ADSP-2100 FA
' M
USER'S MANUAL y

— SERIAL
PORT Rl

HOST ohS g
INTERFACE e

PORT ARCHITECTURE

ANALOG
INTERF ACE
TIMER
ANALOG

DEVICES

ADSP-2100 Family

User’s Manual

Third Edition (9/95)

ANALOG
DEVICES

ADSP-2100 Family User’s Manual

© 1995 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices.

Third Edition September 1995

Analog Devices, Inc.
Computer Products Division
One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106
(617) 329-4700

If you have comments or suggestions about this manual or find any errors in it, please contact us
via email at:

dsp_techpubs@analog.com

For product marketing information or technical support, contact any Analog Devices sales office or
authorized distributor. For applications engineering assistance, contact:

DSP Applications Engineering
Phone: (617) 461-3672 Massachusetts
Fax: (617) 461-3010

email: dsp_applications@analog.com

Phone: (408) 879-3037 California
Phone: (404) 263-3722 Georgia

Analog Devices maintains a DSP BBS supporting V.32bis, V.42 and MNP classes 2,3,4 error correction,
and V.42bis and MNP class 5 data compression which can be reached at:
(617) 461-4258 8 data bits, no parity, 1 stop bit, 300/1200/2400/9600/14400 baud

All information on the BBS is also available from Analog Devices' Internet FTP site. Login as anonymous
using your email address for your password, and type (from the Unix prompt):

ftp ftp.analog.com (or ftp 137.71.23.21)

g PRINTED IN CANADA

Contents

CHAPTER 1 INTRODUCTION

1.1 OVERVIEW ... sssssssssisssans 1-1
1.1.1 Functional Units........cceevivieiiiinssns 1-1
112 Memory And System Interface..........ccocevreniernenvinnnsiniciens 1-3
1.1.3 INStruction Set ... 14
1.1.4 DSP PerfOrmarnce. ... 14
1.2 CORE ARCHITECTUREcovvivirrremnrnrenersinsesisinsssissssesisssesans 1-5
1.2.1 Computational Units.........ccoevviriirirenmnininininiiceeianes 1-6
1.2.2 Address Generators & Program Sequencerccocuevueivneee 1-7
123 BUSES o 1-8
1.3 ON-CHIP PERIPHERALS. ..ot inininnens 1-8
1.3.1 Serial POItSc.cvviiiiiiiic s 1-8
1.3.2 TIMET et 1-9
1.3.3 Host Interface POrt.......cooiviiveiiimeiieeeis s 1-9
134 DMA POILS ..ottt sssesesnns 1-9
1.3.5 Analog INterfaceccouvvvrvvirrisienans 1-10
14 ADSP-2100 FAMILY DEVELOPMENT TOOLSccocovrveuirnenns 1-10
15 ORGANIZATION OF THIS MANUAL ..o 1-11
CHAPTER 2 COMPUTATIONAL UNITS

2.1 OVERVIEW ... ssssssssssans 2-1
2.1.1 BINary String.......cucii e 2-1
212 UNSIGNEd ..ot 2-1
2.1.3 Signed Numbers: Twos-Complementc.ccuererrininnrenrerennnns 2-1
214 Fractional Representation: 1.15........ccceevenivnnvnnnsiveeinnen. 2-2
2.1.5 ALU Arithmetic ..o 2-2
2.1.6 MAC Arithmeticcovveiiriniiiiii s 2-3
2.1.7 Shifter Arithmeticcceoevvevcvcrcrierecnns ettt sene 2-3
218 SUININATY ...ovviiriinisiniinessiniss s sssssssesssssassssssssesssssssssseseass 24
2.2 ARITHMETIC/LOGIC UNIT (ALU)coovrvrrrrinrnrnnreninrnnsnssseens 2-5
221 ALU Block Diagram Discussion ... 2-5
222 Standard FUNCHONSccoieiniiniiisssenireens 2-7
223 ALU Input/Output Registerscccovvvvnvieniiniiniensinninns 2-8
224 Multiprecision Capability ..o 2-8
2.2.5 ALU Saturation Mode.........ccccmuiervcnennenieierieeenereernscerneeenns 2-8
2.2.6 ALU Overflow Latch Modecoouriiveniinciieniesenesiinanns 2-9

iff

227 DAVISION wieirvieerieerriereienrrerreeirseereresiassssessssssessssasssesssssessessssssssesseseas 2-9

2238 ALU StatUuS......oovuiviirercirniinsessessiessseses s ssesse s sisssens 2-13
23 MULTIPLIER/ACCUMULATOR (MAQ)ccovverrrrrrereinernererans 2-13
231 MAC Block Diagram DiSCUSSION.........c.cciverervererennenerenernsnenens 2-13
2.3.2 MAC Operations........coceeureenininreisinisnssissnsssessss s sssssssnns 2-16
2321 Standard FUNCHONScocovurieeieiriniininisiiesiessisssininis 2-16
2322 INPut FOrmMatscvoveeriirieeninic et 2-18
2323 MAC Input/Output Registerscoouerriiernreierinrennnins 2-18
2324 MR Register Operationcceeeveieieieieniniesninnisnnsesniesenns 2-18
2.3.2.5 MAC Overflow And Saturationc.ceoeeeeeeirneccnrennnncnns 2-19
2.3.2.6 Rounding Mode........coeiieieeeeeessas 2-20
2327 Biased Rounding (ADSP-217x/218x/21msp5X)cvn.. 2-21
24 BARREL SHIFTER......cooiiiiniitniniiinsississseissesissssssssssessens 2-22
241 Shifter Block Diagram DiSCUSSIONcccvveverererererinsriessrnennene. 2-22
242 Shifter Operations.........c.cocoeeeevereecsreneierensicstetssessss s 2-28
2421 Shifter Input/Output Registersc.coeverercrnreinnieninns 2-28
2422 Derive Block EXpOnentccoeueeunminnensininssssssissieissennen, 2-29
2423 Immediate Shiftscccovviirieiniiniiines 2-30
2424 Denormalizeccoceueericeieininicinteie e 2-31
2425 NOIMALIZE v.voveerireieeeen s 2-33
CHAPTER 3 PROGRAM CONTROL

3.1 OVERVIEW ...ttt st 3-1
3.2 PROGRAM SEQUENCER........couviimiiriniiinsnsssninsisisisisssssassinsiesees 3-1
3.21 Next Address Select LOIC......cccouiueiirerenieiinieinisiesieniene e 3-3
3.2.2 Program Counter & PC Stack ..o, 34
323 Loop Counter & Stack........cccoveeiererereininerninineneereessinnesinns 34
3.24 Loop Comparator & Stack............cewueveeeieiernireniiiiicieiieninnns 3-5
3.3 PROGRAM CONTROL INSTRUCTIONS..........cocoervrrerrrnrnnreiiersenans 3-8
331 JUMP INSELUCHON «.cvevereereierierneereeenrertrssneeaserneressessoneessesseessens 3-8
3.3.1.1 Register Indirect JUMPSccoovrvrirvvcrnninsineeiecesnns 3-8
3.3.2 CALL INStrUCtON c.o.vevevreeeerieererernirene ettt 39
3.3.3 DO UNTIL Loopsccounen. ettt e ettt bbb s 39
334 IDLE INSIUCIONcveiiiiiniiiiiniicciiei e 3-10
3.34.1 SIOW IDLE ..ottt sassssssssss s saesaens 3-10
3.4 INTERRUPTS ...ttt et sa st sae s senes 3-11
34.1 Interrupt Servicing SeqUENCe...........occuceeeeerecnieneieiceiesnes 3-14
342 Configuring INterruptsccoeeremeiniernnnienee e 3-14
34.2.1 Interrupt Control Register (ICNTL).........ccccoovverrerrenrennennens 3-15
3.4.22 Interrupt Mask Register (IMASK)cccovuviricrimrrncrrenennnnne 3-16
3.423 Global Enable/Disable For Interrupts..........coccecevrierrreeeenn. 3-17
3.4.24 Interrupt Force & Clear Register (IFC)ccoovuirivinnnen 3-18
3.4.3 INLEITUPE LAtENICY w..vvvevrevcrrvnernereresanicrveeseresmassasenssessnsssseniosianannens 3-18

3431 Timer Interrupt Latency (ADSP-2101/2105/2111/ 2115) .3-19

35 STATUS REGISTERS & STATUS STACKcoouvvurercenrrcienns 3-20
3.5.1 Arithmetic Status Register (ASTAT)........cccoeuviiivcurecinnieninnae 3-20
3.5.2 Stack Status Register (SSTAT)cccccouvureuieirriininseniecsncninnes 3-21
353 Mode Status Register (MSTAT)..........cccceeueunee. b 3-22
3.6 CONDITIONAL INSTRUCTIONSccovvuriemrnriseinnacicinennens 3-24
37 TOPPCSTACK ...ttt sssssssssssssssassnns 3-25
3.7.1 TOPPCSTACK ReStIICHONSvcvvivciinniineneinsensinisisesisensenene 3-27
CHAPTER 4 DATA TRANSFER

4.1 OVERVIEW ...ttt isss st s sssssnes 4-1
4.2 DATA ADDRESS GENERATORS (DAGS)c.cooverenrrnrieesnirnnns 4-1
421 DAG ReGISters.......vuimiuiiiiiiriiinnsisssssississsssnensaes 4-1
422 Indirect Adressing........coveveeivereeieniennienseenceee e 4-3
4221 Initialize L Registers To 0 For Non-Circular Addressing.......4-3
423 Modulo Addressing (Circular Buffers)c...ccoeeeninrucurenenncs 44
424 Calculating The Base AddIessouuinciereerivcrninsesensenseinenes 45
4241 Circular Buffer Base Address Example 1coceucumuceeee. 4-5
4242 Circular Buffer Base Address Example 2..........cccocovueuneen 4-5
4243 Circular Buffer Operation Example 1cccocoveeriueruninncs 4-5
4244 Circular Buffer Operation Example 2.........cccocoveuveevininnns 4-6
425 Bit-Reverse AAdressing ... 4-6
4.3 PROGRAMMNG DATA ACCESSEScoconuvinsiminrirnisnininncnnes 47
4.3.1 Variables & ATTAYScccvimeiiiieiseniesrmcneeneeneesssseseesesesssennes 4-7
432 Circular BUffers ... 4-8
44 PMD-DMD BUS EXCHANGE ...t 4-9
44.1 PMD-DMD Block Diagram Discussion..........ccceericerieniecene 4-9
CHAPTER 5 SERIAL PORTS

5.1 OVERVIEW ...t csssscnessssinennens s 5-1
5.2 BASIC SPORT DESCRIPTIONcccoeumiicmriniininniseneninsesensisssssens 5-1
521 INEEITUPLS oottt 5-4
522 SPORT Operation ... 54
5.3 SPORT PROGRAMMINGccoomeieiciirinniienssissiesnsassssasenees 54
5.3.1 SPORT Configurationccceuiimvemcincvniiinneiniseiesninns 5-5
5.3.2 Receiving And Transmitting Dataccocoeviiienniicineiicennns 5-6
5.4 SPORT ENABLE ...ttt insssisssasns 5-7
55 SERIAL CLOCKS..........ooimiriiitiniisessnsiisssssssssssessssssessssssssesmseses 5-8
5.6 WORD LENGTHoriiniicicascncsesnsasesesssssssensiassssssiens 5-9
5.7 WORD FRAMING OPTIONS..........oviiciciniremmennsnnsisissnssssines 5-10
571 Frame Synchronization............iienieinnn, 5-10
5.7.2 Frame Sync Signal Source ... 5-11
5.7.3 Normal And Alternate Framing Modes.........ccccovuriiiniiniinnns 5-13
574 Active High Or Active LOW ... 5-14

i

5.8 CONFIGURATION EXAMPLE...........ccccoevrerrenn. eeresrnrssaes s 5-15
59 TIMING EXAMPLESooririrntiicsciniinssinessneesssscssssnsesens 5-16
510 COMPANDING AND DATA FORMATccoovvmrremrrnrernsnrennns 5-23
5.10.1 Companding Operation Exampleccoovvvniirnnincinicncnnee 5-24
5.10.2 Contention For Companding Hardwareccccceuuennenen. ..5-25
5.10.3 Companding Internal Datacccovevmvienicrnisrnieensesnnsennnes 5-25
511 AUTOBUFFERINGcccocoverrrrnrrrrrneinnrestsnsssinsissssssssssesssssssnssns 5-26
5.11.1 Autobuffering Control Registerccccvuivinenieniarinenns 5-27
5.11.2 Autobuffering Example ... 5-28
512 MULTICHANNEL FUNCTIONcccoenirmrvsrnerinrnnrnninsinnsessesennns 5-30
5121 Multichannel SEtUpccouvmivivinniiciiccerenesenss 5-30
5122 Multichannel Operationcvvenriincisencsensnieniesiss 5-32
513 SPORT TIMING CONSIDERATIONScccocovmmmnrmnrnnrerenennne 5-34
513.1 Companding Delayccovueiviiiremiinnseescisissesiessncnsseinens 5-34
513.2 Clock Synchronization Delaycoceininieveneverncnininienins 5-34
5.13.2.1 Startup TIMINGcovvevievervieierenneensnesssssnss s esnnes 5-34
5.13.3 Internally Generated Frame Sync Timing.........cccceevvvevueennnee. 5-34
5134 Transmit Interrupt Timingcccevvenniiiinveennicennn 5-36
5.13.5 Receive Interrupt Timingooeveieernnnninenennnenenieinnes 5-36
5.13.6 Interrupt And Autobuffer Synchronizationc.ceeecvvuens 5-38
5.13.7 Instruction Completion Latenciescccoeeeverrnnnnenrircrnnnens 5-38
5.13.8 Interrupt And Autobuffer Service Example.........ccccccuncune 5-39
5.13.9 Receive Companding Latencycccccceeeeererverieinecenininenes 5-40
513.10 Interrupts With Autobuffering Enabledc.cccovuevvnvircrunins 541
513.11 Unusual Complcationscuceuveinersisiinsisismissiremssscssssisinns 542
CHAPTER 6 TIMER

6.1 OVERVIEW ...ttt ssssssse i saesens 6-1
6.2 TIMER ARCHITECTURE ...t senenes 6-1
6.3 RESOLUTION ...ttt ssssss s ssssssesssssssnnes 63 .
6.4 TIMER OPERATIONcovevrrirnnnc. s 6-3

CHAPTER 7 HOST INTERFACE PORT

7.1 OVERVIEW ...ttt s s 7-1
7.2 HIP PIN SUMMARYcootviriimiiinirenieisisinieiiseisissesssssssisesnsans 7-2
7.3 HIP FUNCTIONAL DESCRIPTIONccoeovmnnierenrininerieirinsniiennns 7-4
74 HIP OPERATIONcooviiiininiiinicisissseissssssscssssssssssisssssens 7-6
741 Polled Operation ... 7-7
74.1.1 HIP Status Synchronization ... 7-8
74.2 Interrupt-Driven Operation ..., 7-9
74.3 HDR Overwrite Mode ...t 7-9
74.4 SOftware Reset ...t 7-10
7.5 HIP INTERRUPTS ...t sesiessssinsisiines 7-10
7.6 HOST INTERFACE TIMINGocovmiviimerinrnieiniinensnesinieiieiiens 7-11
7.7 BOOT LOADING THROUGH THE HIPcoouivvriireinninnes 7-16
CHAPTER 8 ANALOG INTERFACE

8.1 OVERVIEW ...t sssssssssssns s sssisnes 8-1
8.2 A/D CONVERSIONoovuiumiirierecsseesaenresssssessarsssssstiesssssesenees 8-2
8.2.1 ANAlOg INPUL ..ottt e 8-2
8.2.2 ADC 8-3
8221 Decimation FIter ..., 84
8222 High Pass Filter ... 85
8.3 D/A CONVERSIONcoviieimiiinrnieiiisiieisensssssssssiesnes 86
8.3.1 DAC e 8-6
8.3.1.1 High Pass FIHer ... 8-6
8.3.1.2 Interpolation Filter ... 8-7
8.3.1.3 Analog Smoothing Filter & Programmable Gain Amp. ...8-8
8.3.2 Differential Output AMpLifier ..., 8-8
8.4 OPERATING THE ANALOG INTERFACEccouviniiiririniennns 8-9
8.4.1 Memory-Mapped Control Registers...........cccvvuieivinmriveinnininas 89
8.4.1.1 Analog Control Registeroooivirevririennininceneneininniaene. 8-9
84.1.2 Analog Autobuffer/Powerdown Register...........cocovueunee. 8-10
8.4.2 Memory-Mapped Data Registerscccoevruririnreniieerennns 8-11
8.4.3 ADC & DAC INterruptsccuecrivccincrciiiesicisniieeesnenennes 8-12
8.4.3.1 Autobuffering Disabledc.coourvvvrinivisieiniiininenen, 8-12
8.4.3.2 Autobuffering Enabled ... 8-13
8.5 CIRCUIT DESIGN CONSIDERATIONS........coccovvvrnminnrinerrenrnnne 8-16
8.5.1 Analog Signal INPuLt ..., 8-16
852 Analog Signal Qutput ... 8-18

85.3 Voltage Reference Filter Capacitanceccccoeuveivvinrnrennennens 8-19

vii

viii

CHAPTER 9 SYSTEM INTERFACE

9.1

9.2
9.2.1
922
9.3

94
9.4.1
9.5
9.5.1
9.6
9.7
9.7.1
9.7.2
9.7.3
9.7.3.1
9732
9.74
9741
9.74.2
9.75
9.75.1
9.752
9753
9754
9.755
9.75.6
9.7.6
977
9.7.8

OVERVIEWooiiiitrniiiniisteesessisensessssssess et ses s sesees 9-1
CLOCK SIGNALS ...ttt s sessssssssisssssssans 9-3
Synchronization Delay ... 9-3

1x & 1/2x Clock Considerationsccecceveiersienssesssessesesunes 94
RESET ettt sas st nas 94
SOFTWARE-FORCED REBOOTINGcccceevmmernrerrnieniesessnnsnans 94
ADSP-2181 Register Values For BDMA Booting 9-13
EXTERNAL INTERRUPTScccosvrinrrnrrnrnsnisisnissssssssssssississsesens 9-14
Interrupt SEnSItivIty .ocovveeeieicieiiiie 9-14
FLAG PINS ..ottt sbe s aens 9-15
POWERDOWN ..ottt issesses s s ssase 9-17
Powerdown Control...........cimivemieniceneeeenieesennnns 9-18
Entering POWerdowIcovviveiciimienniiriinneiesoneneesissnnses 9-19
Exiting POWeTrdOWN ...t enesensnisnsene 9-20
Ending Powerdown With The PWD Pincc.cocvvunnnee. 9-20
Ending Powerdown With The RESET Pin.........cc.cocoeuueun. 9-21
Startup Time After Powerdowncccevivniverininieiniinennnens 9-21
Systems Using An External TTL/CMOS Clock 9-21
Systems Using A Crystal/Internal Oscillator................... 9-22
Operation During POWerdownccovvmeevericvirensennenencenens 9-23
Interrupts & Flags........coeivervierireinireeircriennsencereissanenn, 9-23
SPORTS ..o renssressssessssssss s e sessenes 9-23

HIP During POWerdownc.coceeeereuieeeinsssnssinnssnssnnnnns 9-24
IDMA Port During Powerdown (ADSP-2181) 9-25
BDMA Port During Powerdown (ADSP-2181)................. 9-26
Analog Interface (ADSP-21mSP5X)coovvveiererrnrerrnsenennns 9-26
Conditions For Lowest Power Consumption.........c..ccceeevueee 9-26
PWDACK Pill..ccucvirincereieisinineisiesesc e sessesss s s sass 9-29
Using Powerdown As A Non-Maskable Interrupt................ 9-30

CHAPTER 10 MEMORY INTERFACE

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3

OVERVIEW ...ttt 10-1
PROGRAM MEMORY INTERFACE...........ccccvvune. e, 10-3
External Program Memory Read/Writeccooeueuverrereunnneee. 10-3
Program Memory Mapsccooeeveiineieeeeeereceecnennnne 10-5
ROM Program Memory Mapsccccoceiieennieeiicinrcneecresinne. 10-6
DATA MEMORY INTERFACE ...ttt 10-10
External Data Memory Read /Writecocvvrvinvvrcrnrnncnnncnnnn, 10-10
Data Memory Mapsccooveerienireiiennnineetinsssscesssessesssensens 10-11
Memory-Mapped Peripheralscccocovvvvievrieneninnennnennen. 10-14

104 BOOT MEMORY INTERFACEcccocovviimiinincniirnniisensnsesssisns 10-15

10.4.1 BOOt Pagescoovvrtertitr s 10-15
10.4.2 Powerup Boot & Software Rebootccccoeemrerevciervecreenenne 10-16
10.4.3 Boot MemOTy ACCESS ... 10-17
10.4.4 Boot Loading Sequence.............ouiiieiininninnisenissneiiins 10-17
10.5 BUS REQUEST/GRANTccocvvmmicirniiiircinicssnsssasssnsnnnns 10-21
10.6 -~ ADSP-2181 MEMORY INTERFACESocouvminninrincincnnnns 10-23
10.6.1 ADSP-2181 Program Memory Interface...........ccoevveivinenncn 10-25
10.6.2 ADSP-2181 Data Memory Interface..........ccccocvrviurenrirencinens 10-30
10.6.3 ADSP-2181 Byte Memory Interfaceccooeierirvniiicninns 10-32
10.6.4 ADSP-2181 I/O MemOry Space..........cocveuvevuverisessessnnernennens 10-32
10.6.5 ADSP-2181 Composite Memory Selectcccvvuivvrurencnnnnn. 10-35
10.6.6 External Memory Read — Overlays & I/O Memory 10-36
10.6.7 External Memory Write — Overlays & I/O Memory 10-37

10.7 MEMORY INTERFACE SUMMARY (ALL PROCESSORS)10-37

CHAPTER 11 DMA PORTS
11,1 OVERVIEWcrccrnercenrcnssnnensnemesnsssscnsnsscsessassessins 11-1

112 BDMA PORTocoeircrcrnercsssssssssssiss s sssssssssssssssssssssssns 11-2
11.2.1 BDMA Port Functional Description...........ooccceeuiieininicnivnines 114
11.2.2 BDMA Control Registers............ouivuiicsieniisinenesineneansnen: 11-4
11.2.3 Byte Memory Word Formatsc.ceereeinereencreeninineeninennes 11-9
11.24 BDMA BOOINGcovviniirtisiniiniisiissiess s ssssssssnsiens 11-9
11.2.4.1 Development Software Features for BDMA Booting 11-11
11.3 IDMA PORT ...ttt ssssssssssssasssssssssssasssss 11-12
11.3.1 IDMA Port Pin SUMIALY ..ot 11-12
11.3.2 IDMA Port Functional Description...........coeovviveuninsnninineiiaens 11-14
11.3.3 Modifying Control Registers for IDMAccocvurrivvniviveinen 11-16
11.34 IDMA TIMUNG ..ottt senstssesensseneane 11-17
11.3.4.1 Address Latch Cycle ... 11-17
11.3.4.2 Long Read Cycle ... 11-18
11343 Short Read Cycle...innminisniinisinissscsnissnsens 11-20
11.3.44 Long Write Cycle ... 11-21
11.3.4.5 Short Write Cycle....eeccrcreereretenecsencnniens 11-23
11.3.5 Boot Loading Through The IDMA Portc.cccccovvvrrrernrnnnn. 11-24
11.3.6 DMA Cycle Stealing, DMA Hold Offs, and TACK 11-25

ix

CHAPTER 12 PROGRAMMING MODEL

12.1
12.1.1
12111
12.1.2
12.1.21
121.2.2
12.1.2.3
12.1.2.4
12.1.3
12.14
12.1.5
12.1.6
12.1.7
12.1.8
1219
12.2
12.2.1
12.2.2

OVERVIEWuiiiisnrisinisinissessssssssssssssenssssnssssssssssens 12-1
Data Address GEneratorscocoeueeneveerecnnesisseiesesesnesessnsenes 12-2
Always Initialize L Registersccoeueevvrererereeerenrennnnen. 12-2
Program SEqUENCETciviiiimnsiiinseiinsessssessseenes 124
INEEITUPLS .o 124

LoOP COUNLSoovrrrrnrincrinnienntenersiesesasnsssenssnenssssssassens 124

Status And Mode Bitscccoeeervrerernnnernnererenecnncnennenenns 12-5
SEACKS .ottt b s 12-5
Computational Units.........ccceveuernennnininsinsicesisesncssesiennens 12-6
Bus EXChange ...t sens 12-6
TIMET s e 12-6
Serial POItScvverierenretrierencnts ettt s s 12-7
Memory Interface & SPORT Enables..........ccovveiirireresnenenenns 12-7
Host INterfaceceiivinieininicinicssssesesseesenes 12-8
Analog Interfacecoveoereivriesieninesieic s 12-8
PROGRAM EXAMPLEooomtrirrirrensirenrnncssnsssesesessssensnsssssssens 12-8
Example Program: Setup Routine Discussion..........ccc.cevvee. 12~-10
Example Program: Interrupt Routine Discussion................ 12-11

CHAPTER 13 HARDWARE EXAMPLES

13.1
13.2
13.3
134
13.5
13.6
13.7

OVERVIEWouiriiniciririininiiiesiisisssisssssestsssssssssssnssssssssssssesss 13-1
BOOT LOADING FROM HOST USING BUS REQUEST 13-2
SERIAL PORT TO CODEC INTERFACEcoveemivnninininnne 13-5
SERIAL PORT TO DAC INTERFACE..........cvrvrncririnnnnnaens 13-8
SERIAL PORT TO ADC INTERFACE..........inrnieinnns 13-10
SERIAL PORT TO SERIAL PORT INTERFACE........................ 13-12
80C51 INTERFACE TO HOST INTERFACE PORT 13-13

CHAPTER 14 SOFTWARE EXAMPLES

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.7.1
14.7.2
14.7.3
14.7 4

OVERVIEWooiiieeieeeeeeeeeeeeeesteeessssesssssssssessessssnssessssssessasases 14-1
SYSTEM DEVELOPMENT PROCESS.........c.cccocevevreereererreereeresrernnes 14-2
SINGLE-PRECISION FIR TRANSVERSAL FILTER...........ccu..... 144
CASCADED BIQUAD IIR FILTERccceceveerererrerreresreseeseeseasonsnns 14-6
SINE APPROXIMATIONoooniriereniecreerecrensessessseessesssessassaenses 14-7
SINGLE-PRECISION MATRIX MULTIPLYoocvverecvievenrrenaennns 14-9
RADIX-2 DECIMATION-IN-TIME FFT......ccoeeviveeveeieenrene e 14-11

Main MOAUIE.......ccueevrereereceererererreereeessrnecsnessessnessaesseessasenens 14-11

DIT FET SUDIOURINE......ceuevetiienrreiieciiesiseestsessseessssessseessssessases 14-13

Bit-Reverse SUDTOULINEcooeeeeecieieiiectieeniveenseeenseessssesssaees 14-18

Block Floating-Point Scaling Subroutinecccceevveirennnne 14-19

CHAPTER 15 INSTRUCTION SET REFERENCE

151 QUICK LIST OF INSTRUCTIONS.........cocvurmiinrirnirnireinensiesisnenes 15-1
152 OVERVIEW ... 15-2
15.3 INSTRUCTION TYPES & NOTATION CONVENTIONS......... 15-3
154 MULTIFUNCTION INSTRUCTIONS.ccoovvmrrrrrnirnirnirerienennens 154
154.1 ALU/MAC With Data & Program Memory Read 154
154.2 Data & Program Memory Readcocceivinvvininininneniniinnnn, 15-6
154.3 Computation With Memory Readc.cccouvievivniniriinirenn, 15-6
154.4 Computation With Memory Writeccooeveerienirinnrnnnne. 15-6
15.4.5 Computation With Data Register Movec.ccocvuviieriininnns 15-7
155 ALU, MAC & SHIFTER INSTRUCTIONS........cocvuviviniireriniinennens 15-9
15.5.1 ALU GIOUP ..ot esssssessssnsenes 15-9
15.5.2 MAC GIOUP c.virrnrrriiiniresiisesesnnesisisssssssessssissssssssessassnes 15-10
15.5.3 Shifter GIOUP ..ottt ane 15-11
15,6 MOVE: READ & WRITEcccoovireiriiirrieicrneiseiiesceresssnens 15-12
157 PROGRAM FLOW CONTROLcoecvimrvrriminnineirsiineneennenn, 15-14
15.8 MISCELLANEOUS INSTRUCTIONScoeovimvirrenrrnininiininne 15-16
159 EXTRA CYCLE CONDITIONSccoviienriinnirvinersininninennsienesans 15-18
15.9.1 Multiple Off-Chip Memory Accessescovimierirevinnnnns 15-18
15.9.2 Wit SEates ..ot 15-18
1593 SPORT Autobuffering & DMA.........cocooviinienienincienniins 15-18
1510 INSTRUCTION SET SYNTAX......cccumuiirmimmirinniiseniisisinsssnseans 15-19
15.10.1 Punctuation & Multifunction Instructions..........ccoeveuiuinens 15-19
15.10.2 Syntax Notation Example........ccovinnininicineniinnn, 15-19
15.10.3 Status Register Notationceveviivniinnerininiciiieninnens 15-20
ALU Add/Add with Carry ... 15-23
Subtract X-Y/Subtract X-Y with BOITOWccccvvvvivvirenvenennns 15-25
Subtract Y-X/Subtract Y-X with Borrowc..cceevvveiecnnn, 15-27
AND, OR, XOR ..ottt sssesiessessssessessenis 15-29
Test Bit, Clear Bit, Set Bit, Toggle Bit ..., 15-31
Pass/ClEAT ..o 15-33
INEBAtE .ot 15-35
NOT o 15-36
Absolute Value.........coiinnncieeenenene 15-37
Increment ... 15-38
Decrement ... 15-39
DiAVIAE vttt e 15-40
Generate ALU Status........cciniiiciiinininsnnesseenienne 1542

xi

xii

MAC MUltiply .ot sniees 1543

SHIFTER

PROGRAM FLOW

Multiply / Accumulate..........ocooovreeerniieininesseee s 1545
Multiply /SUDLTACE ...t 1547
CIEAT .vevieeieieeeetiieeieieeietetetat et ses et tete e s esasasbestosaabeseabesssssssasan 1549
Transfer MR ...t seccrresesetresseesseesassesesesesesenes 15-50
Conditional MR Saturationcceeevevenirereernrninncreiniissenns 15-51
Arithmetic Shift.........cooviiiinc s 15-52
Logical Shift........cccocverniiriieiinieee s 15-54
NOIMAHZE ..o 15-56
Derive EXponent ... 15-58
Block Exponent Adjustccoceveeenieneieniennicineiees e 15-60
Arithmetic Shift Immediateccococemirinvniiciciines 15-62
Logical Shift Immediate........cccocvirnniiiiininiicinn, 15-64
Register MOVE ... esssssssess 15-65
Load Register Immediatecoccoevnivenieniincsciieninieeisseeens 15-67
Data Memory Read (Direct Address)coveeuvevereneenninnniinenn, 15-69
Data Memory Read (Indirect Address)cccovveevvrnvrnveininnnns 15-70
Program Memory Read (Indirect Address)..........cccoevvviivurcrnnnn. 15-71
Data Memory Write (Direct AAdress)ccoovuvevvrvinineiveninsinennnn, 15-72
Data Memory Write (Indirect AAdress)ccccvuvveninncrcrnnrinnnns 15-73
Program Memory Write (Indirect Address)cccocuvvivrincuinne, 15-75
I/0 Space Read/WTILe ...t 15-76
JUMP s arsas s sas s asnssresn 15-77
CALL ottt s 15-78
JUMP or CALL on Flag In Pin ... 15-79
Modify Flag Out Pin ..o R 15-80
Return From Subroutine (RTS) ..., 15-81
Return From Interrupt (RTD)covirerviienieeieeeneenencnnens 15-82
DO UNtil ..ot 15-83
IDLE s bt 15-85

MISC

Stack Control ... 15-86
Mode CoNtrol ... 15-89
Modify Address Register...........cvviriinniiniinnniiiniiiineiins 1591
NOP e ees e sssssaens 15-92
Interrupt Enable/Disableoriiincnninieinciinesnnnes 15-93
MULTIFUNCTION
ALU/MAC/SHIFT Operation with Memory Readccccecuuuncn. 15-94
ALU/MAC/SHIFT Operation with Register to Register Move 15-98
ALU/MAC/SHIFT Operation with Memory Writecocuune. 15-101
Data & Program Memory Readcooevvvvnniinininininniinenns 15-105
ALU/MAC Operation with Data & Program Memory Read 15-106

APPENDIX A INSTRUCTION CODING

Al OPCODES oorceentrecrerereeeseestseseseesese et isesessaseseseessaseserens A-1
A2 ABBREVIATION CODINGcciimiiiiiiniisiiiicsssssssssssnsans A-7

APPENDIX B DIVISION EXCEPTIONS

B.1 DIVISION FUNDAMENTALS ..., B-1
B.1.1 Signed DIVISION ..o B-1
B.1.2 Unsigned DiviSiOn ... B2
B.1.3 Output FOrmats ... B-2
B.14 Integer DIVISIONcviviiiciir s B-3
B.2 ERROR CONDITIONSoririiinienisiininssesssssssssssssssscsssesnns B-3
B.2.1 Negative Divisor EITOT ... B-3
B.2.2 Unsigned Division EITOT ..., B4
B.3 SOFTWARE SOLUTIONcccovtiirirnriereneiiininenssssssesssnssnscsisnes B4

APPENDIX C NUMERIC FORMATS

C1 OVERVIEW ...t cnssmsscssnassassisscssssassasssnenas C-1
C.2 UNSIGNED OR SIGNED: TWOS-COMPLEMENT FORMAT...C-1
C3 INTEGER OR FRACTIONALcceoumriirinnieinsinsissncssessessesssesies C-1
C4 BINARY MULTIPLICATIONoococvinmiiinniriniercreiienseesinesesinenes C-3
C41 Fractional Mode And Integer Modeccccvmiiminininiininenes C4
C5 BLOCK FLOATING-POINT FORMATccocoeuimmmnrmrcrencnsenseanens C-5

xiif

xiv

APPENDIX D

INTERRUPT VECTOR ADDRESSES

D1 INTERRUPT VECTOR ADDRESSEScocouvmimnireriniriniisinnns D-1

APPENDIX E
E1l OVERVIEW

INDEX

CONTROL/STATUS REGISTERS

...

Introduction

1.1 OVERVIEW

The ADSP-2100 family is a collection of programmable single-chip
microprocessors that share a common base architecture optimized for
digital signal processing (DSP) and other high-speed numeric processing
applications. The various family processors differ principally in the type
of on-chip peripherals they add to the base architecture. On-chip memory,
a timer, serial port(s), and parallel ports are available in different members
of the family. In addition, the ADSP-21msp58/59 processors include an
on-chip analog interface for voiceband signal conversion.

This manual provides the information necessary to understand and
evaluate the processors’ architecture, and to determine which device best
meets your needs for a particular application. Together with the data
sheets describing the individual devices, this manual provides all the
information required to design a DSP system. Complete reference material
for programmers is also included.

1.1.1 Functional Units

Table 1.1 on the following page lists the main functional units of the
ADSP-21xx architecture, and shows which functions are included on each
of the processors.

o Computational Units—Every processor in the ADSP-2100 family
contains three independent, full-function computational units: an
arithmetic/logic unit (ALU), a multiplier/accumulator (MAC) and a
barrel shifter. The computational units process 16-bit data directly and
also provide hardware support for multiprecision computations.

® Data Address Generators & Program Sequencer—Two dedicated address
generators and a program sequencer supply addresses for on-chip or
external memory access. The sequencer supports single-cycle
conditional branching and executes program loops with zero
overhead. Dual data address generators allow the processor to
generate simultaneous addresses for dual operand fetches.
Together the sequencer and data address generators keep the
computational units continuously working, maximizing throughput.

Feature 2101 2103 2105 2115 2111 2171 2173 2181 2183 21msp58
Arithmetic/Logic Unit U] ° . °
Multiply/ Accumulator
Shifter ° ° ° . . ° . ° . °
Data Address Generators J . . . ° °
Program Sequencer . L . . ° °
Data Memory RAM 1K 1K 512 512 1K 2K 2K 16K 16K 2K
Program Memory RAM 2K 2K 1K 1K 2K 2K 2K 16K 16K 2K
Timer . ° [} ° ° . . °) [
Serial Port 0 (Multichannel) [© . - . . ° ° . . .
Serial Port 1. L ‘. . . ° °) . . .
Host Interface Port - - - - ° . ° - _ .
DMA Ports - - - - - - - ° . -
Analog Interface - - - - - - - - —~ .
Supply Voltage 5V 33V 5V 5V 5V 5V 33V 5V 3.3V 5V
Instruction Rate (MIPS) 20 10 13.8 20 20 33 - 20 33 33 26

Table 1.1 ADSP-2100 Family Processor Features & On-Chip Peripherals

* Memory—The ADSP-2100 family uses a modified Harvard architecture
in which data memory stores data, and program memory stores both
instructions and data. All ADSP-2100 family processors contain on-
chip RAM that comprises a portion of the program memory space and
data memory space. The speed of the on-chip memory allows the
processor to fetch two operands (one from data memory and one from
program memory) and an instruction (from program memory) in a
single cycle.

* Serial Ports—The serial ports (SPORTSs) provide a complete serial
interface with hardware companding for data compression and
expansion. Both p-law and A-law companding are supported. The
SPORTSs interface easily and directly to a wide variety of popular serial
devices. Each SPORT can generate a programmable internal clock or
accept an external clock. SPORTO includes a multichannel option.

¢ Timer—A programmable timer/counter with 8-bit prescaler provides
periodic interrupt generation.

® Host Interface Port—The Host Interface Port (HIP) allows direct
connection (with no glue logic) to a host processor. The HIP is made up
of 16 data pins and 11 control pins. The HIP is extremely flexible and
has provisions to allow simple interface to a variety of host processors.
For example, the Motorola 68000, the Intel 8051, or another ADSP-2100
family processor can be easily connected to the HIP.

1-2

¢ DMA Ports—The ADSP-2181’s Internal DMA Port (IDMA) and Byte DMA
Port (BDMA) provide efficient data transfers to and from internal memory.
The IDMA port has a 16-bit multiplexed address and data bus and supports
24-bit program memory. The IDMA port is completely asynchronous and
can be written to while the ADSP-2181 is operating at full speed. The byte
memory DMA port allows boot loading and storing of program instructions
and data.

* Analog Interface—The ADSP-21msp58/59 processors include on-chip
circuitry for mixed analog and digital signal processing. This circuitry
includes an analog-to-digital converter (ADC), a digital-to-analog converter
(DAQ), analog and digital filters, and a parallel interface to the processor’s

“core. The converters use sigma-delta technology to capture data samples
from a highly oversampled signal.

The ADSP-2100 family architecture exhibits a high degree of parallelism,
tailored to DSP requirements. In a single cycle, any device in the family can:

Generate the next program address.
Fetch the next instruction.

Perform one or two data moves.

Update one or two data address pointers.
Perform a computation.

In that same cycle, processors which have the relevant functional units can also:

Receive and/or transmit data via the serial port(s).
Receive and /or transmit data via the host interface port.
Receive and/or transmit data via the DMA ports.
Receive and/or transmit data via the analog interface.

112 Memory And System Interface

In each ADSP-21xx processor, four on-chip buses connect internal memory with
the other functional units: Data Memory Address bus, Data Memory Data bus,
Program Memory Address bus, and Program Memory Data bus. A single
external address bus and and a single external data bus are extended off-chip;
these buses can be used for either program or data memory access.

External devices can gain control of the processor’s buses with the bus request
and grant signals (BR, BG). The ADSP-21xx processors can continue running
while the buses are granted to another device, as long as an external memory
operation is not required.

1-3

The ADSP-21xx processors support memory-mapped peripherals with
programmable wait state generation.

Boot circuitry provides for loading on-chip program memory
automatically after reset. This can be done either through the memory
interface from a single low-cost EPROM, through the host interface port
from a host processor, or through the BDMA port of the ADSP-2181.
Multiple programs can be selected and loaded with no additional
hardware.

ADSP-2100 family processors differ in their response to interrupts. In all

cases, however, the program sequencer allows the processor to respond

with minimum latency. Interrupts can be nested with no additional

latency. External interrupts can be configured as edge- or level-sensitive.

Internal interrupts can be generated from the timer, the host interface port,
- the serial ports, and the BDMA port.

1.1.3 Instruction Set

The ADSP-2100 family shares a single unified instruction set designed for
upward compatibility with higher-integration devices. The ADSP-2171,
ADSP-2181, and ADSP-21msp58/59 processors have a number of
additional and enhanced instructions.

The ADSP-2100 family instruction set provides flexible data moves.
Multifunction instructions combine one or more data moves with a
computation. Every instruction can be executed in a single processor cycle.
The assembly language uses an algebraic syntax for readability and ease of
coding. A comprehensive set of software and hardware tools supports
program development.

