P

M

S Reference (C,

’

User

Document
History

EDITION PART NUMBER DATE

Preliminary Edition 690-23414-001A February 1990

First Edition 690-23414-001 April 1990
Second Edition 690-23414-002 March 1991

Copyright
Notice

Manual Portions Copyright © 1990, 1991 Altos Computer Systems.

Manual Portions Copyright © 1989 ATAT.

Manual Portions Copyright © 1980, 1981, 1982, 1983, 1984, 1985, 1986,
1987, 1988, 1989 Microsoft Corporation.

Manual Portions Copyright © 1983, 1984, 1985, 1986, 1987, 1988, 1989
The Santa Cruz Operation, Inc.

All rights reserved. Printed in U.S.A.

Unless you request and receive written permission from Altos Computer
Systems, you may not copy any part of this document or the software you
received, except in the normal use of the software or to make a backup
copy of each diskette you received.

Trademarks

The Altos logo, as it appears in this manual, is & registered trademark of
Altos Computer Systems.

386 and 486 are trademarks of Intet Corporation.
“ACER Fast Flle System” is a trademark of ACER Technologies
Corporation.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft
Corporation.

PostScript Is a registered trademark of Adobe Systems, Inc.
UNIX Is & registered trademark of UNIX System Laboratories, Inc.

Limitations

Altos Computer Systems reserves the right to make changes to the product
described in this manual at any time and without notice. Neither Altos nor its
suppliers make any warranty with respect to the accuracy of the information
in this manual.

GUIDE TO YOUR ALTOS UNIX® SYSTEM V/386
RELEASE 3.2 DOCUMENTATION

RUN-TIME SYSTEM

These books come with every system:

i

¥ [+ g

installation Guide

Part Number: 690-24096-nnn

e Operating System installation
Upgrade procedure

System Administrator’s
Guide

Part Number: 690-23415-nnn
* Sysadmsh

* Security

* System tuning, troubleshooting
* Peripherals

¢ Virtual Disks

User's Guide

Part Number: 690-23408-nnn
* Vi, ed, mail, awk, sed

* Shells: sh and csh

* Job scheduling commands

User's Reference (C, M, F)

Part Number: 690-23414-nnn

(also provided online with each

operating system)

* (C) Commands

* (M) Miscellaneous files and
commands

¢ (F) File formats

System Administrator’s

Reference (ADM, HW)

Part Number: 690-23416-nnn

(also provided online with each

operating system)

* (ADM) Administrative
commands

* (HW) Hardware information

These books may be ordered separately:

(4[4

Using the AOM

Menu System

Part Numbers: 620-23814-nnn

* Fasy-to-use menus fo use
programs

* Menu manager fo add,
update, remove menus

Tutorial

Part Number: 690-23407-nnn

* Basic concepts and tasks
Files and directories

* Utilities

International Operating

System Guide

Part Number: 690-23810-nnn

¢ Character sets

* 7-bit vs. 8-bit characters

DEVELOPMENT SYSTEM
Set Part Number: 690-23417-000

Programmer’s Reference

(CP,S)

¢ (CP) Programming commands

* (S) System services, library
routines

Programmer’s Guide

e Lex, lint, yacc

* SCCS, make

» Extended Terminal
Interface (ET

e Sdb, adb

® Shared libraries

» File and record locking

C Language Guide
» C User's Guide
e C Language Reference

Library Guide

® C Library Guide

¢ XENIX Development and
Portability Guide

¢ Intermational Development
Guide

Developer’s Guide

¢ DCS and 0O§/2 Development
Guide

e STREAMS Primer

* STREAMS Programmer’s Guide

* STREAMS Network
Programmer’s Guide

CodeView and Macro
Assembler User's Guide

* The CodeView Debugger

* Macro Assembler User’s Guide

Device Driver Writer's Guide

« Writing, compiling. and linking
drivers

e SCSI drivers

¢ STREAMS and line disciplines

* (K) Kernel routines

To order any of the above manuals, call 408/434-6688, ext. 3004 and give the
manud title and part number.

Operating System Documents
for Different Audiences

As shown on the previous page, Altos offers many manuals with Altos UNIX System V—the manu-
als you receive will depend on your configuration. To help you decide which manuals are best
suited to your needs, we have listed below the manuals according to three broad groups of users.

These lists are only suggested starting points in your search for information. They are not meant to
imply that certain users should not read certain manuals. Find the user group that best applies to
you, and use its list of manuals as a starting point for your reading, from which you can move on to
other manuals.

Note that every Run-time System includes five manuals: the Installation Guide, the User’s Guide,
the User’s Reference, the System Administrator’s Guide, and the System Administrator’s Refer-
ence. The Run-time System reference pages that describe the C, M, F, ADM, and HW commands
(‘“man pages’’) are provided online as'well. If you have the Development System, all manuals
listed under ‘‘For Programmers:’’ come with your operating system. (All Development System
reference pages are also provided online.) To order additional manuals, cali (408) 434-6688, exten-
sion 3004 and give the manual title and part number.

For General Users (especially Beginners):
Tutorial

User’s Guide

User’s Reference (C, M, F)

Using the AOM Menu System

For System Administrators (and Advanced Users):
Installation Guide

System Administrator’s Guide

System Administrator’s Reference (ADM, HW)
International Operating System Guide

Programmer’s Reference (CP, S)

For Programmers:

Programmer’s Guide

Programmer’s Reference (CP, S)

C Language Guide

Library Guide

Developer’s Guide

CodeView and Macro Assembler User’s Guide
Device Driver Writer’s Guide

Preface

Throughout the documentation, a given command, routine, or file is
referred to by its name and a section (in parentheses). For example, the
programming command cc, is listed as cc (CP), which indicates that cc is
described in the Programming Commands (CP) section.

There is a total of twelve reference sections in Altos UNIX System V, in
different volumes of the Operating System and the Development System
documents. (These reference sections are often called manual pages, or
just man pages, in short.) For example, the cc(CP) command mentioned
above is located in the CP section found in the Programmer’s Reference .

This document, the User’s Reference (C, M, F), contains the following
three reference sections:

Section Description Volume

C Commands - used with the User’s Reference
Operating System.

M Miscellaneous - information used User’s Reference
for access to devices, system
maintenance, and communi-
cations.

F File Formats - description of User’s Reference
various system files not defined in
section M.

The following table lists the remaining reference sections, the type of
commands they contain, and in which document each is located.

Section

Description

Volume

ADM

Cp

DOS

HW

NSL

STR
XNX

Administrative Commands - used
for system administration.

Programming Commands - used
with the Development System.

DOS Cross-development
subroutines and libraries

Hardware device manual pages -
information about hardware
devices and device nodes.

Kernel routines - used for writing
device drivers.

Network Services Library - used
with the STREAMS System.

System Calls and Library
Routines - available for C and

assembly language programming.

STREAMS manual pages

XENIX cross-development
manual pages

System Administrator’s
Reference

Programmer’s Reference

Developer’s Guide

System Administrator’s
Reference

Device Driver Writer’s
Guide

Developer’s Guide
Programmer’s Reference

Developer’s Guide

Library Guide

The alphabetized table of contents following this preface lists all Altos
UNIX System V commands, system calls, library routines, and file
formats. In addition, in the front of each individual reference section there
is an alphabetized list of all the manual pages contained in that section.

The permuted index, found at the end of the User's Reference, and the
end of the Programmer's Reference, is useful in matching a desired task
with the manual page that describes it. It too is an organized list of all
Altos UNIX System V commands, system calls, library routines, and file
formats, but organized according to function, not alphabetically.

Note that some pages in the Operating System documents refer to
““include’’ files that are actually part of the Development System.

Alphabetized List

Commands, Systems Calls, Library Routines and File Formats

300 .. 300(C) L1 o A assert(S)
11 4014(C) aSSIGN ..cccrevriieircncnns assign(C)
450 e 450(C) P 1), SRR asx(CP)
86rel ..o, 86rel(F) S at(C)
_eXIt et exit(S) F:1 71 | O trig (S)
2 1011 | AR a.out(F) atan2coccevveeeneennennnnn trig(S)
abdl ... a641(S) atcronsh atcronsh(ADM)
F:1071) o A abort(S) atofccoceveveeernreeeneenenes atof (S)
ADS vt abs(S) atof ..o strtod(S)
acceptco..n... accept (ADM) P21 71 SOOI atof (S)
ACCESS .eveverrrerrereraerrane access(S) F>171) (RO strtol(S)
ACCL e acct(ADM) atolcooeveeercneevrnenennnni. @LOf(S)
ACCE et acct(F) E:1 (1] [S strtol(S)
ACCL neeneereeeeerecreeenane acct(S) auditcoeeeeennen. audit(ADM)
acctcms acctcms (ADM) auditemd auditcmd (ADM)
acctcom acctcom (ADM) auditd auditd(ADM)
acctdisk acct(ADM) auditsh auditsh(ADM)
acctdusg acct(ADM) authcap authcap (F)
acctmerg acctmerg (ADM) authck authck (ADM)
acctonoeeveeenee acct(ADM) authscccceeiveeeenene auths(C)
accton accton(ADM) authsh authsh(ADM)
acetpre ... acctprc (ADM) authsh authtsh(ADM)
acctprel acctprc (ADM) autoboot autoboot(ADM)
acctpre? acctprc (ADM) AWK e awk(C)
acctsh acctsh(ADM) backup backup (ADM)
acctwtmp acct(ADM) backupsh backupsh(ADM)
acos trig (S) badtrk badtrk(ADM)
adb ..., adb(CP) bannercceeeee banner(C)
add.vd add.vd(ADM) basename basename(C)
addxusers addxusers(ADM) batch . at(C)
adfmt adfmt(ADM) be .. bc(C)
admin admin(CP) bcheckre brc(ADM)
alarmcccoeveveennnes alarm(S) DAIff ..o bdif(C)
E:T4) 1) SOOI aom(M) bdoS ... bdos(DOS)
) ol ar(CP) besselccoceeireeennans bessel(S)
F:) OO ar(F) bfs bfs(C)
archivecocuuen. archive (F) 17171 A boot(HW)
10 | SRR ascii(M) 1) o SN brc(ADM)
asctimecoceeveneneee ctime (S) 1) o SO sbrk(S)
F: 131 1 S trig (S) brket] ..., brkctl (S)

asktime asktime (ADM) bsearch bsearch(S)

cal .. cal(C)
calendar calendar (C)
(211 (17 malloc(S)
cancel Ip(C)
captoinfo captoinfo (ADM)
card_info card_info(F)
[| R cat(C)
cb cb(CP)
CC ceereerncensenresseaneeresnnnenes cc(CP)
i OO cd(C)
CdC .o cdc(CP)
cdromcceeeuueee cdrom(HW)
(V77| SO Jfloor(S)
cfloweeevereennee cflow(CP)
CEeLS cueereneeerenanne cgets (DOS)
chargefee acctsh(ADM)
chdircccovvvverrvreennnne. chdir(S)
checkaddr .. checkaddr(ADM)
checklist checklist (F)
checkmail checkmail (C)
checkque checkque (ADM)
checkup checkup (ADM)
chg_audit ... chg_audit(ADM)
chgrp ... chgrp(C)
chmod chmod(C)
chmod chmod(S)
chown chown(C)
chown chown(S)
chroot chroot(ADM)
chrootcceeuenen. chroot(S)
chrtblooeeenee. chrtbl(M)
chsizeoune.... chsize(S)
ckpacct acctsh(ADM)
cleantmp cleantmp (ADM)
clearoveveeerenene. clear(C)
clearerr ferror(S)
T3 (174) . clock(F)
clock ... clock(S)
closeccoeveeveerriereennne close(S)
cloneccoeereeenen. clone(M)
closedir directory (S)
(3 1y S clri(ADM)
cmchk ..., cmchk(C)
CIMOS ..coveeerrereerneane cmos(HW)
CINP coeiereerencereresensanans cmp(C)
col col(C)

colthlccun..n. COltBI (M)
combccercreennree comb(CP)
COMMceenrerrerennnns comm(C)
compress compress(C)
configure configure(ADM)
consoleccuue. console (M)
consoleprint. consoleprint(ADM)
CONY ...ccveerereminrensaeressnens conv(S)
convkey mapkey (M)
(1071, O copy(C)
core core(F)
cos trig(S)
cosh sinh(S)
cp cp(C)
CPIO .overerrerrreireeenerenanne cpio(C)
CPIO e cpio(F)
cpp cpp(CP)
cprintf cprintgf (DOS)
CPULSovvencnirnnne cputs(DOS)
crashcoceeeeene crash(ADM)
Creatocccceveeereeserenne creat(S)
creatsem creatsem(S)
[{5 T cref(CP)
CIOMcovveeeeencneneneanes cron(C)
"crontab" "crontab” (C)
10 ') 11 OO crypt(C)
cscanfcevenene cscanf(DOS)
csh csh(C)
(] 1) 11 OO csplit(C)
CLAZS ..cvcverenrnernaeracnnns ctags(CP)
ctermid ctermid (S)
ctimecooeeveeeecevennae ctime (S)
1444+ ctype(S)
CU coveeereerennne cu(C)
CUTSES .cevereneeermeraasnenee curses(S)
curtbl ... curtbl(M)
cuseridcoeveeenen. cuserid(S)
custom custom (ADM)
cut . cut(C)
cvtcoffoovrnennnns cvicoff(M)
cvtomf cvtomf (M)
(64 = cxref (CP)
daemon.mn daemon.mn(M)
date date(C)
dbmbuild dbmbuild(ADM)
dbminitcccccecvvenennne dbm(S)

dc dc(C)

dCOpY .ccovvrevenranes dcopy (ADM)
dd ... dad(C)
deassign assign(C)
default default (F)
defopen defopen(S)
defread defopen(S)
deletecoeervvecevereenne abm(S)
deliver deliver (ADM)
deltaoovvrrervernnnee delta(CP)
delvd del.vd(ADM)
devicesccovureneeee devices (F)
devnmccoevenene devnm(C)
daf df(C)
dialccccovrveeniennne dial(ADM)
dial ..o dial(S)
dialcodes dialcodes (F)
dialerscccereuunee dialers (F)

diff oo dif(C)
(517 K 2O dif3(C)
(511 U dir(F)
dircmp ... dircmp (C)
directory directory (S)
direntccoceurrrerunenn dirent (F)
dirname dirname (C)

disable disable (C)
diskempcccccevuneene. diskcp (C)
(11T T 1 J diskcp (C)
diskusg diskusg (ADM)
displayc....... display (HW)
displaypkg . displaypkg (ADM)
divvy .o, divvy (ADM)
dlayout dlayout (ADM)
divr_audit .. dlvr_audit(ADM)
dmesgccceunee dmesg(ADM)
dodisk acctsh(ADM)
AOS conevrereeerrerreeeeneens dos(C)
doscatc.ocererereerennene dos(C)
i [17:71] + RO dos(C)
dosdircooeereieinerenne dos(C)
dosexterr dosexter (DOS)
dosformat dos(C)
dosldccceevveveeenenne dosld(CP)
dOSISooveneerreerenireeeene dos(C)
dosmkdir dos(C)
dosrmc.cccocivennnrennanens dos(C)

dosrmdircceueneene dos(C)
dparam dparam(ADM)
drand4s drand48(S)
dtox dtox(C)
dtype ...ccoorvennrrenennes dtype (C)
du ... du(C)
dumpdir dumpdir(C)
dup dup(S)
L1111 17O dup(S)
€Cho ... echo(C)
ecvt ecvt(S)
ed ed(C)
edataccoeeeeereerneennens end(S)
editcceeeereiunnnne ex(C)
[0 (2 1 SN grep(C)
enablecceceeeeennne enable(C)
end end(S)
endgrent getgrent (S)
endpwent getpwent (S)
endutentcccocenuee. getut (S)
ENV ...oeerereeerncneereeneranes env(C)
ENVironc... environ(M)
(717 SO eof (DOS)
erand4s drand48(S)
.................................... erf(S)
.................. erf(S)

perror(S)

error(M)

................................ end(S)
ev_block ev_block(S)
ev_close ev_close(S)
ev_count ev_count(S)
ev_flush ... ev_flush(S)
ev_getdev ev_getdev (S)
ev_getemask ev_gtemsk(S)
ev_gindev ev_gindev(S)
ev_init ..., ev_init (S)
eV_Openueene ev_open(S)
eV_POP .corrrernnnnnene ev_pop(S)
ev_read ... ev_read(S)
ev_resume ev_resume(S)
ev_setemask ev_stemsk(S)
ev_suspend ev_susp(S)
ex ex(C)
eXeCl ..overeeereeneeeeienne exec (S)
execleooveereiernrinennne exec(S)

iii

execlp ..o exec(S)

€XeCSegceveruerereenns execseg (S)
EXECYV ..uvvrrrererrerrrerenesarnns exec(S)
EXECVE ..oveuerrevrernerensanenes exec(S)
(9 (11 1 OO exec(S)
[, {1 A exit (DOS)
exit exit (S)
exp exp(S)
EXPL ..coveerenrereeneeeenens expr(C)
fabs floor(S)
factorccoeveeneene Jactor(C)
falsecoceeveeeerereereenenen false(C)
fclosecveueee. fclose (DOS)
fcloseooeeeveeecrenennne felose(S)
fcloseall fclose (DOS)
fconvert fconvert (M)
fentl ..., Jfentl (M)
fentl ... fentl(S)
FOVE ot ecvt(S)
fd JA(HW)
fdiskcecouens.. fdisk (ADM)
fdopenccoverennen. fopen(S)
fdswap Jfdswap (ADM)
feof ..o, ferror(S)
ferrorccovvevreenncne. Serror(S)
fetch ...ccoovvverrrncraenne dbm(S)
filushcccoeerrrnencnnn. fclose (S)
701517 fgetc (DOS)
fgete e getc(S)
fgetchar Jfgetc (DOS)
fgets .ocvveecreecernicnren gets(S)
12 ¢« JO grep(C)
file oo file(C)
filehdrccoevveueeeee filehdr (F)
filelength fileleng (DOS)
filenocceveurueee. ferror(S)
fileSysccoeeererererrennns filesys (F)
filesystem filesystem (F)
find oo find(C)
fingercccocvrvcnenne finger(C)
firstkeycccoeveeeneeencs dabm(S)
fixhdrcovveernnene Jixhdr(C)
fixperm Sixperm(ADM)
1 [171) R floor(S)
flushall Sflushall(DOS)
fmod ... floor(S)

iv

fopenccvveveeiveceenne fopen(S)
fork ...coooerereecrenrnneenerrnnens fork(S)
format format (C)
fp_off..........c...... Jp_seg(DOS)
fp_seg .ovevereuenee Jfp_seg (DOS)
fprintfeinnnne printf(S)
fputcccoevcennnne Jputc (DOS)
1111 (OO putc(S)
fputchar Jfputc (DOS)
1111 £ TR puts(S)
freadccoevevervecanene fread(S)
freecocvieveveerererenrnnes malloc(S)
freopenccoeeueenni fopen(S)
frexp ..coovvveerrecrecrnecennes frexp(S)
fSave ...ccocevveccienenns fsave (ADM)
fscanfcccoereveevecnnnne scanf(S)
FSCK overererecvrncnerinnee fsck(ADM)
£ |1 fsdb(ADM)
fSeeKoveerererrareennncarenns Jfseek(S)
fsname Jfsname (ADM)
fSPeC ...coeveeerreerrneenraanes Sspec(F)
fsphoto fsphoto(ADM)
fsstatccccevvnenene fsstat (ADM)
17 | A stat(S)
fstatfs ...ovvvveereerercenenne. statfs (S)
§ £71) + SOOI fstyp(ADM)
ftell fseek (S)
ftimecccoooeveveienrccnnanne time(S)
1{11) . QO stdipc(S)
fEW coverrererene Jiw(S)
fuserovervevevennenene Sfuser(C)
fwritecceeveeeeeenene fread(S)
fwtmpcccoeneee fwtmp (ADM)
1 5:4) 1 VRO xlist (S)
€ammacoocevneeee gamma(S)
ECVE ecreerrnenenrernaennnes ecvt (S)
'L AU get(CP)
73 (R getc(S)
getchcocveveeneee. getch(DOS)
getcharcoccveeuennneee getc(S)
getche getche (DOS)
getelk ... getclk (M)
getewdocninnen. getcwd (S)
getdents getdents (S)
- getegidcocovuceeen. getuid(S)
getenvceeceeeeee getenv (S)

geteuidocoeveenne getuid(S)

getgidcccceernrnnee. getuid(S)
getgrer.n getgrent (S)
getgrgid getgrent (S)
getgrnam ... getgrent (S)
gethostid gethostid(S)
getkernelid getsystemid (S)
getlogin getlogin(S)
getoptc.cceveveeenneces getopt (C)
getopt ..o getopt(S)
getoptevt ... getopts (C)
getoptsccoeee... getopts (C)
getpassccccevevenenes getpass (S)
getpgrp getpid(S)
getplq getpid(S)
getppid ... getpid(S)
ZetPW .. getpw(S)
getpwent getpwent (S)
getpwnam getpwent (S)
getpwuid getpwent (S)
ge:s gets((gg
BetS oicrcereeceneieens gets

getsystemid getsystemid (S)
P03 1 3OO getty M)
"gett.ydefs" "gettydefs " (F)
getuidcoeeevennenene getuid(S)
P73 11 S getut (S)
ge:u:.e(xilt getut Eg;
getutidcoeoeeveennnnene getut

getutline getut (S)
getv!' getc(S)
gmtime ... ctime (S)
goodpw goodpw(ADM)
EPS eorreeerrrecaeeenseeneas gps(F)
graph ... graph(ADM)
greekocoevereenenenne greek(C)
14 4 + SOV grep(C)
P14 (1)1) + OOt group(F)
grpcheck grpcheck(C)
gsignalooccvenene ssignal (S)
haltsys haltsys (ADM)
hashcheck spell(C)
hashmake spell(C)
hcreate hsearch(S)
hd e hd(C)
hd e hd(HW)

hdestroy hsearch(S)
hdr ... hdr(CP)
hdutil hdutil(ADM)
headocovevvvreeernns head(C)
hellocueveerecrerecieerenns hello(C)
help .o help (CP)
hostidccoeeveerecrenne hostid(C)
NP e hp(C)
BS e hs(F)
hsearch hsearch(S)
hwconfig hwconfig(C)
hypotocvreneencee hypot (S)
i286emul i286emul (C)
: id(C)
idaddld idaddld(ADM)
idbuild idbuild(ADM)
idcheck idcheck (ADM)
idinstall idinstall(ADM)
idleout idleout (ADM)
idload idload(ADM)
idmemtune . idmemtune (ADM)
idmkinit idmkinit (ADM)
idspace idspace (ADM)
idtune idtune (ADM)
imacct ..o imacct (C)
infocmp infocmp (ADM)
11111 SRR init(M)
11111 AR init(M)
initcond initcond (ADM)
inittab (F)

...... inode (F)

inp(DOS)

install install (ADM)
installpkg installpkg (ADM)
int86ccoevvemnnn. int86 (DOS)
int86xccouene. int86x (DOS)
intdos ... intdos (DOS)
intdosx intdosx (DOS)
integrity integrity (ADM)
(177 1 L ioctl(S)
ipcrm ... ipcrm(ADM)
IPCS oornieccaccnecnenn ipcs(ADM)
IPS covveeeeierrersnecennaenns ips(ADM)

isalphacoueuee..... ctype(S)

LT 171 | ctype (S)
iSatty ...coeeevvenernenn. isatty (DOS)
isattyccoeeveeeneen ttyname (S)
ISDS et ips(ADM)
isentrl ... ctype(S)
1171 1721 OO ctype(S)
isgraphccccouuee..... ctype(S)
islowercou...... ctype(S)
11311 1) QR ismpx (C)
isprintcocecveeenennes ctype(S)
ispunct ctype(S)
1) 1 1! OO ctype(S)
YTT] 1 [issue(F)
isupperccoevvnenee. ctype(S)
isverifyooeeveeee isverify (M)
iSXdigitccoerererennnens ctype(S)
11717 S itoa(DOS)
JO bessel(S)
j1 bessel(S)
Jagentoenene. Jjagent(M)
M e bessel (S)
JOIN e, Jjoin(C)
jrand48 drand48(S)
jtermovneeiieninne Jjterm(C)
JWIN (e Jjwin(C)
kbhitccooeeerirenene kbhit (DOS)
kbmode kbmode (ADM)
keyboard keyboard (HW)
Kill oo kill (C)
Kill ooceornereececreeneneennnnnas kill (S)
killall killall (ADM)
kmemccoccervrererennne mem(F)
ksh ..., ksh(C)
L e vene s I(C)
13tol ... Btol(S)
164a . a641(S)
labelit labelit (ADM)
1abs ... labs (DOS)
langinfo langinfo(F)
| 2T last(C)
lastlogin acctsh(ADM)
1ayerscoeeerieneenne layers (C)
layerscceencrnnne layers(M)
Ic Ic(C)
lcong48 drand48(S)

Mo 1d(CP)
Id e ld(M)
11154 1 S OSOn frexp(S)
ldfen ... Ildfen (F)
Idfen ... ldfen(F)
IeX e lex (CP)
Hind ... Isearch (S)
Limitscooocveveveereennaene limits (F)
11 1 1 line(C)
linenum linenum (F)
linkcovierieennne link(ADM)
1111 RO link (S)
link_unix link_unix (ADM)
| 1111 OO OR lint (CP)
BSt ooveereccnrennnnnens list (ADM)
IN e In(C)
localecceeuveeennen. locale (M)
localtime ctime (S)
| 11741 RN lock (C)
10CK ...overeeensreeneene lock(S)
lockf ..o lockf(S)
lockingccccceenee. locking (S)
108 e exp(S)
10g .oeeerereecrrreeecnerenaes log(M)
10810 ..oeniereneenenes exp(S)
Iogin ..o login(M)
logname logname (C)
logname logname (S)
108S oo logs(F)
longjmpoconeeeen. setjmp (S)
lorder lorder (CP)
Ip Ip(C)
|+ OO Ip(HW)
1p0 Ip(HW)
Ipadmin Ipadmin(ADM)
Ipfilter ipfilter (ADM)
Ipforms Ipforms (ADM)
Ipmove Ipsched (ADM)
Iprintcovvvverennes Iprint (C)
Ipsched Ipsched (ADM)
Ipsh ..iieinees Ipsh(ADM)
Ipshut Ipsched (ADM)
Ipstatocevveveeincnnn Ipstat (C)
Ipusers Ipusers (ADM)
Irand4s8 drand48(S)
Is .. Is(C)

Isearchccuueneee Isearch(S)

Iseekccceveververvecrennne Iseek (S)
Itoacoevuvererrnnne ltoa(DOS)
| 111) K S BBtol (S)
111 S m4(CP)
machid machid(C)
machine machine (HW)
mailcoocvervrrrrnreernnes mail(C)

maildelivery .. maildelivery (F)

majorsinuse. majorsinuse (ADM)

makeccocrvevecerenne make (CP)
makekey makekey (ADM)
mallocccruennneen. malloc(S)
11111 | SRR man(C)
mapchan mapchan(F)
mapchan mapchan(M)
mapkeycoeuene mapkey (M)
mapscrn mapkey (M)
Mapstrceoeeeeeee mapkey (M)
Masmccoeceveerueneen masm(CP)
mathccooevvveiennnn. math(M)
matherr matherr(S)
maxuuscheds . maxuuscheds (F)
maxuuxqts maxuuxqts (F)
mconvert mconvert (M)
mdevice mdevice (F)
mMeisacoooeeevvenrnennennne meisa(F)
L1115 1 1 SR OUUR mem(F)
MEMCCPY ...cvevevernnene memory(S)
memchr memory(S)
memcmp ..., memory(S)
MEMCPY ..coveenenrnnne memory(S)
memset memory(S)
memtune memtune (F)
MESE ..covrrireenccnsnrceserenns mesg(C)
messages messages(M)
mestbl mestbl (M)
MESYS ovooeeeenererenenans mfsys (F)
micnetccooeereerenenn micnet (F)
mkdev mkdev(ADM)
mkdircoeeevenene mkdir (C)
mKkdiro....... mkdir(DOS)
114 ¢ TSR mkfs (ADM)
mknodcoeuenee. mknod(C)
mknod mknod(S)
mKStrcoocovvneineens mkstr (CP)

mktemp mktemp (S)
mmdf mmdf(ADM)
mmdfalias .. mmdfalias (ADM)
mnlist mnlist (ADM)
mnttabo...e.... mnttab(F)
111071 | (O frexp(S)
monacct acctsh(ADM)
mMonitorc.ceeeee monitor (S)
montbl montbl(M)
IMNOTE ...ooeerrcerecranencinonees more(C)
mount mount (ADM)
mountccceeceevenne mount(S)
mountall mountall(ADM)
IMOUSEocvveneeuernne mouse(HW)
movedata movedata(DOS)
mrand48 drand48(S)
mscreen mscreen(M)
msgetl ...oevininecnnnee msgctl(S)
msggetcceveerennne msgget(S)
| 1157:71) + SOOI msgop(S)
11114111 L3N mtune (F)
multiscreen multiscreen(M)
111 2 mv(C)
mvdir mvdir(ADM)
nap nap(S)
nbwaitsem waitsem(S)
ncheck ncheck (ADM)
netutil netutil (ADM)
newform newform(C)
NEWETP ..ooocvcrrrerernne newgrp(C)
1153 £ J OO news(C)
NEXtKeY ...occceevremrieneencne dbm(S)
1) (U nice (C)
11 N nice(S)
nictable nictable (ADM)
11 (OO nl(C)
1] 1T Ao nlist(S)
nlsadmin nlsadmin(ADM)
nl_type ... nl_type (F)
1111 JP OO nm(CP)
nohupcceeevevviennes nohup(C)
nrand4s§ drand48(S)
111111 N null(F)
nulladm acctsh(ADM)
numtbl numtbl(M)

Od e 0d(C)

vii

OPENccverenernnrencrenene open(S)

opendir directory (S)
opensem opensem(S)
otar otar(C)
OULP ..oornrrreeerrecnens outp(DOS)
PACK .oeoriecererreennene pack(C)
parallel parallel(HW)
passwdc.oceeenee passwd(C)
passwdc.... passwd(F)
PAasteccevceerrerererenens paste(C)
PAUSE ...oooneeirerererennne pause(S)
pax pax(C)
111 1 A pack(C)
pelosevecveveniennnne popen(S)
PCPIO e, pepio(C)
PCU ceorereierreeenrneene pcu(ADM)
permissions permissions(F)
perror(S)

..................................... pg(C)
............................... pipe(S)
plock(S)

...... plot(F)

............................. pnch(F)
................................. poll(F)
popen(S)

exp(S)

powerfail powerfail (M)
1) ORI pr(C)
pretmp acctsh(ADM)
prdaily acctsh(ADM)
1) o (RSO prf(HW)
prfde profiler(ADM)
prild profiler(ADM)
pripr ... profiler(ADM)
prfsnap profiler(ADM)
pristat profiler(ADM)
printfcovveeene printf(S)
proctlccoevennee proctl(S)
Profeeeeveveereeeenns prof(CP)
profilcccovvvevennene. profil(S)
profile profile(M)
profiler profiler(ADM)
promain promain(M)
proto proto(ADM)
1] . SO prs(CP)
prtacct acctsh(ADM)

ps ps(C)
PSCALoovererecnaennene pscat(C)
PStatccoivieieiieenanns pstat(C)
PLracecceeeveenenes ptrace(S)
1111 ORI purge(C)
B 111 ¢ - IR purge(F)
111 1SR putc(S)
putchcoeuee. putch(DOS)
putcharcceuneeee. putc(S)
PUtenycoceceeuene putenv(S)
putpwent putpwent (S)
puts puts(S)
pututline getut (S)
PULWovnrnerccerenenrernne putc(S)
pwcheck pwcheck(C)
pwd pwd(C)
(VR 1) o A, gsort(S)
quUeueccorcerierncnnes queue(F)
queuedefs queuedefs(F)
(111 1] AR quot(C)

ramdisk .

