

ADSP-2100 Family
User's Manual

Third Edition (9/95)

,.ANALOG
..... DEVICES

ADSp·2100 Family User's Manual
© 1995 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices.

Third Edition September 1995

Analog Devices, Inc.
Computer Products Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
(617) 329-4700

If you have comments or suggestions about this manual or find any errors in it, please contact us
via email at:

dsp_techpubs@analog.com

For product marketing information or technical support, contact any Analog Devices sales office or
authorized distributor. For applications engineering assistance, contact:

DSP Applications Engineering
Phone: (617) 461-3672 Massachusetts
Fax: (617) 461-3010
email: dsp_applications@analog.com

Phone: (408) 879-3037 California
Phone: (404) 263-3722 Georgia

Analog Devices maintains a DSP BBS supporting V.32bis, V.42 and MNP classes 2,3,4 error correction,
and V.42bis and MNP class 5 data compression which can be reached at:

(617) 461-4258 8 data bits, no parity, 1 stop bit, 300/1200/2400/9600/14400 baud

All information on the BSS is also available from Analog Devices' Internet FTP site. Login as anonymous
using your email address for your password, and type (from the Unix prompt):

ftp ftp.analog.com (or ftp 137.71.23.21)

~ PRINTED IN CANADA

Contents

CHAPTERl INTRODUCTION

1.1 OVERVIEW ... 1-1
1.1.1 Functional Units .. 1-1
1.1.2 Memory And System Interface ... 1-3
1.1.3 Instruction Set ... 1-4
1.1.4 DSP Performance .. 1-4
1.2 CORE ARCHITECTURE ... 1-5
1.2.1 Computational Units .. 1-6
1.2.2 Address Generators & Program Sequencer 1-7
1.2.3 Buses ... 1-8
1.3 ON-CHIP PERIPHERALS ... 1-8
1.3.1 Serial Ports ... 1-8
1.3.2 Timer ... 1-9
1.3.3 Host Interface Port .. 1-9
1.3.4 DMAPorts ... 1-9
1.3.5 Analog Interface ... 1-10
1.4 ADSP-2100 FAMILY DEVELOPMENT TOOLS 1-10
1.5 ORGANIZATION OF THIS MANUAL .. 1-11

CHAPTER 2 COMPUTATIONAL UNITS

2.1 OVERVIEW ... 2-1
2.1.1 Binary String .. 2-1
2.1.2 Unsigned .. 2-1
2.1.3 Signed Numbers: Twos-Complement 2-1
2.1.4 Fractional Representation: 1.15 ... 2-2
2.1.5 ALU Arithmetic .. 2-2
2.1.6 MAC Arithmetic ... 2-3
2.1.7 Shifter Arithmetic ... 2-3
2.1.8 Summary .. 2-4
2.2 ARITHMETIC/LOGIC UNIT (ALU) .. 2-5
2.2.1 ALU Block Diagram Discussion ... 2-5
2.2.2 Standard Functions .. 2-7
2.2.3 ALU Input/Output Registers ... 2-8
2.2.4 Multiprecision Capability .. 2-8
2.2.5 ALU Saturation Mode .. 2-8
2.2.6 ALU Overflow Latch Mode .. 2-9

iii

iv

2.2.7
2.2.8
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.5
2.3.2.6
2.3.2.7
2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4
2.4.2.5

Division ... 2-9
ALU Status ... 2-13

MULTIPLIER/ ACCUMULATOR (MAC) 2-13
MAC Block Diagram Discussion .. 2-13
MAC Operations ... 2-16

Standard Functions .. 2-16
Input Formats .. 2-18
MAC Input/Output Registers .. 2-18
MR Register Operation .. 2-18
MAC Overflow And Saturation ... 2-19
Rounding Mode .. 2-20
Biased Rounding (ADSP-217x/218x/21msp5x) 2-21

BARREL SHIFTER .. 2-22
Shifter Block Diagram Discussion .. 2-22
Shifter Operations ... 2-28

Shifter Input/Output Registers .. 2-28
Derive Block Exponent .. 2-29
Immediate Shifts ... 2-30
Denormalize .. 2-31
Normalize .. 2-33

CHAPTER 3 PROGRAM CONTROL

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.1.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.3
3.4.3.1

OVERVIEW ... 3-1
PROGRAM SEQUENCER ... 3-1

Next Address Select Logic ... 3-3
Program Counter & PC Stack ... 3-4
Loop Counter & Stack .. 3-4
Loop Comparator & Stack ... 3-5

PROGRAM CONTROL INSTRUCTIONS 3-8
JUMP Instruction .. 3-8

Register Indirect JUMPs .. 3-8
CALL Instruction .. 3-9
DO UNTIL Loops .. 3-9
IDLE Instruction ... 3-10

Slow IDLE .. 3-10
INTERRUPTS ~ .. 3-11

Interrupt Servicing Sequence .. 3-14
Configuring Interrupts .. 3-14

Interrupt Control Register (ICNTL) 3-15
Interrupt Mask Register (IMASK) 3-16
Global Enable/Disable For Interrupts 3-17

. Interrupt Force & Clear Register (IFC) 3-18
Interrupt Latency .. 3-18

Timer Interrupt Latency (ADSP-2101 /2105/2111/2115) 3-19

3.5 STATUS REGISTERS & STATUS STACK 3-20
3.5.1 Arithmetic Status Register (ASTAT) .. 3-20
3.5.2 Stack Status Register (SSTAT) .. 3-21
3.5.3 Mode Status Register (MSTAT) .. 3-22
3.6 CONDITIONAL INSTRUCTIONS .. 3-24
3.7 TOPPCSTACK .. 3-25
3.7.1 TOPPCSTACK Restrictions .. 3-27

CHAPTER 4 DATA TRANSFER

4.1
4.2
4.2.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.5
4.3
4.3.1
4.3.2
4.4
4.4.1

OVERVIEW ... 4-1
DATA ADDRESS GENERATORS (DAGS) 4-1

DAG Registers ... 4-1
Indirect Addressing .. 4-3

Initialize L Registers To 0 For Non-Circular Addressing 4-3
Modulo Addressing (Circular Buffers) 4-4
Calculating The Base Address .. 4-5

Circular Buffer Base Address Example 1 4-5
Circular Buffer Base Address Example 2 4-5
Circular Buffer Operation Example 1 4-5
Circular Buffer Operation Example 2 4-6

Bit-Reverse Addressing ... 4-6
PROGRAMMNG DATA ACCESSES .. 4-7

Variables & Arrays ... 4-7
Circular Buffers ... 4-8

PMD-DMD BUS EXCHANGE .. 4-9
PMD-DMD Block Diagram Discussion 4-9

CHAPTERS SERIAL PORTS

5.1 OVERVIEW .. 5-1
5.2 BASIC SPORT DESCRIPTION ... 5-1
5.2.1 Interrupts ... 5-4
5.2.2 SPORT Operation ... 5-4
5.3 SPORT PROGRAMMING ... 5-4
5.3.1 SPORT Configuration .. 5-5
5.3.2 Receiving And Transmitting Data ... 5-6
5.4 SPORT ENABLE ... 5-7
5.5 SERIAL CLOCKS .. 5-8
5.6 WORD LENGTH .. 5-9
5.7 WORD FRAMING OPTIONS ... 5-10
5.7.1 Frame Synchronization .. 5-10
5.7.2 Frame Sync Signal Source ... 5-11
5.7.3 Normal And Alternate Framing Modes 5-13
5.7.4 Active High Or Active Low .. 5-14 v

vi

5.8
5.9
5.10
5.10.1
5.10.2
5.10.3
5.11
5.11.1
5.11.2
5.12
5.12.1
5.12.2
5.13
5.13.1
5.13.2
5.13.2.1
5.13.3
5.13.4
5.13.5
5.13.6
5.13.7
5.13.8
5.13.9
5.13.10
5.13.11

CONFIGURATION EXAMPLE ... 5-15
TIMING EXAMPLES ... 5-16
COMPANDING AND DATA FORMAT 5-23

Companding Operation Example .. 5-24
Contention For Companding Hardware 5-25
Companding Internal Data ... 5-25

AUTOBUFFERING .. 5-26
Autobuffering Control Register ... 5-27
Autobuffering Example ... 5-28

MULTICHANNEL FUNCTION .. 5-30
Multichannel Setup .. 5-30
Multichannel Operation .. 5-32

SPORT TIMING CONSIDERATIONS .. 5-34
Companding Delay .. 5-34
Clock Synchronization Delay ... 5-34

Startup Timing .. 5-34
Internally Generated Frame Sync Timing 5-34
Transmit Interrupt Timing .. 5-36
Receive Interrupt Timing .. 5-36
Interrupt And Autobuffer Synchronization 5-38
Instruction Completion Latencies .. 5-38
Interrupt And Autobuffer Service Example 5-39
Receive Companding Latency .. 5-40
Interrupts With Autobuffering Enabled 5-41
Unusual Complications ... 5-42

CHAPTER 6 TIMER

6.1 OVERVIEW ... 6-1
6.2 TIMER ARCHITECTURE .. 6-1
6.3 RESOLUTION ... 6-3
6.4 TIMER OPERATION ... 6-3

CHAPTER 7 HOST INTERFACE PORT

7.1 OVERVIEW ... 7-1
7.2 HIP PIN SUMMARY .. 7-2
7.3 HIP FUNCTIONAL DESCRIPTION ... 7-4
7.4 HIP OPERATION ... 7-6
7.4.1 Polled Operation ... 7-7
7.4.1.1 HIP Status Synchronization .. 7-8
7.4.2 Interrupt-Driven Operation .. 7-9
7.4.3 HDR Overwrite Mode ... 7-9
7.4.4 Software Reset ... 7-10
7.5 HIP INTERRUPTS .. 7-10
7.6 HOST INTERFACE TIMING .. 7-11
7.7 BOOT LOADING THROUGH THE HIP 7-16

CHAPTERS ANALOG INTERFACE

8.1
8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.2
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.5
8.5.1
8.5.2
8.5.3

OVERVIEW ... 8-1
A/D CONVERSION .. 8-2

Analog Input ... 8-2
ADC ... 8-3

Decimation Filter .. 8-4
High Pass Filter ... 8-5

D/ACONVERSION .. 8-6
DAC ... 8-6

High Pass Filter ... 8-6
Interpolation Filter ... 8-7
Analog Smoothing Filter & Programmable Gain Amp 8-8

Differential Output Amplifier .. 8-8
OPERATING THE ANALOG INTERFACE 8-9

Memory-Mapped Control Registers .. 8-9
Analog Control Register .. 8-9
Analog Autobuffer/Powerdown Register 8-10

Memory-Mapped Data Registers ... 8-11
ADC & DAC Interrupts ... 8-12

Autobuffering Disabled ... 8-12
Autobuffering Enabled .. 8-13

CIRCUIT DESIGN CONSIDERATIONS 8-16
Analog Signal Input ... 8-16
Analog Signal Output .. 8-18
Voltage Reference Filter Capacitance 8-19

vii

viii

CHAPTER 9 SYSTEM INTERFACE

9.1
9.2
9.2.1
9.2.2
9.3
9.4
9.4.1
9.5
9.5.1
9.6
9.7
9.7.1
9.7.2
9.7.3
9.7.3.1
9.7.3.2
9.7.4
9.7.4.1
9.7.4.2
9.7.5
9.7.5.1
9.7.5.2
9.7.5.3
9.7.5.4
9.7.5.5
9.7.5.6
9.7.6
9.7.7
9.7.8

OVERVIEW ... 9-1
CLOCK SIGNALS .. 9-3

Synchronization Delay ... 9-3
Ix & 1/2x Clock Considerations .. 9-4

RESET ... 9-4
SOFTWARE-FORCED REBOOTING .. 9-4

ADSP-2181 Register Values For BDMA Booting 9-13
EXTERNAL INTERRUPTS ... 9-14

Interrupt Sensitivity ... 9-14
FLAG PINS ... 9-15
POWERDOWN ... 9-17

Powerdown Control ... 9-18
Entering Powerdown ... 9-19
Exiting Powerdown .. 9-20

Ending Powerdown With The FWD Pin 9-20
Ending Powerdown With The RESET Pin 9-21

Startup Time After Powerdown ... 9-21
Systems Using An External TTL/CMOS Clock 9-21
Systems Using A Crystal/Internal Oscillator 9-22

Operation During Powerdown .. 9-23
Interrupts & Flags ... 9-23
SPORTS .. 9-23
HIP During Powerdown ... 9-24
IDMA Port During Powerdown (ADSP-2181) 9-25
BDMA Port During Powerdown (ADSP-2181) 9-26
Analog Interface (ADSP-21msp5x) 9-26

Conditions For Lowest Power Consumption 9-26
PWDACK Pin .. 9-29
Using Powerdown As A Non-Maskable Interrupt 9-30

CHAPTER 10 MEMORY INTERFACE

10.1 OVERVIEW ... 10-1
10.2 PROGRAM MEMORY INTERFACE ... 10-3
10.2.1 External Program Memory Read/Write 10-3
10.2.2 Program Memory Maps .. 10-5
10.2.3 ROM Program Memory Maps .. 10-6
10.3 DATA MEMORY INTERFACE .. 10-10
10.3.1 External Data Memory Read/Write 10-10
10.3.2 Data Memory Maps ... 1 0-11
10.3.3 Memory-Mapped Peripherals .. 10-14

10.4 BOOT MEMORY INTERFACE .. 10-15
10.4.1 Boot Pages .. 10-15
10.4.2 Powerup Boot & Software Reboot ... 10-16
10.4.3 Boot Memory Access .. 10-17
10.4.4 Boot Loading Sequence .. 10-17
10.5 BUS REQUEST /GRANT ~ .. 10-21
10.6 ADSP-2181 MEMORY INTERFACES ... 10-23
10.6.1 ADSP-2181 Program Memory Interface 10-25
10.6.2 ADSP-2181 Data Memory Interface 10-30
10.6.3 ADSP-2181 Byte Memory Interface 10-32
10.6.4 ADSP-2181 I/O Memory Space .. 10-32
10.6.5 ADSP-2181 Composite Memory Select 10-35
10.6.6 External Memory Read - Overlays & I/O Memory 10-36
10.6.7 External Memory Write - Overlays & I/O Memory 10-37
10.7 MEMORY INTERFACE SUMMARY (ALL PROCESSORS) 10-37

CHAPTER 11 DMAPORTS

11.1 OVERVIEW ... 11-1
11.2 BDMA PORT ... 11-2
11.2.1 BDMA Port Functional Description ... 11-4
11.2.2 BDMA Control Registers ... 11-4
11.2.3 Byte Memory Word Formats .. 11-9
11.2.4 BDMA Booting .. 11-9
11.2.4.1 Development Software Features for BDMA Booting 11-11
11.3 IDMA PORT .. 11-12
11.3.1 IDMA Port Pin Summary .. 11-12
11.3.2 IDMA Port Functional Description .. 11-14
11.3.3 Modifying Control Registers for IDMA 11-16
11.3.4 IDMA Timing .. 11-17
11.3.4.1 Address Latch Cycle .. 11-17
11.3.4.2 Long Read Cycle ... 11-18
11.3.4.3 Short Read Cycle ... 11-20
11.3.4.4 Long Write Cycle .. 11-21
11.3.4.5 Short Write Cycle .. 11-23
11.3.5 Boot Loading Through The IDMA Port 11-24
11.3.6 DMA Cycle Stealing, DMA Hold Offs, and IALK 11-25

ix

x

CHAPTER 12 PROGRAMMING MODEL

12.1
12.1.1
12.1.1.1
12.1.2
12.1.2.1
12.1.2.2
12.1.2.3
12.1.2.4
12.1.3
12.1.4
12.1.5
12.1.6
12.1.7
12.1.8
12.1.9
12.2
12.2.1
12.2.2

OVERVIEW ... 12-1
Data Address Generators .. 12-2

Always Initialize L Registers .. 12-2
Program Sequencer .. 12-4

Interrupts ... 12-4
Loop Counts .. 12-4
Status And Mode Bits .. 12-5
Stacks ... : 12-5

Computational Units .. 12-6
Bus Exchange .. 12-6
Timer ... 12-6
Serial Ports ... 12-7
Memory Interface & SPORT Enables 12...,7
Host Interface .. 12-8
Analog Interface ... 12-8

PROGRAM EXAMPLE .. 12-8
Example Program: Setup Routine Discussion 12-10
Example Program: Interrupt Routine Discussion 12-11

CHAPTER 13 HARDWARE EXAMPLES

13.1 OVERVIEW ... 13-1
13.2 BOOT LOADING FROM HOST USING BUS REQUEST 13-2
13.3 SERIAL PORT TO CODEC INTERFACE 13-5
13.4 SERIAL PORT TO DAC INTERFACE ... 13-8
13.5 SERIAL PORT TO ADC INTERFACE ... 13-10
13.6 SERIAL PORT TO SERIAL PORT INTERFACE 13-12
13.7 80C51 INTERFACE TO HOST INTERFACE PORT 13-13

CHAPTER 14 SOFTWARE EXAMPLES

14.1 OVERVIEW ... 14-1
14.2 SYSTEM DEVELOPMENT PROCESS ... 14-2
14.3 SINGLE-PRECISION FIR TRANSVERSAL FILTER 14-4
14.4 CASCADED BIQUAD IIR FILTER .. 14-6
14.5 SINE APPROXIMATION .. 14-7
14.6 SINGLE-PRECISION MATRIX MULTIPLY 14-9
14.7 RADIX-2 DECIMATION-IN-TIME FFf 14-11
14.7.1 Main Module ... 14-11
14.7.2 DITFFfSubroutine .. 14-13
14.7.3 Bit-Reverse Subroutine .. 14-18
14.7.4 Block Floating-Point Scaling Subroutine 14-19

CHAPTER 15 INSTRUCTION SET REFERENCE

15.1 QUICK LIST OF INSTRUCTIONS ... 15-1
15.2 OVERVIEW ... 15-2
15.3 INSTRUCTION TYPES & NOTATION CONVENTIONS 15-3
15.4 MULTIFUNCTION INSTRUCTIONS ... 15-4
15.4.1 ALU/MAC With Data & Program Memory Read 15-4
15.4.2 Data & Program Memory Read .. 15-6
15.4.3 Computation With Memory Read ... 15-6
15.4.4 Computation With Memory Write .. 15-6
15.4.5 Computation With Data Register Move 15-7
15.5 ALU, MAC & SHIFTER INSTRUCTIONS 15-9
15.5.1 ALU Group .. 15-9
15.5.2 MAC Group ... 15-10
15.5.3 Shifter Group ... 15-11
15.6 MOVE: READ & WRITE ... 15-12
15.7 PROGRAM FLOW CONTROL .. 15-14
15.8 MISCELLANEOUS INSTRUCTIONS ... 15-16
15.9 EXTRA CYCLE CONDITIONS .. 15-18
15.9.1 Multiple Off-Chip Memory Accesses 15-18
15.9.2 Wait States ... 15-18
15.9.3 SPORT Autobuffering & DMA ... 15-18
15.10 INSTRUCTION SET SYNTAX .. 15-19
15.10.1 Punctuation & Multifunction Instructions 15-19
15.10.2 Syntax Notation Example .. 15-19
15.10.3 Status Register Notation .. 15-20

ALU Add/ Add with Carry .. 15-23
Subtract X-Y /Subtract X-Y with Borrow 15-25
Subtract Y-X/Subtract Y-X with Borrow 15-27
AND, OR, XOR ... 15-29
Test Bit, Clear Bit, Set Bit, Toggle Bit ... 15-31
Pass/Clear ... 15-33
Negate .. 15-35
NOT ... 15-36
Absolute Value .. 15-37
Increment ... 15-38
Decrement .. 15-39
Divide .. 15-40
Generate ALU Status .. 15 -42

xi

MAC Multiply .. 15-43
Multiply / Accumulate .. 15-45
Multiply /Subtract .. 15-47
Clear .. 15-49
Transfer MR ... 15-50
Conditional MR Saturation ... 15-51

SHIFTER
Arithmetic Shift ... 15-52
Logical Shift ... 15-54
Normalize ... 15-56
Derive Exponent ... 15-58
Block Exponent Adjust .. 15-60
Arithmetic Shift Immediate .. 15-62
Logical Shift Immediate ... 15-64

MOVE
Register Move ... 15-65
Load Register Immediate .. 15-67
Data Memory Read (Direct Address) .. 15-69
Data Memory Read (Indirect Address) 15-70
Program Memory Read (Indirect Address) 15-71
Data Memory Write (Direct Address) ... 15-72
Data Memory Write (Indirect Address) 15-73
Program Memory Write (Indirect Address) 15-75
I/O Space Read/Write .. 15-76

PROGRAM FLOW
JUMP .. 15-77
CALL .. 15-78
JUMP or CALL on Flag In Pin .. 15-79
Modify Flag Out Pin .. 15-80
Return From Subroutine (RTS) ... 15-81
Return From Interrupt (RTl) ... 15-82
Do Until .. 15-83
IDLE .. ~ 15-85

xii

MISC
Stack Control ... 15-86
Mode Control .. 15-89
Modify Address Register ... 15-91
NOP ... 15-92
Interrupt Enable/Disable .. 15-93

MULTIFUNCTION
ALU /MAC/SHIFT Operation with Memory Read 15-94
ALU /MAC/SHIFT Operation with Register to Register Move 15-98
ALU /MAC/SHIFT Operation with Memory Write 15-101
Data & Program Memory Read .. lS-l0S
ALU /MAC Operation with Data & Program Memory Read 15-106

APPENDIX A INSTRUCTION CODING

A.l OPCODES .. A-l
A.2 ABBREVIATION CODING ... A-7

APPENDIXB DIVISION EXCEPTIONS

B.l DIVISION FUNDAMENTALS .. B-l
B.l.l Signed Division .. B-1
B.l.2 Unsigned Division ... B-2
B.l.3 Output Formats .. B-2
B.l.4 Integer Division .. B-3
B.2 ERROR CONDITIONS .. B-3
B.2.1 Negative Divisor Error .. B-3
B.2.2 Unsigned Division Error ... B-4
B.3 SOFTWARE SOLUTION .. B-4

APPENDIXC NUMERIC FORMATS

C.l OVERVIEW .. C-l
C.2 UNSIGNED OR SIGNED: TWOS-COMPLEMENT FORMAT ... C-J
C.3 INTEGER OR FRACTIONAL .. C-l
C.4 BINARY MULTIPLICATION .. C-3
C.4.1 Fractional Mode And Integer Mode ... C-4
C.S BLOCK FLOATING-POINT FORMAT .. C-S

xiii

APPENDIX D INTERRUPT VECTOR ADDRESSES

D.1 INTERRUPT VECTOR ADDRESSES ... D-1

APPENDIX E CONTROL/STATUS REGISTERS

E.1 OVERVIEW ... E-1

INDEX

xiv

Introduction

1.1 OVERVIEW
The ADSP-2100 family is a collection of programmable single-chip
microprocessors that share a common base. architecture optimized for
digital signal processing (DSP) and other high-speed numeric processing
applications. The various family processors differ principally in the type
of on-chip peripherals they add to the base architecture. On-chip memory,
a timer, serial port(s), and parallel ports are available in different members
of the family. In addition, the ADSP-21msp58/59 processors include an
on-chip analog interface for voiceband signal conversion.

This manual provides the information necessary to understand and
evaluate the processors' architecture, and to determine which device best
meets your needs for a particular application. Together with the data
sheets describing the individual devices, this manual provides all the
information required to design a DSP system. Complete reference material
for programmers is also included.

1.1.1 Functional Units
Table 1.1 on the following page lists the main functional units of the
ADSP-21xx architecture, and shows which functions are included on each
of the processors.

• Computational Units-Every processor in the ADSP-2100 family
contains three independent, full-function computational units: an
arithmetic/logic unit (ALU), a multiplier/accumulator (MAC) and a
barrel shifter. The computational units process 16-bit data directly and
also provide hardware support for multiprecision computations.

• Data Address Generators & Program Sequencer-Two dedicated address
generators and a program sequencer supply addresses for on-chip or
external memory access. The sequencer supports single-cycle
conditional branching and executes program loops with zero
overhead. Dual data address generators allow the processor to
generate simultaneous addresses for dual operand fetches.
Together the sequencer and data address generators keep the
computational units continuously working, maximizing throughput.

1

1-1

Feature 2101 2103 2105 2115 2111 2171 2173 2181 2183 21msp58

Arithmetic/Logic Unit • • • • • • • • •
Multiply / Accumulator • • • • • • • • •
Shifter • • • • • • • • •
Data Address Generators • • • • • • • • •
Program Sequencer • • • • • • • • •
Data Memory RAM 1K 1K 512 512 1K 2K 2K 16K 16K
Program Memory RAM 2K 2K 1K 1K 2K 2K 2K 16K 16K
Timer • • • • • • • • •
Serial Port 0 (Multichannel) • • - • • • • • •
Serial Port 1 • • • • • • • • •
Host Interface Port - - - - • • • - -
DMAPorts - - - - - - - • •
Analog Interface - - - - - - - - -
Supply Voltage 5V 3.3V 5V 5V 5V 5V 3.3V 5V 3.3V
Instruction Rate (MIPS) 20 10 13.8 20 20 33 20 33 33

• Table 1.1 ADSP-2100 Family Processor Features & On-Chip Peripherals

1-2

• Memory-The ADSP-2100 family uses a modified Harvard architecture
in which data memory stores data, and program memory stores both
instructions and data. All ADSP-2100 family processors contain on­
chip RAM that comprises a portion of the program memory space and
data memory space. The speed of the on-chip memory allows the
processor to fetch two operands (one from data memory and one from
program memory) and an instruction (from program memory) in a
single cycle.

• Serial Ports-The serial ports (SPORTs) provide a complete serial
interface with hardware companding for data compression and
expansion. Both /l-law and A-law companding are supported. The
SPORTs interface easily and directly to a wide variety of popular serial
devices. Each SPORT can generate a programmable internal clock or
accept an external clock. SPORTO includes a multichannel option.

• Timer-A programmable timer/counter with 8-bit pres caler provides
periodic interrupt generation.

• Host Interface Port-The Host Interface Port (HIP) allows direct
connection (with no glue logic) to a host processor. The HIP is made up
of 16 data pins and 11 control pins. The HIP is extremely flexible and
has provisions to allow simple interface to a variety of host processors.
For example, the Motorola 68000, the Intel 8051, or another ADSP-2100
family processor can be easily connected to the HIP.

•
•
•
•
•
2K
2K
•
•
•
•
-

•
5V
26

• DMA Ports-The ADSP-2181's Internal DMA Port (lDMA) and Byte DMA
Port (BDMA) provide efficient data transfers to and from internal memory.
The IDMA port has a 16-bit multiplexed address and data bus and supports
24-bit program memory. The IDMA port is completely asynchronous and
can be written to while the ADSP-2181 is operating at full speed. The byte
memory DMA port allows boot loading and storing of program instructions
and data.

• Analog Interface-The ADSP-21msp58/59 processors include on-chip
circuitry for mixed analog and digital signal processing. This circuitry
includes an analog-to-digital converter (ADC), a digital-to-analog converter
(DAC), analog and digital filters, and a parallel interface to the processor's
core. The converters use sigma-delta technology to capture data samples
from a highly oversampled signal.

The ADSP-2100 family architecture exhibits a high degree of parallelism,
tailored to DSP requirements. In a single cycle, any device in the family can:

• Generate the next program address.
• Fetch the next instruction.
• Perform one or two data moves.
• Update one or two data address pointers.
• Perform a computation.

In that same cycle, processors which have the relevant functional units can also:

• Receive and/ or transmit data via the serial port(s).
• Receive and/ or transmit data via the host interface port.
• Receive and/ or transmit data via the DMA ports.
• Receive and/ or transmit data via the analog interface.

1.1.2 Memory And System Interface
In each ADSP-21xx processor, four on-chip buses connect internal memory with
the other functional units: Data Memory Address bus, Data Memory Data bus,
Program Memory Address bus, and Program Memory Data bus. A single
external address bus and and a single external data bus are extended off-chip;
these buses can be used for either program or data memory access.

External devices can gain control of the processor's buses with the bus request
and grant signals (BR, BG). The ADSP-21xx processors can continue running
while the buses are granted to another device, as long as an external memory
operation is not required.

1-3

1-4

The ADSP-21xx processors support memory-mapped peripherals with
programmable wait state generation.

Boot circuitry provides for loading on-chip program memory
automatically after reset. This can be done either through the memory
interface from a single low-cost EPROM, through the host interface port
from a host processor, or through the BDMA port of the ADSP-2181.
Multiple programs can be selected and loaded with no additional
hardware.

ADSP-2100 family processors differ in their response to interrupts. In all
cases, however, the program sequencer allows the processor to respond
with minimum latency. Interrupts can be nested with no additional
latency. External interrupts can be configured as edge- or level-sensitive.
Internal interrupts can be generated from the timer, the host interface port,
the serial ports, and the BDMA port.

1.1.3 Instruction Set
The ADSP-2100 family shares a single unified instruction set designed for
upward compatibility with higher-integration devices. The ADSP-2171,
ADSP-2181, and ADSP-21msp58/59 processors have a number of
additional and enhanced instructions.

The ADSP-2100 family instruction set provides flexible data moves.
Multifunction instructions combine one or more data moves with a
computation. Every instruction can be executed in a single processor cycle.
The assembly language uses an algebraic syntax for readability and ease of
coding. A comprehensive set of software and hardware tools supports
program development.

1.1.4 DSP Performance
Signal processing applications make special performance demands which
distinguish DSP architectures from other microprocessor and
microcontroller architectures. Not only must instruction execution be fast,
but DSPs must also perform well in each of the following areas:

• Fast and Flexible Arithmetic-The ADSP-2100 family base architecture
provides single-cycle computation for multiplication, multiplication
with accumulation, arbitrary amounts of shifting, and standard
arithmetic and logical operations. In addition, the arithmetic units
allow for any sequence of computations so that a given DSP algorithm
can be executed without being reformulated.

• Extended Dynamic Range-Extended sums-of-products, common in DSP
algorithms, are supported in the multiply / accumulate units of the
ADSP-2100 family. A 40-bit accumulator provides eight bits of
protection against overflow in successive additions to ensure that no
loss of data or range occurs; 256 overflows would have to occur before
any data is lost. Special instructions are provided for implementing
block floating-point scaling of data.

• Single-Cycle Fetch of Two Operands-In extended sums-of-products
calculations, two operands are needed on each cycle to feed the
calculation. All members of the ADSP-2100 family are able to sustain
two-operand data throughput, whether the data is stored on-chip or
off.

• Hardware Circular Buffers-A large class of DSP algorithms, including
digital filters, requires circular data buffers. The ADSP-2100 family
base architecture includes hardware to handle address pointer
wraparound, simplifying the implementation of circular buffers both
on- and off-chip, and reducing overhead (thereby improving
performance) .

• Zero-Overhead Looping and Branching-DSP algorithms are repetitive
and are most logically expressed as loops. The program sequencer in
the ADSP-2100 family supports looped code with zero overhead,
combining excellent performance with the clearest program structure.
Likewise, there are no overhead penalties for conditional branches.

1~ CORE ARCHITECTURE
This section describes the core architecture of the ADSP-2100 family, as
shown in Figure 1.1. Each component of the core architecture is described
in detail in different chapters of this manual, as shown below:

Arithmetic/logic unit (ALU)
Multiplier / accumulator (MAC)
Barrel shifter
Program sequencer
Status registers and stacks
Two data address generators (DAGs)
PMD-DMD bus exchange (PX registers)

Chapter 2, Computation Units
Chapter 2, Computation Units
Chapter 2, Computation Units
Chapter 3, Program Control
Chapter 3, Program Control
Chapter 4, Data Transfer
Chapter 4, Data Transfer

1-5

1-6

Figure 1.1 Base Architecture

1.2.1 Computational Units

PMABUS

DMABUS

PMDBUS
I==========#:.==

Every processor in the ADSP-2100 family contains three independent, full­
function computational units: an arithmetic/logic unit (ALU), a
multiplier/accumulator (MAC) and a barrel shifter. The computation
units process 16-bit data directly and provide hardware support for
multiprecision computation as well.

The ALU performs a standard set of arithmetic and logic operations in
addition to division primitives. The MAC performs single-cycle multiply,
multiply / add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, normalization, denormalization, and derive­
exponent operations. The shifter implements numeric format control
including multiword floating-point representations. The computational
units are arranged side-by-side instead of serially so that the output of any
unit may be the input of any unit on the next cycle. The internal result (R)
bus directly connects the computational units to make this possible.

All three units contain input and output registers which are accessible
from the internal data memory data (DMD) bus. Computational
operations generally take their operands from input registers and load the
result into an output register. The registers act as a stopover point for data
between memory and the computational circuitry. This feature introduces
one level of pipelining on input, and one level on output. The R bus allows
the result of a previous computation to be used directly as the input to
another computation. This avoids excessive pipeline delays when a series
of different operations are performed.

1.2.2 Address Generators & Program Sequencer
Two dedicated data address generators and a powerful program
sequencer ensure efficient use of the computational units. The data
address generators (DAGs) provide memory addresses when memory
data is transferred to or from the input or output registers. Each DAG
keeps track of up to four address pointers. When a pointer is used for
indirect addressing, it is post-modified by a value in a specified register.
With two independent DAGs, the processor can generate two addresses
simultaneously for dual operand fetches.

A length value may be associated with each pointer to implement
automatic modulo addressing for circular buffers. (The circular buffer
feature is also used by the serial ports for automatic data transfers. Refer
to the Serial Ports chapter for additional information.)

DAGl can supply addresses to data memory only; DAG2 can supply
addresses to either data memory or program memory. When the
appropriate mode bit is set in the mode status register (MSTAT), the
output address of DAGl is bit-reversed before being driven onto the
address bus. This feature facilitates addressing in radix-2 Fast Fourier
Transform (FFT) algorithms.

The program sequencer supplies instruction addresses to the program
memory. The sequencer is driven by the instruction register which holds
the currently executing instruction. The instruction register introduces a
single level of pipelining into the program flow. Instructions are fetched
and loaded into the instruction register during one processor cycle, and
executed during the following cycle while the next instruction is
prefetched. To minimize overhead cycles, the sequencer supports
conditional jumps, subroutine calls and returns in a single cycle. With an
internal loop counter and loop stack, the processor executes looped code
with zero overhead. No explicit jump instructions are required to loop.

1-7

1-8

1.2.3 Buses
The processors have five internal buses. The program memory address
(PMA) and data memory address (DMA) buses are used internally for the
addresses associated with program and data memory. The program
memory data (PMD) and data memory data (DMD) buses are used for the
data associated with the memory spaces. The buses are multiplexed into a
single external address bus and a single external data bus; the BNIS, DMS
and PNIs-signals select the different address spaces. The R bus transfers
intermediate results directly between the various computational units.

The PMA bus is 14 bits wide allowing direct access of up to 16K words of
mixed instruction code and data. The PMD bus is 24 bits wide to
accommodate the 24-bit instruction width.

The DMA bus is 14 bits wide allowing direct access of up to 16 K words of
data. The data memory data (DMD) bus is 16 bits wide. The DMD bus
provides a path for the contents of any register in the processor to be
transferred to any other register or to any data memory location in a single
cycle. The data memory address comes from two sources: an absolute
value specified in the instruction code (direct addressing) or the output of
a data address generator (indirect addressing). Only indirect addressing is
supported for data fetches from program memory.

The program memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the PMD­
DMD bus exchange unit. The PMD-DMD bus exchange unit permits data
to be passed from one bus to the other. It contains hardware to overcome
the 8-bit width discrepancy between the two buses, when necessary.

1.3 ON-CHIP PERIPHERALS
This section describes the additional functional units which are included
in various processors of the ADSP-2100 family.

1.3.1 Serial Ports
Most ADSP-21xx processors have two bidirectional, double-buffered serial
ports (SPORTs) for serial communications. The SPORTs are synchronous
and use framing signals to control data flow. Each SPORT can generate its
serial clock internally or use an external clock. The framing sync signals
may be generated internally or by an external device. Word lengths may
vary from three to sixteen bits. One serial port, SPORTO, has a
multichannel capability that allows the receiving or transmitting of
arbitrary data words from a 24-word or 32-word bitstream. The other

serial port, SPORT1, ma~ionally be configured as two additional
external interrupt pins (lRQ1 and IRQU)and the Flag Out (FO) and Flag In
(PI) pins.

1.3.2 Timer
The programmable interval timer provides periodic interrupt generation.
An 8-bit pres caler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register reaches zero. The count register is
automatically reloaded from a 16-bit period register and the count
resumes immediately.

1.3.3 Host Interface Port (ADSP·2111, ADSp·2171, ADSP·21msp5x)
The host interface port (HIP) is a parallel 1/ 0 port that allows for an easy
connection to a host processor. Through the HIP, an ADSP-21xx DSP can
be used as a memory-mapped peripheral of the host. The HIP operates in
parallel with and asynchronous to the ADSP-21xx's computational core
and internal memory. The host interface port consists of registers through
which the ADSP-21xx and the host processor pass data and status
information. The HIP can be configured for: an 8-bit data bus or 16-bit
data bus; a multiplexed address/data bus or separate address and data
buses; and separate read and write strobes or a read/write strobe and a
data strobe.

1.3.4 DMA Ports (ADSP-2181)
The ADSP-2181 contains two DMA ports, and Internal DMA Port and a
Byte DMA Port. The IDMA port provides an efficient means of
communication between a host system and the DSP. The port is used to
access the on-chip program memory and data memory of the DSP with
only one cycle per word of overhead. The IDMA port has a 16-bit
multiplexed address and data bus and supports 24-bit program memory.
The IDMA port is completely asynchronous and can be written to while
the ADSP-2181 is operating at full speed.

The internal memory address is latched and then automatically
incremented after each IDMA transaction. An external device can
therefore access a block of sequentially addressed memory by specifying
only the starting address of the block.

The byte memory DMA controller allows loading and storing of program
instructions and data using the byte memory space. The BDMA circuit is
able to access the byte memory space while the processor is operating
normally and steals only one processor cycle per 8-, 16- or 24-bit word
transferred.

1-9

1-10

1.3.5 Analog Interface
The analog interface of the ADSP-21msp58/59 consists of input amplifiers
and a 16-bit sigma-delta analog-to-digital converter (ADC) as well as a
sigma-delta digital-to-analog converter (DAC) and a differential output
amplifier.

1.4 ADSp·2100 FAMILY DEVELOPMENT TOOLS
The ADSP-2100 family is supported with a complete set of software and
hardware development tools. The ADSP-2100 Family Development
System includes software utilities for program development and EZ Tools
for hardware/ software debugging.

The Development Software includes:

• System Builder-The System Builder defines the architecture of your
hardware system. This includes the specification of the amount of
external memory available and any memory-mapped I/O ports.

• Assembler-The Assembler assembles the source code and data
modules as well as supporting the high-level syntax of the instruction
set. In addition to supporting a full range of system diagnostics, the
Assembler provides flexible macro processing, include files, and
modular code development.

• Linker-The Linker links separately assembled modules. It maps the
linked code and data output to the target system hardware, as
specified by the System Builder output.

• Simulator-The Simulator performs an interactive, instruction-level
simulation of the hardware configuration described by the System
Builder. It flags illegal operations and supports full symbolic assembly
and disassembly.

• PROM Splitter-This module reads the Linker output and generates
PROM programmer compatible files.

• C Compiler-The C Compiler reads ANSI C source and outputs ADSP-
2100 family source code ready to be assembled. It also supports inline
assembler code.

The EZ-ICE® emulators provide hardware-based debugging of ADSP-21xx
systems. The EZ-ICEs perform stand-alone, in-circuit emulation with little
or no degradation in processor performance.

The EZ-LAB® evaluation boards are low-cost, basic hardware platforms
for running example applications.

For additional information on the development tools, refer to the
ADSP-2100 Family Development Tools Data Sheet.

1.5 ORGANIZATION OF THIS MANUAL
This manual is organized as follows.

Chapters 2, 3, and 4 describe the core architectural features shared by all
members of the ADSP-2100 family:

• Chapter 2, "Computational Units," describes the functions and internal
organization of the arithmetic/logic unit (ALU), the multiplier/
accumulator (MAC), and the barrel shifter.

• Chapter 3, "Program Control," describes the program sequencer,
interrupt controller and status and condition logic.

• Chapter 4, "Data Transfer," describes the data address generators
(DAGs) and the PMD-DMD bus exchange unit.

Chapters 5, 6, 7, and 8 describe the additional functional units included in
different members of the ADSP-2100 family. (See Table 1.1 for a list of the
functions included in each device.)

• Chapter 5, "Serial Ports," describes the serial ports, SPaRTa and
SPORTI.

• Chapter 6, "Timer," explains the programmable interval timer.

• Chapter 7, "Host Interface Port," describes the operation of the host
interface port, including boot loading and software reset.

• Chapter 8, "Analog Interface," describes the operation and the internal
architecture of the ADSP-21msp58/59's analog interface.

Chapters 9 and 10 describe the behavior of the ADSP-21xx processors
from the point of view of external memory and control logic:

• Chapter 9, "System Interface," discusses the issue of system clocking,
and describes the processors' control interface, the software reboot
function, and the powerdown mode.

1-11

1-12

• Chapter 10, UMemory Interface," describes the data and program
memory spaces. This chapter describes both internal and external
memory, including the use of boot memory space. A special section is
devoted to the ADSP-2181, since its memory interface differs from that
of the other family processors. .

Chapter 11, uDMA Ports," describes the operation of the ADSP-2181's
IDMA and BDMA features.

Chapter 12, UProgramming Model," gives a functional description of the
processor resources-such as registers-as they appear in software.

Chapter 13, uHardware Examples," gives examples of system designs
using the ADSP-21xx processors. Each example illustrates the solution to a
different system design issue, using block diagrams, explanatory text, and
programs or timing diagrams as needed.

Chapter 14, uSoftware Examples," provides illustrative code for some
important DSP and numerical algorithms.

Chapter 15, uInstruction Set Reference," provides a detailed description of
each ADSP-21xx instruction.

The Appendices provide reference material and further details on specific
issues:

• Appendix A, UInstruction Coding," gives the complete set of opcodes
and specifies the bit patterns for choices within each field of the
instruction word.

• Appendix B, UDivision Exceptions," describes signed and unsigned
division.

• Appendix C, uNumeric Formats," describes the fixed-point numerical
formats directly supported by the ADSP-2100 family, discusses block
floating-point arithmetic, and tells how to handle the results of
multiplication for operands of various formats.

• Appendix D, UInterrupt Vector Addresses," lists the interrupt vectors
of each family processor.

• Appendix E, uControl/Status Registers," summarizes the processors'
control and status registers.

Computational Units

2.1 OVERVIEW
This chapter describes the architecture and function of the three
computational units: the arithmetic/logic unit, the multiplier /
accumulator and the barrel shifter.

Every device in the ADSP-2100 family is a 16-bit, fixed-point machine.
Most operations assume a twos-complement number representation,
while others assume unsigned numbers or simple binary strings. Special
features support multiword arithmetic and block floating-point. Details
concerning the various number formats supported by the ADSP-2100
family are given in Appendix C.

In ADSP-2100 family arithmetic, signed numbers are always in twos­
complement format. The processors do not use signed-magnitude, ones­
complement, BCD or excess-n formats.

2.1.1 Binary String
This is the simplest binary notation; sixteen bits are treated as a bit pattern.
Examples of computation using this format are the logical operations:
NOT, AND, OR, XOR. These ALU operations treat their operands as
binary strings with no provision for sign bit or binary point placement.

2.1.2 Unsigned
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least
significant words of multiple precision numbers are treated as unsigned
numbers.

2.1.3 Signed Numbers: Twos-Complement
In discussions of ADSP-2100 family arithmetic, "signed" refers to twos­
complement. Most ADSP-2100 family operations presume or support
twos-complement arithmetic. The ADSP-2100 family does not use signed­
magnitude, ones-complement, BCD or excess-n formats.

2

2-1

2 Computational Units

2-2

2.1.4 Fractional Representation: 1.15
ADSP-2100 family arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 ("one dot fifteen"). In the 1.15
format, there is one sign bit (the MSB) and fifteen fractional bits
representing values from -1 up to one LSB less than +1.

Figure 2.1 shows the bit weighting for 1.15 numbers. Below are examples
of 1.15 numbers and their decimal equivalents.

1.15 Number
OxOOOl
Ox7FFF
OxFFFF
Ox8000

Decimal Equivalent
0.000031
0.999969
-0.000031
-1.000000

Figure 2.1 Bit Weighting For 1.15 Numbers

2.1.5 ALU Arithmetic
All operations on the ALU treat operands and results as simple 16-bit
binary strings, except the signed division primitive (DIVS). Various status
bits treat the results as signed: the overflow (A V) condition code, and the
negative (AN) flag.

The logic of the overflow bit (A V) is based on twos-complement
arithmetic. It is set if the MSB changes in a manner not predicted by the
signs of the operands and the nature of the operation. For example,
adding two positive numbers must generate a positive result; a change in
the sign bit signifies an overflow and sets A V. Adding a negative and a
positive may result in either a negative or positive result, but cannot
overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic.
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most
useful for the lower word portions of a multiword operation.

Computational Units 2

2.1.6 MAC Arithmetic
The multiplier produces results that are binary strings. The inputs are
"interpreted" according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture, or a rounding
operation). The 32-bit result from the multiplier is assumed to be signed,
in that it is sign-extended across the fu1l40-bit width of the MR register
set.

The ADSP-2100 family supports two modes of format adjustment: the
fractional mode for fractional operands, 1.15 format (1 signed bit, 15
fractional bits), and the integer mode for integer operands, 16.0 format.

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits, 30 fractional bits) number. In the fractional mode, the MAC
automatically shifts the multiplier product (P) left one bit before
transferring the result to the multiplier result register (MR). This shift
causes the multiplier result to be in 1.31 format, which can be rounded to
1.15 format. Figure 2.7, in the MAC section of this chapter, shows this.

In the integer mode, the left shift does not occur. For example, if the
operands are in the 16.0 format, the 32-bit multiplier result would be in
32.0 format. A left shift is not needed; it would change the numerical
representation. Figure 2.8 in the MAC section of this chapter shows this.

2.1.7 Shifter Arithmetic
Many operations in the shifter are explicitly geared to signed (twos­
complement) or unsigned values: logical shifts assume unsigned­
magnitude or binary string values and arithmetic shifts assume twos­
complement.

The exponent logic assumes twos-complement numbers. The exponent
logic supports block floating-point, which is also based on twos­
complement fractions.

2-3

Computational

2.1.8 Summary
Table 2.1 summarizes some of the arithmetic characteristics of ADSP-2100
family operations. In addition to the numeric types described in this
section, the ADSP-2100 Family C Compiler supports a form of 32-bit
floating-point in which one 16-bit word is the exponent and the other
word is the mantissa. See the ADSP-2100 Family C Tools Manual.

OPERATION

ALU

Addition
Subtraction
Logical Operations
Division
ALU Overflow
ALU Carry Bit
ALU Saturation

MAC, Fractional

Multiplication (P)
Multiplication (MR)
Mult / Add
Mult / Subtract
MAC Saturation

MAC, Integer Mode

Multiplication (P)
Multiplication (MR)
Mult / Add
Mult / Subtract
MAC Saturation

Shifter

Logical Shift
Arithmetic Shift
Exponent Detection

Table 2.1 Arithmetic Formats

2-4

ARITHMETIC FORMATS

Operands

Signed or unsigned
Signed or unsigned
Binary string
Explicitly signed/unsigned
Signed
16-bit unsigned
Signed

1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
Signed

1.15 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
Signed

Unsigned / binary string
Signed
Signed

Result

Interpret flags
Interpret flags
same as operands
same as operands
same as operands
same as operands
same as operands

32 bits (2.30)
2.30 shifted to 1.31
2.30 shifted to 1.31
2.30 shifted to 1.31
same as operands

32 bits (2.30)
32.0 no shift
32.0 no shift
32.0 no shift
same as operands

same as operands
same as operands
same as operands

.:::::;:::;::::. :.:.: .:.: .:.: .. :.:. .:.: ...•. ..;.:.: •...

\;omputational Units 2

2.2 ARITHMETIC/LOGIC UNIT (ALU)
The arithmetic/logic unit (ALU) provides a standard set of arithmetic and
logical functions. The arithmetic functions are add, subtract, negate,
increment, decrement and absolute value. These are supplemented by two
division primitives with which multiple cycle division can be constructed.
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

2.2.1 ALU Block Diagram Discussion
Figure 2.2, on the following page, shows a block diagram of the ALU.

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CD which is the carry
bit from the processor arithmetic status register (ASTAT). The ALU
generates six status signals: the zero (AZ) status, the negative (AN) status,
the carry (AC) status, the overflow (A V) status, the X-input sign (AS)
status, and the quotient (AQ) status. All arithmetic status signals are
latched into the arithmetic status register (ASTA T) at the end of the cycle.
Please see the "Instruction Set Reference" chapter of this manual for
information on how each instruction affects the ALU flags.

The X input port of the ALU can accept data from two sources: the AX
register file or the result (R) bus. The R bus connects the output registers of
all the computational units, permitting them to be used as input operands
directly. The AX register file is dedicated to the X input port and consists
of two registers, AXO and AXl. These AX registers are readable and
writable from the DMD bus. The instruction set also provides for reading
these registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The AX register file
outputs are dual-ported so that one register can provide input to the ALU
while either one simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the
AY register file and the ALU feedback (AF) register. The AY register file is
dedicated to the Y input port and consists of two registers, A YO and A Y1.
These registers are readable and writable from the DMD bus and writable
from the PMD bus. The instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The A Y register file
outputs are also dual-ported: one AY register can provide input to the
ALU while either one simultaneously drives the DMD bus.

2-5

2-6

":::!:!:!:!:" .. • ••• :::: ,.... . ••••..

Gomputatlonal Units

The output of the ALU is loaded into either the ALU feedback (AF)
register or the ALU result (AR) register. The AF register is an ALU
internal register which allows the ALU result to be used directly as the
ALU Y input. The AR register can drive both the DMD bus and the R bus.
It is also loadable directly from the DMD bus. The instruction set also
provides for reading AR over the PMD bus, but there is no direct
connection; this operation uses the DMD-PMD bus exchange unit.

PMDBUS 24

AZ
AN
AC
AV
AS
AQ

Figure 2.2 ALU Block Diagram

x y

ALU CI

R

16

Computational

Any of the registers associated with the ALU can be both read and written in
the same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. A register read, therefore, reads the value loaded at the
end of a previous cycle. A new value written to a register cannot be read out
until a subsequent cycle. This allows an input register to provide an operand to
the ALU at the beginning of the cycle and be updated with the next operand
from memory at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See the
discussion of "Multifunction Instructions" in Chapter 15, "Instruction Set
Reference" for an illustration of this same-cycle read and write.

The ALU contains a duplicate bank of registers, shown in Figure 2.2 behind the
primary registers. There are actually two sets of AR, AF, AX, and A Y register
files. Only one bank is accessible at a time. The additional bank of registers can
be activated (such as during an interrupt service routine) for extremely fast
context switching. A new task,like an interrupt service routine, can be
executed without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by bit 0
in the processor mode status register (MSTAT). If this bit is a 0, the primary
bank is selected; if it is a I, the secondary bank is selected.

2.2.2 Standard Functions
The standard ALU functions are listed below.

R=X+Y
R=X+ Y +CI
R=X-Y
R = X- Y + CI-1
R=Y-X
R = Y -X+ CI-1
R=-X
R=-Y
R=Y+1
R=Y-1
R=PASSX
R = PASS Y
R = 0 (PASS 0)
R = ABSX
R=XANDY
R=XORY
R=XXORY
R=NOTX
R=NOTY

Add X and Y operands
Add X and Y operands and carry-in bit
Subtract Y from X operand
Subtract Y from X operand with ''borrow''
Subtract X from Y operand
Subtract X from Y operand with "borrow"
Negate X operand (twos-complement)
Negate Y operand (twos-complement)
Increment Y operand
Decrement Y operand
Pass X operand to result unchanged
Pass Y operand to result unchanged
Clear result to zero
Absolute value of X operand
Logical AND of X and Y operands
Logical OR of X and Y operands
Logical Exclusive OR of X and Y operands
Logical NOT of X operand (ones-complement)
Logical NOT of Y operand (ones-complement)

2-7

2-8

2.2.3 ALU Input/Output Registers
The sources of ALU input and output registers are shown below.

Source for
X input port

Source for
Y input port

Destination for
R output port

AXO,AX1
AR
MRO, MR1, MR2
SRO, SRI

AYO,AY1
AF

AR
AF

MRO, MR1 and MR2 are multiplier / accumulator result registers; SRO and
SRI are shifter result registers.

2.2.4 Multiprecision Capability
Multiprecision operations are supported in the ALU with the carry-in
signal and ALU carry (AC) status bit. The carry-in signal is the AC status
bit that was generated by a previous ALU operation. The "add with carry"
(+ C) operation is intended for adding the upper portions of
multiprecision numbers. The "subtract with borrow" (C -1 is effectively a
"borrow") operation is intended for subtracting the upper portions of
multiprecision numbers.

2.2.5 ALU Saturation Mode
The AR register has a twos-complement saturation mode of operation
which automatically sets it to the maximum negative or positive value if
an ALU result overflows or underflows. This feature is enabled by setting
bit 3 of the mode status register (MSTAT). When enabled, the value loaded
into AR during an ALU operation depends on the state of the overflow
and carry status generated by the ALU on that cycle. The following table
summarizes the loading of AR when saturation mode is enabled.

Overflow (A V)
o
o
1
1

Carry (AC)
o
1
o
1

Table 2.2 Saturation Mode

AR Contents
ALUOutput
ALUOutput
0111111111111111
1000000000000000

full-scale positive
full-scale negative

The operation of the ALU saturation mode is different from the
Multiplier / Accumulator saturation ability, which is enabled only on an
instruction by instruction basis. For the ALU, enabling saturation means
that all subsequent operations are processed this way.

-::::;::::::::.:.:. ~.:. :.:.. :::::• :.:.~ ..

l,;omputatlonal Units 2

When the ALU saturation mode is used, only the AR register saturates; if
the AF register is the destination, wrap-around will occur but the flags
will reflect the saturated result.

2.2.6 ALU Overflow Latch Mode
The ALU overflow latch mode, enabled by setting bit 2 in the mode status
register (MSTAT), causes the AV bit to "stick" once it is set. In this mode,
when an ALU overflow occurs, A V will be set and remain set, even if
subsequent ALU operations do not generate overflows. In this mode, A V
can only be cleared by writing a zero to it directly from the DMD bus.

2.2.7 Division
The ALU supports division. The divide function is achieved with
additional shift circuitry not shown in Figure 2.2. Division is accomplished
with two special divide primitives. These are used to implement a non­
restoring conditional add-subtract division algorithm. The division can be
either signed or unsigned; however, the dividend and divisor must both
be of the same type. Appendix B details various exceptions to the normal
division operation as described in this section.

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher and lower precision quotients can also be calculated. The divisor
can be stored in AXO, AX1 or any of the R registers. The upper half of a
signed dividend can start in either A Yl or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in A YO. At the end of the divide operation, the quotient will be in A YO.

The first of the two primitive instructions "divide-sign" (DIVS) is executed
at the beginning of the division when dividing signed numbers. This
operation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The A YO
register is shifted one place so that the computed sign bit is moved into
the LSB position. The computed sign bit is also loaded into the AQ bit of
the arithmetic status register. The MSB of A YO shifts into the LSB position
of AF, and the upper 15 bits of AF are loaded with the lower 15 R bits
from the ALU, which simply passes the Y input value straight through to
the R output. The net effect is to left shift the AF-AYO register pair and
move the quotient sign bit into the LSB position. The operation of DIVS is
illustrated in Figure 2.3 (on the next page).

2-9

2-10

DIVISOR

R-BUS x

AY1

UPPER
DIVIDEND

ALU

R= PASSY

Y

Figure 2.3 DIVS Operation

AF

MSB

L
S
B

15

15 LSBs

LEFT SHIFT
~

AYO

LOWER
DIVIDEND

When dividing unsigned numbers, the DIVS operation is not used.
Instead, the AQ bit in the arithmetic status register (ASTAT) should be
initialized to zero by manually clearing it. The AQ bit indicates to the
following operations that the quotient should be assumed positive.

The second division primitive is the "divide-quotient" (DIVQ) instruction
which generates one bit of quotient at a time and is executed repeatedly to
compute the remaining quotient bits. For unsigned single precision
divides, the DIVQ instruction is executed 16 times to produce 16 quotient
bits. For signed single precision divides, the DIVQ instruction is executed
15 times after the sign bit is computed by the DIVS operation. DIVQ
instruction shifts the A YO register left by one bit so that the new quotient
bit can be moved into the LSB position. The status of the AQ bit generated
from the previous operation determines the ALU operation to calculate
the partial remainder. If AQ = 1, the ALU adds the divisor to the partial
remainder in AF. If AQ = 0, the ALU subtracts the divisor from the partial
remainder in AF. The ALU output R is offset loaded into AF just as with
the DIVS operation. The AQ bit is computed as the exclusive-OR of the

divisor MSB and the ALU output MSB, and the quotient bit is this value
inverted. The quotient bit is loaded into the LSB of the A YO register which is
also shifted left by one bit. The DIVQ operation is illustrated in Figure 2.4.

R-BUS

PARTIAL
REMAINDER.

x v
ALU

R=V+X IF AQ=1
R=V-X IF AQ=O

16

15 LSBs

Figure 2.4 DIVQ Operation

15

LEFT SHIFT

LOWER
DIVIDEND

The format of the quotient for any numeric representation can be
determined by the format of the dividend and divisor. Let NL represent
the number of bits to the left of the binary point, and NR represent the
number of bits to the right of the binary point of the dividend; DL
represent the number of bits to the left of the binary point, and DR
represent the number of bits to the right of the binary point of the divisor;
then the quotient has NL-DL+ 1 bits to the left of the binary point and NR­
DR-l bits to the right of the binary point.

2-11

::::;;;;!!!~

2-12

Computational

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format) and therefore the dividend must be smaller than
the divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 format)
and produce an integer quotient (in 16.0 format), you must shift the
dividend one bit to the left (into 31.1 format) before dividing. Additional
discussion and code examples can be found in the handbook Digital Signal
Processing Applications Using the ADSP-2100 Family, Volume 1.

Dividend BBBBB.BBBBBBBBBBBBBBBBBBBBBBBBBBB

NL bits NR bits

Divisor BB.BBBBBBBBBBBBBB

DL bits DR bits

Quotient BBBB.BBBBBBBBBBBB

(NL-DL+ 1) bits (NR-DR-1) bits

Figure 2.5 Quotient Format

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated above or when the divisor is zero or less than
the dividend in magnitude.

Computational

2.2.8 ALU Status
The ALU status bits in the ASTAT register are defined below. Complete
information about the AST AT register and specific bit mnemonics and
positions is provided in the Program Control chapter.

Flag
AZ

AN

AV

AC
AS

AQ

Name
Zero

Negative

Overflow

Carry
Sign

Quotient

Definition
Logical NOR of all the bits in the ALU result register. True
if ALU output equals zero.
Sign bit of the ALU result. True if the ALU output is
negative.
Exclusive-OR of the carry outputs of the two most
significant adder stages. True if the ALU overflows.
Carry output from the most significant adder stage.
Sign bit of the ALU X input port. Affected only by the ABS
instruction.
Quotient bit generated only by the DIVS and DIVQ
instructions.

2.3 MULTIPLIER/ACCUMULATOR (MAC)
The multiplier/accumulator (MAC) provides high-speed multiplication,
multiplication with cumulative addition, multiplication with cumulative
subtraction, saturation and clear-to-zero functions. A feedback function allows
part of the accumulator output to be directly used as one of the multiplicands
on the next cycle.

2.3.1 MAC Block Diagram Discussion
Figure 2.6, on the following page, shows a block diagram of the multiplier /
accumulator.

The multiplier has two 16-bit input ports X and Y, and a 32-bit product output
port P. The 32-bit product is passed to a 40-bit adder / subtracter which adds
or subtracts the new product from the content of the multiplier result (MR)
register, or passes the new product directly to MR. The MR register is 40 bits
wide. In this manual, we refer to the entire register as MR. The register
actually consists of three smaller registers: MRO and MR1 which are 16 bits
wide and MR2 which is 8 bits wide.

The adder/subtracter is greater than 32 bits to allow for intermediate overflow
in a series of multiply/accumulate operations. The multiply overflow (MV)
status bit is set when the accumulator has overflowed beyond the 32-bit
boundary, that is, when there are significant (non-sign) bits in the top nine bits
of the MR register (based on twos-complement arithmetic).

2-13

2 Computational Units

PMD BUS 24

16

MV

R-BUS

Figure 2.6 MAC Block Diagram

2-14

Computational

The input/ output registers of the MAC are similar to the ALD.

The X input port can accept data from either the MX register file or from
any register on the result (R) bus. The R bus connects the output registers
of all the computational units, permitting them to be used as input
operands directly. There are two registers in the MX register file, MXO and
MX1. These registers can be read and written from the DMD bus. The MX
register file outputs are dual-ported so that one register can provide input
to the multiplier while either one simultaneously drives the DMD bus.

The Y input port can accept data from either the MY register file or the MF
register. The MY register file has two registers, MYO and MY1; these
registers can be read and written from the DMD bus and written from the
PMD bus. The instruction set also provides for reading these registers over
the PMD bus, but there is no direct connection; this operation uses the
DMD-PMD bus exchange unit. The MY register file outputs are also dual­
ported so that one register can provide input to the multiplier while either
one simultaneously drives the DMD bus.

The output of the adder / subtracter goes to either the MF register or the
MR register. The MF register is a feedback register which allows bits 16-31
of the result to be used directly as the multiplier Y input on a subsequent
cycle. The 40-bit adder/subtracter register (MR) is divided into three
sections: MR2, MR1, and MRO. Each of these registers can be loaded
directly from the DMD bus and output to either the DMD bus or the R
bus.

Any of the registers associated with the MAC can be both read and
written in the same cycle. Registers are read at the beginning of the cycle
and written at the end of the cycle. A register read, therefore, reads the
value loaded at the end of a previous cycle. A new value written to a
register cannot be read out·until a subsequent cycle. This allows an input
register to provide an operand to the MAC at the beginning of the cycle
and be updated with the next operand from memory at the end of the
same cycle. It also allows a result register to be stored in memory and
updated with a new result in the same cycle. See the discussion of
uMultifunction Instructions" in Chapter 15 uInstruction Set Reference" for
an illustration of this same-cycle read and write.

2-15

2-16

computational

The MAC contains a duplicate bank of registers, shown in Figure 2.6
behind the primary registers. There are actually two sets of MR, MF, MX,
and MY register files. Only one bank is accessible at a time. The additional
bank of registers can be activated for extremely fast context switching. A
new task, such as an interrupt service routine, can be executed without
transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a I, the secondary bank is selected.

2.3.2 MAC Operations
This section explains the functions of the MAC, its input formats and its
handling of overflow and saturation.

2.3.2.1 Standard Functions
The functions performed by the MAC are:

X*Y
MR+X*Y
MR-X*Y
a

Multiply X and Y operands.
Multiply X and Y operands and add result to MR register.
Multiply X and Y operands and subtract result from MR register.
Clear result (MR) to zero.

The ADSP-2100 family provides two modes for the standard multiply/
accumulate function: fractional mode for fractional numbers (1.15), and
integer mode for integers (16.0).

In the fractional mode, the 32-bit P output is format adjusted, that is, sign­
extended and shifted one bit to the left before being added to MR. For
example, bit 31 of P lines up with bit 32 of MR (which is bit 0 of MR2) and
bit 0 of P lines up with bit 1 of MR (which is bit 1 of MRO). The LSB is zero­
filled. The fractional multiplier result format is shown in Figure 2.7.

In the integer mode, the 32-bit P register is not shifted before being added
to MR. Figure 2.8 shows the integer-mode result placement.

The mode is selected by bit 4 of the mode status register (MSTAT). If this
bit is a I, the integer mode is selected. Otherwise, the fractional mode is
selected. In either mode, the multiplier output P is fed into a 40-bit adder /
subtracter which adds or subtracts the new product with the current
contents of the MR register to form the final 40-bit result R.

Computational

P SIGN ~I"''''----------- MULTIPLIER P OUTPUT

j j j j j j

MR2 MR1 MRO

Figure 2.7 Fractional Multiplier Result Format

PSIGN ~I"''''----------- MULTIPLIER P OUTPUT

j j j j j j

Figure 2.8 Integer Multiplier Result Format

2-17

2-18

~omputational

2.3.2.2 Input Formats
To facilitate multiprecision multiplications, the multiplier accepts X and Y
inputs represented in any combination of signed twos-complement format
and unsigned format.

X in12ut Y in12ut
signed x signed
unsigned x signed
signed x unsigned
unsigned x unsigned

The input formats are specified as part of the instruction. These are
dynamically selectable each time the multiplier is used.

The (signed x signed) mode is used when multiplying two signed single
precision numbers or the two upper portions of two signed multiprecision
numbers.

The (unsigned x signed) and (signed x unsigned) modes are used when
multiplying the upper portion of a signed multiprecision number with the
lower portion of another or when multiplying a signed single precision
number by an unsigned single precision number.

The (unsigned x unsigned) mode is used when multiplying unsigned
single precision numbers or the non-upper portions of two signed
multiprecision numbers.

2.3.2.3 MAC Input/Output Registers
The sources of MAC input and output are:

Source for
X in12ut 120rt
MXO,MXl
AR
MRO, MRl, MR2
SRO, SRI

Source for
Y in12ut 120rt
MYO,MYI
MF

2.3.2.4 MR Register Operation

Destination for
R out12ut 120rt
MR (MR2, MRl, MRO)
MF

As described, and shown on the block diagram, the MR register is divided
into three sections: MRO (bits 0-15), MRI (bits 16-31), and MR2 (bits 32-
39). Each of these registers can be loaded from the DMD bus and output to
the R bus or the DMD bus.

Computational Units 2

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2
is output onto the DMD bus or the R bus, it is sign extended to form a 16-
bit value. MR1 also has an automatic sign-extend capability. When MR1 is
loaded from the DMD bus, every bit in MR2 will be set to the sign bit
(MSB) of MR1, so that MR2 appears as an extension of MR1. To load the
MR2 register with a value other than MR1's sign extension, you must load
MR2 after MR1 has been loaded. Loading MRO affects neither MR1 nor
MR2; no sign extension occurs in MRO loads.

2.3.2.5 MAC Overflow And Saturation
The adder/subtracter generates an overflow status signal (MV) which is
loaded into the processor arithmetic status (ASTAT) every time a MAC
operation is executed. The MV bit is set when the accumulator result,
interpreted as a twos-complement number, crosses the 32-bit (MR1/MR2)
boundary. That is, MV is set if the upper nine bits of MR are not all ones or
all zeros.

The MR register has a saturation capability which sets MR to the
maximum positive or negative value if an overflow or underflow has
occurred. The saturation operation depends on the overflow status bit
(MV) in the processor arithmetic status (ASTAT) and the MSB of the MR2
register. The following table summarizes the MR saturation operation.

MV MSB ofMR2 MR contents after saturation
o
1

1

o or 1

o
1

no change
00000000 0111111111111111 1111111111111111
11111111 1000000000000000 0000000000000000

Table 2.3 Effect Of MAC Saturation Instruction

full-scale positive
full-scale negative

Saturation in the MAC is an instruction rather than a mode as in the ALU.
The saturation instruction is intended to be used at the completion of a
string of multiplication/ accumulations so that intermediate overflows do
not cause the accumulator to saturate.

Overflowing beyond the MSB of MR2 should never be allowed. The true
sign bit of the result is then irretrievably lost and saturation may not
produce a correct value. It takes more than 255 overflows (MV type) to
reach this state, however.

2-19

:::::;;;;~!!;:

2.3.2.6 Rounding Mode
The accumulator has the capability for rounding the 40-bit result R at the
boundary between bit 15 and bit 16. Rounding can be specified as part of
the instruction code. The rounded output is directed to either MR or MF.
When rounding is invoked with MF as the output register, register
contents in MF represent the rounded 16-bit result. Similarly, when MR is
selected as the output, MRI contains the rounded 16-bit result; the
rounding effect in MRI affects MR2 as well and MR2 and MRI represent
the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a net positive bias since the midway value
(when MRO=Ox8000) is always rounded upward. The accumulator
eliminates this bias by forcing bit 16 in the result output to zero when it
detects this midway point. This has the effect of rounding odd MRI values
upward and even MRI values downward, yielding a zero large-sample
bias assuming uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples
of rounding. The first example is the typical rounding operation.

Example 1 MR2 MRl MRO

Unrounded value: xxxxxxxx xxxxxxxxO 0 1 0 0 1 0 1 lxxxxxxxxxxxxxxx

Bit 15 = 1
Add 1 to bit 15 and carry 1

Rounded value: xxxxxxxx xxxxxxxx00100llO Oxxxxxxxxxxxxxxx

2-20

The compensation to avoid net bias becomes visible when the lower 15
bits are all zero and bit 15 is one, i.e. the midpoint value.

':':':':':':'.• . .•. :::: ':.:. :.:.: :.:.: '.':':';'.

computational Units 2

Example 2 MR2 MRl MRO

Unrounded value: xxxxxxxx xxxxxxxx01100110 1000000000000000

Bit 15 = 1 and bits 0-14 = 0
Add 1 to bit 15 and carry 1

xxxxxxxx xxxxxxxx01100111 0000000000000000

Since bit 16 = 1, force it to 0

Rounded value: xxxxxxxx xxxxxxxx01100110 0000000000000000

In this last case, bit 16 is forced to zero. This algorithm is employed on every
rounding operation, but is only evident when the bit patterns shown in the
lower 16 bits of the last example are present.

2.3.2.7 Biased Rounding (ADSP·217x, ADSP·218x, ADSP·21msp5x)
A mode is available on the ADSP-217x, ADSP-218x, and ADSP-21msp58/
59 processors to allow biased rounding in addition to the normal unbiased
rounding. This mode is selected by the BIASRND bit (bit 12 of the SPORTO
Autobuffer Control register). When the BIASRND bit is set to 0, the normal
unbiased rounding operations occur. When the BIASRND bit is set to 1,
biased rounding occurs instead of the normal unbiased rounding. When
operating in biased rounding mode all rounding operations with MRO set
to Ox8000 will round up, rather than only rounding odd MR1 values up.
For example:

MR value before RND
00-0000-8000
00-0001-8000
00-0000-8001
00-0001-8001
00-0000-7FFF
00-0001-7FFF

biased RND result
00-0001-8000
00-0002-8000
00-0001-8001
00-0002-8001
00-0000-7FFF
00-0001-7FFF

unbiased RND result
00-0000-8000
00-0002-8000
00-0001-8001
00-0002-8001
00-0000-7FFF
00-0001-7FFF

This mode only has an effect when the MRO register contains Ox8000; all
other rounding operations work normally. This mode allows more efficient
implementation of bit-specified algorithms that use biased rounding, for
example the GSM speech compression routines. Unbiased rounding is
preferred for most algorithms.

2-21

2-22

Computational

2.4 BARREL SHIFTER
The shifter provides a complete set of shifting functions for 16-bit inputs,
yielding a 32·bit output. These include arithmetic shift, logical shift and
normalization. The shifter also performs derivation of exponent and
derivation of common exponent for an entire block of numbers. These
basic functions can be combined to efficiently implement any degree of
numerical format control, including full floating-point representation.

2.4.1 Shifter Block Diagram Discussion
Figure 2.9 shows a block diagram of the shifter. The shifter can be divided
into the following components: the shifter array, the OR/PASS logic, the
exponent detector, and the exponent compare logic.

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field, from off-scale right to off-scale
left, in a single cycle. This gives 49 possible placements within the 32-bit
field. The placement of the 16 input bits is determined by a control code
(C) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of
registers. The shifter input (SI) register provides input to the shifter array
and the exponent detector. The SI register is 16 bits wide and is readable
and writable from the DMD bus. The shifter array and the exponent
detector also take as inputs AR, SR or MR via the R bus. The shifter result
(SR) register is 32 bits wide and is divided into two 16-bit sections, SRO
and SRI. The SRO and SRI registers can be loaded from the DMD bus and
output to either the DMD bus or the R bus. The SR register is also fed back
to the OR/PASS logic to allow double-precision shift operations.

The SE register (lishifter exponent") is 8 bits wide and holds the exponent
during the normalize and denormalize operations. The SE register is
load able and readable from the lower 8 bits of the DMD bus. It is a twos­
complement, 8.0 value.

The SB register (lishifter block") is important in block floating-point
operations where it holds the block exponent value, that is, the value by
which the block values must be shifted to normalize the largest value. SB
is 5 bits wide and holds the most recent block exponent value. The SB
register is loadable and readable from the lower 5 bits of the DMD bus. It
is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.

From
INSTRUCTION

R·BUS

Figure 2.9 Shifter Block Diagram

Any of the 51, SE or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads, therefore, read values loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This allows an input register to provide an operand to
the shifter at the beginning of the cycle and be updated with the next
operand at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See
the discussion of "Multifunction Instructions" in Chapter 15, "Instruction
Set Reference" for an illustration of this same-cycle read and write.

2-23

2-24

Computational

The shifter contains a duplicate bank of registers, shown in Figure 2.9
behind the primary registers. There are actually two sets of SE, SB, SI, SRI,
and SRO registers. Only one bank is accessible at a time. The additional
bank of registers can be activated for extremely fast context switching. A
new task, such as an interrupt service routine, can then be executed
without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.

The shifting of the input is determined by a control code (C) and a HI/La
reference signal. The control code is an 8-bit signed value which indicates
the direction and number of places the input is to be shifted. Positive
codes indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content of
the shifter exponent (SE) register, the negated content of the SE register or
an immediate value from the instruction.

The HI/La signal determines the reference point for the shifting. In the HI
state, all shifts are referenced to SRI (the upper half of the output field),
and in the La state, all shifts are referenced to SRO (the lower half). The
HI/La reference feature is useful when shifting 32-bit values since it
allows both halves of the number to be shifted with the same control code.
HI/La reference signal is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT) or a zero.

Table 2.4 shows the shifter array output as a function of the control code
and HI/La signal.

The OR/PASS logic allows the shifted sections of a multiprecision number
to be combined into a single quantity. In some shifter instructions, the
shifted output may be logically ORed with the contents of the SR register;
the shifter array is bitwise ORed with the current contents of the SR
register before being loaded there. When the [SR OR] option is not used in
the instruction, the shifter array output is passed through and loaded into
the shifter result (SR) register unmodified.

Computational Units 2

Control Code Shifter Array Output ABCDEFGHIJKLMNPR

HI reference LO Reference represents the 16-bit
input pattern

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 ROOOOOOO 00000000 00000000 ·00000000 X stands for the
+14 +30 PROOOOOO 00000000 00000000 00000000 extension bit
+13 +29 NPROOOOO 00000000 00000000 00000000
+12 +28 MNPROOOO 00000000 00000000 00000000
+11 +27 LMNPROOO 00000000 00000000 00000000
+10 +26 KLMNPROO 00000000 00000000 00000000
+9 +25 JKLMNPRO 00000000 00000000 00000000
+8 +24 IJKLMNpR 00000000 00000000 00000000
+7 +23 HIJKLMNP ROOOOOOO 00000000 00000000
+6 +22 GHIJKLMN PROOOOOO 00000000 00000000
+5 +21 FGHIJKLM NPROOOOO 00000000 00000000
+4 +20 EFGHIJKL MNPROOOO 00000000 00000000
+3 +19 DEFGHIJK LMNPROOO 00000000 00000000
+2 +18 CDEFGHIJ KLMNPROO 00000000 00000000
+1 +17 BCDEFGHI JKLMNPRO 00000000 00000000

0 +16 ABCDEFGH IJKLMNPR 00000000 00000000
-1 +15 XABCDEFG HIJKLMNP ROOOOOOO 00000000
-2 +14 XXABCDEF GHIJKLMN PROOOOOO 00000000
-3 +13 XXXABCDE FGHIJKLM NPROOOOO 00000000
-4 +12 XXXXABCD EFGHIJKL MNPROOOO 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPROOO 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPROO 00000000
-7 +9 XXXXXXXA BCDEFGHI JKLMNPRO 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP ROOOOOOO
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PROOOOOO
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPROOOOO
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPROOOO
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPROOO
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPROO
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPRO
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx

Table 2.4 Shifter Array Characteristic

2-25

2-26

;1 .. !:1:! .. :~.:;:;.::::.::::.::.:;:~::.:.:: : .. ~.~.:~ .. ~.; .. :;.:::;::::.::.:~.l:.~.~~ [:.:~.~::.:~.:t:::~.::.l.:~:~ .• :r::,j .• :~:~ .• ::~:l. :~ :~ :~.: ... :~::::::::::.:: .. :j.:~:~:~~ .~.l .. :~.:~.:l.::.::::l •. :~.;:: •. :~.,~ :°,::1.:1.:1.:1:::' ,.:~'.:~.:~.:~:~:~:~:~.:~:~.':~.::.~:~ .. ·::I.:I.·.:I:~.~:·:: .. :~::.::i .. :L .. ~:~:~.:~.:;.·.:::::.::.:;:~.:~:~.~: .:l~.:~:~.:~ .. ,f;::::.:~:~.:.:~:~ : ... :.:;:~.:~:~:~.'.::~:~:~.;:~ .. :~:~ .. ,~.:.:I:i.:.:':i. 1111 11111 ~1::::;~11l :1111 ::1111:: jt;~;::::· . :::l~::::::;~~:' l~~~: ~~~~ ~~~l; ;~;~::. ~::;:~:~;i~l~:

The exponent detector derives an exponent for the shifter input value. The
exponent detector operates in one of three ways which determine how the
input value is interpreted. In the HI state, the input is interpreted as a
single precision number or the upper half of a double precision number.
The exponent detector determines the number of leading sign bits and
produces a code which indicates how many places the input must be up­
shifted to eliminate all but one of the sign bits. The code is negative so that
it can become the effective exponent for the mantissa formed by removing
the redundant sign bits.

In the HI-extend state (HIX), the input is interpreted as the result of an
add or subtract performed in the ALU which may have overflowed.
Therefore the exponent detector takes the arithmetic overflow (A V) status
into consideration. If A V is set, then a +1 exponent is output to indicate an
extra bit is needed in the normalized mantissa (the ALU Carry bit); if A V
is not set, then HI-extend functions exactly like the HI state. When
performing a derive exponent function in HI or HI-extend modes, the
exponent detector also outputs a shifter sign (55) bit which is loaded into
the arithmetic status register (A5TAT). The sign bit is the same as the M5B
of the shifter input except when A V is set; when A V is set in HI-extend
state, the M5B is inverted to restore the sign bit of the overflowed value.

In the La state, the input is interpreted as the lower half of a double
precision number. In the La state, the exponent detector interprets the 55
bit in the arithmetic status register (A5TAT) as the sign bit of the number.
The 5E register is loaded with the output of the exponent detector only if
5E contains -15. This occurs only when the upper half-which must be
processed first-contained all sign bits. The exponent detector output is
also offset by -16 to account for the fact that the input is actually the lower
half of a 32-bit value. Table 2.5 gives the exponent detector characteristics
for all three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in
conjunction with the exponent detector derives a block exponent. The
comparator compares the exponent value derived by the exponent
detector with the value stored in the shifter block exponent (5B) register
and updates the 5B register only when the derived exponent value is
larger than the value in 5B register. 5ee the examples shown in the.
following sections.

Computational

S = Sign bit
N = Non-sign bit
D = Don't care bit

HI Mode

Shifter Array Input

SNDDDDDD DDDDDDDD
SSNDDDDD DDDDDDDD
SSSNDDDD DDDDDDDD
SSSSNDDD DDDDDDDD
SSSSSNDD DDDDDDDD
SSSSSSND DDDDDDDD
SSSSSSSN DDDDDDDD
SSSSSSSS NDDDDDDD
SSSSSSSS SNDDDDDD
SSSSSSSS SSNDDDDD
SSSSSSSS SSSNDDDD
SSSSSSSS SSSSNDDD
SSSSSSSS SSSSSNDD
SSSSSSSS SSSSSSND
SSSSSSSS SSSSSSSN
SSSSSSSS SSSSSSSS

LOMode

Output

o
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15

SS Shifter Array Input

S NDDDDDDD DDDDDDDD
S SNDDDDDD DDDDDDDD
S SSNDDDDD DDDDDDDD
S SSSNDDDD DDDDDDDD
S SSSSNDDD DDDDDDDD
S SSSSSNDD DDDDDDDD
S SSSSSSND DDDDDDDD
S SSSSSSSN DDDDDDDD
S SSSSSSSS NDDDDDDD
S SSSSSSSS SNDDDDDD
S SSSSSSSS SSNDDDDD
S SSSSSSSS SSSNDDDD
S SSSSSSSS SSSSNDDD
S SSSSSSSS SSSSSNDD
S SSSSSSSS SSSSSSND
S SSSSSSSS SSSSSSSN
S SSSSSSSS SSSSSSSS

Output

-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31

Table 2.5 Exponent Detector Characteristics

HIX Mode

AV Shifter Array Input

1 DDDDDDDD DDDDDDDD
0 SNDDDDDD DDDDDDDD
0 SSNDDDDD DDDDDDDD
0 SSSNDDDD DDDDDDDD
0 SSSSNDDD DDDDDDDD
0 SSSSSNDD DDDDDDDD
0 SSSSSSND DDDDDDDD
0 SSSSSSSN DDDDDDDD
0 SSSSSSSS NDDDDDDD
0 SSSSSSSS SNDDDDDD
0 SSSSSSSS SSNDDDDD
0 SSSSSSSS SSSNDDDD
0 SSSSSSSS SSSSNDDD
0 SSSSSSSS SSSSSNDD
0 SSSSSSSS SSSSSSND
0 SSSSSSSS SSSSSSSN
0 SSSSSSSS SSSSSSSS

Output

+1
0

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15

2-27

2 Computational Units

2-28

2.4.2 Shifter Operations
The shifter performs the following functions (instruction mnemonics
shown in parentheses):

• Arithmetic Shift (ASHIFT)
• Logical Shift (LSHIFT)
• Normalize (NORM)
• Derive Exponent (EXP)
• Block Exponent Adjust (EXP ADD

These basic shifter instructions can be used in a variety of ways,
depending on the underlying arithmetic requirements. The following
sections present single and multiple precision examples for these
functions:

• Derivation of a Block Exponent
• Immediate Shifts
• Denormalization
• Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with [SR OR] and HI/LO modes to facilitate
multiprecision operations. [SR OR] logically O~s the shift result with the
current contents of SR. This option is used to join two I6-bit quantities into
a 32-bit value in SR. When [SR OR] is not used, the shift value is passed
through to SR directly. The HI and LO modifiers reference the shift to the
upper or lower half of the 32-bit SR register. These shift functions take
inputs from either the SI register or any other result register and load the
32-bit shifted result into the SR register.

2.4.2.1 Shifter Input/Output Registers
The sources of shifter input and output are:

Source for
Shifter input
SI
AR

. MRO, MRI, MR2
SRO, SRI

Destination for
Shifter output
SR (SRO, SRl)

Computational Units 2

2.4.2.2 Derive Block Exponent
This function detects the exponent of the number largest in magnitude in
an array of numbers. The EXP ADJ instruction performs this function. The
sequence of steps for a typical example is shown below.

A. Load 5B with -16

The SB register is used to contain the exponent for the entire block. The
possible values at the conclusion of a series of EXP ADJ operations range
from -15 to o. The exponent compare logic updates the SB register if the
new value is greater than the current value. Loading the register with -16
initializes it to a value certain to be less than any actual exponents
detected.

B. Process the first array element:

Array(1) = 11110101 10110001

Exponent = - 3

-3>SB(-16)

SB gets -3

C. Process next array element:

Array(2)= 00000001 01110110

Exponent = -6

-6<-3

SB remains - 3

D. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. EXP ADJ is purely an inspection
operation. The value in SB could be transferred to SE and used to
normalize the block on the next pass through the shifter. Or it could be
simply associated with that data for subsequent interpretation.

2-29

2 Computational Units

2-30

2.4.2.3 Immediate Shifts
An immediate shift simply shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation. (See the chapter
"Instruction Set Overview" for an example of this instruction.) The data
value controlling the shift is an 8-bit signed number. The SE register is not
used or changed by an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SRI). This is the (HI) version of the shift:

SI=OxB6A3;
SR=LSHIFT SI BY -5 (HI);

Input: 10110110 10100011

Shift value: - 5

SR: 00000101 10110101 00011000 000000

Here is the same input value shifted in the other direction, referenced to
the lower half (LO) of SR:

SI=OxB6A3;
SR=LSHIFT SI BY 5 (LO);

Input: 10110110 10100011

Shift value: + 5

SR: 00000000 00010110 11010100 01100000

Computational Units 2

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASH 1FT) or logical (LSHIFT). For example, the following
shows a logical shift, relative to the upper half of SR (HI):

SI=OxB6A3;
SR=LSHIFT SI BY -5 (HI);

Input: 10110110 10100011

Shift value: - 5

SR: 00000101 10110101 00011000 00000000

This example shows an arithmetic shift of the same input and shift code:

SI=OxB6A3;
SR=ASHIFT SI BY -5 (HI);

Input: 10110110 10100011

Shift value: - 5

SR: 11111101 10110101 00011000 00000000

2.4.2.4 Denormalize
Denormalizing refers to shifting a number according to a predefined
exponent. The operation is effectively a floating-point to fixed-point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next the shift itself is
performed, taking its shift value from the SE register, not from an
immediate data value.

2-31

2 Computational Unns

2-32

Two examples of denormalizing a double-precision number are given
below. The first shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Since computations
may produce output in either order, the second example shows the same
operation in the other order, i.e. lower half first.

Always select the· arithmetic shift for the higher half (HI) of the twos­
complement input (or logical for unsigned). Likewise, the first half
processed does not use the [SR OR] option.

Modifier = HI, No [SR OR], Shift operation = Arithmetic, SE =-3

First Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower
half of the input. Likewise, the second half processed must use the
[SR OR] option to avoid overwriting the previous half of the output value.

Modifier = LO, [SR OR], Shift operation = Logical, SE = -3

Second Input: 01110110 01011101 (lower half of desired result)

SR: 11110110 11010100 01101110 11001011

Here is the same input processed in the reverse order. The higher half is
always arithmetically shifted and the lower half is logically shifted. The
first input is passed straight through to SR, but the second half is ORed to
create a double-precision value in SR.

Modifier = LO, No [SR OR], Shift operation = Logical, SE = -3

First Input: 01110110 01011101 (lower half of desired result)

SR: 00000000 00000000 00001110 11001011

Modifier = HI, [SR OR], Shift operation = Arithmetic, SE = -3

Second Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01101110 11001011

Computational Units 2

2.4.2.5 Normalize
Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a twos-complement number within a
field so that the rightmost sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. The
operation can be thought of as a fixed-point to floating-point conversion,
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads it into the SE
register. This instruction (EXP) recognizes a (HI) and (La) modifier. The
second stage uses the NORM instruction. NORM recognizes (HI) and (La)
and also has the [SR OR] option. NORM uses the negated value of the SE
register as its shift control code. The negated value is used so that the shift
is made in the correct direction.

Here is a normalization example for a single precision input:

SE=EXP AR (HI) i

Detects Exponent With Modifier = HI

Input: 11110110 11010100

SE set to: -3

Normalize, with modifier = HI Shift driven by value in SE

Input: 11110110,11010100

SR: 10110110 10100000 00000000 00000000

For a single precision input, the normalize operation can use either the
(HI) or (La) modifier, depending on whether you want the result in SRI
or SRO, respectively.

Double precision values follow the same general scheme. The first stage
detects the exponent and the second stage normalizes the two halves of
the input. For double precision, however, there are two operations in each
stage.

2-33

2 Computational Units

2-34

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The
second exponent derivation, operating on the lower half of the number
will not alter the SE register unless SE = -15. This happens only when the
first half contained all sign bits. In this case, the second operation will load
a value into SE. (See Table 2.5) This value is used to control both parts of
the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is
normalized without the [SR OR] and the second half is normalized with
[SR OR] to create one double-precision value in SR. The (HI) and (LO)
modifiers identify which half is being processed.

Here is a complete example of a typical double precision normalization.

1. Detect Exponent, Modifier = HI

First Input: 11110110 11010100

SE set to: -3

2. Detect Exponent, Modifier = LO

Second Input: 01101110 11001011

SE unchanged, still - 3

3. Normalize, Modifier=HI, No [SR OR], SE =-3

First Input: 11110110 11010100

(Must be upper half)

SR: 10110110 10100000 00000000 00000000

4. Normalize, Modifier=LO, [SR OR], SE = -3

Second Input: 01101110 11001011

SR: 10110110 10100011 01110110 01011000

Computational Units 2

If the upper half of the input contains all sign bits, the SE register value is
determined by the second derive exponent operation as shown below.

1. Detect Exponent, Modifier = HI

First Input: 11111111 11111111 (Must be upper half)

SE set to: -15

2. Detect Exponent, Modifier = LO

Second Input: 11110110 11010100

SE now set to: -19

3. Normalize, Modifier=HI, No [SR OR], SE = -19 (negated)

First Input: 11111111 11111111

SR: 00000000 00000000 00000000 00000000

All values of SE less than -15 (resulting in a shift of +16 or more) upshift
the input completely off scale.

4. Normalize, Modifier=LO, [SR OR], SE = -19 (negated)

Second Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

2-35

2-36

.::~;:::~::!:;;k ';':::::::" . ':':::.:;:;::::::'::':;:;:;:: :~:~:~:~:~::::~::;.::':'.: :~.:;:;.:~:l :l:;:~:~.~ :;::~::r:l:~:f;: :.·:::.·.:'::.:.::.::~:1:':'.:. :;.:~:~':~~:::; ::;.l.:l:l :::::'::~::;::;':::'::,:, ':,:~:;.:.::::::~':;:':~:: : .. :.'.'.:'.:.'::::.::~::::':~:: :~:~:~:~::~ :~1~[~;~~: :;::.,:::::.~ ~:~~~ :;~;;~:~ ':;:::::::',
:::~ ~~:.,. '::::. ,:,:, ... :, .. :, ... :, •. :.:::.:::.: .. :, ... :,.:, .. :,,: .• :' :' .. :' :: ... ~.: .•.. :' .. : •. : ... :' :' ... :: .. :' :' .. :' .. : .. :. ..:' ... :'.'.: .. :'.:: ;::':' ... :':' .. : .. ::.: •.. : .. ::: :: •.. :: .. :: .. :. ~;i;",:::",;l;: ~~~;:::}W ... :l1l, i,l,: !~}:::"':: ':,,!::::,,!,i :!!!,:: :!i!,:::::'!'! '!ii:: i:i, ':'!i:::;:il'" ,!,; ,!,! ,t::::,;,! i,!,:

There is one additional normalization situation, requiring the HI-extended
(HIX) state. This is specifically when normalizing ALU results (AR) that
may have overflowed. This operation reads the arithmetic status word
(ASTAT) overflow bit (AV) and the carry bit (AC) in conjunction with the
value in AR. A V is set (1) if an overflow has occurred. AC contains the true
sign of the twos-complement value.

For example, given these conditions:

AR =
AV =
AC =

11111010 00110010
1, indicating overflow
0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX

SE gets set to + 1

2. Normalize, Modifier = HI, SE = 1

AR = 11111010 00110010
SR = 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.

The HIX operation executes properly whether or not there has actually been
an overflow. Consider this example:

AR =
AV =
AC =

11100011 01011011
0, indicating no overflow
0, not meaningful if A V = a

1. Detect Exponent, Modifier = HIX

SE set to -2

2. Normalize, Modifier = HI, SE =-2

AR = 11100011 01011011
SR = 10001101 0110100000000000 00000000

The AC bit is not used as the sign bit. A brief examination of Table 2.4
shows that the HIX mode is identical to the HI mode when A V is not set.
When the NORM, LO operation is done, the extension bit is zero; when the
NORM, HI operation is done, the extension bit is AC.

Program Control

3.1 OVERVIEW
This chapter describes the program sequencer of the ADSP-2100 family
processors. The program sequencer circuitry controls the flow of program
execution. It contains an interrupt controller and status and condition
logic.

3.2 PROGRAM SEQUENCER
The program sequencer generates a stream of instruction addresses and
provides flexible control of program flow. It allows sequential instruction
execution, zero-overhead looping, sophisticated interrupt servicing, and
single-cycle branching with jumps and calls (both conditional and
unconditional).

Figure 3.1, on the following page, shows a block diagram of the program
sequencer. Each functional block of the sequencer is discussed is detail in
this chapter.

This chapter discusses both program sequencer logic and the following
instructions used to control program flow:

DO UNTIL
JUMP
CALL
RTS (Return From Subroutine)
RTI (Return From Interrupt)
IDLE

For a complete description of each instruction, refer to Chapter 15,
Instruction Set Reference.

3

3-1

Program
DMDBUS

from INSTRUCnON REGISTER

I COUNT CONDmON CODE
STACK ~ ~~ ~ ADDRESS OF JUMP/CALL

+ FUNCnON FIELD

I MUX I ADDRESS OF LAST
INSTRUcnON IN LOOP

&
TERMINAnON

I
CONDmON

CNTR I (Counter)
CE OUT

I

~

I STATUS ,--- I LOOP
STACK STACK , ~

I MUX I r } H , CONDmoN f--- LOOP
LOGIC COMPARATOR

I I STATUS
ARITHMETIC I REGISTERS

STATUS I (fromALU)

I • I I I
PROGRAM

I PC COUNTER
INTERRUPT I STACK

INTERRUPTS I CONTROLLER

• 1 I I INCREMENT I MUX
from
F1Pln

3-2

1

, ~ r
I NEXT ADDRESS MUX

~ ,
PMABUS

Figure 3.1 Program Sequencer Block Diagram

+
NEXT r- ADDRESS

SOURCE
SELECT

I

I

Prograrn

3.2.1 Next Address Select Logic
While the processor is executing an instruction, the program sequencer
pre-fetches the next instruction. The sequencer's next address select logic
generates a program memory address (for the pre-fetch) from one of four
sources:

• PC incrementer
• PC stack
• instruction register
• interrupt controller

The next address circuit (shown in Figure 3.1) selects which of these
sources is used, based on inputs from the instruction register, condition
logic, loop comparator and interrupt controller. The next instruction
address is then output on the PMA bus for the pre-fetch.

The PC incrementer is selected as the source of the next address if
program flow is sequential. This is also the case when a conditional jump
or return is not taken and when a DO UNTIL loop terminates. The output
of the PC incrementer is driven onto the PMA bus and is loaded back into
the program counter to begin the next cycle.

The PC stack is used as the source for the next address when a return from
subroutine or return from interrupt is executed. The top stack value is also
used as the next address when returning to the top of a DO UNTIL loop.

The instruction register provides the next address when a direct jump is
taken. The 14-bit jump address is embedded in the instruction word.

The interrupt controller provides the next program memory address when
servicing an interrupt. Upon recognizing a valid interrupt, the processor
jumps to the interrupt vector location corresponding to the active
interrupt request.

Another possible source for the next address is one of the 14-17 index
registers of DAG2 (Data Address Generator 2), used when a register
indirect jump is executed as in the following instruction:

JUMP (14);

In this case the program counter (PC) is loaded from DAG2 via the PMA
bus. (Data address generators are described in Chapter 4.)

3-3

3-4

3.2.2 Program Counter & PC Stack
The program counter (PC) is a 14-bit register which always contains the
address of the currently executing instruction. The output of the PC is fed
into a 14-bit incrementer which adds 1 to the current PC value. The output
of the incrementer can be selected by the next address multiplexer to fetch
the next sequential instruction.

Associated with the PC is a 14-bit by 16-word stack that is pushed with the
output of the incrementer when a CALL instruction is executed. The PC
stack is also pushed when a DO UNTIL is executed and when an interrupt
is processed. For interrupts, however, the incrementer is disabled so that
the current PC value (instead of PC+ 1) is pushed. This allows the current
instruction, which is aborted, to be refetched upon returning from the
interrupt service routine. The pushing and popping of the PC stack occurs
automatically in all of these cases. The stack can also be manually popped
with the POP instruction.

A special instruction is provided for reading (and popping) or writing
(and pushing) the top value of the PC stack. This instruction uses the
pseudo register TOPPCST ACK, described at the end of this chapter.

The output of the next address multiplexer is fed back to the PC, which
normally reloads it at the end of each processor cycle. In the case of a
register indirect jump, however, DAG2 drives the PMA bus with the next
instruction address and the PC is loaded directly from the PMA bus.

3.2.3 Loop Counter & Stack
The counter and count stack provide the program sequencer with a
powerful looping mechanism. The counter is a 14-bit register with
automatic post-decrement capability that controls the flow of program
loops which execute a predetermined number of times. Count values are
14-bit unsigned-magnitude values.

Before entering the loop, the counter (CNTR register) is loaded with the
desired loop count from the lower 14 bits of the DMD bus. The actual loop
count N is loaded, as opposed to N-l. This is due to the operation of the
counter expired (CE) status logic, which tests CE (and automatically post­
decrements the counter) at the end of a DO UNTIL loop that uses CE as its
termination condition. CE is tested at the beginning of each processor
cycle and the counter is decremented at the end; therefore CE is asserted
when the counter reaches 1 so that the loop executes N times.

·~~~~:~:~::~l~~: !j!j!,::: :,~::::;::j:::, ."f:;::l!j! !j!~,,:: :if:::!j:; j!j!:::;:jjt:
i
@: ":.:~.:~ .• :~ .• :~::.:: .• ::.:':':'.:'.:'::.:: ..• ::.' •• ::.:i.::.' .. :.:: •• ·.:;.:~ ••• :1.:::::::;.;::~ •• :: .•••••• :; •• :~ •• :::: "'::"':~":~":~"":~~::::~"':' •• :~ .••• :~.:':: ••• :: ·:~ •• :;· •• :~.:::~ ••• :~ ••• :r:·:; .. :~ :; .. :~ :; .. :;.~;::: : :~:.:: ... :~ .. ,;.:~:: .. ' ::.:; ... :~.:~ .. :~.:: ... :~ .. :: :~' .. :~ :. :'.:i .• :; .. :~ .• :.·::.::::~::.:r: ... :~ .. :~.: .. ;.:.

i§!t'·'.... ~l~~j ~ll~j:::"jf :;!!~;~~~~)II~: ~1~1 t~~~;~;~l~l. 1~~~ ~~~1 ~1~. .

The counter may also be tested and automatically decremented by a
conditional jump instruction that tests CEo The counter is not decremented
when CE is checked as part of a conditional return or conditional
arithmetic instruction.

The counter may be read directly over the DMD bus at any time without
affecting its contents. When reading the counter, the upper two bits of the
DMD bus are padded with zeroes.

The count stack is a 14-bit by 4-word stack which allows nesting of loops
by storing temporarily dormant loop counts. When a new value is loaded
into the counter from the DMD bus, the current counter value is
automatically pushed onto the count stack. The count stack is
automatically popped whenever the CE status is tested and is true,
thereby resuming execution of the outer loop (if any). The count stack may
also be popped manually if an early exit from a loop is taken.

There are two exceptions to the automatic pushing of the count stack. A
counter load from the DMD bus does not cause a count stack push if there
is no valid value in the counter, because a stack location would be wasted
on the invalid counter value. There is no valid value in the counter after a
system reset and also after the CE condition is tested when the count stack
is empty. The count stack empty status bit in the SSTAT register indicates
when the stack is empty.

The second exception is provided explicitly by the special purpose syntax
OWRCNTR (overwrite counter). Writing a value to OWRCNTR
overwrites the counter with the new value, and nothing is pushed onto
the count stack. OWRCNTR cannot be read (i.e. used as a source register),
and must not be written in the last instruction of a DO UNTIL loop.

3.2.4 Loop Comparator & Stack
The DO UNTIL instruction initiates a zero:'overhead loop using the loop
comparator and loop stack of the program sequencer.

On every processor cycle, the loop comparator compares the next address
generated by the program sequencer to the address of the last instruction
of the loop (which is embedded in the DO UNTIL instruction). The
address of the first instruction in the loop is maintained on the top of the
PC stack. When the last instruction in the loop is executed the processor
conditionally jumps to the beginning of the loop, eliminating the
branching overhead otherwise incurred in loop execution.