1.1.4 DSP Performance

Signal processing applications make special performance demands which
distinguish DSP architectures from other microprocessor and
microcontroller architectures. Not only must instruction execution be fast,
but DSPs must also perform well in each of the following areas:

 Fast and Flexible Arithmetic—The ADSP-2100 family base architecture
provides single-cycle computation for multiplication, multiplication
with accumulation, arbitrary amounts of shifting, and standard
arithmetic and logical operations. In addition, the arithmetic units
allow for any sequence of computations so that a given DSP algorithm
can be executed without being reformulated.

1-4

* Extended Dynamic Range—Extended sums-of-products, common in DSP
algorithms, are supported in the multiply/accumulate units of the
ADSP-2100 family. A 40-bit accumulator provides eight bits of
protection against overflow in successive additions to ensure that no
loss of data or range occurs; 256 overflows would have to occur before
any data is lost. Special instructions are provided for implementing
block floating-point scaling of data.

¢ Single-Cycle Fetch of Two Operands—In extended sums-of-products
calculations, two operands are needed on each cycle to feed the
calculation. All members of the ADSP-2100 family are able to sustain
two-operand data throughput, whether the data is stored on-chip or
off.

* Hardware Circular Buffers—A large class of DSP algorithms, including
digital filters, requires circular data buffers. The ADSP-2100 family
base architecture includes hardware to handle address pointer
wraparound, simplifying the implementation of circular buffers both
on- and off-chip, and reducing overhead (thereby improving
performance).

¢ Zero-Overhead Looping and Branching—DSP algorithms are repetitive
and are most logically expressed as loops. The program sequencer in
the ADSP-2100 family supports looped code with zero overhead,
combining excellent performance with the clearest program structure.
Likewise, there are no overhead penalties for conditional branches.

1.2 CORE ARCHITECTURE

This section describes the core architecture of the ADSP-2100 family, as
shown in Figure 1.1. Each component of the core architecture is described
in detail in different chapters of this manual, as shown below:

Arithmetic/logic unit (ALU) Chapter 2, Computation Units
Multiplier/accumulator (MAC) Chapter 2, Computation Units
Barrel shifter Chapter 2, Computation Units
Program sequencer - Chapter 3, Program Control
Status registers and stacks Chapter 3, Program Control
Two data address generators (DAGs) Chapter 4, Data Transfer

PMD-DMD bus exchange (PX registers) Chapter 4, Data Transfer

R

1-5

1-6

Program <]1:
_ Data _Data Sequencer

Gener: AN
l 49 14, PMA BUS

N4 14, DMABUS

24, PMDBUS

A 16 , DMDBUS
@ ,I]
N\ @ N j E
Input Regs Input Regs Input Regs
ALV MAC Shifter
Output Regs Output Regs Output Regs

< a7, <

7

Figure 1.1 Base Architecture

121 Computational Units

Every processor in the ADSP-2100 family contains three independent, full-
function computational units: an arithmetic/logic unit (ALU), a
multiplier/accumulator (MAC) and a barrel shifter. The computation
units process 16-bit data directly and provide hardware support for
multiprecision computation as well.

The ALU performs a standard set of arithmetic and logic operations in
addition to division primitives. The MAC performs single-cycle multiply,
multiply /add and multiply /subtract operations. The shifter performs
logical and arithmetic shifts, normalization, denormalization, and derive-
exponent operations. The shifter implements numeric format control
including multiword floating-point representations. The computational
units are arranged side-by-side instead of serially so that the output of any
unit may be the input of any unit on the next cycle. The internal result (R)
bus directly connects the computational units to make this possible.

All three units contain input and output registers which are accessible
from the internal data memory data (DMD) bus. Computational
operations generally take their operands from input registers and load the
result into an output register. The registers act as a stopover point for data
between memory and the computational circuitry. This feature introduces
one level of pipelining on input, and one level on output. The R bus allows
the result of a previous computation to be used directly as the input to
another computation. This avoids excessive pipeline delays when a series
of different operations are performed.

1.22 Address Generators & Program Sequencer

Two dedicated data address generators and a powerful program
sequencer ensure efficient use of the computational units. The data
address generators (DAGs) provide memory addresses when memory
data is transferred to or from the input or output registers. Each DAG
keeps track of up to four address pointers. When a pointer is used for
indirect addressing, it is post-modified by a value in a specified register.
With two independent DAGs, the processor can generate two addresses
simultaneously for dual operand fetches.

A length value may be associated with each pointer to implement
automatic modulo addressing for circular buffers. (The circular buffer
feature is also used by the serial ports for automatic data transfers. Refer
to the Serial Ports chapter for additional information.)

DAGI can supply addresses to data memory only; DAG2 can supply
addresses to either data memory or program memory. When the
appropriate mode bit is set in the mode status register (MSTAT), the
output address of DAGL is bit-reversed before being driven onto the
address bus. This feature facilitates addressing in radix-2 Fast Fourier
Transform (FFT) algorithms.

The program sequencer supplies instruction addresses to the program
memory. The sequencer is driven by the instruction register which holds
the currently executing instruction. The instruction register introduces a
single level of pipelining into the program flow. Instructions are fetched
and loaded into the instruction register during one processor cycle, and
executed during the following cycle while the next instruction is
prefetched. To minimize overhead cycles, the sequencer supports
conditional jumps, subroutine calls and returns in a single cycle. With an
internal loop counter and loop stack, the processor executes looped code
with zero overhead. No explicit jump instructions are required to loop.

e

1-8

1.23 Buses

The processors have five internal buses. The program memory address
(PMA) and data memory address (DMA) buses are used internally for the
addresses associated with program and data memory. The program
memory data (PMD) and data memory data (DMD) buses are used for the
data associated with the memory spaces. The buses are multiplexed into a
single external address bus and a single external data bus; the BMS, DMS
and PMS signals select the different address spaces. The R bus transfers

_intermediate results directly between the various computational units.

The PMA bus is 14 bits wide allowing direct access of up to 16K words of
mixed instruction code and data. The PMD bus is 24 bits wide to
accommodate the 24-bit instruction width.

The DMA bus is 14 bits wide allowing direct access of up to 16 K words of
data. The data memory data (DMD) bus is 16 bits wide. The DMD bus
provides a path for the contents of any register in the processor to be
transferred to any other register or to any data memory location in a single
cycle. The data memory address comes from two sources: an absolute
value specified in the instruction code (direct addressing) or the output of
a data address generator (indirect addressing). Only indirect addressing is
supported for data fetches from program memory.

The program memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the PMD-
DMD bus exchange unit. The PMD-DMD bus exchange unit permits data
to be passed from one bus to the other. It contains hardware to overcome
the 8-bit width discrepancy between the two buses, when necessary.

1.3 ON-CHIP PERIPHERALS

This section describes the additional functional units which are included
in various processors of the ADSP-2100 family.

1.3.1 Serial Ports

Most ADSP-21xx processors have two bidirectional, double-buffered serial
ports (SPORTSs) for serial communications. The SPORTSs are synchronous
and use framing signals to control data flow. Each SPORT can generate its
serial clock internally or use an external clock. The framing sync signals
may be generated internally or by an external device. Word lengths may
vary from three to sixteen bits. One serial port, SPORTO, has a
multichannel capability that allows the receiving or transmitting of
arbitrary data words from a 24-word or 32-word bitstream. The other

serial port, SPORT1, may optionally be configured as two additional
external interrupt pins (ﬁ?(% and and the Flag Out (FO) and Flag In
(FI) pins.

132 Timer

The programmable interval timer provides periodic interrupt generation.
An 8-bit prescaler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register reaches zero. The count register is
automatically reloaded from a 16-bit period register and the count
resumes immediately.

- 133 Host Interface Port (ADSP-2111, ADSP-2171, ADSP-21msp5x)

The host interface port (HIP) is a parallel I/O port that allows for an easy
connection to a host processor. Through the HIP, an ADSP-21xx DSP can
be used as a memory-mapped peripheral of the host. The HIP operates in
parallel with and asynchronous to the ADSP-21xx’s computational core
and internal memory. The host interface port consists of registers through
which the ADSP-21xx and the host processor pass data and status
information. The HIP can be configured for: an 8-bit data bus or 16-bit
data bus; a multiplexed address/data bus or separate address and data
buses; and separate read and write strobes or a read/ write strobe and a
data strobe.

1.3.4 DMA Ports (ADSP-2181)

The ADSP-2181 contains two DMA ports, and Internal DMA Port and a
Byte DMA Port. The IDMA port provides an efficient means of
communication between a host system and the DSP. The port is used to
access the on-chip program memory and data memory of the DSP with
only one cycle per word of overhead. The IDMA port has a 16-bit
multiplexed address and data bus and supports 24-bit program memory.
The IDMA port is completely asynchronous and can be written to while
the ADSP-2181 is operating at full speed.

The internal memory address is latched and then automatically
incremented after each IDMA transaction. An external device can
therefore access a block of sequentially addressed memory by specifying
only the starting address of the block.

The byte memory DMA controller allows loading and storing of program
instructions and data using the byte memory space. The BDMA circuit is
able to access the byte memory space while the processor is operating
normally and steals only one processor cycle per 8-, 16- or 24-bit word
transferred.

1-9

1.3.5 Analog Interface

The analog interface of the ADSP-21msp58/59 consists of input amplifiers
and a 16-bit sigma-delta analog-to-digital converter (ADC) as well as a
sigma-delta digital-to-analog converter (DAC) and a differential output
amplifier.

14 ADSP-2100 FAMILY DEVELOPMENT TOOLS

The ADSP-2100 family is supported with a complete set of software and
hardware development tools. The ADSP-2100 Family Development
System includes software utilities for program development and EZ Tools
for hardware/software debugging.

The Development Software includes:

e System Builder—The System Builder defines the architecture of your
hardware system. This includes the specification of the amount of
external memory available and any memory-mapped I/O ports.

* Assembler—The Assembler assembles the source code and data
modules as well as supporting the high-level syntax of the instruction
set. In addition to supporting a full range of system diagnostics, the
Assembler provides flexible macro processing, include files, and
modular code development.

¢ Linker—The Linker links separately assembled modules. It maps the
linked code and data output to the target system hardware, as
specified by the System Builder output.

* Simulator—The Simulator performs an interactive, instruction-level
simulation of the hardware configuration described by the System
Builder. It flags illegal operations and supports full symbolic assembly
and disassembly.

* PROM Splitter—This module reads the Linker output and generates
PROM programmer compatible files.

® C Compiler—The C Compiler reads ANSI C source and outputs ADSP-
2100 family source code ready to be assembled. It also supports inline
assembler code. '

The EZ-ICE® emulators provide hardware-based debugging of ADSP-21xx
systems. The EZ-ICEs perform stand-alone, in-circuit emulation with little
or no degradation in processor performance.

The EZ-LAB® evaluation boards are low-cost, basic hardware platforms
for running example applications.

For additional information on the development tools, refer to the
ADSP-2100 Family Development Tools Data Sheet.

1.5 ORGANIZATION OF THIS MANUAL

This manual is organized as follows.

Chapters 2, 3, and 4 describe the core architectural features shared by all
‘members of the ADSP-2100 family:

¢ Chapter 2, “Computational Units,” describes the functions and internal
organization of the arithmetic/logic unit (ALU), the multiplier/
accumulator (MAC), and the barrel shifter.

¢ Chapter 3, “Program Control,” describes the program sequencer,
interrupt controller and status and condition logic.

¢ Chapter 4, “Data Transfer,” describes the data address generators
(DAGsSs) and the PMD-DMD bus exchange unit.

Chapters 5, 6, 7, and 8 describe the additional functional units included in
different members of the ADSP-2100 family. (See Table 1.1 for a list of the
functions included in each device.)

¢ Chapter 5, “Serial Ports,” describes the serial ports, SPORT0 and
SPORT1.

¢ Chapter 6, “Timer,” explains the programmable interval timer.

¢ Chapter 7, “Host Interface Port,” describes the operation of the host
interface port, including boot loading and software reset.

¢ Chapter 8, “Analog Interface,” describes the operation and the internal
architecture of the ADSP-21msp58/59’s analog interface.

Chapters 9 and 10 describe the behavior of the ADSP-21xx processors
from the point of view of external memory and control logic:

¢ Chapter 9, “System Interface,” discusses the issue of system clocking,
and describes the processors’ control interface, the software reboot
function, and the powerdown mode.

1-12

¢ Chapter 10, “Memory Interface,” describes the data and program
memory spaces. This chapter describes both internal and external
memory, including the use of boot memory space. A special section is
devoted to the ADSP-2181, since its memory interface differs from that
of the other family processors. '

Chapter 11, “DMA Ports,” describes the operation of the ADSP-2181’s
IDMA and BDMA features.

Chapter 12, “Programming Model,” gives a functional description of the
processor resources—such as registers—as they appear in software.

Chapter 13, “Hardware Examples,” gives examples of system designs
using the ADSP-21xx processors. Each example illustrates the solution to a
different system design issue, using block diagrams, explanatory text, and
programs or timing diagrams as needed.

Chapter 14, “Software Examples,” provides illustrative code for some
important DSP and numerical algorithms.

Chapter 15, “Instruction Set Reference,” provides a detailed description of
each ADSP-21xx instruction.

The Appendices provide reference material and further details on specific
issues:

e Appendix A, “Instruction Coding,” gives the complete set of opcodes
and specifies the bit patterns for choices within each field of the
instruction word.

* Appendix B, “Division Exceptions,” describes signed and unsigned
division.

¢ Appendix C, “Numeric Formats,” describes the fixed-point numerical
formats directly supported by the ADSP-2100 family, discusses block
floating-point arithmetic, and tells how to handle the results of
multiplication for operands of various formats.

» Appendix D, “Interrupt Vector Addresses,” lists the interrupt vectors
of each family processor.

* Appendix E, “Control/Status Registers,” summarizes the processors’
control and status registers.

Computational Units

21 OVERVIEW

This chapter describes the architecture and function of the three
computational units: the arithmetic/logic unit, the multiplier/
accumulator and the barrel shifter.

Every device in the ADSP-2100 family is a 16-bit, fixed-point machine.
Most operations assume a twos-complement number representation,
while others assume unsigned numbers or simple binary strings. Special
features support multiword arithmetic and block floating-point. Details
concerning the various number formats supported by the ADSP-2100
family are given in Appendix C.

In ADSP-2100 family arithmetic, signed numbers are always in twos-

complement format. The processors do not use signed-magnitude, ones-
complement, BCD or excess-n formats.

21.1 Binary String

This is the simplest binary notation; sixteen bits are treated as a bit pattern.

Examples of computation using this format are the logical operations:
NOT, AND, OR, XOR. These ALU operations treat their operands as
binary strings with no provision for sign bit or binary point placement.

212 Unsigned

Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least
significant words of multiple precision numbers are treated as unsigned
numbers.

21.3 Signed Numbers: Twos-Complement

In discussions of ADSP-2100 family arithmetic, “signed” refers to twos-
complement. Most ADSP-2100 family operations presume or support
twos-complement arithmetic. The ADSP-2100 family does not use signed-
magnitude, ones-complement, BCD or excess-n formats.

&
"

B

2-2

2.1.4 Fractional Representation: 1.15

ADSP-2100 family arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, there is one sign bit (the MSB) and fifteen fractional bits
representing values from -1 up to one LSB less than +1.

Figure 2.1 shows the bit weighting for 1.15 numbers. Below are examples
of 1.15 numbers and their decimal equivalents.

1.15 Number Decimal Equivalent
0x0001 0.000031

Ox7FFF 0.999969

OxFFFF -0.000031

0x8000 -1.000000

_20 42-1 2—2 2—3 2-4 2—5 2-6 2—7 2-6 2—9 2—10 2—11 2—12 2—13 2—14 2—15

Figure 2.1 Bit Weighting For 1.15 Numbers

215 ALU Arithmetic

All operations on the ALU treat operands and results as simple 16-bit
binary strings, except the signed division primitive (DIVS). Various status
bits treat the results as signed: the overflow (AV) condition code, and the
negative (AN) flag.

The logic of the overflow bit (AV) is based on twos-complement
arithmetic. It is set if the MSB changes in a manner not predicted by the
signs of the operands and the nature of the operation. For example,
adding two positive numbers must generate a positive result; a change in
the sign bit signifies an overflow and sets AV. Adding a negative and a
positive may result in either a negative or positive result, but cannot
overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic.
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most
useful for the lower word portions of a multiword operation.

21.6 MAC Arithmetic

The multiplier produces results that are binary strings. The inputs are
“interpreted” according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture, or a rounding
operation). The 32-bit result from the multiplier is assumed to be signed,
in that it is sign-extended across the full 40-bit width of the MR register
set.

The ADSP-2100 family supports two modes of format adjustment: the
fractional mode for fractional operands, 1.15 format (1 signed bit, 15
fractional bits), and the integer mode for integer operands, 16.0 format.

When the processor multiplies two 1.15 operands, the result is a 2.30

(2 sign bits, 30 fractional bits) number. In the fractional mode, the MAC
automatically shifts the multiplier product (P) left one bit before
transferring the result to the multiplier result register (MR). This shift
causes the multiplier result to be in 1.31 format, which can be rounded to
1.15 format. Figure 2.7, in the MAC section of this chapter, shows this.

In the integer mode, the left shift does not occur. For example, if the
operands are in the 16.0 format, the 32-bit multiplier result would be in
32.0 format. A left shift is not needed; it would change the numerical
representation. Figure 2.8 in the MAC section of this chapter shows this.

2.1.7 Shifter Arithmetic

Many operations in the shifter are explicitly geared to signed (twos-
complement) or unsigned values: logical shifts assume unsigned-
magnitude or binary string values and arithmetic shifts assume twos-
complement.

The exponent logic assumes twos-complement numbers. The exponent
logic supports block floating-point, which is also based on twos-
complement fractions.

2-3

218 Summary

Table 2.1 summarizes some of the arithmetic characteristics of ADSP-2100
family operations. In addition to the numeric types described in this
section, the ADSP-2100 Family C Compiler supports a form of 32-bit
floating-point in which one 16-bit word is the exponent and the other
word is the mantissa. See the ADSP-2100 Family C Tools Manual.

OPERATION ARITHMETIC FORMATS

ALU Operands Result

Addition Signed or unsigned Interpret flags
Subtraction Signed or unsigned Interpret flags
Logical Operations Binary string same as operands
Division Explicitly signed/unsigned same as operands
ALU Overflow Signed same as operands
ALU Carry Bit 16-bit unsigned same as operands
ALU Saturation Signed same as operands
MAC, Fractional

Multiplication (P) 1.15 Explicitly signed/unsigned 32 bits (2.30)
Multiplication (MR) 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31
Mult / Add 1.15 Explicitly signed /unsigned 2.30 shifted to 1.31
Mult / Subtract 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31 .
MAC Saturation Signed same as operands
MAC, Integer Mode

Multiplication (P) 1.15 Explicitly signed/unsigned 32 bits (2.30)
Multiplication (MR) 16.0 Explicitly signed /unsigned 32.0 no shift

Mult / Add 16.0 Explicitly signed/unsigned 32.0 no shift

Mult / Subtract 16.0 Explicitly signed/unsigned 32.0 no shift

MAC Saturation Signed same as operands
Shifter

Logical Shift Unsigned / binary string same as operands
Arithmetic Shift Signed same as operands
Exponent Detection Signed same as operands

Table 2.1 Arithmetic Formats

2-4

2.2 ARITHMETIC/LOGIC UNIT (ALU)

The arithmetic/logic unit (ALU) provides a standard set of arithmetic and
logical functions. The arithmetic functions are add, subtract, negate,
increment, decrement and absolute value. These are supplemented by two
division primitives with which multiple cycle division can be constructed.
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

221 ALU Block Diagram Discussion
Figure 2.2, on the following page, shows a block diagram of the ALU.

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CI) which is the carry
bit from the processor arithmetic status register (ASTAT). The ALU
generates six status signals: the zero (AZ) status, the negative (AN) status,
the carry (AC) status, the overflow (AV) status, the X-input sign (AS)
status, and the quotient (AQ) status. All arithmetic status signals are
latched into the arithmetic status register (ASTAT) at the end of the cycle.
Please see the “Instruction Set Reference” chapter of this manual for
information on how each instruction affects the ALU flags.

The X input port of the ALU can accept data from two sources: the AX
register file or the result (R) bus. The R bus connects the output registers of
all the computational units, permitting them to be used as input operands
directly. The AX register file is dedicated to the X input port and consists
of two registers, AX0 and AX1. These AX registers are readable and
writable from the DMD bus. The instruction set also provides for reading
these registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The AX register file
outputs are dual-ported so that one register can provide input to the ALU
while either one simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the
AY register file and the ALU feedback (AF) register. The AY register file is
dedicated to the Y input port and consists of two registers, AYO and AY1.
These registers are readable and writable from the DMD bus and writable
from the PMD bus. The instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The AY register file
outputs are also dual-ported: one AY register can provide input to the
ALU while either one simultaneously drives the DMD bus.

2-5

2-6

The output of the ALU is loaded into either the ALU feedback (AF)
register or the ALU result (AR) register. The AF register is an ALU
internal register which allows the ALU result to be used directly as the
ALU Y input. The AR register can drive both the DMD bus and the R bus.
It is also loadable directly from the DMD bus. The instruction set also
provides for reading AR over the PMD bus, but there is no direct
connection; this operation uses the DMD-PMD bus exchange unit.

PMD BUS 24/
7 y
OMD BUS o, A 16(UPPER)
7
Yy v
MUX
AX AY
REGISTERS REGISTERS
16
MUX MUX
T * v |
X Y AF
Az —] REGISTER
AN €—] -
AC €]
AV <— ALU & Cli
AS <
AQ <¢—
R
16
,/
16 ,/
Yy
MUX
AR
REGISTER
16 .
°, R-BUS
7

Figure 2.2 ALU Block Diagram

Any of the registers associated with the ALU can be both read and written in
the same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. A register read, therefore, reads the value loaded at the
end of a previous cycle. A new value written to a register cannot be read out
until a subsequent cycle. This allows an input register to provide an operand to
the ALU at the beginning of the cycle and be updated with the next operand
from memory at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See the
discussion of “Multifunction Instructions” in Chapter 15, “Instruction Set
Reference” for an illustration of this same-cycle read and write.

The ALU contains a duplicate bank of registers, shown in Figure 2.2 behind the
primary registers. There are actually two sets of AR, AF, AX, and AY register
files. Only one bank is accessible at a time. The additional bank of registers can
be activated (such as during an interrupt service routine) for extremely fast
context switching. A new task, like an interrupt service routine, can be
executed without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by bit 0
in the processor mode status register (MSTAT). If this bit is a 0, the primary
bank is selected; if it is a 1, the secondary bank is selected.

2.2.2 Standard Functions
The standard ALU functions are listed below.

R=X+Y Add X and Y operands

R=X+Y+CI Add X and Y operands and carry-in bit
R=X-Y Subtract Y from X operand
R=X-Y+C(CI-1 Subtract Y from X operand with “borrow”
R=Y-X Subtract X from Y operand
R=Y-X+CI-1 Subtract X from Y operand with “borrow”
R=-X Negate X operand (twos-complement)

R=-Y Negate Y operand (twos-complement)
R=Y+1 Increment Y operand

R=Y-1 Decrement Y operand

R =PASSX Pass X operand to result unchanged
R=PASSY Pass Y operand to result unchanged

R=0 (PASS0) Clear result to zero

R =ABSX Absolute value of X operand

R=XANDY Logical AND of X and Y operands
R=XORY Logical OR of X and Y operands
R=XXORY Logical Exclusive OR of X and Y operands
R =NOT X Logical NOT of X operand (ones-complement)
R=NOTY Logical NOT of Y operand (ones-complement)

2-17

2-8

223 ALU Input/Output Registers

The sources of ALU input and output registers are shown below.

Source for Source for Destination for
X input port Y input port - Routput port
AX0, AX1 AY0, AY1 AR

AR AF AF

MRO, MR1, MR2

SRO, SR1

MRO, MR1 and MR2 are multiplier/accumulator result registers; SR0O and
SR1 are shifter result registers.

224 Multiprecision Capability

Multiprecision operations are supported in the ALU with the carry-in
signal and ALU carry (AC) status bit. The carry-in signal is the AC status
bit that was generated by a previous ALU operation. The “add with carry”
(+ C) operation is intended for adding the upper portions of
multiprecision numbers. The “subtract with borrow” (C -1 is effectively a
“borrow”) operation is intended for subtracting the upper portions of
multiprecision numbers.

225 ALU Saturation Mode

The AR register has a twos-complement saturation mode of operation
which automatically sets it to the maximum negative or positive value if
an ALU result overflows or underflows. This feature is enabled by setting
bit 3 of the mode status register (MSTAT). When enabled, the value loaded
into AR during an ALU operation depends on the state of the overflow
and carry status generated by the ALU on that cycle. The following table
summarizes the loading of AR when saturation mode is enabled.

Overflow (AV) Carry (AC) AR Contents
0- 0

ALU Output
0 1 ALU Output
1 0 0111111111111111 full-scale positive
1 1 1000000000000000 full-scale negative

Table 2.2 Saturation Mode

The operation of the ALU saturation mode is different from the
Multiplier/ Accumulator saturation ability, which is enabled only on an
instruction by instruction basis. For the ALU, enabling saturation means
that all subsequent operations are processed this way.

When the ALU saturation mode is used, only the AR register saturates; if
the AF register is the destination, wrap-around will occur but the flags
will reflect the saturated result.

226 ALU Overflow Latch Mode

The ALU overflow latch mode, enabled by setting bit 2 in the mode status
register (MSTAT), causes the AV bit to “stick” once it is set. In this mode,
when an ALU overflow occurs, AV will be set and remain set, even if
subsequent ALU operations do not generate overflows. In this mode, AV
can only be cleared by writing a zero to it directly from the DMD bus.

2.2.7 Division

The ALU supports division. The divide function is achieved with
additional shift circuitry not shown in Figure 2.2. Division is accomplished
with two special divide primitives. These are used to implement a non-
restoring conditional add-subtract division algorithm. The division can be
either signed or unsigned; however, the dividend and divisor must both
be of the same type. Appendix B details various exceptions to the normal
division operation as described in this section.

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher and lower precision quotients can also be calculated. The divisor
can be stored in AX0, AX1 or any of the R registers. The upper half of a
signed dividend can start in either AY1 or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in AYO0. At the end of the divide operation, the quotient will be in AY0.

The first of the two primitive instructions “divide-sign” (DIVS) is executed
at the beginning of the division when dividing signed numbers. This
operation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The AY0
register is shifted one place so that the computed sign bit is moved into
the LSB position. The computed sign bit is also loaded into the AQ bit of
the arithmetic status register. The MSB of AYO shifts into the LSB position
of AF, and the upper 15 bits of AF are loaded with the lower 15 R bits
from the ALU, which simply passes the Y input value straight through to
the R output. The net effect is to left shift the AF-AYO0 register pair and
move the quotient sign bit into the LSB position. The operation of DIVS is
illustrated in Figure 2.3 (on the next page).

2-9

2-10

15
Vi
/
LEFT SHIFT
: y { ‘ -
; L
AXO0 AX1 AY1 AF 3 AY0 [
B

| l 16 LOWER

DIVIDEND
} y | { 7
MUX MUX
UPPER
DIVIDEND
MSB
DIVISOR [N_MSB
‘ .
R-BUS X Y
ALU
R=PASSY

15LSBs
/

/
Figure 2.3 DIVS Operation

When dividing unsigned numbers, the DIVS operation is not used.
Instead, the AQ bit in the arithmetic status register (ASTAT) should be
initialized to zero by manually clearing it. The AQ bit indicates to the
following operations that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (DIVQ) instruction
which generates one bit of quotient at a time and is executed repeatedly to
compute the remaining quotient bits. For unsigned single precision
divides, the DIVQ instruction is executed 16 times to produce 16 quotient
bits. For signed single precision divides, the DIVQ instruction is executed
15 times after the sign bit is computed by the DIVS operation. DIVQ
instruction shifts the AY0 register left by one bit so that the new quotient
bit can be moved into the LSB position. The status of the AQ bit generated
from the previous operation determines the ALU operation to calculate
the partial remainder. If AQ =1, the ALU adds the divisor to the partial
remainder in AF. If AQ = 0, the ALU subtracts the divisor from the partial
remainder in AF. The ALU output R is offset loaded into AF just as with
the DIVS operation. The AQ bit is computed as the exclusive-OR of the

divisor MSB and the ALU output MSB, and the quotient bit is this value
inverted. The quotient bit is loaded into the LSB of the AY0 register which is
also shifted left by one bit. The DIVQ operation is illustrated in Figure 2.4.

15
L
4
LEFT SHIFT
. f) -
L
AX0 AX1 AF | s AYO |
B
[| LOWER
DIVIDEND
v PARTIAL
REMAINDER .
MUX

16
L 1

DIVISOR N _MSB

9
R-BUS X Y AQ

ALU

R=Y+X IF AQ=1
R=Y-X IF AQ=0

1MSB
Vi
7
15LSBs
/
4

Figure 2.4 DIVQ Operation

The format of the quotient for any numeric representation can be
determined by the format of the dividend and divisor. Let NL represent
the number of bits to the left of the binary point, and NR represent the
number of bits to the right of the binary point of the dividend; DL
represent the number of bits to the left of the binary point, and DR
represent the number of bits to the right of the binary point of the divisor;
then the quotient has NL-DL+1 bits to the left of the binary point and NR~
DR-1 bits to the right of the binary point.

2-11

2-12

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format) and therefore the dividend must be smaller than
the divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 format)
and produce an integer quotient (in 16.0 format), you must shift the
dividend one bit to the left (into 31.1 format) before dividing. Additional
discussion and code examples can be found in the handbook Digital Signal
Processing Applications Using the ADSP-2100 Family, Volume 1.

Dividend BBBBB.BBBBBBBBBBBBBBBBBBBBBBBBBBB
NL bits NR bits
Divisor | BB.BBBBBBBBBBBBEB
DL bits DR bits
Quotient BBBB.BBEBBBBBBBBB
(NL-DL+1) bits (NR-DR-1) bits

Figure 2.5 Quotient Format

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated above or when the divisor is zero or less than
the dividend in magnitude.

228 ALU Status

The ALU status bits in the ASTAT register are defined below. Complete
information about the ASTAT register and specific bit mnemonics and
positions is provided in the Program Control chapter.

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True
if ALU output equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is
negative.

AV Overflow Exclusive-OR of the carry outputs of the two most
significant adder stages. True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS
instruction.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ
instructions.

23 MULTIPLIER/ACCUMULATOR (MAC)

The multiplier/accumulator (MAC) provides high-speed multiplication,
multiplication with cumulative addition, multiplication with cumulative
subtraction, saturation and clear-to-zero functions. A feedback function allows
part of the accumulator output to be directly used as one of the multiplicands
on the next cycle.

23.1 MAC Block Diagram Discussion
Figure 2.6, on the following page, shows a block diagram of the multiplier/
accumulator. ‘

The multiplier has two 16-bit input ports X and Y, and a 32-bit product output
port P. The 32-bit product is passed to a 40-bit adder/subtracter which adds
or subtracts the new product from the content of the multiplier result (MR)
register, or passes the new product directly to MR. The MR register is 40 bits
wide. In this manual, we refer to the entire register as MR. The register
actually consists of three smaller registers: MRO and MR1 which are 16 bits
wide and MR2 which is 8 bits wide.

The adder/subtracter is greater than 32 bits to allow for intermediate overflow
in a series of multiply /accumulate operations. The multiply overflow (MV)
status bit is set when the accumulator has overflowed beyond the 32-bit
boundary, that is, when there are significant (non-sign) bits in the top nine bits
of the MR register (based on twos-complement arithmetic).

2-13

2-14

PMD BUS 2,
4 v
16 (UPPER
DMD BUS 16, A el)

2x16

REGISTERS

MUX

REGISTERS

My

; 16,
7

MUX MUX
L |
X Y
MULTIPLIER
P
40 / 32 16 Y
/
ADD/ SUBTRACT
- MV
R2 R1 RO
y Yy vV
MUX MUX MUX
8 16 16
MR2 MR1 MRO
REGISTER REGISTER REGISTER
/] /]
———Pl M
| U
X
»

Figure 2.6 MAC Block Diagram

The input/output registers of the MAC are similar to the ALU.

The X input port can accept data from either the MX register file or from
any register on the result (R) bus. The R bus connects the output registers
of all the computational units, permitting them to be used as input
operands directly. There are two registers in the MX register file, MX0 and
MX1. These registers can be read and written from the DMD bus. The MX
register file outputs are dual-ported so that one register can provide input
to the multiplier while either one simultaneously drives the DMD bus.

The Y input port can accept data from either the MY register file or the MF
register. The MY register file has two registers, MY0 and MY1; these
registers can be read and written from the DMD bus and written from the
PMD bus. The instruction set also provides for reading these registers over
the PMD bus, but there is no direct connection; this operation uses the
DMD-PMD bus exchange unit. The MY register file outputs are also dual-
ported so that one register can provide input to the multiplier while either
one simultaneously drives the DMD bus.

The output of the adder/subtracter goes to either the MF register or the
MR register. The MF register is a feedback register which allows bits 16-31
of the result to be used directly as the multiplier Y input on a subsequent
cycle. The 40-bit adder/subtracter register (MR) is divided into three
sections: MR2, MR1, and MRO. Each of these registers can be loaded
directly from the DMD bus and output to either the DMD bus or the R
bus.

Any of the registers associated with the MAC can be both read and
written in the same cycle. Registers are read at the beginning of the cycle
and written at the end of the cycle. A register read, therefore, reads the
value loaded at the end of a previous cycle. A new value written to a
register cannot be read out until a subsequent cycle. This allows an input
register to provide an operand to the MAC at the beginning of the cycle
and be updated with the next operand from memory at the end of the
same cycle. It also allows a result register to be stored in memory and
updated with a new result in the same cycle. See the discussion of
“Multifunction Instructions” in Chapter 15 “Instruction Set Reference” for
an illustration of this same-cycle read and write.

2-15

2-16

The MAC contains a duplicate bank of registers, shown in Figure 2.6
behind the primary registers. There are actually two sets of MR, MF, MX,
and MY register files. Only one bank is accessible at a time. The additional
bank of registers can be activated for extremely fast context switching. A
new task, such as an interrupt service routine, can be executed without
transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bitis a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.

232 MAC Operations

This section explains the functions of the MAC, its input formats and its
handling of overflow and saturation.

2.3.2.1 Standard Functions
The functions performed by the MAC are:

X=Y Multiply X and Y operands.

MR+X+Y Multiply X and Y operands and add result to MR register.
MR-X+Y Multiply X and Y operands and subtract result from MR register.
0 Clear result (MR) to zero.

The ADSP-2100 family provides two modes for the standard multiply /
accumulate function: fractional mode for fractional numbers (1.15), and
integer mode for integers (16.0).

In the fractional mode, the 32-bit P output is format adjusted, that is, sign-
extended and shifted one bit to the left before being added to MR. For
example, bit 31 of P lines up with bit 32 of MR (which is bit 0 of MR2) and
bit 0 of P lines up with bit 1 of MR (which is bit 1 of MR0). The LSB is zero-
filled. The fractional multiplier result format is shown in Figure 2.7.

In the integer mode, the 32-bit P register is not shifted before being added
to MR. Figure 2.8 shows the integer-mode result placement.

The mode is selected by bit 4 of the mode status register (MSTAT). If this
bit is a 1, the integer mode is selected. Otherwise, the fractional mode is
selected. In either mode, the multiplier output P is fed into a 40-bit adder/
subtracter which adds or subtracts the new product with the current
contents of the MR register to form the final 40-bit result R.

[<+— P SIGN | MULTIPLIER P OUTPUT -

31] 1] 31 a1] 1] 31] 31] 1] s0] 20] 28] 27[26[25] 24] 28] 22]21 [20 [1s] 18 17[16] 15[14 13] 12] 11] 0] e [e [z Te [s Ja [3 J2 [1 [o

7 Je]sJala]2]1 Jo [1s]afra]12]11]10]0 [e J7 Je s[4 a [2]1 Jo[1s]1s]1a[12[11]10]o Je [7 Je s[4 3 [2]1]0

[4—— MR2 - MR1 - MRO -

Figure 2.7 Fractional Multiplier Result Format

|—— P SIGN - - MULTIPLIER P OUTPUT -

31] a1] 31] s1] a1] 31 31] 31] a1] 20] 20] 28] 27] 26] 25] 24] 28] 22] 21 [20 19 [18] 17] 16] 18] 14] 18] 12[11 10] e [& [7 Je |5 [« [3 [2 1 Jo

7 J6[s Ja a2t o [1s[1a] 18] 12[11]1o]s TeT7 Je [s Ja Ja [Tt Jo [1s]1a]13]s2]11] oo Je J7 Je [s J4 [a [2]+ Jo

[+—— MR2 — MR1 B MRO -

Figure 2.8 Integer Multiplier Result Format

2-17

2-18

2.3.2.2 Input Formats

To facilitate multiprecision multiplications, the multiplier accepts X and Y
inputs represented in any combination of signed twos-complement format
and unsigned format.

X input Y input
signed X signed
unsigned X signed
signed X unsigned
unsigned X unsigned

The input formats are specified as part of the instruction. These are
dynamically selectable each time the multiplier is used.

The (signed x signed) mode is used when multiplying two signed single
precision numbers or the two upper portions of two signed multiprecision
numbers.

The (unsigned x signed) and (signed x unsigned) modes are used when
multiplying the upper portion of a signed multiprecision number with the
lower portion of another or when multiplying a signed single precision
number by an unsigned single precision number.

The (unsigned x unsigned) mode is used when multiplying unsigned
single precision numbers or the non-upper portions of two signed
multiprecision numbers.

2.3.2.3 MAC Input/Output Registers

The sources of MAC input and output are:

Source for Source for Destination for

X input port Y input port R output port

MX0, MX1 MY0, MY1 MR (MR2, MR1, MRO)
AR MF MF

MRO, MR1, MR2

SRO, SR1

2.3.24 MR Register Operation

As described, and shown on the block diagram, the MR register is divided
into three sections: MRO (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-
39). Each of these registers can be loaded from the DMD bus and output to
the R bus or the DMD bus.

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2
is output onto the DMD bus or the R bus, it is sign extended to form a 16-
bit value. MR1 also has an automatic sign-extend capability. When MR1 is
loaded from the DMD bus, every bit in MR2 will be set to the sign bit
(MSB) of MR, so that MR2 appears as an extension of MR1. To load the
MR2 register with a value other than MR1’s sign extension, you must load
MR2 after MR1 has been loaded. Loading MRO affects neither MR1 nor
MR2; no sign extension occurs in MRO loads.

2.3.2.5 MAC Overflow And Saturation

The adder/subtracter generates an overflow status signal (MV) which is
loaded into the processor arithmetic status (ASTAT) every time a MAC
operation is executed. The MV bit is set when the accumulator result,
interpreted as a twos-complement number, crosses the 32-bit (MR1/MR2)
boundary. That is, MV is set if the upper nine bits of MR are not all ones or
all zeros.

The MR register has a saturation capability which sets MR to the
maximum positive or negative value if an overflow or underflow has
occurred. The saturation operation depends on the overflow status bit
(MV) in the processor arithmetic status (ASTAT) and the MSB of the MR2
register. The following table summarizes the MR saturation operation.

MV MSBof MR2 MR contents after saturation

0 Oor1l no change
1 0 00000000 0111111111111111 1111111111111111 full-scale positive
1 1 11111111 1000000000000000 0000000000000000 full-scale negative

Table 2.3 Effect Of MAC Saturation Instruction

Saturation in the MAC is an instruction rather than a mode as in the ALU.
The saturation instruction is intended to be used at the completion of a
string of multiplication/accumulations so that intermediate overflows do
not cause the accumulator to saturate.

Overflowing beyond the MSB of MR2 should never be allowed. The true
sign bit of the result is then irretrievably lost and saturation may not
produce a correct value. It takes more than 255 overflows (MV type) to
reach this state, however.

2-19

2.3.2.6 Rounding Mode

The accumulator has the capability for rounding the 40-bit result R at the
boundary between bit 15 and bit 16. Rounding can be specified as part of
the instruction code. The rounded output is directed to either MR or MF.
When rounding is invoked with MF as the output register, register
contents in MF represent the rounded 16-bit result. Similarly, when MR is
selected as the output, MR1 contains the rounded 16-bit result; the
rounding effect in MR1 affects MR2 as well and MR2 and MR1 represent
the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a net positive bias since the midway value
(when MR0=0x8000) is always rounded upward. The accumulator
eliminates this bias by forcing bit 16 in the result output to zero when it
detects this midway point. This has the effect of rounding odd MR1 values
upward and even MR1 values downward, yielding a zero large-sample
bias assuming uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples
of rounding. The first example is the typical rounding operation.

Example 1 MR2 MR1 MRO

Unrounded value: xxxxxxxx xxxxxxxx00100101 IxXXXXXXXXXXXXXXX

Bit15=1
Add 1 to bit 15 and carry 1
Rounded value: XRXXXXXXK Xxxxxxxx00100110 OXXKXXXXXXXKXXXXK

The compensation to avoid net bias becomes visible when the lower 15
bits are all zero and bit 15 is one, i.e. the midpoint value.