... ramdisk (HW)

randococevecevenenns rand(S)
random random(C)
ranlib ranlib(CP)
ratforcceueee. ratfor (CP)
(| RO rc0(ADM)
TC2 oeeeeeeerenrnenennens rc2 (ADM)
) 1 J OO rep(C)
| 541 1+ revtrip (C)
rdchkooveeerreene rdchk(S)
readccoevereererenenens read(S)
readdir directory (S)
realloccccoceenene malloc(S)
reboot haltsys (ADM)
Ted ooeeeeeereeeeeneeecreenee ed(C)
reduce reduce (ADM)
regempc.oveeeeee regcmp (CP)
) (300111 1 OO regex(S)
TEZEX ..eovverererereerenanenns regex(S)
| {7104 1 regexp (S)
reject ..o accept (ADM)
TeloCoocvvvcveecrennicennne reloc(F)
relogin relogin(ADM)
remoteceeeeee remote (C)
removepkg . removepkg (ADM)
rename rename (DOS)

restart restart (M)

restore restore (ADM)
rewindcceueueee. fseek(S)
rewinddir directory (S)
| § (1 [OOSR rm(C)
rmail rmail (ADM)
|3 1111 TSR rmb(M)
rmdel rmdel (CP)
FMAIT ..oooerrieerenerennenee rm(C)
rmdir ..., rmdir(DOS)
routines routines (ADM)
TSh et rsh(C)
o (O rtc(HW)
runacct acctsh(ADM)
runacct runacct (ADM)
F7: 1 N sar(ADM)
CF: 2O sar(ADM)
216 O sact(CP)
211 (O sar(ADM)
SAL cevrrereererrnereeraie sag(ADM)
LT o sar(ADM)
SBrK ...oooviveecieeenne sbrk(S)
scanfcoevereereenne scanf(S)
scesdiff sccsdiff(CP)

sccsfile sccsfile(F)

schedule schedule (ADM)
senhdr ... scnhdr(F)
scr_dump scr_dump(F)
screen screen(HW)
LT SO scsi(HW)
scsinfo scsinfo(ADM)
SAD ... 5db(CP)
sddate sddate (C)
sdenter sdenter (S)
sdevice sdevice (F)
sdfreecevevnvennee sdget(S)
sdgetooceeeeereeeenne sdget(S)
sdgetvoceveveererinns sdgetv(S)
SAiff ... sdiff(C)

sdleave sdenter(S)
sdwaitvcceeneee. sdgetv(S)
sed . sed(C)
seed48 drand48(S)
seekdir directory(S)
segread segread(DOS)
selectooeveeereenenene select (S)

semctlcccoeveevnenne semctl(S)
semgetcoccverierennns semget (S)
1 1111) + SRR semop(S)
sendccoeeevveenennen send(ADM)
serialccocevenuenne serial (HW)
setbufccccoeevvveennnn setbuf (S)
setclock setclock (ADM)
setcolor setcolor (C)
setgidcevveeeerrerenene setuid(S)
setgrent getgrent (S)
L1311 1111 [N setjmp (S)
Setkeyccvceenccnnen setkey (C)
setlocale setlocale (S)
setmnt setmnt (ADM)
setmode setmode (C)
setmode setmode (DOS)
17117 + SRR setpgrp(S)
setpwent getpwent (S)
settime settime (ADM)
setuidcccoeeeeenerenee setuid(S)
setutentcceeennen. getut (S)
setvbufcceeeenenne setbuf (S)
SESYS eeevvreererrecnnnrerennnne sfsys (F)
1L 1 OSIRON sputl(S)
sh sh(C)
Shl .ot shl(C)
shmetl shmctl(S)
shmgetcc...... shmget (S)
shmopccccccecnnnnne shmop(S)
shutacct acctsh(ADM)
shutdn shutdn(S)
shutdown shutdown(ADM)
signalccccecueuenene signal(S)
Sigsemccocevenenent sigsem(S)
sin . trig(S)
1111 1 O sinh(S)
) ¥ size(CP)
E) (1 + OO sleep (C)
[(13 1 2O sleep(S)
SOpenccecvnnenne sopen(DOS)
11) o SN sort(C)
spawnl spawn(DOS)
spawnvp spawn(DOS)
spell ... spell (C)
spellinccocvverveerenene spell(C)
) 1] 111 LR spline (C)

ix

it oo split (C)

......................... printf(S)
............................. sputl(S)
................................. exp(S)
.............. rand(S)

............. scanf(S)

ssignal(S)

startup acctsh(ADM)
L1 7 1 AU stat (F)
stat stat(S)
17211 ¢ J R statfs (S)
11 11 J stdio(S)
L0111 [stime (S)
SEOT@ ..econeerrerenerereaneaens dabm(S)
Straceceeee. strace (ADM)
Streatoecceeceeeeceneeenne string (S)
strehr ..., string (S)
strclean strclean (ADM)
L1144 111 1 string (S)
K12 0 1), AR string (S)
11] 1) 1 LRI string (S)
11 1 111+ OO string (S)
Strerrooueeene strerr (ADM)
streamio streamio (M)
strftime strftime (S)
(11 91 17 OO string (S)
StringS ..ovceeeerererennne strings (C)
(1 1+ JPOOO strip(CP)
strlenceeeene. strlen (DOS)
striwr striwr(DOS)
strmcfg strmcfg (ADM)
strmtune strmtune (ADM)
strncatccceveveeeeene string (S)
strncmp string (S)
strncpy string (S)
strpbrk string (S)
strrchr string (S)
SLITEV ..o strrev(DOS)
11] 2 AR strset (DOS)
L1100) 1) 1 SO string (S)
strtodcccoceverennencne strtod(S)
11 1) QO string (S)
strtolccoeveeeiecnenne strtol(S)
Strupr ... strupr(DOS)
SHEY oeeercecrenenne stty (C)
stunecocevevirernenne stune (F)

su ... SU(C)
submit submit(ADM)
subsystem subsystem (M)
sulogin sulogin(ADM)
111 1 1 SIS sum(C)
SWaD ..o swab(S)
)71 1 swap(ADM)
sweonfig swconfig(C)
SXE eevrerererrernanneersasesereanens sxt (M)
37 11 o syms(F)
32 L[sync(ADM)
sync sync(S)
sys_errlist perror(S)
SYS_DEITccecerinvrenns perror(S)
sysadmsh sysadmsh(ADM)
sysdef sysdef(ADM)
sysfilescccoernnee. sysfiles (F)
SYSI86coverrerrecnensns sysi86(S)
SYStEMocoverrrrrrnrnens system(S)
systemid systemid (F)
SYStemscccoevenee systems (F)
SYSHY woorvrrerinirieiieens systty (M)
tablescccocceveennenene tables (F)
tabs ..o tabs(C)
tail e tail (C)
tam tam(S)
tan trig(S)
17111 + sinh(8S)
tAPL ..ceereerrecrereneennnene tape(C)
taAPE .oeeeeeerrereeerenes tape (HW)
tapecntl tapecntl (C)
tapedump tapedump (C)
| 721 U tar(C)
[1 T tar(F)
tebek ..ooveneveveenennne tcbck (ADM)
tdeleteccceeeeveeene tsearch(S)
=S tee(C)
tell ..o tell (DOS)
telldir directory(S)
tempnam tmpnam(S)
175 ¢ 11 [OOSR term(F)
termeapceeee termcap (F)
terminal terminal (HW)
terminals terminals (M)
"terminfo" "terminfo” (F)
"terminfo" "terminfo” (M)

"terminfo" "terminfo" (S)

termiocc.oeeenen.n. termio (M)
termios termios (M)
LESE .treeerrenecnererneneeneeane test(C)
tiindcocevnenevenneee tsearch(S)
tgetentc...... termcap (S)
tgetflag termcap (S)
tgetnum termcap (S)
tgetstrcccoveveenrnenne termcap (S)
tEOtOcoeveeeneeennene termcap(S)
LI ovecrcereeneenrenrenerssenenenene tic(C)
15111 - time (C)
time time(S)
timesccocvvveveverennnnn times (S)
timexcceeveneee timex (ADM)
timezone timezone (F)
timodc.cevrernee timod(M)
tirdwr ... tirdwr(M)
tmpfilec...... tmpfile(S)
tmpnam tmpnam(S)
t0asCii ..ccoeoeverrernnrennnnee. conv(S)
toasciicccoeeeenrvernnne ctype (S)
tolowerccccviveune. conv(S)
tolowerccoeueunn.n. ctype (S)
top ... top(F)
top.nextcecoeeereeenenen top(F)
touchccecieennenen. touch(C)
toupperoeevenene. conv(S)
touppercceveeenene ctype(S)
tplotccvveeennnne tplot (ADM)
tPUL e tput (C)
tputs .o termcap (S)
A e tr(C)
translate translate (C)
trchan trchan(M)
11 o1 LI true(C)
tsearch tsearch(S)
B £ tset (C)
LR]1) of AR tsort (CP)
Y s iy (C)
tty ny(M)
ttynamecccce... ttyname (S)
ttyslotccoveveveeeenrnnne. ttyslot (S)
turnacct acctsh(ADM)
twalkccoeeeennee. tsearch(S)
LYPES .eoverreeererererenranns types (F)

TZ ceeevevevrrrenesnnesneeanns tz(M)
LZSEL .eeeeeereeeecnrneans ctime (S)
uadminccoveeee. uadmin(S)
uconfig uconfig(ADM)
ulimitcooevveeenennnene ulimit (S)
ultoacueveeeneneene ultoa(DOS)
umaskcccceeeeenenne. umask(C)
umaskcoevveecnennae umask(S)
umount umount (ADM)
umounteeeeeee umount (S)
umountall mountall(ADM)
UNAMEcovveererrerernens uname (C)
UNAMEccceverreenanens uname(S)
uncompress compress(C)
ungetccoerreeenenes unget (CP)
L1170 O ungetc(S)
ungetch ungetch(DOS)
uniq eeteeseresenees uniq(C)
unistdccevereneee unistd (F)
1110112 S units (C)
unlink link (ADM)
unlinkccoceveveeneeee unlink (S)
unpackccceerveeneenne pack(C)
111170 ¢ SO upscfg (S)
upsconfig upsconfig(ADM)
uptimeccoccoeerevenene uptime (C)
usemouse usemouse(C)
111 # 1 AR ustat(S)
utimeoccoeveveerenene utime (S)
1117111 + SO, utmp (F)
utmpname getut (S)
uuchat dial(ADM)
uucheck uucheck (ADM)
UUCICOceceenene uucico(ADM)
uuclean uuclean (ADM)
UUCP ..covrmereneeeerecnsseraese uucp(C)
uuencode uuencode(C)
uugetty uugetty (ADM)
uuinstall uuinstall(ADM)
uulistcoveeenene uulist (ADM)
L1111 117 O uucp(C)
UUNAMEceereencereeeens uucp(C)
UUPICK ...ooeverreerrnene uuto(C)
uusched uusched(ADM)
uustatcceeeceeennnee. uustat(C)
L1111 JO O uuto(C)

xi

111). QU uux(C)
L1115°0{ AOOR uuxqt (ADM)
val val(CP)
valuescoueveeenenns values (M)
VATargsceeeeeseens varargs(S)
ve .. e(C)
vddaemon ... vddaemon(ADM)
vdinfo vdinfo (ADM)
vdutil vdutil (ADM)
vectorsinuse. vectorsinuse (ADM)
vedit .. vi(C)
viprintf vprintf(S)
Vi vi(C)
1 (¢ | SO vidi (C)
view vi(C)
vmstatc.ccoceeerenene vmstat (C)
volcopy volcopy (ADM)
vprintf vprintf(S)
vsprintf vprintf(S)
w w(C)
WAL ..coeieirenreeenreneeeneanes wait(C)
|1 Z:1 1 AU wait (S)
waitsem waitsem(S)
wall ... wall(ADM)
we . wc(C)
what ... what (C)
WhO ... who(C)
whodo whodo(C)
12 ¢ 11 O write (C)
A2 § 1 { S write (S)
L1111 S wtinit (ADM)
1271111 OO utmp (F)
wimpfix fwtmp (ADM)
x286emul x286emul(C)
D +:1 4 USSR xargs(C)
xbackup xbackup (ADM)
xbackup xbackup (F)
xinstall xinstall (ADM)
b 4| 11 AU xlist (S)
XPreat ...veeeeeeenennes xpreat (C)
xprsetup xprsetup (ADM)
Xpreabcccvveeeennne xprtab(F)
). o {SOUI xref(CP)
xrestore xrestore (ADM)

XSET oecrereeeeenrereseseneens xstr(CP)

xit

xt xt(HW)
b 47111 SRR xtod(C)
xtproto xtproto(M)
XES oocvrreenrensnsnencsassense xts (ADM)
b <1 AR xit (ADM)
y0 bessel (S)
yl bessel (S)
FACE evrecreuracnssrssasasacnes yacc(CP)
Lo yes(C)
yn bessel (S)
b0z | A compress(C)

® Systemn V/386

2

UNIX

Altos

e 3

Releqs

© Commonds

Contents

Commands (C)

Intro
300, 300s

4014

450
assign, deassign
at, batch
auths
awk
banner
basename
bc

bdiff

bfs

cal
calendar
cat

cd
checkmail

chgrp

chmod

chown

clear

cmchk

cmp

col

comm

compress,
uncompress, zcat

copy
cp

cpio
cron

crontab

introduces Altos UNIX System V commands

handle special functions of DASI 300 and 300s
terminals

paginator for the TEKTRONIX 4014 terminal
handle special functions of the DASI 450 terminal
assigns and deassigns devices

executes commands at a later time

list and/or restrict kernel authorizations

pattern scanning and processing language

prints large letters

removes directory names from pathnames

invokes a calculator

compares files too large for diff(C)

scans big files

prints a calendar

invokes a reminder service

concatenates and displays files

changes working directory

checks for mail which has been submitted but not
delivered

changes group ID

changes the access permissions of a file or directory
changes owner ID

clears a terminal screen

reports hard disk block size

compares two files

filters reverse linefeeds

selects or rejects lines common to two sorted files

compress data for storage, uncompress and display
compressed files

copies groups of files

copies files

copy file archives in and out

executes commands scheduled by at, batch, and
crontab

schedule commands to be executed at regular
intervals

crypt encode/decode

csh invokes a shell command interpreter with C-like
syntax

csplit splits files according to context

cu call another UNIX/XENIX system

cut cuts out selected fields of each line of a file

date prints and sets the date

de invokes an arbitrary precision calculator

dd converts and copies a file

devnm identifies device name

df report number of free disk blocks

diff compares two text files

diff3 compares three files

dircmp compares directories

dirname delivers directory part of pathname

disable turns off terminals and printers

diskep, diskemp copies or compares floppy disks

dos: doscat,

doscp, dosdir,

dosformat,

dosmkdir, dosls,

dosrm, dosrmdir access to and manipulation of DOS files and DOS

filesystems
dtox change file format from MS-DOS to UNIX
dtype determines disk type
du summarizes disk usage
echo echo arguments
ed, red invokes the text editor
enable turns on terminals and line printers
env sets environment for command execution
ex, edit invokes a text editor
expr evaluates arguments as an expression
factor factor a number
false returns with a nonzero exit value
file determines file type
find finds files
finger finds information about users
fixhdr changes executable binary file headers
format format floppy disks and mini-cartridge tapes
fuser Identify processes using a file or file structure
getopt parses command options
getopts, getoptcvt parses command options
gets gets a string from the standard input

greek select terminal filter

ii

grep, egrep, fgrep searches a file for a pattern

grpcheck
hd

head
hello
hostid
hp

hwconfig
i286emul
id

ismpx
Jjoin
Jjterm
jwin

kill

ksh, rksh

|
last
layers

lock
logname
Ip, cancel
Iprint
Ipstat

Is

machid: i386
mail

man

mesg
mkdir
mknod
mnt, umnt
more

my
newform
newgrp
news

nice

nl

checks group file

displays files in hexadecimal format

prints the first few lines of a file

send a message to another user

Print unique hardware ID

handle special functions of Hewlett-Packard
terminals

read the configuration information

emulate UNIX 80286

prints user and group IDs and names

return windowing terminal state

joins two relations

reset layer of windowing terminal

print size of layer

terminates a process

KornShell, a standard/restricted command and
programming language

lists information about contents of directory
indicate last logins of users and teletypes

layer multiplexer for windowing terminals
lists directory contents in columns

reads one line

makes a link to a file

locks a user’s terminal

gets login name

send/cancel requests to lineprinter

print to a printer attached to the user’s terminal
print information about status of LP print service
gives information about contents of directories
get processor type truth value

interactive message processing system

prints reference pages in this guide

permits or denies messages sent to a terminal
makes a directory

builds special files

mount a filesystem

views a file one screen full at a time

moves or renames files and directories

changes the format of a text file

logs user into a new group

print news items

runs a command at a different scheduling priority
adds line numbers to a file

iii

nohup

od

otar

pack, pcat,
unpack
passwd

paste
pax
pcpio
Pg

pr

pPs

pscat
pstat
ptar
purge
pwcheck
pwd
quot
random
rep
revtrip
remote
rm
rmdir -
rsh
sddate
sdiff
sed
setcolor,
setcolour
setkey
setmode
sh

shl
sleep
sort
spell, hashmake,
spellin,
hashcheck
spline
split .
strings

iv

runs a command immune to hangups and quits
displays files in octal format
original tape archive command

compresses and expands files

change login, modem (dialup shell), filesystem, or

group password

merges lines of files

portable archive exchange

copy file archives in and out

file perusal filter for soft-copy terminals
prints files on the standard output
Teports process status
ASCII-to-PostScript filter

reports system information

process tape archives

overwrites specified files

checks password file

prints working directory name
summarizes file system ownership
generates a random number

copies files across systems

notifies mail sender that recipient is away
executes commands on a remote system
removes files or directories

removes directories

invokes a restricted shell (command interpreter)
prints and sets backup dates

compares files side-by-side

invokes the stream editor

set screen color and other screen attributes
assigns the function keys

Port modes utility

invokes the shell command interpreter
shell layer manager

suspends execution for an interval

sorts and merges files

finds spelling errors

interpolates smooth curve

splits a file into pieces

find the printable strings in an object file

stty

su

sum
swconfig

tabs

tail

tape, mcart
tapecntl
tapedump
tar

tee

test

tic

time
touch
tput

tr
translate
true

tset

tty
umask
uname
uniq
units
uptime
usemouse

uucp, uulog,
uuname
uuencode,
uudecode
uustat

uuto, uupick
uux

ve

vi, view, vedit
vidi

vmstat

w

wait
we

sets the options for a terminal

makes the user a super-user or another user
calculates checksum and counts blocks in a file
produces a list of the software modifications to the
system

set tabs on a terminal

displays the last part of a file

magnetic tape maintenance program

AT&T tape control for QIC-24/QIC-02 tape device
dumps magnetic tape to output file

archives files

creates a tee in a pipe

tests conditions

terminfo compiler

times a command

updates access and modification times of a file
queries the terminfo database

translates characters

translates files from one format to another

returns with a zero exit value

provide information to set terminal modes

gets the terminal’s name

sets file-creation mode mask

prints the name of the current system

reports repeated lines in a file

converts units

displays information about system activity

maps mouse input to keystrokes for use with non-
mouse based programs

UNIX-to-UNIX system copy

encode/decode a binary file for transmission via mail
uucp status inquiry and job control

public UNIX-to-UNIX system file copy
UNIX-to-UNIX system command execution

version control

invokes a screen-oriented display editor

sets the font and video mode for a video device
report paging and system statistics

displays information about who is on the system and
what they are doing

awaits completion of background processes

counts lines, words and characters

what
who
whodo
write
x286emul
xargs
xprcat
xtod

yes

vi

identifies files

lists who is on the system

determines who is doing what

writes to another user

emulate XENIX 80286

constructs and executes commands

use transparent printer over modem line
change file format from UNIX to MS-DOS
prints string repeatedly

INTRO (C) INTRO (C)

Intro

introduces Altos UNIX System V commands

Description

This section describes how to use many of the general-purpose com-
mands available in the Altos UNIX System V Operating System.
These command are labeled with a C, as with dare(C). The letter
““C” stands for ‘‘command.”

Other commands have different labels, such as CP (for ‘‘Command
Programming”’) or M (for ‘‘Miscellanous’’). Refer to the ‘‘Preface’
of this manual for a list of all the different reference sections, what
commands and utilities each section describes, and in which manual
each section is located.

Note that some reference sections, most notable the CP and S sections,
are included only with the Development System, which is an optional
supplemental package not always included with the standard Operat-
ing System.

Syntax

Unless otherwise noted, commands described in the Syntax section of
a manual page accept options and other arguments according to the
following syntax and should be interpreted as explained below.

name [-option...] [cmdarg...}

where:

[] Square brackets surround an option or cmdarg that is
not required.

| A pipe (vertical bar) separates mutually exclusive
options. Choose one of the items separated by this
symbol.
Ellipses (three periods) indicate multiple occurrences
of the option or cmdarg .

name This specifies the name of an executable file.

option (Always preceded by a *-*’.)

noargletter ... or,
argletter optargl,...]

March 15, 1991 INTRO-1

INTRO (C)

INTRO (C)

noargletter A single letter representing an option without an

argletter

optarg

cmdarg

option-argument. Note that more than one noargletter
option can be grouped after one ‘‘-”’ (Rule 5 in the
following text).

A single letter representing an option requiring an
option-argument.

An option-argument (character string) satisfying a
preceding argletter. Note that groups of optargs fol-
lowing an argletter must be separated by commas or
separated by white space and quoted (Rule 8 below).

Path name (or other command argument) not begin-
ning with *‘-*’, or ‘‘->’ by itself indicating the standard
input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current com-
mands, but all new commands use them. geropts (C) should be used
by all shell procedures to parse positional parameters and to check for
legal options. It supports Rules 3-10 below. The enforcement of the
other rules must be done by the command itself.

1.

Command names (name above) must be between two and
nine characters long,.

Command names must include only lowercase letters and
digits.

Option names (option above) must be one character long.
All options must be preceded by ““->".

Options with no arguments may be grouped after a single

€6 9y

The first option-argument (optarg above) following an
option must be preceded by white space.

Option-arguments cannot be optional.

Groups of option-arguments following an option must either
be separated by commas or separated by white space and
quoted (e.g., -0 XXX,Z,yy or -0 "xxx z yy").

All options must precede operands (cmdarg above) on the
command line.

March 15, 1991 : INTRO-2

INTRO (C) INTRO (C)

10. “‘--”> may be used to indicate the end of the options.

11. The order of the options relative to one another should not
matter.

12. The relative order of the operands (cmdarg above) may
affect their significance in ways determined by the command
with which they appear.

13. *‘.”’ preceded and followed by white space should only be
used to mean standard input.

See Also

getopts(C), exit(S), wait(S), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the
case of ‘‘normal’’ termination) one supplied by the program (see
wait (S) and exit(S)). The former byte is O for normal termination; the
latter is customarily O for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It is
called variously ‘“‘exit code’’, ‘‘exit status’’, or ‘‘return code’’, and is
described only where special conventions are involved.

Notes

Not all commands adhere to the syntax described here.

March 15, 1991 INTRO-3

300 (C) 300 (C)

300, 300s

handle special functions of DASI 300 and 300s termi-
nals

Syntax

300 [+121[-n][-dtlc]
300s[+12][-n][-dtlc]

Description

The 300 command supports special functions and optimizes the use of
the DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same
functions for the DASI 300s (GSI 300s or DTC 300s) terminal. It con-
verts half-line forward, half-line reverse, and full-line reverse motions
to the correct vertical motions. In the following discussion of the 300
command, it should be noted that unless your system contains the text
processing software, references to certain commands (e.g., nroff,
neqn, eqn, etc.) will not work. It also attempts to draw Greek letters
and other special symbols. It permits convenient use of 12-pitch text.
It also reduces printing time 5 to 70%. The 300 command can be used
to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned
on before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 linesfinch text. DASI 300 termi-
nals normally allow only two combinations: 10-pitch, 6
lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch,
6 lines per inch combination, the user should turn the
PITCH switch to 12, and use the +12 option.

March 15, 1989 300-1

300 (C) ' 300 (C)

-n controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because each
increment equals 1/48 of an inch, a 10-pitch line-feed
requires 8 increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the default value, thus
allowing for individual taste in the appearance of sub-
scripts and superscripts. For example, nroffhalf-lines could
be made to act as quarter-lines by using -2. The user could
also obtain appropriate half-lines for 12-pitch, 8 lines/inch
mode by using the option -3 alone, having set the PITCH
switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30.
DASI 300 terminals sometimes produce peculiar output
when faced with very long lines, too many tab characters,
or long strings of blankless, non-identical characters. One
null (delay) character is inserted in a line for every set of ¢
tabs, and for every contiguous string of ¢ non-blank, non-
tab characters. If a line is longer than / bytes, 1+(total
length)/20 nulls are inserted at the end of that line. Items
can be omitted from the end of the list, implying use of the
default values. Also, a value of zero for ¢ (¢) results in two
null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd.
Because terminal behavior varies according to the specific
characters printed and the load on a system, the user may
have to experiment with these values to get correct output.
The -d option exists only as a last resort for those few cases
that do not otherwise print properly. For example, the file
letc/passwd may be printed using -d3,30,5. The value
-d0,1 is a good one to use for C programs that have many
levels of indentation.

Note that the delay control interacts heavily with the pre-
vailing carriage return and line-feed delays. The stty(C)
modes nl0 cr2 or nl0 cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests,
when it is necessary to insert paper manually or change fonts in the
middle of a document. Instead of hitting the return key in these cases,
you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files ... and nroff files ... | 300
nroff -T300-12 files ... and nrofffiles... | 300 +12

The use of 300 can thus often be avoided unless special delays or

options are required; in a few cases, however, the additional move-
ment optimization of 300 may produce better aligned output.

March 15, 1989 300-2

300 (C) 300 (C)

See Also

450(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

Notes

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 300-3

4014 (C) 4014 (C)

4014
paginator for the TEKTRONIX 4014 terminal

Syntax

4014 [-t][-n][-cN][-pL][file]

Description

The output of 4014 is intended for a TEKTRONIX 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen into
N columns, and contributes an eight-space page offset in the (default)
single-column case. Tabs, spaces, and backspaces are collected and
plotted when necessary. TELETYPE Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014
waits for a new-line (empty line) from the keyboard before continuing
on to the next page. In this wait state, the command !cmd will send
the cmd to the shell.

The command line options are:
-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.

-cN
Divide the screen into N columns and wait after the last column.

.pL

Set page length to L; L accepts the scale factors i (inches) and 1
(lines); default is lines.

See Also

pr(C)

March 15, 1989 4014-1

450 (C) 450 (C)

450

handle special functions of the DASI 450 terminal

Syntax

450

Description

The 450 command supports special functions of, and optimizes the
use of, the DASI 450 terminal, or any terminal that is functionally
identical, such as the Diablo 1620 or Xerox 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct
vertical motions. It also attempts to draw Greek letters and other spe-
cial symbols in the same manner as 300(C). It should be noted that,
unless your system contains text processing software, certain com-
mands (e.g., eqn, nroff, tbl, etc.) will not work. Use 450 to print
equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: Make sure that the PLOT switch on your terminal is ON
before 450 is used. The SPACING switch should be put in the desired
position (either 10- or 12-pitch). In either case, vertical spacing is 6
lines/inch, unless dynamically changed to 8 lines per inch by an ap-
propriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to
insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-
feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor
of one of the following:

nroff -T450 files ...
or
nroff -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or

options are required; in a few cases, however, the additional move-
ment optimization of 450 may produce better aligned output.

See Also

300(C), mesg(C), stty(C), tabs(C), graph(ADM), tplot(ADM)

March 15, 1989 450-1

450 (C) 450 (C)

Notes

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 ' 450-2

ASSIGN (C) ASSIGN (C)

assign, deassign

assigns and deassigns devices

Syntax

assign[-u][-v][-d][devicel..

deassign [-u 1{ -v]{device]..

Description

assign attempts to assign device to the current user. The device argu-
ment must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable de-
vices along with the name of the user to whom they are assigned.

deassign is used to ‘‘deassign’’ devices. Without any arguments,
deassign will deassign all devices assigned to the user. When argu-
ments are given, an attempt is made to deassign each device given as
an argument.

With these commands you can exclusively use a device, such as a tape
drive or floppy drive. This keeps other users from using the device.
They have a similar effect as chown(C) and chmod(C), although they
only act on devices in /dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded
in device names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error check-
ing.

The assign command will not assign any assignable devices if it can-
not assign all of them. deassign gives no diagnostic if the device can-
not be deassigned. Devices can be automatically deassigned at
logout, but this is not guaranteed. Device names can be just the begin-
ning of the device required. For example,

assign fd
should be used to assign all floppy disk devices. Raw versions of de-

vice will also be assigned, e.g., the raw floppy disk devices /dev/rfd?
would be assigned in the above example.

March 15, 1989 ASSIGN-1

ASSIGN (C) ASSIGN (C)

Note that in many installations the assignable devices such as floppy
disks have general read and write access, so the assign command may
not be necessary. This is particularly true on single-user systems. De-
vices supposed to be assignable with this command should be owned
by the user asg. The directory /dev should be owned by bin and have
mode 755. The assign command (after checking for use by someone
else) will then make the device owned by whoever invokes the com-
mand, without changing the access permissions. This allows the sys-
tem administrator to set up individual devices that are freely avail-
able, assignable (owned by asg), or nonassignable and restricted (not
owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable de-
vices table /etc/atab. This table is used in subsequent invocations to
save repeated searches of the /dev directory. If one of the devices in
/dev is changed to be assignable or unassignable (i.e., owned by asg),
then /etc/atab should be removed (by the super-user) so that a correct
list will be built the next time the command is invoked.

Files

Jetc/atab Table of assignable devices

/dev/asglock File to prevent concurrent access
Diagnostics

Exit code O returned if successful, 1 if problems, 2 if device cannot be
assigned.

March 15, 1989 ASSIGN-2

AT (C)

AT (C)

at, batch

executes commands at a later time

Syntax

at time [date] [increment]

at -r job-id ...

at -1 job-id ...]

at -qletter time [date] [increment]

batch

Description

at and batch both accept one or more commands from the standard
input to be executed at a later time. at and batch differ in the way the
set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when
the system load level permits. After a job is queued with either com-
mand, the program writes a job identifier (a number and a letter),
along with the time the job will execute, to standard error.

at takes the following arguments:

time

date

The time can be specified as 1, 2, or 4 digits. One- and two-
digit numbers are taken to be hours, four digits to be hours and
minutes. The time can alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
can be appended; otherwise a 24-hour clock time is understood.
The suffix zulu can be used to indicate Greenwich Mean Time
(GMT). The special names noon, midnight, and now are also
recognized.

An optional date can be specified as either a month name fol-
lowed by a day number (and possibly year number preceded by
an optional comma) or a day of the week (fully spelled or abbre-
viated to three characters). Two special ‘‘days,’”” today and
tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less
than the current month (and no year is given), next year is
assumed.

March 15, 1989 AT-1

AT (C) AT (C)

increment
The time and optional date arguments can be modified with an
increment argument of the form ‘‘+n units’’, where n is an
integer and units is one of the following: minutes, hours, days,
weeks, months, or years. The singular form is also accepted,
and ‘‘+1 unit’’ can also be written ‘‘next unit’’. Thus, legiti-
mate commands include:

at 0815am Jan 24

at 8:15am Jan 24

at now + 1 day

at 5 pm Friday next week

-r job-id ...
Removes the specified job or jobs previously scheduled by the at
or batch command. job-id is a job identifier returned by at or
batch. Unless you are the super-user, you can only remove your
own jobs.

-1 [job-id ...]
Lists schedule times of specified jobs. If no job-ids are specified,
lists all jobs currently scheduled for the invoking user. Unless you
are the super-user, you can only list your own jobs.

-qletter

Places the specified job in a queue denoted by lester, where letter
is any lowercase letter from ‘‘a’” to ‘‘z’’. The queue letter is
appended to the job identifier. The following letters have special
significance:

a atqueue

b batch queue

C cron queue

For more information on the use of different queues, see the
queuedefs (F) manual page.

batch takes no arguments; it submits a job for immediate execution at
lower priority than an ordinary at job.

at and batch jobs are executed using sh(C). Standard output and stan-
dard error output are mailed to the user unless they are redirected else-
where. The shell environment variables, current directory, umask, and
ulimit are retained when the commands are executed. Open file
descriptors, traps, and priorities are lost.

Users are permitted to use at and batch if their names appear in the
file /usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if a given user should
be denied access to ar and batch. If neither file exists, only root is
allowed to submit a job. If only the at.deny file exists, and it is empty,
global usage is permitted. The allow/deny files consist of one user
name per line.

March 15, 1989 AT-2

AT (C) AT (C)

Examples

The simplest way to use at is to place a series of commands in a file,
one per line, and execute these commands at a specified time with the
following command:

attime < file

The following sequence can be used at a terminal to format the file
inﬁlel using the text formatter nroff{CT), and place the output in the file
outfile.

batch
nroff infile > outfile
{CTL)-d

The next example demonstrates redirecting standard error to a pipe
(1), which is useful in a shell procedure. The file infile is formatted
and the output placed in outfile, with any errors generated being
mailgd to user (output redirection is covered on the sh(C) manual
page).

batch <<!
?roff infile 2>&1 >outfile | mail user

To have a job reschedule itself, invoke at from within the job. For
example, if you want shellfile to run every Thursday, executing a
series of commands and then rescheduling itself for the next Thursday,
you can include code similar to the following within shellfile:

echo "sh shellfile" | at 1900 thursday next week

Files
fust/lib/cron main cron directory
fust/lib/cron/at.allow list of allowed users
Just/lib/cron/at.deny list of denied users
fusr/lib/cron/queuedefs scheduling information
[asr/spool/cron/atjobs spool area

March 15, 1989 ' AT-3

AT (C) AT (C)

See Also

cron(C), kill(C), mail(C), nice(C), ps(C), sh(C), queuedefs(F)

Diagnostics

Complains about syntax errors and times out of range.

Standards Conformance

at and batch are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987,

March 15, 1989 AT-4

AUTHS (C) AUTHS (C)

auths

list and/or restrict kernel authorizations

Syntax

auths { -v] [-a authlist] [-r authlist] [-c command]

Description

auths performs actions associated with system privilege manipulation.
With no arguments, auths returns the kernel authorizations associated
with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authori-
zations in order to run a shell or a single command. The -a option
requires a list of comma-separated authorizations, which become the
absolute set of kernel authorizations for the new process. This new set
must be a subset of the kernel authorizations of the invoking process.
To start a process with a null set of kernel authorizations, use the
empty string ""). The -r option also takes as argument a comma
separated list of authorizations. These are removed from the authori-
zation set of the invoking process when forming the kernel authoriza-
tions for the new process.

The argument to the -c option is passed to the user’s shell as specified
in the user’s /etc/passwd entry which is tun as a single command. The
user’s shell must support the

-¢c command

syntax similar to s2(C). When the argument is absent (and -a or -r is
specified), the user’s shell is invoked as a process with adjusted
authorizations. Exiting that shell will resume execution in the previ-
ous shell and the original kernel authorizations will be in effect. This
option may be used to run a command with restricted authorizations,
i.e. fewer than those allowed the user in the protected Password data-
base entry.

The -v option lists the new kernel authorizations before the new com-
mand or shell is run. It also warns with the -a option when more
authorizations are attempted to be set than already exist or with the -r
option when more authorizations are attempted to be removed than
already exist.

March 15, 1989 AUTHS-1

AUTHS (C) AUTHS (C)

The kernel authorizations are:

execsuid - allows the running of SUID programs

nopromain - does not restrict file access when running SUID
programs

writeaudit - process can write directly to the audit trail
configaudit - process can change audit subsystem parameters
suspendaudit - process is not audited by the kernel
chmodsugid - process can set SUID and GID bits on files
chown - process can change file ownership

Examples

To execute a shell without the execsuid kernel authorization:
auths -r execsuid

To list the current kernel authorizations:

auths

To execute yourprog with no kernel authorizations:

auths -a """ -¢ yourprog

To execute myprog with chmodsugid and execsuid:

auths -a chmodsugid,execsuid -c myprog
See Also

sh(C), promain(M), getpriv(S), setpriv(S), getprpwent(S), ‘‘Using a
Trusted System’’ in the User’s Guide

March 15, 1989 AUTHS-2

AWK (C) | AWK (C)

awk

pattern scanning and processing language

Syntax -

awk [-F re] [parameter...] ["prog’] [-f progfile] [file...]

Description

The -F re option defines the input field separator to be the regular
expression re.

Parameters, in the form x=... y=... may be passed to awk, where x and
y are awk built-in variables (see list below).

awk scans each input file for lines that match any of a set of patterns
specified in prog. The prog string must be enclosed in single quotes
() to protect it from the shell. For each pattern in prog there may be
an associated action performed when a line of a file matches the pat-
tern. The set of pattern-action statements may appear literally as prog
or in a file specified with the -f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name - means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space.
(This default can be changed by using the FS built-in variable or the
-F re option.) The fields are denoted $1, $2, ...; $0 refers to the entire
line. ‘
A pattern-action statement has the form:

pattern { action }
Either pattern or action may be omitted. If there is no action with a
pattern, the matching line is printed. If there is no pattern with an
action, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (!, | |, *&&, and
parentheses) of rational expressions and regular expressions. A rela-

March 15, 1989 AWK-1

AWK (C) AWK (C)

tional expression is one of the following:

expression relop expression .
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop
is either ~ (contains) or ! ~ (does not contain). A conditional is an
arithmetic expression, a relational expression, the special expression

var in array,
or a Boolean combination of these.

"The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(C)). In patterns they
must be surrounded by slashes. Isolated regular expressions in a pat-
tern apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and next occurrence of
the second pattern.

A regular expression may be used to separate fields by using the -F re
option or by assigning the expression to the built-in variable FS . The
default is to ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the current file
FS input field separator regular expression (default blank)
NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

March 15, 1989 AWK-2

AWK (C) AWK (C)

An action is a sequence of statements. A statement may be one of the
following:

if (conditional) statement [else statement]

while (conditional) statement

do statement while (conditional)

for (expression ; conditional ; expression) statement
for (var in array) statement

delete array[subscript]

break

continue

{ [statement] ... }

expression # commonly variable = expression

print { expression-list] [>expression]

printf format [, expression-list] [>expression]

next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new lines, or right braces.
An empty expression-list stands for the whole input line. Expressions
take on string or numeric values as appropriate, and are built using the
operators +, -, ¥, /, %, and concatenation (indicated by a blank). The
C operators ++, --, +=, -=, #=, [=, and %= are also available in
expressions. Variables may be scalars, array elements (denoted x[i]),

“or fields. Variables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted ().

The print statement prints its arguments on the standard output, or on
a file if >expression is present, or on a pipe if | ¢md is present. The
arguments are separated by the current output field separator and ter-
minated by the output record separator. The printf statement formats
its expression list according to the format (see printf(S) in the
Programmer’s Reference).

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt,
and srand. int truncates its argument to an integer. rand returns a ran-
dom number between 0 and 1. srand (expr) sets the seed value for
rand to expr or uses the time of day if expr is omitted.

The string functions are:
gsub(for, repl, in)
behaves like sub (see below), except that it replaces

successive occurrences of the regular expression
(like the ed global substitute command).

March 15, 1989 AWK-3

AWK (C)

index(s, t)

length(s)

match(s, re)

split(s, a, f3)

AWK (C)

returns the position in string s where string ¢ first
occurs, or 0 if it does not occur at all.

returns the length of its argument taken as a string, or
of the whole line if there is no argument.

returns the position in string s where the regular
expression re occurs, or 0 if it does not occur at all.
RSTART is set to the starting position (which is the
same as the returned value), and RLENGTH is set to
the length of the matched string.

splits the string s into array elements a[/], a[2], a[~n],
and returns n. The separation is done with the regu-
lar expression fs or with the field separator FS if fs is
not given.

sprintf(fmt, expr, expr,...)

formats the expressions according to the printf(S)
format given by fmt and returns the resulting string.

sub(for, repl, in) substitutes the string rep! in place of the first

substr(s, m, n)

instance of the regular expression for in string in and
returns the number of substitutions. If in is omitted,
awk substitutes in the current record ($0).

returns the n-character substring of s that begins at
position m.