3-5

3-6

~~t:~:l~~llll::::: ;:::1::;::::~:: ::1~:::':'ll1l !lll::::: .;,f::l':: ,l'l::::::,::::::'l :.:.,.,~.::~.::.:.~:.; .. ,,:::::,:,::::::.::.l.:,~ •• :;.:'.::; :: .••• ::: •• ::: •• ::.'.: •• '.::,:::;':'.:.: •• ::.: •• :: •• ::', •• ' : •• ::.: •• ::.: •• ::.' •• ::.~:::::::~ •• :'.: •• ::.: •• :: .. ' •• ::. :~l.::.; .. ::.~ .. ::.~ .. ::.'.'.:'::: ' ... :::.::.'.:':': .. ::.::::: :;:: :; ... :~:.:'.:: .. ::::::.:: .. :::.:: .. :.:: ::'.::.,: .~::::.1 •. ::.~.::.1 .. :,.1.::.

~~r':':"~~~~ :t:::::lf: :;!~~;~:~;~!!~i !~~~ 1~~r~~~~~1.~~~~ :~~~: :t

The loop stack stores the last instruction addresses and termination
conditions of temporarily dormant loops. Up to four levels can be stored.
The only extra cycle associated with the nesting of PO UNTIL loops is the
execution of the DO UNTIL instruction itself, since the pushing and
popping of all stacks associated with the looping hardware is automatic.

When using the counter expired (CE) status as the termination condition
for the loop, an additional cycle is required for the initial loading of the
counter. Table 3.1 shows the termination conditions that can be used with
DO UNTIL.

Syntax
EQ
NE
LT
GE
LE
GT
AC
NOTAC
AV
NOTAV
MV
NOTMV
NEG
POS
CE
FOREVER

Status Condition
Equal Zero
Not Equal Zero
Less Than Zero
Greater Than or Equal Zero
Less Than or Equal Zero
Greater Than Zero
ALUCarry
Not ALU Carry
ALU Overflow
Not ALU Overflow
MAC Overflow
Not MAC Overflow
X Input Sign Negative
X Input Sign Positive
Counter Expired
Always

Table 3.1 DO UNTIL Termination Condition Logic

True If:
AZ=1
AZ=O
AN .xOR. AV = 1
AN .xOR. AV = 0
(AN .XOR. A V) .OR. AZ = 1
(AN .XOR. A V) .OR. AZ = 0
AC=1
AC=O
AV=1
AV=O
MV=1
MV=O
AS=1
AS=O

When a DO UNTIL instruction is executed, the 14-bit address of the last
instruction and a 4-bit termination condition (both contained in the DO
UNTIL instruction) are pushed onto the IS-bit by 4-word loop stack.
Simultaneously, the PC incrementer output is pushed onto the PC stack.
Since the DO UNTIL instruction is located just before the first instruction
of the loop, the PC stack then contains the first loop instruction address,
and the loop stack contains the last loop instruction address and
termination condition. The non-empty state of the loop stack activates the
loop comparator which compares the address on top of the loop stack
with the address of the next instruction. When these two addresses are
equal, the loop comparator notifies the next address source selector that
the last instruction in the loop will be executed on the next cycle.

~el1 r~:iii~.ii:~::~;'::: .:::~:::::i:~: i~:i:i:: .~~:::::1:i W~i:::::::::1i .~.·:~,.:~.' .• :r.:::·.::.::.::::::.·::.:::: .. :: .• :;,.::.::,:: ::,.:~.:~ .. :; .•. :~.::::::::.::.:; .. :l,' .•. :~,.:~.::': ",:~ ... :; .• :~.· .. :;, ... :~::::; .•. :~ .. :~ ... :; ... :l,::: ':' .. :: •. :~ ... :~ .•. :~ ... :~:::' .:::: .•• :; ... :~ ..• :~,,:~.:;:: "'::'::"':~"':;":;'::::::::'::'::" •. :~ .• :~.:~ ,:: •. :l:.:l .. :l ... :l

iif::::
w

~~~ ~~!~:i.f~~~~;~~ll ~~~ :~t;l ~~ ~~ !~ . . . 

At this point, there are three possible results depending on the type of 
instruction at the end of the loop. Case 1 illustrates the most typical 
situation. Cases 2 and 3 are also allowed but involve greater program 
complexity for proper execution. 

Case 1 
If the last instruction in the loop is not a jump, call, return, or idle, the 
next address circuit will select the next address based on the 
termination condition stored on the top of the loop stack. If the 
condition is false, the top address on the PC stack is selected, causing 
a fetch of the first instruction of the loop. If the termination condition 
is true, the PC incrementer is chosen, causing execution to fall out of 
the loop. The loop stack, PC stack, and counter stack (if being used) 
are then popped. 

(Note that conditional arithmetic instructions execute based on the 
condition explicitly stated in the instruction, whereas the loop 
sequencing is controlled by the (implicit) termination condition 
contained on top of the stack.) 

Case 2 
If the last instruction in the loop is a jump, call, or return, the 
explicitly stated instruction takes precedence over the implicit 
sequencing of the loop. If the condition in the instruction is false, 
normal loop sequencing takes place as described for Case 1. 

If the condition in the instruction is true, however, program control 
transfers to the jump I calli return address. Any actions that would 
normally occur upon an end-of-Ioop detection do not take place: 
fetching the first instruction of the loop, falling out of the loop and 
popping the loop stack, PC stack, and counter stack, or decrementing 
the counter. 

(Note that for a return instruction, control is passed back to the top of 
the loop since the PC stack contains the beginning address of the 
loop.) 

Case 3 
If the last instruction in the loop is an IDLE, program flow is 
controlled by the IDLE instruction rather than the loop. When the 
IDLE instruction is executed, the processor enters a low-power wait­
for-interrupt state. When the processor is interrupted, loop execution 
terminates and program execution continues with the first instruction 
following the loop. 

3-7 



3-8 

Note: Caution is required when ending a loop with a JUMP, CALL, 
RETURN, or IDLE instruction, or when making a premature exit from a 
loop. Since none of the loop sequencing mechanisms are active while the 
jump/ call/return is being performed, the loop, PC, and counter stacks are 
left with the looping information (since they are not popped). In this 
situation, a manual pop of each of the relevant stacks is required to restore 
the correct state of the processor. A subroutine call poses this problem 
only when it is the last instruction in a loop; in such cases, the return 
causes program flow to transfer to the instruction just after the loop. Calls 
within a loop that are not the last instruction operate as in Case 1. 

The only restriction concerning DO UNTIL loops is that nested loops 
cannot terminate on the same instruction. Since the loop comparator can 
only check for one loop termination at a time, falling out of an inner loop 
by incrementing the PC would go beyond the end address of the outer 
loop if they terminated on the same instruction. 

3.3 PROGRAM CONTROL INSTRUCTIONS 
The following sections describe the primary instructions used to control 
program flow. 

3.3.1 JUMP Instruction 
The 14-bit jump address is embedded in the JUMP instruction word. 
When a JUMP instruction is decoded, the jump address is input directly to 
the next address mux of the program sequencer. The address is driven 
onto the PMA bus and fed back to the PC for the next cycle. The following 
instruction, for example, 

JUMP fir_start; 

jumps to the address of the label fir_start 

3.3.1.1 Register Indirect JUMPs 
In this case of register indirect jumps, the jump address is supplied by one 
of the I registers of DAG2 (14,15,16, or 17). (Data address generators are 
described in Chapter 4.) The address is driven onto the PMA bus by 
DAG2, and is loaded into the PC on the next cycle. For example, the 
instruction 

JUMP (14); 

will jump to the address contained in the 14 register. 



::f~:~::t: ~:~:~:::l '::::::::::::: ,;::!;::::::~:~ ::~:~:::: ;::?::~::: :~:~:::::~:::;:;:}: :,':l.:~ .• :: ••• :i,.::·:.:::::::,::::::,:,:,:::" •. :~.:;,,::,:, ",::, •• :~ •. :;:.:l::,.·:::::;::,::,,:~,,:.:l •• :~.,:::: .• :l:.:~ .• :~:.:;:::::::,:: .• :~.:':: •• :;,:,:: :~ ••• :::.:: •• :::.:::::' '.:':.:; •• :;,:.:; .• :;::::: : .. '.:~ •• :~ •• :;~:~:.:;::::.·.::::.~::~.:L:.,::.::" :.::~ .. :;:.:: .. :::,:: :::: .. :; .. :~.::,'::,::::.:.~.:~.' .... :: .. ::.'.::,:. iJ:::::::" iiiii t~:::::;r :!!!:;~~~~~I!!: !iii! :t~~;~~il iiii! iiii ~i~i 

3.3.2 CALL Instruction 
The CALL instruction executes in a similar fashion as the JUMP 
instruction. The address of the subroutine is embedded in the CALL 
instruction word and, once extracted from the instruction register, is fed 
back the PC for the next cycle. In addition, the current value of the 
program counter is incremented and pushed onto the PC stack. Upon 
return from the subroutine, the PC stack is popped into the program 
counter and execution resumes with the instruction following the CALL. 

3.3.3 DO UNTIL Loops 
The most common form of a DO UNTIL loop uses the counter register 
(CNTR) as a loop iteration counter. When the counter is used to control 
loop iteration, CE (counter expired) must be used as the DO UNTIL 
termination condition. A simple example of this type of loop is as follows: 

LO=10i {setup circular buffer length register} 
IO=Adata_bufferi {load pointer with first address of} 

{circular buffer} 
MO=li {setup modify register for pointer increment} 
CNTR=10i {load counter with circular buffer length} 

DO loop UNTIL CEi {repeat loop until counter expired} 
DM(IO,MO)=Oi {initialize/clear circular buffer} 
... any instruction .. . 

loop: ... any instruction .. . 

When the 

CNTR=10; 

instruction is executed, prior to entering the loop, the counter is loaded via 
the DMD bus. Any previously existing count would be simultaneously 
pushed onto the count stack; this push operation is omitted if the counter 
is empty. The 

DO loop UNTIL CE; 

instruction itself only sets up the conditions for looping; no other 
operation occurs while the instruction is executed. This occurs only once, 
at the beginning of the first time through the loop. 

3-9 



.
:.::' .. ~:l::;.:··:.::::.;:·.~.::~.·.l.:.~.::.~:.:.·.. ~1f:':]1~1 :;~:~::::: .::::::;::::::.:::!;::::::~:~ !:~:~::::: ;::!:::::~::: ;~:~:::::l:::;:::::l::. ;.~.·:l.:l .. :l .. :~ .. ::.::::::.·::.::::·.::.:;.·:~:.:l.:'.: .::.:; ..• :; .. :~.:~.::::.:::: .. :.· .. :: ..•. :~ .• :l:l.:' .. :;.: .. :~ .. :; ... :~:::::~: .... :l .. :~ ... :l.:: .. :·.:l.: .. :~.:l:·.:l .. :.:·: ... :~: ... :' .. :~ ... :~::::: ::'.:;.:~.:;': .. :~.::::'.: .. :.'.::.:;.::".' .. :; .. :~:~'.' .. :: .. :l ... :! ... :l ... :! 

~~r::::::" :~~~~ 11~~~:::;:;~1f ;!!t;;~I!!~ :~~~~11~~~;;;;1.:1 :~~~l !~~~: 

3-10 

Execution of the DO UNTIL instruction pushes the address of the 
instruction immediately following the DO UNTIL onto the PC stack (by 
pushing the incremented PC). On the same cycle, the loop stack is pushed 
with the address of the end-of-loop instruction and the termination 
condition. 

As execution continues within the loop, the loop comparator checks each 
instruction's address against the address of the loop's last instruction. 
Until that address is reached, normal execution continues. 

Each time the end of the loop is reached, the loop comparator determines 
that the currently executing instruction is the last in the loop. This affects 
the next address select logic of the program sequencer: instead of using 
the incremented PC for the next address, the loop termination condition is 
evaluated. If the termination condition is false, execution continues with 
the first instruction of the loop (the top of the PC stack is taken as the next 
address). Note that the PC and loop stacks are not popped, only read. 

On the final pass through the loop, the termination condition is true. The 
PC stack is popped and execution continues with the instruction 
immediately following the last instruction of the loop. The loop stack and 
count stack are also popped on this cycle. 

3.3.4 IDLE Instruction 
The IDLE instruction causes the processor to wait indefinitely in a low 
power state until an interrupt occurs. When an unmasked interrupt 
occurs, it is serviced; execution then continues with the instruction 
following the IDLE instruction. 

3.3.4.1 Slow IDLE 
An enhanced version of the IDLE intruction allows the processor's 
internal clock signal to be slowed, further reducing power consumption. 
The reduced clock frequency, a programmable fraction of the normal clock 
rate, is specified by a selectable divisor given in the IDLE instruction. The 
format of the instruction is 

IDLE (n); 

where n = 16, 32, 64, or 128. This instruction keeps the processor fully 
functional, but operating at the slower clock rate. While it is in this state, 
the processor's other internal clock signals, such as SCLK, CLKOUT, and 
timer clock, are reduced by the same ratio. The default form of the 
instruction, when no clock divisor is given, is the standard IDLE 
instruction. 



:l:r:~:~11: :~:~::::: ::::::;::::::;. .::::::::::~:~ :~:~::::: .:::;::::\:::: ~:~:::;:::~:::::::\::: \.':~.'.:: .. :: .. :~.:~'.::.:::::.::'::.:::.:' ... :~.:;.'.::,: ... : .. :: ... :~.:':: .. :~ .. :::.:.:.':::::: ... :; ... :~:;:'.::" .. : .. ~ .. :~ ... :~::.::.:::::::::: ... ::.· .. :~ .. :~ .... :l .. ::. :·:.:: .•• :: •••• :: ••• :f ... :~:··:· ... :1 .. :~ .... :; .... ::.; .. :~:::~ .. ::,.::.:r •.•• :; .• ::·::::.::::.:: .. :: ...•• :~ •. :; •• :::: · .•• :~:.:r::: .. :l. ..:.·.:;·.:;.::.·.:::::::.:.:t .• :;.::l .. :~.:~.: llr::::::': llli :\lll:::::Jl: :!!!;;:;:~!!!llr :llt;;illllllll l~l llll. '. ." 

When the IDLE (n) instruction is used, it effectively slows down the 
processor's internal clock and thus its response time to incoming 
interrupts. The one-cycle interrupt response time of the standard idle state 
is increased by n, the clock divisor. When an enabled interrupt is received, 
the processor will remain in the idle state for up to a maximum of n 
processor cycles before ~esuming normal operation (n = 16,32,64, or 128). 

When the IDLE (n) instruction is used in systems that have an externally 
generated serial clock (SCLK), the serial clock rate may be faster than the 
processor's reduced internal clock rate. Under these conditions, interrupts 
must not be generated at a faster rate than can be serviced, due to the 
additional time the processor takes to come out of the idle state (a 
maximum of n processor cycles). 

3.4 INTERRUPTS 
The program sequencer's interrupt controller responds to interrupts by 
shifting control to the instruction located at the appropriate interrupt 
vector address. Tables 3.2-3.7 show the interrupts and associated vector 
addresses for each processor of the ADSP-2100 family. (Note that SPORT 1 
can be configured as either a serial port or as a collection of control pins 
including two external interrupt inputs, IRQO and IRQI. See Chapter 5, 
uSerial Ports," for more information about the configuration of SPORTl.) 

The interrupt vector locations are spaced four program memory locations 
apart-this allows short interrupt service routines to be coded in place, 
with no jump to the service routine required. For interrupt service 
routines with more than four instructions, however, program control must 
be transferred to the service routine by means of a jump instruction placed 
at the interrupt vector location. 

After an interrupt has been serviced, an RTI (Return From Interrupt) 
instruction returns control to the main program by popping the top value 
on the PC stack into the PC; the status stack is also popped to restore the 
previous processor state. 

Interrupts can also be forced under software control; see the discussion of 
the IFC register below. 

3-11 



3-12 

~lI:~:~:;~111 ~~~~::::: .::~::::;:~:::: ;::r:~@ ~:~:::::: ;::::::::l:l:: l~:~:::t:ltl: .l.:~.::~ .. :~.;::.:·.:.;::>:·::.:::::: .• :: .. ::~ •. ::::::: : •.•• :~::; •• :~ •• :~:::::::;.:::: •. :~.::~.:.: •• :: ..• ::; .•• :~.::~ .•• :~.::(::.::l: .. ::.::l ••.• :: ·:·::: •. :l .. ::l ... :~.:~t.·.·:· ... :~.::; ..• :r.::~.::.::;:: .;::.:l .. ::~::~ .. ::::::::::.;:.:: ... ::;::~:~.:: .::l::~.::l ... :: 

i1ir":':" 1~1~ :l~t:::}:; ;::!:~~:~::!!!~ 1i1i :ltJii i1~1 !~~~ ;~~~ 

Because of the efficient stack and program sequencer, there is no latency 
(beyond synchronization delay) when processing unmasked interrupts, 
even when interrupting DO UNTIL loops. Nesting of interrupts allows 
higher-priority interrupts to interrupt any lower-priority interrupt service 
routines that may currently be executing, also with no additional latency. 

The ADSP-2100 family processors include a secondary register set which 
can be used to provide a fresh set of ALU, MAC, and Shifter registers 
during interrupt servicing. This feature allows single-cycle context 
sWitching. Use of the secondary registers is described in the UMode Status 
Register (MSTAT)" section of this chapter. 

Interrupt Source 
RESET startup 
IRQ2 
SPORTO Transmit 
SPORTO Receive 
SPORT 1 Transmit or IRQl 
SPORT 1 Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
Ox0008 
OxOOOC 
OxOOlO 
Ox0014 
Ox0018 (lowest priority) 

Table 3.2 ADSP·2101/2115 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup 
IRQ2 
SPORTI Transmit or IRQl 
SPORTI Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
OxOOlO 
Ox0014 
Ox00l8 (lowest priority) 

Table 3.3 ADSP-2105 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
SPORT 1 Transmit or IRQl 
SPORT 1 Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
Ox0008 
OxOOOC 
OxOOlO 
Ox0014 
Ox0018 
OxOOlC 
Ox0020 (lowest priority) 

Table 3.4 ADSP-2111 Interrupts & Interrupt Vector Addresses 



Interrupt Source 
RESET startup (or powerup w jPUCR=l) 
Powerdown (non-maskable) 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
Software Interrupt 1 
Software Interrupt 2 
SPORTI Transmit or IRQl 
SPORTI Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOlO 
Ox0014 
Ox0018 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 3.5 ADSP·2171 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup (or powerup w jPUCR=l) 
Powerdown (non-maskable) 
IRQ2 
IRQLl (level-sensitive) 
IRQLO (level-sensitive) 
SPORTO Transmit 
SPORTO Receive 
IRQE (edge-sensitive) 
Byte DMA Interrupt 
SPORTI Transmit or IRQl 
SPORTI Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOl0 
Ox0014 
Ox0018 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 3.6 ADSp·2181 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup (or powerup w jPUCR=l) 
Powerdown (non-maskable) 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
Analog (DAC) Transmit 
Analog (ADC) Recei~ 
SPORTI Transmit or IRQl 
SPORT 1 Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOl0 
Ox0014 
Ox0018 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 3.7 ADSP·21msp58/59 Interrupts & Interrupt Vector Addresses 

3-13 



3-14 

Program 

3.4.1 Interrupt Servicing Sequence 
When an interrupt request occurs, it is latched while the processor finishes 
executing the current instruction. The interrupt request is then compared 
with the interrupt mask register, IMASK, by the interrupt controller. 

If the interrupt is not masked, the program sequencer pushes the current 
value of the program counter (which contains the address of the next 
instruction) onto the PC stack-this allows execution to continue, after the 
interrupt is serviced, with the next instruction of the main program. The 
program sequencer also pushes the current values of the ASTAT, MSTAT, 
and IMASK registers onto the status stack. ASTAT, MSTAT and IMASK 
are stored in this order, with the MSB of ASTAT first, and so on. When 
IMASK is pushed, it is automatically reloaded with a new value that 
determines whether or not interrupt nesting is allowed (based on the 
value of the interrupt nesting enable bit in ICNTL). 

The processor then executes a NOP while simultaneously fetching the 
instruction located at the interrupt vector address. Upon return from the 
interrupt service routine, the PC and status stacks are popped and 
execution resumes with the next instruction of the main program. 

3.4.2 Configuring Interrupts 
The following registers are used to configure interrupts: 

• ICNTL-Determines whether interrupts can be nested and configures 
the external interrupts IRQ2, IRQI, IRQO as edge-sensitive or level­
sensitive 

• IMASK-Enables or disables (Le. masks) each individual interrupt (both 
external and internal). 

• IFC-Forces an interrupt or clears a pending edge-sensitive interrupt. 

The IRQ2, IRQI, IRQO interrupts may be either edge-sensitive or level­
sensitive, as selected in the ICNTL register. The ADSP-2181 has three 
additional interrupt pins: IRQE, IRQLI, and IRQL2. The IRQE input is 
edge-sensitive, while the IRQLI and IRQL2 inputs are level-sensitive. 

For edge-sensitive IRQX interrupts, an interrupt request is latched 
internally whenever a falling edge (high-to-Iow transition) occurs at the 
input pin. The latch remains set until the interrupt is serviced; it is then 
automatically cleared. A pending edge-sensitive interrupt can also be 
cleared in software by setting the corresponding clear bit in the IFC 
register. 



Edge-sensitive interrupt inputs generally require less external hardware 
than level-sensitive inputs, and allow signals such as sampling-rate clocks 
to be used as interrupts. 

A level-sensitive interrupt must remain asserted until the interrupt is 
serviced. The interrupting device must then deassert the interrupt request 
so that the interrupt is not serviced again. Level-sensitive inputs, however, 
allow many interrupt sources to use the same input by combining them 
logically to produce a single interrupt request. Level-sensitive interrupts 
are not latched. 

Your program can also determine whether or not interrupts can be nested. 
In non-nesting mode, all interrupt requests are automatically masked out 
when an interrupt service routine is entered. In nesting mode, the 
processor allows higher-priority interrupts to be recognized and serviced. 

There are two levels of masking for the Host Interface Port (HIP) 
interrupts of the ADSP-2111, ADSP-2171, and ADSP-21msp58/59. The 
memory-mapped HMASK register configures masking out the generation 
of individual read or write interrupts for each HIP data register. The 
IMASK register can be set to mask or enable the servicing of all HIP read 
interrupts or all HIP write interrupts. Both IMASK and HMASK must be 
set for HDR interrupts. See Chapter 7, "Host Interface Port," for details. 

3.4.2.1 Interrupt Control Register (ICNTL) 
ICNTL is a 5-bit register that configures the external interrupt requests 
(IRQX) of each processor. All bits in ICNTL are undefined after a 
processor reset. The bit definitions for each processor's ICNTL register are 
given in Appendix E, "Control/Status Registers." 

ICNTL contains an IRQX sensitivity bit for each external interrupt. The 
sensitivity bits determine whether a given interrupt input is edge- or level­
sensitive (0 = level-sensitive, 1 = edge-sensitive). There are no sensitivity 
bits for internally generated interrupts. 

The interrupt nesting enable bit (bit 4) in ICNTL determines whether 
nesting of interrupt service routines is allowed. 

When the value of ICNTL is changed, there is a one cycle latency before 
the change in interrupt configuration. 

3-15 



3-16 

~~f:::::;~llllllj;;;:: .::l:;::':~l::: :::j::::::ljljljlj;;::: :::::::::j:j: :jlll,::::ll{'tj: .:~:~ ... :~.::.: .. :: .. ::.,:.::::.::.'::.::.::.::.' .. :;.,':::'.:.,' : .... :~ .. :; ... :;.:: .. :;:':::'.:;.:: .. :~::.:: .. :;: ...... :~.:;:' .. :'.; ... :~.' •. ::::: .. :'.: ... :~ .. :'.: ... :: ~:.: .. ~ ... :~ ... :"~"':~:~'.::: .:::: .. :,.~ ... :; .. :,,:~:;:; .: .. :: .. :: .... :~ ... :~ .. ::.:::':::'.:: .. :; .. : .. ; .. :;.::,' .. :: ... :~ ... :~ ... :~ ... :~ 
~l~r:':':" llll :jll~::::::l~fl: ~:!!~;~;~;;!!!~ !~l~ :t;;;II~lll illll :~ll: 

3.4.2.2 Interrupt Mask Register (IMASK) 
Each bit of the IMASK register enables or disables the servicing of an 
individual interrupt. Specific bit definitions for each processor's IMASK 
register are given in Appendix E, UControl/Status Registers." The mask 
bits are positive sense: O=masked, l=enabled. IMASK is set to zero upon a 
processor reset. 

On the ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors, all 
interrupts are automatically disabled for one instruction cycle following 
the execution of an instruction that modifies IMASK. This does not affect 
serial port autobuffering or DMA transfers. 

If an edge-sensitive interrupt request signal occurs when the interrupt is 
masked, the request is latched but not serviced; the interrupt can then be 
recognized in software and serviced later. 

The contents of IMASK are automatically pushed onto the status stack 
when entering an interrupt service routine and popped back when 
returning from the routine. The configuration of IMASK upon entering the 
interrupt service routine is determined by the interrupt nesting enable bit 
(bit 4) of ICNTL; it may be altered, though, as part of the interrupt service 
routine itself. 

When nesting is disabled, all interrupt levels are masked automatically 
(IMASK set to zero) when an interrupt service routine is entered. 

When nesting is enabled, IMASK is set so that only equal and lower 
priority interrupts are masked; higher priority interrupts remain 
configured as they were prior to the interrupt. This is shown graphically, 
for the ADSP-2101, in Table 3.8. 

The interrupt nesting enable bit (in ICNTL) determines the state of IMASK 
upon entering the interrupt, as shown in Table 3.8. 



:I~:~:~::1 !!!!l'::!"':'t,: .. t:':::!!!l !!!!,,::, ':":::::j,!: !!!!:::',!!,,::':'!~: .. ,.':~.:~:: .. :: ... :~ .. :'.:'.::::.::.'::.:::'.::'.' .. :;.:'::.:'.:: :: .. :~ .. :l •• :~ .•• :~::.:':::':: •• :; .•• :~.:::: .• :~.::.: ••• :l .. :~ .• :~.· .. :~ .. :~;~:;.:~: •..• :r ... :, .. :~ .. ~:· .. :: .. :~ .... :~ ... :~.:::f.:::· ••• :~ ••• :~ •• :~.: ••• :~ •. :~.:;:; ;.::.:~ •••• :!.:l .•• i.:::::::'.::::: ..•• :r .. :;.:~.:: ... :F::~.:.:i.:· .::.··.:;.:.:·: .. ::;:·::::::.:::::~.: .. :~.· .. :~.·:,r .. :~: 
!ir:':':" iiii t~::::::iJ:~!~;~;~;;llll iiii :!!i;;;;;iiiI iiii 1i~i ~ ... ;: . 

ICNTL Interrupt Nesting Enable bit = 0 (nesting disabled) 
Interrupt IMASK contents before IMASK contents entering 
level serviced (pushed on stack) interrupt service routine 

o (low) 
1 
2 
3 
4 
5 (high) 

ijklmn 
ijklmn 
ijklmn 
ijklmn 
ijklmn 
ijklmn 

000000 
000000 
000000 
000000 
000000 
000000 

ICNTL Interrupt Nesting Enable bit = 1 (nesting enabled) 
Interrupt IMASK contents before IMASK contents entering 
level serviced (pushed on stack) interrupt service routine 

o (low) 
1 
2 
3 
4 
5 (high) 

ijklmn 
ijklmn 
ijklmn 
ijklmn 
ijklmn 
ijklmn 

ijklmO 
ijklOO 
ijkOOO 
ijOOOO 
iOOOOO 
000000 

(lIijklmn" represents any pattern of ones and zeroes) 

Table 3.8 IMASK Entering Interrupt Service Routines (ADSP·2101 example) 

3.4.2.3 Global Enable/Disable for Interrupts 
Global interrupt enable and disable instructions are available on the 
ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors: 

ENA INTSi 
DIS INTSi 

Interrupts are enabled by default after reset. The DIS INTS instruction 
causes all interrupts (including powerdown) to be masked out regardless 
of the contents of IMASK. The ENA INTS instruction allows all 
unmasked interrupts to be serviced again. 

Disabling interrupts does not affect serial port autobuffering. 

3-17 



3-18 

lllt:~:~;l~l ~~l~;::': :,f':",~=: ;:",,:=::!~~~ ~~~~;::,: '::';::::~~';; ~~t:;~,~::::,:~~;: l.· .. :~·.:!.:~ •. :~.:;.::.·.:::,·::.::.·:'.::.:;.:,:·:l,.':,=, ••.•• :' .•• :~:.:l.:~:.::·.:·:':::'.:'.·:' ... :; .. :;.:::' , .. :~:.:~ ... :~:.:~ ... :~:::::.:;::::: ... :~: ... :: .• :. :~:.::, ... :~ ... :~ ... :~ ... :~:::: .::~:~.: ... :r ... :~ ... :;:::: , .. :' ... :'.·.:,.::l .. :'.:.·:::'.::.:' .. :' ..... ::l:l:,:',= .~ .• ::.::: •• :~.'.::: 
[l':':':'" ~[ii :~~i~;;:::,!J;;!!;;~:~;jl:: iiii i~it::t[ iiii iiii jiii 

3.4.2.4 Interrupt Force & Clear Register (IFC) 
IFC is a write-only register that allows the forcing and clearing of edge­
sensitive interrupts in software. An interrupt is forced or cleared under 
program control by setting the force or clear bit corresponding to the 
desired interrupt. After the force or clear bit is set, there is one cycle of 
latency before the interrupt is actually forced or cleared (except for the 
timer interrupt on the ADSP-2101/2105/2111/2115 processors). 

Edge-sensitive interrupts can be forced by setting the appropriate force bit 
in IFC. This causes the interrupt to be serviced once, unless masked. An 
external interrupt must be edge-sensitive (as determined by ICNTL) to be 
forced. The timer, SPORT, and analog ADC/DAC interrupts also behave 
like edge-sensitive interrupts and can be masked, cleared and forced. 

Pending edge-sensitive interrupts can be cleared by setting the 
appropriate clear bit in IFC. Edge-triggered interrupts are cleared 
automatically when the corresponding interrupt service routine is called. 

Specific bit definitions for each processor's IFC register are given in 
Appendix E, "Control/Status Registers." The IFC registers of the ADSP-
2111, ADSP-2171, and ADSP-21msp58 processors do not include force/ 
clear bits for Host Interface Port interrupts; HIP interrupts cannot be 
forced or cleared in software. 

3.4.3 Interrupt Latency 
For the timer, IRQx, SPORT, HIP, and analog interface interrupts, the 
latency from when an interrupt occurs to when the first instruction of the 
service routine is executed is at least three full cycles. This is shown in 
Figure 3.2. Two cycles are required to synchronize the interrupt internally, 
assuming that setup and hold times are met (for the IRQx input pins). 

Since interrupts are only serviced on instruction boundaries, the 
instruction(s) executed during these two cycles must be fully completed, 
including any extra cycles inserted due to Bus Request/Bus Grant or 
memory wait states, before execution continues. 

The third cycle of latency is needed to fetch the first instruction stored at 
the interrupt vector location. During this cycle, the processor executes a 
NOP instead of the instruction that would normally have been executed. 
On the next cycle, execution continues at the first instruction of the 
interrupt service routine. The address of the aborted instruction is pushed 
onto the PC stack; it will be fetched when the interrupt service routine is 
completed. 



Program 
ClKOUT 

Interrupt V 
Instruction 
Executing n-2 X n-1 X n X NOP X 1st instr of 

X serv routine 

X X X interru~t X X 
Address for n-1 n n+1 i+1 
Instruction Fetch vector I 

Figure 3.2 Interrupt Latency (Timer, lROx, SPORT, HIP, & Analog Interrupts) 

(Note that this latency for the timer interrupt only applies for the ADSP-2171, 
ADSP-2181, and ADSP-21msp58/59 processors. See the next section for a 
description of timer interrupt latency on the ADSP-2101, ADSP-2105, 
ADSP-2115, ADSP-2111.) 

For a pending interrupt that is masked, the latency from execution of the 
instruction that unmasks the interrupt (in IMASK) to the first instruction of 
the service routine is one cycle. This one-cycle latency is similar to that shown 
in Figure 3.3 for the timer interrupt of the ADSP-2101/2105/2111/2115, with 
the "n" instruction executing being the instruction that writes to IMASK (to 
unmask the interrupt). 

3.4.3.1 Timer Interrupt Latency on ADSP·2101, ADSP·2105, ADSP·2115, ADSP·2111 
For the timer interrupt on these processors, the latency from when the 
interrupt occurs to when the first instruction of the service routine is executed 
is only one cycle. This is shown in Figure 3.3. The single cycle of latency is 
needed to fetch the instruction stored at the interrupt vector location. 

ClKIN 

Timer 

X X Value X tcount=1 X tcount=O X 
Instruction 

X Executing X X n X NOP X 1st instr.of 
serv routine 

X X X X 
Address for 

X n+1 interrupt i+1 
Instruction Fetch vector i 

Figure 3.3 Timer Interrupt Latency for ADSp·21 01, ADSP·21 OS, ADSP·2115, ADSp·2111 3 - 19 



3-20 

:~t~;l~~: t~t~~::: ::~::::;::~::: .. :{::::i~t~~ t~t~::::::f:::~~;: ~t~t:::::~~t::~~~: .~,:~,.::.: .. :r ... :~:·.:,.::·.,~:::;.··:··.:;:·,::.',.::, .. ::,::,::' :;,: .. : .. :~ .. :~ ... :f.:::::::;::,::,' •• :~" ••• :~,.:~,.:=:: ",:~ •• ::.: ••• :~ ••• :~",:;~:::;~ ••• :' ••• :~ ••• :~ ••• :~":,,' ':',::,; •• :r ... :~ ... :i ... :~,:::: ".:1 ... :~ ... :~ ... :~",:~~;:~ .,.::.::.·.:1, •• :~:;.:;::::::.:;.::,' •• :~,.:":':~':: : ••• :~.:·:1 ... :1 ... :1 

111r""'" l~ll ,:t::::::il~1; :;!l~~;~;;jll~: 1~11 :~f;;11~1[ ~l~l l:l~ :l~l 

3.5 STATUS REGISTERS & STATUS STACK 
Processor status and mode bits are maintained in internal registers which 
can be independently read and written over the DMD bus. These registers 
are: 

ASTAT 
SSTAT 
MSTAT 
ICNTL 
IMASK 
IFC 

Arithmetic status register 
Stack status register(read-only) 
Mode status register 
Interrupt control register 
Interrupt mask register 
Interrupt force/ clear register(write-only) 

The interrupt-configuring statUs registers are described in the previous 
section. ASTAT, SSTAT, and MSTAT are discussed in the following 
sections. 

The current ASTAT, MSTAT, and IMASK values are pushed onto the 
status stack when the processor responds to an interrupt; they are popped 
upon return from the interrupt service routine (with the RTI instruction). 
The depth of the stack varies from processor to processor. In each case, 
sufficient stack depth is provided to accommodate nesting of all 
interrupts. 

3.5.1 Arithmetic Status Register (ASTAT) 
AST AT is eight bits wide and holds the status information generated by 
the computational blocks of the processor. The individual bits of ASTAT 
are defined as shown in Figure 3.4. The bits which express a particular 
condition (AZ, AN, AV, AC, MV) are all positive sense (1=true, O=false). 

7 6 5 432 ° 

1°1°1°1°1°1°1°1°1 
SS MV AQ AS AC AV AN AZ 

I u ~~ :::=:;.uve 
ALU Overflow 

'------ ALU Carry 

'------- ALU X Input Sign 
'-------- ALU Quotient 

'---------- MAC Overflow 

'----------- Shifter Input Sign 

Figure 3.4 ASTAT Register 



ill:~:~}::: !,!,,:':"""':;::';:: ':"':':::!'!~ !~!",::, ;:,,::::}:, ~!~!:::;;~~t;t!: .;.':1,.~.: .. :1: ... :.:: .. :·.:·:·.;:.·::· .. :: .. :;,· .. ::,:',:: ::,.:; .. :~:~:· .. :~,.:::::::;.:::.::.:l: .• ',.:',.:;'.::,; ... :~: ..• :: ... :~' ..• :;~",:';:::: ..• :;: ... :: .. :~ .. :~.', ·!: .. :~:l: ... :l ... :l,~ .. :,,:::: .. :l, ... :r:.:l ..• :;',,:f,:;:: ,;.:'.:~,.:~:·.:i,:;.'::.:;.:.·::.:'.:',:.:~ .• :;.:;,:: • ... :~~:.:~ .• :1 .. :1. ,·::,.:' .. :; .. :~·::::::,:::.~ .. ,.:!: .... :l· .. :~.:,:: 
ii~r::::::" i~i~ ;:l:::::iJ:!!i:~;~::ll~1 iiii :t::;til iiii iiiiiiii 

Each of the bits is automatically updated when a new status is generated 
by an arithmetic instruction. Each bit is affected only by a subset of 
arithmetic operations, as defined by the following table: 

Status Bit Updated by 
AZ, AN, A V, AC 
AS 

Any ALU operation except DIVS, DIVQ 
ALU absolute value operation (ABS) 
ALU divide operations (DIVS, DIVQ) AQ 

MV 
SS 

Any MAC operation except saturate MR (SAT MR) 
Shifter EXP operation 

Arithmetic status is latched into ASTAT at the end of the cycle in which it 
was generated, and cannot be used until the next cycle. 

Loading any ALU, MAC, or Shifter input or output registers directly from 
the DMD bus does not affect any of the arithmetic status bits. Executing 
the ALU instruction PASS sets the AZ and AN bits for a given X or Y 
operand and clears AC. 

3.5.2 Stack Status Register (SSTAT) 
The SST A T register is eight bits wide and holds information about the four 
processor stacks. The individual bits of SST AT are defined as shown in 
Figure 3.5. All of the bits are positive sense (1=true, O=false). 

7 6 5 432 0 

10111011101110111 

I l PC Stack Empty ~ PC Slack Overflow 

'------ Count Stack Empty 

'------- Count Stack Overflow 

'-------- Status Stack Empty 
L...-_______ Status Stack Overflow 

L...-________ Loop Stack Empty 

'------------- Loop Stack Overflow 

Figure 3.5 SSTAT Register (Read-Only) 

3-21 



3-22 

:ltr:~:~;ll~~: ~1~1;:::: ,:::t::::l" :::::::::;~1~~ ~1~1;:::: .::::~::~~::; l~lt:~;l:::::t: ~.· .. :~.:l .. :l .. :~.:;:::;.;::: .. ;::;.::.:; ... :~.:;.:::' ...... ;: ... :; ... :~ ... ;~::.;::;.::::.:: .. :: .... ::.: .. :~.::." ... :1 ... :; ... :; ... :~ ... :t:: ... :; ... :~ ... :~ ... :~ .. ;:. :~:.:; .... :l ... :l ... :l ... :f;':: •• : •• ~ .•• :~ ••• :~ •. :~ ... :~:::: ".::.':':: •• :~ ••• :~.;.::::::;.::.:; .. :'.' .••• :~.:"' •• :':' .•• :~ •• :'.~ .•• :~ ••• :~ 
iU':"':'" 1~1~ :~lt:)11~;;!!~~~~;;j!~11~1~ :1~f~~11 ~1~1 1~1~ !i~i 

The empty status bits indicate that the number of pop operations for the 
stack is greater than or equal to the number of push operations that have 
occurred since the last processor reset. The overflow status bits indicate 
that the number of push operations for the stack has exceeded the number 
of pop operations, by an amount that is greater than the total depth of the 
stack. When this occurs, the values most recently pushed will be missing 
from the stack-older stack values are considered more important than 
new. 

Since a stack overflow represents a permanent loss of information, the 
stack overflow status bits "stick" once they are set, and subsequent pop 
operations have no effect on them. In this situation, then, it is possible to 
have both the stack empty and stack overflow bits set for a given stack. 

Assume, for example, that the four-location count stack is overflowed by 
five successive pushes. Five successive pops will restore the stack empty 
condition, but will not clear the overflow condition. The processor must be 
reset to clear the stack overflow status. 

3.5.3 Mode Status Register (MSTAT) 
The MSTAT register determines the operating mode of the processor. The 
individual bits of MSTAT are defined as shown in Figure 3.6. 

6 5 4 3 2 0 

Figure 3.6 MSTAT Register 

Data Register Bank Select 

o = primary, 1 = secondary 
Bit Reverse Mode Enable (DAG1) 

ALU Overflow Latch Mode Enable 

AR Saturation Mode Enable 
MAC Result Placement 

o = fractional, 1 = integer 
Timer Enable 
Go Mode Enable 



!!!!r~}) ~:~:iii::.ii:::~:::::, .:::i:::::i:~:: ~:~:iii:: .:::;':";i::. :~:~:::';~:::::"'~i;: .~.·:,: .. ~.,· .. :f ... :~.:,.,:.,::::.,.: .. ::·:'.:: ... :;.',.:'.'.;.:, ,:."':":~":;': .. "::.:::,:':: .. :;.;., ..... :~ .. :~.::" ,.,:~ .. :~.': .. :: .. :;.'",:/:::;: ... ,:.:~: ... :~' ... :: ... :: .:.,,:: .. :!: ... ,; .. :! .... ,:!!:, .... ,1 ... :~.~ .. , .. :~.,.:~.:;:: ... :i.':;.: .. ::.:;:.:~.,:.:.',·:'::.'.::" .• :~ .. :~·.,::'.' .~ •. :, .• :~ ... :l ... :~. 
~t~::·· ~~~~ :ll~l:::,::i~~ :!!!;;;~;;!I!!' ~~~~ :{;;;;i1 ~~~~ ~~~~ ~~~~ 

MSTAT can be modified by writing a new value to it with a MOVE 
instruction. Unlike the other status registers, MSTAT can also be altered 
with the Mode Control instruction (ENA, DIS). The Mode Control 
instruction provides a high-level, self-documenting method of configuring 
the processors' operating modes. Refer to the description of the Mode 
Control instruction in Chapter 15, "Instruction Set Reference," for further 
details. 

To enable the bit reverse mode, for example, the following instruction 
could be used: 

The bit-reverse mode, when enabled, bitwise reverses all addresses 
generated by data address generator 1 (DAG1). This is useful for 
reordering the input or output data of an FFT algorithm. 

The ADSP-2100 family processors include a secondary register set which 
can be used to provide a fresh set of ALU, MAC, and Shifter registers at 
any time, for example during execution of a subroutine. The data register 
bank select bit of MSTAT determines which set of data registers is active 
(O=primary, l=secondary). The secondary register set duplicates all of the 
input and result registers of the computation units, ALU, MAC, and 
Shifter: 

AXO 
AXl 
AYO 
AYl 
AF 
AR 

MXO 
MXl 
MYO 
MYl 
MF 
MRO 
MRl 
MR2 

51 
SE 
SB 
SRl 
SRO 

The following mode control instruction, for example, switches from the 
processor's primary register set to its secondary register set: 

while the following instruction switches back to the primary register set: 

3-23 



,·::·.:;~.:< •• ::.::::::::;:.:t .. :~,: .. :~~:.:~ .::,: ~lt:::l~ :;:;::* :::~:::::::~. ':'::::::;:;:; :;:;::::: ,;t::;~:l ~:;:::;:::~:;;;::;;::: ;.: .. :f.:f .. :l: .. :f.:.'.:::·:.:'::.:::':.:':.:',: •• ::'.·.:'.::,: .• :,"::"::':"':~""~::.::::::::,:: .•• :~' •• :~ •• :~::,'. .:."' ••. :.:': :·;,:~, ••• :r ... :l: ... :~.'.,:f:·:: , •• :~ .•• :~ ••• :~ •• :~.,.,:;:::: ".::, •• :~ •• :~ ••• :;.,::::::::::.:: •• ,:~, •• ::~ •• :~,.::.'.' ::.:r ... :~: ... :r .. ::.: . l~lt::~>: ~l~! i~~l~:::i~~:~~!!;~~~;;!!!l ~lll i~l~~~~~~ll[ l~~ ~l~l1 

3-24 

The ALU overflow latch mode causes the A V status bit to "stick" once it is 
set. In this mode, A V will be set by an overflow and will remain set even if 
subsequent ALU operations do not generate overflows. A V can then be 
cleared only by writing a zero into it. 

AR saturation mode, when enabled, causes AR to be saturated to the 
maximum positive (Ox7FFF) or negative (Ox8000) values whenever an 
ALU overflow occurs. 

The MAC result placement mode determines whether the multiplier 
operates in integer or fractional format. This mode is discussed in Chapter 
2, "Computational Units." 

Setting the timer enable bit causes the timer to begin decrementing. 
Clearing this bit halts the timer. 

Enabling GO mode allows the processor to continue executing instructions 
from internal program memory during a bus grant. The processor will 
halt, waiting for the buses to be released, only when an access of external 
memory is required. When GO mode is disabled, the processor always 
halts during bus grant. 

3.6 CONDITIONAL INSTRUCTIONS 
The condition logic circuit of the program sequencer determines whether a 
conditional instruction is executed, for example a jump, call, or arithmetic 
operation. It also controls implicit loop sequencing operations based upon 
the loop continuation condition on top of the loop stack. The condition 
logic takes raw status information from ASTAT and the down counter and 
derives a set of sixteen composite status conditions. 

The status conditions and corresponding assembly language syntax are 
listed in Table 3.9. These status conditions are used with the IF condition 
clause available on some instructions. In addition, the status of the PI pin 
(Flag In) can also be used as a condition for JUMP and CALL instructions. 



!l!t:~:Jli :~:~::::: ::::i::::::::,. .:::::::::i~:~: :~:~::::: .ii::::::::::: ~:~:::;:::~,:i;:::~,,: ~.·:;.··.:i:~: ... :~;.:·.:::;.;:::.::::·.::.:;.: .. :::.:: .. ':,' ... ".:' ... :; ... :l.~.: •.. :i.::.;.:::'.::· •• :' ••• :~ •• :1:'.,' ~.,,:, .•. :; •. :l.::.::.:~::::::t ... : .... :; .. :~ ..•. :~ .. :'. :.:.:: ..•. :!:~.:: ... :! ... :!.::: ... :~ .. :~ .... :~.~ .. : .... :~::::: ':' ... :':~: ... :l.:'.:;:: .. :.·::.::·,' .. :' .. :~"':~":'.'. .:~: ... :~1 .• :: .. :~: .• :::'.·.:~ •. :f.:'::::~.:.::~.: .. :l.::l, .. :~~: .. , 
!ll':':':'" illi '~lll;:::,Jl; :!!!;~~~;~l!!~: II :11~~~~~illlll llll llll 

Syntax Status Condition True If: 
EQ Equal Zero AZ = 1 
NE Not Equal Zero AZ = 0 
LT Less Than Zero AN .XOR. A V = 1 
GE Greater Than or Equal Zero AN .XOR. A V = 0 
LE Less Than or Equal Zero (AN .XOR. A V) .OR. AZ = 1 
GT Greater Than Zero (AN .XOR. A V) .OR. AZ = 0 
AC ALU Carry AC = 1 
NOT AC Not ALU Carry AC = 0 
A V ALU Overflow A V = 1 
NOT A V Not ALU Overflow A V = 0 
MV MAC Overflow MV = 1 
NOT MV Not MAC Overflow MV = 0 
NEG X Input Sign Negative AS = 1 
pas X Input Sign Positive AS = 0 
NOT CE Not Counter Expired 
FLAG_IN* PI pin 
NOT FLAG_IN* Not PI pin 

Last sample of PI pin = 1 
Last sample of PI pin = 0 

* Only available on JUMP and CALL instructions. 

Table 3.9 IF Condition Logic 

3.7 TOPPCSTACK 
A special version of the Register-to-Register Move instruction, Type 17, is 
provided for reading (and popping) or writing (and pushing) the top 
value of the PC stack. The normal POP PC instruction does not save the 
value popped from the stack, so to save this value into a register you must 
use the following special instruction: 

reg = TOPPCSTACK; {pop PC stack into reg} 
{"toppcstack" may also be lowercase} 

The PC stack is also popped by this instruction, after a one-cycle delay. 
A Nap should usually be placed after the special instruction, to allow the 
pop to occur properly: 

reg = TOPPCSTACK; 
NOP; {allow pop to occur correctly} 

3-25 



3-26 

There is no standard PUSH PC stack instruction. To push a specific value 
onto the PC stack, therefore, use the following special instruction: 

TOPPCSTACK= reg; {push reg contents onto PC stack} 

The stack is pushed immediately, in the same cycle. 

Examples: 

AXO = TOPPCSTACK; 
NOP; 

TOPPCSTACK= 17 ; 

{pop PC stack into AXO} 

{push contents of 17 onto PC stack} 

Only the following registers may be used in the special TOPPCSTACK 
instructions: 

ALU,MAC, 
& Shifter 
Registers 
AXO 
AXI 
MXO 
MXl 
AYO 
AYI 
MYO 
MYI 
AR 
MRO 
MRI 
MR 
SI 
SE 
SRO 
SRI 

DAG 
Registers 
IO 14 
I1 IS 
12 16 
13 17 
MO M4 
Ml M5 
M2 M6 
M3 M7 
LO L4 
Ll L5 
L2 L6 
L3 L7 

The Type 17 Register Move instruction is described in Chapter 15, 
Instruction Set Reference. Note that TOPPCST ACK may not be used as a 
register in any other instruction type! 



:~:t:~:~Il :;:;::::: ,:::::::::::::. .::::::::::;:;: :;:;::::: ;:::::::;:::: ;:;:;';:::;:;;;:::;:? ;,':~,".:~: .. :;.:~,.:~,.:::;.:::::.:.:,'.::',:: .. :; .. :~:,:::.,' ""'::":~'::'::'~::.::.::::'::::.::'.::" .. ,:;:,:"::,'.' ":~:::',:.~,,::::.:,,:l,::;:::,,:::::": •• :;,:::':·,,::, :~:.::.:.~: •• :~.::::.:: •• ,:~::,:. :::.: •• :~.:::.:,,:l.:,,::::::: ,::,::".:;,:::,,~.,::::,::;:.:::,.::""::':":;'::":' •• :l.· .. ::.~.:~.: ... :~ 
:~r:::::': ~~~f. :;~t:)~~~: :!!!;;~;~~illl: ~~~l :~~t;l~ ~~~~ l~~~ ~~~l . 

3.7.1 TOPPCSTACK Restrictions 
There are several restrictions on the use of the special TOPPCSTACK 
instructions, as described below. 

1.) The pop and read TOPPCSTACK instruction may not be placed 
directly before an RTI instruction (return from interrupt). A NOP 
must be inserted in between: 

reg = TOPPCSTACK; 
NOP; {allow pop to occur correctly} 
RTI; {another pop happens automatically} 

2.) The pop and read TOPPCSTACK instruction may not be the last or 
next-to-Iast instruction in a Do Until loop. Neither instruction 1 nor 
instruction 2 may be the pop / read TOPPCSTACK instruction in the 
following code: 

DO loop UNTIL CE; 

loop: 

AXO=DM(I5,M5) ; 

instruction 2; 
instruction 1; 

3.) There must be an equal number of pushes and pops within any Do 
Until loop, including any normal POP PC instructions as well as the 
special TOPPCSTACK pop / read and push/write instructions. 

4.) Several restrictions exist in relation to the RTS (return from 
subroutine), RTI (return from interrupt routine), and POP PC 
instructions. If instruction 3 in the following sequence is an RTS, RTI, 
or POP PC, 

instruction 1; 
instruction 2; 
instruction 3; {if this is an RTS, RTI, or POP PC ... } 

3-27 





Data Transfer 

4.1 OVERVIEW 
This chapter describes the processor units that control the movement of 
data to and from the processor, and from one data bus to the other within 
the processor. These are the data address generators (DAGs) and the unit 
for exchanging data between the program memory data bus and the data 
memory data bus-the PMD-DMD bus exchange unit. 

4.2 DATA ADDRESS GENERATORS (DAGS) 
Every device in the ADSP-2100 family contains two independent data 
address generators so that both program and data memories can be 
accessed simultaneously. The DAGs provide indirect addressing 
capabilities. Both perform automatic address modification. For circular 
buffers, the DAGs can perform modulo address modification. The two 
DAGs differ: DAG1 generates only data memory addresses, but provides 
an optional bit-reversal capability, DAG2 can generate both data memory 
and program memory addresses, but has no bit-reversal capability. 

While the following discussion explains the internal workings of the 
DAGs, bear in mind that the ADSP-2100 Family Development Software 
(assembler and linker) provides a direct method for declaring data buffers 
as circular or linear and for managing the placement of the buffer in 
memory. Only the initializing of DAG registers must be explicitly 
programmed: see "Indirect Addressing" and "Modulo Addressing 
(Circular Buffers)" below. 

4.2.1 DAG Registers 
Figure 4.1, on the following page, shows a block diagram of a single data 
address generator. There are three register files: the modify (M) register 
file, the index (I) register file, and the length (L) register file. Each of the 
register files contains four 14-bit registers which can be read from and 
written to via the DMD bus. 

4 

4-1 



FROM 
INSTRUCTION 

14 

DMDBUS 

FROM 
INSTRUCTION 

4-2 

L 
REGISTERS 

4x 14 

MODULUS 
LOGIC 

I 
REGISTERS 

4x 14 

14 

ADDRESS 

Figure 4.1 Data Address Generator Block Diagram 

M 
REGISTERS 

4x 14 

} DAGI ONLV 

The I registers (10-13 in DAGl, 14-17 in DAG2) contain the actual addresses 
used to access memory. When data is accessed in indirect mode, the 
address stored in the selected I register becomes the memory address. 
With DAGl, the output address can be bit-reversed by setting the 
appropriate mode bit in the mode status register (MSTAT) as discussed 
below or by using the ENA BIT_REV instruction. Bit-reversal facilitates 
FFT addressing. 

The data address generators employ a post-modify scheme; after an 
indirect data access, the specified M register (MO-M3 in DAGl, M4-M7 in 
DAG2) is added to the specified I register to generate the updated I value. 
The choice of the I and M registers are independent within each DAG. In 
other words, any register in the 10-3 set may be modified by any register in 
the MO-M3 set in any combination, but not by those in DAG2 (M4-M7). 
The modification values stored in M registers are signed numbers so that 
the next address can be either higher or lower. 

2 



The address generators support both linear addressing and circular 
addressing. The value of the L register corresponding to an I register (for 
example, LO would correspond to 10) determines which addressing scheme is used 
for that I register. For circular buffer addressing, the L register is initialized 
with length of the buffer. For linear addressing, the modulus logic is 
disabled by setting the corresponding L register to zero. 

Each time an I register is selected, the corresponding L register provides 
the modulus logic with the length information. If the sum of the M register 
and the I register crosses the buffer boundary, the modified I register 
value is calculated by the modulus logic using the L register value. 

All data address generator registers (I, M, and L registers) are loadable 
and readable from the lower 14 bits of the DMD bus. Since I and L register 
contents are considered to be unsigned, the upper 2 bits of the DMD bus 
are padded with zeros when reading them. M register contents are signed; 
when reading an M register, the upper 2 bits of the DMD bus are sign­
extended. 

4.2.2 Indirect Addressing 
The ADSP-2100 family processors allow two addressing modes for data 
memory fetches: direct and register indirect. Indirect addressing is 
accomplished by loading an address into an I (index) register and 
specifying one of the available M (modify) registers. 

The L registers are provided to facilitate wraparound addressing of 
circular data buffers. A circular buffer is only implemented when an L 
register is set to a non-zero value. For linear (i.e. non-circular) indirect 
addressing, the L register corresponding to the I register used must be set 
to zero. 

Do not assume that the L registers are automatically initialized or may be 
ignored; the I, M, and L registers contain random values following processor 
reset. Your program must initialize the L registers corresponding to any I 
registers it uses. 

4.2.2.1 Initialize L Registers To 0 For Non-Circular Addressing 
Setting an L register to a non-zero value activates the processor's circular 
addressing modulus logic. For linear indirect addressing you must set the 
appropriate L register to zero to disable the modulus logic. 

4-3 



4-4 

Here is a simple example of linear indirect addressing: 

13=Ox3800i 
M2=Oi 
L3=Oi 
AXO=DM(13 ,M2) i 

Here is an example which uses a memory variable to store an address 
pointer: 

.VAR/DM/RAM addr-ptri 
13=DM( addr-ptr)i 

{variable holds address to be accessed} 
{13 loaded using direct addressing} 
{disable circular addressing} L3=Oi 

Ml=Oi {no post-modify of 13} 
AXO=DM (13 ,Ml) i {AXO loaded using indirect addressing} 

4.2.3 Modulo Addressing (Circular Buffers) 
The modulus logic implements automatic modulo addressing for accessing 
circular data buffers. To calculate the next address, the modulus logic uses 
the following information: 

• The current location, found in the I register (unsigned). 
• The modify value, found in the M register (signed). 
• The buffer length, found in the L register (unsigned). 
• The buffer base address. 

From these inputs, the next address is calculated according to the formula: 

Next Address = (I + M - B) Modulo (L) + B 

where: 

I = current address 
M = modify value (signed) 
B = base address 
L = buffer length 
M+I modified address 

The inputs are subject to the condition: 

IMI <L 

This condition insures that the next address cannot wrap around the buffer 
more than once in one operation. 



4.2.4 Calculating The Base Address 
The base address of a circular buffer of length L is 2n or a multiple of 2n

, 

where n satisfies the condition: 

In other words, the base address is L "rounded" upwards to the closest 
power of 2 (or its multiple). This rule implies that a certain number of low­
order bits of the base address must be zeroes. 

In practice, you do not need to calculate n yourself; the linker 
automatically places circular buffers at a proper address. 

4.2.4.1 Circular Buffer Base Address Example 1 
For example, let us assume that the buffer length is eight. The length of the 
buffer must be less than or equal to some value 2n; n therefore, must be 
three or greater. The left side of the inequality rule specifies that the buffer 
length must be greater than the value 2n

-
1
; n therefore must be three or less. 

The only value of n that satisfies both inequalities is three. Valid base 
addresses are multiples of 2n, so in this example valid base addresses are 
multiples of eight: Ox0008, OxOOl0, Ox0018, and so on. 

4.2.4.2 Circular Buffer Base Address Example 2 
As a second example, assume a buffer length of seven. The inequality 
again yields the same value for n, namely, three. With a buffer length of 
seven, therefore, the valid base addresses are multiples of eight: Ox0008, 
Ox0010, Ox0018, and so on. . 

4.2.4.3 Circular Buffer Operation Example 1 
Suppose that 10 = 5, MO = I, LO = 3, and the base address = 4. The next 
address is calculated as: 

(10 + MO - B) mod LO +B = (5 + 1- 4) mod 3 + 4 = 6 

The successive address calculations using 10 for indirect addressing 
produce the sequence: 5,6,4,5,6,4,5 .... For MO = -1 (Ox3FFF), 10 would 
produce the sequence: 5,4, 6, 5,4, 6, 5, 4 ... . 

4-5 



4-6 

4.2.4.4 Circular Buffer Operation Example 2 
Assume that IO = 9, MO = 3, LO = 5, and the base address = 8. The 
five-word buffer resides at locations 8 through 12 inclusive. The next 
address is calculated as: 

(IO + MO - B) mod LO + B = (9 + 3 - 8) mod 5 + 8 = 12 

The successive address calculations using IO for indirect addressing 
produce the sequence: 9, 12, 10,8, 11,9 ... This example highlights the fact 
that the address sequence does not have to result in a "direct hit" of the 
buffer boundary. 

4.2.5 Bit-Reverse Addressing 
The bit-reverse logic is primarily intended for use in FFT computations 
where inputs are supplied or the outputs generated in bit-reversed order. 
Bit-reversing is available only on addresses generated by DAG1. The pivot 
point for the reversal is the midpoint of the 14-bit address, between bits 6 
and 7. This is illustrated in the following chart. 

Individual address lines (ADDR
N

) 

Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 .11 12 13 

Bit-reversed addressing is a mode, enabled and disabled by setting a 
mode bit in the mode status register (MSTAT). When enabled, all 
addresses generated using index registers IO-3 are bit-reversed upon 
output. (The modified valued stored back after post-update remains in 
normal order.) This mode continues until the status bit is reset. 

It is possible to bit-reverse address values less than 14 bits wide. You must 
determine the first address and also initialize the M register to be used 
with a value calculated to modify the I register bit-reversed output to the 
desired range. This value is: 

where N is the number of bits you wish to output reversed. For a 
complete example of this, refer to Section 6.6.5.2 "Modified Butterfly" in 
Chapter 6, One-Dimensional FFTs, of the applications handbook Digital 
Signal Processing Applications Using the ADSP-2100 Family (Volume 1). 



4.3 PROGRAMMING DATA ACCESSES 
The ADSP-2100 Family Development Software supports the declaration 
and use of a simple data structure: one-dimensional arrays, or buffers. The 
array may contain a single value (a variable) or multiple values (an array). 
In addition, the array may be used as a circular buffer. Here is a brief 
discussion of each instance, with an example of how they are declared and 
used in assembly language. Complete syntax for all assembler directives is 
given in the ADSP-2100 Family Assembler Tools Manual. 

4.3.1 Variables & Arrays 
Arrays are the basic data structure of the ADSP-21xx. In our literature, the 
word "array" and the expression "data buffer" (as well as "variable") are 
used interchangeably. Arrays are declared with assembler directives and 
can be referenced indirectly and by name, can be initialized from 
immediate values in a directive or from external data files, and can be 
linear or circular with automatic wraparound. 

An array is declared with a directive such as 

.VAR/DM coefficients[128]i 

This declares an array of 12816-bit values located in data memory (DM). 
The special operators A and % reference the address and length, 
respectively, of the array. It could be referenced as shown below: 

IO=Acoefficients; 
LO=Oi 
MXO=DM(IO ,MO) i 

{point to address of buffer} 
{set L register to zero} 
{load MXO from buffer} 

These instructions load a value into MXO from the beginning of the 
coefficients buffer in data memory. With the automatic post-modify of the 
DAGs, you could execute the second of these instructions in a l~op and 
continuously advance through the buffer. 

Alternatively, when you only need to address the first location, you can 
directly use the buffer name as a label in many circumstances such as 

MXO=DM(coefficients)i 

The linker substitutes the actual address for the label. 

4-7 



4-8 

It is also possible to initialize a complete array/buffer from a data file, 
using the .INIT directive: 

.INIT coefficients: <filename.dat>i 

This assembler directive reads the values from the file filename.dat into the 
array at link time. This feature is supported only in the simulator - data 
cannot be loaded directly into on-chip data memory by the hardware 
booting sequence. 

An array or data buffer with a length of one is a simple single-word 
variable, and is declared in this way: 

.VAR/DM coefficienti 

4.3.2 Circular Buffers 
A common requirement in DSP is the circular buffer. This is directly 
implemented by the processors' data address generators (DAGs), using 
the L (length) registers. First, you must declare the buffer as circular: 

.VAR/DM/CIRC coefficients[128]i 

This identifies it to the linker for placement on the proper address 
boundary. Next, you must initialize the L register, typically using the 
assemblers's % operator (or a constant) and, in the example below, the I 
register and M register: 

LO=%coefficientsi 
IO=Acoefficientsi 
MO=li 

Now a statement like 

MXO=DM(IO,MO) i 

{length of circular buffer} 
{point to first address of buffer} 
{increment by 1 location each time} 

{load MXO from buffer} 

placed in a loop, cycles continuously through coefficients and wraps 
around automatically. 



4.4 PMD·DMD BUS EXCHANGE 
The PMD-DMD bus exchange unit couples the program memory data bus 
and the data memory data bus, allowing them to transfer data between 
them in both directions. Since the program memory data (PMD) bus is 24 
bits wide, while the data memory data (DMD) bus is 16 bits wide, only the 
upper 16 bits of PMD can be directly transferred. An internal register (PX) 
is loaded with (or supplies) the additional 8 bits. This register can be 
directly loaded or read when the full 24 bits a.re required. 

Note that when reading data from program memory and data memory 
simultaneously, there is a dedicated path from the upper 16 bits of the 
PMD bus to the Y registers of the computational units. This read-only path 
does not use the bus exchange circuit; it is the path shown on the 
individual computational unit block diagrams. 

4.4.1 PMD·DMD Block Diagram Discussion 
Figure 4.2 shows a block diagram of the PMD-DMD bus exchange. There 
are two types of connections provided by this circuitry. 

PMD BUS 
24 

8 (LOWER) 

8 (LOWER) 

DMD BUS 

Figure 4.2 PMD-DMD Bus Exchange 

16 (UPPER) 16 (UPPER) 

16 16 

4-9 



4-10 

The first type of connection is a one-way path from each bus to the other. 
This is implemented with two tristate buffers connecting the DMD bus 
with the upper 16 bits of the PMD bus. One of these two buffers is 
normally used when data is exchanged between the program memory and 
one of the registers connected to the DMD bus. This is the path used to 
write data to program memory; it is not shown in the individual 
computational unit block diagrams. 

The second connection is through the PX register. The PX register is 8-bits 
wide and can be loaded from either the lower 8 bits of the DMD bus or the 
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8 
bits of either bus. 

PXregister access follows the principles described below. 

From the PMD bus, the PX register is: 

1. Loaded automatically whenever data (not an instruction) is read from 
program memory to any register. For example: 

AXO = PM(I4,M4); 

In this example, the upper 16 bits of a 24-bit program memory word are 
loaded into AXO and the lower 8 bits are automatically loaded into px. 

2. Read out automatically as the lower 8 bits when data is written to 
program memory. For example: 

PM(I4,M4) = AXO; 

In this example, the 16 bits ofAXO are stored into the upper 16 bits of a 
24-bit program memory word. The 8 bits of PX are automatically 
stored to the 8 lower bits of the memory word. 



From the DMD bus, the PX register may be: 

1. Loaded with a data move instruction, explicitly specifying the PX 
register as the destination. The lower 8 bits of the data value are used 
and the upper 8 are discarded. 

PX=AXO; 

2. Read with a data move instruction, explicitly specifying the PX register 
as a source. The upper 8 bits of the value read from the register are all 
zeroes. 

AXO =PX; 

Whenever any register is written out to program memory, the source 
register supplies the upper 16 bits. The contents of the PX register are 
automatically added as the lower 8 bits. If these lower 8 bits of data to be 
transferred to program memory (through the PMD bus) are important, 
you should load the PX register from DMD bus before the program 
memory write operation. 

4-11 





Serial Ports 

·5.1 OVERVIEW 
Synchronous serial ports, or SPORTs, support a variety of serial data 
communications protocols and can provide a direct interconnection 
between processors in a multiprocessor system. 

These ADSP-2100 family processors contain serial ports: 

Processor 
ADSP-2101 
ADSP-2105 
ADSP-2115 
ADSP-2111 
ADSP-2171 
ADSP-2181 
ADSP-21msp58/59 

Number of 
Serial Ports 

2 
1 
2 
2 
2 
2 
2 

The serial ports, designated SPORTO and SPORT1, have some differences 
that are described in this chapter. On the ADSP-2105, only SPORT1 is 
provided. 

5.2 BASIC SPORT DESCRIPTION 
Each SPORT has a five-pin interface: 

Pin Name 
SCLK 
RFS 
TFS 
DR 
DT 

Function 
Serial clock 
Receive frame synchronization 
Transmit frame synchronization 
Serial data receive 
Serial data transmit 

Table 5.1 SPORT External Interface 

5 

5-1 



5-2 

A SPORT receives serial data on its DR input and transmits serial data on 
its DT output. It can receive and transmit simultaneously, for full duplex 
operation. The data bits are synchronous to the serial clock SCLK, which is 
an output if the processor generates this clock or an input if the clock is 
generated externally. Frame synchronization signals RFS and TFS are used to 
indicate the start of a serial data word or stream of serial words. 

Figure 5.1, shows a simplified block diagram of a single SPORT. Data to be 
transmitted is written from an internal processor register to the SPORT's TX 
register via the DMD bus. This data is optionally compressed in hardware, 
then automatically transferred to the transmit shift register. The bits in the shift 
register are shifted out on the SPORT's DT pin, MSB first, synchronous to the 
serial clock. The receive portion of the SPORT accepts data from the DR pin, 
synchronous to the serial clock. When an entire word is received, the data is 
optionally expanded, then automatically transferred to the SPORT's RX 
register, where it is available to the processor. 

The following is a list of SPORT characteristics. Many of the SPORT 
characteristics are configurable to allow flexibility in serial communication. 

• Bidirectional: each SPORT has independent transmit and receive sections. 

I Transmit Shift Register I-

, 
DT 

DMDBus 
16 

Companding 
Hardware 

Serial 
Control 

r---

I 
4..- Internal 

Serial 
Clock 

Generator 
TFS SCLK 

Figure 5.1 Serial Port Block Diagram 

16 

t--
---t Receive Shift Register J 

RFS DR 

t t 



• Double-buffered: each SPORT section (both receive and transmit) has a 
data register for transferring data words to and from other parts of the 
processor and a register for shifting data in or out. The double-buffering 
provides additional time to service the SPORT. 

• Clocking: each SPORT can use an external serial clock or generate its 
own in a wide range of frequencies down to 0 Hz. See Section 5.5. 

• Word length: each SPORT supports serial data word lengths from 
three to sixteen bits. See Section 5.6. 

• Framing: each SPORT section (receive and transmit) can operate with 
or without frame synchronization signals for each data word; with 
internally-generated or externally-generated frame signals; with active 
high or active low frame signals; with either of two pulse widths and 
frame signal timing. See Section 5.7. 

• Companding in hardware: each SPORT can perform A-law and J.L-Iaw 
companding according to CCITT recommendation G.711. See 
Section 5.10. 

• Autobuffering with single-cycle overhead: using the DAGs, each 
SPORT can automatically receive and/ or transmit an entire circular 
buffer of data with an overhead of only one cycle per data word. 
Transfers between the SPORT and the circular buffer are automatic in 
this mode and do not require additional programming. See 
Section 5.11. 

• Interrupts: each SPORT section (receive and transmit) generates an 
interrupt upon completing a data word transfer, or after transferring 
an entire buffer if autobuffering is used. See Section 5.13. 

• Multichannel capability: SPORTO can receive and transmit data 
selectively from channels of a serial bitstream that is time-division 
multiplexed into 24 or 32 channels. This is especially useful for T1 
interfaces or as a network communication scheme for multiple 
processors. See Section 5.12. Note: The ADSP-2105 has only one serial 
port (SPORTl) and does not support multichannel operation. 

• Alternate configuration: SPORT1 can be configured as two external 
interrupt inputs, IRQU and IRQI, and the Flag In and Flag Out signals 
instead of as a serial port. The internally generated serial clock may 
still be used in this configuration. See Section 5.4. 

5-3 



5-4 

5.2.1 Interrupts 
Each SPORT has a receive interrupt and a transmit interrupt. The priority 
of these interrupts is shown in Table 5.2. 

Highest SPORTO Transmit (on 2-SPORT processors) 
SPORTO Receive (on 2-SPORT processors) 
SPORTl Transmit 

Lowest SPORTl Receive 

Table 5.2 SPORT Interrupt Priorities 

For complete details about how interrupts are handled, see the 
"Interrupts" section in Chapter 3, "Program Control." 

5.2.2 SPORT Operation 
Writing to a SPORT's TX register readies the SPORT for transmission; the 
TFS signal initiates the transmission of serial data. Once transmission has 
begun, each value written to the TX register is transferred to the internal 
transmit shift register and subsequently the bits are sent, MSB first. Each 
bit is shifted out on the rising edge of SCLK. 

After the first bit (MSB) of a word has been transferred, the SPORT 
generates the transmit interrupt. The TX register is now available for the 
next data word, even though the transmission of the first word is ongoing. 

In the receiving section, bits accumulate as they are received in an internal 
receive register. When a complete word has been received, it is written to 
the RX register and the receive interrupt for that SPORT is generated. 

Interrupts are generated differently if autobuffering is enabled; see 
"Autobuffering" later in this chapter. 

5.3 SPORT PROGRAMMING 
To the programmer, the SPORT can be viewed as two functional sections. 
The configuration section is a block of control registers (mapped to data 
memory) that the program must initialize before using the SPORTs. The 
data section is a register file used to transmit and receive values through 
the SPORT. 



5.3.1 SPORT Configuration 
SPORT configuration is accomplished by setting bit and field values in 
configuration registers. These registers are memory mapped in data 
memory space. SPORTO configuration registers occupy locations Ox3FF3 
to Ox3FFA; SPORTl configuration registers occupy locations Ox3FEF to 
Ox3FF2. The contents of these registers are summarized in Table 5.3 and in 
the register summary in Appendix E. The effects of the various settings 
are described at length in the sections that follow. 

Address 
Ox3FFA 
Ox3FF9 
Ox3FF8 
Ox3FF7 
Ox3FF6 

Ox3FF5 
Ox3FF4 
Ox3FF3 
Ox3FF2 

Ox3FF1 
Ox3FFO 
Ox3FEF 

Contents 
SPORTO* multichannel receive word enables (31-16) 
SPORTO* multichannel receive word enables (15-0) 
SPORTO* multichannel transmit word enables (31-16) 
SPORTO* multichannel transmit word enables (15-0) 
SPORTO* control register 

Multichannel mode controls 
Serial clock source 
Frame synchronization controls 
Companding mode 
Serial word length 

SPORTO* serial clock divide modulus (determines frequency) 
SPORTO* receive frame sync divide modulus (determines frequency) 
SPORTO* autobuffer control register 
SPORT1 control register 

Flag output value 
Serial clock source 
Frame synchronization controls 
Companding mode 
Serial word length 

SPORTl serial clock divide modulus (determines frequency) 
SPORTl receive frame sync divide modulus (determines frequency) 
SPORT 1 autobuffer control register (not on ADSP-21msp58/59) 

*SPORTO configuration registers are defined only on processors that have both SPORTO and SPORTl 

Table 5.3 SPORT Configuration Registers 

There are two ways to initialize or to change values in SPORT 
configuration registers: write a register to an immediate address 
(instruction type 3) or write immediate data to an indirect address 
(instruction type 2). With either method, it is important to configure the 
serial port before enabling it. 

5-5 



5-6 

The first method of programming configuration registers requires no 
setup of DAG registers but does require two instructions to perform the 
write. For example: 

AXO = Ox6B27; 
DM(Ox3FF2) = AXO; 

AXO = 0; 
DM(Ox3FF3) = AXO; 

{the contents ofAXO are written} 
{to the address Ox3FF2} 

{the contents ofAXO are written} 
{to address Ox3FF3} 

In the second method, the DAG (D index register must contain the data 
memory address of the configuration register to be written. The modify 
(M) register, which updates the I register after the write, must also contain 
a valid value. And the length (L) register that has the same number as the 
I register must be initialized to zero so that the circular buffer capability is 
not active. For example: 

10 = Ox3FF2; 
MO = 1; 
LO = 0; 
DM(IO,MO) Ox6B27; 

DM(IO,MO) = 0; 

{the constant Ox6B27 is written to 
{address pointed to by 10; pointer 
{then modified by MO} 
{address Ox3FF3 is set to O} 

Either method works. The second method requires only one cycle to 
configure the registers once the I, M and L registers are initialized. This 
method is, however, more prone to error because the registers are written 
indirectly. You must make sure that the I register contains the intended 
value before the write. 

5.3.2 Receiving And Transmitting Data 
Each SPORT has a receive register and a transmit register. These registers 
are not memory mapped, but are identified by assembler mnemonics. The 
transmit registers are named TXO and TX1, for SPORTO and SPORT1 
respectively. Receive registers are named RXO and RX1 for SPORTO and 
SPORT1 respectively. These registers can be accessed at any time during 
program execution using a data memory access with immediate address, 
load of a non-data register with immediate data or register-to-register 
move (instruction types 3,7 and 17). For example, the following 
instruction would ready SPORT1 to transmit a serial value, assuming 
SPORT1 is configured and enabled: 

TX1 = AXO; {the contents ofAXO are transmitted} 
{on SPORT1} 



The following instruction would access a serial value received on SPORTO: 

AYO = RXO; {the contents of SPORTO receive register} 
{is transferred to AYO} 

Because the SPORTs are interrupt driven, these instructions would 
typically be executed within a interrupt service routine in response to a 
SPORT interrupt. 

~4 SPORT ENABLE 
SPORTs are enabled through bits in the system control register. This 
register is mapped to data memory address Ox3FFF. Bit 12 enables 
SPORTO if it is a 1, and bit 11 enables SPORT 1 if it is a 1. Both of these bits 
are cleared at reset, disabling both SPORTs. 

Bit 10 of the system control register determines the configuration of 
SPORTl, either as a serial port or as interrupts and flags, according to 
Table 5.4 on the next page. If bit 10 is a 1, SPORT 1 operates as a serial port; 
if it is a 0, the alternate functions are in effect (and bit 11 is ignored). At 
reset, bit 10 is a 1, so SPORTl functions as a serial port. 

System Control Register 
Ox3FFF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

II L SPORTl Configure 
1 = serial port, 0 = FI, FO, IRQO, IRQ1, SCLK 

SPORT1 Enable 
1 = enabled, 0 = disabled 

SPORTO Enable 
1 = enabled, 0 = disabled 

Figure 5.2 SPORT Enables In The System Control Register 

5-7 



5-8 

Pin Name 
RFSI 
TFSI 
DRI 
DTI 
SCLKI 

Alternate Name 
IRQO 
IRQI 
PI 
FO 
Same 

Table 5.4 SPORT1 Alternate Configuration 

5.5 SERIAL CLOCKS 

Alternate Function 
External interrupt 0 
External interrupt 1 
Flag input 

. Flag output 
Same 

Each SPORT operates on its own serial clock signal. The serial clock 
(SCLK) can be internally generated or received from an external source. 

The ISCLK bit, bit 14 in either the SPORTO or SPORTI control register, 
determines the SCLK source for the SPORT. If this bit is a 1, the processor 
generates the SCLK signal; if it is a 0, the processor expects to receive an 
external clock signal on SCLK. At reset, ISCLK is cleared, so both serial 
ports are in the external clock mode. When ISCLK is set, internal 
generation of the SCLK signal begins on the next instruction cycle, 
whether or not the corresponding SPORT is enabled. 

External serial clock frequencies may be as high as the processor's cycle 
rate, up to a maximum of 13.824 MHz; internal clock frequencies may be 
as highas one-half the processor's clock rate. The frequency of an 
internally generated clock is a function of the processor clock frequency 
(as seen at the CLKOUT pin) and the value of the 16-bit serial clock divide 
modulus register SCLKDIV (Ox3FF5 for SPORTO and Ox3FFl for SPORTl). 

SPORTO Control Register: Ox3FF6 
SPORT1 Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ISCLK o = External (Default) 
1 = Internal 

Figure 5.3 ISCLK Bit In SPORT Control Register 



SCLK frequency = 
CLKOUT frequency 

2 x (SCLKDIV + 1) 

Table 5.5 shows how some common SCLK frequencies correspond to 
values of SCLKDIV. 

SCLKDIV 
20479 
5119 
639 

95 
3 
2 
o 

SCLK Frequency 
300Hz 

1200 Hz 
9600 Hz 
64kHz 

1.536 MHz 
2.048 MHz 
6.144 MHz 

(Assumes CLKOUT frequency of 12.288 MHz) 

Table 5.5 Common Serial Clock Frequencies (Internally Generated) 

If the value of SCLKDIV is changed while the internal serial clock is 
enabled, the change in SCLK frequency takes effect at the start of the next 
rising edge of SCLK. 

Note that the serial clock of SPORT 1 (the SCLK pin) still functions when 
the port is being used in its alternate configuration (as FO, PI and two 
interrupts). In this case, SCLK is unresponsive to an external clock, but can 
internally generate a clock signal as described above. 

5.6 WORD LENGTH 
Each SPORT independently handles words of 3 to 16 bits. The data is 
right-justified in the SPORT data registers if it is fewer than 16 bits long. 
The serial word length (SLEN) field in each SPORT control register 
determines the word length according to this formula: 

I Serial Word Length = SLEN + 1 I 

For example, if you are using 8-bit serial words, set SLEN to 7 (0111 
binary). The SLEN field is bits 3-0 in the SPORT control register (Ox3FF6 
for SPORTO and Ox3FF2 for SPORTl). See Figure 5.4 on the next page. 

Do not set SLEN to zero or one; these SLEN values are not permitted. 

5-9 



5-10 

SPORTO Control Register: Ox3FF6 
SPORn Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

SLEN (Serial Word Length - 1) 

Figure 5.4 SLEN Field In SPORT Control Register 

5.7 WORD FRAMING OPTIONS 
Framing signals identify the beginning of each serial word transfer. The 
SPORTs have many ways of handling framing signals. Transmit and 
receive framing are independent of each other. All frame sync signals are 
sampled on the falling edge of the serial clock (SCLK). 

5.7.1 Frame Synchronization 
Word framing signals are optional. If the receive frame sync required 
(RFSR) or transmit frame sync required (TFSR) bit in the SPORT control 
register is a 0, a frame sync signal is necessary to initiate communications 
but is ignored after the first bit is transferred. Words are then transferred 
continuously, unframed. If the RFSR or TFSR bit is a I, a frame sync signal 
is required at the start of every data word. 

SPORTO Control Register: Ox3FF6 
SPORn Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I L TFSR 0= TransmH Frame Sync Required 1st Word 
~ 1= Transmit Frame Sync Required Every Word 

RFSR 0= Receive Frame Sync Required 1 st Word 
1 = Receive Frame Sync Required Every Word 

Figure 5.5 TFSR And RFSR Bits In SPORT Control Register 



The RFSR bit is bit 13 in the SPORT control register (Ox3FF6 for SPORTO 
and Ox3FF2 for SPORT1), and the TFSR bit is bit 11. These bits are both 
cleared at reset, so that communication in both directions on both serial 
ports is unframed. 

See "Configuration Examples" later in this chapter for examples of frame 
sync timing. 

5.7.2 Frame Sync Signal Source 
The processor can generate frame synchronization signals internally or 
receive them from an external source. The sources for transmit frame 
syncs and receive frames syncs can be set independently. If the internal 
receive frame sync (lRFS) bit or internal transmit frame sync (lTFS) bit in 
the SPORT control register is a 0, the processor expects to receive a signal 
on its frame sync pin (RFS or TFS). If the IRFS or ITFS bit is a 1, the 
processor generates its own frame sync signal and drives the RFS or TFS 
pin as an output. 

The IRFS bit is bit 8 in the SPORT control register (Ox3FF6 for SPORTO and 
Ox3FF2 for SPORTl), and the ITFS bit is bit 9. Both of these bits are cleared 
at reset, that is, both serial ports require externally generated frame sync 
signals for both transmitting and receiving data. 

SPORTO Control Register: Ox3FF6 
. SPORT1 Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I L IRFS 

L 1TFS 

0= External RFS (Input) 
1 = Internal RFS (Output) 

0= External TFS (Input) 
1 = Internal TFS (Output) 

Figure 5.6 ITFS And IRFS Bits In SPORT Control Register 

5-11 



5-12 

If frame sync signals are generated externally, then RFS and TFS are 
inputs, and the external source controls data transmission and reception. 
The SPORT will wait for a transmit frame sync before transmitting data 
and for a receive frame sync before receiving data. If frame sync signals 
are generated internally, however, then RFS and TFS are outputs, and the 
processor controls the timing of data operations~ 

The SPORT outputs an internally generated transmit framing signal after 
data is loaded into the transmit (TXO or TXl) register, at the time needed 
to ensure continuous data transmission, after the last bit of the current 
word is transmitted (the exact time depends on the framing mode being 
used; see "Normal and Alternate Framing Modes," the next section). The 
occurrence of the transmit frame sync is a result of the availability of data 
in the transmit register. 

With an internally generated receive framing signal, the processor controls 
the timing of the receive data. The external data source must provide data 
to the serial port synchronized to the receive framing signal (the timing 
depends on the framing mode being used; see "Normal and Alternate 
Framing Modes," the next section). The processor generates RFS 
periodically on a multiple of SCLK cycles, based on the value of the 16-bit 
receive frame sync divide modulus register, RFSDIV (Ox3FF4 for SPORTO 
and Ox3FFO for SPORTl): 

Number of SCLK cycles between RFS assertions = RFSDIV + 1 

For example, to allow 256 SCLK cycles between RFS assertions, set 
RFSDIV to 255 (OxFF). 

Values of RFSDIV + 1 that are less than the word length are not 
recommended. 

Note that frame sync signals may be generated internally even when 
SCLK is supplied externally. This provides a way to divide external clocks 
for any purpose. 

You can also use one frame sync to generate a single signal for both 
transmit and receive data. For example, an internally generated RFS 
(output) could be connected to an externally generated TFS (input) on the 
same SPORT for simultaneous transmit and receive operations. This 
interconnection is especially useful for combo codec interfaces. 



5.7.3 Normal And Alternate Framing Modes 
In the normal framing mode, the framing signal is checked at the falling 
edge of SCLK. If the framing signal is asserted, received data is latched on 
the next falling edge of SCLK and transmitted data is driven on the next 
rising edge of SCLK. The framing signal is not checked again until the 
word has been transmitted or received. If data transmission or reception is 
continuous, i.e., the last bit of one word is followed without a break by the 
first bit of the next word, then the framing signal should occur in the same 
SCLK cycle as the last bit of each word. 

In the alternate framing mode, the framing signal should be asserted in 
the same SCLK cycle as the first bit of a word. Received data bits are 
latched on the falling edge of SCLK and transmitted bits are driven on the 
rising edge of SCLK, but the framing signal is checked only on the first bit. 
Internally generated frame sync signals remain asserted for the length of 
the serial word. Externally generated frame sync signals are only checked 
during the first bit time. 

Framing modes for receiving and transmitting data are independent. If the 
receive frame sync width (RFSW) bit or transmit frame sync width (TFSW) 
bit in the SPORT control register is a 0, normal framing is enabled. If the 
RFSW or TFSW bit is a 1, alternate framing is used. The RFSW bit is bit 12 
in the SPORT control register (Ox3FF6 for SPORTO and Ox3FF2 for 
SPORTl), and the TFSW bit is bit 10. These bits are both cleared at reset, so 
that normal framing in both directions is enabled. 

SPORTO Control Register: Ox3FF6 
SPORT1 Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I TFSW O=Normal Transmit Framing 
~ 1=Alternate Transmit Framing 

RFSW O=Normal Receive Framing 
1 =Alternate Receive Framing 

Figure 5.7 TFSW And RFSW Bits In SPORT Control Register 

5-13 



5-14 

For examples of normal and alternate framing, see "Configuration 
Examples" later in this chapter. 

5.7.4 Active High Or Active Low 
Framing sync signals for receiving and transmitting data can be either 
active high or active low and are configured independently. If the invert 
RFS (INVRFS) bit or invert TFS (INVTFS) bit in the SPORT control register 
is a 0, the corresponding frame sync signal is active high. If the INVRFS or 
INVTFS bit is a I, the frame sync signal is active low. These controls apply 
regardless of the source of frame sync signals; they either control the 
polarity of internally generated signals or determine how externally 
generated signals are interpreted. 

The INVRFS bit is bit 6 in the SPORT control register (Ox3FF6 for SPORTO 
and Ox3FF2 for SPORT1), and the INVTFS bit is bit 7. These bits are both 
cleared at reset, so that frame sync signals are active high. 

SPORTO Control Register: Ox3FF6 
SPORT1 Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

LL INVRFS O=Actlve High RFS 
1 =Active Low RFS 

INVTFS O=Active High TFS 
1 =Active Low TFS 

Figure 5.8 INVTFS And INVRFS Bits In SPORT Control Register 



5.8 CONFIGURATION EXAMPLE 
The example code that follows illustrates how to configure the SPORTs. 
This example configures both SPORTO and SPORTl. SPORTO is 
configured for an internally generated serial clock (SCLK), internally 
generated frame synchronization, and Il-law companded 8-bit data. This is 
a typical setup for communication with a combo codec. SPORT1 is 
configured for an externally generated serial clock, externally generated 
frame synchronization, non-companded 16-bit data and autobuffering. 
This setup could be used to transfer data between processors in a 
multiprocessor system. 

Only the needed memory mapped registers are initialized. Notice that the 
SPORTs are configured before they are enabled and that any extraneous 
latched interrupts are cleared before interrupts are enabled. 

{-- SPORT INITIALIZATION CODE --} 

{SPORTl inits 

AXO = Ox0017; 
DM(Ox3FEF) = AXO; 

AXO = Ox280F; 
DM(Ox3FF2) = AXO; 

{SPORTO inits} 

{enable SPORTl autobuffering} 
{TX autobuffer uses 10 and MO} 
{RX autobuffer uses Ii and Ml} 

{external serial clock, RFS and TFS} 
{RFS and TFS are required, normal} 
{framing, no companding and 16 bits} 

{Assumes a CLKIN of 12.288 MHz. Internally generated} 
{SCLK will be 2.048 MHz, and framing sync of 8 kHz} 

AXO = 255; 
DM(Ox3FF4) 

AXO = 2; 
DM(Ox3FF5) 

AXO; 

AXO; 

{RFSDIV = 256, 256 SCLKs between} 
{frame syncs: 8 kHz framing} 

{SCLK 2.048 MHz} 

(continued on next page) 

5-15 



5-16 

(continued from previous page) 
AXO = Ox6B27i 
DM(Ox3FF6) = AXOi 

{SPORT ENABLE} 

IFC = OxlEi 
ICNTL = Oi 

AXO = OxlC1Fi 
DM(Ox3FFF) = AXOi 

lMASK = OxlEi 

{internal SCLK, RFS and TFS} 
{normal framing, mu-law companding} 
{8 bit words} 

{clear any extraneous SPORT interrupts} 
{interrupt nesting disabled} 

{both SPORTs enabled, BWAIT and} 
{PWAIT left as default} 

{SPORT interrupts are enabled} 

{-- END SPORT INITIALIZATIONS --} 

Figure 5.9 Example SPORT Configuration Code 

5.9 TIMING EXAMPLES 
This section contains examples of some combinations of the various 
framing options. The timing diagrams show relationships between 
signals, but are not scaled to show the actual timing parameters of the 
processor. Consult the data sheet for actual timing parameters and values. 

The examples assume a word length of four bits, that is, SLEN = 3. 
Framing signals are active high, that is, INVRFS = 0 and INVTFS = O. 

The value of the SPORT control register (Ox3FF6 for SPORTO and Ox3FF2 
for SPORTl) is shown for each example. In these binary values, 1= high, 0 
= low, and X can be either. The underlined bit values are the bits which 
set the modes illustrated in the example. 

Figures 5.10 to 5.15 show framing for receiving data. In Figures 5.10 and 
5.11, the normal framing mode is shown for noncontinuous data (any 
number of SCLK cycles between words) and continuous data (no SCLK 
cycles between words). Figures 5.12 and 5.13 show noncontinuous and 
continuous receiving in the alternate framing mode. In these four figures, 
both the input timing requirement for an externally generated frame sync 
and the output timing characteristic of an internally generated frame sync 
are shown. Note that the output meets the input timing requirement; t1:~us, 
on processors with two SPORTs, one SPORT could provide RFS for the 
other. 



SCLK 

RFS rDllT r--\ OU~ ,~ __________________________ ~r--\~ ______________________ _ 

RFS INP~ \XXXXXXXXXlxxxxxxxxXXX\ / \XXXxxXXXXxxxxxxXXXXXx\ 
DR 

SPORT Control Register: 
Internal Frame Sync OXIO XXXI XDXX 0011 
External Frame Sync OXIO XXX,D X,DXX 0011 
Both Internal Framing Option and External Framing Option Shown 

Figure 5.10 SPORT Receive, Normal Framing 

SCLK 

RFS 
OUTPUT 

RFSINP_U_T __ ' ~ ~ \XXXXXXXXXXXXXX 

DR 

SPORT Control Register: 
Internal Frame Sync OXIO XXXI X,DXX 0011 
External Frame Sync OXIO XXX,D X,DXX 0011 
Both Internal Framing Option and External Framing Option Shown 

Figure 5.11 SPORT Continuous Receive, Normal Framing 

5-17 



SCLK 

RFSOUTPUT I 
-----' 

, ____ ....6, 

RFS INP_UT ___ --I' \XXXXXXXXXXXXXXXXXXXXX\ / \XXXXXXXXXXXXX~ 
DR 

SPORT Control Register: 
Internal Frame Sync OXll XXXI XQXX 0011 
External Frame Sync OXll XXXQ XQXX 0011 
Both Internal Framing Option and External Framing Option Shown 

Figure 5.12 SPORT Receive, Alternate Framing 

SCLK 

RFSOUTPUT / 

RFS INP_UT __ ----" WlJ..xxxxxxxxxxxxxXXX'tllJ \xXxxxxxxx.xxXXXXXXXXX'J.'t.. 
DR 

SPORT Control Register: 
Internal Frame Sync OXll XXXI XQXX 0011 
External Frame Sync OXll XXXQ XQXX 0011 
Both Internal Framing Option and External Framing Option Shown 

Figure 5.13 SPORT Continuous Receive, Alternate Framing 

5-18 



SCLK 

Figures 5.14 and 5.15 show the receive operation with normal framing and 
alternate framing, respectively, in the unframed mode. There is a single 
the frame sync signal that occurs only at the start of the first word, either 
one SCLK before the first bit (normal) or at the same time as the first bit 
(alternate). This mode is appropriate for multiword bursts (continuous 
reception) . 

RFS / w.xxxxxxxxxxxxxxrt/xlftJ.:xxxxX'llXXXX'b.XXXX'/#,XXXXXXXXXXXXXX'llX'J,'l,X'J,' 

DR 

SPORT Control Register: 
Internal Frame Sync OXOO XXXI XOXX 0011 
External Frame Sync OXOO XXXO XOXX 0011 

Figure 5.14 SPORT Receive, Unframed Mode, Normal Framing 

SCLK 

RFS __ ---.J/ w.xXXXXXXXXXXX'tttiX'ltt/J..XXXXXXXXXXXXXXXXX'/#,XXXXXXXXXXXXXXXXX 

DR 

SPORT Control Register: 
Internal Frame Sync OXOl XXXI XOXX 0011 
External Frame Sync OXOl XXXO XOXX 0011 

Figure 5.15 SPORT Receive, Unframed Mode, Alternate Framing 

5-19 



SCLK 

Figures 5.16 to 5.21 show framing for transmitting data and are very 
similar to Figures 5.10 to 5.15. In Figures 5.16 and 5.17, the normal framing 
mode is shown for noncontinuous data and continuous data. Figures 5.18 
and 5.19 show noncontinuous and continuous transmission in the 
alternate framing mode. As with receive timing, the TFS output meets the 
TFS input timing requirement. 

TFSOU~~ ________________________ --J~~ ____________________ ___ 

TFS 
INP_U_T_ ..... ' _ 

OT 

SPORT Control Register: 

80 

Internal Frame Sync OXXX 1Q1X o.XXX 0011 
External Frame Sync OXXX lOOX o.XXX 0011 

,-
Both Internal Framing Option and External Framing Option Shown 

Figure 5.16 SPORT Transmit, Normal Framing 

SCLK 

80 

TFS rDllT r----\ OU~ \~ ____________ ~~~ ____________ ~~~ __________ __ 

TFSINP_UT_-....J' _ _ \ .... _-----

OT 83 82 

SPORT Control Register: 
Internal Frame Sync OXXX lOlX o.XXX 0011 
External Frame Sync OXXX lOOX o.XXX 0011 
Both Internal Framing Option and External Framing Option Shown 

Figure 5.17 SPORT Continuous Transmit, Normal Framing 

5-20 



SCLK 

TFS OUTPUT .------------""'\ I 
------~I ~ ______ ~ 

TFS INPUT I ------- \XXXILILII.JI,IXI.Jl,lXXXXLlLJoXXXXXUUUUr.K.1lXXXULIIXr.u.llnl\L&Jo.I....-__ ---J/ 

DT 

SCLK 

80 83 

SPORT Control Register: 
Internal Frame Sync OXXX ll1X llXXX 0011 
External Frame Sync OXXX 110X llXXX 0011 
Both Internal Framing Option and External Framing Option Shown 
Note: There is an asynchronous delay between TFS input and DT. See the appropriate 
data sheet for specifications. 

Figure 5.18 SPORT Transmit, Alternate Framing 

TFSOUTPUT / 

TFS INP_UT _____ ~I WJ..XXXXXXXxxxxxx'/..X'IJtIJ Vl,XXXXXXXXXXXXXXXXXY..X'/,'t. 

DT 

SPORT Control Register: 
Internal Frame Sync OXXX ll1X llXXX 0011 
External Frame Sync OXXX 110X llXXX 0011 
Both Internal Framing Option and External Framing Option Shown 
Note: There is an asynchronous delay between TFS input and DT. See the appropriate 
data sheet for specifications. 

Figure 5.19 SPORT Continuous Transmit, Alternate Framing 

\ 

80 

5-21 



SCLK 

TFS _--..If 

DT 

SCLK 

Figures 5.20 and 5.21 show the transmit operation with normal framing 
and alternate framing, respectively, in the unframed mode. There is a 
single the frame sync signal that occurs only at the start of the first word, 
either one SCLK before the first bit (normal) or at the same time as the first 
bit (alternate). 

\XmXXXXXXXxxxxxxxxxxXXXXXXXXXXXxxxxxxxxxxxxxxmxxxxxxxxxxxxxxxxxmxm 

82 

SPORT Control Register: 
Internal Frame Sync OXXX OOlX OXXX 0011 
External Frame Sync OXXX illIDX OXXX 0011 

Figure 5.20 SPORT Transmit, Unframed Mode, Normal Framing 

TFS __ -----If 'WIJ,'J,'lI,'J,xxxxxxxmxxxxxmxxxxxxxxxmxxxxxxxxxxxxxxxxxmxm 

DT 

5-22 

83 82 

SPORT Control Register: 
Internal Frame Sync OXXX mlX OXXX 0011 
External Frame Sync OXXX OlOX OXXX 0011 
Note: There is an asynchronous delay between TFS input and DT. See the appropriate 
data sheet for specifications. 

Figure 5.21 SPORT Transmit, Unframed Mode, Alternate Framing 



:l~t:::::~~::· l;;::::l;:. llll,":; I :::;;:::t, 1 :_ .. ::.:::.:::.::t.:_::.::_;i:~1l ::'.;::~.:;:.:~:.'::.;;:::.::; .. :'~' .. :~.::".::: ~::: .... :~:.:;::~::::'::::1.:~ .... :~ ... :·~ ... :::·: .::.':;.'::".:'~ .. :'~.:~.:~ .. :~.:: .. :-.:_:::.-.. :: .. :-.: .::.':~.':~_.:~:::.~.-':~::;~ .. ;.::~:"::::':' 
::::~:~:;:;;;~~~~ ';;~~~~~~~~~~~: ~~l~ ~l~~ :~~t~tt ~l~l 

5.10 COMPANDING AND DATA FORMAT 
Companding (a contraction of COMpressing and exPANDing) is the 
process of logarithmically encoding and decoding data to minimize the 
number of bits that must be sent. Both SPORTs share the companding 
hardware; one expansion and one compression operation can occur in 
each processor cycle. In the event of contention, SPORTO has priority. 

The ADSP-2100 family of processors supports both of the widely used 
algorithms for companding: A-law and J..l-law. The processor compands 
data according to the CCITT G.711 recommendation. The type of 
companding can be selected independently for each SPORT. 

If companding is not enabled, there are two formats available for received 
data words of fewer than 16 bits: one that fills unused MSBs with zeros, 
and another that sign-extends the MSB into the unused bits. 

The type of companding, as well as the non-companding data format, are 
controlled by the DTYPE field (bits 5-4) in the SPORT control register 
(Ox3FF6 for SPORTO and Ox3FF2 for SPORTl) as shown in Figure 5.22. 

SPORTO Control Register: Ox3FF6 
SPORT1 Control Register: Ox3FF2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DTYPE OO=Right justify, zero fill unused MSBs 
01=Right justify, sign extend into unused MSBs 
10=Compand using j..I.-law 
11 =Compand using A-law 

Figure 5.22 DTYPEField In SPORT Control Register 

5-23 



5-24 

.,:;:::::::::::~ :::: :::: ::::;::::::::::. :;:; 

.:' .. '::.~ .. ~:,,::::::'::':':'.'::.:::'.::.:::.:;.::': : ...• :: •..• :;:.:~::::.:::.:: •.• : ••• ::~.:.:~:.;: •• ::.'., .:~:.:~: ••. :l .• :~:~:::: .:~: •. :~:::.l.:~:. :: •.. ::.·.:·::.:,:.:;::.::::.:::: •• :1:.:'::.,:;:,:':,'::' .:~:.· .• :l .. :~:·.:~: ;t ..... l~; .::;:;:*~l::. 1~~~::::: ':~l: :::;~::::::::. 
~~~r':':" ~~~~~::::::~W ~~~~: ~~t ~~~~~~~~;~~~;: 

When companding is enabled, valid data in the RXO or RX1 register is the
right-justified, sign-extended, expanded value of the eight LSBs received.
Likewise, a write to TXO or TX1 causes the 16-bit value to be compressed
to eight LSBs (sign-extended to the width of the transmit word) before
being written to the internal transmit register. If the magnitude of the 16-
bit value is greater than the 13-bit A-law or 14-bit ~-law maximum, the
value is automatically compressed to the maximum positive or negative
value.

