o fo o fo. olofofofo]ofofo]rRMRN INEXO
T I FRET FI I 5 Vo o g o ojofofofojofof1]|rrRZ INEXO
1ol fo. oot v e p i do olojofofolofofo]an
[DI R P IO P1) [PO PO PO PO FY O PR O 1 ofofjofofolofofi]an
[F K 11 |2 |30 1 fo]o]o]ofo]ofofoo. ofofofofofofofi]an
1o o ooz |m 1 oo oo fo oo [0 |o olofofololofolo]an
[TR F N R PR E u fulufululululululfu . vlulu|cfulu]u|u]an
1ot Jo oo |2 s - INF [PO PO PO P R FR F P vfr oo]an INVALOP
o x o xxfae s —NAN Vol fa INVALOP

¢ t

denotes an undefined result.

Table XVI. Conversion of 32-Bit Single-Precision Floating-Point to 32-Bit Twos-Complement Integer

4-66 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

Sign HB|f51 . . .f22]021 (20’ f19.. .f1} 0 Unbiased | Source Name Sign [i30 . . .il | i0 Rounding Status Flags

31 vl Expnt ' Modes

o N 2+ [1024 +NAN T all INVALOP
2** 1 1024 +INF all INVALOP
2*% | 3] * all OVRFLO
2** | 30 RP,RN OVRFLO,INEXO
2%* | 30 RZ,RM INEXO
2** | 30 RP,RN OVRFLO,INEXO
2*% | 30 RZ,RM INEXO
2** | 30 RP OVRFLO,INEXO
2** | 30 RM,RN,RZ INEXO
2** | 30 RP OVRFLO,INEXO
2** | 30 RM,RN,RZ INEXO
2** | 30 all
2** 1 0 one all
2xx | —1 one —1LSB RN,RP UNDFLO,INEXO
2%*) —1 one —1LSB RZ,RM UNDFLO,INEXO
2%x | —1 1/2 +1LSB RN,RP UNDFLO,INEXO
2%x | —1 1/2 +1LSB RZ,RM UNDFLO,INEXO
2*%* | —1 12 RP UNDFLO,INEXO
2% | —1 12 RM,RN,RZ UNDFLO,INEXO
2%* | —1022 +NORM.MIN RP UNDFLO,INEXO
2%* | —1022 +NORM.MIN RM,RN,RZ UNDFLO,INEXO
2** | —1022 +DENORM.MIN RP UNDFLO,INEXO

2%* | —1022 +DENORM.MIN RM,RN,RZ | UNDFLO,INEXO

— - E OO O OO0 0000000~ O OO mO~Om OO OO OO m m (==~
— OO OO~ OO mO — O m O MO mOmOmOmMOO mO OO m O - - ===

- o - o o ot ot bk ok ik ok ot ot ok ok otk ek bk ot bk bk bk bk bt et e D O O O OO O0O0OO0COO0OOCOOOCO OO OOOCOOC
-—CcCcCcCoCcoCOooOo0COCOCOOCOOOCOO—~O~O~O~O~O~0O0O00O00O000OO~~a~C~C—~CC——

xoooooccocco———-——-—»-—-—-o—-—-oooooccccooococco—-—o—-—-——--—-——-oo;q
xOOOOOOOOCOQ—'——b—'—'—F——‘—'O——-OOOOOOOOOQOOOQOOO»-—O——)—-—tu—-—-——-u—l°°><
xdc@o—‘—'OOOOO——‘OO'—'—‘OOOO—‘!—'OOOOOOOOOOOOOQQOOb—-—OQOC—'—OO—'I—IOOx
xOOOO'-"—‘Qccocb--—OO'——OOOO—'—OOOCOOOOOOOOOOOOO-——‘OOOO—"—‘OO—‘—‘OOx
HOO O = OO~ O mOO - e NOO -~~~ 0000~~~ ~OOOO =~ ~OOmmmm~OO~~O0O0 K

.--_-......._........-.__-_....._.._..-—.-....-..-._....I....—...._..__.._._ogooo—._..-..-._-_.——.——-___.-.-—._.-.-..-