The input/output and general functions are:

close(filename) closes the file or pipe named filename.

cmd|getline

getline

getline <file

getline var

pipes the output of cmd into getline; each successive
call to getline returns the next line of output from
cmd.

sets $0 to the next input record from the current input
file.

sets $0 to the next record from file.

sets variable var instead.

getline var <file sets var from the next record of file.

system(cmd)

executes cmd and returns to its. exit status.

All forms of getline return 1 for successful input, O for end of file, and

-1 for an error.

March 15, 1989

AWK-4

AWK (C) AWK (C)

awk also provides user-defined functions. Such functions may be
defined (in the pattern position of a pattern-action statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by reference if
array name. Argument names are local to the function; all other vari-
able names are global. Function calls may be nested and functions
may be recursive. The return statement may be used to return a
value.

Examples

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [\tI«[\t1+" }
{ print $2, $1 }

Add up the first column, print sum and average:
{ s += S1 1}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; 1 > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

March 15, 1989 ' AWK-5

AWK (C) . - AWK (C)
Simulate echo(C):

BEGIN {
for (i = 1; i < ARGC; i++)
printf "%$s", ARGV[i]
printf "\n"
exit

}
Print file, filling in page numbers starting at 5:
/Page/ { 82 = n++; }
{ print }

command line: awk -f program n=5 input

See Also

grep(C), sed(C), lex(CP), printf(S)

Notes

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To

force an expression to be treated as a number add O to it; to force it to
be treated as a string concatenate the null string (" ") to it.

Standards Conformance

awk is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 AWK-6

BANNER (C) BANNER (C)

banner

prints large letters

Syntax

banner strings

Description

banner prints its arguments (each up to 10 characters long) in large
letters on the standard output. This is useful for printing names at the
front of printouts.

See Also

echo(C)

Standards Conformance

banner is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
* and The X/Open Portability Guide II of January 1987.

March 15, 1989 - BANNER-1

BASENAME (C) BASENAME (C)

basename

removes directory names from pathnames

Syntax

basename string [suffix]

Description

basename deletes any prefix ending in / and the suffix (if present in
string) from string, and prints the result on the standard output. The
result is the ‘‘base’’ name of the file, i.e., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (~*) in shell procedures to construct new
filenames. .

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.

Examples

The following command displays the filename memos on the standard
output:

basename /usr/johnh/memos.old .old
The following shell procedure, when invoked with the argument
fusr/src/cmd/cat.c, compiles the named file and moves the output to a
file named cat in the current directory:

cc $1
mv a.out ~basename $1 .c~

See Also

dirname(C), sh(C)

Standards Conformance

basename is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 BASENAME -1

BC (C) ~ BC(C)

bc

invokes a calculator

Syntax

be[-c][-1][file...]

Description

bc is an interactive processor for a language that resembles C but pro-
vides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The -1 argument stands for the
name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows: L means the letters a-z, E means expression, S
means statement.

Comments:

Enclosed in /* and #/

Names:

Simple variables: L

Array elements: L[E]

The words ‘‘base’’, ‘‘ibase’’, ‘‘obase’’, and ‘‘scale’’; ‘‘base’” and
‘‘ibase’” are interchangeable.

Other operands:

Arbitrarily long numbers with optional sign and decimal point
(E)

sqrt (E)

length (E) Number of significant decimal digits

scale (E) Number of digits right of decimal point
L(E,...E)

Additive operators:

+

Multiplicative operators:

*

% (remainder)
" (exponentiation)

March 15, 1989 BC-1

BC (C) BC (C)

Unary operators:

++
-- (prefix and postfix; apply to names)

Relational operators:

<=
>=
1=
<
>

Assignment operators:

=+
-
=/
=%

Statements:

E

{S;..;S}

if (E)S

while (E) S
for(E;E;E)S
null statement
break

quit

Function definitions:

define L(L,...,L){
autoL,...,L
S;...S
return (E)

March 15, 1989 BC-2

BC (C) BC (C)

Functions in -1 math library:

s(x) Sine

c(x) Cosine

e(x) Exponential
1(x) Log

a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(C).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari-
able simultaneously. All variables are global to the program. ““Auto”
variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

bc is actually a preprocessor for dc(C), which it invokes automatical -

ly, unless the -c (compile only) option is present. If the -¢ option is
present, the dc input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

scale = 20
define e (x){
auto a, b, ¢, i, s

a=1
b=1
s =1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c = a/b
if (¢ == 0) return(s)
s = s+cC

March 15, 1989 BC-3

BC (C) BC (C)

The following prints the approximate values of the exponential func-
tion of the first ten integers:

for(i=1; i<=10; i++) e(i)

Files

Jusr/lib/lib.bc Mathematical library
fust/bin/dc Desk calculator proper

See Also

dc(C)
User’'s Guide

Notes

A For statement must have all three E’s.
Quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

March 15, 1989 BC-4

BDIFF (C) BDIFF (C)

bdiff

compares files too large for diff(C)

Syntax

bdiff filel file2 [n] [-s]

Description

bdiff compares two files, finds lines that are different, and prints them
on the standard output. It allows processing of files that are too large
for diff. bdiff splits each file into n-line segments, beginning with the
first nonmatching lines, and invokes diff upon the corresponding seg-
ments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments are
too large for diff.

- -8 Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from diff.

If filel (or file2) is a dash (-), the standard input is read.
The output of bdiff is exactly that of diff. Line numbers are adjusted to

account for the segmenting of the files, and the output looks as if the
files had been processed whole.

Files

See Also

diff(C)

Notes

Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far
down in the file for diff and an error is received.

March 15, 1989 BDIFF-1

BFS (C) BFS (C)

bfs

scans big files

Syntax

bfs [-] name

Description

bfs is like ed (C) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes and 32K lines, with up to 255
characters per line. bfs is usually more efficient than ed for scanning
a file, since the file is not copied to a buffer. It is most useful for iden-
tifying sections of a large file where csplit(C) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk (*)
when ‘‘P”” and RETURN are typed. The ‘‘P’’ acts as a toggle, so
prompting can be turned off again by entering another ‘P>’ and a
RETURN. Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols other than
the standard slash (/) and (?): A greater-than sign (>) indicates down-
ward search without wraparound, and a less-than sign (<) indicates
upward search without wraparound. Note that parentheses and curly
braces are special and need to be escaped with a backslash (V). Since
bfs uses a different regular expression-matching routine from ed, the
regular expressions accepted are slightly wider in scope (see
regex (S)). Differences between ed and bfs are listed below:

+ A regular expression followed by + means one or more times .
For example, [0-9]+ is equivalent to [0-9][0-9]*.
\{m\} \{m,\} \{m,u\}

Integer values enclosed in \{\} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and # is a number, less than 256, which is
the maximum. If only m is present (e.g., \{m\}), it indicates
the exact number of times the regular expression is to be
applied. \{m,\} is analogous to \{m,infinity\}. The plus (+)
and star (*) operations are equivalent to \{1,\} and \{O\}
respectively.

March 11, 1990 BFS-1

BFS (C) ‘ BFS (C)

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+17)th argument
following the subject argument. At most ten enclosed regular
expressions are allowed. regex makes its assignments uncon-
ditionally.

(...) Parentheses are used for grouping. An operator, e.g. *, +,
\{\}, can work on a single character or a regular expression
enclosed in parenthesis. For example, \ (a*\(cb-\)*\)$0.

There is also a slight difference in mark names: only the letters ‘‘a’
through ‘‘z’” may be used, and all 26 marks are remembered.-

The e, g, v, k, p, q, w, =, ! and null commands operate as described
under ed except that e doesn’t remember filenames and g and v when
given no arguments return the line after the line you were on. Com-
mands such as ---, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered
filename. The w command is independent of output diversion, trunca-
tion, or crunching (see the xo, xt and xc commands, below). The fol-
lowing additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com-
mands may be nested to a depth of 10.

xo0 [file]
Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation
of the file.

: label
This positions a label in a command file. The label is ter-
minated by a newline, and blanks between the : and the start of
the label are ignored. This command may also be used to insert
comments into a command file, since labels need not be refer-
enced.

(.,.)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:
1. Either address is not between 1 and $.

2. The second address is less than the first.

March 11, 1990 BFS-2

BFS (C) BFS (C)

3. The regular expression doesn’t match at least one line
in the specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made
to label. This command is the only one that doesn’t issue an
error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are executed.
Note that the command

xb/"/ label
is an unconditional jump.

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to a max-
imum of number characters. The initial number is 255.

xv[digit][spaces][value]
The variable name is the specified digit following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
xv61,100p assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

prints the first 100 lines.
8/%5/p
globally searches for the characters 100 and prints each line

containing a match. To escape the special meaning of %, a \
must precede it. For example,

g/" *\%lcds)/p

could be used to match and list lines c‘ontaining printf charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a Altos UNIX System V command can be stored into a
variable.

March 11, 1990 . BFS-3

BFS (C) BFS (C)

The only requirement is that the first character of value be a !.
For example,

xv5!cat junk
rm junk

lecho "%5"
xv6lexpr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \. For example,

xv/\ldate

stores the value !date into variable 7.
xbz label

xbn label
These two commands test the last saved return code from the
execution of an Altos UNIX System V command (!command) or
nonzero value, respectively, and jump to the specified label.
The two examples below search for the next five lines contain-
ing the string size:

xv55
:1
[sizef
xv5lexpr %5 - 1
1if 0%5 1= 0 exit 2
xbn1

v45
1
[sizef
xv4lexpr %4 - 1
1if 0%4 = 0 exit 2
xbz |

xc [switch]
If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, Xc reverses switch.
Initially “switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines
suppressed.

See Also

csplit(C), ed(C), umask(C)

March 11, 1990 BFS—4

BFS (C) BFé(C)

Diagnostics

? for errors in commands if prompting is turned off. Self-explanatory
error messages when prompting is on,

March 11, 1980 BFS-5

CAL (C) CAL (C)

cal

prints a calendar

Syntax

cal [[month] year]

Description

cal prints a calendar for the specified year. If a month is also speci-
fied, a calendar for that month only is printed. If no arguments are
specified, the current, previous, and following months are printed,
along with the current date and time. The year must be a number
between 1 and 9999; month must be a number between 1 and 12 or
enough characters to specify a particular month. For example, May
must be given to distinguish it from March, but S is sufficient to
specify September. If only a month string is given, only that month of
the current year is printed.

Notes

Beware that ‘‘cal 84’’ refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note that
England switched from the Julian to the Gregorian calendar in Sep-
tember of 1752, at which time eleven days were excised from the year.
To see the result of this switch, try “‘cal 9 1752”°.

Standards Conformance

cal is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CAL-1

CALENDAR (C) CALENDAR (C)

calendar

invokes a reminder service

Syntax

calendar [-]

Description

calendar consults the file calendar in the user’s current directory and
mails him lines that contain today’s or tomorrow’s date. Most reason-
able month-day dates, such as ‘‘Sep. 14, ‘‘september 14°°, and
“‘9/14’’, are recognized, but not ‘14 September’’, or ‘‘14/9°.

On weekends ‘‘tomorrow’’ extends through Monday. Lines that con-
tain the date of a Monday will be sent to the user on the previous Fri-
day. This is not true for holidays.

When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends the result to the
standard output. Normally this is done daily, in the early morning,
under the control of cron (C).

Files

calendar

/ust/lib/calprog To figure out today’s and tomorrow’s dates
fetc/passwd
ftmp/cal*

See Also

cron(C), mail(C)

Notes

To get reminder service, a user’s calendar file must have read permis-
sion for all.

March 15, 1989 CALENDAR-1

CALENDAR (C) CALENDAR (C)

Standards Conformance

calendar is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ' CALENDAR-2

CAT (C) CAT (C)

cat

concatenates and displays files

Syntax

cat[-u][-s][-v][-t][-e]file...

Description

cat reads each file in sequence and writes it on the standard output. If
no input file is given, or if a single dash (-) is given, cat reads from the
standard input. The options are:

=S

-u

-V

Suppresses warnings about nonexistent files.
Causes the output to be unbuffered.

Causes non-printing characters (with the exception of tabs, new-
lines, and form feeds) to be displayed. Control characters are dis-
played as ‘“"X’’ (Ctl-X), where X is the key pressed with the Ctrl
key (for example, Ctrl-M is displayed as “M). The DEL character
(octal 0177) is printed as ‘“*?.”” Non-ASCII characters (with the
high bit set) are printed as ‘“M -x,”” where x is the character
specified by the seven low order bits.

Causes tabs to be printed as ““’I’” and form feeds as ‘““"L”’. This
option is ignored if the -v option is not specified.

Causes a ‘‘$”’ character to be printed at the end of each line (prior
to the new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a
special file.

Examples

The following example displays file on the standard output:

cat file

March 15, 1989 CAT-1

CAT (C) CAT (C)

The following example concatenates filel and file2 and places the
result in file3:

cat filel file2 >file3
The following example concatenates filel and appends it to file2 :

cat filel >> file2

See Also

cp(C), pr(C)

Warning

Command lines such as:
cat filel file2 > filel

will cause the original data in filel to be lost; therefore, you must be
careful when using special shell characters.

Standards Conformance

cat is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CAT-2

CD (C) CD (C)

cd

changes working directory

Syntax

cd [directory |

Description

If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $SHOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory .

Because a new process is created to execute each command, cd would
be ineffective if it were written as a normal command; therefore, it is
recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the ‘‘correct’’ name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
nmeans ‘‘no’, and anything else is taken as ‘‘yes’’.

Notes

Wildcard designators will work with the ¢d command.

See Also

pwd(C), sh(C), chdir(S)

March 15, 1989 . CD-1

CHECKMAIL (C) CHECKMAIL (C)

checkmail

checks for mail which has been submitted but not
delivered

Syntax

checkmail [-a][-f][-m]

Description

checkmail checks the mail queue on the local machine for messages
which have been sent by the invoker. If invoked without any argu-
ments, the ‘‘Subject:’’ of each message found is given along with a
list of addressees that have not yet received the message. Usually,
messages are still in the queue because the addressee’s host is down.

The -a (all addresses) option causes all addresses to be shown (both
delivered and undelivered). Some delivered addresses may not appear
since some sites prune already delivered addresses from the address
list files for efficiency. The -f (fast) option suppresses the printing of
the *‘Subject’’ line. The -m (all messages) option causes checkmail to
check all messages in the mail queue, not just those of the invoker.
This is only useful for mail system maintainers who wish to find
obstinate hosts.

See Also

send(ADM), deliver(ADM), mmdf(ADM)

March 15, 1989 ‘ CHECKMAIL-1

CHGRP (C) CHGRP (C)

chgrp

changes group ID

Syntax

chgrp group file ...

Description

chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file /etc/group.

~Files

fetc/passwd
Jetc/group

See Also

chown(C), chown(S), passwd(F), group(F)

Notes

Only the owner or the super-user can change the group ID of a file.

Standards Conformance

chgrp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHGRP-1

CHMOD (C) ~ CHMOD (C)

chmod

changes the access permissions of a file or directory

Syntax

chmod mode file
chmod [who] [+I-I=] [permission ...] file ...

Description

The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who] [+-I=] [permission ...] filename

In place of who you can use one or any combination of the following
letters:

a

o

u

Stands for ‘‘all users’’. If who is not indicated on the command
line, a is the default. The definition of ‘‘all users’’ depends on the
user’s umask. See umask(C).

Stands for “‘group’’, all users who have the same group ID as the
owner of the file or directory.

Stands for ‘‘others’’, all users on the system.

Stands for ‘‘user’’, the owner of the file or directory.

The operators are:

+

Adds permission
Removes permission
Assigns the indicated permission and removes all other permis-

sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

March 15, 1989 CHMOD-1

CHMOD (C) CHMOD (C)

Permissions can be any combination of the following letters:
x Execute (search permission for directories)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the owner
of the file. The mode ‘‘u+s’” sets the user ID bit for the file. The
mode ‘‘g+s’’ sets the group ID bit. Other combinations have no
effect. When the group ID bit is set on a directory, all files created
under it thereafter receive the group ID of that directory. When
the group ID bit is not set, files are created with the group ID of the
creating ‘process/user.

t This is known as the ‘‘sticky bit.”’ (see chmod(S)). Only the mode
‘“‘u+t’’ sets the sticky bit. All other combinations have no effect.
When this bit is set on a directory, files within the directory cannot
be removed by anyone but the owner or the super-user. The owner
can set or remove the sticky bit.

1 Mandatory locking will occur during access
Multiple symbolic modes may be given, separated by commas, on a
single command line. See the following Examples section for sample
permission settings.
Mandatory file and record locking refers to a file having locked read-
ing or writing permissions while a program is accessing that file. A file
cannot have group execution permission and be able to be locked on
execution. In addition, it is not possible to turn on the set-group-ID
and enable a file to be locked on execution at the same time. The fol-
lowing examples show illegal uses of chmod and will generate error
messages:

chmod g+x,+l filename

chmod g+s,+1 filename
A chmod command using absolute mode has the form:

. chmod mode filename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

20#0 Set group ID on execution if “‘#’ is 7, 5, 3, or 1 and
enable mandatory locking if “‘#’’ is 6, 4,2, or 0.

March 15, 1989 CHMOD-2

CHMOD (C)

1000
0400
0200
0100

0020
0010
0004
0002
0001
0000

Examples

Sets the sticky bit (see chmod(S))
Read by owner

Write by owner

Execute (search in directory) by owner
Read by group

Write by group

Execute (search in directory) by group
Read by others

Write by others

Execute (search in directory) by others

No permissions

CHMOD (C)

Symbolic Mode

The following command gives all users execute permission for file:

chmod +x file

The following command removes read and write permission for group
and others from file:

chmod go-rw file

The following command gives other users read and write permission

for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,0+T file

Absolute Mode

March 15, 1989

CHMOD-3

CHMOD (C) CHMOD (C)

The following command gives all users read, write and execute per-
mission for file:

chmod 0777 file

The following command gives read and write permission to all users
for file:

chmod 0666 file

The following command gives read and write permission to the owner
of file only:

chmod 0600 file
The following example causes the file to be locked on access:

chmod +l file

See Also

1s(C), chmod(S)

Notes

The setuid, setgid and sticky bit settings have no effect on shell
scripts.

Standards Conformance

chmod is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHMOD-4

CHOWN (C) CHOWN (C)

chown

changes owner ID

Syntax

chown owner file ...

Description

chown changes the owner ID of the files to owner. The owner may be
either a decimal user ID or a login name found in the file /etc/passwd.

Files

fetc/passwd
fetc/group

See Also

chgrp(C), chown(S), group(F), passwd(F)

Notes

Use of this utility is governed by the chown kernel authorization. If
this authorization is not granted, ownership of files can only be
changed by root. Restricted chown is required for NIST FIPS 151-1
conformance. The chown authorization should not be assigned to
users if you wish to conform to these requirements.

Standards Conformance

chown is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
NIST FIPS 151-1;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHOWN-1

CLEAR (C) CLEAR (C)

clear

clears a terminal screen

Syntax

clear [term]

Description

The clear command clears the screen. If ferm is not specified, the ter-
minal type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines

are output to scroll the screen clear. If the terminal is a hardcopy, the
paper is advanced to the top of the next page.

Files

fetc/termcap

See Also

environ(M), termcap(F), tput(C)

Notes

If the standard output is not a terminal, clear issues an error message.

March 15, 1989 CLEAR-1

CMCHK (C) CMCHK (C)

cmchk

reports hard disk block size

Syntax

cmchk

Description

Reports the hard disk block size in 512-byte blocks.

Value Added

cmchk is an extension of AT&T System V provided by Altos UNIX
System V.,

March 11, 1990 . - CMCHK-1

CMP (C) CMP (C)

cmp

compares two files

Syntax

cmp [-1]]-s]filel file2

_ Description

cmp compares two files and, if they are different, displays the byte and
line number of the differences. If file! is -, the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-S Returns an exit code only, O for identical files, 1 for different
files and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use diff(C) or
diff3(C) to compare text files.

See Also

comm(C), diff(C), diff3(C)

Standards Conformance

cmp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CMP-1

COL (C) COL (C)

col

filters reverse linefeeds

Syntax

col [-bfxp }

Description

col prepares output from processes, such as the text formatter
nroff (CT), for output on devices that limit or do not allow reverse or
half-line motions. col is typically used to process nroff output text
that contains tables generated by the tbl program. A typical command
line might be:

tbl file | nroff | col | Ipr
col takes the following options:

-b Assumes the output device in use is not capable of backspacing. If
two or more characters appear in the same place, col outputs the
last character read.

-f Allows forward half linefeeds. If not given, col accepts half line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse full and half linefeeds
are never allowed with this option.

-x Prevents conversion of whitespace to tabs on output. col normally
converts whitespace to tabs wherever possible to shorten printing
time.

-p Causes col to ignore unknown escape sequences found in its input
and pass them to the output as regular characters. Because these
characters are subject to overprinting from reverse line motions,
the use of this option is discouraged unless the user is fully aware
of the position of the escape sequences.

col assumes that the ASCII control characters SO (octal 016) and SI
(octal 017) start and end text in an alternate character set. If you have
a reverse linefeed (ESC 7), reverse half linefeed (ESC 8), or forward
half linefeed (ESC 9), within an SI-SO sequence, the ESC 7,8 and 9
are still recognized as line motions.

On input, the only control characters col accepts are space, backspace,

tab, return, newline, reverse linefeed (ESC 7), reverse half linefeed
(ESC 8), forward half linefeed (ESC 9), alternate character start(SI),

March 15, 1989 ' COL-1

COL(C) COL (C)

alternate character end (SO), and vertical tag (VT). (The VT charac-
ter is an alternate form of full reverse linefeed, included for compati-
bility with some earlier programs of this type.) All other nonprinting
characters are ignored.

- See Also

nroff(CT), tbl(CT)

Notes

col cannot back up more than 128 lines.
col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the document
are ignored. Therefore, the first line must not contain any superscripts.

Standards Conformance

col is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 COL-2

COMM (C) , COMM (C)

comm

selects or rejects lines common to two sorted files

Syntax

comm [-123] filel file2

Description

comm reads filel and file2, which should be ordered in ASCII collat-
ing sequence (see sort (C)), and produces a three-column output: lines
only in filel ; lines only in file2 ; and lines in both files. The filename
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123is a
no-op.

See Also

cmp(C), diff(C), sort(C), uniq(C)

Standards Conformance

comm is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 - ‘ COMM-1

COMPRESS (C) COMPRESS (C)

compress, uncompress, zcat

compress data for storage, uncompress and display
compressed files

Syntax

compress [-dfFqc] [-b bits] file
uncompress [-fqc] file
zcat file

Description

compress takes a file and compresses it to the smallest possible size,
creates a compressed output file, and removes the original file unless
the -c option is present. Compression is achieved by encoding com-
mon strings within the file. uncompress restores a previously
compressed file to its uncompressed state and removes the
compressed version. zcat uncompresses and displays a file on the stan-
dard output.

If no file is specified on the command line, input is taken from the
standard input and the output is directed to the standard output. Output
defaults to a file with the same filename as the input file with the suf-
fix ““Z’ or it can be directed through the standard output. The output
files have the same permissions and ownership as the corresponding
input files or the user’s standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written
unless the -F flag is present on the command line.

Options
The following options are available from the command line:
-d Decompresses a compressed file.
-C Writes output on the standard output and does not remove
4 original file.
-bbits Speci fies the maximum number of bits to use in encoding.
-f Overwrites previous output file.

March 15, 1989 | COMPRESS-1

COMPRESS (C) ~ COMPRESS (C)

-F Writes output file even if compression saves no space.
-q Generates no output except error messages, if any.
See Also

pack(C), ar(C), tar(C), cat(C)

March 15, 1989 COMPRESS-2

COPY (C) COPY (C)

copy

copies groups of files

Syntax

copy [option] ... source ... dest

Description

- The copy command copies the contents of directories to another direc-
tory. It is possible to copy whole file systems since directories are
made when needed.

If files, directories, or special files do not exist at the destination, then
they are created with the same modes and flags as the source. In addi-
tion, the super-user may set the user and group ID. The owner and
mode are not changed if the destination file exists.

Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the same destination directory for each copy.

Options do not have to be given as separate arguments, and may
appear in any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does
not begin with a ‘‘y”’, then a copy is not done. When used
together with the -v option, it overrides the verbose option
so that messages regarding the copy action are not dis-

played.

-1 Uses links instead whenever they can be used. Otherwise a
copy is done. Note that links are never done for special files
or directories.

-n Requires the destination file to be new. If not, then the copy

command does not change the destination file. The -n flag is
meaningless for directories. For special files a -n flag is
assumed (i.e., the destination of a special file must not
exist).

-0 If set then every file copied has its owner and group set to

those of the source. If not set, then the file’s owner is the
user who invoked the program.

March 15, 1989 COPY-1

COPY (C) COPY (C)

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time is set to the time of the copy.

r If set, then every directory is recursively examined as it is
encountered. If not set then any directories that are found
are ignored. :

-ad Asks the user whether a -r flag applies when a directory is
discovered. If the answer does not begin with a ‘‘y’’, then
the directory is ignored.

-V Messages are printed that reveal what the program is doing.
If used with the -a option, the -a option is given priority so
that it overrides the verbose option, and the copy action
message is not displayed.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If
it is not a directory, then the results of the command are the
same as for the cp command.

dest The destination must be either a file or directory name that
is different from the source.

If the source and destination are anything but directories, then copy
acts just like a cp command. If both are directories, then copy copies
each file into the destination directory according to the flags that have
been set.

Examples

This command line verbosely copies all files in the current directory
to /tmp/food:

copy -v . ftmp/food
The next command line copies all files, except for those that begin
with a period (.), and copies the immediate contents of any child
directories:

copy * /tmp/logic
This command is the same as the previous one, except that it recur-
sxvely examines all subdirectories, and it sets group and ownership
permissions on the destination files to be the same as the source files:

copy -ro * /tmp/logic

March 15, 1989 ‘ COPY-2

COPY (C) COPY (C)

Notes

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

March 15, 1989 COPY-3

CP (C) CP (C)

cp

copies files

Syntax

cp filel file2

cp files directory

Description

There are two ways to use the cp command. With the first way, filel
is copied to file2. Under no circumstance can filel and file2 be ident-
ical. With the second way, directory is the location of a directory into
which one or more files are copied. This directory must exist prior to
the execution of the ¢p command.

See Also
copy(C), cpio(C), In(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then the
data in the pipe is copied to a regular file. Similarly, if the file is a de-
vice, then the file is read until the end-of-file is reached, and that data
ifslcopied to a regular file. It is not possible to copy a directory to a
ile.

Standards Conformance

¢p is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CP-1

CPIO (C) CPIO (C)

cpio

copy file archives in and out

Syntax

cpio -o[acBvV] [-C bufsize] [{-O file] [-K volumesize] [-M mes-
sage]]

cpio -i [BedmrtTuvVfsSb6k] [-C bufsize] [[-I file] [-K volumesize]
[-M message]] [pattern ...]

cpio -p [adlmuvV] directory

Description

cpio -o (copy out) reads the standard input to obtain a list of path
names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte
boundary by default.

cpio -i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. patterns are regular expres-
sions given in the filename-generating notation of s2(C). In patterns,
metacharacters ?, *, and [...] match the slash (/) character, and
backslash (\) is an escape character. A ! metacharacter means not.
(For example, the !abc* pattern would exclude all files that begin with
abc.) Multiple patterns may be specified and if no patterns are speci-
fied, the default for patterns is * (i.e., select all files). Each pattern
must be enclosed in double quotes otherwise the name of a file in the
current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio
-0 . The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner
and group of the files of the previous cpio -0 . NOTE: If cpio -i tries
to create a file that already exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file.
(Tht; -u option can be used to unconditionally overwrite the existing
file.

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination
directory tree based upon the options described below. Archives of
text files created by cpio are portable between implementations of
UNIX System V.

March 15, 1991 CPIO-1

CPIO (C) CPIO (C)

The meanings of the available options are:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified.

-b Reverse the order of the bytes within each word. Use only with the
-1 option. :

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, e.g.,
/dev/rdsk/f0q15dt.)

-¢ Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where buf-
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or
from a character-special device, e.g., /dev/irmt/c0s0.) When used
with the -K option, bufsize is forced to be a 1K multiple.

-d directories are to be created as needed.

-f Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

-1file
Read the contents of file as input. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is cor-
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prema-
turely. cpio will find the next good header, which may be one fora
smaller archive, and terminate when the smaller archive’s trailer is
encountered.) Used only with the -i option.

-1 Whenever possible, link files rather than copying them. Usable
only with the -p option.

March 15, 1991 : CPIO-2

CPIO (C) CPIO (C)

-m
Retain previous file modification time. This option is ineffective
on directories that are being copied.

‘K volumesize
Specifies the size of the media volume. Must be in 1K blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must
include the -C option with a bufsize multiple of 1K.

-M message
Define a message to use when switching media. When you use the
-O or -I options and specify a character-special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in the mes-
sage to print the sequence number of the next medium needed to
continue.

-Ofile
Direct the output of cpio to file. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-0 option.

-r Interactively rename files. If the user types a null line, the file is

skipped. If the user types a ".", the original pathname will be

copied. (Not available with cpio -p.)
-s swap bytes within each half word. Use only with the -i option.
-S Swap halfwords within each word. Use only with the -i option.

-T Truncate long filenames to 14 characters. Use only with the -i
option. '

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

-v verbose: causes a list of file names to be printed. When used with
the -t option, the table of contents looks like the output of an Is -1
command [see Is(C)].

-V Special Verbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

-6 Process an old (i.e., UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

March 15, 1991 CPIO-3

CPIO (C) CPIO (C)

If cpio reaches end of medium (end of a diskette for ekample) when
writing to (-0) or reading from (-i) a character-special device, and -O
and -I are not used, cpio will print the message:

If you want to go on, type devicel file name when ready.

To continue, you must replace the medium and type the character-
special device name (/dev/rdsk/f0q15dt for example) and a carriage
return. You may want to continue by directing cpio to use a different
device. For example, if you have two floppy drives, you may want to
switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

Examples

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the
files so they can be directed (>) to a single file (../newfile). The -c
option insures that the file will be portable to other machines. Instead
of Is(C), you could use find(C), echo(C), cat(C), etc., to pipe a list of
names to ¢pio. You could direct the output to a device instead of a
file.

Is | cpio -oc >../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat
in the example), extracts those files that match the patterns (memo/al,
memo/b#*), creates directories below the current directory as needed
(-d option), and places the files in the appropriate directories. The -c
option is used when the file is created with a portable header. If no
patterns were given, all files from newfile would be placed in the
directory.

cat newfile | cpio -icd “memolal” "memolb*"

cpio -p takes the file names piped to it and copies or links (-1 option)
those files to another directory on your machine (newdir in the exam-
ple). The -d options says to create directories as needed. The -m
option says retain the modification time. [It is important to use the
-depth option of find(C) to generate path names for cpio. This elim-
inates problems cpio could have trying to create files under read-only
directories.]

find . -depth -print | cpio -pdlmv newdir
See Also

cat(C), echo(C), find(C), Is(C), tar(C), cpio(F)

March 15, 1991 CPIO-4

CPIO (C) CPIO (C)

Notes

1) Path names are restricted to 256 characters.

2) Only the super-user can copy special files.

3) Blocks are reported in 512-byte quantities.

4) If a file has 000 permissions, contains more than O characters of data
and the user is not root, the file will not be saved or restored.

Standards Conformance

cpio is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1991 CPIO-5

CRON (C) CRON (C)

cron

executes commands scheduled by at, batch, and
crontab

Syntax

Jetc/cron

Description

cron is the clock daemon that executes commands at specified dates
and times. cron processes jobs submitted with at(C), batch(C), and -
crontab(C). cron never exits; the cron command usually appears in
the /ete/r¢2 scripts to be invoked by init(M) when the system is
brought up in multi-user mode.

Files
fetc/default/cron cron logging default information
Jusr/lib/cron main cron directory
fust/lib/cron/atjobs at directory
/ust/spool/cron/crontabs crontab directory
fusr/lib/cron/log accounting information
]usr/lib/cron/queuedefs cron data file
fust/lib/cron/.proto cron environment information
See Also

at(C), crontab(C), queuedefs(F), sh(C)

Diagnostics

A history of all actions by cron can be recorded in fusr/lib/cron/log.
This logging occurs only if the variable CRONLOG is set to YES in
fetc/default/cron. By default this value is set to NO and no logging
occurs. If logging should be turned on, be sure to check the size of the

March 15, 1989 -CRON-1

CRON (C) CRON (C)
log file regularly.

Standards Conformance

cron is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 CRON-2

CRONTAB (C) CRONTAB (C)

crontab

schedule commands to be executed at regular inter-
vals

Syntax

crontab [file]
crontab -r
crontab -l

Description

The crontab command can be used to schedule commands to be exe-
cuted at regular intervals. These commands are stored in the user’s
crontab file, /usr/spool/cron/crontabs/username. Any output or
errors generated by the commands are mailed to the user.

If called with no options, crontab copies the specified file, or standard
input if no file is specified, into the crontabs directory (if the user has
a previous crontab file, it is replaced).

The -r option removes the user’s crontab file from the crontab direc-
tory.

The -1 option lists the contents of the user’s crontab file.

If the file /usr/lib/cron/cron.allow exists, only the users listed in that
file are allowed to use crontab. If cron.allow does not exist, and the
file /usr/lib/cron/cron.deny does, then all users not listed in
cron.deny are allowed access to crontab, with an empty cron.deny
allowing global usage. If neither file exists, only the super user is
allowed to submit a job. The allow/deny files consist of one user name
per line. ,

The crontabs files consist of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the minute (0-59), hour (0-23), day of the month (1-31), month
of the year (1-12), and day of the week (0-6, with O=Sunday). Each of
these patterns may contain:

- A number in the (respective) range indicated above

- Two numbers separated by a minus (indicating an inclusive range)

March 15, 1989 CRONTAB-1

CRONTAB (C) CRONTAB (C)

- Alist of numbers separated by commas (meaning all of these num-
bers)

- An asterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of

the month and day of the week). If both are specified as a list of ele-

ments, both are adhered to. For example, 0 0 1,15 * 1 would run a

command on the first and fifteenth of each month, as well as on every

Monday. To specify days by only one field, the other field should be

fiet t()) * (for example, 0 0 * * 1 would run a command only on Mon-
ays).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character. Only
the first line (up to a % or end-of-line) of the command field is exe-
cuted by the shell. The other lines are made available to the command
as standard input.

The shell is invoked from your SHOME directory with an arg0 of sh.
Users who desire to have their .profile executed must explicitly do so
in the crontab file. cron supplies a default environment for every
shell, defining HOME, LOGNAME, SHELL (=/bin/sh), and
PATH (=/bin:/usr/bin:).

Examples

An example crontabs file follows:

0 4 * * * calendar -

15 4 * * * find /usr/preserve -mtime +7 -exec rm -f {} ;
30 4 1 * 1 /usr/lib/uucp/uuclean

40 4 * * * find / -name '#*' -atime +3 -exec mm -f {} ;
1,21,41 * * * * (echo -n ’ ’; date; echo) >/dev/console

The lines in this example do the following: run the calendar program
every night at 4:00 am, clear old files from the /etc/preserve directory
every night at 4:15 am, clean up the uucp spool directory every Mon-
day and the first of every month at 4:30 am, find and remove any old
files with names beginning with “‘#’ every night at 4:40 am, and echo
the current date and time to the console three times an hour at one
minute, 21 minutes, and 41 minutes past the hour.

Files

fusr/lib/cron main cron directory

March 15, 1989 ' CRONTAB-2

CRONTAB (C) CRONTAB (C)

fust/spool/cron/crontabs crontab directory
fust/lib/cron/cron.allow list of allowed users
fust/lib/cron/cron.deny list of denied users
fusr/lib/cron/.proto cron environment information
fusr/lib/cron/queuedefs cron data file

See Also
at(C), cron(C), ksh(C)

Diagnostics

crontab exits and returns a value of 55 if it cannot allocate enough
memory. If it exits for any other reason, it returns a value of 1.

Notes

crontab commands are executed by cron(C). cron reads the files in
the crontabs directory only on startup or when a new crontab is sub-
mitted with the crontab command, so changes made to these files by
hand will not take effect until the system is rebooted. Changes sub-
mitted with the crontab command will take effect as soon as cron is
free to read them (that is, when cron is not in the process of running a
§c{)1e)dul’ed job or reading another newly submitted at(C) or crontab
job.).