5.10.1 Companding Operation Example
With hardware companding, interfacing to a codec requires little
additional programming effort. See the codec hardware interfacing
example in the last section of this chapter.

Here is a typical sequence of operations for transmitting companded data:

• Write data to the TXn register
• The value in TXn is compressed
• The compressed value is written back to TXn
• After the frame sync signal has occurred (if required), TXn is written to

the internal transmit register and the bits are sent, MSB first.

As soon as the SPORT has started to send the second bit of the current
word, TXn can be written with the next word, even though transmission
of the first is not complete. After the MSB has been transferred, the SPORT
generates the transmit interrupt to indicate that TXn is ready for the next
data word. If the framing signal is being provided externally, the next
word must be written to TXn early enough to allow for compression
before the next framing signal arrives.

Here is a typical sequence of operations for receiving companded data:

• Bits accumulate as received in the internal receive register
• When a complete word is received, it is written to RXn
• The value in RXn is expanded
• The expanded value is written back to RXn

The receive interrupt for that SPORT is then generated.

5.10.2 Contention For Companding Hardware
Since both SPORTs share the companding hardware, only one
compression and one expansion operation can take place during a single
machine cycle. If contention arises, such as when two expansions need to
occur in the same cycle, SPORTO has priority, while SPORTl is forced to
wait one cycle.

The effects of contention, however, are usually small. The instruction set
does not support loading both TXO and TXl in the same cycle;
consequently these operations will be naturally out of phase for
contention in many cases. The overhead cycle for the receive operation
occurs prior to the receive interrupt and does not increase the time needed
to service the interrupt, although it does affect the latency prior to
receiving the interrupt.

5.10.3 Companding Internal Data
Because the values in the RX and TX registers are actually companded "in
place" it is possible to use the companding hardware internally, without
any transmission or reception at all and without enabling the serial port.
This operation can be used for debugging or data conversion and requires
a single cycle of overhead.

To compress data, enable companding and then:

1. Write data to TXn (compression is calculated).
2. Wait for one cycle (TXn is written with compressed value)
3. Read TXn (it returns the 8-bit compressed data)

The code might look like this:

TXO = AXOi
NOPi

AXi = TXOi

{linear data written to transmit register}
{any instruction}
{compressed data transferred to AXi}

Use the same procedure to expand data, but use RXn instead of TXn.

RXO = AXOi
NOPi

AXi = RXOi

{compressed data written to receive register}
{any instruction}
{expanded - linear value transferred to AXi}

5-25

5-26

5.11 AutoBuffering
In normal operation, a SPORT generates an interrupt when it has received
or has started to transmit a data word. Autobuffering provides a
mechanism for receiving or transmitting an entire block of serial data
before an interrupt is generated. Service routines can operate on the entire
block of data, rather than on a single word, reducing overhead
significantly. Autobuffering is available on both SPORTO and SPORT1,
except on the ADSP-21msp58/59 which autobuffers only on SPORTO.

Autobuffering uses the circular buffer addressing capability of the DAGs.
With autobuffering enabled, each serial data word is transferred (or if
multichannel operation is enabled, each active word is transferred) to or
from data memory in a single overhead cycle. (Autobuffering to program
memory is not supported.) This overhead cycle occurs independently of
the instructions being executed and effectively suspends execution for one
cycle (or more, if wait states are required) when it happens. No interrupt
is generated for these individual data word transfers.

The autobuffer transfer cannot be duplicated by any instruction. However,
an equivalent assembly language instruction would be:

DM(I,M) = RXO
or

TXO = DM(I,M)
Equivalent Instructions Only

The I and M registers used in the transfer are selected by fields in the
SPORT's autobuffer control register.

The processor waits for the current instruction to finish before inserting
the overhead cycle. A delay in the autobuffer transfer occurs if the transfer
is required during an instruction executing in multiple cycles (for wait
states, for example). If the transfer is required when the processor is
waiting in an IDLE state, the transfer is executed and the processor returns
to IDLE.

When a data word transfer causes the circular buffer pointer to wrap
around, the SPORT interrupt is generated. The receive interrupt occurs
after the complete buffer has been received. The transmit interrupt occurs
when the last word is loaded into TXn, prior to transmission.

Aside from the completion of an instruction requiring multiple cycles, the
automatic transfer of individual data words has the highest priority of any
operation short of RESET, including all interrupts. Thus, it is possible for

an autobuffer transfer to increase the latency of an interrupt response if
the interrupt happens to coincide with the transfer. Up to four
autobuffered transfers can occur; in the case that two or more are needed
in the same cycle, they have the following priority, which is the same as
the SPORT interrupt priority:

Highest

Lowest

SPORTO Transmit
SPORTO Receive
SPORTl Transmit
SPORTl Receive

In the worst case that all four autobuffer transfers are required at about
the same time, interrupt latency would increase by the time it takes for all
the transfers to occur, which is affected by wait states and bus request.

5.11.1 Autobuffering Control Register
In autobuffering mode, an interrupt is generated when the modification of
a specified I register (in the DAG) by the value in the specified M register
(in the DAG) causes a modulus overflow (pointer wraparound). This
means that the end of the buffer has been detected.

The autobuffering mode is enabled separately for receiving and
transmitting by bits in the SPORT's autobuffer control register (Ox3FF3 for
SPORTO or Ox3FEF for SPORTl), shown in Figure 5.23.

SPORTO Autobuffer Control Register: Ox3FF3
SPORT1 Autobuffer Control Register: Ox3FEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~~~I 
TBUF 

(Transmit Autobuffering Enable) 

Figure 5.23 SPORT Autobuffer Control Register 

RBUF 
(Receive Autobuffering Enable) 

5-27 



5-28 

The I and M registers used for autobuffering are identified by fields in the 
autobuffer control register. TIREG and TMREG are binary values that 
indicate the numbers of the I and M registers, respectively, associated with 
the transmit buffer. The rules governing the pairing of I and M registers 
are the same as for other DAG operations: the I and M registers must be in 
the same DAG, numbered either 0-3 for DAG1 or 4-7 for DAG2. 
Consequently, three bits identify the I register, but only two bits are 
necessary to indicate the M register because the third bit (MSB) of the M 
register number must be the same as for the I register. 

Likewise, RIREG and RMREG indicate the numbers of the I and M 
registers, respectively, associated with the receive buffer. 

The TBUF and RBUF bits enable transmit autobuffering and receive 
autobuffering, respectively. These bits are cleared to zeros at reset and 
after a reboot. Consequently, autobuffering in progress cannot continue 
through a reboot operation; you must re-enable autobuffering after a 
reboot. 

5.11.2 Autobuffering Example 
The code shown below is an example that sets up SPORT1 for 
autobuffering operation. The code assumes that the processor is driven 
with a clock frequency of 12.288 MHz. The SPORT will automatically 
transmit values from the circular buffer named tx_buffer. It will receive 
values as they are sent to the SPORT and automatically transfer the data 
into the buffer named rx_buffer. A transmit interrupt will be generated 
once all of the tx_buffer values have been transferred to TXl, but before the 
last value has been loaded into the transmit shift register. A receive 
interrupt will be generated once the rx_buffer has been completely filled . 

. MODULE/RAM 

{-- Initialization code for autobuffer --} 

.VAR/DM/CIRC tx_buffer[lO); 

.VAR/DM/CIRC rx_buffer[lO); 

. ENTRY sportl_inits; 

{set up I,M, and L registers} 



sportl_ inits: 10 Atx_buffer; {IO contains address of tx_buffer} 
MO 1; {fill every location} 
LO %tx_buffer; {LO set to length of tx_buffer} 

11 Arx_buffer; {Il points to rx_buffer} 
Ll %rx_buffer; {Ll set to length of rx_buffer} 

{set up SPORTl for autobuffering} 

AXO = Ox0013; {TX uses 10, MO; RX uses 11, MO} 
DM(Ox3FEF) = AXO; {autobuffering enabled} 

{set up SPORTl for 8 kHz sampling and 2.048 MHz SCLK} 

AXO 255; 
DM(Ox3FFO) 

AXO = 2; 
DM(Ox3FF5) 

{set RFSDIV to 255 for 8 kHz} 
AXO; 

{set SCLKDIV to 2 for 2.048 MHz SCLK} 
AXO; 

{set up SPORTl for normal required framing, internal SCLK} 
{internal generated framing} 

AXO = Ox6B27; {normal framing, 8 bit mu-Iaw} 
DM(Ox3FF2) = AXO; {internal clock, framing} 

{set up interrupts} 

{enable SPORT1} 

IFC = 6; 
ICNTL 0; 
lMASK = 6; 

{clear any extraneous SPORT interrupts} 
{interrupt nesting disabled} 
{enable SPORTl interrupts} 

AXO = OxOC1F; 
DM(Ox3FFF) = AXO; 

{enable SPORTl leave PWAIT,} 
{BWAIT as default} 

{Place first transfer value into TX1} 

.ENDMOD; 

AXO = DM(IO,MO); 
TXl = AXO; 
RTS; 

Figure 5.24 Autobuffering Example Configuration Code 

5-29 



5-30 

5.12 MULTICHANNEL FUNCTION 
SPORTO supports a multichannel function. In the multichannel mode of 
operation, serial data is time-division multiplexed. Each subsequent word 
belongs to the next consecutive channel so that, for example, a 24-word 
block of data contains one word for each of 24 channels. SPORTO supports 
32 or 24 channels and can automatically select words for particular 
channels while ignoring the others. 

In single-channel mode, receive and transmit framing identifies the start 
of a single word or continuous stream, with independent receive and 
transmit operation. In the multichannel mode, the receive frame sync 
signal (RFSO) identifies the start of a 24- or 32-word block of serial data 
with the receiver and transmitter operating in parallel. TFSO has an 
alternate function, described below. Note: The ADSP-2105 has only one 
serial port (SPORTl) and does not support multichannel operation. 

5.12.1 Multichannel Setup 
Multichannel operation is enabled by bit 15 in SPORTO's control register 
(Ox3FF6). When this bit is a I, multichannel mode is enabled, and some 
control bits in the SPORTO control register are redefined. Bits affected by 
multichannel mode are shown in Figure 5.25. At reset, bit 15 is cleared, 
disabling multichannel mode and enabling normal operation. 

SPORTO Control Register (Multichannel Version) 

Ox3FF6 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MCE 

~ 
MFD 

(Multichannel 
Frame Delay) 

(Multichannel Enable) 
1 = Multichannel Operation 

INVTDV (Invert Transmit Data Valid) 

Mel (Multichannel length) 
0= 24 Words 
1 = 32 Words 

Figure 5.25 SPORTO Control Register With Multichannel Mode Enabled 



The state of the multichannel length bit MeL, bit 9, determines whether 
there are 24 or 32 channels, i.e. whether the block length is 24 or 32 words. 
A 0 selects 24-word blocks; a I, 32-word blocks. In multichannel mode, the 
word length is still set by the SLEN field in the SPORT control register and 
can be 3 to 16 bits. 

The multichannel frame delay (MFD) is a 4-bit field specifying (in binary) 
the number of serial clock cycles between the frame sync signal and the 
first data bit. This allows the processor to work with different types of Tl 
interface devices. Figure 5.26 shows a variety of delays. 

SCLK 

First Bit 
----------------------------------~c==}_ 

RFS 

RFS 

RFS 

RFS 

RFS 

• • • 

MF~ 

MFD=8 

MFD=7 

MFD=6 

MFD=5 

n 
n 

n 
n 

RFS MFD=1 r--\ 

--------------------------------------------~I \~ ____ __ 
RFS MFD=O r----\ ________________________________ ~I L--

Figure 5.26 SPORT Multichannel Frame Delay Examples 

The memory-mapped receive enable register and transmit enable register 
are each 32 bits wide and made up of two contiguous sixteen-bit registers, 
as shown in Figure 5.27, which can be found on the next page. Each bit 
corresponds to a channel; setting the bit enables that channel so that the 
processor will select its word from the 24- or 32-word block. For example, 
setting bit 0 selects word 0, bit 12 selects word 12, and so on. 

5-31 



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 

Ox3FFA 

Ox3FF9 

Receive 
Word 
Enables 

1 = Channel Enabled 
o = Channel Ignored 

5-32 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 
Figure 5.27 SPORTO Multichannel Word Enable Registers 

5.12.2 Multichannel Operation 

Ox3FF8 

Ox3FF7 

Transmit 
Word 
Enables 

Received words for channels that are not enabled are ignored; that is, no 
interrupts are generated for these words, no autobuffering occurs and no 
data is written to the RXO register. Likewise, there are no interrupts and 
no autobuffering for transmit words that are not enabled. During transmit 
word time slots for channels that are not enabled, the data transmit (DT) 
pin is tristated. 

Most aspects of SPORTO operate normally in the multichannel mode. 
Specifically, word length (SLEN), internal or external framing (IRFS), 
frame signal inversion (INVRFS), companding (DTYPE) and 
autobuffering are unchanged in the multichannel mode. Note: It is 
important that RFS does not occur more than once per frame in 
multichannel mode. 

Instead of providing frame synchronization, the TFSO signal functions as a 
transmit data valid (TDV) signal in multichannel mode. TDV is asserted 
while the transmitter is active. TDV can be active high or low, and its 
polarity is controlled by the INVTFS bit, renamed INVTDV in this context. 
If INVTDV is a 1, TDV is active low; otherwise it is active high. TDV can 
be used to enable additional buffer logic, if required. 

Figure 5.28 shows the start of a multichannel transfer. As in earlier 
examples, word length is four bits (SLEN=3) and frame sync signals are 
active high. Multichannel frame delay (MFD) is one SCLK cycle. For the 
purpose of illustration, words 0 and 2 are selected for receiving and words 
1 and 2 are selected for transmission. 



1".--- WORDO WORD 1 ----.t.I· .... -- WORD2 

SCLK 

OR -----®___®___®_< 80 XXXXXXXX IGNORED XXXXXXXXXXXXXX 83 >-----®-
RFS ____ ~r__\~ ____________________________________________ __ 

OT 
----------------------------- __ 8_2 __ _ 

TOV -------------~/ 
Figure 5.28 Start Of Multichannel Transfer 

Figure 5.29 shows a complete 24-word block in the multichannel mode, 
with complete words represented in the waveforms instead of individual 
bits. Receiving is active for all words and transmitting is active for words 
0-3,8-11 and 16-19 only. 

Note: The ADSP-2105 has only one serial port (SPORTl) and does not 
support multichannel operation. 

r- W8-11 -1 r-W1S-19 -1 
RFS ~~ ____________________________________________________________ _ 

DR XX'tttJ. X X X X X X X X X X X X X X X X X X X X X X X XXX 

OT ----< X X X }~----c( X X X }~----c( X X X }>----

TOV .-I , / , / ,'--__ _ 
Figure 5.29 Complete Multichannel Example 

5-33 



5-34 

5.13 SPORT TIMING CONSIDERATIONS 
The SPORTs support full duplex operation and are normally interrupt 
driven. That is, whenever a SPORT transaction has completed, the 
processor generates an internal interrupt. Under most operating 
conditions, the actual timing of the SPORT interrupts is not critical. In 
some sophisticated DSP systems, however, it is important to know the 
timing of the interrupt relative to the operation of the serial port. 

5.13.1 Companding Delay 
Use of the companding circuit introduces latency in two ways. First, 
compressing or expanding a data value takes a single processor cycle. 
Second, SPORTO has priority over SPORTl if both require an expansion or 
compression operation in the same cycle; in this case, SPORTl must wait 
one processor cycle. See the section on companding earlier in this chapter 
for more details on companding. 

5.13.2 Clock Synchronization Delay 
Some SPORT timings depend on the processor clock. Other timings 
depend on the serial clock (SCLKO or SCLKl). These clocks are 
asynchronous. There is a delay associated with synchronizing the serial 
clock to the processor clock whether the serial clock is internally or 
externally generated. This delay is different for the transmit and receive 
interrupts, as explained in the following sections. 

5.13.2.1 Startup Timing 
When a serial port is enabled by a write to the System Control Register, it 
takes two SCLK cycles before it is actually enabled. On the next (third) 
SCLK cycle, the serial port becomes active, looking for a frame sync. 

5.13.3 Internally Generarated Frame Sync Timing 
When internally generated frame syncs are used, all that is necessary to 
transmit data, from the programmer's point of view, is to move the data 
into the appropriate TX register with an instruction such as: 

TXO = AXO; 

Once data is written into the TX register, the processor generates a frame 
sync after a synchronization delay. This delay in turn affects the timing of 
the serial port transmit interrupt. The latency depends on five factors: the 
frequency of the serial clock, whether or not companding is enabled, 
whether or not there is contention for the companding circuit, whether the 
current word has finished transmitting and the logic level of the SCLK 
when the data value was loaded into the transmit register. 



(Note that if the transmit frame sync is generated externally, data starts 
transmitting when a frame sync signal is received.) 

After the TX register is loaded, it takes three complete phases of the serial 
clock, HIGH, LOW and HIGH, in that order, to ensure synchronization 
(see Figure 5.30). Once synchronization has been ensured and a frame 
sync generated, the most significant bit of the transmit word is shifted out 
on the same rising edge as the frame sync if alternate framing is used and 
on the rising edge of the next serial clock if normal framing is used. 
Therefore, the worst-case synchronization delay is two SCLK cycles. 

There is additional delay if the previous data transmission has not 
completed; the TX register cannot be loaded into the transmit shift register 
until the previous transmission is complete. 

TX Written, SCLK High 

Processor Clock 

Serial Clock 

TFS OUTPUT 
(Normal Framing) 

TFSOUTPUT 

TXWrlHen 

(Alternate Framing) ------------------' 

TX Written, SCLK Low 

Processor Clock 

Serial Clock 

TFS OUTPUT 
(Normal Framing) 

TFSOUTPUT 

TXWriHen 

MSB TransmiHed MSB TransmlHed 
(Alternate Framing) (Normal Framing) 

(Alternate Framing) _____________ ----1 

Figure 5.30 Clock Synchronization 

5-35 



TFS 

DT 

SCLK 

5.13.4 Transmit Interrupt Timing 
Once the MSB has been transmitted, the subsequent bits are transmitted 
on the rising edges of the SCLK. The transmit interrupt (or autobuffer 
request) is generated internally on the falling edge of SCLK during the 
transmission of the second bit (see Figure 5.31 below). This timing gives 
the program time to load the TX register with the next data for continuous 
data transmission. 

The transmit interrupt, like any other interrupt, must be synchronized to 
the processor clock. Servicing is subject to the same latencies as other 
interrupts. 

The transmit interrupt essentially means that it is all right to write a value 
to the TX register. 

___ --II \~-----------------
-----------l{ BIT3 X BIT2 X BIT1 X BITO )l-------

Figure 5.31 SPORT Interrupt or Autobuffer Timing, Transmit 4·Bit Words (No Companding) 

5.13.5 Receive Interrupt Timing 
The receiver portion of the SPORT latches data on the DR pin on the 
falling edges of SCLK. 

Receive interrupt timing differs from transmit interrupt timing. The 
receive interrupt or autobuffer request occurs only after an entire word is 
received. The interrupt request occurs on the rising edge of SCLK after a 
word is received (see Figure 5.32) and indicates that new data in the RX 
register can be read. 

Companding causes a delay in the same manner as for transmitting. 
However, the latency is transparent, as the receive interrupt is generated 
after the expansion has taken place. 

5-36 



RFS ___ .....II \~------------------------------
DR ~XX 81T3 X 81T2 X 81T1 X 81TO ~ 

SCLK 

Interrupt or Autobuffer Request ----1~ 

Figure 5.32 SPORT Interrupt or Autobuffer Timing, Receive 4·Bit Words (No Companding) 

~e LSB is received on the falling edge of SCLK. One processor cycle 
elapses to allow synchronization to the processor clock. One processor 
cycle later, the SPORT attempts to expand the data if companding is 
enabled and the other serial port is not using the companding circuitry. 
Companding latencies as discussed above occur prior to generation of a 
receive interrupt. Servicing the receive interrupt is subject to the same 
latencies as other interrupts. 

RFS ___ .....II \~-------------------------------
DR ~XX 81T3 X 81T2 X 81T1 X 81TO ~ 

SCLK 

Interrupt or Autobuffer Request -'--.-

Figure 5.33 SPORT Interrupt or Autobuffer Timing, Receive 4·Bit Words (Companding Enabled) 

5-37 



5.13.6 Interrupt & Autobuffer Synchronization 
The serial ports are treated as an asynchronous system to the processor, 
even if the processor is providing the serial clock. Internal to the processor 
is a circuit which synchronizes the autobuffer or interrupt requests to the 
processor clock. Figure 5.34 shows the synchronization delay for the serial 
ports, assuming the setup and hold times are met for the current processor 
cycle. The setup and hold times for the serial port requests are the same as 
shown on the data sheet for the IRQ2 signal. If the setup and hold times 
are not met, there is an additional processor cycle of delay added. 

CLKOUT~ \'-----1:( ~,'-----/ ,'--_--!V 
Processor Can ----1~~!. '---

5-38 

Request ~ I Service The 
~ Request Here 

Setup Time !:~l 
;! ~ 

Figure 5.34 Synchronization of Autobuffer or Interrupt Request to Processor Clock 

As shown in Figure 5.34, there is a two-process or-cycle delay before the 
autobuffer or interrupt request is acted on by the processor. The same 
latencies exist for all external interrupts. T~e processor can only service 
interrupt or autobuffer requests on instruction cycle boundaries, so there 
may be additional latency cycles added due to the completion of an 
instruction. 

5.13.7 Instruction Completion Latencies 
There are several situations which can cause an instruction to take more 
than one processor cycle. Any of the following can delay the processor's 
ability to service a pending interrupt or autobuffer request: 

• External memory wait states 
• Bus request when an external access is required (in go-mode) 
• Bus request with go-mode disabled 
• Multiple external accesses required for a single instruction 
• A pending higher priority autobuffer or interrupt request 
• Interrupt being masked 



On instruction cycle boundaries the processor will service multiple 
pending interrupt or autobuffer requests in the following priority order: 

• SPORTO transmit autobuffer-highest priority (not on ADSP-2105) 
• SPORTO receive autobuffer (not on ADSP-2105) 
• SPORTl transmit autobuffer 
• SPORTl receive autobuffer 
• Unmasked pending interrupts in priority order 

5.13.8 Interrupt & Autobuffer Service Example 
Figure 5.35 shows the execution of a serial port interrupt based on a 
request that meets the setup and hold time requirements. This example is 
the same for a receive or a transmit interrupt request. 

Request ~j 

CLKOUT -' \ I \ I \ I \ I 

EXEC --{ A X B X FETCHINT X INT X 
Sync Delay ~! 

~ 

NOP Instruction, Fetch Vector ! .. .. 1 
} ~ 

Execute First Instruction Of Interrupt Routine ! ...... ~----~ .. 1 

Figure 5.35 Interrupt Service Example 

An additional latency cycle is consumed due to the fetching of the first 
instruction of the interrupt routine. The interrupt can only be serviced on an 
instruction cycle boundary. The above example (in Figure 5.35) assumes all 
instructions are completed in one processor cycle. Figure 5.36 shows the 
result of an autobuffer request that meets the setup and hold requirements. 

Request~l 
~ 

CLKOUT .-I \ I \ I \ I \ I 

EXEC --{ A X B X AUTOBUFFER X C X 
! 

Sync Delay ---..! 
Do The Autobuffer Transfer ! ... 

~ 
.i 

Figure 5.36 Autobuffer Service Example 

.; ~ 

Continue Main Program l ....... ~----~· l. 

5-39 



Autobuffering only consumes the cycles necessary to perform the data 
transfer; no additional cycles are lost fetching instructions. The above 
diagram assumes that all instructions and data transfers occur in one 
processor cycle. 

5.13.9 Receive Companding Latency 
In addition to the cycles used for synchronization, there are some 
additional delays possible due to receive companding. The synchronized 
request is used by the processor to decide when to write the receive 
register with the expanded value. This can only occur on instruction cycle 
boundaries and only one receive register can be expanded at a time. On 
the ADSP-2100 family processors that have two serial ports (i.e. all except 
the ADSP-2105), there is also a possibility of a delay due to the availability 
of the companding circuitry. SPORTO has the higher priority. When 
companding is enabled, the autobuffer or interrupt request does not occur 
until the register has been expanded. The next two diagrams show 
examples of autobuffering with companding and the latencies involved. 

Request~! 
~ 

CLKOUT 

EXEC 

COMPAND 

5-40 

~ \ 

--{ A 

/ 

X 

\ / 

B X 

Sync Delay ----.-1 
l 

\ / 

C X 

EXPANDRX 

-I Expand The Receive Register 1 ..... I------~ 

\ / 

AUTOBUFFER X 

Do The Autobuffer Transfer ! ..... I-------t.~ ~ 

Figure 5.37 Receive Companding Example 
Continue Main Program 1-"'-

D 



The following diagram shows the latency when there are two pending 
receive autobuffer requests with companding enabled. 

Request~ SPORTO Receive 

Request~ SPORT1 Receive 

CLKOUT / '----l \ / \ / \ / 

EXEC -{ A X B X C X AUTOBUFFER X 

COMPAND EXPANDRXO X EXPANDRX1 

Sync Delay ----.j 
Expand RXO 1! ........ 1-------! 

Expand RX1 1 ....... 1-----~. ~ 

RXO Autobuffer Transfer 1 ......... 1-----~. 1 

\ / 

AUTOBUFFER X 

RX1 Autobuffer Transfer 1 ....... 1------.. 

Figure 5.38 Receive Companding Example With Both Serial Ports 
Continue Main Program ~ 

5.13.10 Interrupts With Autobuffering Enabled 
When autobuffering is enabled, SPORT interrupts occur when the address 
modification done during the autobuffer operation causes a modulus 
wraparound. The synchronization delay applies to this type of interrupt as 
well. An example is shown below in Figure 5.39: 

CLKOUT ~ \ / \ / \ / \ 

EXEC -{ AUTOBUFFER X D X E X FETCHINT 

Sync Delay ---...1 
i 

NOP Instruction, Fetch Vector ~ .. 
:: 

/ 

X INT 

~ .. ~ 
~ 

Execute First Instruction Of Interrupt Routine l~ 

Figure 5.39 Autobuffering Interrupt Example 

5-41 

'-
D 



SCLK 

DR X 

DT -{ 

5-42 

.:::::::::;~:::: .:.: :.:.: ':':':':':':', , .•.. 

::::.:;.:~.::'.::::::.::::::.::.:~.:~ .. :~:'.;:~ ; .. :.'.:;.:~.:;.:.:;:;:~:;:~.:~.':~:~ .. ;:., ~: .. :~.'.:~ ... :~::,~;:::: :~: ... :l.:j .... :: :.:: .. :~ .... ::.:;.:~:~·:;.~ ... :~ .. :~ .. :1.:~ ... :~ .. ::.:.~ .. :: .. :~.:~ ... :~ ~~~[)f :::;::::::;;::: ;~;~:::::::1:; iii~:~:)::. mr····· ;~~~;:::i~;: ml ;11~~:: .~;;~~;~~~~~;;: 

5.13.11 Unusual Complications 
In most cases the serial port companding, autobuffer, and interrupt 
latencies are transparent to your application program. When trying to use 
the same I register for more than one autobuffer channel, it becomes 
important to make sure that the latencies do not effect the correct order of 
operations. For example, if the serial port data is continuous, and the 
receiver and transmitter are working with the same frame signal, the order 
of the transmit and receive autobuffer or interrupt operations may be 
affected by the latencies shown below in Figure 5.40. 

BIT3 X BIT2 X BIT1 X BITO X BIT3 X BIT2 X BIT1 X BITO X 
BIT3 X BIT2 X BIT1 X BITO X BIT3 X BIT2 X BIT1 X BITO X 

Transmit Autobuffer Request ~ ! 
Receive Autobuffer Request ~ I 

l 

Figure 5.40 Using One Index Register for Transmit and Receive Autobuffer 

If the processor is free to handle the autobuffer requests in the order they 
are generated, the receive autobuffer happens first and is then followed by 
the transmit autobuffer. The order of these operations may change if the 
processor is not available to handle the requests due to any of the 
previously mentioned latencies. In this case there are 1 Y2 serial clock cycles 
between the requests. If the processor is subject to bus requests, wait 
states, or other latencies which are longer than 1 Y2 serial clock cycles, both 
autobuffer operations may be held off. Since the transmit autobuffer has a 
higher priority, it's request will occur first. Because of the priority of the 
autobuffer requests the use of a single I register more difficult or even 
impossible in some cases. As long as there are no possible latency cases 
longer than the difference in the timing of the requests, it is quite possible 
to use a single I register for serial port autobuffering. 



Timer 

6.1 OVERVIEW 
The programmable interval timer can generate periodic interrupts based 
on multiples of the processor's cycle time. When enabled, a 16-bit count 
register is decremented every n cycles, where n-l is a scaling value stored 
in an 8-bit register. When the value of the count register reaches zero, an 
interrupt is generated and the count register is reloaded from a 16-bit 
period register. 

The scaling feature of the timer allows the 16-bit counter to generate 
periodic interrupts over a wide range of periods. Given a processor cycle 
time of 80 ns, the timer can generate interrupts with periods of 80 ns up to 
5.24 ms with a zero scale value. When scaling is used, time periods can 
range up to 1.34 seconds. 

Timer interrupts can be masked, cleared and forced in software if desired. 
For additional inform.ation, refer to the section "Interrupts" in Chapter 3, 
"Program Control." 

6.2 TIMER ARCHITECTURE 
The timer includes two 16-bit registers, TCOUNT and TPERIOD and one 
8-bit register, TSCALE. The extended mode control instruction enables 
and disables the timer by setting and clearing bit 5 in the mode status 
register, MSTAT. For a description of the mode control instructions, refer 
to Chapter 15, Instruction Set Reference. The timer registers, which are 
memory-mapped, are shown in Figure 6.1 (on the following page). 

TCOUNT is the count register. When the timer is enabled, it is 
decremented as often as once every instruction cycle. When the counter 
reaches zero, an interrupt is generated. TCOUNT is then reloaded from 
the TPERIOD register and the count begins again. 

6 

6-1 



6-2 

:;:;:;:",:~.",:!.",::",:!",::.;:;:;: ,:.~;:::~.:~.:! :l:~,~::~~.'::!:::':~.::::.,~:!:::l.:;,:l.,::.' ,:,:::,:l.':::::::::'.::,::::'::: ',.:l.,:~.:l::,·::::: :1:;: :;:l: 1:1:: ::::: ::::::~:~:~:~:~ ::::: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~PER~OD : peri~d R~giS~er Ox3FFD 

T~OU~T ~oun~er R:egiS~er 
==~~~~~~~~~~~ 

Ox3FFC 

Figure 6.1 Timer Registers 

TSCALE stores a scaling value that is one less than the number of cycles 
between decrements of TCOUNT. For example, if the value in TSCALE 
register is 0, the counter register decrements once every cycle. If the value 
in TSCALE is I, the counter decrements once every 2 cycles. Figure 6.2 
shows the timer block diagram. 

DMD Bus 16 

Decrement 

Timer Enable 

Figure 6.2 Timer Block Diagram 

TCOUNT Zero 1----1_.._ .... 

Timer 
Interrupt 



6.3 RESOLUTION 
TSCALE provides the capability to program longer time intervals between 
interrupts, extending the range of the 16-bit TCOUNT register. Table 6.1 
shows the range and the relationship between period length and 
resolution for TPERIOD = maximum. 

Cycle Time = 80 ns 
TSCALE Interrupt Every ... Resolution 

80ns 
20/-!s 

o 5.24 ms 
255 1.34 s 

Table 6.1 Timer Range And Resolution 

6.4 TIMER OPERATION 
Table 6.2 shows the effect of operating the timer with TPERIOD = 5, 
TSCALE = 1 and TCOUNT = 5. After the timer is enabled (cycle n-l) the 
counter begins. Because TSCALE is I, TCOUNT is decremented on every 
other cycle. The reloading of TCOUNT and continuation of the counting 
occurs, as shown, during the interrupt service routine. 

Cycle 
n-4 
n-3 
n-2 
n-l 
n 
n+l 
n+2 
n+3 
n+4 
n+5 
n+6 
n+7 
n+8 
n+9 
n+l0 
n+ll 

n+12 
n+13 
n+14 
n+15 

TCOUNT 

5 
5 
5 
4 
4 
3 
3 
2 
2 
1 
1 
a 
a 

5 
5 
4 
·4 

Action 
TPERIOD loaded with 5 
TSCALE loaded with 1 
TCOUNT loaded with 5 
ENA TIMER executed 
since TSCALE = I, no decrement 
decrement TCOUNT 
no decrement 
decrement TCOUNT 
no decrement 
decrement TCOUNT 
no decrement 
decrement TCOUNT 
no decrement 
decrement TCOUNT 
no decrement 
zero reached,' interrupt occurs 
load TCOUNT from TPERIOD 
no decrement 
decrement TCOUNT 
no decrement 
decrement TCOUNT, etc .. 

Table 6.2 Example Of Timer Operation 

6-3 



6-4 

One interrupt occurs every (TPERIOD +1) * (TSCALE +1) cycles. To set the 
first interrupt at a different time interval from subsequent interrupts, load 
TCOUNTwith a different value from TPERIOD. The formula for the first 
interrupt is (TCOUNT + 1) * (TSCALE+ 1). 

If you write a new value to TSCALE or TCOUNT, the change is effective 
immediately. If you write a new value to TPERIOD, the change does not 
take effect until after TCOUNT is reloaded. 



Host Interface Port 

7.1 OVERVIEW 
The host interface port (HIP) of the ADSP-2111, ADSP-2171, and 
ADSP-21msp58/59 is a parallel I/O port that allows these processors to be 
used as memory-mapped peripherals of a host computer (i.e. slave DSP 
processors). Examples of host computers include the Intel 8051, Motorola 
68000 family, and even other ADSP-21xx processors. 

The host interface port can be thought of as an area of dual-ported 
memory, or mailbox registers, that allow communication between the host 
and the processor core of the ADSP-21xx. The host addresses the HIP as a 
segment of 8- or 16-bit words of memory. To the processor core, the HIP is 
a group of eight data-memory-mapped registers. 

Any number of ADSP-21xx processors can be used in parallel as memory­
mapped peripherals. Assigning a different address location to each one 
allows the host to control them all. 

The operating speed of the HIP is similar to that of the processor data bus. 
A read or write operation can occur within a single instruction cycle. 
Because the HIP is normally connected with devices that are much slower 
(the 68000, for example, can take four cycles to perform a bus operation), 
the data transfer rate is usually limited by the host computer. 

The host interface port is completely asynchronous to the rest of the 
ADSP-21xx's operations. The host can write data to or read data from the 
HIP while the ADSP-21xx is operating at full speed. The HIP can be 
configured for operation on an 8-bit or 16-bit data bus and for either a 
multiplexed address/ data bus or separate address and data buses. 

The ADSP-2111, ADSP-2171, and ADSP-21msp58/59 support two types of 
booting operations. One method boots from external memory (usually 
EPROM) using the boot memory interface described in the "Memory 
Interface" chapter. The other method uses the HIP to boot load a program 
from the host computer. HIP booting is described at the end of this 
chapter. 

7 

7-1 



7-2 

7.2 HIP PIN SUMMARY 
The HIP consists of 27 pins. As shown in Table 7.1, 16 of these are data 
pins and 11 are control pins. Some of the control pins have dual functions, 
allowing the processor to support different bus protocols. 

Pin Number 
Name of Pins 

HSEL 

HACK 
HSIZE 

BMODE 

HMDO 

HRD/HRW* 

HWR/HDS* 

HMDl 

HDl5-0/HAD1S-0 ** 

HA2 /ALE ** 

HAl-O / no function ** 

TOTAL 

* HMDO selects function 
** HMDI selects function 

1 

1 

1 

1 

1 

1 

1 

1 

16 

1 

2 

27 

Direction 

Input 

Output 

Input 

Input 

Input 

Input 

Input 

Input 

Bidirectional 

Input 

Input 

Table 7.1 Host Interface Port Pins 

Function 

HIP Select 

HIP Acknowledge 

HIP 8/16 Bit Host 
O=16-bit; 1=8-bit 

HIP Boot Mode Select 
O=normal (EPROM); l=HIP 

HIP Bus Strobe Select 
O=RD, WR; l=RW, DS 

HIP Read Strobel 
Read/Write Select 

HIP Write Strobel 
Host Data Strobe 

HIP Address/Data Mode 
O=separate; l=multiplexed 

HIP Data/Address & Data 

HIP Host Address 2/ 
Address Latch Enable 

Host Addresses 1 & 0 



HSEL is a host select which allows the host to enable or disable the HIP for 
host data transfers. 

HACK is a host acknowledge output for hosts that require an 
acknowledge for handshaking. 

HSIZE configures the bus size; the HIP can function in both 8-bit and 16-
bit modes. If the HIP is configured for an 8-bit host (HSIZE=l), data is 
read from and written to the lower eight bits of a HIP data register and the 
upper eight bits are zero-filled (on host writes) or tristated (on host reads). 

BMODE determines whether booting occurs through the HIP or through 
the memory interface pins. 

HMDO and HMD1 are mode pins that configure the address, data and 
strobe pins, as shown in Table 7.2. HMDO configures the bus strobes, 
selecting either separate read and write strobes or a single read/write 
select and a host data strobe. HMD1 configures the bus protocol, selecting 
either separate address (3-bit) and data (16-bit) buses or a multiplexed 16-
bit address/ data bus with address latch enable. The timings of each of the 
four bus protocols are described later in this chapter. 

HMDl=O 

HRD HIP Read Strobe 
HMDO=O HWR HIP Write Strobe 

HDlS-0 HIP Data 
HA2-0 HIP Address 

HRW HIP Read/Write Select 
HMDO=l HDS HIP Data Strobe 

HDlS-0 HIP Data 
HA2-0 HIP Address 

Table 7.2 HIP Configuration Modes 

HMDl=l 

HRD HIP Read Strobe 
HWR HIP Write Strobe 
HADlS-0 HIP Address/Data 
ALE HIP Address Latch Enable 

HRW HIP Read/Write Select 
--
HDS HIP Data Strobe 
HADlS-0 HIP Address/Data 
ALE HIP Address Latch Enable 

7-3 



7-4 

The functions of the following pins are determined by HMDO and HMD1 
as described above: 

HD1S-0/HAD1S-0 are either a data bus or a multiplexed address/data 
bus. (Only the 3 least significant address bits are used.) 

HRD/HRW is either a read strobe or a read/write select (1=read, 
O=write). 

HWR/HDS is either a write strobe or a data strobe. 

HA2/ ALE is either the most significant host address bit or an address 
latch enable. 

HAI-0 are either the two least significant host address bits or are unused. 

7.3 HIP FUNCTIONAL DESCRIPTION 
The HIP consists of three functional blocks, shown in Figure 7.1: a host 
control interface block (HCn, a block of six data registers (HDRS-O) and a 
block of two status registers (HSR7-6). The HIP also includes an associated 
HMASK register for masking interrupts generated by the HIP. The HCI 
provides the control for reading and writing the host registers. The two 
status registers provide status information to both the host and the ADSP-
21xx core. 

The HIP data registers HDRS-O are memory-mapped intp internal data 
memory at locations Ox3FEO (HDRO) to Ox3FES (HDRS). These registers 
can be thought of as a block of dual-ported memory. None of the HDRs 
are dedicated to either direction; they can be read or written by either the 
host or the ADSP-21xx. When the host reads an HDR register, a maskable 
HIP read interrupt is generated. When the host writes an HDR, a 
maskable HIP write interrupt is generated. 

The read/write status of the HDRs is also stored in the HSR registers. 
These status registers can be used to poll HDR status. Thus, data transfers 
through the HIP can be managed by using either interrupts or a polling 
scheme, described later in this chapter. 



4~ 

16 .;~ 

U) 
:) 
m 
c 
:e c 

" 

...... ..... 

~ .... 

~ 

I 

...... 

Boot 
Control 

.. .... 

~, 

HMASK I 
SOFT RESET 

2, 
HIP I 

INTERRUPTS 

... HSIZE 

... BMODE 

... HMD1 

~ 
HMDO 

HACK 

Host ... HSEL 
Control HWRlHDS 
Interface ... 

... HRDIHRW 

.... HA2IALE 

HA1-0 2, 
I 

... Overwrite Bit 

~ 
Readlwrlte control , 

HDRO 

HDR1 

HDR2 

HDR3 

HDR4 

HDRS 

HSR6 

HSR7 

I 16 J 
I 

HD1S-0 

Figure 7.1 HIP Block Diagram 

.. 
p 

.. .... 

The HSR registers are shown in Figure 7.2, which can be found on the 
following page. Status information in HSR6 and HSR7 shows which HDRs 
have been written. The lower byte of HSR6 shows which HDRs have been 
written by the host computer. The upper byte of the HSR6 shows which 
HDRs have been written by the ADSP-21xx. When an HDR register is 
read, the corresponding HSR bit is cleared. 

7-5 



7-6 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

HSR7 1:::!::::~::!:::::I::~:::::I:::,:::::I:::t::::I:::t::::1:::1::::1:::1::::1 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Ox3FE7 

PVE~~~ 
MODE 

SOFTWARE _______ ...... 
RESET 

~
I L 21xx HDRO Write 

~ 21xx HDR1 Write 

21xx HDR2 Write 

21xx HDR3 Write 

1....-_____ 21xx HDR4 Write 

1....------- 21xx HDR5 Write 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

HSR6 1:::,::::1::::,::::1 0 I 0 I 0 I 0 I 0 I 0 1:::,::::1:::,::::1 0 I 0 I 0 I 0 I 0 I 0 I Ox3FE6 

~HHD"5W~~ I ~HHDR4W"te ~ 
21xx HDR3 Write --------' 

21xx HDR2 Write ______ ----' 

21xx HDR1 Write ________ ...J 

21xxHDROWrite ---------...... 

Figure 7.2 HIP Status Registers 

~
I L HostHDROWrite 

~ Host HDR1 Write 

Host HDR2 Write 

Host HDR3 Write 

1....------ Host HDR4 Write 

1....------- Host HDR5 Write 

The lower six bits of HSR7 are copied from the upper byte of HSR6 so that 
8-bit hosts can read both sets of status. Bits 7 and 6 of HSR7 control the 
overwrite mode and software reset, respectively; these functions are 
described later in this chapter. The upper byte of HSR7 is reserved. All 
reserved bits and the software reset bit read as zeros. The overwrite bit is 
the only bit in the HSRs that can be both written and read. At reset, all 
HSR bits are zeros except for the overwrite bit, which is a one. 

7.4 HIP OPERATION 
The ADSP-21xx core can place a data value into one of the HDRs for 
retrieval by the host computer. Similarly, the host computer can place a 
data value into one of the HDRs for retrieval by the ADSP-21xx. To the 
host computer, the HDRs function as a section of memory. To the 
ADSP-21xx, the HDRs are memory-mapped registers, part of the internal 
data memory space. 



Because the HIP typically communicates with a host computer that has 
both a slower instruction rate and a multicycle bus cycle, the host 
computer is usually the limiting factor in the speed of HIP transfers. 
During a transfer, the ADSP-21xx executes instructions normally, 
independent of HIP operation. This is true even during a multicycle 
transfer from the host. 

For host computers that require handshaking, the ADSP-21xx returns 
HACK in the same cycle as the host access, except in overwrite mode. In 
overwrite mode, the ADSP-21xx can extend a host access by not asserting 
the HACK acknowledge until the cycle is complete. The user can enable 
and disable overwrite mode by setting and clearing a bit in HSR7. 
Overwrite mode is described in more detail later in this chapter. 

The HDRs are not initialized during either hardware or software reset. 
The host can write information to the HDRs before a reset, and the ADSP-
21xx can read this information after the reset is finished. During reset, 
however, HIP transfers cannot occur; the HACK pin is deasserted and the 
data pins are tristated. 

Because a host computer that requires handshaking must wait for an 
acknowledgement from the ADSP-21xx, it is possible to cause such a host 
to hang. If, when the host has initiated a transfer, but has not yet received 
an acknowledgement, the ADSP-21xx is reset, then the acknowledgement 
can not be generated, thus causing the host to wait indefinitely. 

There is no hardware in the HIP to prevent the host from writing a 
register that the ADSP-21xx core is reading (or vice versa). If the host and 
the ADSP-21xx try to write the same register at the same time, the host 
takes precedence. Simultaneous writes should be avoided, however: since 
the ADSP-21xx and the host operate asynchronously, simultaneous writes 
can cause unpredictable results. 

7.4.1 Polled Operation 
Polling is one method of transferring data between the host and the 
ADSP-21xx. Every time the host writes to an HDR, a bit is automatically 
set in the lower byte of HSR6. This bit remains set until the ADSP-21xx 
reads the HDR. Similarly, when the ADSP-21xx writes to an HDR, a bit in 
the upper byte of HSR6 (and the lower byte of HSR7) is set. This bit is 
cleared automatically when the host reads the HDR. 

7-7 



HCLK 

CLKOUT 

7-8 

For example, the ADSP-21xx can wait in a loop reading an HSR bit to see if the 
host has written new data. When the ADSP-21xx sees that the bit is set, it 
conditionally jumps out of the loop, processes the new data, then returns to the 
loop. When transferring data to the host, the ADSP-21xx waits for the host to 
read the last data written so that new data can be transferred. The host polls 
the HSR bits to see when the new data is available. 

7.4.1.1 HIP Status Synchronization 
Processes running on the ADSP-:21xx are asynchronous to processes running 
on the host. Values in the shared status registers (HSR6, HSR7) can therefore 
change at any time, and reading a changing value could give unpredictable 
results. The ADSP-21xx HIP, however, includes synchronization circuitry 
which guarantees that the HIP status is constant during a read by either the 
ADSP-21xx core or the host. This synchronization is illustrated in Figures 7.3 
and 7.4. The status registers are updated by the ADSP-21xx and thus are 
synchronous with the ADSP-21xx processor clock, but host accesses are 
asynchronous with respect to the ADSP-21xx clock. 

When the host reads HSR6 or HSR7 to obtain status information, there is a 
one-cycle synchronization delay before the current (Le. updated) status is 
available. To obtain the correct, current status, therefore, the host must perform 
two consecutive reads-the second read will generate the correct status 
information (the first read generates the previous status). 

I Host 
Access 

d1 status d2 status 

\ 
c1 host status 

update 

Host 
Access L 

c2 host status 
update 

~ ~ L ---' -------------------------------------
Figure 7.3 Host Status Synchronization 

I \ I \ I \ 
d1 status d2 status c1 21xx HIP c2 21xx HIP 

~ ~ ~ 
status uPdate-----, status update 

Figure 7.4 ADSP·21xx HIP Status Synchronization 



In Figure 7.3, host status synchronization is based on a pseudo-clock HCLK, 
internal to the ADSP-21xx, which is a logical combination of HRD, HWR and 
HSEL. The first event shown in the figure is a status change at dl. The host status 
will then be updated after the HCLK low, HCLK high, HCLK low sequence at 
point cl. A status change at d2 would wait for the HCLK low, HCLK high, 
HCLK low sequence, and then host status would be updated at point c2. 

Status synchronization for the ADSP-21xx requires one full CLKOUTcycle 
(starting at the rising edge) after a status change. As shown in Figure 7.4, a status 
change at point dl would cause a 21xx HIP status update at cl. A status change 
at d2 would cause a 21xx HIP status update at c2. 

7.4.2 Interrupt-Driven Operation 
Using an interrupt-driven protocol frees the host and the ADSP-21xx from polling 
the HSR(s) to see when data is ready to be read. For interrupt-driven transfers to the 
ADSP-21xx, the host writes data into an HDR, and the HIP automatically generates 
an internal interrupt. The interrupt is serviced like any other interrupt. 

For transfers to the host, the ADSP-21xx writes data to an HDR, then sets a flag 
output, which is connected to a host interrupt input, to signal the host that new data 
is ready to be transferred. Flag outputs are discussed in detail in Chapter 9, "System 
Interface." If the ADSP-21xx passes data to the host through only one HDR, then that 
HDR can be read directly by the host when it receives the interrupt. If more than one 
HDR is used to pass data, then the host must read the appropriate HSR(s) to 
determine which HDR was written by the ADSP-21xx. 

7.4.3 HDR Overwrite Mode 
In most cases, the ADSP-21xx reads host data sent through the HIP faster than the 
host can send them. However, if the host is sufficiently fast, if the ADSP-21xx is busy, 
or if the ADSP-21xx is driven by a slow clock, there may be a delay in servicing a 
host write interrupt. If the host computer uses a handshaking protocol requiring the 
ADSP-21xx to assert HACK to complete a host transfer, the ADSP-21xx can optionally 
hold off the next host write until it has processed the current one. 

If the HDR overwrite bit (bit 7 in HSR7) is cleared, and if the host tries to write to a 
register before it has been read by the ADSP-21xx, HACK is not asserted until the 
ADSP-21xx has read the previously written data. The host processor must wait for 
HACK to be asserted. As described earlier, however, there is a delay from when the 
host writes data to when the status is synchronized to the ADSP-21xx. During this 
interval, it is possible for the host to write an HDR a second time even when the 
overwrite bit is cleared. 

If the HDR overwrite bit is set, the previous value in the HDR is overwritten and 
HACK is returned immediately. If the ADSP-21xx is reading the register that is 
being overwritten, the result is unpredictable. 7 _ 9 



7-10 

After reset, the HDR overwrite bit is set. If the host does not require an . 
acknowledge (HACK is not used), the HDR overwrite bit should be always be 
set, because there is no way for the ADSP-21xx to prevent overwrite. 

7.4.4 Software Reset 
Writing a 1 to bit 6 of HSR7 causes software reset of the ADSP-21xx. If the 
ADSP-21xx writes the software reset bit, the reset happens immediately. 
Otherwise, the reset happens as soon as the write is synchronized to the 
ADSP-21xx system clock. The internal software reset signal is held for five 
ADSP-21xx clock cycles and then released. 

7.5 HIP INTERRUPTS 
HIP interrupts can be masked using either the IMASK register or the HMASK 
register. Bits in the IMASK register enable or disable all HIP read interrupts or 
all HIP write interrupts. The HMASK register, on the other hand, has bits for 
masking the generation of read and write interrupts for individual HDRs. In 
order for a read or write of an HDR to cause an interrupt, the HIP read or write 
interrupt must be enabled in IMASK, and the read or write to the particular 
HDR must be enabled in HMASK. HMASK is mapped to memory location 
Ox3FE8. IMASK is described in Chapter 3, "Program Control." 

A host write interrupt is generated whenever the host completes a write to an 
HDR. A host read interrupt is generated when an HDR is ready to receive data 
from the ADSP-21xx-this occurs when the host has read the previous data, 
and also after reset, before the ADSP-21xx has written any data to the HDR. 
HMASK, however masks all HIP interrupts at reset. The read interrupt allows 
the ADSP-21xx to transfer data to the host at a high rate without tying up the 
ADSP-21xx with polling overhead. 

HMASK allows reads and writes of some HDRs to not generate interrupts. For 
example, a system might use HDR2 and HDRI for data values and HDRO for a 
command value. Host write interrupts from HDR2 and HDRI would be 
masked off, but the write interrupt from HDRO would be unmasked, so that 
when the host wrote a command value, the ADSP-21xx would process the 
command. In this way, the overhead of servicing interrupts when the host 
writes data values is avoided. 

The HMASK register is organized in the same way as HSR6; the mask bit is in 
the same location as the status bit for the corresponding register. The lower 
byte of HMASK masks host write interrupts and the upper byte masks host 
read interrupts. The bits are all positive sense (O=masked, l=enabled). 



HMASK 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l:ii:~I:.:I·:·::~::::1 0 I 0 I 0 I 0 I 0 I 0 l:i:i~ii:·I::ii~::I:1 0 I 0 I 0 I 0 I 0 I 0 I Ox3FE8 

Host HDR5 Read 

Host HDR4 Read d ~
. I L HostHDROWrite 

~ Host HDR1 Write 

Host HDR2 Write 

Host HDR3 Write 

Host HDR3 Read ---------' 

Host HDR2 Read ----------' 

Host HDR4 Write 

Host HDR5 Write 
Host HDR1 Read ________ .....J 

Host HDRO Read -----------' 

Figure 7.5 HMASK Register 

INTERRUPT ENABLES 

1=enable 
O=disable 

HMASK is mapped to the internal data memory space at location Ox3FE8. At reset, 
the HMASK register is all zeros, which means that all HIP interrupts are masked. 

HIP read and write interrupts are not cleared by servicing such an interrupt. Reading 
the HDR clears a write interrupt, and writing the HDR clears a read interrupt. The 
logical combination of all read and write interrupt requests generates a HIP interrupt. 
Pending interrupt requests remain until all HIP interrupts are cleared by either 
reading or writing the appropriate HIP data register. If the ADSP-21xx is reading 
registers that the host might be writing, it is not certain that an interrupt will be 
generated. To ensure that all host writes generate interrupts, you must make sure that 
the ADSP-21xx is not reading the HDRs that the host is writing. While servicing the 
interrupt, the status register can be read to determine which operation generated the 
interrupt and whether multiple interrupt requests need to be serviced. 

HIP interrupts cannot be forced or cleared by software, as other interrupts can. 
The HIP write interrupt vector is location Ox0008. The HIP read interrupt vector is 
location OxOOOC. 

7.6 HOST INTERFACE TIMING 
The following diagrams show the timings of HIP signals in the various modes 
determined by HMDO and HMDI. HMDO configures the bus strobes, selecting either 
separate read and write strobes or a single read/write select and a host data strobe. 
HMDI configures the bus protocol, selecting either separate address (3-bit) and data 
(16-bit) buses or a multiplexed 16-bit address/data bus with address latch enable. 
The HSIZE pin can be changed on a cycle-by-cycle basis; although not shown in the 
following diagrams, it has the same timing as the HRD /HRW signal. 

7 -11 



Figure 7.6 shows the HIP timing when both HMDO=O and HMDl=O. HMDO 
selects separate read and write strobes, and HMDI selects separate address 
and data buses. The timing for the read cycle and the write cycle is as follows: 

1. The host asserts the address. 
2. The host asserts (HRD or HWR) and HSEL. 
3. The ADSP-21xx returns HACK (and, for a read cycle, the data). 
4. For a write cycle, the host asserts the data. 
5. The host deasserts (HRD or HWR) and HSEL. 
6. The host deasserts the address (and, for a write cycle, the data). 
7. The ADSP-21xxdeasserts HACK (and, for a read cycle, the data). 

HA2-G :xxID< _____ A_DD_RE_SS _______ XXXXXXXXXXXXXXXXXX 

Host Write Cycle iiWR 

\~-------I/ 

\ / 

HACK \ ...... ---------'/ 
HD15-0 xxxxxxxxxxxxxXX DATA XXXXXXXXXXXXXXXXXX 

HA2-G mxx ADDRESS XXXXXXXXXXXXXXXXXX 

iiSEL \ / 

Host Read Cycle HRD \ / 

HACK \ / 

HD15-0 (X DATA X> 
Figure 7.6 HIP Timing: Separate Strobes, Separate Buses 

7-12 



Figure 7.7 shows the HIP timing when HMDO=l and HM01=O. HMDO selects 
a multiplexed read/write select with data strobe, and HM01 selects separate 
address and data buses. The timing for the read cycle and the write cycle is as 
follows: 

1. The host asserts HRW and the address. 
2. The host asserts HDS and HSEL. 
3. The ADSP-21xx returns HACK (and, for a read cycle, the data). 
4. For a write cycle, the host asserts the data. 
5. The host deasserts HDS and HSEL. 
6. The host deasserts HRW and the address (and, for a write cycle, the data). 
7. The ADSP-21xx deasserts HACK (and, for a read cycle, the data). 

HA2-o mxx ADDRESS XXXXXXXxxxxxxxx<XX 

'iiftt \ / 
HRW \ I 

Host Write Cycle 
Ri5S \ / 

HACK \ I 

HD15-{) XxxxXxxxxxxxro< DATA XXXXXxxxxxxxxXXXXX 

HA2-{) mxx ADDRESS XXXXxxxxXXXXXXXXXX 
HsEL. \ / 
HRW ~ \ 

Host Read Cycle 
HDs \ / 

HACK \ / 
HD15-{) <X DATA X) 

Figure 7.7 HIP Timing: Multiplexed RIW Strobe, Separate Buses 7 -13 



Figure 7.8 shows the HIP timing when HMDO=O and HMD1=1. HMDO selects 
separate read and write strobes, and HMD1 selects multiplexed address and 
data buses. HDO-HD2 are used for the address. The timing for the read cycle 
and the write cycle is as follows: 

1. The host asserts ALE. 
2. The host drives the address. 
3. The host deasserts ALE. 
4. The host stops driving the address. 
5. The host asserts (HRD or HWR) and HSEL. 
6. The ADSP-21xx returns HACK (and, for a read cycle, the data). 
7. For a write cycle, the host asserts the data. 
8. The host deasserts (HRD or HWR) and HSEL. 
9. For a write cycle, the host deasserts the data. 
10. The ADSP-21xx deasserts HACK (and, for a read cycle, the data). 

ALE J\ ________________ _ 

Host Write Cycle HWR 

,'--------, 
\ , 

Host Read Cycle 

HACK ,'-------', 
HAD15-0 XDX ADDRESS XXXmmlX..,-__ D_AT_A_--JXXXXm'fJt#t#J,'IJ. 

ALE ~ ______________________ _ 

HSEL 

HRD 

HACK 

,'----------, 
\ , 

\'---_----1/ 
HAD15-0 XDX ADDRESS )(Jf),.------« ... X ___ DA_T_A _____ )()_ ,.-----

7-14 
Figure 7.8 HIP Timing: Separate Strobes, Multiplexed Buses 



Figure 7.9 shows the HIP timing when HMDO=1 and HMDl=1. HMDO selects 
a multiplexed read/write select with data strobe, and HMDI selects 
multiplexed address and data buses. HDO-HD2 are used for the address. The 
timing for the read cycle and the write cycle is as follows: 

1. The host asserts ALE. 
2. The host drives the address. 
3. The host deasserts ALE. 
4. The host stops driving the address. 
5. The host asserts HRW. 
6. The host asserts HDS and HSEL. 
7. The ADSP-2lxx returns HACK (and, for a read cycle, the data). 
8. For a write cycle, the host asserts the data. 
9. The host deasserts HDS and HSEL. 
10. The host deasserts HRW (and, for a write cycle, the data). 
11. The ADSP-2lxx deasserts HACK (and, for a read cycle, the data). 

ALE~ 

ASEr \ I 
HRW , I 

Host Write Cycle 

\ I HDS 

HACK 
, I 

HAD1!Hl XXX)( ADDRESS XXXXxxxXXXXXX DATA XXXXXXXXX 

ALE ----" 

HSEL \ / 
HRW / \ 

Host Read Cycle 

/ HDS \ 
HACK \ I 

HAD1!Hl XXX)( ADDRESS ><XXX> (X DATA 

X}-7-15 
Figure 7.9 HIP Timing: Multiplexed RIW Strobe, Multiplexed Buses 



7-16 

7.7 BOOT LOADING THROUGH THE HIP 
The entire internal program RAM of the ADSP-21xx, or any portion of it, 
can be loaded using a boot sequence. Upon hardware or software reset, 
the boot sequence occurs if the MMAP pin is 0. If the MMAP pin is 1, the 
boot sequence does not occur. 

The ADSP-21xx can boot in either of two ways: from external memory 
(usually EPROM), through the boot memory interface, or from a host 
processor, through the HIP. The BMODE pin selects which type of booting 
occurs. 

When BMODE=O, booting occurs through the memory interface. This 
process is described in Chapter 10, "Memory Interface." When the 
BMODE=l, booting occurs through the HIP. 

To generate a file for HIP booting, use the HIP Splitter utility program of the 
ADSP-2100 Family Development Software. (This utility produces HIP boot 
files while the PROM Splitter utility produces files for EPROM booting.) 

The BMS signal is asserted when booting through the HIP just as when 
booting through the memory interface; in this case, it serves as an 
indication that the boot sequence is occurring. Boot memory wait states 
have no effect when booting through the HIP. 

Booting through the HIP occurs in the following sequence: 

1. After reset, the host writes the length of the boot sequence to HDR3. 

2. The host waits at least two ADSP-21xx processor cycles. 

3. Starting with the instruction which is to be loaded into the highest 
address of internal program memory, the host writes an instruction 
into HDRO, HDR2 and HDR1 (in that order), one byte each. The upper 
byte goes into HDRO, the lower byte goes into HDR2 and the middle 
byte goes into HDR1. 

4. The address of the instruction is decremented, and Step 3 is repeated. 
This continues until the last instruction has been loaded into the HIP. 

The ADSP-21xx reads the length of the boot load first, then bytes are 
loaded from the highest address downwards. This results in shorter 
booting times for shorter loads. 



The number of instructions booted must be a multiple of eight. The boot 
length value is given as: 

length = (number of 24-bit program memory words + 8) - 1 

That is, a length of 0 causes the HIP to load eight 24-bit words. 

In most cases, no handshaking is necessary, and the host can transfer data 
at the maximum rate it is capable of. If the host operates faster than the 
ADSP-2lxx, wait states or NOPs must be added to the host cycle to slow it 
down to one write every ADSP-2lxx clock cycle. 

The following example shows the data that a host would write to the HIP 
for a lOOO-instruction boot: 

Data Location 
Page Length (124 decimal) HDR3 

Upper Byte of Instruction at 999 HDRO 
Lower Byte of Instruction at 999 HDR2 
Middle Byte of Instruction at 999 HDRl 

Upper Byte of Instruction at 998 HDRO 
Lower Byte of Instruction at 998 HDR2 
Middle Byte of Instruction at 998 HDRl 

Upper Byte of Instruction at 997 HDRO 
Lower Byte of Instruction at 997 HDR2 
Middle Byte of Instruction at 997 HDRl 

• • 
• • 
• • 

Upper Byte of Instruction at 0 HDRO 
Lower Byte of Instruction at 0 HDR2 
Middle Byte of Instruction at 0 HDRl 

A 16-bit host boots the ADSP-21xx at the same rate as an 8-bit host. Either 
type of host must write the same data to the same the HDRs in the same 
sequence (HDRO, HDR2, HDR1). If a 16-bit host writes 16-bit data, the 
upper byte of the data must be OxOo. The following example, loading the 
instruction OxABCDEF, illustrates this: 

1st Write (to HDRO) 
2nd Write (to HDR2) 
3rd Write (to HDRl) 

8-Bit Host 
OxAB 
OxEF 
OxCD 

16-Bit Host 
OxOOAB 
OxOOEF 
OxOOCD 7-17 





Analog Interface 

8.1 OVERVIEW 
The ADSP-21msp58 and ADSP-21msp59 processors include an analog 
signal interface consisting of a 16-bit sigma-delta A/D converter, a 16-
bit sigma-delta D / A converter, and a set of memory-mapped control 
and data registers. The analog interface offers the following features: 

• linear-coded 16-bit sigma-delta ADC 
• linear-coded 16-bit sigma-delta DAC 
• on-chip anti-aliasing and anti-imaging filters 
• 8 kHz sampling frequency 
• programmable gain for DAC and ADC 
• on-chip voltage reference 

The analog interface provides a complete analog front end for high 
performance voiceband DSP applications. The ADC and DAC operate 
at a fixed sampling rate of 8 kHz. The inclusion of on-chip anti-aliasing 
and anti-imaging filters, 16-bit sigma-delta converters, and 
programmable gain amplifiers ensures a highly integrated solution to 
voiceband analog processing requirements. Sigma-delta conversion 
technology eliminates the need for complex off-chip anti-aliasing filters 
and sample-and-hold circuitry. 

The ADSP-21msp58 and ADSP-21msp59 contain the same analog 
interface-they differ only in the amount of on-chip memory. Refer to 
the ADSP-21msp58j59 Data Sheet for detailed analog performance 
specifica tions. 

The analog interface of the ADSP-21msp58/59 is operated by using 
several data-memory-mapped control and data registers. The ADC 
and DAC I/O can be transmitted and received via individual memory­
mapped registers, or the data can be autobuffered directly into the 
processor's data memory. This autobuffering is similar to serial port 
autobuffering, as described in Chapter 5. 

8 

8-1 



;:~;:~~;: :::: .:::: ,:~:. .:::::: 

::~i~: . ;ii:: 1;~~~:::: :~;;~: :~: ::~~~~~i~~ ~~~~ :~i~~:: *~li~: ::ii;:::::;~~~l :~:.:i:·.:~:.:~:.:~: •• :! .. :~:.:"~":~:':~:::::: :.:: .... :i:· :~: •• :~ •. :.:.. :·::;:.:~::~:: •• :i.:f::·:: ••••• ::.:;:.:i: .. :::.::·.~::~.::· .. ::·.::.:i:i.::: •. : .:l::~:.:.:;.:r: .. :;:· :::: . :.:~:·:~:: .. :l:~:::::. :. :;.:: .... :::.:::.·: .. ~.~:.~:~ .... ~:.~.: .. :i: .•• ~: •• :~ •. ::". : ••.••• :.· .• :i: ••• :: .•.• r.:~ :::::'.::'.:.:' :; .. ::,: ::.:: .. :i .• :i:.:~:.::~.:.~:·.:~.::·::,.:i::i.::.·.:. 
;:jf::::::~l~i: i~l~i !~!~ :lI)1 !~1~ ::lll::::::ll:: :;:~j~~~~~;~~~l ' 

Two ADSP-21msp58/59 interrupts are dedicated to the ADC and DAC 
converters. One interrupt is used for the ADC and the other interrupt 
is used for the DAC. Interrupts occur at the sample rate or when the 
autobuffer transfer is complete. 

A block diagram of the analog interface is shown in Figure 8.1, and pin 
definitions are given in Table 8.1. 

VINNORM=B 
MUX.----..... :~I 

VIN AUX .---___ -I~~I 

DECOUPLE 0 I 
PROCESSOR 16 

INTERFACE 

16-BIT SIGMA-DELTA DAC 

VOUTpr-.-....,.......;-­

VOUT N ..,----~ 

8-2 

Figure 8.1 Analog Interface Block Diagram (ADSP·21 msp58/59) 

8.2 AID CONVERSION 
The A/D conversion circuitry of the ADSP-21msp58/59's analog 
interface consists of an input multiplexer, a programmable gain 
amplifier (PGA), and a sigma-delta analog-to-digital converter (ADC). 

8.2.1 Analog Input 
The analog input is internally biased by an on-chip voltage reference to 
allow operation of the ADSP-21msp58/59 with a single +5V power 
supply. The analog inputs should be ac-coupled. 

An analog multiplexer selects either the NORM or AUX input. The 
input multiplexer is configured by bit 1 (IMS) of the 
ADSP-21msp58/59's analog control register (which is memory­
mapped at address Ox3FEE in data memory). The multiplexer setting 
should not be changed while an input signal is being processed. 



::~:~:h ::::: ::::: .;.; :::::: 8 
.1:r ::1:: 1111::::::11:,:::;:::::11:: :::: .;:1::::::':::: ; :::,: ::" ;,1~ ... :1.: .. :.· ... :~; .. : .. :"':: ... :i.: .. :: ... :i .. ::.::::' ':: ... :i.: .. :; ... :l •• ::. ; : •• :1 ... :1 .... :1 ... :1:'::· ... ::.:l .•• :l .•• :r .. :::~:.::.:~.:::~.'· .. :;:l,.:,,:,.:: .•• :: .••• :i .. :[.· ... :/,: ,:·,:: •.. :1 .... :1 .. :1 .. :[:,:, .: .. :: ... :' · .. ::.,:' .•. :~.:~:~.~,::~, ... :i .. :[ .... :l •• ::., "':',· •• :::':: ••• :i:'.:.::::::,':'.' .. :1.:,':" .::.:1.: .. :: ... :[ .. ::.:~:~.·.:~.::,:: ' .. :;:;'.:':; 

A?::::"t, 1[1[1[1[ t~;;:;;lt :1[1 :t,:::/ii:!l!~~;:;;!111 

Pin Name I/O 

VINNORM 

VINAUX I 

Decouple I 

VOUTp 0 

VOUTN 0 

VREF 0 

REF_FILTER 0 

Vee 

GNDA 

Function 

Input terminal of the NORM channel of the ADC. 

Input terminal of the AUX channel of the ADC. 

Ground reference of the NORM and AUX channels 
fortheADC. 

Non-inverting output terminal of the differential 
output amplifier from the DAC. 

Inverting output terminal of the differential output 
amplifier from the DAC. 

Buffered output voltage reference. 

Voltage reference external bypass filter node. 

Analog supply voltage. 

Analog ground. 

Table 8.1 Analog Interface Pin Definitions 

The ADC PGA may be used to increase the signal level by +6 dB, +20 
dB, or +26 dB. This selection is configured by bits 9 and 0 (IG1, IGO) of 
the analog control register. Input signal level to the sigma-delta 
modulator should not exceed the VINMAX specification listed in the 
ADSP-21msp58/59 Data Sheet. Refer to "Analog Input" in the "Design 
Considerations" section of this chapter for more information. 

An offset may be added to the input of the ADC in order to move the 
ADC's idle tones out of the 4.0 kHz speech band range. This is selected 
by bit 10 of the analog control register. The added offset must be 
removed by the ADC's high pass filter; therefore the high pass filter 
must be inserted (not bypassed) when the offset is added. 

8.2.2 ADC 
The analog interface's ADC consists of a 4th-order analog sigma-delta 
modulator, an anti-aliasing decimation filter, and a digital high pass 
filter. The sigma-delta modulator noise-shapes the signal and produces 
I-bit samples at a 1.0 MHz rate. This bit stream, which represents the 
analog input signal, is fed to the anti-aliasing decimation filter. 

8-3 



8-4 

8.2.2.1 Decimation Filter 
The ADC's anti-aliasing decimation filter contains two stages. The first 
stage is a sinc4 digital filter that increases resolution to 16 bits and 
reduces the sample rate to 40 kHz. The second stage is an IIR low pass 
filter. 

The IIR low-pass filter is a 10th-order elliptic filter with a passband 
edge at 3.7 kHz and a stopband attenuation of 65 dB at 4 kHz. This 
filter has the following specifications: 

Filter type: 
Sample frequency: 
Passband cutoff*: 
Passband ripple: 
Stopband cutoff: 
Stopband ripple: 

10th-order low pass elliptic IIR 
40.0 kHz 
3.70 kHz 
±0.2 dB 
4.0 kHz 
-65.00 dB 

* The passband cutoff frequency is defined to be the last point in the 
passband that meets the passband ripple specification. 

(Note that these specifications apply only to this filter, and not to the 
entire ADC. The specifications can be used to perform further analysis 
of the exact characteristics of the filter, for example using a digital filter 
design software package.) 

Figure 8.2 shows the frequency response of the IIR low pass filter. 

m 
'0 
I 

-20 

~ -40 

E z 
Cl 

~ -60 

9 
-80 

-100 
2000 2600 

\ 

1\ 
\ 
\ 

If rl\ ".-

V J \ / 

If \/ , 
~ 

3200 3600 4400 5000 

FREQUENCY - Hz 

Figure 8.2 IIR Low Pass Filter Frequency Response 



;::::::~ ::::.':::::', ;':::::::', ~~~lj ":::::::" ,0:::::';::: ::::: :::: .:::::: 8 
:f\ll: ::::.' ':::: :.:. :::: :::: ::::' ":::: .:::.' ":::: .. :i:;: ... :i ... :i .. :i ..• :l .. :i.:l.:':::::::".:l ... :i:,.:: .. :l :'.:l ... :i:.:l.:i:::':. ::.·.:l.:l .. :l.::·:::~:;::.:;:i·::.,l.' .. :~.:1.:::; .. :1.;;::::·::: .. :i::.:: .. :i .. :1.': : .. :· .... :: .... :: ... ,:·:::~.::::.:.: .. :1 ... :1.:1, .. :1 .. :.:i .• :l ... :1 .. :1 .. :'.:;::··:·:'.:'.'.:' .. :',: .. ' ::.·:1 ... :1 .. :1~ .. :·:;.:~:;:~.:~::,1::1.; 

{1"::::::t:.1i1i 1i1i :111~:::::11 i1il1 't,,:)J :~;!;::::;:!ii: 

8.2.2.2 High Pass Filter 
The ADC's digital high pass filter removes frequency components at 
the low end of the spectrum; it attenuates signal energy below the 
passband of the converter. The ADC's high pass filter can be bypassed 
by setting bit 7 (ADBY) of the ADSP-21msp58/59's analog control 
register. 

The high pass filter is a 4th-order elliptic filter with a passband cutoff 
at 150 Hz. Stopband attenuation is 25 dB. This filter has the following 
specifications: 

Filter type: 
Sample frequency: 
Passband cutoff: 
Passband ripple: 
Stopband cutoff: 
Stopband ripple: 

4th-order high pass elliptic IIR 
8.0 kHz 
150.0 Hz 
±0.2 dB 
100.0 Hz 
-25.00 dB 

(Note that these specifications apply only to this filter, and not to the 
entire ADC. The specifications can be used to perform further analysis 
of the exact characteristics of the filter, for example using a digital filter 
design software package.) 

Figure 8.3 shows the frequency response of the high pass filter. 

Passband ripple is ±0.2 dB for the combined effects of the ADC's 
digital filters (Le. high pass filter and IIR low pass of the decimation 
filter) in the 300-3400 Hz passband. 

/' 

-20 

III 

/ 
~ / 

'CI 
I 

W -40 c " I 
\ 

:::) 

!:: z 

" "" -60 :;; 

" 0 
..J 

-80 

-100 
o 60 120 180 240 300 

FREQUENCY - Hz 

Figure 8.3 High Pass Filter Frequency Response 

8-5 



8-6 

8.3 Of A CONVERSION 
The D/ A conversion circuitry of the ADSP-2Imsp58/59's analog 
interface consists of a sigma-delta digital-to-analog converter (DAC), 
an analog smoothing filter, a programmable gain amplifier, and a 
differential output amplifier. 

8.3.1 OAC 
The analog interface's DAC implements digital filters and a sigma­
delta modulator with the same characteristics as the filters and 
modulator of the ADC. The DAC consists of a digital high pass filter, 
an anti-imaging interpolation filter, and a digital sigma-delta 
modulator. 

The DAC receives I6-bit data values from the ADSP-2Imsp58/59's 
DAC Transmit data register (which is memory-mapped at address 
Ox3FEC in data memory). The data stream is filtered first by the DAC's 
high pass filter and then by the anti-imaging interpolation filter. These 
filters have the same characteristics as the ADC's anti-aliasing 
decimation filter and digital high pass filter. 

The output of the interpolation filter is fed to the DAC's digital sigma­
delta modulator, which converts the I6-bit data to I-bit samples at a 
1.0 MHz rate. The modulator noise-shapes the signal such that errors 
inherent to the process are minimized in the passband of the converter. 

The bit stream output of the sigma-delta modulator is fed to the DAC's 
analog smoothing filter where it is converted to an analog voltage. 

8.3.1.1 High Pass Filter 
The DAC's digital high pass filter has the same characteristics as the 
high pass filter of the ADC. The high pass filter removes frequency 
components at the low end of the spectrum; it attenuates signal energy 
below the passband of the converter. The DAC's high pass filter can be 
bypassed by setting bit 8 (DABY) of the ADSP-2Imsp58/59's analog 
control register. 



::ll~:ll\. ""::"':,,,: ::,: ..... ,',: ::::: :"t';'i':. ;:~,":;::~ll:: !.::! ... :!.::! ... :! .. : :.::: ... ::.::: ... ::::;:':.::~ ... ::.::' ... : :;:.'.:: ... ::.::: ... :::':':: ::·.'::~ .. :~ ... :::::.::.::.:::::.::.:~::i:.:: ::.::.::: ... ::.::;;;:::;:.: ... :!.::! ... :!.::~~' :::.:: .. :'.' ... ::.::::.::::.::.'.:::.::~ ... :::':' ... : ..... :.: .. ~::~.:::.:::.::;.::.::::'::' .. ;:.:.:.;.: ::'.'.:~ .. :~ ... ::::.:.::.::.:::.:.::.:~ .. ::.:::.:: 8 :~~r:::::'~~:~:. :~:~ 1 {l:;::t~ !:~:! :~:::"::}:~' :!;!;:~:;::!!!i 

The high pass filter is a 4th-order elliptic filter with a passband cutoff 
at 150 Hz. Stopband attenuation is 25 dB. This filter has the following 
specifications:' 

Filter type: 
Sample frequency: 
Passband cutoff: 
Passband ripple: 
Stopband cutoff: 
Stopband ripple: 

4th-order high pass elliptic IIR 
8.0 kHz 
150.0 Hz 
±0.2 dB 
100.0 Hz 
-25.00 dB 

(Note that these specifications apply only to this filter, and not to the 
entire DAC. The specifications can be used to perform further analysis 
of the exact characteristics of the filter, for example using a digital filter 
design software package.) 

Figure 8.3 shows the frequency response of the high pass filter. 

8.3.1.2 Interpolation Filter 
The DAC's anti-imaging interpolation filter contains two stages. The 
first stage is is an IIR low pass filter that interpolates the data rate from 
8 kHz to 40 kHz and removes images produced by the interpolation 
process. The output of this stage is then interpolated to 1.0 MHz and 
fed to the second stage, a sinc4 digital filter that attenuates images 
produced by the 40 kHz to 1.0 MHz interpolation process. 

The IIR low pass filter is a 10th-order elliptic filter with a passband edge at 
3.70 kHz and a stopband attenuation of 65 dB at 4 kHz. This filter has the 
following specifications: 

Filter type: 
Sample frequency: 
Passband cutoff*: 
Passband ripple: 
Stopband cutoff: 
Stopband ripple: 

10th-order low pass elliptic IIR 
40.0 kHz 
3.70 kHz 
±O.2dB 
4.0 kHz 
-65.00 dB 

* The passband cutoff frequency is defined to be the last point in the 
passband that meets the passband ripple specification. (Note that these 
specifications apply only to this filter, and not to the entire DAC. The 
specifications can be used to perform further analysis of the exact 
characteristics of the filter, for example using a digital filter design software 
package.) 

8-7 



8-8 

il1~;~ll~:. :~:t:t: :::;:::::t :lll! ::::::::::::::, .:t::;@: i ... ::~.::.~ ... :).::.l ... :: ~""':.::.: ... :::.::.: ... ::::::;: ... :::.:'.: ... ::.::. ;:~ .. ,.~.::~ ... ::;:.::: ... ::::',' : .... :t .. ::: .. ::.~.:.:.: .. :.::~.::.:::.: •. ·:.::~.::~.::.: .. , : .. ::.' .. ::!::: •. : •• :l:: :;~ .. ::~ .. ::~ .. ::.'.; .. :::~: .::;: .. :': ... ::= •• ::: •• :':.:':.'::.:'::== .. ::.: .. ::.: .. :: .. :: .... :: .... :~ ... :~: .. ::~.,.:.::;::.::.:.:: ... :: .... :: ... : .... :( .. :;:.::: ... :~:.: .. :.:.:.:.:.::: .. :.:.: .. ~:::.'.::::':' 
l?:::::~~l~:, l~ll f '~~li~~:~;l~lt 1~l~:~i::,::J :;!!t~~~!!l! . 

Figure 8.2 shows the frequency response of the IIR low pass filter. 

Passband ripple is ±O.2 dB for the combined effects of the DAC's digital 
filters (i.e. high pass filter and IIR low pass of the interpolation filter) in the 
300-3400 Hz passband. 

8.3.1.3 Analog Smoothing Filter & Programmable Gain Amplifier 
The DAC's programmable gain amplifier (PGA) can be used to adjust the 
output signal level by -15 dB to +6 dB. This gain is selected by bits 2-4 
(CX:;O, CX:;1, CX:;2) of the of the ADSP-21msp58/59's analog control register. 

The DAC's analog smoothing filter consists of a 2nd-order Sallen-Key 
continuous-time filter and a 3rd-order switched capacitor filter. The Sallen­
Key filter has a 3 dB point at approximately 25 kHz. 

8.3.2 Differential Output Amplifier , 
The ADSP-21msp58/59's analog output signal (VOUTp - VOUTN) is 
produced by a differential amplifier. The differential amplifier meets 
specifications for loads greater than 2 kQ (RL ~ 2 kO) and has a 
maximum differential output voltage swing of ±3.156 V peak-to-peak 
(3.17 dBmO). The DAC will drive loads smaller than 2 kO, but with 
degraded performance. 

The output signal is dc-biased to the on-chip voltage reference (V REF) 
and can be ac-coupled directly to a load or dc-coupled to an external 
amplifier. Refer to "Analog Output" in the "Design Considerations" 
section of this chapter for more information. 

The VOUT p - VOUT N outputs must be used as a differential signal, 
otherwise performance will be severely degraded. Do not use either 
pin as a single-ended output. 



J~~:~. ::::: ::::: .;.;. ;::::: 8 
.,,!,' : '!':' ! r::: ':!! '; ", i:::: :i,,: i~r: ::i,": ::;i":. .:' !':;:;:@i : .. :~.~:',· .. :~ .. :r,:~.:· .. :~ .. :~, .. :~.~::.,;:. :::, : .. :~.!.:',:!.:.:i, :: l .. :.:r, .. :~.:~.:'.:.:. ::.'. ':'.:i •• :!.:~.:::·.~.::~.· ~.::~.·.~.:·;.:· .• 1:.:!.:.... :~: .. :! .• :~, .. :!.::: ,: ·:: •. :l.· .. :!.· .. ::.·.:~::< : .. :':': .. :: ... :!.:~::~.:.'.'~::~ .. :! ... :~ ... :!.,.:!.. :.:' .. :' ...• :!: .. :: .. :':.'.::.' .• ::':.:' .. ':::... : .... :i •• :!.!:.::.·.~.:::.~.::::~.·.:!.:! .. :!.' ... l?::::t!; l!lt l!l~ ::t~;~~llll. il!l! :!!t::,i' ::!!~;~~~~;!!:i' , 

8.4 OPERATING THE ANALOG INTERFACE 
The analog interface of the ADSP-21msp58/59 is operated with the use 
of several memory-mapped control and data registers. The ADC and 
DAC I/O data can be received and transmitted in two memory­
mapped data registers. The data can also be autobuffered into (and 
from) on-chip memory where data is automatically transferred to or 
from the data registers. In both cases, the 1/ a processing is interrupt­
driven: two ADSP-21msp58/59 interrupts are dedicated to the analog 
interface, one for ADC receive data and one for DAC transmit data. 
(Note: Autobuffering with SPORT1 is not available on the 
ADSP-21msp5x processors because this autobuffering channel is used 
for the analog interface.) 

The ADSP-21msp58/59 must have an input clock frequency of 13 
MHz. At this frequency, analog-to-digital and digital-to-analog 
converted data is transmitted at an 8 kHz rate with a single 16-bit word 
transmitted every 1251.1s. 

8.4.1 Memory-Mapped Control Registers 
Two memory-mapped control registers are used to configure the 
ADSP-21msp58/59's analog interface: the analog control register and 
analog autobuffer / powerdown register. 

8.4.1.1 Analog Control Register 
The analog control register (located at address Ox3FEE in data 
memory) is shown in Figure 8.4. This register configures the ADC 
input multiplexer, ADC input gain PGA, ADC high pass filter, DAC 
high pass filter, and DAC output gain PGA. 

The analog control register also contains the APWD bits (bits 5, 6) 
which must both be set to ones to enable and start up the analog 
interface-always enable and disable the analog interface using both bits 
5 and 6. The DAC and ADC begin transmitting data after these bits are 
set. Clearing the APWD bits disables the entire analog interface by 
putting it in a powerdown state. The APWD bits must be cleared (to 
zeros) at least three processor cycles before putting the processor in 
powerdown. See "Powerdown" in Chapter 9, System Interface. 

The analog control register is cleared (to OxOOOO) by the processor's 
RESET signal. Note that bits 10-15 of this register are reserved and 
must always be set to zero. 

8-9 



.~:~:~::. ::::: ::::: ;';'. .::::: 

: :~::' '~:k ~~~;:: ::::~:~: :: f ::: ~:;: ~lm ;::~;:::::~l::. ;:: ::: ::: :!~ ~ ~l •• :~.::"~~ •• :;.::'.~: .. :;. ..:l.:: .. ~ .. :~.:: .. ~,.:(: :· .. :l.:: •• : •• :~.:: •• : : ;:.:;.::"~ ; .•• ::.:"~ ••• :~. :::: :: .• :: ••. :~ ••• :;::.: ••• :.:~ .•• :::~.: •• :.:1.:;.:~ .. :.: ... :;.:; .. · .. :i.:~.::::: :;: ... :~.:l .... :~.:~.;:' :.:::.:: .... :~:.::.::.:~:~ .. ~ .. :~ ... :~.: ... ::.:~ .... ::. . .. ::.:; ... :l.:~:.:~.:.::::·:: :.:',:::' .:;::'.' ':;:'.:.; •. : .• :"::~:.:::~':.:' ~.:.::.:l.: .. :.:; .. :: ... ::f~:::::~l~~:. ~l~l ~l~l~~t~:~~l~t :~l~i 't::::::ir :~l!~~~~~~i!~~l . 

Analog Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FEE) 

ADC Offset ~ .1 

IGO~ 

'--v--' OG2 OG1 OGO 

~ 

II ~c;,:, Inp .. Gain (ADC PGAI 

IMS ADC Input Gain (ADC PGA) 
ADC Input Multiplexer Select 
1=AUX input, O=NORM input DABY------------~ 

DAC High Pass Filter Bypass 
1=bypass,O=insert '------------- OG2, OG1, OGO 

ADBY----------------~ 

ADC High Pass Filter Bypass 

DAC Output Gain (DAC PGA) 

1=bypass,O=insert ~------------------ APWD 

8-10 

IG1,IGO 

All bits are set to 0 at processor reset. 
(Reserved bits 10-15 must always be set to 0.) 

OG2, OG1, OGO 
ADC Input Gain (ADC PGA) DAC Output Gain (DAC PGA) 

I Gain IG1 IGO IGain OG2 OG1 OGO 
OdB 0 0 +6 dB 0 0 0 

+6 dB 0 1 +3 dB 0 0 1 
+20 dB 1 0 OdB 0 1 0 
+26 dB 1 1 -3dB 0 1 1 

-6 dB 1 0 0 
-9 dB 1 0 1 

-12dB 1 1 0 
-15dB 1 1 1 

Figure 8.4 Analog Control Register 

8.4.1.2 Analog Autobuffer/Powerdown Register 

Analog Interface Powerdown 
O=powerdown, 1 =enable 
(Set both bits to 1 to 
enable analog interface) 

The analog autobuffer / powerdown register (located at address Ox3FEF 
in data memory) is shown in Figure 8.5. This register enables or 
disables autobuffering of ADC receive data and/ or DAC transmit 
data-autobuffering is enabled by writing ones to the ARBUF (bit 0) 
and/ or ATBUF (bit 1) bits. When autobuffering is enabled, I (index) 
and M (modify) registers are selected in bits 2-11 for the receive 
and/ or transmit data buffers. See 1/ Autobuffering" in the Serial Ports 
chapter for details on autobuffering. 



Al:~l\ :~:::::""'" :,f'::,,:: :j:l ::::''''::::'' :::: ..... :::: ;':::::"::;':::":~'~': '.!:,:.': ... f:,·:":::::::'."!:."'::"~:"'::: :;:';':::":::.!::~.:'::.;':':: ........ ::.: .... :!::.:'::.:::.:: .. :::::.:::.': .. :: .. !, ..... :":::":':":::":':::~:;:.':":.~.!:::.;:.~.!.:~~ :.:::.:: ..... ': .... ':: .... ' ... ::: .. :.~.: .. :: .. !:, .. ':: .. ': .... : ... : . ............ ': ... ': ... !:,,:.i:,:::,:'.: .• ':.:: .. :.:.: ••.• ·.: .. : ••• ': ••• '::: •. :·.:.:: •. :::.·: ••. :;~.l.: .. ,.!.:,,:,:, 8 
:iif::::i:lt. iiii f :i{;:tii ti i!lii,,:)J :!!!;:::::i!![i : : 

Analog Autobuffer/Powerdown Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I DM(Ox3FEF) 

~~T I L ~~~~, .. Auto""'Ena~' 
ATBUF 
DAC Transmit Autobuffer Enable 

ARM REG 
Processor powerdown control bits. 
(See Chapter 9, "System Interface") 

Receive M register 

'--------- ARIREG 
Receive I register 

'-------------- ATMREG 
Transmit M register 

'---------------- ATIREG 
Transmit I register 

Figure 8.5 Analog Autobuffer/Powerdown Control Register 

Bits 12-15 of the analog autobuffer / powerdown register control the 
ADSP-21msp58 / 59' s processor powerdown function, not powerdown 
of the analog interface-powerdown of the analog interface only is 
controlled by the APWD bits (bits 5, 6) of the analog control register. 
The ADSP-21msp58/59's powerdown function is described in the 
"Powerdown" section of Chapter 9, System Interface. 

8.4.2 Memory-Mapped Data Registers 
There are two memory-mapped data registers dedicated to the analog 
interface. The 16-bit ADC receive data register is located at address 
Ox3FED in data memory. The 16-bit DAC transmit data register is 
located at address Ox3FEC in data memory. These registers must be 
individually read and written when autobuffering is not in use 
(autobuffering automatically transfers the data to and from processor 
data memory). 

When autobuffering is disabled, data must be transmitted to the 
sigma-delta DAC by writing a 16-bit word to the DAC transmit 
register (Ox3FEC) and data must be received from the sigma-delta ADC 
by reading a 16-bit word from the ADC receive register (Ox3FED). 

8-11 



8-12 

8.4.3 ADC & DAC Interrupts 
The analog interface generates two interrupts that signal either: 
1) that a 16-bit, 8 kHz analog-to-digital or digital-to-analog conversion 
has been completed, or 2) that an autobuffer block transfer has been 
completed (i.e. the entire data buffer contents have been transmitted or 
received). 

When one of the analog interrupts occurs, the processor vectors to the 
appropriate address: 

DAC Transmit interrupt vector address: Ox18 
ADC Receive interrupt vector address: OxIC 

These interrupts can be masked out in the processor's IMASK register 
and can be forced or cleared in the IFC register. 

8.4.3.1 Autobuffering Disabled 
The ADC receive and DAC transmit interrupts occur at an 8 kHz rate, 
indicating when the data registers should be accessed, when 
autobuffering is disabled. On the receive side, the ADC interrupt is 
generated each time an AID conversion cycle is completed and the 
16-bit data word is available in the ADC receive register. On the 
transmit side, the DAC interrupt is generated each time a DI A 
conversion cycle is completed and the DAC transmit register is ready 
for the next 16-bit data word. 

Both interrupts are generated simultaneously at an 8 kHz rate, 
occurring every 3250 instruction cycles with a 13 MHz internal clock, 
when autobuffering is disabled. The interrupts are generated 
continuously, starting when the analog interface is powered up by 
setting the APWD bits (bits 5, 6) to ones in the analog control register. 
Because both interrupts occur simultaneously, only one should be 
enabled (in IMASK) to vector to a single service routine that handles 
both transmit and receive data. (When autobuffering is enabled, 
though, both interrupts should be enabled.) 

A simple analog loopback program is shown in Listing 8.1. 



ADSP-21msp58/59 Analog Interface Loopback Example 
- configures analog interface 
- copies ADC receive data to DAC transmit buffer} 

. MaDULE/ABS=O/BaaT=O talkthru; 

#define codec_tx_data Ox3FEC 
#define codec_rx_data Ox3FED 
#define codec_ctrl_reg Ox3FEE 

resetv: 
irq2v: 
hipwv: 
hiprv: 
sptOtv: 
sptOrv: 
antv: 
anrv: 

irqlv: 
irqOv: 
timerv: 
pwrdwnv: 

setup: 

JUMP setup; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; {interrupt vectors ... } 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
SI = DM{codec_rx_data); {read in data from ADC} 
DM{codec_tx_data) = SI; {write out data to DAC} 
RTI; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 
RTI; Nap; Nap; Nap; 

AXl = Ox0060; 
DM{codec_ctrl_reg) 
IMASK = Ox8; 
IDLE; 

AXl; {power up analog interface} 
{enable analog receive interrupt} 
{wait for interrupt} 

JUMP wait_loop; 
.ENDMaD; 

Listing 8.1 ADSP·21 msp58/59 Analog Loopback Program 

8.4.3.2 Autobuffering Enabled 
In some applications it is advantageous to perform block data transfers 
between the analog converters and processor memory. Analog 
interface autobuffering allows you to automatically transfer blocks of 
data from the ADC to on-chip processor data memory or from on-chip 
processor data memory to the DAC. 

An interrupt is generated when an entire block transfer is complete (i.e. 
when the data buffer is full or empty). Analog interface autobuffering 
operates in the same way as SPORT autobuffering, described in 
Chapter 5. Note that data can be autobuffered through the analog 
converters or through SPORTO of the ADSP-21msp58/59. 
Autobuffering is not available on SPORT1 of the ADSP-21msp58/59. 

8-13 



i~;;l~~~: ~;f:::~~:::::;:::):: :~~~: .::i:::::::~:::, ,:f:::i~~l .. :l.: .. ~: ... :l·.: .. ~.",:! ... :r.: .. :,· ... :~.:~:::;::::: .. ~,.: .. :~.; ... ::~: ;: .. :~.~ .. ::,~ ... :,:~.:.:;:~ ... ::.:~, ... :;,.;.: .. ::,.:~.:,:':~ ... ::~,.:'.:~,:; .. ::,:, l.:: .. :~, ... :~~,:: ... :~:::::;::":;.~ .. ::.; ... :;:l.:",:!:~ .:'.:'.' ... :: ... :: .. ,:~.~:.:~:: .. :~.:~ .... :~ .. :~ .. :~::.,::., "':':' .. :~.,:~ ... :;.:~::'::::'.::.:~ .. :;.;::; .. ::':":"':~'~':" .. ::.:~'~.:'.~:.::,:~".:;":~':.:'::.' 
Af:::::tt: ~~~~ ~1 :~t:;:;l~l ~l~l: tl::::iW :~!~;;:~::!!!l 

Before autobuffering is enabled, separate circular buffers must be set 
up in data memory for the ADC receive and DAC transmit data. This 
is accomplished by selecting I (index) and M (modify) registers in the 
analog autobuffer / powerdown register; see Figure 8.5. 

Transmit data autobuffered to the DAC is addressed with the I register 
specified in the ATIREG field (bits 9, 10, 11). Receive data autobuffered 
from the ADC is addressed with the I register specified in the ARIREG 
field (bits 4, 5, 6). The modify (M) registers are specified in the 
ARMREG (bits 2, 3) field and A TMREG (bits 7, 8) field. Since the 
transfer of ADC and DAC data occurs simultaneously, it is possible to 
use the same I register for transmit and receive autobuffering. In this 
case, the buffer is shared for both functions and care should be taken 
when specifiying a value for the M register. 

An autobuffering example program is shown in Listing 8.2. 

ADSP-21msp58/59 Analog Interface Autobuffer Example 
- configures analog interface 
- enables analog autobuffer 
- receive analog data into a 256 word buffer 
- transmi't analog data from a 256 word buffer 

. MODULE/RAM/ABS=O/BOOT=O auto_examplej 

.VAR/DM/CIRC buffl[256]j 

.VAR/DM/CIRC buff2[256]j 

.VAR/DM flag_bitj 
#define codec_tx~data Ox3FEC 
#define codec_rx_data Ox3FED 
#define codec_ctrl_reg Ox3FEE 
#define codec_auto_ctrl Ox3FEF 

resetv: 
irq2v: 
hipwv: 
hiprv: 
sptOtv: 
sptOrv: 
antv: 
anrv: 
irqlv: 
irqOv: 
timerv: 
pwrdwnv: 

8-14 

JUMP setupj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
JUMP switchj NOPj NOPj NOPj 
RTIj NOPj NOPj NOPj 
RTI NOP NOPj NOPj 
RTI NOP NOPj NOPj 
RTI NOP NOPj NOPj 

{first data buffer} 
{second data buffer} 
{tracks buffers} 

{interrupt vectors ... } 

{call autobuffer switch} 



setup: 

wait: 

switch: 

done: 

.ENDMOD; 

l~;t ::;:: :::;: :;:;" ::;::: 8 
.... .... !;!;:::: ;;!;;: :; ;!:: :::!;;: :!;!: .:!;::::::;;:: .:;;::;: ::i;!;: .: .. :::~: ••• :~ .• :~ .... :~ ••• :~ .• :~ .••• :~ .• :~.; •.. :::; ••• :~ •• :~ .••• :! .. :!. ·:· .• :i .. :r ... :! .•. :~:·:. ::: : .... :! .. :! .. :~ .. ::.:~ .. :::~ ... ::.:~.; .. :.:~ .. :~.;.,. ..:~ .... :~ .. :~.: ... :l;: .: ; .. :~.:!:, •• :~.· ••• :i:< ; .. ::.:;: ... :: ... :~.:~ .. :~:~' .:~':; .. :~ ... :~ .... :! .. :!.. . .. :: ... :! .. :~ ... :f.::::::·::::,.::·.::::.:::' : •••• ;: ••• :! .. :~ .. :~.~.:.::.:~.:: ... ::.:: .. :~ .. ::.; ... 

AJ:::::!l:: iiit iii~ :!~t;:Ii. :iiii :t:::::J!! ::!!t::;llli 

10 
LO 
Ii 
Ll 

"buffl ; 
%buffl ; 
"buff2; 
%buff2; 

MO Oxl; 
SI OxO; 
DM (flag_bi t) SI; 

AYO = Ox0203; 
DM(codec_auto_ctrl) = AYO; 
AXl = Ox0060; 
DM(codec_ctrl_reg) = AXl; 
IMASK = Ox8; 

{IO points to first data buffer} 

{Ii points to second data' buffer} 

{initialize flag register} 

{use Ii and MO for tranmsit} 
{use 10 and MO for receive} 
{enable rcv and tx autobuffer} 

{power up analog interface} 
{enable analog rx interrupt} 

IDLE; {wait for autobuffer interrupt} 
JUMP wait; 
AXO = DM(flag_bit); 
AR = pass AXO; {check buffer status} 
IF NE JUMP fill_buff2; 
SI = Oxl; {fill buff2 next time} 
AYO = Ox0013; 
JUMP done; 
SI = OxO; {fill buffl next time} 
AYO = Ox0203; 
JUMP done; 
DM(codec_auto_ctrl) AYO; 
DM(flag_bit) = SI; 
RTI; 

Listing 8.2 ADSp·21 msp58/59 Analog Autobuffer Program 

Receive and transmit autobuffering may be independently enabled 
and the two interrupts can occur (and be serviced) independently. This 
allows the use of different data buffer lengths when autobuffering both 
receive and transmit data. It also allows autobuffering to be used on 
only one side, receive or transmit, while the other is serviced at the 
8 kHz interrupt rate. 

8-15 



8-16 

8.5 CIRCUIT DESIGN CONSIDERATIONS 
The following sections discuss interfacing analog signals to the 
ADSP-21msp58 / 59. 

8.5.1 Analog Signal Input 
Figure 8.6 shows the recommended input circuit for the 
ADSP-21msp58/59's analog input pin (either VINNORM or VINAUX)' 
The circuit of Figure 8.6 implements a first-order low pass filter (RICI). 
The 3 dB point of the filter should be less than 40 kHz. This is the only 
filter that must be implemented external to the processor to prevent 
aliasing of the sampled signal. Since the ADSP-21msp58/59's sigma­
delta ADC uses a highly oversampled approach that transfers most of 
the anti-aliasing filtering into the digital domain, the off-chip anti­
aliasing filter need only be of low order. Refer to the ADSP-21msp58/59 
Data Sheet for more detailed information. 

The ADSP-21msp58 / 59' son-chip ADC PGA (programmable gain 
amplifier) can be used when there is not enough gain in the input 
circuit. The ADC PGA is configured by bits 9 and 0 (IGl, IGO) of the 
processor's analog control register. The gain must be selected to ensure 
that a full-scale input signal (at Rl in Figure 8.6) produces a signal level 
at the input to the sigma-delta modulator of the ADC that does not 
exceed VINMAX (which is specified in the data sheet). 