0 +ZERO all
2%* | —1022 — DENORM.MIN RM UNDFLO,INEXO
2%* | —1022 — DENORM.MIN RP,RN,RZ UNDFLO,INEXO
2%* | —1022 —NORM.MIN RM UNDFLO,INEXO
2%* | —1022 —NORM.MIN RP,RN,RZ UNDFLO,INEXO
2%% | —] -12 RM UNDFLO,INEXO
2%x | —1 -1/2 RP,RN,RZ UNDFLO,INEXO
%% | —1 -1/2 —1LSB RM,RN UNDFLO,INEXO
2%x | —1 -1/2 -1LSB RP,RZ UNDFLO,INEXO
2%x | —1 —one + 1LSB RM,RN UNDFLO,INEXO
2% | —1 —one +1LSB RP,RZ UNDFLO,INEXO
2** 10 —one all
2** | 30 all
2%* 1 30 RM INEXO
2%* | 30 RP,RN,RZ INEXO
2** | 30 RM INEXO
2** | 30 RP,RN,RZ INEXO
2%* | 30 RM,RN INEXO
2%~ | 30 RP,RZ INEXO
2** | 30 RM,RN INEXO
2** 130 RP,RZ INEXO
2%+ | 31 all
2% | 31 RP,RN,RZ INEXO
2%+ | 3] RM OVRFLO,INEXO
2%+ | 31 RP,RZ INEXO
2%+ | 3] RM,RN OVRFLO,INEXO
2%+ | 31 RP,RZ INEXO
2% | 3] RM,RN OVRFLO,INEXO
2%+ | 3] all OVRFLO
2%+ | 31 all OVRFLO,INEXO
2%*% | 32 all OVRFLO
2%* | 1024 —INF all INVALOP

. 2%* | 1024 —NAN e all INVALOP
LX¢ ((10

*“U" denotes an undefined result.
NOTE: Heavy hine indicates rounding boundary in source.

Table XVII. Conversion of 64-Bit Double-Precision Floating-Point to 32-Bit Twos-Complement Integer

FLOATING-POINT COMPONENTS 4-67

Sign | HB|fs1 . . .£30| 29| 28 ©27 . . .1 | 0 Unbiased | Source Name Sign| HB|f22 .. .01 | 0 Unbiased | ResultName | Rounding Status Flags