Users who do not wish to have output from their commands mailed to
them may want to redirect it to a file:

0 * * * * yho > /tmp/whofile 2> /dev/null
The example above would append the output of the who(C) command
to a file, and throw away any errors generated. For more details on
output redirection, see the s#(C) manual page.
Users should remember to redirect the standard output and standard
error of their commands otherwise any generated output or errors will
be mailed to the user. :

crontab will overwrite any previous crontab submitted by the same
user.

March 15, 1989 , CRONTAB-3

CRONTAB (C) CRONTAB (C)

Standards Conformance

crontab is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CRONTAB-4

CRYPT (C) . ~ CRYPT(C)

crypt

encode/decode

Syntax

crypt [password]
crypt [-k]

‘Description

The crypt command reads from the standard input and writes to the
standard output. The password is a key that selects a particular
transformation. If no argument is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. If the
-k option is used, crypt will use the key assigned to the environment
variable CRYPTKEY. The crypt command encrypts and decrypts with
the same key: :

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the edi-
tors ed(C), edit(C), ex(C), and vi(C) in encryption mode.

The security of encrypted files depends on three factors: the funda-
mental method must be hard to solve; direct search of the key space
must be infeasible; ‘‘sneak paths’> by which keys or clear text can
become visible must be minimized.

The crypt command implements a one-rotor machine designed along
the lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not widely; more-
over the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial frac-
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visi-
ble to users executing ps(C) or a derivative. To minimize this possi-
bility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulner-
able aspect of crypt.

March 15, 1989 CRYPT-

CRYPT (C) CRYPT (C)

Files

/dev/ity for typed key
See Also

ed(C), edit(C), ex(C), makekey(C), ps(C), stty(C), vi(C)

Notes

If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the first -
of the original files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the U.S.
Government and are not available to sites outside of the United States
and its territories. Because we cannot control the destination of the
software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the crypt
software through your product distributor or reseller.

March 15, 1989 CRYPT-2

CSH (C) ~ CSH(C)

csh

invokes a shell corhmand interpreter with C-like syntax

Syntax

csh [-cefinstvVxX] [arg ...]

Description

csh is a command language interpreter. It begins by executing com-
mands from the file .cshrc in the home directory of the invoker. If
this is a login shell, it also executes commands from the file .login
there. In the normal case, the shell begins reading commands from the
terminal, prompting with % . Processing of arguments and the use of
{he shell to process files containing command scripts will be described
ater.

The shell then repeatedly performs the following actions: a line of
‘command input is read and broken into words. This sequence of words
is placed on the command history list and then parsed. Finally, each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
Jogout in the user’s home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the fol-
lowing exceptions. The characters &, I, ;, <, >, (,), form separate
words. If doubled in &&, | |, <<, or >>, these pairs form single words.
These parser metacharacters may be made part of other words, or their
special meaning prevented, by preceding them with \. A newline pre-
ceded by a\is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, *, ~ or ",
form parts of a word; metacharacters in these strings, including blanks
and tabs, do not form separate words. These quotations have seman-
tics to be described subsequently. Within pairs of ~ or " characters, a
newline preceded by a\ gives a true newline character.

When the shell’s input is not a terminal, the character # introduces a
comment which continues to the end of the input line. It does not
have this special meaning when preceded by \ and placed inside the
quotation marks °, °, or ".

March 15, 1989 » CSH-1

CSH (C) ' CSH (C)

Commands

A simple command is a sequence of words, the first of which specifies
the command to be executed. A simple command or a sequence of
simple commands separated by | characters forms a pipeline. The out-
put of each command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ;, and are then exe-
cuted sequentially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with a &. Such a sequence
is automatically prevented from being terminated by a hangup signal;
the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple com-
mand (which may be a component of a pipeline, etc.) It is also possi-
ble to separate pipelines with | | or && indicating, as in the C lan-
guage, that the second is to be executed only if the first fails or
succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell
performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on these
words. Thus, history substitutions provide a generalization of a redo
function.

History substitutions begin with the character ! and may begin any-
where in the input stream if a history substitution is not already in
progress. The ! may be preceded by a\ to prevent its special meaning;
a ! is passed unchanged when it is followed by a blank, tab, newline,
=, or (. History substitutions may also occur when an input line begins
with °. This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been entered without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained. Com-
mands are numbered sequentially from 1.

March 15, 1989 , CSH-2

CSH (C) , CSH (C)

For example, enter the command:
history
Now, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 Jdiff *write.c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing a ! in the prompt string.

With the current event 13 we can refer to previous events by event
number !11, relatively as in !-2 (referring to the same event), by a pre-
fix of a command word as in !d for event 12 or !w for event 9, or by a
string contained in a word in the command as in !?mic? also referring
to event 9. These forms, without further modification, simply reintro-
duce the words of the specified events, each separated by a single
blank. As a special case !! refers to the previous command; thus !!
alone is essentially a redo. The form !4# references the current com-
mand (the one being entered). It allows a word to be selected from
further left in the line, to avoid retyping a long name, as in !#:1.

To select words from an event, we can follow the event specification
by a : and a designator for the desired words. The words of an input
line are numbered from O, the first (usually command) word being O,
the second word (first argument) being 1, and so on. The basic word
designators are:

0 First b(command) word

n nth argument

“ First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s ? search

x-y
Range of words

-y Abbreviates 0-y

* Abbreviates "-$, or nothing if only 1 word in event

March 15, 1989 - CSH-3

CSH (C) CSH (C)

x* Abbreviates x -$
x- Like x * but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a ~, §, *, - or %. After
the optional word designator, a sequence of modifiers can be placed,
each preceded by a :. The following modifiers are defined:

h Removes a trailing pathname component
r. Removes a trailing .xxx component

s/tir]
Substitutes [for r

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing substitutions

x Like g, but breaks into words at blanks, tabs, and newlines

Unless preceded by a g, the modification is applied only to the first
modifiable word. In any case it is an error for no word to be applica-
ble.

The left sides of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the de-
limiter in place of /; a\ quotes the delimiter within the / and r strings.
The character & in the right side is replaced by the text from the left.
A\ quotes & also. A null / uses the previous string either from a / or
from a contextual scan string s in {?7s?. The trailing delimiter in the
substitution may be omitted if a newline follows immediately as may
the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g.,
!$. In this case the reference is to the previous command unless a pre-
vious history reference occurred on the same line in which case this
form repeats the previous reference. Thus !?7f00?"!$ gives the first and
last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a ". This is equivalent to !:s",
providing a convenient shorthand for substitutions on the text of the
previous line. Thus “Ib’lib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {

March 15, 1989 v ‘ CSH-4

CSH(C) CSH (C)

and } if necessary to insulate it from the characters that follow. Thus,
after Is -1d “paul we might do !{l1}a to do Is -1d “paula, while !la would
look for a command starting la.

Quotations With “and "

The quotation of strings by “ and " can be used to prevent all or some
of the remaining substitutions. Strings enclosed in “ are prevented any
further interpretation. Variable and command expansion occurs in
strings enclosed in ",

In both cases, the resulting text becomes (all or part of) a single word;
only in one special case (see Command Substitution below) does a "
quoted string yield parts of more than one word; “ quoted strings never
do.

Alias Substitution

The shell maintains a list of aliases which can be established, dis-
played and modified by the alias and unalias commands. After a com-
mand line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an
alias. If it does, then the text which is the alias for that command is
reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the com-
mand and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is ‘‘Is -1'’ the command “‘Is fusr’’ would map to
“Is -1 fusr”. Similarly if the alias for ‘‘lookup’” was ‘‘grep \!I”
fetc/passwd’® then “‘lookup bill”” would map to ‘‘grep bill
fetc/passwd’’,

If an alias is found, the word transformation of the input text is per-
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the same
as the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn-
tax. Thus we can alias print ““‘pr\l* | Ipr™’ to make a command that
paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd,
and flipd. These aliases maintain a directory stack.

pushd dir
Pushes the current directory onto the top of the directory stack,
then changes to the directory dir.

March 15, 1989 CSH-5

CSH (C) CSH (C)

popd
Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the current

directory.

swapd
Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top direc-
tory becomes the top directory.

flipd
Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl,and dir2 is on
the top of the stack, when flipd is invoked, you change to dir2 and
dirl is replaced as the top directory on the stack. When flipd is
again invoked, you change to dirl and dir2 is again the top direc-
tory on the stack.

Variable Substitution

The shell maintains a set of variables, each of which has a list of zero
or more words as its value. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image of
the shell’s argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell a num-
ber are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a tog-
gle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) com-
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by dollar sign ($)
characters. This expansion can be prevented by preceding the dollar
sign with a backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks (") where it
never occurs. Strings quoted by back quotation marks (*) are inter-
preted later (see Command substitution below) so dollar sign substitu-
tion does not occur there until later, if at all. A dollar sign is passed
unchanged if followed by a blank, tab, or end-of-line.

March 15, 1989 CSH-6

CSH (C) CSH (C)

Input and output redirections are recognized before variable . expan-
sion, and are expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be subject to com-
mand and filename substitution. Within double quotation marks ("), a
variable whose value consists of multiple words expands to a portion
of a single word, with the words of the variable’s value separated by
blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a vari-
able which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under-
scores.

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given below are
not available in this case).

$name[selector]

${namel[selector]}
May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con-
sist of a single number or two numbers separated by a -. The
first word of a variables value is numbered 1. If the first number
of a range is omitted it defaults to 1. If the last member of a-
range is omitted it defaults to $#name. The selector * selects all
words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is useful for
later use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

March 15, 1989 CSH-7

CSH (C) CSH (C)

$number
${number}
Equivalent to $argv[number].

$* Equivalent to $argv[*].

The modifiers :h, :t, i, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one :
modifier is allowed on each $ expansion.

The following substitutions may not be modified with : modifiers.

$name
${name}
Substitutes the string 1 if name is set, O if it is not.

$?0 Substitutes 1 if the current input filename is known, O if it is not.
$$ Substitutes the (decimal) process number of the (parent) shell.
Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of expres-
sions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name
is substituted separately from the argument list. This occurs very late,
alfltelr1 input-output redirection is performed, and in a child of the main
shell.

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks. The output from such a command is normally bro-
ken into separate words at blanks, tabs and newlines, with null words
being discarded. This text then replaces the original string. Within
double quotation marks, only newlines force new words; blanks and
tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is possible for a command substitution to yield only part of a
word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the
character ~, then that word is a candidate for filename substitution,
also known as globbing. This word is then regarded as a pattern, and
is replaced with an alphabetically sorted list of filenames which match
the pattern. In a list of words specifying filename substitution it is an

March 15, 1989 ‘ CSH-8

CSH (C) CSH (C)

error for no pattern to match an existing filename, but it is not required
for each pattern to match. Only the metacharacters *, ?, and [imply
pattern matching., The characters ~ and { are more akin to abbrevia-
tions.

In matching filenames, the character . at the beginning of a filename or
immediately following a /, as well as the character / must be matched
explicitly. The character * matches any string of characters, including
the null string. The character ? matches any single character. The
sequence within square brackets [] matches any one of the characters
enclosed. Within square brackets [], a pair of characters separated by
- matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home
directories. Standing alone, it expands to the invoker’s home directory
contained in the variable HOME. When followed by a name consist-
ing of letters, digits and - characters the shell searches for a user with
that name and substitutes their home directory; thus "ken might
expand to fusr/ken and “ken/chmach to fusr/ken/chmach. If the charac-
ter ~ is followed by a character other than a letter or /, or if it does not
appear at the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to -
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. Thus
“source/s1/{oldls,ls}.c expands to Jusr/source/s1/oldls.c
lust/source/s1/ls.c, whether or not these files exist, assuming that the
home directory for source is fusr/source. Similarly ../{memo,*box}
might expand to ../memo ../box ../mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, } and
{} are passed unchanged. This construct can be nested.

Spelling Checker

If the local variable cdspell has been set, the shell checks spelling
whenever you use cd to change directories. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter ‘‘y’’ and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter ‘‘n”’, then retype the command line. In this example the csh(C)
response is boldfaced:

% cd /usr/spol/uucp

/usxr/spool/uucp? y
ok

March 15, 1989 ‘ CSH-9

CSH (C) CSH (C)

Input/Output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (after variable, command and filename expan-
sion) as the standard input.

<< word

Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi-
tution, and each input line is compared to word before any sub-
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing \ to quote $,\and *.
Commands which are substituted have all blanks, tabs, and new-
lines preserved, except for the final newline which is dropped.
The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable noclobber is set, then an error results if the file
already exists or if it is not a character special file (e.g., a termi-
nal or /dev/null). This helps prevent accidental destruction of
files. In this case, the ! forms can be used to suppress this check.

The forms involving & route the diagnostic output into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like > but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the ! forms is given. Other-
wise similar to >.

If a command is run in the background (followed by &) then the
default standard input for the command is the empty file /dev/null.
Otherwise, the command receives the input and output parameters
from its parent shell. Thus, unlike some previous shells, commands
run from a file of shell commands have no access to the text of the

March 15, 1989 CSH-10

CSH (C) ; CSH (C)

commands by default; rather they receive the original standard input
of the shell. The << mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipe-
lines and allows the shell to block read its input. '

Diagnostic output may be directed through a pipe with the standard
output. Simply use the form | & rather than just |. ,

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

&K ™ & == 1= <= >= < > << >>
+-% [%7 ()

Here the precedence increases to the right, == and !=, <=, >=, <, and
>, << and >>, + and -, * / and % being, in groups, at the same level.
The == and != operators compare their arguments as strings, all others
operate on numbers. Strings which begin with O are considered octal
numbers. Null or missing arguments are considered 0. The result of
all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear
in the same word unless a word is adjacent to components of expres-
sions which are syntactically significant to the parser (& | <> ()), it
should be surrounded by spaces.

Also available in expressions as primitive operands are command exe-
cutions enclosed in { and } and file enquiries of the form -/ name
where [is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

armNO® X g

Command and filename expansion is applied. to the specified name,
then the result is tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible then all enquiries
return false, i.e. 0. Command executions succeed, returning true, i.e.
1, if the command exits with status 0, otherwise they fail, returning
false, i.e. 0.

If more detailed status information is required then the command

should be executed outside of an expression and the variable status
examined.

March 15, 1989 CSH-11

CSH (C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regu-
late the flow of control in command files (shell scripts) and (in limited
but useful ways) from terminal input. Due to the implementation,
some restrictions are placed on the word placement for the foreach,
switch, and while statements, as well as the if-then-else form of the if
statement. Please pay careful attention to these restrictions in the
descriptions in the next section. ‘

If the shell’s input is not seekable, the shell buffers up input whenever
a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto commands will succeed on nonseekable
inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in com-
mand occurs as any component of a pipeline except the last, then it is
executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name; wordlist is command and filename substitution is
applied to wordlist. Name is not allowed to be alias or unalias

break
Causes execution to resume after the end of the nearest enclos-
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi-
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
This is part of the switch statement discussed below.

cd

cd name

chdir

chdir name
Changes the shell’s working directory to directory name. If no
argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc-
tory (and does not begin with /, ./, or ../), then each component of
the variable cdpath is checked to see if it has a subdirectory
name. Finally, if all else fails but name is a shell variable

March 15, 1989 CSH-12

CSH (C) : CSH (C)

whose value begins with /, then this is tried to see if it is a direc-
tory.

If cdspell has been set, the shell runs a spelling check as follows. If
the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory in a
search for the “‘correct’’ name. The shell then asks whether or not to
try and change the directory to the corrected directory name; an
answer of n means ‘‘no,”’ and anything else is taken as ‘‘yes.”’

continue
Continues execution of the nearest enclosing while or foreach.
. The rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

echo wordlist -
The specified words are written to the shell’s standard output. A
\c causes the echo to complete without printing a newline. A \n
in wordlist causes a newline to be printed. Otherwise the words
are echoed, separated by spaces.

else

end

endif

endsw
See the description of the foreach, if, switch, and while state-
ments below.

exec command :
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command

and the matching end are executed. (Both
foreachname(wordlist) and end must appear alone on separate
lines.) '

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the

March 15, 1989 i . CSH-13

CSH (C) CSH (C)

contents of the loop are read by prompting with ? until end is
typed before any statements in the loop are executed.

glob wordlist
Like echo but no\ escapes are recognized and words are delim-
ited by null characters in the output. Useful for programs which
wish to use the shell to apply filename expansion to a list of
words.

goto word
Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

history
Displays the history event list.

if (expr) command

If the specified expression evaluates true, then the single com-
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. Command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, and com-
mand is not executed.

if (expr) then
els.é. if (expr2) then
else

endif

If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

logout

Terminates a login shell. The only way to log out if ignoreeof is
set.

March 15, 1989 CSH-14

CSH (C) CSH (C)

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. By default, com-
mands run under C-Shell have a ‘‘nice value’” of 0. The second
form sets the nice to the given number, The final two forms run
command at priority 4 and number respectively. . The super-user
may specify negative niceness by using ‘‘nice -number”> The
command is always executed in a subshell, and the restrictions
placed on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with & are automatically
nohuped.

onintr

onintr -

onintr label .
Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr, causes all interrupts to be
ignored. The final form causes the shell to execute a goto label
when an interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. :This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command
The specified command, which is subject to the same restric-
tions as the command in the simple if statement above, is exe-
cuted count times. I/O redirection occurs exactly once, even if
count is 0. ’

set

set name
set name=word

March 15, 1989 _ CSH-15

CSH (C) CSH (C)

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell vari-
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the
list of words in wordlist. Command and filename expansion is
applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari-
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift
shift variable
~ In the first form, the members of argv are shifted to the left, dis-
carding argv(1]. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the specified variable.

source name

The shell reads commands from name. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter-
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

switch (string)
case strl:

b.x"'eaksw
* default:

breaksw

endsw '
Command and filename substitution is applied to string. The
each case label is successively matched against the result. Vari-
able expansion is also applied to the case labels, so the file
metacharacters *, ?, and [...] can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label

March 15, 1989 CSH-16

CSH (C) CSH (C)

must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control
may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
the endsw. ;

time

time command
With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above. ’

umask

umask value v
The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern ‘
All aliases whose names match the specified pattern are dis-
carded. Thus, all aliases are removed by unalias #. It is not an
error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro-
grams is disabled.

unset pattern
All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; this has
noticeably distasteful side-effects. It is not an error for nothing
to be unset.

wait
All child processes are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding.

while (expr)
end
While the specified expression evaluates nonzero, the com-

mands between the while and the matching end are evaluated.
Break and continue may be used to terminate or continue the

March 15, 1989 : CSH-17

CSH (C) CSH (C)

loop prematurely. (The while(expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a ter-
minal.

@

@ name = expr

@ name[index] = expr
The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <, >, & or | then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words. The space between @ and
name is also mandatory.

Special postfix ++ and -- operators increment and decrement
name respectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argv, child, home, path, prompt, shell and status are always set by the
shell. Except for child and status this setting occurs only at initializa -
tion; these variables will not be modified unless done explicitly by the
user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever path is
set. Thus it is not necessary to worry about its setting other than in the
file .cshrc since inferior c¢sh processes will import the definition of
path from the environment.

argv Set to the arguments to the shell, it is from this vari-
able that positional parameters are substituted, i.e.,
$1 is replaced by S$argv[l], etc. argv[0] is not
defined, but $0 is.

cdpath Gives a list of alternate directories searched to find
subdirectories in cd commands.

child The process number of the last command forked

with &. This variable is unset when this process
terminates.

March 15, 1989 CSH-18

CSH (C)

echo

histchars

history

home

ignoreeof

mail

noclobber

March 15, 1989

CSH (C)

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, since these substitutions: are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the ~ substi-
tution mechanism. For example, set histchars=",;"
will cause the history characters to be comma and

semicolon.

Can be given a numeric value to control the size of
the history list. Any command which has been
referenced in this many events will not be dis-
carded. A history that is too large may run the shell
out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of ~
refers to this variable.

- If set, the shell ignores end-of-file from input de-

vices that are terminals. This prevents a shell from
accidentally being terminated by pressing Ctrl-D.

The files where the shell checks for mail. This
check is executed after each command completion.
The shell responds with, ‘“You have new mail’’ if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval: in
seconds, rather than the default, which is 10
minutes.

If multiple mail files are specified, then the shell
responds with ‘‘“New mail in name’’, when there is
mail in the file name.

As described in the section Input/Output, restric-
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that >>
redirections refer to existing files.

CSH-19

CSH (C)

noglob

nonomatch

path

prompt

shell

status

March 15, 1989

CSH (C)

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e., echo [still gives
an error.

Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, then only full pathnames will
execute. The usual search path is /bin, /usr/bin, and
., but this may vary from system to system. For the
super-user, the default search path is /etc, /bin and
fust/bin. A shell which is given neither the -c nor
the -t option will normally hash the contents of the
directories in the path variable after reading .cshre,
and each time the path variable is reset. If new
commands are added to these directories while the
shell is active, it may be necessary to give the
;ehash command, or the commands may not be
ound.

The string which is printed before reading each
command from an interactive terminal input. If a !
appears in the string, it will be replaced by the
current event number unless a preceding \ is given.
Default is % , or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Exe-
cution below.) Initialized to the home of the shell.

The status returned by the last command. If it ter-
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, otherwise these commands set status to 0.

CSH-20

CSH (C) CSH (C)

time Controls automatic timing of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be sent to the
screen displaying user time, system time, real time,
and a utilization percentage which is the ratio of
user plus system times to real time.

verbose Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is found to not be a built-in com-
mand, the shell attempts to execute the command via exec(S). Each
word in the variable path names a directory from which the shell will
attempt to execute the command. If it is given neither a -c nor a -t
option, the shell will hash the names in these directories into an inter-
nal table so that it will only try an exec in a directory if there is a pos-
sibility that the command resides there. This greatly speeds command
location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the
shell was given a -c or -t argument, and for each directory component
of path which does not begin with a /, the shell concatenates each
directory component of path with the given command name to form a
pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd ; pwd) ; pwd

prints the home directory; leaving you where you were and printing
the name of the current directory, while

cd ; pwd

leaves you in the home directory. Parenthesized commands are
always executed in a subshell. Thus

(cd; pwd); pwd

prints the home directory but leaves you in the original directory,
while

cd; pwd
moves you to the home directory.
If the file has execute permissions but is not an executable binary to

the system, then it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

March 15, 1989 : CSH-21

CSH (C) CSH (C)

If there is an alias for shell then the words of the alias are prepended
to the argument list to form the shell command. The first word of the
alias should be the full pathname of the shell (e.g. $shell). Note that
this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without
modification.

Argument List Processing

If argument O to the shell is - then this is a login shell. The flag argu-
ments are interpreted as follows:

-¢ Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker’s home
directory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syn-
tactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that com-
mand input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshre is exe-
cuted.

-X Causes the echo variable to be set even before .cshrc is exe-
cuted.

After processing the flag arguments, if arguments remain but none of
the -c, -i, -s, or -t options were given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by $0. On a typical sys-
tem, most shell scripts are written for the standard shell (see sh(C)).

March 15, 1989 CSH-22

CSH (C) CSH (C)

The C shell will execute such a standard shell if the first character of
the script is not a # (i.e. if the script does not start with a comment).
Remaining arguments initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed by
&; otherwise the signals have the values which the shell inherited
from its parent. The shells handling of interrupts can be controlled by
onintr. By default, login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell’s parent.
In no case are interrupts allowed when a login shell is reading the file

Jogout.
Files
~/.cshrc Read at by each shell at the beginning
of execution
fetc/cshre Systemwide default cshrce file if none is present
~/.login Read by login shell, after .cshrc at login
“/.logout Read by login shell, at logout
/bin/sh Shell for scripts not starting with a #
/tmp/sh* Temporary file for <<
/dev/null Source of empty file
fetc/passwd Source of home directories for "name
Limitations

Words can be no longer than 512 characters. The number of argu-
ments to a command which involves filename expansion is limited to
1/6 the number of characters allowed in an argument list, which is
5120, less the characters in the environment. Also, command substitu-
tions may substitute no more characters than are allowed in an argu-
ment list.

To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),

March 15, 1989 CSH-23

CSH (C) CSH (C)
a.out(F), environ(M)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Built-in control structure commands like foreach and while cannot be
used with |, & or ;.

Commands within loops, prompted for by ?, are not placed in the his-
tory list.

It is not possible to use the colon (:) modifiers on the output of com-
mand substitutions.

The C-shell has many built-in commands with the same name and
functionality as Bourne shell commands. However, the syntax of
these C-shell and Bourne shell commands often differs. Two examples
are the nice and echo commands. Be sure to use the correct syntax
when working with these built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands
in /etc/cshre before executing commands in the user’s SHOME/ .cshrc.
You can, therefore, modify the C-shell environment for all users on the
system by editing /etc/cshre.

During intervals of heavy system load, pressing the delete key while
at a C-shell prompt (%) may cause the shell to exit. If csh is the login
shell, the user is logged out.

csh attempts to import and export the PATH variable for use with reg-

ular shell scripts. This only works for simple cases, where the PATH
contains no command characters.

March 15, 1989 : CSH-24

CSPLIT (C) ‘ - CSPLIT (C)

csplit

splits files according to context

Syntax

csplit [-s] [-k] [-f prefix] file argl [. .. argn]

Description

csplit reads file and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in files
xx00 ... xxn (n may not be greater than 99). These sections get the
following pieces of file:

00: From the start of file up to (but not including) the line refer-
enced by argl.

01: From the line referenced by argl up to the line referenced by
arg2.

n+l: From the line referenced by argn to the end of file.
The options to csplit are:

-S csplit normally prints the character counts for each file creat-
ed. If the -s option is present, csplit suppresses the printing
of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefix00
... prefixn, The default is xx00 ... xxn.

The arguments (arg! ... argn) to csplit can be a combination of the
following:

frexp/ A file is to be created for the section from the current line
down to (but not including) the line containing the regular
expression rexp. The current line becomes the line contain-
ing rexp. This argument may be followed by an optional +
or - some number of lines (e.g., /Page/-5).

March 15, 1989 ' CSPLIT-1

CSPLIT (C) CSPLIT (C)

Yorexp % This argument is the same as frexp/, except that no file is
created for the section.

Inno A file is to be created from the current line down to (but not
including) Inno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows Inno, the
file will be split every Inno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other charac-
ters meaningful to the shell in the appropriate quotation marks. Regu-
lar expressions may not contain embedded newlines. csplit does not
affect the original file; it is the users responsibility to remove it.

Examples

csplit -f cobol file “/procedure division/” “/par5./” “/parl6./”

This example creates four files, cobol00 ... cobol03. After editing
the *‘split’’ files, they can be recombined as follows:

cat cobol0[(0-3] > file
Note that this example overwrites the original file.
csplit -k file 100 {99}
This example would split the file at every 100 lines, up to 10,000 lines.
The -k option causes the created files to be retained if there are less
than 10,000 lines; however, an error message would still be printed.
csplit -k prog.c “%main(% " °/"}/+1° {20}
Assuming that prog.c follows the normal C coding convention of end-

ing routines with a } at the beginning of the line, this example will
create a file containing each separate C routine (up to 21) in prog.c.

March 15, 1989 CSPLIT-2

CSPLIT (C) CSPLIT (C)

See Also

ed(C), sh(C), regex(S)

Diagnostics

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between
the current position and the end of the file.

Standards Conformance

csplit is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CSPLIT-3

CuU (C)

Ccu

Cu (C)

call another UNIX/XENIX system

Syntax

cu [-sspeed] [-lline] [-h][-t][-xn][-0!-el-0e] [-n] telno
cu[-sspeed][-h][-xn][[-0!-e!-0e] -1line [dir]
cu[-h][-xn][-ol-el-o0e] systemname

Description

cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers

of ASCII files.

cu accepts the following options and arguments:

-sspeed

-lline

-h

March 15, 1989

Specifies the transmission speed (150, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400). The default value is
"Any" speed which will depend on the order of the lines
in the /usr/lib/uucp/Devices file. A speed range can
also be specified (for example, -s1200-4800).

Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -1 option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con-
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not be
made. The specified device is generally a directly con-
nected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The
specified device need not be in the /dev directory. If
the specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno will not give the
desired result (see systemname below).

Emulates local echo, supporting calls to other computer

systems which expect terminals to be set to half-duplex
mode. ,

CuU-1

Cu (C) CU (C)

-t Used to dial an ASCII terminal which has been set to
auto answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set.

-Xn Causes diagnostic traces to be printed; it produces a
detailed output of the program execution on stderr. The
debugging level, n, is a single digit; -x9 is the most
useful value.

-n For added security, will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

telno When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

systemname A UUCP system name may be used rather than a tele-
phone number. In this case, cu will obtain an appropri-
ate direct line or telephone number from
fusr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -1 and -s
options as cu will connect to the first available line for
the system name specified, ignoring the requested line
and speed.

dir The keyword dir can be used with cu -lline, in order to
talk directly to a modem on that line, instead of talking
to another system via that modem. This can be useful
when debugging or checking modem operation. Note:
only users with write access to the Devices file are per-
mitted to use cu -line dir.

In addition, cu uses the following options to determine communica-
tions settings:

-0 If the remote system expects or sends 7-bit with odd parity.
-e If the remote system expects or sends 7-bit with even parity.
-oe
If the remote system expects or sends 7-bit, ignoring parity and
sends 7-bit with either parity. '
By default, cu expects and sends 8-bit characters without parity. If the
login prompt received appears to contain incorrect 8-bit characters, or
a correct login is rejected, use the 7-bit options described above.
After making the connection, cu runs as two processes: the transmit

process reads data from the standard input and, except for lines begin-
ning with ~, passes it to the remote system; the receive process accepts

March 15, 1989 : ' cu-2

Cu (C)

CU (C)

data from the remote system and, except for lines beginning with ~,
passes it to the standard output. Normally, an automatic DC3/DCl
protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user initiated com-

mands:

"

temd. ..
“$cmd . ..

"%cd

“%take from [to]

“%put from [to }

“line

“%break

"%debug

t

1

March 15, 1989

terminate the conversation.

escape to an interactive shell on the local sys-
tem.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the
remote system.

change the directory on the local system.
Note: “'cd will cause the command to be run
by a sub-shell, probably not what was
intended.

copy file from (on the remote system) to file
to on the local system. If fo is omitted, the
from argument is used in both places.

copy file from (on local system) to file to on
remote system. If to is omitted, the from
argument is used in both places.

For both "%take and “%put commands, as
each block of the file is transferred, consecu-
tive single digits are printed to the terminal.

send the line “lire to the remote system.

transmit a BREAK to the remote system
(which can also be specified as “%b).

toggles thé -x debugging level between 0 and
9 (which can also be specified as "%d).

prints the values of the termio structure vari-
ables for the user’s terminal (useful for
debugging).

prints the values of the termio structure vari-

ables for the remote communication line
(useful for debugging).

Cu-3

CuU (C) ' ‘ Cu (C)

“%mnostop ' toggles between DC3/DC1 input control pro-
tocol and no input control. This is useful in
case the remote system is one which does not
respond properly to the DC3 -and DC1 charac-
ters.

The receive process normally copies data from the remote system to
its standard output. Internally the program accomplishes this by ini-
tiating an output diversion to a file when a line from the remote begins
with °. Data from the remote is diverted (or appended, if >> is used)
to file on the local system. The trailing "> marks the end of the diver-
sion.

The use of “%put requires stty (C) and cat(C) on the remote side. It
also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo(S) and cat (C) on the
remote system. Also, tabs mode (See stty(C)) should be set on the
remote system if tabs are to be copied without expansion to spaces.

When cu is used on systeml to connect to system2 and subsequently
used on system2 to connect to system3, commands on system2 can be
executed by using ™. Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on sys-
tems 1, 2, and 3 as follows:

uname
system3
“system1!uname
system1
“system2!uname
system2

In general, ~ causes the command to be executed on the original ma-

chine, ™ causes the command to be executed on the next machine in
the chain,

Examples

To dial a system whose telephone number is 9 201 555 1212 using
1200 baud (where dialtone is expected after the 9):

cu -s1200 9=12015551212
If the speed is not specified, ‘‘Any’’ is the default value.
To login to a system connected by a direct line:

cu -1 /dev/ttyXX

March 15, 1989 Cu-4

CuU (C) CuU (C)

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200. -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -l ttyXX 9=12015551212

To use a system name:
cu systemname

To talk directly to an ACU (connect directly with the modem and
enter modem commands manually):

cu -lttyXX dir

Files

fusr/lib/uucp/Systems
Just/lib/uucp/Devices
fusr/lib/uucp/LCK..(tty-device)

See Also

cat(C), ct(C), echo(S), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

March 15, 1989 CU-5

Cu (C) CuU (C)

Warnings

The cu command does not do any integrity checking on data it
transfers. Data fields with special cu characters may not be
transmitted properly. Depending on the interconnection hardware,
it may be necessary to use a ". to terminate the conversion even if
stty 0 has been used. Non-printing characters are not dependably
transmitted using either the “%put or "%take commands. cu
between an IMBR1 and a penril modem will not return a login
prompt immediately upon connection. A carriage return will
return the prompt.

Notes

There is an artificial slowing of transmission by cu during the
"% put operation so that loss of data is unlikely.

Standards Conformance

cu is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CU-6

CUT (C)

cut

CUT (C)

cuts out selected fields of each line of a file

Syntax

cut -c list [filel file2 ...]
cut -f list [-d char] [-s] [file] file2 ...]

Description

Use cut to cut out columns from a table or fields from each line of a
file. The fields as specified by list can be fixed length, i.e., character
positions as on a punched card (-c option), or the length can vary from
line to line and be marked with a field delimiter character like tab (-f

option).

cut can be used as a filter. If no files are given, the standard

input is used.

The meanings of the options are:

list

-clist

flist

-dchar

-S

A comma-separated list of integers (in increasing order), with
an optional dash (-), indicates ranges, as in the -0 option of
nroffftroff for page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field).

The list following -c (no space) specifies character positions
(e.g., -c1-72 would keep the first 72 characters of each line).

The list following -f is a list of fields assumed to be separated
in the file by a delimiter character (see -d); e.g., -f1,7 copies
the first and seventh field only. Lines with no field delimiters
will be passed through intact (useful for table subheadings),
unless -s is specified.

The character following -d is the field delimiter (-f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

If the -f option is used, -s suppresses lines with no delimiter
characters. Unless specified, lines with no delimiters will be
passed through untouched.

Either the -c or -f option must be specified.

March 15, 1989 CUT—

CUT (C) CUT (C)

Notes

Use grep(C) to make horizontal ‘‘cuts’’ (by context) through a file, or
paste(C) to put files together horizontally. To reorder columns in a
table, use cut and paste.

Examples

cut -d: -f1,5 /fetc/passwd Maps user ID’s to names.

name=*who ami | cut -f1 -d" "~
Sets name to current login name.

See Also

grep(C), paste(C)

Diagnostics

line too long A line can have no more than 511 characters or
fields.

bad list for c/ f option
Missing -c¢ or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

no fields The list is empiy.

Standards Conformance

cut is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CuUT-2

DATE (C) DATE (C)

date

prints and sets the date

Syntax

date [-cms] [mmddhhmm[yy]] [+format]

Description

If no argument is given, or if the argument begins with +, the current
date and time are printed as defined by the locale. Otherwise, the
current date is set. The first mm is the month number; dd is the day
number in the month; hk is the hour number (24-hour system); the
second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045
sets the date to Oct 8, 12:45 AM, if the local language is set to English.
The current year is the default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local
standard and daylight time.
If the argument begins with +, the output of date is under the control
of the user. The format for the output is similar to that of the first
argument to printf (S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by a percent sign (%)
and will be replaced in the output by its corresponding value. A single
percent sign is encoded by doubling the percent sign, i.e., by specify-
ing “%%’’. All other characters are copied to the output without
change. The string is always terminated with a newline character.
Field Descriptors:
n Inserts a newline character
t Inserts a tab character
m Month of year - 01 to 12
d Day of month - 01 to 31
y Last 2 digits of year - 00 to 99

D Date as mm/dd/yy

March 16, 1991 DATE-1

DATE (C) DATE (C)

H Hour-00to 23
M Minute - 00 to 59
S Second - 00 to 59
T Time as HH:MM:SS
J. Julian date - 001 to 366
w Day of the week - Sunday =0
a Abbreviated weekday - Sun to Sat
h Abbreviated month - Jan to Dec
r Time in AM/PM notation
Options
-c Prints the current date and time from the hardware real-time
clock. Thus, date -¢c mmddhhmm|yy] sets the real-time clock.
-m Updates the year on the hardware real-time clock, if it is Janu-

ary 1, and makes adjustments to the real-time clock if it is
February 29 in a leap year. These dates are not automatically
incremented. Be sure to use this option after midnight. The -m
option determines if it is January 1 or February 29, and then
updates the hardware real-time clock if necessary. For the -m
option to work correctly, the software clock and the hardware
clock should be within twelve hours of each other. Use cron(C)
to execute date m each day.