~6~JCE\h-'" c, c, 
C3 

1-----+-----1 

DECOUPLE 
STAR 

GROUND 

ADSP-21 msp5x 

Figure 8.6 Recommended Analog Input Circuit 



.~;~~~;l:~ ::::: ::::: :;:; ,:::::: 8 
.::~ ':::: ~~t::t:;:::;:::::~~:; l~l~: .::~:::::::~::: ;::?:;tl ... :l .. :~ .... :l: ... :; ... :: .. :: ... :l .... :: ... :t::::: ... :: .. :l .... :~.:;:. ;: .. :l ... :~ .... :l ... :~:·:: ... ::.:~ .. :.: .... :: .. :::: .. :::: .. ::.:::~::~ .. :::::: ... :l .. ::: .. :: .... :::::::-:: ... :: .. :~ .... :f .. :l.: ... ::" .: ... :: ... ::::.: .... :~.::.::.:: .. :::~ ... :;.· .. :l.: ... :: .. :i ..••..• :: ••• :1 ... :: ... :!:::::::::: .. :~ .. ::::.·::. : ...• :~ ... :~ ... :: .. :: .. ::.::.:: .• ::: .. : ... :~:~ .. ::.::. if:::::::t ~l~l~:~: :~lr:;;t. l~:l :~::\:::::Jl::!tj;;llll 

VINNORM and VINAUX are biased at the internal voltage reference 
(nominally 2.5V) of the ADSP-21msp58/59, which allows the analog 
interface to operate from a single supply. The input signal should be 
ac-coupled with an external capacitor (C2). The value of C2 is determined 
by the input resistance of the analog input (VINNORM , VINAUX), 200 kn, 
and the desired cutoff frequency. The cutoff frequency should be less than 
or equal to 30 Hz. The following equations should be used to determine 
the values for Rl, Cl, and C2: Rl should be less than or equal to 2.2 kQ, C2 
should be greater than or equal to 0.027 f.lF, C3 should be equal to C2. 

RIN = input resistance of ADSP-21msp58/59 (200 kQ) 

fl =cutoff frequency :s; 30 Hz 

1 

Rl:S; 2.2kn 

20 kHz < f2 < 40 kHz * 

* If minimum « 0.1 dB) rolloff at 4 kHz is desired, £2 should be set to 40 kHz. 

8-17 



8-18 

::::::: ............ :=:= .0 ::::: .:;:; ;:::::: 

;!~~r~;~: ~ 1:~:~:: :::;:::. . :::: ,.,.! ::: i~1~ . ::~: ::::;:!::. :::::::::~~l~l .:~ ... :~ .. :~,:.:~ ... :~ .. :~.:.:~ .. :~,:.:~ .. :~,::!:: :, •• :::.:~ •• :~,:.:~.,:: :·:.:;.:.:t ... :~:.:; ... :f:;:: ::.:' •• :, ••••• :~.:~: •• ::.:~.:~: •. :.::.::, •••• :':~ .• ::." ••• :l .. :~, ... :~.~ .. :'.,.:~:::: .: .... :~ .. :;, .... :; .... :;::.:; .:: .. :: .... :' ... :: .. ,:.:~.:~,~,.:~ .. :~ ..... :l .. :~, •.. :~:,' :: .• :;, .. :~ .• :.:;,.:'.'.::: ':':'.:'.:'.'.:;:',,' ::.:' .••. :;:.:~ .. :~,.::.:~.:~.:~.:: ·,.:~ ... :::l .• :::, ::J':::::'~lt lllll llll ,t~;;ll llll t~,::illi ~;!!t~~;lll! . ~ 

8.5.2 Analog Signal Output 
The ADSP-21msp58 / 59' s differential analog output (VOUT p - VOUT N) is 
produced by an on-chip differential amplifier. The differential amplifier 
will meet dynamic specifications for loads greater than 2 kg (RL ~ 2 kg) 
and has a maximum differential output voltage swing of ±3.156 V peak-to­
peak (3.17 dBmO). The DAC will drive loads smaller than 2 kg, but with 
degraded dynamic performance. The differential output can can be 
ac-coupled directly to a load or dc-coupled to an external amplifier. 

Figure 8.7 shows a simple circuit providing a differential output with ac 
coupling. The capacitor of this circuit (COUT) is optional; if used, its value 
can be chosen as follows: 

COUT = 
1 

The VOUT p - VOUT N outputs must be used as differential outputs; do not 
use either as a single-ended output. Figure 8.8 shows an example circuit 
which can be used to convert the differential output to a single-ended 
output. The circuit uses a differential-to-single-ended amplifier, the 
Analog Devices SSM-2141. 

ADSP-21 msp5x 

COUT 

VOUTp RL[ 
VOUTN 

COUT 

Figure 8.7 Example Circuit For Differential Output With AC Coupling 



;:;:~:k .:::: ::::: .~.;. ;:::::. 8 
• =:::: ::::: ::::::::::::::::::::::::::: mi.::::::::::::: ':::;:::'" i: i: : ... :1.::1 ... :1.::1 ... : : ... ::.::i ••. :· :'::" .. ::;:' :: ••• ::.::i ... :i.:: ':::.:1 .. :1 ... ::: .. :' ... : ::': ':'.:.:' i •• :: .. :' •.. :' ~ •• :~.:~.::::.~ .. :i .. ::.::.:::.. :':::!' .. ::'::!' .. :::: ,: : '1.::1 ... :1.::1 ... ::': .... :·: .. :·.::.:i ... :~ .. :~.:~ .. ~.:~::.:::::l ... :l::. .::·., .. :i::i ... :'.~.':::::· :.:'.:':::.'.:':': .:.:.:i .. ::::i .. :.· ~.::':~:.~:'.~:::':":'::':':':' 

l:'l:::::ii11i:.111l ti:t;:I1.1111
l:i,::J:i ::!!t:::!!:: 

+12V 

V OUT -------<.. 

I 0.1 ~F 

-GND
A 

ADSP-21 msp5x 

VOUT P 

1----1 VOUTN 

-12V 

10., ~F 
-= GND

A 

Figure 8.8 Example Circuit For Single-Ended Output 

8.5.3 Voltage Reference Filter Capacitance 
Figure 8.9 shows the recommended reference filter capacitor connections. 
The capacitor grounds should be connected to the same star ground point 
as that of Figure 8.6. 

+ 
10/lF1 J O.1/lF 

~I~R 
GROUND 

VOLTAGE 
REFERENCE 

ADSP-21 msp5x 

Figure 8.9 Voltage Reference Filter Capacitor 

8-19 





System Interface 

9.1 OVERVIEW 
This chapter describes the basic system interface features of the ADSP-2100 
family processors. The system interface includes various hardware and 
software features used to control the DSP processor. 

Processor control pins include a RESET signal, clock signals, flag inputs and 
outputs, and interrupt requests. This chapter describes only the logical 
relationships of control signals; consult individual processor data sheets for 
actual timing specifications. 

9.2 CLOCK SIGNALS 
The ADSP-2100 family processors may be operated with a TTL-compatible 
clock signal input to the CLKIN pin or with a crystal connected between the 
CLKIN and XTAL pins. If an external clock is used, XTAL must be left 
unconnected. The CLKIN signal may not be halted or changed in frequency 
during operation. 

The ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2111 processors operate 
with an input clock frequency equal to the instruction cycle rate. The 
ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors operate with an 
input clock frequency equal to half the instruction rate; for example, a 
16.67 MHz input clock produces a 33 MHz instruction rate (30 ns cycle time). 
Device timing is relative to the internal clock rate which is indicated by the 
CLKOUT signal. 

Because these processors include an on-chip oscillator circuit, an external 
crystal can be used. The crystal should be connected between the CLKIN and 
XTAL pins, with two capacitors connected as shown in Figure 9.1, which can 
be found on the following page. A parallel-resonant, fundamental frequency, 
microprocessor-grade crystal should be used. The frequency value selected 
for the crystal should be equal to the desired instruction rate for the processor 
(for the ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2111) or half the 
desired instruction rate (for the ADSP-2171, ADSP-2181, and 
ADSP-21msp58 / 59). 

9 

9-1 



9-2 

i~I~;~:::::~:::; 'i~t i~r :if::;:::: :,~~~~:,; ::~:::::::~:,; ~~~~:::::~~l::t: ... :l ... :l ... :l ... :l .. :l ... :l.· ••• :~ •• :~ .••• :l .. ;~::!:: •.• :l ... :~ ... :l .•. :: :o.:'.:::·.:! ... :l ... :l ... ;f:':: :: .• :: .•• :~ •.• :t ... ::.::.:~:.::.:~.:::::" .. :~.:l.: .• ';' :·.:~: •• :: .••• :~ •• ::.:::::::;:: ••• :; •• :l .... :l .. :l.~~: :.::: .. :: .... :' ... ::.::.:~ .. ::.~ .. :~ ..... :: .. ::: ... :; .... :' ... :: ... :: .... :~ ... :~ .. :~.::::.: .... :.:: ... :'.::.::: .. : ::.::.· .. :~ .... :' .. :~ .. :::~ .. ::.:~ .. :::.:: .... :~.:1.:::. ;i~~;:,;:;Jf ::;!ll~f ;;:;;;;;;i11~; 11: ~t;;;:~;~:: ~1i1~~1~ :~1~1 

Figure 9.1 External Crystal Connections 

The internal phased lock loop of the processors generates an internal 
clock which is four times the instruction rate. 

The processors also generate a CLKOUT signal which is synchronized to 
the processors' internal cycles and operates at the instruction cycle rate. A 
phase-locked loop is used to generate CLKOUT and to divide each 
instruction cycle into a sequence of internal time periods called processor 
states. The relationship between the phases of eLKIN, CLKOUT, and the 
processor states is shown in Figure 9.2 for the ADSP-2101, ADSP-210S, 
ADSP-2115, and ADSP-2111 processors. Figure 9.3 shows the same 
information for the ADSP-2171, ADSP-2181, and ADSP-21msp58/59 
processors. The phases of the internal processor clock are dependent upon 
the period of the external clock. 

The CLKOUT output can be disabled on the ADSP-2171, ADSP-2181, and 
ADSP-21msp58/59 processors. This is controlled by the CLKODIS bit in 
the SPORTO Autobuffer Control Register. 

CLKIN 

INTERNAL 
PROCESSOR 
STATE 

CLKOUT 

...... ____ 2 P~C~OOR 3 ~ 
CYCLE 

3 4 

~ I __________ ~--------+~~I r--
Figure 9.2 Clock Signals & Processor States (ADSP·21 01, ADSP·2105, ADSP·2115, ADSP·2111; 



ClKIN 

INTERNAL 
PROCESSOR 
STATE 

4 ~ ____ PROC~R' ___ 4_ ... ~1. __ 1~~_2 p~~oo: ~ 
(LE (LE I 

ClKOUT ____ ~~--------~~~I __________ ~--------~~~I r--
Figure 9.3 Clock Signals & Processor States (ADSP·2171, ADSP·2181, ADSP·21msp58/59) 

9.2.1 Synchronization Delay 
Each processor has several asynchronous inputs (interrupt requests, for 
example), which can be asserted in arbitrary phase to the processor clock. 
The processor synchronizes such signals before recognizing them. The 
delay associated with signal recognition is called synchronization delay. 

Different asynchronous inputs are recognized at different points in the 
processor cycle. Any asynchronous input must be valid prior to the 
recognition point to be recognized in a particular cycle. If an input does 
not meet the setup time on a given cycle, it is recognized either in the 
current cycle or during the next cycle if it remains valid. 

Edge-sensitive interrupt requests are latched internally so that the request 
signal only has to meet the pulse width requirement. To ensure the 
recognition of any asynchronous input, however, the input must be 
asserted for at least one full processor cycle plus setup and hold time. 
Setup and hold times are specified in the data sheet for each individual 
device. 

9.2.2 1 X & 1/2x Clock Considerations 
Each processor requires only a IX or 1/2X frequency clock signal. They 
use what is effectively an on-chip phase-locked loop to generate the higher 
frequency internal clock signals and CLKOUT. Because these clocks are 
generated based on the rising edge of CLKIN, there is no ambiguity about 
the phase relationship of two processors sharing the same input clock. 
Multiple processor synchronization is simplified as a result. 

9-3 



9-4 

:1l~~;;~::~:;:~::;;t :~r :"t::;,::, :'l~~!;': ::",,::::;,,: 11~?~~1:'::';11,: ,,:: ... :! .. :!, ... :! ... :! ,:',i .... :~ ... :~ ... :~:"::.:::::.:'::::.:: .. :~ .. · .• :;,,:'. :':,:;, .•. :~ ... :~ .•. :~ .. ,:~:':: ::.:" .. :~ ... :~ ... :~ .. :~.,::.::.:~.:: .. :~.,.:;,:~::.:, .":1 ... :~ ... :l .. :~.,,,:~:::: ·: ... :1 ... :! ... :! ... :j.~~~ :: ... ::,.::: .... :: .. ::.:~.:~.~ •.. ,:~ .. :~,' ... :~ ... :~ ... :~: .. ' :.,':.: .. ' .. :' .... :;,.:' ... :::':::'.:' .. :', .. :;.:;:: ",'.:', .. :~ ... :~.:~::;:~_.::.:~.:: .. ,:;.:;:~_.:'.: ';;1;:;;:;;;;~~~1 ::;!I~~~r :;;;~~~~;~} !~lt :l~~~~;;;:: ~l~l l~l~ ~~~l --

Using a lX or 1/2X frequency input clock with the phase-locked loop to 
generate the various internal clocks imposes certain restrictions. The CLKIN 
signal must be valid long enough to achieve phase lock before RESET can be 
deasserted. Also, the clock frequency cannot be changed unless the processor 
is in RESET. Refer to the processor data sheets for details. 

9.3 RESET 
RESET halts execution and causes a hardware reset of the processor. The 
RESET signal must be asserted when the processor is powered up to assure 
proper initialization. 

Tables 9.2-9.7 show the RESET state of various registers, including the 
processors' on-chip memory-mapped status/control registers. The values of 
any registers not listed are undefined at reset. The contents of on-chip 
memory are unchanged after RESET, except as shown in Tables 9.2-9.7 for 
the data-memory-mapped control! status registers. The CLKOUT signal 
continues to be generated by the processor during RESET, except when 
disabled on the ADSP-2171, ADSP-2181, or ADSP-21msp58/59. 

The contents of the computation unit (ALU, MAC, Shifter) and data address 
generator (DAG1, DAG2) registers are undefined following RESET. 

When RESET is released, the processor's booting operation takes place, 
depending on the state of the processor's MMAP pin. Program booting is 
described in Chapter 10, "Memory Interface." 

For the ADSP-2111, ADSP-2171, and ADSP-21msp58/59 processors, which 
include a host interface port, setting the software reset bit in the HSR7 
register has the same affect as asserting RESET. This allows either the host 
processor or the ADSP-21xx to initiate a reset under software control. 

In a multiprocessing system with several processors, a synchronous RESET is 
required. 

9.4 SOFTWARE-FORCED REBOOTING 
Software-forced reboots can be accomplished in several ways. A software­
forced reboot clears the context of the processor and initializes some 
registers. A context clear clears the processor stacks and restart execution at 
address OxOOOO. Table 9.1 shows the different ways each processor can 
perform a software reboot. 



,if::::::::;: ·t: :f ::;;:::::;;:, :·1:· .:{::::;;:. ~;r;t;::::;t: !':'.i .. :i::i .. :i:: ~::~ .. :~.: .. ~ .. :~:.:::::~.:~ .. :~.:'.~ .. : :·l:·.l .. :1.: .. l .. ::::.·::: ;.·.~.:~.:; .. :;:;:~:.~:·~:.;:·.~.~:l:;.·: ~ .. :~::l .. :~::::::::·:~.:.:i::i .. :i::~~:·:;.~.: .. :.:.;.:;:~:~:~:'~,.·~::;.:} .. :l.: •. ::.:.~:;.:J:::.:':.;::::;:;.:':.:.:.:'::.;. ;.; ... ;.:;.::;.; .. ;.~.~:.~ ... ;:;:.:.;:~:j:: :l~r;}t: ,;;~;:;;;;:;J; :::!i1lf ;::;:;::1~; ~1: ~t:::::;::: ~~ll~l~ll . ;;~:;:~:J: 

Processor Reboot Method Description 
ADSP-2101 Boot Force Setting the BFORCE bit in the System 

Control Register causes a reboot ADSP-2105 
ADSP-2111 
ADSP-2115 

ADSP-2171 Boot Force Setting the BFORCE bit in the System 
Control Register causes a reboot 

Powerup Context Reset Setting the PUCR bit in the SPORTI 
Autobuffer & Powerdown Control 
Register causes a reboot on recovery 
from powerdown 

ADSP-2181 BDMA Context Reset Setting the BCR bit in the BDMA 
Control Register before writing to the 
BDMA Word Count Register 
(BWCOUNT) causes a reboot. 
Execution starts after the BDMA reboot 
is completed. 

Powerup Context Reset Setting the PUCR bit in the SPORT 1 
Autobuffer & Powerdown Control 
Register causes a reboot on recovery 
from powerdown 

Table 9.1 Software-Forced Rebooting 

Tables 9.2-9.7 show the state of the processor registers after a software­
forced reboot. The values of any registers not listed are unchanged by a 
reboot. 

During booting (and rebooting), all interrupts including serial port 
interrupts are masked and autobuffering is disabled. The serial port(s) 
remain active; one transfer-from internal shift register to data register­
can occur for each serial port before there are overrun problems. 

The timer runs during a reboot. If a timer interrupt occurs during the 
reboot, it is masked. Thus, if more than one timer interrupt occurs during 
the reboot, the processor latches only the first. A timer overrun can occur. 

9-5 



System 

Control Field 

Bus Exchange Register 
PX 

Status Registers 
IMASK 
ASTAT 
MSTAT 
SSTAT 
ICNTL 
IFC 

Description 

PX register 

Interrupt service enables 
Arithmetic status 
Mode status 
Stack status 
Interrupt control 
Interrupt force/ clear 

Control Registers (memory-mapped) 
BW AIT Boot memory wait states 
BP AGE Boot page 
SPORTl configure Configuration 
SPEa SPaRTa enable 
SPEI SPORTI enable 
DW AITO-4 Data memory wait states 
PW AIT Program memory wait 
TCOUNT Timer count register 
TPERIOD Timer period register 
TSCALE Timer scale register 

Reset 

undefined 

a 
a 
a 
ax55 
undefined 
a 

3 
o 
1 
a 
a 
7 
7 
undefined 
undefined 
undefined 

Serial Port Control Registers (memory-mapped, one set per SPORT) 
ISCLK Internal serial clock 0 
RFSR, TFSR Frame sync required 0 
RFSW, TFSW Frame sync width 0 
IRFS, ITFS Internal frame sync a 
INVRFS, INVTFS Invert frame sense 0 
DTYPE Companding type, format 0 
SLEN Serial word length a 
SCLKDIV Serial clock divide undefined 
RFSDIV RFS divide undefined. 
Multichannel word enable bits undefined 
MCE Multichannel enable 0 
MCL Multichannel length a 
MFD Multichannel frame delay 0 
INVTDV Invert transmit data valid 0 
RBUF, TBUF Autobuffering enable a 
TIREG, RIREG Autobuffer I index undefined 
TMREG, RMREG Autobuffer M index undefined 

Fa (SPORTl only) Flag Out value undefined 

Table 9.2 ADSP·2101/ADSp·2115 State After Reset Or Software Reboot 

9-6 

Reboot 

undefined 

o 
o 
unchanged 
Ox55 
unchanged 
o 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
operates during reboot 
unchanged 
unchanged 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
o 
unchanged 
unchanged 

unchanged 



Control Field Description Reset Reboot 

Bus Exchange Register 
PX PX register undefined undefined 

Status Registers 
IMASK Interrupt service enables 0 0 
ASTAT Arithmetic status 0 0 
MSTAT Mode status 0 unchanged 
SSTAT Stack status Ox55 Ox55 
ICNTL Interrupt control undefined unchanged 
IFC Interrupt force/ clear 0 0 

Control Registers (memory-mapped) 
BWAIT Boot memory wait states 3 unchanged 
BPAGE Boot page 0 unchanged 
SPORTl configure Configuration 1 unchanged 
SPEl SPORTl enable 0 unchanged 
DWAIT0-4 Data memory wait states 7 unchanged 
PWAIT Program memory wait 7 unchanged 
TCOUNT Timer count register undefined operates during reboot 
TPERIOD Timer period register undefined unchanged 
TSCALE Timer scale register undefined unchanged 

Serial Port 1 Control Registers (memory-mapped) 
ISCLK Internal serial clock 0 unchanged 
RFSR,TFSR Frame sync required 0 unchanged 
RFSW, TFSW Frame sync width 0 unchanged 
IRFS,ITFS Internal frame sync 0 unchanged 
INVRFS, INVTFS Invert frame sense 0 unchanged 
DTYPE Companding type, format 0 unchanged 
SLEN Serial word length 0 unchanged 
SCLKDIV Serial clock divide undefined unchanged 
RFSDIV RFS divide undefined unchanged 
RBUF, TBUF Autobuffering enable 0 0 
TIREG, RIREG Autobuffer I index undefined unchanged 
TMREG, RMREG Autobuffer M index undefined unchanged 

Fa Flag Out value undefined unchanged 

Table 9.3 ADSP·2105 State After Reset Or Software Reboot 

9-7 



System 

Control Field 

Bus Exchange Register 
PX 

Status Registers 
IMASK 
ASTAT 
MSTAT 
SSTAT 
ICNTL 
IFC 

Description 

PX register 

Interrupt service enables 
Arithmetic status 
Mode status 
Stack status 
Interrupt control 
Interrupt force/ clear 

Control Registers (memory-mapped) 
BW AIT Boot memory wait states 
BP AGE Boot page 
SPORTl configure Configuration 
SPEa SPaRTa enable 
SPEl SPORTl enable 
DW AITa-4 Data memory wait states 
PW AIT Program memory wait 
TCOUNT Timer count register 
TPERIOD Timer period register 
TSCALE Timer scale register 

Reset 

undefined 

a 
a 
a 
ax55 
undefined 
a 

3 
a 
1 
a 
a 
7 
7 
undefined 
undefined 
undefined 

Serial Port Control Registers (memory-mapped, one set per SPORT) 
ISCLK Internal serial clock a 
RFSR, TFSR Frame sync required a 
RFSW, TFSW Frame sync width a 
IRFS, ITFS Internal frame sync a 
INVRFS, INVTFS Invert frame sense a 
DTYPE Companding type, format a 
SLEN Serial word length a 
SCLKDIV Serial clock divide undefined 
RFSDIV RFS divide undefined 
Multichannel word enable bits undefIned 
MCE Multichannel enable a 
MCL Multichannel length a 
MFD Multichannel frame delay a 
INVTDV Invert transmit data valid a 
RBUF, TBUF Autobuffering enable a 
TIREG, RIREG Autobuffer lindex undefined 
TMREG, RMREG Autobuffer M index undefined 

Fa (SPORTl only) Flag Out value undefined 

Host Interface Port Registers (memory-mapped) 

9-8 

HDRa-5 HIP data registers 
HSR6 HIP status register 
HSR7 HIP status register 
HMASK HIP interrupt enables 

undefined 
axaaaa 
axoa80 
a 

Table 9.4 ADSp·2111 State After Reset Or Software Reboot 

Reboot 

undefined 

a 
a 
unchanged 
ax55 
unchanged 
a 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
operates during reboot 
unchanged 
unchanged 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
a 
unchanged 
unchanged 

unchanged 

used during HIP reboot 
used during HIP reboot 
unchanged 
unchanged 



System ! nterface 9 

Control Field Description Reset 

Bus Exchange Register 
PX PX register undefined 

Status Registers 
IMASK Interrupt service enables 0 
ASTAT Arithmetic status 0 
MSTAT Mode status 0 
SSTAT Stack status Ox55 
ICNTL Interrupt control undefined 
IFC Interrupt force/ clear 0 

Control Registers (memory-mapped) 
BWAIT Boot memory wait states 3 
BPAGE Boot page 0 
SPORTl configure Configuration 1 
SPEO SPORTO enable 0 
SPEI SPORT 1 enable 0 
DWAITO-4 Data memory wait states 7 
PWAIT Program memory wait 7 
TCOUNT Timer count register undefined 
TPERIOD Timer period register undefined 
TSCALE Timer scale register undefined 
ROMENABLE Program memory ROM enable 0 
PDFORCE Powerdown force 0 
PVCR Powerup context reset 0 
XTALDIS XTAL pindrive disable 0 

during powerdown 
XTALDELAY Delay startup from powerdown 0 

(4096 cycles) 

Serial Port Control Registers (memory-mapped, one set per SPORT) 
ISCLK Internal serial clock 0 
RFSR, TFSR Frame sync required 0 
RFSW, TFSW Frame sync width 0 
IRFS,ITFS Internal frame sync 0 
INVRFS, INVTFS Invert frame sense 0 
DTYPE Companding type, format 0 
SLEN Serial word length 0 
SCLKDIV Serial clock divide undefined 
RFSDIV RFS divide undefined 
Multichannel word enable bits undefined 
MCE Multichannel enable 0 
MCL Multichannel length 0 
MFD Multichannel frame delay 0 
INVTDV Invert transmit data valid 0 
RBVF, TBVF Autobuffering enable 0 
TIREG, RIREG Autobuffer I index undefined 
TMREG, RMREG Autobuffer M index undefined 

Reboot 

undefined 

0 
0 
unchanged 
Ox55 
unchanged 
0 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
operates during reboot 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 

unchanged 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
o 
unchanged 
unchanged 

Table 9.5 ADSP·2171 State After Reset Or Software Reboot (cont. on next page) 

9-9 



9 System Interface 

FO (SPORTl only) 
CLKODIS 
BIASRND 

Flag Out value 
CLKOUT disable 
MAC biased rounding 

Host Interface Port Registers (memory-mapped) 
HDRO-5 HIP data registers 
HSR6 HIP status register 
HSR7 HIP status register 
HMASK HIP interrupt enables 

undefined 
o 
o 

undefined 
OxOOOO 
Ox0080 
o 

Table 9.5 ADSP·2171 State After Reset Or Software Reboot 

Control Field Description Reset 

Bus Exchange Register 
PX PX register undefined 

Status Registers 
IMASK Interrupt service enables 0 
ASTAT Arithmetic status 0 
MSTAT Mode status 0 
SSTAT Stack status Ox55 
ICNTL Interrupt control undefined 
IFC Interrupt force/ clear 0 

Control Registers (memory-mapped) 
BWAIT Boot memory wait states 3 
BPAGE Boot page 0 
SPORTl configure Configuration 1 
SPEO SPORTO enable 0 
SPEI SPORT 1 enable 0 
DWAITO-4 Data memory wait states 7 
PWAIT Program memory wait 7 
TCOUNT Timer count register undefined 
TPERIOD Timer period register undefined 
TSCALE Timer scale register undefined 
PDFORCE Powerdown force 0 
PVCR Powerup context reset 0 
XTALDIS XTAL pindrive disable 0 

during powerdown 
XTALDELAY Delay startup from powerdown 0 

(4096 cycles) 

unchanged 
unchanged 
unchanged 

used during HIP reboot 
used during HIP reboot 
unchanged 
unchanged 

Reboot 

undefined 

0 
0 
unchanged 
Ox55 
unchanged 
0 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
operates during reboot 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 

unchanged 

Table 9.6 ADSP·2181 State After Reset Or Software Reboot (cont. on next page) 

9-10 



Systenl 

Serial Port Control Registers (memory-mapped, one set per SPORT) 
ISCLK Internal serial clock 0 unchanged 
RFSR,TFSR Frame sync required 0 unchanged 
RFSW, TFSW Frame sync width 0 unchanged 
IRFS,ITFS Internal frame sync 0 unchanged 
INVRFS,INVTFS Invert frame sense 0 unchanged 
DTYPE Companding type, format 0 unchanged 
SLEN Serial word length 0 unchanged 
SCLKDIV Serial clock divide undefined unchanged 
RFSDIV RFSdivide undefined unchanged 
Multichannel word enable bits undefined unchanged 
MCE Multichannel enable 0 unchanged 
MCL Multichannel length 0 unchanged 
MFD Multichannel frame delay 0 unchanged 
INVTDV Invert transmit data valid 0 unchanged 
RBUF, TBUF Autobuffering enable 0 0 
TIREG, RIREG Autobuffer I index undefined unchanged 
TMREG, RMREG Autobuffer M index undefined unchanged 

FO (SPORTl only) Flag Out value undefined unchanged 
CLKODIS CLKOUT disable 0 unchanged 
BIASRND MAC biased rounding 0 unchanged 

External Memory Control Registers (non-memory-mapped) 
DMOVLAY Data memory overlay select 0 unchanged 
PMOVLAY Program memory overlay select 0 unchanged 
(memory-mapped) 
DWAIT Data memory overlay wait states Ox7 unchanged 
PWAIT Program memory overlay wait states Ox7 unchanged 
BMWAIT Byte memory wait states Ox7 unchanged 
IOWAITO-3 1/0 memory wait states Ox7 unchanged 
CMSSEL Composite memory select OxB unchanged 

Programmable Flag Data & Control Registers (memory-mapped) 
PFDATA Programmable flag data undefined unchanged 
PFTYPE Programmable flag direction 0 unchanged 

DMA Control Registers (memory-mapped) 
IDMAA IDMA Internal Memory Address OxOO unchanged 
IDMAD IDMA Destination Memory Type 0 unchanged 
BIAD BDMA Internal Memory Address 0 Ox20* 
BEAD BDMA External Memory Address 0 Ox60* 
BTYPE BDMA Transfer Word Type 0 unchanged 
BDIR BDMA Transfer Direction 0 unchanged 
BCR BDMA Context Reset 1 unchanged 
BWCOUNT BDMA Word Count Ox20 0* 
BMPAGE External Byte Memory Page 0 0* 

Table 9.6 ADSp·2181 State After Reset Or Software Reboot 
* These values assume that you have just completed an initial BDMA boot load of the 
ADSP-2181 (MMAP=O & BMODE=O). For more information on BDMA register contents 
during the boot loading process see Table 9.8. These values will vary with a processor 
reboot (other than initial load), since they depend on the previous values. 9 -11 



:~l!;;;;;~~~~::' .:~~~: :~~,; :,t::~,;: .. :~~~~.:. "'f:;;":: ~~l~:::t:;:=;:;l,;: .· .. :!· ... :f ... ::.· .. :: .. :·.: ... :~ ... :~ .... :: .. :; ..... :~::::: ... :~ ... :; ... :~ .. :~. ~: ... :: .. :: ... : .. ! ... ::.::~.:::. : .... :; ... :; ... :~.::.: .. :~.::.:~.:: .. ::::l.:~.:~.: ••...•• :~ •• : •• ~ .•• :~ •• ::.:::;:; ':~ •• ::.~ ••• ::.: .• :i ... ::~~: : .. :; .. ::.· ... :: ... :~.:~.:~.:~.:~:~ .. :l.· .•• :~.:.:: .•• :~ •...• : •••• :~ •• :~:.:~.;.':;:::':: .• :;.:;.:' .•.• : •• : ••.• :~ •• :~ •• :~ ••• ,~ •• :~.:::: .•• :: •• :~:.:'.:~.:~:':: 
::',;,;::::;J; :::I~~r:;;;~;;;;l~ll: ll~~:~ it;;;;;;~~: ~~l~~~§ @. 

Control Field 

Bus Exchange Register 
PX 

Status Registers 
IMASK 
ASTAT 
MSTAT 
SSTAT 
ICNTL 
IFC 

Description 

PX register 

Interrupt service enables 
Arithmetic status 
Mode status 
Stack status 
Interrupt control 
Interrupt force/clear 

Control Registers (memory-mapped) 
BW AIT Boot memory wait states 
BP AGE Boot page 
SPORTI configure Configuration 
SPEO SPORTO enable 
SPEI SPORTl enable 
DW AITO-4 Data memory wait states 
PW AIT Program memory wait 
TCOUNT Timer count register 
TPERIOD Timer period register 
TSCALE Timer scale register 
ROMENABLE Program memory ROM enable 
PDFORCE Powerdown force 
PUCR Powerup context reset 
XTALDIS XTAL pindrive disable 

during powerdown 
XTALDELA Y Delay startup from powerdown 

(4096 cycles) 

Serial Port Control Registers (memory-mapped, one set per SPORT) 

Reset 

undefined 

o 
o 
o 
Ox55 
undefined 
o 

3 
o 
1 
o 
o 
7 
7 
undefined 
undefined 
undefined 
o 
o 
o 
o 

o 

ISCLK Internal serial clock 0 
RFSR, TFSR Frame sync required 0 
RFSW, TFSW Frame sync width 0 
IRFS,ITFS Internal frame sync 0 
INVRFS, INVTFS Invert frame sense 0 
DTYPE Companding type, format 0 
SLEN Serial word length 0 
SCLKDIV Serial clock divide undefined 
RFSDIV RFS divide undefined 
Multichannel word enable bits undefined 
MCE Multichannel enable 0 
MCL Multichannellength . 0 
MFD Multichannel frame delay 0 
INVTDV Invert transmit data valid 0 
RBUF, TBUF Autobuffering enable 0 
TIREG, RIREG Autobuffer I index undefined 
TMREG, RMREG Autobuffer M index undefined 

Reboot 

undefined 

o 
o 
unchanged 
Ox55 
unchanged 
o 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
operates during reboot 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 

unchanged 

unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
unchanged 
o 
unchanged 
unchanged 

Table 9.7 ADSP·21msp58/59 State After Reset Or Software Reboot (cont. on next page) 

9-12 



FO (SPORTl only) 
CLKODIS 
BIASRND 

Flag Out value 
CLKOUT disable 
MAC biased rounding 

Host Interface Port Registers (memory-mapped) 
HDRO-5 HIP data registers 
HSR6 HIP status register 
HSR7 HIP status register 
HMASK HIP interrupt enables 

Analog Autobuffer/Powerdown Registers 
ARBUF Receive autobuffer enable 
ATBUF Transmit autobuffer enable 
control bits Analog autobuffer control bits 

undefined 
o 
o 

undefined 
OxOOOO 
Ox0080 
o 

o 
o 
o 

Table 9.7 AOSP-21msp58/59 State After Reset Or Software Reboot 

9.4.1 ADSP·2181 Register Values for BOMA Booting 

unchanged 
unchanged 
unchanged 

used during HIP reboot 
used during HIP reboot 
unchanged 
unchanged 

o 
o 
unchanged 

The state of some ADSP-2181 registers during reset and rebooting is 
influenced by the MMAP and BMODE pins. If these pins are set for a BDMA 
boot, the values in the BDMA registers change as shown in Table 9.8. 

Register Process Description * Value Before Boot 
BIAD BDMA Internal Memory Address. 0 

Set for internal address O. 
BEAD BDMA External Memory Address. 0 

Set for external address O. 
BTYPE BDMA Transfer Word Type. 0 

Set for 24-bit program memory words. 
BDIR BDMA Transfer Direction. 0 

Set to transfer data from byte memory. 
BMPAGE BDMA Page Selection. 0 

Set to byte memory page O. 
BWCOUNT BDMA Word Count. Ox20 

Set to transfer 32 words. 
BMWAIT BDMA Port Wait States. Ox7 

Set to 7 waits per transfer. 
BCR BDMA Context Reset. ** 1 

Table 9.8 BOMA Registers Before And After Initial Boot Loading 
* Assuming MMAP=O and BMODE=O for a BDMA boot. 

** Set to 1 to (a) holdoff instruction execution during BDMA transfer, 
(b) start execution at address PM(OxOOOO) after BDMA transfer, and 
(c) leave a BDMA interrupt pending. This sequence of events occurs if 
BCR is set before BWCOUNT is written, or after the initial boot. 

Value After Boot 
Ox20 

Ox60 

0 

0 

0 

0 

Ox7 

1 

9-13 



9-14 

;~;~~;;:::::;:::: ;:!~:. :~~ .:f::;;:"· :'if,: ;:::::::::~::: !~!~;;;::~!!:::::t, .::.".:1:.:;::'.:1:.'.:1. ::.!.:;:·.:1:::1.:r,::::::.:',:":::;::"':':'. :::.:: .. : .. l .. :~ .... :~ .. :~:.',':: ::: .. : .. :~ .. :~:.:~:.::.~:.~:· ... ~ .. :.·:::.:~::l.::,.: .:~:.:~:.::::.:1:::~:::: ::·: •. ~:".:1:.:.:f.:~::·:~:.~~ .:::.: ..... :::::: ... ::~ .. :~ .. ::.~,: .. :::: .. : .. ::.:;: .. ::.:':. : .... :~ .. :~::.~:.:: .... :: .. ::::.::.:: .. :::.~.'.:: ..... :: .. :l .• :;:.:l: .. ·::.~: ... :,.:~.·::::: .. : .. :.;: .. ,:,,:. ·;t:;:;;;;~;;~::;!!1lr :;~;~~~~:;;;~: illI:: :;;t~~~t; llif I l;ll· . 

9.5 EXTERNAL INTERRUPTS 
Each ADSP-2100 family processor has a number of prioritized, individually 
maskable external interrupts which can be either level- or edge-triggered. 
These interrupt request pins are named IRQO, IRQI, and IRQ2. The IRQO and 
IRQI pins are only available as the (optional) alternate configuration of 
SPORT1. The configuration of SPORT1 as either a serial port or as interrupts 
(and flags) is determined by bit 10 of the processor's system control register. 

The ADSP-2181 processor additionally has two dedicated level-triggered 
interrupt request pins and one dedicated edge-triggered interrupt request pin; 
these are IRQDJ , :rRQIT, and IRQE. 

Internal interrupts, including serial port, timer, host interface port, DMA and 
analog interface interrupts, are discussed in other chapters. Additional 
information about interrupt masking, set up, and operation can be found in 
Chapter 3, "Program Control." 

9.5.1 Interrupt Sensitivity 
Individual external interrupts can be configured in the ICNTL register as 
either level-sensitive or edge-sensitive. 

Level-sensitive interrupts operate by asserting the interrupt request line 
(IRQX) until the request is recognized by the processor. Once recognized, the 
request must be deasserted before unmasking the interrupt so that the DSP 
does not continually respond to the interrupt. 

In contrast, edge-triggered interrupt requests are latched when any high-to­
low transition occurs on the interrupt line. The processor latches the interrupt 
so that the request line may be held at any level for an arbitrarily long period 
between interrupts. This latch is automatically cleared when the interrupt is 
serviced. Edge-triggered interrupts require less external hardware than level­
sensitive requests since there is never a need to hold or negate the request. 
With level-sensitive interrupts, however, many interrupting devices can share 
a single request input; this allows easy system expansion. 

An interrupt request will be serviced if it is not masked (in the IMASK 
register) and a higher priority request is not pending. Valid requests initiate 
an interrupt servicing sequence that vectors the processor to the appropriate 
interrupt vector address. The interrupt vector addresses for each family 
processor are given in Appendix D. There is a synchronization delay 
associated with both external interrupt request lines and internal interrupts. 



If an interrupt occurs during a waitstated external memory access or during the 
extra cycles required to execute an instruction that accesses external memory 
more than once, it is not recognized between the cycles, only before or after. . 
Edge-sensitive interrupts are latched, but not serviced, during bus grant (BG) 
unless the GO mode is enabled. 

In order to service an interrupt, the processor must be running and executing 
instructions. The IDLE instruction can be used to effectively halt processor 
operations while waiting for an interrupt. 

Edge-sensitive and level-sensitive interrupt requests are serviced similarly. 
Edge-sensitive interrupts may remain active (low) indefinitely, while level­
sensitive interrupts must be deasserted before the RTI instruction is executed; 
otherwise, the same interrupt immediately recurs. 

Care must be taken with the serial port (SPORTl) that can be configured for 
alternate functions (IRQO and IRQI). If the RFSI or TFSI input is held low when 
SPORT 1 is configured as the serial port and then is reconfigured as IRQO and 
IRQI, an interrupt request can be generated. This interrupt request can be 
cleared with the use of the IFC register. 

9.6 FLAG PINS 
All ADSP-21xx processors provide flag pins. The alternate configuration of 
SPORT 1 in~ludes a Flag In (FI) pin and a Flag Out (FO) pin. The configuration 
of SPORTI as either a serial port or as flags and interrupts is selected by bit 10 
of the processor's system control register. 

FI can be used to control program branching, using the IF FLAG_IN and IF 
NOT FLAG_IN conditions of the JUMP and CALL instructions. These 
conditions are evaluated based on the last state of the PI pin; FLAG_IN is true if 
FI was last sampled as a 1 and false if last sampled as a o. FO can be used as a 
general purpose external signal. The state of FO is also available as a read-only 
bit of the SPORTI control register. 

The ADSP-2111, ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors 
have three additional flag output pins: FLO, FLI and FL2. These flags (and FO) 
can be controlled in software to signal events or conditions to any external 
device such as a host processor. The Modify Flag Out instruction, which is 
conditional, can perform SET, RESET and TOGGLE actions-this instruction 
allows programs executing on the DSP processor to control the state of its flag 
output pins. Note that if the condition in the Modify Flag Out instruction is CE 
(counter expired), the counter is not decremented as in other IF CE instructions. 

9-15 



:; ~ t~~ ~~;~~::~ .~~~ ~~. ;~~;:' ::;t:: =:::: .: i~~f~:' .::~~:::: ;:;:: 1~1~~ :::~;~::~:::: ~~;: : .••. 1.::.':~:: :.:~.~ .. :: "::'::~':.,.:~ ~.:: .. :1.t:;; .. ::.l::.' •• :: =.:: ...• :; .: ;.::.~:. '.:~.: ;.::.:~ •• ::. ::.... .: .• :.:.:I :.:?.:::;:::.:.::;.:.:.::'.~:: ::: :.:.' :~./ •• :: '.:;.' •• :~ ;.::. ;:::: :. ~.: •. :~ •• :~1.::.1 .. :}.: ~; :: :,,:~ :.::.' = .. :/;:.;:;.'.:::: ::/;'::.::.: : .. ::.':: .... :: :.'.:.:::~., = .. :/;:':: ::':. :::'.;::'.:: :.:;. . ... :;::.; :.:~ = .. :::.; ':~ :.:.:; .. : .... :.:.::~ =:: :.:.' 

:::'l,;:;:;;;111l::;I~r .;;;;~:;}~~ l11t 'llr::;;~~:: lil1 ilii ~i~i 

Flag outputs FLO, FLI and FL2 are set to 1 at RESET. The Flag Out (FO) is 
not affected by RESET. 

The ADSP-2181 has eight additional general-purpose flag pins, PF7-0. 
These flags can be programmed as either inputs or outputs; they default to 
inputs following reset. The PFx pins are programmed with the use of two 
memory-mapped registers. The Programmable Flag & Composite Select 
Control Register determines the flag direction: l=output and O=input. The 
Programmable Flag Data Register is used to read and write the values on 
the pins. Data being read from a pin configured as an input is 
synchronized to the processor's clock. Pins configured as outputs drive 
the appropriate output value. When the PFDATA register is read, any 
pins configured as outputs will read back the value being driven out. 

Programmable Flag & Composite Select Control 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FEEl 

PFTYPE 
CMSSEL 

1 = Enable CMS 
o = Disable CMS 

1 = Output 
0= Input 

Figure 9.4 Programmable Flag & Composite Select Control Register (ADSP·2181) 

9-16 



Programmable Flag Data 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DM(Ox3FE5) 

L...--Io"'l-uATA 

Figure 9.5 Programmable Flag Data Register (ADSP·2181) 

9.7 POWERDOWN 
The ADSP-2171, ADSP-2181, and ADSP-21msp58/59 provide a 
powerdown feature that allows the processor to enter a very low power 
dormant state through hardware or software control. In this CMOS 
standby state, power consumption is less than 1 mW (approximate). (Refer 
to the processor data sheet for exact power consumption specifications.) 

The powerdown feature is useful for applications where power 
conservation is necessary, for example in battery-powered operation. 
Features of powerdown include: 

• Internal clocks are disabled 

• Processor registers and memory contents are maintained 

• Ability to recover from powerdown in less than 100 CLKIN cycles 

• Ability to disable internal oscillator when using crystal 

• No need to shut down clock for lowest power when using external 
oscillator 

• Interrupt support for executing "housekeeping" code before entering 
powerdown and after recovering from powerdown 

• User selectable powerup context 

9-17 



it~:::::~~::l :f ",~t::,::· :'lll: ,:"":;::~,,: ~~~/:,~;~::::,t, : .. :~.'.' .. :~' .. :;.:~ ... :~: ... :~ ·,,:~ .. :·:r .. ::.: ... :~ .. :~.::::::.,:: ... :~ .. :~.:':' ... :: ::~:r.': .. ·: ... :t .. : .. :'.· .. :f::·:· ••••• ::.· •• :;:.:r .. :~ .. ::::.:.::.:·.::·.:.::.' .. :~.:~.:'.: ·, .. :~ .. ::.: ... :f ... :~ ... :~:::: ':·.:;:" ... :1~ .. : .. :: .. :{:~:.~~ .:: ... :: .... :' .. :: .. :~ .. :~.:~:~.: .. :::.:, .... :; .. :: .. : .. ':.:: .. : .. :' .... :' ..... :~ .. :' ... :;.:: ..... :'.:'.:'.:~:::: ,., .. ::.· .. :~.::f •• :~ .• ::::.·.::.·.::.·::.::.: •• :~: •. :.:'.: ·:t,;:;;;;l11~: :::!!~r' :;;;;;;;:;} ill: '1t;;;;;t l1l1 ll1l l1l1: _ 

Even though the processor is put into the powerdown mode, the lowest 
level of power consumption still might not be achieved if certain 
guidelines are not followed. Lowest possible power consumption requires 
no additional current flow through processor output pins and no 
switching activity on active input pins. Therefore, a careful analysis of pin 
loading in your circuit is required. The following sections detail the 
proper powerdown procedure as well as provide guidelines for clock and 
output pin connections required for optimum low-power performance. 

9.7.1 Powerdown Control 
You can control several parameters of powerdown operation through 
control bits in the SPORTl Autobuffer /Powerdown Control Register 
(or Analog Autobuffer /Powerdown Control Register on the 
ADSP-21msp58/59). This control register is memory-mapped at location 
Ox3FEF and is shown in Figure 9.6. 

SPORT1 Autobuffer I Powerdown Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I : : I : I : : I : I I I DM(Ox3FEF) 

XTALDISJ XTAL Pin Drive Disable During Powerdown 
1 =dlsabled, O=enabled 

(XTAL pin should be disabled when 
no external crystal is connected) 

XTALDELAY 
Delay Startup From Powerdown 4096 Cycles 

1=delay, O=no delay 
(use delay to allow internal phase locked 

loop or external oscillator to stabilize) 

PDFORCE -------' 
Powerdown Force 

1 =force processor to vector to 
powerdown Interrupt 

PUCR--------' 
Powerup Context Reset 

1=soft reset (clear context)*, 

9-18 

O=resume execution 

Figure 9.6 SPORT1 Autobuffer / Powerdown Control Register 
* PVCR=1: Clears the PC, STATUS, LOOP and CNTR stacks. IMASK and ASTAT 
registers are cleared to 0 and SSTAT is set to Ox55. The processor will start executing 
instructions from address OxOOOO. 



System interface 9 

9.7.2 Entering Powerdown 
The powerdown sequence is defined as follows. 

1.) Initiatp~DPowerdown sequence by applying a high-to-low transition 
to the pin or by setting the powerdown force control bit 
(PDFORCE) in the SPORT 1 Autobuffer /Powerdown Control Register. 

2.) The processor vectors to the non-maskable powerdown interrupt 
vector at address Ox002C. (Note: The powerdown interrupt is never 
masked. You must be careful not to cause multiple powerdown 
interrupts to occur or stack overflow may result. Multiple powerdown 
interrupts can occur if the FWD input is pulsed while the processor is 
already servicing the powerdown interrupt.) 

3.) Any number of housekeeping instructions, starting at location Ox002C, 
can be executed prior to the processor entering the powerdown mode. 
Typically, this section of code is used to configure the powerdown 
state, disable on-chip peripherals and clear pending interrupts. 

4.) The processor now enters powerdown mode when it executes an IDLE 
instruction (while FWD is asserted). The processor may take either one 
or two cycles to power down depending upon internal clock states 
during the execution of the IDLE instruction. All register and memory 
contents are maintained while in powerdown. Also, all active outputs 
are held in whatever state they are in before going into powerdown. 

If an RTI is executed before the IDLE instruction, then the processor 
returns from the powerdown interrupt and the powerdown sequence is 
aborted. 

While the processor is in the powerdown mode, the processor is in CMOS 
standby. This allows the lowest level of power consumption where most 
input pins are ignored. Active inputs need to be held at CMOS levels to 
achieve lowest power. More information can be found in the section 
"Operation During Powerdown" later in this chapter. 

9-19 



9-20 

;~t;:::::::::;;~~,. !~r ;"f:;',::· :.!i}: ;:,f\", ~~~~;:::,~!!:::::t, .. ~.: .. l::'.~:.' ... ~:: ... f:. ::i .. ;:: .. l:: •• :::: .• ~:::::::~:::~: ••.• ;.: •• ::: .. ::: :·~.:::.:.:;: •• ~::· •• ~:: •• f::.·.:: ..... :.: ... ': ... ':, .. :, ..... ': .. ::.:: .. : ..... ': .. ': .... ': ... '::'." ... ~: ... ;: ..... ~:: .. ;:,.:: ... ::::.: ... ~: .... ~:: .. ~:: .. ~: ... ~~~ :.: .. :: .... ::: ... '::,:: .. :: .. ::~, ... ',.;:.: ... '::.: ... ' ... '::,' ... : .. :: ... :.': .. ~::;:.:, .. '.:::::: ... '::::.::.', ....... : .... ': ... ;:: .. :,.: .... :.~.: ... :.: .. : .. :: .. ': ... ': ... '".:, .. , 

;:t:;:;:J~1 ::;l!~!? :;~;~~~~}~; :!t: '::t~~~:;::: !:!: ~!:! !~!~ 

9.7.3 Exiting Powerdown 
The powerdown mode can be exited with the use of the FWD pin or with 
RESET. There are 'also several user-selectable modes for start-up from 
powerdown which specify a start-up delay as well as specify the program 
flow after start-up. This allows the program to resume from where it left 
off before powerdown or for the program context to be cleared. 

9.7.3.1 Ending Powerdown With The PWD Pin 
Applying a low-to-high transition to the FWD pin will take the processor 
out of powerdown mode. You have the option of selecting the amount of 
time the processor takes to come out of the powerdown mode with the 
"delay start-up from powerdown" control bit (XTALDELAY, bit 14 in the 
Powerdown Control Register.) If this bit is cleared to 0, no additional 
delay over the quick start-up (l00 cycles) is introduced. If this bit is set to 
I, a delay of 4096 cycles is introduced. The delay feature is used 
depending upon the state of an external clock oscillator at the time of 
powerup or if the internal clock is disabled. This is further discussed in the 
sections "Systems Using an External TTL/CMOS Clock" and "Systems 
Using a Crystal and The Internal Oscillator." 

You can also program one of two options directing the processor how to 
resume operation. The context for exiting powerdown is set by bit 12 
(PUCR, powerup context reset) of the Powerdown Control Register. 

If the PUCR control bit is cleared to 0, the processor will continue to 
execute instructions following the IDLE instruction. For example, a high­
to-low transition is applied to the FWD pin which causes the processor to 
vector to the powerdown interrupt routine. In this routine, a few 
housekeeping tasks are performed and the IDLE instruction is executed. 
The processor powers down. Some time later a low-to-high transition is 
applied to the FWD pin, causing the processor to exit powerdown mode. 
Since the PUCR bit is 0, the processor resumes executing instructions in 
the powerdown interrupt routine, starting at the instruction following the 
IDLE instruction. When an RTI instruction is encountered, control then 
passes back to the main routine. 

If the PUCR bit is set to 1 for a clear context, the processor resumes 
operation from powerdown by clearing the PC, STATUS, LOOP and 
CNTR stacks. The IMASK and ASTAT registers are set to 0 and the SSTAT 
goes to Ox55. The processor will start executing instructions from address 
OxOOOO. 



(;;:~:~;::~:: :;~;!: .:J :;~f::;;;,·:f·: ;:;;:;:;:;;:: :l~;!;:;;;!;,::;:t" [; ... ;~.:.':':"';:;"':::::"':: ;; .• :;;.: .. ;.~.:.;;.:.':.::::::.: •. :;"':~"::;;"':'.";;. ':i;;.; ••• ;;;.·i; ••• ;'~ ••• ;:':;: •• ; •• ; •••• ;;: •• ;.~.;.:: ••• ;~.:.:.::~.;~ •• ;~.: •• ; •••• ::';;:"; •• ' ••• :';"';;.:;"';;"';'::;"';:::::':~: ••• :~ •• ::',;,,:.t ... ; .. :'.:;";;'~~ ;':';';.;';:;:;:"';'~.;::'.~.::.;'~;.'; .. ;':':";.;;' .. ;' .... : ........... :;.::.; .. ;: ... ;.~:::.;::.' .. :.: ... :' .. ;; .. :.:.' .. :: ... ;:;::.~.;:.: ... :.; ... ;: .. :~.;:.:~.: .. : .... :: .. : ...... ':. 

;:l",:;;;;Jl; :~;!::lr ·:;;;~::;:}!!t ·It:::::;;~: !f!:l ll:l! llll! 

9.7.3.2 Ending Powerdown With The RESET Pin 
If RESET is asserted while the processor is in the powerdown mode, the 
processor is reset and instructions are executed from address OxOOOO. A 
boot is performed if the MMAP pin is set to o. If the RESET pin is used to 
exit powerdown, then it must be held low for the appropriate number of 
cycles. If the clock is stopped at powerup or operating at a different 
frequency at powerup than it was before powerdown, RESET must be 
held long enough for the oscillator to stabilize plus an additional 1000 
CLKIN cycles for the phase locked loop to lock. The time required for the 
oscillator to stabilize depends upon the type of crystal used and 
capacitance of the external crystal circuit. Typically 2000 CLKIN cycles is 
adequate for clock stabilization time. 

If the clock was not stopped at powerup and is at a stabi~Jsltency at 
powerup (same as before powerdown), only 5 cycles of are 
required. 

When ending powerdown with RESET, the XTALDELAY (delay start-up 
from powerdown) control bit is ignored. 

9.7.4 Startup Time After Powerdown 
The time required to exit the powerdown state depends on whether an internal 
or external oscillator is used, and the method used to exit powerdown. 

9.7.4.1 Systems Using An External TTL/CMOS Clock 
When the processor is in powerdown, the external clock signal is ignored if the 
XT ALDIS bit (XT AL pin disable) of the Powerdown Control Register is set to 1. 
It is therefore not necessary to stop the external clock since no power is wasted 
while the external clock is running. If the external clock is to be stopped 
anyway, it must be kept running for (at least) one additional cycle after the 
IDLE instruction is executed. 

The XT ALDIS bit should always be set before entering powerdown. This 
specifies that the XTAL pin is not to be driven by the processor. During 
powerdown there is no need to drive the XTAL pin when an external oscillator 
is used. Disabling the XT AL pin drive during powerdown lets the input clock 
run without wasting power. 

After the processor is taken out of the powerdown mode by either the 
FWD pin or RESET, it will begin executing instructions after a maximum 
start-up time of 100 eLKIN cycles as long as the clock oscillator is stable 
and at the same frequency as before powerdown. 

9-21 



9-22 

:~\t:~~;:~;::'l :~~t ::t::~~: ·~l· .;:f:::,:: ~~V~i::~\l: ',,:~,:~,,:,,;,:~:":"~':~"':' ... :1 .. :·.f ..• :;· .. : .. ,.: .. ::~::~ ... ::· .. : .. , •.. :~ .. : .• ':.': ':~ .. ::.:~ .. ::.' .. :~ ... :~::': : .... :; .. :; .. :r .. ::.·.·.::.::·.:~.::: .. ::.::.:.:;.:;.:.':' · ... :1· ... :f .. : .. , .. ::.:!::·:;~ :; .• : •• ~ ••• :ll .• : .. ,l ... :t ... :; ... :: .. : .. : ... :r .. ::.:~·: .. ·:·.:·:;.:~:·.::;.:: .. :; ... :: .... :' .. :~ ... :~ .. ::.:~:.::.: ..... : ... :; .. :'.:: ... ::.:~ .. :f.: .. '.::f .. :~·.:::·.:.::: .. ·.::f: .. ,.:~ ... ,:: 

::',l,;,;:;;1l :::!Ill~': ;;;~~::;:;} ~~J lt~:;:;~~~: ~1~1 1~1~ 1 .: 

If the external clock is unstable when the processor exits powerdown, then 
the XTALDELA Y control bit can be used. This allows time for the external 
clock to stabilize by inserting an additional 4096-cycle delay before the 
processor starts to execute instructions. The start-up delay can only be used 
when the processor is taken out of powerdown mode with the FWD pin. 

If the processor is taken out of powerdown by RESET and the clock is stable 
and at the same frequency as before powerdown, RESET needs to be held for 
only 5 cycles. 

9.7.4.2 Systems Using A Crystal And The Internal Oscillator 
A trade-off can be made so that a fast start-up is possible, but power is 
consumed by leaving the oscillator running during powerdown. If a fast 
start-up is desired, then you must clear bits 14 (XTALDELA Y) apd 15 
(XTALDIS) of the Powerdown Control Register to 0 before entering 
powerdown. This selects no additional delay after start-up from powerdown 
and drives the external crystal during powerdown. In this configuration, the 
oscillator will continue to operate arid the processor will start executing 
instructions in less than 100 cycles after the low to high signal transition at 
the FWD pin. The XTAL pin will also be driven and the powerdown power 
consumption will be higher than the 1 m W specification. The following code 
example shows the powerdown interrupt routine. 

Sample Powerdown Code 
Located at interrupt vector address Ox002C 

pWd_int: axO = OXOOOOi { enable crystal, no delay 
dm(Ox3FEF) = axOi 
idlei 
rtii 

If lowest possible power consumption is required, then you must set the 
XTALDELAY and XTALDIS bits to 1 before entering powerdown. This selects 
the additional 4096 cycle delay to allow the oscillator to start and the phase 
locked loop to lock after start-up and disables the drive to the XTAL pin 
during powerdown. The following code example shows the powerdown 
interrupt routine. 

Sample Powerdown Code } 
Located at interrupt vector address Ox002C } 

pWd_int: axO = OXCOOOi { disable crystal, delay} 
dm(Ox3FEF) = axOi 
idle; 
rtii 



Depending on the particular situation and external system conditions, the 
powerdown modes shown above could be set conditionally. If you want 
to powerdown for a long time you may want to set the mode for lowest 
power consumption. If you want to powerdown for a short time, lowest 
power consumption may not be that important. 

If the RESET pin is used to exit powerdown and the clock has been 
stopped, then RESET must be held low for 1000 CLKIN cycles plus the 
time required for the phase locked loop to lock and the crystal oscillator to 
stabilize (typici1is~9f>0 CLKIN cycles.) If the clock is running during 
powerdown, a signal of only 5 cycles is required. 

9.7.5 Processor Operation During Powerdown 
Some processor circuitry may still be active during powerdown mode. 
Also, some output pins remain active. A good understanding of these 
states will allow you to determine the best low-power configuration for 
your system. By keeping output loading and input switching to a 
minimum the lowest possible power consumption can be achieved. 

9.7.5.1 Interrupts And Flags 
Interrupts are latched and can be serviced if the processor exits 
powerdown without a context reset (PUCR=l). Any activity on the 
interrupt or flag input pins during powerdown will increase the power 
consumption. There should also be no resistive load on the flag output 
pins (as with any active output pin) if lowest power is desired. 

9.7.5.2 SPORTS 
The circuitry of the serial ports is not directly affected by powerdown. The 
SPORTs are indirectly affected if an internally generated SCLK or frame 
sync is required. SPORT circuitry continues to operate during 
powerdown. 

It is possible to clock data into or out of the serial ports during 
powerdown. You must supply an external serial clock to support 
operation during powerdown. No interrupts or autobuffer operations will 
be serviced during powerdown. Instead, the SPORT interrupts are latched 
and can be serviced if the processor exits powerdown without resetting 
the processor. Data clocked into the processor will remain in the receive 
(RX) registers. Autobuffer transfers will occur after the device exits 
powerdown if the processor is not powered up with RESET. Note that any 
SPORT activity will increase the power consumption above the 1 m W 
specification. 

9-23 



9-24 

:;t::::;~~~::· ·t: :iW ::t:::::: ;:t·:· .:,f:::::: ii'i:::'t(:'i~!: : ... :'!:.::!.:~:::.: ... : ~ ... :::::.; ... :l:.:~ ... :· :::::: .. ::.~::' .. :,,;:: ;:: .. :~::': ... ::~.:'~'.::.::': .: ... ':·: .. :·;::f .• :·~::~.:·~.:~.:·~::·; .• :l:.~.:,:.. ·:;.:; ••• :·~.:::.:::i:::: :·~:.:·~ ••• :I:.:~ ... :~~~; .. : .... ' .. ::::.:.:~::::.~.:~.:~.:~:.;::::.;:; .. :;.: ........ ' .. :·;::·.l •. ::.:·::::·:::.;'.:.:;.':.::.; ':'.'.:·: •• :';::·~ ••• :·.~:.:.::~.:~.:·~ .• ;l .. :;.:~.:'::: 
::'ii:::;:;}ii :::!!1~r ;;;::;;:;Ili: ll: t::;:;;:~~: llll llllllll : 

If an external serial clock and an external frame sync signal are supplied, 
data can be clocked into the RX register or out of the TX register during 
powerdown. Since the TX register can not be updated while the processor 
is in powerdown, the same value is repeatedly clocked out the serial port. 
Also, data in the RX register is continually overwritten since the RX 
register can not be read by the processor during powerdown. 

If an external serial clock is used with an internal frame sync, frame sync 
signals continue to be generated during powerdown since they are 
derived from the serial clock. Data bits continue to be received with the 
RX register being overwritten. Since data is only transmitted when the TX 
register is written, data bits are only transferred out of the processor if the 
processor is put in powerdown during a serial port transfer. While the 
processor is being put into powerdown, the serial port transfer in progress 
is allowed to complete. Since an internally generated transmit frame sync 
is used, no subsequent frame syncs are generated while in powerdown. 

If internal serial clock is used, there is no SPORT activity during 
powerdown; the serial clock stops. 

Lowest power dissipation is achieved when active SPORT pins are not 
changing during powerdown and are held at CMOS levels. 

9.7.5.3 HIP During Powerdown 
The circuitry of the Host Interface Port (HIP) is not directly affected by 
powerdown on the ADSP-2171 and ADSP-21msp58/59. The HIP is 
indirectly affected since the processor, when in powerdown, is unable to 
service interrupts or read and write HIP data registers. HIP circuitry 
continues to operate during powerdown. 

The host can write to the HIP register during powerdown but the 
processor is disabled and cannot service interrupts. Instead, HIP 
interrupts are latched and can be serviced if the processor exits 
powerdown without a context reset (PUCR=l). 

If the HDR overwrite bit (bit 7 in HSR7) is cleared, a host acknowledge 
signal will not be asserted until the processor has read data written by the 
host. During powerdown, the processor is unable to read the data register 
and the host acknowledge signal will not be asserted. Care must be taken 
in a system where the host waits for a host acknowledge. In this case, it is 
possible that the host will "hang" waiting for the acknowledge while the 
DSP processor is in powerdown. 



While in powerdown, the processor can be reset by writing the HSR 
software reset bit. This will produce the same results as asserting the RESET 
pin for five cycles (minimum RESET pulse) on the processor. If an external 
crystal is used and the clock has been stopped, this reset duration is too 
short; therefore software reset cannot be used in this mode. Note that any 
HIP activity will increase the power consumption above the 1 m W 
specification. 

Two mode pins, HMDO and HMDl, are used to put the processor's HIP into 
one of four possible modes. When HMDO = I, the HIP data bus is 
multiplexed for both address and data. In this case, the HIP data bus inputs 
are active during powerdown and any bus activity will result in higher 
power dissipation. Also, inputs must be at CMOS levels. If this host mode is 
used and there is potential for the bus to be floating, pull-up resistors 
should be used on the data lines. If you desire the host to communicate with 
other devices on the bus while the DSP processor is in powerdown, HMDO 
should be held low to avoid extra power to be dissipated. When the HIP is 
put in other modes where data inputs are not active this is not a problem. 

Lowest power dissipation is achieved when the HIP pins are not changing 
during powerdown and are held at CMOS levels. 

9.7.5.4 IDMA Port During Powerdown (ADSP·2181) 
The IDMA port can receive data during powerdown, but it can not respond 
with an acknowledge (lACK) signal or increment the IDMA internal 
address. If you are using a short read or short write and are in the middle of 
an IDMA transfer, you can complete a single read or write while the 
processor is in powerdown. If you are using the long read or long write 
method and are in the middle of an IDMA transfer, your host must be able 
to handle a "timeout" condition, as the DSP will not return an acknowledge 
to the transfer in process. 

Note that IDMA activity while the DSP is in powerdown uses power and 
should be avoided to conserve power. For more information on lowest 
power use, see "Conditions For Lowest Power Consumption." 

9-25 



9-26 

:!1~~;;:::::~::< ·t:.:{ :::~!:::::::: :·I} l::::::~::, ~~~?t~f::~~:: ... :! ... :l .. :! .... :l .. :!. . .. :l ... :~ .. :;.: ... :~ .. :(:: .. :l .... :~ .. :~ .... :: :~: .. :: ... :[ ... :~ ... :[ ... :f:·:: :: ... ::.:~ .. : .. :::.::.::.::.::.::::.:.:l .. :~:~.::.: ..... :~.:.:l ••• :~ •• :~.::::::·: ••• :[ ..• :! .... :[.:~:::; :.::: .. :: ... :: ..... ::.::.::.::.: .... :: ... :~ .... :~ .. :~ ... :,,: .... ::.::.: ... :l .• :l .. :~.::::.·.·::.:: ... ::.:;:: .. : ..... ::.· .. :; ... :l •• :~ .•• ::: •. :.::.:~ •• :::: .••.• ::: •. :.::.: 

,%::;:;;;;f ::;!![~~? ;;~;~~~}~~: ~1:: :t~;~;~;::: ~~~~~~~~ :~~~~ 

9.7.5.5 SDMA Port During Powerdown (ADSP·2181) 
Do not powerdown the ADSP-2181 during a BDMA transfer. If you do, the DSP 
will not be able to recover correctly from powerdown and the contents of 
memory accessed by the AOSP-2181's BOMA port will be corrupted. 

If you need to go into powerdown mode, either: 

• Verify that the BWCOUNT register contains a zero. If a BOMA transfer is in 
process, poll the BWCOUNT register to determine when the transfer is done. 

or 

• Abort any BDMA transfer in progress by writing 1 to the BWCOUNT 
register and go into powerdown when the BWCOUNT register contains a 
zero. (Note that the BDMA transfer is not properly completed in this case.) 

9.7.5.6 Analog Interface (ADSP·21msp5x) 
You must powerdown the ADSP-21msp58/59's analog interface separately 
from the processor, as described in the Analog Interface chapter of this manual. 
The analog interface does not work during powerdown and causes additional 
power to be dissipated if it is not disabled. The following code example shows 
a powerdown interrupt routine for the ADSP-21msp58/59: 

{ Sample Powerdown Code } 
{ located at address Ox002C } 

pWd_int: axO = OxOOOO; {powerdown analog interface} 
dm(Ox3FEE) = axO; 
axO = OxOOOO; {enable crystal, no delay} 
dm(Ox3FEF) = axO; 
NOP; 
idle; 
rti; 

It takes three cycles for the analog interface to powerdown. The IDLE 
instruction should not be executed before these three cycles have elapsed. 

9.7.6 Conditions For Lowest Power Consumption 
The state of all processor pins during powerdown is shown in Table 9.9. 

To assure the lowest power consumption, all active input pins should be held 
at a CMOS level. All active output pins should be free of resistive load since 
load current will increase power dissipation. Some pins will be in one of 



System Interface 9 

several states depending upon the connection of mode pins. For example, 
the ADSP-2171's HIP data bus pins may be either active or inactive 
depending whether a host write is in progress or how the host mode pins 
are connected. You must perform a careful analysis of each input and 
output pin in order to insure lowest power dissipation. 

Some inputs are active but ignored. The state of these inputs does not 
matter as long as they are at a CMOS level. 

Pin 

RESET 
FWD 
IRQ2 
IRQE 
IRQm 
IRQIT 
MMAP 
BR 
Be 
CLKIN 
CLKOUT 
XTAL 
PWDACK 

PMS 
1JN.I5 
EMS 
IOMS 
eMS 
RD 
WR 
ADDR<13:0> 
DATA<23:0> 
DATA<23:0> 

SCLKO 
SCLKO 
TFSO 
TFSO 

RFSO 
RFSO 

DRO 
DTO 

Direction 

I 
I 
I 
I 
I 
I 
I 
I 
0 
I 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
I 
0 

I 
0 
I 
0 

I 
0 

I 
0 

State During Powerdown 

Active 
Active 
Active,latched but not serviced 
(ADSP-2181) Active, latched but not serviced 
(ADSP-2181) Active, latched but not serviced 
(ADSP-2181) Active, latched but not serviced 
Active 
Active, no response until after powerdown 
Driven HIGH unless bus is granted 
Input buffer inactive, but XTAL oscillator is active unless XTALDIS bit is set 
Driven HIGH 
Driven HIGH if XTALDIS set, inversion of CLKIN otherwise 
Driven HIGH 

Driven HIGH, high impedance if bus granted 
Driven HIGH, high impedance if bus granted 
Driven HIGH, high impedance if bus granted 
(ADSP-2181) Driven HIGH, high impedance if bus granted 
(ADSP-2181) Driven HIGH, high impedance if bus granted 
Driven HIGH, high impedance if bus granted 
Driven HIGH, high impedance if bus granted 
High impedance 
Inactive 
High impedance 

Active 
Driven to static level if internal, high impedance otherwise 
Active if SPORT 0 is enabled 
Driven if configured internal or in multichannel mode and SPORT 0 
enabled, high impedance otherwise 
Active if SPORT 0 is enabled 
Driven if configured internal and SPORT 0 enabled, high impedance 
otherwise 
Active if SPORT 0 is enabled 
Driven if serial port operating. Output may be static or changing depending 
upon serial clock, high impedance otherwise 

Table 9.9 Pin States During Powerdown (cont. on next page) 

9-27 



,~t;~:~~:~::, "111",t "t"',;:, "ll} ,:~;:::"'1;,.1111"'tl:;;'t:: '.,~ ..... :l .. l .. ".~ ... ,.; .. ,:. ' .. ".~ ... ,.: .. ".~ ... , .. ~:.:::::: .. ,:: ... ": .. ".' .. ," :;~.".~ ... ,.; .. "l,.:.::.,',·:: ,:.'.:" .. ,~: ... ,==,.:'.:.', .. '.:.','.:.:'.'::: .. :" .• :::". :,.::: .. ".:,.:::.:,.::::::;:;,.:::.:;:~,.:} .. ,,~~ :':':"":.':,.:' .. ,:;.:.'.:'.~:' ... ": .. ' .. ".',.::: .. ,'.,'.,'. ",.,::.".' ... "= .. ".:'.":',",',:'.': .. ,'.:',',',' ... '.',.,' .. ,:= ... , ... :.: .... :::, .... :.'.:.'.:.=, ... :.,:.',":.:': 

't:,;:;,;;J ,:;!!!11t ;;;i;;;;;}: llll,,'lI;;::~~::lllll :llll 

Pin Direction State During Powerdown 

SCLK1 I Active 
SCLK1 0 Driven to a static level if internal, high impedance otherwise 

Active if SPORT 1 is enabled or configured alternate (IRQI) TFS1/IRQI I 
TFS1 0 Driven if SPORT 1 is enabled and configured for internal transmit framing, 

high impedance otherwise 
RFS1/~ I Active if SPORT 1 is enabled or configured alternate (IRQO) 
RFS1 0 Driven if SPORT 1 is enabled and configured for internal receive framing, 

high impedance otherwise 
DR1/FLAGIN I Active if SPORT 1 is enabled or configured alternate (FLAGIN) 
DT1/FLAGOUT 0 Driven if serial port operating. Output may be static or changing depending 

upon serial clock. Driven if SPORT 1 is enabled or configured alternate 

FL<2:0> 
PF<7:0> 

BMODE 

IRD 
IWR 
IS 
IAL 
lAD 
lACK 

HSIZE 
HMDO 
HMD1 
HSEL 
HRD 
HWR 
HADR<2:0> 
HDATA<15:0> 

HDATA<15:0> 
HACK 
VIN(NORM) 
VIN (AUX) 
VFB(NORM) 
VFB (AUX) 
VOUTP 
VOUTN 
VREF 

(FLAGOUT) 

o Driven to previous value 
I/O (ADSP-2181) Active 

Active 

I (ADSP-2181) Active, if IS asserted 
I (ADSP-2181) Active, if IS asserted 
I (ADSP-2181) Active 
I (ADSP-2181) Active, if IS asserted 
I/O (ADSP-2181) Active, if an operation in progress 
o (ADSP-2181) Active 

I (ADSP-2171 , ADSP-21msp5x) Active 
I (ADSP-2171 , ADSP-21msp5x) Active 
I (ADSP-2171, ADSP-21msp5x) Active 
I (ADSP-2171 , ADSP-21msp5x) Active 
I (ADSP-2171, ADSP-21msp5x) Active 
I (ADSP-2171, ADSP-21msp5x) Active 
I (ADSP-2171, ADSP-21msp5x) Active 
I (ADSP-2171, ADSP-21msp5x) Active if host writing or HMD1 and 

HA2/HALE HIGH, inactive otherwise 
o (ADSP-2171, ADSP-21msp5x) Driven if host reading, high impedance otherwi 
o (ADSP-2171, ADSP-21msp5x) Driven 
I (ADSP-21msp5x) Inactive, set analog powerdown bit 
I (ADSP-21msp5x) Inactive, set analog powerdown bit 
o (ADSP-21msp5x) Inactive, set analog powerdown bit 
o (ADSP-21msp5x) Inactive, set analog powerdown bit 
o (ADSP-21msp5x) Driven low in powerdown 
o (ADSP-21msp5x) Driven low in powerdown 
o (ADSP-21msp5x) Reference turned off 

Table 9.9 Pin States During Powerdown 

9-28 



9.7.7 PWDACK Pin 
The powerdown acknowledge pin (PWDACK) is an output that indicates 
when the processor is powered down. This pin is driven high by the 
processor when it has powered down and is driven low when the 
processor has completed its powerup sequence. A low level on the 
PWDACK pin also indicates that there is a valid CLKOUT signal and that 
instruction execution has begun. Figure 9.7 shows an example of timing 
for the powerdown and restart sequence. 

The processor is executing code when the FWD pin is brought low. The 
processor vectors to the powerdown interrupt vector and an IDLE 
instruction is executed causing the processor to go into powerdown. The 
CLKOUT and PWDACK signals are driven high by the processor. At this 
point, the input clock pin is ignored. If the processor is put into the 
powerdown mode via the powerdown force bit in the powerdown control 
register, the result is the same as described above. 

The input clock is started and the FWD pin is brought high. After the 
necessary start-up cycles the processor brings the PWDACK output low, 
begins driving the CLKOUT pin with a clock signal and begins to fetch the 
instruction after the IDLE instruction. The processor then resumes normal 
operation. 

ClKIN - --~- - -JU1J1Jlf1J 

PWDACK ---1 ...... ---

ClKOUT ---~ 
- RUN ....-I~ PWRDWN ....-1....- POWERED ----..j..- START CLK~~ RUN-

~ I PENDING ~ I DOWN 

EXECUTE IDLE ~I FINISH IDLE ~I 1..-
NOP WHILE FETCHING INSTRUCTION FOLLOWING IDLE ~I ~ 

Figure 9.7 Powerdown Timing Example 

9-29 



9-30 

i~l~~;;:;:;;~::: 't: .ill:' :if":;::: ':lI: ,::?:;:::::llll;=:t:::::tl: :1.::~ .. ::.~ ... ::~ .. ::.: .. :j. : ... ::: .. :: .. : .. ::: .. ::.~:!:::.:::; .. :~.: .•. :: .. ::. ;:.1.::~ •• :;.1 ... ::.1.::.:.::.: : •• :.::.::::.: •• ::: •• :.:.::.:::: •. ;.:::: .. : •• :::~.'.::::" :"::="':::"::':~':':::::'::.: •• ~ •• ::.'~ ••• :} •• ::.~ ••• ::~; .: •• :;.:::': ••• ::: ••• :~:.:'.:.::;:':.:'::'.: ••• ::.:.::.: ••• :: •• :: .• :'::.:':;' •• :;: ••• :;.::'.:.::::'::.:.::.:.:~::'.':;'. : •••• :;: •• ::: •• ::.:.:~ •• : ••• :.::.: •• :.:::.: ••• : •• ::;.:::.::.: •• , 

:::l:;:;;;;;Jl ::;!~r ';;;~~~;;I;: l~tll~t:~;~;~; !lll :llll illli 

When powerdown is terminated with the RESET pin or if a start-up delay 
is selected, a low level on the PWDACK pin only indicates the start of 
oscillations on the CLKOUT pin. It will not necessarily indicate the start of 
instruction execution. 

The state of PWDACK and also the CLKOUT signal is undefined during 
the first 100 cycles of initial reset. 

9.7.8 Using Powerdown As A Non-Maskable Interrupt 
The powerdown interrupt is never masked. It is possible to use this 
interrupt for other purposes if desired. The processor will not go into 
powerdown until an IDLE instruction is executed. If an RTI is executed 
before the IDLE instruction, then the processor returns from the 
powerdown interrupt and the powerdown sequence is aborted. 

It is possible to place a series of instructions at the powerdown interrupt 
vector location Ox002C. This routine should end with an RTI instruction 
and not contain an IDLE instruction if the interrupt is to be used for 
purposes other than powerdown. 



Memory Interface 

10.1 OVERVIEW 
The AOSP-2100 family has a modified Harvard architecture in which data 
memory stores data and program memory stores both instructions and 
data. Each processor contains on-chip RAM and/or ROM, so that a 
portion of the program memory space and a portion of the data memory 
space reside on-chip. Each processor (except the AOSP-2181) also has a 
boot memory space in addition to the data and program spaces. The 
AOSP-2181 has a byte memory space instead of the boot memory space. 
The boot memory space and byte memory space can be used to load on­
chip program memory with code from an external EPROM at reset. 

In each AOSP-2100 family device, memory is connected with the internal 
functional units by four on-chip buses: the data memory address bus 
(OMA), data memory data bus (OMO), program memory address bus 
(PMA), and program memory data bus (PMO). The internal PMA bus and 
OMA bus are multiplexed into a single address bus which is extended off­
chip. Likewise, the internal PMO bus and OMO bus are multiplexed into a 
single external data bus. The sixteen MSBs of the external data bus are 
used as the OMO bus: external bus lines 0

23
_
8 

are used for OMD
15

_
0
• 

There are three separate memory spaces: data memory, program memory 
and boot (or byte) memory. The PMS, DNIS, and BMS signals indicate 
which memory space is being accessed. Because the program memory and 
data memory buses are multiplexed off-chip, if more than one external 
transfer must be made in the same instruction there will be an overhead 
cycle required. There is no overhead if just one off-chip access (with no 
wait states) occurs in any instruction. Figure 10.1 shows the external 
memory buses and control signals (for all AOSP-21xx processors except 
the AOSP-2181). 

All external memories may have automatic wait state generation 
associated with them. The number of wait states-each equal to one 
instruction cycle-is programmable. 

10 

10-1 



IlIf'!!' . 
m 

This chapter includes example timing diagrams for the memory interfaces 
of the ADSP-21xx processors. For each bus transaction, only the sequence 
of events is described; you must consult the processor data sheets for 
actual timing parameters. All timing diagrams use CLKOUT as a 
reference, which indicates the instruction execution rate. 

The memory interfaces of the ADSP-2181 are described separately in the 
second half this chapter. 

ADSP-21xx 

~ "", ,,!"Io. 

A13-0 ....... 
1x CLOCK 

14.., .. 
'--.. ClKIN ADDR13-o / 

D23-2;:~ BOOT 

10-2 

, ,. r--
or 

CRYSTAL .... XTAl 
"'Y 

-+- ClKOUT A 24L 

~ 
A D15-8 ... 

DATA23-o ./ 

---+ RESET 
~ , ... ". 

.. 
IRQ2 ~ ----+ 

---+ BR BMS - ... 
+- BG A13-0 .. -----+ MMAP 

A D23-o ~ 
... ". 

SPORT 1 RD -

::: WR ~ 
... 

SERIAL SClK1 .. 
DEVICE RFS1 or IRQO I--

(OPTIONAL) ~ TFS1 or IRQ1 
i....- A13-0 ... 

DT1 or FO ~ 

---+ DR1 or FI D23-8 

~ 

SPORT 0 
SERIAL I: : SClKO - I--

PMS - '--- r--DEVICE RFSO 
DMS I: • TFSO r--

(OPTIONAL) DTO 
r--+ DRO "'\;7 ~v7 

NOTES 
1. Applies to all ADSP-21 xx processors except ADSP-2181. 
2. ADSP-2171 and ADSP-21msp58159 use a 112x elKIN signal. 
3. Unused data bus lines may be left floating. 
4. The two MSBs of the data bus (023-22) are used to supply the two MSBs of the 

boot memory EPROM address. This is only required for the 27256 and 27512. 

Figure 10.1 ADSp·21XX System With External Memory 

,. 
... .. 
... 

ADDR 
MEMORY 

DATA e.g. EPROM 
2764 

OE 27128 
27256 

CS 27512 

ADDR PROGRAM 
DATA MEMORY 
OE (OPTIONAL) 
WE 
-
CS 

ADDR DATA 
DATA MEMORY 

& 
OE PERIPHERALS WE 
cs (OPTIONAL) 



10.2 PROGRAM MEMORY INTERFACE 
This section describes the program memory interface of all ADSP-21xx 
processors except the ADSP-2181. 

The processors address 16K of 24-bit wide program memory, up to 2K 
on-chip and the remainder external, using the control lines shown in 
Figure 10.1. The processors supply a 14-bit address on the program 
memory address bus (PMA) which is driven off-chip on the address bus in 
the case of external program memory accesses. Instructions or data are 
transferred across the 24-bit program memory data (PMD) bus which is 
also multiplexed off-chip. For a dual off-chip data fetch, the data from 
program memory is read first, then the data memory data. A program 
memory select pin, PMS, indicates that the address bus is being driven 
with a program memory address and memory can be selected. 

Two control lines indicate the direction of the transfer. Memory read (RD) 
is active low signaling a read and memory write (WR) is active low for a 
write operation. Typically, you would connect PMS to CE (Chip Enable), 
RD to OF(Output Enable) and WR to WE (Write Enable) of your memory. 

10.2.1 External Program Memory Read / Write 
On-chip memory accesses do not drive any external signals. PMS, 'OMS, 
RD, and WR remain high (deasserted); the address and data buses are 
tristated. Off-chip program memory access happens in this sequence: 

1. The processor places the address on the PMA bus, which is 
multiplexed off-chip, and PMS is asserted. 

2. RD or WR is asserted. 

3. Within a specified time, data is placed on the data bus, multiplexed to 
the internal PMD bus. 

4. The data is read or written and RD (or WR) is deasserted. 

5. PMS is deasserted. 

The basic read and write cycles are illustrated in Figure 10.2 on the next 
page. Figure 10.2A shows zero wait states and 10.2B shows the effect of 
one wait state. 

10-3 



ClKIN ~ \ 
ClKOUT ~ \ 
PMS 
or 

DMS 

Address 

RD 
or 

WR 

Data 
In 

Data 
Out 

~ 

--< 
\ 

'tiXxxxxmxxxXX 

/ 

External Program/Data Memory ReadlWrite 
PWAIT=O, DWAIT=O (no wait states added) 

I \ I 

I \ I 

/ 

Figure 10.2A Memory Read And Write, No Wait States 

ClKIN ~ 

ClKOUT ~ 
PMS 

, / 

\ I 

\ 

\ 

L....-_---l� 

L....-_---ll 
or ~ 

DMS ~------------------~I 
Address 

RD 
or 

WR 

Data 
In 

Data 
Out 

--< 
\ 

mxxxXXYJ..xxxxX'tIJ.XXXXXXY\XXX 

External Program/Data Memory ReadlWrlte 
PWAIT=1,DWAIT=1 (one wait state added) 

I 

Figure 10.28 Memory Read And Write, One Wait State 

10-4 

'--
'--

,'--_---1/ 

\ I 

,'---­
,'----



It .. lI ::::::::::::: ::::~:::::~:::::::l::::::::::::::::. :l:~::::"::l:; .:l:'· :.: .. :;.::.:.: .. :~.::::.: .. : :': .. ::':::'.:'.:.:.:::':::'::::::': .. :',,::.,,: .. :,,:.: ;:~.:.::.::':.: .. ::.: .. :;:;:.::': .: .... ::.: .. :.:.:.::.:.:.~ .. :: .. :.~.:: .. :.: ... : ... :.::'::"::::' :.:.::.: .. :·.1:::.: .. :~::::·:;:.:.:·.:.: .. ::.::::.: .. :~~: , .. : .. : .. ::.: .. :.: .. ::: ... ;: .. :: .. :: .. ~::.: .. ::.:: ... : .. :,,:::. :"'::'.:.:".:.:".: .. :':.:':::;::.::.:'~.::.':::" ... : .... :: ... :.::.:.: .. ;.:.~ .. :: .. :: ..... : .. :.~.::.::~.:"::::" ·:;:::.:~: ... :l .. :l .... :l.:;,: :,:.:~.:l .... :l .. :~ .. :'.::::.:::: .... :l ... :l .. :l.:~~ 
~~~~ tf' ~~~[ :t:;:;::;;~: :~~~: :r ~~~j t;:::;:r ~~~1 :::!l~t: 

The program memory interface can generate 0 to 7 wait states for external
memory devices. The program memory wait state field (PW AIT) in the
system control register is shown in Figure 10.3. PWAIT defaults (after
RESET) to seven wait states for program memory accesses.

System Control Register
Ox3FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

PWAIT
(Program Memory Wait States)

Default = 7

Figure 10.3 Program Memory Wait State Field In System Control Register

10.2.2 Program Memory Maps
For all RAM-based processors except the ADSP-2181, the program
memory space is mapped in one of two configurations depending on the
state of the MMAP pin. Figure 10.4 shows these configurations for the
processors with 2K internal program memory (ADSP-2101, ADSP-2111,
ADSP-2171, ADSP-21msp58), and Figure 10.5 shows the same information
for the processors with 1K internal program memory (ADSP-2105,
ADSP-2115).

When MMAP=O, internal RAM occupies 2K words beginning at address
OxOOOO. In this configuration, the boot loading sequence is automatically
initiated when RESET is released (as described in "Boot Memory
Interface") .

When MMAP= I, words of external program memory begin at address
OxOOOO and internal RAM is located in the upper 2K words, beginning at
address Ox3800. In this configuration, program memory is not loaded
although it can be written to and read from under program control.

The program memory space can hold instructions and data intermixed in
any combination. The ADSP-21xx linker determines where to place
relocatable code and data segments. You may specify absolute address
placement for any module or data structure, including the code for the
restart and interrupt vector locations. The restart vector is at program
memory address OxOOOO. The interrupt vector locations are given in
Chapter 3 and in Appendix D.

10-5

!ll!~~~: .:i~iill!! ::t::::l: W::tl't! :i::::t: ~m:::::'~l.J;· .: .. :~'.:~.:~.:~.:! :! :~.:~ :~.:l.::;::~:: ••• :~.:~ .••• :;:.::. ;: •• :1 ... :: :1:.:~:;::· ... :'.:~ ..• :~ .. :1.:.::· .. ::.:~:: .. ::.::.· .. :~:~ .. :::: ::: ... :l .••• :~.:l .••• :~:::::;:: ... :; •• :l ... :l; .. ::.:.:l:~~ .: .. :: ... :: ... :: ... :~.::.:::: .. :::~ :~.::.' :~ .. :~. :;:: :~ .. :~ ... :!.:;:::::'.:::~ .• :;.::.: •.. : •••• ::: .•• :1 ... :1 .. :: .. ::::.·:: .. ::.::.·.:1:~ .. ::.: ... !m 'trl :if;;;;;;;: ~!~! !~!~ m! :!t::,,}: m~::;!l~l

ADSP-2101
ADSP-2111

ADSP-2105 ADSP-2171
ADSP-21 msp58 ADSP-2115

OxOOOO OxOOOO OxOOOO OxOOOO
INTERNAL INTERNAL RAM

RAM 1K

2K Loaded From
External

Loaded From Boot Memory Ox03FF
External Ox0400

Boot Memory EXTERNAL
Ox07FF 14K
Ox0800 EXTERNAL

14K Ox07FF
Ox0800

Ox37FF

INTERNAL RAM Ox3800

EXTERNAL 1K
Ox37FF EXTERNAL

14K Ox3800 14K
Ox3BFF

INTERNAL Ox3COO
RAM

2K

Ox3FFF Ox3FFF Ox3FFF Ox3FFF

MMAP=O MMAP=1 MMAP=O MMAP=1

No Booting No Booting

Figure 10.4 Program Memory Maps (2K internal RAM) Figure 10.5 Program Memory Maps (1 K internal RA~

10-6

Internal program memory RAM is fast enough to supply an instruction
and data in the same cycle, eliminating the need for cache memory.
Consequently, if the processor is operating entirely from on-chip memory,
it can fetch two operands and the next instruction on every cycle. It can
also fetch anyone of these three from external memory with no
performance penalty.

10.2.3 ROM Program Memory Maps
The ADSP-2172 and ADSP-21msp59 processors contain mask­
programmable ROM on-chip. The program memory maps for these
processors are shown in Figures 10.6 and 10.7. The ADSP-2172 contains 8K
of ROM and the ADSP-21msp59 contains 4K.

On the ADSP-2172 and ADSP-21msp59, the ROM is enabled by setting the
ROMENABLE bit in the Data Memory Wait State control register (at
address DM[Ox3FFED. When the ROMENABLE bit is set to I, addressing
program memory in the ROM range will access the on-chip ROM. When
ROMENABLE is set to 0, addressing program memory in this range will
access external program memory. The ROMENABLE bit is initialized to 0
after reset unless MMAP and BMODE=l.

Memory

2K Internal RAM
Booted

8K Internal ROM
(ROM ENABLE = 1)

or

8K External
(ROM ENABLE = 0)

6K External

MMAP=O
BMODE = 0 or 1

0000

07FF
0800

27FF
2800

3FFF

2K External

8K Internal ROM
(ROMENABLE = 1)

or

8K External
(ROMENABLE = 0)

4K External

2K Internal RAM

MMAP = 1
BMODE=O

Figure 10.6 ADSp·2172 Program Memory Map

0000 0000
INTERNAL INTERNAL

RAM RAM
LOADED FROM LOADED FROM

EXTERNAL EXTERNAL
BOOT BOOT

MEMORY MEMORY

07FF 07FF

INTERNAL
0800 0800

MASK
PROGRAMMED

ROM

17FF
1800

EXTERNAL

EXTERNAL

3FFF 3FFF

ROM ENABLE=1 ROM ENABLE=O
MMAP=O MMAP=O

Figure 10.7 ADSP·21msp59 Program Memory Map

0000

07FF
0800

27FF
2800

37FF
3800

3FFF

EXTERNAL

INTERNAL
MASK

2K Internal RAM
Not Booted

8K Internal ROM
(ROMENABLE Defaults

to 1 During RESET)

6K External

MMAP = 1
BMODE= 1

0000

07FF
0800

PROGRAMMED
ROM

17FF

EXTERNAL 1800

37FF

INTERNAL 3800
RAM NOT
LOADED

3FFF

ROM ENABLE=1
MMAP=1

0000

07FF
0800

27FF
2800

3FFF

EXTERNAL

INTERNAL
RAM

NOT
LOADED

ROM ENABLE=O
MMAP=1

10-7

0000

37FF
3800

3FFF

10-8

When the MMAP and BMODE pins both are set to I, the ADSP-2172 (or
ADSP-21msp59) will operate in standalone ROM execution mode. When
MMAP=l and BMODE=l, the ROM is automatically enabled and
execution begins from program memory location Ox0800 at the start of
ROM. This lets an embedded design operate without external memory
components. To operate in this mode, the ROM-coded program must copy
an interrupt vector table to the appropriate locations in program memory
RAM. In this mode, the ROMENABLE bit defaults to 1 during reset.
Table 10.1 summarizes the booting and startup execution modes for the
ADSP-2172 and ADSP-21msp59.

!I BMOD E = 0

MMAP = 0 Boot from EPROM,
then execution starts
at internal RAM
location OxOOOO

MMAP = 1 No booting, execution
starts at external memory
location OxOOOO

BMODE=l

Boot from HIP, then
execution starts at
internal RAM location
OxOOOO

Standalone mode,
execution starts at
internal ROM location
Ox0800

Table 10.1 Booting Mode for ADSP·2172, ADSp·21 msp59

The ADSP-216x processors are memory-variant versions of the ADSP-2101
and ADSP-2103 that contain factory-programmed on-chip ROM program
memory. The ADSP-2161, ADSP-2163, and ADSP-2165 are 5.0V supply
processors based on the ADSP-2101. The ADSP-2162, ADSP-2164, and
ADSP-2166 are 3.3V supply processors based on the ADSP-2103. These
devices offer different amounts of on-chip memory for program and data
storage, as shown in Table 10.2.

Feature 2161 2162 2163 2164 2165 2166
Data Memory (RAM) V2K V2K V2K V2K 4K 4K
Program Memory (ROM) 8K 8K 4K 4K 12K 12K
Program Memory (RAM) 1K 1K

Table 10.2 ADSP·216x ROM·Programmed Processors

Figures 10.8, 10.9, and 10.10 show the program memory maps for the
ADSP-2161/62, ADSP-2163/64, and ADSP-2165/66, respectively.

OxOOOO 2K OxOOOO

8K EXTERNAL Ox07FF
INTERNAL Ox0800

ROM 6K
INTERNAL

ROM

Ox1FFO Ox1FFO

Ox1FFF Ox1FFF
Ox2000 Ox2000

6K
8K EXTERNAL

EXTERNAL
Ox37FF

2K Ox3800
INTERNAL

Ox3FFF ROM Ox3FFF
MMAP=O MMAP=1

Figure 10.8 ADSP·2161/62 Program Memory Maps

12K x 24
INTERNAL

ROM

1Kx24 RAM

RESERVED

2Kx24
EXTERNAL

MMAP=O

0000

2FFF
3000

33FF
3400

37FF
3800

3FFF

2K
EXTERNAL

10KX 24
INTERNAL

ROM

1Kx24RAM

RESERVED

2Kx24
INTERNAL

ROM

MMAP=1

0000

07FF
0800

2FFF
3000

33FF
3400

37FF
3800

3FFF

Figure 10.10 ADSP·216S/66 Program Memory Maps

OxOOOO OxOOOO
2K

4K EXTERNAL
INTERNAL Ox07FF

ROM 2K Ox0800
INTERNAL

ROM
OxOFFO OxOFFO

OxOFFF OxOFFF
Ox1000 Ox1000

10K
12K EXTERNAL

EXTERNAL

Ox37FF

2K Ox3800

INTERNAL

Ox3FFF ROM Ox3FFF
MMAP=O MMAP=1

Figure 10.9 ADSP·2163/64 Program Memory Maps

10-9

10-10

:1111~~ll.l11111 ;::;::::::~~::. ~~~?::~~r::t::::~:::::t:, i~i~:::::·:t,:i~i; .. :! .. :!.; .. :: .. :! .. ~.: .. : .. :; .. :~ ... :r .. :l.::;::: .. :: •• :l .. :; ... :~ .. :~. ;: .. :l ... :l.· .. :! .. :!·:·:: .. :;.:~.· .. :~ .. :~ .. ,;:~.:;.:~.~.·::: .. :~:~.:l.: .. :~ .• ·.:l .•• :~ •• :; .•• :~:::::;:·:::, •• :l.· .. :! .. :!.· .. ::~: .: ... :: .. ::: .. : .. :~:.:.:~:~.:~':;.' ... :~: ... :: ... :~ .. :' .. : :;: .. :: ... :~ .. :!.:;::::::.::.:; .. :;.::.:: ... ::.:l .•• :~.· •• :l •• ::.:~ .• ::.:~:: •. :~.· •• :l:~ .• :::: :1 :~~lf :~~~~ :i~t;;;~;::: ~~~~ ~m ~~~~ ·t~:::;::r ~~~~ :::j:!~r

10.3 DATA MEMORY INTERFACE
This section describes the data memory interface of all ADSP-21xx
processors except the ADSP-2181.

The processors supply a 14-bit address on the data memory address bus
(DMA) which is multiplexed off-chip. Data is transferred across the upper
16 bits of the 24-bit memory data bus, which is also multiplexed off-chip.
A data memory select pin, DNIS, indicates that the address bus is being
driven with a data memory address and memory can be selected.

Two control lines indicate the direction of the transfer. Memory read (RD)
is active low signaling a read and memory write (WR) is active low for a
write operation. Typically, you would connect DNIS to CE (Chip Enable),
RD to Ob(Output Enable) and WR to WE (Write Enable) of your memory.

10.3.1 External Data Memory Read/Write
Internal data memory accesses are transparent to the external memory
interface. Only off-chip accesses drive the memory interface. Off-chip data
memory accesses follow the same sequence as off-chip program memory
accesses, namely:

1. The processor places the address on the DMA bus, which is
multiplexed off-chip, and DNIS is asserted.

2. RD or WR is asserted.

3. Within a specified time, data is placed on the data bus, multiplexed to
the internal DMD bus.

4. The data is read or written and RD (or WR) is deasserted.

5. DNIS is deasserted.

The basic read and write cycles are illustrated in Figure 10.2.

For a dual off-chip data fetch, the data from program memory is read first,
then the data memory data.

'III

10.3.2 Data Memory Maps
The processors can address a total of 16K words of 16-bit data memory.
On-chip data memory is 1K in size and starts at address Ox3800 on the
ADSP-2101 and ADSP-2111. On-chip data memory is 512 locations in size
on the ADSP-2105 and ADSP-2115, again starting at address Ox3800. On­
chip data memory is 2K in size on the ADSP-2171 and ADSP-21msp58/59,
beginning at address Ox3000.

The processors' control and status registers are mapped into the top 1K of
data memory, addresses Ox3COO-Ox3FFF. The rest of the top 1K is
reserved. External data memory is available for additional data storage.
Figures 10.11,10.12, and 10.13 show the data memory maps for each
ADSP-21xx processor.

1K External
DWAITO

OxOOOO

1-----------1 Ox0400

1K External
DWAIT1

1-----------1 Ox0800

10K External
DWAIT2

1----------IOx3000
1K External

DWAIT3
1----------IOx3400

1K External
DWAIT4

......................................

···•·.·• •. M~mprYjM~pp~········
.. ·PP",ttpIR~g~~~r.

~a~$erved _______ Ox3FFF

EXTERNAL
RAM

INTERNAL
RAM

~
Figure 10.11 Data Memory Map (ADSP·21 01, ADSP·2111, ADSP·21 OS, ADSP·2115, ADSP·2161/62163/64)

10 -11

10 -12

As shown in Figure 10.11, the ADSP-2101, ADSP-2111, ADSP-2105,
ADSP-2115, and ADSP-2161/62/63/64 processors have five external wait
state zones (DWAITO-DWAIT4). Each of the five zones of external data
memory has its own programmable number of wait states. Wait states are
extra cycles that the processor either waits before latching data (on a read)
or drives the data (on a write). This means that one zone of memory could
be used for working with memory-mapped peripherals of one speed
while another zone was used with faster or slower peripherals. Similarly,
slower and faster memories can be used for different purposes, as long as
they are located in different zones of the data memory map.

As shown in Figures 10.12 and 10.13, the ADSP-2171, ADSP-21msp58/59,
and ADSP-2165/66 processors each have three wait state zones for
external data memory.

12K External

2K Internal
Data RAM

1K Reserved

Memory Mapped
Registers/Reserved

Data Memory

0000

2FFF
3000

37FF
3800

3BFF
3COO

3FFF

DWAITO
(1 K External)

DWAIT1
(1 K External)

DWAIT2
(10K External)

No Wait States

Wait States

Figure 10.12 Data Memory Map (ADSP·2171, ADSP·21 msp58/59)

0000

03FF
0400

07FF
0800

2FFF
3000

3FFF

OxOOOO
1K External

DWAITO
Ox0400

1K External
DWAIT1

EX TERNAL Ox0800

RAM

6K External
DWAIT2

H
Ox2000

H

4K x 16 Internal

IN TERNAL
RAM

Ox3000

4Kx 16
Memory Mapped

Registers
and Reserved ! Ox3FFF

Figure 10.13 Data Memory Map (ADSP-2165/66)

The Data Memory Waitstate control register has a separate field for each zone
of external memory. Each 3-bit field specifies the number (0-7) of wait states
for the corresponding zone of memory; all zones default to 7 wait states after
RESET. Figure 10.14 shows this control register for the ADSP-2101, ADSP-2111,
ADSP-2105, ADSP-2115, and ADSP-2161/62/63/64 processors. Figure 10.15
shows the register for the ADSP-2171/72 and ADSP-21msp58/59 processors;
on the ADSP-2172 and ADSP-21msp59, one bit in this register is used to enable
or disable the on-chip ROM.

10-13

10-14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 132211 : 1 : 1 11 : 1 : 1 11 : 1 : 1 11 : 1 : 1 I DM(0x3FFE)

~~~~ 
DWAIT4 DWAIT3 DWAIT2 DWAIT1 DWAITP 

( 

Figure 10.14 Data Memory Waitstate Control Register (ADSP·21 01, ADSP·2111, 
ADSP·21 05, ADSP·2115, ADSP·2161/62/63/64) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FFE) 

L DWAIT2 DWAIT1 

ROM Enable (ADSP·2172, ADSp·21 msp59 only) 

DWAITO 

1=enable 
O=disable 

Figure 10.15 Data Memory Waitstate Control Register (ADSP·2171/72, ADSP·21msp58/59) 

10.3.3 Memory-Mapped Peripherals 
Peripherals requiring parallel communications and other types of devices 
can be mapped into external data memory. Communication takes the form 
of reading and writing the memory locations associated with the device. 
Some AID and D I A converters require this type of interface. The .PORT 
directives in the System Builder and Assembler modules of the ADSP-2100 
Family Development Software support this mapping. 