)y) Y Expnt Y Expnt Modes
o [1 |x".0 xIxIx{xt.Uxx] 2+ 1024 +NAN o |1 1.l 1]]2z +NAN all INVALOP
o 1 fo... 0o fo]o... 0o |2*| 1024 +INF o {1fo... 0 o]2=]128 +INF all
o Jr fi. oon | ... 1 2= 1023 +NORMMAX| [0 [1 fo... o]0 |2*|128 +INF RP,RN OVRFLO,INEXO
o v fr.o.onfid froo a | [2ee] 1023 +NORMMAX| o [t Ji... 1]t f2m 127 +NORM.MAX |RZ,RM OVRFLO,INEXO
0 f1 |1... 1 T T Jo... 0fo0|2e|127 o |1 fr... 112|127 +INF RP,RN OVRFLO,INEXO
o 1 hi... v fifo... ofo|2mf 127 o {1 ...t]e|127 +NORM.MAX |RZ,RM INEXO
o |1 ... 1 oo, . o1 |12z o |1 fr... 12|12y +INF RP OVRFLO,INEXO
o 1 fr..on oo o]2 127 o |1 |1... 112|127 +NORM.MAX |[RM,RN,RZ | INEXO
0 T J1... 1 f1 0 jo... 0|0 |2*] 127 0 1 .. 11 j2*~}127 +NORM.MAX |all
o |1 fr... 1 fofofo... o)1 2] 127 0 1 [1... 112|127 +NORM.MAX |RP INEXO
o {1 fi...1fofofo .. 0f1]2 127 0 {1 f1... 1]0 2127 RM,RN,RZ | INEXO
o |1 fo...0fofo]o... 0f0|2| -126 o |t fo... 0fof2|-126 +NORM.MIN
o I hoooa i o o] -1 0o Jo J1... 1|1]2} -126 +NORM.MIN |RP,RN INEXO
N T (ORI v TN PR BT P R PS) o o fi... 1|12} -126 +DNRM.MAX |RZ,RM UNDFLO,INEXO
o i h 1o fofo.. ofo|2] —127 0 Jo Ji... 1]1f2m|-12 +DNRM.MAX |all
o |1 o foo... 0fo|2*| -149 0o |ojo... 01 |2} -126 +DNRM.MIN |all
o |T oo fofo... 0 o |2**| -1022 |+NoRMMIN| [0 o Jo... o [1]|2]-126 +DNRM.MIN |RP UNDFLO, INEXO
o |1 oo jofo... 0jo 2| -1022 |+NOoRMMIN| [0 |o [o... oo |2e] -126 +ZERO RM,RN,RZ | UNDFLO,INEXO
o fo fr... v frfr... 1)1 2| -1022 |+DNRM.MAX| [0 o fo... o |1 {2=]-126 +DNRM.MIN UNDFLO, INEXO
o fo fr... v frfr...)1]2*| -1022 |+DNRM.MAX]| [0 o o... o |o |2+ | -126 +ZERO RM,RN,RZ | UNDFLO, INEXO
o fofo...0ofofojo... of1]|2**| -1022 |+DNRMMIN| [0 o Jo... o)1 |2*| -126 +DNRM.MIN |RP UNDFLO, INEXO
o Jofo...0 o fofo... 0of1 {2+ 1022 |+DNRMMIN| [0 [0 Jo... oo f2*{ 126 +ZERO RM,RN,RZ | UNDFLO, INEXO
o {ofo...0ofoJo... 00 0 +ZERO o |ofo... 00 0 +ZERO all
1 Jofo...0 o fofo... 00 0 -ZERO 1 fo fo... 00 0 -ZERO all
1 fofo... 0o ofo... 01 2| 1022 [-DNRMMIN| [1 [0 Jo... o1 |2+ | 126 ~DNRM.MIN |RM UNDFLO, INEXO
1 Jofo...o0fofofo... of1]2*«| —1022 |-DNRMMIN| [1 fo |o... o]0 |2] 126 -ZERO RP,RN,RZ UNDFLO, INEXO
1 O J1... 1 1 |1 fv... 1|1 |2*| —1022 ~DNRM.MAX 1 0 [0... O |1 |2*{ -126 -~ DNRM.MIN UNDFLO,INEXO
tofo Jio..on |t fi..o v |2+| —1022 | -DNRM.MAX]| [1 o Jo... o fo[2] -126 ~ZERO RP,RN,RZ | UNDFLO, INEXO
1 {1 Jo...0ofofo... 0 0 2*| -1022 |-NORMMIN| f1 o Jo... of1|2=]-126 - DNRM.MIN UNDFLO, INEXO
1 Jido...ofofofo ..o o|2*] 1022 |[-NorRMMIN]| [1 [0 |o... oo |2 -126 -ZERO RP,RN,RZ | UNDFLO, INEXO
1 0. o lofofo... 0fo 2| -1a9 1 JoJo... of1]2} -126 ~DNRM.MIN | all
1o oot ledo fo.. ofo 2| —127 1ofo fr... a] -12 - DNRM.MAX |all
T PO PO Ny PO EOUNRE T KT L R p7 1oJo ... 1|12} -126 ~NORM.MIN |RM,RN INEXO
T P RN o FI E DO T T P VS Voo i]| -1z - DNRM.MAX | RP,RZ UNDFLO,INEXO
1ot fo... oo fo... oo |2| 126 1 |1 fo... 0ofo]2|-126 ~NORM.MIN | all
1 J I B 1 0 JO0 JO .. O |1 |2**; 127 1 1 j1... 1T }1{2*}]127 —NORM.MAX |RM . INEXO
Vo i 1o fofo.. o) |22 [U FOREE N NPT BV74 RP,RN,RZ INEXO
o oo frfofo .00 |27 [O TR B i B2 —~NORM.MAX |all
v freoo i fofo... o |2x] 127 [KT OO ' TR BPY) ~INF RM OVRFLO,INEXO
1o o fifofo.. o) |z [RO PR B L NP - NORM.MAX | RP,RN,RZ INEXO
I T VOO O PO RO DR I P NP3 T RO PO B P BTV ~INF RM,RN OVRFLO,INEXO
[PO P O KT D O N O BT P T KO D R P 7Y - NORM.MAX | RP,RZ INEXO
Vo e [T e]| 2o+ 1023 -NORM.MAX| |1 |1 fo... 0o |2+ |12 ~INF RM,RN OVRFLO,INEXO
T P PR T P I PR T P R T7T ~NOoRM.MAX| f1 {1 fi... o1 f1j2e |z - NORM.MAX | RP,RZ OVRFLO,INEXO
1 1]0... 0 |0 |0 |O 0|0 |2**| 1024 - INF 1 1 |0... 0}0]2*|128 —INF all
L x XX XX L X x| 2] 1024 ~NAN Vo a2 -NAN all INVALOP

[[
NOTE Heavv ineindicates rounding boundary in source

Table XVIll. Conversion of 64-Bit Double-Precision Floating-Point to 32-Bit Single-Precision Floating-Point (IEEE Mode)

OEN \'r . j

VOH

TVO"- osv

18v

vON

i Vrristate
Vot 05V

ol

oL

Minimum ¢

v,

[+t
oIS

oL

le . Maximum t
Y ensured ENA

Output Disable Time Measurement

Refer 1o the discussion in the section “Timing" in the text of the data sheet

for a description of this figure

Output Enable Time Measurement

Tristate’
Tristate

N—

e

+ 01V
~ 0.1V

Figure T1. ADSP-3210/3211/3220/3221 Three-State Disable
and Enable Timing

RESETConol — N 7/

Figure T2. ADSP-3210/3211/3220/3221 Reset Timing

Timing

4-68 FLOATING-POINT COMPONENTS

<CHpiely
Clock
i dus
HOLD Control \ /

Figure T3. ADSP-3211 Multiplier Output Register Hold

ADSP-3210/3211/3220/3221

Clock

SP (for SP FitgPt) <
SP (for FxdPt)

bP

SELB;

SELAj . : .