2-20

Example 2 MR2 MR1 MRO
Unrounded value: xxxxxxxx xxxxxxxx01100110 1000000000000000

Bit 15 = 1 and bits 0-14 =0
Add 1 to bit 15 and carry 1

XXXXXXXX Xxxxxxxxx01100111 0000000000000000
Since bit 16 = 1, force it to 0
Rounded value: XXXKXXXX XxXxxxxxx01100110 0000000000000000

In this last case, bit 16 is forced to zero. This algorithm is employed on every
rounding operation, but is only evident when the bit patterns shown in the
lower 16 bits of the last example are present.

2327 Biased Rounding (ADSP-217x, ADSP-218x, ADSP-21msp5x)

A mode is available on the ADSP-217x, ADSP-218x, and ADSP-21msp58/
59 processors to allow biased rounding in addition to the normal unbiased
rounding. This mode is selected by the BIASRND bit (bit 12 of the SPORTO0
Autobuffer Control register). When the BIASRND bit is set to 0, the normal
unbiased rounding operations occur. When the BIASRND bit is set to 1,
biased rounding occurs instead of the normal unbiased rounding. When
operating in biased rounding mode all rounding operations with MRO set
to 0x8000 will round up, rather than only rounding odd MR1 values up.
For example:

MR value before RND biased RND result unbiased RND result
00-0000-8000 00-0001-8000 00-0000-8000
00-0001-8000 00-0002-8000 00-0002-8000
00-0000-8001 00-0001-8001 00-0001-8001
00-0001-8001 00-0002-8001 00-0002-8001
00-0000-7FFF 00-0000-7FFF 00-0000-7FFF
00-0001-7FFF 00-0001-7FFF 00-0001-7FFF

'This mode only has an effect when the MRO register contains 0x8000; all
other rounding operations work normally. This mode allows more efficient
implementation of bit-specified algorithms that use biased rounding, for
example the GSM speech compression routines. Unbiased rounding is
preferred for most algorithms.

2-21

2-22

24 BARREL SHIFTER

The shifter provides a complete set of shifting functions for 16-bit inputs,
yielding a 32-bit output. These include arithmetic shift, logical shift and
normalization. The shifter also performs derivation of exponent and
derivation of common exponent for an entire block of numbers. These
basic functions can be combined to efficiently implement any degree of
numerical format control, including full floating-point representation.

2.4.1 Shifter Block Diagram Discussion

Figure 2.9 shows a block diagram of the shifter. The shifter can be divided
into the following components: the shifter array, the OR/PASS logic, the
exponent detector, and the exponent compare logic.

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field, from off-scale right to off-scale
left, in a single cycle. This gives 49 possible placements within the 32-bit
field. The placement of the 16 input bits is determined by a control code
(O) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of
registers. The shifter input (SI) register provides input to the shifter array
and the exponent detector. The SI register is 16 bits wide and is readable
and writable from the DMD bus. The shifter array and the exponent
detector also take as inputs AR, SR or MR via the R bus. The shifter result
(SR) register is 32 bits wide and is divided into two 16-bit sections, SRO
and SR1. The SRO and SR1 registers can be loaded from the DMD bus and
output to either the DMD bus or the R bus. The SR register is also fed back
to the OR/PASS logic to allow double-precision shift operations.

The SE register (“shifter exponent”) is 8 bits wide and holds the exponent
during the normalize and denormalize operations. The SE register is
loadable and readable from the lower 8 bits of the DMD bus. It is a twos-
complement, 8.0 value.

The SB register (“shifter block”) is important in block floating-point
operations where it holds the block exponent value, that is, the value by
which the block values must be shifted to normalize the largest value. SB
is 5 bits wide and holds the most recent block exponent value. The SB
register is loadable and readable from the lower 5 bits of the DMD bus. It
is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.

DMD BUS 16,

2

UX

EXPONENT
DETECTOR

| Q I HI/LO R SHIFTER
L4
¥ | ;

| MUX | | MUX |
LYY S

SE
REGISTER [
: NEGATE

COMPARE

From B —

SR1 2 SRO
INSTRUCTION REGISTER

16 MUX |

R-BUS i
16
7

Figure 2.9 Shifter Block Diagram

p 40

NN

Any of the SI, SE or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads, therefore, read values loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This allows an input register to provide an operand to
the shifter at the beginning of the cycle and be updated with the next
operand at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See
the discussion of “Multifunction Instructions” in Chapter 15, “Instruction
Set Reference” for an illustration of this same-cycle read and write.

2-23

2-24

The shifter contains a duplicate bank of registers, shown in Figure 2.9
behind the primary registers. There are actually two sets of SE, SB, SI, SR1,
and SRO registers. Only one bank is accessible at a time. The additional
bank of registers can be activated for extremely fast context switching. A
new task, such as an interrupt service routine, can then be executed
without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.

The shifting of the input is determined by a control code (C) and a HI/LO
reference signal. The control code is an 8-bit signed value which indicates
the direction and number of places the input is to be shifted. Positive
codes indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content of
the shifter exponent (SE) register, the negated content of the SE register or
an immediate value from the instruction.

The HI/LO signal determines the reference point for the shifting. In the HI
state, all shifts are referenced to SR1 (the upper half of the output field),
and in the LO state, all shifts are referenced to SRO (the lower half). The
HI/LO reference feature is useful when shifting 32-bit values since it
allows both halves of the number to be shifted with the same control code.
HI/LO reference signal is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT) or a zero.

Table 2.4 shows the shifter array output as a function of the control code
and HI/LO signal.

The OR/PASS logic allows the shifted sections of a multiprecision number
to be combined into a single quantity. In some shifter instructions, the
shifted output may be logically ORed with the contents of the SR register;
the shifter array is bitwise ORed with the current contents of the SR
register before being loaded there. When the [SR OR] option is not used in
the instruction, the shifter array output is passed through and loaded into
the shifter result (SR) register unmodified.

Control Code Shifter Array Output ABCDEFGHIJKLMNPR

represents the 16-bit

HI reference LO Reference input pattern
+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 R0000000 00000000 00000000 -00000000 X stands for the
+14 +30 PRO00000 00000000 00000000 00000000 extension bit
+13 +29 NPRO0000 00000000 00000000 00000000
+12 +28 MNPROOOO 00000000 00000000 00000000
+11 - +27 LMNPRO0O 00000000 00000000 00000000
+10 +26 KLMNPROO 00000000 00000000 00000000
+9 +25 JKLMNPRO 00000000 00000000 00000000
+8 +24 IJKLMNPR 00000000 00000000 00000000
+7 +23 HIJKLMNP R0000000 00000000 00000000
+6 +22 GHIJKLMN PR000000 00000000 00000000
+5 +21 FGHIJKLM NPR0O0000O 00000000 00000000
+4 +20 EFGHIJKL MNPR0O00O 00000000 00000000
+3 +19 DEFGHIJK LMNPRO0O 00000000 00000000
+2 +18 CDEFGHIJ KLMNPROO 00000000 00000000
+1 +17 BCDEFGHI JKLMNPRC 00000000 00000000
0 +16 ABCDEFGH IJKLMNPR 00000000 00000000
-1 +15 XABCDEFG HIJKLMNP R0000000 00000000
-2 +14 XXABCDEF GHIJKLMN PR000000 00000000
-3 +13 XXXABCDE FGHIJKLM NPR00000O 00000000
-4 +12 XXXXABCD EFGHIJKL MNPR000O 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPRO0O 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPROO 00000000
-7 +9 XXXXXXXA BCDEFGHI JKLMNPRO 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +17 XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPR000O
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPR00O
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPROO
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPRO
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXKXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXKXX XXKXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Table 2.4 Shifter Array Characteristic

2-25

2-26

The exponent detector derives an exponent for the shifter input value. The
exponent detector operates in one of three ways which determine how the
input value is interpreted. In the HI state, the input is interpreted as a
single precision number or the upper half of a double precision number.
The exponent detector determines the number of leading sign bits and
produces a code which indicates how many places the input must be up-
shifted to eliminate all but one of the sign bits. The code is negative so that
it can become the effective exponent for the mantissa formed by removing
the redundant sign bits.

In the HI-extend state (HIX), the input is interpreted as the result of an
add or subtract performed in the ALU which may have overflowed.
Therefore the exponent detector takes the arithmetic overflow (AV) status
into consideration. If AV is set, then a +1 exponent is output to indicate an
extra bit is needed in the normalized mantissa (the ALU Carry bit); if AV
is not set, then HI-extend functions exactly like the HI state. When
performing a derive exponent function in HI or HI-extend modes, the
exponent detector also outputs a shifter sign (SS) bit which is loaded into
the arithmetic status register (ASTAT). The sign bit is the same as the MSB
of the shifter input except when AV is set; when AV is set in Hl-extend
state, the MSB is inverted to restore the sign bit of the overflowed value.

In the LO state, the input is interpreted as the lower half of a double
precision number. In the LO state, the exponent detector interprets the SS
bit in the arithmetic status register (ASTAT) as the sign bit of the number.
The SE register is loaded with the output of the exponent detector only if
SE contains —15. This occurs only when the upper half-which must be
processed first-contained all sign bits. The exponent detector output is
also offset by —16 to account for the fact that the input is actually the lower
half of a 32-bit value. Table 2.5 gives the exponent detector characteristics
for all three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in
conjunction with the exponent detector derives a block exponent. The
comparator compares the exponent value derived by the exponent
detector with the value stored in the shifter block exponent (SB) register
and updates the SB register only when the derived exponent value is
larger than the value in SB register. See the examples shown in the.
following sections.

S = Sign bit
N = Non-sign bit
D = Don’t care bit

HI Mode

Shifter Array Input

SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSSS
SSSSSSSs
SSSSSSSsS
SSSS8SSSs
SSSSSSSs
SSSSSSSs
SS8SSSSSS
SSSSSSSS
SS8SSSSS

(72
(7]

nNnnnnnninninnhninnnnnonwnn

DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
NDDDDDDD
SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSSS

LO Mode

Output

-1
-2
-3
~4
-5
-6
=7
-8
-9
-10
-11
-12
-13
-14
-15

Shifter Array input

NDDDDDDD
SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSss
SSSSSSsS
S5SSSSsS
SSSSSSSS
SS8SSSSss
SSSSSSSS
S8SS8SSSS
SSSSSSSS
SSSSSSss

DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
NDDDDDDD
SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSsS

Output

-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
=27
-28
-29
-30
-31

Table 2.5 Exponent Detector Characteristics

>
<

COO0OOOOCOOOOOOOOOR

HIX Mode
Shifter Array Input

DDDDDDDD
SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSSS
SSSSSSSS
SSSSSSssS
SSSSSSSS
SSSSSSSS
SSSSSSSS
SSSSSSSS
SSSSSSSS
SSSSSSSS

DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
NDDDDDDD
SNDDDDDD
SSNDDDDD
SSSNDDDD
SSSSNDDD
SSSSSNDD
SSSSSSND
SSSSSSSN
SSSSSSss

Output

+1
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15

2-28

2.4.2 Shifter Operations

The shifter performs the following functions (instruction mnemonics
shown in parentheses):

Arithmetic Shift (ASHIFT)
Logical Shift (LSHIFT)
Normalize (NORM)

Derive Exponent (EXP)

Block Exponent Adjust (EXPAD])

These basic shifter instructions can be used in a variety of ways,
depending on the underlying arithmetic requirements. The following
sections present single and multiple precision examples for these
functions:

Derivation of a Block Exponent
Immediate Shifts
Denormalization
Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with [SR OR] and HI/LO modes to facilitate
multiprecision operations. [SR OR] logically ORs the shift result with the
current contents of SR. This option is used to join two 16-bit quantities into
a 32-bit value in SR. When [SR OR] is not used, the shift value is passed
through to SR directly. The HI and LO modifiers reference the shift to the
upper or lower half of the 32-bit SR register. These shift functions take
inputs from either the SI register or any other result register and load the
32-bit shifted result into the SR register.

2.4.2.1 Shifter Input/Output Registers

The sources of shifter input and output are:

Source for Destination for
Shifter input Shifter output
SI SR (SRO, SR1)
AR

MRO, MR1, MR2

SRO, SR1

2.4.2.2 Derive Block Exponent

This function detects the exponent of the number largest in magnitude in
an array of numbers. The EXPAD]J instruction performs this function. The
sequence of steps for a typical example is shown below.

A. Load SB with -16

The SB register is used to contain the exponent for the entire block. The
possible values at the conclusion of a series of EXPAD] operations range
from -15 to 0. The exponent compare logic updates the SB register if the
new value is greater than the current value. Loading the register with -16
initializes it to a value certain to be less than any actual exponents
detected.

B. Process the first array element:

Array(1)= 11110101 10110001

Exponent= -3

-3>SB (-16)

SB gets -3

C. Process next array element:

Array(2)= 00000001 01110110

Exponent= -6

-6<-3

SB remains -3

D. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. EXPAD)] is purely an inspection
operation. The value in SB could be transferred to SE and used to

normalize the block on the next pass through the shifter. Or it could be
simply associated with that data for subsequent interpretation.

2-29

2-30

2.4.2.3 Immediate Shifts

An immediate shift simply shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Inmediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation. (See the chapter
“Instruction Set Overview” for an example of this instruction.) The data
value controlling the shift is an 8-bit signed number. The SE register is not
used or changed by an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SR1). This is the (HI) version of the shift:

SI=0xB6A3;
SR=LSHIFT SI BY -5 (HI);

Input: 10110110 10100011

Shift value:

5

SR: 00000101 10110101 00011000 000000

Here is the same input value shifted in the other direction, referenced to
the lower half (LO) of SR:

STI=0xB6A3;
SR=LSHIFT SI BY 5 (LO);

Input 10110110 10100011
Shift value: +5

SR: 00000000 00010110 11010100 01100000

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the following
shows a logical shift, relative to the upper half of SR (HI):

SI=0xB6A3;
SR=LSHIFT SI BY -5 (HI);

Input 10110110 10100011
Shift value: -5

SR: 00000101 10110101 00011000 00000000

This example shows an arithmetic shift of the same input and shift code:

SI=0xB6A3;
SR=ASHIFT SI BY -5 (HI);

Input: 10110110 10100011

Shift value:

5

SR: 11111101 10110101 00011000 00000000

24.24 Denormalize

Denormalizing refers to shifting a number according to a predefined
exponent. The operation is effectively a floating-point to fixed-point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next the shift itself is
performed, taking its shift value from the SE register, not from an
immediate data value.

231

Two examples of denormalizing a double-precision number are given
below. The first shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Since computations
may produce output in either order, the second example shows the same
operation in the other order, i.e. lower half first.

Always select the arithmetic shift for the higher half (HI) of the twos-
complement input (or logical for unsigned). Likewise, the first half
processed does not use the [SR OR] option.

Modifier = HI, No [SR OR], Shift operation = Arithmetic, SE = -3

First Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower
half of the input. Likewise, the second half processed must use the

[SR OR] option to avoid overwriting the previous half of the output value.
Modifier = LO, [SR OR], Shift operation = Logical, SE = -3

Second Input: 01110110 01011101 (lower half of desired result)

SR: 11110110 11010100 01101110 11001011

Here is the same input processed in the reverse order. The higher half is
always arithmetically shifted and the lower half is logically shifted. The
first input is passed straight through to SR, but the second half is ORed to
create a double-precision value in SR.

Modifier = LO, No [SR OR], Shift operation = Logical, SE = -3

First Input: 01110110 01011101 (lower half of desired result)

SR: 00000000 00000000 00001110 11001011

Modifier = HI, [SR OR], Shift operation = Arithmetic, SE = -3
Second Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01101110 11001011

2-32

2425 Normalize

Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a twos-complement number within a
field so that the rightmost sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. The
operation can be thought of as a fixed-point to floating-point conversion,
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads it into the SE
register. This instruction (EXP) recognizes a (HI) and (LO) modifier. The
second stage uses the NORM instruction. NORM recognizes (HI) and (LO)
and also has the [SR OR] option. NORM uses the negated value of the SE
register as its shift control code. The negated value is used so that the shift
is made in the correct direction.

Here is a normalization example for a sihgle precision input:

SE=EXP AR (HI);

Detects Exponent With Modifier = HI

Input: 11110110 11010100

SE set to: -3

Normalize, with modifier = HI Shift driven by value in SE

Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

For a single precision input, the normalize operation can use either the
(HI) or (LO) modifier, depending on whether you want the result in SR1
or SRO, respectively.

Double precision values follow the same general scheme. The first stage
detects the exponent and the second stage normalizes the two halves of

the input. For double precision, however, there are two operations in each
stage.

2-33

2-34

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The
second exponent derivation, operating on the lower half of the number
will not alter the SE register unless SE = -15. This happens only when the
first half contained all sign bits. In this case, the second operation will load
a value into SE. (See Table 2.5) This value is used to control both parts of
the normalization that follows.
For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is
normalized without the [SR OR] and the second half is normalized with
[SR OR] to create one double-precision value in SR. The (HI) and (LO)
modifiers identify which half is being processed.
Here is a complete example of a typical double precision normalization.
1. Detect Exponent, Modifier = HI

First Input: 11110110 11010100 (Must be upper half)

SE set to: -3
2. Detect Exponent, Modifier = LO

Second Input: 01101110 11001011

SE unchanged, still -3
3. Normalize, Modifier=HI, No [SR OR], SE = -3

First Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000
4. Normalize , Modifier=LO, [SR OR], SE = -3

Second Input: 01101110 11001011

SR: 10110110 10100011 01110110 01011000

If the upper half of the input contains all sign bits, the SE register value is
determined by the second derive exponent operation as shown below.

1.

Detect Exponent, Modifier = HI

First Input: 11111111 11111111 (Must be upper half)
SE set to: -15

Detect Exponent, Modifier = LO

Second Input: 11110110 11010100

SE now set to: -19

Normalize, Modifier=HI, No [SR OR], SE = —19 (negated)

First Input: 11111111 11111111

SR: 00000000 00000000 00000000 00000000

All values of SE less than -15 (resulting in a shift of +16 or more) upshift
the input completely off scale.

4. Normalize, Modifier=LO, [SR OR], SE =-19 (negated)

Second Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

2-35

P
e,

2-36

There is one additional normalization situation, requiring the HI-extended
(HIX) state. This is specifically when normalizing ALU results (AR) that
may have overflowed. This operation reads the arithmetic status word
(ASTAT) overflow bit (AV) and the carry bit (AC) in conjunction with the
value in AR. AV is set (1) if an overflow has occurred. AC contains the true
sign of the twos-complement value.

For example, given these conditions:
AR = 11111010 00110010

AV 1, indicating overflow
0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX
SE getssetto +1
2. Normalize, Modifier = HI, SE =1

AR=11111010 00110010
SR= 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.

The HIX operation executes properly whether or not there has actually been
an overflow. Consider this example:

AR = 11100011 01011011
AV = 0, indicating no overflow
AC = 0, not meaningful if AV =0

1. Detect Exponent, Modifier = HIX
SEsetto -2
2. Normalize, Modifier = HI, SE = -2

AR=11100011 01011011
SR= 10001101 01101000 00000000 00000000

The AC bit is not used as the sign bit. A brief examination of Table 2.4
shows that the HIX mode is identical to the HI mode when AV is not set.
When the NORM, LO operation is done, the extension bit is zero; when the
NORM, HI operation is done, the extension bit is AC.

Program Control

3.1 OVERVIEW

This chapter describes the program sequencer of the ADSP-2100 family
processors. The program sequencer circuitry controls the flow of program
execution. It contains an interrupt controller and status and condition
logic.

3.2 PROGRAM SEQUENCER

The program sequencer generates a stream of instruction addresses and
provides flexible control of program flow. It allows sequential instruction
execution, zero-overhead looping, sophisticated interrupt servicing, and
single-cycle branching with jumps and calls (both conditional and
unconditional).

Figure 3.1, on the following page, shows a block diagram of the program
sequencer. Each functional block of the sequencer is discussed is detail in
this chapter.

This chapter discusses both program sequencer logic and the following
instructions used to control program flow:

DO UNTIL

JUMP

CALL

RTS (Return From Subroutine)
RTI (Return From Interrupt)
IDLE

For a complete description of each instruction, refer to Chapter 15,
Instruction Set Reference.

DMD BUS

Figure 3.1 Program Sequencer Block Diagram

3-2

-
from INSTRUCTION REGISTER
UNT CONDITION CODE
STACK
[ADDRESS OF JUMP/CALL
/
FUNCTION FIELD
ADDRESS OF LAST
INSTRUCTION IN LOOP
TERMINATION
CONDITION
CNTR
(Counter)
CE our
STATUS Loop
STACK STACK
[]
, ‘
Mux
CONDITION LOOP
Logic —] COMPARATOR
STATUS
ARITHMETIC REGISTERS
STATUS Y
(from ALU)
PC cou»ﬁ“sg
o INTERRUPT STACK
INTERRUPTS CONTROLLER
INCREMENT
l l NEXT
|
NEXT ADDRESS MUX SOURCE
-
PMA BUS

3.21 Next Address Select Logic

While the processor is executing an instruction, the program sequencer
pre-fetches the next instruction. The sequencer’s next address select logic
generates a program memory address (for the pre-fetch) from one of four
sources:

* PC incrementer

® PC stack

¢ instruction register
* interrupt controller

The next address circuit (shown in Figure 3.1) selects which of these
sources is used, based on inputs from the instruction register, condition
logic, loop comparator and interrupt controller. The next instruction
address is then output on the PMA bus for the pre-fetch.

The PC incrementer is selected as the source of the next address if
program flow is sequential. This is also the case when a conditional jump
or return is not taken and when a DO UNTIL loop terminates. The output
of the PC incrementer is driven onto the PMA bus and is loaded back into
the program counter to begin the next cycle.

The PC stack is used as the source for the next address when a return from
subroutine or return from interrupt is executed. The top stack value is also
used as the next address when returning to the top of a DO UNTIL loop.

The instruction register provides the next address when a direct jump is
taken. The 14-bit jump address is embedded in the instruction word.

The interrupt controller provides the next program memory address when
servicing an interrupt. Upon recognizing a valid interrupt, the processor
jumps to the interrupt vector location corresponding to the active
interrupt request.

Another possible source for the next address is one of the I4-17 index
registers of DAG2 (Data Address Generator 2), used when a register
indirect jump is executed as in the following instruction:

JUMP (I4);

In this case the program counter (PC) is loaded from DAG2 via the PMA
bus. (Data address generators are described in Chapter 4.)

3-3

3.22 Program Counter & PC Stack

The program counter (PC) is a 14-bit register which always contains the
address of the currently executing instruction. The output of the PC is fed
into a 14-bit incrementer which adds 1 to the current PC value. The output
of the incrementer can be selected by the next address multiplexer to fetch
the next sequential instruction.

Associated with the PC is a 14-bit by 16-word stack that is pushed with the
output of the incrementer when a CALL instruction is executed. The PC
stack is also pushed when a DO UNTIL is executed and when an interrupt
is processed. For interrupts, however, the incrementer is disabled so that
the current PC value (instead of PC+1) is pushed. This allows the current
instruction, which is aborted, to be refetched upon returning from the

" interrupt service routine. The pushing and popping of the PC stack occurs

automatically in all of these cases. The stack can also be manually popped
with the POP instruction.

A special instruction is provided for reading (and popping) or writing
(and pushing) the top value of the PC stack. This instruction uses the
pseudo register TOPPCSTACK, described at the end of this chapter.

The output of the next address multiplexer is fed back to the PC, which
normally reloads it at the end of each processor cycle. In the case of a
register indirect jump, however, DAG2 drives the PMA bus with the next
instruction address and the PC is loaded directly from the PMA bus.

3.23 Loop Counter & Stack

The counter and count stack provide the program sequencer with a
powerful looping mechanism. The counter is a 14-bit register with
automatic post-decrement capability that controls the flow of program
loops which execute a predetermined number of times. Count values are
14-bit unsigned-magnitude values.

Before entering the loop, the counter (CNTR register) is loaded with the
desired loop count from the lower 14 bits of the DMD bus. The actual loop
count N is loaded, as opposed to N-1. This is due to the operation of the
counter expired (CE) status logic, which tests CE (and automatically post-
decrements the counter) at the end of a DO UNTIL loop that uses CE as its
termination condition. CE is tested at the beginning of each processor
cycle and the counter is decremented at the end; therefore CE is asserted
when the counter reaches 1 so that the loop executes N times.

The counter may also be tested and automatically decremented by a
conditional jump instruction that tests CE. The counter is not decremented
when CE is checked as part of a conditional return or conditional
arithmetic instruction.

The counter may be read directly over the DMD bus at any time without
affecting its contents. When reading the counter, the upper two bits of the
DMD bus are padded with zeroes.

The count stack is a 14-bit by 4-word stack which allows nesting of loops
by storing temporarily dormant loop counts. When a new value is loaded
into the counter from the DMD bus, the current counter value is
automatically pushed onto the count stack. The count stack is
automatically popped whenever the CE status is tested and is true,
thereby resuming execution of the outer loop (if any). The count stack may
also be popped manually if an early exit from a loop is taken.

There are two exceptions to the automatic pushing of the count stack. A
counter load from the DMD bus does not cause a count stack push if there
is no valid value in the counter, because a stack location would be wasted
on the invalid counter value. There is no valid value in the counter after a
system reset and also after the CE condition is tested when the count stack
is empty. The count stack empty status bit in the SSTAT register indicates

~ when the stack is empty.

The second exception is provided explicitly by the special purpose syntax
OWRCNTR (overwrite counter). Writing a value to OWRCNTR
overwrites the counter with the new value, and nothing is pushed onto
the count stack. OWRCNTR cannot be read (i.e. used as a source register),
and must not be written in the last instruction of a DO UNTIL loop.

324 Loop Comparator & Stack
The DO UNTIL instruction initjates a zero-overhead loop using the loop
comparator and loop stack of the program sequencer.

On every processor cycle, the loop comparator compares the next address
generated by the program sequencer to the address of the last instruction
of the loop (which is embedded in the DO UNTIL instruction). The
address of the first instruction in the loop is maintained on the top of the
PC stack. When the last instruction in the loop is executed the processor
conditionally jumps to the beginning of the loop, eliminating the
branching overhead otherwise incurred in loop execution.

3-5

3-6

The loop stack stores the last instruction addresses and termination
conditions of temporarily dormant loops. Up to four levels can be stored.
The only extra cycle associated with the nesting of DO UNTIL loops is the
execution of the DO UNTIL instruction itself, since the pushing and
popping of all stacks associated with the looping hardware is automatic.

When using the counter expired (CE) status as the termination condition
for the loop, an additional cycle is required for the initial loading of the
counter. Table 3.1 shows the termination conditions that can be used with
DO UNTIL.

Syntax Status Condition True If:

EQ Equal Zero AZ=1

NE Not Equal Zero AZ=0

LT Less Than Zero - AN XOR. AV =1

GE Greater Than or Equal Zero AN XOR.AV=0

LE Less Than or Equal Zero (AN XOR. AV) .OR. AZ =1
GT Greater Than Zero (AN XOR. AV) .OR. AZ=0
AC ALU Carry AC=1

NOT AC Not ALU Carry AC=0

AV ALU Overflow AV =1

NOT AV Not ALU Overflow AV=0

MV MAC Overflow - Mv=1

NOT MV Not MAC Overflow MV =0

NEG X Input Sign Negative AS=1

POS X Input Sign Positive AS=0

CE Counter Expired

FOREVER Always
Table 3.1 DO UNTIL Termination Condition Logic

When a DO UNTIL instruction is executed, the 14-bit address of the last
instruction and a 4-bit termination condition (both contained in the DO
UNTIL instruction) are pushed onto the 18-bit by 4-word loop stack.
Simultaneously, the PC incrementer output is pushed onto the PC stack.
Since the DO UNTIL instruction is located just before the first instruction
of the loop, the PC stack then contains the first loop instruction address,
and the loop stack contains the last loop instruction address and
termination condition. The non-empty state of the loop stack activates the
loop comparator which compares the address on top of the loop stack
with the address of the next instruction. When these two addresses are
equal, the loop comparator notifies the next address source selector that
the last instruction in the loop will be executed on the next cycle.

At this point, there are three possible results depending on the type of
instruction at the end of the loop. Case 1 illustrates the most typical
situation. Cases 2 and 3 are also allowed but involve greater program
complexity for proper execution.

Case 1

If the last instruction in the loop is not a jump, call, return, or idle, the
next address circuit will select the next address based on the
termination condition stored on the top of the loop stack. If the
condition is false, the top address on the PC stack is selected, causing
a fetch of the first instruction of the loop. If the termination condition
is true, the PC incrementer is chosen, causing execution to fall out of
the loop. The loop stack, PC stack, and counter stack (if being used)
are then popped.

(Note that conditional arithmetic instructions execute based on the
condition explicitly stated in the instruction, whereas the loop
sequencing is controlled by the (implicit) termination condition
contained on top of the stack.)

Case 2

If the last instruction in the loop is a jump, call, or return, the
explicitly stated instruction takes precedence over the implicit
sequencing of the loop. If the condition in the instruction is false,
normal loop sequencing takes place as described for Case 1.

If the condition in the instruction is true, however, program control
transfers to the jump/call/return address. Any actions that would
normally occur upon an end-of-loop detection do not take place:
fetching the first instruction of the loop, falling out of the loop and
popping the loop stack, PC stack, and counter stack, or decrementing
the counter.

(Note that for a return instruction, control is passed back to the top of
the loop since the PC stack contains the beginning address of the
loop.)

Case 3

If the last instruction in the loop is an IDLE, program flow is
controlled by the IDLE instruction rather than the loop. When the
IDLE instruction is executed, the processor enters a low-power wait-
for-interrupt state. When the processor is interrupted, loop execution
terminates and program execution continues with the first instruction
following the loop.

3-8

Note: Caution is required when ending a loop with a JUMP, CALL,
RETURN, or IDLE instruction, or when making a premature exit from a
loop. Since none of the loop sequencing mechanisms are active while the
jump/call/return is being performed, the loop, PC, and counter stacks are
left with the looping information (since they are not popped). In this
situation, a manual pop of each of the relevant stacks is required to restore
the correct state of the processor. A subroutine call poses this problem
only when it is the last instruction in a loop; in such cases, the return
causes program flow to transfer to the instruction just after the loop. Calls
within a loop that are not the last instruction operate as in Case 1.

The only restriction concerning DO UNTIL loops is that nested loops
cannot terminate on the same instruction. Since the loop comparator can
only check for one loop termination at a time, falling out of an inner loop
by incrementing the PC would go beyond the end address of the outer
loop if they terminated on the same instruction.

33 PROGRAM CONTROL INSTRUCTIONS

The following sections describe the primary instructions used to control
program flow.

3.3.1 JUMP Instruction

The 14-bit jump address is embedded in the JUMP instruction word.
When a JUMP instruction is decoded, the jump address is input directly to
the next address mux of the program sequencer. The address is driven
onto the PMA bus and fed back to the PC for the next cycle. The following
instruction, for example,

JUMP fir_start;
jumps to the address of the label fir_start

3.3.1.1 Register Indirect JUMPs

In this case of register indirect jumps, the jump address is supplied by one
of the I registers of DAG2 (I4, 15, I6, or I7). (Data address generators are
described in Chapter 4.) The address is driven onto the PMA bus by
DAG?2, and is loaded into the PC on the next cycle. For example, the
instruction

JUMP (I4);

will jump to the address contained in the 14 register.

3.3.2 CALL Instruction

The CALL instruction executes in a similar fashion as the JUMP
instruction. The address of the subroutine is embedded in the CALL
instruction word and, once extracted from the instruction register, is fed
back the PC for the next cycle. In addition, the current value of the
program counter is incremented and pushed onto the PC stack. Upon
return from the subroutine, the PC stack is popped into the program
counter and execution resumes with the instruction following the CALL.

3.3.3 DO UNTIL Loops

The most common form of a DO UNTIL loop uses the counter register
(CNTR) as a loop iteration counter. When the counter is used to control
loop iteration, CE (counter expired) must be used as the DO UNTIL
termination condition. A simple example of this type of loop is as follows:

L0=10; {setup circular buffer length register}

I0=~data_buffer; {load pointer with first address of}
{circular buffer}

M0=1; {setup modify register for pointer increment}

CNTR=10; {load counter with circular buffer length}

DO loop UNTIL CE; {repeat loop until counter expired}
DM(IO,M0)=0; {initialize/clear circular buffer}
...any instruction...

loop: ...any instruction...

When the
CNTR=10;

instruction is executed, prior to entering the loop, the counter is loaded via
the DMD bus. Any previously existing count would be simultaneously

pushed onto the count stack; this push operation is omitted if the counter °

is empty. The
DO loop UNTIL CE;
instruction itself only sets up the conditions for looping; no other

operation occurs while the instruction is executed. This occurs only once,
at the beginning of the first time through the loop.

3-9

3-10

Execution of the DO UNTIL instruction pushes the address of the
instruction immediately following the DO UNTIL onto the PC stack (by
pushing the incremented PC). On the same cycle, the loop stack is pushed
with the address of the end-of-loop instruction and the termination
condition.

As execution continues within the loop, the loop comparator checks each
instruction’s address against the address of the loop’s last instruction.
Until that address is reached, normal execution continues.

Each time the end of the loop is reached, the loop comparator determines
that the currently executing instruction is the last in the loop. This affects
the next address select logic of the program sequencer: instead of using
the incremented PC for the next address, the loop termination condition is
evaluated. If the termination condition is false, execution continues with
the first instruction of the loop (the top of the PC stack is taken as the next
address). Note that the PC and loop stacks are not popped, only read.

On the final pass through the loop, the termination condition is true. The
PC stack is popped and execution continues with the instruction
immediately following the last instruction of the loop. The loop stack and
count stack are also popped on this cycle.

3.3.4 IDLE Instruction

The IDLE instruction causes the processor to wait indefinitely in a low
power state until an interrupt occurs. When an unmasked interrupt
occurs, it is serviced; execution then continues with the instruction
following the IDLE instruction.

3.3.4.1 Slow IDLE

An enhanced version of the IDLE intruction allows the processor’s
internal clock signal to be slowed, further reducing power consumption.
The reduced clock frequency, a programmable fraction of the normal clock
rate, is specified by a selectable divisor glven in the IDLE instruction. The:
format of the instruction is

IDLE (n);

where n = 16, 32, 64, or 128. This instruction keeps the processor fully
functional, but operating at the slower clock rate. While it is in this state,
the processor’s other internal clock signals, such as SCLK, CLKOUT, and
timer clock, are reduced by the same ratio. The default form of the
instruction, when no clock divisor is given, is the standard IDLE
instruction.

When the IDLE (n) instruction is used, it effectively slows down the
processor’s internal clock and thus its response time to incoming
interrupts. The one-cycle interrupt response time of the standard idle state
is increased by n, the clock divisor. When an enabled interrupt is received,
the processor will remain in the idle state for up to a maximum of n
processor cycles before resuming normal operation (n = 16, 32, 64, or 128).

When the IDLE (n) instruction is used in systems that have an externally
generated serial clock (SCLK), the serial clock rate may be faster than the
processor’s reduced internal clock rate. Under these conditions, interrupts
must not be generated at a faster rate than can be serviced, due to the
additional time the processor takes to come out of the idle state (a
maximum of # processor cycles).

3.4 INTERRUPTS

The program sequencer’s interrupt controller responds to interrupts by
shifting control to the instruction located at the appropriate interrupt
vector address. Tables 3.2-3.7 show the interrupts and associated vector
addresses for each processor of the ADSP-2100 family. (Note that SPORT1
can be configured as either a serial port or as a collection of control pins
including two external interrupt inputs, IRQ0 and IRQT. See Chapter 5,
“Serial Ports,” for more information about the configuration of SPORT1.)

The interrupt vector locations are spaced four program memory locations
apart—this allows short interrupt service routines to be coded in place,
with no jump to the service routine required. For interrupt service
routines with more than four instructions, however, program control must
be transferred to the service routine by means of a jump instruction placed
at the interrupt vector location.

After an interrupt has been serviced, an RTI (Return From Interrupt)
instruction returns control to the main program by popping the top value
on the PC stack into the PC; the status stack is also popped to restore the
previous processor state.

Interrupts can also be forced under software control; see the discussion of
the IFC register below.

3-11

Because of the efficient stack and program sequencer, there is no latency
(beyond synchronization delay) when processing unmasked interrupts,
even when interrupting DO UNTIL loops. Nesting of interrupts allows
higher-priority interrupts to interrupt any lower-priority interrupt service
routines that may currently be executing, also with no additional latency.

The ADSP-2100 family processors include a secondary register set which
can be used to provide a fresh set of ALU, MAC, and Shifter registers
during interrupt servicing. This feature allows single-cycle context
switching. Use of the secondary registers is described in the “Mode Status
Register (MSTAT)” section of this chapter.

Interrupt Source Interrupt Vector Address

3-12

RESET startup 0x0000

IRQ2 0x0004 (highest priority)
SPORTO Transmit 0x0008

SPORTO Receive 0x000C

SPORT1 Transmit or IRQ1 0x0010

SPORT1 Receive or IRQO 0x0014

Timer 0x0018 (lowest priority)

Table 3.2 ADSP-2101/2115 Interrupts & Interrupt Vector Addresses

Interrupt Source

Interrupt Vector Address

RESET startup 0x0000

IRQ2 0x0004 (highest priority)
SPORT1 Transmit or IRQ1 0x0010

SPORT1 Receive or IRQO 0x0014

Timer 0x0018 (lowest priority)

Table 3.3 ADSP-2105 Interrupts & Interrupt Vector Addresses

Interrupt Source

Interrupt Vector Address

RESET startup 0x0000

IRQ2 0x0004 (highest priority)
HIP Write (from Host) 0x0008

HIP Read (to Host) 0x000C

SPORTO Transmit 0x0010

SPORTO0 Receive 0x0014

SPORT1 Transmit or IRQ1 0x0018

SPORT1 Receive or IRQO 0x001C

Timer 0x0020 (lowest priority)

Table 3.4 ADSP-2111 Interrupts & Interrupt Vector Addresses

Interrupt Source Interrupt Vector Address
RESET startup (or powerup w/PUCR=1) 0x0000 (highest priority)

Powerdown (non-maskable) 0x002C
IRQ2 0x0004
HIP Write (from Host) 0x0008
HIP Read (to Host) 0x000C
SPORTO Transmit 0x0010
SPORTO Receive 0x0014
Software Interrupt 1 0x0018
Software Interrupt 2 0x001C
SPORT1 Transmit or IRQ1 0x0020
SPORT1 Receive or IRQO 0x0024
Timer 0x0028 (lowest priority)

Table 3.5 ADSP-2171 Interrupts & Interrupt Vector Addresses

Interrupt Source Interrupt Vector Address
RESET startup (or powerup w/PUCR=1) 0x0000 (highest priority)
Powerdown (non-maskable) 0x002C
IRQ2 0x0004
IRQL1 (level-sensitive) 0x0008
IRQLO (level-sensitive) 0x000C
SPORTO Transmit 0x0010
SPORTO Receive 0x0014
IRQE (edge-sensitive) 0x0018
Byte DMA Interrupt 0x001C
SPORT1 Transmit or IRQ1 0x0020
SPORT1 Receive or IRQO 0x0024
Timer 0x0028 (lowest priority)

Table 3.6 ADSP-2181 Interrupts & Interrupt Vector Addresses

Interrupt Source Interrupt Vector Address
RESET startup (or powerup w/PUCR=1) 0x0000 (highest priority)
Powerdown (non-maskable) 0x002C

IRQ2 0x0004

HIP Write (from Host) 0x0008

HIP Read (to Host) 0x000C

SPORTO Transmit 0x0010

SPORTO Receive 0x0014

Analog (DAC) Transmit 0x0018

Analog (ADC) Receive 0x001C

SPORT1 Transmit or IRQ1 0x0020

SPORT1 Receive or IRQO 0x0024

Timer 0x0028 (lowest priority)

Table 3.7 ADSP-21msp58/59 Interrupts & Interrupt Vector Addresses

3-13

3-14

3.4.1 Interrupt Servicing Sequence

When an interrupt request occurs, it is latched while the processor finishes
executing the current instruction. The interrupt request is then compared
with the interrupt mask register, IMASK, by the interrupt controller.

If the interrupt is not masked, the program sequencer pushes the current
value of the program counter (which contains the address of the next
instruction) onto the PC stack—this allows execution to continue, after the
interrupt is serviced, with the next instruction of the main program. The
program sequencer also pushes the current values of the ASTAT, MSTAT,
and IMASK registers onto the status stack. ASTAT, MSTAT and IMASK
are stored in this order, with the MSB of ASTAT first, and so on. When
IMASK is pushed, it is automatically reloaded with a new value that
determines whether or not interrupt nesting is allowed (based on the
value of the interrupt nesting enable bit in ICNTL).

The processor then executes a NOP while simultaneously fetching the
instruction located at the interrupt vector address. Upon return from the
interrupt service routine, the PC and status stacks are popped and
execution resumes with the next instruction of the main program.