Communication with a memory-mapped device consists simply of reading 
and writing the appropriate locations. By matching the access times of the 
external devices to the wait states specified for their zone of data memory, 
you can easily interface a variety of devices. 

The 16 MSBs of the external data bus (D23-8) are connected to the 16 LSBs of 
the internal DMD bus, so D23-8 should be used for 16-bit peripherals. 



fv1emory Interface 1 0 

10.4 BOOT MEMORY INTERFACE 
This section describes the boot memory interface of all ADSP-21xx 
processors except the ADSP-2181. 

The entire internal program memory, or any portion of it, can be loaded 
from an external source using a boot sequence. To interface with 
inexpensive EPROM, the processor loads instructions one byte at a time. 

Automatic booting at reset depends on the state of the MMAP pin at the 
time of processor reset. The boot sequence occurs if the MMAP pin is O. 
The boot sequence can also be initiated after reset by software. 

The ADSP-2111, ADSP-2171, and ADSP-21msp5x processors, which 
include a Host Interface Port (HIP), can boot using either the memory 
interface or the HIP (from a host computer). The state of the BMODE pin 
determines which method is used: the memory interface if BMODE=O, or 
the HIP if BMODE= 1. Booting through the HIP is described in Chapter 7. 

BR is recognized during the booting sequence. The bus is granted after 
completion of loading the current byte. 

The ADSP-216x contain on-chip program memory ROM; on these devices, 
no booting occurs. 

10.4.1 Boot Pages 
Boot memory is organized into eight pages, each of which can be 8K bytes 
long. Every fourth byte of a page is an "empty" byte, except the first one, 
which contains the page length. Each set of three bytes between successive 
empty bytes contains an instruction. The page length is read first and then 
bytes are loaded from the top of the page downwards. This results in 
shorter booting times for shorter pages. 

The length of the boot page is given as: 

page length = (number of 24-bit PM words I 8) - 1 

That is, a page length of 0 causes the boot address generator to generate 
byte addresses for 8 words which reside in 32 sequential ROM locations. 

The PROM Splitter utility, part of the ADSP-2100 Family Development 
Software tools, calculates the proper page length for your program and 
orders the bytes of your program as shown in Figure 10.16 (on the next 
page). 

10-15 



10 -16 

lIt Jllll.:f::::'l:, !l!!:::'tf'!ll: "'f:':~!'" !!l!:;::' :~t:ir l.:.:l ... :j.:.:l ... :~.:.::. ~.:.:~ ... :j.:.::;.:.:::::~:.'.: .• ' .. ' •. ::.:"'.: ... :' :·:.l.:.~ ••• ::~ •• : •• ~ ••• ::::·:: .••• :.: •• :.: •• :~: ••• :.:.: ••• ':.:: . .'.:::: •.. :.:;.~.::.:.:'::'.':' ::.; .•• :.~ •• : •. ~ ••• :.~ •• : .. ::::::.~ .. ::.~ ••• :.r':':~ .. ,:j.:.:~~ :::.:: .. :'.': ... :':':':;.::.'::':::~::~":'.:'.:': .. ::.: ... :'. :: .. ::.'.: .. ' ... :} .. : .. '.:::::::':.': .... :.;.:::.; ... ::.: .. :.:::.: ... :.:.: .... :~:: .. :.::::.:.:j.:.: .. :.:, .. '::" ~l~l tf~~~l t~~::::;~~:: l~l~ ~l~l l~~~ t::::Jl!! ~~~~::!It~~r 

Address 

0000 

0001 

0002 

0003 

0004 

/' 

001B 

001C 

0010 

001E 

001F 

Word 0: USB 

Word 0: MSB 

Word 0: LSB 

Page Length 

Word 1: USB 

Not Used 

Word 7: USB 

Word 7: MSB 

Word 7: LSB 

Not Used 

Figure 10.16 EPROM Contents 

/' 

10.4.2 Powerup Boot & Software Reboot 
Upon a hardware or software reset, the boot sequence occurs if the MMAP 
pin is a logical O. The boot sequence on reset always loads boot page O. 
After reset, boot loading can occur under program control from anyone of 
up to 8 different boot pages. The boot page select field (BP AGE) in the 
memory-mapped System Control Register (see Figure 10.17) specifies 
which boot page is to be loaded. To boot from a specific boot page, set 
BP AGE to the desired page number and, in the same memory-mapped 
register, set the boot force bit (BFORCE). When the boot force bit is set, the 
software-forced booting sequence starts. Except for the page selection and 
(possibly) the number of wait states, there is no difference between a 
software-forced boot sequence and a reset boot sequence. 

Tables 9.2-9.7 in the System Interface chapter show the state of the 
processor control registers after a reset and after a software reboot. 
Essentially, the processor's control state is saved, but stacks are cleared 
and execution starts at the restart vector, at program memory location 
OxOOOO. 



fw1etnory interface 10 

System Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DM(Ox3FFF) 

BFORCE J 
(Boot Force Bit) BWAIT (Boot Wait States) 

Default=3 for ADSP-21 xx 
Default=7 for ADSP-2171, ADSP-21msp58 

BPAGE (Boot Page Select) 
Default = 0 

Figure 10.17 Boot Control Fields In System Control Register 

10.4.3 Boot Memory Access 
The processor can boot its internal memory from a single byte-wide 
CMOS EPROM, such as the 27C64 and 27CS12. A low-cost, commodity­
grade EPROM with an industry-standard access time can be used. The 
number of wait states for the boot memory access is selected in the BW AIT 
field of the System Control Register (see Figure 10.17). This field can be set 
to any value from 0 to 7 in order to generate 0 to 7 wait states. The default 
value at reset is 3 wait states on the ADSP-2101, ADSP-210S, ADSP-2111, 
and ADSP-211S. BWAIT defaults to 7 wait states on the ADSP-2171 and 
ADSP-21mspS8. 

Timing of the boot memory access is identical to that of external program 
memory or external data memory accesses, except that the active strobe is 
BNIS rather than ms or DNIS. To address eight pages of 8K bytes each, 16 
bits are needed. The least significant 14 bits are output on the 14-bit 
address bus, and the most significant 2 bits are output on the 2 MSBs of 
the data bus during a boot memory access. Data is read from the middle 
eight bits of the data bus. 

10.4.4 Boot Loading Sequence 
The order in which the processor loads data into its internal memory 
during a boot operation is unimportant in most applications. The boot 
loading sequence is explained in this section for those instances in which 
the order is relevant, for instance when a latch is providing data rather 
than an EPROM. 

10-17 



10 -18 

lllft illlll::t:::::;:; ~lf:::l~l:l:ll::: ;::t:::::::: l~r:: ::l~l;.f :.; .. ::l .. : .. J ... :::::.::: ... ::: ... ::: .. : .. : ... :~:.:.::; ... ,/:::: ... :?: .. : ..... ::.: .. : ... :~ .. :.~ .. ::.::~.:; ... :} ... ::: .. : : .... :t .. ::.: .. ::.:.:::.: .. :.:.:.:.:; .. ::.:·: .. ::.:~·.:~ ... :., : .. : .. : ... :~: .. : .. :: ... :l::'::.:f:·; ... ::l .. : .. :~ ... :;:: ... :;: ... :': .. :"': ... ::.:.'::.:':.: .. :~:::: ... :; .. :~.: ... :: ... :: ... :: ..... :; ... :~.: .. :: .. ;:::::.:::.:.:: .. ::::: .... :: .. : .... :;: .. ::.:.::' .. ::.;:.: ... ::.:: ... ::.::.:.: .. ::~.::~.:::::: 
l~l~ :t~~ l~l~ 'lt~~~~;;~:: :l~l: I! :l~l: :t,::)W l~l~ ::;!!~f' 

To execute the boot operation, the boot address generator generates the 
appropriate byte addresses and loads internal program memory with the 
contents of the EPROM. The internal program memory is loaded 
beginning with the high addresses. For example, assume that eight 24-bit 
words are loaded into the processor during the booting process. The first 
word written into program memory is written to address Ox0007. The last 
word loaded is written to internal program memory address OxOOOO. 

The boot address is made up of several values, as shown in Figures 10.18 
and 10.19: the 3-bit page number (from BPAGE in the system control 
register); the 8-bit page length, which is always read first (from the fourth 
byte of the page); a 3-bit word counter value; and a 2-bit code whose value 
determines which byte of the word is being addressed. 

The last 24-bit word (instruction or data value) is loaded into the 
processor first. The byte loading order is: upper byte, lower byte, middle 
byte. The word pointer is then decremented. This addresses the second-to­
last 24-bit word in the EPROM. 

For example, to boot from page 0 the shortest allowable page (with eight 
24-bit words corresponding to a page length of 0), the following addresses 
would be generated (see Figure 10.20): 

1. The first address generated is Ox0003 which reads the page length. 

2. The next address generated in this example is address Ox001C. This is 
the upper byte of the last word. 

3. The byte code is then updated to specify the lower byte (the final two 
bits are 10) and the address generated is Ox001E. 

4. The byte address changes again, this time to address the middle byte 
(the two bit code is 01) and the address generated is Ox001D. 

5. Once all three bytes are loaded, the word counter is decremented. The 
three succeeding byte addresses generated are Ox0018, Ox001A, and 
Ox0019. 

6. The word counter is decremented again and the next set of byte 
addresses generated is Ox0014, Ox0016, and Ox0015. This process 
continues until word 0 is loaded. 

The contents of the EPROM, the byte addresses, and the order of 
addresses generated is shown in Figure 10.20. 



::::: ;:l::;:; ::::: ::;::::::, ~::, ~~~ t::~:~:: ::t:: :: ~::::: ::~:::,~~ ~~:::;:; ~~~: ,:~ ~;: ..••. :.:::: .. : ... ;:.:: .. ~:. .: •.. :"~~:.: .. :"~::";:::: :;'." .. :"~ ::.: ... :~ .• ,,:. :'::.,~:; .. :, .. ;::: .. : .. t~::" ... :: ,:",,:,:,,: ... :,,::,,~.:,,: ': .. ' ~.:'.::":":.:'.~.:"::":::"". ,,:,,~:: .. l: •.. ::: .• l:,,:"~:::;: .: :.;:,,:: •• l:: •• :,.~,: .• :.i:.:~~ .:'.::.,.:= ,,:::.:,,; ':.,': •• :: •. :: .• :::.", •. : •• ::: •. ~ •. : •• :::.,: ":':":.' : •. :·,: •• l ... :~::.:;.:::;.:::.::::~:'.:. ., .. : •. :.: •• : .• : •. :.·: .. :.:.:·:~.: .• :.: .. :: .. :::: .•• t .... :: .. :~: !1 'll !;!;! :t;;;;;~~:: I I!~!! t!::::::f:~!~! ]!l~r : 

15 14 13 12 

Byte Address 
I 

Word Pointer 
I 

11 10 9 8 7 
: { 

8-Bit Page Length 
~ : : ~ 

Figure 10.18 Boot Memory Address 

15 14 13 12 
~ 

Page # 
: ~ 

{ 

Page # 
~ 

~ 

Page # 
: ~ 

Page # 

Page # 
l 

:; 

Page # 
: :! 

11 10 9 8 7 
~ 

8-Bit Page Length 
:: .: 

~ 

~-Bit rage Length 

~ 

8-Bit Page Length 
~ 

:: ~ 

8-Bit Page Length 
: : ! 

1: 

8-Bit Page Length 
:; : 

Figure 10.19 Boot Memory Addresses 

6 

5 4 3 2 1 0 

5 

~ 
2-bit byte code: USB = 00 

MSB = 01 
LSB = 10 

4 3 2 1 0 

~ 

1 1 1 1 0 1st Word 

; 
1 1 101 

~ 
1 1 0 0 0 

1 1 0 1 0 2nd Word 

1 1 0 0 1 

:~ ~ 

1 0 1 0 0 

etc. 

10-19 



10-20 

I1l1\1~: if:111l! ,::?:::::,~;~~::t:::=;t!, .:::?:;::!:: :;~;~;;::: ':~;~,:r : ... ::: .. : .. ~: ... :~: .. :~.:: ... :~ ... :i .• : .. ; ..• :~ .. : .. l ... :~i:::; ••• :~ •• : •• ~ ••. :;.::.: .. :: ·:~ .. :;·.:;.;· ••• :t ... :i ... :~.:::' : .... :~.::.: .. :~ ... :~ .. :~.::.:~.::.:~ ... :: ... :;.:~:::: ' .. :~ .. ::': ... :; ... :~.:"~. :;:! :. : .• : •• r ... :~: .. : .. ~:.:':i:::~ .: .... :: .. : .. : ... :~ .. :::~_: .. :.:~:~.:I: .. : .. ~ ... :~ .. : .. ': .. : .: ..... ::.: .. ' .. :~ .. ,~:;:::;:::; .... :;.::: .. :.' :' .. :: .. :~.: .. ~ ... :;.: .. ;.::: .. :.::: .. : .. ::.':'.~.:;.'":' 
il~l! 1il;f ilil: it~~~;tilil :lil~ ill!l t~::::}~~: :lil~ :::1!11f " 

Address 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

/' 
0018 

0019 

001A 

0018 

001C 

0010 

"OOlE 

001F 

EPROM 

Word 0: USB 

Word 0: MSB 

Word 0: LSB 

Page Length 

Word 1: USB 

Word 1: MSB 

Word 1: LSB 

Not Used 

Word 6: USB 

Word 6: MSB 

Word 6: LSB 

Not Used 

Word 7: USB 

Word 7: MSB 

Word 7: LSB 

Not Used 

Order 
Addressed 

(bytes) 

'III 1st 

/' 
'III 5th 

'III 7th 

... 6th 

~2nd 

~4th 

~3rd 

Page#=O, Pagelength=O 

} 2nd word loaded 

} 1 st word loaded 

Figure 10.20 Example of Boot Loading Order (with Page#=O, Pagelength=O) 



Ifjft, ,{!j!f ::;;;::::i;;, ii}':t::::;t; .::;;:::::;;::. iiii:::;: :}. ,if f:: .. ~.:: .. ~: ... ~.l.: •. :.;.: .. : :.:.:"~':':~::";.:"~:::::~:.:'~.:':;::":.:" ·:~.: •• :.l.: .. ·.~::"~.:,,,:::,. ,: .. ;:.:;.:.:~ ... ::, ... '::,:::,,::,,::,,;:,,;:.,,;:,,::"': ;:: .. ;:: .. ·l:: •. ~:: .• :::::·:~.: .. ·.~.: •• ·.·l:: •. :l.: .. :~.;::~~ .:' .. :'::.:;.:.:; .. : .. ':: .. :: .. :: .. :: .. :: .. ;:: .. '~.:";:: .. '.:" .. :: .. ::.: .. ':.: .. ':::";.:::.::::::'~:.;.:;:::' ..... :: .... ;.:.:~.: .. ;.:.:::.:;: .. :: .. :: .. :.:;: ... ;: .. : .. :: ..... 

Itf!!i! iiI:::::;::: !~!l ~i~i I ti:::::ir I ::;!l!ji;: 

10.5 BUS REQUEST / GRANT 
This section describes the bus request and grant feature of all ADSP-21xx 
processors, including the ADSP-2181. 

The ADSP-21xx can relinquish control of its data and address buses to an 
external device. The external device requests the bus by asserting (low) the 
bus request signal, BR. BR is an asynchronous input. If the ADSP-21xx is not 
performing an external access, it responds to the active BR input in the 
following processor cycle by: 

• tristating the data and address buses and the XNIS, RO, WR output drivers, 
• asserting the bus grant (BG) signal, and 
• halting program execution (unless Go Mode is enabled). 

If Go Mode is enabled, the ADSP-21xx continues to execute instructions from 
its internal memory. It will not halt program execution until it encounters an 
instruction that requires an external access. (An "external access" may be 
either a memory device access or, on the ADSP-2181, a memory overlay 
access, BDMA access, or I/O space access.) 

If Go Mode is not enabled, the ADSP-21xx always halts before granting the 
bus. The processor's internal state is not affected by granting the bus, and the 
serial ports and host interface port (on the ADSP-2111, ADSP-2171, 
ADSP-21msp5x) remain active during a bus grant, whether or not the 
processor core halts. 

If the ADSP-21xx is performing an external access when the BR signal is 
asserted, it will not grant the buses until the cycle after the access completes. 
The sequence of events is illustrated in Figure 10.21. The entire instruction 
does not need to be completed when the bus is granted. If a single instruction 
requires two external accesses, the bus will be granted between the two 
accesses. The second access is performed after BR is removed. 

When the BR input is released, the ADSP-21xx releases the BG signal, 
reenables the output drivers and continues program execution from the point 
where it stopped. BG is always deasserted in the same cycle that the removal 
of BR is recognized. Refer to the data sheet for exact timing relationships. 

The bus request feature operates at all times, including when the processor is 
booting and when RESET is active. During RESET, BG is asserted in the same 
cycle that BR is recognized. During booting, the bus is granted after 
completion of loading of the current byte (including any wait states). Using 
bus request during booting is one way to bring the booting operation under 
control of a host computer. 

10-21 



10-22 

~lllll!~: ;~~~~~l~l. :::i:::~::::. !~f:: :~~ ~:;:::t: :::: i::; ::::::: ~ ~~!::::: :~~!~. J~:' ::.:t.:~.::.:~.::l.::.:· :~.:,;:::::.::,~::::~: ::: ::~.:'.~:::'.::,~:: ~: ':~:.~.:'.'.:~:'.:~:':':'.::': :: .. ::'.:::' .. ~.::~:"~.:.::.'~:::"~.:'.~.:.~:.::.:.,. .:::: ... :~.;:'.:~.:: :;:~ .::.~::. ":~:';::.:;.::~~: .:.':'::.:.::::'.:~'~:::.'.: ... ~.~:':;.:'.~ .. : .. :;.,;::. : .. :.'.:::'.:~::.:::.::::::::.::.:';:::::.' : .... ::·:~:.;:·.1.:·.:.:·.::.~::: •. ::·.·.~.:.1:· .::' .: .. , 

~~~[ 'tr I ::I;;;;~;~;: i~~~i ~i~i: i~i! :::L:::tr ~i~l ::;I!~t , 

The ADSP-2171 and ADSP-2181 processors have an additional feature, the
Bus Grant Hung (BGH) output, which lets them operate in a
multiprocessor system with a minimum number of wasted cycles. The
BGH pin asserts when the ADSP-21xx is ready to execute an instruction
but is stopped because the external bus is granted to another device. The
other device can release the bus by deasserting bus request. Once the bus
is released, the ADSP-21xx deasserts Be and BGH and executes the
external access. Figure 10.22 shows timing for the BGH signal.

CLKOUT

If no memory access Is In progress, BG Is I
asserted in the cycle after BR is recognized: ~

----~------iil t..,.....,7I/1r""1""'r1Z~~----\!~-
i 1 ..

1
---..... 1

~:~ x~ ______ ~------+I------~I) A~i------+-

BR

BG

If a memory access is in progress, BG is asserted in
the cycle after the access is completed:

IloIlM •
I I II Ii---------!i

~----!!~!!--: ----i!o

Figure 10.21 Bus Request (with and without external access)

::::: ~:~; l Ii.:,,::::::,::. ,~, ~:::': ~":::::,,,:: ::"::':"':::. ~'~';;::; ':l~ l: : f ~::'.::: .. :::~::. "~::"~::"~::"~::::::: ~::."~::"'::",::,,::: : i •... ~: ... ~:: .. l:: .. ~::::·: ':":::.':.' .. ':.' .. ':::.': .. ': .. :: .. ::::.: .. :: .. :.':;.:~:"'. :.:::;.'::";::"~::"~::::::: :. ~'~::'~::' .. ::::.1::~.::: ~ ~ :: .. :::': .. ::"'::"":"::"::"::::' ":::"';::'.:.':."'::"': .. ' ::.' .. : ... ':: .. ~::: ... ::::::':.': ... ':.':.:. : :: .. : .. : ... '::. ";:"':"::"::~':.::.".;.:";:.~.::
@~'~i{' [[lll t~;:::~~;:: lili i:l: I :lI,:J~~; l:l: ::;!!:i? ~

-..,,/

Figure 10.22 Bus Grant Hung (BGA) Timing (ADSP·2171, ADSP·2181 only)

10.6 ADSp·2181 MEMORY INTERFACES
The ADSP-2181 has the same modified Harvard architecture for internal
memory as the other processors of the ADSP-2100 family. In this
architecture, Data Memory stores data values and Program Memory
stores both instructions and data. The ADSP-2181 has as its full base
memory on-chip: 16K x 24-bit words of internal program memory RAM
and 16K x 16-bit words of internal data memory RAM.

There are four separate memory spaces: data memory, program memory,
byte memory, and I/O memory. To provide external access to these
memory spaces, the ADSP-2181 extends the internal address and data
buses off-chip and provides the PMS, UMS, mvIS, and IOMS select lines.
The PMS, UMS, mvIS, and IOMS signals indicate which memory space is
being accessed.

The composite memory space (and its OVIS select line) lets a single off­
chip memory be accessed as multiple memory spaces. The Composite
Memory Select register lets you define which memory spaces are selected
by the OVIS signal.

10-23

lllllt Jlllll ::j:;;:;::!::.!~t;t;:::::t:::j:;::;::~::: ~~~~~:::::;~~?: .:~~:: :.::i .. ::: .. :;.~ .. ::: ... :: .:.:~.:.::: .. :;: .. ::~ .. :t=::: .. :: :~.: .. ::~ .. :: ••. :~~.::.:.:;.:~ ... :i .. :~':f.:.·::: ::::.·· •• ::.· •• :t.:;.::;:~.:.; .. :.:;:;:::.:.:r:;,~: ; .. :t .. : .. :; .. :~.:.: .. :.~:.::::~:: .. :;~ .. : .. ;~ .. :{.::::~~: .: : ::: .. : :~.:::::::,:.,~.:.:; .. ;.::; .. :r .. :: .. ::.:~ ... :;.: .. :: ... :;:.::: .. ::::.:.: ... ::;.:::: .. : ::::.·.·.:: .. :t.:;.·:;:::::;.:::::;::.:·.:r:;,~:
i:i:: If' ::::: :~::t~:~~~:: :iiii :iiii :iii: :~::l::::JW ::i:: ::;!~~r'

Figure 10.23 shows the external memory buses and control signals in an
ADSP-2181 system. Two control lines determine the direction of external
memory transfers: RD is active low signaling a read and WR is active low
for a write operation. Typically, you would connect RD to OE"'(Output
Enable) and WR to WE (Write Enable) of your memory.

Internal memory accesses do not drive any external signals: PMS, DlVIS,
EMS, IONIS, RD, and WR remain high (deasserted), and the address and
data buses are tristated.

ADSP-2181

1\.1-----l~1 ClKIN
or

CRYSTAL M---I XTAl

SERIAL
DEVICE

DATA.z3_0 K=+~

BM'S 1-----1

BYTE
MEMORY

1/0 SPACE
(PERIPHERALS)

2048 Locations

IOMS t-----H--tH---.... I\,;::)

SERIAL
DEVICE

SYSTEM
INTERFACE

or
IlCONTROllER

PMSI-----I
O'MSI-----I

CMSt-----I

BR
BG

BGH

PWD
PWDACK

Figure 10.23 ADSP·2181 System Diagram

10-24

~-------~

OVERLAY
MEMORY

Two8K
PM Segments

Tw08K
OM Segments

Memory interface 1 0

Unlike other processors of the ADSP-2100 family, the ADSP-2181 supports
several additional memory interfacing features. These features include:

• External Overlay Memory in 8K segments: these segments can be
swapped for the upper 8K of internal program memory or lower 8K of
data memory.

• 110 Memory space: this memory space is for peripheral I/O, has 2K
(16-bit wide) locations, and has four user-assignable waitstate ranges.

• Byte Memory & Byte Memory DMA (BDMA): this memory space can
address up to 4M bytes. The byte memory interface supports booting
from and runtime access to inexpensive 8-bit memories. The DMA
feature lets you define the number of memory locations the DSP will
transfer to / from internal memory in the background while continuing
foreground processing.

• Internal Direct Memory Access (IDMA) Port: this port supports booting
from and runtime access to host systems (for example, PC Bus Interface
ASICs). The DMA feature of this port lets you define the number of
memory locations the DSP will transfer to/from internal memory in the
background while continuing foreground processing.

For complete information on the BDMA port, including booting, and IDMA
port, refer to the DMA Ports chapter of this manual.

The ADSP-2181 uses a half-instruction-rate clock input from which it
generates a full-instruction-rate internal clock. For example, from a
16.67 MHz clock input (CLKIN) the ADSP-2181 generates a 33.33 MHz
instruction rate clock. All timing diagrams for the processor use the full­
instruction-rate output clock (CLKOUT) as a reference.

All external memories may have automatic wait state generation associated
with them. The number of wait states-each equal to one instruction cycle­
is programmable.

10.6.1 ADSp·2181 Program Memory Interface
The ADSP-2181 processor addresses its 16K of internal program memory as
well as two 8K external program memory overlays. All program memory is
24 bits wide. Up to two accesses to internal program memory can be
completed per instruction cycle; this lets the DSP complete all operations in
a single cycle. The PW AIT field of the System Control Register (shown in
Figure 10.24) sets the number of waitstates for each access to program
memory overlays. PW AIT defaults (after reset) to seven.

10-25

iii~\i1: i~iii~ i:;::",:,llll,::t,;:=:t~: ':"l;:;::"~': l~lll;:::":lll, .:ll~' : ... :;1,.:,: ... :1

1
,.:,1 ... := ' .. :'.': .. :'.: .. ::" .. :;.: ... :(::: ... ::.::'.:: ... ::::": ... ,: ':~ .. ::::.:~ ... :::;: .. :~ ... :;::',' :,.,: .. :0 .. :;0: .. ;: ... ,:::'::.:.:.:.::::.::.:: .. :.::'.:'::':' ~ .. ::.: .. :'::::; ... :'.:~:;:: :~~ .. :,l ... :l .. :: .. :~.:::;~~ .: :: .. : .. :.: .. ::., .. ~:.::::.:.: .. :.:::.::::: .. :: ... ::,:',:,:: ::.:: :'::?:.::::.:::: ••. :.:'.::.: •..• ' , •.• ,' •• :~ ••• :;: •• :'::.'.:::.:.:.::::.: •• :: •• '.:: •• :'."':'

it :lll:l1' ~~~l:t~~;;;;~~~:~lll lllil :~lll :ll\:::,lr:t ::;!!~il

System Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OM (Ox3FFF)

SPORTO Enable ::::;::--1 I
1 =enabled.O=dl~

SPORT1 Enable

~
I

PWAIT
1 = enabled, 0 = disabled Program Memory Overlay Wait Stat4

SPORT1 Configure ______ --1

1 = serial port
o = FI, FO, IRQO, IRQ1, SCLK

10-26

Figure 10.24 PWAIT Field in System Control Register

The on-chip program memory and overlays can hold instructions and
data intermixed in any combination. The ADSP-21xx linker determines
where to place relocatable code and data segments. You may specify
absolute address placement for any module or data structure, including
the code for the restart and interrupt vector locations. The restart vector is
at program memory address OxOOOO.

The ADSP-2181's MMAP pin lets you select from two program memory
configurations. The MMAP pin also controls whether the ADSP-2181
boots after RESET is released. Figure 10.25 shows the MMAP options and
the resulting memory maps for program memory.

The program memory overlay select register (PMOVLA Y) lets you choose
a memory overlay to map from address PM(Ox2000) to address
PM(Ox3FFF). The memory mapped to this space and corresponding
PMOVLAY register values are shown in Figure 10.25. Table 10.3 shows
how PMOVLA Y relates to the addressing of memory locations (with
address line A13).

PMOVLAY Memory A13 A12:0

0 Internal

1 External overlay 1 0 13 LSBs of address between
Ox2000 and Ox3FFF

2 External overlay 2 1 13 LSBs of address between
Ox2000 and Ox3FFF

Table 10.3 PMOVLA Y and Program Memory Overlay Addressing

MMAP=O MMAP=l

p rogram M emory Add ress p rogram M emory
Ox3FFF

8K Internal
(PMOVLA Y = 0) 8K Internal

or (PMOVLA Y = 0)

External8K
(PMOVLA Y = 1 or 2)

Ox2000
OxlFFF

8K Internal 8K External

OxOOOO

Figure 10.25 ADSP·2181 Program Memory Map

The following example instructions demonstrate how to use the
PMOVLA Y register.

Add ress
Ox3FFF

Ox2000
OxlFFF

OxOOOO

PMOVLAY=DM(Ox1234)i {type 3 instruction, PMOVLAY is loaded }
{ with the contents of address DM(Ox1234)}

PMOVLAY=2i (type 7 instruction, PMOVLAY is loaded
{ with the value 2. }

PMOVLAY=AXOi {PMOVLAY is loaded from AXO register.}

AXO=PMOVLAYi {AXO is loaded from PMOVLAY register.}

If you are using a system design that sets MMAP=l, note that the first 8K is
used to support a single segment of external memory. This allows an
external ROM-based system to operate properly. In this mode, the external
program memory address always has A13 set to 0 and 8K of internal PM is
available. Set PMOVLAY=O and MMAP=l. This mode is available on other
ADSP-2100 family processors.

10-27

10-28

I~t ,:fI~: :'!:;;::::l:;.llll::;t:;;:::lt .,;!::;:;::l:::. !li~!:::n!l!: .:J i,:,:i •. :~.: .. :::::!.: .. : :,:::~::':':":;:::~':.,:::::::.: .. :;::!.:.:'.~::.:.'. :'~.::.~::~.: •• :.:~.~,: •• :.'.':: .:.;:·.:.:1::·.;.!·.;:: .• :;::.·:;::.:.:.~.:::·.·;:.: ~:::':::~::':.::.~":. :::: ~:~::·.~.:.:i::·.:.:;.~~~ ::.'::'.':"::"::~.:'.: .. :;:'~,.~,.~:": •• :::.::: .• :~: :: .. ::"~:::'::,'::.':.!;::::::.:'.:.:;.:' ::'!, ",'::',:.:.:~ .• :':'!.:.;::":;::":;:;".:';.:'.:".::,,:

iiiii ';iiJ' iiiii t!~;;;~~~::: mi ii!i! i!i!i :;i~:::)r iiii: ::;)1jf

Figure 10.26 shows a memory design that provides full external program
and data memory overlays for an ADSP-2181 processor, assuming that
MMAP=O. The important points to note about this design are:

• Three 32K x 8-bit SRAMs are required for full external program and
data memory overlays; glue logic is not required.

• Four control lines are required for read (RD), write (WR), chip select
(CMS), and data/program memory select (PM5 or OMS).

• Composite Memory Select (CMSSEL) is configured to assert the CMS
control line when Program Memory Select (PNIS) or Data Memory
Select (OMS) are asserted.

• The order of overlays stored in this design (from lowest address to
highest) is PM Overlay 1, PM Overlay 2, DM Overlay 1, and DM
Overlay 2. Address line 13 (AI3) of the ADSP-2181 selects between
overlay 1 or 2. Figure 10.27 shows a memory map of this design.

AOOR 0 -13 DATA 0 - 7 AOOR 0 _ 13 DATA 8 - 15 ADOR 0 _ 13 DATA 16 - 23
j ~ ~

, ,

AO-13 00-7

32Kx 8 BIT
SRAM

, I

AO -13 00-7

32Kx 8 BIT
SRAM

cs OE WE A14
~ ~ ~ I

AO -13 DO-7

32Kx 8 BIT
SRAM

cs OE WE A14
~ ~ j I

Figure 10.26 Example Program and Data Memory Overlay Design

Memory Interface 1 0

OM Overlay 2 A13 = 1

PMS=1

OM Overlay 1 A13 = 0

PM Overlay 2 A13 = 1

PM Overlay 1 A13=O

Figure 10.27 Memory Overlay Addressing For Example Design

There are some restrictions on using program memory overlays:

• The ADSP-2181's program sequencer does not consider the value in the
PMOVLA Y register. Switching pages during operations that are sensitive to
the current PMOVLA Y register value can result in program execution errors.
For example, if your program is performing a loop operation on one of the
external overlays and the program changes to another external or internal
overlay, an incorrect loop operation could occur.

• The contents of the PMOVLA Y register are not automatically saved and
restored on the processors status stack when the proce~sor responds to an
interrupt. If your program uses overlays, you must save and restore the
contents of PMOVLA Y as part of your interrupt service routine.

10-29

10.6.2 ADSp·2181 Data Memory Interface
The ADSP-2181 addresses 16K x 16-bit wide internal data memory and
two 8K x 16-bit wide external data memory overlays. All accesses to
internal data memory are completed in a single processor instruction
cycle. The DW AIT field of the Waitstate Control Register (shown in Figure
10.28) sets the number of waitstates for each access to data memory
overlays. Figure 10.29 shows the data memory map of the ADSP-2181.

The processor's memory-mapped control! status registers are mapped
into the top locations of internal data memory, addresses Ox3FEO-Ox3FFF.
Most of the ADSP-2181's control registers correspond to those found on
other ADSP-21xx processors. Note that the ADSP-2181's System Control
Register does not have the boot memory control fields found on other
ADSP-21xx processors. Also note that the Waitstate Control Register
includes four fields for the ADSP-2181's I/O memory space.

Wait State Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

DM(Ox3FFE:

DWAIT IOWAIT3 IOWAIT2 IOWAIT1 IOWAITO

Figure 10.28 ADSP·2181 Wait State Control Register

D M ata emory Add ress

32 Memory-Mapped Ox3FFF

Control Registers Ox3FEO
Ox3FDF

Internal
8160 words

Ox2000
Ox1FFF

8K Internal
(DMOVLAY=O)

or
External8K

(DMOVLAY=1,2)
OxOOOO

1 0 - 30 Figure 10.29 ADSP·2181 Data Memory Map

~Aemory Interface 1 0

The Data Memory overlay select (DMOVLA Y) register lets you choose a
memory overlay to map from address DM(OxOOOO) to address DM(OxlFFF).
The DMOVLA Y register is unique to the ADSP-2181. The memory mapped
to this space and corresponding DMOVLA Y contents are shown in Figure
10.29. Table 10.4 shows how DMOVLAY relates to memory addressing
(address line A13).

DMOVLAY Memory A13 A12:0 -,
0 Internal
1 External overlay 1 0 13 LSBs of address between

OxOOOO and Ox1FFF
2 External overlay 2 1 13 LSBs of address between

OxOOOO and Ox1FFF

Table 10.4 DMOVLA Y and Data Memory Overlay Addressing

The following example instructions demonstrate how to use the DMOVLA Y
register:

DMOVLAY=DM(Ox1234)i {type 3 instruction, DMOVLAY is loaded
{ with the contents of address DM(Ox1234)}

DMOVLAY=2i {type 7 instruction, DMOVLAY is loaded}
{ with the value 2. }

DMOVLAY=AXOi {DMOVLAY is loaded from AXO register.}

AXO=DMOVLAYi {AXO is loaded from DMOVLAY register.}

For an example memory design that provides full external program and
data memory overlays for an ADSP-2181 processor, see the previous section
"Program Memory Interface."

Two control lines indicate the direction of external transfers. Memory read
(RD) is active low signaling a read and memory write (WR) is active low for
a writ~eration. Typically, you would connect DMS to CE (Chip Enable),
RD to OE (Output Enable) and WR to WE (Write Enable) of your memory.

10-31

':;:1111 !111:::::IIII:

10-32

l~l~:1l~: :~~1I~::~i::::::~:2. :~~f:tt;t:: :::~i::::;:i:~: ~~i/:: ::i~i: :~J ... :~ .. :~ :~ ... :~ .. :;.: ... :~:.:1 ••• :~ •.• :~ •• ::.;;:::; ••• :; •• :~ .••• :;:.:~ ·:· •• :: •• :l :~ .. :~.; ... :t:::· : :; .. :~ .. ·.:i .. :~ .. :~ .. ::.::.:: .. :: .. :~.:~.:~ •.. : :~ ... :~ ..• :; ... :;::;:: :· ..• :l .. :~.~ .. :~ :~~: ... :: ... :: ... ::.· .. :i.:: .. ::.::.:::~ .. :~ :~.::: ... :; :: :~ .. :~ ... :~.::.:::::;:: .. :;.:;:: : ... : :~ .. :1 .. :; .. :1.·.:: .. ::.::.::: .. ::.:: ... :;.::·::::

1!1! tt 1m: ::!t;}~;: ~1!1! !!!!! !!!!! :It::/!t :!11 J!1f

10.6.3 ADSp·2181 Byte Memory Interface
The ADSP-2181's byte memory space is 8 bits wide and can address up to
4M bytes of program code or data. This memory space takes the place of
the boot memory space found on other ADSP-2100 family processors.
Unlike boot memory space, byte memory has read/write access through
the ADSP-2181's BDMA port.

Byte memory space consists of 256 pages, each containing 16K x 8-bit wide
locations. This memory can be written and read in four different formats:
24-bit, 16-bit, 8-bit MSB alignment, and 8-bit LSB alignment.

Each read/write to byte memory consists of data (on data bus lines 15:8)
and address (on address bus lines 13:0 plus data lines 23:16). The 22-bit
byte memory address lets you access up to 4M bytes of ROM or RAM.

For complete information on the ADSP-2181's byte memory and BDMA
port, refer to the DMA Ports chapter of this manual.

10.6.4 ADSp·2181 I/O Memory Space
The ADSP-2181 has a dedicated I/O Memory Space instead of the
memory-mapped I/O used on other ADSP-21xx processors. The I/O
memory space consists of 2048 locations with four associated
programmable waitstate regions. Figure 10.30 shows the Wait State
Control Register and the lOW AITO-3 bit fields that control I/ a memory
waitstate regions.

Wait State Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DWAIT . IOWAIT3 IOWAIT2 IOWAIT1 IOWAITO

Figure 10.30 ADSp·2181 Waitstate Control Register

DM(Ox3FFE

The Wait State Control Register is divided into the following fields:

• IOWAITO. This 3-bit field sets the number of waitstates (0-7) for
accesses to I/O memory addresses OxOOO-Ox1FF.

• IOWAIT1. This 3-bit field sets the number of waitstates (0-7) for
accesses to I/O memory addresses Ox200-Ox3FF.

• IOWAIT2. This 3-bit field sets the number of waitstates (0-7) for
accesses to I/O memory addresses Ox400-0x5FF.

• IOWAIT3. This 3-bit field sets the number of waitstates (0-7) for
accesses to I/O memory addresses Ox600-Ox7FF.

• DWAIT. This 3-bit field sets the number of waitstates (0-7) for accesses
to external program and data memory overlays.

Note: The PWAIT field of the System Control Register sets the number of
waitstates for access to external program memory overlays.

When you connect a parallel I/O device to the ADSP-2181 as shown in
Figure 10.31, the address sent to the device appears on the external
address bus as shown in Figure 10.32.

ADDRESS 10:0
or

Decoded
Address Input DATA 23:8

, r

Codec, AID, D/A, or
other peripheral device.

IOMS RD WR

Figure 10.31 1/0 Memory Space Peripheral Connection Example

10-33

10-34

13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I x I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 1
0

1

'---------------- --------------~ --....--

I/O Memory Operation
1 = Write
0= Read

Figure 10.32 1/0 Memory Address Word

L VO Memory Address

Host interfaces can use the additional communications channel provided
by the ADSP-2181's I/O memory space. If your system bus interface ASIC
uses a set of data registers for passing control information from the system
bus and must also pass large amounts of sample data, map the control
registers as I/O memory peripherals and transfer the sample data using
IDMA. This combination of the I/O memory and IDMA channels reduces
system bus transfer rate limitations.

Note: As with other ADSP-2100 Family processors, on the ADSP-2181 you
can define memory-mapped I/O ports with the assembler's .PORT
directive. On the ADSP-2181, this directive defines memory-mapped I/O
ports in external program memory overlays or data memory overlays. If
you want to use this feature, you must make sure at runtime that you are
on the correct program memory overlay or data memory overlay when
accessing the port; the assembler and linker will not flag errors in .PORT
accesses related to overlays because the issue is resolved at runtime. The
"10" keyword does not work with the .PORT directive; to assign symbolic
labels to I/O memory addresses, use a #definemacro. The best use of
the .PORT directive is in porting non-ADSP-2181 applications to the
ADSP-2181; otherwise, use I/O memory space for memory-mapped I/O.

1\1emory Interface 10

10.6.5 ADSp·2181 Composite Memory Select
The ADSP-2181 has a programmable memory select signal, Composite
Memory Select (CN.IS). This signal lets you generate a memory select for
devices mapped to more than one memory space, with the same timing as
other individual memory select signals (PNIS, OMS, EMS, and TOMS).

Based on the value of CMSSEL in the Programmable Flag & C0ClM:~te
Select Control register (see Figure 10.33), the ADSP-2181 asserts
when the corresponding memory select signal (or signals) are asserted.
Each XIVIS signal can be individually enabled. After reset, CMSSEL is
initialized to enable PNIS, OMS, and TOMS (with EMS disabled).

Programmable Flag & Composite Select Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMWAIT

CMSSEL
1 = Enable CMS
o = Disable CMS

Figure 10.33 CMSSEL Selection for CMS Signal

LpFTYPE
1 = Output
0= Input

Figure 10.26 (earlier in this chapter) shows an example of how to use the
CNIS signal. In this system the CNIS line drives the chip select for all three
SRAMs. This lets you use three 32K x 8-bit SRAMs, with no glue logic, for
complete program and data memory overlays.

DM(Ox3FE6)

10-35


~~~~~ll~~~~~ .::f::::~::. 1;~~~: :::;~: ::::::~~~:: . ::~;~ :::;~~::~ ~;~ ;~:::: ;;~f:~ !~;~:: .:~:.:i.;.:~:.:~.·: .. ~: .:l:.:~ .. :l:.:~ .. ::::: :~.:;:.:l .. :~:' .:~. :. :.:~ .. :~ ... :~:'.::!.:.,.'.':' ::.':~'.::.'.:l .• ;:.;.~::.:.· ~: ..• ; •• ~.:l.:::.~. .:~ .• :;:.':; •• :;:::::: :'~::.:~ .• :~:.::1.·.:~:~~' :.::.:: .. :.:: ... ::::.: .. ::·.~.~; .. :.:.:;:.:l .. :;:.:~.. .;.:i .• :~ .• :l .. :;:::.:.;.;.·.· .. : .. :.:.:::.:;::... ,:;.::.·.:~ .. :l .. ;.~.;.~: .. ~.:::.; .. ~.:l ... : .. : .. ; ~l~l '1W ~l~l :~lt;;:~~~:: l~l~: ~l~l: l~lj l~l\::J~~ ~l~l ::!!~lf' 

10.6.6 External Memory Read - Overlays & I/O Memory 
External memory reads may access either PM overlays, DM overlays, or 
110 memory space. These read operations occur in the following 
sequence (see Figure 10.34): 

1) The ADSP-2181 executes a read from an external memory address; the 
address is driven on the address bus and PMS, OMS, EMS, or KJl\iIS, 
and RD is asserted. (C1VIS may also be asserted, depending how it is 
configured.) 

2) The external peripheral drives the data onto the data bus. 

3) The ADSP-2181 reads the data and deasserts RD. 

WR remains high (deasserted) throughout the external memory read 
operation. 

Note that ADSP-2181 internal memory accesses do not drive any 
external signals: PMS, OMS, KJl\iIS, EMS, eMS, RD, and WR remain high 
(deasserted), and the address and data buses are tristated. 

CLKOUT / \ / 
AO-A13 ()( X> 

OMS, PMS, / \ BMS, IOMS, 
or CMS 

RD \ / 
DATA XXXXX 

Figure 10.34 External Memory Read Timing 

10-36 

L 

L 



10.6.7 External Memory Write - Overlays & I/O Memory 
External memory writes may access either PM overlays, OM overlays, or 1/0 
memory space. These read operations occur in the following sequence (see 
Figure 10.35): 

1) The AOSP-2181 executes a write to an external memory address; the address 
is driven on the address bus, data is driven on the data bus, and PMS, OMS, 
BNIS, or JOKiIS, and WR is asserted. (CMS may also be asserted, depending 
how it is configured.) 

2) The external peripheral stores the data. 

3) The AOSP-2181 stops driving the address and data buses and deasserts WR. 

RD remains high (deasserted) throughout the external memory. write operation. 

CLKOUT / \ / 
AO-A13 <X ~) 
---
OMS, PMS, \ / BMS,IOMS, 

or CMS 

WR \ / 
DATA \X X> 

Figure 10.35 External Memory Write Timing 

10.7 MEMORY INTERFACE SUMMARY (ALL PROCESSORS) 
Table 10.5 summarizes the states of the memory interface pins for various 
combinations of program memory and data memory accesses. Table 10.6 
summarizes the states of the memory interface and control pins during 
reset, booting (AOSP-21xx boot memory booting, not AOSP-2181 byte 
memory booting), and bus grant. 