Sets (synchronizes) the system (i.e., software) clock to the
current time and date from the hardware real-time clock.

The operating system normally uses only the system (software) clock.
It uses the hardware real-time clock only with the date command.

Example

The line

date “+DATE: %m/%d/%y%nTIME: %H:%M:%S "

generates as output:

March 16, 1991 ' DATE-2

DATE (C) DATE (C)

DATE: 08/01/90
TIME: 14:45:05

Diagnostics
no permission You aren’t the super-user and you are trying to
change the date.
bad conversion The date set is syntactically incorrect.

bad format character The field descriptor is not recognizable.

Standards Conformance

date is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 16, 1991 DATE-3

DC (C)

dc

.DC (C)

invokes an arbitrary precision calculator

Syntax

dc [file]

Description

dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall struc-
ture of dc is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number

The value of the number is pushed on the stack. A number is
an unbroken string of the digits 0-9. It may be preceded by an
underscore () to input a negative number. Numbers may con-
tain decimal points.

+-/*%%"

March 11,

The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (/), remaindered (%), or exponentiated
("). The two entries are popped off the stack and the result
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

The top of the stack is popped and stored into a register named
x, where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the 1 is capi-
talized, register x is treated as a stack and its top value is
popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged. p interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

1990 DC-1

DC (C)

X

DC (C)

Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

Treats the top element of the stack as a character string and
executes it as a string of dc commands.

Replaces the number on the top of the stack with its scale fac-
tor.

[..] Putsthe bracketed ASCII string onto the top of the stack.

<X >X =X

*-

-~

The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

Interprets the rest of the line as an Altos UNIX System V com-
mand.

All values on the stack are popped.

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-
negative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed
together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the ter-
minal) and executed.

Used by bc for array operations.

March 11, 1990 _ DC-2

DC (C) DC (C)

Example

This example prints the first ten values of n!:
[lal+dsa*plalO>yls

Osal :
lyx

See Also

be(C)

Diagnostics

x is unimplemented The octal number x corresponds to a character
that is not implemented as a command

stack empty Not enough elements on the stack to do what
was asked
Out of space The free list is exhausted (too many digits)
Out of headers Too many numbers being kept around
Out of pushdown Too many items on the stack
Nesting Depth Too many levels of nested execution
Notes

bc is a preprocessor for dc, providing infix notation and a C-like syn-
tax which implements functions and reasonable control structures for
programs. For interactive use, bc is preferred to dc .

March 11, 1990 i DC-3

DD (C)

dd

converts and copies a file

DD (C)

Syntax

dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw

physicat 1/O.

Option Value

if=file Input filename; standard input is default

of=file Output filename; standard output is default

ibs=n Input block size is n bytes (default is BSIZE block
size)

obs=n Output block size (default is BSIZE block size)

bs=n Sets both input and output block size, superseding ibs
and obs. If no conversion is specified, it is particu-
larly efficient since no in-core copy needs to be done

cbs=n Conversion buffer size

skip=n Skips » input records before starting copy

seek=n Seeks n records from beginning of output file before
copying

count=n Copies only n input records

conv=ascii Converts EBCDIC to ASCII

conv=ebcdic Converts ASCII to EBCDIC

"conv=ibm

conv=Icase

March 15, 1989

Slightly different map of ASCII to EBCDIC

Maps alphabetic characters to lowercase

DD-1

DD (C) DD (C)

Option Value

conv=ucase _ Maps alphabetic characters to uppercase
conv=swab Swaps every pair of bytes

conv=sync Pads every input record to ibs

conv="...,..."
Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a
product.

cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer, con-
verted to ASCII, and trailing blanks trimmed and newline added before
sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks
added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile :

dd if=/dev/rmt0 of=outfile ibs=800 cbs=80 conv=ascii,lcase
Note the use of raw magtape. dd is especially suited to 1/O on raw

physical devices because it allows reading and writing in arbitrary
record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

Jf+p records in(out) Numbers of full and partial records
read(written)

March 15, 1989 DD-2

DD (C) DD (C)

Notes

The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion cor-
responds better to certain IBM print train conventions. There is no
universal solution.

Newlines are inserted only on conversion to ASCII; padding is done
only on conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple
of 512-byte blocks. For example, to use a 9K block size, enter:

dd if=file of=/dev/rfd0 bs=18b
You could also enter:

dd if=file of=/dev/rfd0 bs=9K

Standards Conformance

dd is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ' DD-3

DEVNM (C) DEVNM (C)

devnm

identifies device name

Syntax

/etc/devnm [names]

Description

devnm identifies the special file associated with the mounted file sys-
tem where the argument name resides.

This command is most commonly used by the /etc/rc2 scripts to con-
struct a mount table entry for the root device.

Examples

Be sure to type full pathnames in this example:
Jetc/devnm Jusr

If /dev/hdb is mounted on /usr, this produces:
hdb /fusr

Files

/dev/* Device names

fetc/rc2 Startup commands

See Also

setmnt(ADM)

Standards Conformance

devnm is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 17, 1991 ' DEVNM-1

DF (C) DF (C)

df

report number of free disk blocks

Syntax

df [-t][-f][-v]][filesystems]

Description

df prints out the number of free blocks and free inodes available for
on-line filesystems by examining the counts kept in the super-blocks;
filesystems may be specified by device name (e.g., /dev/root). If the
filesystems argument is unspecified, the free space on all of the
mounted filesystems is sent to the standard output. The list of
mounted filesystems is given in /etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as
number of free blocks.

-f Reports only an actual count of the blocks in the free list (free
inodes are not reported). With this option, df reports on raw de-
vices.

-v Reports the percent of blocks used as well as the number of
blocks used and free.

The -v option can not be used with other df options.

Files

Jdev/*
fetc/mnttab

See Also

mount(ADM), fsck(ADM), mnttab(F)

Notes

See Notes under mount (ADM).

March 15, 1989 DF-1

DF (C) | DF (C)

This utility reports sizes in 512 byte blocks. df will report 2 blocks
less free space, rather than 1 block, since the file uses one system
block of 1024 bytes.

The directory /etc/fsemd.d/TYPE contains programs for each filesys-
tem type, df invokes the appropriate binary.

Authorization

The behavior of this utility is affected by assignment of the querys-
pace authorization, which is usually reserved for system administra-
tors. Refer to the ‘“Using a Trusted System’ chapter of the User’s
Guide for more details.

Standards Conformance

df is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DF-2

DIFF (C) DIFF (C)

d

iff

compares two text files

Syntax

diff [-befh] filel file2

Description

diff tells what lines must be changed in two files to bring them into
agreement. If filel or file2 is a dash (-), the standard input is used. If
filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (file2 or filel respectively) it is compared to.
For example: ’

diff /tmp dog

compares the file named dog that is in the /tmp directory, with the file
dog in the current directory. The normal output contains lines of these
forms:

nl an3.nd
nl.n2 dn3
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one may ascertain equally how to convert
file2 into filel . Asin ed, identical pairs where nl =n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second
file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

The -e option produces a script of a, ¢ and d commands for the editor
ed, which will recreate file2 from filel. The -f option produces a simi-
lar script, not useful with ed, in the opposite order. In connection with
-, the following shell procedure helps maintain multiple versions of a
file: .

(shift; cat $*; echo “1,$p") led - $1

March 15, 1989 DIFF-1

DIFF (C) DIFF (C)

This works by performing a set of editing operations on an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on the
commangd line. The set of editing operations is then piped as an edit-
ing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only an
ancestral file ($1) and a chain of version-to-version ed scripts
($2,%3,...) made by diff need be on hand. '

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The -h option does a fast, less-rigorous job. It works only when
changed stretches are short and well separated, but the files can be of
unlimited length. The -e and -f options cannot be used with the -h
option.

Files

fusr/lib/difth (executable used when -h option is specified)

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is O for no differences, 1 for some differences, 2 for errors.

Notes

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single period ().

Standards Conformance

diff is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIFF-2

DIFF3 (C) DIFF3 (C)

diff3

compares three files

Syntax

diff3 [-ex3] filel file2 file3

Description

diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

==== All three files differ
==== Filel is different
==== File? is different
==== File3 is different

The type of change suffered in converting a given range of a given file
to some other range is indicated in one of these ways:

f:nla Text is to be appended after line number n/ in
file f, where f =1, 2, or 3.

finl ,n2c¢ Text is to be changed in the range line nl/ to
line n2. If nl = n2, the range may be abbrevi-
ated to nl.

The original contents of the range follows immediately after a ¢ indi-
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the
changes that normally would be flagged ==== and ====3. The -x
option produces a script to incorporate changes flagged with *‘====""
Similarly, the -3 option produces a script to incorporate changes
flagged with ‘‘====3"’. The following command applies a resulting
editing script to filel :

(cat script; echo “1,$p”) led - filel

March 15, 1989 ' DIFF3—1

DIFF3 (C) DIFF3 (C)

Files

Jtmp/d3#
fust/lib/diff3prog

See Also

diff(C)

Notes

The -e option does not work properly for lines consisting of a single
period.

The input file size limit is 64K bytes.

March 15, 1989 DIFF3-2

DIRCMP (C) DIRCMP (C)

dircmp

compares directories

Syntax

diremp [-d][-s] [-wn]dirl dir2

Description

dircmp examines dirl and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical.

-S Suppresses output of identical filenames.

-wn Changes the width of the output line to n characters. The

default width is 72.

See Also

cmp(C), diff(C)

Standards Conformance

dircmp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRCMP-1

DIRNAME (C) DIRNAME (C)

dirname

delivers directory part of pathname

Syntax

dirname string

Description

dirname delivers all but the last component of the pathname in string
and prints the result on the standard output. If there is only one com-
ponent in the pathname, only a ‘‘dot’’ is printed. It is normally used
inside substitution marks (+ *) within shell procedures.

The companion command basename deletes any prefix ending in a

slash (/) and the suffix (if present in string) from string, and prints the
result on the standard output.

Examples

The following example sets the shell variable NAME to /usr/src/cmd:
NAME=-dirname /usr/src/cmd/cat.c*

This example prints /a/b/c on the standard output:
dirname /a/b/c/d

This example prints a ‘‘dot’’ on the standard output:
dirname file.ext

This example moves to the location of a file being searched for (lost-

file):

cd ‘find . -name lostfile -exec dirname { };*

See Also

basename(C), sh(C)

Standards Conformance

dirname is conformant with:

March 15, 1989 ' DIRNAME-1

DIRNAME (C) DIRNAME (C)

The X/Open Portability Guide II of January 1987.

March 15, 1989 ' DIRNAME-2

DISABLE (C) DISABLE (C)

disable

turns off terminals and printers

Syntax

disable tty ...
disable [-c][-r[reason]] printers

Description

For terminals, this program manipulates the /etc/confi/cf.d/init.base
file and signals init to disallow logins on a particular terminal. For
printers, disable stops print requests from being sent to the named
printer. The following options can be used:

-C Cancels any requests that are currently printing.

-r[reason] Associates a reason with disabling the printer. The rea-
son applies to all printers listed up to the next -r option.
If the -r option is not present or the -r option is given
without a reason, then a default reason is used. Reason
is reported by Ipstat (C).

Examples

In this example, a printer named linepr is disabled because of a paper
jam:

disable -r"paper jam" linepr

Files

[devi/tty*
fetc/conf/cf.d/init.base
fusr/spool/lp/*

See Also

login(M), enable(C), inittab(F), getty(M), init(M), Ip(C), lpstat(C),
uugetty(ADM)

March 15, 1989 DISABLE-1

DISABLE (C) DISABLE (C)

Authorization

The behavior of this utility is affected by assignment of the printer-
stat authorization, which is usually reserved for system administra-
tors. Refer to the ‘‘Using a Trusted System’’ chapter of the User's
Guide for more details.

March 15, 1989 DISABLE-2

DISKCP (C) DISKCP (C)

diskcp, diskemp

copies or compares floppy disks

Syntax

diskep [-f1{-d][-s][-48ds9][-96ds9][-96ds15][-135ds9][-135ds18]
diskemp [-d]{-s][-48ds9][-96ds9][-96ds15][-135ds9][-135ds18]

Description

diskcp is used to make an image (exact copy) of a source floppy disk
on a target floppy disk. On machines with one floppy drive diskcp
temporarily transfers the image to the hard disk until a ‘‘target’’
floppy is inserted into the floppy drive. On machines with two floppy
drives diskcp immediately places the image of the source floppy
directly on the target floppy.

diskcmp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp
utility.

The options are:

-f Format the target floppy disk before the image is copied (diskcp
only).

-d The computer has dual floppy drives. diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target
floppies; gives an error message if the two do not match.

-48ds9
This setting is for low density 48tpi floppies. It is the default set-
ting.

-96ds9
This setting is for high density 96tpi floppies.

-96ds15
This setting is for quad density 96tpi floppies.

-135ds9
This setting is for high density 135tpi 3.5 inch floppies.

March 11, 1990 ‘ DISKCP-1

DISKCP (C) DISKCP (C)

-135ds18
This setting is for quad density 135tpi 3.5 inch floppies.

When using the -96ds9 and -96ds15 options of diskcp without the -f
option, if the first target disk is unformatted, the program will note it,
format it and make the copy. If another copy is requested and another
unformatted target disk inserted, diskep exits with a ‘“‘System error.”
Quit, format the floppy, and reinvoke diskcp to make another copy.

Examples

To make a copy of a floppy, place the source floppy in the drive and

diskep

When diskcp is finished copying to the hard disk, it prompts you to
insert the target floppy in the drive. If you specify the -f flag when you
invoke diskcp , the program formats the target floppy. When the copy
is finished, diskcp asks if you would like to make another copy of the
same source disk. If you enter ‘n’, it asks if you would like to copy
another source disk.

Specify the -d flag on the command line if you have two floppy drives:
diskcp -d

Notes

If diskcp encounters a write error while copying the source image to
the target disk, it formats the disk and tries to write the source image
again. This happens most often when an unformatted floppy is used
and the -f flag is not specified.

Files

fusr/bin/diskcp
/ust/bin/diskcmp
/tmp/disk????

See Also

cmp(C), dd(C), format(C), sum(C)

Value Added

diskcmp and diskcp are extensions of AT&T System V provided by
Altos UNIX System V.

March 11, 1990 DISKCP-2

DOS (C) : -, DOS (C)

dos: doscat, doscp, dosdir, dosfor-
mat, dosmkdir, dosls, dosrm,
dosrmdir

access to and manipulation of DOS files and DOS
filesystems

Syntax

doscat [-r | -m] file ...

doscp [-r I -m] filel file2
doscp [-r1-m] file ... directory
dosdir directory ...

dosformat [-fqv] drive

dosls directory ...

dosmkdir directory ...

dosrm file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and directories on MS-
DOS disks and on a DOS partition of a hard disk. Note that in order to
use these commands on a DOS partition of a hard disk, the partition
must be bootable, although not active. It is also possible to mount and
access a DOS filesystem while operating from the Altos UNIX System
V partition.

The dos commands perform the following actions:

doscat Copies one or more DOS files to the standard output. If
-r is given, the files are copied without newline conver-
sions. If -m is given, the files are copied with newline
conversions (see ‘‘Conversions’’ below).

doscp Copies files between a DOS disk and an Altos UNIX

System V filesystem. If filel and file2 are given, filel is
copied to file2. If a directory is given, one or more files

September 19, 1990 DOS-1

DOS (C) DOS (C)

are copied to that directory. If -r is given, the files are
copied without newline conversions. If -m is given, the
files are copied with newline conversions (see
““‘Conversions’’ below).

dosdir Lists DOS files in the standard DOS style directory for-
mat.

dosformat Creates a DOS 2.0 formatted diskette. The drive may
be specified in either DOS drive convention, using the
default file /etc/default/msdos, or using the Altos UNIX
System V special file name. dosformat cannot be used
to format a hard disk. The -f option suppresses the
interactive feature. The -q (quiet) option is used to
suppress information normally displayed during dosfor-
mat . The -q option does not suppress the interactive
feature. The -v option prompts the user for a volume
label after the diskette has been formatted. The max-
imum size of the volume label is 11 characters.

dosls Lists DOS directories and files in an Altos UNIX Sys-
tem V format (see Is(C)).

dosrm Removes files from a DOS disk.
dosmkdir Creates a directory on a DOS disk.
dosrmdir Deletes directories from a DOS disk.

fThe file and directory arguments for DOS files and directories have the
orm:

device:name

where device is an Altos UNIX System V pathname for the special de-
vice file containing the DOS disk, and name is a pathname to a file or
directory on the DOS disk. The two components are separated by a
colon (). For example, the argument:

/dev/fd0:/src/file.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the
device file /dev/fd0. Note that slashes (and not backslashes) are used
as filename separators for DOS pathnames. Arguments without a de-
vice: are assumed to be Altos UNIX System V files.

For convenience, the user configurable default file,
Jetc/default/msdos, can define DOS drive names to be used in place of
the special device file pathnames. It can contain lines with the follow-
ing format:

September 19, 1990 DOS-2

DOS (C) DOS (C)

A=/dev/fd0
C=/dev/hdad
D=/dev/hdbd

The drive letter ““A’” may be used in place of special device file path-
name /dev/fd0 when referencing DOS files (see ‘‘Examples’’ below).
The drive letter ““C*’ or *‘D’’ refer to the DOS partition on the first or
second hard disk.

The commands operate on the following kinds of disks:

DOS partitions on a hard disk
5 1/4 inch DOS

3 1/2 inch DOS

8,9, 15, or 18 sectors per track
40 tracks per side

1 or 2 sides

DOS versions 1.0, 2.0 or 3.0

Conversions

In the case of doscp, certain conversions are performed when copying
an Altos UNIX System V file. Filenames with a basename longer than
eight characters are truncated. Filename extensions (the part of the
name following separating period) longer than three characters are
truncated. For example, the file 123456789.12345 becomes
12345678.123. A message informs the user that the name has been
changed and the altered name is displayed. Filenames containing ille-
gal DOS characters are stripped when writing to the MS-DOS format.
A message informs the user that characters have been removed and
displays the name as written.

All DOS text files use a carriage-return/linefeed combination, CR-LF,
to indicate a newline. Altos UNIX System V files use a single newline
LF character. When the doscat and doscp commands transfer DOS
text files to the Altos UNIX System V filesystem, they automatically
strip the CR. When text files are transferred to DOS , the commands
insert a CR before each LF character.

Under some circumstances the automatic newline conversions do not
occur. The -m option may be used to ensure the newline conversion.
The -r option can be used to override the automatic conversion and
force the command to perform a true byte copy regardless of file type.

Examples

doscat /dev/fd0:/docs/memo.txt
doscat /tmp/f1 /tmp/f2 /dev/fd0:/src/file.asm

September 19, 1990 DOS-3

DOS (C)

DOS (C)
dosdir /dev/fdO:/src
dosdir A:/src A:/dev

doscp /tmp/myfile.txt /dev/fd0:/docs/memo.txt
doscp /tmp/f1 /tmp/f2 /dev/fdO:/mydir
dosformat /dev/fd0

dosls /dev/fdO:/src
dosls B:

dosmkdir /dev/fd0:/usr/docs

dosrm /dev/fd0:/docs/memo.txt
dosrm A:/docs/memol.txt

dosrmdir /dev/fd0:/usr/docs

tAi(c:':rtiessing DOS Filesystems From the UNIX Parti-

The ability to mount DOS filesystems is an extension of the DOS utili-
ties documented here.

There are several limitations with the DOS directory structure which
makes this a difficult task. These limitations are due to insufficient in-
formation when compared to the Altos UNIX System V filesystem.

The DOS directory structure contains the following information:

Filename: up to 8 characters with 3 character extension
(foo.bat)

File Auribute: read-only/read-write, hidden/visible file,
system/normal file, Volume name/normal file name,
subdirectory/normal file, archive/modified bit

Time of last modification

Date of last modification

Starting point (reference through FAT)

File size in bytes

Using this information, it is converted to an actual UNIX inode. There
are some Altos UNIX System V provisions that cannot be carried over,
because the filesystem must remain sane under DOS.

Any date in the UNIX inode table for the DOS filesystem is the
same as the modification date (ctime = atime = mtime).

The only types of nodes allowed in the DOS filesystem are

September 19, 1990 DOS-4

DOS (C) DOS (C)

directories and normal files. Pipes, semaphores, and special de-
vice files do not exist because they do not have a counterpart
under DOS.

e The permissions are 0777 for readable/writable files and 0555
for read only files. If a user can access the filesystem, the user
will be limited by the permissions available under the DOS
directory structure. This permission is read-only or read write.
When creating a file, the creator’s umask/mode is examined.
The creation mode is based on the owner write bit.

e The gid/uid for all files on the DOS filesystem is the same as
the mountpoint. The mount point will maintain the necessary
security. If a user can get into the mountpoint, then the user has
the same access as the owner.

e There is only one link for each file under the DOS filesystem.
““’” and ““..”” are a special case and are not links.

e On every change of the modification time (which on an Altos
UNIX System V system would change atime, ctime, mtime) the
DOS archive bit is set.

e Following DOS filesystem requirements, all blocks previous to
a written block are allocated before the original block is writ-
ten. This differs from Altos UNIX System V systems where the
program may seek out beyond the end of a file and write a
block. Altos UNIX System V systems do not necessarily write
blocks that have been skipped over.

e If a program does not use the directory(S) system calls, but
opens the directory in the DOS filesystem as a file, the program
should see the DOS directory structure as it really exists. By
using the directory(S) system calls, the filesystem switch code
will put together an Altos UNIX System V style directory entry.

¢ File contents are not mapped from the DOS filesystem. The file
appears exactly as it is under DOS. For example, \f\n combina-
tions are left as \\n and not mapped to just \n. The file and
_directory names are mapped to uppercase.

DOS File Conversion

The utilities xtod(C) and dtox(C) can be used to convert the EOL
sequences used to and from DOS, respectively.

September 19, 1990 _ DOS-5

DOS (C) DOS (C)

Files
Jetc/default/msdos Default information
/dev/fd* Floppy disk devices
/dev/hd* Hard disk devices
See Also

assign(C), dtype(C), mkfs(ADM), dtox(C), xtod(C), and ‘‘Using
DOS”’ in the System Administrator’s Guide '

Notes

Using the DOS utilities, is not possible to refer to DOS directories with
wild card specifications. The programs mentioned above cooperate
among themselves so no two programs will access the same DOS disk.
Only one process will access a given DOS disk at any time, while
other processes wait. If a process has to wait too long, it displays the
c;,rror message, ‘‘can’t seize a device,’’ and exits with an exit code of

You cannot use the dosformat command to format device A: because
it is aliased to /dev/install, which cannot be formatted. Use /dev/rfd0/
instead.

The following hard disk devices:

/dev/hdad
/dev/rhdad
/dev/hdbd
/dev/rhdbd

are similar to /dev/hdaa in that the disk driver determines which parti-
tion is the DOS partition and uses that as hd?d. This means that soft-
ware using the DOS partition does not need to know which partition is
DOS.

The Development System supports the creation of DOS executable
files, using cc (CP)., Refer to the C User’s Guide and C Library Guide
for more information on using your Altos UNIX System V system to
create programs suitable for DOS systems.

All of the DOS utilities leave temporary files in /tmp. These files are
automatically removed when the system is rebooted. They can also be
manually removed.

You must have DOS 3.3 or earlier. Extended DOS partitions ‘are not
supported.

September 19, 1990 DOS-6

DOS (C) DOS (C)
Value Added

doscat, doscp, dosdir, dosformat, dosls, dosmkdir, dosrm and dosrmdir
are extensions of AT&T System V provided by Altos UNIX System V.

September 19, 1990 ' DOS-7

DTOX (C) DTOX (C)

dtox
change file format from MS-DOS to UNIX

Syntax

dtox filename > output file

Description

The dtox command converts a file from MS-DOS format to Altos UNIX
System V format. MS-DOS files terminate a line of text with a carriage
return and a linefeed, while Altos UNIX System V files terminate a
line with a linefeed only, Also MS-DOS places a (CTL)z at the end of a
file, while Altos UNIX System V systems do not. Some programs and
utilities are sensitive to this difference and some are not. If a text or
data file is not being interpreted correctly, then use the dfox and xtod
conversion utilities. The dfox command strips the extra carriage
return from the end of each line and strips the (CTL)z from the end of
the file. This utility is not required for binary object files.

If no filename is specified on the command line, dfox takes input from
standard input. Output of the utility goes to standard output.

See Also

xtod(C)

Value Added

dtox is an extension of AT&T System V provided by Altos UNIX Sys-
tem V.

March 11, 1990 DTOX-1

DTYPE (C) " DTYPE (C)

dtype

determines disk type

Syntax

dtype [-s] device ...

Description

dtype determines type of disk, prints pertinent information on the stan-
dard output unless the silent (-s) option is selected, and exits with a
corresponding code (see below). When more than one argument is
given, the exit code corresponds to the last argument.

Disk Exit | Message
Type Code | (optional)
Misc. 60 error (specified)
61 empty or unrecognized data
Storage 70 backup format, volume n
71 tar format|, extent e of n]
72 cpio format
73 cpio character (-¢) format

MS-DOS | 80 DOS 1.x, 8 sec/track, single sided

81 DOS 1.x, 8 sec/track, dual sided

90 DOS 2.x, 8 sec/track, single sided

91 DOS 2.x, 8 sec/track, dual sided

92 DOS 2.x, 9 sec/track, single sided

93 DOS 2.x, 9 sec/track, dual sided

94 DOS 2.x, fixed disk

110 DOS 3.x, 9 sec/track, dual sided

XENIX 120 XENIX 2.x filesystem [needs cleaning]

130 XENIX 3.x or later filesystem [needs cleaning]

UNIX 140 UNIX 1K filesystem [needs cleaning]

Notes

word-swapped refers to byte ordering of long words in relation to the
host system.

XENIX filesystems and backup and cpio binary formats may not be
recognized if created on a foreign system. This is due to such system
differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

March 11, 1900 DTYPE-1

DTYPE (C) DTYPE (C)

Value Added

dtype is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1900 DTYPE-2

DU (C) DU (C)

du

summarizes disk usage

Syntax

du [-afrsu] [names]

Description

du gives the number of blocks contained in all files and directories
recursively within each directory and file specified by the names
argument. The block count includes the indirect blocks of the file. If
names is missing, the current directory is used.

~s causes only the grand total (for each of the specified names) to be
given. -a causes an entry to be generated for each file. Absence of
either causes an entry to be generated for each directory only.

The -f option causes du to display the usage of files in the current file
system only. Directories containing mounted file systems will be

ignored. The -u option causes du to ignore files that have more than
one link.

du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate mes-
sages in such instances.

A file with two or more links is only counted once.

Notes

If the -a option is not used, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count.
This utility reports sizes in 512 byte blocks. du interprets 1 block

from a 1024 byte block system as 2 of its own 512 byte blocks. Thus a
500 byte file is interpreted as 2 blocks rather than 1.

March 15, 1989 ' DU-1

DU (C) DU (C)

Standards Conformance

du is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 buU-2

ECHO (C)

echo

ECHO (C)

echo

Syntax

echo [-n][arg]...

Description

The echo command writes its arguments separated by blanks and ter-
minated by a new-line on the standard output. The -n option prints a
line without the new-line; same as using the \c escape sequence.

echo also understands C-like escape conventions; beware of conflicts
with the shell’s use of \:

\b
\c

backspace

print line without new-line

form-feed
new-line

carriage return

tab
vertical tab
backslash

The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal
number. In all cases, n must start with a zero. For example:

echo
echo
echo
echo

"\NO7" - Echoes Ctrl-G.

"N0O7 " - Also echoes Ctrl-G.
"\O65 " - Echoes the number ¢‘5”’.
"N0101" - Echoes the letter ““A”’.

The echo command is useful for producing diagnostics in com-
mand files and for sending known data into a pipe.

See Also

| sh(C)

March 19, 1990

ECHO-1

ECHO (C) ECHO (C)

Notes

When representing an 8-bit character by using the escape conven-
tion \Oz, the n must always be preceded by the digit zero (0).

For example, typing: echo "WARNING:\07" will print the phrase
WARNING: and sound the ‘‘bell’’ on your terminal. The use of
single (or double) quotes (or two backslashes) is required to protect
the *“\’ that precedes the ‘07",

For the octal equivalents of each character, see ascii (M).

March 19, 1990 ECHO-2

ED (C) : ED (C)

ed, red

invokes the text editor

Syntax

ed [-][-pstring] {file]
red [file]

Description

ed is the standard text editor. If the file argument is given, ed simu-
lates an e command (see below) on the named file; that is to say, the
file is read into ed’s buffer so that it can be edited. ed operates on a
copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text
‘being edited resides in a temporary file called the buffer. There is
only one buffer.

red is a restricted version of ed(C). It will only allow editing of files
in the current directory. It prohibits executing sh(C) commands via
the ! command. red displays an error message on any attempt to
bypass these restrictions.
In general, red does not allow commands like

ldate
or

Ish

Furthermore, red will not allow pathnames in its command line. For
example, the command:

red fetc/passwd

when the current directory is not /etc causes an error.

Options

The options to ed are:
- Suppresses the printing of character counts by the e, r, and w

commands, of diagnostics from e and ¢ commands, and the !
prompt after a !shell command.

March 15, 1989 ED-1

ED (C) ED (C)

-p Allows the user to specify a prompt string.

ed supports formatting capability. After including a format specifica-
tion as the first line of file and invoking ed with your terminal in stty
-tabs or stty tab3 mode (see stty (C)), the specified tab stops will auto-
matically be used when scanning file. For example, if the first line of
a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: While inputing text, tab char-
acters are expanded to every eighth column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed
by parameters to that command. These addresses specify one or more
lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain com-
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely
collected. Input mode is left by entering a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com-
mands (e.g., §) to specify portions of a line that are to be substituted.
A regular expression specifies a set of character strings. A member of
this set of strings is said to be matched by the regular expression. The
regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single char-
acter:

1.1 An ordinary character (not one of those discussed in 1.2 below)
is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-
character regular expression that matches the special character
itself. The special characters are:

a. ., * [, and \ (dot, star, left square bracket, and backslash,
respectively), which are otherwise special, except when they
appear within square brackets ([]); see 1.4 below).

b. ~ (caret), which is special at the beginning of an entire regu-
lar expression (see 3.1 and 3.2 below), or when it immedi-
ately follows the left of a pair of square brackets ([]) (see
1.4 below).

March 15, 1989 ED-2

ED (C) ED (C)

c. $ (dollar sign), which is special at the end of an entire regu-
lar expression (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire regular
expression, which is special for that regular expression (for
example, see how slash (/) is used in the g command below).

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters enclosed in square brackets ([])
is a one-character regular expression that matches any one char-
acter in that string. If, however, the first character of the string is
a caret (~), the one-character regular expression matches any
character except newline and the remaining characters in the
string. The star (*) also has this special meaning only if it occurs
first in the string. The dash (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The dash (-) loses this special meaning if it
occurs first (after an initial caret (~), if any) or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial caret (»), if
any); e.g., [Ja-f] matches either a right square bracket (]) or one
of the letters ‘‘a’’ through ‘>’ inclusive. Dot, star, left bracket,
and the backslash lose their special meaning within such a string
of characters.

Ranges of characters (characters separated by -) are treated according
to the current locale’s collation sequence (see locale (M)). Therefore,
if the collation sequence in use is A, a, B, b, C, c, then the expression
[a-d] is equivalent to the expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed
between [. and .] . Two character to one collation item mappings must
be specified this way. For example, if the current collation rules
specify that the characters ‘‘Ch’” map to one character for collation
plérposes (as in Spanish), then this collation item would be specified as
[.Ch].

To specify a group of collation items, which are classified as equal
unless all other collation items in the string also match, in which case
a secondary ‘‘weight’’ becomes significant, a single member of that
group must be enclosed between [= and =] . For example, if the char-
acters A and a are in the same group then the class expressions
[[=a=]b], [[=A=]b] and [Aab] are all equivalent.

The ctype classes can also be specified within regular expressions.
These are enclosed between [: and :] . The possible ctype classes are:

March 15, 1989 ED-3

ED (C) ED (C)

[:alpha:] Matches alphabetic characters
[:upper:] = Matches upper case characters
[:lower:] Matches lower case characters
[:digit:] Matches digits

[:alnum:] Matches alphanumeric characters
[:space:] Matches white space

[:print:] Matches printable characters
[:punct:] Matches punctuation marks
[:graph:] Matches graphical characters
[:cntrl:] Matches control characters

The following rules may be used to construct regular expressions from
one-character regular expressions:

2.1
A one-character regular expression followed by a star (*) is a regu-
lar expression that matches zero or more occurrences of the one-
character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

22

A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,n\} is a regular expression that matches a range of occurren-
ces of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exact!
m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many
occurrences as possible.)

23
The concatenation of regular expressions is a regular expression
that matches the concatenation of the strings matched by each
component of the regular expression,

24
A regular expression enclosed between the character sequences \(
and \) is a regular expression that matches whatever the unadorned
regular expression matches.. See 2.6 below for a discussion of why
this is useful.

25
The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same regular expression. Here n is a digit; the subexpression
specified is that beginning with the n-th occurrence of \(counting
from the left. For example, the expression ~\(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

March 15, 1989 ED-4

ED (C)

31

32

ED (C)

A caret (~) at the beginning of an entire regular expression con-
strains that regular expression to match an initial segment of a
line.

A dollar sign ($) at the end of an entire regular expression con-
strains that regular expression to match a final segment of a line.
The construction ~entire regular expression$ constrains the
entire regular expression to match the entire line.

The null regular expression (e.g., //) is equivalent to the last regular
expression encountered.

To understand addressing in ed , it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is dis-
cussed under the description of each command. Addresses are con-
structed as follows:

1.

2
3.
4

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number »n addresses the n-th line of the buffer.

x addresses the line marked with the mark name cha;acter X,
which must be a lowercase letter. Lines are marked with the &
command described below.

A regular expression enclosed by slashes (/) addresses the first
line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the first
line containing a string matching the regular expression. If
necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the
entire buffer is searched.

A regular expression enclosed in question marks (?) addresses
the first line found by searching backward from the line preced-
ing the current line toward the beginning of the buffer and stop-
ping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See
also the last paragraph before Files below.

An address followed by a plus sign (+) or a minus sign (-) fol-
lowed by a decimal number specifies that address plus or minus
the indicated number of lines. The plus sign may be omitted.

If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, -5 is understood to
mean .-5.

March 15, 1989 ED-5

ED (C) ED (C)

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and
of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with ear-
lier versions of the editor, the character ~ in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case, the
current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting
line for forward and backward searches (see rules 5 and 6 above). The
second address of any two-address sequence must correspond to a line
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, f, r, or w) may be suffixed by p or
by 1, in which case the current line is either printed or listed, respec-
tively, as discussed below under the p and / commands.

(-)a

<text>

The append command reads the given text and appends it after the
addressed line; dot is left at the address of the last inserted line, or,
if there were no inserted lines, at the addressed line. Address O is
legal for this command: it causes the ‘‘appended’’ text to be
placed at the beginning of the buffer.

(.)c

<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the
last line input, or, if there were none, at the first line that was not
deleted.

(.,.)d

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the

March 15, 1989 ED-6

ED (C) ED (C)

lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem-
bered filename, if any, is used (see the f command). The number
of characters read is typed. file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (!), the rest of the line is taken to be a
shell command. The output of this command is read for the ¢ and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is not
remembered as the current filename.