34.2 Configuring Interrupts

The following registers are used to configure interrupts:

¢ JCNTL—Determines whether interrupts can be nested and configures
the external interrupts IRQ2, IRQT, IRQO as edge-sensitive or level-
sensitive

e IMASK—Enables or disables (i.e. masks) each individual interrupt (both
external and internal).

¢ JFC—Forces an interrupt or clears a pending edge-sensitive interrupt.

The IRQZ, IRQT, IRQO interrupts may be either edge-sensitive or level-
sensitive, as selected in the ICNTL register. The ADSP-2181 has three
additional interrupt pins: IRQE, IRQLT, and IRQL2. The IRQE input is
edge-sensitive, while the IRQLT and IRQL2 inputs are level-sensitive.

For edge-sensitive IRQx interrupts, an interrupt request is latched
internally whenever a falling edge (high-to-low transition) occurs at the
input pin. The latch remains set until the interrupt is serviced; it is then
automatically cleared. A pending edge-sensitive interrupt can also be
cleared in software by setting the corresponding clear bit in the IFC
register.

Edge-sensitive interrupt inputs generally require less external hardware
than level-sensitive inputs, and allow signals such as sampling-rate clocks
to be used as interrupts.

A level-sensitive interrupt must remain asserted until the interrupt is
serviced. The interrupting device must then deassert the interrupt request
so that the interrupt is not serviced again. Level-sensitive inputs, however,
allow many interrupt sources to use the same input by combining them
logically to produce a single interrupt request. Level-sensitive interrupts
are not latched.

Your program can also determine whether or not interrupts can be nested.
In non-nesting mode, all interrupt requests are automatically masked out
when an interrupt service routine is entered. In nesting mode, the
processor allows higher-priority interrupts to be recognized and serviced.

There are two levels of masking for the Host Interface Port (HIP)
interrupts of the ADSP-2111, ADSP-2171, and ADSP-21msp58/59. The
memory-mapped HMASK register configures masking out the generation
of individual read or write interrupts for each HIP data register. The
IMAGSK register can be set to mask or enable the servicing of all HIP read
interrupts or all HIP write interrupts. Both IMASK and HMASK must be
set for HDR interrupts. See Chapter 7, “Host Interface Port,” for details.

3.4.2.1 Interrupt Control Register (ICNTL)

ICNTL is a 5-bit register that configures the external interrupt requests
(TRQx) of each processor. All bits in ICNTL are undefined after a
processor reset. The bit definitions for each processor’s ICNTL register are
given in Appendix E, “Control/Status Registers.”

ICNTL contains an IRQx sensitivity bit for each external interrupt. The
sensitivity bits determine whether a given interrupt input is edge- or level-
sensitive (0 = level-sensitive, 1 = edge-sensitive). There are no sensitivity
bits for internally generated interrupts.

The interrupt nesting enable bit (bit 4) in ICNTL determines whether
nesting of interrupt service routines is allowed.

When the value of ICNTL is changed, there is a one cycle latency before
the change in interrupt configuration.

3-15

St

3-16

3.4.2.2 Interrupt Mask Register (IMASK)

Each bit of the IMASK register enables or disables the servicing of an
individual interrupt. Specific bit definitions for each processor’s IMASK
register are given in Appendix E, “Control/Status Registers.” The mask
bits are positive sense: 0=masked, 1=enabled. IMASK is set to zero upon a
processor reset.

On the ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors, all
interrupts are automatically disabled for one instruction cycle following

the execution of an instruction that modifies IMASK. This does not affect
serial port autobuffering or DMA transfers.

If an edge-sensitive interrupt request signal occurs when the interrupt is
masked, the request is latched but not serviced; the interrupt can then be
recognized in software and serviced later.

The contents of IMASK are automatically pushed onto the status stack
when entering an interrupt service routine and popped back when
returning from the routine. The configuration of IMASK upon entering the
interrupt service routine is determined by the interrupt nesting enable bit
(bit 4) of ICNTL; it may be altered, though, as part of the interrupt service
routine itself.

When nesting is disabled, all interrupt levels are masked automatically
(IMASK set to zero) when an interrupt service routine is entered.

When nesting is enabled, IMASK is set so that only equal and lower
priority interrupts are masked; higher priority interrupts remain
configured as they were prior to the interrupt. This is shown graphically,
for the ADSP-2101, in Table 3.8.

The interrupt nesting enable bit (in ICNTL) determines the state of IMASK
upon entering the interrupt, as shown in Table 3.8.

ICNTL Interrupt Nesting Enable bit = 0 (nesting disabled)

Interrupt IMASK contents before IMASK contents entering
level serviced (pushed on stack) interrupt service routine
0 (low) ijklmn 000000

1 ijklmn 000000

2 ijklmn 000000

3 ijklmn 000000

4 ijklmn 000000

5 (high) ijklmn 000000

ICNTL Interrupt Nesting Enable bit =1 (nesting enabled)

Interrupt IMASK contents before IMASK contents entering
level serviced (pushed on stack) interrupt service routine
0 (Iow) ijklmn ijk1m0

1 ijklmn i§k100

2 ijklmn i3jk000

3 ijklmn ij0000

4 ijklmn 100000

5 (high) ijklmn 000000

(“jjklmn” represents any pattern of ones and zeroes)

Table 3.8 IMASK Entering Interrupt Service Routines (ADSP-2101 example)

3.4.2.3 Global Enable/Disable for Interrupts

Global interrupt enable and disable instructions are available on the
ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors:

ENA INTS;
DIS INTS;

Interrupts are enabled by default after reset. The DIS INTS instruction
causes all interrupts (including powerdown) to be masked out regardless
of the contents of IMASK. The ENA INTS instruction allows all
unmasked interrupts to be serviced again.

Disabling interrupts does not affect serial port autobuffering.

3-17

3-18

3.4.24 Interrupt Force & Clear Register (IFC)

IFC is a write-only register that allows the forcing and clearing of edge-
sensitive interrupts in software. An interrupt is forced or cleared under
program control by setting the force or clear bit corresponding to the
desired interrupt. After the force or clear bit is set, there is one cycle of
latency before the interrupt is actually forced or cleared (except for the
timer interrupt on the ADSP-2101/2105/2111/2115 processors).

Edge-sensitive interrupts can be forced by setting the appropriate force bit
in IFC. This causes the interrupt to be serviced once, unless masked. An
external interrupt must be edge-sensitive (as determined by ICNTL) to be
forced. The timer, SPORT, and analog ADC/DAC interrupts also behave
like edge-sensitive interrupts and can be masked, cleared and forced.

Pending edge-sensitive interrupts can be cleared by setting the
appropriate clear bit in IFC. Edge-triggered interrupts are cleared
automatically when the corresponding interrupt service routine is called.

Specific bit definitions for each processor’s IFC register are given in
Appendix E, “Control/Status Registers.” The IFC registers of the ADSP-
2111, ADSP-2171, and ADSP-21msp58 processors do not include force/
clear bits for Host Interface Port interrupts; HIP interrupts cannot be
forced or cleared in software.

3.43 Interrupt Latency

For the timer, IRQx, SPORT, HIP, and analog interface interrupts, the
latency from when an interrupt occurs to when the first instruction of the
service routine is executed is at least three full cycles. This is shown in
Figure 3.2. Two cycles are required to synchronize the interrupt internally,
assuming that setup and hold times are met (for the IRQx input pins).

Since interrupts are only serviced on instruction boundaries, the
instruction(s) executed during these two cycles must be fully completed,
including any extra cycles inserted due to Bus Request/Bus Grant or
memory wait states, before execution continues.

The third cycle of latency is needed to fetch the first instruction stored at
the interrupt vector location. During this cycle, the processor executes a
NOP instead of the instruction that would normally have been executed.
On the next cycle, execution continues at the first instruction of the
interrupt service routine. The address of the aborted instruction is pushed
onto the PC stack; it will be fetched when the interrupt service routine is
completed.

CLKOUT _-|
Interrupt \-/
Instruction

. N 1st instr of
Executing n-2 X n-1 X n X op Xserv routine

Addres_s for n-1 n n+1 interrupt i+1
Instruction Fetch vector i

Figure 3.2 Interrupt Latency (Timer, IRQx, SPORT, HIP, & Analog Interrupts)

(Note that this latency for the timer interrupt only applies for the ADSP-2171,
ADSP-2181, and ADSP-21msp58/59 processors. See the next section for a
description of timer interrupt latency on the ADSP-2101, ADSP-2105,
ADSP-2115, ADSP-2111.)

For a pending interrupt that is masked, the latency from execution of the
instruction that unmasks the interrupt (in IMASK) to the first instruction of
the service routine is one cycle. This one-cycle latency is similar to that shown
in Figure 3.3 for the timer interrupt of the ADSP-2101/2105/2111/2115, with
the “n” instruction executing being the instruction that writes to IMASK (to
unmask the interrupt).

3.4.3.1 Timer Interrupt Latency on ADSP-2101, ADSP-2105, ADSP-2115, ADSP-2111

For the timer interrupt on these processors, the latency from when the
interrupt occurs to when the first instruction of the service routine is executed
is only one cycle. This is shown in Figure 3.3. The single cycle of latency is
needed to fetch the instruction stored at the interrupt vector location.

CLKIN —l
Timer

Value X tcount=1 X tcount=0 X X X
Instruction i
Executing X X n X NOP X;esrf,'?os:;.ﬁ; X
Addres_s for n+1 interrupt i+t
Instruction Fetch vector i

Figure 3.3 Timer Interrupt Latency for ADSP-2101, ADSP-2105, ADSP-2115, ADSP-2111 3 — 19

3-20

3.5 STATUS REGISTERS & STATUS STACK

Processor status and mode bits are maintained in internal registers which
can be independently read and written over the DMD bus. These registers
are:

ASTAT Arithmetic status register

SSTAT Stack status register(read-only)
MSTAT Mode status register

ICNTL Interrupt control register

IMASK Interrupt mask register

IFC Interrupt force/ clear register(write-only)

The interrupt-configuring status registers are described in the previous
section. ASTAT, SSTAT, and MSTAT are discussed in the following
sections.

The current ASTAT, MSTAT, and IMASK values are pushed onto the
status stack when the processor responds to an interrupt; they are popped
upon return from the interrupt service routine (with the RTI instruction).
The depth of the stack varies from processor to processor. In each case,
sufficient stack depth is provided to accommodate nesting of all
interrupts.

3.5.1 Arithmetic Status Register (ASTAT)

ASTAT is eight bits wide and holds the status information generated by
the computational blocks of the processor. The individual bits of ASTAT
are defined as shown in Figure 3.4. The bits which express a particular
condition (AZ, AN, AV, AC, MV) are all positive sense (1=true, O=false).

7 6 5 4 3 2 1 0

ojofojojo0o|joO0|O0]|O

SS MV AQ AS AC AV AN Az

ALU Result Zero
ALU Result Negative
ALU Overflow

ALU Carry

ALU X Input Sign
ALU Quotient

MAC Overflow
Shifter Input Sign

Figure 3.4 ASTAT Register

Each of the bits is automatically updated when a new status is generated
by an arithmetic instruction. Each bit is affected only by a subset of
arithmetic operations, as defined by the following table:

Status Bit Updated by

AZ,AN, AV,AC Any ALU operation except DIVS, DIVQ

AS ALU absolute value operation (ABS)

AQ ALU divide operations (DIVS, DIVQ)

MV Any MAC operation except saturate MR (SAT MR)
SS Shifter EXP operation

Arithmetic status is latched into ASTAT at the end of the cycle in which it
was generated, and cannot be used until the next cycle.

Loading any ALU, MAC, or Shifter input or output registers directly from
the DMD bus does not affect any of the arithmetic status bits. Executing
the ALU instruction PASS sets the AZ and AN bits for a given X or Y
operand and clears AC.

3.5.2 Stack Status Register (SSTAT)

The SSTAT register is eight bits wide and holds information about the four
processor stacks. The individual bits of SSTAT are defined as shown in
Figure 3.5. All of the bits are positive sense (1=true, 0=false).

7 6 5 4 3 2 1 0

o|j1]J]o0j1(0O0|1]0]1

PC Stack Empty

PC Stack Overflow
Count Stack Empty
Count Stack Overflow
Status Stack Empty
Status Stack Overflow
Loop Stack Empty
Loop Stack Overflow

Figure 3.5 SSTAT Register (Read-Only)

3-21

The empty status bits indicate that the number of pop operations for the
stack is greater than or equal to the number of push operations that have
occurred since the last processor reset. The overflow status bits indicate
that the number of push operations for the stack has exceeded the number
of pop operations, by an amount that is greater than the total depth of the
stack. When this occurs, the values most recently pushed will be missing
from the stack—older stack values are considered more important than
new.

Since a stack overflow represents a permanent loss of information, the
stack overflow status bits “stick” once they are set, and subsequent pop
operations have no effect on them. In this situation, then, it is possible to
have both the stack empty and stack overflow bits set for a given stack.

Assume, for example, that the four-location count stack is overflowed by
five successive pushes. Five successive pops will restore the stack empty
condition, but will not clear the overflow condition. The processor must be
reset to clear the stack overflow status.

353 Mode Status Register (MSTAT)
The MSTAT register determines the operating mode of the processor. The
individual bits of MSTAT are defined as shown in Figure 3.6.

6 5§ 4 3 2 1 0

0j0j0]|JOfjO]O}O

Data Register Bank Select

0 = primary, 1 = secondary

Bit Reverse Mode Enable (DAG1)
ALU Overflow Latch Mode Enable
AR Saturation Mode Enable

MAC Result Placement

0 = fractional, 1 = integer

Timer Enable

Go Mode Enable

Figure 3.6 MSTAT Register

3-22

MSTAT can be modified by writing a new value to it with a MOVE
instruction. Unlike the other status registers, MSTAT can also be altered
with the Mode Control instruction (ENA, DIS). The Mode Control
instruction provides a high-level, self-documenting method of configuring
the processors’ operating modes. Refer to the description of the Mode
Control instruction in Chapter 15, “Instruction Set Reference,” for further
details.

To enable the bit reverse mode, for example, the following instruction
could be used:

ENA BIT_REV;

The bit-reverse mode, when enabled, bitwise reverses all addresses
generated by data address generator 1 (DAG1). This is useful for
reordering the input or output data of an FFT algorithm.

The ADSP-2100 family processors include a secondary register set which
can be used to provide a fresh set of ALU, MAC, and Shitter registers at
any time, for example during execution of a subroutine. The data register
bank select bit of MSTAT determines which set of data registers is active
(O=primary, 1=secondary). The secondary register set duplicates all of the
input and result registers of the computation units, ALU, MAC, and
Shifter:

AX0 MXO0 SI
AX1 MX1 SE
AY0 MYO SB
AY1l MYl SR1
AF MF SRO
AR MRO

MR1

MR2

The following mode control instruction, for example, switches from the
processor’s primary register set to its secondary register set:

ENA SEC_REG;
while the following instruction switches back to the primary register set:

DIS SEC_REG;

3-23

3-24

The ALU overflow latch mode causes the AV status bit to “stick” once it is
set. In this mode, AV will be set by an overflow and will remain set even if
subsequent ALU operations do not generate overflows. AV can then be
cleared only by writing a zero into it.

AR saturation mode, when enabled, causes AR to be saturated to the
maximum positive (0x7FFF) or negative (0x8000) values whenever an
ALU overflow occurs.

The MAC result placement mode determines whether the multiplier
operates in integer or fractional format. This mode is discussed in Chapter
2, “Computational Units.”

Setting the timer enable bit causes the timer to begin decrementing.
Clearing this bit halts the timer.

Enabling GO mode allows the processor to continue executing instructions
from internal program memory during a bus grant. The processor will
halt, waiting for the buses to be released, only when an access of external
memory is required. When GO mode is disabled, the processor always
halts during bus grant.

3.6 CONDITIONAL INSTRUCTIONS

The condition logic circuit of the program sequencer determines whether a
conditional instruction is executed, for example a jump, call, or arithmetic
operation. It also controls implicit loop sequencing operations based upon
the loop continuation condition on top of the loop stack. The condition
logic takes raw status information from ASTAT and the down counter and
derives a set of sixteen composite status cond1t1ons

The status conditions and corresponding assembly language syntax are
listed in Table 3.9. These status conditions are used with the IF condition
clause available on some instructions. In addition, the status of the FI pin
(Flag In) can also be used as a condition for JUMP and CALL instructions.

Syntax " Status Condition True If:

EQ Equal Zero AZ=1

NE Not Equal Zero AZ=0

LT Less Than Zero AN XOR. AV =1

GE Greater Than or Equal Zero AN .XOR. AV =0

LE Less Than or Equal Zero (AN .XOR. AV) .OR. AZ=1
GT Greater Than Zero (AN .XOR. AV) .OR. AZ=0
AC ALU Carry AC=1

NOT AC Not ALU Carry AC=0

AV ALU Overflow AV =1

NOT AV Not ALU Overflow AV=0

MV MAC Overflow MV =1

NOT MV Not MAC Overflow MV=0

NEG X Input Sign Negative AS=1

POS X Input Sign Positive AS=0

NOT CE Not Counter Expired — '
FLAG_IN* FI pin ' Last sample of FI pin =1
NOT FLAG_IN* Not FI pin Last sample of FI pin =0

* Only available on JUMP and CALL instructions.
Table 3.9 IF Condition Logic

3.7 TOPPCSTACK

A special version of the Register-to-Register Move instruction, Type 17, is
provided for reading (and popping) or writing (and pushing) the top
value of the PC stack. The normal POP PC instruction does not save the
value popped from the stack, so to save this value into a register you must
use the following special instruction:

reg = TOPPCSTACK; {pop PC stack into reg}
{“toppcstack” may also be lowercase}

The PC stack is also popped by this instruction, after a one-cycle delay.
A NOP should usually be placed after the special instruction, to allow the
pop to occur properly:

reg = TOPPCSTACK;
NOP; {allow pop to occur correctly}

3-25

3-26

There is no standard PUSH PC stack instruction. To push a specific value
onto the PC stack, therefore, use the following special instruction:

TOPPCSTACK=reg; {push reg contents onto PC stack}

The stack is pushed immediately, in the same cycle.

Examples:

AX0 = TOPPCSTACK; {pop PC stack into AXO0}

NOP;

TOPPCSTACK=1I7; {push contents of I7 onto PC stack}

Only the following registers may be used in the special TOPPCSTACK
instructions:

ALU, MAC,

& Shifter DAG
Registers Registers
AX0 I0 14
AX1 I1 5
MXO0 2 I6
MX1 I3 17
AYO MO M4
AY1 Ml M5
MYO M2 Meé
MY1 M3 M7
AR LO L4
MRO L1 L5
MR1 L2 L6
MR L3 L7
SI

SE

SRO

SR1

The Type 17 Register Move instruction is described in Chapter 15,
Instruction Set Reference. Note that TOPPCSTACK may not be used as a
register in any other instruction type!

3.7.1 TOPPCSTACK Restrictions
There are several restrictions on the use of the special TOPPCSTACK
instructions, as described below.

1.) The pop and read TOPPCSTACK instruction may not be placed
directly before an RTI instruction (return from interrupt). A NOP
must be inserted in between:

reg = TOPPCSTACK;
NOP; {allow pop to occur correctly}
RTI; {another pop happens automatically}

2.) The pop and read TOPPCSTACK instruction may not be the last or
next-to-last instruction in a Do Until loop. Neither instruction 1 nor
instruction 2 may be the pop/read TOPPCSTACK instruction in the
following code:

DO loop UNTIL CE;
AX0=DM(I5,M5) ;

instruction 2;
loop: instruction 1;

3.) There must be an equal number of pushes and pops within any Do
Until loop, including any normal POP PC instructions as well as the
special TOPPCSTACK pop/read and push/write instructions.

4.,) Several restrictions exist in relation to the RTS (return from
subroutine), RTI (return from interrupt routine), and POP PC
instructions. If instruction 3 in the following sequence is an RTS, RTI,
or POP PC,

instruction 1;
instruction 2;
instruction 3; {if this is an RTS, RTI, or POP PC ..

3-27

Data Transfer

4.1 OVERVIEW

This chapter describes the processor units that control the movement of
data to and from the processor, and from one data bus to the other within
the processor. These are the data address generators (DAGs) and the unit
for exchanging data between the program memory data bus and the data
memory data bus—the PMD-DMD bus exchange unit.

4.2 DATA ADDRESS GENERATORS (DAGS)

Every device in the ADSP-2100 family contains two independent data
address generators so that both program and data memories can be
accessed simultaneously. The DAGs provide indirect addressing
capabilities. Both perform automatic address modification. For circular
buffers, the DAGs can perform modulo address modification. The two
DAGs differ: DAGI1 generates only data memory addresses, but provides
an optional bit-reversal capability, DAG2 can generate both data memory
and program memory addresses, but has no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs, bear in mind that the ADSP-2100 Family Development Software
(assembler and linker) provides a direct method for declaring data buffers
as circular or linear and for managing the placement of the buffer in
memory. Only the initializing of DAG registers must be explicitly
programmed: see “Indirect Addressing” and “Modulo Addressing
(Circular Buffers)” below.

421 DAG Registers

Figure 4.1, on the following page, shows a block diagram of a single data
address generator. There are three register files: the modify (M) register
file, the index (I) register file, and the length (L) register file. Each of the
register files contains four 14-bit registers which can be read from and
written to via the DMD bus.

e,
£ o

.ﬁ;@

8

DMD BUS
FROM
INSTRUCTION MUX
2 14 14 14 14
/, /, 4 /, FROM
INSTRUCTION
y y 2
L L L 1 M
REGISTERS MobDuLUS REGISTERS REGISTERS [*
prdin LOGIC 4x14 ax1a
I 1‘ A I :
“y ADD
|
y
REVBéLSE DAG1 ONLY
ADDRESS

4-2

Figure 4.1 Data Address Generator Block Diagram

The I registers (I0-13 in DAGI1, I4-17 in DAG2) contain the actual addresses
used to access memory. When data is accessed in indirect mode, the
address stored in the selected I register becomes the memory address.
With DAGI, the output address can be bit-reversed by setting the
appropriate mode bit in the mode status register (MSTAT) as discussed
below or by using the ENA BIT_REYV instruction. Bit-reversal facilitates
FFT addressing.

The data address generators employ a post-modify scheme; after an
indirect data access, the specified M register (M0-M3 in DAG1, M4-M7 in
DAG?2) is added to the specified I register to generate the updated I value.
The choice of the I and M registers are independent within each DAG. In
other words, any register in the 10-3 set may be modified by any register in
the M0-M3 set in any combination, but not by those in DAG2 (M4-M?7).
The modification values stored in M registers are signed numbers so that
the next address can be either higher or lower.

The address generators support both linear addressing and circular
addressing. The value of the L register corresponding to an I register (for
example, LO would correspond to 10) determines which addressing scheme is used
for that I register. For circular buffer addressing, the L register is initialized
with length of the buffer. For linear addressing, the modulus logic is
disabled by setting the corresponding L register to zero.

Each time an I register is selected, the corresponding L register provides
the modulus logic with the length information. If the sum of the M register
and the I register crosses the buffer boundary, the modified I register
value is calculated by the modulus logic using the L register value.

All data address generator registers (I, M, and L registers) are loadable
and readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are sign-
extended.

42.2 Indirect Addressing

The ADSP-2100 family processors allow two addressing modes for data
memory fetches: direct and register indirect. Indirect addressing is
accomplished by loading an address into an I (index) register and
specifying one of the available M (modify) registers.

The L registers are provided to facilitate wraparound addressing of
circular data buffers. A circular buffer is only implemented when an L
register is set to a non-zero value. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be set
to zero.

Do not assume that the L registers are automatically initialized or may be
ignored; the I, M, and L registers contain random values following processor
reset. Your program must initialize the L registers corresponding to any I
registers it uses.

4.2.2.1 |Initialize L Registers To 0 For Non-Circular Addressing

Setting an L register to a non-zero value activates the processor’s circular
addressing modulus logic. For linear indirect addressing you must set the
appropriate L register to zero to disable the modulus logic.

4-3

4-4

Here is a simple example of linear indirect addressing:

I3=0x3800;
M2=0;

L3=0;
AX(0=DM(I3,M2);

Here is an example which uses a memory variable to store an address
pointer:

.VAR/DM/RAM addr_ptr; {variable holds address to be accessed}

I3=DM(addr_ptr); {I3 loaded using direct addressing}
L3=0; {disable circular addressing}

M1=0; {no post-modify of I3}

AX0=DM(I3,M1); {AX0 loaded using indirect addressing}

423 Modulo Addressing (Circular Buffers)

The modulus logic implements automatic modulo addressing for accessing
circular data buffers. To calculate the next address, the modulus logic uses
the following information:

The current location, found in the I register (unsigned).
The modify value, found in the M register (signed).
The buffer length, found in the L register (unsigned).
The buffer base address. ~

From these inputs, the next address is calculated according to the formula:

Next Address = (I + M — B) Modulo (L) + B

where:
I = current address
M = modify value (signed)
B = base address
L = buffer length
M+I = modified address

The inputs are subject to the condition:
IMI <L

This condition insures that the next address cannot wrap around the buffer

- more than once in one operation.

424 Calculating The Base Address

The base address of a circular buffer of length L is 2" or a multiple of 27,
where n satisfies the condition:

271 LL2n

In other words, the base address is L “rounded” upwards to the closest
power of 2 (or its multiple). This rule implies that a certain number of low-
order bits of the base address must be zeroes.

In practice, you do not need to calculate n yourself; the linker
automatically places circular buffers at a proper address.

4.24.1 Circular Buffer Base Address Example 1

For example, let us assume that the buffer length is eight. The length of the
buffer must be less than or equal to some value 2%; 1 therefore, must be
three or greater. The left side of the inequality rule specifies that the buffer
length must be greater than the value 2*7; n therefore must be three or less.
The only value of n that satisfies both inequalities is three. Valid base

addresses are multiples of 2%, so in this example valid base addresses are
multiples of eight: 0x0008, 0x0010, 0x0018, and so on.

4.2.4.2 Circular Buffer Base Address Example 2

As a second example, assume a buffer length of seven. The inequality
again yields the same value for n, namely, three. With a buffer length of
seven, therefore, the valid base addresses are multiples of eight: 0x0008,
0x0010, 0x0018, and so on. '

4.2.4.3 Circular Buffer Operation Example 1
Suppose that I0 =5, M0 =1, L0 = 3, and the base address = 4. The next
address is calculated as:

(10+M0-B)modLO+B = (5+1-4)mod3+4 = 6
The successive address calculations using 10 for indirect addressing

produce the sequence: 5, 6, 4, 5,6, 4, 5 For M0 = -1 (0x3FFF), 10 would
produce the sequence: 5,4, 6,5,4,6,5,4

4-5

4-6

4.2.4.4 Circular Buffer Operation Example 2

Assume that 10 =9, M0 = 3, L0 = 5, and the base address = 8. The
five-word buffer resides at locations 8 through 12 inclusive. The next
address is calculated as:

(10 +MO-B)modLO+B = (9+3-8 mod5+8 = 12

The successive address calculations using I0 for indirect addressing
produce the sequence: 9, 12, 10, 8, 11, 9 ... This example highlights the fact
that the address sequence does not have to result in a “direct hit” of the
buffer boundary.

425 Bit-Reverse Addressing

The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAGL1. The pivot
point for the reversal is the midpoint of the 14-bit address, between bits 6
and 7. This is illustrated in the following chart.

Individual address lines (ADDR,;)
Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a
mode bit in the mode status register (MSTAT). When enabled, all
addresses generated using index registers 10-3 are bit-reversed upon
output. (The modified valued stored back after post-update remains in
normal order.) This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits wide. You must
determine the first address and also initialize the M register to be used
with a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

204-N)

where N is the number of bits you wish to output reversed. For a
complete example of this, refer to Section 6.6.5.2 “Modified Butterfly” in
Chapter 6, One-Dimensional FFTs, of the applications handbook Digital
Signal Processing Applications Using the ADSP-2100 Family (Volume 1).

43 PROGRAMMING DATA ACCESSES

The ADSP-2100 Family Development Software supports the declaration
and use of a simple data structure: one-dimensional arrays, or buffers. The
array may contain a single value (a variable) or multiple values (an array).
In addition, the array may be used as a circular buffer. Here is a brief
discussion of each instance, with an example of how they are declared and
used in assembly language. Complete syntax for all assembler directives is
given in the ADSP-2100 Family Assembler Tools Manual.

4.3.1 Variables & Arrays

Arrays are the basic data structure of the ADSP-21xx. In our literature, the
word “array” and the expression “data buffer” (as well as “variable”) are
used interchangeably. Arrays are declared with assembler directives and
can be referenced indirectly and by name, can be initialized from
immediate values in a directive or from external data files, and can be
linear or circular with automatic wraparound.

An array is declared with a directive such as
.VAR/DM coefficients[128];
This declares an array of 128 16-bit values located in data memory (DM).

The special operators * and % reference the address and length,
respectively, of the array. It could be referenced as shown below:

I0="coefficients; {point to address of buffer}
L0=0; {set L register to zero}
MX0=DM(IO0,MO0); {load MX0 from buffer}

These instructions load a value into MXO0 from the beginning of the
coefficients buffer in data memory. With the automatic post-modify of the
DAGs, you could execute the second of these instructions in a loop and
continuously advance through the buffer.

Alternatively, when you only need to address the first location, you can
directly use the buffer name as a label in many circumstances such as

MX0=DM (coefficients);

The linker substitutes the actual address for the label.

4-8

It is also possible to initialize a complete array/buffer from a data file,
using the .INIT directive:

.INIT coefficients: <filename.dat>;

This assembler directive reads the values from the file filename.dat into the
array at link time. This feature is supported only in the simulator — data
cannot be loaded directly into on-chip data memory by the hardware
booting sequence.

An array or data buffer with a length of one is a simple single-word
variable, and is declared in this way:

.VAR/DM coefficient;

43.2 Circular Buffers

A common requirement in DSP is the circular buffer. This is directly
implemented by the processors’ data address generators (DAGs), using
the L (length) registers. First, you must declare the buffer as circular:

.VAR/DM/CIRC coefficients[128];

This identifies it to the linker for placement on the proper address
boundary. Next, you must initialize the L register, typically using the
assemblers’s % operator (or a constant) and, in the example below, the I
register and M register:

LO=%coefficients; {length of circular buffer}
I0="coefficients; {point to first address of buffer}
MO=1; {increment by 1 location each time}

Now a statement like
MX0=DM(IO0,MO0) ; {load MX0 from buffer}

placed in a loop, cycles contmuously through coefficients and wraps
around automatically.

4.4 PMD-DMD BUS EXCHANGE

The PMD-DMD bus exchange unit couples the program memory data bus
and the data memory data bus, allowing them to transfer data between
them in both directions. Since the program memory data (PMD) bus is 24
bits wide, while the data memory data (DMD) bus is 16 bits wide, only the
upper 16 bits of PMD can be directly transferred. An internal register (PX)
is loaded with (or supplies) the additional 8 bits. This register can be
directly loaded or read when the full 24 bits are required.

Note that when reading data from program memory and data memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computational units. This read-only path
does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

44.1 PMD-DMD Block Diagram Discussion

Figure 4.2 shows a block diagram of the PMD-DMD bus exchange. There
are two types of connections provided by this circuitry.

PMD BUS

24

8 (LOWER) 16 (UPPER) 16 (UPPER)
,/ 8 (LOWER) K7
PX
> R
M CE; 8
Y e |
. S
T
E
R
/'8 (LOWER)

16
DMD BUS

Figure 4.2 PMD-DMD Bus Exchange

4-9

4-10

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is
normally used when data is exchanged between the program memory and
one of the registers connected to the DMD bus. This is the path used to
write data to program memory; it is not shown in the individual
computational unit block diagrams.

The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or the
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8
bits of either bus.

 PX register access follows the principles described below.

From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read from
program memory to any register. For example:

AX0 = PM(14,M4);

In this ekample, the upper 16 bits of a 24-bit program memory word are
loaded into AX0 and the lower 8 bits are automatically loaded into PX.

2. Read out automatically as the lower 8 bits when data is written to
program memory. For example:

PM(I14,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits of a
24-bit program memory word. The 8 bits of PX are automatically
stored to the 8 lower bits of the memory word.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are used
and the upper 8 are discarded.

PX = AX0;

2. Read with a data move instruction, explicitly specifying the PX register
as a source. The upper 8 bits of the value read from the register are all
zeroes.

AXO0 =PX;

Whenever any register is written out to program memory, the source
register supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to program memory (through the PMD bus) are important,
you should load the PX register from DMD bus before the program
memory write operation. ~

4-11

Serial Ports

5.1 OVERVIEW

Synchronous serial ports, or SPORTS, support a variety of serial data
communications protocols and can provide a direct interconnection
between processors in a multiprocessor system.

These ADSP-2100 family processors contain serial ports:

Number of
Processor Serial Ports
ADSP-2101 2
ADSP-2105 1
ADSP-2115 2
ADSP-2111 2
ADSP-2171 2
ADSP-2181 2
ADSP-21msp58/59 2

The serial ports, designated SPORTO and SPORT]1, have some differences
that are described in this chapter. On the ADSP-2105, only SPORT1 is
provided.

5.2 BASIC SPORT DESCRIPTION
Each SPORT has a five-pin interface:

Pin Name Function

SCLK Serial clock

RFS Receive frame synchronization
TFS Transmit frame synchronization
DR Serial data receive

DT Serial data transmit

Table 5.1 SPORT External Interface

A SPORT receives serial data on its DR input and transmits serial data on
its DT output. It can receive and transmit simultaneously, for full duplex
operation. The data bits are synchronous to the serial clock SCLK, which is
an output if the processor generates this clock or an input if the clock is
generated externally. Frame synchronization signals RFS and TFS are used to
indicate the start of a serial data word or stream of serial words.

Figure 5.1, shows a simplified block diagram of a single SPORT. Data to be
transmitted is written from an internal processor register to the SPORT’s TX
register via the DMD bus. This data is optionally compressed in hardware,
then automatically transferred to the transmit shift register. The bits in the shift
register are shifted out on the SPORT’s DT pin, MSB first, synchronous to the
serial clock. The receive portion of the SPORT accepts data from the DR pin,
synchronous to the serial clock. When an entire word is received, the data is
optionally expanded, then automatically transferred to the SPORT’s RX
register, where it is available to the processor.

The following is a list of SPORT characteristics. Many of the SPORT
characteristics are configurable to allow flexibility in serial communication.

e Bidirectional: each SPORT has independent transmit and receive sections.

DMD Bus

16

Companding

TXn Hardware RXn
Transmit Data Register <:> <:> Recelve Data Register

l Transmit Shift Register Control - R
_ I
Internal
Serlal
Clock

Generator
DT TFS SCLK RFS DR

Vol P

Figure 5.1 Serial Port Block Diagram

Il

16
16
Serial
ive Shift Register

5-2

Double-buffered: each SPORT section (both receive and transmit) has a
data register for transferring data words to and from other parts of the
processor and a register for shifting data in or out. The double-buffering
provides additional time to service the SPORT.

Clocking: each SPORT can use an external serial clock or generate its
own in a wide range of frequencies down to 0 Hz. See Section 5.5.

Word length: each SPORT supports serial data word lengths from
three to sixteen bits. See Section 5.6.

Framing: each SPORT section (receive and transmit) can operate with
or without frame synchronization signals for each data word; with
internally-generated or externally-generated frame signals; with active
high or active low frame signals; with either of two pulse widths and
frame signal timing. See Section 5.7.

Companding in hardware: each SPORT can perform A-law and p-law
companding according to CCITT recommendation G.711. See
Section 5.10.

Autobuffering with single-cycle overhead: using the DAGs, each
SPORT can automatically receive and /or transmit an entire circular
buffer of data with an overhead of only one cycle per data word.
Transfers between the SPORT and the circular buffer are automatic in
this mode and do not require additional programming. See

Section 5.11.

Interrupts: each SPORT section (receive and transmit) generates an
interrupt upon completing a data word transfer, or after transferring
an entire buffer if autobutfering is used. See Section 5.13.

Multichannel capability: SPORTO can receive and transmit data
selectively from channels of a serial bitstream that is time-division
multiplexed into 24 or 32 channels. This is especially useful for T1
interfaces or as a network communication scheme for multiple
processors. See Section 5.12. Note: The ADSP-2105 has only one serial
port (SPORT1) and does not support multichannel operation.

Alternate configuration: SPORT1 can be configured as two external
interrupt inputs, IRQO and IRQT, and the Flag In and Flag Out signals
instead of as a serial port. The internally generated serial clock may
still be used in this configuration. See Section 5.4.

5-3

5.2.1 Interrupts
Each SPORT has a receive interrupt and a transmit mterrupt The priority
of these interrupts is shown in Table 5.2.

Highest SPORTO Transmit (on 2-SPORT processors)
SPORTO Receive (on 2-SPORT processors)
SPORT1 Transmit

Lowest ~ SPORT1 Receive

Table 5.2 SPORT Interrupt Priorities

For complete details about how interrupts are handled, see the
“Interrupts” section in Chapter 3, “Program Control.”

522 SPORT Operation

Writing to a SPORT’s TX register readies the SPORT for transmission; the
TFS signal initiates the transmission of serial data. Once transmission has
begun, each value written to the TX register is transferred to the internal
transmit shift register and subsequently the bits are sent, MSB first. Each
bit is shifted out on the rising edge of SCLK.

After the first bit (MSB) of a word has been transferred, the SPORT
generates the transmit interrupt. The TX register is now available for the
next data word, even though the transmission of the first word is ongoing.

In the receiving section, bits accumulate as they are received in an internal
receive register. When a complete word has been received, it is written to
the RX register and the receive interrupt for that SPORT is generated.

Interrupts are generated differently if autobuffering is enabled; see
“Autobuffering” later in this chapter.

53 SPORT PROGRAMMING

To the programmer, the SPORT can be viewed as two functional sections.
The configuration section is a block of control registers (mapped to data
memory) that the program must initialize before using the SPORTs. The
data section is a register file used to transmit and receive Values through
the SPORT.

5.3.1 SPORT Configuration

SPORT configuration is accomplished by setting bit and field values in
configuration registers. These registers are memory mapped in data
memory space. SPORTO configuration registers occupy locations 0x3FF3
to 0x3FFA; SPORT1 configuration registers occupy locations 0x3FEF to
0x3FF2. The contents of these registers are summarized in Table 5.3 and in
the register summary in Appendix E. The effects of the various settings
are described at length in the sections that follow.

Address- Contents
Ox3FFA SPORTO* multichannel receive word enables (31-16)
0x3FF9 SPORTO0* multichannel receive word enables (15-0)
0x3FF8 SPORTO0* multichannel transmit word enables (31-16)
0x3FF7 SPORTO0* multichannel transmit word enables (15-0)
0x3FF6 SPORTO* control register

Multichannel mode controls

Serial clock source

Frame synchronization controls
Companding mode

Serial word length
0x3FF5 SPORTO* serial clock divide modulus (determmes frequency)
0x3FF4 SPORTO* receive frame sync divide modulus (determines frequency)
0x3FF3 SPORTO0* autobuffer control register
0x3FF2 SPORT1 control register

Flag output value

Serial clock source
Frame synchronization controls

Companding mode

Serial word length
0x3FF1 SPORT!1 serial clock divide modulus (determines frequency)
0x3FF0 SPORTI receive frame sync divide modulus (determines frequency)
0x3FEF SPORTT1 autobuffer control register (not on ADSP-21msp58/59)

*SPORTO configuration registers are defined only on processors that have both SPORT0 and SPORT1
Table 5.3 SPORT Configuration Registers

There are two ways to initialize or to change values in SPORT
configuration registers: write a register to an immediate address
(instruction type 3) or write immediate data to an indirect address
(instruction type 2). With either method, it is important to configure the
serial port before enabling it.

5-5

5-6

The first method of programming configuration registers requires no
setup of DAG registers but does require two instructions to perform the
write. For example:

AX0 = 0x6B27;

DM (0x3FF2) = AXO0; {the contents of AX0 are written}
{to the address 0x3FF2} ’

AX0 = 0;

DM (0x3FF3) = AXO; {the contents of AX0 are written}
{to address 0x3FF3}

In the second method, the DAG (I) index register must contain the data
memory address of the configuration register to be written. The modify
(M) register, which updates the I register after the write, must also contain
a valid value. And the length (L) register that has the same number as the
I register must be initialized to zero so that the circular buffer capability is
not active. For example:

I0 = Ox3FF2;

MO = 1;

LO = 0;

DM(IO,M0) = Ox6B27; {the constant 0x6B27 is written to }
{address pointed to by I0; pointer }
{then modified by M0}

DM(IO,M0) = O; {address 0x3FF3 is set to 0}

Either method works. The second method requires only one cycle to
configure the registers once the I, M and L registers are initialized. This
method is, however, more prone to error because the registers are written
indirectly. You must make sure that the I register contains the intended
value before the write.