) One Input-Port
Configuration
(ADSP-3210 always;
ADSP-3211 option)

SELBk

SELAK

Data Input* <

SELB;
SELA|

SELBK T
Two Input-Port
Configuration

SELAK
(ADSP-3211 option)

BIN, o
RNDO'1, and
SHLP Controls

RDAOQ.1 Read :
Selection Controls

RDBO.1 Read 7
Selection Controls =

MSWSEL Control

.
DOUT, 4
. : 1 . Ji >
) - ADSP-3211 Yap e
L. _ADSP-3210 'tap L

DENORM Status
Output

)(| status X k status

Status Outputs
(except DENORM)

* See "Timing" section for additional sequencing options

Figure T4. ADSP-3210/3211 32-Bit Single-Precision
Floating-Point and Fixed-Point Multiplications

FLOATING-POINT COMPONENTS 4-69

>
Clock 0 1 2 3 4 5 6 7 8
DP
SP
SELBLSW :;'_'_
SELA : . :
Lsw One Input-Port
SELB Configuration
MSW (ADSP-3210 a/ways;
SELA o L) ADSP-321'1 opt/?n)
Data Input* < ‘i
SELB ,) 1 G
SELA ,, =1 XE
SELB gy Two Input-Port
Configuration
SELAqw . (ADSP-3211 option)
ANy, o : :
BINy,

ABSA/B, WRAPA/B, ==
RNDO.1 Controls ===

RDAO & RDBO Read
Selection Controls

RDA1 Read :
Selection Control =

RDB1 Read e
Selection Control ==

! orp

MSWSEL Control

DOUTaro

LAD

4

DENORM Status indeterminate -
Output

¥ indeterminate

K oNRM i
t

Status Outputs : . <%
(except DENORM) previous status ==, X-J status

* See "Timing" section for additional sequencing options

Figure T5. ADSP-3210/3211 64-Bit Double-Precision
Floating-Point Multiplications

4-70 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

Clock

'8-0

SELB

SELA

One lnbut-Pbrt

SELBk
Configuration

SELAk

*

Data Input* <

SELB
SELA)

SELBk

Two lhpui-Port

SELAK Configuration

BIN,, o

ABSA/B, RNDO:1,
INEXIN, and
RNDCARIt

RDAO 1 Read

Selection Controls I

RDBO 1 Read
Selection Controls

MSWSEL Control

- ' . .
= D op (A,8) DX op (Ak,Bk))(_
VO - -«

LAD

DOUT31_0

4
y

Status O hig . SN
tatus Outputs ' 2 X status 2 kstatus XK

* See “Timing” section for additional sequencing options.
1t RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T6. ADSP-3220/3221 32-Bit Single-Precision
Floating-Point Logical, and Fixed-Point ALU Operations

FLOATING-POINT COMPONENTS 4-71

Clock

8-0

SELB , =7

SELALSW

One /np[/t-Porr
Configuration

SELB, g\,

SELA, g

Data Input* <

ABSA/B. RNDO 1,
INEXIN, and
RNDCARIt
RDAO & RDBO Read 7
Selection Controls

RDA1 Read
Selection Control

RDB1 Read
Selection Control

MSWSEL Control

DOUT31'O

<%

Status Outputs

L X | status X-

* See "Timing” section for additional sequencing options
1 RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations

Figure T7. ADSP-3220/3221 64-Bit Double-Precision
Floating-Point ALU Operations — One-Port Configuration

4-72 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

iy gy
Clock 0 1 2 3 4 5 6

Two Input-Port
Configuration

BIN,,

ABSA/B, RNDO:1, __,
INEXIN,and
RNDCARIt :
RDAO & RDBO Read :
Selection Controls : -

RDA1 Read =
Selection Control

RDB1 Read
Selection Control

MSWSEL Control
DouT,,

LAD

3

Status Outputs

: -
Ky status > k status X3

* See “Timing" section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T8. ADSP-3220/3221 64-Bit Double-Precision
Floating-Point ALU Operations — Two-Port Configuration

FLOATING-POINT COMPONENTS 4-73

19 20

Clock

Two Inpu't-Port5
Configuration :

BIN,, o :
ABSA/B, RNDO:1, :
INEXIN,and
RNDCARI

RDAO:1 Read
Selection Controls

RDBO:1 Read
Selection Controls -

MSWSEL Control :

DOUT:‘”_0

Status Outputs ~ : ’ . : : ’ previous status

* See "Timing" section for additional sequencing options.
+ RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T9. ADSP-3221 32-Bit Single-Precision Floating-
Point Division — Two Input Port Configuration

4-74 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

t t
¢ CH. ¢ CL.
Clock 0 1 2 oy 30 31 32 33 34

Two Input-Port
Configuration -

BIN31_0'

ABSA/B, RNDO 1,
INEXIN,and

RNDCARIt *
RDAO & RDBO Read =~
Selection Controls . . <

RDA1 Read
Selection Control

RDB1 Read .
Selection Control

MSWSEL Control

DOUTQA.0

4

Status Outputs previous status

=X | status

* See "Timing" section for additional sequencing options
1+ RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations

Figure T10. ADSP-3221 64-Bit Double-Precision Floating-
Point Division — Two Input-Port Configuration

FLOATING-POINT COMPONENTS 4-75

32 33

Clock

8-0

SELB

5 Two:Input-:Port
. Configuration

BIN

31-0

ABSB, RNDO:1,
INEXIN,and
RNDCARIt

RDBO:1 Read
Selection Controls 2™,

MSWSEL Control '

pouT,, .

i&

X status

Status Outputs : . ' previous status =,

* See “Timing” section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Figure T11. ADSP-3221 32 Bit Single-Precision Floating-
Point Square Root — Two Input-Port Configuration

4-76 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

Clock / /

8-0

SELB o, = 1 X =

SELB,

Two Input-Port

MSW ,
Configuration

BIN31_0’
ABSB, RNDO 1,
INEXIN,and
RNDCARIt

RDBO Read
Selection Controls

RDB1 Read -
Selection Control ==

< OPD >

MSWSEL Control *

DOUT31 0

LAD

4

X J stattlxs

Status Outputs : ' : : : previous status .

* See "Timing" section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations

Figure T12. ADSP-3221 64-Bit Double-Precision Floating-
Point Square Root — Two Input-Port Configuration

FLOATING-POINT COMPONENTS 4-77

SPECIFICATIONS'

RECOMMENDED OPERATING CONDITIONS

ADSP-3210/3211/3220/3221
J,K,and L Grades |S, T, and U Grades®
Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 \4
Tamp Operating Temperature (Ambient) 0 +70 -55 +125 °C
ELECTRICAL CHARACTERISTICS
ADSP-3210/3211/3220/3221
J,K,and L Grades |S, T, and U Grades?
Parameter Test Conditions Min Max Min Max Unit
Viz High-Level Input Voltage @ Vpp =max 2.0 2.0 \Y%
Vina High-Level Input Voltage, @ Vpp =max 2.6 3.0 \%
CLK and Asynchronous Controls
Vi Low-Level Input Voltage @ Vpp =min 0.8 0.8 \Y%
Vou High-Level Output Voltage @ Vpp=min&Ioy=—1.0mA | 2.4 2.4 v
Vor. Low-Level Output Voltage (@ Vpp=min & Io;, =4.0mA 0.5 0.6 \4
I High-Level Input Current, (@ Vpp=max & Vin=5.0V 10 10 RA
All Inputs
I, Low-Level Input Current, @Vpp=max & Viny=0V 10 10 rA
All Inputs
Ioz Three-State Leakage Current (w Vpp =max; High Z; 50 50 RA
Vin=0V or max
Inp Supply Current (@ max clock rate; TTL inputs 150 200 mA
Ipp Supply Current-Quiescent AllVin=2.4V 50 60 mA
SWITCHING CHARACTERISTICS’
ADSP-3210/3211/3220/3221
J Grade K Grade S Grade? T Grade?
0to 70°C 0to 70°C —55°Cto +125°C | ~55°Cto +125°C
Parameter Min Max Min Max Min Max Min Max Unit
tey Clock Cycle 125 100 150 125 ns
ter, Clock LO 20 20 30 30 ns
tcH Clock HI 20 20 30 30 ns
tps Data & Control Setup 20 15 25 20 ns
tpy Data & Control Hold 3 3 3 3 ns
tpo DataOutput Delay 30 25 35 30 ns
tso Status Output Delay 30 25 35 30 ns
tino MSWSEL-to-Data Delay 25 20 30 25 ns
tpis Three-State Disable Delay 18 15 25 20 ns
tina Three-State Enable Delay 3 25 3 20 3 30 3 25 ns
tsy RESET Setup 25 25 25 25 ns
trs RESET Pulse Duration 75 75 75 75 ns
tys HOLD Setup 20 15 22 18 ns
tii HOLD Hold 3 3 3 3 ns
4-78 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