E file
The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

ffile
If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1,$)glregular-expression lcommand list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list
except the last line must be ended with a \; a, i, and ¢ commands
and associated input are permitted; the . terminating input mode
may be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G, v,
and V commands are not permitted in the command list. See also
Notes and the last paragraph before Files below.

(1,$)Glregular-expression/

In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, ¢, i, g, G, v,and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on. A new-
line acts as a nuil command. An ampersand (&) causes the re-
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the exe-
cution of the G command may address and affect any lines in the
buffer. The G command can be terminated by entering an INTER-
RUPT (pressing the DEL key).

March 15, 1989 ED-7

ED (C) ED (C)

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The A command
alternately turns this mode on and off. It is initially off.

()i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command.

(.y4+1)J
The join command joins contiguous lines by removing the appro-
priate newline characters. If only one address is given, this com-
mand does nothing.

()kx
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address x then addresses this line.
Dot is unchanged.

G,
The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac-
ters are printed in octal, and long lines are folded. An/ command
may be appended to any command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed hne(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(¢5.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r, or w.

(.,.)p

The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

March 15, 1989 ' ED-8

ED (C) ED (C)

command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off.

The quit command causes ed to exit. No automatic write of a file
is done.

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e¢ and f commands). The currently remembered
filename is not changed unless file is the very first filename men-
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(.y.)slregular-expression Ireplacement| or
(.y.)slregular-expression lreplacement lg or
(.,.)slregular-expressionIreplacement In n=1-512

The substitute command searches each addressed line for an oc-
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of / to delimit regular-
expression and replacement. Dot is left at the address of the last
line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

March 15, 1989 ‘ ED-9

ED (C) ED (C)

where n is a digit, are replaced by the text matched by the n-th reg-
ular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in
replacement, the replacement used in the most recent substitute
command is used as the replacement in the current substitute com-
mand. The % loses its special meaning when it is in a replace-
l\nent string of more than one character or when it is preceded by a

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
\. Such a substitution cannot be done as part of a g or v command
list.

(.,)ta
This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

u
The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most recent
a,c,d,g,i,j,m,r,s,t,v,G,or Vcommand.

(1, $)v/regular-expression lcommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1,$)Viregular-expression/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(1,$)w file

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writeable by everyone), unless the umask setting (see sh(C)) dic-
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see ¢ and f commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command to which the addressed lines
are supplied as the standard input. Such a shell command is not
remembered as the current filename.

March 15, 1989 ED-10

ED (C) ' ~ ED(C)

(%)=
The line number of the addressed line is typed. Dot is unchanged
by this command. '

Ishell command

The remainder of the line after the ! is sent to the UNIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem-
bered filename. If a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell com-
mand. Thus, !! will repeat the last shell command. If any expan-
sion is performed, the expanded line is echoed. Dot is unchanged.

(+41)
An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+1p. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ques-
tion mark (?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K characters
in the buffer. The limit on the number of lines depends on the amount
of user memory.

When reading a file, ed discards ASCII NUL characters and all charac-
ters after the last newline. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string (e.g., /) would be the last character before a newline, that delim-
iter may be omitted, in which case the addressed line is printed. Thus,
the following pairs of commands are equivalent:

sfslfs2 s/s1/s2/p
g/sl g/sl/p
751 2s1?

Files

Jtmp/e# Temporary; # is the process number

ed.hup Work is saved here if the terminal is hung up

See Also

coltbl(M), grep(C), locale(M), sed(C), sh(C), stty(C), regexp(S)

March 15, 1989 ED-11

ED (C) ED (C)

Diagnostics

? Command errors
? file Aninaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to de-
stroy ed’s buffer via the e or ¢ commands by printing ? and allowing
you to continue editing. A second e or ¢ command at this point will
take effect. The dash (-) command-line option inhibits this feature.

Notes

An exclamation (!} command cannot be subject to a g or a v com-
mand.

The ! command and the ! escape from the e, r, and w commands can-
not be used if the the editor is invoked from a restricted shell (see
sh(C)).

The sequence \n in a regular expression does not match any character.
The ! command mishandles DEL.

Because 0 is an illegal address for the w command, it is not possible to
create an empty file with ed.

If the editor input is coming from a command file (i.e., ed file < ed-

cmd-file), the editor will exit at the first failure of a command in the
command file.

Standards Conformance

ed is conformant with:

AT&T SVID Issue 2, Select Code 307-127; i
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ED-12

ENABLE (C) ENABLE (C)

enable

turns on terminals and line printers

Syntax

enable tty ...
enable printers

Description

For terminals this program manipulates the /etc/conf/init.base file and
signals init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them

to print requests taken by [p(C). Use Ipstat(C) to find the status of the
printers.

Examples

A simple command to enable tty01 follows:
enable tty01
Files

[dev/ity*
[etc/conf/init.base

fusr/spool/lp/*

See Also

disable(C), getty(M), init(M), login(M), 1p(C), lpstat(C), inittab(F),
uugetty(M)

Authorization

The behavior of this utility is affected by assignment of the printer-
stat authorization, which is usually reserved for system administra-
tors. Refer to the ‘““Using a Trusted System’’ chapter of the User’s
Guide for more details.

March 15, 1989 ‘ ENABLE-1

ENV (C) ' ENV (C)

env

sets environment for command execution

Syntax

env [-] [name=value] ... [command [args]]

Description

env obtains the current environment , modifies it according to its argu-
ments, then executes the command with the modified environment.
Arguments of the form name=value are merged into the inherited
environment before the command is executed. The - flag causes the
inherited environment to be ignored completely, so that the command
is executed with exactly the environment specified by the arguments.

If no command is specified, the environment is printed, one name-
value pair per line.

See Also

sh(C), exec(S), profile(F), environ(M)

Notes

The old printenv command was replaced in and System V by the env
command. The current printenv is a link to env.

Standards Conformance

eny is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ENV-1

EX (C) EX(C)

ex, edit

invokes a text editor

Syntax

ex[-st[-v][-twg]|[-rfile}|-L][-R][-¢ccommand |name ...

edit [-r] [-x] [-C] name ...

Description

ex is the root of the editors ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display bascd
editing is the focus of vi.

edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented cditor. It operates pre-
cisely as ex(C) with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the set command in ex(C).

Refer to the vi(C) page for a complete description of the ex com-
mands. ,

Files
Jusr/libfex3.7strings Error messages
fusr/libfex3.7recover Recover command
fusr/lib/ex3.Tpreserve Preserve command
fetc/termcap Describes capabilities of terminals
$HOME/.exrc Editor startup file
/tmp/Exnnnnn Editor temporary
/tmp/Rxnnnnn Named buffer temporary

March 15, 1989 EX-1

EX (C) EX (C)
[usr/preserve Preservation directory

See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termcap(F), vi(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Standards Conformance

ex is conformant with:

AT&T SVID Issue 2, Select Code 307-127,
and The X/Open Portability Guide II of January 1987.

March 15, 1989 EX-2

EXPR (C) . EXPR (C)

expr

evaluates arguments as an expression

Syntax

exXpr arguments

Description

The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that zero is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
ls)iegn. Internally, integers are treated as 32-bit, 2’s complement num-
TS.

The operators and keywords are listed below. Expressions should be
quoted, since many of the characters that have special meaning in the
shell also have special meaning in expr. The list is in order of increas-
ing precedence, with equal precedence operators grouped within
braces ({ and }).

expr | expr
Returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr & expr
Returns the first expr if neither expr is null nor 0, otherwise
returns 0.

expr { =, >,>=,<,<=,!=} expr
Returns the result of an integer comparison if both arguments
are integers, otherwise returns the result of a lexical com-
parison, as defined by the locale.

expr { +,-)} expr
Addition or subtraction of integer-valued arguments.

expr { *,/, % } expr
Multiplication, division, or remainder of the integer-valued
arguments.

expr : expr

The matching operator : compares the first argument with the
second argument which must be a regular expression; regular

March 15, 1989 EXPR-1

EXPR (C) EXPR (C)

expression syntax is the same as that of ed(C), except that all
patterns are ‘‘anchored’’ (i.e., begin with a caret (")) and there-
fore the caret is not a special character in that context. (Note
that in the shell, the caret has the same meaning as the pipe
symbol (1).) Normally the matching operator returns the num-
ber of characters matched (zero on failure). Alternatively, the
\(...\) pattern symbols can be used to return a portion of the
first argument.

Examples

1. a=vexpr $a + 1~
Adds 1 to the shell variable a.

2. # For $a ending in "/file"
expr $a : “#\(H)"

Returns the last segment of a pathname (i.e., file). Watch out
for the slash alone as an argument: expr will take it as the divi-
sion operator (see Notes on the next page).

3. expr $VAR : "#’

Returns the number of characters in $VAR.

See Also

coltbi(M), ed(C), locale(M), sh(C)

Diagnostics

As a side effect of expression evaluation, expr returns the following
exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator/operand errors, including unset vari-
ables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

March 15, 1989 EXPR-2

EXPR (C) EXPR (C)

Notes

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
equals sign (=), the command:

expr $a = =
looks like:

eXpr = = =

The arguments are passed to expr and will all be taken as the = opera-
tor. The following permits comparing equals signs:

expr X$a = X=

Standards Conformance

expr is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 EXPR-3

FACTOR (C) FACTOR (C)

factor

factor a number

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a number to
be typed in. If you type in a positive number less than 2% (about
7.2x10") it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

The time it takes to factor a number, 7, is proportional to yn. It usu-
ally takes longer to factor a prime or the square of a prime, than to fac-
tor other numbers.

Diagnostics

Sactor Jeturns an error message if the supplied input value is greater
than 2™ or is not an integer number.

March 15, 1989 FACTOR-1

FALSE (C)

false

FALSE (C)

returns with a nonzero exit value

Syntax

false

Description

false does nothing except return with a nonzero exit value. true(C),
false’s counterpart, does nothing except return with a zero exit value.

‘‘False’ is typically used in shell procedures such as:

until false
do

command
done

See Also

sh(C), true(C)

Diagnostics

false is any non-zero value.

Standards Conformance

false is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989

FALSE-1

FILE (C) FILE (C)

file

determines file type

Syntax

file [-m] file ...

file [-m] -f namesfile

Description

file performs a series of tests on each argument in an attempt to clas-
sify it. If an argument appears to be ASCII, file examines the first 512
bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from namesfile.
If the -m option is given, file sets the access time for the examined file
to the current time. Otherwise, the access time remains unchanged.

Several object file formats are recognized. For a.out and x.out format
object files, file reports ‘‘separate’’ if the file was linked with cc -i,
“pure’’ if the file was linked with cc -n, and ‘‘not stripped’’ if the
file was not linked with cc¢ -s or if strip(CP) was not run.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

file makes errors; in particular it often mistakes command files for C
programs.

The file command can only distinguish English text. If an 8 bit char-

acter (a character not in the English alphabet) is found, then the text
will be defined as ‘‘8 bit text’’.

Standards Conformance

file is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 FILE~-1

FIND (C) FIND (C)

finds files

Syntax

find pathname-list expression

Description

The find command is used to find files matching a certain set of selec-

tion criteria. find recursively descends the directory hierarchy for each

pathname in the pathname-list (i.e., one or more pathnames) seeking

g:js that match a Boolean expression written in the primaries given
ow.

Expressions

For each file encountered, find evaluates the specified expression,
formed of one or more of the following primary expressions, which
may evaluate as true or false. In the descriptions, the argument » is
used as a decimal integer where +n means more than n, -n means less
than n and n means exactly n.

-name file True if file matches the current file name. Normal
shell argument syntax may be used if escaped
(watch out for the left bracket ([), the question
mark (?) and the star (¥)).

-perm onum True if the file permission flags exactly match
onum (see chmod(C)). If onum is prefixed by a
minus sign, all other modes become significant
(see mknod(S)), including the file type, setuid, set-
gid, and sticky Dbits rather than just
read/write/execute modes for owner/group/other.

-type x True if the type of the file is x, where x is b for
block special file, ¢ for character special file, d for
directory, p for named pipe (first-in-first-out), or f
for regular file.

-links n True if the file has n links.

-inum num True if the file’s inode is num. This is useful for
locating files with matching inodes.

March 15, 1989 ’ FIND-1

FIND (C)

-user uname

-group gname

-size n

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-cpio device

-depth

-print

-newer file

(expression)

March 15, 1989

FIND (C)

True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the /etc/passwd file, it is taken as a user
ID.

True if the file belongs to the group gname. If

name is numeric and does not appear in the
etc/group file as a group name, it is taken as a
group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file was last accessed n days ago.

True if the data in the file was last modified n days
ago.

True if the file’s status was last changed (i.e. creat-
ed or modified) n days ago.

Executes shell command cmd. The end of cmd
must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current
path name. True if the executed cmd returns a
zero value as exit status (most commands return a
zero value on successful completion and a non-
zero value if an error is encountered).

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Writes the current file on device in cpio(F) format
(5120-byte records). Always true.

Causes all entries in a directory to be acted upon
before the directory itself. This can be useful
when used with ¢pio(C) or the -cpio expression to
transfer files located in directories without write
permission. Always true.

Causes the current path name to be printed. This
option is used to create a list of all files matched
by the previous primaries. Always true.

True if the current file has been modified more
recently than the argument file.

True if the parenthesized expression is true. Usu-

ally used with the -o operator (see below),
parentheses are used for grouping. Parentheses are

FIND-2

FIND (C) FIND (C)

special to the shell and must be escaped.

The primaries may be combined using the following operators (in
order of decreasing precedence):

! The ! operator specifies the negation of the next primary (i.e., !
-newer file is true if the current file is not newer than file.). This is
the equivalent of the logical ‘‘not’’ operator.

-0 Placing the -0 operator between two primaries creates an expres-
sion that is true if either of the two primaries is true. It should be
used with parentheses (i.e., \(-perm 644 -o -perm 664 \) is true if
the current file has permissions 644 or 664). This is equivalent to
the logical ‘‘inclusive or’’ operator.

Note that placing two primaries next to each other is the equivalent of

the logical “‘and’’ operation. The precedence of this operation is less
than that of the ! operator but greater than that of the -o operator.

Examples

The following command searches for files named chapter! in the
current directory and all directories below it and sends the pathname
of any such files it finds to the standard output:

find . -name chapterl -print

The following removes all files named core or with names ending in
.out that have not been accessed in the last seven days.

find / \(-name core -0 -name "*.out" \) -atime +7 -exec m {} \;

Files

fetc/passwd User names and uids
[etc/group Group names and gids
See Also

cpio(C)(F), sh(C), stat(S), test(C)

Standards Conformance

Jfind is conformant with:

AT&T SVID Issue 2, Select Code 307-127,
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ‘ FIND-3

FINGER (C) FINGER (C)

finger

finds information about users

Syntax

finger [-bfilpgsw] [loginl [login2 ...]]

Description

By default finger lists the login name, full name, terminal name and
write status (as a ‘“*’’ before the terminal name if write permission is
denied), idle time, login time, office location, and phone number (if
they are known) for each current user. (Idle time is minutes if it is a
single integer, hours and minutes if a colon (:) is present, or days and
hours if a *“d’’ is present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multiline format; it includes all the in-
formation described above as well as the user’s home directory and
login shell, any plan which the person has placed in the file .plan in
their home directory, and the project on which they are working from
the file .project which is also in the home directory.

finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-i Quick list of users with idle times.

-1 Forces long output format.

-p Suppresses printing of the .plan files.

-q Quick list of users.

-s Forces short output format.

-w Forces narrow format list of specified users.

March 15, 1989 ~ FINGER-1

FINGER (C) FINGER (C)

Files
fetc/utmp Who file |
Jetc/passwd User names, offices, phones, login directories, and shells

$HOME/.plan Plans
$HOME/.project Projects

See Also

who(C), w(C)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Only the first line of the .project file is printed.
Entries in the /etc/passwd file have the following format:

login name:user password(coded):user ID:group ID :comments:home
directory:login shell

The comment field corresponds to what appears in the finger output.
For example, in the following /etc/passwd entry:

blf:*:47:5:Brian Foster, Mission, x70, 767-1234
:/u/blf:/bin/sh

the comment field, ‘‘Brian Foster, Mission, x70, 767-1234"’ , contains
data for the ‘‘In Real Life’’ , ‘‘Office’’ , and ‘‘Home Phone’’ , columns
of the finger listings.

Idle time is computed as the elapsed time since any activity on the

given terminal. This includes previous invocations of finger which
may have modified the terminal’s corresponding device file /dev/tty??.

March 15, 1989 ' FINGER-2

FIXHDR (C)

fixhdr

FIXHDR (C)

changes executable binary file headers

Syntax

fixhdr option files

Description

Jixhdr changes the header of output files created by link editors or
assemblers. The kinds of modifications include changing the format of
the header, the fixed stack size, the standalone load address, and sym-

bol names.

Using fixhdr allows the use of binary executable files, created under
other versions or machines, by simply changing the header informa-
tion so that it is usable by the target cpu.

These are the options to fixhdr :

-x5 [-n]

Change the x.out format of the header to the a.out format.
Change the x.out format of the header to the b.out format.

Change the x.out format of the header to the 4.2BSD a.out
format.

Change the x.out format of the header to Altos UNIX Sys-
tem V a.out format. The -n flag causes leading under-
scores on symbol names to be passed with no
modifications.

-ax -¢ [11,86]

-5x [-n]

Change the a.out format of the header to the x.out format.
The -c flag specifies the target CPU. 11 specifies a PDP-
11 CPU. 86 specifies one of the 8086 family of CPUs
(8086, 8088, 80186, 80286 or 80386).

Change the b.out format of the header to the x.out format.

Change the Altos UNIX System V a.out format of the
header to the x.out format. The -n flag causes leading
underscores on symbol names to be passed with no
modifications.

March 11, 1990 v FIXHDR-1

FIXHDR (C) FIXHDR (C)

-86x Add the x.out header format to the 86rel object module
format. See 86rel(F).

-F num Add (or change) the fixed stack size specified in the x.out
format of the header. num must be a hexadecimal num-
ber.

-Anum Add (or change) the standalone load address specified in
the x.out format of the header. num must be a hexadeci-
mal number.

-M[smih] Change the model of the x.out or 86rel format. Model
refers to the compiler model specified when creating the
binary. s refers to small model, m refers to medium
model, I refers to large model, and h refers to huge model.

-v[2,3,5,7] Change the version of XENIX specified in the header.
XENIX version 2 was based on UNIX Version 7.

-s s1=s2 [-s s3=54]
Chaznge symbol names, where symbol name s/ is changed
to s2.

-r Ensure that the resolution table is of non-zero size.

-C cpu Set the cpu type. cpu can be 186, 286, 386, 8086, others.

Files

Just/bin/fixhdr

See Also

a.out(F), 86rel(F)

Notes

Give fixhdr one option at a time. If you need to make more than one
kind of modification to a file, use fixhdr on the original file. Then use it
again on the fixhdr output, specifying the next option. Copy the origi-
nal file if you need an unmodified version as fixhdr makes the
modifications directly to the file.

Value Added

fixhdr is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1990 ' FIXHDR-2

FORMAT (C) FORMAT (C)

format

format floppy disks and mini-cartridge tapes

Syntax

format [-n] [-v] [-f] [-q] [device] [-iinterleave]

Description

format formats diskettes for use on an Altos UNIX System V system.
It may be used either interactively or from the command line. The
default drive is /dev/rfd0.

Options

The following command line options are available:

-f Suppresses the interactive feature. The format program does not
wait for user-confirmation before starting to format the diskette.
Regardless of whether or not you run format interactively, track
and head information is displayed.

device
This specifies the device to be formatted. The default device is
/dev/rfd0 .

-1 interleave
Specifies the interleave factor.

~q Quiet option. Suppresses the track and head output information
normally displayed. Although this option does not suppress the
interactive prompt, it would typically be used with -f to produce no
output at all.

-v Specifies format verification.

-n Specifies that the diskette is not to be verified (overrides verify
entry in /etc/default/format).

The file /etc/default/format is used to specify the default device to be
formatted and whether or not each diskette is to be verified. The
entriecs must be in the format DEVICE=/dev/ifdnnn and
VERIFY=[yYnN], as in the following example:

March 11, 1990 FORMAT-1

FORMAT (C) ~ FORMAT (C)

DEVICE=/dev/r£fd096dsl5
VERIFY=y

The device must be a character (raw) device.

Usage

To run format interactively, enter:
format
followed by any of the legal options except -f, and press RETURN.
‘When you run format interactively, you see the prompt:
insert diskette in drive and‘press return when ready

When you press RETURN at this prompt, format begins to format the
diskette. '

If you specify the -f option, you do not see this prompt. Instead, the
program begins formatting immediately upon invocation.

Unless you specify the -q option, format displays which track and
head it is currently on:
track # head #

The number signs above are replaced by the actual track and head in-
formation.

Files

fetc/default/format

/dev/rfd [0-n]

See Also

fd(HW)

Notes

The format utility does not format floppies for use under DOS; use the
dosformat command documented in dos(C).

March 11, 1990 FORMAT-2

FORMAT (C) FORMAT (C)

Altos UNIX System V systems require error free floppies.

It is not advisable to format a low density (48tpi) diskette on a high
density (96tpi) floppy drive. Diskettes written on a high density drive
should be read on high density drives. A low density diskette written
on a high density drive may not be readable on a low density drive.

The device /dev/install is used only for installing and reading floppies.
Attempts made to format this device may result in an error.

March 11, 1990 FORMAT-3

FUSER (C) FUSER (C)

fuser

Identify processes using a file or file structure

letc/fuser [-ku] file... | resource... [-] [-kul file... | resource...]

Description

The fuser utility displays the process IDs of processes that are using
the files or remote resources specified as arguments. Each process ID:
is followed by a letter code, interpreted as follows if the process is
using the file as:

c current directory

p parent of its current directory (only when the file is being used
by the system)

r root directory

For block special devices with mounted filesystems, all processes
using any file on that device are listed. For remote resource names, all
processes using any file associated with that remote resource (Remote
File Sharing) are reported. (fuser cannot use the mount point of the
remote resource; it must use the resource name.) For all other types of
files (e. g., text files, executables, directories, devices), only the pro-
cesses using the specified file are reported.

The following options may be used with fuser:

-u The user login name, in parentheses, also follows the process
ID.

-k The SIGKILL signal is sent to each process. Since this option
spawns kills for each process, the kill messages may not show
up immediately (see kill(S)).

If more than one group of files is specified, the options any be
specified again for each additional group of files. A lone dash cancels
the options currently in force; then, the new set of options applies to
the next group of files.

The process IDs are printed as a single line on the standard output,

separated by spaces and terminated with a single newline. All other
output is written to standard error.

September 19, 1990 FUSER-1

FUSER (C) FUSER (C)

You cannot list processes using a particular file from a remote
resource mounted on your machine. You can only use the resource
name as an argument. :

Any user with permission to read /dev/kmem and /dev/mem can use

fuser. Only the superuser can terminate another user’s process, how-
ever.

Files

funix for system namelist
/dev/kmem for system image
/dev/imem also for system image

See Also

mount(ADM), ps(C), kill(S), signal(S)

September 19, 1990 FUSER-2

GETOPT (C) o GETOPT (C)

getopt

parses command options

Syntax

set -- “getopt optstring $*

Description

getopt is used to check and break up options in command lines for
parsing by shell procedures. optstring is a string of recognized option
letters (see getopt (S)). If a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated
from it by whitespace. The special option -- is used to delimit the end
of the options. getopt will place -- in the arguments at the end of the
options, or recognize it if used explicitly. The shell arguments ($1 $2.
. .) are reset so that each option is preceded by a dash (-) and in its own
shell argument. Each option argument is also in its own shell argu-
ment.

Example

The following code fragment shows how one can process the argu-
ments for a command that can take the options a and b, and the option
0, which requires an argument:

set - - ~getopt abo: $*»
if [$2 1=0]
then .
echo "usage: $0 [-a | -b] [-o <arg>]"
exit 2
fi
for i in $*
do
case $i in
-a | -b)shift; FLAG=$i;;
-0) OARG=$3; shift; shift;;
- =) shift; break:;;
esac
done

This code will accept any of the following as equivalent:

cmd -aoarg

cmd -a -0 arg
cmd -oarg -a
cmd -a -oarg —-

March 15, 1989 GETOPT-1

GETOPT (C) : GETOPT (C)

See Also

sh(C), getopt(S)

Diagnostics

getopt prints an error message on the standard error when it
encounters an option letter not included in optstring .

Notes

The “Syntaxv” given for this utility assumes the user has a sh(C) shell.

Standards Conformance

getopt is conformant, with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 GETOPT-2

GETOPTS (C) | GETOPTS (C)

getopts, getoptcvt

parses command options

Syntax

getopts optstﬁng name [arg ...]
fusrflib/getoptevt [-b] file

Description

The getopts command is used by shell procedures to parse positional
parameters and to check for legal options. It supports all applicable
rules of the command syntax standard [see Rules 3-10, intro (C)]. It
should be used in place of the getopt(C) command. (See the Notes
below.)

This feature is only available in the Bourne shell.

optstring must contain the option letters the command using getopts
will recognize; if a letter is followed by a colon, the option is expected
to have an argument, or group of arguments, which must be separated
from it by white space.

Each time it is invoked, getopts will place the next option in the shell
variable name and the index of the next argument to be processed in
the shell variable OPTIND. Whenever the shell or a shell procedure is
invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the
shell variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero
exit status. The special option ‘‘-->’ may be used to delimit the end of
the options.

By default, getopts parses the positional parameters. If extra argu-
ments (arg ...) are given on the getopts command line, getopts will
parse them instead.

The /usr/lib/getoptcvt command reads the shell script in file , converts

it to use getopts (C) instead of getopt (C), and writes the results to the
standard output.

January 16, 1991 GETOPTS-1

GETOPTS (C) GETOPTS (C)

-b the results of running /usr/lib/getoptcvt will be portable to earlier
UNIX releases. /usr/lib/getoptcvt modifies the shell script in file so
that when the resulting shell script is executed, it determines at run
time whether to invoke getopts (C) or getopt (C).

So all new commands will adhere to the command syntax standard
described in intro (C), they should use getopts(C) or getopt(S) to
parse positional parameters and check for options that are legal for
that command (see Notes below).

Examples

The following fragment of a shell program shows how one might pro-
cess the arguments for a command that can take the options a or b, as
well as the option o, which requires an option-argument:

while getopts abo: c

do
case $c in
a | b) FLAG=S$c; ;
0) OARG=$OPTARG; ;
?) echo $USAGE
exit 2;:
esac
done

shift ‘expr $OPTIND - 1°
This code will accept any of the following as equivalent:

cmd -a -b -o "xxx z yy"
cmd -a -b -0 "xxx z yy" --
cmd -ab -0 XXX,zZ,YY

cmd —ab -o "xxx z yy"

cmd -0 xxx,z,yy -b -a

See Also

intro(C), sh(C), getopt(S)

Notes

Although the following command syntax rule [see Intro(C)] relaxa-
tions are permitted under the current implementation, they should not
be used because they may not be supported in future releases of the
system. As in the Examples section above, a and b are options, and
the option o requires an option-argument:

cmd -aboxxx file (Rule S5 violation: options with option-

arguments must not be grouped with other
options.)

January 16, 1991 GETOPTS-2

GETOPTS (C) GETOPTS (C)

cmd -ab -oxxx file (Rule 6 violation: there must be white space
after an option that takes an option-
argument.)

Changing the value of the shell variable OPTIND or parsing different
sets of arguments may lead to unexpected results.

Diagnostics

getopts prints an error message to the standard error when it
encounters an option letter not included in optstring.

January 16, 1991 GETOPTS-3

GETS (C) GETS (C)

gets

gets a string from the standard input

Syntax

gets [string]

Description

gets can be used with ¢sh(C) to read a string from the standard input.
If string is given it is used as a default value if an error occurs. The
resulting string (either string or as read from the standard input) is
written to the standard output. If no string is given and an error
occurs, gets exits with exit status 1.

See Also

line(C), csh(C)

March 15, 1989 GETS-1

GREEK (C)

greek

GREEK (C)

select terminal filter

Syntax

greek [-Tterminal |

Description

greek is a filter that reinterprets the extended character set, as well as
the reverse and half-line motions, of a 128-character TELETYPE
Model 37 terminal for certain other terminals. Special characters are
simulated by overstriking, if necessary and possible. If the argument .
is omitted, greek attempts to use the environment variable. $TERM
[see environ(M)]. Currently, the following terminals are recognized:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014,
Files

fusr/bin/300

fusr/bin/300s

fusr/bin/4014

Jusr/bin/450

fust/bin/hp

See Also

300(C), 4014(C), 450(C), hp(C), tplot(ADM), environ(M), term(M)

March 15, 1989

GREEK-1

- GREP (C) GREP (C)

grep, egrep, fgrep

searches a file for a pattern

Syntax

grep [-bchlnsvy] [-e expression] [files]
egrep [-bchlnv] [-e expression] [files]

fgrep [-bclnvxy] [-f expfile] [files]

Description

Commands of the grep family search the input files (or standard input
if no files are specified) for lines matching a pattern. Normally, each
matching line is copied to the standard output. If more than one file is
being searched, the name of the file in which each match occurs is
also written to the standard output along with the matching line
(unless the -h option is used, see below).

grep patterns are limited regular expressions in the style of ed(C).
grep uses a compact nondeterministic algorithm. egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that
sometimes needs exponential space. fgrep patterns are fixed strings.
fgrep is fast and compact. The following options are recognized:

-V All lines but those matching are displayed.

X Displays only exact matches of an entire line. (fgrep only.)
-C Only a count of matching lines is displayed.
-1 Only the names of files with matching lines are displayed,

separated by newlines.

-h Prevents the name of the file containing the matching line from
being prepended to that line. Used when searching multiple
files. (This option works with grep and egrep only.)

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was

found. This is sometimes useful in locating disk block num-
bers by context.

March 15, 1989 GREP-1

GREP (C) GREP (C)

S Suppresses error messages produced for nonexistent or unread-
able files. (grep only). Note that the -s option will not
suppress error messages generated by the -f option.

-y Turns on matching of letters of either case in the input so that
case is insignificant. Conversion between uppercase and
lowercase letters is dependent on the locale setting. -y does
not work with egrep.

-e expression orstrings
Same as a simple expression argument, but useful when the
expression begins with a dash (-).

-f expfile
The regular expression for grep or egrep, or strings list for
fgrep is taken from the expfile.

In all cases (except with -h) the filename is output if there is more
than one input file. Care should be taken when using the characters $,
L% (,5), and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression or strings argu-
ment in single quotation marks. For example:

grep '[Ss]omeone’ text.file

This command would find all lines containing the word ‘‘someone’” in
the file text.file, whether the initial ‘‘s’’ is uppercase or lowercase.

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the string argument. For example, if you were using the
?ourne shell (s#(C)) you might enter the following on the command
ine:

fgrep “Someone
someone’ text.file

This would have the same effect as the grep example above, See the
¢sh(C) manual page for ways to imbed newlines in a string when
using csh(C). '

egrep accepts regular expressions as in ed(C), with the addition of the
following:

- A regular expression followed by a plus sign (+) matches one or
more occurrences of the regular expression.

- Aregular expression followed by a question mark (?) matches 0 or
1 occurrences of the regular expression.

March 15, 1989 GREP-2

GREP (C) GREP (C)

- Two regular expressions separated by a vertical bar (I) or by a
newline match strings that are matched by either regular expres-
sion.

- A regular expression may be enclosed in parentheses () for group-
ing. For example:

egrep ([Ssjomel[Aalny)one” text.file

This example displays all lines in text.file containing the words

‘‘someone’’ or ‘‘anyone’’, whether or not they are spelled with initial

capital letters. Without the parentheses, this example would display

all lines containing the words ‘‘some’’ or ‘‘anyone’’ (because the vert-

ibccal ba;r () operator is of lower precedence than concatenation, see
low).

Because of the algorithm used, egrep does not support extended
ranges as in ed(C): Ranges like [a-z] are interpreted on the basis of
the machine’s collating sequence, not the collating sequence defined
by the locale. grep supports col(C) extended ranges.

The \(and \) operators, supported by ed(C), are not supported by
egrep.

The order of precedence of operators is [], then * ? +, then concatena-
tion, then backslash (\) with newline or vertical bar (]).

See Also

coltbl(M), ed(C), locale(M), sed(C), sh(C)

Diagnostics

Exit status is O if any matches are found, 1 if no matches are found,
and 2 for syntax errors or inaccessible files.

Notes

Ideally there should be only one grep, but there isn’t a single algo-
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters. Longer lines are truncated.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

March 15, 1989 GREP-3

GREP (C) GREP (C)

Standards Conformance

egrep, farep and grep are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 GREP-4

GRPCHECK (C) GRPCHECK (C)

grpcheck

checks group file

Syntax

grpcheck [file]

Description

grpcheck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ID, and
whether all login names appear in the password file. The default group
file is /etc/group.

Files

fetc/group

fetc/passwd

See Also

pwcheck(C), group(F), passwd(F)

Diagnostics

Group entries in /etc/group with no login names are flagged.

March 15, 1989 GRPCHECK-1

HD (C) HD (C)

hd

displays files in hexadecimal format

Syntax

hd [-format [-s offset] [-m count] [file] ...

Description

The hd command displays the contents of files in hexadecimal, octal,
decimal, and character formats. Control over the specification of
ranges of characters is also available. The default behavior is with the
following flags set: ‘‘-abx -A’’. This says that addresses (file offsets)
and bytes are printed in hexadecimal and that characters are also
printed. If no file argument is given, the standard input is read.

Options include:

-8 offset Specify the beginning offset in the file where printing is
to begin. If no ‘file’ argument is given, or if a seek fails
because the input is a pipe, ‘offset’ bytes are read from
the input and discarded. Otherwise, a seek error will
terminate processing of the current file.

The offset may be given in decimal, hexadecimal (pre-
ceded by ‘0x’), or octal (preceded by a ‘0’). It is option-
ally followed by one of the following multipliers: w, 1,
b, or k; for words (2 bytes), long words (4 bytes), half
kilobytes (512 bytes), or kilobytes (1024 bytes), respec-
tively. Note that this is the one case where ‘b’ does
not stand for bytes. Since specifying a hexadecimal
offset in blocks would result in an ambiguous trailing
‘D, any offset and multiplier may be separated by an
asterisk (¥).

-n count Specify the number of bytes to process. The count is in
the same format as offset, above. '

Format Flags

Format flags may specify addresses, characters, bytes, words (2 bytes)
or longs (4 bytes) to be printed in hex, decimal, or octal. Two special
formats may also be indicated: text or ascii. Format and base
specifiers may be freely combined and repeated as desired in order to
specify different bases (hexadecimal, decimal or octal) for different
output formats (addresses, characters, etc.). All format flags appearing
in a single argument are applied as appropriate to all other flags in that

March 15, 1989 HD-1

HD (C) HD (C)

argument.

acbwlA
Output format specifiers for addresses, characters, bytes, words,
longs and ascii respectively. Only one base specifier will be used
for addresses. The address will appear on the first line of output
that begins each new offset in the input.

The character format prints all printable characters without
change, special C escapes as defined in the language, and the
remaining values in the specified base.

The ascii format prints all printable characters without change, and
all others as a period (.). This format appears to the right of the
first of other specified output formats. A base specifier has no
meaning with the ascii format. If no other output format (other than
addresses) is given, bx is assumed. If no base specifier is given, all
of xdo are used.

xdo
Output base specifiers for hexadecimal, decimal and octal.

t Print a text file, each line preceded by the address in the file. Nor-
mally, lines should be terminated by a \n character; but long lines
will be broken up. Control characters in the range 0x00 to Ox1f are
printed as ‘"@’ to **_’. Bytes with the high bit set are preceded by
a tilde (7) and printed as if the high bit were not set. The special
characters (%, 7,) are preceded by a backslash (\) to escape their
special meaning. As special cases, these two values are
represented numerically as \177° and \377’. This flag will over-
ride all output format specifiers except addresses.

If no output format is given, but a base specifier is present, the output
format is set to -achbwl. If no base specifier is given, but an output for-
mat is present, the base specifier is set to -xde. If neither is present,
the format flag is set to -abx -A.

Value Added

hd is an extension of AT&T System V provided in Altos UNIX System
V.