10-37 



~~~~~t :ili:~~~~ ,::r::t:, ~i~i::::tl::iii' ,::ii:':':~!'" iii!::::' :,i!,: :iii" •. ~.:::.:~ •• :' .• : .• :,,!:: .. ~::.; .. : .. l::.; •• ::::::; •• ~::.l .. :.:,:'.": .. ::; .. ~:',':";:"~.:' .. l .. :::':·:: .... ', .. :.: .. '.:' .. ' .. :::: .. ': .. :: .. :: .. :.; .. ':.;.: .. ': .. ',...... ..~ .. : .. ~:: .. :.:: ... ;.:i:::: "::.: .. l .. :· .. ;.:: ... l .. :: .. 1.::.~~ ,,::: .. :::,.::.: ... , .. :.:: .. ::.~:~;.~;: .. ;:: .. ,:: .. '.;'.";:. ""'::', .. ::' .. ; .. :,,1::'.::.;':::'.:.' .. :.: .. ;::.' :,;,' .•.. ' .. '.: .. ':·.; .. ::.;:.::~.:.~:~.:.::l.: .. :,:~,: .. ;.:. 

l~l~ tf1 ,t:~:~:~:~; ~l~l l~l~ ~l~l ~i~~~,:::,}i l~l~ ::!!It:' .

Access PMS DMS BMS RD WR

Internal program high high high high high
memory only

Internal data high high high high high
memory only

Internal program high low high low low
memory, external (for (for
data memory read) write)

Internal data low high high low low
memory, external (for (for
program memory read) write)

External boot high high low low high
memory (for

read)

Table 10.5 Pin States During Memory Accesses

Operation Address Data PMS
DMS
BMS

Reset tristated tristated high

Booting* active active BMSactive
after Reset PMS,DMS

high

Reboot* active active BMSactive
PMS,DMS
high

BR Asserted tristated tristated tristated
during Normal
Operation, Booting*
or Go Mode

BRAsserted tristated tristated tristated
during Reset

Table 10.6 Pin States During Reset, Booting*, and Bus Grant
* ADSP-21 xx boot memory booting, not ADSP-2181 byte memory booting.

10-38

Address Data

tristated tristated

tristated tristated

DM address DMdata

PM address PM data

Boot address Boot data,
Boot page
address

RD CLKOUT SPORTs
WR

high active tristated

RDactive active tristated
WRhigh

RDactive active active
WRhigh

tristated active active

tristated active tristated

BG

high

high

high

low

low

DMA Ports

11.1 OVERVIEW
The ADSP-2181 supports several DMA interfacing features:

• Byte Memory & Byte Memory DMA (BDMA): this memory space can
address up to 4M bytes. The byte memory interface supports booting
from and runtime access to inexpensive 8-bit memories. The BDMA
feature lets you define the number of memory locations the ADSP-2181
will transfer to/from internal memory in the background while
continuing foreground processing.

• Internal Direct Memory Access (IDMA) Port: this parallel port
supports booting from and runtime access to host systems (for example,
PC Bus Interface ASICs). The DMA feature of this port lets you transfer
data to/from internal memory in the background while continuing
foreground processing.

These DMA transfers are accomplished internally by /I cycle stealing," in
the same way as serial port autobuffering. This means that the ADSP-2181
uses internal bus cycles to transfer the data to and from memory. The
stolen cycles will only occur at instruction cycle boundaries, i.e. not
between cycles of a multiple-cycle instruction. See ''lACK Acknowledge &
DMA Cycle Stealing" at the end of this chapter for additional details.

The ADSP-2181 uses a half-instruction-rate clock input from which it
generates a full-instruction-rate internal clock. For example, from a 16.67
MHz clock input (CLKIN) the ADSP-2181 generates a 33.33 MHz
instruction rate clock. All timing diagrams for the processor use the full­
instruction-rate output clock (CLKOUT) as a reference.

Figure 11.1 shows an ADSP-2181 system and the interfaces to byte
memory space and the IDMA port.

11

11 -1

ADSP-2181

ClKIN
or

ADDR13-o
CRYSTAL XTAl

DATA.23_o

BMS

SERIAL
DEVICE

IOMS

SERIAL
DEVICE

PMS
OMS

CMS

BYTE
MEMORY

VO SPACE
(PERIPHERALS)

2048 Locations

OVERLAY
MEMORY

Tw08K
PM Segments

Tw08K
DMSegments

BR SYSTEM
BG

INTERFACE
BGH

or
/-lCONTROllER PWD

11- 2

PWDACK

Figure 11.1 ADSP·2181 System

11.2 SDMA PORT
The ADSP-2181's byte memory space is 8 bits wide and can address up to
4M bytes of program code or data. This memory space takes the place of
the boot memory space found on other ADSP-2100 family processors.
Unlike boot memory space, byte memory has read/write access through
the ADSP-2181's BDMA port.

Each read/write to byte memory consists of data (on data bus lines 15:8)
and address (on address bus lines 13:0 plus data lines 23:16). The 22-bit
byte memory address lets you access up to 4M bytes of ROM or RAM.

Byte memory space consists of 256 pages, each containing 16K x 8-bit wide
locations. This memory can be written and read in four different formats:
24-bit, 16-bit, 8-bit MSB alignment, and 8-bit LSB alignment.

To use byte memory for purposes other that boot loading, for example
runtime access to bulk data storage, you must know the page (BMP AGE)
that the code/ data is stored on, the number of words (BWCOUNT) to read
from that page, and the word format (BTYPE) of the data. Use the following
procedure to prepare a runtime-accessible byte memory EPROM:

• Develop the datal code to be accessed at runtime

• Use the ADSP-2100 Family PROM Splitter utility to split the file into
single page (or smaller) 16K x 8-bit-wide segments

• Program these pages into your EPROM, noting the offset (page number)
of each

• Use these page numbers when doing BDMA accesses

Note: For more information on the ADSP-2100 Family Development
Software Tools, see the ADSP-2100 Family Assembler Tools & Simulator Manual
and current software release note.

When using BDMA for non-boot-Ioading transfers, a BDMA transfer begins when
data is written to the BWCOUNTregister and a BDMA interrupt is issued when the
transfer is complete.

The following restrictions apply to BDMA transfers:

• The source or target of BDMA transfer is always internal program or data
memory. The contents of the PMOVLA Y and DMOVLA Y registers do not
influence BDMA source (or target selection).

• Do not access the BEAD or BIAD registers during BDMA transfers.

• Other external memory accesses (PM overlay, DM overlay, or I/O space)
take precedence over BDMA port accesses. These accesses cannot occur at
the same time because they also use the processor's external bus.

• Do not enter powerdown mode with the BDMA port active. For
information on powerdown restrictions on BDMA port access, see the
System Interface chapter of this manual.

11-3

11-4

11.2.1 BDMA Port Functional Description
The BDMA Port lets you load (and store) program instructions and data
from (and to) byte memory with very low processor overhead. While the
ADSP-2181 is executing program instructions, the BDMA port reads (or
writes) code or data from (or to) byte memory-stealing one ADSP-2181
cycle per word when it needs to write to (or read from) internal memory.
You can calculate BDMA transfer time from the formula:

[

NUmbeJ [[NUmber] [Number of PM of Bytes of Added +
or DM per Word Waitstates
Words per Byte

CY~le] + [cyc~e for]] + [HOld]
for Internal Offs

Transfer RD /WR

If, for example, you wanted to transfer 100 24-bit program memory words
through the BDMA port, assuming five waitstates and no hold offs, the
operation would take 1900 cycles. This is shown in the following equation:

[100] [[3] [5 1] [1]] [a] PM Bytes Added + Cycle + Cycle for + Hold
Words per Waitstates for Internal Offs

Word per Byte Transfer RD /WR

Hold offs for DMA transfers are defined in the section "DMA Cycle
Stealing, DMA Hold Offs, and lACK Acknowledge" at the end of this
chapter.

11.2.2 BOMA Control Registers
A set of memory-mapped registers are used to setup and control transfers
through the BDMA port. Figures 11.2 through 11.6 show these registers.

The BDMA Internal Address Register (BIAD) lets you set the 14-bit
internal memory starting address for a BDMA transfer. The BDMA
External Address Register (BEAD) lets you set the 14-bit external memory
starting address for a BDMA transfer.

BOMA Internal Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM(Ox3FE1)

'-----~------ ------~

T BIAO

Figure 11.2 BOMA Internal Address Register

BOMA External Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM(Ox3FE2)

'----~-----

T
~

------~

BEAO

Figure 11.3 BOMA External Address Register

11- 5

BOMA Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMPAGE~
BTYPE 00 01 10 11
Internal Memory Space PM OM OM OM

Word Size

Alignment

24 16 8 8
full full MSB LSB

word word

Figure 11.4 BOMA Control Register

The BDMA Control Register lets you set:

• The BDMA Transfer Type (BTYPE)
• The BDMA Direction (BDIR)
• The BDMA Context Reset (BCR)
• The BDMA Page (BMP AGE)

BTYPE can be:

00 24-bit Program Memory Words
01 16-bit Data Memory

: DM(Ox3FE3)

-""-..-.!""'-..... ~

I i BTYPE (see table)

BOIR
o = load from BM
1 = store to BM

'--____ BCR
o = run during BOMA
1 = halt during BOMA,
context reset when done

10 8-bit bytes for Data Memory, MSBalignment
10 8-bit bytes for Data Memory, LSB alignment

BDIRcan be:

o from Byte Memory
1 to Byte Memory

11-6

..

:~.: .. :l.::.:~.: :l.:.;.::.::::.::::.::.:::: .. ::.· .. :~ .. :l.'.:: ••• :; •. : .•.. : •.••• :~.::.:l.: :;.::.:l.:.;l.~ ... · .. ::: ::: :: .. : ::.·:l.:i~::: :l.:::.:;.· .•.• :l .. :~.:: .: .. :::: : ::.·:l.·.:l.:::~:l:~:~ .. ·:~.·.:l .. :;::.: ::: .. : t.ll:.:t.::.::.~:.J.l~;: .. ;:.:::::;:~.::.:: ~·.:;.:~:::::;:r.~r.l~:· .• ::.:~.'::::.:::;
~~f""~" :;t:::::l~;;~ ~~~~l l;~t: ~~;~~~~;~~;~:

BCR can be set to:

o Allow program execution during BDMA
1 Inhibit program execution during BDMA transfers and cause a

context reset after transfer is complete

BMP AGE lets you select the starting page for BDMA transfer.

Note: Rebooting with BDMA Context Reset (BCR=l) is similar to a
Powerup Context Reset. For more details on processor states during reset
and reboot, see the System Interface chapter of this manual.

The BWCOUNT register lets you start a BDMA transfer by writing the
number of words for the transfer to this register. The count automatically
decrements as the transfer proceeds. When the count is zero (Le. transfer
complete), the processor issues a BDMA interrupt. When MMAP and
BMODE are set to zero on boot, a value of 32 (decimal) is written to this
register directing the ADSP-2181 to load the first 32 locations of its
internal program memory.

Two useful control techniques using this register are:

• Poll the BWCOUNT register to determine when the DMA transfer is
complete (BWCOUNT =0), instead of waiting for the BDMA interrupt.

• Abort the DMA operation by writing a 1 to the BWCOUNT register and
poll to determine when the transfer is complete (BWCOUNT=O),
instead of waiting for the BDMA interrupt. (Note that the DMA transfer
is aborted, and cannot be resumed later.)

BMWAIT consists of bits 12, 13, and 14 of the Programmable Flag &
Composite Select Control Register. BMWAIT lets you select 0-7 waitstates
(each equal to a single instruction cycle) to apply to each byte memory
access. BMW AIT is set to 7 after a reboot.

11-7

BOMA Word Count (MMAP=O and BMOOE=O)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'------------------ ----------------~
T BWCOUNT

or

BOMA Word Count (MMAP=1 or BMOOE=1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'------------------ ----------------~

T BWCOUNT

Figure 11.5 BOMA Word Count Register

Programmable Flag & Composite Select Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMSSEL
1 = Enable CMS
o = Disable CMS

FTYPE
1 = Output
0= Input

DM(Ox3FE4)

DM(Ox3FE4)

DM(Ox3FE6)

11-8
Figure 11.6 BMWAIT Field (in Programmable Flag & Composite Select Control Register)

11.2.3 Byte Memory Word Formats
In your byte memory ROM or RAM, data is stored by the ADSP-21xx PROM
Splitter according to the data format you select: 24-bit program memory
words, 16-bit data memory words, 8-bit data memory bytes with MSB­
alignment, or 8-bit data memory bytes with LSB-alignment. The byte order
for 24-bit program memory words and 16-bit data memory words stored in
byte memory is most-significant-byte in the lower address. Table 11.1 shows
an example of byte memory storage of all four code/data formats.

Note: When transferring either of the data memory byte formats, the unused
byte of data memory is zero-filled.

Internal Internal Byte Memory Byte
Memory Memory Address Memory

BTYPE Address Contents (p.age OxOO 2 Contents
00 PM(OxOOOO) OxABCDEF BM(OxOOOO) OxAB

BM(OxOOOl) OxCD
BM(OxOO02) OxEF

00 PM(OxOOOl) Ox123456 BM(OxOO03) Ox12
BM(OxOO04) Ox34
BM(OxOO05) Ox56

01 DM(OxOOOO) Ox9876 BM(OxOO06) Ox98
BM(OxOO07) Ox76

01 DM(OxOOOl) Ox3456 BM(OxOO08) Ox34
BM(OxOO09) Ox56

10 DM(OxOO02) Ox9800 BM(OxOOOA) Ox98
10 DM(OxOO03) Ox7600 BM(OxOOOB) Ox76
11 DM(OxOO04) Ox0034 BM(OxOOOC) Ox34
11 DM(OxOO05) Ox0056 BM(OxOOOD) Ox56

Table 11.1 Byte Memory Storage Formats

11.2.4 BOMA Booting
The entire on-chip program memory of the ADSP-2181, or any portion of it,
can be loaded from an external source using a byte memory booting
sequence. Booting from byte memory is one of two methods available for
automatic booting after a reset.

Table 11.2 shows how to select the post-reset booting method using the
ADSP-2181's MMAP and BMODE pins.

11-9

11 -10

MMAP
Pin
o

o

1

BMODE
Pin
o

1

Booting
Method
Boot through BDMA Port. Boot sequence loads the
first 32 program memory words from the byte
memory space. After all 32 words are loaded,
program execution begins at internal address
PM(OxOOOO) with a BDMA interrupt pending.
Boot through IDMA Port. Boot sequence holds off
execution while the host processor loads Program
Memory using writes through the IDMA Port.
Program execution begins when internal address
PM(OxOOOO) is loaded.
No Booting. Boot sequence does not load memory or
hold off execution. Program execution starts at
external address PM(OxOOOO). The PMOVLA Y
register must be cleared (to zero).

Table 11.2 Selecting The ADSP·2181 Boot Method

The ADSP-2181 uses a BDMA boot sequence after reset when the BMODE
and MMAP pins are held low. The BDMA port is initialized for booting as
follows:

• BWCOUNT is set to 32
• BDIR, BMP AGE, BEAD, BIAD, and BTYPE are set to zero
• BCR is set to 1
• BMW AIT is set to 7

These initializations set the BDMA port to load 32 words (BWCOUNT)­
from (BDIR)-byte memory page zero (BMP AGE)-byte memory address
zero (BEAD) -to internal Program Memory address zero (BIAD)-using
24-bit program memory word format (BTYPE). The BDMA context reset bit
(BCR) set to 1 inhibits program execution during BDMA transfer and
causes execution to begin at address PM(OxOOOO) after the transfer. The
number of waitstates (BMW AIT) for BDMA access is set to the maximum
of 7. After the boot sequence is complete (32 words transferred), program
execution begins at internal PM address OxOOOO.

The ADSP-2100 Family PROM Splitter utility provides a boot loader
option for ADSP-2181 based designs; see "Development Software Features
for BDMA Booting" below.

If you are developing your own boot-loading software for the ADSP-2181,
however, you should note that the BDMA Context Reset bit (BCR) is set to
1 (inhibiting program execution during BDMA transfer) and a BDMA
interrupt is pending (signalling the first 32 word were sent) after the boot
sequence is complete. Your program will have to process the interrupt (if
you unmask the BDMA interrupt with the IMASK register) or clear the
interrupt (with the IFC register).

In an alternate method, using the BDMA interrupt without context clear, a
loader program could suspend program execution with the IDLE
instruction while BDMA boot loading. If the loader sets the PM boot-load
parameters, enables only the BDMA interrupt in the IMASK register, and
then executes an IDLE instruction-the IDLE instruction suspends
program execution until the BDMA interrupt occurs. At that point all of
program memory is loaded.

11.2.4.1 Development Software Features for BDMA Booting
The ADSP-21xx PROM Splitter utility lets you create BDMA boot­
loader programs for ADSP-2181-based designs. This provides a
low overhead method for BDMA boot-loading your program. The
boot loader program adds memory loader code to your executable
program. The PROM Splitter generates loader code that initializes
up to 6 pages of program memory and 4 pages of data memory,
where each page is 16k bytes in size. Typically, the code generated
by the PROM Splitter is burned into an EPROM and used as the
ADSP-2181's Byte Memory space.

When the MMAP and BMODE pins equal 0, the ADSP-2181 will
load the first 32 program memory words from the Byte memory
space and then begin execution. The loader routine is in those first
32 words; it continues to load from the Byte Port until your whole
program is loaded.

Refer to the ADSP-2100 Family Assembler Tools & Simulator Manual
as well as the software release note for complete information on
the PROM Splitter features.

11 - 11

11.3 IDMA PORT
The IDMA Port of the ADSP-2181 is a parallel I/O port that lets the
processor's internal memory be read or written by a host system. The IDMA
Port architecture eases host bus interface design.

Think of the IDMA port as a gateway to all internal memory locations on the
DSP (except for the processor's memory-mapped control registers). The
IDMA Port has a 16-bit multiplexed address and data bus that supports
access to both 16-bit Data Memory and 24-bit Program Memory. IDMA Port
read/write access is completely asynchronous and a host can access the
DSP's internal memory while the ADSP-2181 is operating at full speed.

Unlike the Host Interface Port (HIP) of the ADSP-2171 and ADSP-2111, the
IDMA port does not require any ADSP-2181 processor intervention to
maintain data flow. The host system can access ADSP-2181 internal memory
directly, without going through a set of mailbox registers. Direct access to
DSP memory increases throughput for block data transfers. Through the
IDMA port, internal memory accesses can be performed with an overhead of
one DSP processor cycle per word.

The ADSP-2181 supports boot loading through the IDMA port, through the
BDMA port, or from an external Program Memory Overlay. The BMODE
and MMAP pins select the DSP's boot mode and memory map. Setting
BMODE=l and MMAP=O directs the ADSP-2181 to boot through the IDMA
Port. For information on IDMA booting, see "Boot Loading Through The
IDMA Port" at the end of this chapter.

Note: The IDMA port cannot be used to read or write the ADSP-2181's
memory-mapped control registers. See "Modifying Control Registers for
IDMA." .

11.3.1 IDMA Port Pin Summary
The IDMA Port pins are shown below in Table 11.3.

Pin Name(s)
IRD
IWR
IS
IAL
IADO-15
lACK

Input/
Output
I
I
I
I
I/O
o

Table 11.3 IDMA Port Pins

Function
IDMA Port Read Strobe
IDMA Port Write Strobe
IDMA Port Select
IDMA Port Address Latch Enable
IDMA Port Address/Data Bus
IDMA Port Access Ready Acknowledge*

11 - 12 * After reset, lACK is asserted Oow).1t stays low until an IDMA transfer is initiated. After
each IDMA operation is completed, lACK will again be low.

Four IDMA port inputs control when the port is selected (IS) for read
(IRD), write (IWR), or address latch (IAL) operations on its address/ data
bus (IADO-15). The IDMA Port Select (IS) line acts as a chip select for all
IDMA operations.

Asserting the IDMA Port Select (IS) and address latch enable (IAL) directs
the ADSP-2181 to write the address on the IADO-15 bus into the IDMA
Control Register. This register, shown in Figure 11.7, is memory-mapped
at address DM(Ox3FEO). Note that the latched address (IDMAA) cannot be
read back by the host.

IDMA Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I'''. I I I I I I I I I I I I I I I DM(Ox3FEO)

.-/ -------1'-------
IDMAD~ T
Destination memory type:

IDMAA O=PM
1=DM Starting address

Figure 11.7 IDMA Control Register

Asserting the IDMA Port Select (IS) and Read strobe (IRD) inputs directs the
ADSP-2181 to output the contents of the memory location pointed to by the
IDMA Control register onto the IDMA data bus.

Asserting the IDMA Port Select (IS) and Write strobe (IWR) inputs directs the
ADSP-2181 to write the input from the IDMA data bus to the address pointed
to by the IDMA register.

When reading/writing to Data Memory, the IDMA data bus pins make up a
16-bit Data Memory word. When reading/writing to Program Memory, the
upper 16 bits of the 24-bit Program Memory word are sent first on the IDMA
data bus pins. On the next IDMA Port read/write, the lowest 8 bits of the
Program Memory word are sent on bits 0-7 of the IDMA data bus. For reads,
the ADSP-2181 sets data bus lines 8-15 to 0; for writes, the ADSP-2181 ignores
bits 8-15 from the host.

The IDMA Port Access Acknowledge (lACK) line identifies completion of
data reads/write operations. It also acts as a busy signal for the IDMA Port.
External devices must wait for this signal to go low before modifying IDMA
Control register or starting the next read/write operation. 11 _ 13

11-14

11.3.2 IDMA Port Functional Description
The IDMA Port lets a host system directly access internal ADSP-2181
memory locations (but not the memory-mapped control registers). Figure
11.8 shows a flow chart of the most general case for IDMA transfers.

In the case shown in Figure 11.8, the host system starts an IDMA transfer
by checking the state of the lACK line to determine port status (ready /
busy). When the IDMA port is ready, the host directs the ADSP-2181 (with
the IS and IAL lines) to latch the IDMA internal memory address from the
IDMA address/ data bus to the IDMA Control Register. (Note that the
latched address cannot be read back by the host.)

Next, the host (using the IS and IRD or IS and IWR lines) begins reading
(or writing) the DSP's internal memory until done. With each IDMA read
or write operation, the the ADSP-2181 automatically increments the IDMA
internal memory address. Note that the ADSP-2181 continues program
execution throughout the IDMA transfer operation, except during the
"stolen" cycle used to do the memory access.

The case shown in Figure 11.8 is not the only way to use the IDMA port.
Some variations on this scheme include:

• After completing an IDMA port read/write operation, the host could
change the IDMA internal memory ·address and start a new operation
from a different starting address.

• After latching an IDMA internal memory address, the host could stop
the operation and come back at a later time to proceed with the read/
write operation. The IDMA starting memory address remains in the
IDMA Control Register until the host or DSP changes it.

• The ADSP-2181 can also read and write the· IDMA Control Register as
part of your program. This means that the host could just control read/
write operations and let the ADSP-2181 control the IDMA starting
memory address.

• Using the IDMA short read cycle (which does not wait for the data-ready
assertion of the lACK signa!), you could set up a single-location data
buffer for IDMA read transfers. For information on how this data buffer
would work, see "IDMA Port Short Read Cycle" below.

• For ADSP-2181 applications with a host processor or host ASIC that
does not use a data-ready or write-complete acknowledge, use the
IDMA short read/write cycles.

Host starts IDMA transfer.

Host checks lACK control line to

see if the DSP is "Busy".

Host uses is and IAL control lines to

latch the DMA starting address

(IDMAA) and PM/DM selection into the

DSP's IDMA Control Register. The

DSP also can set the starting address

and memory destination.

Host uses IS and IRD (or IWR) to

read (or write) DSP internal memory

(PM or DM).

Done?

Host ends IDMA transfer.

More?

Figure 11.8 GenerallDMA Transfer Flow Chart

Continue

Host checks lACK line to see if the

DSP has completed the previous

IDMA operation.

There are some restrictions on IDMA operations. These hardware/
software design restrictions include:

• If your design has both the host and ADSP-2181 writing to the IDMA
Control Register, do not let both write to this register at the same time;
the results of this are indeterminate.

• Host reads of internal Program Memory take two IDMA reads (for a 24-
bit word through a 16-bit port). If an IDMA address latch cycle or a
ADSP-2181 write to the IDMA Control Register occurs after the first
Program Memory read cycle, the IDMA port "loses" the second half of
the 24-bit Program Memory word. The next IDMA read or write uses
the address selected by the new contents of the IDMA Control Register.
Note that writing to the IDMA Control Register after the first half of a
Program Memory IDMA read lets you read just 16-bit data from
Program Memory.

11-15

11-16

• Host writes to internal Program Memory take two IDMA writes (for a
24-bit word through a 16-bit port). If an IDMA address latch cycle or a
ADSP-2181 write to the IDMA Control Register occurs after a first
Program Memory write cycle, the IDMA port uloses" the Program
Memory word without changing the contents of memory. The next
IDMA read or write accesses the address selected by the new contents
of the IDMA Control Register.

• Host memory accesses through the IDMA port that occur while the
ADSP-2181 is in powerdown have some restrictions. For information on
powerdown restrictions on IDMA port transfers, see the System Interface
chapter of this manual.

11.3.3 Modifying Control Registers for IDMA
The ADSP-2181' s memory-mapped control registers are protected from
DMA transfers to prevent accidental corruption. You may want the host
processor to read and write these registers, however, in order to
determine the ADSP-2181's configuration and then change it.

To read the memory-mapped control registers, you must first transfer the
contents of these locations to another area of internal RAM. The following
code segment shows a loop that performs this task:

.const NUM_REG=32;

.var/drn/ram temp_array[NUM_REG];

iO="temp_array;
10=0;
il=Ox3feO;
11=0;
ml=l;
cntr=NUM_REG;
do transfer until ce;
axO=drn (il, ml) ;

transfer: dm(iO,ml)=axO;

To have the host write to the memory-mapped control registers, you must
first load the values to a temporary buffer (through the IDMA port) and
then signal the ADSP-2181 to transfer the contents of the temporary buffer
to the memory-mapped control registers. This transfer is performed in a
similar manner as the code shown above. You should set up some form of
signalling between the host and the ADSP-2181, either interrupts, flag
I/O, or a mailbox register. This will provide a mechanism for the host to
tell the DSP when to perform an operation and vice versa.

....

:!:.:~ :!:.:! :!::.:::.:::.::::.:: .. :;.:.:! ... :~:.:;.:~.~ .• : •. :.:!.: :~:.:! :!~! .. ~: ... :~ ... :.: ... :.:: :::.:~:~.' ~ ~ :::.:! :!:! .. : :! .:.: .•.... :.: .. : :;.:r.:l.:~:~ .. :.·:~.:! .. :; .. :; ~ ::.: ::. llr: ~:~:~1~;1· ::::: ::::::::. :;:;: ~;::::-l~~l~': .::::;:: :::::: ll~r~:::::" t~::::::~t ~~~~[~~!t ;;~~~~;;~;~~~;

11.3.4 IDMA Timing
From the host system interface point of view, there are three IDMA port
operations with critical timing parameters. These operations are:

• latching the IDMA internal memory address,
• reading from the IDMA port, and
• writing to the IDMA port.

The following sections cover the timing details of each of these operations.

11.3.4.1 Address Latch Cycle
The host writes the DMA starting address and destination memory type
(OM or PM) using the IDMA address latch cycle. The address latch cycle,
shown in Figure 11.9, consists of the following steps:

1. Host ensures that lACK line is low.
2. Host asserts IAL and IS, directing the ADSP-2181 to latch the IDMA

starting address from the IAOI5-0 address/data bus into the IDMA
Control Register.

3. Host drives the starting address (bits 0-13) and destination memory
type (bit 14) onto the IADI5-0 bus. (Bit 15 must be a 0.)

Note that IRD and IWR remain high (inactive) throughout the latch
operation.

IAL

is

\'----------
_-----oJ/ \~ __ _

\'---_-----oJ/

IAD15-0 ~X'-__ A_D_D_R_ES_S __ --IX~
Figure 11.9 IDMA Address Latch Cycle Timing

11-17

Note: The lDMA starting address and destination memory type is available to
the host and to the ADSP-2181 in the lDMA Control Register. For Data Memory
accesses, the ADSP-2181 increments the address automatically after each lDMA
read or write transfer (16-bit word). For Program Memory accesses, the
ADSP-2181 increments the address automatically after each pair of lDMA read
or write transfers (24-bit word).

Warning: Both the ADSP-2181 and the host can specify the starting address by
writing to the lDMA Control Register. Do not let the ADSP-2181 access the
lDMA Control Register while it is being written by the host; this operation will
have an indeterminate result.

11.3.4.2 Long Read Cycle
The host reads the contents of an ADSP-2181 internal memory location using
the lDMA port long read cycle. The read cycle, shown in Figure 11.10, consists
of the following steps:

1. Host ensures that lACK line is low.
2. Host asserts IRD and IS (low), causing the ADSP-2181 to put the contents of

the location pointed to by the IDMA address on the lADlS-0 address/ data
bus.

3. ADSP-2181 deasserts lACK line, indicating the requested data is being
fetched. When the ADSP-2181 asserts the lACK line, the requested data is
driven on the lAD address/ data bus.

4. Host detects the lACK line is now low and reads the data (READ DATA)
from the lAD1S-0 address/data bus. After reading the data, the host
deasserts IRD and IS.

Note that lAL is low (inactive) and IWR is high (inactive) throughout the read
operation.

lDMA memory accesses "steal" one processor cycle, but may only occur on
instruction cycle boundaries. The best-case response for a 16-bit Data Memory
read or the first 16 bits of a Program Memory read is 2.5 processor cycles; worst
case is 3.5 cycles. One cycle is for synchronization, one is for reading the
memory internally, and one-half cycle is for lACK setup time. A second cycle of
synchronization may be required. Thus the best-case and worst-case response
times are determined as follows:

Best Case: 1 cycle (sync) + 1 cycle (internal memory read) + 0.5 cycle (lACK setup) = 2.5 cycles

Worst Case: 1 cycle (sync) + 1 cycle (sync) + 1 cycle (internal memory read) + 0.5 cycle (lACK setup) = 3.5 cycle

11-18

lACK \ / \

IS XXXX\ /
IRD

\ /
<X PR~:~~US X READ \f) IAD1S-0 DATA

Figure 11.10 IDMA Long Read Cycle Timing

In the case of a Program Memory operation, the second IDMA port read
cycle for a given internal 24-bit word does not require an internal memory
access, does not wait for an instruction cycle boundary, and takes 1.5 or
2.5 cycles.

The best- and worst-case response times given above assume no system hold offs.
Hold offs for DMA transfers are defined in the section "DMA Cycle
Stealing, DMA Hold Offs, and lACK Acknowledge" at the end of this
chapter.

Warning: If an IDMA address latch cycle or an ADSP-2181 write to the
IDMA Control Register occurs after a first Program Memory read cycle (16
bits), the IDMA port will lose the second half of the Program Memory
word. The ADSP-2181 treats the next IDMA access as the first operation
for the new IDMA address and destination.

11-19

11- 20

11.3.4.3 Short Read Cycle
The host reads the contents of a ADSP-2181 internal memory location using
the IDMA short read cycle. The read cycle, shown in Figure 11.11, consists
of the following steps:

1. Host ensures that lACK line is low.
2. Host asserts IRD and IS (low), directing the ADSP-2181 to put the

contents of the location pointed to by the targetIDMA address on the
IAD1S-0 address/data bus.

3. ADSP-2181 deasserts lACK line, indicating the requested data is being
fetched.

4. Host detects the lACK line is now high and reads the data (PREVIOUS
DATA) from the IADlS-0 address/ data bus, before the requested data
(READ DATA) is driven on the lAD address/data bus-not waiting for
the ADSP-2181 to assert the lACK line. After reading the data, the host
deasserts IRD and IS.

The host must do an initial "dummy" read, to make the ADSP-2181 put the
first data word (PREVIOUS DATA) on the IADlS-0 bus.

Note that IAL is low (inactive) and IWR is high (inactive) throughout the
read operation.

The IDMA Short Read and Long Read cycles provide different alternatives
for implementing your DMA transfers. Short reads are useful for hosts that
can handle the faster timing of these accesses, while long reads allow
slower hosts more time.

The IDMA short read cycle also serves as a single-location data buffer. If
you are using the ADSP-2181 in a multiprocessing environment, using this
buffer is one way to avoid tying up the lAD bus (waiting for lACK signal).

Warning: If an IDMA address latch cycle or a ADSP-2181 write to the
IDMA Control register occurs after a first Program Memory read cycle, the
IDMA port will lose the second half of the Program Memory word. The
ADSP-2181 treats the next host data on the lAD address/data bus as the
new contents of the IDMA Control Register.

...

:~.:.: .. ~ :l:.: .. ~.:::. ::.::::.::::.::":;"':;":.:";":~':"~:; .; ... :;:.: .. ~ :~.:.: .. 1[.... :~~::.: ::.: .. , .. :.: .. : ::.; .. :~:.:1 ... :~ :~ :~; :; :1 ... : ... : .. ::; ::::~.:~ .. :~:~ .. ::.~:::~: .. :~.:~ :: :'.::::, ~I:~:~j~~~ ~:::;::::::::~. ;:~:::::: A~~;~: ::::~:::::::: ~~~t:::::·· :;~~~::::J~~~ ~~~~ :~~l~:: ~~~~~;~~;~~;~:

lACK \ / \

IS XX'IX~ /
IRD \ /

IAD15-0 <X PREVIOUS)
DATA

Figure 11.11 IDMA Short Read Cycle Timing

11.3.4.4 Long Write Cycle
The host writes the contents of an internal memory location using the
IDMA long write cycle. The write cycle, shown in Figure 11.12, consists of
the following steps:

1. Host ensures that lACK line is low.
2. Host asserts IWR and IS (low), directing the ADSP-2181 to write the

data on the IAD1S-0 address/data bus to the location pointed to by the
target IDMA address.

3. ADSP-2181 deasserts the lACK line, indicating it recognizes the IDMA
write operation.

4. Host drives the data on the lAD address/data bus.
5. ADSP-2181 asserts lACK line, indicating it latched the data on the

IAD1S-0 address/ data bus.
6. Host recognizes the lACK line is now low, stops driving the data on

the IDMA address/data bus and deasserts IWR and IS (ending the
IDMA Long Write Cycle).

Note that IAL is low (inactive) and IRD is high (inactive) throughout the
write operation.

::;::1111 :::::11111

11- 21

:::;:11111 :::::1111

11- 22

lACK

\'--------

IS 'tlliX\ 1
IWR

\'---___ -----'1

IAD15-0~ DATA

Figure 11.12 IDMA Long Write Cycle Timing

Note: IDMA port writes to Program Memory require two IDMA port
write cycles to write a word to ADSP-2181 internal Program Memory. The
ADSP-2181 acknowledges the IDMA port write of the first 16 bits (MSBs
of PM word) as t.hey are written to a temporary holding latch, not waiting
for an instruction cycle boundary. The ADSP-2181 does not assert the
lACK line after the second Program Memory write (or all Data Memory
writes) until the internal memory write is complete and the IDMA port is
ready for another transaction.

Warning: Host IDMA write accesses to internal Program Memory take
two IDMA port writes (24-bit word through a 16-bit port). If an IDMA
address latch cycle or a ADSP-2181 write to the IDMA Control register
occurs after a first program memory write cycle, the IDMA port "loses"
the Program Memory word without changing the contents of ADSP-2181
internal memory. The next IDMA read or write uses the address selected
by the new contents of the IDMA Control register.

11.3.4.5 Short Write Cycle
The host writes the contents of a ADSP-2181 internal memory location using the
IDMA short write cycle. The write cycle, shown in Figure 11.13, consists of the
following steps:

1. Host ensures that lACK line is low.
2. Host asserts IWR and IS (low), directing the ADSP-2181 to write the data on

the IAD1S-0 address/data bus to the location pointed to by the target IDMA
address.

3. ADSP-2181 deasserts lACK line (high), indicating it recognizes the IDMA
write operation.

4. Host drives the data on the lAD address/data bus.
5. Host deasserts IWR and IS after meeting the short write timing requirements

(ending the short write cycle).
6. ADSP-2181 detects IWR and IS have gone high, then latches the data on the

lAD address/data bus.
7. Host stops driving the data on the IAD1S-0 address/data bus after meeting

the short write timing requirements.

Note that IAL is low (inactive) and IRD is high (inactive) throughout the write
operation.

lACK \ / \
IS XXXXX\ /

IWR

\ /
IAD1S-Q 'tltli'ltiX DATA ~
Figure 11.13 IDMA Short Write Cycle Timing

11-23

11-24

Note: IDMA port writes to Program Memory require two IDMA port
write cycles to write a word to ADSP-2181 internal Program Memory. The
ADSP-2181 acknowledges the IDMA port write of the first 16 bits (MSBs
of PM word) as they are written to a temporary holding latch, not waiting
for an instruction cycle boundary. The ADSP-2181 does not assert the
lACK line after the second Program Memory write (or all Data Memory
writes) until the internal memory write is complete and the IDMA port is
ready for another transaction.

Warning: If an IDMA address latch cycle or a ADSP-2181 write to the
IDMA Control register occur after a first Program Memory write cycle, the
IDMA port will lose the first half of the Program Memory word. The next
Program Memory write will be considered the first half of a Program
Memory write pair.

There are two features that differentiate between the IDMA Port long
write and short write. The long write supports hosts (processors or ASICs)
that allow a data-written acknowledge. If your host needs the ADSP-2181
to signal that it has written the data, use the IDMA long read cycle.

The short write lets your host hold data on the bus just until it is latched
and then release the bus. If you are using the ADSP-2181 in a
multiprocessing environment, using the short write is one way to avoid
tying up the IAD1S-0 data bus (waiting for lACK signal). Short writes are
also useful for hosts that can handle the short write timing, but can't
extend the accesses with lACK (when holdoffs occur).

11.3.5 Boot Loading Through The IDMA Port
The ADSP-2181 supports boot loading through the IDMA port. To boot
through the IDMA Port, use the following steps:

• Reset the processor (assert RESET).
• Set MMAP=O and BMODE=l. These pin settings select IDMA booting.

• Deassert RESET.
• Load ADSP-2181 internal memory through the IDMA port. Program

execution is held off until you write to Program Memory address zero,
PM(OxOOOO). The ADSP-2181 responds to IDMA control signals (IAL,
IS, IWR, and IRD) and provides acknowledge (lACK) in the same
manner as during non-booting IDMA transfers.

• Write to PM(OxOOOO) to begin program execution.

Waming: Make certain to load all of the necessary memory locations with
the proper data before writing to PM(OxOOOO).

11.3.6 DMA Cycle Stealing, DMA Hold Offs, and lACK Acknowledge
The lACK signal is generated by the ADSP-2181 tIfeK"1 that it is safe to
read or write through the IDMA port. After reset, is asserted (low).
It stays low until an IDMA transfer is initiated. After each IDMA
operation is completed, lACK will again be low.

In order for lACK to be asserted (low) during the IDMA operation, the
IDMA port must have completed the internal memory access by either
writing data to memory or reading data from memory. The IDMA port
must "steal" a processor cycle to do this. In order to steal a processor
cycle, the IDMA port must wait for an instruction completion boundary.
Thus ifIACK is not asserted, it is not safe for the host to access the IDMA port.

In most cases, there is an instruction boundary on every clock cycle
(CLKOUT period) and the IDMA port can complete its transfer in a given
period of time. There are, however, some instances where either the
ADSP-2181 does not complete an instruction in one clock cycle or the
IDMA port cannot access memory. These are DMA hold offs:

• Bus Request - If the ADSP-2181 is being held in Bus Request when it
attempts an external access (DM overlay, PM overlay, or I/O memory
space), or if it is not in GO mode, processor execution stops in the
middle of the cycle and no instruction boundary is encountered.
Therefore, the IDMA port cannot complete its internal memory access
and lACK will be held off.

• External Access with Wait State(s) - If the ADSP-2181 is performing a
wait-stated external access (DM overlay, PM overlay, or I/O memory
space), then the instruction cycle will not complete until the access has
completed; the IDMA port cannot steal a cycle, and lACK will be held
off.

• Multiple External Accesses - If the ADSP-2181 is executing a
multifunction instruction where more than one of the required elements
(PM instruction fetch, PM data access, or DM data access) resides
externally, it wii~ct{ire more than one cycle to complete the
instruction and will be held off. Likewise, if the ADSP-2181 is
executing an instruction from external PM that initiates an I/O memory
space access, lACK will be held off until the cycle completes.

• IDLE n (clock-reducing IDLE instruction) - Because this instruction
slows down the effective cycle time of the ADSP-2181, lACK may be
delayed.

11-25

11-26

• SPORT Autobuffering to External Memory with Waitstated Access­
When one of the processor's serial ports needs to access external
memory for autobuffering and the external access takes more than one
cycle, the IDMA transfer will be held off.

• EZ-ICE Emulation - When the EZ-ICE emulator is controlling your
ADSP-2181 target system, IDMA transfers may be held off for periods
of time.

Using the lACK signal simplifies your system des~~c¥l allowing you to
ignore hold-off conditions. If you always wait for to assert before
accessing the IDMA port, the DMA transfers will always operate properly.

You can ignore lACK, however, if you are sure that no hold-offs occur in your
system or if your IDMA accesses are longer than any hold-offs. To be sure of
this, you must carefully analyze all possible hold-off conditions of your
system.

Programming Model

12.1 OVERVIEW
From a programming standpoint, the ADSP-21xx processors consist of
three computational units, two data address generators, and a program
sequencer, plus on-chip peripherals and memory that vary with each
processor. Almost all operations using these architectural components
involve one or more registers-to store data, to keep track of values such
as pointers, or to specify operating modes, for example.

Internal registers hold data, addresses, control information or status
information. For example, AXO stores an ALU operand (data); 14 stores a
DAG2 pointer (address); ASTAT contains status flags from arithmetic
operations; and fields in the Wait State register control the number of wait
states for different zones of external memory.

There are two types of accesses for registers. Dedicated registers such as
MXO and IMASK can be read and written explicitly in assembly language.
For example:

MXO=1234i
lMASK=OxFi

Memory-mapped registers-the System Control Register, Wait State
Control Register, timer registers, SPORT registers, etc.-are accessed by
reading and writing the corresponding data memory locations. For
example, this code clears the Wait State Control Register, which is mapped
to data memory location Ox3FFE:

AXO=Oi
DM (Ox3FFE) =AXO i

(AXO is used to hold the constant 0 because there is no instruction to write
an immediate data value to memory using an immediate address.)

12

12-1

12-2

Programming

The ADSP-21xx registers are shown in Figure 12.1. Not all of these registers
are available on every processor. The registers are grouped by function: data
address generators (DAGs), program sequencer, computational units (ALU,
MAC and shifter), bus exchange (PX), memory interface, timer, SPORTs, host
interface and DMA interfaces.

12.1.1 Data Address Generators
DAG1 and DAG2 each have twelve 14-bit registers: four index (1) registers
for storing pointers, four modify (M) registers for updating pointers and four
length (L) registers for implementing circular buffers. DAG1 addresses data
memory only and has the capability of bit-reversing its outputs. DAG2
addresses both program and data memory and can provide addresses for
indirect branching (jumps and calls) as well as for accessing data.

For example:

AX 0 =DM (IO , MO) ;

is an indirect data memory read from the location pointed to by ro. Once the
read is complete, 10 is updated by MO.

PM(I4,M5) =MR1;

is an indirect program memory data write to the address pointed to by 14
with a post modify by MS. The instruction

JUMP (I4);

is an example of an indirect jump.

12.1.1.1 Always Initialize L Registers
The ADSP-21xx processors allow two addressing modes for data memory
accesses: direct and register indirect. Indirect addressing is accomplished by
loading an address into an I (index) register and specifying one of the
available M (modify) registers.

The L registers are provided to facilitate wraparound addressing of circular
data buffers. A circular buffer is only implemented when an L register is set
to a non-zero value. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the! register used must be set to zero. Do not assume that the L
registers are automatically initialized or may be ignored; the I, M, and L
registers contain random values following processor reset. Your program
must initialize the L registers corresponding to any I registers it uses.

DATA ADDRESS GENERATORS

DAG1
(OM addressing only)
Bit-reverse capability

DAG2
(OM and PM addressing)
Indirect branch capability

10

11

12

13

LO

L1

L2

L3
;

0

M1

M2

M3

14 L4

15 L5

16 L6

17 L7
;

4

M5

M6

M7

14 14 14 14

PROGRAM SEQUENCER

14

OWRCNTR

CNTR

COUNT
STACK
4X14

14

* Width and depth vary with processor

ALU MAC

14

Q AXO I AX11~ AVO I AV1 I a MXO I MX1 I U MVO I MV1 I

SHIFTER

8 5

m~~
~"SR;' '!"SRO I

8 16 16

w~~·~ r.:iR1 r MRO I ~ ~F I

BUS EXCHANGE

8

~

HOST INTERFACE PORT
(ADSP-2171, ADSP-2111, ADSP-21msp5x)

I Data Registers
Ox3FE8 HMASK I Ox3FE5 HDR5

Status Registers Ox3FE4 HDR4

~FE7~ Ox3FE3 HDR3

Ox3FE6 HSR6 Ox3FE2 HDR2

Ox3FE1 HDR1

Ox3FEO HDRO

Figure 12.1 ADSP·21xx Registers

Ox3FEO

Ox3FE6

Ox3FE5

Shading denotes secondary (alternate) registers.
Registers are 16 bits wide (unless otherwise marked).

TIMER

Ox3FFO TPERIOD

Ox3FFC TCOUNT

Ox3FFB TSCALE

SPORT 0

Multichannel enables

Ox3FFA RX 31-16

Ox3FF9 RX 15-0

Ox3FF8 TX 31-16

Ox3FF7 TX 15-0

SPORTO Control

Ox3FF6 Control

Ox3FF5 SCLKDIV

Ox3FF4 RFSOIV

Ox3FF3 Autobuffer

SPORT 1

~~
SPORT1 Control

Ox3FF2 Control

Ox3FF1 SCLKOIV

Ox3FFO RFSOIV

Ox3FEF Autobuffer

IDMAPORT
BDMAPORT

PROGRAMMABLE FLAGS
(ADSP-2181)

MEMORY INTERFACE

Ox3FFF SYS~e~I~~~trol

Ox3FFE Wait States

(ADSP-2181)
3 3

IDMOVLAVllpMOVLAVI

ANALOG INTERFACE
(A DSP-21 msp5x)

Ox3FEF Autobuffer

Ox3FEE Control

Ox3FED AOC Receive

Ox3FEC DAC Transmit

IDMA Registers BOMA Registers

Ox3FE4 BWCOUNT

Ox3FE3 BOMA Control

Programmable Ox3FE2 BEAD Flag Registers

Ox3FE1 BIAO

12-3

12-4

Programming

12.1.2 Program Sequencer
Registers associated with the program sequencer control subroutines,
loops, and interrupts. They also indicate status and select modes of
operation.

12.1.2.1 Interrupts
The ICNTL register controls interrupt nesting and external interrupt
sensitivity; the IFC register lets you force and clear interrupts in software;
the IMASK register masks (disables) individual interrupts. The widths of
the IFC and IMASK registers depend on the processor, since different
ADSP-21xx processors support different numbers of interrupts.

The ADSP-2171, ADSP-2181, and ADSP-21msp58/59 support a global
interrupt enable instruction (ENA INTS) and interrupt disable instruction
(DIS INTS).

Interrupts are enabled by default at reset. Executing the disable interrupt
instruction causes all interrupts to be masked without changing the
contents of the IMASK register. Disabling interrupts does not affect serial
port autobuffering, which will operate normally whether or not interrupts
are enabled. The disable interrupt instruction masks all user interrupts
including the powerdown interrupt.

The interrupt enable instruction allows all unmasked interrupts to be
serviced again.

12.1.2.2 Loop Counts
The CNTR register stores the count value for the currently executing loop.
The count stack allows the nesting of count-based loops to four levels. A
write to CNTR pushes the current value onto the count stack before
writing the new value. For example:

CNTR=10i

pushes the current value of CNTR on the count stack and then loads
CNTR with 10.

OWRCNTR is a special syntax with which you can overwrite the count
value for the current loop without pushing CNTR on the count stack.
OWRCNTR cannot be read (Le. used as a source register), and must not be
written in the last instruction of a DO UNTIL loop.

12.1.2.3 Status And Mode Bits
The stack status (SST AT) register contains full and empty flags for stacks.
The arithmetic status (ASTAT) register contains status flags for the
computational units. The mode status (MST AT) register contains control
bits for various options. MST AT contains 4 bits that control alternate
register selection for the computational units, bit-reverse mode for DAGl,
and overflow latch and saturation modes for the ALU. MSTAT also has 3
bits to control the MAC result placement, timer enable, and Go mode
enable.

Use the Mode Control instruction (ENA, DIS) to conveniently enable or
disable processor modes.

12. 1.2.4 Stacks
The program sequencer contains four stacks that allow loop, subroutine
and interrupt nesting.

The PC stack is 14 bits wide and 16 locations deep. It stores return
addresses for subroutines and interrupt service routines, and top-of-Ioop
addresses for loops. PC stack handling is automatic for subroutine calls
and interrupt handling. In addition, the PC stack can be manually pushed
or popped using the PC Stack Control instructions TOPPCSTACK=reg
and reg=TOPPCSTACK

The loop stack is 18 bits wide, 14 bits for the end-of-Ioop address and 4
bits for the termination condition code. The loop stack is four locations
deep. It is automatically pushed during the execution of a DO UNTIL
instruction. It is popped automatically during a loop exit if the loop was
nested. The loop stack may be manually popped with the POP LOOP
instruction.

The status stack, which is automatically pushed when the processor
services an interrupt, accommodates the interrupt mask (IMASK), mode
status (MSTAT) and arithmetic status (ASTAT) registers. The depth and
width of the status stack varies with each processor, since different
processors have different numbers of interrupts. The status stack is
automatically popped when the return from interrupt (RTI instruction) is
executed. The status stack can be pushed and popped manually with the
PUSH STS and POP STS instructions.

The count stack is 14 bits wide and holds counter (CNTR) values for
nested counter-based loops. This stack is pushed automatically with the
current CNTR value when there is a write to CNTR. The counter stack
may be manually popped with the POP CNTR instruction.

12-5

12-6

Programming

12.1.3 Computational Units
The registers in the computational units store data.

The ALU and MAC require two inputs for most operations. The AXO,
AXl, MXO and MXl registers store X inputs, and the AYO, AYl, MYOand
MYI registers store Y inputs.

The AR and AF registers store ALU results; AF can be fed back to the ALU
Y input, whereas AR can provide the X input of any computational unit.
Likewise, the MRO, MRl, MR2 and MF register store MAC results and can
be fed back for other computations. The 16-bit MRO and MRI registers
together with the 8-bit MR2 register can store a 40-bit multipy / accumulate
result.

The shifter can receive input from the ALU or MAC, from its own result
registers, or from a dedicated shifter input (SI) register. It can store a 32-bit
result in the SRO and SRI registers. The SB register stores the block
exponent for block floating-point operations. The SE register holds the
shift value for normalize and denormalize operations.

Registers in the computational units have secondary registers, shown in
Figure 12.1 as second set of registers behind the first set. Secondary
registers are useful for single-cycle context switches. The selection of these
secondary registers is controlled by a bit in the MSTAT (mode status)
register; the bit is set and cleared by these instructions:

ENA SEC_REG;
DIS SEC_REG;

12.1.4 Bus Exchange

{select secondary registers}
{select primary registers}

The PX register is an 8-bit register that allows data transfers between the
16-bit DMD bus and the 24-bit PMD bus. In a transfer between program
memory and a 16-bit register, PX provides or receives. the lower eight bits.

12.1.5 Timer
The TPERIOD, TCOUNT and TSCALE hold the timer period, count and
scale factor values, respectively. These registers are memory-mapped at
locations Ox3FFD, Ox3FFC, and Ox3FFB respectively.

::::e:::;:ii~~!l~,'::' .::l:::!l;;, :;;;::;:::lm !llll,:::' ::;;,:::t: '!l!!:::ttt;: llll::':;l!!:,':;t, ::::: ;l;l,::':;;;:: .;f:::I~ .. : .. :.: .. : .. : .. :.: .. : ... : .. :i: ~ ... : .. :.:,: .. ,.: : .. ,.: ... f .. :":':":"':":':":"':": ':':"' .. :'.; .. :";"'~ .. :::::':::,:; ... :~ .. :,.;.:,,:: .. :': ':"':":";':"~":";:;:;:::'.,:.::.:,,:,,::,:.:,,:,.:,,:, .. : .. :: .. ; ... : .. '.: .. ~ ... ::: .. '.':"::"::":.:";.:";.':': .. '.:., .:,.: ... :,,:.:,.: ... :,,:
if'·'·'···· !iii ;It:::;;J :!!!;;~;~;!!::iiii;if}ii, iiiii iiiii iiii! 1 iiiiiiii ji~ij ji~i iiii :;!I:;;:;;:!!::

12.1.6 Serial Ports
SPORTO and SPORT1 each have receive (RX), transmit (TX) and control
registers. The control registers are memory-mapped registers at locations
Ox3FEF-Ox3FFA in data memory. SPORTO also has registers for
controlling its multichannel functions. Each SPORT control register
contains bits that control frame synchronization, companding, word
length and, in SPORTO, multichannel options. The SCLKDIV register for
each SPORT determines the frequency of the internally generated serial
clock, and the RFSDIV register determines the frequency of the internally
generated receive frame sync signal for each SPORT. The autobuffer
registers control autobuffering in each SPORT.

Programming a SPORT consists of writing its control register and,
depending on the modes selected, its SCLKDIV and/ or RFSDIV registers
as well. The following example code programs SPORTO for 8-bit J.l-Iaw
companding, normal framing, and an internally generated serial clock.
RFSDIV is set to 255, for 256 SCLK cycles between RFS assertions.
SCLKDIV is set to 2, resulting in an SCLK frequency that is 1/6 of the
CLKOUT frequency.

S1=OxB27;
DM(OX3FF6)=S1;

S1=2;
DM (Ox3FF5) =81;

S1=255;
DM(Ox3FF4)=S1;

{SPORTO control register}

{8CLKD1V 2}

{RFSD1V = 255}

12.1.7 Memory Interface & SPORT Enables
The System Control Register, memory-mapped at DM(Ox3FFF), contains
SPORT enables as well as the SPORT1 configuration selection. On all
ADSP-21xx processors except the ADSP-2181, it also contains fields for
controlling the booting operation: selecting the page, specifying the
number of wait states and forcing the boot in software. The System
Control Register also contains the PW AIT field which specifies the
number of wait states for external program memory accesses.

The Wait State Control Register, memory-mapped at data memory
location Ox3FFE, contains fields that specify the number of wait states for
each bank of data memory. On the ADSP-2181, it also specifies the number
of wait states for I/O memory space. In processors with optional on-chip
ROM, it also contains a bit for enabling the ROM.

12-7

A
B

12-8

Programming

On the ADSP-2181, wait states are applied to external memory overlay
accesses. Other memory-mapped registers control the IDMA port and
byte memory DMA port for booting operations-selecting the byte
memory page, specifying the number of wait states, and forcing the boot
from software-and runtime access of byte memory.

12.1.8 Host Interface
The ADSP-2171, ADSP-2111, ADSP-21msp58/59 processors contain a host
interface port (HIP). The host interface has six data registers, two status
registers and an interrupt mask register. These registers are memory­
mapped at data memory locations Ox3FE7 - Ox3FEO. The status registers
contains status flags for each of the data registers. The HMASK register
lets you enable or disable the generation of HIP read or HIP write
interrupts independently for each HIP data register. HMASK is memory­
mapped at data memory location Ox3FE8.

12.1.9 Analog Interface
The analog interface of the ADSP-21msp58/59 has four memory-mapped
registers. These registers are memory-mapped in data memory locations
Ox3FEC - Ox3FEF. The transmit register sends data to the DAC for
transmitting. The receive register receives data from the ADC. The analog
control register contains bits that select amplifier, gain, analog input and
filter options.

12.2 PROGRAM EXAMPLE
Listing 12.1 presents an example of an FIR filter program written for the
ADSP-2111 with discussion of each part of the program. The program can
also be executed on any other ADSP-21xx processor, with minor
modifications. This FIR filter program demonstrates much of the conceptual
power of the ADSP-2100 family architecture and instruction set.

{ADSP-2111 FIR Filter Routine

-serial port 0 used for 1/0
-internally generated serial clock
-12.288 MHz processor clock rate is divided to 1.536 MHz serial clock
-serial clock divided to 8 kHz frame sampling rate}

. MODULE/RAM/ABS=O

. INCLUDE

.VAR/DM/RAM/ABS=Ox3800ICIRC

.VAR/PM/RAM/CIRC

. GLOBAL

. EXTERNAL

.INIT

main_routine;

<const.h>;

{program loaded from }
{EPROM, with MMAP=O }

data_buffer[taps]; {on-chip data buffer}
coefficient[taps];
data_buffer, coefficient;
fir_start;
coefficient:<coeff.dat>;

c

{code starts here}
{load interrupt vector addresses}

JUMP restarterj NOP; NOP; NOP;
RTI; NOPj NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOPj NOP; NOP;
RTI; NOPj NOP; NOP;
JUMP fir_start; NOP; NOP; NOP;
RTIj NOP; NOP; NOP
RTI; NOP; NOP; NOP
RTI; NOP; NOP; NOP

{initializations}

':;::l~~l , ... :.:.:.: ::: .. : :: ... ,:::.:.::.:::;.:::~:.::=:'
Ui

{restart interrupt}
{IRQ2 interrupt}
{HIP write interrupt}
{HIP read interrupt}
{SPORTO transmit int}
{SPORTO receive int}
{SPORTl transmit int}
{SPORTl receive int}
{TIMER interrupt}

D res tarter : LO=%data_buffer;
L4=%coefficient;

{setup circular buffer length}
{setup circular buffer length}

clear:

MO=lj
M4=lj

IO="data_buffer;
I4="coefficient;

CNTR=%data_buffer;
DO clear UNTIL CE;
DM(IO,MO)=O;

{modify=l for increment through buffers}

{point to data start}
{point to coeff start}

{clear data buffer}

{set up memory-mapped control
E AXO=191;

registers}

mainloop:

.ENDMOD;

DM (Ox3FF4) =AXO j

AXO=3;
DM(Ox3FF5)=AXOj
AXO=Ox69B7;
DM(Ox3FF6)=AXOj

AXO=Ox7000;
DM (Ox3FFE) =AXO j

AXO=OxlOOO;
DM (Ox3FFF) =AXO j

ICNTL = OxOO;
IMASK = Ox0018j
IDLE;
JUMP mainloopj

{set up divide value for 8KHz RFS}

{1.536MHz internal serial clock}

{multichannel disabled}
{internally generated serial clock}
{receive frame sync required}
{receive width O}
{transmit frame sync required}
{transmit width O}
{int transmit frame sync disabled}
{int receive frame sync enabled}
{u-law companding}
{8 bit words}

{DM wait states: }
{ Ox3400-0x37FF 7 waits}
{ all else 0 waits}

{SPORTO enabled}
{boot from boot page a}
{a PM waits}
{O boot memory waits}

{enable SPORTa interrupt only}
{wait for interrupt}

Listing 12.1 Program Example Listing (Setup & Main Loop Routine) 12-9

12-10

Progranlining

.CONST

Listing 12.1 (cont.) Include File, Constants Initialization

12.2.1 Example Program: Setup Routine Discussion
The setup and main loop routine performs initialization and then loops on
the IDLE instruction to wait until the receive interrupt from SPORTO
occurs. The filter is interrupt-driven. When the interrupt occurs control
shifts to the interrupt service routine (shown in Listing 12.2).

Line A of the program shows that the constant declarations are contained
in a separate file.

Section B of the program includes the assembler directives defining two
circular buffers in on-chip memory: one in data memory RAM (used to
hold a delay line of samples) and one in program memory RAM (used to
store coefficients for the filter). The coefficients are actually loaded from
an external file by the linker. These values can be changed without
reassembling; only another linking is required.

Section C shows the setup of interrupts. Since this code module is located
at absolute address zero (as indicated by the ABS qualifier in the
.MODULE directive), the first instruction is placed at the restart vector:
address OxOOOO. The first location is the restart vector instruction, which
jumps to the routine restarter. Interrupt vectors that are not used are filled
with a return from interrupt instruction followed by NOPs. (Since only
one interrupt will be enabled, this is only a thorough programming
practice rather than a necessity.) The SPORTO receive interrupt vector
jumps to the interrupt service routine.

Section D, restarter, sets up the index (I), length (L), and modify (M)
registers used to address the two circular buffers. A non-zero value for
length activates the processor's modulus logic. Each time the interrupt
occurs, the I register pointers advance one position through the buffers.
The clear loop zeroes all values in the data memory buffer.

Section E, after clear, sets up the processor's memory-mapped control
registers used in this system. See Appendix E for control register
initialization information.

Programming

SPORTO is set up to generate the serial clock internally at 1.536 MHz,
based on a processor clock rate of 12.288 MHz. The RFS and TFS signals
are both required and the RFS signal is generated internally at 8 kHz,
while the TFS signal comes from the external device communicating with
the processor.

Finally, SPORTO is enabled and the interrupts are enabled. Now the IDLE
instruction causes the processor to wait for interrupts. After the return
from interrupt instruction, execution resumes at the instruction following
the IDLE instruction. Once these setup instructions have been executed,
all further activity takes place in the interrupt service routine, shown in
Listing 12.2.

.MODULE/ROM fir_routine;

.INCLUDE <const.h>;

. ENTRY fir_start;

.EXTERNAL data_buffer, coefficient;

{relocatable FIR interrupt module}
{include constant declarations}
{make label visible outside module}
{make globals accessible in module}

{interrupt service routine code}

CNTR = taps_less_one;
SI = RXOi

{N-l passes within DO UNTIL}
{read from SPORTO}

DM(IO,MO) = SI;
MR=O, MYO=PM(I4,M4), MXO=DM(IO,MO);
DO convolution UNTIL CE;

{transfer data to buffer}
{set up multiplier for loop}
{CE = counter expired}

convolution: MR=MR+MXO*MYO(SS), MYO=PM(I4,M4), MXO=DM(IO,MO);
{MAC these, fetch next}

MR=MR+MXO*MYO (RND) ; {Nth pass with rounding}
TXO = MR1; {wri te to sport}
RTI; {return from interrupt}

.ENDMOD;

Listing 12.2 Interrupt Routine

12.2.2 Example Program: Interrupt Routine Discussion
This subroutine transfers the received data to the next location in the
circular buffer (overwriting the oldest sample). All samples and
coefficients are then multiplied and the products are accumulated to
produce the next output value. The subroutine checks for overflow and
saturates the output value to the appropriate full scale, then writes the
result to the transmit section of SPORTO and returns.

The first four lines of the listing declare the code module (which is
relocatable rather than placed at an absolute address), include the same
file of constants, and make the entry point visible to the main routine with
the.ENTRY directive. Likewise, the .EXTERNAL directive makes the
main routine labels visible in the interrupt routine.

12 -11

12-12

The subroutine begins by loading the counter register (CNTR). The new
sample is read from SPORTO's receive data register, RXO, into the SI
register; the choice of SI is of no particular significance. Then, the data is
written into the data buffer. Because of the automatic circular buffer
addressing, the new data overwrites the oldest sample. The N-most recent
samples are always in the buffer.

The fourth instruction of the routine, MR=O I MYO=PM (I4 I M4) I

MXO=DM (IO I MO), zeroes the multiplier result register (MR) and fetches
the first two operands. This instruction accesses both program and data
memory but still executes in a single cycle because of the processor's
architecture.

The convolution label identifies the loop itself, consisting of only two
instructions, one setting up the loop (DO UNTIL) and one "inside" the
loop. The MAC instruction multiplies and accumulates the previous set of
operands while fetching the next ones from each memory. This instruction
also accesses both memories.

The final value is transferred back to SPORTO, to the transmit data register
TXO, to be sent to the communicating device.

Hardware Examples

13.1 OVERVIEW
This chapter describes some hardware examples of circuits that can be
interfaced to the ADSP-21xx serial ports, host interface port (HIP), or the
memory port. As with any hardware design, it is important that timing
information be carefully analyzed. Therefore, the data sheet for the
particular ADSP-2100 family processor used should be used in addition to
the information presented in this chapter.

13

13 -1

13-2

13.2 BOOT LOADING FROM HOST USING BUS REQUEST & GRANT
All ADSP-2100 family processors that have internal program memory
RAM support boot loading. With boot loading, the processor reads
instructions from a byte-wide external memory device (usually an
EPROM) over the memory interface and stores the instructions in the 24-
bit wide internal program memory. Once the external memory device is
set up to provide bytes in the proper order, the boot operation can run
automatically and transparently at reset or when forced in software. See
Chapter 10, "Memory Interface."

In some systems where the ADSP-21 xx is controlled by a host processor, it
is necessary to boot the DSP directly from the host. In this case the host,
rather than an EPROM, is the source of bytes to be loaded into on-chip
memory. If the ADSP-21xx has a host interface port (such as the ADSP-
2111), it can perform automatic boot loading through this port. If the
processor does not have a host interface port, however, it can still boot
through the memory interface using the bus request signal, as described
below.

This example shows a simple way to download programs from a host
processor to the internal program memory of an ADSP-21xx. There are
several techniques for connecting a DSP processor to a host. The choice of
which technique to use depends upon the I/O structure of the host,
availability of 110 port lines, and the amount of address decoding logic
already available in the system.

Figure 13.1 illustrates a minimal system implementation to allow a
microcontroller to boot an ADSP-21xx. The only hardware required is a D­
type flip-flop and a 5 kQ resistor. The resistor is used to pull the ADSP-
21xx's BNIS pin (Boot Memory Select) high.

The ADSP-21xx automatically enters its booting sequence after the
processor is reset (when the MMAP pin is tied low) or when software
initiates a reboot operation. When the ADSP-21xx begins to fetch a byte
from external boot memory (in this case, the host processor), it asserts
BNIS. When BNIS goes low, the flip-flop is preset and the Q output
brought low. This low signal asserts BR (bus request) on the ADSP-21xx.
When bus request is recognized by the ADSP-21xx, the current execution
cycle is allowed to finish and then processor operation is suspended. The
ADSP-21xx then asserts BG (bus grant) in the next cycle (after BR is
recognized) .

Hardware Examples 13

voo

5kn
<

PBS - RESET

-

t BMS
Host

Microcontroller ADSP-21xx

(Port Bits) PB9 - 0
PR Q

74LS74

- ~CLK - - BR PB10 Q - ..

Can Be Polled .- BG
If Necessary

PBO-7 ~ - OS-15
.... S

Figure 13.1 ADSP-21 xx Booting From Host

13-3

13-4

!; .. :;.~:.:~ .. :i.·.:::~:::::::: .. :l.1 ••• :~ •• :i .. : .. :~ .. :1 .. : ... :: ... :: .. :: ::.'.::.:~:~.:~.::: :~.:.:: :~ .. :: :~ :~ .. :; .. :.:~~::::.: ... :: ... :~::.:~ .. :: ... :;.:·:::·.·.:' ... :.:.:l.:::::.:l .. :~.~ :~:.~.::.· ... :~ .. :: .. ::: :f ... :~;.::.; ... :: : .. :: .. : .. : .. :~.:r.:::.: •• :·::.:· •• ::.; •• :~.:~:.:·.:~:~· •• :~.:;:·.:.:f •. :: :f:.:r .. :;.:.:~.:.::.:::::.:.::.· .. :~ .• ::.':::· ..• ::·.: .. ·.::.:·.:: .. :::::·:l .• ::.:. !~r:;~;:;~·::~:Ai' :~i"'~~i~ i~i~::::i~~::~i~i:~~::~l: iiii! ::l:::~:::i::~~< . ~~l:;:;;;:;;::::Ji~~:::. ;1~r;~;1. it i~~~i f~f~: 11111:::::J1: if~~: :~t:~;~~:;:: ;;;~;:~;}li

When a low-level signal at the D input is clocked into the flip-flop, the Q
output is brought high, deasserting BR.

The bus request pin (BR) of the ADSP-21xx is used to stop and
synchronize the booting process. The host releases bus request, causing
the ADSP-21xx to read one byte of boot data. During the read operation
the BMS pin is asserted, which in turn causes the BR pin to be asserted
and the ADSP-21xx to be put back into a bus request state. The ADSP-21xx
remains suspended, waiting for the next byte of boot data.

Three programmable port bits of the microcontroller (PB 8-10) are used to
provide the handshake mechanism for the transfer of each byte of boot
data. Alternately, PB9 and PB10 could be implemented as a memory­
mapped port location. PB8 is used to bring the ADSP-21xx out of reset,
starting the boot process. Note that if PB8 is not low at power-up; the
ADSP-21xx will start executing undefined instructions until PB8 is
brought low.

The boot data is presented by the microcontroller either through 8 port
bits (PBO-7) or through a memory-mapped port. The PBO-7 bits should be
put into a high-impedance state after the boot is complete, to prevent bus
contention if the ADSP-21xx tries to write to external memories or
peripherals ..

A typical boot sequence for this system is as follows:

1.) Bring PB8 low to reset the ADSP-21xx.

2.) Clock a high state into the flip-flop with PB9 and PB10 to bring BR low.

3.) Bring PB8 high to bring the ADSP-21xx out of reset.

4.) Place a byte of boot data on the data bus (PBO-7.).

5.) Clock a low state into the flip-flop with PB9 and PB10 to bring BR high.

6.) Wait a minimum of six processor cycles while the ADSP-21xx fetches
the data byte and the flip-flop asserts BR.

7.) Repeat steps 4, 5, and 6 for each byte of boot data. After the last
iteration, the ADSP-21xx will automatically start execution.

Note: The proper loading sequence for boot data must be followed (Le. the
order in which the host passes bytes to the ADSP-21xx). This sequence is
described in the Chapter 10, "Memory Interface." To create a file for
booting, use the PROM Splitter utility of the ADSP-2100 Family
Development Software. The PROM Splitter automatically organizes the
bytes in the proper order for booting.

13.3 SERIAL PORT TO CODEC INTERFACE
A codec (COder/DECoder) incorporates analog-to-digital conversion,
digital-to-analog conversion, and filtering in one device. The codec shown
in this example also performs pulse-code modulation (PCM) encoding and
decoding according to the CCITT f.l-Iaw standard. PCM compresses digital
data so that fewer bits are needed to store the same information. The
ADSP-21xx serial ports have both f.l-Iaw and A-law companding
(compressing/ expanding) capability.

In the example described here, a codec converts its analog input to digital
data, compresses it and sends it serially to the SPORT on an ADSP-21xx
processor. At the same time, the processor sends compressed serial data
via the SPORT to the codec, which expands the data and converts the
result to an analog signal.

13-5

From Input
Amplifier

To Output
Amplifier -

13-6

Figure 13.2 shows an industry standard Jl-Iaw companding codec
connected to a serial port (in this case, SPORTO) on an ADSP-21xx
processor. The codec's analog input at VFXI+ is internally amplified by a
gain which is controlled by the resistor combination at GSX and VFXI-.
The gain is

20 x log (R1 + R2) /R2

in this case, 20 log 2.

The ADSP-21xx controls co dec operation by supplying master and bit
clock signals. In the configuration shown, the codec transmit and receive
sections operate synchronously. MCLKR and MCLKX are the master
clocks for the receive and transmit sections of the codec, respectively.
BCLKX is the bit clock and in this configuration is used for clocking both
received and transmitted serial data. MCLKR, MCLKX and BCLKX must
be synchronous and in this case they are the same signal, namely the
SCLKO output generated by the ADSP-21xx processor. The BCLKR/
CLKSEL input, tied low, selects the frequency of MCLKX to be 2.048 MHz.
The ADSP-21xx must be programmed for internal SCLKO generation at
2.048 MHz.

u;; Digital
BClKRlClKSEl Ground

MClKR - SClKO
CODEC

BClKX
.. I

(National .. T
Seminconductor MClKX ADSP-21xx

TP3054) FSR
.. ..

TFSO (Serial Port 0) -]
p

DR - OTO -- 1 ..
VFXI+ FSX - RFSO

ox - ORO

VFRO

Figure 13.2 ADSP·21xx Serial Port (SPORTO) To CODEC

The processor uses frame synchronization signals to tell the codec to send
and receive data. To transmit data to the codec, it sends a TFSO pulse to
the FSR input of the codec and then outputs the eight bits on DTO on the
next eight serial clock periods. The codec receives the data on its DR input.
Likewise, the processor initiates a data receive operation by sending an
RFSO pulse to the codec's FSX input, which causes the code.c to output
eight bits on its DX output on the next eight serial clock periods. The
processor receives the data on its DRO input. The ADSP-21xx must be
programmed to use normal framing, 8-bit data words, and internal, active­
high frame sync generation.

The ADSP-21xx code shown in Listing 13.1 configures SPORTO for
operation as required in this example:

• Internally generated serial clock
• 2.048 MHz serial clock frequency
• Both transmit and receive frame syncs required
• Use normal framing for both transmit and receive
• Internally generated transmit and receive frame syncs
• Both frame syncs active high
• Word length of eight bits
• /-l-law companding

This code assumes the processor operating at 12.288 MHz. The code also
sets up the processor to request data from the codec at an 8 kHz rate (this
register is not. initialized at reset and should always be written before the
SPORT is enabled if RFS is generated internally). The processor transmits
data as needed by the program it is executing.

AXO=Ox6927j
DM (Ox3FF6) =AXO i

AXO=2j
DM (Ox3FF5) =AXO i

AXO=255i
DM (Ox3FF4) =AXO j

AXO=Ox1038j
DM(Ox3FFF) =AXO j

{Int SCLK, RFS/TFS req, norm framing,}
{generate RFS, active HI, Mu-law, word length 8}

{value of SCLKDIV for 2.048 MHz}

{with a 12.888 MHz CLKOUT}

{RFSDIV=256, 256 SCLKs between}
{frame syncs, 8 kHz framing}

{enable SPORTO only, leave defaults}

Listing 13.1 Serial Port Initialization Example

13-7

13 -8

.. :
:.:.::.::.·.:.: ... ~ .. :.::::::::·:.::l.: .. :.:~.:::~::.:.:: .:.:.:::.: :;.::~:.:~:~.~.::~:.:;:~::.~:::;"::. .:.:~:.: .. ;.:.:;:.: .. :.:;::: ::.: .. ;.:~.;.: ,;:.:::;::.: .. :::.:.:~.~ .. ::.~ .. :::~,::.:::~l:.:; .. : .. : .. :.::.::.:: .. : .. :.;.~;::: .. : .. :: .. :::.:.: ·.:~ r : .. :.:::: :; ... :::.~:.: :~.~ .. :~.:::; .. :.:;: .. ~::.::. :.:1.: .. ~.;:.::.: .. ~:.:;:::: :;.:::.:;.':; .. ::~.:~":::~':.::.~.::::::~ .. :~~::: ~it::::::;::::;l;:.i;l;:: ii;;::::;;;;: ;l:::;;:::::;:l;;; i;l;l::;:;;;::· ~~~~ ;;f:::;;::· ;::f:::;::·
. iiI;;;;;;;:::lll;ilt;:: :lt~~ti ili1 iiii iiil !l!li:;::}~ lili It~~;:;~;~: ;;~~~~~;;iili:

13.4 SERIAL PORT TO OAC INTERFACE
Any DSP process must ultimately output analog information. The serial
port of the ADSP-21xx processors can send data directly to a DAC (digital­
to-analog converter) for conversion to an analog signal.

Analog Devices' AD766 is a DAC that requires no extra logic to interface
to the SPORT. The AD766 receives 16-bit data words serially, MSB first,
which it then converts to an analog signal. Its digital interface consists of
three inputs: DATA, the serial data input; C[K, for clocking data into the
DAC (active low because data is clocked on the falling edge) and LE (latch
enable), which latches each 16-bit word into the conversion section of the
DAC.

The serial port connection to the AD766 is shown in Figure 13.3. In this
configuration, the processor generates SCLK internally and provides it to
the DAC. Serial data is output from the DT pin to the DATA input of the
DAC. The TFS signal provides the DAC's LE input.

ADSP-21xx AD766

TFS ... lE
SPORT DT ... DATA VOUT ~

SClK ClK

Figure 13.3 Serial Port Interface To A0766 OAe

LE should go low on the clock cycle after the LSB (sixteenth bit) of a word
is transmitted, to latch the 16-bit word into the DAC. To provide this
timing, TFS is configured for the alternate framing mode, non-inverted; it
goes high when the first bit is transmitted and low after the last bit is
transmitted. This low-going edge latches the word into the AD766. The
only restriction is that the SPORT cannot transmit continuously; there
must be a break in between the last bit of one word and the first bit of the
next so that TFS can go low. Figure 13.4 shows the timing.

!:!: ::::: .:.: :.:.:.:.:.:.:.:. .:.:.

· ... :l .. :~.· ... :l .. :l~.·:::::::~ .. ,::.: .. ;.· ... :l.: .. ;.· ..• :1 : ... :::.:: ... :~ ... ::.:~::,.:::~: .. ~ .. :; :~ .. :~ :: ... :l.: .. l .••• :;.: •• ;.~.: :::: .. ,'::.'::l •• :; ... :~.:;:;::::::. :: ..•• :·.r ... :f ... :l ... :~ ·;~.:1 .• : .. ; ... :::: ... : .. : .. ~,:l~~:1 ... :~ •.. :: .•. :.: .. : •.. :;.:l.~r .::.:: ... :: ... :: .. :::.,: .. ::.: .. ,,::.:~, :~.::.: :;..... .: .. :~ :; .. :1 ...• :;::::: ": .. : .. :; .. :1 ... :l •. ::.::::.·.:::: •. :: .. :1 .. :l.:,·:: 1~;r~;:~:;::' ~::;~:~::~f :::::::::l:l: :l~l;f:::~;~::::;:;l;;: ~l~l~;::::;l:: l~~~ ,::f::;:~:: ::It::~:~ il1;:;:;::::: .:;;i~l:t::l;}r !lili !ilil ilili 11!::::::f: lili! i~t:;:;;;~:: .;;;~~:;;:~~;

SCLK

DT : LSB) ~

TFS --.I r I
Latches data Into DAC

Figure 13.4 SPORT To AD766 DAC Timing

The configuration of the SPORT control registers for this application is
shown in Figure 13.5.

SPORTO Control Register: Ox3FF6
SPORT1 Control Register: Ox3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I J SCLK generated internally

Transmit framing required

Word Length = 16 bits

Data format = right justify, zero fill

Alternate transmit framing -_ ~-------- Non-inverted TFS

Internally generated TFS -------'

Figure 13.5 SPORT To AD766 DAC Control Register Settings

13-9

13-10

13.5 SERIAL PORT TO ADC INTERFACE
An ADC (analog-to-digital converter) converts an analog signal to digital
samples that a DSP processor can operate on. The ADSP-21xx processors
can receive data from an ADC directly through a serial port.

Analog Devices' AD7872 is an ADC that requires no extra logic to
interface to the SPORT. The AD7872 converts an analog signal to 14-bit
samples. Each sample is padded with two zero MSBs to yield 16-bit
samples. The AD7872 outputs each sample serially, MSB first. Its digital
interface consists of three pins: SDAT A, the serial data output; SCLK, for
clocking data out; and SSTRB, (serial strobe), which frames each serial
word.

The serial port connection to the AD7872 is shown in Figure 13.6. The
timer regulates sampling via the CON VST input at a constant frequency.
Instead of the timer, an unused serial clock or flag OUgjut from the ADSP-
21xx processor can be programmed to generate the C N VST signal. The
AD7872 generates SCLK internally and provides it to the processor. With
the CONTROL input held at -5 V, the SCLK signal is continuous, running
even when no data is being output.

+5V

ADSP-21xx

RFS ~--+---+--~--I SSTRB
SPORT DR SDATA

SCLK SCLK

Figure 13.6 Serial Port Interface To AD7872 ADC

AD7872

CONVST

CONTROL

Serial data is output from the SDATA output of the ADC to the
processor' s~.fr~n. The SSTRB signal provides the RFS input to the
processor. goes low when the first bit is transmitted to the
processor. Figure 13.7 shows the timing of the serial data transfer.

-5V

:;::: ;:::: .:.: :.:.:.:.:.:.:.: .:.:-

.:

.. f ... :t .. : .. :" ... :t.: .. ,.:::::::: ... :~:.: .. r .. :·:t::f :i .: :' .. : .. : ::.: .. : .. ::.: ... :.:::;::.: : .. ' :~.: .. ' :: : ... :'::·.f ... :~·.::~:::~ :: ... : :; ... : .. ' ... :; .. ::::.:.:::;.:: .. = .. : .. : :;: .. :,,':'.:: \.::.:,.·.::l .. : .. :: ::::r:~~~.· ... ' :: .. : :.: :.:r ... ,.;;· :.: .. · ... :: :'.·:::::.··: .. ·.·:: ... :·.:: .. :; ... :f::; :'.. ..::.: .. : .. '.: .. :~.:.:~ ... :;:~:: : ... :: .. :;.: .. ~ ..• :f.::.·.::·: .. :.::.: .. ·.:: .. : .. '.:~.;.:~ ~r;:~~~:~~; ::;~1:.::~;:{ :::::!:::~:;: ~~~;~:;::~~~:;::::l~:. ~l;;:::::::~:: l;~~~ .::~~~::::::: .::::: :::.
l~t;:;:;:;;::i?~h, :i~t~:tl :~l~: ~l~l :~:1 .!!!!::::::} ~lllllt~;~;:;~: :;:t~~lll'

SCLK

DR \ MSB(O) o /

RFS

Figure 13.7 SPORT To AD7872 ADC Timing

RFS is configured for the alternate framing mode, externally generated,
with inverted (active low) logic. The SPORT must also be programmed for
external serial clock and a serial word length of 16 bits. The configuration
of the SPORT control register for this application is shown in Figure 13.8.

SPORTO Control Register: Ox3FF6
SPORT1 Control Register: Ox3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

SCLK generated I J
externally

Receive framing
required

Alternate receive
framing

Internally
generated RFS

Word Length = 16 bits

Data format = right justify, zero fill

Inverted RFS

Figure 13.8 SPORT To AD7872 ADC Control Register Settings

13 -11

13-12

... :~:;.: ... :~.: .. ::.~:::::~::.:.: ... :~ ... :~.' .. :~.:~ .. : .. :: ... :: ... :: ... :~.·.::~.:~ .. :~:~.:~.: ... :~ ... :l.:~:. :l.: ... :~ ... :~.: .. ::.:.:::;:: ::; .. : ... :; ... :l:: •• ::::::.::.:: .••• :! ... :!.~ .. :: .. :l ..• :: ~~~.;:: .. ,.:~ .. ::.: ... :' .. :;.:;~.;.:~.:~.: .. : ... : :,.:.::.:t .. :?' :: .•• ::.: •• :: ••• :~ •• ::.:: •.. ::.:~:~ •• :~ •.• :~ ••• :~ .•• :~.' .. :' •• :~ .•• :~.: •• ::.:;:::::: :: •.• :~.: .•• ::,.:~.::.~.:.::~~.::.:.::.:;:.:::: •. :. !~!t:;:;:;:; ·:t:l::: .::f::l~::~f:~:::tl::lj~:: ~~~l;:':::~:~. lllll.:::::::::j:::. :~:~;:::~:::
. ., . . . !i~t;:;;;:: :::f~~r.~:. ~~lt~;l~l !~~ l~j! ~~! 1111~A~: !ji~! :!!r;~;~~: ;;;;;~~;~;l~!i'

13.6 SERIAL PORT TO SERIAL PORT INTERFACE
The serial ports provide a convenient way to transfer data between ADSP-
21xx processors without using external memory or the memory bus and
without halting either processor. The serial ports are connected as shown
in Figure 13.9-in this example, SPORT 1 of processor #1 is connected to
SPORTO of processor #2.

The serial clock used by both processors is generated internally by
processor #1. Processor #2 is configured to receive its serial clock
externally. The serial port control registers should be set up with the
following parameters.

Processor 1, SPORT1
SCLKDIV = system-dependent
SLEN = system-dependent
ISCLK = 1
TFSR= 1
RFSR= 1
IRFS = 0
ITFS = 1
RFSDIV = don't care

Processor 2, SPORTO
SCLKDIV = system-dependent
SLEN = system-dependent
ISCLK=O
TFSR= 1
RFSR= 1
IRFS =0
ITFS = 1
RFSDIV = don't care

TFSWI = RFSWI = TFSW2 = RFSW2 = system-dependent
INVRFSI = INVTFSI = INVRFS2 = INVTFS2 = system-dependent

RFS1 TFSO

TFS1 RFSO
ADSP-21xx SPORT1 OT1 ORO SPORTO ADSP-21xx

#1 ... #2
OR1 OTO

SCLK1 ... SCLKO ~

Figure 13.9 Serial Port Interface Between Two ADSP·21 xx Processors

Frame synchronization is used to coordinate the transfer of serial data.
Each processor generates a transmit frame sync (TFS) signal internally and
expects to receive its receive frame sync (RFS) signal externally, from the
other processor. The framing mode can be normal or alternate, but must
be the same for both SPORTs. Likewise, the SPORTs must be configured
for the same serial word length and companding type, if companding is
used, or data format if companding is not used.

::::; :::!: .:.: .:.:.

':: :;.':: :.:: ... : .. ::::::::::: ~ .. :::::.": ... :':~:" :::::.::.::.:: .. ,?, .. :.: .. : :.; :: .. ,'.::.:; .. :' ... :.... ',: .. : .. :;.':: : .. ,'::: .. :::: :: .. : .. :.:~ .. ::: .. ::::::::: .. ::,:.': .. :; .. ~:: ... : .. :; .. ~:: ... :: ·~l.' :~.::: : : ... :,.·:, ... 1;:.: .. :: ::.:: .. : ... ::,.':.:::.l :: .. :'::.:.: .. ::=.: .• , :.:' :: •.• ,::, •. :~:.::: •. ~: •. :, .• :: •.•.. : .. : =,.:::: .. :,.:;.,:: ... ::::: :: ... : .. : .. :;::: ... :::::: .. ':: .. :: ... :.: .. ::.':~,:.:,,::' ~ i~~t~:~:~:~:· '::;~:~;:~f' :::::::::~~: .~m::::~~~::::;:~~:~: ~~1~i:::::l;::. @l.::~;:;::::~::. ::~~:::::;::~
Ii:::;:;:;:;: itt:: ,:f;:ltliliilil !lil! 1[lt::::Jl~ilil 'ilt:~;;~~:: ·:;;;~~;;~l;l

The autobuffering capability of the serial ports can be used in this
configuration to transfer an entire buffer of data from the data memory
space of one processor to the other's, without interrupt overhead. The serial
ports handshake automatically-when one processor writes its' TXO
register, the data is automatically transmitted to the other processor's RXO
register and an autobuffer cycle is generated.

In fact, autobuffer transfers can occur in both directions at the same time,
in the background, while each processor is executing some other primary
function. Each SPORT will generate an interrupt when the autobuffer
transfer is complete. The description of autobuffering in the Serial Port
chapter shows an example of the code for setting up autobuffering.

13.7 80C51 INTERFACE TO HOST INTERFACE PORT
The host interface port (HIP) on the ADSP-2111, ADSP-2171, and ADSP-
21mspSx processors facilitates communication with a host microcomputer
such as the Intel80CSl. An example connection is shown in Figure 13.10.
In this example, the HIP data registers (HDRs) and HIP status registers
(HSRs) of the ADSP-2111 occupy eight contiguous locations in the
memory space of the 80CS1.

HSEL
H ADDRESS I 8/

P2.0-2.7 DECODE I /
ADSP-2111

ALE - ALE
- - - 80C51 HRD - RD
--
HWR - WR

HADO-7 - 8/ - PO.O-O.7 /

HMDO HMD1 HSIZE

J... I I
+5V +5V

Figure 13.10 Host Port Interface to 80C51 Microcomputer

13-13

13 -14

~:,:~.~.:~':~.::.~.:~:;.:~:::<:::~::: •• ~ •• :~:~,:~~ •• ::.::~:~ .• ::.:: •.••• :::·.:::·:~:·.::·.:·::,.:·.::~:,:'.:f .. :; ...• :~.,::,' •... :(::.: .•... :~: .. :~~:::: ""'.::, .. :~:'.:;.'::.,::,::'::.'."::"::';::.::.~.,:~:::.:~~::.:. ~r.;,:.::, ..• :~:.::.::.::~:::·:~~~,·:;, ... :~ .. : :, ... ::,:.,;,::~:' , .• ,: ... ::::., :~:.::: .• :.: ... : .. : ... ; .. :;, :~ .. :~:'.::. ·:,,~.·.:l.·:~::·.:~,','~.;;::: ,:.::,'.·.:: •• :r.,.,l:·.::~::·.:·:· .. :·.:·::!,;::;,.:~.' lllt~:~:~:~: ":t::f ::::",:::~:: !!:!:::::!!:;:,:::!!!: ,!!~:::::::~::. !l![:::f:::!::: ::!f::::::.
.. .,., " lilt;:;;;~:,:;:}%::. ;~il~~;~;ilil.liii: i~l' lill il/lf::}i! ilil ~llt~~~:: :;;;;~;}l:

To access one of the HIP registers, the 80CS1 asserts ALE and outputs a
16-bit address, with the upper half on P2.0-2.7 and the lower half on
PO.O-O.7. The upper half is decoded to select the HIP via HSEL, and the
lower half selects the HIP register via HADO-7. The ALE assertion causes
the HIP to latch the address so that the 8-bit data can then be transferred
on the HADO-7lines. The 80CS1 asserts WR for a write or RD for a read.

In this example, the 80CS1 reads and writes 8-bit data, so the ADSP-2111's
HSIZE input is tied high. Only the lower eight bits of each HIP register are
used. HMDO is tied low because the 80CS1 uses separate read and write
strobes rather than a single Read/WrIte line. HMD1 is tied high because
the address and data use the same bus (time-multiplexed using ALE)
rather than separate buses.

Software Examples

14.1 OVERVIEW
This chapter provides a brief summary of the development process that you
use to create executable programs for the ADSP-2100 family processors. The
summary is followed by a number of software examples that can give you an
idea of how to write your own applications.

The software examples presented in this chapter are used a variety of DSP
operations. The FIR filter and cascaded biquad IIR filter are general filter
algorithms that can be tailored to many applications. Matrix multiplication is
used in image processing and other areas requiring vector operations. The sine
function is required for many scientific calculations. The FFf (fast Fourier
transform) has wide application in signal analysis. Each of these examples is
described in greater detail in Digital Signal Processing Applications Using The
ADSP-2100 Family, Volume 1, available from Prentice Hall. They are presented
here to show some aspects of typical programs.

The FFf example is a complete program, showing a subroutine that performs
the FFf and a main calling program that initializes registers and calls the FFT
subroutine as well as an auxiliary routine.

Each of the other examples is shown as a subroutine in its own module. The
module starts with a .MODULE directive that names the module and ends
with the .ENDMOD directive. The subroutine can be called from a program in
another module that declares the starting label of the subroutine as an external
symbol. This is the same label that is declared with the .ENTRY directive in the
subroutine module. The last instruction in each subroutine is the RTS
instruction, which returns control to the calling program.

14

14-1

':~:;: .. :~.:~:' .. :~.' ... :!; ... :; : .. ::;::::·:~.~.':j::.:~ ... :;:.:l .. ::.:: .:.:~.'~ .. ;·.:~.;.:~.·:;.:.:;:;;:;;:::;.'::.:i: .. :~.· .. ::.'.::.:: :: .. :~ .. :;:;:: .. :~.:;::::.; .. ::.:~: .. ::.:;: .. :~.::. :;~ ... :: .. :~.; .. :~.' :~~\ .. :; .. :~.~ ... :: ... :~ ... :~.: ·:~.;:~.: :, ... : : ... :! .• :~.l;l:.:~: .. :'.' .. :.:: :! .. :;=:J .: .. ::: ... : ... :: .. :t.::.:~.:~.:~.:~ ... :~ ... :~ :~' .. :: :1 ... :~: .. :: :~ .. :!:;:: •.... :; .• ;.: :;: •. :~ .. :::~ .. ::.:~::.:: .•. : .. :::~ .. :'.: Ie~~~~~: ':;:!':"::!;!" .:;:;::::'!;;. ;!;!::::l::::;;~;, !;~;~:::::!;;:. ~~~ .::;;;:::'!:,. ;:f::~;::
. '~~I;;;;;;;;;: .::;~r~i:::. :!lr;~)~~~i ii~~ ~~~ ~~~~ 1111~::::::~ll~ ~~~~ :llt;~;~~~:: ;;~:;~;;~11l~:

14-2

Each module is prefaced by a comment block that provides the following
information:

Calling Parameters

Return Values

Altered Registers

Computation Time

Register values that the calling program must
set before calling the subroutine

Registers that hold the results of the subroutine

Registers used by the subroutine. The calling
program must save them before calling the
subroutine and restore them afterward if it
needs to preserve their values.

The number of instruction cycles needed to
perform the subroutine

14.2 SYSTEM DEVELOPMENT PROCESS
The ADSP-2100 family of processors is supported by a complete set of
development tools. Programming aids and processor simulators facilitate
software design and debug. In-circuit emulators and demonstration
boards help in hardware prototyping.

The software development system includes several programs: System
Builder, Assembler, Linker, PROM Splitter, Simulators and C Compiler
with Runtime Library. These programs are described in detail in the
ADSP-2100 Family Assembler Tools & Simulator Manual, ADSP-2100 Family
C Tools Manual, and ADSP-2100 Family C Runtime Library Manual.

Figure 14.1 shows a flow chart of the system development process.

The development process begins with the task of describing the hardware
environment for the development software. You create a system
specification file using a text editor. This file contains simple directives
that describe the locations of memory and I/O ports, the type of
processor, and the state of the MMAP pin in the target hardware
configuration. The system builder reads this file and generates an
architecture description file which passes information to the linker,
simulator and emulator.

You begin code generation by creating source code files in C language or
assembly language. A module is a unit of assembly language comprising a
main program, subroutine, or data variable declarations. C programmers

STEP 1:DESCRIBE ARCHITECTURE

STEP 2:GENERATE CODE

STEP 3:DEBUG SOFTWARE

EZ·LAB"" EVALUATION BOARD

1C======f THIRD.PARTY P~~LUG.IN CARDS SOFTWARE SIMULATOR K:===========:

STEP 4:DEBUG IN TARGET SYSTEM

STEP 5:MANUFACTURE FINAL SYSTEM

o = USER FILE OR HARDWARE

CJ = SOFTWARE DEVELOPMENT TOOL

C) = HARDWARE DEVELOPMENT TOOL

EZ·ICE"" EMULATOR

Figure 14.1 ADSP·2100 Family System Development Process

write C language files and use the C compiler to create assembly code modules
from them. Assembly language programmers write assembly code modules
directly. Each code module is assembled separately by the assembler.

The linker links several modules together to form an executable program
(memory image file). The linker reads the target hardware information from the
architecture description file to determine appropriate addresses for code and
data. In the assembly modules you may specify each code/ data fragment as
completely relocatable, relocatable within a defined memory segment, or non­
relocatable (placed at an absolute address).

14-3

14-4

':.'.:~.'.' .. :~!.::.;.,::.:::;':~:;::.:;::;.:~.:;:' .. :;:;:'.:~: "" .. :; .. :~"':~"'~ .. ::::'::.:~.::'.~ ... : .. :~,.:; .. ::.,:, :·: .. :~,'.:~: .. :~.· ... :~.::.·':':i,,: •• :r ... :~: ... :; ... :f·:··, ~l~::~:· .•. ::.: .. :.: .. : •. : ... :;;::~;.·.:~,.: .. : .. :::.:' ... :' .• :;,:W : .. :: .. :: :: ... :t : ... :~·.::~: ... :~ ... :l.:~.: •• :~, •• ~::.:~: •• :~ .••• :~;, •• :.:;::: ::"::':;:":;';":'.:: •• :~:.::~.:.::: .• :;:~,.:~:.::., ~K~~~~~~ ··::~::.::~:r :::~:::::~::' :~:~:::;:~:t:::l:: !:l:l:::;:l:::; i~~ .::::;:::::::; "'f::::;::
• < < ~~I;';;;;;;;:,:Jll:,. ::l~t~~~~l~. ~l~l ~~' ~l~l !II::::':~~? ~~~l ~lt;~;~;~:: ;;;~;~;;~;lli;

The linker places non-relocatable code or data modules at the specified
memory addresses, provided the memory area has the correct attributes.
Relocatable objects are placed at addresses selected by the linker. The
linker generates a memory image file containing a single executable
program which may be loaded into a simulator or emulator for testing.

The simulator provides windows that display different portions of the
hardware environment. To replicate the target hardware, the simulator
configures its memory according to the architecture description file
generated by the system builder, and simulates memory-mapped I/O
ports. This simulation allows you to debug the system and analyze
performance before committing to a hardware prototype.

After fully simulating your system and software, you can use an EZ-ICE
in-circuit emulator in the prototype hardware to test circuitry, timing, and
real-time software execution.

The PROM splitter software tool translates the linker-output program
(memory image file) into an industry-standard file format for a PROM
programmer. Once you program the code in PROM devices and install an
ADSP-21xx processor into your prototype, it is ready to run.

14.3 SINGLE-PRECISION FIR TRANSVERSAL FILTER
An FIR transversal filter structure can be obtained directly from the
equation for discrete-time convolution.

y(n) =
N-l

1 hk(n) x(n-k)
k=O

In this equation, x(n) and y(n) represent the input to and output from the
filter at time n. The output y(n) is formed as a weighted linear
combination of the current and past input values of x, x(n-k). The weights,
hk(n), are the transversal filter coefficients at time n. In the equation,
x(n-k) represents the past value of the input signal "contained" in the
(k+ l)th tap of the transversal filter. For example, x(n), the present value of
the input signal, would correspond to the first tap, while x(n--42) would
correspond to the forty-third filter tap.

The subroutine that realizes the sum-of-products operation used in
computing the transversal filter is shown in Listing 14.1.

.MODULE fir_subi

FIR Transversal Filter Subroutine

Calling Parameters
10 -> Oldest input data value in delay line
LO = Filter length (N)
14 -> Beginning of filter coefficient table
L4 = Filter length (N)
Ml,MS = 1
CNTR = Filter length - 1 (N-1)

Return Values
MRl = Sum of products (rounded and saturated)
10 -> Oldest input data value in delay line
14 -> Beginning of filter coefficient table

Altered Registers
MXO,MYO,MR

computation Time
N - 1 + S + 2 cycles

All coefficients and data values are assumed to be
in 1.1S format .

. ENTRY firi

fir: MR=O, MXO=DM(IO,Ml), MYO=PM(I4,MS)i
DO sop UNTIL CEi

sop: MR=MR+MXO*MYO(SS), MXO=DM(IO,M1), MYO=PM(I4,MS)i
MR=MR+MXO*MYO(RND) i

IF MV SAT MRi
RTSi

.ENDMODi

Listing 14.1 Single-Precision FIR Transversal Filter

14-5

14-6

.~:; .. :r .. :i:~::;:::;::.::':: .. ::::~: ... :;.:~ .. :~.:. :~ ... :~ .. :~ .. :: .. :.:::::::.:: ... :; :~:;.:.:~ .. :: ·:·: .. :l.·.:~:' .. :~.·: ... :~~~ '::~:' .. ~.::.' .. :~.':.:j: .. ::::. ·:;:~ .. :~.·",::".: ... ; .. ::.;· .. :i.;~~:~ .. : :: ... : .. :;::.:; .. :~:W .:' .. :: ... ::: .. ::.:~:'.:~.:.:~.'.:::: .. ' .. :; .. :~.: ... ::.:':. ~:.: ... :~::.:: ... :~:::;:: ".;.:: .. :; ... :~::::.'::.:~:.::~.:.::.:; .. :.:':; .. ::;. !lr;~;~~:~; ':::~~:;:l~::-- ;:::::::~~~:: l~l~:::l:="t~: ~l~l:ii:::tl::. llll ::~::::;:~!::. ::l~:::::~:,:

. I:;:;:;:;,;, .::J{::: r:{;;tll ~l~l l~~1l1ll!II::::ilq I :!~~l;;;;~~~~:: ';;;;;;;;;l~l

14.4 CASCADED BIQUAD IIR FILTER
A second-order biquad IIR filter section is represented by the transfer
function (in the z-domain):

where All A21 BOI Bl and B2 are coefficients that determine the desired
impulse response of the system H(z). The corresponding difference
equation for a biquad section is:

Higher-order filters can be obtained by cascading several biquad sections
with appropriate coefficients. The biquad sections can be scaled separately
and then cascaded in order to minimize the coefficient quantization and
the recursive accumulation errors.

A subroutine that implements a high-order filter is shown in Listing 14.2.
A circular buffer in program memory contains the scaled biquad
coefficients. These coefficients are stored in the order: B2, BI , BOI A2 and A1
for each biquad. The individual biquad coefficient groups must be stored
in the order that the biquads are cascaded .

. MODULE

Nth order cascaded biquad filter subroutine

Calling Parameters:

SR1=input X(n)
10 -> delay line buffer for X(n-2), X(n-l),

Y(n-2), Y(n-1)
LO = 0
Ii -> scaling factors for each biquad section
L1 = 0 (in the case of a single biquad)
L1 = number of biquad sections

(for mUltiple biquads)
14 -> scaled biquad coefficients
L4 = 5 x [number of biquads]
MO, M4 = 1
Ml -3
M2 1 (in the case of multiple biquads)
M2 0 (in the case of a single biquad)
M3 (1 - length of delay line buffer)

Return Value:
SR1 = output sample Y(n)

Altered Registers:
SE, MXO, MX1, MYO, MR, SR

Computation Time (with N even) :
ADSP-2101/2102: (8 x N/2) + 5 cycles
ADSP-2100/2100A: (8 x N/2) + 5 + 5 cycles

All coefficients and data values are assumed to
be in 1.15 format

. ENTRY

biquad:

sections:

.ENDMODj

biquadj

CNTR = number_of_biquads
DO sections UNTIL CEj {Loop once for each biquad}

SE=DM(I1,M2) j {Scale factor for biquad}
MXO=DM(IO,MO), MYO=PM(I4,M4)j
MR=MXO*MYO(SS), MX1=DM(IO,MO), MYO=PM(I4,M4)j
MR=MR+MX1*MYO(SS), MYO=PM(I4,M4)j
MR=MR+SR1*MYO(SS), MXO=DM(IO,MO), MYO=PM(I4,M4)j
MR=MR+MXO*MYO(SS), MXO=DM(IO,M1), MYO=PM(I4,M4)j
DM(IO,MO)=MX1, MR=MR+MXO*MYO(RND)j
DM(IO,MO)=SR1, SR=ASHIFT MR1 (HI)j

DM(IO,MO) =MXOj
DM(IO ,M3) =SR1 j
RTSj

Listing 14.2 Cascaded Biquad IIR Filter

14.5 SINE APPROXIMATION
The following formula approximates the sine of the input variable x:

sin (x) = 3.140625x + 0.02026367x2 - 5.325196x3 + 0.5446778x4 + 1.800293xS

The approximation is accurate for any value of x from 0° to 90° (the first
quadrant). However, because sin(-x) = -sin(x) and sin(x) = sin(180° - x),
you can infer the sine of any angle from the sine of an angle in the first
quadrant.

14-7

14-8

.::?:~:~~~::. ' , ~::::::--:::::: :!:!

,':'.:'.::.,: .. ::::::.:::::'::.::: .. :' ... :: .. ::'.: ;.::.:~: ... :r .. ,1 .. ::·.::.: .• :.:'.:: .•• :~ .• :.: .•• :~.::". ·:.:~: .•• :~ .••• :r ... :l~:.:· :'~ •• :" ••• :i~ ... : :~.· .. :1:·:: ':~.~.'.:: •.•• :~ .••• : ..•• ; ••• :: •• :~:;~~::~:·",::, .•• : ••• :, •• ::.; •• :~.·:r : .. :.: .. :: ... : .. : :::: .. :: .. ::.~ .. :~ :; :~ ... :~.,.::. .l .. :· •.• :~:~.:· •• :; :~::::: :;.:.:: •• :; •• :;: ... :: •• :~:.:'.~:.::.:~.:.:' .• :l.:;:~:~ ~;~t~:~:~~· ';:;~~:::~~f ::::::~:j;~:: mf::~!f:::::~~l~: m;~:::::;~::~ [~~~ ::~;::::::~::~ ::l~~:~::::::'
< < ~l::::::::::: .AWll;l::. :;1t;;;~~~t ~~~l ~~f: ~~~~ !jjj!:,:::f; ~~~~:lt;:;~~~;: :;i;;:;:Jl:

The routine that implements this sine approximation, accurate to within
two LSBs, is shown in Listing 14.3. This routine accepts input values in
1.15 format. The coefficients, which are initialized in data memory in 4.12
format, have been adjusted to reflect an input value scaled to the
maximum range allowed by this format. On this scale, 180 0 equals the
maximum positive value, Ox7FFF, and -180 0 equals the maximum
negative value, Ox8000.

The routine shown in Listing 14.3 first adjusts the input angle to its
equivalent in the first quadrant. The sine of the modified angle is
calculated by multiplying increasing powers of the angle by the
appropriate coefficients. The result is adjusted if necessary to compensate
for the modifications made to the original input value .

. MODULE Sin_Approximation;

Sine Approximation
Y = Sin(x)

Calling Parameters
AXO = x in scaled 1.15 format
M3 1
L3 = 0

Return Values
AR = Y in 1.15 format

Altered Registers
AYO,AF,AR,MY1,MX1,MF,MR,SR,I3

Computation Time
25 cycles

::.:.":f.·.::;·.~.~;:;:::.;:::.::.:::.·~: .. ·.::~:.·.:~:':~:::. . .. ;.::.::::.:~:.~ .. :."·::::::::::·.:1.::;:'.::.:: : .. : .. r:~::: .. ~:::~:~~: :';:;:·.:~:·:~:.·: .. l.:f:·:·:: ·:~.1 .. :~:·:::::., :: .. :.:;:1::;;.~.:~:.:::· :::.: :: ... :;:.:~~: ::::.::: .. :::::::.::.~:.~:~ .. : ... :::1:.: .. :::;:.::.. : .. ~::;:: .. ~:.~.::.:~:' :::: .. :.::.·: .. :.·:l:·.::::.~:·,:::,~:,::~.:: •• ::,;::~,,:,:: ll~~~~~~:::!l::.::lf ::f::'l::: !l!:;:::::~:::::::l::: !ll~!:::::::::: l~l :::l::::'::::· ::::!::::::::.
_ ~~~~;;;;;;;;;;:: .:'l:t::. :f;~:t~ ~[~~ I ~~~[lllli,::)~~1 [~~~ jt~;;~;t ;~::~;;~;;~~l:

.VAR/DM sin_coeff[5]i

.INIT sin_coeff: Ox3240, Ox0053, OxAACC, Ox08B7, Ox1CCEi

. ENTRY sini

sin: I3="sin_coeff i
AYO=Ox4000i
AR=AXO, AF=AXO AND AYOi
IF NE AR=-AXOi
AYO=Ox7FFFi
AR=AR AND AYO i

MY1=ARi

{Pointer to coeff. buffer}

{Check 2nd or 4th quad.}
{If yes, negate input}

{Remove sign bit}

MF=AR*MY1 (RND), MX1=DM(I3,M3)i
MR=MX1*MY1 (SS), MX1=DM(I3,M3)i

{MF
{MR

CNTR=3i
DO approx UNTIL CEi

MR=MR+MX1*MF (SS)i
approx: MF=AR*MF (RND), MX1=DM(I3,M3)i

.ENDMODi

MR=MR+MX1*MF (SS)i
SR=ASHIFT MR1 BY 3 (HI)i
SR=SR OR LSHIFT MRO BY 3 (LO)i {Convert to 1.15 format}
AR=PASS SR1i
IF LT AR=PASS AYOi {Saturate if needed}
AF=PASS AXOi
IF LT AR=-ARi {Negate output if needed}
RTSi

Listing 14.3 Sine Approximation

14.6 SINGLE-PRECISION MATRIX MULTIPLY
The routine presented in this section multiplies two input matrices: X, an
Rx5 (R rows, 5 columns) matrix stored in data memory and Y, an 5xT
(5 rows, T columns) matrix stored in program memory. The output Z, an
RxT (R rows, T columns) matrix, is written to data memory.

The routine is shown in Listing 14.4. It requires a number of registers to be
initialized, as listed in the "Calling Parameters" section of the initial
comment. 5E must contain the value necessary to shift the result of each
multiplication into the desired format. For example, 5E would be set to
zero to obtain a matrix of 1.31 values from the multiplication of two
matrices of 1.15 values.

14-9

. MODULE

14-10

matmuli

Single-Precision Matrix Multiplication

S
Z(i,j) L [X(i,k) x Y(k,j)]

k=O
i=O to Ri j=O to T

x is an RxS matrix
Y is an SxT matrix
Z is an RxT matrix

Calling Parameters
Ii -> Z buffer in data memory
I2 -> X, stored by rows in data memory
I6 -> Y, stored by rows in program memory
MO = 1 Mi S
M4 = 1 M5 = T
LO,L4,L5 = 0
SE = Appropriate scale value
CNTR = R

Return Values
Z Buffer filled by rows

Altered Registers
IO,Ii,I2,I4,I5,MR,MXO,MYO,SR

Computation Time
((S + 8) x T + 4) x R + 2 + 2 cycles

Ll, = 0
L2 0
L6 0

. ENTRY spmm;

spmm: DO row_loop UNTIL CE;
15=16;
CNTR=M5;
DO column_loop UNTIL CE;

10=12;
14=15;
CNTR=M1;

{I5 start of Y}

{Set 10 to current X row}
{Set 14 to current Y col}

MR=O, MXO=DM(IO,MO), MYO=PM(I4,M5); {Get 1st data}
DO element_loop UNTIL CE;

element_loop: MR=MR+MXO*MYO (SS), MXO=DM(IO,MO),
MYO=PM(I4,M5) ;

SR=ASHIFT MR1 (HI), MYO=DM(I5,M4); {Update I5}
SR=SR OR LSHIFT MRO (LO); {Finish shift}

column_loop: DM(I1,MO)=SR1; {Save output}
row_loop: MODIFY(I2,M1); {Update 12 .to next X row}

RTS;
.ENDMOD;

Listing 14.4 Single-Precision Matrix Multiply

14.7 RADIX·2 DECIMATION·IN· TIME FFT
The FFT program includes three subroutines. The first subroutine
scrambles the input data (places the data in bit-reversed address order), so
that the FFT output will be in the normal, sequential order. The next
subroutine computes the FFT and the third scales the output data to
maintain the block floating-point data format.

The program is contained in four modules. The main module declares and
initializes data buffers and calls subroutines. The other three modules
contain the FFT, bit reversal, and block floating-point scaling subroutines.
The main module calls the FFT and bit reversal subroutines. The FFT
module calls the data scaling subroutine.

The FFT is performed in place; that is, the outputs are written to the same
buffer that the inputs are read from.

14.7.1 Main Module
The dit_fft_main module is shown in Listing 14.5. N is the number of
points in the FFT (in this example, N=1024) and N_div_2 is used for
specifying the lengths of buffers. To change the number of points in the
FFT, you change the value of these constants and the twiddle factors.

14 -11

14-12

,,:::::::::::. ,.:-:-'.. :.:.:.;.:.:.:.: .:-:

::.'.;.:; .• :;.:~. :':':: '::::.:.':'.:~.::~ .•• :~ •. :~.:. • •• :.:'.::1 ••• :~.:; .• ::. :::;.::.: •. :' ..••• :~ ••• :' •• :'.:,.' ~: ~ ••• :~.:~: ••• :~ .• :~ ,;::, :.:.: .••• :~ •• :~:~.: •• :~:'.:. ·;;.; .•• :~.· .• :; ••• ::.: ••• :i.,:l:;;.; .. :l :: .. : ... : ... :i:;:·. :1~': : ... : :: :' .. :: .. :: .. ::.:~~ ... :::: .. :~ :; ... :l ••• :'. • •• :~.' .• :~ ••• :; .• :~::.:;:::: :., .• :; •• :l •• :; ••• :f.::.::.:~.::.:~.'.:: ... :~::.::':; ;~~~~: ~:~: ~:;:. .;;;~:: .::;;~;. .:=::::: :~~::: ~ ~ ;~:::: :~~~ ::~: ;~;:: l~l ;;:::::;:::~ ~1~~ ;::l::;::::::~ ::~~: :::::::. ~i~i;;;:;;;:;;:: .:l'~~t. ,~it~~t~ ~i~i ~~i~ ~~~~ llll~:::)~~ i~i~ :~t~~~~;;::' ;;~~~;~;~~~1;

The data buffers twid_real and twid_imag in program memory hold the
twiddle factor cosine and sine values. The inplacereal, inplaceimag,
inputreal and inputimag buffers in data memory store real and imaginary
data values. Sequentially ordered input data is stored in inputreal and
inputimag. This data is scrambled and written to inplacereal and
inplaceimag. A four-location buffer called padding is placed at the end of
inplaceimag to allow data accesses to exceed the buffer length. This buffer
assists in debugging but is not necessary in a real system. Variables (one­
location buffers) named groups, bflys_per_group, node_space and
blk_exponent are declared last.

The real parts (cosine values) of the twiddle factors are stored in the buffer
twid_real. This buffer is initialized from the file twid_real.dat. Likewise,
twid_imag.dat values initialize the twid_imag buffer that stores the sine
values of the twiddle factors. In an actual system, the hardware would be
set up to initialize these memory locations.

The variable called groups is initialized to N_div _2, and bflys_per_group
and node_space are each initialized to 2 because there are two butterflies
per group in the second stage of the FFT. The blk_exponent variable is
initialized to zero. This exponent value is updated when the output data is
scaled.

After the initializations are complete, two subroutines are called. The first
subroutine places the input sequence in bit-reversed order. The second
performs the FFT and calls the block floating-point scaling routine.

. MODULE/ABS=4

.CONST

.VAR/PM/RAM/CIRC

.VAR/PM/RAM/CIRC

.VAR/DM/RAM/ABS=O
[4] ;

.VAR/DM/RAM/ABS=H#1000

.VAR/DM/RAM

dit_fft_main;
N=1024, N_div_2=512; {For 1024 points}
twid_rea1 [N_div_21;
twid_imag [N_div_2];
inplacereal [N], inplaceimag [N], padding

inputreal [N], inputimag [N];
groups, bflys-per_group, node_space,
blk_exponent;

.INIT

.INIT

.INIT

.INIT

.INIT

.INIT

twid_real: <twid_real.dat>;
twid_imag: <twid_imag.dat>;
inputreal: <inputreal.dat>;
inputimag: <inputimag.dat>;
inplaceimag: <inputimag.dat>;
groups: N_div_2;

.INIT

.INIT

.INIT

.INIT

bflys-per_group: 2j
node_space: 2j
blk_exponent: OJ
padding: O,O,O,Oj

. GLOBAL twid_real, twid_imagj

. GLOBAL inplacereal, inplaceimagj

. GLOBAL inputreal, inputimagj

{Zeros after inplaceimag}

. GLOBAL groups, bflys-per_group, node_space, blk_exponentj

. EXTERNAL scramble, fft_strtj

.ENDMODj

CALL scramblej
CALL fft_strtj
TRAPj

Listing 14.5 Main Module, Radix·2 DIT FFT

14.7.2 OIT FFT Subroutine

{subroutine calls}

{halt program}

The radix-2 DIT FFT routine is shown in Listing 14.6. The constants Nand
log2N are the number of points and the number of stages in the FFT,
respectively. To change the number of points in the FFT, you modify these
constants.

The first and last stages of the FFT are performed outside of the loop that
executes all the other stages. Treating the first and last stages individually
allows them to be executed faster. In the first stage, there is only one
butterfly per group, so the butterfly loop is unnecessary, and the twiddle
factors are all either 1 or 0, so no multiplications are necessary. In the last
stage, there is only one group, so the group loop is unnecessary, as are the
setup operations for the next stage.

14-13

14-14

Examples

{l024 point DIT radix 2 FFT}
{Block Floating Point Scaling}

. MODULE fftj

. CaNST

Calling Parameters
inplacereal=real input data in scrambled order
inplaceimag=all zeroes (real input assumed)
twid_real=twiddle factor cosine values
twid_imag=twiddle factor sine values
groups=N/2
bflys-per_group=l
node_space=l

Return Values
inplacereal=real FFT results, sequential order
inplaceimag=imag. FFT results, sequential order

Altered Registers
IO,Il,I2,I3,I4,I5,LO,Ll,L2,L3,L4,L5
MO,Ml,M2,M3,M4,M5
AXO,AX1,AYO,AY1,AR,AF
MXO,MX1,MYO,MY1,MR,SB,SE,SR,SI

Altered Memory
inplacereal, inplaceimag, groups, node_space,
bflys-per_group, blk_exponent

log2N=lO, N=1024, nover2=512, nover4=256j

. EXTERNAL

. EXTERNAL

. EXTERNAL

. EXTERNAL

. ENTRY

twid_real, twid_imagj
inplacereal, inplaceimagj
groups, bflys-per_group, node_spacej
bfp_adjj
fft_strtj

CNTR=log2N - 2j
MO=Oj
Ml=lj
Ll=Oj
L2=Oj
L3=Oj
L4=%twid_realj
L5=%twid_imagj
L6=Oj
SB=-2j

{Initialize stage counter}

{--- STAGE 1 ---}

IO="inplacereal;
I1="inplacereal + 1;
I2="inplaceimag;
I3="inplaceimag + 1;
M2=2;

CNTR=nover2;
AXO=DM(IO,MO) ;
AYO=DM(I1,MO) ;
AY1=DM(13,MO) ;

DO group_lp UNTIL CE;
AR=AXO+AYO, AX1=DM(I2,MO);
SB=EXPADJ AR, DM(IO,M2)=AR;
AR=AXO-AYOi
SB=EXPADJ AR;
DM(I1,M2)=AR, AR=AX1+AY1;
SB=EXPADJ AR, DM(I2,M2)=AR;
AR=AX1-AY1, AXO=DM(IO,MO)i
SB=EXPADJ AR, DM(I3,M2)=ARi
AYO=DM(I1,MO) ;
AY1=DM(I3,MO) ;

CALL bfp_adj;

----------STAGES 2 TO N-1-------------------

DO stage_loop UNTIL CEi {Compute
IO="inplacereal; {IO ->xO
I2="inplaceimagi {I2 ->yO
SI=DM(groups) i
SR=ASHIFT SI BY -1(LO); {groups /

all stages
in 1st grp
in 1st grp

2}
DM(groups)=SRO; {groups=groups / 2}
CNTR=SRO; {CNTR=group counter}

in FFT}
of stage}
of stage}

M4=SROi {M4=twiddle factor modifier}
M2=DM(node_space); {M2=node space modifier}
11=10;
MODIFY (I1,M2) i {I1 ->yO of 1st grp in stage}
13=12;
MODIFY (13 , M2) ; {13 ->y1 of 1st grp in stage}

14-15

14-16

:::;.:~.:f .. :i·.:~:~:~.:~.:::;:~."',,~:',,,:~,,:;,,:~: .••..• :: .• :~ ••• :r ... :; .. ::,::: .. :··.::: .. ::.' ... :~ .. :~.:::; ~:· ... :~ .. :~.< ••• :f,:t .. ::~ :": .. ~ .. :~.: ... :; .. :l.· ... :i:~:: ~:~.:.: ': . : ::~:::::::~ ~:i:~::;:: ~~::::::;~::.
_0" ~: :.' •••• : ·;~~~~~~~~~t ;~~~ :;~~t~~~~~ Examples

DO group_loop UNTIL CEj
I4="twid_realj
I5="twid_imagj
CNTR=DM(bflys-per_group)j
MYO=PM(I4,M4),MXO=DM(Il,MO)j
MYl=PM(I5,M4),MX1=DM(I3,MO)j
DO bfly_loop UNTIL CEj

MR=MXO*MY1(SS),AXO=DM(IO,MO)j

{I4 -> C of WO}
{I5 -> (-S) of WO}
{CNTR=bfly count}
{MYO=C,MXO=xl }
{MY1=-S,MX1=yl}

{MR=xl(-S),AXO=xO}
MR=MR+MX1*MYO(RND),AX1=DM(I2,MO)j

{MR=(yl(C)+xl(-S)),AX1=yO}
AY1=MR1,MR=MXO*MYO(SS)j

{AY1=yl(C)+xl(-S),MR=xl(C)}
MR=MR-MX1*MY1(RND)j {MR=xl(C)-yl(-S)}
AYO=MR1,AR=AX1-AYlj

{AYO=xl(C)-yl(-S),AR=yO-[yl(C)+xl(-S)]}
SB=EXPADJ AR,DM(I3,Ml)=ARj

{Check for bit growth, yl=yO-[yl(C)+xl(-S)]}
AR=AXO-AYO,MX1=DM(I3,MO),MY1=PM(I5,M4)j
{AR=xO-[xl(C)-yl(-S)], MXl=next yl,MY1=next (-S)}
SB=EXPADJ AR,DM(Il,Ml)=ARj

{Check for bit growth, xl=xO-[xl(C)-yl(-S)]}
AR=AXO+AYO,MXO=DM(Il,MO),MYO=PM(I4,M4)j

{AR=xO+[xl(C)-yl(-S)], MXO=next xl,MYO=next C}
SB=EXPADJ AR,DM(IO,Ml)=ARj

{Check for bit growth, xO=xO+[xl(C)-yl(-S)]}
AR=AX1+AYlj {AR=yO+[yl(C)+xl(-S)]}
SB=EXPADJ AR,DM(I2,Ml)=ARj

{Check for bit growth, yO=yO+[yl(C)+xl(-S)]}
MODIFY(IO,M2)j {IO ->lst xO in next group}
MODIFY(Il,M2)j {Il ->lst xl in next group}
MODIFY(I2,M2)j {I2 ->lst yO in next group}
MODIFY(I3,M2)j {I3 ->lst yl in next group}

CALL bfp_adjj
SI=DM(bflys-per_group)j
SR=ASHIFT SI BY l(LO)j

{Compensate for bit growth}

DM(node_space)=SROj {node_space=node_space / 2}
stage_loop: DM(bflys-per_group)=SROj

{bflys-per_group=bflys-per_group / 2}

{-- LAST STAGE --}

.ENDMODi

IO=l\inplacerea1i
Il=l\inplacereal+nover2 i
I2=l\inplaceimagi
I3=l\inplaceimag+nover2i

CNTR=nover2i
M2=DM(node_space)i
M4=li
I4=l\twid_reali
I5=l\twid_imagi

MYO=PM(I4,M4),MXO=DM(Il,MO)i
MYl=PM(I5,M4),MX1=DM(I3,MO)i
DO bfly_lp UNTIL CEi

{MYO=C,MXO=xl}
{MY1=-S,MX1=yl}

MR=MXO*MY1(SS),AXO=DM(IO,MO) i

MR=MR+MXl *MYO (RND) , AXl.=DM (12, MO) i

{MR=xl(-S) ,AXO=xO}

AY1=MR1,MR=MXO*MYO(SS)i
MR=MR-MX1*MY1(RND) i

AYO=MR1,AR=AXI-AYli

{MR=(yl(C)+xl(-S)),AX1=yO}
{AY1=yl(C)+xl(-S) ,MR=xl(C)}

{MR=xl(C)-yl(-S)}

{AYO=xl(C)-yl(-S), AR=yO-[yl(C)+xl(-S)]}
SB=EXPADJ AR,DM(I3,Ml)=ARi

{Check for bit growth, yl=yO-[yl(C)+xl(-S)]}
AR=AXO-AYO,MX1=DM(I3,MO),MY1=PM(I5,M4)i

{AR=xO-[xl(C)-yl(-S)], MXl=next yl,MY1=next (-S)}
SB=EXPADJ AR,DM(Il,Ml)=ARi

{Check for bit growth, xl=xO-[xl(C)-yl(-S)]}
AR=AXO+AYO,MXO=DM(Il,MO),MYO=PM(I4,M4)i

{AR=xO+[xl(C)-yl(-S)], MXO=next xl,MYO=next C}
SB=EXPADJ AR,DM(IO,Ml)=ARi

{Check for bit growth, xO=xO+[xl(C)-yl(-S)]}
AR=AX1+AYli {AR=yO+[yl(C)+xl(-S)]}
SB=EXPADJ AR,DM(I2,Ml)=ARi {Check for bit growth}

RTSi

Listing 14.6 Radix-2 OIT FFT Routine, Conditional Block Floating-Point

14-17

14-18

14.7.3 Bit-Reverse Subroutine
The bit-reversal routine, called scramble, puts the input data in bit­
reversed order so that the results will be in sequential order. This routine
uses the bit-reverse capability of the ADSP-2100 family processors .

. MODULE dit_scramble;

Calling Parameters
Sequentially ordered input data in inputreal

Return Values
Scrambled input data in inplacereal

Altered Registers
IO,I4,MO,M4,AYl

Altered Memory
inplacereal

. CaNST N=1024,mod_value=H#OOlO; {Initialize constants}

. EXTERNAL inputreal, inplacereal;

. ENTRY scramble;

scramble:

brev:

.ENDMOD;

I4="inputreal;
IO="inplacereal;
M4=1;
MO=mod_value;
L4=O;
LO=O;
CNTR = N;
ENA BIT_REV;
DO brev UNTIL CE;

AY1=DM(I4,M4) ;
DM (10 , MO) =AYl ;

DIS BIT_REV;
RTS;

{I4->sequentially ordered data}
{IO->scrambled data}

{MO=modifier for reversing N bits}

{Enable bit-reversed outputs on DAG1}

{Read sequentially ordered data}

{Write data in bit-reversed location}
{Disable bit-reverse}
{Return to calling program}

Listing 14.7 Bit-Reverse Routine (Scramble)

14.7.4 Block Floating-Point Scaling Subroutine
The bfp_adj routine checks the FFT output data for bit growth and scales
the entire set of data if necessary. This check prevents data overflow for
each stage in the FFT. The routine, shown in Listing 14.8, uses the
exponent detection capability of the shifter.

Calling Parameters
Radix-2 DIT FFT stage results in inplacereal and inplaceimag

Return Parameters
inplacereal and inplaceimag adjusted for bit growth

Altered Registers
IO,Il,AXO,AYO,AR,MXO,MYO,MR,CNTR

Altered Memory
inplacereal, inplaceimag, blk_exponent

.CONST Ntimes2 = 2048i

. EXTERNAL inplacereal, blk_exponenti {Begin declaration section}

. ENTRY

AYO=CNTRi
AR=AYO-l
IF EQ RTSi
AYO=-2i
AXO=SBi
AR=AXO-AYO i
IF EQ RTSi

{Check for last stage}

{If last stage, return}

{Check for SB=-2}
{IF SB=-2, no bit growth, return}

IO=Ainplacereali {IO=read pointer}
Il=Ainplacereali {Il=write pointer}
AYO=-1i
MYO=H#4000i {Set MYO to shift 1 bit right}
AR=AXO-AYO,MXO=DM(IO,M1)i

{Check if SB=-1i Get 1st sample}

14-19

14-20

IF EQ JUMP strt_shifti

AXO=-2i
MYO=H#2000i

{If SB=-1, shift block data 1 bit}
{Set AXO for block exponent update}

{Set MYO to shift 2 bits right}
strt_shift: CNTR=Ntimes2 - 1i {initialize loop counter}

DO shift_loop UNTIL CEi {Shift block of data}
MR=MXO*MYO{RND},MXO=DM{IO,M1}i

{MR=shifted data,MXO~next value}
shift_loop: DM{I1,M1}=MR1i {Unshifted data=shifted data}

.ENDMODi

MR=MXO*MYO{RND}i {Shift last data word}
AYO=DM{blk_exponent}i {Update block exponent and}
DM{I1,M1}=MR1,AR=AYO-AXOi {store last shifted sample}
DM{blk_exponent}=ARi
RTSi

Listing 14.8 Radix-2 Block Floating-Point Scaling Routine

Instruction Set Reference 15

15.1 QUICK LIST OF INSTRUCTIONS
This chapter is a complete reference for the instruction set of the
ADSP-2100 family. The instruction set is organized by instruction group
and, within each group, by individual instruction. The list below shows all
of the instructions and the reference page for each.

ALU
Add / Add with Carry (p. 15-21)
Subtract X-Y / Subtract X-Y with Borrow (p. 15-23)
Subtract Y-X / Subtract Y-X with Borrow (p. 15-25)
AND, OR, XOR (p. 15-27)
Test Bit, Set Bit, Clear Bit, Toggle Bit (p. 15-29)
Pass / Clear (p. 15-31)
Negate (p. 15-33)
NOT (p. 15-34)
Absolute Value (p. 15-35)
Increment (p. 15-36)
Decrement (p. 15-37)
Divide (p. 15-38)
Generate ALU Status (p. 15-40)

MAC
Multiply (p. 15-41)
Multiply / Accumulate (p. 15-43)
Multiply / Subtract (p. 15-45)
Clear (p. 15-47)
Transfer MR (p. 15-48)
Conditional MR Saturation (p. 15-49)

SHIFTER
Arithmetic Shift (p. 15-50)
Logical Shift (p. 15-52)
Normalize (p. 15-54)
Derive Exponent (p. 15-56)
Block Exponent Adjust (p. 15-58)
Arithmetic Shift Immediate (p. 15-60)
Logical Shift Immediate (p. 15-62)

MOVE
Register Move (p. 15-63)
Load Register Immediate (p. 15-65)
Data Memory Read (Direct Address) (p. 15-67)
Data Memory Read (Indirect Address) (p. 15-68)
Program Memory Read (Indirect Address) (p. 15-69)
Data Memory Write (Direct Address) (p. 15-70)
Data Memory Write (Indirect Address) (p. 15-71)
Program Memory Write (Indirect Address) (p. 15-73)
I/O Space Read/Write (p. 15-74)

PROGRAM FLOW
JUMP (p. 15-75)
CALL (p. 15-76)
JUMP or CALL on Flag In Pin (p. 15-77)
Modify Flag Out Pin (p. 15-78)
Return from Subroutine (p. 15-79)
Return from Interrupt (p. 15-80)
Do Until (p. 15-81)
IDLE (p. 15-83)

MISC
Stack Control (p. 15-84)
Mode Control (p. 15-87)
Modify Address Register (p. 15-89)
Nap (p. 15-90)
Interrupt Enable & Disable (p. 15-91)

MULTIFUNCTION
ALU /MAC/SHIFT with Memory Read (p. 15-92)
ALU /MAC/SHIFT with Data Register Move (p. 15-96)
ALU /MAC/SHIFT with Memory Write (p. 15-99)
Data & Program Memory Read (p. 15-103)
ALU /MAC with Data & Program Memory Read (p. 15-104)

15 -1

15-2

15.2 OVERVIEW
This chapter provides an overview and detailed reference for the
instruction set of the ADSP-2100 family of DSP microprocessors.

For information regarding the ADSP-2100 Family Development Software,
refer to the ADSP-2100 Family Assembler Tools & Simulator Manual,
ADSP-2100 Family C Tools Manual, and ADSP-2100 Family C Runtime
Library Manual. These manuals provide a complete guide to the
development software. The handbooks Digital Signal Processing
Applications Using The ADSP-2100 Family, Volume 1 and Volume 2 present
DSP applications programs with source code and discussion.

The instruction set is tailored to the computation-intensive algorithms
common in DSP applications. For example, sustained single-cycle
multiplication/ accumulation operations are possible. The instruction set
provides full control of the processors' three computational units: the
ALU, MAC and Shifter. Arithmetic instructions can process single­
precision 16-bit operands directly; provisions for multiprecision
operations are available.

The high-level syntax of ADSP-2100 family source code is both readable
and efficient. Unlike many assembly languages, the ADSP-2100 family
instruction set uses an algebraic notation for arithmetic operations and for
data moves, resulting in highly readable source code. There is no
performance penalty for this; each program statement assembles into one
24-bit instruction which executes in a single cycle. There are no multicycle
instructions in the instruction set. (If memory access times require, or
contention for off-chip memory occurs, overhead cycles will be required,
but all instructions can otherwise execute in a single cycle.)

In addition to JUMP and CALL, the instruction set's control instructions
support conditional execution of most calculations and aDO UNTIL
looping instruction. Return from interrupt (RTI) and return from
subroutine (RTS) are also provided.

The IDLE instruction is provided for idling the processor until an
interrupt occurs. IDLE puts the processor into a low-power state while
waiting for interrupts.

Two addressing modes are supported for memory fetches. Direct
addressing uses immediate address values; indirect addressing uses the I
registers of the two data address generators (DAGs).

Instruction' Set Reference ':;::1111 :;!!:::;~ii;~

The 24-bit instruction word allows a high degree of parallelism in
performing operations. The instruction set allows for single-cycle
execution of any of the following combinations:

• any ALU, MAC or Shifter operation (conditional or non-conditional)
• any register-to-register move
• any data memory read or write
• a computation with any data register to data register move
• a computation with any memory read or write
• a computation with a read from two memories.

The instruction set allows maximum flexibility. It provides moves from
any register to any other register, and from most registers to/from
memory. In addition, almost any ALU, MAC or Shifter operation may be
combined with any register-to-register move or with a register move to or
from either internal or external memory.

15.3 INSTRUCTION TYPES & NOTATION CONVENTIONS
The ADSP-2100 family instruction set is grouped into the following
categories:

• Computational: ALU, MAC, Shifter
• Move
• Program Flow
• Multifunction
• Miscellaneous

Because the multifunction instructions best illustrate the power of the
processors' architecture, in the next section we begin with a discussion of
this group of instructions.

Throughout this chapter you will find tables summarizing the syntax of
the instruction groups. The following notation conventions are used in
these tables and in the reference page for each instruction.

Square Brackets []

Parallel Lines I

Anything within square brackets is an optional
part of the instruction statement.

Lists of operands are enclosed by vertical parallel
bars. One of the operands listed must be chosen.
If the parallel bars are within square brackets,
then the operand is optional for that instruction.

15-3

15-4

CAPITAL LETTERS

operands

<exp>

<data>

<addr>

<reg>

<dreg>

Capital letters denote a literal in the instruction.
Literals are the instruction name (e.g. ADD),
register names, or operand selections. Literals
must be typed exactly as shown.

Some instruction operands are shown in
lowercase letters. These operands may take
different values in assembly code. For example,
the operand yop may be one of several registers:
A YO, A Yl, or AF.

Denotes exponent (shift value) in Shift Immediate
instructions; must be an 8-bit signed integer
constant.

Denotes an immediate data value. Can also be a
symbol (address label or variable/buffer name)
dereferenced by the '%' or 'IV operators.

Denotes an immediate address value to be
encoded in the instruction. The <addr> may be
either an immediate value (a constant) or a
program label.

Refers to any accessible register; see Table 15.7.

Refers to any data register; see Table 15.7.

Immediate values, <exp>, <data>, or <addr>, may be a constant in
decimal, hexadecimal, octal or binary format. Default is to decimal.

15.4 MULTIFUNCTION INSTRUCTIONS
Multifunction operations take advantage of the inherent parallelism of the
ADSP-2100 family architecture by providing combinations of data moves,
memory reads/memory writes, and computation, all in a single cycle.

15.4.1 ALU/MAC With Data & Program Memory Read
Perhaps the single most common operation in DSP algorithms is the sum
of products, performed as follows:

• Fetch two operands, (such as a coefficient and data point)
• Multiply the operands and sum the result with previous products

Instruction Set Reference :·:::lllll.~!!:;:::~iii~

The A05P-2100 family processors can execute both data fetches and the
multiplication/ accumulation in a single-cycle. Typically, a loop of
multiply / accumulates can be expressed in A05P-21xx source code in just
two program lines. 5ince the on-chip program memory of the A05P-21xx
processors is fast enough to provide an operand and the next instruction
in a single cycle, loops of this type can execute with sustained single-cycle
throughput. An example of such an instruction is:

MR=MR+MXO*MYO(SS), MXO=DM(IO,MO), MYO=PM(I4,M5);

The first clause of this instruction (up to the first comma) says that MR, the
MAC result register, gets the sum of its previous value plus the product of
the (current) X and Y input registers of the MAC (MXO and MYO) both
treated as signed (55).

In the second and third clauses of this multifunction instruction two new
operands are fetched. One is fetched from the data memory (OM) pointed
to by index register zero (IO, post modified by the value in MO) and the
other is fetched from the program memory location (PM) pointed to by 14
(post-modified by M5 in this instance). Note that indirect memory
addressing uses a syntax similar to array indexing, with OAG registers
providing the index values. Any I register may be paired with any M
register within the same OAG.

As discussed in Chapter 2, "Computational Units," registers are read at
the beginning of the cycle and written at the end of the cycle. The
operands present in the MXO and MYO registers at the beginning of the
instruction cycle are multiplied and added to the MAC result register, MR.
The new operands fetched at the end of this same instruction overwrite
the old operands after the multiplication has taken place and are available
for computation on the following cycle. You may, of course, load any data
registers in conjunction with the computation, not just MAC registers with
a MAC operation as in our example.

The computational part of this multifunction instruction may be any
unconditional ALU instruction except division or any MAC instruction
except saturation. Certain other restrictions apply: the next X operand
must be loaded into MXO from data memory and the new Y operand must
be loaded into MYO from program memory (internal and external memory
are identical at the level of the instruction set). The result of the
computation must go to the result register (MR or AR) not to the feedback
register (MF or AF).

15-5

15-6

15.4.2 Data & Program Memory Read
This variation of a multifunction instruction is a special case of the
multifunction instruction described above in which the computation is
omitted. It executes only the dual operand fetch, as shown below:

AXO=DM(I2,MO), AYO=PM(I4,M6);

In this example we have used the ALU input registers as the destination.
As with the previous multifunction instruction, X operands must come
from data memory and Y operands from program memory (internal or
external memory in either case, for the processors with on-chip memory).

15.4.3 Computation With Memory Read
If a single memory read is performed instead of the dual memory read of
the previous two multifunction instructions, a wider range of
computations can be executed. The legal computations include all ALU
operations except division, all MAC operations and all Shifter operations
except SHIFT IMMEDIATE. Computation must be unconditional. An
example of this kind of multifunction instruction is:

AR=AXO+AYO, AXO=DM(IO,M3);

Here an addition is performed in the ALU while a single operand is
fetched from data memory. The restrictions are similar to those for
previous multifunction instructions. The value of AXO, used as a source
for the computation, is the value at the beginning of the cycle. The data
read operation loads a new value into AXO by the end of the cycle. For this
same reason, the destination register (AR in the example above) cannot be
the destination for the memory read.

15.4.4 Computation With Memory Write
The computation with memory write instruction is similar in structure to
the computation with memory read: the order of the clauses in the
instruction line, however, is reversed. First the memory write is
performed, then the computation, as shown below:

DM(IO,MO)=AR, AR=AXO+AYO;

Again the value of the source register for the memory write (AR in this
example) is the value at the beginning of the instruction. The computation
loads a new value into the same register; this is the value in AR at the end
of this instruction. Reversing the order of the clauses of the instruction is
illegal and causes the assembler to generate a warning; it would imply

Instruction Set Reference

that the result of the computation is written to memory when, in fact, the
previous value of the register is what is written. There is no requirement
that the same reg~ster be used in this way although this will usually be the
case in order to pipeline operands to the computation.

The restrictions on computation operations are identical to those given
above. All ALU operations except division, all MAC operations, and all
Shifter operations except SHIFT IMMEDIATE are legal. Computations
must be unconditional.

15.4.5 Computation With Data Register Move
This final type of multifunction instruction performs a data register to
data register move in parallel with a computation. Most of the restrictions
applying to the previous two instructions also apply to this instruction.

AR=AXO+AYO, AXO=MR2;

Here an ALU addition operation occurs while a new value is loaded into
AXO from MR2. As before, the value ofAXO at the beginning of the
instruction is the value used in the computation. The move may be from
or to all ALU, MAC and Shifter input and output registers except the
feedback registers (AF and MF) and SB.

In the example, the data register move loads the AXO register with the
new value at the end of the cycle. All ALU operations except division, all
MAC operations and all Shifter operations except SHIFT IMMEDIATE are
legal. Computation must be unconditional.

A complete list of data registers is given in Table 15.7. A complete list of
the permissible xops and yops for computational operations is given in the
reference page for each instruction. Table 15.1 shows the legal
combinations for multifunction instructions: you may combine operations
on the same row with each other.

Unconditional Computations

None or any ALU (except Division) or MAC

Data Move
(DM=DAG1)

DMread

Data Move
(PM=DAG2)

PM read

Any MAC PM read
Any ALU except Division } {DM read

Any Shift except Immediate DM write

__________________ Register-To-Register PM Writ~ __

Table 15.1 Summary Of Valid Combinations For Multifunction Instructions
15-7

15-8

Multifunction Instructions

<ALV>*t
<MAC>*t

AXO
AXI
MXO

= DM(10
11
12
13

MO),
Ml
M2
M3

AYO = PM(14
AYI 15
MYO 16

MXl MYI 17

AXO
AXI
MXO
MXl

= DM(10
11
12
13

MO),
Ml
M2
M3

AYO = PM(14

<ALV> *
<MAC>*
<SHIFT>*

DM(

PM(

10
11
12
13

14
15
16
17

14
15
16
17

I <ALU>* I <MAC>*
<SHIFT>*

,dreg

,dreg

MO
Ml
M2
M3

M4
M5
M6
M7

M4
M5
M6
M7

DM(

PM(

= dreg,

dreg;

AYI 15
MYO 16
MYI 17

10
11
12
13

MO) ;
Ml
M2
M3

14 M4
15 M5
16 M6
17 M7

14
15
16
17

M4
M5
M6
M7

<ALV>*
<MAC>*
<SHIFT>*

Table 15.2 Multifunction Instructions
<ALU>
<MAC>
<SHIff>

Any ALU instruction (except DWS, DWQ)
Any multiply / accumulate instruction
Any shifter instruction (except Shift Immediate)

* May not be conditional instruction
tAR, MR result registers must be used-not AF, MF feedback registers.

(See Section 15.4.1, "ALU/MAC with Data & Program Memory Read.")

M4);
M5
M6
M7

M4);
M5
M6
M7

15.5 ALU, MAC & SHIFTER INSTRUCTIONS
This group of instructions performs computations. All of these
instructions can be executed conditionally except the ALU division
instructions and the Shifter SHIFT IMMEDIATE instructions.

15.5.1 ALU Group
Here is an example of one ALU instruction, Add/ Add with Carry:

IF AC AR=AXO+AYO+C;

The (optional) conditional expression, IF AC, tests the ALU Carry bit
(AC); if there is a carry from the previous instruction, this instruction
executes, otherwise a NOP occurs and execution continues with the next
instruction. The algebraic expression AR=AXO+AYO+C means that the
ALU result register (AR) gets the value of the ALU X input and Y input
registers plus the value of the carry-in bit.

Table 15.3 gives a summary list of all ALU instructions. In this list,
condition stands for all the possible conditions that can be tested and xop
and yop stand for the registers that can be specified as input for the ALU.
The conditional clause is optional and is enclosed in square brackets to
show this. A complete list of the permissible xops and yops is given in the
reference page for each instruction. A complete list of conditions is given
in Table 15.9.

ALU Instructions

[IF condition]

[IF condition]

[IF condition]

AR
AF

AR
AF

AR
AF

xop

xop

+yop
+C
+yop+ C
+ constant
+ constant + C

-yop
-yop + C-1
+C-1
- constant
- constant + C - 1

yop -xop I
-xop + C-1

-xop + C-1
- xop + constant
- xop + constant + C - 1

15-9

15-10

[IF condition] AR xop

I~I I yop
AF constant

XOR

[IF condition] AR TSTBIT n OF xop
AF SETBIT n OF xop

CLRBIT n OF xop
TGLBIT n OF xop

[IF condition] AR PASS I xop AF yop
constant

[IF condition] AR xop
AF yop

[IF condition] AR NOT xop
AF yop

[IF condition] AR ABS xop
AF

[IF condition] AR yop +1
AF

[IF condition] AR yop -1
AF

DIVS yop, xop ;
DIVQ xop;

NONE = <ALU> ;

Table 15.3 ALU Instructions

15.5.2 MAC Group
Here is an example of one of the MAC instructions, Multiply/Accumulate:

IF NOT MV MR=MR+MXO*MYO(UU);.

The conditional expression, IF NOT MV, tests the MAC overflow bit. If the
condition is not true, a NOP is executed. The expression
MR=MR+MXO*MYO is the multiply/accumulate operation: the multiplier
result register (MR) gets the value of itself plus the product of the X and Y
input registers selected. The modifier in parentheses (UU) treats the
operands as unsigned. There can be only one such modifier selected from.
the available set. (55) means both are signed, while (U5) and (5U) mean
that either the first or second operand is signed; (RND) means to round
the (implicitly signed) result.

Table 15.4 gives a summary list of all MAC instructions. In this list,
condition stands for all the possible conditions that can be tested and xop
and yop stand for the registers that can be specified as input for the MAC.
A complete list of the permissible xops and yops is given in the reference
page for each instruction.
MAC Instructions

[IF condition] I ~~ I = xop *
I
yop I
xop

[IF condition] I ~~ I

[IF condition] I ~~ I

[IF condition]

[IF condition]

IFMV5ATMR;

MR + xop * I yop I
xop

MR - xop * I yop I
xop

0;

MR[(RND)];

Table 15.4 MAC Instructions

15.5.3 Shifter Group

55);
5U
U5
UU
RND

55);
5U
U5
UU
RND

55);
5U
U5
UU
RND

Here is an example of one of the Shifter instructions, Normalize:

IF NOT CE SR= SR OR NORM SI (HI);

The conditional expression, IF NOT CE, tests the "not counter expired"
condition. If the condition is false, a NOP is executed. The destination of
all shifting operations is the Shifter Result register, SR. (The destination of
exponent detection instructions is SE or SB, as shown below.) In this
example, SI, the Shifter Input register, is the operand. The amount and
direction of the shift is controlled by the signed value in the SE register in
all shift operations except an immediate shift. Positive values cause left
shifts; negative values cause right shifts.

15 -11

15-12

The "SR OR" modifier (which is optional) logically ORs the result with the
current contents of the SR register; this allows you to construct a 32-bit
value in SR from two 16-bit pieces. "NORM" is the operator and "(HI)" is
the modifier that determines whether the shift is relative to the HI or LO
(16-bit) half of SR. If "SR OR" is omitted, the result is passed directly into
SR.

Table 15.5 gives a summary list of all Shifter instructions. In this list,
condition stands for all the possible conditions that can be tested.

Shifter Instructions

[IF condition] SR [SR OR] ASHIFT xop HI I);
LO

[IF condition] SR [SR OR] LSHIFT xop HI I);
LO

[IF condition] SR [SR OR] NORM xop HI I);
LO

[IF condition] SE EXP xop HII);
LO
HIX

[IF condition] SB EXPADJ xop;

SR [SR OR] ASHIFT xop BY <exp> HI I);
LO

SR [SR OR] LSHIFT xop BY <exp> HI I);
LO

Table 15.5 Shifter Instructions

15.6 MOVE: READ & WRITE
MOVE instructions, shown in Table 15.6, move data to and from data
registers and external memory. Registers are divided into two groups,
referred to as reg which includes almost all registers and dreg, or data
registers, which is a subset. Only the program counter (PC) and the ALU
and MAC feedback registers (AF and MF) are not accessible.

Table 15.7 shows which registers belong to these groups. Many of the
system control registers are memory-mapped (for the processors with on­
chip memory); these registers are read and written as memory locations
instead of with register names.

MOVE Instructions

reg

reg

dreg

DM(

reg;

DM «address» ;

DM(10 MO);
Ml

10
11
12
13

MO
Ml
M2
M3

14 M4
15 M5
16 M6
17 M7

11
12
13

M2
M3

14 M4
15 M5
16 M6
17 M7

dreg
<data>

DM «address» = reg;

reg

dreg

PM(14
15
16
17

<data> ;

PM(14
15
16
17

M4
M5
M6
M7