5.3.2 Receiving And Transmitting Data

Each SPORT has a receive register and a transmit register. These registers
are not memory mapped, but are identified by assembler mnemonics. The
transmit registers are named TX0 and TX1, for SPORTO and SPORT1
respectively. Receive registers are named RX0 and RX1 for SPORTO and
SPORT!1 respectively. These registers can be accessed at any time during
program execution using a data memory access with immediate address,
load of a non-data register with immediate data or register-to-register
move (instruction types 3, 7 and 17), For example, the following
instruction would ready SPORT1 to transmit a serial value, assuming
SPORT1 is configured and enabled:

TX1 = AXO; {the contents of AX0 are transmitted}
{on SPORTI1}

The following instruction would access a serial value received on SPORTO:

AY0 = RXO0; {the contents of SPORT0 receive register}
{is transferred to AY0}

Because the SPORTSs are interrupt driven, these instructions would
typically be executed within a interrupt service routine in response to a
SPORT interrupt.

54 SPORT ENABLE

SPORTS are enabled through bits in the system control register. This
register is mapped to data memory address Ox3FFF. Bit 12 enables
SPORTO if it is a 1, and bit 11 enables SPORT]1 if it is a 1. Both of these bits
are cleared at reset, disabling both SPORTs.

Bit 10 of the system control register determines the configuration of
SPORT], either as a serial port or as interrupts and flags, according to
Table 5.4 on the next page. If bit 10 is a 1, SPORT1 operates as a serial port;
if it is a 0, the alternate functions are in effect (and bit 11 is ignored). At
reset, bit 10 is a 1, so SPORT1 functions as a serial port.

System Control Register
Ox3FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|— SPORT1 Configure
1 = serial port, 0 = Fl, FO, IRQO, IRQ1, SCLK

SPORT1 Enable
1 = enabled, 0 = disabled

SPORTO Enable
1 =enabled, 0 = disabled

Figure 5.2 SPORT Enables In The System Control Register

Pin Name Alternate Name Alternate Function

RFS1 TRQO External interrupt 0
TFS1 TIRQT External interrupt 1
DR1 FI Flag input

DT1 FO ‘Flag output

SCLK1 Same Same

Table 5.4 SPORT1 Alternate Configuration

5.5 SERIAL CLOCKS

Each SPORT operates on its own serial clock signal. The serial clock
(SCLK) can be internally generated or received from an external source.

The ISCLK bit, bit 14 in either the SPORTO or SPORT1 control register,
determines the SCLK source for the SPORT. If this bit is a 1, the processor
generates the SCLK signal; if it is a 0, the processor expects to receive an
external clock signal on SCLK. At reset, ISCLK is cleared, so both serial
ports are in the external clock mode. When ISCLK is set, internal
generation of the SCLK signal begins on the next instruction cycle,
whether or not the corresponding SPORT is enabled.

External serial clock frequencies may be as high as the processor’s cycle
rate, up to a maximum of 13.824 MHz; internal clock frequencies may be
as high as one-half the processor’s clock rate. The frequency of an
internally generated clock is a function of the processor clock frequency
(as seen at the CLKOUT pin) and the value of the 16-bit serial clock divide
modulus register SCLKDIV (0x3FF5 for SPORTO and 0x3FF1 for SPORT1).

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISCLK 0 = External (Default)
1 = Internal

Figure 5.3 ISCLK Bit In SPORT Control Register

CLKOUT frequency
SCLK frequency =

2 x (SCLKDILV +1)

Table 5.5 shows how some common SCLK frequencies correspond to
values of SCLKDIV.

SCLKDIV SCLK Frequency

20479 300 Hz
5119 1200 Hz
639 9600 Hz
95 64 kHz

3 1.536 MHz
2 2.048 MHz
0 6.144 MHz

(Assumes CLKOUT frequency of 12.288 MHz)
Table 5.5 Common Serial Clock Frequencies (Internally Generated)

If the value of SCLKDIV is changed while the internal serial clock is
enabled, the change in SCLK frequency takes effect at the start of the next
rising edge of SCLK.

Note that the serial clock of SPORT1 (the SCLK pin) still functions when
the port is being used in its alternate configuration (as FO, FI and two
interrupts). In this case, SCLK is unresponsive to an external clock, but can
internally generate a clock signal as described above.

5.6 WORD LENGTH

Each SPORT independently handles words of 3 to 16 bits. The data is
right-justified in the SPORT data registers if it is fewer than 16 bits long.
The serial word length (SLEN) field in each SPORT control register
determines the word length according to this formula:

Serial Word Length = SLEN + 1

For example, if you are using 8-bit serial words, set SLEN to 7 (0111
binary). The SLEN field is bits 3-0 in the SPORT control register (0x3FF6
for SPORTO and 0x3FF2 for SPORT1). See Figure 5.4 on the next page.

Do not set SLEN to zero or one; these SLEN values are not permitted.

5-9

5-10

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SLEN (Serial Word Length — 1)
Figure 5.4 SLEN Field In SPORT Control Register

5.7 WORD FRAMING OPTIONS

Framing signals identify the beginning of each serial word transfer. The
SPORTs have many ways of handling framing signals. Transmit and
receive framing are independent of each other. All frame sync signals are
sampled on the falling edge of the serial clock (SCLK).

5.7.1 Frame Synchronization

Word framing signals are optional. If the receive frame sync required
(RFSR) or transmit frame sync required (TFSR) bit in the SPORT control
register is a 0, a frame sync signal is necessary to initiate communications
but is ignored after the first bit is transferred. Words are then transferred
continuously, unframed. If the RFSR or TFSR bit is a 1, a frame sync signal
is required at the start of every data word.

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I— TFSR 0= Transmit Frame Sync Required 1st Word
1= Transmit Frame Sync Required Every Word

RFSR 0= Receive Frame Sync Required 1st Word
1= Receive Frame Sync Required Every Word

Figure 5,5 TFSR And RFSR Bits in SPORT Control Register

The RFSR bit is bit 13 in the SPORT control register (0x3FF6 for SPORTO
and 0x3FF2 for SPORT1), and the TFSR bit is bit 11. These bits are both
cleared at reset, so that communication in both directions on both serial
ports is unframed.

See “Configuration Examples” later in this chapter for examples of frame
sync timing.

5.7.2 Frame Sync Signal Source

The processor can generate frame synchronization signals internally or
receive them from an external source. The sources for transmit frame
syncs and receive frames syncs can be set independently. If the internal
receive frame sync (IRFS) bit or internal transmit frame sync (ITFS) bit in
the SPORT control register is a 0, the processor expects to receive a signal
on its frame sync pin (RFS or TFS). If the IRFS or ITFS bitis a 1, the
processor generates its own frame sync signal and drives the RFS or TFS
pin as an output.

The IRFS bit is bit 8 in the SPORT control register (0x3FF6 for SPORTO0 and
0x3FF2 for SPORT1), and the ITFS bit is bit 9. Both of these bits are cleared
at reset, that is, both serial ports require externally generated frame sync
signals for both transmitting and receiving data.

SPORTO Control Register: 0x3FF6
. SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|— IRFS 0= External RFS (Input)
1= Internal RFS (Output)

ITFS 0= External TFS (Input)
1= Internal TFS (Output)

Figure 5.6 ITFS And IRFS Bits In SPORT Control Register

5-1

5-12

If frame sync signals are generated externally, then RFS and TFS are
inputs, and the external source controls data transmission and reception.
The SPORT will wait for a transmit frame sync before transmitting data
and for a receive frame sync before receiving data. If frame sync signals
are generated internally, however, then RFS and TFS are outputs, and the
processor controls the timing of data operations.

The SPORT outputs an internally generated transmit framing signal after
data is loaded into the transmit (TXO0 or TX1) register, at the time needed
to ensure continuous data transmission, after the last bit of the current
word is transmitted (the exact time depends on the framing mode being
used; see “Normal and Alternate Framing Modes,” the next section). The
occurrence of the transmit frame sync is a result of the availability of data
in the transmit register.

With an internally generated receive framing signal, the processor controls
the timing of the receive data. The external data source must provide data
to the serial port synchronized to the receive framing signal (the timing
depends on the framing mode being used; see “Normal and Alternate
Framing Modes,” the next section). The processor generates RFS
periodically on a multiple of SCLK cycles, based on the value of the 16-bit
receive frame sync divide modulus register, RFSDIV (0x3FF4 for SPORTO
and 0x3FF0 for SPORT1):

Number of SCLK cycles between RFS assertions = RFSDIV + T‘

For example, to allow 256 SCLK cycles between RFS assertions, set
RFSDIV to 255 (OxFF).

Values of RFSDIV+1 that are less than the word length are not
recommended.

Note that frame sync signals may be generated internally even when
SCLK is supplied externally. This provides a way to divide external clocks
for any purpose.

You can also use one frame sync to generate a single signal for both
transmit and receive data. For example, an internally generated RFS
(output) could be connected to an externally generated TFS (input) on the
same SPORT for simultaneous transmit and receive operations. This
interconnection is especially useful for combo codec interfaces.

5.7.3 Normal And Alternate Framing Modes

In the normal framing mode, the framing signal is checked at the falling
edge of SCLK. If the framing signal is asserted, received data is latched on
the next falling edge of SCLK and transmitted data is driven on the next
rising edge of SCLK. The framing signal is not checked again until the
word has been transmitted or received. If data transmission or reception is
continuous, i.e., the last bit of one word is followed without a break by the
first bit of the next word, then the framing signal should occur in the same
SCLK cycle as the last bit of each word.

In the alternate framing mode, the framing signal should be asserted in
the same SCLK cycle as the first bit of a word. Received data bits are
latched on the falling edge of SCLK and transmitted bits are driven on the
rising edge of SCLK, but the framing signal is checked only on the first bit.
Internally generated frame sync signals remain asserted for the length of
the serial word. Externally generated frame sync signals are only checked
during the first bit time.

Framing modes for receiving and transmitting data are independent. If the
receive frame sync width (RFSW) bit or transmit frame sync width (TFSW)
bit in the SPORT control register is a 0, normal framing is enabled. If the
RFSW or TFSW bit is a 1, alternate framing is used. The RFSW bit is bit 12
in the SPORT control register (0x3FF6 for SPORT0 and 0x3FF2 for
SPORTT1), and the TFSW bit is bit 10. These bits are both cleared at reset, so
that normal framing in both directions is enabled.

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I—— TFSW 0=Normal Transmit Framing
1=Alternate Transmit Framing

RFSW 0=Normal Receive Framing
1=Alternate Receive Framing

Figure 5.7 TFSW And RFSW Bits In SPORT Control Register

5-13

5-14

For examples of normal and alternate framing, see “Configuration
Examples” later in this chapter.

5.7.4 Active High Or Active Low

Framing sync signals for receiving and transmitting data can be either
active high or active low and are configured independently. If the invert
RFS (INVREFS) bit or invert TFS (INVTFS) bit in the SPORT control register
is a 0, the corresponding frame sync signal is active high. If the INVRFS or
INVTES bit is a 1, the frame sync signal is active low. These controls apply
regardless of the source of frame sync signals; they either control the
polarity of internally generated signals or determine how externally
generated signals are interpreted.

The INVRES bit is bit 6 in the SPORT control register (0x3FF6 for SPORTO
and 0x3FF2 for SPORT1), and the INVTFS bit is bit 7. These bits are both
cleared at reset, so that frame sync signals are active high.

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12
b ‘.} R

L INVRFS 0=Active High RFS
1=Active Low RFS

INVTFS 0=Active High TFS
1=Active Low TFS

Figure 5.8 INVTES And INVRFS Bits In SPORT Control Register

5.8 CONFIGURATION EXAMPLE

The example code that follows illustrates how to configure the SPORTSs.
This example configures both SPORT0 and SPORT1. SPORTO is
configured for an internally generated serial clock (SCLK), internally
generated frame synchronization, and p-law companded 8-bit data. This is
a typical setup for communication with a combo codec. SPORT1 is
configured for an externally generated serial clock, externally generated
frame synchronization, non-companded 16-bit data and autobuffering.
This setup could be used to transfer data between processors in a
multiprocessor system.

Only the needed memory mapped registers are initialized. Notice that the
SPORTSs are configured before they are enabled and that any extraneous
latched interrupts are cleared before interrupts are enabled.

{— SPORT INITIALIZATION CODE —}
{SPORT1 inits }

AX0 = 0x0017;

DM (0x3FEF) = AXO0; {enable SPORT1 autobuffering}
{TX autobuffer uses I0 and MO}
{RX autobuffer uses Il and M1}

AX0 = 0x280F;

DM(0x3FF2) = AXO; {external serial clock, RFS and TFS}
{RFS and TFS are required, normal}
{framing, no companding and 16 bits}

{SPORTO inits}

{Assumes a CLKIN of 12.288 MHz. Internally generated}
{SCLK will be 2.048 MHz, and framing sync of 8 kHz}

AX0 = 255;

DM (0x3FF4) = AXO; {RFSDIV = 256, 256 SCLKs between}
{frame syncs: 8 kHz framing}

AX0 = 2;

DM(0x3FF5) = AXO; {SCLK = 2.048 MHz}

(continued on next page)

5-15

5-16

(continued from previous page)
AX0 = 0x6B27;
DM (0x3FF6) = AXO0; {internal SCLK, RFS and TFS}
{normal framing, mu-law companding}
{8 bit words}

{SPORT ENABLE}

IFC = O0x1E; {clear any extraneous SPORT interrupts}
ICNTL = 0; {interrupt nesting disabled}

AX0 = O0x1ClF; {both SPORTs enabled, BWAIT and}

DM (0x3FFF) = AXO; {PWAIT left as default}

IMASK = 0x1E; {SPORT interrupts are enabled}

{— END SPORT INITIALIZATIONS —1}

Figure 5.9 Example SPORT Configuration Code

5.9 TIMING EXAMPLES

This section contains examples of some combinations of the various
framing options. The timing diagrams show relationships between
signals, but are not scaled to show the actual timing parameters of the
processor. Consult the data sheet for actual timing parameters and values.

The examples assume a word length of four bits, that is, SLEN = 3.
Framing signals are active high, that is, INVRFS = 0 and INVTES = 0.

The value of the SPORT control register (0x3FF6 for SPORT0 and 0x3FF2
for SPORTY1) is shown for each example. In these binary values, 1= high, 0
= low, and X can be either. The underlined bit values are the bits which
set the modes illustrated in the example.

Figures 5.10 to 5.15 show framing for receiving data. In Figures 5.10 and
5.11, the normal framing mode is shown for noncontinuous data (any
number of SCLK cycles between words) and continuous data (no SCLK
cycles between words). Figures 5.12 and 5.13 show noncontinuous and
continuous receiving in the alternate framing mode. In these four figures,
both the input timing requirement for an externally generated frame sync
and the output timing characteristic of an internally generated frame sync
are shown. Note that the output meets the input timing requirement; thus,
on processors with two SPORTSs, one SPORT could provide RFS for the
other.

S N ALY AR AR N AR Y AR N AR AR Y AR WY AR N AR N A S
RFS OUTPUT m / \

RS eyt VORI AANN, XXX XX XX XERE R

o

SPORT Control Register:

Internal Frame Sync 0X10 XXX1 X0XX 0011

External Frame Sync ~ 0X10 XXX0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5.10 SPORT Receive, Normal Framing

RFSou M\ —\ "\)

RFS

INPUT \OOOOO00000000CAOCOO00ON00L \GO0A00ACCOOCRACO0AC0OC0N00L/ \OBXOOCOOCCOACON00N

\/
AAATA AAAAAA ALALVLVAAVAALVLAL A

DR (B2 }—{ B2)}—{ 81— 80)}—(B2)}—{ B2 }—{(B1 }—{(B0)}—{ B3 }—{ B2)

SPORT Control Register:

Internal Frame Sync ~ 0X10 XXX1 X0XX 0011

External Frame Sync 0X10 XXX0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5.11 SPORT Continuous Receive, Normal Framing

5-17

sk M\ S\ ST\ S\
RFS OUTPUT / \ /
AFS weur R KX X R X
PR

SPORT Control Register:

Internal Frame Sync ~ 0X11 XXX1 X0XX 0011

External Frame Sync ~ 0X11 XXX0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5.12 SPORT Receive, Alternate Framing .

e S A W A N W A Y A W A W A WY A WV A W A W
I:“=SOUTPUT /
RS weur T X XX\ XXX XXX Y
PR 53 }—(52 }—(57 {0 }—{5 }—{m2}—{1)—(=0)

SPORT Control Register:

Internal Frame Sync ~ 0X11 XXX1 X0XX 0011

External Frame Sync ~ 0X11 XXX0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5.13 SPORT Continuous Receive, Alternate Framing

5-18

Figures 5.14 and 5.15 show the receive operation with normal framing and
alternate framing, respectively, in the unframed mode. There is a single
the frame sync signal that occurs only at the start of the first word, either
one SCLK before the first bit (normal) or at the same time as the first bit
(alternate). This mode is appropriate for multiword bursts (continuous
reception).

sk M\ /\JS S\ S\
RFS X X XK
PR 53 }— (B2 }—(B1 }—{50 {53 —{e2 }—{ 2 }— (B0 (o2 }—{=2)

SPORT Control Register:
Internal Frame Sync 0X00 XXX1 X0XX 0011
External Frame Sync ~ 0X00 XXX0 X0XX 0011

Figure 5.14 SPORT Receive, Unframed Mode, Normal Framing

RFS N T X XK o
PR 53 (52 }—(51 }— (50 }—{5s)—{&2)}—{&1)}—{30 (o= }—{e2)

SPORT Control Register:
Internal Frame Sync ~ 0X01 XXX1 X0XX 0011
External Frame Sync ~ 0X01 XXX0 X0XX 0011

Figure 5.15 SPORT Receive, Unframed Mode, Alternate Framing

5-19

Figures 5.16 to 5.21 show framing for transmitting data and are very
similar to Figures 5.10 to 5.15. In Figures 5.16 and 5.17, the normal framing
mode is shown for noncontinuous data and continuous data. Figures 5.18
and 5.19 show noncontinuous and continuous transmission in the
alternate framing mode. As with receive timing, the TFS output meets the
TFES input timing requirement.

Roumr_ [T\ [\

TFs UMWV WAAWWWWAAAAWWAWAMNARANY
INPUT MRRCOOOOOKKRROOOO0KRNNNN \RRRROCCROCRCEXXXXRO000000A

DT -____(BaXBTrmXBo)_—_(MXBerHXBo

SPORT Control Register:
Internal Frame Sync 0XXX 101X 0XXX 0011
External Frame Sync ~ 0XXX 100X 0XXX 0011
" Both Internal Framing Option and External Framing Option Shown

Figure 5.16 SPORT Transmit, Normal Framing

e S W Y W W Y W W W W W W
T weerf FEEEORRRAARONORRRRR/ \CRAAANRRAARANORRRRY/
DT _..—(Bax Bzx B1 x BOX Bsrazx B1x Box B3 Laz

SPORT Control Register:

Internal Frame Sync 0XXX 101X 0XXX 0011

External Frame Sync ~ 0XXX 100X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5.17 SPORT Continuous Transmit, Normal Framing

5-20

TFS oureur [\ [\

TFS inpur XK KKK K \CKRCROCERRXCRO0U0NNNN

DT

—————— s X B2 X B1 X B0) {3 X B2 X B1 X BO

SPORT Control Register:

Internal Frame Sync ~ 0XXX 111X 0XXX 0011

External Frame Sync ~ 0XXX 110X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

Figure 5.18 SPORT Transmit, Alternate Framing

TFS OuTPUT /

7S weur \COCCO0OOO0O0O0C00K/ \OOROOOXROCX X000
DT ———(BSXB2XB1XBOJ aaXaszXBo

SPORT Control Register:

Internal Frame Sync 0XXX 111X 0XXX 0011

External Frame Sync 0XXX 110X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

Figure 5.19 SPORT Continuous Transmit, Alternate Framing

5-21

Figures 5.20 and 5.21 show the transmit operation with normal framing
and alternate framing, respectively, in the unframed mode. There is a
single the frame sync signal that occurs only at the start of the first word,
either one SCLK before the first bit (normal) or at the same time as the first
bit (alternate).

TFS N O OO R XXX XX KX KX XXX XK X XXX XX XXX XXX XK

DT ——(s3s X B2 X B X B X B X B2 X Bt X BO X B3 X B2
SPORT Control Register:
Internal Frame Sync =~ 0XXX 001X 0XXX 0011
External Frame Sync ~ 0XXX 000X 0XXX 0011

Figure 5.20 SPORT Transmit, Unframed Mode, Normal Framing

TFS OO0 XX KX XXX OO XXX XXX X KR X XOOCOXXKCK XXX

DT ——(8 X B2 X B1 X B X B3 X B2 X B1 X BO X B3 X B2

SPORT Control Register:

Internal Frame Sync ~ 0XXX 011X 0XXX 0011

External Frame Sync ~ 0XXX 010X 0XXX 0011

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

Figure 5,21 SPORT Transmit, Unframed Mode, Alternate Framing

5-~22

5.10 | COMPANDING AND DATA FORMAT

Companding (a contraction of COMpressing and exPANDing) is the
process of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. Both SPORTs share the companding
hardware; one expansion and one compression operation can occur in
each processor cycle. In the event of contention, SPORTO has priority.

The ADSP-2100 family of processors supports both of the widely used
algorithms for companding: A-law and p-law. The processor compands
data according to the CCITT G.711 recommendation. The type of
companding can be selected independently for each SPORT.

If companding is not enabled, there are two formats available for received
data words of fewer than 16 bits: one that fills unused MSBs with zeros,
and another that sign-extends the MSB into the unused bits.

The type of companding, as well as the non-companding data format, are
controlled by the DTYPE field (bits 5-4) in the SPORT control register
(0x3FF6 for SPORTO0 and 0x3FF2 for SPORT1) as shown in Figure 5.22.

SPORTO Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5

DTYPE 00=Right justify, zero fill unused MSBs
01=Right justify, sign extend into unused MSBs
10=Compand using p-law
11=Compand using A-law

Figure 5.22 DTYPE Field In SPORT Control Register

5-23

5-24

When companding is enabled, valid data in the RX0 or RX1 register is the
right-justified, sign-extended, expanded value of the eight LSBs received.
Likewise, a write to TXO0 or TX1 causes the 16-bit value to be compressed
to eight LSBs (sign-extended to the width of the transmit word) before
being written to the internal transmit register. If the magnitude of the 16-
bit value is greater than the 13-bit A-law or 14-bit u-law maximum, the
value is automatically compressed to the maximum positive or negative
value.

5.10.1 Companding Operation Example

With hardware companding, interfacing to a codec requires little
additional programming effort. See the codec hardware interfacing
example in the last section of this chapter.

Here is a typical sequence of operations for transmitting companded data:

Write data to the TXn register

The value in TXn is compressed

The compressed value is written back to TXn

After the frame sync signal has occurred (if required), TXn is written to
the internal transmit register and the bits are sent, MSB first.

As soon as the SPORT has started to send the second bit of the current
word, TXn can be written with the next word, even though transmission
of the first is not complete. After the MSB has been transferred, the SPORT
generates the transmit interrupt to indicate that TXn is ready for the next
data word. If the framing signal is being provided externally, the next
word must be written to TXn early enough to allow for compression
before the next framing signal arrives.

Here is a typical sequence of operations for receiving companded data:

Bits accumulate as received in the internal receive register
When a complete word is received, it is written to RXn
The value in RXn is expanded

The expanded value is written back to RXn

The receive interrupt for that SPORT is then generated.

5.10.2 Contention For Companding Hardware

Since both SPORTs share the companding hardware, only one
compression and one expansion operation can take place during a single
machine cycle. If contention arises, such as when two expansions need to
occur in the same cycle, SPORTO has priority, while SPORT1 is forced to
wait one cycle.

The effects of contention, however, are usually small. The instruction set
does not support loading both TX0 and TX1 in the same cycle;
consequently these operations will be naturally out of phase for
contention in many cases. The overhead cycle for the receive operation
occurs prior to the receive interrupt and does not increase the time needed
to service the interrupt, although it does affect the latency prior to
receiving the interrupt.

5.10.3 Companding Internal Data

Because the values in the RX and TX registers are actually companded “in
place” it is possible to use the companding hardware internally, without
any transmission or reception at all and without enabling the serial port.
This operation can be used for debugging or data conversion and requires
a single cycle of overhead.

To compress data, enable companding and then:
1. Write data to TXn (compression is calculated).
2. Wait for one cycle (TXn is written with compressed value)

3. Read TXn (it returns the 8-bit compressed data)

The code might look like this:

TX0 = AXO; {linear data written to transmit register}
NOP; {any instruction}
AX1 = TXO0; {compressed data transferred to AX1l}

Use the same procedure to expand data, but use RXn instead of TXn.

RX0 = AXO0; {compressed data written to receive register}
NOP; {any instruction}
AX1 = RXO0; {expanded - linear value transferred to AX1l}

5-25

5-26

5.11 AutoBuffering ,

In normal operation, a SPORT generates an interrupt when it has received
or has started to transmit a data word. Autobuffering provides a
mechanism for receiving or transmitting an entire block of serial data
before an interrupt is generated. Service routines can operate on the entire
block of data, rather than on a single word, reducing overhead
significantly. Autobuffering is available on both SPORT0 and SPORT1,
except on the ADSP-21msp58/59 which autobuffers only on SPORTO.

Autobuffering uses the circular buffer addressing capability of the DAGs.
With autobuffering enabled, each serial data word is transferred (or if
multichannel operation is enabled, each active word is transferred) to or
from data memory in a single overhead cycle. (Autobuffering to program
memory is not supported.) This overhead cycle occurs independently of
the instructions being executed and effectively suspends execution for one
cycle (or more, if wait states are required) when it happens. No interrupt
is generated for these individual data word transfers.

The autobuffer transfer cannot be duplicated by any instruction. However,
an equivalent assembly language instruction would be:

DM(I,M) = RXO
or Equivalent Instructions Only
TX0 = DM(I,M)

The I and M registers used in the transfer are selected by fields in the
SPORT's autobuffer control register.

The processor waits for the current instruction to finish before inserting
the overhead cycle. A delay in the autobuffer transfer occurs if the transfer
is required during an instruction executing in multiple cycles (for wait
states, for example). If the transfer is required when the processor is
waiting in an IDLE state, the transfer is executed and the processor returns
to IDLE.

When a data word transfer causes the circular buffer pointer to wrap
around, the SPORT interrupt is generated. The receive interrupt occurs
after the complete buffer has been received. The transmit interrupt occurs
when the last word is loaded into TXn, prior to transmission.

Aside from the completion of an instruction requiring multiple cycles, the
automatic transfer of individual data words has the highest priority of any
operation short of RESET, including all interrupts. Thus, it is possible for

an autobuffer transfer to increase the latency of an interrupt response if
the interrupt happens to coincide with the transfer. Up to four
autobuffered transfers can occur; in the case that two or more are needed
in the same cycle, they have the following priority, which is the same as
the SPORT interrupt priority:

Highest SPORTO Transmit
SPORTO Receive
SPORT1 Transmit

Lowest SPORT1 Receive

In the worst case that all four autobuffer transfers are required at about
the same time, interrupt latency would increase by the time it takes for all
the transfers to occur, which is affected by wait states and bus request.

5.11.1 Autobuffering Control Register

In autobuffering mode, an interrupt is generated when the modification of
a specified I register (in the DAG) by the value in the specified M register
(in the DAG) causes a modulus overflow (pointer wraparound). This
means that the end of the buffer has been detected.

The autobuffering mode is enabled separately for receiving and
transmitting by bits in the SPORT’s autobuffer control register (0x3FF3 for
SPORTO or 0x3FEF for SPORT1), shown in Figure 5.23.

SPORTO Autobuffer Control Register: 0x3FF3
SPORT1 Autobuffer Control Register: 0x3FEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I 1 I I

TIREG TMREG RIREG RMREG ‘
TBUF

(Transmit Autobuffering Enable)

RBUF
(Receive Autobuffering Enable)

Figure 5.23 SPORT Autobuffer Control Register

5-27

5-28

The I and M registers used for autobuffering are identified by fields in the
autobuffer control register. TIREG and TMREG are binary values that
indicate the numbers of the I and M registers, respectively, associated with
the transmit buffer. The rules governing the pairing of I and M registers
are the same as for other DAG operations: the I and M registers must be in
the same DAG, numbered either 0-3 for DAG1 or 4-7 for DAG2.
Consequently, three bits identify the I register, but only two bits are
necessary to indicate the M register because the third bit (MSB) of the M
register number must be the same as for the I register.

Likewise, RIREG and RMREG indicate the numbers of the I and M
registers, respectively, associated with the receive buffer.

The TBUF and RBUF bits enable transmit autobuffering and receive
autobuffering, respectively. These bits are cleared to zeros at reset and
after a reboot. Consequently, autobuffering in progress cannot continue
through a reboot operation; you must re-enable autobuffering after a
reboot.

5.11.2 Autobuffering Example

The code shown below is an example that sets up SPORT1 for
autobuffering operation. The code assumes that the processor is driven
with a clock frequency of 12.288 MHz. The SPORT will automatically
transmit values from the circular buffer named tx_buffer. It will receive
values as they are sent to the SPORT and automatically transfer the data
into the buffer named rx_buffer. A transmit interrupt will be generated
once all of the fx_buffer values have been transferred to TX1, but before the
last value has been loaded into the transmit shift register. A receive
interrupt will be generated once the rx_buffer has been completely filled.

.MODULE/RAM code_to_init_AB_SPORTI1;

{— 1Initialization code for autobuffer —1}
.VAR/DM/CIRC tx_buffer[10];

.VAR/DM/CIRC rx_buffer[10];

.ENTRY sportl_inits;

{set up I,M, and L registers}

sportl_igits: I0 = ~“tx_buffer; {I0 contains address of tx_buffer}
MO = 1; {fill every location}
L0 = %tx_buffer; {LO0 set to length of tx_buffer}

I1 = ~rx_buffer; {Il points to rx_buffer}
Ll = %rx_buffer; {Ll set to length of rx_buffer}

{set up SPORT1 for autobuffering}

AX0 = 0x0013; {TX uses IO, MO; RX uses Il, MO}
DM(0x3FEF) = AX0; {autobuffering enabled}

{set up SPORT1 for 8 kHz sampling and 2.048 MHz SCLK}

AX0 = 255; {set RFSDIV to 255 for 8 kHz}

DM (0x3FF0) = AXO0;

AX0 = 2; {set SCLKDIV to 2 for 2.048 MHz SCLK}
DM (0x3FF5) = AXO0;

{set up SPORT1 for normal required framing, internal SCLK}
{internal generated framing}

AX0 = 0x6B27; {normal framing, 8 bit mu-law}
DM(0x3FF2) = AXO0; {internal clock, framing}

{set up interrupts}
IFC = 6; {clear any extraneous SPORT interrupts}

ICNTL 0; {interrupt nesting disabled}
IMASK = 6; {enable SPORT1 interrupts}

n

{enable SPORT1}

AX0 = 0x0ClF; {enable SPORT1 leave PWAIT, }
DM (0x3FFF) = AXO; {BWAIT as default}

{Place first transfer value into TX1}

AX0 = DM(IO,MO);
TX1 = AXO0;
RTS;

. ENDMOD;

Figure 5.24 Autobuffering Example Configuration Code

5-29

5-30

512 MULTICHANNEL FUNCTION

SPORTO supports a multichannel function. In the multichannel mode of
operation, serial data is time-division multiplexed. Each subsequent word
belongs to the next consecutive channel so that, for example, a 24-word
block of data contains one word for each of 24 channels. SPORTO supports
32 or 24 channels and can automatically select words for particular
channels while ignoring the others.

In single-channel mode, receive and transmit framing identifies the start
of a single word or continuous stream, with independent receive and
transmit operation. In the multichannel mode, the receive frame sync
signal (RFS0) identifies the start of a 24- or 32-word block of serial data
with the receiver and transmitter operating in parallel. TFS0O has an
alternate function, described below. Note: The ADSP-2105 has only one

- serial port (SPORT1) and does not support multichannel operation.

5.12.1 Multichannel Setup

Multichannel operation is enabled by bit 15 in SPORT0’s control register
(0x3FF6). When this bit is a 1, multichannel mode is enabled, and some
control bits in the SPORTO control register are redefined. Bits affected by
multichannel mode are shown in Figure 5.25. At reset, bit 15 is cleared,
disabling multichannel mode and enabling normal operation.

SPORTO Control Register (Multichannel Version)
0x3FF6

15 14 13 12 11 10 9

MFD INVTDV (Invert Transmit Data Valid)
(Multichannel
Frame Delay) MCL (Multichannel Length)
MCE 0 = 24 Words
(Multichannel Enable) 1 =232 Words
1 = Multichannel Operation

Figure 5.25 SPORTO Control Register With Multichannel Mode Enabled

The state of the multichannel length bit MCL, bit 9, determines whether
there are 24 or 32 channels, i.e. whether the block length is 24 or 32 words.
A 0 selects 24-word blocks; a 1, 32-word blocks. In multichannel mode, the
word length is still set by the SLEN field in the SPORT control register and
can be 3 to 16 bits.

The multichannel frame delay (MFD) is a 4-bit field specifying (in binary)
the number of serial clock cycles between the frame sync signal and the
first data bit. This allows the processor to work with different types of T1
interface devices. Figure 5.26 shows a variety of delays.

SCLK 9 8 7 6 5 4 3 2 1

First Bit

RFS MFD=9 /—\

RFS MFD=8 M\

RFS MFD=7 M\
RFS MFD=6 \
RFS MFD=5 \

RFS MFD=1 /—\
RFS MFD=0 | /—\

Figure 5.26 SPORT Multichannel Frame Delay Examples

The memory-mapped receive enable register and transmit enable register
are each 32 bits wide and made up of two contiguous sixteen-bit registers,
as shown in Figure 5.27, which can be found on the next page. Each bit
corresponds to a channel; setting the bit enables that channel so that the
processor will select its word from the 24- or 32-word block. For example,
setting bit 0 selects word 0, bit 12 selects word 12, and so on.

5-31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

.1 =Channel Enabled
0 = Channel Ignored

5-32

Ox3FFA
Receive
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O Word
Enables
0x3FF9
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0x3FF8
Transmit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Word
Enables
0x3FF7

Figure 5.27 SPORT0 Multichannel Word Enable Registers

5.12.2 Multichannel Operation

Received words for channels that are not enabled are ignored; that is, no
interrupts are generated for these words, no autobuffering occurs and no
data is written to the RX0 register. Likewise, there are no interrupts and
no autobuffering for transmit words that are not enabled. During transmit
word time slots for channels that are not enabled, the data transmit (DT)
pin is tristated.

Most aspects of SPORTO operate normally in the multichannel mode.
Specifically, word length (SLEN), internal or external framing (IRFS),
frame signal inversion (INVRFS), companding (DTYPE) and
autobuffering are unchanged in the multichannel mode. Note: It is
important that RFS does not occur more than once per frame in
multichannel mode.

Instead of providing frame synchronization, the TFS0 signal functions as a
transmit data valid (TDV) signal in multichannel mode. TDV is asserted
while the transmitter is active. TDV can be active high or low, and its
polarity is controlled by the INVTES bit, renamed INVTDV in this context.
If INVIDV is a 1, TDV is active low; otherwise it is active high. TDV can
be used to enable additional buffer logic, if required.

Figure 5.28 shows the start of a multichannel transfer. As in earlier
examples, word length is four bits (SLEN=3) and frame sync signals are
active high. Multichannel frame delay (MFD) is one SCLK cycle. For the
purpose of illustration, words 0 and 2 are selected for receiving and words
1 and 2 are selected for transmission.

‘4——-— WORD 0 ‘}‘ WORD 1 7{< WORD 2

PR G) S oy Wy vy TR A D e)
RFS /—\

ot —{ 83 X B2 X B1 X B X B3 X B2

TDV /

Figure 5.28 Start Of Multichannel Transfer

Figure 5.29 shows a complete 24-word block in the multichannel mode,
with complete words represented in the waveforms instead of individual
bits. Receiving is active for all words and transmitting is active for words
0-3, 8-11 and 16-19 only.

Note: The ADSP-2105 has only one serial port (SPORT1) and does not
support multichannel operation.

|4_ Wo-3 _.‘ |<—W8-11 _ol }4—W16—19 —h{
rRrs |
X X X X X X XXX X XX X X XX X X XX X X X X XXX
r (D D—— X D———
TOV / \ / \ [\

Figure 5.29 Complete Multichannel Example

DR

5-33

5-34

5.13 SPORT TIMING CONSIDERATIONS

The SPORTSs support full duplex operation and are normalily interrupt
driven. That is, whenever a SPORT transaction has completed, the
processor generates an internal interrupt. Under most operating
conditions, the actual timing of the SPORT interrupts is not critical. In
some sophisticated DSP systems, however, it is important to know the
timing of the interrupt relative to the operation of the serial port.

5.13.1 Companding Delay

Use of the companding circuit introduces latency in two ways. First,
compressing or expanding a data value takes a single processor cycle.
Second, SPORTO has priority over SPORT1 if both require an expansion or
compression operation in the same cycle; in this case, SPORT1 must wait
one processor cycle. See the section on companding earlier in this chapter
for more details on companding.

5.13.2 Clock Synchronization Delay

Some SPORT timings depend on the processor clock. Other timings
depend on the serial clock (SCLKO or SCLK1). These clocks are
asynchronous. There is a delay associated with synchronizing the serial
clock to the processor clock whether the serial clock is internally or
externally generated. This delay is different for the transmit and receive
interrupts, as explained in the following sections.

5.13.2.1 Startup Timing

When a serial port is enabled by a write to the System Control Reglster, it
takes two SCLK cycles before it is actually enabled. On the next (third)
SCLK cycle, the serial port becomes active, looking for a frame sync.

5.13.3 Internally Generarated Frame Sync Timing

When internally generated frame syncs are used, all that is necessary to
transmit data, from the programmer’s point of view, is to move the data
into the appropriate TX register with an instruction such as:

TX0 = AXO;

Once data is written into the TX register, the processor generates a frame
sync after a synchronization delay. This delay in turn affects the timing of
the serial port transmit interrupt. The latency depends on five factors: the
frequency of the serial clock, whether or not companding is enabled,
whether or not there is contention for the companding circuit, whether the
current word has finished transmitting and the logic level of the SCLK
when the data value was loaded into the transmit register.

(Note that if the transmit frame sync is generated externally, data starts
transmitting when a frame sync signal is received.)

After the TX register is loaded, it takes three complete phases of the serial
clock, HIGH, LOW and HIGH, in that order, to ensure synchronization
(see Figure 5.30). Once synchronization has been ensured and a frame
sync generated, the most significant bit of the transmit word is shifted out
on the same rising edge as the frame sync if alternate framing is used and
on the rising edge of the next serial clock if normal framing is used.
Therefore, the worst-case synchronization delay is two SCLK cycles.

There is additional delay if the previous data transmission has not
completed; the TX register cannot be loaded into the transmit shift register
until the previous transmission is complete.

TX Written, SCLK High

TX Written

Processor Clock ||“||||l||||||||||||ll

MSB Transmitted MSB Transmitted
(Alternate Framing) (Normal Framing)

| »
Serial Clock _J j J “'9"—['-°"L| "'gh—l I I_

TFS OUTPUT l |___

(Normal Framing)

TFS OUTPUT : I
(Alternate Framing)

TX Written, SCLK Low

TX Written

Processor Clock |||||||||||||I||||||||

MSB Transmitted MSB Transmitted
l (Alternate Framing) (Normal Framing)

Serial Clock __I | High I Low [High | I |
TFS OUTPUT ‘ I_—I_—

{Normal Framing)

TFS OUTPUT . r
(Alternate Framing)

Figure 5.30 Clock Synchronization

5-35

5.13.4 Transmit Interrupt Timing

Once the MSB has been transmitted, the subsequent bits are transmitted
on the rising edges of the SCLK. The transmit interrupt (or autobuffer
request) is generated internally on the falling edge of SCLK during the
transmission of the second bit (see Figure 5.31 below). This timing gives
the program time to load the TX register with the next data for continuous
data transmission. :

The transmit interrupt, like any other interrupt, must be synchronized to
the processor clock. Servicing is subject to the same latencies as other
interrupts.

The transmit interrupt essentially means that it is all right to write a value
to the TX register.

w [\

DT { sms X Bm2 X Bm X Bmo)

sek -/ /S

Interrupt or Autobuffer Request ————»

Figure 5.31 SPORT Interrupt or Autobutfer Timing, Transmit 4-Bit Words (No Companding)

5.13.5 Receive Interrupt Timing
The receiver portion of the SPORT latches data on the DR pin on the
falling edges of SCLK.

Receive interrupt timing differs from transmit interrupt timing. The
receive interrupt or autobuffer request occurs only after an entire word is
received. The interrupt request occurs on the rising edge of SCLK after a
word is received (see Figure 5.32) and indicates that new data in the RX
register can be read.

Companding causes a delay in the same manner as for transmitting.

However, the latency is transparent, as the receive interrupt is generated
after the expansion has taken place.