March 15, 1989 HD-2

HEAD (C) HEAD (C)

head

prints the first few lines of a file

Syntax

head [-count] [file ...]

Description

This filter prints the first count lines of each of the specified files. If
no files are specified, head reads from the standard input. If i no count
is specified, then 10 lines are printed.

See Also

tail(C)
Credit

This utility was developed at the Umversxty of California at Berkeley
and is used with permission.

March 15, 1989 HEAD-1

HELLO (C) HELLO (C)

hello

send a message to another user

Syntax

hello user | tty]

Description

hello sends messages from one user to another. When first called,
hello displays the following message:

Message from sender’s-system! sender’s-name sender’s-tty

The recipient of the message should write back at this point. Commu-
nication continues until an interrupt is sent. (On most terminals, press-
ing the Del key sends an interrupt.) At that point hello prints ‘‘(end of
message)’’ on the other terminal, and exits.

To write to a user who is logged in more than once, the user can
employ the #ty argument to specify the appropriate terminal name.
The who(C) command can be used to determine the correct terminal
name.

Permission to write may be allowed or denied by the recipient, using
the mesg command. Writing is allowed by default. Certain com-
mands, such as nroff and pr, prohibit messages in order to prevent
disruption of output.

If the character ! is found at the beginning of a line, hello calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using hello. When first writ-
ing to another user, the sender should wait for that user to write back
before sending a message. Each party should end each message with a
signal indicating that the other may reply: o for ‘‘over’’ is conven-
tional. The signal oo for ‘‘over and out’’ is suggested when conversa-
tion is about to be terminated.

Files

fetc/utmp
/bin/sh

March 15, 1989 HELLO-1

HELLO (C) HELLO (C)

See Also

mesg(C), who(C), mail(C)

Value Added

hello is an extension of AT&T System V provided in'Altos UNIX Sys-
tem V.

March 15, 1989 : HELLO-2

HOSTID (C) HOSTID (C)

hostid

Print unique hardware ID

Syntax

hostid

Description

The hostid utility prints the system’s unique hardware ID to standard
output. This ID is set at the factory during manufacture.

If a hardware ID is not available (for example, on a non-Altos ma-
chine), the operating system serial number is returned instead.

Value Added

hostid is .an extension of AT&T System V provided by Altos UNIX
System V.

September 4, 1990 HOSTID-1

HP (C) HP (C)

hp

handle special functions of Hewlett-Packard terminals

Syntax

hp[-e]J[-m]

Description

hp supports special functions of the Hewlett-Packard 2640 series of
terminals, with the primary purpose of producing accurate representa-
tions of most nroff output. A typical usage is in conjunction with text
processing software:

nroff -h files ... | hp

Regardless of the hardware options on your terminal, kp tries to do
sensible things with underlining and reverse line-feeds. If the termi-
nal has the ‘“‘display enhancements’’ feature, subscripts and super-
scripts can be indicated in distinct ways. If it has the ‘‘mathematical-
symbol’’ feature, Greek and other special characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the ‘‘display enhancements’’
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underlined mode.
Superscripts are shown in Half-bright mode, and subscripts in
Half-bright, Underlined mode. If this flag is omitted, Ap assumes
that your terminal lacks the ‘‘display enhancements’ feature. In
this case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usual light-on-dark.

-m
Requests minimization of output by changing newlines to "M’s.
Any contiguous sequence of 3 or more new-lines is converted into
a sequence of only 2 new-lines; i.e., any number of successive
blank lines produces only a single blank output line. This allows
you to retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the

same set as 300(C), except that ‘‘not’’ is approximated by a right
arrow, and only the top half of the integral sign is shown.

March 15, 1989 HP-1

HP (C) HP (C)

Diagnostics

line too long if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

See Also

300(C), greek(C)

Notes

An “overstriking sequence’’ is defined as a printing character fol-
lowed by a backspace followed by another printing character. In such
sequences, if either printing character is an underscore, the other print-
ing character is shown underlined or in Inverse Video; otherwise, only
the first printing character is shown (again, underlined or in Inverse
Video). Nothing special is done if a backspace is adjacent to an ASCII
control character. Sequences of control characters (e.g., reverse line-
feeds, backspaces) can make text ‘‘disappear’’. In particular, tables
generated by tbI(CT) that contain vertical lines will often be missing
the lines of text that contain the ‘‘foot’’ of a vertical line, unless the
input to Ap is piped through col(C).

Although some terminals do provide numerical superscript characters,
no attempt is made to display them.

March 15, 1989 HP-2

HWCONFIG (C) HWCONFIG (C)

hwconfig

read the configuration information

Syntax

letc/hweonfig [-nlh] [-f filename] [[-] param] [[-] param=val] ...

Description

hwconfig returns the configuration information contained in the file
fusr/adm/hwconfig or the file specified on the command line with the
-f filename option. Using combinations of the remaining options, the
user can view as much information as needed from the configuration
file. The display format is as follows:

magic_char device_name base+finish vec dma rest

where:
magic_char is the character %
device_name is the name of the device driver
base+finish is the starting and the finishing addresses of
the driver working space
vec is the interrupt vector number
dma is the dma channel number
rest is a possibly empty list of parameter=value

pairs
" The default hwconfig display looks similar to this:

device address vector dma comment

fpu - 35 - type=80387

floppy 0x3F2-0x3F7 06 2 ‘unit=0 type=96dsl5

serial Ox2F8-0x2FF 03 - unit=l type=Standard nports=1

parallel 0x378-0x37A 07 - unit=0

console - - - unit=ega type=0

disk 0x1F0-0x1F7 36 - type=W0 unit=0 cyls=791 hds=16 secs=48
Options

-n the device name is always printed out.

March 15, 1989 ~ HWCONFIG-1

HWCONFIG (C) HWCONFIG (C)

-1 the long format of the device configuration
content is used.

-h uses the long format, with headers.

-ffile uses file as the input file instead of the default

fusr/adm/hwconfig.

param any of the 12 pre-defined parameters avail-
able: name, base, offset, vec, dma, unit, type,
nports, hds, cyls, secs, and drvr.

-param shows all values of param throughout the con-
figuration file. param can be any valid system
parameter.

-param=val shows only information from the line where

param equals the value val.

The -n, -1 and -h options are in increasing overriding power. That is, if
-n and -l are both specified, -1 will be used. param on its own indi-
cates a query for its corresponding value(s), whereas param=value
indicates a matching <token,val> pair in the input file. -1 is used by
default if there are no queries and no explicit option.

Command line queries, i.e. those with parameters bnly, are always dis-
played in short format.

Examples

hwconfig The entire contents of the file /usr/adm/hwconfig is
printed.

hwconfig base
All the values of the base parameter found in
/usr/adm/hwconfig are printed.

hwconfig -f conf base=300 vec=19
All entries in conf that match the base and vec values
given are printed.

hwconfig name=floppy base
The name and value of base in /usr/adm/hwconfig for the
drivers with the name floppy are printed for all entries.

hwconfig -n base dma

The device name associated with the base and dma is dis-
played. For example:

March 15, 1989 HWCONFIG-2

HWCONFIG (C) HWCONFIG (C)

name=scsi base=0x234 dma=4

hwconfig base dma vec=4
The base and dma values of all /usr/adm/hwconfig entries with
matching vec=4 are printed.

hwconfig -1 base dma vec=4
is like
hwconfig -1 vec=4
except that base and dma values will be printed first.

hwconfig -h
Everything is printed in the long format, with a header similar to
the one shown at boot-up time. It will ignore all queries, but do
matching on the token values. For example,

hwconfig -h vec=4 dma=1

will print in long format, with header, all those entries with vec=4 and
dma=1

Files

fusrfadm/hwconfig
Value Added

hwconfig is an extension of AT&T System V provided in Altos UNIX
System V,

March 15, 1989 HWCONFIG-3

[286EMUL (C) 1286EMUL (C)

i286emul
emulate UNIX 80286

Syntax

i286emul [arg ...] prog286

Description

i286emul is an emulator that allows programs from UNIX System V
Release 2 or Release 3 on the Intel 80286 to run on UNIX System V
Release 3 on the Intel 80386.

The Altos UNIX System V system recognizes an attempt to exec(S) a
286 program, and automatically exec’s the 286 emulator with the 286
program name as an additional argument. It is not necessary to
specify the i286emul emulator on the command line. The 286 pro-
grams can be invoked using the same command format as on the 286
UNIX System V.

i286emul reads the 286 program’s text and data into memory and maps
them through the LDT (Local Descriptor Table) (via sysiS80(S)) as 286
text and data segments. It also sets callgate 89 in the GDT (Global
Descriptor Table) (which is used by 286 programs for system calls) to
point to a routine in i286emul. i286emul starts the 286 program by
Jjumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes
control. It does any conversions needed between the 286 system call
and the equivalent 386 system call, and performs the 386 system call.
The results are converted to the form the 286 program expects, and the
286 program is resumed.

The following are some of the differences between a program running
on a 286 and a 286 program using i286emul on a 386:

e A 286 program under i286emul always has 64K in the stack
segment if it is a large-model process, or 64K in the data seg-
ment if it is a small-model process.

e System calls and signal handling use more space on the stack
under i286emul than it does on a 286.

e Attempts to unlink or write on the 286 program will fail on the
286 with ETXTBSY. Under i286emul, they will not fail.

e ptrace(S) is not supported under i286emul.

March 11, 1990 1286EMUL-1

1286EMUL (C) I286EMUL (C)
e The 286 program must be readable for the emulator to read it.

Files

/bin/i286emul
The emulator must have this name and be in /bin if it is to be
automatically invoked when exec (S) is used on a 286 program.

Notes

The signal mechanism under the emulator is the System V release 2
signal mechanism rather than the System V release 3 mechanism.

March 11, 1990 1286EMUL-2

ID (C) ID (C)
id

prints user and group IDs and names

Syntax

id

Description

id writes a message on the standard output, giving the user and group
IDs and the corresponding names of the invoking process. If the effec-
tive and real IDs do not match, both are printed.

See Also

logname(C), getuid(S)

Standards Conformance

id is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ID-1

ISMPX (C) ISMPX (C)

iIsmpXx

return windowing terminal state

Syntax

ismpx [-s]

Description

The ismpx command reports whether its standard input is connected to
a multiplexed x#(HW) channel; ie., whether it’s running under
layers(C) or not. It is useful for shell scripts that download programs
to a windowing terminal or depend on screen size.

The ismpx command prints yes and returns 0 if invoked under
layers(C), and prints no and returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

Diagnostics

Returns 0 if invoked under layers(C), 1 if not.

See Also

jwin(C), layers(C), xt(HW)

Example

if ismpx -s
then

jwin
fi

March 15, 1989 ‘ ISMPX~1

JOIN (C) JOIN (C)
join

joins two relations

Syntax

join [options] filel file2

Description

Join prints to the standard output a join of the two relations specified
by the lines of filel and file2. If filel is a dash (-), the standard input
is used.

Filel and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in each
line.

There is one line in the output for each pair of lines in filel and file2
that have identical join fields. The output line normally consists of
the common field, then the rest of the line from filel , then the rest of
the line from file2 .

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produces a line for each
unpairable line in file n, where n is 1 or 2.

-es Replaces empty output fields by string s.

-jinm Joins on the mth field of file n. If n is missing, uses the

mth field in each file.

-0 list Each output line comprises the fields specified in list,
each element of which has the form n.m, where n is a file
number and m is a field number.

-tc Uses character c as a field separator. Every appearance of
¢ in a line is significant.

March 15, 1989 JOIN-1

JOIN (C) JOIN (C)

See Also

awk(C), comm(C), sort(C)

Notes

With default field separation, the collating sequence is that of sort -b.
With -t, the sequence is that of a plain sort.

Standards Conformance

Join is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 JOIN-2

JTERM (C) JTERM (C)

jterm

reset layer of windowing terminal

Syntax

Jjterm

Description

The jterm command is used to reset a layer of a windowing terminal
after downloading a terminal program that changes the terminal
attributes of the layer. It is useful only under layers(C). In practice, it
is most commonly used to restart the default terminal emulator after
using an alternate one provided with a terminal-specific application
package. For example, on the AT&T TELETYPE 5620 DMD termi-
nal, after executing the hp2621(C) command in a layer, issuing the
Jjterm command will restart the default terminal emulator in that layer.

Diagnostics

Returns 0 upon successful completion, 1 otherwise.

Notes

The layer that is reset is the one attached to standard error; that is, the
window you are in when you type the jterm command.

See Also

layers(C)

March 15, 1989 JTERM=1

JWIN (C) JWIN (C)

jwin

print size of layer

Syntax

jwin

Description

The jwin command runs only under layers(C) and is used to determine
the size of the layer associated with the current process. It prints the
width and the height of the layer in bytes (number of characters across
and number of lines, respectively). For bit-mapped terminals only, it
also prints the width and height of the layer in bits.

Diagnostics

Returns 0 on successful completion, 1 otherwise.
If layers(C) has not been invoked, an error message is printed:

jwin: not mpx

Note

The layer whose size is printed is the one attached to standard input;
that is, the window you are in when you type the jwin command.

See Also

layers(C)

Example

In the following example, the user input is in bold:
$jwin

bytes: 86 25
bits: 780 406

March 15, 1989 © JWIN-1

KILL (C) KILL (C)

kill

terminates a process

Syntax

kill [-signo] processid ...

Description

kill sends signal 15 (terminate) to the specified process(es). This will
normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process (background process)
started with & is reported by the shell (unless more than one process is
started in a pipeline, in which case the number of the last process in
the pipeline is reported). Process numbers can also be found by using
ps(C).

For example, if process number 0 is specified, all processes in the pro-
cess group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by - is given as the first argument, that

signal is sent instead of the terminate signal (see signal(S)). In partic-
ular “*kill -9...” is a sure kill.

See Also

ps(C), sh(C), kill(S), signal(S)

Standards Conformance

kill is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 KILL-1

KSH (C) 'KSH (C)

ksh, rksh

KornShell, a standard/restricted command and pro-
gramming language

Syntax

ksh [+aefhikmnoprstuvx] [tooption]... [-cstring] [arg...]
rksh [£aefhikmnoprstuvx] [+o option] ... [-c string] [arg...]

Description

ksh is a command and programming language that executes com-
mands read from a terminal or a file. rksk is a restricted version of the
command interpreter ksh; it is used to set up login names and execu-
tion environments whose capabilities are more controlled than those
of the standard shell. See Invocation below for the meaning of argu-
ments to the shell.

Definitions
A metacharacter is one of the following characters:
; & () | < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore. Identifiers
are used as names for functions and named parameters. A word is a
sequence of characters separated by one or more non-quoted meta-
characters.

A command is a sequence of characters in the syntax of the shell lan-
guage. The shell reads each command and carries out the desired
action either directly or by invoking separate utilities. A special com-
mand is a command that is carried out by the shell without creating a
separate process. Except for documented side effects, most special
commands can be implemented as separate utilities.

Commands

A simple-command is a sequence of blank separated words which may
be preceded by a parameter assignment list. (See Environment
below). The first word specifies the name of the command to be exe-
cuted. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as
argument O (see exec(S)). The value of a simple-command is its exit
status if it terminates normally, or (octal) 200+status if it terminates

March 19, 1990 KSH-1

KSH (C) KSH (C)

abnormally (see signal(S) for a list of status values).

A pipeline is a sequence of one or more commands separated by |.
The standard output of each command but the last is connected by a
Dipe(S) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to ter-
minz:jte. The exit status of a pipeline is the exit status of the last com-
mand.

A list is a sequence of one or more pipelines separated by ;, &, &&,
or | |, and optionally terminated by ;, &, or |&. Of these five sym-
bols, ;, &, and | & have equal precedence, which is lower than that of
&& and | |. The symbols && and | | also have equal precedence. A
semicolon (;) causes sequential execution of the preceding pipeline;
an ampersand (&) causes asynchronous execution of the preceding
pipeline (i.e., the shell does not wait for that pipeline to finish). The
symbol | & causes asynchronous execution of the preceding command
or pipeline with a two-way pipe established to the parent shell. The
standard input and output of the spawned command can be written to
and read from by the parent Shell using the -p option of the special
commands read and print described later. The symbol && (| |)
causes the list following it to be executed only if the preceding pipe-
line returns a zero (non-zero) value. An arbitrary number of new-lines
may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

for identifier [inword ...] ;do list ;done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word ... is omitted, then
the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execu-
tion ends when there are no more words in the list.

select identifier [inword ...] ;do list ;done

A select command prints on standard error (file descriptor.2), the
set of words, each preceded by a number. If in word ... is omit-
ted, then the positional parameters are used instead (see Parameter
Substitution below). The PS3 prompt is printed and a line is read
from the standard input. If this line consists of the number of one
of the listed words, then the value of the parameter identifier is set
to the word corresponding to this number. If this line is empty the
selection list is printed again. Otherwise the value of the parame-
ter identifier is set to null. The contents of the line read from stan-
dard input is saved in the parameter REPLY. The list is executed
for each selection until a break or end-of-file is encountered.

case word in [[(Jpattern [| pattern }...) list 33]...esac

A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that

March 19, 1990 KSH-2

KSH (C) KSH (C)

used for file-name generation (see File Name Generation below).

if list ;then list [elif list jthen list]...[;else list] ;fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol-
lowing elif is executed and, if its value is zero, the list following
the next then is executed. Failing that, the else list is executed. If
no else list or then list is executed, then the if command returns a
Zero exit status.

while list ;do list ;done

until /ist ;do list ;done
A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes the do
list ; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test. :

(list) -
Execute list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted
to avoid arithmetic evaluation as described below.

{ list;}
list is simply executed. Note that unlike the metacharacters (and
), { and } are reserved words and must at the beginning of a line or
after a ; in order to be recognized.

[[expressionl]
Evaluates expression and returns a zero exit status when expres-
sion is true. See Conditional Expressions below, for a description
of expression.

function identifier { list ;}

identifier () { list 3}
Define a function which is referenced by identifier. The body of
the function is the list of commands between { and }. (See Func-
tions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user
and system time are printed on standard error.

The following reserved words are only recognized as the first word of
a command and when not quoted:

if then else elif fi case esac for while until do done
{ } function select time [[]]

March 19, 1990 KSH-3

KSH (C) KSH (C)

Comments

A word beginning with # causes that word and all the following char-
acters up to a new-line to be ignored.

Aliasing

The first word of each command is replaced by the text of an alias if
an alias for this word has been defined. The first character of an alias
name can be any non-special printable character, but the rest of the
characters must be the same as for a valid identifier. The replacement
string can contain any valid Shell script including the metacharacters
listed above. The first word of each command in the replaced text,
other than any that are in the process of being replaced, will be tested
for aliases. If the last character of the alias value is a blank then the
word following the alias will also be checked for alias substitution.
Aliases can be used to redefine special builtin commands but cannot
be used to redefine the reserved words listed above. Aliases can be
created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in effect
for scripts invoked by name, but must be reinitialized for separate
invocations of the Shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are exe-
cuted. Therefore, for an alias to take effect the alias definition com-
mand has to be executed before the command which references the
alias is read.

Aliases are frequently used as a short hand for full path names. An
option to the aliasing facility allows the value of the alias to be auto-
matically set to the full pathname of the corresponding command.
These aliases are called tracked aliases. The value of a tracked alias
is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will
redefine the value. Several tracked aliases are compiled into the shell.
The -h option of the set command makes each referenced command
name into a tracked alias.

The following exported aliases are compiled into the shell but can be
unset or redefined:

autoload="typeset -fu”

false="let 0"

functions="typeset -f’

hash="alias -t

history="fc -1’

integer="typeset -i

nohup="nohup ~

r="fc -e -’

March 19, 1990 KSH-4

KSH (C) KSH (C)

true=":"
type="whence -v’

Tilde Substitution

After alias substitution is performed, each word is checked to see if it
begins with an unquoted ~. If it does, then the word up to a / is
checked to see if it matches a user name in the /etc/passwd file. If a
match is found, the ~ and the matched login name is replaced by the
login directory of the matched user. This is called a tilde substitution.
If no match is found, the original text is left unchanged. A ~ by itself,
or in front of a /, is replaced by the value of the HOME parameter. A
~ f(;llowed by a + or - is replaced by $PWD and $OLDPWD respec-
tively.

In addition, tilde substitution is attempted when the value of a vari-
able assignment parameter begins with a ~,

Command Substitution

The standard output from a command enclosed in parenthesis pre-
ceded by a dollar sign ($()) or a pair of grave accents (**) may be
used as part or all of a word; trailing new-lines are removed. In the
second (archaic) form, the string between the quotes is processed for
special quoting characters before the command is executed. (See
Quoting below). The command substitution $(cat file) can be
replaced by the equivalent but faster $(<file). Command substitution
of most special commands that do not perform input/output redirection
are carried out without creating a separate process.

An arithmetic expression enclosed in double parenthesis preceded by
a dollar sign ($(())) is replaced by the value of the arithmetic expres-
sion within the double parenthesis.

Parameter Substitution

A parameter is an identifier, one or more digits, or any of the charac-
ters *, @, #, ?, -, $, and !. A named parameter (a parameter denoted
by an identifier) has a value and zero or more attributes. Named
parameters can be assigned values and attributes by using the
typeset special command. The attributes supported by the Shell are
described later with the typeset special command. Exported parame-
ters pass values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an
array parameter is referenced by a subscript. A subscript is denoted
by a [, followed by an arithmetic expression (see Arithmetic evalua-
tion below) followed by a]. To assign values to an array, use set -A
name value The value of all subscripts must be in the range of 0
through 1023. Arrays need not be declared. Any reference to a named

March 19, 1990 KSH-5

KSH (C) KSH (C)

parameter with a valid subscript is legal and an array will be created if
necessary. Referencing an array without a subscript is equivalent to
referencing the element zero.

The value of a named parameter may also be assigned by writing:
name=value [name=value] ...

If the integer attribute, -i, is set for name the value is subject to arith-
metic evaluation as described below.
Positional parameters, parameters denoted by a number, may be
assigned values with the set special command. Parameter $0 is set
from argument zero when the shell is invoked.
The character $ is used to introduce substitutable parameters.
${parameter}
The shell reads all the characters from ${ to the matching } as part
of the same word even if it contains braces or metacharacters. The
value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or under-
score that is not to be interpreted as part of its name or when a
named parameter is subscripted. If parameter is one or more digits
then it is a positional parameter. A positional parameter of more
‘than one digit must be enclosed in braces. If parameter is * or @,
then all the positional parameters, starting with $1, are substituted
(separated by a field separator character). If an array identifier
with subscript * or @ is used, then the value for each of the ele-
ments is substituted (separated by a field separator character).
${#parameter}
If parameter is * or @, the number of positional parameters is sub-
stituted. Otherwise, the length of the value of the parameter is
substituted.
${#identifier[*]}
The number of elements in the array identifier is substituted.
${parameter:-word}
If parameter is set and is non-null then substitute its value; other-
wise substitute word.
${parameter:=word}
If parameter is not set or is null then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.
${parameter:?word}
If parameter is set and is non-null then substitute its value; other-
wise, print word and exit from the shell. If word is omitted then a
standard message is printed.
${parameter:+word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing. ~
${parameter#pattern}
${parameterittipartern} ‘
If the Shell pattern matches the beginning of the value of parame-
ter, then the value of this substitution is the value of the parameter
with the matched portion deleted; otherwise the value of this

March 19, 1990 ' KSH-6

KSH (C) KSH (C)

parameter is substituted. In the first form the smallest matching
pattern is deleted and in the second form the largest matching pat-
tern is deleted.

${parameter Yopattern}

${parameter % Yopattern}
If the Shell pattern matches the end of the value of parameter,
then the value of this substitution is the value of the parameter
with the matched part deleted; otherwise substitute the value of
parameter. In the first form the smallest matching pattern is
-deleted and in the second form the largest matching pattern is
deleted.

In the above, word is not evaluated unless it is to be used as the substi-
tuted string, so that, in the following example, pwd is executed only if
d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set com-
mand. :
? The decimal value returned by the last executed command.
$ The process number of this shell.
Initially, the value _ is an absolute pathname of the shell or
script being executed as passed in the environment. Subse-
quently it is assigned the last argument of the previous com-
mand. This parameter is not set for commands which are asyn-
chronous. This parameter is also used to hold the name of the
matching MAIL file when checking for mail.
! The process number of the last background command invoked.
ERRNO ;
The value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debug-
ging purposes.
LINENO
The line number of the current line within the script or function
being executed.
OLDPWD
The previous working directory set by the ¢d command.
OPTARG
The value of the last option argument processed by the getopts
special command.
OPTIND
The index of the last option argument processed by the getopts
special command.

March 19, 1990 KSH-7

KSH (C) KSH (C)

PPID :
The process number of the parent of the shell.

PWD
The present working directory set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer, uni-
formly distributed between 0 and 32767, is generated. The
sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds
since shell invocation is returned. If this parameter is assigned
a value, then the value returned upon reference will be the
value that was assigned plus the number of seconds since the
assignment,

The following parameters are used by the shell:

CDPATH
The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the
;;dit window for the shell edit modes and for printing select
ists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see
Special Command set below) will be turned on.

ENV
If this parameter is set, then parameter substitution is per-
formed on the value to generate the pathname of the script that
will be executed when the shell is invoked. (See Invocation
below.) This file is typically used for alias and furiction
definitions.

FCEDIT
The default editor name for the fc command.

FPATH
The search path for function definitions. This path is searched
when a function with the -u attribute is referenced and when a
command is not found. If an executable file is found, then it is
read and executed in the current environment.

IFS
Internal field separators, normally space, tab, and new-line that
is used to separate command words which result from com-
mand or parameter substitution and for separating words with
the special command read. The first character of the IFS
parameter is used to separate arguments for the "$+" substitu-
tion (See Quoting below).

March 19, 1990 KSH-8

KSH (C) KSH (C)

HISTFILE
If this parameter is set when the shell is invoked, then the value
is the pathname of the file that will be used to store the com-
mand history. (See Command re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the num-
ber of previously entered commands that are accessible by this
shcillgwill be greater than or equal to this number. The default
is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL
If this parameter is set to the name of a mail file and the MAIL-
PATH parameter is not set, then the shell informs the user of
arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the MAILPATH or MAIL parameters. The default
value is 600 seconds. When the time has elapsed the shell will
check before issuing the next prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set
then the shell informs the user of any modifications to the
specified files that have occurred within the last MAILCHECK
seconds. Each file name can be followed by a ? and a message
that will be printed. The message will undergo parameter sub-
stitution with the parameter, $_ defined as the name of the file
that has changed. The default message is you have mail in $_.

PATH
The search path for commands (see Execution below). The
user may not change PATH if executing under rksh (except in
.profile).

PS1
The value of this parameter is expanded for parameter substitu-
tion to define the primary prompt string which by default is “‘$
*’. The character ! in the primary prompt string is replaced by
the command number (see Command Re-entry below).

PS2
Secondary prompt string, by default “‘>

PS3
Selection prompt string used within a select loop, by default
6‘#? ’,-

PS4

The value of this parameter is expanded for parameter substitu-
tion and precedes each line of an execution trace. If omitted,
the execution trace prompt is “‘+

March 19, 1990 KSH-9

KSH (C) KSH (C)

SHELL
The pathname of the shell is kept in the environment. At invo-
cation, if the basename of this variable matches the pattern
*r¥sh, then the shell becomes restricted.

TMOUT
If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of
seconds after issuing the PS1 prompt. (Note that the shell can
be compiled with a maximum bound for this value which can-
not be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK,
TMOUT and IFS, while HOME, SHELL ENV and MAIL are not set at
all by the shell (although HOME is set by login(M)). On some sys-
tems MAIL and SHELL are also set by login(M)).

Blank Interpretation

After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit
null arguments (""" or “") are retained. Implicit null arguments (those
resulting from parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the char-
acters *, ?, and [unless the -f option has been set. If one of these
characters appears then the word is regarded as a pattern. The word is
replaced with lexicographically sorted file names that match the pat-
tern. If no file name is found that matches the pattern, then the word is
left unchanged. When a pattern is used for file name generation, the
character . at the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly. In other
instances of pattern matching the / and . are not treated specially.

* Matches any string, including the null string.

? Matches any single character.

[...]
Matches any one of the enclosed characters. A pair of charac-
ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening "["
isa"! " then any character not enclosed is matched. A -can be
included in the character set by putting it as the first or last
character.

March 19, 1990 KSH-10

KSH (C) KSH (C)

A pattern-list is a list of one or more patterns separated by each other
with a |. Composite patterns can be formed with one or more of the
following:
?(pattern-list)
Optionally matches any one of the given patterns.
*(pattern-list)
Matches zero or more occurrences of the given patterns.
+(pattern-list)
Matches one or more occurrences of the given patterns.
@(pattern-list)
Matches exactly one of the given patterns.
Y(pattern-list)
Matches anything, except one of the given patterns.

Quoting

Each of the metacharacters listed above (See Definitions above) has a
special meaning to the shell and causes termination of a word unless
quoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All characters
enclosed between a pair of single quote marks ("), are quoted. A sin-
gle quote cannot appear within single quotes. Inside double quote
marks (" "), parameter and command substitution occurs and \ quotes
the characters \, *, ", and $. The meaning of $* and $@ is identical
when not quoted or when used as a parameter assignment value or as a
file name. However, when used as a command argument, "$*" is
equivalent to "$1d$2d...", where d is the first character of the IFS
parameter, whereas "$@" is equivalent to "$1" "$2" Inside
grave quote marks (**) \ quotes the characters \, *, and $. If the grave
quotes occur within double quotes then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by
quoting any character of the reserved word. The recognition of func-
tion names or special command names listed below cannot be altered
by quoting them. :

Arithmetic Evaluation

An ability to perform integer arithmetic is provided with the special
command let. Evaluations are performed using long arithmetic. Con-
stants are of the form [base# ln where base is a decimal number
between two and thirty-six representing the arithmetic base and n is a
number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and asso-
ciativity of expression of the C language. All the integral operators,
other than ++, --, 2z, and , are supported. Named parameters can be
referenced by name within an arithmetic expression without using the
parameter substitution syntax. When a named parameter is refer-
enced, its value is evaluated as an arithmetic expression.

March 19, 1990 KSH-11

KSH (C) KSH (C)

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command. Arith-
metic evaluation is performed on the value of each assignment to a
named parameter with the -i attribute. If you do not specify an arith-
metic base, the first assignment to the parameter determines the arith-
metic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command which begins
with a ((, all the characters until a matching)) are treated as a quoted
expression. More precisely, ((...)) is equivalent to let " ...".

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secondary
prompt (i.e., the value of PS2) is issued.

Conditional Expressions

A conditional expression is used with the [[compound command to
test attributes of files and to compare strings. Word splitting and file
name generation are not performed on the words between [[and]].
Each expression can be constructed from one or more of the following
unary or binary expressions:
-a file
True, if file exists.
-b file
True, if file exists and is a block special file.
- file
True, if file exists and is a character special file.
-d file
True, if file exists and is a directory.
ffile
True, if file exists and is an ordinary file.
-g file
True, if file exists and is has its setgid bit set.
-k file
True, if file exists and is has its sticky bit set.
-n string
True, if length of string is non-zero.
-0 option
True, if option named option is on.
-p file
True, if file exists and is a fifo special file or a pipe.
-r file
True, if file exists and is readable by current process.

March 19, 1990 KSH-12

KSH (C) KSH (C)

-s file
True, if file exists and has size greater than zero.
-t fildes
True, if file descriptor number fildes is open and associated with a
terminal device.
-u file
True, if file exists and is has its setuid bit set.
-w file v
fTrue, if file exists and is writable by current process.
=X file
True, if file exists and is executable by current process. If file
exists and is a directory, then the current process has permlssmn to
search in the directory.
-Z String
True, if length of string is zero.
-0 file
True, if file exists and is owned by the effective user id of this pro-
cess.
-G file
True, if file exists and its group matches the effective group id of
this process.
filel -ntfile2
True, if filel exists and is newer than ﬁleZ
filel -ot file2
True, if filel exists and is older than file2.
filel -ef file2
True, if filel and file2 exist and refer to the same file.
string = pattern
True, if string matches pattern.
string = pattern
True, if string does not match pattern.
stringl < string2
True, if stringl comes before string2 based on ASCII value of their
characters.
stringl > string2
True, if stringl comes after string2 based on ASCII value of their
characters.
expl -eq exp2
True, if expl is equal to exp2.
expl -ne exp?2
True, if exp! is not equal to exp2.
expl It exp2
True, if exp! is less than exp2.
expl -gt exp2
True, if exp! is greater than exp2.
expl -le exp2
True, if exp! is less than or equal to exp2.
expl -ge exp2
True, if expl is greater than or equal to exp2.

March 19, 1990 KSH-13

KSH (C) KSH (C)

In each of the above expressions, if file is of the form /dev/fd/n, where
n is an integer, then the test applied to the open file whose descriptor
number is n.

A compound expression can be constructed from these primitives by
using any of the following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expression! && expression2

True, if expressionl and expression2 are both true.
expressionl || expression2

True, if either expressionl or expression2 is true.

Spelling Checker

By default, the shell checks spelling whenever you use cd to change
directories. For example, if you change to a different directory using
cd and misspell the directory name, the shell responds with an alterna-
tive spelling of an existing directory. Enter ‘‘y’’ and press RETURN
(or just press RETURN) to change to the offered directory. If the of-
fered spelling is incorrect, enter ‘‘n’’, then retype the command line.
In this example the ksh response is boldfaced:

cd /usr/spol/uucp

/usxr/spool/uucp? y

ok
The spell check feature is controlled by the CDSPELL environment
variable. The default value of CDSPELL is set to the string ‘‘cdspell’’
whenever a ksh session is run. A user can change it to any value,
including the null string, but the value is immaterial, if CDSPELL is
set to any value, the spell check feature is engaged.

To disable the spelling checker, enter the following at the ksh prompt :
®.DE
When the user does a set at the ksh prompt,
CDSPELL is not listed if the unset was successful.

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command and are not passed on to the invoked command. Command
and parameter substitution occurs before word or digit is used except
as noted below. File name generation occurs only if the pattern
matches a single file and blank interpretation is not performed.

March 19, 1990 ’ KSH-14

KSH (C) KSH (C)

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1).
If the file does not exist then it is created. If the file
exists, and the noclobber option is on, this causes an
error; otherwise, it is truncated to zero length.

>lword Sames as >, except that it overrides the noclobber
option.
>>word Use file word as standard output. If the file exists

then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

<>word Open file word for reading and writing as standard
input.
<<[- lword The shell input is read up to a line that is the same as

word, or to an end-of-file. No parameter substitu-
tion, command substitution or file name generation is
performed on word. The resulting document, called
a here-document , becomes the standard input. If any
character of word is quoted, then no interpretation is
placed upon the characters of the document; other-
wise, parameter and command substitution occurs,
\new-line is ignored, and \ must be used to quote the
characters \, $, *, and the first character of word. If -
is appended to <<, then all leading tabs are stripped
from word and from the document,

<&digit The standard input is duplicated from file descriptor
digit (see dup(S)). Similarly for the standard output
using >& digit.

<&- . The standard input is closed. Similarly for the stan-
dard output using >&-.

<&p The input from the co-process is moved to standard
input.

>&p The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file descriptor num-
ber referred to is that specified by the digit (instead of the default 0 or
1). For example:

v 22&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

March 19, 1990 KSH-15

KSH (C) KSH (C)

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor, file) associ-
ation at the time of evaluation. For example:

... I>fname 2>&1

first associates file descriptor 1 with file fname . It then associates file
descriptor 2 with the file associated with file descriptor 1 (i.e. frname).
If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname .

If a command is followed by & and job control is not active, then the
default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains
the file descriptors of the invoking shell as modified by input/output
specifications.

Environment

The environment (see environ(M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value and marking it
export . Executed commands inherit the environment. If the user
modifies the values of these parameters or creates new ones, using the
export or typeset -x commands they become part of the environment.
The environment seen by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must
be noted in export or typeset -x commands.

The environment for any simple-command or function may be aug-
mented by prefixing it with one or more parameter assignments. A
parameter assignment argument is a word of the form
identifier=value. Thus:

TERM=450 cmd args , and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of ¢md is concerned).
If the -k flag is set, all parameter assignment arguments are placed in
the environment, even if they occur after the command name. The fol-
lowing first prints a=b ¢ and then c:

echo a=b ¢

set -k
echo a=b ¢

March 19, 1990 KSH-16

KSH (C) KSH (C)

This feature is intended for use with scripts written for early versions
of the shell and its use in new scripts is strongly discouraged. It is
likely to disappear someday.