Table 15.6 MOVE Instructions

M4);
M5
M6
M7

dreg;

15-13

15-14

Registers: reg

SB
PX
IO-I7, MO-M7, LO-L7
CNTR
ASTAT, MSTAT, SSTAT
IMASK, ICNTL, IFC
TXO, TXI, RXO, RXI

Data Registers: dreg

AXO, AXI, A YO, A YI, AR
MXO, MXI, MYO, MYI, MRO, MRI, MR2
51, SE, SRO, SRI

Table 15.7 Processor Registers: reg & dreg

15.7 PROGRAM FLOW CONTROL
Program flow control on the ADSP-2100 family processors is simple but
powerful. Here is an example of one instruction:

IF EQ JUMP my_label;

JUMP, of course, is a familiar construct from many other languages. My_label
is any identifier you wish to use as a label for the destination jumped to.
Instead of the label, an index register in DAG2 may be explicitly used. The
default scope for any label is the source code module in which it is declared.
The assembler directive .ENTRY makes a label visible as an entry point for
routines outside the module. Conversely, the .EXTERNAL directive makes it
possible to use a label declared in another module.

If the counter condition (CE, NOT CE) is to be used, an assignment to CNTR
must be executed to initialize the counter value. JUMP and CALL permit the
additional conditionals "FLAG_IN" and "NOT FLAG_IN" to be used for
branching on the state of the FI pin, but only with direct addressing, not with
DAG2 as the address source.

RTS (return from subroutine) and RTI (return from interrupt) provide for
conditional return from CALL or interrupt vectors respectively.

The IDLE instruction provides a way to wait for interrupts. IDLE causes the
processor to wait in a low-power state until an interrupt occurs. When an
interrupt is serviced, control returns to the instruction following the IDLE
statement. IDLE uses less power than loops created with JUMP.

Table 15.8 gives a summary of all program flow control instructions. The
condition codes are described in Table 15.9.

Program Flow Control Instructions

[IF condition] JUMP (14)
(15)
(16)
(17)

<address>

IF I FLAG IN I
NOT FLAG_IN

JUMP

[IF condition] CALL (14)
(15)
(16)
(17)

<address>

IF I FLAG IN I
NOT FLAG_IN

CALL

[IF condition] RTS ;

[IF condition] RTI ;

DO <address> [UNTIL termination] ;

IDLE [(n)];

Table 15.8 Program Flow Control Instructions

Syntax
EQ
NE
LT
GE
LE
GT
AC
NOTAC
AV
NOTAV
MV
NOTMV
NEG
POS
NOTCE
FLAG_IN*
NOT FLAG_IN*

Status Condition
Equal Zero
Not Equal Zero
Less Than Zero
Greater Than or Equal Zero
Less Than or Equal Zero
Greater Than Zero
ALUCarry
Not ALU Carry
ALU Overflow
Not ALU Overflow
MAC Overflow
Not MAC Overflow
X Input Sign Negative
X Input Sign Positive
Not Counter Expired
PI pin
Not PI pin

Table 15.9 IF Condition Codes
* Only available on JUMP and CALL instructions

True It

AZ=l
AZ=O

<address> ;

<address> ;

AN .XOR. AV = 1
AN .XOR. AV = 0
(AN .XOR. A V) .OR. AZ = 1
(AN .XOR. A V) .OR. AZ = 0
AC=l
AC=O
AV=l
AV=O
MV=l
MV=O
AS=l
AS=O

Last sample of PI pin = 1
Last sample of PI pin = 0

15-15

15-16

15.8 MISCELLANEOUS INSTRUCTIONS
There are several miscellaneous instructions. Nap is a no operation
instruction. The PUSH/POP instructions allows you to explicitly control
the status, counter, PC and loop stacks; interrupt servicing automatically
pushes and pops some of these stacks.

The Mode Control instruction enables and disables processor modes of
operation: bit-reversal on DAGl, latching ALU overflow, saturating the
ALU result register, choosing .the primary or secondary register set, GO
mode for continued operation during bus grant; multiplier shift mode for
fractional or integer arithmetic, and timer enabling.

A single ENA or DIS can be followed by any number of mode identifiers,·
separated by commas; ENA'and DIS can also be repeated. All seven
modes can be enabled, disabled, or changed in a single instruction.

The MODIFY instruction modifies the address pointer in the I register
selected with the value in the selected M register, without performing any
actual memory access. As always, the I and M registers must be from the
same DAG; any of 10-13 may be used only with one from MO-M3 and the
same for 14-17 and M4-M7. If circular buffering is in use, modulus logic
applies (See Chapter 4, "Data Transfer," for more information).

The Fa (Flag Out), FLO, FLI and FL2 pins can each be set, cleared, or
toggled. This instruction provides a control structure for multiprocessor
communication.

:t;;:;:;;;~;:. j1:::::~~~:: ;:11: :! .. ~:.:! .. ~.;.:!.:;:;:;~;:;:! .. :.1.:~ .. ·.~.·.· :.~:~:~:~.":~.;::.~.'.~.'.~:'.;.'.':~:~.;.: ·:.!:·.! ... :!.::I .. ; .•. :~: .. ~.~.:~.:1:; .. ~ ~.··.; .. ;.:~.::;.:~:;.; :.:~.:~.:~.:~.::::: j.:~:l:~.:: ... ;.·.; .• ~.·.~:.;.·.:~:;.; .. : :~.:~.:~ .. :.l.::;::::~ .. ~:·:~.:~.:;. !.;:~:~:f.·.;:;:.: •• ; •• ::·::.·.~.::.:· .1.~.:~.~:.:~.::~ •.• ~.·.~ •• ; .. ~:::~.:~.:.:·.;: :;;~:::::::;~~~~: :~~~;~~~;~~~;:: ;~t:

Miscellaneous Instructions

Nap;

[I PUSH I] STS [, pop CNTR] [, pop PC] [, pop LOOP] i
pop

l
ENA I
DIS

MODIFY (

[IF condition]

I
ENAI INTS;
DIS

BIT_REV
AV_LATCH
AR_SAT
SEC_REG
G_MODE
M_MODE
TIMER

10
11
12
13

14
15
16
17

MO)i
Ml
M2
M3

M4
M5
M6
M7

[,]

I SET I
FLAG_OUT

RESET FLO
TOGGLE FLI

FL2

Table 15.10 Miscellaneous Instructions

[,]

15-17

15-18

15.9 EXTRA CYCLE CONDITIONS
All instructions execute in a single cycle except under certain conditions,
as explained below.

15.9.1 Multiple Off-Chip Memory Accesses
The data and address busses of the ADSP-21xx processors are multiplexed
off-chip. Because of this, the processors can perform only one off-chip
access per instruction in a single cycle. If two off-chip accesses are
required-the instruction fetch and one data fetch, for example, or data
fetches from both program and data memory-then one overhead cycle
occurs. In this case the program memory access occurs first, then the data
memory access. If three off-chip accesses are required-the instruction
fetch as well as data fetches from both program and data memory-then
two overhead cycles occur.

A multifunction instruction requires three items to be fetched from
memory: the instruction itself and two data words. No extra cycle is
needed to execute the instruction as long as only one of the fetches is from
external memory. (Two fetches must be from on-chip memory, either PM
orDM.)

15.9.2 Wait States
All family processors allow the programming of wait states for external
memory chips. Up to seven extra wait state cycles may be added to the
processor's access time for external memory. Extra cycles inserted due to
wait states are in addition to any caused by multiple off-chip accesses (as
described above). Wait state programming is described in the "Memory
Interface" chapter.

Wait states and multiple off-chip memory accesses are the two cases when
an extra cycle is generated during instruction execution. The following
case, SPORT autobuffering and DMA, causes the insertion of extra cycles
between instructions.

15.9.3 SPORT Autobuffering & DMA
If serial port autobuffering or ADSP-2181 DMA is being used to transfer
data words to or from internal memory, then one memory access is
"stolen" for each transfer. The stolen memory access occurs only between
complete instructions. If extra cycles are required to execute any
instruction (for one of the two reasons above), the processor waits until it
is completed before "stealing" the access cycle.

15.10 INSTRUCTION SET SYNTAX
The following sections describe instruction set syntax and other notation
conventions used in the reference page of each instruction.

15.10.1 Punctuation & Multifunction Instructions
All instructions terminate with a semicolon. A comma separates the
clauses of a multifunction instruction but does not terminate it. For
example, the statements below in Example A comprise one multifunction
instruction (which can execute in a single cycle). Example B shows two
separate instructions, requiring two instruction cycles.

Example A: One multifunction instruction

AXO DM (IO, MO), a comma is used in multifunction instructions
AYO = PM{I4, M4);

Example B: Two separate instructions

AXO DM (IO, MO); a semicolon terminates an instruction
AYO = PM{I4, M4);

15.10.2 Syntax Notation Example
Here is an example of one instruction, the ALU Add/Add with Carry
instruction:

[IF cond] I~ 1= xop +
yop
C
yop+C

The permissible conds, xops and yops are given in a list. The conditional IF
clause is enclosed in square brackets, indicating that it is optional.

The destination register for the add operation must be either AR or AF.
These are listed within parallel bars, indicating that one of the two must
be chosen.

Similarly, the yop term may consist of a Y operand, the carry bit, or the
sum of both. One of these three terms must be used.

15-19

15-20

15.10.3 Status Register Notation
The following notation is used in the discussion of the effect each
instruction has on the processors' status registers:

* An asterisk indicates a bit in the status word that is changed by
the execution of the instruction.

A dash indicates that a bit is not affected by the instruction.

o or 1 Indicates that a bit is unconditionally cleared or set.

For example, the status word ASTAT is shown below:

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

* 0

Here the MV bit is updated and the AV bit is cleared.

ADD / ADD with CARRY

Syntax: [IF cond] I t~ I xop + yop
+C

Permissible xops
AXO MR2
AXI MRI
AR MRO

SRI
SRO

Permissible yops
AYO
AYI
AF

+ yop + C
+ constant
+ constant + C

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT pas MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192, 16384,32767
-2,-3,-5,-9,-17,-33,-65,-129,-257,-513,-1025,-2049,-4097,-8193,-16385,-32768

Example: IF EQ AR = AXO + AYO + C;
AR=AR+5I2;

Description: Test the optional condition and, if true, perform the specified
addition. If false then perform a no-operation. Omitting the condition
performs the addition unconditionally. The addition operation adds the first
source operand to the second source operand along with the AL U carry bit,
AC, (if designated by the "+C" notation), using binary addition. The result is
stored in the destination register. The operands are contained in the data
registers or constant specified in the instruction.

The xop + constant operation is only available on the ADSP-2I7x, ADSP-2I8x,
and ADSP-21msp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

(instruction continues on next page)

15

15-21

15-22

ADD / ADD with CARRY

Instruction Format:
Conditional ALU /MAC operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
a a 1 0 0 Z AMF 00

AMF specifies the ALU or MAC operation, in this case:

AMF = 10010 for xop + yop + C
AMF = 10011 for xop + yop

(Note that xop + C js a special case of xop + yop + C with yop=O.)

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

(xop + constant) Conditional ALU /MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

a a 1 a a Z AMF

AMF specifies the ALU or MAC operation, in this case:

Z:

AMF = 10010 for xop + constant + C
AMF = 10011 for xop + constant

COND: condition
Xop:

Destination register
X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

SUBTRACT X-Y I SUBTRACT X-Y with BORROW

Syntax: [IF cond] I ~~ I = xop - yop
- yop + C-I

Permissible xops
AXO MR2
AXI MRI
AR MRO

SRI
SRO

Permissible yops
AYO
AYI
AF

+C-I
- constant
- constant + C-I

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32767
-2,-3,-5,-9,-17,-33,-65,-129,-257,-513,-1025,-2049,-4097,-8193,-16385,-32768

Example: IFGE AR= AXO-AYO;

Description: Test the optional condition and, if true, then perform the
specified subtraction. If tne condition is not true then perform a no-operation.
Omitting the condition performs the subtraction unconditionally. The
subtraction operation subtracts the second source operand from the first
source operand, and optionally adds the ALU Carry bit (AC) minus I
(H#OOOl), and stores the result in the destination register. The (C-l) quantity
effectively implements a borrow capability for multiprecision subtractions.
The operands are contained in the data registers or constant specified in the
instruction.

The xop - constant operation is only available on the ADSP-2I7x, ADSP-218x,
and ADSP-2Imsp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 I 0

SS MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

(instruction continues on next page)

15-23

15-24

SUBTRACT X-Y / SUBTRACT X-Y with BORROW

Instruction Format:
Conditional ALU /MAC operation, Instruction ty~e 9:

AMF specifies the ALU or MAC operation. In this case,

AMF = 10110 for xop - yop + C - 1 operation.
AMF = 10111 for xop - yop operation.

Note that xop + C - 1 is a special case of xop - yop + C - 1 with yop=O.

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

(xop - constant) Conditional ALU /MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

AMF specifies the ALU or MAC operation, in this case:

Z:

AMF = 10110 for xop - constant + C - 1
AMF = 10111 for xop - constant

COND: condition
Xop:

Destination register
X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

SUBTRACT Y-X / SUBTRACT V-X with BORROW

Syntax: [IF cond] I AARF I = yop - I xop I
xop +C-I

Permissible xops
AXO MR2
AXI MRI
AR MRO

SRI
SRO

Permissible yops
AYO
AYI
AF

-xop +C-I
-xop + constant
-xop + constant + C - 1

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0,1,2,4,8,16,32,64,128,256,512, 1024,2048,4096,8192,16384,32767
-2,-3,-5,-9,-17,-33,-65,-129,-257,-513,-1025,-2049,-4097,-8193,-16385,-32768

Example: IFGT AR = AYO-AXO + C-I;

Description: Test the optional condition and, if true, then perform the
specified subtraction. If tIie condition is not true then perform a no-operation.
Omitting the condition performs the subtraction unconditionally. The
subtraction operation subtracts the second source operand from the first
source operand, optionally adds the ALU Carry bit (AC) minus 1 (H#OOOI),
and stores the result in the destination register. The (C-l) quantity effectively
implements a borrow capability for multiprecision subtractions. The
operands are contained in the data registers or constant specified in the
instruction.

The -xop + constant operation is only available on the ADSP-2I7x, ADSP-218x,
and ADSP-2Imsp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

55 MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

(instruction continues on next page)

15-25

15-26

SUBTRACT Y-X / SUBTRACT Y-X with BORROW

Instruction Format:
Conditional ALU jMAC Operation, Instruction Type 9:

a a 1 a a Z AMF

AMF specifies the ALU or MAC operation. In this case,

AMF = 11010 for yop - xop + C - 1
AMF = 11001 for yop - xop

(Note that -xop + C - 1 is a special case of yop - xop + C - 1 with yop=O;)

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

(-xop + constant) Conditional ALU /MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

a a 1 a a Z AMF

AMF specifies the ALU or MAC operation, in this case:

Z:

AMF = 11010 for constant - xop + C - 1
AMF = 11001 for constant - xop

COND: condition
Xop:

Destination register
X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

Syntax: [IF cond]

Permissible xops
AXO MR2
AX1 MR1
AR MRO

SR1
SRO

Permissible yops
AYO
AY1
AF

AND, OR, XOR

xop I ~~D I

XOR
I
yop I
constant

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58j59 only)
0, 1,2,4,8,16,32,64, 128,256,512,1024,2048,4096,8192,16384,32767
-2,-3,-5,-9,-17,-33,-65,-129,-257,-513,-1025,-2049,-4097,-8193,-16385,-32768

Example: AR = AXO XOR A YO;
IF FLAG_IN AR = MRO AND 8192;

Description: Test the optional condition and if true, then perform the
specified bitwise logical operation (logical AND, inclusive OR, or exclusive
OR). If the condition is not true then perform a no-operation. Omitting the
condition performs the logical operation unconditionally. The operands are
contained in the data registers or constant specified in the instruction.

The xop AND/OR/XOR constant operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors and may not be used in
multifunction instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
o 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Always cleared.
AC Always cleared.

(instruction continues on next page)

15-27

15-28

AND, OR, XOR

Instruction Format:
Conditional ALU I MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

Z: Yop: Y operand
Xop:

Destination register
X operand COND: condition

(xop ANDjORjXOR constant)
Conditional ALU I MAC operation, Instruction TJpe 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58j59 only

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation, in this case:

Z:

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

COND: condition
Xop:

Destination register
X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

TEST BIT, SET BIT, CLEAR BIT, TOGGLE BIT
(ADSP·217x, ADSP·218x, ADSp·21 msp58/59 only)

Syntax: [IF cond] TSTBIT n OF xop
SETBIT n OF xop
CLRBIT n OF xop
TGLBIT n OF xop

Permissible xops
AXO MR2
AXl MRl
AR MRO

SRl
SRO

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible n values (O=LSB)
0, 1,2,3,4,5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Examples: AF=TSTBIT 5 OF AR;
AR=TGLBIT 13 OF AXO;

Description: Test the optional condition and if true, then perform the
specified bit operation. If the condition is not true then perform a no­
operation. Omitting the condition performs the operation unconditionally.
These operations cannot be used in multifunction instructions.

These operations are defined as follows:

TSTBIT is an AND operation with a 1 in the selected bit
SETBIT is an OR operation with a 1 in the selected bit
CLRBIT is an AND operation with a 0 in the selected bit
TGLBIT is an XOR operation with a 1 in the selected bit

The ASTA T status bits are affected by these instructions. The following
instructions could be used, for example, to test a bit and branch accordingly:

AF=TSTBIT 5 OF AR;
IF NE JUMP set; /*Jump to "set" if bit 5 of AR is set*/

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ

AZ
AN
AV
AC

o 0 * *

Set if the result equals zero. Cleared otherwise.
Set if the result is negative. Cleared otherwise.
Always cleared.
Always cleared.

(instruction continues on next page)
15-29

15-30

TEST BIT, SET BIT, CLEAR BIT, TOGGLE BIT
(ADSP·217x, ADSP·218x, ADSp·21 msp58/59 only)

Instruction Format:
(xop ANDjORjXOR constant)
Conditional ALU /MAC operation, Instruction TJpe 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only

o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation, in this case:

Z:

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

COND: condition
Xop:

Destination register
X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

PASS/CLEAR

Syntax: I ~~ I = PASS

I

xop I ; yop
[IF cond]

Permissible xops
AXO MR2
AXI MRI
AR MRO

SRI
SRO

Permissible yops
AYO
AYI
AF

constant

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Permissible constants (all ADSP-21xx processors)
-1,0, 1

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
2,3,4,5, 7, 8,9, 15, 16, 17,31,32,33,63,64, 65, 127, 128, 129,255,256,257,
511,512,513,1023, 1024, 1025,2047,2048,2049,4095,4096,4097,8191,8192,8193,
16383,16384,16385,32766,32767
-2,-3,-4,-5,-6,-8,-9,-10,-16,-17,-18,-32,-33,-34,-64,-65,-66,
-128,-129,-130,-256,-257,-258,-512,-513,-514,-1024,-1025,-1026,
-2048,-2049,-2050,-4096,-4097,-4098,-8192,-8193,-8194,
-16384,-16385,-16386,-32767,-32768

Examples: IF GE AR = PASS A YO;
AR=PASSO;
AR = PASS 8191; . (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

Descrip,tion: Test the optional condition and if true, pass the source operand
unmodlfied through the ALU block and store in the destination register. ff the
condition is not true perform a no-operation. Omitting the condition performs the
PASS unconditionally. The source operand is contained in the data register or
constant specified in the instruction.

PASS 0 is one method of clearing AR. PASS 0 can also be combined with memory
reads and writes in a multifunction instruction to clear AR.

The PASS instruction performs the transfer to the AR or AF register and affects the
ASTAT status flags (for xop, yop, -1, 0, 1 only). This instruction is different from a
register move operation which does not affect any status flags. The PASS constant
operation (using any constant other than -1,0, or 1) causes the ASTAT status flags to
be undefined.

The PASS constant operation (using any constant other than -1, 0, or 1) is only
available on the ADSP-217x, ADSP-218x, and ADSP-21msp58/59 processors and
may not be used in multifunction instructions.

(instruction continues on next page) 15-31

PASS/CLEAR

Status Generated:
ASTAT: 7 6 5 4

SS MV AQ AS
3 2
AC AV
a a

1 a
AN AZ
* *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V, AC Always cleared.

Note: The PASS constant operation (using any constant other than -1, 0, or 1)
causes the ASTATstatus flags to be undefined.

Instruction Format:
Conditional ALU jMAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,
AMF = 10000 for PASS yop
AMF = 10011 for PASS xop
AMF = 10001 for PASS 1
AMF = 11000 for PASS -1

Note that PASS xop is a special case of xop + yop, with yop=O.
Note that PASS 1 is a special case of yop + 1, with yop=O.
Note that PASS -1 is a special case of yop - 1, with yop=O.

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

Conditional ALU jMAC operation, Instruction Type 9:
(PASS constant; constant '# 0,1,-1)
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,

AMF = 10000 for PASS yop (special case of yop, with yop=constant)
AMF = 10001 for PASS yop + 1 (special case of yop + 1, with yop=constant)
AMF = 11000 for PASS yop -1 (special case of yop - 1, with yop=constant)

Z:
Xop:

Destination register
X operand

COND: condition

15 - 32 BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

NEGATE

Syntax: [IF cond]

Permissible xaps
AXO MR2
AX1 MR1
AR MRO

Permissible yaps
AYO

Permissible cands (see Table 15.9)

SRI
SRO

Example:

AYI
AF

IF LT AR = -AYO;

EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Description: Test the ol?tional condition and if true, then NEGATE the
source operand and store In the destination location. If the condition is not
true then perform a no-operation. Omitting the condition performs the
NEGATE operation unconditionally. The source operand is contained in
the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if operand = H#8000. Cleared otherwise.
AC Set if operand equals zero. Cleared otherwise.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,
AMF = 10101 for -yop operation.
AMF = 11001 for -xop operation

Note that -xop is aspecial case of yop - xop, with yop specified to be O.

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

15-33

15 - 34 .

NOT

Syntax: [IF cond]

Permissible xaps
AXO MR2
AX1 MR1
AR MRO

SRI
SRO

Permissible yaps
AYO
AY1
AF
o

NOT I xop I ;
yop

Permissible cands (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Example: IF NE AF = NOT AXO;

Description: Test the optional condition and if true, then perform the
logical complement (ones complement) of the source operand and store in
the destination location. If the condition is not true then perform a no­
operation. Omitting the condition performs the complement operation
unconditionally. The source operand is contained in the data register
specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4

SS MV AQ AS
3 2 1 0
AC AV AN AZ
o 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Always cleared.
AC Always cleared.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,
AMF = 10100 for NOT yop operation.
AMF = 11011 for NOT xop operation.

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

ABSOLUTE VALUE

Syntax: [IF cond] I ~~ I = ABS xop

Permissible xops
AXO MR2
AX1 MR1
AR MRO

SRI
SRO

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

Example: IF NEG AF = ABS AXO ;

Description: Test the optional condition and, if true, then take the ,
absolute value of the source operand and store in the destination location.
If the condition is not true then perform a no-operation. Omitting the
condition performs the absolute value operation unconditionally. The
source operand is contained in the data register specified in the
instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
* 0 * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if xop is H#8000. Cleared otherwise.
A V Set if xop is H#8000. Cleared otherwise.
AC Always cleared.
AS Set if the source operand is negative. Cleared otherwise.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,
AMF = 11111 for ABS xop operation.

Z:
Xop:

Destination register
X operand COND: condition

15-35

15-36

INCREMENT

Syntax: [IF cond] I ~~ I = yop + 1 ;

Permissible yops
AYO
AYl
AF

Example:

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

IF GT AF = AF + 1;

Description: Test the optional condition and if true, then increment the
source operand by H#OOOl and store in the destination location. If the
condition is not true then perform a no-operation. Omitting the condition
performs the increment operation unconditionally. The source operand is
contained in the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,

AMF = 10001 for yop + 1 operation.

Note that the xop field is ignored for the increment operation.

Z:
Xop:

Destination register
X operand

Yop: Y operand
COND: condition

Syntax: [IF cond] I ~~ I = yop - 1 ;

Permissible yaps
AYO
AY1
AF

Example:

Permissible cands (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT pas MV
GE AV NOTMV
LT NOT AV NOTCE

IF EQ AR = A Y1 - 1 ;

DECREMENT

Description: Test the optional condition and if true, then decrement the
source operand by H#OOOl and store in the destination location. If the
condition is not true then perform a no-operation. Omitting the condition
performs the decrement operation unconditionally. The source operand is
contained in the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC A V AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

AMF specifies the ALU or MAC operation. In this case,

AMF = 11000 for yop -1 operation.

Note that the xop field is ignored for the decrement operation.

Z:
Xop:

Destination register
X operand

Yop: Yoperand
COND: condition

15-37

15-38

DIVIDE

Syntax: DIVS yop, xop ;
DIVQ xop ;

Permissible xops
AXO MR2
AXI MRI
AR MRO

SRI
SRO

Permissible yops
AYI
AF

Description: These instructions implement yop + xop. There are two
divide primitives, DIVS and DIVQ. A single precision divide, with a 32-bit
numerator and a 16-bit denominator, yielding a 16-bit quotient, executes
in 16 cycles. Higher precision divides are also possible.

The division can be either signed or unsigned, but both the numerator and
denominator must be the same; both signed or unsigned. The programmer
sets up the divide by sorting the upper half of the numerator in any
permissible yop (A Yl or AF), the lower half of the numerator in A YO, and
the denominator in any permissible xop. The divide operation is then
executed with the divide primitives, DIVS and DIVQ. Repeated execution
of DIVQ implements a non-restoring conditional add-subtract division
algorithm. At the conclusion of the divide operation the quotient will be in
AYO.

To implement a signed divide, first execute the DIVS instruction once,
which computes the sign of the quotient. Then execute the DIVQ
instruction for as many times as there are bits remaining in the quotient
(e.g., for a signed, single-precision divide, execute DIVS once and DIVQ 15
times).

To implement an unsigned divide, first place the upper half of the
numerator in AF, then set the AQ bit to zero by manually clearing it in the
Arithmetic Status Register, ASTAT. This indicates that the sign of the
quotient is positive. Then execute the DIVQ instruction for as many times
as there are bits in the quotient (e.g., for an unsigned single-precision
divide, execute DIVQ 16 times).

The quotient bit generated on each execution of DIVS and DIVQ is the AQ
bit which is written to the ASTAT register at the end of each cycle. The
final remainder produced by this algorithm (and left over in the AF
register).is not valid and must be corrected if it is needed. For more
information, consult the Division Exceptions appendix of this manual.

Status Generated:
A5TAT: 7 6 5 4 3 2 1 0

55 MV AQ A5 AC A V AN AZ
*

DIVIDE

AQ Loaded with the bit value equal to -the AQ bit computed on each
cycle from execution of the DIV5 or DIVQ instruction.

Instruction Format:
DIVQ, Instruction Type 23:

23 22 21 20 19 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 000 0

DIVS, Instruction Type 24:

23 22 21 20 19 18 17 16 15 14 13 7 6 543 2 1 0
0 0 0 0 0 1 1 0 0 0 0 0 0 o 0 o 0 0 0

Xop: X operand Yop: Yoperand

15-39

15-40

GENERATE ALU STATUS
(ADSP·217x, ADSP·218x, ADSP·21 msp58/59 only)

Syntax: NONE = <ALU> ;

<ALU> may be any unconditional ALU operation except DNS or DNQ. *

Examples: NONE = AXO - A YO;
NONE = PASS SRO;

Description: Perform the designated ALU operation, generate the ASTAT
status flags, then discard the result value. This instruction allows the testing
of register values without disturbing the contents of the AR or AF registers.

* Note that the additional-constant ALU operations of the ADSP-217x,
ADSP-218x, ADSP-21msp58/59 processors are also not allowed:

ADD (xop + constant)
SUBTRACT X-Y (xop - constant)
SUBTRACT V-X (-xop + constant)
AND, OR, XOR (xop. constant)
PASS (PASS constant, using any constant other than -1, 0, or 1)
TSTBIT, SETBIT, CLRBIT, TGLBIT.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
* * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
A V Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
ALU /MAC operation with Data Register Move, Instruction Type 8:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
o 0 1 0 1 0

ALU codes only

o
o

AMF specifies the ALU or MAC operation (only ALU operations are allowed).

Xop: X operand Yop: Y operand

Syntax:

Permissible xops
MXO AR
MXl 5Rl
MR2 5RO
MRI
MRO

Examples:

MULTIPLY

[IF cond]
.
MRI = xop * IYOpl
MF I xop

(55)
(5U)
(U5)
(UU)
(RND)

Permissible yops
MYO
MY1
MF

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT P05 MV
GE AV NOTMV
LT NOT AV NOTCE

IF EQ MR = MXO * MF (UU);
MF = 5RO * 5RO (55);

xop *yop
xop *xop

Description: Test the optional condition and, if true, then multiply the
two source operands and store in the destination location. If the condition
is not true perform a no-operation. Omitting the condition performs the
multiplication unconditionally. The operands are contained in the data
registers specified in the instruction. When MF is the destination operand,
only bits 31-16 of the product are stored in MF. '

The xop * xop squaring operation is only available on the AD5P-217x,
AD5P-218x, and AD5P-21msp58/59 processors. Both xops must be the
same register. This option allows single-cycle X2 and LX2 instructions.

The data format selection field following the two operands specifies
whether each respective operand is in 5igned (5) or Unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (55), or (RND) only.
There is no default;. one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
rounds the result to the most significant 24 bits (or rounds bits 31-16 to 16
bits if there is no overflow from the multiply), and stores the result in the
destination register. The two multiplication operands xop and yop (or xop
and xop) are considered to be in twos complement format. All rounding is
unbiased, except on the AD5P-217x, AD5P-218x, and AD5P-21msp58/59
processors, which offer a biased rounding mode. For a discussion of
biased vs. unbiased rounding, see "Rounding Mode" in the "Multiplier /
Accumulator" section of Chapter 2, Computation Units.'

(instruction continues on next page)
15-41

15-42

MULTIPLY

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

'55 MV AQ AS AC A V AN AZ
*

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU /MAC Operation, Instruction Type 9:

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
00100
00101
00110
00111
00001

FUNCTION
xop *yop
xop *yop
xop *yop
xop * yop
xop * yop

Z: Destination register
Xop: X operand register

Data Format
(55)
(SU)
(US)
(UU)
(RND)

X-Operand
Signed
Signed
Unsigned
Unsigned
Signed

Y-Operand
Signed
Unsigned
Signed
Unsigned
Signed

Y op: Y operand register
COND: condition

(xop * xop) Conditional ALU /MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58j59 only)

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
00100
00111
00001

FUNCTION
xop * xop
xop * xop
xop * xop

Z: Destination register
Xop: X operand register

Data Format X-Operand
(55) Signed
(UU) Unsigned
(RND) Signed

COND: condition

Syntax:

Permissible xops
MXO AR
MXl SRI
MR2 SRO
MRI
MRO

. Examples:

[IF cond]

Permissible yops
MYO
MYI
MF

MULTIPLY I ACCUMULATE

= MR + xop * IYOpl
xop

(SS)
(SU)
(US)
(UU)
(RND)

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT POS MV
GE AV NOTMV
LT NOT AV NOTCE

IFGE MR= MR+MXO *MYI (SS);
MR = MR + MXO * MXO (SS);

xop *yop
xop *xop

Description: Test the optional condition and,if true, then multiply the
two source operands, adathe product to the present contents of tne MR
register, and store the result in the destination location. If the condition is
not true then perform a no-operation. Omitting the condition performs the
multiply / accumulate unconditionally. The operands are contained in the
data registers specified in the instruction. When MF is the destination
operand, only bits 31-16 of the 40-bit result are stored in MF.

The xop * xop squaring operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors. Both xops must be the
same register. This option allows single-cycle X2 and I,X2 instructions.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (S) or unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (SS), or (RND) only.
There is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
adds the product to the current contents of the MR register, rounds the
result to the most significant 24 bits (or rounds bits 31-16 to the nearest 16
bits if there is no overflow from the multiply / accumulate), and stores the
result in the destination register. The two multiplication operands xop and
yop (or xop and xop) are considered to be in twos complement format. All
rounding is unbiased, except on the ADSP-217x, ADSP-218x, and ADSP-
21msp58/59 processors, which offer a biased rounding mode. For a
discussion of biased vs. unbiased rounding, see "Rounding Mode" in the
"Multiplier / Accumulator" section of Chapter 2, Computation Units.

(instruction continues on next page)
15-43

15-44

MULTIPLY / ACCUMULATE

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

55 MV AQ AS AC A V AN AZ
*

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU /MAC Operation, Instruction Type 9:

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
01000
01001
01010
01011
00010

FUNCTION
MR+xop *yop
MR+xop*yop
MR+xop*yop
MR+xop *yop
MR+xop*yop

Z: Destination register
Xop: X operand register

Data Format
(55)
(SU)
(US)
(UU)
(RND)

X-Operand
Signed
Signed
Unsigned
Unsigned
Signed

Yop: Y operand register
COND: condition

Y-Operand
Signed
Unsigned
Signed
Unsigned
Signed

(xop * xop) Conditional ALU/MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
01000
01011
00010

FUNCTION
MR+xop*xop
MR+xop*xop
MR+xop* xop

Z: Destination register
Xop: X operand register

Data Format
(55)
(UU)
(RND)

X-Operand
Signed
Unsigned
Signed

COND: condition

Syntax:

Permissible xops
MXO AR
MX1 5R1
MR2 5RO
MR1
MRO

Examples:

MULTIPLY / SUBTRACT

I
MRI =MR- xop* IYOpl
MF xop

[IF cond] (55)
(5U)
(U5)
(UU)
(RND)

Permissible yops
MYO
MY1
MF

Permissible conds (see Table 15.9)
EQ LE AC
NE NEG NOTAC
GT P05 MV
GE AV NOTMV
LT NOT AV NOTCE

IF LT MR = MR - MX1 * MYO (5U) ;
MR = MR-MXO *MXO (55);

xop *yop
xop *xop

Description: Test the optional condition and, if true, then multiply the
two source operands, subtract the product from the present contents of
the MR register, and store the result in the destination location. If the
condition is not true perform a no-operation. Omitting the condition
performs the multiply/subtract unconditionally. The operands are
contained in the data registers specified in the instruction. When MF is the
destination operand, only bits 16-31 of the 40-bit result are stored in MF.

The xop * xop squaring operation is only available on the AD5P-217x,
AD5P-218x, and AD5P-21msp58/59 processors. Both xops must be the
same register.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (5) or unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (55), or (RND) only.
There is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
subtracts the product from the current contents of the MR register, rounds
the result to the most significant 24 bits (or rounds bits 31-16 to 16 bits if
there is no overflow from the multiply/accumulate), and stores the result
in the destination register. The two multiplication operands xop and yop
(or xop and xop) are considered to be in twos complement format. All
rounding is unbiased, except on the AD5P-217x, AD5P-218x, and ADSP-
21msp58 /59 processors, which offer a biased rounding mode. For a
discussion of biased vs. unbiased rounding, see "Rounding Mode" in the
"Multiplier / Accumulator" section of Chapter 2, Computation Units.

(instruction continues on next page)
15-45

15-46

MULTIPLY / SUBTRACT

Status Generated:
ASTAT: 7 6 5 4 3 2 1 a

55 MV AQ AS AC A V AN AZ
*

MV Set on MAC overflow (if any of the upper 9 bits of MR are
not all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU /MAC Operation, Instruction Type 9:

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
01100
01101
01110
01111
00011

FUNCTION
MR-xop*yop
MR-xop * yop
MR-xop*yop
MR-xop *yop
MR-xop *yop

Z: Destination register
Xop: X operand register

Data Format
(55)
(SU)
(US)
(UU)
(RND)

X-Operand
Signed
Signed
Unsigned
Unsigned
Signed

Yop: Y operand register
COND: condition

Y-Operand
Signed
Unsigned
Signed
Unsigned
Signed

(xop * xop) Conditional ALU /MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF
01100
01111
00011

FUNCTION
MR-xop* xop
MR-xop* xop
MR-xop* xop

Z: Destination register
Xop: X operand register

Data Format
(55)
(UU)
(RND)

X-Operand
Signed
Unsigned
Signed

COND: condition

Syntax: [IF cond] = 0 ;

Permissible conds (see Table 15.9)
EQ NE GT GE
LE NEG POS AV
AC NOT AC MV NOT MV

LT
NOTAV
NOTCE

Example: IFGTMR= 0;

CLEAR

Description: Test the optional condition and, if true, then set the
specified register to zero. If the condition is not true perform a no­
operation. Omitting the condition performs the clear unconditionally. The
entire 40-bit MR or 16-bit MF register is cleared to zero.

Status Generated:
ASTAT: 7654321 0

SS MV AQ AS AC A V AN AZ
o

MV Always cleared.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

AMF: Specifies the ALU or MAC Operation. In this case,
AMF = 00100 for clear operation.

Note that this instruction is a special case of xop * yop, with yop set to
zero.

Z: Destination register COND: condition

15-47

15-48

Syntax: [IF cond] I ~ I = MR [(RND) I ;

Permissible cands (see Table 15.9)
EQ NE GT GE
LE NEG POS AV
AC NOT AC MV NOT MV

Example: IF EQ MF = MR (RND);

LT
NOTAV
NOTCE

Description: Test the optional condition and, if true, then perform the
MR transfer according to the description below. If the condition is not true
then perform a no-operation. Omitting the condition performs the transfer
unconditionally.

This instruction actually performs a multiply/accumulate, specifying yap =
o as a multiplicand and adding the zero product to the contents of MR. The
MR register may be optionally rounded at the boundary between bits 15
and 16 of the result by specifying the RND option. If MF is specified as the
destination, bits 31-16 of the result are stored in MF. If MR is the
destination, the entire 40-bit result is stored in MR.

Status Generated:
ASTAT:

MV

765 4 3 2 1 0
SS MV AQ AS AC A V AN AZ

*

Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
Conditional ALU /MAC Operation, Instruction Type 9:

o 0 1 0 0 Z AMF

AMF: Specifies the ALU or MAC Operation. In this case,

AMF = 01000 for Transfer MR operation

Note that this instruction is a special case of MR + xop * yop, with yop set to
zero.

Z: Destination register COND: condition

CONDITIONAL MR SATURATION

Syntax: IFMVSATMR;

Description: Test the MV (MAC Overflow) bit in the Arithmetic Status
Register (AST AT), and if set, then saturate the lower-order 32 bits of the
40-bit MR register; if the MV is not set then perform a no-operation.

Saturation of MR is executed with this instruction for one cycle only; MAC
saturation is not a continuous mode that is enabled or disabled. The
saturation instruction is intended to be used at the completion of a series
of multiply / accumulate operations so that temporary overflows do not
cause the accumulator to saturate.

The saturation result depends on the state of MV and on the sign of MR
(the MSB of MR2). The possible results after execution of the saturation
instruction are shown in the table below.

MV MSB of MR2 MR contents after saturation

o
o
1
1

o
1
o
1

No change
No change
00000000 0111111111111111 1111111111111111
11111111 1000000000000000 0000000000000000

Status Generated: No status bits affected.

Instruction Format:
Saturate MR operation, Instruction Type 25:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000 0 0 1 0 1 0 0 0 0 0 0 0 000 0 0 0 0 0 0

15-49

15-50

ARITHMETIC SHIFT

Syntax: [IF cond] SR = [SR OR] ASHIFT xop

Permissible xaps Permissible cands (see Table 15.9)
SI AR EQ LE AC
SRl MR2 NE NEG NOTAC
SRO MRl GT POS MV

MRO GE AV NOTMV
LT NOT AV NOTCE

Example: IF LT SR = SR OR ASHIFT 51 (LO);

(HI)
(LO)

Description: Test the optional condition and, if true, then perform the
designated arithmetic shift. If the condition is not true then perform a no­
operation. Omitting the condition performs the shift unconditionally. The
operation arithmetically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive Shift Code (i.e. positive value in SE), the
operand is shifted left; with a negative Shift Code (i.e. negative value in
SE), the operand is shifted right. The number of positions. shifted is the
count in the Shift Code. The 32-bit output field is sign-extended to the left
(the MSB of the input is replicated to the left), and the output is zero-filled
from the right. Bits shifted out of the high order bit in the 32-bit
destination field (SR31) are dropped. Bits shifted out of the low order bit in
the destination field (SRo) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using an ASHIFT with the HI option; on the following cycle, the
lower half of the number is shifted using an LSHIFT with the LO and OR
options. This prevents sign bit extension of the lower word's MSB.

Status Generated: None affected.

ARITHMETIC SHIFT

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11
o 0 0 0 1 1 1 0 0 SF

SF Shifter Function
o 1 0 0 ASH 1FT (HI)
o 1 0 1 ASHIFT (HI, OR)
0110 ASHIFT (LO)
0111 ASH 1FT (LO, OR)

Xop: shifter operand COND: condition

15-51

15-52

LOGICAL SHIFT

Syntax: [IF cond] SR = [SR OR] LSHIFf xop I (HI) I;
(LO)

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SRI MR2 NE NEG NOTAC
SRO MRI GT POS MV

MRO GE AV NOTMV
LT NOT AV NOTCE

Example: IF GE SR = LSHIFf SI (HI) ;

Description: Test the optional condition and, if true, then perform the
designated logical shift. If the condition is not true then perform a no­
operation. Omitting the condition performs the shift unconditionally. The
operation logically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For LSHIFT with a positive Shift Code, the operand is shifted left; the
numbers of positions shifted is the count in the Shift Code. The 32-bit
output field is zero-filled from the right. Bits shifted out of the high order
bit in the 32-bit destination field (SR31) are dropped.

For LSHIFf with a negative Shift Code, the operand is shifted right; the
number of positions shifted is the count in the Shift Code; The 32-bit
output field is zero-filled from the left. Bits shifted out of the low order bit
in the destination field (SR.o) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using the HI option; on the following cycle, the lower half of the
number is shifted using the LO and OR options.

Status Generated: None affected.

LOGICAL SHIFT

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
o 0 0 0 1 1 1 0 0 SF

SF Shifter Function
o 0 0 0 LSHIFT (HI)
o 0 0 1 LSHIFT (HI, OR)
o 0 1 0 LSHIFT (LO)
o 0 1 1 LSHIFT (LO, OR)

Xop: shifter operand COND: condition

15-53

15-54

NORMALIZE

Syntax: [IF cond] SR = [SR OR] NORM xop

Permissible xaps Permissible cands (see Table 15.9)
SI AR EQ LE AC
SRI MR2 NE NEG NOTAC
SRO MRI GT pas MV

MRO GE AV NOTMV
LT NOT AV NOTCE

Example: SR = NORM SI (HI) ;

(HI)
(La)

Description: Test the optional condition and, if true, then' perform the
designated normalization. If the condition is not true then perform a no­
operation. Omitting the condition performs the normalize
unconditionally. The operation arithmetically shifts the input operand to
eliminate all but one of the sign bits. The amount of the shift comes from
the SE register. The SE register may be loaded with the proper Shift Code
to eliminate the redundant sign bits by using the Derive Exponent
instruction; the Shift Code loaded' will be the negative of the quantity: (the
number of sign bits minus one).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (La option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option. When the La reference is selected, the 32-bit output field is zero­
filled to the left. Bits shifted out of the high order bit in the 32-bit
destination field (SR31) are dropped.

The 32-bitoutput field is zero-filled from the right. If the exponent of an
overflowed ALU result was derived with the HIX modifier, the 32-bit
output field is filled from left with the ALU Carry (AC) bit in the
Arithmetic Status Register (AST AT) during a NORM (HI) operation. In
this case (SE=I from the exponent detection on the overflowed ALU
value) a downshift occurs.

To normalize a double precision number, the same Shift Code is used for
both halves of the number. On the first cycle, the upper half of the number
is shifted using the HI option; on the following cycle, the lower half of the
number is shifted using the La and OR options.

Status Generated: None affected.

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12
o 0 0 0 1 1 1 0 0 SF

SF Shifter Function
1 0 0 0 NORM (HI)
1 0 0 1 NORM (HI, OR)
1 0 1 0 NORM (LO)
1 0 1 1 NORM (LO, OR)

NORMALIZE

Xop: shifter operand COND: condition

15-55

15-56

DERIVE EXPONENT

Syntax: [IF cond] SE = EXP xop (HI)
(LO)
(HIX)

Permissible xaps Permissible cands (see Table 15.9)
SI AR EQ LE AC
SRI MR2 NE NEG NOTAC
SRO MRI GT POS MV

MRO GE AV NOTMV
LT NOT AV NOTCE

Example: IF GT SE = EXP MRI (HI) ;

Description: Test the optional condition and, if true, perform the
designated exponent operation. lf the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally.

The EXP operation derives the effective exponent of the input operand to
prepare for the normalization operation (NORM). EXP supplies the source
operand to the exponent detector, which generates a Shift Code from the
number of leading sign bits in the input operand. The Shift Code, stored in
SE at the completion of the EXP instruction, is the effective exponent of the
input value. The Shift Code depends on which exponent detector mode is
used (HI, HIX, LO).

In the HI mode, the input is interpreted as a single precision signed
number, or as the upper half of a double precision signed number. The
exponent detector counts the number of leading sign bits in the source
operand and stores the resulting Shift Code in SE. The Shift Code will
equal the negative of the number of redundant sign bits in the input.

In the HIX mode, the input is interpreted as the result of an add or
subtract which may have overflowed. HIX is intended to handle shifting
and normalization of results from ALU operations. The HIX mode
examines the ALU Overflow bit (A V) in the Arithmetic Status Register: if
A V is set, then the effective exponent of the input is +1 (indicating that an
ALU overflow occurred before the EXP operation), and +1 is stored in SE.
lf A V is not set, then HIX performs exactly the same operations as the HI
mode.

DERIVE EXPONENT

In the LO mode, the input is interpreted as the lower half of a double
precision number. In performing the EXP operation on a double precision
number, the higher half of the number must first be processed with EXP in
the HI or HIX mode, and then the lower half can be processed with EXP in
the LO mode. If the upper half contained a non-sign bit, then the correct
Shift Code was generated in the HI or HIX operation and that is the code
that is stored in SE. If, however, the upper half was all sign bits, then EXP
in the LO mode totals the number of leading sign bits in the double
precision word and stores the resulting Shift Code in SE.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ

SS

*

Set by the MSB of the input for an EXP operation in the HI
or HIX mode with A V = o. Set by the MSB inverted in the
HIX mode with AV = 1. Not affected by operations in the
LOmode.

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11
o 0 0 0 1 1 1 0 0 SF

SF
1100
1101
1110

Shifter Function
EXP (HI)
EXP (HIX)
EXP (LO)

Xop: shifter operand COND: condition

15-57

15-58

BLOCK EXPONENT ADJUST

Syntax: [IF cond] SB = EXP ADJ xop;

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SRI MR2 NE NEG NOTAC
SRO MRI GT pas MV

MRO GE AV NOTMV
LT NOT AV NOTCE

Example: IF GT SB = EXPADJSI ;

Description: Test the optional condition and, if true, perform the
designated exponent operation. If the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally. The Block Exponent Adjust operation, when performed
on a series of numbers, derives the effective exponent of the number
largest in magnitude. This exponent can then be associated with all of the
numbers in a block floating point representation.

The Block Exponent Adjust circuitry applies the input operand to the
exponent detector to derive its effective exponent. The input must be a
signed twos complement number. The exponent detector operates in HI
mode (see the EXP instruction, above).

At the start of a block, the SB register should be initialized to -16 to set SB
to its minimum value. On each execution of the EXP ADJ instruction, the
effective exponent of each operand is compared to the current contents of
the SB register. If the new exponent is greater than the current SB value, it
is written to the SB register, updating it. Therefore, at the end of the block,
the SB register will contain the largest exponent found. EXP ADJ is only an
inspection operation; no actual shifting takes place since the true exponent
is not known until all the numbers in the block have been checked.
However, the numbers can be shifted at a later time after the true
exponent has been derived.

Extended (overflowed) numbers and the lower halves of double precision
numbers can not be processed with the Block Exponent Adjust instruction.

Status Generated: Not affected.

BLOCK EXPONENT ADJUST

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

o 1 1 1 0 0 SF

SF = 1111.

Xop: shifter operand COND: condition

15-59

15-60

ARITHMETIC SHIFT IMMEDIATE

Syntax: SR = [SR OR] ASHIFT xop BY <exp>

Permissible xops <exp>

(HI) I;
(La)

SI MRO Any constant between -128 and 127*
SR1 MR1
SRO MR2
AR

Example: SR = SR OR ASHIFT SRO BY 3 (La); {do not use I/+3"}

Description: Arithmetically shift the bits of the operand b~ the amount
and direction specified by the constant in the exponent field. Positive
constants cause a left shift (upshift) and negative constants cause a right
shift (downshift). A positive constant must be entered without a 1/+" sign.

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (La option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive shift constant the operand is shifted left; with
a negative shift constant the operand is shifted right. The 32-bit output
field is sign-extended to the left (the MSB of the input is replicated to the
left), and the output is zero-filled from the right. Bits shifted out of the
high order bit in the 32-bit destination field (SR31) are dropped. Bits shifted
out of the low order bit in the destination field (SRo) are dropped.

To shift a double precision number, the same shift constant is used for
both halves of the number. On the first cycle, the upper half of the number
is shifted using an ASHIFT with the HI option; on the following cycle, the
lower half is shifted using an LSHIFT with the La and OR options. This
prevents sign bit extension of the lower word's MSB. .

* See Table 2.4 in Chapter 2.

Status Generated: None affected.

ARITHMETIC SHIFT IMMEDIATE

Instruction Format:
Shift Immediate Operation, Instruction Type 15:

23 22 21 20 19 18 17 16 15 14 13 12
o 0 0 0 1 1 1 1 0 SF

SF Shifter Function
o 1 a 0 ASHIFT (HI)
o 1 a 1 ASHIFT (HI, OR)
0110 ASHIFT (LO)
o 1 1 1 ASHIFT (LO, OR)

1 0

Xop: Shifter Operand <exp>: .8-bit signed shift value

15-61

15-62

LOGICAL SHIFT IMMEDIATE

Syntax: SR = [SR OR] LSHIFT xop BY <exp>
I

(HI) I;
(LO)

Permissible xops <exp>
SI MRO Any constant between -128 and 127*
SRI MRI
SRO MR2
AR

Example: SR = LSHIFT SRI BY -6 (HI) ;

Description: Logically shifts the bits of the operand by the amount and
direction specified by the constant in the exponent field. Positive constants
cause a left shift (upshift); negative constants cause a right shift
(downshift). A positive constant must be entered without a 1/+" sign.

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the contents of the SR register by selecting the SR OR option.

For LSHIFT with a positive shift constant, the operand is shifted left. The
32-bit output field is zero-filled to the left and from the right. Bits shifted
out of the high order bit in the 32-bit destination field (SR31) are dropped.
For LSHIFT with a negative shift constant, the operand is shifted right.
The 32-bit output field is zero-filled from the left and to the right. Bits
shifted out of the low order bit are dropped.

To shift a double precision number, the same shift constant is used for
both parts of the number. On the first cycle, the upper half of the number
is shifted using the HI option; on the following cycle, the lower half is
shifted using the LO and OR options.

* See Table 2.4 in Chapter 2.

Status Generated: None affected.

Instruction Format:
Shift Immediate Operation, Instruction Type 15:

23 22 21 20 19 18 17 16 15 14 13 12 11 543 2 1 0
0 0 0 0 1 1 1 1 0 SF <exp>

SF Shifter Function
0000 LSHIFT (HI) Xop: Shifter Operand
0001 LSHIFT (HI, OR)
0010 LSHIFT (LO) <exp>: 8-bit signed shift value
0011 LSHIFT (LO, OR)

Syntax: reg = reg;

Permissible registers
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2 10-17

MRI MO-M7
MRO LO-L7

Example: 17 = AR;

SB
PX
ASTAT
MSTAT
SSTAT(read only)
IMASK
ICNTL

REGISTER MOVE

CNTR
OWRCNTR(write only)
RXO
RXI
TXO
TXI
IFC(write only)

Description: Move the contents of the source to the destination
location. The contents of the source are always right-justified in the
destination location after the move.

When transferring a smaller register to a larger register (e.g., an 8-bit
register to a I6-bit register), the value stored in the destination is either
sign-extended to the left if the source is a signed value, or zero-filled to the
left if the source is an unsigned value. The unsigned registers which
(when used as the source) cause the value stored in the destination to be
zero-filled to the left are: 10 through 17, LO through L7, CNTR, PX, ASTAT,
MSTAT, SSTAT, IMASK, and ICNTL. All other registers cause sign­
extension to the left.

When transferring a larger register to a smaller register (e.g., a I6-bit
register to a I4-bit register), the value stored in the destination is right­
justified (bit 0 maps to bit 0) and the higher-order bits are dropped.

Note that whenever MRI is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

(instruction continues on next page)

15-63

15-64

REGISTER MOVE

Instruction Format:
Internal Data Move, Instruction Type 17:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 0 0 1 1 0 1 0 0 0 01 DST ISRCI DEST ISOURCE
RGP RGP REG REG

SRC RGP (Source Register Group) and SOURCE REG (Source Register)
select the source register according to the Register Selection Table (see
Appendix A).

DST RGP (Destination Register Group) and DEST REG (Destination
Register) select the destination register according to the Register Selection
Table (see Appendix A).

Syntax: reg = <data> ;
dreg = <data> ;

data: <constant>
'%' <symbol>
'N <symbol>

Permissible registers

dregs (Instruction Type 6)
(16-bit load)
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AY1 MY1 SRO
AR MR2

MRI
MRO

Example: 10 = "data_buffer;
LO=%data_buffer;

LOAD REGISTER IMMEDIATE

regs (Instruction Type 7)
(maximum 14-bit load)
SB CNTR
PX OWRCNTR (write only)
ASTAT RXO
MSTAT RX1
IMASK TXO
ICNTL TXl
10-17 IFC(write only)
MO-M7
LO-L7

Description: Move the data value specified to the destination location.
The data may be a constant, or any symbol referenced with the "length of"
(%) or "pointer to" (") operators. The data value is contained in the
instruction word, with 16 bits for data register loads and up to 14 bits for
other register loads. The value is always right-justified in the destination
location after the load (bit 0 maps to bit 0). When a value of length less than
the length of the destination is moved, it is sign-extended to the left to fill
the destination width.

Note that whenever MRI is loaded with data, it is sign-extended into MR2.

For this instruction only, the RX and TX registers may be loaded with a
maximum of 14 bits of data (although the registers themselves are 16 bits
wide). To load these registers with 16-bit data, use the register-to-register
move instruction or the data memory-to-register move instruction with
direct addressing.

Status Generated: None affected.

(instruction continues on next page)

15-65

15-66

LOAD REGISTER IMMEDIATE

Instruction Format :
Load Data Register Immediate, Instruction Type 6:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
o 1 0 0 DATA

DATA contains the immediate value to be loaded into the Data Register
destination location. The data is right-justified in the field, so the value
loaded into an N-bit destination register is contained in the lower-order N
bits of the DATA field.

DREG selects the destination Data Register for the immediate data value.
One of the 16 Data Registers is selected according to the DREG Selection
Table (see Appendix A).

Load Non-Data Register Immediate Instruction Type 7:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
DATA

DATA contains the immediate value to be loaded into the Non-Data
Register destination location. The data is right-justified in the field, so the
value loaded into an N-bit destination register is contained in the lower­
order N bits of the DATA field.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

DATA MEMORY READ (Direct Address)

Syntax: reg = DM (<addr>) ;

Permissible registers
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2 10-17

MRI MO-M7
MRO LO-L7

SB
PX
ASTAT
MSTAT

IMASK
ICNTL

Example: SI = DM(ad-portO);

CNTR
OWRCNTR (write only)
RXO
RXI
TXO
TXl
IFC(write only)

Description: The Read instruction moves the contents of the data
memory location to the destination register. The addressing mode is direct
addressing (designated by an immediate address value or by a label). The
data memory address is stored directly in the instruction word as a full 14-
bit field. The contents of the source are always right-justified in the
destination register after the read (bit 0 maps to bit 0).

Note that whenever MRI is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4
ADDR

ADDR contains the direct address to the source location in Data Memory.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

15-67

15-68

DATA MEMORY READ (Indirect Address)

Syntax: dreg = DM (

Permissible dregs
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2

MRI
MRO

IO
I1
12
13

MO
Ml
M2
M3

14 M4
IS MS
16 M6
17 M7

Example: AYO = DM 03, Ml);

) ;

Description: The Data Memory Read Indirect instruction moves the
contents of the data memory location to the destination register. The
addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. The contents of the source are always
right-justified in the destination register after the read (bit 0 maps to bit 0).

Status Generated : None affected.

Instruction Format:
ALU / MAC Operation with Data Memory Read, Instruction Type 4:

17 16 15 14 13 12 11 10 9
AMF

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a no­
operation for the ALU /MAC function.

DREG selects the destination Data Register. One of the 16 Data Registers
is selected according to the DREG Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar above. I specifies the indirect address pointer 0 register).
M specifies the modify register (M register).

PROGRAM MEMORY READ (Indirect Address)

Syntax: dreg = PM(

Permissible dregs
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2

MRI
MRO

14
15
16
17

Example: MXl = PM (16, M5);

M4);
M5
M6
M7

Description: The Program Memory Read Indirect instruction moves the
contents of the program memory location to the destination register. The
addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. The 16 most significant bits of the
Program Memory Data bus (PMD23-s) are loaded into the destination
register, with bit PMDslining up with bit 0 of the destination register
(right-justification). If the destination register is less than 16 bits wide, the
most significant bits are dropped. Bits PMD7-o are always loaded into the
PX register. You may ignore these bits or read them out on a subsequent
cycle.

Status Generated: None affected

Instruction Format:
ALU / MAC Operation with Program Memory Read, Instruction Type 5:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
o 1 0 1 0 0 AMF

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a no­
operation for the ALU /MAC function.

DREG selects the destination Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (I register). M specifies the modify
register (M register).

15-69

15-70

DATA MEMORY WRITE (Direct Address)

Syntax: DM (<addr>) = reg

Permissible registers
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2 10-17

MRI MO-M7
MRO LO-L7

SB CNTR
PX RXO
ASTAT RXI
MSTAT TXO
SSTAT(read only) TXl
IMASK
ICNTL

Example: DM (cntCportO) = AR;

Description: Moves the contents of the source register to the data
memory location specified in the instruction word. The addressing mode
is direct addressing (designated by an immediate address value or by a
label). The data memory address is stored directly in the instruction word
as a full14-bit field. Whenever a register less than 16 bits in length is
written to memory, the value written is either sign-extended to the left if
the source is a signed value, or zero-filled to the left if the source is an
unsigned value. The unsigned registers which are zero-filled to the left
are: 10 through 17, LO through L7, CNTR, PX, ASTAT, MSTAT, SSTAT,
IMASK, and ICNTL. All other registers are sign-extended to the left.

The contents of the source are always right-justified in the destination
location after the write (bit 0 maps to bit 0).

Note that whenever MRI is loaded with data, it is sign-extended into
MR2. I

Status Generated: N one affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5
ADDR

ADDR contains the direct address of the destination location in Data
Memory.

RGP (Register Group) and REG (Register) select the source register
according to the Register Selection Table (see Appendix A).

DATA MEMORY WRITE (Indirect Address)

Syntax: DM(

data: <constant>
'%' <symbol>
'N <symbol>

Permissible dregs
AXO MXO SI

10
11
12
13

MO
Ml
M2
M3

14 M4
15 M5
16 M6
17 M7

AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2

Example:

MRI
MRO

DM (12, MO) = MRl;

) = I dreg
<data>

Description: The Data Memory Write Indirect instruction moves the
contents of the source to the data memory location specified in the
instruction word. The immediate data may be a constant or any symbol
referenced with the "length of" (%) or "pointer to" (A) operators.

The addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. When a register of less than 16 bits is
written to memory, the value written is sign-extended to form a 16-bit
value. The contents of the source are always right-justified in the
destination location after the write (bit 0 maps to bit 0).

Status Generated: None affected.

(instruction continues on next page)

15-71

15-72

DATA MEMORY WRITE (Indirect Address)

Instruction Format:
ALU / MAC Operation with Data Memory Write, Instruction Type 4:

17 16 15 14 13 12 11 10 9 8
AMF

Data Memory Write, Immediate Data, Instruction Type 2:

18 17 16 15 14 13 12 11 10 9 8 7 6 5
Data

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Write. In this case, AMF = 00000, indicating a no­
operation for the ALU / MAC function.

Data represents the actual 16-bit value.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar in the Syntax description above. I specifies the indirect
address pointer (I register). M specifies the modify register (M register).

PROGRAM MEMORY WRITE (Indirect Address)

Syntax: PM(

Permissible dregs
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2

MRI
MRO

14
IS
16
17

M4) = dreg;
M5
M6
M7

Example: PM (16, M5) = AR;

Description: The Program Memory Write Indirect instruction moves
the contents of the source to the program memory location specified in the
instruction word. The addressing mode is register indirect with post­
modify. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The 16 most
significant bits of the Program Memory Data bus (PMD23-s) are loaded
from the source register, with bit PMDs aligned with bit 0 of the source
register (right justification). The 8 least significant bits of the Program
Memory Data bus (PMD7-o) are loaded from the PX register. Whenever a
source register of length less than 16 bits is written to memory, the value
written is sign-extended to form a 16-bit value.

Status Generated: None affected.

Instruction Format:
ALU / MAC Operation with Program Memory Write, Instruction Type 5
(see Appendix A), as shown below:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
010110 AMF 00000

AMF specifies the ALU or MAC operation to be performed in parallel
with the Program Memory Write. In this case, AMF = 00000, indicating a
no-operation for the ALU / MAC function.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (1 register). M specifies the modify
register (M register).

15-73

15-74

1/0 SPACE READIWRITE
(ADSP·218x only)

Syntax: 10 «addr» = dreg;
dreg = 10 «addr» ;

I/O write
I/O read

<addr> is an II-bit direct address value between 0 and 2047

Permissible dregs
AXO MXO SI
AXI MXl SE
AYO MYO SRI
AYI MYI SRO
AR MR2

Examples:

MRI
MRO

10(23) = AXO;
MYI == 10(2047);

Description: The I/O space read and write instructions are used to
access the ADSP-218x's I/O memory space. These instructions move data
between the processor data registers and the I/O memory space.

Status Generated: None affected.

Instruction Format:
I/O Memory Space Read/Write, Instruction Type 29:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
o 0 0 0 0 0 0 1 D ADDR

ADDR contains the II-bit direct address of the source or destination
location in I/O Memory Space.

DREG selects the Data Register. One of the 16 Data Registers is selected
according to the Register Selection Table (see Appendix A).

D specifies the direction of the transfer (O=read, l=write).

Syntax: [IF cond] JUMP

Permissible conds (see Table 15.9)
EQ NE GT GE
LE NEG pas AV
AC NOTAC MV NOTMV

(I4)
(IS)
(I6)
(I7)
<addr>

LT
NOTAV
NOTCE

JUMP

Example: IF NOT CE JUMP top_loop; {CNTR is decremented}

Description: Test the optional condition and, if true, perform the
specified jump. If the condition is not true then perform a no-operation.
Omitting the condition performs the jump unconditionally. The JUMP
instruction causes program execution to continue at the effective address
specified by the instruction. The addressing mode may be direct or
register indirect.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
field. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

If JUMP is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. If NOT CE is used as the
condition, execution of the JUMP instruction decrements the processor's
counter (CNTR register).

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10: .

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
o 0 0 1 1 0 ADDR

Conditional JUMP Indirect Instruction Type 19:

23 22 21 20 19 18 17 16 15 14 13 12 11 10
o 0 a 0 1 0 1 1 0 0 0 0 0 000

I specifies the I register (Indirect Address Pointer).

ADDR: immediate jump address COND: condition
15-75

15-76

CALL

Syntax: [IF cond 1 CALL

Permissible cands (see Table 15.9)
EQ NE GT GE
LE NEG pas AV
AC NOT AC MV NOT MV

(I4)
(IS)
(I6)
(I7)
<addr>

LT
NOTAV
NOTCE

Example: IF A V CALL scale_down;

Description: Test the optional condition and, if true, then perform the
specified call. If the condition is not true then perform a no-operation.
Omitting the condition performs the call unconditionally. The CALL
instruction is intended for calling subroutines. CALL pushes the PC stack
with the return address and causes program execution to continue at the
effective address specified by the instruction. The addressing modes
available for the CALL instructio.n are direct or register indirect.

For direct addressing (using an immediate address value or a labeD, the
program address is stored directly in the instruction word as a full 14-bit
field. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

If CALL is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
o 0 0 1 1 1 ADDR

Conditional JUMP Indirect Instruction Type 19:

23 22 21 20 19 18 17 16 15 14 13 12 11 10
000 010 1 1 0 0 0 000

I specifies the I register (Indirect Address Pointer).

ADDR: immediate jump address COND: condition

JUMP or CALL ON FLAG IN PIN

Syntax:
I

FLAG IN I
NOT FLAG_IN

I <addr> I
I

JUMP I
CALL

IF

Example: IF FLAG_IN JUMP service-proc_three;

Description: Test the condition of the FI fin of the processor and, if set
to one, perform the specified jump or call. I FI is zero then perform a no­
operation. Omitting the flag in condition reduces the instruction to a
standard JUMP or CALL.

The JUMP instruction causes program execution to continue at the
address specified by the instruction. The addressing mode for the JUMP
on FI must be direct.

The CALL instruction is intended for calling subroutines. CALL pushes
the PC stack with the return address and causes program execution to
continue at the address specified by the instruction. The addressing mode
for the CALL on FI must be direct.

If JUMP or CALL is the last instruction inside a DO UNTIL loop, you
must ensure that the loop stacks are properly handled.

For direct addressing (using an immediate address value or a labeD, the
program address is stored directly in the instruction word as a full 14-bit
field.

Status Generated: None affected.

Instruction Field:
Conditional JUMP or CALL on Flag In Direct Instruction Type 27:

23 22 21 20 19 18 17 16 10 9 8 7 6 5
o 0 0 0 0 Oil

12 LSBs 2 MSBs

s: specifies JUMP (0) or CALL (1) FIC: latched state of FI pin

15-77

15-78

MODIFY FLAG OUT PIN

Syntax: [IF cond] SET
RESET
TOGGLE

FLAG_OUT [, ...] ;
FLO
FLI
FL2

Example: IF MV SET FLAG_OUT, RESET FLl;

Description: Evaluate the optional condition and if true, set to one, reset to
zero, or toggle the state of the specified flag output pin(s). Otherwise perform a
no-operation and continue with the next instruction. Omitting the condition
performs the operation unconditionally. Multiple flags may be modified by
including multiple clauses, separated by commas, in a single instruction. This
instruction does not directly alter the flow of your program-it is provided to
signal external devices.

(Note that the Fa pin is specified by "FLAG_OUT" in the instruction syntax.)

The following table shows which flag outputs are present on each
ADSP-21xx processor:

processor
ADSP-2101
ADSP-2105
ADSP-2115
ADSP-2111
ADSP-217x
ADSP-218x
ADSP-21msp5x

flag pines)
Fa
Fa
Fa
Fa, FLO, FLl, FL2
Fa, FLO, FLl, FL2
Fa, FLO, FLl, FL2
Fa, FLO, FLl, FL2

Status Generated: None affected.

Instruction· Field:
Flag Out Mode Control Instruction Type 28:

23 22 21 20 19 18 17 16 15 14 13 12
o 0 0 0 0 0 100 0 0 0

Fa: Operation to perform
on flag output pin

FL2 FL1 FLO FLAG_OUT

COND: Condition code

Syntax: [IF cond] RTS

Permissible conds (see Table 15.9)
EQ NE GT GE
LE NEG POS AV
AC NOT AC MV NOT MV

Example: IFLERTS;

LT
NOTAV
NOTCE

RTS

Description: Test the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTS executes
a program return from a subroutine. The address on top of the PC stack is
popped and is used as the return address. The PC stack is the only stack
popped.

If RTS is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
o 0 0 0 1 0 1 0 0 0 0 0 0 000 0 0 0

COND: condition

15-79

15-80

Rli

Syntax: [IF cond] RTI

Permissible conds (see Table 15.9)
EQ NE GT GE
LE NEG POS AV
AC NOT AC MV NOT MV

Example: IF MV RTI ;

LT
NOTAV
NOTCE

Description: Test the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTI executes
a program return from an interrupt service routine. The address on top of
the PC stack is popped and is used as the return address. The value on top
of the status stack is also popped, and is loaded into the arithmetic status
(ASTAT), mode status (MSTAT) and the interrupt mask (lMASK)
registers.

If RTI is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
000 0 1 0 1 0 0 0 0 0 0 0 0 0 0 001

COND: condition

DO UNTIL

Syntax: DO <addr> [UNTIL term] ;

Permissible terms
EQ NE GT

POS
MV

GE LT FOREVER
LE NEG AV

NOTMV
. NOTAV

AC NOTAC CE

Example: DO loop _label UNTIL CE ; {CNTR is decremented
each pass through loop}

Description: DO UNTIL sets up looping circuitry for zero-overhead
looping. The program loop begins at tlie program instruction immediately
following the DO instruction, ends at the address designated in the
instruction and repeats execution until the specified termination condition is
met (if one is specified) or repeats in an infinite loop (if none is specified). The
termination condition is tested during execution of the last instruction in the
loop, the status having been generated upon completion of the previous
instruction. The address «addr» of the last instruction in the loop is stored
directly in the instruction word.

If CE is used for the termination condition, the processor's counter (CNTR
register) is decremented once for each pass through the loop.

When the DO instruction is executed, the address of the last instruction is
pushed onto the loop stack along with the termination condition and the
current program counter value plus 1 is pushed onto the PC stack.

Any nesting of DO loops continues the process of pushing the loop and PC
stacks, up to the limit of the loop stack size (4 levels of loop nesting) or of the
PC stack size (16 levels for subroutines plus interrupts plus loops). With
either or both the loop or PC stacks full, a further attempt to perform the DO
instruction will set the appropriate stack overflow bit and will perform a no­
operation.

Status Generated:
ASTAT: Not affected.

SSTAT: 7 6 5 4 321 0
LSO LSE SSO SSE CSO CSE PSO PSE

LSO
LSE
PSO
PSE

* 0 * 0

Loop Stack Overflow: set if the loop stack overflows; otherwise not affected.
Loop Stack Empty: always cleared (indicating loop stack not empty)
PC Stack Overflow: set if the PC stack overflows; otherwise not affected.
PC Stack Empty: always cleared (indicating PC stack not empty)

.(instruction continues on next page)
15-81

15-82

DO UNTIL

Instruction Format:
Do Until, Instruction Type 11:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
o 0 0 1 0 1 Addr

ADDR specifies the address of the last instruction in the loop. In the
Instruction Syntax, this field may be a program label or an immediate address
value.

TERM specifies the termination condition, as shown below:

TERM
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Syntax
NE
EQ
LE
GT
GE
LT
NOTAV
AV
NOTAC
AC
POS
NEG
NOTMV
MV
CE
FOREVER

Condition Tested
Not Equal to Zero
Equal Zero
Less Than or Equal to Zero
Greater Than Zero
Greater Than or Equal to Zero
Less Than Zero
Not ALU Overflow
ALU Overflow
Not ALU Carry
ALUCarry
X Input Sign Positive
X Input Sign Negative
Not MAC Overflow
MAC Overflow
Counter Expired
Always

Syntax: IDLE;
IDLE (n);

IDLE

Slow Idle

Description: IDLE causes the processor to wait indefinitely in a low-power
state, waiting for interrupts. When an interrupt occurs it is serviced and execution
continues with the instruction following IDLE. Typically this next instruction will
be a JUMP back to IDLE, implementing a low-power standby loop. (Note the
restrictions on JUMP or IDLE as the last instruction in a 00 UNTIL loop, detailed
in Chapter 3.)

IDLE (n) is a special version of IDLE that slows the processor's internal clock signal
to further reduce power consumption. The reduced clock frequency, a
programmable fraction of the normal clock rate, is specified by a selectable divisor
n given in the instruction: n = 16,32, 64, or 128. The instruction leaves the processor
fully functional, but operating at the slower rate during execution of the IDLE (n)
instruction. While it is in this state, the processor's other internal clock signals (such
as SCLK, CLKOUT, and the timer clock) are reduced by the same ratio.

When the IDLE (n) instruction is used, it slows the processor's internal clock and
thus its response time to incoming interrupts-the 1-cycle response time of the
standard IDLE state is increased by n, the clock divisor. When an enabled interrupt
is received, the ADSP-21xx will remain in the IDLE state for up to a maximum of n
CLKIN cycles (where n =16, 32, 64, or 128) before resuming normal operation.

When the IDLE (n) instruction is used in systems that have an externally generated
serial clock, the serial clock rate may be faster than the processor's reduced internal
clock rate. Under these conditions, interrupts must not be generated at a faster rate
than can be serviced, due to the additional time the processor takes to come out of
the IDLE state (a maximum of n CLKIN cycles).

Serial port autobuffering continues during IDLE without affecting the idle state.

Status Generated: None affected.

Instruction Field:
Idle, Instruction Type 31:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 0 0 0 0 1 010 0 0 0 000 0 0 0 0 0 0 0 0

Slow Idle, Instruction Type 31:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
o 0 0 0 001 010 0 0 0 000 0 0 0 0

. DV: Clock divisor 15-83

STACK CONTROL

Syntax:

Example:

[I PUSH 1 STS] [,POP CNTR] [, pOP PC] [, pOP LOOP];
POP

POP CNTR, POP pc, POP LOOP;

Description: Stack Control pushes or pops the designated stack(s). The entire
instruction executes in one cycle regardless of how many stacks are specified.

The PUSH STS (Push Status Stack) instruction increments the status stack pointer by
one to point to the next available status stack location; and pushes the arithmetic
status (ASTAT), mode status (MSTAT), and interrupt mask register (IMASK) onto
the processor's status stack. Note that the PUSH STS operation is executed
automatically whenever an interrupt service routine is entered. .

Any POP pops the value on the top of the designated stack and decrements the same
stack pointer to point to the next lowest location in the stack. POP STS causes the
arithmetic status (ASTAT), mode status (MSTAT), and interrupt mask (lMASK) to be
popped into these same registers. This also happens automatically whenever a
return from interrupt (RTI) is executed.

POP CNTR causes the counter stack to be popped into the down counter. When the
loop stack or PC stack is popped (with POP LOOP or POP PC, respectively), the
information is lost. Returning from an interrupt (RTI) or subroutine (RTS) also pops
the PC stack automatically.

Status Generated:
SSTAT: 7 6 5 4 3 2 1 a

LSO LSE SSO SSE CSO CSE PSO PSE
* * * * *

PSE PC Stack Empty: set if a pop results in an empty program counter stack; cleared otherwise.
CSE Counter Stack Empty: set if a pop results in an empty counter stack; cleared otherwise.
SSE Status Stack Empty: for PUSH S1S, this bit is always cleared (indicating status stack not empty).

For POP SIS, SSE is set if the pop results in an empty status stack; cleared otherwise.
SSO Status Stack Overflow: for PUSH S1S set if the status stack overflows; otherwise not affected.
LSE Loop Stack Empty: set if a pop results in an empty loop stack; cleared otherwise.

15-84

Note that once any Stack Overflow occurs, the corresponding stack overflow bit is
set in SST AT, and this bit stays set indicating there has been loss of information.
Once set, the stack overflow bit can only be cleared by resetting the processor.

Instruction Format:
Stack Control, Instruction Type 26:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
o 0 0 0 010 0 0 0 0 0 0 000

Pp:
Cp:

PC Stack Control
Counter Stack Control

Lp:
Spp:

Loop Stack Control
Status Stack Control

STACK CONTROL

TOPPCSTACK
A special version of the Register-to-Register Move instruction, Type 17, is provided
for reading (and popping) or writing (and pushing) the top value of the PC stack. The
normal POP PC instruction does not save the value popped from the stack, so to save
this value into a register you must use the following special instruction:

reg = TOPPCSTACK; {pop PC stack into reg}
{"toppcstack" may also be lowercase}

The PC stack is also popped by this instruction, after a one-cycle delay. A Nap should
usually be placed after the special instruction, to allow the pop to occur properly:

reg = TOPPCSTACK;
NOP; {allow pop to occur correctly}

There is no standard PUSH PC stack instruction. To push a specific value onto the PC
stack, therefore, use the following special instruction:

TOPPCSTACK= reg; {push reg contents onto PC stack}

The stack is pushed immediately, in the same cycle.

Note that "TOPPCST ACK" may not be used as a register in any other instruction type!

Examples:
AXO = TOPPCSTACK;
NOP;

TOPPCSTACK= 17 ;

{pop PC stack into AXO}

{push contents of 17 onto PC stack}

Only the following registers may be used in the special TOPPCSTACK instructions:

ALU, MAC, & Shifter Registers DAG Registers

AXO AR SI 10 14 MO M4 LO L4
AX1 MRO SE 11 15 Ml M5 Ll L5
MXO MR1 SRO 12 16 M2 M6 L2 L6
MX1 MR SRI 13 17 M3 M7 L3 L7
AYO
AYI
MYO
MY1

There are several restrictions on the use of the special TOPPCSTACK instructions;
they are described in Chapter 3, Program Control.

(instruction continues on next page) 15-85

15-86

STACK CONTROL

Instruction Format:
TOPPCSTACK=reg
Internal Data Move, Instruction Type 17:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 43210
0 0 0 0 1 1 0 1 0 0 0

01 1 11
SRC

il
1 1 11 SOURCE

RGP REG

SRC RGP (Source Register Group) and SOURCE REG (Source Register) select the source
register according to the Register Selection Table (see Appendix A).

reg=TOPPCSTACK
Internal Data Move, Instruction Type 17:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 1 0 0 0

01 DST 11 1] DEST
11

1 1 1
RGP REG

DST RGP (Destination Register Group) and DEST REG (Destination Register) select the
destination register according to the Register Selection Table (see Appendix A).

MODE CONTROL

Syntax:
l

ENA I
DIS

BIT REV
AV=LATCH
AR_SAT
SEC_REG

[, ...]

Example:

G_MODE
M_MODE
TIMER

Description: Enables (ENA) or disables (DIS) the designated processor
mode. The corresponding mode status bit in the mode status register
(MSTAT) is set for ENA mode and cleared for DIS mode. At reset,MSTAT
is set to zero, meaning that all modes are disabled. Any number of modes
can be changed in one cycle with this instruction. Multiple ENA or DIS
clauses must be separated by commas.

MSTATBits:

o SEC_REG
1 BIT_REV
2 AV_LATCH
3 AR_SAT
4 M_MODE
5 TIMER
6 G_MODE

Alternate Register Data Bank
Bit-Reverse Mode on Address Generator #1
ALD Overflow Status Latch Mode
ALD AR Register Saturation Mode
MAC Result Placement Mode
Timer Enable
Enables GO Mode

The data register bank select bit (SEC_REG) determines which set of data
registers is currently active (O=primary, l=secondary).

The bit-reverse mode bit (BIT_REV), when set to I, causes addresses
generated by Data Address Generator #1 to be output in bit reversed
order.

The ALD overflow latch mode bit (A V _LATCH), when set to I, causes the
A V bit in the arithmetic status register to stay set once an ALD overflow
occurs. In this mode, if an ALD overflow occurs, the A V bit will be set and
will remain set even if subsequent ALD operations do not generate
overflows. The A V bit can only be cleared by writing a zero into it directly
over the DMD bus.

(instruction continues on next page)

15-87

15-88

MODE CONTROL

The AR saturation mode bit, (AR_SAT), when set to 1, causes the AR
register to saturate if an ALU operation causes an overflow, as described
in Chapter 2, "Computation Units."

The MAC result placement mode (M_MODE) determines whether or not
the left shift is made between the multiplier product and the MR register.

Setting the Timer Enable bit (TIMER) starts the timer decrementing logic.
Clearing it halts the timer.

The GO mode (G_MODE) allows an ADSP-21xx processor to continue
executing instructions from internal memory (if possible) during a bus
grant. The GO mode allows the processor to run; only if an external
memory access is required does the processor halt, waiting for the bus to
be released.

Instruction Format:
Mode Control, Instruction Type 18:

23 22 21 20 19 18 17 16
o 0 0 0 1 1

TI: Timer Enable
AS: AR Saturation Mode Control
BR: Bit Reverse Mode Control
GM: GOMode

MM: Multiplier Placement
OL: ALU Overflow Latch Mode

Control
SR: Secondary Register Bank

Mode

MODIFY ADDRESS REGISTER

Syntax: MODIFY 10 MO) ;
11 M1
12 M2
13 M3

14 M4
15 M5
16 M6
17 M7

Example: MODIFY (11, M1);

Description: Add the selected M register (Mn) to the selected I register
(1m), then process the modified address through the modulus logic with
buffer length as determined by the L register corresponding to the
selected I register (Lm), and store the resulting address pointer calculation
in the selected I register. The I register is modified as if an indexed
memory address were taking place, but no actual memory data transfer
occurs. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero.

The selection of the I and M registers is constrained to registers within the
same Data Address Generator: selection of 10-13 in Data Address
Generator #1 constrains selection of the M registers to MO-M3. Similarly,
selection of 14-17 constrains the M registers to M4-M7.

Status Generated: None affected.

Instruction Format:
Modify Address Register, Instruction Type 21:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
o 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

G specifies which Data Address Generator is selected. The I and M
registers specified must be from the same DAG, separated by the gray bar
above. I specifies the I register (depends on which DAG is selected by the
G bit). M specifies the M register (depends on which DAG is selected by
the G bit).

15~89

15-90

NOP

Syntax: NOP;

Description: No operation occurs for one cycle. Execution continues
with the instruction following the NOP instruction.

Status Generated: None affected.

Instruction Format:
No operation, Instruction Type 30 (see Appendix A), as shown below:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 000

Syntax:

INTERRUPT ENABLE & DISABLE
(ADSP·217x, ADSP·218x, ADSp·21 msp58/59 only)

ENAINTS;
DISINTS;

Description: Interrupts are enabled by default at reset. Executing the
DIS INTS instruction causes all interrupts (including the powerdown
interrupt) to be masked, without changing the contents of the IMASK
register.

Executing the ENA INTS instruction allows all unmasked interrupts to be
serviced again.

Note: Disabling interrupts does not affect serial port autobuffering or
ADSP-218x DMA transfers (IDMA or BDMA). These operations will
continue normally whether or not interrupts are enabled.

Status Generated: None affected.

Instruction Format:
DIS INTS, Instruction Type 26:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 0 0 010 0 0 0 000 0 0 0 0 1 0 0 000 0

ENA INTS, Instruction Type 26:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 000 0

15-91

15-92

COMPUTATION with MEMORY READ

Syntax: <ALU> I' dreg =
<MAC>
<SHIFT>

Permissible dregs
AXO MXO SI
AX1 MX1 SE
AYO MYO SRO
AY1 MY1 SR1
AR MRO

MR1
MR2

DM(

PM(

10 MOl 11 M1
12 M2
13 M3

14 M4
15 M5
16 M6
17 M7

14 , M4
15 M5
16 M6
17 M7

Description: Perform the designated arithmetic operation and data
transfer. The read operation moves the contents of tIle source to the
destination register. The addressing mode when combining an arithmetic
operation with a memory read is register indirect with post-modify. For
linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The contents of
the source are always right-justified in the destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normalleft-to-right order of
clauses (computation first, memory read second) is intended to imply this.
In fact, you may code this instruction with the order of clauses reversed.
The assembler produces a warning, but the results are identical at the
opcode level. If you turn off semantics checking in the assembler (using
the -s switch) the warning is not issued.

COMPUTATION with MEMORY READ

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) AR = AXO + A YO, AXO = DM (10, MO);

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AXO = DM (10, MO) , AR = AXO + A YO;

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into AXO and
then used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

Using the same register as a destination in both clauses, however,
produces an indeterminate result and should not be done. The assembler
issues a warning unless semantics checking is turned off. Regardless of
whether or not the warning is produced, however, this practice is not
supported.

The following, therefore, is illegal and not supported, even though
assembler semantics checking produces only a warning:

(3) AR = AXO + AYO, AR = DM (10, MO); Illegal!

(instruction continues on next page)

15-93

15-94

COMPUTATION with MEMORY READ

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

* * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

<MAC> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

*

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ
*

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

COMPUTATION with MEMORY READ

Instruction Format:
ALU /MAC operation with Data Memory Read, Instruction Type 4:

17 16 15 14 13

ALU /MAC operation with Program Memory Read, Instruction Type 5:

23 22 21 20 19 18 17 16 15 14 13
01010 ZAMF

Shift operation with Data Memory Read, Instruction Type 12:

23 22 21 20 19 18 17 16 15 14 13 12 11
o 0 0 1 0 0 1 G 0 SF

Shift operation with Program Memory Read, Instruction Type 13:

23 22 21 20 19 18 17 16 15 14 13 12 11
o 0 0 1 0 0 0 1 0 SF

Z:
SF:
Yop:
G:
M:

Result register
Shifter operation
Yoperand
Data Address Generator
Modify register

Dreg:
AMF:
Xop:
I:

Destination register
ALU /MAC operation
X operand
Indirect address
register

15-95

15-96

COMPUTATION with REGISTER to REGISTER MOVE

Syntax:

I

<ALU>
<MAC>
<SHIFT>

Permissible dregs
AXO MXO SI
AXI MXI SE
AYO MYO SRO
AYI MYI SRI
AR MRO

MRI
MR2

, dreg = dreg ;

Description: Perform the designated arithmetic operation and data
transfer. The contents of the source are always right-justified in the
destination register after the read.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normalleft-to-right order of
clauses (computation first, register transfer second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
reversed. The assembler produces a warning, but the results are identical
at the opcode level. If you turn off semantics checking in the assembler (-s '
switch) the warning is not issued.

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) AR =. AXO + A YO, AXO = MRI;

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AXO = MRI, AR = AXO + A YO;

COMPUTATION with REGISTER to REGISTER MOVE

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the MRI register value is loaded into AXO and then
AXO is used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

Using the same register as a destination in both clauses, however,
produces an indeterminate result and should not be done. The assembler
issues a warning unless semantics checking is turned off. Regardless of
whether or not the warning is produced, however, this practice is not
supported.

The following, therefore, is illegal and not supported, even though
assembler semantics checking produces only a warning:

(3) AR = AXO + A YO, AR = MRl; Illegal!

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

* * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

(instruction continues on next page)

15-97

15-98

COMPUTATION with REGISTER to REGISTER MOVE

<MAC> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

*

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT:

SS

76543210
SS MV AQ AS AC A V AN AZ
*

Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU /MAC operation with Data Register Move, Instruction Type 8:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 1 0 1 zl AMF I Yop I Xop I Dreg I Dreg
dest source

Shift operation with Data Register Move, Instruction Type 14:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210

0 0 0 1 0
01 0

0
01

SF 1 Xop 1 Dreg 1 Dreg
dest source

Z: Result register Dreg: Data register
SP: Shifter operation AMP: ALU /MAC operation
Yop: Yoperand Xop: X operand

Syntax: DM(

PM(

Permissible dregs
AXO MXO
AXI MXI
AYO MYO
AYl MYI
AR MRO

MRI
MR2

COMPUTATION with MEMORY WRITE

IO
I1
12
13

MOl MI
M2
M3

::::;:;:;:;:;:;:;:;:;:;:::;:::;:::::::;:::::;::::::::::::::::::::::.:.:.: , ..

14 M4
IS MS
16 M6
17 M7

14 M4
IS MS
16 M6
17 M7

SI
SE
SRO
SRI

= dreg, <ALU>
<MAC>
<SHIFT>

Description: Perform the designated arithmetic operation and data
transfer. The write operation moves the contents of the source to the
specified memory location. The addressing mode when combining an
arithmetic operation with a memory write is register indirect with post­
modify. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The contents of
the source are always right-justified in the destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DNQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normalleft-to-right order of
clauses (memory write first, computation second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
reversed. The assembler produces a warning, but the results are identical
at the opcode level. If you turn off semantics checking in the assembler (-s
switch) the warning is not issued. r t t" t" t ,I ,Ins rue Ion eon Inues on nex pageJ

15-99

15 -100

COMPUTATION with MEMORY WRITE

Because of the read-first, write-second characteristic of the processor,
using the same register as destination in one clause and a source in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) OM (10, MO) = AR, AR = AXO + A YO;

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AR = AXO + A YO, OM (10, MO) = AR;

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the result of the computation in AR is then written
to memory, all in the same cycle. In fact, this is not possible. The left-to­
right logic of example (1) suggests the operation of the instruction more
closely. Regardless of the apparent logic of reading the instruction from
left to right, the read-first, write-second operation of the processor
determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ

* * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negatjve. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise. .
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

COMPUTATION with MEMORY WRITE

<MAC> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

*

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIff> operation

ASTAT:

SS

76543210
SS MV AQ AS AC A V AN AZ
*

Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU /MAC operation with Data Memory Write, Instruction Type 4:

17 16 15 14 13

ALU /MAC operation with Program Memory Write, Instruction Type 5:

23 22 21 20 19 18 17 16 15 14 13
01011 ZAMF

(instruction continues on next page)

15 -101

15 -102

COMPUTATION with MEMORY WRITE

Shift operation with Data Memory Write, Instruction Type 12:

14 13 12 11
SF

Shift operation with Program Memory Write, Instruction Type 13:

23 22 21 20 19 18 17 16 15 14 13 12 11
o 0 0 1 0 0 0 1 1 SF

Z:
SP:
Yop:
I:
G:

Result register
Shifter operation
Yoperand
Indirect address register
Data Address Generator;
I & M registers must be from
the same DAG, as separated
by the gray bar in the Syntax
description.

Dreg:
AMP:
Xop:
M:

Destination register
ALU /MAC operation
X operand
Modify register

DATA & PROGRAM MEMORY READ

Syntax:

AXO
AX1
MXO
MX1

= DM (IO,
I1
12
13

MO),
M1
M2
M3

AYO
AY1
MYO
MY1

= PM (14
IS
16
17

M4);
MS
M6
M7

Description: Perform the designated memory reads, one from data
memory and one from program memory. Each read operation moves the
contents of the memory location to the destination register. For this double
data fetch, the destinations for data memory reads are the X registers in
the ALU and the MAC, and the destinations for program memory reads
are the Y registers. The addressing mode for this memory read is register
indirect with post-modify. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be
set to zero. The contents of the source are always right-justified in the
destination register.

A multifunction instruction requires three items to be fetched from
memory: the instruction itself and two data words. No extra cycle is
needed to execute the instruction as long as only one of the fetches is from
external memory.

If two off-chip accesses are required, however-the instruction fetch and
one data fetch, for example, or data fetches from both program and data
memory-then one overhead cycle occurs. In this case the program
memory access occurs first, then the data memory access. If three off-chip
accesses are required-the instruction fetch as well as data fetches from
both program and data memory-then two overhead cycles occur.

Status Generated: No status bits are affected.

Instruction Format:
ALU /MAC with Data & Program Memory Read, Instruction Type 1:

AMF specifies the ALU or MAC function. In this case, AMF = 00000,
designating a no-operation for the ALU or MAC function.

PD: Program Destination register DD: Data Destination register
AMF: ALU /MAC operation I: Indirect address register
M: Modify register

15 -103

15 -104

ALU / MAC with DATA & PROGRAM MEMORY READ

Syntax:

i <ALU> I,
<MAC> I

AXO = OM (10
AXl 11
MXO 12
MXl 13

MO), AYO
Ml AYl
M2 MYO
M3 MYl

= PM (14 , M4);
IS MS
16 M6
17 M7

Description: This instruction combines an ALU or a MAC operation
with a data memory read and a program memory read. The read
operations move the contents of the memory location to the destination
register. For this double data fetch, the destinations for data memory
reads are the X registers in the ALU and the MAC, and the destinations
for program memory reads are the Y registers. The addressing mode is
register indirect with post-modify. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be
set to zero. The contents of the source are always right-justified in the
destination register after the read.

A multifunction instruction requires three items to be fetched from
memory: the instruction itself and two data words. No extra cycle is
needed to execute the instruction as long as only one of the fetches is from
external memory.

If two off-chip accesses are required, however-the instruction fetch and
one data fetch, for example, or data fetches from both program and data
memory-then one overhead cycle occurs. In this case the program
memory access occurs first, then the data memory access. If three off-chip
accesses are required-the instruction fetch as well as data fetches from
both program and data memory-then two overhead cycles occur.

The computation must be unconditional. All ALU and MAC operations
are permitted except the OIVS and OIVQ instructions. The results of the
computation must be written into the R register of the computational unit;
ALU results to AR, MAC results to MR.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normalleft-to-right order of
clauses (computation first, memory reads second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
altered. The assembler produces a warning, but the results are identical at
the opcode level. If you turn off semantics checking in the assembler (-s
switch) the warning is not issued.

ALU I MAC with DATA & PROGRAM MEMORY READ

The same data register may be used as a source for the arithmetic
operation and as a destination for the memory read. The register supplies
the value present at the beginning of the cycle and is written with the
value from memory at the end of the cycle.

For example,

(1) MR=MR+MXO*MYO(UU), MXO=DM(IO, MO), MYO=PM(I4,M4);

is a legal version of this multifunction instruction and is not flagged by the
assembler. Changing the order of clauses, as in

(2) MXO=DM(IO, MO), MYO=PM(I4,M4), MR=MR+MXO*MYO(UU);

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into MXO and
MYO and subsequently used in the computation, all in the same cycle. In
fact, this is not possible. The left-to-right logic of example (1) suggests the
operation of the instruction more closely. Regardless of the apparent logic
of reading the instruction from left to right, the read-first, write-second
operation of the processor determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single operation version of the selected arithmetic operation.

<ALU> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

* * . * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
A V Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

(instruction continues on next page)

15 -105

15 -106

ALU / MAC with DATA & PROGRAM MEMORY READ

<MAC> operation

ASTAT: 76543210
SS MV AQ AS AC A V AN AZ

*

MV Set if the accumulated product overflows the lower-order 32-
bits of the MR register. Cleared otherwise.

Instruction Format:
ALU IMAC with Data and Program Memory Read, Instruction Type 1:

PD:
AMF:
Yop:
I:

17 16 15 14 13
AMF

Program Destination register
ALU I MAC operation
Yoperand
Indirect address register

DD:·
M:
Xop:

Data Destination register
Modify register
X operand

Instruction Coding

A.1 OPCODES
This appendix gives a summary of the complete instruction set of the
ADSP-2100 family processors. Opcode field names are defined at the end
of the appendix. Any instruction codes not shown are reserved for future
use.

Type 1: ALU / MAC with Data & Program Memory Read

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 I PD I DD I AMF I Yep I Xep I p~1 P: I D~I D:

Type 2: Data Memory Write (Immediate Data)

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
DATA

Type 3: Read /Write Data Memory (Immediate Address)

17 16 15 14 13 12 11 10
ADDR

Type 4: ALU / MAC with Data Memory Read / Write

17 16 15 14 13
AMF

Type 5: ALU / MAC with Program Memory Read / Write

23 22 21 20 17 16 15 14 13
010 AMF

A

A-1

Type 6: Load Data Register Immediate

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
o 1 0 0 DATA

Type 7: Load Non-Data Register Immediate

23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
001 DATA

Type 8: ALU / MAC with Internal Data Register Move

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 1 0 11 Zl AMF I Yop I Xop I Dest I Source
DREG DREG

Generate ALU Status (NONE = <ALU» (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

ALU codes only

Type 9: Conditional ALU / MAC

20 19 18 17 16 15 14 13
o 0 Z AMF

20 19 18 17 16 15 14 13
o 0 Z AMF

xo AND/OR/XOR constant 'ADSP-217x, ADSP-218x, ADSP-21 msp58/59 only)

16 15
o 0 1 0 0 Z AMF

80, ee, and YY specify the constant according the table shown at the end of this appendix.

PASS constant constant"* 0,1 ,-1
23 22 21 20 19 18 17 16 15 14 13
o 0 1 0 0 Z AMF

A-2

Type 10:· Conditional Jump (Immediate Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10
0 0 0 1 1 S ADDR

Type 11: Do Until

23 22 21 20 19 18 17 16 15 14 13 12 11 10
0 0 0 1 0 1 ADDR

Type 12: Shift with Data Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11
0 0 0 1 0 0 1 SF

Type 13: Shift with Program Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11
0 0 0 1 0 0 0 1 D SF

Type 14: Shift with Internal Data Register Move

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 0 0

01
SF

1
Xop I Dest

I
Source

DREG DREG

Type 15: Shift Immediate

23 22 21 20 19 18 17 16 15 14 13 12 11 65432 1 0
0 0 0 0 1 1 1 1 0 SF exponent

Type 16: Conditional Shift

23 22 21 20 19 18 17 16 15 14 13 12 11
0 0 0 0 1 1 1 0 0 SF

A-3

Type 17: Internal Data Move

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 43210
0 0 0 0 1 1 0 1 0 0 0 01 DST 1 SRCI Dest

1

Source
RGP RGP REG REG

Type 18: Mode Control

23 22 21 20 19 18 17 16
0 0 0 0 1 1 0 0

Mode Control codes: SR: Secondary register bank
BR: Bit-reverse mode
OL: ALU overflow latch mode
AS: AR register saturate mode
MM: Alternate Multiplier placement mode
GM: GO Mode; enable means execute internal code if possible
TI: Timer enable

11 = Enable Mode
10 = Disable Mode
a 1 = no change
o 0 = no change

Type 19: Conditional Jump (Indirect Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

Type 20: Conditional Return

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Type 21: Modify Address Register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

A-4

Type 22: Reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Type 23: DIVQ

23 22 21 20 19 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 o 0 0 0

Type 24: DIVS

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Type 25: Saturate MR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 o 0 o 0 0 0 0 0 o 0 0

Type 26: Stack Control

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 o 0

Type 27: Call or Jump on Flag In

23 22 21 20 19 18 17 16 10 9 8 7 6 5 4
0 0 0 0 0 0 1 1

12 LSBs 2 MSBs

Type 28: Modify Flag Out

23 22 21 20 19 18 17 16 15 14 13 12
0 0 0 0 0 0 1 0 0 0 0 0

FL2 FL1 FLO FLAG_OUT

A-5

A-6

':=:::!:::!:" , ••••••••.

Goding

Type 29: 1/0 Memory Space Read/Write (ADSP-218x only)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
o 0 0 0 0 0 OlD ADDR

Type 30: No Operation (NOP)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 000

Type 31: Idle

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0000001 010 0 0 0 0 000 0 0 0 0 0 0 0

Type 31: Idle (n) (Slow Idle)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
000 000 1 0 1 0 0 0 0 0 000 0

A.2 ABBREVIATION CODING

AMF ALU / MAC Function codes

a a a a a No operation

MAC Function codes

a a a a 1 X*Y (RND)
a a a 1 a MR + X * Y (RND)
a a a 1 1 MR-X*Y (RND)
a a 1 a a X*Y (SS) Clear when y = 0
a a 1 a 1 X*Y (SU)
a a 1 1 a X*Y (US)
a a 1 1 1 X*Y (UU)
a 1 a a a MR+X*Y (SS)
a 1 a a 1 MR+X*Y (SU)
a 1 a 1 a MR + X * Y (US)
a 1 a 1 1 MR + X * Y (UU)
a 1 1 a a MR-X*Y (SS)
a 1 1 a 1 MR-X*Y (SU)
a 1 1 1 a MR-X*Y (US)
a 1 1 1 1 MR-X*Y (UU)

ALU Function codes

1 a a a a Y Clear when y = 0
. 1 a a a 1 Y+1 PASS 1 when y = 0

1 a a 1 a X+Y+C
1 a a 1 1 X+Y X when y = 0
1 a 100 NOTY
1 a 1 a 1 -Y
1 a 1 1 a X-Y+C-1 X + C - 1 when y = 0
1 a 1 1 1 X-V
1 1 a a a Y-1 PASS -1 when y = 0
1 1 a a 1 V-X -Xwhen y = 0
1 1 a 1 a Y-X+C-1 -X + C - 1 when y = 0
1 1 a 1 1 NOT X
111 a a XANDY
111 a 1 XORY
1 1 1 1 a XXORY
111 1 1 ABSX A-7

BO see VV, CC, BO at the end of this appendix

CC see YV, CC, BO at the end of this appendix

COND Status Condition codes

a a a a Equal EO
a a a 1 Not equal NE
a a 1 a Greater than GT
a a 1 1 Less than or equal LE
a 1 a a Less than LT
a 1 a 1 Greater than or equal GE
a 1 1 a ALU Overflow AV
a 1 1 1 NOT ALU Overflow NOTAV
1 a a a ALU Carry AC
1 a a 1 Not ALU Carry NOTAC
1 a 1 a X input sign negative NEG
1 a 1 1 X input sign positive pas
1 1 a a MAC Overflow MV
1 1 a 1 Not MAC Overflow NOTMV
1 1 1 a Not counter expired NOTCE
1 1 1 1 Always true

CP Counter Stack Pop codes

a No change
1 Pop

0 Memory Access Direction codes

a Read
1 Write

DO Double Data Fetch Data Memory Destination codes

a a AXO
a 1 AX1
1 a MXO
1 1 MX1

A-8

instruction COdIng A

DREG Data Register codes

000 0 AXO
o 0 0 1 AX1
o 0 1 0 MXO
o 0 1 1 MX1
o 1 0 0 AYO
o 1 o 1 AY1
0 1 1 0 MYO
0 1 1 1 MY1
100 0 SI
1 0 o 1 SE
1 o 1 0 AR
1 0 1 1 MRO
1 1 o 0 MR1
1 1 0 1 MR2
111 0 SRO
1 1 1 1 SR1

DV Divisor codes for Slow Idle instruction (IDLE (n))

o 0 0 0 Normal Idle instruction (Divisor=O)
0 0 0 1 Divisor=16
0 0 1 0 Divisor=32
o 1 0 0 Divisor=64
1 0 o 0 Divisor= 128

Fie FI condition code

1
o

latched FI is 1
latched FI is 0

"FLAGJN"
" NOT FLAGJN "

FO Control codes for Flag Output Pins (FO, FLO, FL 1, FL2)

o 0 No change
o 1 Toggle
1 0 Reset
11 . Set

A-9

G Data Address Generator codes

0 DAG1
1 DAG2

Index Register codes

G= 0 1
o 0 10 14
o 1 11 15
1 0 12 16
1 1 13 17

LP Loop Stack Pop codes

0 No Change
1 Pop

M Modify Register codes

G= 0 1

0 0 MO M4
0 1 M1 M5
1 0 M2 M6
1 1 M3 M7

PO Dual Data Fetch Program Memory Destination codes

o 0 AYO
o 1 AY1
1 0 MYO
1 1 MY1

PP PC Stack Pop codes

0 No Change
1 Pop

A-10

Instruction coding A

REG Register codes
Codes not assigned are reserved.

RGP= 00 01 10 11

000 0 AXO 10 14 ASTAT
0 0 o 1 AX1 11 15 MSTAT
0 0 1 0 MXO 12 16 SSTAT (read only)
o 0 1 1 MX1 13 17 IMASK
0 1 0 0 AYO MO M4 ICNTL
0 1 o 1 AY1 M1 M5 CNTR
o 1 1 0 MYO M2 M6 SB
o 1 1 1 MY1 M3 M7 PX
100 0 SI LO L4 RXO
1 001 SE L1 L5 TXO
1 010 AR L2 L6 RX1
1 Oil MRO L3 L7 TX1
1 100 MR1 IFC (write only)
1 1 0 1 MR2 OWRCNTR (write only)
1 1 1 0 SRO
1 1 1 1 SR1

S Jump/Call codes

0 Jump
1 Call

A-11

.';':':':~:'. ,

cOding

SF Shifter Function codes

000 0 LSHIFT (HI)
000 1 LSHIFT (HI, OR)
0 o 1 0 LSHIFT (LO)
0 0 1 1 LSHIFT (LO, OR)
010 0 ASHIFT (HI)
010 1 ASHIFT (HI, OR)
0 1 1 0 ASHIFT (LO)
0 1 1 1 ASHIFT (LO, OR)
100 0 NORM (HI)
1 0 o 1 NORM (HI, OR)
1 010 NORM (LO)
101 1 NORM (LO, OR)
1 1 0 0 EXP (HI)
1 101 EXP (HIX)
1 1 1 0 EXP (LO)
1 111 Derive Block Exponent

SPP Status Stack Push/Pop codes

o 0 No change
o 1 No change
1 0 Push
1 1 Pop

T Return Type codes

0 Return from Subroutine
1 Return from Interrupt

A-12

instruction COding A

TERM Termination codes for DO UNTIL

o 0 0 0 Not equal NE
0 0 0 1 Equal EO
0 0 1 0 Less than or equal LE
o 011 Greater than GT
0 100 Greater than or equal GE
o 1 o 1 Less than LT
0 1 1 0 NOT ALU Overflow NOTAV
0 1 1 1 ALU Overflow AV
100 0 Not ALU Carry NOTAC
1 0 o 1 ALU Carry AC
1 0 1 0 X input sign positive POS
1 0 1 1 X input sign negative NEG
1 1 0 0 Not MAC Overflow NOTMV
1 1 o 1 MAC Overflow MV
1 110 Counter expired CE
1 1 1 1 Always FOREVER

X X Operand codes

0 o 0 XO (SI for shifter)
0 o 1 X1 (invalid for shifter)
010 AR
o 1 1 MRO
1 0 0 MR1
1 o 1 MR2
110 SRO
111 SR1

y Y Operand codes

o 0 YO
o 1 Y1
1 0 F (feedback register)
1 1 zero

A-13

: .. :t.:~ ... :r:.~:~ ... :!: .. :~.:~ ... :~.:~.!:~~f:.:·:~.:;.' •• :~.:~ .•• ::':~.~.";:;'~:;:~:"::~:.:~ •• :~.' •• ::.:~: ·:.:~: •• :~:.~.;.:.' •• :f:·:: i::.:f ..• :~:.:; ..• :~::~: :~ .. :~.:~ ... :~.,.::.::.:[.. :~.:~.'.::.:.:1 .. :.;.: .. ~.:f.:f.:>.:.:>::.::::.· .. :;::.::·. '>:.:~: .. :~:.~.;.:: .. :r::·::::i::: .. :t.:f .. : .. ~: .. :.··:~: .. ~ .. :f.:;·.:·'::·:'.·.·.:~.:; .. :~:"':~.:. :~:'.:~ .• :";.:~.';:!~::.:":.:~.' •• :~.:~. i!i?:::::t:: .::t~::i::. ::ii::~::~I!j ~~ ~Vt:: .:::?:::i~i
< • :~ill~::::::::ii:; l::::::l~~l' ::~~l~:::;:~l ~l~l ~l~l~l~l ::~l~~:~:~~!!!l

VV see VV, CC, BO below

Z ALUlMAC Result Register codes

0 Result register
1 Feedback register

VV,CC,BO ALU / MAC Constant codes (Type 9)
(ADSP-217x, ADSP-218x, ADSP-21 msp58/59 only)

Constant (he.xl yy QQ .00 MIl
0001 00 00 01 bit 0
0002 00 01 01 bit 1
0004 00 10 01 bit 2
0008 00 11 01 bit 3
0010 01 00 01 bit 4
0020 01 01 01 bit 5
0040 01 10 01 bit 6
0080 01 11 01 bit 7
0100 10 00 01 bit 8
0200 10 01 01 bit 9
0400 10 10 01 bit 10
0800 10 11 01 bit 11
1000 11 00 01 bit 12
2000 11 01 01 bit 13
4000 11 10 01 bit 14
8000 11 11 01 bit 15
FFFE 00 00 11 ! bit 0
FFFD 00 01 11 ! bit 1
FFFB 00 10 11 ! bit 2
FFF7 00 11 11 ! bit 3
FFEF 01 00 11 bit 4
FFDF 01 01 11 bit 5
FFBF 01 10 11 bit 6
FF7F 01 11 11 bit 7
FEFF 10 00 11 bit 8
FDFF 10 01 11 bit 9
FBFF 10 10 11 bit 10
F7FF 10 11 11 bit 11
EFFF 11 00 11 bit 12
DFFF 11 01 11 bit 13
BFFF 11 10 11 bit 14
7FFF 11 11 11 bit 15

A-14

Division Exceptions

B.1 DIVISION FUNDAMENTALS
The AOSP-2100 family processors' instruction set contains two
instructions for implementing a non-restoring divide algorithm. These
instructions take as their operands twos-complement or unsigned
numbers, and in sixteen cycles produce a truncated quotient of sixteen
bits. For most numbers and applications, these primitives produce the
correct results. However, there are certain situations where results
produced will be off by one LSB. This appendix documents these
situations, and presents alternatives for producing the correct results.

Computing a 16-bit fixed point quotient from two numbers is
accomplished by 16 executions of the orvQ instruction for unsigned
numbers. Signed division uses the DrVS instruction first, followed by
fifteen DrVQs. Regardless of which division you perform, both input
operands must be of the same type (signed or unsigned) and produce a
result of the same type.

These two instructions are used to implement a conditional add/ subtract,
non-restoring division algorithm. As its name implies, the algorithm
functions by adding or subtracting the divisor to / from the dividend. The
decision as to which operation is perform is based on the previously
generated quotient bit. Each add/ subtract operation produces a new
partial !emainder, which will be used in the next step.

The phrase non-restoring refers to the fact that the final remainder is not
correct. With a restoring algorithm, it is possible, at any step, to take the
partial quotient, multiply it by the divisor, and add the partial remainder
to recreate the dividend. With this non-restoring algorithm, it is necessary
to add two times the divisor to the partial remainder if the previously
determined quotient bit is zero. It is easier to compute the remainder
using the multiplier than in the ALD.

B.1.1 Signed Division
Signed division is accomplished by first storing the 16-bit divisor in an X
register (AXO, AXl, AR, MR2, MRl, MRO, SRI, or SRO). The 32-bit dividend
must be stored in two separate 16-bit registers. The lower 16-bits must be
stored in A YO, while the upper 16-bits can be in either AYl, or AF.

B

8-1

8-2

.• ::'.: •• :: •• :~.~ ••• :i.:;::::::.::.::::.·:: .• ::.::· •• :j.::~.:~:~;.' •.. :~ .. :;.':;.:: .• :; .• ·:~f.:; .. :~ ... : .. :: .. : ... :: ... ::.·:[.~? · ... :l .. :;.· ... :i.·.:i. .;::~.:~.~ .. :;.:; ... :~.:~ .. :::.: ... :~.: ... :' ... :: .. :::' . .. :i .. :;.· .. :;.·: ... :i .. :i. ".:: ... :~.;.:: .. :~ .. ::.'.~:'::.;:':: .. :.:: .. :~: .. :; .. :',! : .. :: ... :; :; .. :;:.~:~:: ... : :~.:;.: .. :~ :' iit;:;:;:;:: "l::f' ::/'t:: .. ;:r::,:: ii~::::~i':' :li:· !;!; ;::f~;;~:: iiit:'i,;: .:;f:::~:·
. ~t;:;:;:;:::: .:::illl:::. ti::::f: ~~l{;~;~~~: !1!1::::::lJ l~t t :t::::jl1l~l~: l~l~ ;;~;~~~:;i~li:

The DIVS primitive is executed once, with the proper operands (ex. DIVS
A Yl, AXO) to compute the sign of the quotient. The sign bit of the quotient
is determined by XORing (exclusive-or) the sign bits of each operand. The
entire 32-bit dividend is shifted left one bit. The lower fifteen bits of the
dividend with the recently determined sign bit appended are stored in
AYO, while the lower fifteen bits of the upper word, with the MSB of the
lower word appended is stored in AF.

To complete the division, 15 DNQ instructions are executed. Operation of
the DIVQ primitive is described below.

B.1.2 Unsigned Division
Computing an unsigned division is done like signed division, except the
first instruction is not a DIVS, but another DIVQ. The upper word of the
dividend must be stored in AF, and the AQ bit of the ASTAT register
must be set to zero before the divide begins.

The DIVQ instruction uses the AQ bit of the AST AT register to determine
if the dividend should be added to, or subtracted from the partial
remainder stored in AF and A YO. If AQ is zero, a subtract occurs. A new
value for AQ is determined by XORing the MSB of the divisor with the
MSB of the dividend. The 32-bit dividend is shifted left one bit, and the
inverted value of AQ is moved into the LSB.

B.1.3 Output Formats
As in multiplication, the format of a division result is based on the format
of the input operands. The division logic has been designed to work most
efficiently with fully fractional numbers, those most commonly used in
fixed-point DSP applications. A signed, fully fractional number uses one
bit before the binary point as the sign, with fifteen (or thirty-one in double
preciSion) bits to the right, for magnitude.

If the dividend is 'in M.N format (M bits before the binary point, N bits
after), and the divisor is O.P format, the quotient's format will be
(M-O+l).(N-P-l). As you can see, dividing a 1.31 number by a 1.15
number will produce a quotient whose format is (1-1+1).(31-15-1) or 1.15.

Before dividing two numbers, you must ensure that the format of the
quotient will be valid. For example, if you attempted to divide a 32.0
number by a 1.15 number the result would attempt to be in
(32-1 + 1).(0-:-15-1) or 32.-16 format. This cannot be represented in a 16-bit
register!

In addition to proper output format, you must insure that a divide
overflow does not occur. Even if a division of two numbers produces a
legal output format, it is possible that the number will overflow, and be
unable to fit within the constraints of the output. For example, if you
wished to divide a 16.16 number by a 1.15 number, the output format
would be (16-1 + 1).(16-15-1) or 16.0 which is legal. Now assume you
happened to have 16384 (Ox4000) as the dividend and .25 (Ox2000) as the
divisor, the quotient would be 65536, which does not fit in 16.0 format.
This operation would overflow, producing an erroneous results.

Input operands can be checked before division to ensure that an overflow
will not result. If the magnitude of the upper 16 bits of the dividend is
larger than the magnitude of the divisor, an overflow will result.

B.1.4 Integer Division
One special case of division that deserves special mention is integer
division. There may be some cases where you wish to divide two integers,
and produce an integer result. It can be seen that an integer-integer
division will produce an invalid output format of (32-16+1).(0-0-1), or
17.-1.

To generate an integer quotient, you must shift the dividend to the left one
bit, placing it in 31.1 format. The output format for this division will be
(31-16+1).(1-0-1), or 16.0. You must ensure that no significant bits are lost
during the left shift, or an invalid result will be generated.

B.2 ERROR CONDITIONS
Although the divide primitives for the ADSP-2100 family work correctly
in most instances, there are two cases where an invalid or inaccurate result
can be generated. The first case involves signed division by a negative
number. If you attempt to use a negative number as the divisor, the
quotient generated may be one LSB less than the correct result. The other
case concerns unsigned division by a divisor greater than Ox7FFF. If the
divisor in an unsigned division exceeds Ox7FFF, an invalid quotient will
be generated.

B.2.1 Negative Divisor Error
The quotient produced by a divide with a negative divisor will generally
be one LSB less than the correct result. The divide algorithm implemented
on the ADSP-2100 family does not correctly compensate for the twos­
complement format of a negative number, causing this inaccuracy.

8-3

8-4

.. :
: ... :~ .. :~ :t .. :~.::::.::::.:: .. ::.::.::.::.l.:~.:~.;.:.~ ... :~ .. :1 .. l .. :· .. :l. ':~~':~"':~"':' .. : ... : ... :: .. :~:~'~~: •••... :~.;.:: :~ .. :l. .;:.::.:.;; .. :;.:~ .. ~:.:~ .. :~.:: ... ::.' .. :: :: .. :::. ":! :~ .. :l.:~.:~ .. :i. :.::.· .. :; .. :~ ... :l.:: .• :.·:.;.:.·::.:: ... :; :; ... :;,.::':: .. :~ ..•. :~ ... :~ ..•. :l:::;:; ... : ... :l .•. :; ... :~.· ... :: lI:;:;:;:;; "::~~:i:::'::~f::~;:; .::~::::::;:: ;;;~::::::~~: :;~l~l:; ~~~~ ;:::::::::::;:: ~~;t,:::::~:~: :::~~::::::::

1lt:::;:;:;:: .,::f~i:. ,t:::::1::: ;t;~;~;~;~: ilil::::::l~~: 11: llll :It::::;} llll! 1l1l ;;:;~~~11;:

There is one case where this discrepancy does not occur. If the result of the
division operation should equal Ox8000, then it will be correctly
represented, and not be one LSB off.

There are several ways to correct for this error. Before changing any code,
however, you should determine if a one-LSB error in your quotient is a
significant problem. In some cases, the LSB is small enough to be
insignificant. If you find it necessary have exact results, two solutions are
possible.

One is to avoid division by negative numbers. If your divisor is negative,
take its absolute value and invert the sign of the quotient after division.
This will produce the correct result.

Another technique would be to check the result by multiplying the
quotient by the divisor. Compare this value with the dividend, and if they
are off by more than the value of the divisor, increase the quotient by one.

B.2.2 Unsigned Division Error
Unsigned divisions can produce erroneous results if the divisor is greater
than Ox7FFF. You should not attempt to divide two unsigned numbers if
the divisor has a one in the MSB. If it is necessary to perform a such a
division, both operands should be shifted right one bit. This will maintain
the correct orientation of operands.

Shifting both operands may result in a one LSB error in the quotient. This
can be solved by multiplying the quotient by the original (not shifted)
divisor. Subtract this value from the original dividend to calculate the
error. If the error is greater than the divisor, add one to the quotient, if it is
negative, subtract one from the quotient.

B.3 SOFTWARE SOLUTION
Each of the problems mentioned in this Appendix can be compensated for
in software. Listing 1 shows the module divide_solution. This code can be
used to divide two signed or unsigned numbers to produce the correct
quotient, or an error condition.

In addition to correcting the problems mentioned, this module provides a
check for division overflow and computes the remainder following the
division.

1.::.:.;.:.::,:~: .. ;.:.::~.:: ... ::.::.·::::.:: .. ::.:::.:'.::.:::::.:: .. :::.:.'i.::.::.:::;:.::.:.:.:::;:.::.:. ··~;~.;.::: .. :: .. ::.:::.:.:: .. ::.::.:.r :'::':::::;:~"".::::;.:.:: .. :.::f:~ .. :r:;.·: .. ··::.::::·: .. :.:.::·.: .. : ... :::·:.: :.::.:.:.:.:~:.::.:.:.:.:i .. ::. .:.::.;::.: .. ::.:.: .. : .. :: ::::: .. ::: :~ .. :.::.::.:.::': ... :.:: .. ::.;.::::.::.; ... :.::;:::~~.:.: .. ::.: .. :.::.::.: .• :. \jt;~;~;~;~: '::;~::j? .::r::~;:: :::(:\:: :lllt'\l::.{ll::~l~l ::::::::::::::: llll::::::l::: :~t::;:::: ·.:;.:~ ... :l: .. :;.: ... :i .. :l::~:::.·:;:::::~:::::;.::~".: .•• :;:~:: •• :~.:'
'.' . , :!~t:::;::::: .:::ft:: :{:::f: :It;:;:;:;;: !!I!!:::)f!~t~!~!t:::::::J !l!l @l;;:;::::;lf .

Since many applications do not require complete error checking, the code
has been designed so you can remove test~ that are not necessary for your
project. This will decrease memory requirements, as well as increase
execution speed.

The module signed_div expects the 32-bit dividend to be stored in
A Yl&A YO, and the divisor in AXO. Upon return either the AR register
holds the quotient and MRO holds the remainder, or the overflow flag is
set. The entire routine takes at most twenty-seven cycles to execute. If an
exception condition exists, it may return sooner. The first two instructions
store the dividend in the MR registers, the absolute value of the
dividend's MSW in AF, and the divisor's absolute value in AR.

The code block labeled test_l checks for division by Ox8000. Attempting to
take the absolute value of Ox8000 produces an overflow. If the A V flag is
set (from taking the absolute value of the divisor), then the quotient is -
AYI. This can produce an error if AYI is Ox8000, so after taking the
negative of AYl, the overflow flag is checked again. If it is set control is
returned to the calling routine, otherwise the remainder is computed. If it
is not necessary to check for a divisor of Ox8000, this code block can be
removed.

The code block labeled test _2 checks for a division overflow condition. The
absolute value of the divisor is subtracted from the absolute value of the
dividend's MSW. If the divisor is less then the dividend, it is likely an
overflow will occur. If the two are equal in magnitude, but different in
sign, the result will be Ox8000, so this special case is checked. If your
application does not require an overflow check, this code block can be
removed. If you decide to remove test _2 be sure to change the JUMP
address in test_l to do_divs, instead of test_2.

After error checking, the actual division is performed. Since the absolute
value of the divisor has been stored in AR, this is used as the X-operand
for the DIVS instruction. 15 DIVQ instructions follow, computing the rest
of the quotient. The correct sign for the quotient is determined, based on
the AS flag of the ASTAT register. Since the MR register contains the
original dividend, the remainder can be determine by a multiply subtract
operation. The divisor times the quotient is subtracted from MR to
produce the remainder in MRO.

The last step before returning is to clear the ASTAT register which may
contain an overflow flag produced during the divide.

8-5

: .. ::.:::'.~ .. :;.::::.;' .. ::.'.:.'::.::::.::.'::::,'.:~.::::~.:;'.~:::.~: : .. ::.:::.:.': .. ::.::::.:.::'. ~~.:.:.:::, .. :: ... :.:: .. :: ... :~:::.':.{ : .. ::.::::.~ .. ::.:.:::' ::.::~::::::::::"::.':'.":;.":'.:':'.':":::.; .. :::::'.:' · .. :i.::::.:· .. :i.::::.: ::.~.::::; .. :?:'::.::":'::":.~:.:.~ •• :; •• :': •• :.:: : •• ::.··.: •• ;.:.:::·· •• :~.~~::~:::.·· •• :i.::::.' .. :,. i~r::::::::; ·:i~:.:t .{::ii": ,::tl:. ffffA:i::, {~:. ~~ .:i::ii::t:: ,~r~:j~: ·::f:~~:.
~f:;:;:;:;:::;::t1t :fl,:::fj:" :~1~~~:~:~:~;:: Ill!::::::f: 11~1::: :~:l :l::::Jl :1~1~ ~~~l :;:~~~;;~;~1::

The subroutine unsigned_div is very similar to signed_div. MRI and AF are
loaded with the MSW of the dividend, MRO is loaded with the dividend
LSW and the divisor is passed into AR. Since unsigned division with a
large divisor (> Ox7FFF) is prohibited, the MSB of the divisor is checked. If
it contains a one, the overflow flag is set, and the routine returns to the
caller. Otherwise test_ll checks for a standard divide overflow.

In test_ll the divisor is subtracted from the MSW of the dividend. If the
result is less then zero division can proceed, otherwise the overflow flag is
set. If you wish to remove test_ll, be sure to change the JUMP address in
test_l0 to do_divq.

The actual unsigned division is performed by first clearing the AQ bit of
the ASTAT register, then executing sixteen DIVQ instructions. The
remainder is computed, after first setting MR2 to zero. This is necessary
since MRI automatically sign-extends into MR2. Also, the multiply must
be executed with the unsigned switch. To ensure that the overflow flag is
clear, ASTAT is set to zero before returning.

In both subroutines, the computation of the remainder requires only one
extra cycle, so it is unlikely you would need to remove it for speed. If it is
a problem to have the multiply registers altered, remove the
multiply / subtract instruction just before the return, and remove the
register transfers to MRO and MRI in the first two multifunction
instructions. Be sure to remove the MR2=O; instruction in the unsigned_div
subroutine also .

. MODULE/ROM Divide_solution;

This module can be used to generate correct results when using the divide primitives
of the ADSP-2100 family. The code is organized in sections. This entire module can
be used to handle all error conditions, or individual sections can be removed to
increase execution speed.

Entry Points
signed_div Computes 16-bit signed quotient
unsigned_div Computes 16-bit unsigned quotient

Calling Parameters
AXO 16-bit divisor
AYO Lower 16 bits of dividend
AY1 Upper 16 bits of dividend

8-6

Return Values
AR = l6-bit quotient
MRO = l6-bit remainder
AV flag set if divide would overflow

Altered Registers
AXO, AXl, AR, AF, AYO, AY1, MR, MYO

computation Time: 30 cycles

. ENTRY

MRO=AYO,AF=AXO+AYli
MRl=AY1, AR=ABS AXOi

IF NE JUMP test_2i

ASTAT=Ox4i
RTSi

IF NOT AV JUMP test_3i

AYO=AY1, AF=ABS AYli

{Take divisor's absolute value}
{See if divisor, dividend have

same magnitude}

{If divisor non-zero, do test 2}
{Divide by zero, so overflow}
{Return t~ calling program}

{If divisor Ox8000, then the}
{quotient is simply -AYl}

IF NOT AV JUMP recover_signi
ASTAT=Ox4i {Ox8000 divided by Ox8000,}
RTSi

AF=PASS AFi
IF NE JUMP test_4i

AYO=Ox8000i
ASTAT=OXOi
JUMP recover_signi

AF=ABS MRli
AR=ABS AXOi
AF=AF-ARi
IF LT JUMP do_divSi
ASTAT=Ox4i
RTSi

Listing B.1 Division Error Routine

{so overflow}

{Check for division overflow}
{Not equal, jump test 4}
{Quotient equals -l}
{Clear AS bit of ASTAT}
{Compute remainder}

{Get absolute of dividend}
{Restore AS bit of ASTAT}
{Check for division overflow}
{If Divisor>Dividend do divide}
{Division overflow}

(continues on next page)

8-7

do_divs: DIVS AY1, ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

DIVQ ARi DIVQ ARi

recover_sign: MYO=AXO,AR=PASS AYO;
IF NEG AR=-AYOi
MR=MR-AR*MYO (SS)i

RTSi

unsigned_div: MRO=AYO, AF=PASS AYli
MR1=AY1, AR=PASS AXOi

test_10: IF GT JUMP test_lli
ASTAT=Ox4i
RTSi

test_ll: AR=AY1-AXOi

do_divq:

uremainder:

.ENDMOD;

IF LT JUMP do_divqi
ASTAT=Ox4i
RTSi

ASTAT=Oi
DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

DIVQ AXOi DIVQ AXOi

MR2=Oi

MYO=AXO, AR=PASS AYOi

MR=MR-AR*MYO (UU) i

RTSi

Listing B.1 Division Error Routine

8-8

{Compute sign of quotient}

{Put quotient into AR}
{Restore sign if necessary}
{compute remainder dividend neg}
{Return to calling program}

{Move dividend MSW to AF}
{Is MSB set?}

{No, so check overflow}
{Yes, so set overflow flag}
{Return to caller}

{IS divisor<dividend?}
{No, so go do unsigned divide}
{Set overflow flag}

{Clear AQ flag}
{Do the divide}

{MRO and MRl previous set}
{Divisor in MYO, Quotient in AR}
{Determine remainder}
{Return to calling program}

Numeric Formats

C.1 OVERVIEW
ADSP-2l00 family processors support l6-bit fixed-point data in hardware.
Special features in the computation units allow you to support other
formats in software. This appendix describes various aspects of the l6-bit
data format. It also describes how to implement a block floating-point
format in software.

C.2 UNSIGNED OR SIGNED: TWOS·COMPLEMENT FORMAT
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least
significant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-2l00 family are in
twos-complement format. Signed-magnitude, ones-complement, BCD or
excess-n formats are not supported.

C.3 INTEGER OR FRACTIONAL
The ADSP-2l00 family supports both fractional and integer data formats,
with the exception that the ADSP-2l00 processor does not perform integer
multiplication. In an integer, the radix point is assumed to lie to the right
of the LSB, so that all magnitude bits have a weight of lor greater. This
format is shown in Figure C.l, which can be found on the following page.
Note that in twos-complement format, the sign bit has a negative weight.

c

C-1

C-2

Bit 15 14 13

Weight 1-(~s)12 1412 13 1
Sign
Bit

Bit 15 14 13

Weight 2 151 2 1412 13 1

Figure C.1 Integer Format

2 o

. . .

Signed Integer Radix Point

2 o

. . .

Unsigned Integer Radix Point

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure C.2, the assumed radix point lies to the left of the
3 LSBs, and the bits have the weights indicated.

Bit

Weight

Bit

Weight

15

Sign
Bit

15

12
2

14

11
2

14

11
2

13

10
2 • • •

4

1
2

Signed Fractional (13.3)

13

10
2 • • •

4

1
2

Unsigned Fractional (13.3)

Figure C.2 Example Of Fractional Format

3

t

2

-1
2

Radix Point

3

t

2

-1
2

Radix Point

-2
2

-2
2

o

-3
2

o

-3
2

The notation used to describe a format consists two numbers separated by
a period (.); the first number is the number of bits to the left of radix point,
the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the radix
point. The format in Figure C.2 is 13.3.

Table C.l shows the ranges of numbers representable in the fractional
formats that are possible with 16 bits.

Format Number of Number of Largest Positive Largest Negative Value of 1 LSB
Integer Fractional Value (Ox7FFF) Value (Ox8000) (OxOOO1)
Bits Bits In Decimal In Decimal In Decimal

1.15 1 15 0.999969482421875 -1.0 0.000030517578125
2.14 2 14 1.999938964843750 -2.0 0.000061035156250
3.13 3 13 3.999877929687500 -4.0 0.000122070312500
4.12 4 12 7.999755859375000 -8.0 0.000244140625000
5.11 5 11 15.999511718750000 -16.0 0.000488281250000
6.10 6 10 31.999023437500000 -32.0 0.000976562500000
7.9 7 9 63.998046875000000 -64.0 0.001953125000000
8.8 8 8 127.996093750000000 -128.0 0.003906250000000
9.7 9 7 255.992187500000000 -256.0 0.007812500000000
10.6 10 6 511.984375000000000 -512.0 0.015625000000000
11.5 11 5 1023.968750000000000 -1024.0 0.031250000000000
12.4 12 4 2047.937500000000000 -2048.0 0.062500000000000
13.3 13 3 4095.875000000000000 -4096.0 0.125000000000000
14.2 14 2 8191.750000000000000 -8192.0 0.250000000000000
15.1 15 1 16383.500000000000000 -16384.0 0.500000000000000
16.0 16 0 32767.000000000000000 -32768.0 1.000000000000000

Table C.1 Fractional Formats And Their Ranges

C.4 BINARY MULTIPLICATION
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result
format is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-2100 family assembly
language allows you to specify whether the inputs are both signed, both
unsigned, or one of each (mixed-mode). The location of the radix point in
the result can be derived from its location in each of the inputs. This is

C-3

C-4

shown in Figure C.3. The product of two 16-bit numbers is a 32-bit
number. If the inputs' formats are M.N and P.Q, the product has the
format (M+P).(N+Q). For example, the product of two 13.3 numbers is a
26.6 number. The product of two 1.15 numbers is a 2.30 number.

General Rule: I

M.N

X P.Q

(M+P) . (N+Q)

4-Bit Example:

1.111 1.3 format

X 11.11 2.2 format

1111

1111

1111

1111

16-Bit Examples: I

5.3

X 5.3

10.6

111.00001 3.5 format = (1 +2) • (2+3)

Figure C.3 Format Of Multiplier Result

C.4.1 Fractional Mode And Integer Mode

1.15

X 1.15

2.30

A product of 2 twos-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit.
Additionally, if one of the inputs was a 1.15 number, the left shift causes
the result to have the same format as the other input (with 16 bits of
additional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a 5.27
number, or a 5.11 number plus 16 LSBs.

The ADSP-2100 family provides a mode (called the fractional mode) in
which the multiplier result is always shifted left one bit before being
written to the result register. (On the ADSP-2100 processor, this mode is
always active; on other processors, the left shift can be omitted.) This left
shift eliminates the extra sign bit when both operands are signed, yielding
a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a fractional data format, it is most
convenient to use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use if
both operands are integers (in the 16.0 format). The 32-bit multiplier result
is in 32.0 format, also an integer. On the ADSP-2100 only, the integer mode

is not available; the 32.0 result gets shifted to 31.1 format. Because the MSB
is still available in the 40-bit accumulator, a right shift can correct the
result.

In all processors other than the ADSP-2100, fractional and integer modes
are controlled by a bit in the MSTAT register. At reset, these processors
default to the fractional mode, for compatibility with the ADSP-2100.

C.S BLOCK FLOATING-POINT FORMAT
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional
programming is required to maintain a block floating-point format,
however.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format,a set (block)
of data values share a common exponent. To convert a block of fixed-point
values to block floating-point format, you would shift each value left by
the same amount and store the shift value as the block exponent.

Typically, block floating-point format allows you to shift out non­
significant MSBs, increasing the precision available in each value. You can
also use block floating-point format to eliminate the possibility of a data
value overflowing. Figure C.4 shows an example. The three data samples
each have at least 2 non-significant, redundant sign bits. Each data value

2 Guard Bits

/
OxOFFF = 0000 1111 1111 1111
Ox1FFF = 0001 1111 1111 1111
Ox07FF = 0000 0111 1111 1111

I
Sign Bit

To detect bit growth into 2 guard bits, set SB=-2

Figure C.4 Data With· Guard Bits

C-5

,:111:::::::::::;

C-6

I~~~~::. :~~~l !!~!! ~!~~ ~!~!:::t:(::~:!: ;:::::::::~::: !~!~::::: :~:I .::!!;;:t?: : ... :: ... :~ :~ ... :~.: ... :~.::~:::::~: :.:: .. ::, .. :~, ... :~::'.'::.'::::.'.':'.':.:"' .. :; .. :~',,::,:: ... :~ .. :1 ... :~.· .. :1.::::: •. :; :~ •. :; :~::::; ... :~.:.: :; ::,~::::.:.: ...•. :; .. :;, .•. :: : .• :.: : ... ~ •. : ,::.:~ .. ::.:~.:.: .. ::: ... :;, .. :l .. ::: :' .. :~: ..•. :~:~: :~ .. ; .. :: .. :• :.:~ .. :~ .. :~.: .. :: .. ~:.:: ... :: .. :: .. ::: ... ::: •.. ::.:::'.