5-36

RFS _____/__\
bR XKXXKROOOCOKROO0KXX ems X emz X em X emo XXOOOOOKXOUOOOKX

sak —/ / _/ S/ /S

Interrupt or Autobuffer Request ——»

Figure 5.32 SPORT Interrupt or Autobuffer Timing, Receive 4-Bit Words (No Companding)

e LSB is received on the falling edge of SCLK. One processor cycle
elapses to allow synchronization to the processor clock. One processor
cycle later, the SPORT attempts to expand the data if companding is
enabled and the other serial port is not using the companding circuitry.
Companding latencies as discussed above occur prior to generation of a
receive interrupt. Servicing the receive interrupt is subject to the same
latencies as other interrupts.

RFS ____/—\
bR XXXRXROUOOROOGOOUNN ers X rz X mt X srmo XXCOOOOOGROOGKANX

sk —/ / ./ /S S L

Interrupt or Autobuffer Request ————»

Figure 5.33 SPORT Interrupt or Autobuffer Timing, Receive 4-Bit Words (Companding Enabled)

5-37

5.13.6 Interrupt & Autobuffer Synchronization

The serial ports are treated as an asynchronous system to the processor,
even if the processor is providing the serial clock. Internal to the processor
is a circuit which synchronizes the autobuffer or interrupt requests to the
processor clock. Figure 5.34 shows the synchronization delay for the serial
ports, assuming the setup and hold times are met for the current processor
cycle. The setup and hold times for the serial port requests are the same as
shown on the data sheet for the IRQ2 signal. If the setup and hold times
are not met, there is an additional processor cycle of delay added.

;
CLKOUT —/—\————Jr——_/—____f__

5-38

; Processor Can ————»
Request —»: Service The
) Request Here

H

Setup Time :4——»’
H E

Hold Time i<_>i
Figure 5.34 Synchronization of Autobuffer or Interrupt Request to Processor Clock

As shown in Figure 5.34, there is a two-processor-cycle delay before the
autobuffer or interrupt request is acted on by the processor. The same
latencies exist for all external interrupts. The processor can only service
interrupt or autobuffer requests on instruction cycle boundaries, so there
may be additional latency cycles added due to the completion of an
instruction.

5.13.7 Instruction Completion Latencies

. There are several situations which can cause an instruction to take more

than one processor cycle. Any of the following can delay the processor’s
ability to service a pending interrupt or autobuffer request:

External memory wait states

Bus request when an external access is required (in go-mode)
Bus request with go-mode disabled

Multiple external accesses required for a single instruction

A pending higher priority autobuffer or interrupt request
Interrupt being masked

On instruction cycle boundaries the processor will service multiple
pending interrupt or autobuffer requests in the following priority order:

SPORTO transmit autobuffer—highest priority (not on ADSP-2105)
SPORTO receive autobuffer (not on ADSP-2105)

SPORT1 transmit autobuffer

SPORT1 receive autobuffer

Unmasked pending interrupts in priority order

5.13.8 Interrupt & Autobuffer Service Example

Figure 5.35 shows the execution of a serial port interrupt based on a
request that meets the setup and hold time requirements. This example is
the same for a receive or a transmit interrupt request.

Request —»

CLKOUT _/___/—__/__/__/——
EXEc —{ A X B X retcunt X T |

Sync Delay ——» ;

NOP Instruction, Fetch Vector §<——-——>§

Execute First Instruction Of interrupt Routi - >

Figure 5.35 Interrupt Service Example '

An additional latency cycle is consumed due to the fetching of the first
instruction of the interrupt routine. The interrupt can only be serviced on an
instruction cycle boundary. The above example (in Figure 5.35) assumes all
instructions are completed in one processor cycle. Figure 5.36 shows the
result of an autobuffer request that meets the setup and hold requirements.

Request —» :

Exec —{ A X B X autoBurrer X c X

Sync Delay —>§

Do The Autobuffer Transf i‘ ~

Continue Main Program g«—-—-——»%
Figure 5.36 Autobuffer Service Example ’

5-39

Autobuffering only consumes the cycles necessary to perform the data
transfer; no additional cycles are lost fetching instructions. The above
diagram assumes that all instructions and data transfers occur in one
processor cycle. ‘

5.13.9 Receive Companding Latency
In addition to the cycles used for synchronization, there are some
additional delays possible due to receive companding. The synchronized
request is used by the processor to decide when to write the receive
register with the expanded value. This can only occur on instruction cycle
boundaries and only one receive register can be expanded at a time. On
the ADSP-2100 family processors that have two serial ports (i.e. all except
the ADSP-2105), there is also a possibility of a delay due to the availability
of the companding circuitry. SPORTO has the higher priority. When
companding is enabled, the autobuffer or interrupt request does not occur
until the register has been expanded. The next two diagrams show

~ examples of autobuffering with companding and the latencies involved.

Request —» s
eour — /[[\ /[[
EXEC — A X B X c X autosurrer X D
COMPAND { expanpRx)}

- - 7

Sync Delay —>§

i

- >

Do The Autobuffer T

Expand The Receive Register i< ~§
.
H

H
Continue Main Program |<——
i

Figure 5.37 Receive Companding Example

5-40

The following diagram shows the latency when there are two pending
receive autobuffer requests with companding enabled.

Request —» | SPORTO Recelve

Request —» | SPORT1 Recelve

CLKOUT /—_\—/_\ / \ /—__./—\—/__

EXEC ~ A X B X c X AUTOBUFFER X' AUTOBUFFER

X

COMPAND

P~

EXPANDRX0 Y EXPANDRX1 }

Sync Delay —»3

H

Expand RXO | -
Expand RX1 | >
RX0 A Transfer ?4 ~
RX1 A Transfer ‘

Continue Main Program

Figure 5.38 Receive Companding Example With Both Serial Ports

5.13.10 Interrupts With Autobuffering Enabled

When autobuffering is enabled, SPORT interrupts occur when the address
modification done during the autobuffer operation causes a modulus
wraparound. The synchronization delay applies to this type of interrupt as
well. An example is shown below in Figure 5.39:

eworr —/ /[T\ __ /[

EXEC —{ AutoBUFFER X D X E X Fercunt Xt

Sync Delay —»;

NOP Instruction, Fetch Vector }<—>

—

!

H

H
Execute First Instruction Of Interrupt Routine |
i

Figure 5.39 Autobuffering Interrupt Example

5-41

5.13.11 Unusual Complications

In most cases the serial port companding, autobuffer, and interrupt
latencies are transparent to your application program. When trying to use
the same I register for more than one autobuffer channel, it becomes
important to make sure that the latencies do not effect the correct order of
operations. For example, if the serial port data is continuous, and the
receiver and transmitter are working with the same frame signal, the order
of the transmit and receive autobuffer or interrupt operations may be
affected by the latencies shown below in Figure 5.40.

sak [\/ /S /L

DR X B3 X Bm2 X Bm X Bmo X 813 X B2 X BTt X BITO X

DT o w3 X em2 X Bm X 8o X B13 X B2 X BT)X BITO X

5-42

Transmit Autobuffer Request —» §

Receive Autobuffer Request —»g
H

Figure 5,40 Using One Index Register for Transmit and Receive Autobuffer

If the processor is free to handle the autobuffer requests in the order they
are generated, the receive autobuffer happens first and is then followed by
the transmit autobuffer. The order of these operations may change if the
processor is not available to handle the requests due to any of the
previously mentioned latencies. In this case there are 1% serial clock cycles
between the requests. If the processor is subject to bus requests, wait
states, or other latencies which are longer than 1% serial clock cycles, both
autobuffer operations may be held off. Since the transmit autobuffer has a
higher priority, it’s request will occur first. Because of the priority of the
autobuffer requests the use of a single I register more difficult or even
impossible in some cases. As long as there are no possible latency cases
longer than the difference in the timing of the requests, it is quite possible
to use a single I register for serial port autobuffering.

Timer

6.1 OVERVIEW

The programmable interval timer can generate periodic interrupts based
on multiples of the processor’s cycle time. When enabled, a 16-bit count
register is decremented every n cycles, where n-1 is a scaling value stored
in an 8-bit register. When the value of the count register reaches zero, an
interrupt is generated and the count register is reloaded from a 16-bit
period register.

The scaling feature of the timer allows the 16-bit counter to generate
periodic interrupts over a wide range of periods. Given a processor cycle
time of 80 ns, the timer can generate interrupts with periods of 80 ns up to
5.24 ms with a zero scale value. When scaling is used, time periods can
range up to 1.34 seconds.

Timer interrupts can be masked, cleared and forced in software if desired.
For additional information, refer to the section “Interrupts” in Chapter 3,
“Program Control.”

6.2 TIMER ARCHITECTURE

The timer includes two 16-bit registers, TCOUNT and TPERIOD and one
8-bit register, TSCALE. The extended mode control instruction enables
and disables the timer by setting and clearing bit 5 in the mode status
register, MSTAT. For a description of the mode control instructions, refer
to Chapter 15, Instruction Set Reference. The timer registers, which are
memory-mapped, are shown in Figure 6.1 (on the following page).

TCOUNT is the count register. When the timer is enabled, it is
decremented as often as once every instruction cycle. When the counter
reaches zero, an interrupt is generated. TCOUNT is then reloaded from
the TPERIOD register and the count begins again.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 I 1
TPERIOD Period Register 0x3FFD

1 L 1 L L 1 1 1 1 1 1 1 1 L L
I I I] T T T T T T T T T I T

TCOUNT Counter Register B . 0x3FFC

I 1 I I 1 1
TSCALE Scaling Register 0x3FFB
| 1 | |] 1]

Figure 6.1 Timer Registers

TSCALE stores a scaling value that is one less than the number of cycles
between decrements of TCOUNT. For example, if the value in TSCALE
register is 0, the counter register decrements once every cycle. If the value
in TSCALE is 1, the counter decrements once every 2 cycles. Figure 6.2
shows the timer block diagram.

DMDBus 14

TSCALE TPERIOD
Count Register Load Logic
CLKOUT
Timer Enable -
— & Prescale Logic Decrement TCOUNT Zero
Timer

Interrupt

Timer Enable

Figure 6.2 Timer Block Diagram

6-2

6.3 RESOLUTION

TSCALE provides the capability to program longer time intervals between
interrupts, extending the range of the 16-bit TCOUNT register. Table 6.1
shows the range and the relationship between period length and
resolution for TPERIOD = maximum.

Cycle Time = 80 ns

TSCALE Interrupt Every... Resolution
0 5.24 ms 80 ns
255 134s 20 ps

Table 6.1 Timer Range And Resolution

6.4 TIMER OPERATION

Table 6.2 shows the effect of operating the timer with TPERIOD =5,
TSCALE =1 and TCOUNT = 5. After the timer is enabled (cycle n—-1) the
counter begins. Because TSCALE is 1, TCOUNT is decremented on every
other cycle. The reloading of TCOUNT and continuation of the counting
occurs, as shown, during the interrupt service routine.

Cycle TCOUNT Action

n—4 TPERIOD loaded with 5

n-3 TSCALE loaded with 1

n-2 TCOUNT loaded with 5

n-1 5 ENA TIMER executed

n 5 since TSCALE = 1, no decrement

n+l 5 decrement TCOUNT

n+2 4 no decrement

n+3 4 decrement TCOUNT

n+4 3 no decrement

n+5 3 decrement TCOUNT

n+6 2 no decrement

n+7 2 decrement TCOUNT

n+8 1 no decrement

n+9 1 decrement TCOUNT

n+10 0 no decrement

n+11 0 zero reached, interrupt occurs
load TCOUNT from TPERIOD

n+12 5 no decrement

n+13 5 decrement TCOUNT

n+14 4 no decrement

n+15 4 decrement TCOUNT, etc..

Table 6.2 Example Of Timer Operation

6-3

6-4

One interrupt occurs every (TPERIOD +1) * (TSCALE +1) cycles. To set the
first interrupt at a different time interval from subsequent interrupts, load
TCOUNT with a different value from TPERIOD. The formula for the first
interrupt is (TCOUNT+1) * (TSCALE+1).

If you write a new value to TSCALE or TCOUNT, the change is effective
immediately. If you write a new value to TPERIOD, the change does not
take effect until after TCOUNT is reloaded.

Host Interface Port

71 OVERVIEW

The host interface port (HIP) of the ADSP-2111, ADSP-2171, and
ADSP-21msp58/59 is a parallel I/O port that allows these processors to be
used as memory-mapped peripherals of a host computer (i.e. slave DSP
processors). Examples of host computers include the Intel 8051, Motorola
68000 family, and even other ADSP-21xx processors.

The host interface port can be thought of as an area of dual-ported
memory, or mailbox registers, that allow communication between the host
and the processor core of the ADSP-21xx. The host addresses the HIP as a
segment of 8- or 16-bit words of memory. To the processor core, the HIP is
a group of eight data-memory-mapped registers.

Any number of ADSP-21xx processors can be used in parallel as memory-
mapped peripherals. Assigning a different address location to each one
allows the host to control them all.

The operating speed of the HIP is similar to that of the processor data bus.
A read or write operation can occur within a single instruction cycle.
Because the HIP is normally connected with devices that are much slower
(the 68000, for example, can take four cycles to perform a bus operation),
the data transfer rate is usually limited by the host computer.

The host interface port is completely asynchronous to the rest of the
ADSP-21xx’s operations. The host can write data to or read data from the
HIP while the ADSP-21xx is operating at full speed. The HIP can be
configured for operation on an 8-bit or 16-bit data bus and for either a
multiplexed address/data bus or separate address and data buses.

The ADSP-2111, ADSP-2171, and ADSP-21msp58/59 support two types of
booting operations. One method boots from external memory (usually
EPROM) using the boot memory interface described in the “Memory
Interface” chapter. The other method uses the HIP to boot load a program
from the host computer. HIP booting is described at the end of this
chapter.

72 HIP PIN SUMMARY

The HIP consists of 27 pins. As shown in Table 7.1, 16 of these are data
pins and 11 are control pins. Some of the control pins have dual functions,
allowing the processor to support different bus protocols.

Pin Number
Name of Pins Direction Function
HSEL 1 Input HIP Select
HACK 1 Output HIP Acknowledge
HSIZE 1 Input HIP 8/16 Bit Host
0=16-bit; 1=8-bit
BMODE 1 Input HIP Boot Mode Select
O=normal (EPROM); 1=HIP
HMDo 1 Input HIP Bus Strobe Select
’ 0=RD, WR; 1=RW, DS
HRD/HRW * 1 Input HIP Read Strobe/
Read /Write Select
HWR/HDS* 1 Input HIP Write Strobe/
Host Data Strobe
HMD1 1 Input HIP Address/Data Mode

O=separate; 1=multiplexed
HD15-0/HAD15-0 ** 16 Bidirectional HIP Data/Address & Data

HA2 /ALE™ 1 Input HIP Host Address 2/
Address Latch Enable

HA1-0/no function™ 2 Input Host Addresses 1 & 0

TOTAL 27

* HMDO selects function

** HMDI selects function

Table 7.1 Host Interface Port Pins

7-2

HSEL is a host select which allows the host to enable or disable the HIP for
host data transfers.

HACK is a host acknowledge output for hosts that require an
acknowledge for handshaking.

HSIZE configures the bus size; the HIP can function in both 8-bit and 16-
bit modes. If the HIP is configured for an 8-bit host (HSIZE=1), data is

read from and written to the lower eight bits of a HIP data register and the
upper eight bits are zero-filled (on host writes) or tristated (on host reads).

BMODE determines whether booting occurs through the HIP or through
the memory interface pins.

HMDO0 and HMD1 are mode pins that configure the address, data and
strobe pins, as shown in Table 7.2. HMDO configures the bus strobes,
selecting either separate read and write strobes or a single read/write
select and a host data strobe. HMD1 configures the bus protocol, selecting
either separate address (3-bit) and data (16-bit) buses or a multiplexed 16-
bit address/data bus with address latch enable. The timings of each of the
four bus protocols are described later in this chapter.

HMD1=0 HMD1=1

HRD HIP Read Strobe HRD HIP Read Strobe
HMDO0=0| HWR HIP Write Strobe HWR HIP Write Strobe

HD15-0 HIP Data HAD15-0 HIP Address/Data

HA2-0 HIP Address ALE HIP Address Latch Enable

HRW HIP Read/Write Select | HRW HIP Read /Write Select
HMDO=1 | HDS HIP Data Strobe HDS HIP Data Strobe

HD15-0 HIP Data HAD15-0 HIP Address/Data

HA2-0 HIP Address ALE HIP Address Latch Enable

Table 7.2 HIP Configuration Modes

7-3

7-4

The functions of the following pins are determined by HMD0 and HMD1
as described above:

HD15-0/HAD15-0 are either a data bus or a multiplexed address/data
bus. (Only the 3 least significant address bits are used.)

HRD/HRW is either a read strobe or a read /write select (1=read,
O=write).

HWR/HDS is either a write strobe or a data strobe.

HAZ2/ALE is either the most significant host address bit or an address
latch enable.

HA1-0 are either the two least significant host address bits or are unused.

7.3 HIP FUNCTIONAL DESCRIPTION

The HIP consists of three functional blocks, shown in Figure 7.1: a host
control interface block (HCI), a block of six data registers (HDR5-0) and a
block of two status registers (HSR7-6). The HIP also includes an associated
HMASK register for masking interrupts generated by the HIP. The HCI
provides the control for reading and writing the host registers. The two
status registers provide status information to both the host and the ADSP-
21xx core.

The HIP data registers HDR5-0 are memory-mapped into internal data
memory at locations 0x3FEQ (HDRO) to 0x3FE5 (HDR5). These registers
can be thought of as a block of dual-ported memory. None of the HDRs
are dedicated to either direction; they can be read or written by either the
host or the ADSP-21xx. When the host reads an HDR register, a maskable
HIP read interrupt is generated. When the host writes an HDR, a
maskable HIP write interrupt is generated.

The read /write status of the HDRs is also stored in the HSR registers.
These status registers can be used to poll HDR status. Thus, data transfers
through the HIP can be managed by using either interrupts or a polling
scheme, described later in this chapter.

HSIZE
BMODE

A HACK

Host HSEL

- —
pontiol |e_HWRMDS

Boot HRD/HRW

. HA2/ALE

«—HA1-0 2,

Overwrite Bit

Contro!

«

>
N\

Read/write control

AN

\
HDRO
HDR1
HDR2
HDR3
HDR4
HDR5
HMASK I

SOFT RESET HSR6
< HSR7

2

. T%.

He / a >
y INTERRUPTS HD15-0

DMD BUS

'y

Figure 7.1 HIP Block Diagram

The HSR registers are shown in Figure 7.2, which can be found on the
following page. Status information in HSR6 and HSR7 shows which HDRs
have been written. The lower byte of HSR6 shows which HDRs have been
written by the host computer. The upper byte of the HSR6 shows which
HDRs have been written by the ADSP-21xx. When an HDR register is
read, the corresponding HSR bit is cleared.

7-6

15 14 13 12 11 10 9 8 7 6 5 4

HSR7
! |— 21xx HDRO Write
21xx HDR1 Write
21xx HDR2 Write
OVERWRITE 21xx HDR3 Write
MODE
21xx HDR4 Write
SOFTWARE 21xx HDR5 Write
RESET
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HSR6 olofojo of{o|lofo]|o| ox3FEe
| |— Host HDRO Write
Host HDR1 Write
21xx HDR5 Write Host HDR2 Write
21xx HDR4 Write Host HDR3 Write
21xx HDR3 Write Host HDR4 Write
21xx HDR2 Write — Host HDR5 Write
21xx HDR1 Write
21xx HDRO Write

Figure 7.2 HIP Status Registers

The lower six bits of HSR7 are copied from the upper byte of HSR6 so that
8-bit hosts can read both sets of status. Bits 7 and 6 of HSR7 control the
overwrite mode and software reset, respectively; these functions are
described later in this chapter. The upper byte of HSR7 is reserved. All
reserved bits and the software reset bit read as zeros. The overwrite bit is
the only bit in the HSRs that can be both written and read. At reset, all
HBSR bits are zeros except for the overwrite bit, which is a one.

74 HIP OPERATION

The ADSP-21xx core can place a data value into one of the HDRs for
retrieval by the host computer. Similarly, the host computer can place a
data value into one of the HDRs for retrieval by the ADSP-21xx. To the
host computer, the HDRs function as a section of memory. To the
ADSP-21xx, the HDRs are memory-mapped registers, part of the internal
data memory space.

Because the HIP typically communicates with a host computer that has
both a slower instruction rate and a multicycle bus cycle, the host
computer is usually the limiting factor in the speed of HIP transfers.
During a transfer, the ADSP-21xx executes instructions normally,
independent of HIP operation. This is true even during a multicycle
transfer from the host.

For host computers that require handshaking, the ADSP-21xx returns
HACK in the same cycle as the host access, except in overwrite mode. In
overwrite mode, the ADSP-21xx can extend a host access by not asserting
the HACK acknowledge until the cycle is complete. The user can enable
and disable overwrite mode by setting and clearing a bit in HSR?.
Overwrite mode is described in more detail later in this chapter.

The HDRs are not initialized during either hardware or software reset.
The host can write information to the HDRs before a reset, and the ADSP-
21xx can read this information after the reset is finished. During reset,
however, HIP transfers cannot occur; the HACK pin is deasserted and the
data pins are tristated.

Because a host computer that requires handshaking must wait for an
acknowledgement from the ADSP-21xx, it is possible to cause such a host
to hang. If, when the host has initiated a transfer, but has not yet received
an acknowledgement, the ADSP-21xx is reset, then the acknowledgement
can not be generated, thus causing the host to wait indefinitely.

There is no hardware in the HIP to prevent the host from writing a
register that the ADSP-21xx core is reading (or vice versa). If the host and
the ADSP-21xx try to write the same register at the same time, the host
takes precedence. Simultaneous writes should be avoided, however: since
the ADSP-21xx and the host operate asynchronously, simultaneous writes
can cause unpredictable results.

74.1 Polled Operation

Polling is one method of transferring data between the host and the
ADSP-21xx. Every time the host writes to an HDR, a bit is automatically
set in the lower byte of HSR6. This bit remains set until the ADSP-21xx
reads the HDR. Similarly, when the ADSP-21xx writes to an HDR, a bit in
the upper byte of HSR6 (and the lower byte of HSR?) is set. This bit is
cleared automatically when the host reads the HDR.

For example, the ADSP-21xx can wait in a loop reading an HSR bit to see if the
host has written new data. When the ADSP-21xx sees that the bit is set, it
conditionally jumps out of the loop, processes the new data, then returns to the
loop. When transferring data to the host, the ADSP-21xx waits for the host to
read the last data written so that new data can be transferred. The host polls
the HSR bits to see when the new data is available.

7.4.1.1 HIP Status Synchronization

Processes running on the ADSP-21xx are asynchronous to processes running
on the host. Values in the shared status registers (HSR6, HSR?) can therefore
change at any time, and reading a changing value could give unpredictable
results. The ADSP-21xx HIP, however, includes synchronization circuitry
which guarantees that the HIP status is constant during a read by either the
ADSP-21xx core or the host. This synchronization is illustrated in Figures 7.3
and 7.4. The status registers are updated by the ADSP-21xx and thus are
synchronous with the ADSP-21xx processor clock, but host accesses are
asynchronous with respect to the ADSP-21xx clock.

When the host reads HSR6 or HSR? to obtain status information, there is a
one-cycle synchronization delay before the current (i.e. updated) status is
available. To obtain the correct, current status, therefore, the host must perform

two consecutive reads—the second read will generate the correct status
information (the first read generates the previous status).

/ Host Host \
HCLK Access \ / Access

d1 status d2 status ¢1 host status €2 host status

change change update ‘// update

Figure 7.3 Host Status Synchronization

CLKOUT / \ / o / \

d1 status d2 status c1 2ixx HIP €2 21xxHIP

Figure 7.4 ADSP-21xx HIP Status Synchronization
7-8

In Figure 7.3, host status synchronization is based on a pseudo-clock HCLK,
internal to the ADSP-21xx, which is a logical combination of HRD, HWR and
HSEL. The first event shown in the figure is a status change at d1. The host status
will then be updated after the HCLK low, HCLK high, HCLK low sequence at
point cl. A status change at d2 would wait for the HCLK low, HCLK high,
HCLK low sequence, and then host status would be updated at point c2.

Status synchronization for the ADSP-21xx requires one full CLKOUT cycle
(starting at the rising edge) after a status change. As shown in Figure 7.4, a status
change at point d1 would cause a 21xx HIP status update at c1. A status change
at d2 would cause a 21xx HIP status update at c2.

7.4.2 Interrupt-Driven Operation

Using an interrupt-driven protocol frees the host and the ADSP-21xx from polling
the HSR(s) to see when data is ready to be read. For interrupt-driven transfers to the
ADSP-21xx, the host writes data into an HDR, and the HIP automatically generates
an internal interrupt. The interrupt is serviced like any other interrupt.

For transfers to the host, the ADSP-21xx writes data to an HDR, then sets a flag
output, which is connected to a host interrupt input, to signal the host that new data
is ready to be transferred. Flag outputs are discussed in detail in Chapter 9, “System
Interface.” If the ADSP-21xx passes data to the host through only one HDR, then that
HDR can be read directly by the host when it receives the interrupt. If more than one
HDR is used to pass data, then the host must read the appropriate HSR(s) to
determine which HDR was written by the ADSP-21xx.

743 HDR Overwrite Mode

In most cases, the ADSP-21xx reads host data sent through the HIP faster than the
host can send them. However, if the host is sufficiently fast, if the ADSP-21xx is busy,
or if the ADSP-21xx is driven by a slow clock, there may be a delay in servicing a

host write interrupt. If the host computer uses a handshaking protocol requiring the
ADSP-21xx to assert HACK to complete a host transfer, the ADSP-21xx can optionally
hold off the next host write until it has processed the current one.

If the HDR overwrite bit (bit 7 in HSR?) is cleared, and if the host tries to write to a
register before it has been read by the ADSP-21xx, HACK is not asserted until the
ADSP-21xx has read the previously written data. The host processor must wait for
HACK to be asserted. As described earlier, however, there is a delay from when the
host writes data to when the status is synchronized to the ADSP-21xx. During this
interval, it is possible for the host to write an HDR a second time even when the
overwrite bit is cleared.

If the HDR overwrite bit is set, the previous value in the HDR is overwritten and
HACK is returned immediately. If the ADSP-21xx is reading the register that is
being overwritten, the result is unpredictable. 7-9

7-10

After reset, the HDR overwrite bit is set. If the host does not require an :
acknowledge (HACK is not used), the HDR overwrite bit should be always be
set, because there is no way for the ADSP-21xx to prevent overwrite.

744 Software Reset

Writing a 1 to bit 6 of HSR7 causes software reset of the ADSP-21xx. If the
ADSP-21xx writes the software reset bit, the reset happens immediately.
Otherwise, the reset happens as soon as the write is synchronized to the

ADSP-21xx system clock. The internal software reset signal is held for five
ADSP-21xx clock cycles and then released.

75 HIP INTERRUPTS

HIP interrupts can be masked using either the IMASK register or the HMASK
register. Bits in the IMASK register enable or disable all HIP read interrupts or
all HIP write interrupts. The HMASK register, on the other hand, has bits for
masking the generation of read and write interrupts for individual HDRs. In
order for a read or write of an HDR to cause an interrupt, the HIP read or write
interrupt must be enabled in IMASK, and the read or write to the particular
HDR must be enabled in HMASK. HMASK is mapped to memory location
Ox3FE8. IMASK is described in Chapter 3, “Program Control.”

A host write interrupt is generated whenever the host completes a write to an
HDR. A host read interrupt is generated when an HDR is ready to receive data
from the ADSP-21xx—this occurs when the host has read the previous data,
and also after reset, before the ADSP-21xx has written any data to the HDR.
HMASK, however masks all HIP interrupts at reset. The read interrupt allows
the ADSP-21xx to transfer data to the host at a hlgh rate without tying up the
ADSP-21xx with polling overhead.

HMAGSK allows reads and writes of some HDRs to not generate interrupts. For
example, a system might use HDR2 and HDR1 for data values and HDRO for a
command value. Host write interrupts from HDR2 and HDR1 would be
masked off, but the write interrupt from HDRO would be unmasked, so that
when the host wrote a command value, the ADSP-21xx would process the
command. In this way, the overhead of servicing interrupts when the host
writes data values is avoided.

The HMASK register is organized in the same way as HSR6; the mask bit is in
the same location as the status bit for the corresponding register. The lower
byte of HMASK masks host write interrupts and the upper byte masks host
read interrupts. The bits are all positive sense (0=masked, 1=enabled).

HMASK
1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

0f0]0)0(0(ox3FES

‘ |— Host HDRO Write
Host HDR1 Write
Host HDR5 Read Host HDR2 Write
Host HDR4 Read Host HDR3 Write
Host HDR3 Read Host HDR4 Write
Host HDR2 Read Host HDR5 Write
Host HDR1 Read
Host HDRO Read
INTERRUPT ENABLES
1=enable
O=disable

Figure 7.5 HMASK Register

HMAGSK is mapped to the internal data memory space at location OX3FES8. At reset,
the HMASK register is all zeros, which means that all HIP interrupts are masked.

HIP read and write interrupts are not cleared by servicing such an interrupt. Reading
the HDR clears a write interrupt, and writing the HDR clears a read interrupt. The
logical combination of all read and write interrupt requests generates a HIP interrupt.
Pending interrupt requests remain until all HIP interrupts are cleared by either
reading or writing the appropriate HIP data register. If the ADSP-21xx is reading
registers that the host might be writing, it is not certain that an interrupt will be
generated. To ensure that all host writes generate interrupts, you must make sure that
the ADSP-21xx is not reading the HDRs that the host is writing. While servicing the
interrupt, the status register can be read to determine which operation generated the
interrupt and whether multiple interrupt requests need to be serviced.

HIP interrupts cannot be forced or cleared by software, as other interrupts can.
The HIP write interrupt vector is location 0x0008. The HIP read interrupt vector is
location 0x000C.

7.6 HOST INTERFACE TIMING

The following diagrams show the timings of HIP signals in the various modes
determined by HMDO0 and HMD1. HMDO configures the bus strobes, selecting either
separate read and write strobes or a single read /write select and a host data strobe.
HMD1 configures the bus protocol, selecting either separate address (3-bit) and data
(16-bit) buses or a multiplexed 16-bit address/data bus with address latch enable.
The HSIZE pin can be changed on a cycle-by-cycle basis; although not shown in the
following diagrams, it has the same timing as the HRD/HRW signal.

7-11

Figure 7.6 shows the HIP timing when both HMD0=0 and HMD1=0. HMDO0
selects separate read and write strobes, and HMDI1 selects separate address
and data buses. The timing for the read cycle and the write cycle is as follows:

The host asserts the address.

The host asserts (HRD or HWR) and HSEL.

The ADSP-21xx returns HACK (and, for a read cycle, the data).
For a write cycle, the host asserts the data.

The host deasserts (HRD or HWR) and HSEL.

The host deasserts the address (and, for a write cycle, the data).
The ADSP-21xx deasserts HACK (and, for a read cycle, the data).

NGk W=

R\ /
Host Write Cycle ~ wwm — \ /
k. \ s
Hot5-9 XXX XXX XXX

wao JROX ADDRESS OO TN
mE [
Host Read Cycle HRD —_\
mek \ _/

o150 ———o-"-X DATA X——

Figure 7.6 HIP Timing: Separate Strobes, Separate Buses

7-12

Figure 7.7 shows the HIP timing when HMD0=1 and HMD1=0. HMDO selects
a multiplexed read /write select with data strobe, and HMD1 selects separate
address and data buses. The timing for the read cycle and the write cycle is as
follows:

The host asserts HRW and the address.

The host asserts HDS and HSEL.

The ADSP-21xx returns HACK (and, for a read cycle, the data).

For a write cycle, the host asserts the data.

The host deasserts HDS and HSEL.

The host deasserts HRW and the address (and, for a write cycle, the data).
The ADSP-21xx deasserts HACK (and, for a read cycle, the data).

mz-o XYROX AbDRESS QUECRXKXCEXX0OUXX

HSEL

NGOk W=

g

HRW

Host Write Cycle TS ——\ /
FRGR \ /

nors-o - KXXKKXKXKEXXNO pATA QUOXEXRCAXCERCONX

mzo XIOK Avoress (KRR KRR
T\ /
[\
Host Read Cycle = ———\ r
m T\ /

HD15-0 ——(X DATA X)——_

Figure 7.7 HIP Timing: Multiplexed R/W Strobe, Separate Buses 7-13

Figure 7.8 shows the HIP timing when HMD0=0 and HMD1=1. HMDO0 selects
separate read and write strobes, and HMD1 selects multiplexed address and
data buses. HDO-HD2 are used for the address. The timing for the read cycle
and the write cycle is as follows:

The host asserts ALE.

The host drives the address.

The host deasserts ALE.

The host stops driving the address.

The host asserts (HRD or HWR) and HSEL.

The ADSP-21xx returns HACK (and, for a read cycle, the data).
For a write cycle, the host asserts the data.

The host deasserts (HRD or HWR) and HSEL.

For a write cycle, the host deasserts the data.

The ADSP-21xx deasserts HACK (and, for a read cycle, the data).

ALE _/_\
= \ /

Host Write Cycle WA \ /

Aack \ /
nap1s-o YN aooress XAYNOOOC — oara —— XXDXXOOROCKRONNX

PN BN

= \O
=R

w1\

FSEL \ /
Host Read Cycle HRD \ . /

HACK \ /
worso. JIXomess X———X o X—

Figure 7.8 HIP Timing: Separate Strobes, Multiplexed Buses

7-14

Figure 7.9 shows the HIP timing when HMDO0=1 and HMD1=1. HMDQO selects
a multiplexed read /write select with data strobe, and HMD1 selects
multiplexed address and data buses. HD0O-HD2 are used for the address. The
timing for the read cycle and the write cycle is as follows:

The host asserts ALE.

The host drives the address.

The host deasserts ALE.

The host stops driving the address.

The host asserts HRW.

The host asserts HDS and HSEL.

The ADSP-21xx returns HACK (and, for a read cycle, the data).
For a write cycle, the host asserts the data.

The host deasserts HDS and HSEL.

The host deasserts HRW (and, for a write cycle, the data).

The ADSP-21xx deasserts HACK (and, for a read cycle, the data).

NEOYXINNOTR LN

= o

SEC \ [
Hew \ |
oS \ [
AACK _ [
napte-o YN aooress WIXYIXXROO0) KRR

Host Write Cycle

ALE _/_\

WSEL \

—_—
/ S
s \ .
—

X)—

Host Read Cycle

HACK \

mors-o YR aooress WTID) X_omm
Figure 7.9 HIP Timing: Multiplexed R/W Strobe, Multiplexed Buses

7-15

P

]
gy .

7-16

7.7 BOOT LOADING THROUGH THE HIP

The entire internal program RAM of the ADSP-21xx, or any portion of it,
can be loaded using a boot sequence. Upon hardware or software reset,
the boot sequence occurs if the MMAP pin is 0. If the MMAP pin is 1, the
boot sequence does not occur.

The ADSP-21xx can boot in either of two ways: from external memory
(usually EPROM), through the boot memory interface, or from a host
processor, through the HIP. The BMODE pin selects which type of booting
occurs.

When BMODE=0, booting occurs through the memory interface. This
process is described in Chapter 10, “Memory Interface.” When the
BMODE-=1, booting occurs through the HIP.

To generate a file for HIP booting, use the HIP Splitter utility program of the
ADSP-2100 Family Development Software. (This utility produces HIP boot
files while the PROM Splitter utility produces files for EPROM booting.)

The BMS signal is asserted when booting through the HIP just as when
booting through the memory interface; in this case, it serves as an
indication that the boot sequence is occurring. Boot memory wait states
have no effect when booting through the HIP.

Booting through the HIP occurs in the following sequence:
1. After reset, the host writes the length of the boot sequence to HDR3.
2. The host waits at least two ADSP-21xx processor cycles.

3. Starting with the instruction which is to be loaded into the highest
address of internal program memory, the host writes an instruction
into HDRO, HDR2 and HDR1 (in that order), one byte each. The upper
byte goes into HDRO, the lower byte goes into HDR2 and the middle
byte goes into HDR1.

4. The address of the instruction is decremented, and Step 3 is repeated.
This continues until the last instruction has been loaded into the HIP.

The ADSP-21xx reads the length of the boot load first, then bytes are
loaded from the highest address downwards. This results in shorter
booting times for shorter loads.

The number of instructions booted must be a multiple of eight. The boot
length value is given as:

length = (number of 24-bit program memory words + 8) — 1
That is, a length of 0 causes the HIP to load eight 24-bit words.

In most cases, no handshaking is necessary, and the host can transfer data
at the maximum rate it is capable of. If the host operates faster than the
ADSP-21xx, wait states or NOPs must be added to the host cycle to slow it
down to one write every ADSP-21xx clock cycle.

The following example shows the data that a host would write to the HIP
for a 1000-instruction boot:

Data Location
Page Length (124 decimal) HDR3
Upper Byte of Instruction at 999 HDRO
Lower Byte of Instruction at 999 HDR2
Middle Byte of Instruction at 999 HDR1
Upper Byte of Instruction at 998 HDRO
Lower Byte of Instruction at 998 HDR2
Middle Byte of Instruction at 998 HDR1
Upper Byte of Instruction at 997 HDRO
Lower Byte of Instruction at 997 HDR2
Middle Byte of Instruction at 997 HDR1
Upper Byte of Instruction at 0 HDRO
Lower Byte of Instruction at 0 HDR2
Middle Byte of Instruction at 0 HDRI1

A 16-bit host boots the ADSP-21xx at the same rate as an 8-bit host. Either
type of host must write the same data to the same the HDRs in the same
sequence (HDRO, HDR2, HDR1). If a 16-bit host writes 16-bit data, the
upper byte of the data must be 0x00. The following example, loading the
instruction 0OxABCDEF, illustrates this:

8-Bit Host 16-Bit Host
1st Write (to HDRO) 0xAB 0x00AB
2nd Write (to HDR2) O0xEF 0x00EF
3rd Write (to HDR1) 0xCD 0x00CD 7-17

Analog Interface

8.1 OVERVIEW

The ADSP-21msp58 and ADSP-21msp59 processors include an analog
signal interface consisting of a 16-bit sigma-delta A/D converter, a 16-
bit sigma-delta D/A converter, and a set of memory-mapped control
and data registers. The analog interface offers the following features:

linear-coded 16-bit sigma-delta ADC
linear-coded 16-bit sigma-delta DAC
on-chip anti-aliasing and anti-imaging filters
8 kHz sampling frequency

programmable gain for DAC and ADC
on-chip voltage reference

The analog interface provides a complete analog front end for high
performance voiceband DSP applications. The ADC and DAC operate
_at a fixed sampling rate of 8 kHz. The inclusion of on-chip anti-aliasing

and anti-imaging filters, 16-bit sigma-delta converters, and
programmable gain amplifiers ensures a highly integrated solution to
voiceband analog processing requirements. Sigma-delta conversion
technology eliminates the need for complex off-chip anti-aliasing filters
and sample-and-hold circuitry.

The ADSP-21msp58 and ADSP-21msp59 contain the same analog
interface—they differ only in the amount of on-chip memory. Refer to
the ADSP-21msp58/59 Data Sheet for detailed analog performance
specifications.

The analog interface of the ADSP-21msp58/59 is operated by using
several data-memory-mapped control and data registers. The ADC
and DAC I/O can be transmitted and received via individual memory-
mapped registers, or the data can be autobuffered directly into the
processor’s data memory. This autobuffering is similar to serial port
autobuffering, as described in Chapter 5.

16-BIT SIGMA-DELTA ADC -
VIN norm O
uxd > anc ANALOG 4 JANTI-ALIASING DIGITAL |16
| | | siGmA-DELTA | ., [DECIMATION | PASS|—
VIN pux O—) pGA [T™ | MobuLaToR ; 0 FILTER] s'o "ﬁrﬁn alo
l MHz kHz ; kHz
DECOUPLE

REF_FILTER O ::‘?::::CD: ™~
Vier © ‘ﬂ '

vout,
vout,

8-2

DIFFERENTIAL
OUTPUT AMP

Two ADSP-21msp58/59 interrupts are dedicated to the ADC and DAC
converters. One interrupt is used for the ADC and the other interrupt
is used for the DAC. Interrupts occur at the sample rate or when the
autobuffer transfer is complete.

A block diagram of the analog interface is shown in Figure 8.1, and pin
definitions are given in Table 8.1.

16-BIT SIGMA-DELTA DAC
+ la—] ANALOG 1 DIGITAL 16 | ANTIMAGING | 16 DIGITAL 18
DAC " - " -
PGA SMOOTHING 7| SIGMA-DELTA |q-/--|INTERPOLATION [#7—-| HiGH-pass |7
™ [« FILTER 1.0 1.0 FILTER 8.0 FILTER 8.0
MHz MHz kHz kHz

Figure 8.1 Analog Interface Block Diagram (ADSP-21msp58/59)

8.2 A/D CONVERSION

The A/D conversion circuitry of the ADSP-21msp58/59’s analog
interface consists of an input multiplexer, a programmable gain
amplifier (PGA), and a sigma-delta analog-to-digital converter (ADC).

8.2.1 Analog Input

The analog input is internally biased by an on-chip voltage reference to
allow operation of the ADSP-21msp58/59 with a single +5V power
supply. The analog inputs should be ac-coupled.