ADSP-3210/3211/3220/3221
J Grade K Grade S Grade? T Grade?
0to 70°C 0to 70°C —55°Cto +125°C | —55°Cto +125°C
Parameter Min Max Min Max Min Max Min Max Unit
torp Operation Time
32-Bit Multiplication 125 100 150 125 ns
64-Bit Multiplication 500 400 600 500 ns
32-Bit ALU Operations 125 100 150 125 ns
64-Bit ALU Operations 125 100 150 125 ns
32-Bit Division (3221) 2.0 1.6 2.4 2.0 s
64-Bit Division (3221) 3.75 3.0 4.5 3.75 s
32-Bit Square Root (3221) 3.625 2.9 4.35 3.625 | us
64-Bit Square Root (3221) 7.25 5.8 8.7 7.25 s
tiap Total Latency
32-Bit Multiplication (3210) 363 290 435 363 ns
32-Bit Multiplication (3211) 300 240 360 300 ns
64-Bit Multiplication 738 590 885 738 ns
32-Bit ALU Operation 300 240 360 300 ns
64-Bit ALU Operation 363 290 435 363 ns
32-Bit Division (3221) 2.175 1.74 2.61 2.175 | ps
64-Bit Division (3221) 3.925 3.14 4.71 3.925 | ps
32-Bit Square Root (3221) 3.8 3.04 4.56 3.8)
64-Bit Square Root (3221) 7.425 5.94 8.91 7.425 | ws
ADSP-3210 ADSP-3211 ADSP-3210 ADSP-3211
L Grade L Grade U Grade U Grade
0to 70°C 0to0 70°C —55°Cto +125°C | —55°Cto +125°C
Parameter Min Max Min Max Min Max Min Max Unit
tcy Clock Cycle 60 50 75 70 ns
tc. ClockLO 20 20 30 30 ns
tcu Clock HI 20 20 30 30 ns
tps Data & Control Setup 15 15 20 20 ns
tpy Data & Control Hold 3 3 3 3 ns__
tpo DataOutput Delay 25 25 30 30 ns_
tso Status Output Delay 25 25 30 30 ns
tenvo MSWSEL-to-Data Delay 20 20 25 25 ns
tpis Three-State Disable Delay 15 15 20 20 ns
tena Lhree-State Enable Delay 3 20 3 20 3 25 3 25 ns
tsu RESET Setup 15 15 20 20 ns
trs RESET Pulse Duration 50 50 50 50 ns
tys HOLD Setup 15 15 20 20 ns
tyuy HOLD Hold 3 3 3 3 ns
topp Operation Time
32-Bit Multiplication 60 50 75 70 ns
64-Bit Multiplication 240 200 300 280 ns

FLOATING-POINT COMPONENTS 4-79

ADSP-3210 ADSP-3211 ADSP-3210 ADSP-3211
L Grade L Grade U Grade U Grade
0to 70°C 0to 70°C —55°Cto +125°C | —55°Cto +125°C

Parameter Min Max Min Max Min Max Min Max Unit
tLAD Total Latency

32-Bit Multiplication 190 140 238 190 ns

64-Bit Multiplication 370 315 463 400 ns
NOTES
'All min and max specifications are over power-supply and temperature range indicated.
28 and T grade parts are available processed and tested in accordance with MIL-STD-883B. The processing and test methods used
for $/883B and T/883B versions of the ADSP-3210/3211/3220/3221 can be found in Analog Devices’ Military Databook.
3Input levels are GND and +3.0V. Rise times are 5ns max. Input timing reference levels and output reference levels
are 1.5V, except for 1) tgna and pys which are as indicated in Figure T1 and 2) tps and tpy which are measured
from clock Vipa to data input Vi or Vi crossing points.
Specifications subject to change without notice.

VDD lOI.
Voo
T0
INPUT O-@ OUTPUT +1.5V
J_ oUTPUT PIN
3pF -[-:i I 40pF
lon

Figure 34. Equivalent Input Circuits

4-80 FLOATING-POINT COMPONENTS

Figure 35. Equivalent Output Circuits

Figure 36. Normal Load for ac
Measurements

ADSP-3210/3211/3220/3221

ORDERING INFORMATION
Temperature Package

Part Number Range Package Outline
ADSP-3210JG 0to+70°C 100-Pin Grid Array G-100A
ADSP-3210KG 0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-3210LG 0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-3210SG —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-3210TG —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-3210UG —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-32108SG/883B —55°Cto +125°C 100-PinGrid Array G-100A
ADSP-3210TG/883B —55°Cto +125°C 100-Pin Grid Array G-100A
ADSP-3210UG/883B —55°Cto +125°C 100-PinGrid Array G-100A
ADSP-3211JG 0to +70°C 144-Pin Grid Array G-144A
ADSP-3211KG 0to +70°C 144-Pin Grid Array ~ G-144A
ADSP-3211LG 0to +70°C 144-Pin Grid Array G-144A
ADSP-3211SG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3211TG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3211UG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3211SG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3211TG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3211UG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3220JG 0to +70°C 144-Pin Grid Array ~ G-144A
ADSP-3220KG 0to +70°C 144-Pin Grid Array G-144A
ADSP-3220SG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3220TG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3220SG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3220TG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3221)G 0to +70°C 144-Pin Grid Array G-144A
ADSP-3221KG 0to +70°C 144-Pin Grid Array G-144A
ADSP-3221SG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3221TG —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3221SG/883B —55°Cto +125°C 144-PinGrid Array G-144A
ADSP-3221TG/883B —55°Cto +125°C 144-PinGrid Array G-144A
Contact DSP Marketing in Norwood
concerning the availability of other
package types.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage -0.3Vto +7V

Input Voltage —0.3V to Vpp

Output Voltage Swing —0.3V to Vpp

Operating Temperature Range (Ambient) . . —55°C to +125°C
Storage Temperature Range —65°C to +150°C
Lead Temperature (10sec) +300°C

ESD SENSITIVITY

Each chip in the ADSP-3210/3211/3220/3221 chipset features proprietary input protection circuitry
to dissipate high energy discharges (Human Body Model). Per Method 3015 of MIL-STD-883, these
chips have been classified as Class 1 devices.