~~~l~ .. :~;~~~~~ ~~~t:~:~~~~: ~l~~ :~~l~ :~l~l ~;~~~~~~~~~~~;~ ~~l~ ~l~~i ~l~t:::~::: 

can grow by these two bits (two orders of magnitude) before overflowing; 
thus, these bits are called guard bits. If it is known that a process will not 
cause any value to grow by more than these two bits, then the process can 
be run without loss of data. Afterward, however, the block must be 
adjusted to replace the guard bits before the next process. 

Figure C.5 shows the data after processing but before adjustment. The 
block floating-point adjustment is performed as follows. Initially, the 
value of SB is -2, corresponding to the 2 guard bits. During processing, 
each resulting data value is inspected by the EXP ADJ instruction, which 
counts the number of redundant sign bits and adjusts SB is if the number 
of redundant sign bits is less than 2. In this example, SB=-l after 
processing, indicating that the block of data must be shifted right one bit 
to maintain the 2 guard bits. If SB were 0 after processing, the block would 
have to be shifted two bits right. In either case, the block exponent is 
updated to reflect the shift. 

1. Check for Bit Growth 

1 Guard Bit EXPADJ instruction checks 

/ exponent, adjusts SB 

Ox1FFF = 0!t01 1111 1111 1111 ~ Exponent = -2 SB=-2 

Ox3FFF = 0211 1111 1111 1111 ~ Exponent = -1 SB=-1 

Ox07FF = 0!t00 0111 1111 1111 ~ Exponent = -4 SB=-1 

I 
Sign Bit 

2. Shift Right to Restore Guard Bits 

2 Guard Bits 

/ 
OxOFFF = 0000 1111 1111 1111 

Ox1FFF = 0001 1111 1111 1111 

Ox03FF = 0000 0011 1111 1111 

I 
Sign Bit 

Figure C.5 Block Floating-Point Adjustment 



Interrupt Vector Addresses 

0.1 INTERRUPT VECTOR ADDRESSES 
Tables D.I-D.6 show the interrupts and associated vector addresses for 
each processor of the ADSP-2100 family. Note that SPORT 1 can be 
configured as either a serial port or as a collection of control pins 
including two external interrupt inputs, IRQO and IRQI. 

The interrupt vector locations are spaced four program memory locations 
apart-this allows short interrupt service routines to be coded in place, 
with no jump to the service routine required. For interrupt service 
routines with more than four instructions, however, program control must 
be transferred to the service routine by means of a jump instruction placed 
at the interrupt vector location. 

Interrupt Source 
RESET startup 
IRQ2 
SPORTO Transmit 
SPORTO Receive 
SPORTl Transmit or IRQl 
SPORTl Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
Ox0008 
OxOOOC 
OxOOlO 
OxOOl4 
OxOOl8 (lowest priority) 

Table 0.1 AOSP·2101/2115 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup 
IRQ2 
SPORTl Transmit or IRQl 
SPORTl Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
OxOOlO 
Ox00l4 
OxOOl8 (lowest priority) 

Table 0.2 AOSp·2105 Interrupts & Interrupt Vector Addresses 

D 

0-1 



111[:::::llli
l 

D-2 

Interrupt 

Interrupt Source 
RESET startup 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
SPORTI Transmit or IRQl 
SPORTIReceive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO 
Ox0004 (highest priority) 
Ox0008 
OxOOOC 
OxOOlO 
Ox00l4 
Ox00l8 
OxOOlC 
Ox0020 (lowest priority) 

Table 0.3 AOSP·2111 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup (or powerup w /PUCR=l) 
Powerdown (non-maskable) 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
Software Interrupt 1 
Software Interrupt 2 __ 
SPORTI Transmit or IRQl 
SPORT 1 Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOlO 
Ox0014 
Ox0018 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 0.4 AOSP·2171 Interrupts & Interrupt Vector Addresses 

Interrupt Source 
RESET startup (or powerup w /PUCR=l) 
Powerdown (non-maskable) 
IRQ2 
IRQLl (level-sensitive) 
IRQLO (level-sensitive) 
SPORTO Transmit 
SPORTO Receive 
IRQE (edge-sensitive) 
Byte DMA (BDMA) Interrupt 
SPORTI Transmit or IRQl 
SPORTI Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOlO 
Ox00l4 
Ox0018 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 0.5 AOSP·2181 Interrupts & Interrupt Vector Addresses 



interrupt 

Interrupt Source 
RESET startup (or powerup w /PUCR=l) 
Powerdown (non-maskable) 
IRQ2 
HIP Write (from Host) 
HIP Read (to Host) 
SPORTO Transmit 
SPORTO Receive 
Analog (DAC) Transmit 
Analog (ADC) Receive 
SPORTl Transmit or IRQl 
SPORTl Receive or IRQO 
Timer 

Interrupt Vector Address 
OxOOOO (highest priority) 
Ox002C 
Ox0004 
Ox0008 
OxOOOC 
OxOOlO 
OxOOl4 
OxOOl8 
OxOOlC 
Ox0020 
Ox0024 
Ox0028 (lowest priority) 

Table 0.6 ADSP·21 msp58/59 Interrupts & Interrupt Vector Addresses 

IIIII::::::::II!~: 

0-3 





Control/Status Registers 

E.1 OVERVIEW 
This appendix shows bit definitions for 1) the memory-mapped control 
registers and 2) other (non-memory-mapped) control and status registers 
of all ADSP-21xx processors. The memory-mapped registers are listed in 
descending address order. Default bit values at reset are shown; if no 
value is shown, the bit is undefined at reset. Reserved bits are shown on a 
gray field. These bits should always be written with zeros. 

Memory-Mapped Registers 

System Control Register 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

;PORTO Enable 
I = enabled, 0 = disabled 
'set to 0 for ADSP-21 05) PWAIT 

E 

DM(0x3FFF) 

;PORT1 Enable 
I = enabled, 0 = disabled 

Program Memory 
Wait States 

»PORT1 Configure 
= serial port 

I = FI, FO, IRQO, IRQ1, SCLK 
BFORCE 

Boot Force Bit 
(not on ADSP-2181) 

BPAGE 

BWAIT 
Boot Wait States· 
(not on ADSP-2181) 

Boot Page Select 
(not on ADSP-2181) 

* Bit 5 initialized to 1 on ADSP-2171, ADSP-21msp58/59 
Bit 5 initialized to 0 on ADSP-21 01 , ADSP-21 05, ADSP-2115, ADSP-2111 

E-1 



.1.·.:~ .. :~ .. :~:··.~;::.·: .. ':::·::::·.::::'.:'::;,::',:'::: :: .. ::.·.·:;.:1:·:~.~':'::::::.:::· ... ~.: ... :~,.' .. ,.::.: .:~:.~ .. :.:1::~: .. :::·::::.;.: .... ::.':.: .... :: .... ::.: .. :: •.. :: .. :.:::: .•.. ::: .. :.::.::., •. : .. :.:;:.:~: .. :;:.: .... ::::: .. ::.':.'.'::'.':::.':.:::::::'::;:::.:.'::';::':.':. ,::.~,::~.,::.~i::: .. :::.::.l.'.1:.';:.·1::·;.~:;:.;:;:.~:;:;.::::::;::.;::~::::. :'\::\::.l::l::.f:~·::: :.::::·:::.·::: .. :::::.~.:~:.~ ... :: ... ;::1::.~::·::: .. ':~,,1::1::.\::~ .. ::.::·: ~:;::~::~::.1:.::::.:::.·.~:: •• ~:.:~·:: •• :1: : •• , •• : ••. :~: •.••• '.'.:~:":.:~:."::.::.:::::::.:.::.:' \\t~~~~~~~J ::r:::'l': .. :"::.:.:",, l~l~ "'l:::::":: :11:': ':"":\'" ",,:::': ,',': .... ,::. llir·····llt t~~;;}~::::!;;~;~;!!ll ilil :;~;;;;1~l, :llt t~;;;;;~;~:: lili :;~;~;;;;;~~~, 

;,:-:-:.:.:«.:.:,:.:-:.:.:.:,:-:,:,:,:,:,:.:.:.:.:,.:.:.:,:,:.:-:-»:.:.:.:.:.:.:-:(.:.:-:.:.:.»:-:.:-., .. :.:.:.:-:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.e.:.:.:.:-:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:-:(.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:':6:.:~:: 

I Processor Core ~ 
DATA ADDRESS GENERATORS 

DAG1 
(OM addressing only) 
Bit-reverse capability 

DAG2 
(OM and PM addressing) 
Indirect branch capability 

10 LO 

11 L1 

12 L2 

13 L3 
;

0 

M1 

M2 

M3 

14 

14 L4 

IS LS 

16 L6 

17 L7 
;

4 

MS 

M6 

M7 

14 14 . 14 14 14 

PROGRAM SEQUENCER 

14 

OWRCNTR 

CNTR 

COUNT 
STACK 
4X14 

• Width and depth vary with processor 

ALU MAC 

~ MXO IMX1 I~ MYO IMY1 I 

8 16 16 

~ MR21 MR11'MRO IW'MF I 

BUS EXCHANGE 

8 

~ 

HOST INTERFACE PORT 
(ADSP-2171, ADSP-2111, A DSP-21 msp5x) 

Data Registers 
Ox3FE8 I HMASK I Ox3FES HDRS 

Status Registers Ox3FE4 HDR4 

~FE7~ Ox3FE3 HDR3 

Ox3FE6 HSR6 Ox3FE2 HDR2 

Ox3FE1 HDR1 

Ox3FEO HDRO 

E-2 

Ox3FEO 

Ox3FE6 

Ox3FES 

TIMER 

Ox3FFD TPERIOD 

Ox3FFC TCOUNT 

Ox3FFB TSCALE 

SPORT 0 

~C§] 
Multichannel enables 

Ox3FFA RX 31-16 

Ox3FF9 RX 1S-0 

Ox3FF8 TX 31-16 

Ox3FF7 TX 1S-0 

SPORTO Control 

Ox3FF6 Control 

Ox3FFS SCLKDIV 

Ox3FF4 RFSDIV 

Ox3FF3 Autobuffer 

SPORT 1 

~~ 
SPORT1 Control 

Ox3FF2 Control 

Ox3FF1 SCLKDIV 

Ox3FFO RFSDIV 

Ox3FEF Autobuffer 

IDMAPORT 
BDMAPORT 

PROGRAMMABLE FLAGS 
(ADSP-2181 ) 

MEMORY INTERFACE 

Ox3FFF 

Ox3FFE 

System Control 
Register 

Wait States 

(ADSP·2181) 
3 ,:-3 __ ---. 

I DMOVLAVII PMOVLAVI 

ANALOG INTERFACE 
(A DSp·21 msp5x) 

Ox3FEF Autobuffer 

Ox3FEE Control 

Ox3FED ADC Receive 

Ox3FEC DAC Transmit 

BDMA Registers 

Ox3FE4 BWCOUNT 

Ox3FE3 BDMA Control 

Programmable Ox3FE2 BEAD Flag Registers 

Ox3FE1 BIAD 



":::::::';" .. .:.: ,:: .:::::::::::::~ :::: .. :':':':':':':';', :.:.... :.:.:.:.:.:.:.: 

l",:i,','",l",~:,'::,·::,::'"',·,':'.,:',:',.,,',,: ",:",,::,:::.:,l:.'::.:':.::':'::::::'::',':',l,... ~,::.,:::;,::.,:::::~::::::,1:.::::,:::,::: ••. ::,:,:,,:~:~,;:,,:l:~,:,':':':: ,::"l,:,,:~:,:',':::;::::: :.::',=:',,:l'=:::"::,':::'::,;',;,',::::::::l,':',". ~,;:.::::~,l:.,:;: ,,:,::,:,{ :;",:.:,:",~",::=:,;:::,:::::.:,:",:"".,,:',:~.:: ':~::,=:::.::::=:::,':::.::': :":':::::::::,:,:.:.,::~:~:~:~,::::::,:::,::::,': •• ":,:,,:;::!:,,:l:l,l:,::: .,:.=:::,,:,::::':,=:'::,:.:::::,',,:::.:l:,:::.::': ::,l:",::~:,;::'::~::~::":::::":=::":'::' ~~I::::J~l;: ::::::;:::::: ;:::~:::::~:~: ;~~~ .:;:~~:::~:::: ·:1;11~:· .:::~:;::;:~:: :;:;::;:; ::::::::::::: l;~r:~:~:~:·· 
" ' !llr:':\lf: 'it~~~~i~;~':!!\:~~~~~lllll\l\ :;;~:~;}ji: 1l1: i1jl::~~~:~~~: llli ';~~~~;;}l~ ~ll;;;;;;;;;;:: 

Memory-Mapped Registers 

Waitstate Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DWAIT4 DWAIT3 DWAIT2 DWAIT1 DWAITO 
or or or or or 

DWAIT IOWAIT3 IOWAIT2 IOWAIT1 IOWAITO 
(ADSP-2181) (ADSP-2181) (ADSP-2181) (ADSP-2181) (ADSP-2181) 

L....-__ ROM Enable (ADSP-2172, ADSP-21msp59) 
1 = enable 
0= disable 

Timer Registers 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

~PER:IOD : peri~d R~giS~er 

T~OU~T ~oun:ter ~egiS~er 
~~~~~~~~~~~~ 

DM(0x3FFD)

PM(Ox3FFC)

DM(0x3FFB)

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset.
Reserved bits are shown on a gray field-these bits should always be written with zeros.

E-3

~j~f;:::::t: .. ;J:;:;'~~".mj::;:'t·;~~~~·:jJ::': :,f::\,: lllli; :j~~[~::;::;;;;;: .{~~:. ;:r~~t; .:~}: mlml ,t~~~;:::: ':':';.~:.':.:~;.::~::;:;:;::.':::~;.;::':::.'.:~'.: :.; .. :~~.:.:~_:~,':~,.'.~,:~'.:.:.:;.:~:;.:.:.; ""._:~,':.:~ .. _:::; ... :~ ;;"::~'::_'::' .. :: ... :::; .. ::~'.:'.:~ .. :;:: .. :;. :::~':':{.~:;.".:~:,:: .::':~.:~::.~":":~.;,.~.'.~:::;:; .. :~:: ·:;:,.::i.::~:::~:.::;::.·. :,·;:·:l.:l:~ .. :~.·.~:~.·.;:; .. :.: .. ·.~::.:.:.: _.:~.:~::::.~::r· ,':::::.::'::.;::;:'.'.:,':;':':::"'::;:':":'" '~~: ... ;., _ ... ,:, ... ",:,,:;::' :;:.~ .. :" : .. : ... i~~:: ~, .. ::_ ... ,_~ ::' .. ':'.~:: ::.:::"":=": .. ,.: ..•• :.:: •• : .:.: :.:: ::::. ::..... '.:.:. :.:.: .:.:.' - .:.: :::: :::. :.:. . ":':', . • .~::~:::::~:::. ::::.:,{ "::::::;::::~:' :::~::: ::::=:::::::::. ;;!::: ~::::::::::::: ~:::::~::::::

Memory-Mapped Registers

SPORTO Control Register (Not on ADSP-2105)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 : 0 I 0 : 0 : 0 : 0 I DM(Ox3FF6)

MCE JJ ~ Multichannel Enable ~
ISClK

~

L L SlEN (Serial Word lengt

Internal Serial Clock Generation

RFSR
Receive Frame Sync Required

RFSW
Receive Frame Sync Width

MFD
Multichannel Frame Delay

(Only If Multichannel Mode Enabled)

DTYPE Data Format
OO=right justify, zero-fill unused MSBs
01=right justify, sign-extend into unuse
10=compand using /-l-Iaw
11 =compand using A-law

INVRFS
Invert Receive Frame Sync

INVTFS
Invert Transmit Frame Sync

TFSR -----------~
Transmit Frame Sync Required

(or INVTDV Invert Transmit Data Valid)
(Only If Multichannel Mode Enabled)

IRFS
TFSW -----------------'

Transmit Frame Sync Width
Internal Receive Frame Sync Enable

ITFS
Internal Transmit Frame Sync Enable

(or MCl Multichannel length:
1=32 words, 0=24 words)

(Only If Multichannel Mode Enabled)

SPORTO Multichannel Word Enables (Not on ADSP-21 05)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Receive
Word
Enables

I I I I I I I I I I I I I I I I I DM(Ox3FFA)

E-4

Transmit
Word
Enables

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I I I I I I I I I I I I I I I I I DM(Ox3FF9)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

I I I I I I I I I I I I I I I I I DM(0x3FFS)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I I I I I I I I I I I I I I I I I DM(0x3FF7)

1 = channel enabled
0= channel ignored

COl1trol/Status Registers E
Memory-Mapped Registers

SPORTO Autobuffer Control Register (Not on A DSP-21 05)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

~RBUF
. Receive Autobufferlng Enable

TBUF

TMREG TIREG RIREG RMREG

Transmit Autobufferlng Enable

BIASRND
MAC Biased Rounding Control Bit
(ADSP-2171, ADSP-2181, A DSP-21 msp58/59 only)

CLKODIS
CLKOUT Disable Control Bit
(ADSP-2171, ADSP-2181, ADSP-21msp58/59 only)

SPORTO SCLKDIV
Serial Clock Divide Modulus

(Not on A DSP-21 05)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I : : : : : : : : : : : : : : : I DM(Ox3FF5)

SPORTO RFSDIV
Receive Frame Sync Divide Modulus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I : : : : : : : : : : : : : : : I DM(Ox3FF4)

SCLKDIV = CLKOUT frequency _ 1
2 * (SCLK frequency)

RFSDIV = SCLK frequency _ 1
RFS frequency

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset.
Reserved bits are shown on a gray field-these bits should always be written with zeros.

E-5

E Control/Status Registers
Memory-Mapped Registers

SPORT1 Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I I 0 I 0 I 0 I 0 I 0 1 0 I 0 I 0
1

0 I 0 : 0 I 0 : 0 : 0 : 0 I DM(Ox3FF2)

Flag Out (read-only) J I I
ISCLK ~

Internal Serial Clock Generation

RFSR
Receive Frame Sync Required

RFSW
Receive Frame Sync Width

TFSR -----------~
Transmit Frame Sync Required

TFSW _____________ --......J

Transmit Frame Sync Width

ITFS
Internal Transmit Frame Sync Enable

~

L L SLEN (Serial Word Length - 1)

DTYPE Data Format
OO=right justify, zero-fill unused MSBs
01=right justify, sign-extend into unused MSI
10=compand using J.L-Iaw
11 =compand using A-law

INVRFS
Invert Receive Frame Sync

INVTFS
Invert Transmit Frame Sync

IRFS
Internal Receive Frame Sync Enable

SPORT1 SCLKDIV
Serial Clock Divide Modulus

E-6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I : : : : : : : : : : : : : : : I DM(Ox3FF1)

SPORT1 RFSDIV
Receive Frame Sync Divide Modulus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I : : : : : : : : : : : : : : : I DM(Ox3FFO)

SCLKDIV = CLKOUT frequency _ 1
2 .. (SCLK frequency)

RFSDIV = SCLK frequency _ 1
RFS frequency

~.1 .. 1.:1:.[.·:~,.::.::.: .. ;:.: .. ::.::.::: .. i:~.,~.: ~:~,l:~ •• r .. ::.:.:.:.':: .. ·:;:~,""~::" ";' :, ,1.:~, ... :.~:;,' ... ~.~:*~.,::[, .. ~.,~, .. ~.' :·,;: .. ~,I ... :1:[.' ::', .:~,: .. ~:;.·, .. ~:',f,~~::: ~":~"'.~.:'.~.' .• ,,:,:: ::: .. ::.:~,~.:l,:~.~ •• 1,:.1,.1::1, ... :."./' .'.:.':;.: .. ~.'.:~,:~, ... :;,':~;,:~,::~,,:~,;,: .. :.,; .. ~ :':,:,:1.:1:'.1".:: ':', "'::':~."'::':;';:::~:'~"::~:~':"~:~""::, : .::.~.~:1:~:'.1:·:··: .l.::.~ .. ~:':l::,::::.:~, ••• l:~::~.:;.:, .. ::'.~.!:,,:~ ;.;'~:.~.:~~:.;.:;,.,;:~" ~1~:~:~:~: ~~~~: o:!:;::;:;: ::. .::: :::::;:~ :l: ~~~; .:::; :::;;:::. :.;~ ~~~.: ::::::;: ::::: l:;~:::: :::;::::: :::: ~:~t~:~:~:~~· , [[f""'jl :jlt;;~~;~:: :~!~;:~:~:!111: ~~ .. ;;~;:;Ji: ~lt i~~t;;:~;;; ~l~l '~~;;;;:~ljl ~~i;;;;;;~;:

Memory-Mapped Registers

SPORT1 Autobuffer Control Register (Not on A DSP-21 msp5x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

XTALDISJ XTAL Pin Disable During Powerdown
1 =dlsabled, O=enabled

(XTAL pin should be disabled when
no external crystal is connected)

XTALDELAY
'I Startup From Powerdown 4096 Cycles

1=delay, O=no delay
188 delay to allow internal phase locked

loop or external oscillator to stabilize)

PDFORCE --------~
Powerdown Force

1 =force processor to vector to
powerdown interrupt

PUCR -----------'
Powerup Context Reset

~~~~~ 

~
RBUF 
Receive Autobuffer Enable 

TBUF 
Transmit Autobuffer Enable 

RMREG 
Receive M register 

'---------- RIREG 
Receive I register 

L-______________ TMREG 

Transmit M register 
L-_______________________________ TIREG 

Transmit I register 

1 =soft reset (clear context) 
O=resume execution XTALDIS, XTALDELA Y, PDFORCE, and PUCR are only on the 

ADSP-2171, ADSP-2181, and ADSP-21msp58159 processors. 

Analog Autobuffer Control Register (A DSP-21 msp5x only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

XTALDISJ XTAL Pin Disable During Powerdown 
1=dlsabled,0=enabled 

(XTAL pin should be disabled when 
no external crystal Is connected) 

XTALDELAY 
Delay Startup From Powerdown 4096 Cycles 

1=delay, O=no delay 

PDFORCE -------' 
Powerdown Force 

1 =force processor to vector to 
powerdown Interrupt 

PUCR -------------1 
Powerup Context Reset 

1=soft reset, O=resume execution 

~II L ~:':""_""'Ena~' 
ATBUF 
DAC Transmit Autobuffer Enable 

ARMREG 
Receive M register 

'----------- ARIREG 
Receive I register 

'-------------------------ATMREG 
Transmit M register 

'------------------ ATIREG 
Trensmlt I register 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-7 



·.'~:;:~:'. ,.... :::: .;~ .;;:=::::::::;. .:;: .•.• ':':':':':':':', ':.: •• 

~'~:'~::~:' ••• ~: •• ::.'.:': •• :'.:'.'.;:;::.::.':,:;.::' .:.:: ••.• :: •. ~ •. :.:~.:::.::::::.: •• :: .•.• ~.: •• ::::.~::.:: •.••. :~:.·.~::~:.:.~: .•• ~:.i:::;~:.: •• ~:::~:.:: •• :::: • • : •• ~: •• ~:.~:.: •• ~:::~:.:: ••• :~: •• :~: •• l:.:~:: •. ;: .. ~;::: .. ::.;::;::.;:.:; •. :: .. ::.:.::.: ••. :: ••..• ~:.:~:.;.:::. :l:.::~:.:l: .. ~:: ... ;:.:::f .... ~:.: ... :~::.~.:.:.:: .. ::::.:.:: .. :.::;.;::.~:.:::.:. :'~::.~::~:.: .. ~::;:::.'::: :.::: .. :::.::: .. ::: ... ~:.::.~.:.~.~:.:.~::.;:::.:::::.:" ::::'~:':':::~':':.~::::': ::;:.~::.~:::l:.:.:::.::;:::l::;.::~::l ,.:::; .. :~ .. ·:.i::.::~ .. :~.·:.::~:'.·:::.·:::.·:::.;:.. :~~r::~:~;;r .::::::;:;:::. ;::::::::;~;~~: ~;;~ ,::t:;~:::· :·nf': ,::::::;::::!: ~:;1~:::: ::t:;::::: 
. .. . :mr····ll. :~~t:;}:: ;~;!;;~;~;11~lliii ;;;;;;;;)l :it: :~lt;;~;:: ilil ';;;;;;;;I: 

Memory-Mapped Registers 

Analog Control Register (ADSP-21 msp5x only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FEE) 

ADC Offset _I I 
IGO --==----:..J 

ADC Input Gain (AOe PGA) 

OG2 OG1 OGO 

"--v--'~ 

II ~~ Input GaIn (ADC PG 

IMS 

DABY _______ ...J 

OAe High Pass Filter Bypass 

Aoe Input Multiplexer SE 
1 =AUX input, O=NORM ir 

1 =bypass, O=insert L...-______ OG2, OG1, OGO 

ADBY ----------1 
AOe High Pass Filter Bypass 

OAe Output Gain (OAe F 

1 =bypass, O=insert ~------------ APWD 

IG1,IGO OG2, OG1, OGO 
AOe Input Gain (AOe PGA) OAe Output Gain (OAe PGA) 

Gain 
OdB 

+6dB 
+20 dB 
+26 dB 

IG1 IGO Gain 
0 0 +6dB 
0 1 +3dB 
1 0 OdB 
1 1 -3 dB 

-6 dB 
-9 dB 

-12dB 
-15dB 

Analog Data Registers 

ADC Receive Data 

OG2 OG1 OGO 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Analog Interface Power<l 
O=powerdown, 1 =enable 
(Set both bits to 1 to 
enable analog interface) 

(A DSP-21 msp5x only) 

I I I I I I I I I I I I I I I I I DM(Ox3FED) 

DAC Transmit Data 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I DM(Ox3FEC) 

E-8 



ControllStatus Registers E 
Memory-Mapped Registers 

ost HDR5 Read 

ost HDR4 Read 

ost HDR3 Read 

ost HDR2 Read 

ost HDR1 Read 

ost HDRO Read 

HMASK Interrupt Mask Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

HSR7 Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

(ADSP-2171, ADSP-2111, 
ADSP-21 msp5x only) 

1 0 

DM(Ox3FE8) 

Host HDRO Write 

Host HDR1 Write 

Host HDR2 Write 

Host HDR3 Write 

Host HDR4 Write 

Host HDR5 Write 

(ADSP-2171, ADSP-2111, 
A DSP-21 msp5x only) 

1 0 

DM(Ox3FE7) 

II I 21xx HDRO Wr~ 
21 xx HDR1 Write 

21 xx HDR2 Write 
OVERWRITE ________ ..... 

�.._ _____ 21xx HDR3 Write 
MODE 1..-------- 21xx HDR4 Write 

SOFTWARE 21 xx HDR5 Write 
RESET 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. E - 9 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 



~:~:·~:.1:.·:::··:.··:.·::·;.;:;·;.::;·:.·::.·.::::::.'::.:, •••• '~:.~::~::~::::.::.:::.::::: .• ~ •• :.;::;:.::.. l::.~::~::.~::~:,:::::~::.:.::.;::.~:: :;l:.:.~.':.~::·.1::::.:.·::: ~::;::.l::~::.:,·:::: :.::.;:.·: •• :.·l::::.::::::::.:.:;:.:.~::.;::: .. ::: ~:::.1::1.:::1::· ::::,::.'( ::~:·.,r::::.:.;:.~:.::::;:·:.:::~:.;::~:.:.~:.~:.:: ·:~:.l::·.~:.:.~::.;::::·: :;::::::.:::.~:.~:.~:: •. ~:~:':;::';::,~::::.: :·\:.',l::l::·.l::f:.·:··:':: \:;::;::~::.~:::.:.:::l::;::.~::;:: .•. ::. ::::';.:~:.~::~:~:.~.:~:.;:.':::':::':".':. !i!r:~:J~ ::::::::::::: :::~::::::~:~: !;!l ::t:::~::: ·:iiii:: .::f:::::· :~:~:::3:l:~::::: 
i11f"lit i~!t~;~;;;:: ::!!:~~~~~~!!!11!!i:;;{;~lii~: i!t t~:~;~;r 1!11 :;;;:~;;~t 

Memory-Mapped Registers 

HSR6 Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

21xx HDR5 Write ~ 
21xx HDR4 Write ------.... 

21xx HDR3 Write -------.....1 
21xx HDR2 Write --------...... 

21xx HDR1 Write -~--------.....I 

21xx HDRO Write --------------' 

HIP Data Registers 

HDR5 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

(ADSP-2171, ADSP-2111 
ADSP-21 msp5x only) 

1 0 

DM(Ox3FE6) 

Host HDRO WritE 

Host HDR1 WritE 

Host HDR2 WritE 

Host HDR3 WritE 

Host HDR4 WritE 

Host HDR5 WritE 

(ADSP-2171, ADSP-2111, 
A DSP-21 msp5x only) 

I I I I I I I I I I I I I I I I I DM(Ox3FE5) 

HDR4 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I DM(Ox3FE4) 

HDR3 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I DM(Ox3FE3) 

HDR2 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I DM(Ox3FE2) 

HDR1 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I DM(Ox3FE1) 

HDRO 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

E-10 I I I I I I I I I I I I I I I I I DM(Ox3FEO) 



"'.: ... :~:: .. l ... ·.': .. ·.·::.:·.:.::·.:.:'.::.::·.·::.::' :::::: .. :,;::. . ... : .. ::: .... :":'.'::::'.::':::::':: .. ::'~::' ::':""'::':::: '::.:.' ~":::~':':":::;:':.~:::~ ;:.: .. ~ .. :.::;.:l:.':',', .: ':;,:.~ •• :·.l:.: ... ~:.· f:.:.::... l .. ::::l.; .. :::~ .. :: .. :'.:;::; ...... : .. :. ::':'~":.':' .. ::' :::::.'.::.' :: ..... ~ .. :':.:: .. :..... :f .. :~ .. :::f:.:.f .. :: .:::: ..... l ;:l:.';:·:· ~: •. ~::;:.;.':.:.::'.:.~:.::~:.' ::.:.: •• : ••. ::.' "': ;; :.~ ..• ·.~:.:.:f:.· ~:.:.f,,::·.·.:: ::.:::: .... '::.: .. :.:::.~.::: .. ~:.: ... :; .. ::':.: .... ':.::':.. : .... ~:. ~:.:.~ .. :.:.~:.:::.: ~:.:· ... ::':.:·.~ .. :::.:::.::1.~: ..... :::;: ....... l: .:.· .•.• ; •.. ~;:.1~~:.~:~:.: .. : .. ~.:': .... ' .. ::::.::. ~f~ r:::: ~J~: .:::~::; :~:::. .:::::: ::;:~:~: ~ :~: .:::;!::; ~:::. :. ~l~ ~~;: ::::::;::::!! ;: ~:::::: : ::;:::::;::: lfI:;:; :;:;~: .. ·~f:·:·:\~t :t;;;;;;;~:: :!!~;;~;:;llli [[[\ ';;;;;;;;i\~~' it:: i(t;~;;~;:: [[[I ':~;;;;;I': [~C;;;;;;;: 

Memory-Mapped Registers 

Programmable Flag & Composite Select Control (ADSP-2181 only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I~ I : : 1 I ~M : B~ : ~M : ~M I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 I DM(Ox3FE6) 

~ ~ '---- 'v'"" .-/ 

BMWAIT ~ I L PFTYPE 

CMSSEL' 1 = Output 
0= Input 

1 = Enable CMS 
o = Disable CMS 

Programmable Flag Data (ADSP-2181 only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FE5) 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-11 



E Control/Status Registers 
Memory-Mapped Registers 

BOMA Control (ADSP-2181 only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

BMPAGE~ 
BTYPE 00 01 10 11 

Internal Memory Space PM OM OM OM 

Word Size 24 16 8 8 
Alignment full full MSB LSB 

word word 

BOMA Word Count 
(MMAP=O and BMODE=O) 

15 14 13 12 11 10 9 8 7 6 5 

"---- --...--

I or 
BOMA Word Count 

(MMAP=1 or BMODE=1) 
15 14 13 12 11 10 9 8 7 6 5 

""'---- --...--

E-12 
I 

4 

4 

: DM(Ox3FE3) 
Io... .......... _ ... ~ 

I Y BTYPE (see table) 

BOIR 
o = load from BM 
1 = store to BM 

'-------- BCR 

3 2 1 0 

~ 

BWCOUNT 

3 2 1 0 

~ 

BWCOUNT 

o = run during BOMA 
1 = halt during BOMA, 
context reset when done 

(ADSP-2181 only) 

DM(Ox3FE4) 

DM(Ox3FE4) 



Control/Status Registers E 
Memory-Mapped Registers 

BOMA External Address (ADSP-2181 only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DM(Ox3FE2) 

"---~------

BOMA Internal Address (ADSP-2181 only) 
15 14 13 12 11 10' 9 8 7 6 5 4 3 2 1 0 

"---~------ ~ T-------
BIAo 

DM(Ox3FE1) 

IOMA Control (A DSP-2181 only) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DM(Ox3FEO) 

.-----/ 1'-------T 
--------

IDMAD 
Destination memory type 
O=PM,l=DM 

IDMAA 
Starting address 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-13 



Non-Memory-Mapped Registers 

ASTAT 
7654321 0 

1010101010101010 I 

ss MV AQ AS A~C A~V i AL ALU Resull Zero 

~ ALU Result Negative 

ALU Overflow 

ALU Carry 

L-_______ ALU X Input Sign 

L _________ ALU Quotient 

L __________ MAC Overflow 

L ___________ Shifter Input Sign 

MSTAT 
65432 0 

10101010101010 I 

SST AT (read-only) 
7654321 0 

10111011101110111 . 

~
I L PC Stack Empty 

~ PC Stack Overflow 

Count Stack Empty 

Count Stack Overflow 

L-_______ Status Stack Empty 

L ________ Status Stack Overflow 

L __________ Loop Stack Empty 

L ___________ Loop Stack Overflow 

ICNTL 
432 o 

III I Re~~~:~~:~:ndary 
Bit-Reverse Addressing Enable (DAG1) Wl,ROO Sensitivity } ALU Overflow Latch Mode Enable 

AR Saturation Mode Enable 

L-_______ MAC Result Placement 

O=fractional, 1 =integer 
L _________ Timer Enable 

L __________ Go Mode Enable 

E-14 

-- .. . 1=ed 
IRQ1 Sensitivity O=le, 
IRQ2 Sensitivity 

L-______ Interrupt Nesting 

1=enable 
O=disable 



Control/Status Register's E 
Non-Memory-Mapped Registers 

IMASK 
5 432 o 

INTERRUPT ENABLES 

1 = enable 
o = disable (mask) 

Timer 
SPORT1 Receive or IRQO 

SPORT1 Transmit or IRQ1 

ADSP-2101 
ADSP-2105 
ADSP-2115 

SPORTO Receive (must be set to 0 for ADSP-2105) 

SPORTO Transmit (must be set to 0 for A DSP-21 05) 
IRQ2 

IFC (write-only) 
ADSP-2101 
ADSP-2105 
ADSP-2115 
ADSP-2111 

11 10 9 8 7 6 5 4 3 2 0 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 10
1 

INTERRUPT FORCE B: JI I 
IRQ2~ 

SPORTO Transmit 
rst be set to 0 for A DSP-21 05) 

SPORTO Receive ------' 
'st be set to 0 for ADSP-21 05) 

SPORT1 Transmit or IRQ1 -----.... 

SPORT1 Receive or IRQO ---------' 

Timer -----------1 

W INTERRUPT CLEAR BITS 

Timer 

SPORT1 Receive or IRQO 

SPORT1 Tra'nsmit or IRQ1 

SPORTO Receive 
(must be set to 0 for ADSP-2105) 

SPORTO Transmit 
(must be set to 0 for ADSP-2105) 

IRQ2 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-15 



Non-Memory-Mapped Registers 

IMASK ADSP-2111 
7 6 543 2 o 

HIP Write ____ ---I 

HIP Read ------.....1 

E-16 

INTERRUPT ENABLES 

1 = enable 
o = disable (mask) 

WlTlmer ~ SPORT1 Receive or IRoo 

SPORT1 Transmit or IRQ1 
1.-____ SPORTO Receive 

1.-______ SPORTO Transmit 



Control/Status Registers E 
Non-Memory-Mapped Registers 

IMASK ADSP-2181 
9 876 5 4 3 2 0 

SPORTO Transmit ____ ----I 

SPORTO Receive ------....1 

INTERRUPT ENABLES 

1 = enable 
0= disable (mask) 

I lTlmer ~ SPORT1 Receive or IRQO 

'----- SPORT1 Transmit or IRQ1 
L...-_____ BOMA Interrupt 

1-------- IRQE 

IFC (write-only) ADSP-2181 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

10 
1

0 
1

0 
1

0 10 
1

0 
1

0 
1

0 10 
1

0 
1

0 
1

0 10 
1

0 
1

0 
1

0
1 

INTERRUPT FORCE:: JJ 
IRQ2 

SPORTO Transmit 

SPORTO Receive -------' 

IRQE ---------....1 
BOMA Interrupt -----'----...... 

SPORT1 Transmit or IRQ1 ------------------1 
SPORT1 Receive or IRQO --------------...... 

Timer ---------------' 

Wl
l~RRUPT CLEAR BITS 

Timer 

SPORT1 Receive or IRQO 

SPORT1 Transmit or IRQ1 
L--____ BOMA Interrupt 

'-------- IRQE 
L...-___________ SPORTO Receive 

L...-___________ SPORTO Transmit 

~------------- IRQ2 

Default bit values at reset are shown; if no value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-17 



:.;.:~.:~.:~ •• :r.::.::::.::::.::::::.::.' •• :~ •• ;l.::.;: ~;:: ••• :~ •• :; .• :.; .• ::.::::::.::.:: .••• :~ •• :~ •• :~.:: ..•.• :~.::~ •• :t ... :r •• :t::.::~ •. :~_.:~ .•. :~_ :;.:~~: .. :~ .•. :l .. :~ ... :f:;:: ••• :~ •• :'.~ ••• :~::~ ..• :.~:::: .::: •• :~ ••• >~ •• :~.::.·::.;::;.::.~ •• :; ..•• :t.:~.::~: •. :~.: .. ~~.:~ ..• :'.~ : •• : .• :;,l' :;':~":~"';~':~':;:;::':;::'::':;'::":;":~':;:" ;:.:l.:r .... :~.::l .. ::.::::; :;"::"'::"'::':~":~_:~.:~ .. :~:~:' .. :~.::.:_ .. :~:.;.' ;;:.::.:;.~.:;_.: ... ,~ .. :t:;:: :~:~ •• ::~ •• :~_ ••• :1.::.;: •••• ,1.::.: •• :~:~ .... :l ;::~.:"~":~':~':~:~_":~:~::" •. :~ .. ::.:~.:: !If;~;~~~1~~ :::::::::;::: ::::::':::1;11 ~~; ·,:t:::::: ;:~l~f:; l:::;;:~~ 1111::::::1:1:~:':::: 
•• • •••• • < > " > ••• > • '.' • ..' !~r"l~~ \~~~;~;~;;;;. :!!~;~~~~ll~ ~:: ;;~;;~~~~~ 1:::':: ~~~;~;~;;;~ 1:1: ;;;;;~;~~~i 

Non-Memory-Mapped Registers 

IMASK ADSP-2171 
9 876 543 2 o 

HIP Read ---..... 

SPORTO Transmit -------' 

SPORTO Receive ------....1 

INTERRUPT ENABLES 

1 = enable 
o = disable (mask) 

I Unmer ~ SPORn Receive or IRQO 

SPORT1 Transmit or IRQ1 

1----- Software Interrupt 0 
L...-______ Software Interrupt 1 

IFC (write-only) ADSP-2171 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 10 1 

INTERRUPT FORCE: JJ 
IRQ2 

SPORTO Transmit 

SPORTO Receive 

Software Interrupt 1 ------1 
Software Interrupt 0 --------1 

SPORT1 Transmit or IRQf -----------' 
SPORT1 Receive or IRQO ----------.....1 

Timer --------------1 

E-18 

Wl
l~ERRUPT CLEAR BITS 

Timer 

SPORT1 Receive or IRQO 

SPORT1 Transmit or i'RQ'1 

'------- Software Interrupt 0 

'--------- Software Interrupt 1 

1--------- SPORTO Receive 
L...-_________ SPORTO Transmit 

L...-___________ IRQ2 



Control/Status Registers E 
Non-Memory-Mapped Registers 

IMASK ADSP-21 msp5x 

9 8 7 6 5 4 3 2 ° 
1°1 °1°1 °1 °1 °1°1 °1 °1 °1 

INTERRUPT ENABLES 

1 = enable ° = disable (mask) 

HIP:':U 
HIP Read ------' 

SPORTO Transmit ------' 
SPORTO Receive __ ---' ___ ---J 

'------ SPORT1 Transmit or IRQ1 

'-------- ADC Receive 
L-______ DAC Transmit 

IFC (write-only) ADSP-21 msp5x 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 1
0

1 

INTERRUPT FORCE: J I 
SPORTO TransmH ~ 
SPORTO Receive 

DAC Transmit --------' 
ADC Receive _______ ...J 

SPORT1 Transmit or nmr -----------' 
SPORT1 Receive or Tmm' __________ ---J 

Timer -------------' 

Wl lNTERRUPT CLEAR BITS 

Timer 

SPORT1 Receive or IRQO 

SPORT1 Transmit or IRQ1 
L-_____ ADC Receive 

'-------- DAC Transmit 
L-________ SPORTO Receive 

L-_________ SPORTO Transmit 
L-_________________ ~ 

Default bit values at reset are shown; ifno value is shown, the bit is undefined at reset. 
Reserved bits are shown on a gray field-these bits should always be written with zeros. 

E-19 



,.·.:~.:r ... :i.·.;:::.:'.;'.::::.;:::.::.;~.::· .• :: •• :~ •. ::::. :':' ••• :'.:.::':':.:;.: .•• ;.: •• :.: ••.• :' ••• :'.: ••• :':::: .• ,.: •• :: ••••• :::.::: ••• :' •• ::::: ••• :.::': ••• :' •••• :' ... ,: ':~ .. ,·.:~ .•• :r .... :;;i.:·::.·.· .. ::,.:~: ... :; .... :~.:~:::::: :: .. :~ ... :~.: .. :: ... ::·.::::::.:·.:··.:; .. ~.: .. :l:.::.:: :~.:: ... :~ .. :~:: ..• :~ .. .. :.:.::l' ;::'.;~.;: .. :~;.;:.::.:.:::;:::.:; .. ;:::~.:~ ... :~.;.:: .. :~·.:::;:::.: .. :~:: .. :i.:; ... ::.:f:::;:: : •• ::.:: .•..• :~ •• :: •.• :~~.::~ •• ~.:~.:= .. :, .. :~: .. :~ .. ' .. :. :;: .. :~ .• :;.:~ ... :~.~ •. :::: ..... :~ .•. :~:.t ... :;:.;:.::.:~ ... :~l .• : ..... :~: .. :: .•. ' .. :: .. :~ .. ::::~ ... :::.:;: .. : .. ~::~.: ... ::::.:.~:, 11f::::::~? ::{:\';' ::~"':~:iiil ~f~l."f::~;:. :1i!i!:: .:i::::i'~. t::~ :,f:::~':; . . . : : :!J""!l!t 't~~;~;~;~:: ;!!!;~~~;;llll: l!ll :;~;~~~~;l i!t: :t~;~;~:~::: il!l ';;;~:~~;J" 

Processor Core 

DATA ADDRESS GENERATORS 

DAG1 
(OM addressing only) 
Bit-reverse capability 

DAG2 
(OM and PM addressing) 
Indirect branch capability 

10 LO ; 14 L4 r; 11 L1 M1 IS LS MS 

12 L2 M2 16 L6 M6 

13 L3 M3 17 L7 M7 

14 14 14 14 14 14 

PROGRAM SEQUENCER 

14 

OWRCNTR 

CNTR 

COUNT 
STACK 
4X 14 

• Width and depth vary with processor 

ALU 

SHIFTER 

8 S 

mmm 
~ SR1 I SRO I 

MAC 

I MXO t MX~ I ij MYO*rMY1 I 
8 16 16 

~ MR~ I MR11 MRO 1m 

BUS EXCHANGE 

8 

~ 

HOST INTERFACE PORT 
(ADSP-2171, ADSP-2111, ADSP-21msp5x) 

Ox3FE8 I HMASK I 
Data Registers 

Ox3FES HDRS 

Status Registers Ox3FE4 HDR4 

~m~ Ox3FE3 HDR3 

Ox3FE6 HSR6 Ox3FE2 HDR2 

Ox3FE1 HDR1 

Ox3FEO HDRO 

E-20 

Ox3FEO 

Ox3FE6 

Ox3FES 

TIMER 

Ox3FFD TPERIOD 

Ox3FFC TCOUNT 

Ox3FFB TSCALE 

SPORT 0 

Multichannel enables 

Ox3FFA RX 31-16 

Ox3FF9 RX 1S-0 

Ox3FF8 TX 31-16 

Ox3FF7 TX 15-0 

SPORTO Control 

Ox3FF6 Control 

Ox3FF5 SCLKDIV 

Ox3FF4 RFSDIV 

Ox3FF3 Autobuffer 

SPORT 1 

~~ 
SPORT1 Control 

Ox3FF2 Control 

Ox3FF1 SCLKDIV 

Ox3FFO RFSDIV 

Ox3FEF Autobuffer 

IDMAPORT 
BDMAPORT 

PROGRAMMABLE FLAGS 
(ADSP-21B1) 

MEMORY INTERFACE 

Ox3FFF 

Ox3FFE 

System Control 
Register 

Walt States 

(ADSP-21B1) 
3 ;.3 __ -. 

I DMOVLA Y II PMOVLAY I 

ANALOG INTERFACE 
(ADSP-21 msp5x) 

Ox3FEF Autobuffer 

Ox3FEE Control 

Ox3FED ADC Receive 

Ox3FEC DAC Transmit 

IDMA Registers BDMA Registers 

Ox3FE4 BWCOUNT 

Ox3FE3 BOMA Control 

Programmable 
Ox3FE2 BEAD Flag Registers 

Ox3FE1 BIAD 



1.15 format ............................................................ 2-2 
~-law ................................................... 1-2, 5-15, 5-23 

A 
A-law ............................................................ 1-2, 5-23 
AID converter ................... 1-3, 1-10,3-18,8-1,8-2, 
...................................................... 8-3,8-4,8-9, 10-14 
AC (carry) ............................ 2-2, 2-5, 2-8, 2-13, 2-36 
AC coupling ....................................................... 8-18 
Accumulator ......................................................... 1-5 
ADC, DAC interrupts ....................................... 8-12 
ADC ............... 1-3, 1-10,3-18,8-1,8-2,8-3,8-4,8-9 
ADC interface ................................................... 13-10 
Add with carry ..................................................... 2-8 
Address generators ...................................... 1-6, 1-7 
Address pointers ................................................. 1-7 
ADSP-2181 .............................................. 9-13, 15-18 
AF register ............................................................ 2-5 
Alternate framing mode ................................... 5-13 
ALU ....................................... 1-1, 1-6,2-5,2-8,3-21, 
.......................................... 3-24, 12-2, 12-6, 15-9, B-1 

ALU arithmetic .................................................... 2-2 
ALU carry (AC) ................................................. 2-26 
ALU overflow (A V) ................................. 3-23, 3-24 
ALU overflow latch mode .......................... 2-8, 2-9 
ALU saturation mode .................................. 2-8, 2-9 
ALU status .......................................................... 2-13 
AN (negative) ...................................... 2-2, 2-5, 2-13 
Analog control register ........ 8-5, 8-6, 8-8, 8-9, 8-10 
Analog interface ......................................... 1-3, 1-10 
Analog loopback program ............................... 8-12 
Analog-to-digital conversion ........................... 13-5 
AQ (quotient) ............................. 2-5, 2-9, 2-10, 2-13 
AR register ......................................... 2-8, 2-22, 2-36 
AR saturation ............................................ 3-23, 3-24 
Arithmetic formats .............................................. 2-4 
Arithmetic operation ......................................... 3-24 
Arithmetic shift ................................. 2-3, 2-22, 2-28 
AS (sign) ...................................................... 2-5,2-13 
ASHIFT ............................................................... 2-31 
Assembler ........................................................... 1-10 
Assembler directives ............................. 12-10, 14-1 

Index 

ASTAT .................................... 2-10, 2-13, 2-19, 2-24, 
......................................... 2-26, 2-36, 3-21, 3-24, 12-5 
Autobuffer service ............................................. 5-39 
Autobuffer timing ............................................. 5-37 
Autobuffering ......... 5-3, 5-4, 5-26, 5-32, 5-38, 5-40, 
.................................. 5-41, 8-1, 8-9, 8-10, 8-11, 8-12, 
............................... 8-13,8-14,8-15,9-5, 9-23, 15-18 

Autobuffer control register .............................. 5-27 
AV (overflow) .... 2-2, 2-5, 2-8, 2-9, 2-13, 2-26, 2-36 
AXO register .......................................................... 2-5 
AX1 register .......................................................... 2-5 
AYO register .......................................................... 2-5 
AY1 register .................................... : ...................... 2-5 
AZ (zero) ..................................................... 2-5,2-13 

B 
Bank select .......................................................... 3-23 
Barrel shifter ................................................ 1-6, 2-22 
Base architecture .......................................... 1-1, 1-6 
BCR ................................................... 9-13,11-6,11-7 
BDMA ................................................................ 15-18 
BDMA booting .......................................... 9-13, 11-9 
BDMA context reset ................................. 11-6, 11-7 
BDMA interrupt ................................................. 11-7 
BEAD ................................................................... 11-4 
BFORCE bit ....................................................... 10-16 
BIAD ..................................................................... 11-4 
Binary multiplication ......................................... C-3 
Binary string ......................................................... 2-1 
Bit-reverse addressing ..... 1-7, 3-23, 4-2,4-6, 14-18 
Block exponent ................................................... 2-26 
Block floating-point ......................... 1-5, 14-19, CS 
BMODE pin ................. 7-3, 7-16, 10-15, 11-9, 11-12 
BMS ................................................... 1-8, 7-16, 10-17 
Boot address ..................................................... 10-18 
Boot loading .............................................. 13-2, 13-5 
Boot loading sequence .................................... 1 0-17 
Boot loading through the HIP ......................... 7-16 
Boot memory ............................... 10-1, 10-15, 10-17 
Boot pages ......................................................... 10-15 
Booting operation ................................................ 9-4 
BPAGE .............................................................. 10-16 

X-1 



Branching .............................................................. 3-1 
BTYPE .................................................................. 11-9 

D 
Buffer length ......................................................... 4-5 D/ A ................................................................... 10-14 
Bus exchan~ ............... 1-5, 1-8, 2-15, 4-1,4-9, 12-6 
Bus grant (BG) .......................................... 3-18, 9-15 

DAC ....................................................................... 1-3 
DAC interface ..................................................... 13-8 

Bus request (BR) ................ 5-38, 10-15, 10-21, 13-2 DAGl .................................................... 1-7,4-2, 12-2 
Buses .............................................................. 1-3, 1-8 DAG2 .............................. 1-7, 3-3, 3-4,3-8,4-2,12-2 
BWAIT ............................................................... 10-17 Data address generators ........................... .4-1, 12-2 
BWCOUNT ............................................... 9-13, 11-7 Data bus ................................................................ 4-1 
Byte memory ...................................................... 11-9 Data memory ....................................... 1-7, 1-8, 10-1 

c Data memory address bus .......................... 1-3, 1-8 
Data memory data bus ................................ 1-3, 1-8 

C Compiler ......................................................... 1-10 
C language .......................................................... 14-3 
CALL ............................................. 3-4, 3-8,3-9, 3-24 
Carry (AC) ........................... 2-2, 2-5,2-8, 2-13, 2-36 
Carry-in (CI) ......................................................... 2-5 
Chip enable ......................................................... 10-3 
Circular buffer addressing .... 1-5, 1-7, 4-1, 4-3, 4-8 
CLKIN .................................................... 9-1,9-3,9-4 
CLKOUT ....................................... 9-2,9-3, 9-4, 10-2 
Clock frequency ................................................... 8-9 
Clock signals ......................................................... 9-1 
Clock synchronization (SPORT) ...................... 5-35 
Clock synchronization delay (SPORT) ........... 5-34 
CNTR register ...................................... 3-4, 3-9, 12-4 
Codec interface .................................................. 13-5 
Companding .................... 1-2, 5-5, 5-15, 5-23, 5-24, 
......................................... 5-25, 5-32, 5-36, 5-37, 5-42 
Computation with data register move ........... 15-7 
Computation with memory read .................... 15-6 
Computation with memory write ................... 15-6 
Computational units ............... 1-6, 3-23, 12-1, 12-6 
Condition ............................................................ 3-20 
Condition logic .................................................... 3-3 
Conditional instructions ................................... 3-24 
Configuring interrupts ..................................... 3-14 
Context reset ........................................................ 11-7 
Context switching .............................................. 3-12 
Qontinuous transmission ................................. 5-20 

Data memory interface ................................... 10-10 
Data memory read ............................................. 15-6 
Data structures ..................................................... 4-7 
Data transfer ......................................................... 4-1 
Denormalization .................................................. 1-6 
Denormalize ................................... ; ................... 2-31 
Derive block exponent ...................................... 2-29 
Derive exponent ....................................... 2-22, 2-26 
Development tools ............................................ 14-2 
Digital-to-analog conversion ........................... 13-5 
Direct addressing ................................................. 1-8 
Divide primitives ................................................. 2-9 
Division exceptions ............................................. B-1 
Division ................................................................. 2-9 
DIVQ .................................................. 2-10, 2-11, B-1 
DIVS .............................................. 2-2, 2-9, 2-10, B-1 
DMA .................................................................. 15-18 
DMA bus ..................................................... 1-8,10-1 
DMD bus .................................... 1-8, 2-19, 2-22, 3-4, 
.................................................... 3-5,3-20,4-10, 10-1 
DMD-PMD bus exchange ........ 2-15, 4-1, 4-9,4-10 
DMOVLAY ....................................................... 10-31 
DMS ....................................................................... 1-8 
DO UNTIL ............ 3-4,3-5, 3-6, 3-8, 3-9, 3-12, 12-5 

~~r:;;:::::::::::::::::.:::::::::.::::::::::::::.:::::::.~s.:~~~~~~ 
Dual operand fetches ........................... 1-2, 1-5, 1-7 

Control/status registers ............................ 1-12, E-l 
Core architecture ................................................. 1-5 

E 
Count stack .......................................... 3-4, 3-5, 12-5 Edge-sensitive ................................. 3-15, 3-16, 3:..18 
Counter expired (CE) ........................... 3-4,3-6, 3-9 Edge-sensitive interrupts ............ ; .................... 9-14 
Cycle stealing ................................................... 11-25 End-of-Ioop ................................................. 3-7, 3-10 

EPROM ...................................................... 1-4,10-17 

X-2 



EXP ...................................................................... 2-33 
EXPADJ ............................................................... 2-29 
Exponent compare logic ................................... 2-22 
Exponent detector ........................... 2-22, 2-26, 2-27 
External address bus .................................... 1-3, 1-8 
External clock .............................................. 5-8, 9-21 
External data bus .......................................... 1-3, 1-8 
External interrupts ............................................ 9-14 
External memory ...................................... 5-38, 10-2 
External SCLK ................................................ , ..... 5-8 
Extra cycles ....................................................... 15-18 
EZ-ICE emulator .............................................. 11-26 

F 
Fast fourier transform (FFf) ................. 14-1, 14-11 
Fast start-up ........................................................ 9-22 
FIR filter ..................................................... 14-1, 14-4 
Flag In (FI) ............................................ 1-9, 3-24, 9-1 
Flag Out (Fa) ................................................ 1-9,9-1 
Flag pins .............................................................. 9-15 
Floating-point ..................................................... 2-33 
Fractional mode ......... 2-2, 2-3, 3-23, 3-24, C-l, C-4 
Frame synchronization ... 5-2, 5-5,5-10,5-11,5-12, 
......................................... 5-14,5-15,5-30, 5-34, 9-23 
Framing ....................................................... 5-3,5-16 
Full duplex operation ....................................... 5-34 

G 
GO mode .......................................... 3-23,3-24,5-38 

H 
HACK ..................................................... 7-3, 7-7, 7-9 
Harvard architecture ................................. 1-2, 10-1 
HDR overwrite mode .................................. 7-7,7-9 
HDR registers ................................. 7-4,7-5,7-6,7-7 
HI-extend (HIX) ........................................ 2-26, 2-36 
HI/La reference signal ........................... 2-22, 2-24 
HIP configuration modes ................................... 7-3 
HIP data registers ................. 3-15, 7-4, 7-5, 7-6, 7-7 
HIP during powerdown ................................... 9-24 
HIP interrupt ............................ 3-18,7-9,7-10,7-11 
HIP pin summary ................................................ 7-2 
HIP read interrupt ............................................... 7-4 
HIP status registers ............................................. 7-6 
HIP status synchronization ................................ 7-8 
HIP timing .............................. 7-12, 7-13, 7-14, 7-15 
HIP write interrupt .............................................. 7-4 
HMASK register ............. 3-15,7-4,7-10,7-11,12-8 

HMDO ............................................................ 7-3,7-4 
HMDl .................................................................... 7-4 
Hold offs ........................................................... 11-25 
Host ....................................................................... 1-2 
Host data bus ....................................................... 7-4 
Host handshaking ............................................... 7-7 
Host interface port (HIP) ... 1-2,1-9,3-15,7-1,7-4, 
................................................ 9-4, 10-15, 12-2, 13-13 
Host interface timing ........................................ 7-11 
Host read strobe ................................................... 7-4 
Host write strobe ................................................. 7-4 
HSEL ...................................................................... 7-3 
HSIZE ........................................................... 7-3,7-11 
HSR registers ....................................... 7-4, 7-5, 9-25 

I 
I registers ................. .4-2,4-3,5-26,5-28,8-14, 12-2 
lACK ........................................... 11-12, 11-13, 11-25 
ICNTL register .... 3-14,3-15,3-16,3-20,9-14,12-4 
IDLE instruction ..................... 3-7, 3-10, 5-26, 9-15, 
........................................................... 9-19,9-26,9-30 

IDMA ..................................................... 11-12,15-18 
IDMA booting .................................................. 11-24 
IDMA control register .............. 11-14,11-15,11-16 
IDMA hold offs ................................................ 11-25 
IFC register ............................. 3-14, 3-18, 3-20, 12-4 
IIR filter ...................................................... 14-1, 14-6 
IMASK register ..................... 3-14,3-15,3-16,3-19, 
........................................ 3-20,7-10,8-12,9-14, 12-4 

Immediate shifts ................................................ 2-30 
Indirect addressing ............................. 1-8,4-3, 12-2 
Indirect jumps .................................................... 12-2 
Input formats ..................................................... 2-18 
Input registers ...................................................... 1-7 
Instruction completion latencies .......... 5-38, 15-18 
Instruction set ............................................ 15-1, A-I 
Integer ................................................ 3-23,3-24, C-l 
Integer mode ................................................ 2-3, C-4 
Internal buses ....................................................... 1-8 
Internal memory .................................................. 1-2 
Internal oscillator ............................................... 9-22 
Interrupt control register .................................. 3-15 
Interrupt controller ............................. 3-1,3-3,3-11 
Interrupt force & clear register ............... 3-15,3-18 
Interrupt latencies .................................... 3-19,5-42 
Interrupt mask register ..................................... 3-16 
Interrupt nesting ................................................ 3-16 
Interrupt request ............................... 5-40,9-1,9-14 
Interrupt sensitivity .......................................... 9-14 

X-3 



Interrupt service ............................. 3-12, 3-14, 3-16, Mode control ........................................... 12-5, 15-16 
........................................................... 3-18, 3-20, 5-39 Mode status register (MSTAT) ............... 3-12, 3-22 

Interrupt vector .............................. 3-11, 3-12, 3-13, Modify (M) registers ......... .4-1, 4-2, 4-3, 5-26, 5-28 
..................................................... 3-14, D-l, D-2, D-3 Modulo addressing ..................................... .4-1, 4-4 
Interrupts ...... 1-9, 3-4, 3-16, 9-24, 9-30, 12-4, 12-11 Modulus logic ...................................................... 4-3 
Interrupts pending ............................................ 3-18 MOVE instructions .......................................... 1 5-13 
Interval timer ................................... 3-18, 3-23, 3-24 MR register ........... 2-13, 2-15, 2-16, 2-18, 2-20, 2-22 
INVRFS ............................................. 5-14, 5-16, 5-32 MRO register .................................... 2-13, 2-15, 2-18 
INVTDV .............................................................. 5-32 MRI register ........................... 2-13, 2-15, 2-19, 2-20 
INVTFS ............................................. 5-14, 5-16, 5-32 MR2 register ........................... 2-13, 2-15, 2-19, 2-20 
IRFS ............................................................ 5-11, 5-32 MSTAT ...................... 1-7, 2-8, 2-9, 2-16, 2-24, 3-12, 
IRQO ............................................. 1-9, 3-11, 5-3, 9-14 ................................... 3-14, 3-20, 3-22, 4-2,6-1,12-5 
IRQl ............................................. 1-9, 3-11, 5-3, 9-14 Multichannel ......................... 1-2, 1-8,5-3,5-5,5-30 
IRQ2 ........................................................... 5-38, 9-14 Multichannel frame delay ................................ 5-32 
ITFS ...................................................................... 5-11 Multichannel length bit ................................... .5-31 

J 
Multichannel mode ......................... 5-30, 5-31, 5-32 
Multichannel operation ........................... 5-32, 5-33 

JUMP ..................................................... 3-8,3-9,3-24 
Multichannel setup ............................................ 5-30 
Multichannel transfer .............................. 5-32, 5-33 

L Multifunction instructions ............. 1-4, 15-7, 15-19 
Multiplication ..................................................... 2-13 

Length (L) registers .................... .4-1, 4-3, 4-4, 12-2 
Level-sensitive interrupts ....................... 3-15, 9-14 
Linker .................................................................. 14-3 

Multiplier ............................................................ 2-18 
Multiplier result format .................................... 2-17 
Multiplier/accumulator ......... 1-6, 2-13, 2-15, 3-21 

Logical shift ....................................... 2-3, 2-22, 2-28 
Loop ................................................. 3-5,·3-6,3-7,3-9 
Loop comparator ......................... 3-3, 3-5, 3-6, 3-10 
Loop counter ................................ 1-7, 3-4, 3-5, 12-4 
Loop stack .................... 3-4, 3-5, 3-6, 3-7, 3-22, 12-5 
LSHIFT ................................................................ 2-31 

Multiply / add ....................................................... 1-6 
Multiply / subtract ................................................ 1-6 
Multiprecision capability ................................... 2-8 
Multiprocessing ................................................... 9-4 
MV .............................................................. 2-13, 2-19 
MX register file .................................................. 2-15 

M 
MXO register ....................................................... 2-15 
MXl register ....................................................... 2-15 

M registers ....... .4-1, 4-2, 4-3, 5-26, 5-28, 8-14, 12-2 
MAC ......................................... 1-6, 2-13, 2-15, 3-21, 
................................................ 12-2, 12-6, 15-9, 15-10 

MY register file .................................................. 2-15 
MYO register ....................................................... 2-15 
MYI register ....................................................... 2-15 

MAC arithmetic ................................................... 2-3 N 
MAC input/output registers ........................... 2-18 
MAC operations ................................................ 2-16 
MAC overflow ................................................... 2-19 

Nested loops ......................................................... 3-8 
Nesting ....................................................... 3-15, 3-16 

MAC saturation ................................................. 2-19 Next instruction address ............ 3-3, 3-4, 3-7, 3-10 
Matrix multiply ........................................ 14-1, 14-9 
Memory address .................................................. 3-3 
Memory interface ................ 10-2, 10-37, 12-2, 12-7 

. Memory read ...................................................... 10-3 

Normal framing mode ...................................... 5-13 
Normalize ........................................ 2-22, 2-28, 2-33 
Normalize modifiers ......................................... 2-35 
Numeric formats ................................................. C-l 

Memory wait states ........................................... 3-18 
Memory write ......................................... 10-3, 10-24 o 
Memory-mapped registers ............................... 12-1 
MF register ................................................ 2-15, 2-20 
Miscellaneous instructions ............................. 15-16 
MMAP ................................... 7-16, 10-5, 10-6, 10-15 
Mode bits ............................................................ 12-5 

Off-chip memory accesses .............................. 15-18 
On-chip memory ................................................. 1-2 
On-chip peripherals ..................................... 1-2, 1-8 
Opcodes ............................................................... A-l 
Operating mode ................................................. 3-22 

X-4 



Operation during powerdown ........................ 9-23 
OR/PASS logic ......................................... 2-22, 2-24 

Q 
Output enable ......................................... 10-3, 10-24 Quotient format ................................................. 2-12 
Output registers ................................................... 1-7 
Overflow (AV) ... 2-2,2-5,2-8,2-9,2-13,2-26,2-36 R 
Overwrite bit ...................................................... 9-24 
Overwrite mode ........................................... 7-7, 7-9 
OWRCNTR ........................................................... 3-5 

R bus .......................................... 1-6, 2-15, 2-18, 2-22 
RAM .................................................................... 10-6 
Read operation ................................................. 15-12 

P Receive companding latency ........................... 5-40 
Receive frame sync ......................... 5-11, 5-12, 5-30 

Page length ............................................ 10-15, 10-18 Receive interrupt (SPORT) ........................ 5-4, 5-36 
PASS ........................................................... 2-32, 2-33 Receive register .................................................... 5-6 
PC ........................................................................... 3-4 Receive word enables ........................................ 5-31 
PC incrementer .................................................... 3-3 Receiving data ...................................................... 5-6 
PC stack .............................. 3-3, 3-4, 3-6, 3-10, 3-11, reg ........................................................... 15-12, 15-14 
.............................................. 3-22, 12-5, 15-84, 15-85 Register indirect JUMPs ..................................... 3-8 
PDFORCE ........................................................... 9-18 Register notation .............................................. 15-20 
Period register ...................................................... 6-1 
Periodic interrupts ............................................... 6-1 

Registers .................................................... 12-1, 12-3 
RESET .......................................... 9-1, 9-4, 9-21, 9-25 

PMA bus ....................... 1-8, 3-3, 3-4, 3-8, to-I, to-3 Result bus ............................................................. 1-6 
PMD bus ............................................. 1-8, 10-1, to-3 Return .......................................................... 3-7, 3-10 
PMD-DMD bus exchange ... 1-5, 1-8,2-15,4-1,4-9 RFS ............................................. 5-2, 5-11, 5-12, 5-30 
PMOVLAY ....................................................... 10-26 RFSDIV ................................................................ 5-12 
PMS ................................................... 1-8, 10-3, 10-24 RFSDIV ................................................................ 12-7 
Polled operation ................................................... 7-7 RFSR ........................................................... 5-10,5-11 
PORT directive ................................................. 10-14 RFSW ................................................................... 5-13 
Powerdown .............................. 8-9, 9-17, 9-20, 9-30 Rounding mode ................................................. 2-20 
Powerdown acknowledge ................................ 9-29 RTI instruction ................................. 3-11, 9-15, 9-30 
Powerdown control register ................... 9-18, 9-20 RX register .................................. 5-2, 5-4, 5-32, 5-36 
Powerdown force control bit ........................... 9-19 RXO register ................................................. 5-6, 5-32 
Powerup .............................................................. 9-20 RXI register .......................................................... 5-6 
Powerup boot ................................................... 10-16 
Primary registers ................................................. 2-7 s 
Processor states .................................................... 9-2 
Program counter .................................................. 3-4 
Program flow control .......................... 15-14, 15-15 
Program memory ....................................... 1-8, to-I 
Program memory configuration ..................... 10-5 
Program memory data bus ............................... .4-9 
Program memory interface .............................. 10-3 
Program memory map ............................ 10-5, 10-6 
Program memory read ............................ 10-3, 15-6 
Program memory write .................................... 10-3 
Program sequencer .................... 3-1, 3-5, 12-2, 12-4 
Programming model ......................................... 12-1 
PVCR ................................................................... 9-18 
PWAIT ................................................................. 10-5 
PWD pin ....................................... ; ..................... 9-19 
PWDACK pin ..................................................... 9-29 
PX registers .......................................... 1-5, 4-9, 4-10 

Saturation ............................................................ 2-13 
SB register .................................................. 2-22, 2-29 
SCLK ................................ 5-1,5-12, 5-13, 5-15, 5-16 
SCLK frequencies ................................................ 5-9 
SCLK pin ............................................................... 5-9 
SCLKO .................................................................. 5-34 
SCLKl .................................................................. 5-34 
SCLKDIV ..................................................... 5-9, 12-7 
SE register ... 2-22,2-24,2-26,2-30,2-31,2-33,2-34 
Secondary register ............................................. 3-12 
Serial clock ........................... 5-1, 5-5, 5-8, 5-34, 5-38 
Serial clock frequencies ....................................... 5-8 
Serial port autobuffering .................................. 5-42 
Serial ports ................ 1-8, 5-1, 5-38, 9-5, 9-23, 12-7, 
....................................... 13-5, 13-6, 13-7, 13-8, 13-tO 
Serial word length ........................................ 5-5, 5-9 
Shifter ............................. 1-6, 3-21, 12-2, 15-9, 15-11 

X-5 



Shifter arithmetic ................................................. 2-3 
Shifter array ........................................................ 2-22 
Shifter input/ output registers ......................... 2-28 

T 
Tl interface ......................................................... 5-31 

Shifter operations .............................................. 2-28 TCOUNT ............................... 6-1, 6-2, 6-3, 6-4, 12-6 
Shifter sign .......................................................... 2-26 TDV ..................................................................... 5-32 
SI register ................................................... 2-22, 2-23 Termination condition ............................... 3-6, 3-10 
Signed numbers ................................................... 2-1 TFS ............................................. 5-2, 5-11, 5-12, 5-30 
Sine approximation ........................................... 14-7 TFSO ..................................................................... 5-30 
SLEN ........................................ 5-10,5-16,5-31,5-32 TFSR ........................................................... 5-10,5-11 
Software examples ............................................ 14-1 TFSW ................................................................... 5-13 
Software reboot ................................................ 10-16 Time-division multiplexed ............................... 5-30 
SPORT .......................... 1-8, 3-18, 5-1, 5-3, 5-6, 9-23 Timer ............... 3-18, 3-23, 3-24, 6-1, 9-5, 12-2, 12-6 
SPORT control register .......... 5-8,5-10,5-11,5-13, Timer interrupt ........................................... 3-19, 6-1 
.................................................. 5-14,5-16,5-23,5-31 Timer operation ................................................... 6-3 

SPORT enable ....................................................... 5-7 Timer registers .............................................. 6-1,6-2 
SPORT interrupts .............................. 5-3,5-34,5-41 TOPPCSTACK ... 3-4, 3-25, 3-26, 3-27, 15-84, 15-85 
SPORT multichannel frame delay ................... 5-31 TPERIOD ............................... 6-1, 6-2, 6-3, 6-4,12-6 
SPORT programming ......................................... 5-4 Transmit data valid ........................................... 5-32 
SPORT timing .................................................... 5-34 Transmit frame sync ................................ 5-11,5-12 
SPORT configuration .......................................... 5-5 Transmit interrupt (SPORT) ..................... 5-4,5-36 
SPORTO ............................. 5-1, 5-5,5-15, 5-16,5-30, Transmit register ................................................. 5-6 
.................................................. 8-13, 12-7, 13-6, 13-7 Transmit word enables ..................................... 5-32 

SPORTO configuration registers ........................ 5-5 Transmitting data ................................................ 5-6 
SPORTO control register ................................... 5-30 TSCALE ................................. 6-1, 6-2, 6-3, 6-4, 12-6 
SPORTO multichannel word enable registers ...... 5-32 
SPORTl ................................................ 5-5, 5-30, 8-9, 

Twos-complement ............ 2-1,2-18,2-33, C-l, C-4 
TX register ............................................ 5-2,5-4,5-35 

.................................................. 8-13,9-14,9-15,12-2 TXO register .......................................................... 5-6 
SPORTI alternate configuration ........................ 5-8 TXl register .......................................................... 5-6 
SPORT 1 configuration registers ........................ 5-5 
SR register ................................................. 2-22,2-23 u 
SRO register ............................................... 2-22,2-24 
SRI register ............................................... 2-22,2-24 
SSTAT .................................................................. 12-5 

Underflows ........................................................... 2-8 
Unsigned ............................................. 2-1,2-18, C-l 

Stacks ........................................................... 3-4, 12-5 
Start-up delay ..................................................... 9-20 

W 
Start-up time ....................................................... 9-21 
Startup timing .................................................... 5-38 

Word length ......................................... 5-3,5-9, 5-32 
Write enable ....................................................... 10-3 

Status bits .................................................. 3-21, 12-5 
Status condition .......................................... 3-6, 3-25 
Status logic ............................................................ 3-4 

Write operation ................................................ 15-12 

x 
Status registers .......................................... 3-15, 3-20 
Status stack ............................. 3-16, 3-20, 3-22, 12-5 
Stolen cycles ........................................... : ......... 15-18 
Subroutine ............................................................ 3-9 

XTAL pin ............................................ 9-1,9-21,9-22 
XTALDELAY ............................................ 9-18, 9-20 
XTALDIS ............................................................. 9-18 

Subtract with borrow .......................................... 2-8 
Synchronization delay ........................................ 9-3 z 
Synchronization (serial elk to processor elk) ........ 5-38 
System Builder ................................................... 1-10 

Zero-overhead looping ................................ 1-5, 3-1 

System Control Register ......................... 9-14, 9-15, 
......................................................... 10-17, 15-12, E-l 
System interface ................................................... 9-1 

X-6 