An analog multiplexer selects either the NORM or AUX input. The
input multiplexer is configured by bit 1 (IMS) of the
ADSP-21msp58/59’s analog control register (which is memory-
mapped at address O0x3FEE in data memory). The multiplexer setting
should not be changed while an input signal is being processed.

16

Pin Name I/O Function
VINyorm | Input terminal of the NORM channel of the ADC.

VIN sux I Input terminal of the AUX channel of the ADC.

Decouple I Ground reference of the NORM and AUX channels

for the ADC.

VOUTp O Non-inverting output terminal of the differential
output amplifier from the DAC.

VOUTy O Inverting output terminal of the differential output
amplifier from the DAC.

VREF O Buffered output voltage reference.

REF_FILTER O Voltage reference external bypass filter node.
Vee Analog supply voltage.
GND, Analog ground.

Table 8.1 Analog Interface Pin Definitions

The ADC PGA may be used to increase the signal level by +6 dB, +20
dB, or +26 dB. This selection is configured by bits 9 and 0 (IG1, IGO) of
the analog control register. Input signal level to the sigma-delta
modulator should not exceed the Vinmax specification listed in the
ADSP-21msp58/59 Data Sheet. Refer to “Analog Input” in the “Design
Considerations” section of this chapter for more information.

An offset may be added to the input of the ADC in order to move the
ADC'’s idle tones out of the 4.0 kHz speech band range. This is selected
by bit 10 of the analog control register. The added offset must be
removed by the ADC’s high pass filter; therefore the high pass filter
must be inserted (not bypassed) when the offset is added.

822 ADC

The analog interface’s ADC consists of a 4th-order analog sigma-delta
modulator, an anti-aliasing decimation filter, and a digital high pass
filter. The sigma-delta modulator noise-shapes the signal and produces
1-bit samples at a 1.0 MHz rate. This bit stream, which represents the
analog input signal, is fed to the anti-aliasing decimation filter.

8.2.2.1 Decimation Filter

The ADC’s anti-aliasing decimation filter contains two stages. The first
stage is a sinc? digital filter that increases resolution to 16 bits and
reduces the sample rate to 40 kHz. The second stage is an IIR low pass
filter. ‘

The IIR low pass filter is a 10th-order elliptic filter with a passband
edge at 3.7 kHz and a stopband attenuation of 65 dB at 4 kHz. This
filter has the following specifications:

Filter type: 10th-order low pass elliptic IIR
Sample frequency: 40.0 kHz

Passband cutoff*: 3.70 kHz

Passband ripple: ~ +0.2 dB

Stopband cutoff: 4.0 kHz

Stopband ripple: —65.00 dB

* The passband cutoff frequency is defined to be the last point in the
passband that meets the passband ripple specification.

(Note that these specifications apply only to this filter, and not to the
entire ADC. The specifications can be used to perform further analysis
of the exact characteristics of the filter, for example using a digital filter
design software package.)

Figure 8.2 shows the frequency response of the IIR low pass filter.

L]

\
. \
i o ‘\
e |
. \
& A LN
0 A
]
A]

2000 2600 3200 3800 4400 5000
FREQUENCY - Hz

Figure 8.2 1IR Low Pass Filter Frequency Response

8.2.2.2 High Pass Filter

The ADC’s digital high pass filter removes frequency components at

" the low end of the spectrum,; it attenuates signal energy below the
passband of the converter. The ADC'’s high pass filter can be bypassed
by setting bit 7 (ADBY) of the ADSP-21msp58/59’s analog control
register. v

The high pass filter is a 4th-order elliptic filter with a passband cutoff
at 150 Hz. Stopband attenuation is 25 dB. This filter has the following
specifications:

Filter type: 4th-order high pass elliptic [IR
Sample frequency: 8.0 kHz

Passband cutoff: ~ 150.0 Hz

Passband ripple: ~ +0.2dB

Stopband cutoff: ~ 100.0 Hz

Stopband ripple: -25.00 dB

(Note that these specifications apply only to this filter, and not to the
entire ADC. The specifications can be used to perform further analysis
of the exact characteristics of the filter, for example using a digital filter
design software package.)

Figure 8.3 shows the frequency response of the high pass filter.

Passband ripple is +0.2 dB for the combined effects of the ADC’s
digital filters (i.e. high pass filter and IIR low pass of the decimation
filter) in the 300-3400 Hz passband.

0
-20 //
m
-
i ~N
W a0
2
E
=
g
= -60
(5]
S
-80
-100
0 60 120 180 240 300

FREQUENCY - Hz

Figure 8.3 High Pass Filter Frequency Response

8-6

83 D/A CONVERSION

The D/ A conversion circuitry of the ADSP-21msp58/59’s analog
interface consists of a sigma-delta digital-to-analog converter (DAC),
an analog smoothing filter, a programmable gain amplifier, and a
differential output amplifier.

831 DAC

The analog interface’s DAC implements digital filters and a sigma-
delta modulator with the same characteristics as the filters and
modulator of the ADC. The DAC consists of a digital high pass filter,
an anti-imaging interpolation filter, and a digital sigma-delta
modulator.

The DAC receives 16-bit data values from the ADSP-21msp58/59’s
DAC Transmit data register (which is memory-mapped at address
O0x3FEC in data memory). The data stream is filtered first by the DAC's
high pass filter and then by the anti-imaging interpolation filter. These
filters have the same characteristics as the ADC’s anti-aliasing
decimation filter and digital high pass filter.

The output of the interpolation filter is fed to the DAC’s digital sigma-
delta modulator, which converts the 16-bit data to 1-bit samples at a
1.0 MHz rate. The modulator noise-shapes the signal such that errors
inherent to the process are minimized in the passband of the converter.

The bit stream output of the sigma-delta modulator is fed to the DAC’s
analog smoothing filter where it is converted to an analog voltage.

8.3.1.1 High Pass Filter

The DAC’s digital high pass filter has the same characteristics as the
high pass filter of the ADC. The high pass filter removes frequency
components at the low end of the spectrum,; it attenuates signal energy
below the passband of the converter. The DAC'’s high pass filter can be
bypassed by setting bit 8 (DABY) of the ADSP-21msp58/59’s analog
control register.

The high pass filter is a 4th-order elliptic filter with a passband cutoff
at 150 Hz. Stopband attenuation is 25 dB. This filter has the following
specifications:

Filter type: 4th-order high pass elliptic IIR
Sample frequency: 8.0 kHz

Passband cutoff: ~ 150.0 Hz

Passband ripple: 0.2 dB

Stopband cutoff: ~ 100.0 Hz

Stopband ripple: -25.00 dB

(Note that these specifications apply only to this filter, and not to the
entire DAC. The specifications can be used to perform further analysis
of the exact characteristics of the filter, for example using a digital filter
design software package.) :

Figure 8.3 shows the frequency response of the high pass filter.
8.3.1.2 Interpolation Filter

The DAC’s anti-imaging interpolation filter contains two stages. The
first stage is is an IIR low pass filter that interpolates the data rate from
8 kHz to 40 kHz and removes images produced by the interpolation
process. The output of this stage is then interpolated to 1.0 MHz and
fed to the second stage, a sinc* digital filter that attenuates images
produced by the 40 kHz to 1.0 MHz interpolation process.

The IR low pass filter is a 10th-order elliptic filter with a passband edge at
3.70 kHz and a stopband attenuation of 65 dB at 4 kHz. This filter has the
following specifications:

Filter type: 10th-order low pass elliptic IIR
Sample frequency: 40.0 kHz

Passband cutoff*: 3.70 kHz

Passband ripple: +).2dB

Stopband cutoff: ~ 4.0kHz

Stopband ripple: -65.00dB

* The passband cutoff frequency is defined to be the last point in the
passband that meets the passband ripple specification. (Note that these
specifications apply only to this filter, and not to the entire DAC. The
specifications can be used to perform further analysis of the exact
characteristics of the filter, for example using a digital filter design software
package.)

8-8

Figure 8.2 shows the frequency response of the IIR low pass filter.

Passband ripple is 0.2 dB for the combined effects of the DAC’s digital
filters (i.e. high pass filter and IIR low pass of the interpolation filter) in the
300-3400 Hz passband.

8.3.1.3 Analog Smoothing Filter & Programmable Gain Amplifier
The DAC’s programmable gain amplifier (PGA) can be used to adjust the
output signal level by ~15 dB to +6 dB. This gain is selected by bits 2-4
(OGO, OG1, OG2) of the of the ADSP-21msp58/59's analog control register.

The DAC’s analog smoothing filter consists of a 2nd-order Sallen-Key
continuous-time filter and a 3rd-order switched capacitor filter. The Sallen-
Key filter has a 3 dB point at approximately 25 kHz.

8.3.2 Differential Output Amplifier ,

The ADSP-21msp58/59’s analog output signal (VOUTy -~ VOUT))) is
produced by a differential amplifier. The differential amplifier meets
specifications for loads greater than 2 kQ (R, 2 2 kQ) and has a
maximum differential output voltage swing of £3.156 V peak-to-peak
(3.17 dBm0). The DAC will drive loads smaller than 2 kQ, but with
degraded performance.

The output signal is dc-biased to the on-chip voltage reference (Vggp)
and can be ac-coupled directly to a load or dc-coupled to an external
amplifier. Refer to “Analog Output” in the “Design Considerations”
section of this chapter for more information.

The VOUT}, — VOUT); outputs must be used as a differential signal,
otherwise performance will be severely degraded. Do not use either
pin as a single-ended output.

8.4 OPERATING THE ANALOG INTERFACE

The analog interface of the ADSP-21msp58/59 is operated with the use
of several memory-mapped control and data registers. The ADC and
DAC I/0O data can be received and transmitted in two memory-
mapped data registers. The data can also be autobuffered into (and
from) on-chip memory where data is automatically transferred to or
from the data registers. In both cases, the I/O processing is interrupt-
driven: two ADSP-21msp58/59 interrupts are dedicated to the analog
interface, one for ADC receive data and one for DAC transmit data.
(Note: Autobuffering with SPORT1 is not available on the
ADSP-21msp5x processors because this autobuffering channel is used
for the analog interface.)

The ADSP-21msp58/59 must have an input clock frequency of 13
MHz. At this frequency, analog-to-digital and digital-to-analog
converted data is transmitted at an 8 kHz rate with a single 16-bit word
transmitted every 125 pus.

8.4.1 Memory-Mapped Control Registers

Two memory-mapped control registers are used to configure the
ADSP-21msp58/59’s analog interface: the analog control register and
analog autobuffer/powerdown register.

8.4.1.1 Analog Control Register

The analog control register (located at address 0x3FEE in data
memory) is shown in Figure 8.4. This register configures the ADC
input multiplexer, ADC input gain PGA, ADC high pass filter, DAC
high pass filter, and DAC output gain PGA.

The analog control register also contains the APWD bits (bits 5, 6)
which must both be set to ones to enable and start up the analog
interface—always enable and disable the analog interface using both bits

5 and 6. The DAC and ADC begin transmitting data after these bits are
set. Clearing the APWD bits disables the entire analog interface by
putting it in a powerdown state. The APWD bits must be cleared (to
zeros) at least three processor cycles before putting the processor in
powerdown. See “Powerdown” in Chapter 9, System Interface.

The analog control register is cleared (to 0x0000) by the processor’s
RESET signal. Note that bits 10-15 of this register are reserved and
must always be set to zero.

8-9

15 14 13 12 11

Analog Control Register

10 9 8

7

ADC Offset —J

DM(0x3FEE)

..

ADC Input Gain (ADC PGA)

1GO IMS
ADC Input Gain (ADC PGA
P () ADC Input Multiplexer Select
DABY 1=AUX input, 0=NORM input

DAC High Pass Filter Bypass
1=bypass, O=insert

0G2, 0G1, 0G0

ADBY DAC Output Gain (DAC PGA)
ADC High Pass Filter Bypass .
1=bypass, O=insert APWD

Analog Interface Powerdown
O=powerdown, 1=enable
(Set both bits to 1 to

enable analog interface)

All bits are set to 0 at processor reset.
(Reserved bits 10-15 must always be set to 0.)

1G1, IGO0 0G2, 0G1, OG0
ADC Input Gain (ADC PGA) DAC Output Gain (DAC PGA)
Gain IG1] 1G0 [0G2] 0G1] 0G0
0dB | 0 0 0 0 0
+6dB | 0 1 0 0 1
+20 dB 1 0 0 1 0
+26 dB 1 1 0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 8.4 Analog Control Register

8.4.1.2 Analog Autobuffer/Powerdown Register

The analog autobuffer/powerdown register (located at address Ox3FEF
in data memory) is shown in Figure 8.5. This register enables or
disables autobuffering of ADC receive data and/or DAC transmit
data—autobuffering is enabled by writing ones to the ARBUF (bit 0)
and/or ATBUF (bit 1) bits. When autobuffering is enabled, I (index)
and M (modify) registers are selected in bits 2-11 for the receive
and/or transmit data buffers. See “Autobuffering” in the Serial Ports
chapter for details on autobuffering.

8-10

Analog Autobuffer/Powerdown Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM(OX3FEF)

—— A ‘_L

ARBUF

ADC Receive Autobuffer Enable
ATBUF

DAC Transmit Autobuffer Enable
ARMREG

Processor powerdown control bits. Receive M register
{See Chapter 9, “System Interface”)
ARIREG

Receive | register

ATMREG
Transmit M register

ATIREG
Transmit | register

Figure 8.5 Analog Autobuffer/Powerdown Control Register

Bits 12-15 of the analog autobuffer/powerdown register control the
ADSP-21msp58/59’s processor powerdown function, not powerdown
of the analog interface—powerdown of the analog interface only is
controlled by the APWD bits (bits 5, 6) of the analog control register.
The ADSP-21msp58/59's powerdown function is described in the
“Powerdown” section of Chapter 9, System Interface.

8.4.2 Memory-Mapped Data Registers

There are two memory-mapped data registers dedicated to the analog
interface. The 16-bit ADC receive data register is located at address
0x3FED in data memory. The 16-bit DAC transmit data register is
located at address Ox3FEC in data memory. These registers must be
individually read and written when autobuffering is not in use
(autobuffering automatically transfers the data to and from processor
data memory).

When autobuffering is disabled, data must be transmitted to the
sigma-delta DAC by writing a 16-bit word to the DAC transmit
register (0x3FEC) and data must be received from the sigma-delta ADC
by reading a 16-bit word from the ADC receive register (0x3FED).

8-11

8-12

84.3 ADC & DAC Interrupts

The analog interface generates two interrupts that signal either:

1) that a 16-bit, 8 kHz analog-to-digital or digital-to-analog conversion
has been completed, or 2) that an autobuffer block transfer has been
completed (i.e. the entire data buffer contents have been transmitted or
received).

When one of the analog interrupts occurs, the processor vectors to the
appropriate address:

DAC Transmit interrupt vector address: ~ 0x18
ADC Receive interrupt vector address: 0x1C

These interrupts can be masked out in the processor’s IMASK register
and can be forced or cleared in the IFC register.

8.4.3.1 Autobuffering Disabled

The ADC receive and DAC transmit interrupts occur at an 8 kHz rate,
indicating when the data registers should be accessed, when
autobuffering is disabled. On the receive side, the ADC interrupt is
generated each time an A /D conversion cycle is completed and the
16-bit data word is available in the ADC receive register. On the
transmit side, the DAC interrupt is generated each timea D/A
conversion cycle is completed and the DAC transmit register is ready
for the next 16-bit data word.

Both interrupts are generated simultaneously at an 8 kHz rate,
occurring every 3250 instruction cycles with a 13 MHz internal clock,
when autobuffering is disabled. The interrupts are generated
continuously, starting when the analog interface is powered up by
setting the APWD bits (bits 5, 6) to ones in the analog control register.
Because both interrupts occur simultaneously, only one should be
enabled (in IMASK) to vector to a single service routine that handles
both transmit and receive data. (When autobuffering is enabled,
though, both interrupts should be enabled.)

A simple analog loopback program is shown in Listing 8.1.

{ ADSP-21msp58/59 Analog Interface Loopback Example }
{ - configures analog interface }
{ - copies ADC receive data to DAC transmit buffer}

.MODULE/ABS=0/B0O0T=0 talkthru;
#define codec_tx data O0x3FEC

#define codec_rx_data O0x3FED
#define codec_ctrl_reg 0xX3FEE

resetv: JUMP setup; NOP; NOP; NOP;

irg2v: RTI; NOP; NOP; NOP; {interrupt vectors ...

hipwv: RTI; NOP; NOP; NOP;

hiprv: RTI; NOP; NOP; NOP;

sptOtv: RTI; NOP; NOP; NOP;

sptOrv: RTI; NOP; NOP; NOP;

antv: RTI; NOP; NOP; NOP;

anrv: SI = DM(codec_rx_data) ; {read in data from ADC}
DM (codec_tx_data) = SI; {write out data to DAC}
RTI; NOP;

irglv: RTI; NOP; NOP; NOP;

irgOv: RTI; NOP; NOP; NOP;

timerv: RTI; NOP; NOP; NOP;

pwrdwnv : RTI; NOP; NOP; NOP;

setup: AX1 = 0x0060;
DM(codec_ctrl_reg) = AX1l; {power up analog interface}
IMASK = 0x8; {enable analog receive interrupt}

wait_loop: IDLE; {wait for interrupt}

JUMP wait_loop;
. ENDMOD;

Listing 8.1 ADSP-21msp58/59 Analog Loopback Program
8.4.3.2 Autobuffering Enabled

In some applications it is advantageous to perform block data transfers
between the analog converters and processor memory. Analog
interface autobuffering allows you to automatically transfer blocks of
data from the ADC to on-chip processor data memory or from on-chip
processor data memory to the DAC.

An interrupt is generated when an entire block transfer is complete (i.e.
when the data buffer is full or empty). Analog interface autobuffering
operates in the same way as SPORT autobuffering, described in
Chapter 5. Note that data can be autobuffered through the analog
converters or through SPORTO of the ADSP-21msp58/59.
Autobuffering is not available on SPORT1 of the ADSP-21msp58/59.

8-13

Before autobuffering is enabled, separate circular buffers must be set
up in data memory for the ADC receive and DAC transmit data. This
is accomplished by selecting I (index) and M (modify) registers in the
analog autobuffer/ powerdown register; see Figure 8.5.

Transmit data autobuffered to the DAC is addressed with the I register
specified in the ATIREG field (bits 9, 10, 11). Receive data autobuffered
from the ADC is addressed with the I register specified in the ARIREG
field (bits 4, 5, 6). The modify (M) registers are specified in the
ARMREG (bits 2, 3) field and ATMREG (bits 7, 8) field. Since the
transfer of ADC and DAC data occurs simultaneously, it is possible to
use the same I register for transmit and receive autobuffering. In this
case, the buffer is shared for both functions and care should be taken
when specifiying a value for the M register. .

An autobuffering example program is shown in Listing 8.2.

{ ADSP-21msp58/59 Analog Interface Autobuffer Example }
{ - configures analog interface }
{ - enables analog autobuffer }
{ - receive analog data into a 256 word buffer }
{ - transmit analog data from a 256 word buffer }

.MODULE/RAM/ABS=0/BOOT=0 auto_example;

.VAR/DM/CIRC Dbuffl[256]; {first data buffer}
.VAR/DM/CIRC buff2[256]; {second data buffer}
.VAR/DM flag_bit; {tracks buffers}

#define codec_tx_data 0x3FEC
#define codec_rx_data O0x3FED
#define codec_ctrl_reg 0X3FEE
#define codec_auto_ctrl 0x3FEF

resetv: JUMP setup; NOP; NOP; NOP;

irg2v: RTI; NOP; NOP; NOP; {interrupt vectors ...}
hipwv: RTI; NOP; NOP; NOP;

hiprv: RTI; NOP; NOP; NOP;

sptltv: RTI; NOP; NOP; NOP;

sptlrv: RTI; NOP; NOP; NOP;

antv: RTI; NOP; NOP; NOP;

anrv: JUMP switch; NOP; NOP; NOP; {call autobuffer switch}
irglv: RTI; NOP; NOP; NOP;

irgQv: RTI; NOP; NOP; NOP;

timerv: RTI; NOP; NOP; NOP;

pwrdwnv: RTI; NOP; NOP; NOP;

8-14

setup: 10 = ~buffl;
LO = %buffl;
I1 = ~buff2;
L1l = %buff2;
MO = 0x1;
SI = 0x0;
DM(flag_bit) = SI;
AY0 = 0x0203;
DM (codec_auto_ctrl) = AYO0;
AX1 = 0x0060;
DM(codec_ctrl_reg) = AX1;
IMASK = 0x8;
wait: IDLE;
JUMP wait;
switch: AX0 = DM(flag_bit);
AR = pass AX0;
IF NE JUMP f£ill_buff2;
£fill _buffil: SI = 0x1;
AY0 = 0x0013;
JUMP done;
£ill_buff2: SI = 0x0;
AY0 = 0x0203;
JUMP done;
done: DM{codec_auto_ctrl) = AYO0;
DM(flag bit) = SI;
RTI;
. ENDMOD;

{I0 points to first data buffer}

{I1 points to second data buffer}

{initialize flag register}
{use Il and MO for tranmsit}

{use I0 and MO for receive}
{enable rcv and tx autobuffer}

{power up analog interface}
{enable analog rx interrupt}

{wait for autobuffer interrupt}

{check buffer status}

{fill buff2 next time}

{fill buffl next time}

Listing 8.2 ADSP-21msp58/59 Analog Autobuffer Program

Receive and transmit autobuffering may be independently enabled
and the two interrupts can occur (and be serviced) independently. This
allows the use of different data buffer lengths when autobuffering both
receive and transmit data. It also allows autobuffering to be used on
only one side, receive or transmit, while the other is serviced at the

8 kHz interrupt rate.

8-15

8-16

8.5 CIRCUIT DESIGN CONSIDERATIONS

The following sections discuss interfacing analog signals to the
ADSP-21msp58/59. '

8.5.1 Analog Signal Input

Figure 8.6 shows the recommended input circuit for the
ADSP-21msp58/59’s analog input pin (either VINNorM 0F VINAyx)-
The circuit of Figure 8.6 implements a first-order low pass filter (R;C).
The 3 dB point of the filter should be less than 40 kHz. This is the only
filter that must be implemented external to the processor to prevent
aliasing of the sampled signal. Since the ADSP-21msp58/59’s sigma-
delta ADC uses a highly oversampled approach that transfers most of
the anti-aliasing filtering into the digital domain, the off-chip anti-
aliasing filter need only be of low order. Refer to the ADSP-21msp58/59
Data Sheet for more detailed information.

The ADSP-21msp58/59’s on-chip ADC PGA (programmable gain
amplifier) can be used when there is not enough gain in the input
circuit. The ADC PGA is configured by bits 9 and 0 (IG1, IGO0) of the
processor’s analog control register. The gain must be selected to ensure
that a full-scale input signal (at R; in Figure 8.6) produces a signal level
at the input to the sigma-delta modulator of the ADC that does not
exceed Vinmax (Which is specified in the data sheet).

Ry VINnorm|
INPUT c MUX|——
SOURCE 1 VN
o B
I1
11

DECOUPLE

$=

STAR
GROUND

ADSP-21msp5x

Figure 8.6 Recommended Analog Input Circuit

VINNorwM and VIN pyx are biased at the internal voltage reference
(nominally 2.5V) of the ADSP-21msp58/59, which allows the analog
interface to operate from a single supply. The input signal should be
ac-coupled with an external capacitor (Cy). The value of C; is determined
by the input resistance of the analog input (VINNorwM » VINAux), 200 kQ,
and the desired cutoff frequency. The cutoff frequency should be less than
or equal to 30 Hz. The following equations should be used to determine
the values for Ry, Cq, and C;: R; should be less than or equal to 2.2 kQ, C;
should be greater than or equal to 0.027 pF, C3 should be equal to C.

N
2n £ Ry

Ry = input resistance of ADSP-21msp58/59 (200 kQ)
f,=cutoff frequency < 30 Hz

1
K= 2neg,

R, < 22kQ

20 kHz < f, < 40 kHz *

C 1
1 2r f,R,

CG=C

* If minimum (< 0.1 dB) rolloff at 4 kHz is desired, f, should be set to 40 kHz.

8-17

8-18

8.5.2 Analog Signal Output

The ADSP-21msp58/59’s differential analog output (VOUTp - VOUTy) is
produced by an on-chip differential amplifier. The differential amplifier
will meet dynamic specifications for loads greater than 2 kQ (R, =2 2 kQ)
and has a maximum differential output voltage swing of £3.156 V peak-to-
peak (3.17 dBm0). The DAC will drive loads smaller than 2 kQ, but with
degraded dynamic performance. The differential output can can be
ac-coupled directly to a load or dc-coupled to an external amplifier.

Figure 8.7 shows a simple circuit providing a differential output withac
coupling. The capacitor of this circuit (Coyr) is optional; if used, its value
can be chosen as follows:

1
60nR

Cour =

The VOUTp - VOUTy outputs must be used as differential outputs; do not
use either as a single-ended output. Figure 8.8 shows an example circuit
which can be used to convert the differential output to a single-ended
output. The circuit uses a differential-to-single-ended amplifier, the
Analog Devices SSM-2141.

ADSP-21msp5x

cOUT
—] vouT,

—] vour,
out

Figure 8.7 Example Circuit For Differential Output With AC Coupling

2V ADSP-21msp5x

:[1 0.1 uF
= GND,

717
+ vouT P
Vour Ssm-2141
1 . VOUT,
a N N
GNDA =
o 1 uF
—12 v I
- GND

Figure 8.8 Example Circuit For Single-Ended Output

8.5.3 Voltage Reference Filter Capacitance

Figure 8.9 shows the recommended reference filter capacitor connections.
The capacitor grounds should be connected to the same star ground point
as that of Figure 8.6.

VREF — Q

REF_FILTER

T

10pF 0.1uF ‘
,Rog;n | ADSP-21msp5x

GROUND

VOLTAGE
REFERENCE

Y/

Figure 8.9 Voltage Reference Filter Capacitor

8-19

System Interface

9.1 OVERVIEW

This chapter describes the basic system interface features of the ADSP-2100
family processors. The system interface includes various hardware and
software features used to control the DSP processor.

Processor control pins include a RESET signal, clock signals, flag inputs and
outputs, and interrupt requests. This chapter describes only the logical
relationships of control signals; consult individual processor data sheets for
actual timing specifications.

9.2 CLOCK SIGNALS

The ADSP-2100 family processors may be operated with a TTL-compatible
clock signal input to the CLKIN pin or with a crystal connected between the
CLKIN and XTAL pins. If an external clock is used, XTAL must be left
unconnected. The CLKIN signal may not be halted or changed in frequency
during operation.

The ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2111 processors operate
with an input clock frequency equal to the instruction cycle rate. The
ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors operate with an
input clock frequency equal to half the instruction rate; for example, a

16.67 MHz input clock produces a 33 MHz instruction rate (30 ns cycle time).
Device timing is relative to the internal clock rate which is indicated by the
CLKOUT signal. :

Because these processors include an on-chip oscillator circuit, an external
crystal can be used. The crystal should be connected between the CLKIN and
XTAL pins, with two capacitors connected as shown in Figure 9.1, which can
be found on the following page. A parallel-resonant, fundamental frequency,
microprocessor-grade crystal should be used. The frequency value selected
for the crystal should be equal to the desired instruction rate for the processor
(for the ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2111) or half the
desired instruction rate (for the ADSP-2171, ADSP-2181, and
ADSP-21msp58/59).

9-2

~ CLKIN

ey

CLKIN XTAL

ADSP-21xx

CLKOUT

Figure 9.1 External Crystal Connections

The internal phased lock loop of the processors generates an internal
clock which is four times the instruction rate.

The processors also generate a CLKOUT signal which is synchronized to
the processors’ internal cycles and operates at the instruction cycle rate. A
phase-locked loop is used to generate CLKOUT and to divide each
instruction cycle into a sequence of internal time periods called processor
states. The relationship between the phases of CLKIN, CLKOUT, and the
processor states is shown in Figure 9.2 for the ADSP-2101, ADSP-2105,
ADSP-2115, and ADSP-2111 processors. Figure 9.3 shows the same
information for the ADSP-2171, ADSP-2181, and ADSP-21msp58/59
processors. The phases of the internal processor clock are dependent upon
the period of the external clock.

The CLKOUT output can be disabled on the ADSP-2171, ADSP-2181, and
ADSP-21msp58/59 processors. This is controlled by the CLKODIS bit in
the SPORTO Autobuffer Control Register.

I [

't h

PROCESSOR
CYCLE

(

|
Figure 9.2 Clock Signals & Processor States (ADSP-2101, ADSP-2105, ADSP-2115, ADSP-2111

INTERNAL
PROCESSOR
STATE

RS

by NN

.

CLKOUT

| —

CLKIN
4
INTERNAL
PROCESSOR
STATE PROCESSOR PROCESSOFI
CYCLE

§ E

% :
CLKOUT \,| I \.| |

Figure 9.3 Clock Signals & Processor States (ADSP-2171, ADSP-2181, ADSP-21msp58/59)
9.21 Synchronization Delay

Each processor has several asynchronous inputs (interrupt requests, for
example), which can be asserted in arbitrary phase to the processor clock.
The processor synchronizes such signals before recognizing them. The
delay associated with signal recognition is called synchronization delay.

Different asynchronous inputs are recognized at different points in the
processor cycle. Any asynchronous input must be valid prior to the
recognition point to be recognized in a particular cycle. If an input does
not meet the setup time on a given cycle, it is recognized either in the
current cycle or during the next cycle if it remains valid.

Edge-sensitive interrupt requests are latched internally so that the request
signal only has to meet the pulse width requirement. To ensure the
recognition of any asynchronous input, however, the input must be
asserted for at least one full processor cycie plus setup and hold time.
Setup and hold times are specified in the data sheet for each individual
device.

9.22 1x & 1/2x Clock Considerations

Each processor requires only a 1X or 1/2X frequency clock 51gna1 They
use what is effectively an on-chip phase-locked loop to generate the higher
frequency internal clock signals and CLKOUT. Because these clocks are
generated based on the rising edge of CLKIN, there is no ambiguity about
the phase relationship of two processors sharing the same input clock.
Multiple processor synchronization is simplified as a result.

9-3

9-4

Using a 1X or 1/2X frequency input clock with the phase-locked loop to
generate the various internal clocks imposes certain restrictions. The CLKIN
signal must be valid long enough to achieve phase lock before RESET can be
deasserted. Also, the clock frequency cannot be changed unless the processor
is in RESET. Refer to the processor data sheets for details.

9.3 RESET

RESET halts execution and causes a hardware reset of the processor. The
RESET signal must be asserted when the processor is powered up to assure
proper initialization.

Tables 9.2-9.7 show the RESET state of various registers, including the
processors’ on-chip memory-mapped status/control registers. The values of
any registers not listed are undefined at reset. The contents of on-chip
memory are unchanged after RESET, except as shown in Tables 9.2-9.7 for
the data-memory-mapped control/status registers. The CLKOUT signal
continues to be generated by the processor during RESET, except when
disabled on the ADSP-2171, ADSP-2181, or ADSP-21msp58/59.

The contents of the computation unit (ALU, MAC, Shifter) and data addfess
generator (DAG1, DAG2) registers are undefined following RESET.

When RESET is released, the processor’s booting operation takes place,
depending on the state of the processor’s MMAP pin. Program booting is
described in Chapter 10, “Memory Interface.”

For the ADSP-2111, ADSP-2171, and ADSP-21msp58/59 processors, which
include a host interface port, setting the software reset bit in the HSR7
register has the same affect as asserting RESET. This allows either the host
processor or the ADSP-21xx to initiate a reset under software control.

In a multiprocessing system with several processors, a synchronous RESET is
required.

9.4 SOFTWARE-FORCED REBOOTING

Software-forced reboots can be accomplished in several ways. A software-
forced reboot clears the context of the processor and initializes some
registers. A context clear clears the processor stacks and restart execution at
address 0x0000. Table 9.1 shows the different ways each processor can
perform a software reboot.

Processor Reboot Method Description

ADSP-2101 Boot Force Setting the BFORCE bit in the System
ADSP-2105 Control Register causes a reboot
ADSP-2111

ADSP-2115

ADSP-2171 Boot Force Setting the BFORCE bit in the System

Control Register causes a reboot

Powerup Context Reset Setting the PUCR bit in the SPORT1
Autobuffer & Powerdown Control
Register causes a reboot on recovery
from powerdown

ADSP-2181 BDMA Context Reset Setting the BCR bit in the BDMA
Control Register before writing to the
BDMA Word Count Register
(BWCOUNT) causes a reboot.
Execution starts after the BDMA reboot
is completed.

Powerup Context Reset Setting the PUCR bit in the SPORT1
Autobuffer & Powerdown Control
Register causes a reboot on recovery
from powerdown

Table 9.1 Software-Forced Rebooting

Tables 9.2-9.7 show the state of the processor regiéters after a software-
forced reboot. The values of any registers not listed are unchanged by a
reboot.

During booting (and rebooting), all interrupts including serial port
interrupts are masked and autobuffering is disabled. The serial port(s)
remain active; one transfer—from internal shift register to data register—
can occur for each serial port before there are overrun problems.

The timer runs during a reboot. If a timer interrupt occurs during the
reboot, it is masked. Thus, if more than one timer interrupt occurs during
the reboot, the processor latches only the first. A timer overrun can occur.

9-5

Reset

undefined

0

0x55
undefined
0

NNOoOOROW

undefined
undefined
undefined

OCOCOOOO

undefined

undefined

undefined

OO0 O

undefined
undefined

Control Field Description

Bus Exchange Register

PX PX register

Status Registers

IMASK Interrupt service enables
ASTAT Arithmetic status
MSTAT Mode status

SSTAT Stack status

ICNTL Interrupt control

IFC Interrupt force/clear
Control Registers (memory-mapped)

BWAIT Boot memory wait states
BPAGE Boot page

SPORT1 configure Configuration

SPEO SPORTO enable

SPE1 SPORT1 enable
DWAIT04 Data memory wait states
PWAIT Program memory wait
TCOUNT Timer count register
TPERIOD Timer period register
TSCALE Timer scale register

Serial Port Control Registers (memory-mapped, one set per SPORT)
ISCLK Internal serial clock
RFSR, TFSR Frame sync required
RFSW, TFSW Frame sync width

IRFS, ITFS Internal frame sync
INVREFS, INVTFS Invert frame sense
DTYPE Companding type, format
SLEN Serial word length
SCLKDIV Serial clock divide
RFSDIV RFS divide

Multichannel word enable bits

MCE Multichanne! enable
MCL Multichannel length
MFD Multichannel frame delay
INVTDV Invert transmit data valid
RBUF, TBUF Autobuffering enable
TIREG, RIREG Autobuffer I index
TMREG, RMREG Autobuffer M index

FO (SPORT1 only) Flag Out value

Table 9.2 ADSP-2101/ADSP-2115 State After Reset Or Software Reboot

9-6

undefined

Reboot

undefined

0

0
unchanged
0x55
unchanged
0

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
operates during reboot
unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
0

unchanged
unchanged

unchanged

Control Field

Bus Exchange Register
PX

Status Registers
IMASK
ASTAT
MSTAT
SSTAT

ICNTL

IFC

Description

PX register

Interrupt service enables
Arithmetic status

Mode status

Stack status

Interrupt control
Interrupt force/clear

Control Registers (memory-mapped)

BWAIT

BPAGE

SPORT1 configure
SPE1

DWAIT04
PWAIT

TCOUNT
TPERIOD
TSCALE

Boot memory wait states
Boot page
Configuration

SPORT1 enable

Data memory wait states
Program memory wait
Timer count register
Timer period register
Timer scale register

Serial Port 1 Control Registers (memory-mapped)

ISCLK

RFSR, TFSR
RFSW, TFSW
IRFS, ITFS
INVRFS, INVTEFS
DTYPE

SLEN

SCLKDIV
RFSDIV

RBUF, TBUF
TIREG, RIREG
TMREG, RMREG

FO

Internal serial clock
Frame sync required
Frame sync width
Internal frame sync
Invert frame sense
Companding type, format
Serial word length
Serial clock divide
RFS divide
Autobuffering enable
Autobuffer I index
Autobuffer M index

Flag Out value

Reset
undefined
0

0

0

0x55
undefined

NNOoORrOW

undefined
undefined
undefined

[N e e N e N e N el w)

undefined
undefined

undefined
undefined

undefined

Table 9.3 ADSP-2105 State After Reset Or Software Reboot

Reboot

undefined

0

0
unchanged
0x55
unchanged
0

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
operates during reboot
unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
0

unchanged
unchanged

unchanged

Control Field Description Reset Reboot

Bus Exchange Register
PX PX register undefined undefined
Status Registers
IMASK Interrupt service enables 0 0
ASTAT Arithmetic status 0 0
MSTAT Mode status 0 unchanged
SSTAT Stack status - 0x55 0x55
ICNTL Interrupt control undefined unchanged
IFC Interrupt force/clear 0 0
Control Registers (memory-mapped)
BWAIT Boot memory wait states 3 unchanged
BPAGE Boot page 0 unchanged
SPORT1 configure Configuration 1 unchanged
SPEO SPORTO enable 0 unchanged
SPE1 SPORT]1 enable 0 unchanged
DWAIT0+4 Data memory wait states 7 unchanged
PWAIT Program memory wait 7 unchanged
TCOUNT Timer count register undefined operates during reboot
TPERIOD Timer period register undefined unchanged
TSCALE Timer scale register undefined unchanged
Serial Port Control Registers (memory-mapped, one set per SPORT)
ISCLK. Internal serial clock 0 unchanged
RFSR, TFSR Frame sync required 0 unchanged
RFSW, TESW Frame sync width 0 unchanged
IRFS, ITFS Internal frame sync 0 unchanged
INVREFS, INVTFS Invert frame sense 0 unchanged
DTYPE Companding type, format 0 unchanged
SLEN Serial word length 0 unchanged
-SCLKDIV Serial clock divide undefined unchanged
RFSDIV RFS divide undefined unchanged
Multichannel word enable bits undefined unchanged
MCE Multichannel enable 0 unchanged
MCL Muitichannel length 0 unchanged
MFD Multichannel frame delay 0 unchanged
INVIDV Invert transmit data valid 0 unchanged
RBUF, TBUF Autobuffering enable 0 0
TIREG, RIREG Autobuffer I'index undefined unchanged
TMREG, RMREG Autobuffer M index undefined unchanged
FO (SPORT1 only) Flag Out value undefined unchanged
Host Interface Port Registers (memory-mapped)
HDRO0-5 HIP data registers undefined used during HIP reboot
HSRé6 HIP status register 0x0000 used during HIP reboot
HSR7 HIP status register 0x0080 unchanged
HMASK HIP interrupt enables 0 unchanged

Table 9.4 ADSP-2111 State After Reset Or Software Reboot

9-8

Control Field Description

Reset
undefined
0

0

0

0x55
undefined

NNoOoOORRrOW

undefined
undefined
undefined
0

0
0
0

0

OO0 OO

undefined
undefined
undefined

OO0 O

undefined

Bus Exchange Register

PX PX register

Status Registers

IMASK Interrupt service enables

ASTAT Arithmetic status

MSTAT Mode status

SSTAT Stack status

ICNTL Interrupt control

IFC Interrupt force/clear

Control Registers (memory-mapped)

BWAIT Boot memory wait states

BPAGE Boot page

SPORT1 configure Configuration

SPEO SPORTO enable

SPE1 SPORT1 enable

DWAIT04 Data memory wait states

PWAIT Program memory wait

TCOUNT - Timer count register

TPERIOD Timer period register

TSCALE Timer scale register

ROMENABLE Program memory ROM enable

PDFORCE Powerdown force

PUCR Powerup context reset

XTALDIS XTAL pindrive disable
during powerdown

XTALDELAY Delay startup from powerdown
(4096 cycles)

Serial Port Control Registers (memory-mapped, one set per SPORT)

ISCLK Internal serial clock

RFSR, TFSR Frame sync required

RFSW, TFSW Frame sync width

IRFS, ITFS Internal frame sync

INVRFS, INVTFS Invert frame sense

DTYPE Companding type, format

SLEN Serial word length

SCLKDIV Serial clock divide

RFSDIV RFS divide

Multichannel word enable bits

MCE Multichannel enable

MCL Multichannel length

MFD Multichannel frame delay

INVTDV Invert transmit data valid

RBUE, TBUF Autobuffering enable

TIREG, RIREG Autobuffer I index

TMREG, RMREG Autobuffer M index

undefined

Reboot

undefined

0

0
unchanged
0x55
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
operates during reboot
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
0

unchanged
unchanged

Table 9.5 ADSP-2171 State After Reset Or Software Reboot (cont. on next page)

9-9

FO (SPORT1 only) Flag Out value undefined

CLKODIS CLKOUT disable 0
BIASRND MAC biased rounding 0

Host Interface Port Registers (memory-mapped)

HDRO-5 HIP data registers undefined
HSR6 HIP status register 0x0000
HSR7 HIP status register 0x0080
HMASK HIP interrupt enables 0

Table 9.5 ADSP-2171 State After Reset Or Software Reboot

Control Field Description Reset
Bus Exchange Register
PX PX register undefined
‘Status Registers
IMASK Interrupt service enables 0
ASTAT . Arithmetic status 0
MSTAT Mode status 0
SSTAT Stack status 0x55
ICNTL Interrupt control undefined
IFC Interrupt force/clear
Control Registers (memory-mapped)
BWAIT Boot memory wait states 3
BPAGE Boot page 0
SPORT1 configure Configuration 1
SPEO SPORTO enable 0
SPE1 SPORT1 enable 0
DWAIT0—4 Data memory wait states 7
PWAIT Program memory wait 7
TCOUNT Timer count register undefined
TPERIOD Timer period register undefined
TSCALE Timer scale register undefine
PDFORCE Powerdown force 0 ’
PUCR Powerup context reset 0
XTALDIS XTAL pindrive disable 0

during powerdown
XTALDELAY Delay startup from powerdown 0

(4096 cycles)

9-10

unchanged
unchanged
unchanged

used during HIP reboot
used during HIP reboot
unchanged
unchanged

Reboot

undefined

0

0
unchanged
0x55
unchanged
0

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
operates during reboot
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged

Table 9.6 ADSP-2181 State After Reset Or Software Reboot (cont. on next page)

Serial Port Control Registers (memory-mapped, one set per SPORT)

ISCLK

RFSR, TFSR
RFSW, TFSW
IRFS, ITFS
INVRFS, INVTFS
DTYPE

SLEN

SCLKDIV
RESDIV

Internal serial clock
Frame sync required
Frame sync width
Internal frame sync

Invert frame sense
Companding type, format
Serial word length

Serial clock divide

RFS divide

Multichannel word enable bits

MCE

MCL

MFD

INVTDV

RBUF, TBUF
TIREG, RIREG
TMREG, RMREG

FO (SPORT only)
CLKODIS
BIASRND

Multichannel enable
Multichannel length
Multichannel frame delay
Invert transmit data valid
Autobuffering enable
Autobuffer Iindex .
Autobuffer M index

Flag Out value
CLKOUT disable
MAC biased rounding

External Memory Control Registers (non-memory-mapped)

DMOVLAY
PMOVLAY
(memory-mapped)
DWAIT

PWAIT
BMWAIT
IOWAITO0-3
CMSSEL

Data memory overlay select
Program memory overlay select

Data memory overlay wait states
Program memory overlay wait states
Byte memory wait states

1/0 memory wait states

Composite memory select

Programmable Flag Data & Control Registers (memory-mapped)

PFDATA
PFTYPE

Programmable flag data
Programmable flag direction

DMA Control Registers (memory-mapped)

IDMAA
IDMAD
BIAD
BEAD
BTYPE
BDIR

BCR
BWCOUNT
BMPAGE

IDMA Internal Memory Address
IDMA Destination Memory Type
BDMA Internal Memory Address
BDMA External Memory Address
BDMA Transfer Word Type
BDMA Transfer Direction

BDMA Context Reset

BDMA Word Count

External Byte Memory Page

Table 9.6 ADSP-2181 State After Reset Or Software Reboot

* These values assume that you have just completed an initial BDMA boot load of the
ADSP-2181 (MMAP=0 & BMODE=0). For more information on BDMA register contents
during the boot loading process see Table 9.8. These values will vary with a processor
reboot (other than initial load), since they depend on the previous values.