WARNING!

ESD SENSITIVE DEVICE

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra-
dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and
discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

FLOATING-POINT COMPONENTS 4-81

1 2 3 4 5 6 7 8 9 10 1 12 13
N ne | bouts | bouT7 | bouTs|DoUTI1|DOUTI4|DOUTI7|DOUTIE|DOUT21|DOUT23|DOUT25 | DOUT26| NIC
m | pourz | pouta| pouts | bouts |pouTio|poUTIZ|DOUTIS|DOUTIS|DOUT22 DOUT24|DOUT27 | DOUT28 [DOUT2e
L | oouri | oours DOUT12|DOUT16[DOUT20 DOUT30 [DOUT31
K | mexo | pouto GND | GND
J | vee | vae GND | DENORM
H | anoo |mNocaro | vaa INVALOP | OVRFLO | UNDFLO
G | mwot | cik | RESET BOTTOM VIEW MSWSEL | OEN | SHLP
F sp oP | ABss SELA1| ABSA | FAST
E | sELB1 | SELBO RDAO | SELAO
D | RoBo | wRars DIN31 | WRAPA
c | omo | o |™NBEX DIN11 | DIN15 | DIN1S DIN28 | DIN30
B | om2 | omwa | oina | oinz | Ding | DIN12 | DIN1G | DINt8 | DiN21 | DIN23 | DIN25 | DIN27 | DIN2g
A] wc | oins | oine | piNe | DiNto | DINt3 | DIN1a | DINt7 | DIN20 | DIN22 | DIN24 | DIN26 | NiC

1 2 3 4 5 6 7 8 9 10 11 12 13

ADSP-3210 Pinouts

4-82 FLOATING-POINT COMPONENTS

ADSP-3210/3211/3220/3221

AIN18 AIN15 AIN12 AIN10 AIN7 AIN4 AIN3 AIN1 BIN30O BIN29 BIN2S BIN23 BIN22 | BIN18 BIN14 Q

AIN22 AIN19 AIN16 AIN14 AIN11 AIN8 AINE AIN2 BIN28 BIN27 BIN24 BIN21 BIN19 BIN15 | BIN11 P

AIN26 AIN23 AIN20 AIN17 | AIN13 AINS AINS AINO BIN31 BIN26 BiN20 BIN17 BIN16 BIN12 BINS N

AIN27 AIN25 AIN21 BIN13 BIN10O BING M
AIN29 AIN28 AIN24 BIN® BINT BIN3 L
IPORTO | AIN31 AIN30 BINS BIN4 BINO K
SELA3 | IPORT1 | SELA1 BIN1 BIN2 SELB3 J
SELAO RDA1 SELA2 SELBO | SELB1 | SELB2 H

RDAO | FAST | WRAPA BOTTOM VIEW RDB1 | ABSB | RoBO | G

ABSA MSWSEL OEN GND CLK WRAPB F
SHLP |UNDFLO| INVALOP ano | op s | E
TcA | GND | vaa | 'NOEX vad | RESET| RND1 | D

OVRFLO | DENORM | DOUT29 (DOUT28 |DOUT25 | DOUT18| GND GND |DOUT10| DOUTE | DOUT2 | Vdd vdd GND RNDO (o]

GND |DOUT30|DOUT26|DOUT24|DOUT21|DOUT18|DOUT17|DOUT1I3| DOUTS | DOUT7 | DOUT4 [DOUT1 | INEXO | HOLD TCB B

DOUT31|DOUT27 | DOUT23 | DOUT22 | DOUT20 | DOUT16 | DOUT15|DOUT14|DOUT12|DOUT11| DOUTS | DOUTS | DOUT3 | DOuTO | RNDCARD| A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADSP-3211 Pinouts

FLOATING-POINT COMPONENTS 4-83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q | amie | aints | ANtz | ainto | ANz | ANa | AIN3 | ANt | BINSO | BIN29 | BIN25 | BIN23 | BIN22 | BIN18 | BIN14
P | Am22 | ainte | amnie | AINta | a1t | ane | ane | ANz | BIN2s | BIN27 | BIN24 | BIN21 | BINt9 | BIN1S | BINt1
N | AiN2s | aiN23 | AiNzo [AIN17 | AINI3 | AINg | AINs | AINO | BIN31 | BIN26 | BIN20 | BIN17 | BIN16 | BIN12 | BINS
M | a2z | anas | a2 BIN13 | BIN10 | BING
L | An2s | aN2e | AiN24 BIN9 | BIN7 | BIN3
K | mno1 | amnat | ainso BINS | BIN4 | BINO
J | mwocari | mwpo | ek BINt | BIN2 | IPORT1
H | aese | aBsa | RESET o o VIEW RDAO | IPORTO| RDA1

BOTTOM VIE

G 10 13 12 SELAO | SELA3 [SELA1
F " 15 16 RDBO | RDB1 | SELA2
E 14 18 FAST ne | sELB1 | sELBO
D ” GNo | vaa | "DEX vdd ne | seLs2
C | NExiN |ovRFLO| INEXO [DOUT31|DOUT28|DOUT22| GND | GND [DOUT13| DOUTS | DOUTS | Vdd vdd | MSWSEL | sELB3
B | aND |unDFLO|DOUT29(DOUT27 |DOUT24|DOUT21|DOUT20 |DOUTI6|DOUTIZ|DOUTI0| DOUT? | DOUT4 | DOUT2| DOUTO| OEN
A | vaLop [pouT3o|pouT26|{DouT25 | DOUT23[DOUTIS [DOUT18|DOUT17|DOUT15|DOUTI4|DOUTI1| DOUTS | DOUTE | DOUTS | DOUTH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4-84 FLOATING-POINT COMPONENTS

ADSP-3220/3221 Pinouts

ANALOG
DEVICES

64-Bit IEEE
Floating-Point Chipset

ADSP-3212/ADSP-3222

FEATURES
Complete 40 MFLOPS Floating-Point Chipset
Multiplier/Divider and ALU
Fully Compatible with IEEE Standard 754
Arithmetic Operations on Four Data Formats:
32-Bit Single-Precision Floating-Point
64-Bit Double-Precision Floating-Point
32-Bit Twos-Complement Fixed-Point
32-Bit Unsigned-Magnitude Fixed-Point
Only One Internal Pipeline Stage
20 MFLOPS Pipelined Throughput For Multiplication
and Standard ALU Operations
Exact Division: 300ns Single Precision and 600ns
Double Precision
Low Latency for Scalar Operations
130ns for 32-Bit Multiplication or Standard ALU
Operations
155ns for 64-Bit Multiplication or Standard ALU
Operations
Exact Square Root ALU Instruction
2.5W Maximum Power Dissipation per Chip with
1.0 pm CMOS Technology
144-Lead Pin Grid Array
Available Specified to MIL-STD-883, Class B

Pin-Compatible Upgrades From ADSP-321 uwsmm L

APPLICATIONS

High Performance Digital Sigtial Processing
Engineering Workstations

Floating-Point Accelerators

Array Processors

Mini-Supercomputers

RISC Processors

GENERAL DESCRIPTION

The ADSP-3212 Floating-Point Multiplier/Divider and the
ADSP-3222 Floating-Point ALU are high speed, low power
arithmetic processors conforming to IEEE Standard 754. The
multiplier/divider and ALU comprise the basic computational
elements for implementing a high speed numeric processor.
Operations are supported on four data formats: 32-bit IEEE
single-precision floating-point, 64-bit IEEE double-precision
floating-point, 32-bit twos-complement fixed-point and 32-bit
unsigned-magnitude fixed-point.

The high throughput of the ADSP-3212/ADSP-3222 is achieved
with only a single level of internal pipelining, greatly simplifying
program development. Theoretical MFLOPS rates are much
easier to approach in actual systems with this chip architecture
than with alternative, more heavily pipelined chipsets. Also, the
minimal internal pipelining in the ADSP-3212/ADSP-3222
results in very low latency, important in scalar processing and in
algorithms with data dependencies.

Both chips have internal feedback paths from the output to four
of the eight input registers and feedforward paths from all input
registers to the output register. Feedback to both banks of input
registers facilitates interl¢aving partial sums and partial products
for méximum, throughput.

In ¢onfurnting to IEEE Standard 754, these chips assure com-
plete software portability for computational algorithms adhering
to the Standard, Al four rounding modes are supported for all
floating<point data formats and conversions. Five IEEE excep-
tion conditions—overflow, underflow, invalid operation, inexact
result and division-by-zero—are available externally on four sta-
tus pins. The JEEE gradual underflow provisions are also sup-

- ported, with special instructions for handling denormals. Alter-

natively, each chip offers a FAST mode which sets results less
than the smallest IEEE normalized values to zero, thereby elimi-
nating underflow exception handling when full conformance to
the Standard is not essential.

IEEE floating-point division is supported by both the ADSP-
3212 and the ADSP-3222, The ADSP-3212 is the faster of the
two, performing single-precision division in six cycles and
double-precision division in 12 cycles. The division operation

is initiated by the assertion of the multiplier/divider’s DIVMUL
input. On the ADSP-3