OO0

undefined
undefined
undefined

[es e e N en R)

undefined
undefined

undefined
0
0

0
0

0x7
0x7
0x7
0x7
0xB

undefined
0

X
(=
(=)

O?'—‘OOOOOO
N
(=1

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
0

unchanged
unchanged

unchanged
unchanged
unchanged

unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged

unchanged
unchanged
0x20*
0x60*
unchanged
unchanged
unchanged
03(-

Oﬂ'

Control Field Description

Bus Exchange Register

PX PX register

Status Registers

IMASK Interrupt service enables

ASTAT Arithmetic status

MSTAT Mode status

SSTAT Stack status

ICNTL Interrupt control

IFC Interrupt force/clear

Control Registers (memory-mapped)

BWAIT Boot memory wait states

BPAGE Boot page

SPORT1 configure Configuration

SPEO SPORTO enable

SPE1 SPORT1 enable

DWAIT04 Data memory wait states

PWAIT Program memory wait

TCOUNT Timer count register

TPERIOD Timer period register

TSCALE Timer scale register

ROMENABLE Program memory ROM enable

PDFORCE Powerdown force

PUCR Powerup context reset

XTALDIS XTAL pindrive disable
during powerdown

XTALDELAY Delay startup from powerdown
(4096 cycles)

Serial Port Control Registers (memory-mapped, one set per SPORT)

ISCLK Internal serial clock

RFSR, TFSR Frame sync required

RFSW, TFSW Frame sync width

IRFS, ITFS . Internal frame sync

INVREFS, INVTFS Invert frame sense

DTYPE Companding type, format

SLEN Serial word length

SCLKDIV Serial clock divide

RFSDIV RFS divide

Multichannel word enable bits

MCE Multichannel enable

MCL Multichannel length

MFD Multichannel frame delay

INVIDV Invert transmit data valid

RBUF, TBUF Autobuffering enable

TIREG, RIREG Autobuffer I index

TMREG, RMREG Autobuffer M index

Reset

undefined

0

0x55
undefined
0

NNoOoOOoORrOoOW

undefined
undefined
undefined
0

0
0
0
0

QOO0 O0OOO

g
Q.

undefined
undefined

COOCOO

undefined
undefined

Reboot

undefined

0

0
unchanged
0x55
unchanged
0

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
operates during reboot
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

- unchanged

unchanged
unchanged
0

unchanged
unchanged

Table 9.7 ADSP-21msp58/59 State After Reset Or Software Reboot (cont. on next page)

9-12

FO (SPORT1 only) Flag Out value undefined unchanged

CLKODIS CLKOUT disable 0 unchanged

BIASRND MAC biased rounding 0 unchanged

Host Interface Port Registers (memory-mapped)

HDRO0-5 HIP data registers undefined used during HIP reboot
HSR6 HIP status register 0x0000 used during HIP reboot
HSR7 HIP status register 0x0080 unchanged

HMASK HIP interrupt enables 0 unchanged

Analog Autobuffer/Powerdown Registers

ARBUF Receive autobuffer enable 0 0

ATBUF Transmit autobuffer enable 0 0

control bits Analog autobuffer control bits 0 unchanged

Table 9.7 ADSP-21msp58/59 State After Reset Or Software Reboot

9.4.1 ADSP-2181 Register Values for BDMA Booting

The state of some ADSP-2181 registers during reset and rebooting is
influenced by the MMAP and BMODE pins. If these pins are set for a BDMA
boot, the values in the BDMA registers change as shown in Table 9.8.

Register Process Description* Value Before Boot Value After Boot

BIAD BDMA Internal Memory Address. 0 . 0x20
Set for internal address 0.

BEAD BDMA External Memory Address. 0 0x60
Set for external address 0.

BTYPE BDMA Transfer Word Type. 0 0
Set for 24-bit program memory words.

BDIR BDMA Transfer Direction. 0 0
Set to transfer data from byte memory.

BMPAGE BDMA Page Selection. 0 0
Set to byte memory page 0.

BWCOUNT BDMA Word Count. 0x20 0
Set to transfer 32 words.

BMWAIT BDMA Port Wait States. 0x7 0x7
Set to 7 waits per transfer.

BCR . BDMA Context Reset. ** 1 1

Table 9.8 BDMA Registers Before And After Initial Boot Loading
* Assuming MMAP=0 and BMODE=0 for a BDMA boot.

** Set to 1 to (a) holdoff instruction execution during BDMA transfer,
(b) start execution at address PM(0x0000) after BDMA transfer, and
(c) leave a BDMA interrupt pending. This sequence of events occurs if
BCR is set before BWCOUNT is written, or after the initial boot.

9-13

9-14

9.5 EXTERNAL INTERRUPTS

Each ADSP-2100 family processor has a number of prioritized, individually
maskable external interrupts which can be either level- or edge-triggered.
These interrupt request pins are named IRQO, IRQT, and IRQ2. The%@ and
IRQT pins are only available as the (optional) alternate configuration of
SPORT1. The configuration of SPORT1 as either a serial port or as interrupts
(and flags) is determined by bit 10 of the processor’s system control register.

The ADSP-2181 processor additionally has two dedicated level-triggered
interrupt request pins and one dedicated edge-triggered interrupt request pin;

these are IRQLLO , IRQLT, and IRQE.

Internal interrupts, including serial port, timer, host interface port, DMA and
analog interface interrupts, are discussed in other chapters. Additional
information about interrupt masking, set up, and operation can be found in
Chapter 3, “Program Control.”

9.5.1 Interrupt Sensitivity

Individual external interrupts can be configured in the ICNTL register as
either level-sensitive or edge-sensitive.

Level-sensitive interrupts operate by asserting the interrupt request line
(TRQx) until the request is recognized by the processor. Once recognized, the
request must be deasserted before unmasking the interrupt so that the DSP
does not continually respond to the interrupt.

In contrast, edge-triggered interrupt requests are latched when any high-to-
low transition occurs on the interrupt line. The processor latches the interrupt
so that the request line may be held at any level for an arbitrarily long period
between interrupts. This latch is automatically cleared when the interrupt is
serviced. Edge-triggered interrupts require less external hardware than level-
sensitive requests since there is never a need to hold or negate the request.
With level-sensitive interrupts, however, many interrupting devices can share
a single request input; this allows easy system expansion.

An interrupt request will be serviced if it is not masked (in the IMASK
register) and a higher priority request is not pending. Valid requests initiate
an interrupt servicing sequence that vectors the processor to the appropriate
interrupt vector address. The interrupt vector addresses for each family
processor are given in Appendix D. There is a synchronization delay
associated with both external interrupt request lines and internal interrupts.

If an interrupt occurs during a waitstated external memory access or during the
extra cycles required to execute an instruction that accesses external memory
more than once, it is not recognized between the cycles, only before or after.
Edge-sensitive interrupts are latched, but not serviced, during bus grant (BG) |
unless the GO mode is enabled.

In order to service an interrupt, the processor must be running and executing
instructions. The IDLE instruction can be used to effectively halt processor
operations while waiting for an interrupt.

Edge-sensitive and level-sensitive interrupt requests are serviced similarly.
Edge-sensitive interrupts may remain active (low) indefinitely, while level-
sensitive interrupts must be deasserted before the RTI instruction is executed;
otherwise, the same interrupt immediately recurs.

Care must be taken with the serial port (SPORT1) that can be configured for
alternate functions TRQO and IRQ1). If the RFS1 or TFS1 input is held low when
SPORT!1 is configured as the serial port and then is reconfigured as IRQO and
IRQT, an interrupt request can be generated. This interrupt request can be
cleared with the use of the IFC register.

9.6 FLAG PINS

All ADSP-21xx processors provide flag pins. The alternate configuration of
SPORT1 includes a Flag In (FI) pin and a Flag Out (FO) pin. The configuration
of SPORTT1 as either a serial port or as flags and interrupts is selected by bit 10
of the processor’s system control register.

FI can be used to control program branching, using the JF FLAG_IN and IF
NOT FLAG_IN conditions of the JUMP and CALL instructions. These
conditions are evaluated based on the last state of the FI pin; FLAG_IN is true if
FI was last sampled as a 1 and false if last sampled as a 0. FO can be used as a
general purpose external signal. The state of FO is also available as a read-only
bit of the SPORT1 control register.

The ADSP-2111, ADSP-2171, ADSP-2181, and ADSP-21msp58/59 processors
have three additional flag output pins: FLO, FL1 and FL2. These flags (and FO)
can be controlled in software to signal events or conditions to any external
device such as a host processor. The Modify Flag Out instruction, which is
conditional, can perform SET, RESET and TOGGLE actions—this instruction
allows programs executing on the DSP processor to control the state of its flag
output pins. Note that if the condition in the Modify Flag Out instruction is CE
(counter expired), the counter is not decremented as in other IF CE instructions.

9-15

Flag outputs FLO, FL1 and FL2 are set to 1 at RESET. The Flag Out (F0) is
not affected by RESET.

The ADSP-2181 has eight additional general-purpose flag pins, PF7-0.
These flags can be programmed as either inputs or outputs; they default to
inputs following reset. The PFx pins are programmed with the use of two
memory-mapped registers. The Programmable Flag & Composite Select
Control Register determines the flag direction: 1=output and O=input. The
Programmable Flag Data Register is used to read and write the values on
the pins. Data being read from a pin configured as an input is
synchronized to the processor’s clock. Pins configured as outputs drive
the appropriate output value. When the PFDATA register is read, any
pins configured as outputs will read back the value being driven out.

Programmable Flag & Composite Select Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T I T I I I
1 1 I 10 1 1170 0 0 0 0 0 0 O |pMOx3FEE
IOM| BM | DM | PM [I N TR DR N

~——T) —
BMWAIT _] I— PFTYPE

CMSSEL 1=Output
— 0 = Input
1 = Enable CMS
0 = Disable CMS

Figure 9.4 Programmable Flag & Composite Select Control Register (ADSP-2181)

9-16

Programmable Flag Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

DM(0X3FES5)

LPFDATA

Figure 9.5 Programmable Flag Data Register (ADSP-2181)

9.7 POWERDOWN

The ADSP-2171, ADSP-2181, and ADSP-21msp58/59 provide a
powerdown feature that allows the processor to enter a very low power
dormant state through hardware or software control. In this CMOS
standby state, power consumption is less than 1 mW (approximate). (Refer
to the processor data sheet for exact power consumption specifications.)
The powerdown feature is useful for applications where power
conservation is necessary, for example in battery-powered operation.
Features of powerdown include:

¢ Internal clocks are disabled

. ® Processor registers and memory contents are maintained

* Ability to recover from powerdown in less than 100 CLKIN cycles

* Ability to disable internal oscillator when using crystal

¢ No need to shut down clock for lowest power when using external
oscillator

¢ Interrupt support for executing “housekeeping” code before entering
powerdown and after recovering from powerdown

¢ User selectable powerup context

9-17

XTAL Pin Drive Disable During Powerdown

(XTAL pin should be disabled when
no external crystal is connected)

Delay Startup From Powerdown 4096 Cycles

(use delay to allow internal phase locked
loop or external oscillator to stabilize)

1=force processor to vector to

Even though the processor is put into the powerdown mode, the lowest
level of power consumption still might not be achieved if certain
guidelines are not followed. Lowest possible power consumption requires
no additional current flow through processor output pins and no
switching activity on active input pins. Therefore, a careful analysis of pin
loading in your circuit is required. The following sections detail the
proper powerdown procedure as well as provide guidelines for clock and
output pin connections required for optimum low-power performance.

9.7.1 Powerdown Control

You can control several parameters of powerdown operation through
control bits in the SPORT1 Autobuffer/ Powerdown Control Register

(or Analog Autobuffer/Powerdown Control Register on the
ADSP-21msp58/59). This control register is memory-mapped at location
Ox3FEF and is shown in Figure 9.6.

SPORT1 Autobuffer / Powerdown Control Register
i5 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 0

T T T T 1
XTALDIS J

DM(0OX3FEF)
| 1 1 | | |

1=disabled, 0=enabled

XTALDELAY

t=delay, 0=no delay

PDFORCE
Powerdown Force

powerdown interrupt
PUCR

Powerup Context Reset

1=soft reset (clear context)*,

9-18

O=resume execution

Figure 9.6 SPORT1 Autobuffer / Powerdown Control Register

* PUCR=1: Clears the PC, STATUS, LOOP and CNTR stacks. IMASK and ASTAT
registers are cleared to 0 and SSTAT is set to 0x55. The processor will start executing
instructions from address 0x0000.

9.7.2 Entering Powerdown
The powerdown sequence is defined as follows.

1.) Initiate the powerdown sequence by applying a high-to-low transition
to the PW IJ pin or by setting the powerdown force control bit
(PDFORCE) in the SPORT1 Autobuffer/Powerdown Control Register.

2.) The processor vectors to the non-maskable powerdown interrupt
vector at address 0x002C. (Note: The powerdown interrupt is never
masked. You must be careful not to cause multiple powerdown
interrupts to occur or stack overflow may result. Multiple powerdown
interrupts can occur if the PWD input is pulsed while the processor is
already servicing the powerdown interrupt.)

3.) Any number of housekeeping instructions, starting at location 0x002C,
* can be executed prior to the processor entering the powerdown mode.
Typically, this section of code is used to configure the powerdown
state, disable on-chip peripherals and clear pending interrupts.

4.) The processor now enters powerdown mode when it executes an IDLE
instruction (while PWD is asserted). The processor may take either one
or two cycles to power down depending upon internal clock states
during the execution of the IDLE instruction. All register and memory
contents are maintained while in powerdown. Also, all active outputs
are held in whatever state they are in before going into powerdown.

If an RTT is executed before the IDLE instruction, then the processor
returns from the powerdown interrupt and the powerdown sequence is
aborted.

While the processor is in the powerdown mode, the processor is in CMOS
standby. This allows the lowest level of power consumption where most
input pins are ignored. Active inputs need to be held at CMOS levels to
achieve lowest power. More information can be found in the section
“Operation During Powerdown” later in this chapter.

9-19

9-20

9.7.3 Exiting Powerdown

The powerdown mode can be exited with the use of the PWD pin or with
RESET. There are-also several user-selectable modes for start-up from
powerdown which specify a start-up delay as well as specify the program
flow after start-up. This allows the program to resume from where it left
off before powerdown or for the program context to be cleared.

9.7.3.1 Ending Powerdown With The PWD Pin

Applying a low-to-high transition to the PWD pin will take the processor
out of powerdown mode. You have the option of selecting the amount of
time the processor takes to come out of the powerdown mode with the
“delay start-up from powerdown” control bit (XTALDELAY, bit 14 in the
Powerdown Control Register.) If this bit is cleared to 0, no additional
delay over the quick start-up (100 cycles) is introduced. If this bit is set to
1, a delay of 4096 cycles is introduced. The delay feature is used
depending upon the state of an external clock oscillator at the time of
powerup or if the internal clock is disabled. This is further discussed in the
sections “Systems Using an External TTL/CMOS Clock” and “Systems
Using a Crystal and The Internal Oscillator.”

You can also program one of two options directing the processor how to
resume operation. The context for exiting powerdown is set by bit 12
(PUCR, powerup context reset) of the Powerdown Control Register.

If the PUCR control bit is cleared to 0, the processor will continue to
execute instructions following the IDLE instruction. For example, a high-
to-low transition is applied to the PWD pin which causes the processor to
vector to the powerdown interrupt routine. In this routine, a few
housekeeping tasks are performed and the IDLE instruction is executed.
The processor powers down. Some time later a low-to-high transition is
applied to the PWD pin, causing the processor to exit powerdown mode.
Since the PUCR bit is 0, the processor resumes executing instructions in
the powerdown interrupt routine, starting at the instruction following the
IDLE instruction. When an RTI instruction is encountered, control then
passes back to the main routine.

If the PUCR bit is set to 1 for a clear context, the processor resumes
operation from powerdown by clearing the PC, STATUS, LOOP and
CNTR stacks. The IMASK and ASTAT registers are set to 0 and the SSTAT
goes to 0x55. The processor will start executing instructions from address
0x0000.

9.7.3.2 Ending Powerdown With The RESET Pin

If RESET is asserted while the processor is in the powerdown mode, the
processor is reset and instructions are executed from address 0x0000. A
boot is performed if the MMAP pin is set to 0. If the RESET pin is used to
exit powerdown, then it must be held low for the appropriate number of
cycles. If the clock is stopped at powerup or operating at a different
frequency at powerup than it was before powerdown, RESET must be
held long enough for the oscillator to stabilize plus an additional 1000
CLKIN cycles for the phase locked loop to lock. The time required for the
oscillator to stabilize depends upon the type of crystal used and
capacitance of the external crystal circuit. Typically 2000 CLKIN cycles is
adequate for clock stabilization time.

If the clock was not stopped at powerup and is at a stable freguency at
powerup (same as before powerdown), only 5 cycles of
required.

When ending powerdown with RESET, the XTALDELAY (delay start-up
from powerdown) control bit is ignored.

9.74 Startup Time After Powerdown
The time required to exit the powerdown state depends on whether an internal
or external oscillator is used, and the method used to exit powerdown.

9.7.4.1 Systems Using An External TTL/CMOS Clock

When the processor is in powerdown, the external clock signal is ignored if the
XTALDIS bit (XTAL pin disable) of the Powerdown Control Register is set to 1.
It is therefore not necessary to stop the external clock since no power is wasted
while the external clock is running. If the external clock is to be stopped
anyway, it must be kept running for (at least) one additional cycle after the
IDLE instruction is executed.

The XTALDIS bit should always be set before entering powerdown. This
specifies that the XTAL pin is not to be driven by the processor. During
powerdown there is no need to drive the XTAL pin when an external oscillator
is used. Disabling the XTAL pin drive dunng powerdown lets the input clock
run without wasting power.

After the processor is taken out of the powerdown mode by either the
PWD pin or RESET, it will begin executing instructions after a maximum
start-up time of 100 CLKIN cycles as long as the clock oscillator is stable
and at the same frequency as before powerdown.

9-21

9-22

If the external clock is unstable when the processor exits powerdown, then
the XTALDELAY control bit can be used. This allows time for the external
clock to stabilize by inserting an additional 4096-cycle delay before the
processor starts to execute instructions. The start-up delay can only be used
when the processor is taken out of powerdown mode with the PWD pin.

If the processor is taken out of powerdown by RESET and the clock is stable
and at the same frequency as before powerdown, RESET needs to be held for
only 5 cycles.

9.7.4.2 Systems Using A Crystal And The Internal Oscillator

A trade-off can be made so that a fast start-up is possible, but power is
consumed by leaving the oscillator running during powerdown. If a fast
start-up is desired, then you must clear bits 14 (XTALDELAY) and 15
(XTALDIS) of the Powerdown Control Register to 0 before entering
powerdown. This selects no additional delay after start-up from powerdown
and drives the external crystal during powerdown. In this configuration, the
oscillator will continue to operate and the processor will start executing
instructions in less than 100 cycles after the low to high signal transition at
the PWD pin. The XTAL pin will also be driven and the powerdown power
consumption will be higher than the 1 mW specification. The following code
example shows the powerdown interrupt routine.

{ Sample Powerdown Code }
{ Located at interrupt vector address 0x002C }
pwd_int: ax0 = 0x0000; { enable crystal, no delay }
dm (OxX3FEF) = ax0;
idle;
rti;

If lowest possible power consumption is required, then you must set the
XTALDELAY and XTALDIS bits to 1 before entering powerdown. This selects
the additional 4096 cycle delay to allow the oscillator to start and the phase
locked loop to lock after start-up and disables the drive to the XTAL pin
during powerdown. The following code example shows the powerdown
interrupt routine.

{ Sample Powerdown Code }
{ Located at interrupt vector address 0x002C }
pwd_int: ax0 = 0xC000; { disable crystal, delay }
dm (0x3FEF) = ax0;
idle;
rti;

Depending on the particular situation and external system conditions, the
powerdown modes shown above could be set conditionally. If you want
to powerdown for a long time you may want to set the mode for lowest
power consumption. If you want to powerdown for a short time, lowest
power consumption may not be that important.

If the RESET pin is used to exit powerdown and the clock has been
stopped, then RESET must be held low for 1000 CLKIN cycles plus the
time required for the phase locked loop to lock and the crystal oscillator to
stabilize (typically 2000 CLKIN cycles.) If the clock is running during
powerdown, a R‘EYS‘ET signal of only 5 cycles is required.

9.75 Processor Operation During Powerdown

Some processor circuitry may still be active during powerdown mode. *
Also, some output pins remain active. A good understanding of these
states will allow you to determine the best low-power configuration for
your system. By keeping output loading and input switching to a
minimum the lowest possible power consumption can be achieved.

9.7.5.1 Interrupts And Flags

Interrupts are latched and can be serviced if the processor exits
powerdown without a context reset (PUCR=1). Any activity on the
interrupt or flag input pins during powerdown will increase the power
consumption. There should also be no resistive load on the flag output
pins (as with any active output pin) if lowest power is desired.

9.7.5.2 SPORTS

The circuitry of the serial ports is not directly affected by powerdown. The
SPORTs are indirectly affected if an internally generated SCLK or frame
sync is required. SPORT circuitry continues to operate during
powerdown.

It is possible to clock data into or out of the serial ports during
powerdown. You must supply an external serial clock to support
operation during powerdown. No interrupts or autobuffer operations will
be serviced during powerdown. Instead, the SPORT interrupts are latched
and can be serviced if the processor exits powerdown without resetting
the processor. Data clocked into the processor will remain in the receive
(RX) registers. Autobuffer transfers will occur after the device exits
powerdown if the processor is not powered up with RESET. Note that any
SPORT activity will increase the power consumption above the 1 mW
specification.

9-23

9-24

If an external serial clock and an external frame sync signal are supplied,
data can be clocked into the RX register or out of the TX register during
powerdown. Since the TX register can not be updated while the processor
is in powerdown, the same value is repeatedly clocked out the serial port.
Also, data in the RX register is continually overwritten since the RX
register can not be read by the processor during powerdown.

If an external serial clock is used with an internal frame sync, frame sync
signals continue to be generated during powerdown since they are
derived from the serial clock. Data bits continue to be received with the
RX register being overwritten. Since data is only transmitted when the TX
register is written, data bits are only transferred out of the processor if the
processor is put in powerdown during a serial port transfer. While the
processor is being put into powerdown, the serial port transfer in progress
is allowed to complete. Since an internally generated transmit frame sync
is used, no subsequent frame syncs are generated while in powerdown.

If internal serial clock is used, there is no SPORT activity during
powerdown; the serial clock stops.

Lowest power dissipation is achieved when active SPORT pins are not
changing during powerdown and are held at CMOS levels.

9.7.5.3 HIP During Powerdown _

The circuitry of the Host Interface Port (HIP) is not directly affected by
powerdown on the ADSP-2171 and ADSP-21msp58/59. The HIP is
indirectly affected since the processor, when in powerdown, is unable to
service interrupts or read and write HIP data registers. HIP circuitry
continues to operate during powerdown.

The host can write to the HIP register during powerdown but the
processor is disabled and cannot service interrupts. Instead, HIP
interrupts are latched and can be serviced if the processor exits
powerdown without a context reset (PUCR=1).

If the HDR overwrite bit (bit 7 in HSR?7) is cleared, a host acknowledge
signal will not be asserted until the processor has read data written by the
host. During powerdown, the processor is unable to read the data register
and the host acknowledge signal will not be asserted. Care must be taken
in a system where the host waits for a host acknowledge. In this case, it is
possible that the host will “hang” waiting for the acknowledge while the
DSP processor is in powerdown.

While in powerdown, the processor can be reset by writing the HSR
software reset bit. This will produce the same results as asserting the RESET
pin for five cycles (minimum RESET pulse) on the processor. If an external
crystal is used and the clock has been stopped, this reset duration is too
short; therefore software reset cannot be used in this mode. Note that any
HIP activity will increase the power consumption above the 1 mW
specification.

Two mode pins, HMDO and HMD]1, are used to put the processor’s HIP into
one of four possible modes. When HMDO = 1, the HIP data bus is
multiplexed for both address and data. In this case, the HIP data bus inputs
are active during powerdown and any bus activity will result in higher
power dissipation. Also, inputs must be at CMOS levels. If this host mode is
used and there is potential for the bus to be floating, pull-up resistors
should be used on the data lines. If you desire the host to communicate with
other devices on the bus while the DSP processor is in powerdown, HMDO
should be held low to avoid extra power to be dissipated. When the HIP is
put in other modes where data inputs are not active this is not a problem.

Lowest power dissipation is achieved when the HIP pins are not changing
during powerdown and are held at CMOS levels.

9.7.5.4 IDMA Port During Powerdown (ADSP-2181)

The IDMA port can receive data during powerdown, but it can not respond
with an acknowledge (TACK) signal or increment the IDMA internal
address. If you are using a short read or short write and are in the middle of
an IDMA transfer, you can complete a single read or write while the
processor is in powerdown. If you are using the long read or long write
method and are in the middle of an IDMA transfer, your host must be able
to handle a “timeout” condition, as the DSP will not return an acknowledge
to the transfer in process.

Note that IDMA activity while the DSP is in powerdown uses power and
should be avoided to conserve power. For more information on lowest
power use, see “Conditions For Lowest Power Consumption.”

9-25

9-26

9.7.5.5 BDMA Port During Powerdown (ADSP-2181)
Do not powerdown the ADSP-2181 during a BDMA transfer. If you do, the DSP
will not be able to recover correctly from powerdown and the contents of

memory accessed by the ADSP-2181’s BDMA port will be corrupted.

If you need to go into powerdown mode, either:

* Verify that the BWCOUNT register contains a zero. If a BDMA transfer is in
process, poll the BWCOUNT register to determine when the transfer is done.

or

¢ Abort any BDMA transfer in progress by writing 1 to the BWCOUNT
register and go into powerdown when the BWCOUNT register contains a
zero. (Note that the BDMA transfer is not properly completed in this case.)

9.7.5.6 Analog Interface (ADSP-21msp5x)

You must powerdown the ADSP-21msp58/59’s analog interface separately
from the processor, as described in the Analog Interface chapter of this manual.
The analog interface does not work during powerdown and causes additional
power to be dissipated if it is not disabled. The following code example shows
a powerdown interrupt routine for the ADSP-21msp58/59:

{ Sample Powerdown Code }

{ located at address 0x002C }

pwd_int: ax0 = 0x0000; {powerdown analog interface}
dm(0x3FEE) = ax0;
ax0 = 0x0000; {enable crystal, no delay}
dm (0x3FEF) = ax0;
NOP;
idle;
rti;

It takes three cycles for the analog interface to powerdown. The IDLE
instruction should not be executed before these three cycles have elapsed.

9.7.6 Conditions For Lowest Power Consumption
The state of all processor pins during powerdown is shown in Table 9.9.

To assure the lowest power consumption, all active input pins should be held
at a CMOS level. All active output pins should be free of resistive load since
load current will increase power dissipation. Some pins will be in one of

several states depending upon the connection of mode pins. For example,
the ADSP-2171’s HIP data bus pins may be either active or inactive
depending whether a host write is in progress or how the host mode pins
are connected. You must perform a careful analysis of each input and
output pin in order to insure lowest power dissipation.

Some inputs are active but ignored. The state of these inputs does not
matter as long as they are at a CMOS level.

Pin

RESET
PWD
RQ2
IRQE
IRQLO
IRQOLT
MMAP
BR

BG
CLKIN
CLKOUT
XTAL
PWDACK

ADDR<13:0>
DATA<23:0>
DATA<23:0>

SCLKO
SCLKO
TFS0
TFSO

RFSO
RFS0

DRO
DTO

Direction State During Powerdown

O~ 00000000 OoOoOoRQOHHHH=HH

o—o~

O)—I

I
@)

Active

Active

Active, latched but not serviced

(ADSP-2181) Active, latched but not serviced

(ADSP-2181) Active, latched but not serviced

(ADSP-2181) Active, latched but not serviced

Active

Active, no response until after powerdown

Driven HIGH unless bus is granted

Input buffer inactive, but XTAL oscillator is active unless XTALDIS bit is set
Driven HIGH

Driven HIGH if XTALDIS set, inversion of CLKIN otherwise
Driven HIGH

Driven HIGH, high impedance if bus granted

Driven HIGH, high impedance if bus granted

Driven HIGH, high impedance if bus granted

(ADSP-2181) Driven HIGH, high impedance if bus granted
(ADSP-2181) Driven HIGH, high impedance if bus granted
Driven HIGH, high impedance if bus granted

Driven HIGH, high impedance if bus granted

High impedance

Inactive

High impedance

Active

Driven to static level if internal, high impedance otherwise

Active if SPORT 0 is enabled

Driven if configured internal or in multichannel mode and SPORT 0
enabled, high impedance otherwise

Active if SPORT 0 is enabled

Driven if configured internal and SPORT 0 enabled, high impedance
otherwise

Active if SPORT 0 is enabled

Driven if serial port operating. Output may be static or changing depending
upon serial clock, high impedance otherwise

Table 9.9 Pin States During Powerdown (cont. on next page)

9-27

Pin Direction State During Powerdown

SCLK1
SCLK1

TFS1/IRQT
TFS1

RFS1/IRQ0
RFS1

DR1/FLAGIN
DT1/FLAGOUT

FL<2:0>
PF<7:0>

BMODE

TIRD
TWR
s
IAL
IAD
TACK

HSIZE

HMDO

HMD1

HSEL

HRD

HWR
HADR<2:0>
HDATA<15:0>

HDATA<15:0>
HACK

VIN (NORM)
VIN (AUX)
VFB (NORM)
VFB (AUX)
vouTP
VOUTN
VREF

I
O
I
O

I
(@)
I
O

00000~ 00

Active

Driven to a static level if internal, high impedance otherwise

Active if SPORT 1 is enabled or configured alternate (TRQT)

Driven if SPORT 1 is enabled and configured for internal transmit frammg,
high impedance otherwise

Active if SPORT 1 is enabled or configured alternate (TRQO0)

Driven if SPORT 1 is enabled and configured for internal receive framing,
high impedance otherwise

Active if SPORT 1 is enabled or configured alternate (FLAGIN)

Driven if serial port operating. Output may be static or changing depending
upon serial clock. Driven if SPORT 1 is enabled or configured alternate
(FLAGOUT)

Driven to previous value
(ADSP-2181) Active

Active

(ADSP-2181) Active, if IS asserted

(ADSP-2181) Active, if IS asserted

(ADSP-2181) Active

(ADSP-2181) Active, if IS asserted

(ADSP-2181) Active, if an operation in progress
(ADSP-2181) Active

(ADSP-2171, ADSP-21mspb5x) Active

(ADSP-2171, ADSP-21msp5x) Active .

(ADSP-2171, ADSP-21msp5x) Active

(ADSP-2171, ADSP-21msp5x) Active

(ADSP-2171, ADSP-21msp5x) Active

(ADSP-2171, ADSP-21mspbx) Active

(ADSP-2171, ADSP-21msp5x) Active

(ADSP-2171, ADSP-21msp5x) Active if host writing or HMD1 and
HA2/HALE HIGH, inactive otherwise

(ADSP-2171, ADSP-21msp5x) Driven if host reachng, high impedance otherwi
(ADSP-2171, ADSP-21msp5x) Driven

(ADSP-21msp5x) Inactive, set analog powerdown bit
(ADSP-21mspbx) Inactive, set analog powerdown bit
(ADSP-21msp5x) Inactive, set analog powerdown bit
(ADSP-21mspbx) Inactive, set analog powerdown bit
(ADSP-21msp5x) Driven low in powerdown
(ADSP-21msp5x) Driven low in powerdown
(ADSP-21mspbx) Reference turned off

Table 9.9 Pin States During Powerdown

9-28

9.7.7 PWDACK Pin

The powerdown acknowledge pin (PWDACK) is an output that indicates
when the processor is powered down. This pin is driven high by the
processor when it has powered down and is driven low when the
processor has completed its powerup sequence. A low level on the
PWDACK pin also indicates that there is a valid CLKOUT signal and that
instruction execution has begun. Figure 9.7 shows an example of timing
for the powerdown and restart sequence.

The processor is executing code when the PWD pin is brought low. The
Pprocessor vectors to the powerdown interrupt vector and an IDLE
instruction is executed causing the processor to go into powerdown. The
CLKOUT and PWDACK signals are driven high by the processor. At this
point, the input clock pin is ignored. If the processor is put into the
powerdown mode via the powerdown force bit in the powerdown control
register, the result is the same as described above.

The input clock is started and the PWD pin is brought high. After the
necessary start-up cycles the processor brings the PWDACK output low,
begins driving the CLKOUT pin with a clock signal and begins to fetch the
instruction after the IDLE instruction. The processor then resumes normal
operation.

cuan JULTUTUTULTUTLTLTLNNGRR- - - LT - Uy
7 A — R E

PWDACK | T aihll N
CLKOUT JUUiuu T T IJ'LI'LI'II

— RUN —>|<- PWRDWN —>|<— POWERED —>|<— START CLK—>|<— RUN —
PENDING DOWN

EXECUTE IDLE —»| FINISH IDLE —| |-

NOP WHILE FETCHING INSTRUCTION FOLLOWING IDLE —>| |-<-—

Figure 9.7 Powerdown Timing Example

9-29

9-30

When powerdown is terminated with the RESET pin or if a start-up delay
is selected, a low level on the PWDACK pin only indicates the start of
oscillations on the CLKOUT pin. It will not necessarily indicate the start of
instruction execution.

The state of PWDACK and also the CLKOUT signal is undefined during
the first 100 cycles of initial reset.

9.7.8 Using Powerdown As A Non-Maskable Interrupt

The powerdown interrupt is never masked. It is possible to use this
interrupt for other purposes if desired. The processor will not go into
powerdown until an IDLE instruction is executed. If an RTI is executed
before the IDLE instruction, then the processor returns from the
powerdown interrupt and the powerdown sequence is aborted.

It is possible to place a series of instructions at the powerdown interrupt
vector location 0x002C. This routine should end with an RTI instruction
and not contain an IDLE instruction if the interrupt is to be used for
purposes other than powerdown.

Memory Interface

10.1 OVERVIEW

The ADSP-2100 family has a modified Harvard architecture in which data
memory stores data and program memory stores both instructions and
data. Each processor contains on-chip RAM and/or ROM, so that a
portion of the program memory space and a portion of the data memory
space reside on-chip. Each processor (except the ADSP-2181) also has a
boot memory space in addition to the data and program spaces. The
ADSP-2181 has a byte memory space instead of the boot memory space.
The boot memory space and byte memory space can be used to load on-
chip program memory with code from an external EPROM at reset.

In each ADSP-2100 family device, memory is connected with the internal
functional units by four on-chip buses: the data memory address bus
(DMA), data memory data bus (DMD), program memory address bus
(PMA), and program memory data bus (PMD). The internal PMA bus and
DMA bus are multiplexed into a single address bus which is extended off-
chip. Likewise, the internal PMD bus and DMD bus are multiplexed into a
single external data bus. The sixteen MSBs of the external data bus are
used as the DMD bus: external bus lines D,, , are used for DMD,, .

There are three separate memory spaces: data memory, program memory
and boot (or byte) memory. The PMS, DMS, and BMS signals indicate
which memory space is being accessed. Because the program memory and
data memory buses are multiplexed off-chip, if more than one external
transfer must be made in the same instruction there will be an overhead
cycle required. There is no overhead if just one off-chip access (with no
wait states) occurs in any instruction. Figure 10.1 shows the external
memory buses and control signals (for all ADSP-21xx processors except
the ADSP-2181).

All external memories may have automatic wait state generation
associated with them. The number of wait states—each equal to one
instruction cycle—is programmable.

10-1

This chapter includes example timing diagrams for the memory interfaces
of the ADSP-21xx processors. For each bus transaction, only the sequence
of events is described; you must consult the processor data sheets for

actual timing parameters. All timing diagrams use CLKOUT as a

reference, which indicates the instruction execution rate.

The memory interfaces of the ADSP-2181 are described separately in th

second half this chapter.

1x CLOCK

Y

or

CRYSTAL [* XTAL

10-2

ADSP-21xx

CLKIN ADDR3.0

<4— CLKOUT DATA23~0

SPORT 1

SERIAL
DEVICE

(OPTIONAL)

SCLK1

RFS1 or IRQO
TFS1 or IRQ1
DT1 or FO
DR1 or Fi

Yvyy

AAAA

Y

SPORT 0

SERIAL
DEVICE

(OPTIONAL)

SCLKO
RFS0
TFSO

DTO
DRO

YVvYy

AAAA

A 4

BMS

PMS
DMS

—>

NOTES

1. Applies to all ADSP-21xx processors except ADSP-2181.
2. ADSP-2171 and ADSP-21msp58/59 use a 1/2x CLKIN signal.

3. Unused data bus lines may be left floating.

4. The two MSBs of the data bus (D23-22) are used to supply the two MSBs of the
boot memory EPROM address. This is only required for the 27256 and 27512.

Figure 10.1 ADSP-21xx System With External Memory

14 | || P30
$ |) ADDR BOOT
ﬁ-}p MEMORY
24 Dis.8
K=Z— B K———){paTA e.g. EPROM
_ 2764
— — »|OE 27128
27256
| »|cs 27512
] A1a0
— ___r_—i) ADDR oo oam
—22MoatA MEMORY
@ > %EE (OPTIONAL)
| A3
— Dﬁ ADDR DATA
(}ﬁi) DATA MEMORY
— &
— 1 »| OE
o >|We PERIPHERALS
" R (OPTIONAL)
</ ‘\/

102 PROGRAM MEMORY INTERFACE

This section describes the program memory interface of all ADSP-21xx
processors except the ADSP-2181.

The processors address 16K of 24-bit wide program memory, up to 2K
on-chip and the remainder external, using the control lines shown in
Figure 10.1. The processors supply a 14-bit address on