Functions

The function reserved word, described in the Commands section
above, is used to define shell functions. Shell functions are read in
and stored internally. Alias names are resolved when the function is
read. Functions are executed like commands with the arguments
passed as positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files
and present working directory with the caller. Traps caught by the
caller are reset to their default action inside the function. A trap con-
dition that is not caught or ignored by the function causes the function
to terminate and the condition to be passed on to the caller. A trap on
EXIT set inside a function is executed after the function completes in
the environment of the caller. Ordinarily, variables are shared
between the calling program and the function. However, the typeset
special command used within a function defines local variables whose
scope includes the current function and all functions it calls.

The special command return is used to return from function calls.
Errors within functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset
special command. The text of functions will also be listed with -f.
Function can be undefined with the -f option of the unset special com-
mand.

Ordinarily, functions are unset when the shell executes a shell script.
The -xf option of the typeset command allows a function to be
exported to scripts that are executed without a separate invocation of
the shell. Functions that need to be defined across separate invoca-
tions of the shell should be specified in the ENV file with the -xf
option of typeset

Jobs

If the monitor option of the set command is turned on, an interactive
shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer
numbers.- When a job is started asynchronously with &, the shell
prints a line which looks like:

[111234

indicating that the job which was started asynchronously was job
number 1 and had one (top-level) process, whose process id was 1234.

March 19, 1990 , KSH-17

KSH (C) KSH (C)

This paragraph and the next require features that are not in all versions
of the UNIX operating system and may not apply. If you are running a
job and wish to do something else you may hit the key “Z (control-Z)
which sends a STOP signal to the current job. The shell will then nor-
mally indicate that the job has been ‘Stopped’, and print another
prompt. You can then manipulate the state of this job, putting it in the
background with the bg command, or run some other commands and
then eventually bring the job back into the foreground with the fore-
ground command fg. A “Z takes effect immediately and is like an
§nterrugt in that pending output and unread input are discarded when it
is typed.

A job being run in the background will stop if it tries to read from the
terminal. Background jobs are normally allowed to produce output,
but this can be disabled by giving the command ‘‘stty tostop’’. If you
set this tty option, then background jobs will stop when they try to
produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be
referred to by the process id of any process of the job or by one of the
following:
%0 number
The job with the given number.
Yostring
Any job whose command line begins with string.
%0 ?string
Any job whose command line contains string.
o %o
Current job.
%0+
Equivalent to % %.
% -
Previous job.

This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no
further progress is possible, but only just before it prints a prompt.
This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that completes
triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you
will be warned that ‘You have stopped(running) jobs.” You may use
the jobs command to see what they are. If you do this or immediately
try to exit again, the shell will not warn you a second time, and the
stopped jobs will be terminated.

March 19, 1990 KSH-18

KSH (C) KSH (C)

Signals

The INT and QUIT signals for an invoked command are ignored if the
command is followed by & and job monitor option is not active. Oth-
erwise, signals have the values inherited by the shell from its parent
(but see also the trap command below).

Execution

Each time a command is executed, the above substitutions are carried
out. If the command name matches one of the Special Commands
listed below, it is executed within the current shell process. Next, the
command name is checked to see if it matches one of the user defined
functions. If it does, the positional parameters are saved and then
reset to the arguments of the function call. When the function com-
pletes or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a
Jfunction is the value of the last command executed. A function is also
executed in the current shell process. If a command name is not a spe-
cial command or a user defined function, a process is created and an
attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is /bin:/usr/bin; (specifying /bin,
fusr/bin, and the current directory in that order). The current direc-
tory can be specified by two or more adjacent colons, or by a colon at
the beginning or end of the path list. If the command name contains a
/ then the search path is not used. Otherwise, each directory in the
path is searched for an executable file. If the file has execute permis-
sion but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. All
non-exported aliases, functions, and named parameters are removed in
this case. If the shell command file doesn’t have read permission, or if
the setuid and/or setgid bits are set on the file, then the shell executes
an agent whose job it is to set up the permissions and execute the shell
with the shell command file passed down as an open file. A
parenthesized command is executed in a sub-shell without removing
non-exported quantities.

Command Re-entry

The text of the last HISTSIZE (default 128) commands entered from a
terminal device is saved in a history file. The file SHOME/sh_history
is used if the HISTFILE variable is not set or is not writable. A shell
can access the commands of all interactive shells which use the same
named HISTFILE. The special command fc is used to list or edit a
portion of this file. The portion of the file to be edited or listed can be
selected by number or by giving the first character or characters of the
command. A single command or range of commands can be specified.

March 19, 1990 KSH-19

KSH (C) KSH (C)

If you do not specify an editor program as an argument to fc then the
value of the parameter FCEDIT is used. If FCEDIT is not defined then
/bin/ed is used. The edited command(s) is printed and re-executed
upon leaving the editor. The editor name - is used to skip the editing
phase and to re-execute the command. In this case a substitution
parameter of the form old=new can be used to modify the command
before execution. For example, if r is aliased to “fc -e -” then typing ‘r
bad=good ¢’ will re-execute the most recent command which starts
with the letter c, replacing the first occurrence of the string bad with
the string good.

In-line Editing Options

Normally, each command line entered from a terminal device is sim-
ply typed followed by a new-line (‘RETURN’ .or ‘LINE FEED’). If
either the emacs, gmacs, or vi option is active, the user can edit the
command line. To be in either of these edit modes set the correspond-
ing option. An editing option is automatically selected each time the
VISUAL or EDITOR variable is assigned a value ending in either of
these option names.

The editing features require that the user’s terminal accept ‘RETURN’
as carriage return without line feed and that a space (‘’) must
overwrite the current character on the screen. ADM terminal users
should set the "space - advance" switch to ‘space’. Hewlett-Packard
series 2621 terminal users should set the straps to ‘bcGHxZ etX’.

The editing modes implement a concept where the user is looking
through a window at the current line. The window width is the value
of COLUMNS if it is defined, otherwise 80. If the line is longer than
the window width minus two, a mark is displayed at the end of the
window to notify the user. As the cursor moves and reaches the win-
dow boundaries the window will be centered about the cursor. The
mark is a > (<, *) if the line extends on the right (left, both) side(s) of
the window.

The search commands in each edit mode provide access to the history
file. Only strings are matched, not patterns, although a leading in the
string restricts the match to begin at the first character in the line.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option.
The only difference between these two modes is the way they handle
“T. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the edit-
ing commands are control characters or escape sequences. The nota-
tion for control characters is caret (") followed by the character. For
example, “F is the notation for control F. This is entered by depress-
ing ‘f” while holding down the ‘CTRL’ (control) key. The ‘SHIFT’

March 19, 1990 KSH-20

KSH (C)

KSH (C)

key is not depressed. (The notation *? indicates the DEL (delete)

key.)

The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced Meta f) is entered by depressing ESC (ascii
033) followed by ‘f”. (M-F would be the notation for ESC followed by
‘SHIFT”’ (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the
beginning). Neither the "RETURN" nor the "LINE FEED" key is
entered after edit commands except when noted.

F
M-f

>

B
M-b

‘E
“Ichar
M-"Ichar
XX
erase

D
M-d
M-"H
M-h
M-"?

>

T

C
M-c
M-l
K

‘W
M-p
kil

Move cursor forward (right) one character.

Move cursor forward one word. (The emacs editor’s idea
of a word is a string of characters consisting of only
letters, digits and underscores.)

Move cursor backward (left) one character.

Move cursor backward one word.

Move cursor to start of line.

Move cursor to end of line.

Move cursor forward to character char on current line.
Move cursor back to character char on current line.
Interchange the cursor and mark.

(User defined erase character as defined by the stty (C)
command, usually "H or#.) Delete previous character.
Delete current character.

Delete current word.

(Meta-backspace) Delete previous word.

Delete previous word.

(Meta-DEL) Delete previous word (if your interrupt char-
acter is "? (DEL, the default) then this command will not
work).

Transpose current character with next character in emacs
mode. Transpose two previous characters in gmacs mode.
Capitalize current character.

Capitalize current word.

Change the current word to lower case.

Delete from the cursor to the end of the line. If preceded
by a numerical parameter whose value is less than the
current cursor position, then delete from given position up
to the cursor. If preceded by a numerical parameter
whose value is greater than the current cursor position,
then delete from cursor up to given cursor position.

Kill from the cursor to the mark.

Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the stty com-
mand, usually "G or @.) Kill the entire current line. If
two kill characters are entered in succession, all kill char-
acters from then on cause a line feed (useful when using
paper terminals).

March 19, 1990 KSH-21

KSH (C)

M-<
M->

"Rstring

0
M-digits

M-letter

KSH (C)

Restore last item removed from line. (Yank item back to

the line.)

Line feed and print current line.

(Null character) Set mark.

(Meta space) Set mark.

(New line) Execute the current line.

(Return) Execute the current line.

End-of-file character, normally "D, is processed as an

End-of-file only if the current line is null.

Fetch previous command. Each time "P is entered the

previous command back in time is accessed. Moves back

one line when not on the first line of a multi-line com-

mand.

Fetch the least recent (oldest) history line.

Fetch the most recent (youngest) history line.

Fetch next command line. Each time "N is entered the

next command line forward in time is accessed.

Reverse search history for a previous command line con-

taining string. If a parameter of zero is given, the search

is forward. String is terminated by a "RETURN" or

"NEW LINE". If string is preceded by a “, the matched

line must begin with string. If string is omitted, then the

next command line containing the most recent string is

accessed. In this case a parameter of zero reverses the

direction of the search.

Operate - Execute the current line and fetch the next line

relative to current line from the history file.

(Escape) Define numeric parameter, the digits are taken

as a parameter to the next command. The commands that

accept a parameter are “F, "B, erase, "C, "D, °K, "R, P,

I‘\l/}l, "], M-., M-"], M-_, M-b, M-c, M-d, M-f, M-h M-1 and
-"H.

Soft-key - Your alias list is searched for an alias by the

name _letter and if an alias of this name is defined, its

value will be inserted on the input queue. The letter must

not be one of the above meta-functions. M-]letter Soft-

key - Your alias list is searched for an alias by the name

__letter and if an alias of this name is defined, its value

will be inserted on the input queue. The can be used to

program functions keys on many terminals.

The last word of the previous command is inserted on the

line. If preceded by a numeric parameter, the value of

this parameter determines which word to insert rather

than the last word.

Same as M-..

Attempt file name generation on the current word. An

asterisk is appended if the word doesn’t match any file or

contain any special pattern characters.

March 19, 1990 KSH-22

KSH (C) KSH (C) -

M-ESC File name completion. Replaces the current word with
the longest common prefix of all filenames matching the
current word with an asterisk appended. If the match is
unique, a / is appended if the file is a directory and a space
is appended if the file is not a directory.

M-= List files matching current word pattern if an asterisk
were appended.

U Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user’s

erase, kill and interrupt (normally “?) characters may be
entered in a command line or in a search string if pre-
ceded by a\. The \ removes the next character’s editing
features (if any).

vV Display version of the shell.

M-# Insert a # at the beginning of the line and execute it. This
causes a comment to be inserted in the history file.

Vi Editing Mode

There are two typing modes. Initially, when you enter a command you
are in the input mode. To edit, the user enters control mode by typing
ESC (033) and moves the cursor to the point needing correction and
then inserts or deletes characters or words as needed. Most control
commands accept an optional repeat count prior to the command.
When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200
baud or greater and it contains any control characters or less than one
second has elapsed since the prompt was printed. The ESC character
terminates canonical processing for the remainder of the command
and the user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echoing of
raw mode.

If the option viraw is also set, the terminal will always have canonical
processing disabled. This mode is implicit for systems that do not
support two alternate end of line delimiters, and may be helpful for
certain terminals.

Input Edit Commands
By default the editor is in input mode.
- erase (User defined erase character as defined by the stty
command, usually "H or #.) Delete previous character.
"W Delete the previous blank separated word.
‘D Terminate the shell. .
" Escape next character. Editing characters, the user’s

erase or kill characters may be entered in a command
line or in a search string if preceded by a "V. The "V
removes the next character’s editing features (if any).

\ Escape the next erase or kill character.

March 19, 1990 KSH-23

KSH (C) KSH (C)
Motion Edit Commands

These commands will move the cursor.

[count]l Cursor forward (right) one character.

[countlw Cursor forward one alpha-numeric word.

[count]W Cursor to the beginning of the next word that follows a
blank.

[countle Cursor to end of word.

[count]E Cursor to end of the current blank delimited word.

[countlh Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count]} Cursor to column count.

[countlfc Find the next character ¢ in the current line.

[count]Fc Find the previous character ¢ in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by 1.

[count]; Repeats count times, the last single character find
command, f, F,t,or T.

[count], Reverses the last single character find command count
times.

0 Cursor to start of line.

" Cursor to first non-blank character in line.

$ Cursor to end of line.

Search Edit Commands

These commands access your command history.

[count]k

[count]-
[count]j

[count]+
[count]G

Istring

string

n

March 19, 1990

Fetch previous command. Each time k is entered the
previous command back in time is accessed.
Equivalent to k.

Fetch next command. Each time j is entered the next
command forward in time is accessed.

Equivalent to j.

The command number count is fetched. The default is
the least recent history command.

Search backward through history for a previous com-
mand containing string. String is terminated by a
"RETURN" or "NEW LINE". If string is preceded by
a °, the matched line must begin with string. If string
is null the previous string will be used.

Same as / except that search will be in the forward
direction.

Search for next match of the last pattern to / or ? com-
mands.

Search for next match of the last pattern to / or ?, but
in reverse direction. Search history for the string
entered by the previous / command.

KSH-24

KSH (C)

KSH (C)

Text Modification Edit Commands

These commands will modify the line.

a Enter input mode and enter text after the current char-
acter.

A Append text to the end of the line. Equivalent to $a.

[countlemotion

c[countlmotion '

Delete current character through the character that
motion would move the cursor to and enter input
mode. If motion is ¢, the entire line will be deleted
and input mode entered.

C Delete the current character through the end of line
and enter input mode. Equivalent to c$.

S Equivalent to cc.

D Delete the current character through the end of line.
Equivalent to d$.

[countldmotion

d{countlmotion
Delete current character through the character that
motion would move to. If motion is d , the entire line
will be deleted.

i Enter input mode and insert text before the current
character. v

I Insgrt text before the beginning of the line. Equivalent
to 0i.

[count]P Place the previous text modification before the cursor.

[countlp Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen
with characters you type overlay fashion.

[countlrc Replace the count character(s) starting at the current
cursor position with ¢, and advance the cursor.

[count]x Delete current character.

[counfiX Delete preceding character.

" [count]. Repeat the previous text modification command.

[count]~ Invert the case of the count character(s) starting at the
current cursor position and advance the cursor.

[count]_ Causes the count word of the previous command to be
appended and input mode entered. The last word is
used if count is omitted.

* Causes an * to be appended to the current word and
file name generation attempted. If no match is found,
it rings the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.

\ Filename completion. Replaces the current word with

March 19, 1990

the longest common prefix of all filenames matching
the current word with an asterisk appended. If the
match is unique, a / is appended if the file is a direc-
tory and a space is appended if the file is not a direc-
tory.

KSH-25

KSH (C) KSH (C)

Other Edit Commands

Miscellaneous commands.

[countlymotion

ylcountlmotion
Yank current character through character that motion
would move the cursor to and puts them into the delete
buffer. The text and cursor are unchanged.

Y Yangs from current position to end of line. Equivalent
to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on
the line.

[countlv Returns the command fc -e

${VISUAL:-${EDITOR:-vi}} count in the input buffer.
If count is omitted, then the current line is used.

‘L Line feed and print current line. Has effect only in
control mode.

“J (New line) Execute the current line, regardless of
mode.

‘M (Return) Execute the current line, regardless of mode.

Sends the line after inserting a # in front of the line.

Useful for causing the current line to be inserted in the
history without being executed.

= List the file names that match the current word if an
asterisk were appended it.

@letter Your alias list is searched for an alias by the name
_letter and if an alias of this name is defined, its value
will be inserted on the input queue for processing.

Special Commands.

The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. Unless otherwise indicated, the
output is written on file descriptor 1 and the exit status, when there is

no syntax error, is zero. Commands that are preceded by one or two T

are treated specially in the following ways:

1. Parameter assignment lists preceding the command remain in
effect when the command completes.

2. I/O redirections are processed after parameter assignments.

3. Errors cause a script that contains them to abort.

4, Words, following a command preceded by 17 that are in the format
of a parameter assignment, are expanded with the same rules as a
parameter assignment. This means that tilde substitution is per-
formed after the = sign and word splitting and file name generation
are not performed. '

March 19, 1990 _ KSH-26

KSH (C) KSH (C)

t:larg...]
The command only expands parameters.

t.file[arg...]
Read the complete file then execute the commands. The com-
mands are executed in the current Shell environment. The search
path specified by PATH is used to find the directory containing file.
If any arguments arg are given, they become the positional param-
eters. Otherwise the positional parameters are unchanged. The
exit status is the exit status of the last command executed.

ttalias[-tx] [namel =value]17]...

Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The -t flag is used to set
and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the aliases remained
tracked. Without the -t flag, for each name in the argument list for
which no value is given, the name and value of the alias is printed.
The -x flag is used to set or print exported aliases. An exported
alias is defined for scripts invoked by name. The exit status is
non-zero if a name is given, but no value, for which no alias has
been defined.

bg [job...]
This command is only on systems that support job control. Puts
each specified job into the background. The current job is put in
the background if job is not specified. See Jobs for a description
of the format of job.

tbreak [n }
Exit from the enclosing for while until or select loop, if any. If n
is specified then break n levels.

t continue [n]
Resume the next iteration of the enclosing for while until or
select loop. If n is specified then resume at the n-th enclosing
loop.

cd[arg]

cd old new
This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is - the directory is
changed to the previous directory. The shell parameter HOME is
the default arg. The parameter PWD is set to the current directory.
The shell parameter CDPATH defines the search path for the direc-
tory containing arg. Alternative directory names are separated by
a colon (:). The default path is <null> (specifying the current
directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or

March 19, 1990 KSH-27

KSH (C) KSH (C)

between the colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used. Otherwise, each
directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old
in the current directory name, PWD and tries to change to this new
directory.

The ¢d command may not be executed by rksh.

echo[arg ...]
See echo(C) for usage and description.

teval[arg...]
The arguments are read as input to the shell and the resulting
command(s) executed.

Texec[arg...]

If arg is given, the command specified by the arguments is exe-
cuted in place of this shell without creating a new process.
Input/output arguments may appear and affect the current process.
If no arguments are given the effect of this command is to modify
file descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

texit[n)
Causes the shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed.
An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

t1 export [name[=value 1]...
The given names are marked for automatic export to the environ-
ment of subsequently-executed commands.

fc[-eename 1[-nlr [first [last]]

fc -e - [old=new][command]
In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands that were typed at the terminal.
The arguments first and last may be specified as a number or as a
string. A string is used to locate the most recent command starting
with the given string. A negative number is used as an offset to the
current command number. If the flag -1, is selected, the commands
are listed on standard output. Otherwise, the editor program
ename is invoked on a file containing these keyboard commands.
If ename is not supplied, then the value of the parameter FCEDIT
(default /bin/ed) is used as the editor. When editing is complete,
the edited command(s) is executed. If last is not specified then it
will be set to first. If first is not specified the default is the previ-
ous command for editing and -16 for listing. The flag -r reverses
the order of the commands and the flag -n suppresses command
numbers when listing. In the second form the command is re-
executed after the substitution old=new is performed.

March 19, 1990 KSH-28

KSH (C) | KSH (C)

fg[job...]
This command is only on systems that support job control. Each
Jjob specified is brought to the foreground. Otherwise, the current
job is brought into the foreground. See Jobs for a description of
the format of job.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional
parameters are used. An option argument begins with a + or a -.
An option not beginning with + or - or the argument - - ends the
options. optstring contains the letters that getopts recognizes. If a
letter is followed by a :, that option is expected to have an argu-
ment. The options can be separated from the argument by blanks.
getopts places the next option letter it finds inside variable name
each time it is invoked with a + prepended when arg begins with a
+. The index of the next arg is stored in OPTIND. The option
argument, if any, gets stored in OPTARG.
A leading : in optstring causes getopts to store the letter of an
invalid option in OPTARG, and to set name to ? for an unknown
option and to : when a required option is missing. Otherwise,
getopts prints an error message. The exit status is non-zero when
there are no more options.

jobs[-Inp 1[job ...]
Lists information about each given job; or all active jobs if job is
omitted. The -1 flag lists process ids in addition to the normal in-
formation. The -n flag only displays jobs that have stopped or
exited since last notified. The -p flag causes only the process
group to be listed. See Jobs for a description of the format of job.

kill [-sig 1job ...

kill -1
Sends either the TERM (terminate) signal or the specified signal to
the specified jobs or processes. Signals are either given by number
or by names (as given in /usr/include/signal.h, stripped of the
prefix “‘SIG’’). If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (con-
tinue) signal if it is stopped. The argument job can the process id
of a process that is not a member of one of the active jobs. See
Jobs for a description of the format of job. In the second form, kill
-1, the signal numbers and names are listed.

letarg ...
Each arg is a separate arithmetic expression to be evaluated. See
Arithmetic Evaluation above, for a description of arithmetic
expression evaluation.
The exit status is O if the value of the last expression is non-zero,
and 1 otherwise.

Tnewgrp [arg ...]
Equivalent to exec /bin/newgrp arg

March 19, 1990 KSH-29

KSH (C) KSH (C)

print [-Rnprsu[rn] j[arg...]

The shell output mechanism. With no flags or with flag - or - - the
arguments are printed on standard output as described by echo(C).
In raw mode, -R or -r, the escape conventions of echo are ignored.
The -R option will print all subsequent arguments and options
other than -n. The -p option causes the arguments to be written
onto the pipe of the process spawned with |& instead of standard
output. The -s option causes the arguments to be written onto the
history file instead of standard output. The -u flag can be used to
specify a one digit file descriptor unit number n on which the out-
put will be placed. The default is 1. If the flag -n is used, no new-
line is added to the output.

pwd
Equivalent to print -r - $PWD

read [-prsu[n]][name?prompt 1[name ...]

The shell input mechanism. One line is read and is broken up into
fields using the characters in IFS as separators. Inraw mode, -r, a \
at the end of a line does not signify line continuation. The first
field is assigned to the first name, the second field to the second
name, etc., with leftover fields assigned to the last name. The -p
option causes the input line to be taken from the input pipe of a
process spawned by the shell using | &. If the -s flag is present, the
input will be saved as a command in the history file. The flag -u
can be used to specify a one digit file descriptor unit to read from.
The file descriptor can be opened with the exec special command.
The default value of n is 0. If name is omitted then REPLY is used
as the default name. The exit status is O unless an end-of-file is
encountered. An end-of-file with the -p option causes cleanup for
this process so that another can be spawned. If the first argument
contains a ?, the remainder of this word is used as a prompt on
standard error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered.

71 readonly [name[=value]]...
The given names are marked readonly and these names cannot be
changed by subsequent assignment.

freturn[n]
Causes a shell function to return to the invoking script with the
return status specified by n. If n is omitted then the return status is
that of the last command executed. If return is invoked while not
in a function or a . script, then it is the same as an exit.

set [taefhkmnopstuvx]{ Tooption]...[XA name] [arg ...]
The flags for this command have meaning as follows:
-A Array assignment. Unset the variable name and assign
values sequentially from the list arg. If +A is used, the
variable name is not unset first,

March 19, 1990 KSH-30

KSH (C)

-a
-
£
-h
k

~-m

-n

March 19, 1990

KSH (C)

All subsequent parameters that are defined are automati-
cally exported.

If a command has a non-zero exit status, execute the
ERR trap, if set, and exit. This mode is disabled while
reading profiles.

Disables file name generation.

Each command becomes a tracked alias when first
encountered.

All parameter assignment arguments are placed in the
environment for a command, not just those that precede
the command name,

Background jobs will run in a separate process group and
a line will print upon completion. The exit status of
background jobs is reported in a completion message.
On systems with job control, this flag is turned on auto-
matically for interactive shells.

Read commands and check them for syntax errors, but do
not execute them. Ignored for interactive shells.

The following argument can be one of the following
option names:

allexport Same as -a.
errexit Same as -e.

bgnice All background jobs are run at a lower prior-
ity. This is the default mode.

emacs Puts you in an emacs style in-line editor for
command entry.

gmacs Puts you in a gmacs style in-line editor for

command entry.

ignoreeof The shell will not exit on end-of-file. The
command exit must be used.

keyword Same as -K.

markdirs All directory names resulting from file name
generation have a trailing / appended.

monitor Same as -m.

noclobber Prevents redirection > from truncating exist-
ing files. Require >| to truncate a file when

turned on.

noexec Same as -n.

noglob Same as -f.

nolog Do not save function definitions in history
file.

nounset Same as -u.

privileged Same as -p.

verbose Same as -v.

trackall Same as -h. ,

vi Puts you in insert mode of a vi style in-line
editor until you hit escape character 033.
This puts you in move mode. A return sends
the line.

KSH-31

KSH (C) KSH (C)

viraw Each character is processed as it is typed in
vi mode.
xtrace Same as -x.

If no option name is supplied then the current option set-
tings are printed.

-p Disables processing of the $HOME!/.profile file and uses
the file /etc/suid_profile instead of the ENV file. This
mode is on whenever the effective uid (gid) is not equal
to the real uid (gid). Turning this off causes the effective
uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-V Print shell input lines as they are read.

-X Print commands and their arguments as they are exe-
cuted.

- Turns off -x and -v flags and stops examining arguments
for flags.

- Do not change any of the flags; useful in setting $1 to a
value beginning with -. If no arguments follow this flag
then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. Unless -A is specified, the remaining
arguments are positional parameters and are assigned, in order, to
$1 $2 If no arguments are given then the names and values of
all named parameters are printed on the standard output. If the
only argument is +, the names of all named parameters are printed.

tshift[n]
The positional parameters from $n+1 ... are renamed $1 ...,
default n is 1. The parameter n can be any arithmetic expression
that evaluates to a non-negative number less than or equal to $#.

T times
Print the accumulated user and system times for the shell and for
processes run from the shell.

Ttrap[arg 1[sig]...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Each sig can be given as a num-
ber or as the name of the signal. Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. If arg is
omitted or is -, then all trap(s) sig are reset to their original values.
If arg is the null string then this signal is ignored by the shell and
by the commands it invokes. If sig is ERR then arg will be exe-
cuted whenever a command has a non-zero exit status. sig is
DEBUG then arg will be executed after each command. If sig is 0
or EXIT and the trap statement is executed inside the body of a

March 19, 1990 KSH-32

KSH (C) . KSH(C)

function, then the command arg is executed after the function
completes. If sig is 0 or EXIT for a trap set outside any function
then the command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands associated
with each signal number.

11 typeset [tHLRZfilrtux[n]] [name[=value] J...

Sets attributes and values for shell parameters. When invoked

inside a function, a new instance of the parameter name is created.

The parameter value and type are restored when the function com-

pletes. The following list of attributes may be specified:

-H This flag provides UNIX system to host-name file mapping on
non-UNIX system machines.

-L Left justify and remove leading blanks from value. If n is non-
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment. When the param-
eter is assigned to, it is filled on the right with blanks or trun-
cated, if necessary, to fit into the field. Leadmg Zeros are
removed if the -Z flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If » is non-zero it
defines the width of the field, otherwise it is determined by the
width of the value of first assignment. The field is left filled
with blanks or truncated from the end if the parameter is reas-
signed. The L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If nis non-
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment.

-f The names refer to function names rather than parameter
names. No assignments can be made and the only other valid
flags are -t, -u and -x. The flag -t turns on execution tracing for
this function. The flag -u causes this function to be marked
undefined. The FPATH variable will be searched to find the
function definition when the function is referenced. The flag -x
allows the function definition to remain in effect across shell
procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is
non-zero it defines the output arithmetic base, otherwise the
first assignment determines the output base.

-1 All upper-case characters converted to lower-case. The upper-
case flag, -u is turned off.

-r The given names are marked readonly and these names cannot
be changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have
no special meaning to the shell.

-u All lower-case characters are converted to upper-case charac-
ters. The lower-case flag, -1 is turned off.

-x The given names are marked for automatic export to the
environment of subsequently-executed commands.

March 19, 1990 KSH-33

KSH (C) KSH (C)

Using + rather than - causes these flags to be turned off. If no
name arguments are given but flags are specified, a list of names
(and optionally the values) of the parameters which have these
flags set is printed. (Using + rather than - keeps the values from
being printed.) If no names and flags are given, the names and -
attributes of all parameters are printed.

ulimit [-HS 1[limit]

The number of 512-byte blocks on files written by child processes
(files of any size may be read). The limit is set when limit is
specifed. The value of limit can be a number or the value unlim-
ited. The H and S flags specify whether the hard limit or the soft
limit is set. A hard limit cannot be increased once it is set. A soft
limit can be increased up to the value of the hard limit. If neither
the H or S options is specified, the limit applies to both. The
current limit is printed when limit is omitted. In this case the soft
limit is printed unless H is specified.

umask [mask]
The user file-creation mask is set to mask (see umask(C)). mask
can either be an octal number or a symbolic value as described in
chmod(C). If a symbolic value is given, the new umask value is
the complement of the result of applying mask to the complement
of the previous umask value. If mask is omitted, the current value
of the mask is printed.

unalias name ...

The parameters given by the list of names are removed from the
alias list.

unset [-f | name ...
The parameters given by the list of names are unassigned, i. e.,
their values and attributes are erased. Readonly variables cannot
be unset. If the flag, -f, is set, then the names refer to function
names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT, and _ causes removes
their special meaning even if they are subsequently assigned to.

T wait [job]
Wait for the specified job and report its termination status. If job is
not given then all currently active child processes are waited for.
The exit status from this command is that of the process waited for.
See Jobs for a description of the format of job.

whence [-pv | name ...
For each name, indicate how it would be interpreted if used as a
command name.
The flag, -v, produces a more verbose report.
The flag, -p, does a path search for name even if name is an alias, a
function, or a reserved word.

March 19, 1990 ' KSH-34

KSH (C) KSH (C)

Invocation.

If the shell is invoked by -exec(S), and the first character of argument
zero ($0) is -, then the shell is assumed to be a login shell and com-
mands are read from letc/profile and then from either .profile in the
current directory or SHOME/.profile, if either file exists. Next, com-
mands are read from the file named by performing parameter substitu-
tion on the value of the environment parameter ENYV if the file exists.
If the -s flag is not present and arg is, then a path search is performed
on the first arg to determine the name of the script to execute. The
script arg must have read permission and any setuid and getgid set-
tings will be ignored. Commands are then read as described below;
the following flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from
string .

- If the -s flag is present or if no arguments remain then

commands are read from the standard input. Shell output,

except for the output of the Special commands listed

above, is written to file descriptor 2,

-i If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctl(S)) then this shell
is interactive . In this case TERM is ignored (so that kill 0
does not kill an interactive shell) and INTR is caught and
ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set com-
mand above.

rksh Only.

rksh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rksh are identical to those of ksh, except that the following
are disallowed:

changmg directory (see cd(C)),

setting the value of SHELL, ENV, or PATH

specifying path or command names containing /,

redirecting output (>, >|, <>, and >>).

The restrictions above are enforced after .profile and the ENV files are
interpreted.

‘When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end-
user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and execute permissions
in the same directory.

March 19, 1990 KSH-35

KSH (C) KSH (C)

The net effect of these rules is that the writer of the .profile has com-
plete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

The system administrator often sets up a directory of commands (i.e.,

/usr/rbin) that can be safely invoked by rksh. Some systems also pro-
vide a restricted editor red.

Diagnostics

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command
above). If the shell is being used non-interactively then execution of
the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error con-
dition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after
the command or function name.

Files

fetc/passwd
fetc/profile
fetc/suid_profile
$HOME]/.profile
/tmp/sh*
/dev/null

See Also

cat(C), cd(C), chmod(C), cut(C), echo(C), env(C), newgrp(C), stty(C),
test(C), umask(C), vi(C), dup(S), exec(S), fork(S), ioctl(S), Iseek(S),
paste(C), pipe(S), signal(S), umask(S), ulimit(S), wait(S), rand(S),
a.out(F), profile(M), environ(M).

Notes

If a command which is a tracked alias is executed, and then a com-
mand with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell
will continue to exec the original command. Use the -t option of the
alias command to correct this situation.

March 19, 1990 KSH-36

KSH (C) ~ KSH(C)

Some very old shell scripts contain a " as a synonym for the pipe char-
acter.

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command . file reads the whole file before any commands
are executed. Therefore, alias and unalias commands in the file wxll
not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foreground pro-
cess. Thus, a trap on CHLD won’t be executed until the forground job
terminates.

March 19, 1990 KSH-37

L(C) L(C)

lists information about contents of directory

Syntax

1[-ACFRabcdfgilnopqgrstu] name ...

Description

For each directory argument, / lists the contents of the directory. For
each name, I repeats its name and other requested information. The
output is sorted alphabetically by default. When no argument is
given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments
appear before directories and their contents. Information is listed in
the format of the “‘Is -I'> command, which is identical to the / com-
mand. This format and all provided switches are described in /s(C)
and /c(C), to which should you should refer for a complete discussion
of the capabilities of /.

Files
fetc/passwd Contains user IDs
fetc/group Contains group IDs
Notes

Newline and tab are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

March 15, 1989 L-1

LAST (C) LAST (C)

last

indicate last logins of users and teletypes

Syntax

last [-h]{-nlimit] [-t tty] [-w wimpfile] [name]

Description

last checks the wemp file, which records all logins and logouts for in-
formation about a user, a serial line or any group of users and lines.
‘Arguments specify a user name and/or tty.
last -t 01 root

would list all “‘root’” sessions as well as all sessions on /dev/tty01.
last prints the sessions of the specified users and ttys, including login
name, the line used, the device name, the process ID, plus start time
and elapsed time.

last with no arguments prints a record of all logins and logouts, in
reverse chronological order.

The options behave as follows:
<h no header.

-n limit
limits the report to n lines.

-t line
specifies the tty.

-wwimpfile
uses wtmpfile instead of /etc/wtmp.

Files

fetc/wtmp login data base

See Also

finger(C), utmp(M), accton(ADM), acctcom(ADM), acct(F)

March 15, 1989 LAST-1

LAYERS (C)

layers

LAYERS (C)

layer multiplexer for windowing terminals

Syntax

layers [-s] [-t] [-d] [-p] [-f file] [layersys-prgm]

Description

The layers command manages asynchronous windows [see layers(M)]
on a windowing terminal. Upon invocation, layers finds an unused
xt(HW) channel group and associates it with the terminal line on its
standard output. It then waits for commands from the terminal.

Command-line options:

-S

-t

-d‘

p

ffile

Reports protocol statistics on standard error at the end of the
session after you exit from layers. The statistics may be
printed during a session by invoking the program xts(ADM).

Turns on xt(HW) driver packet tracing, and produces a trace
dump on standard error at the end of the session after you
exit from layers. The trace dump may be printed during a
session by invoking the program xtt(ADM).

If a firmware patch has been downloaded, prints out the
sizes of the text, data, and bss portions of the firmware patch
on standard error.

If a firmware patch has been downloaded, prints the down-
loading protocol statistics and a trace on standard error.

Starts layers with an initial configuration specified by file.
Each line of the file represents a layer to be created, and has
the following format:

origin_x origin_y corner_x corner_y command_list

The coordinates specify the size and position of the layer on
the screen in the terminal’s coordinate system. If all four are
0, the wuser must define the layer interactively.
command_list, a list of one or more commands, must be pro-
vided. It is executed in the new layer using the user’s shell
(by executing: $SHELL -i -c "command_list"). This means
that the last command should invoke a shell, such as /bin/sh.
(If the last command is not a shell, then, when the last com-
mand has completed, the layer will not be functional.)

March 15, 1989 LAYERS-1

LAYERS (C) LAYERS (C)

layersys-prgm
A file containing a firmware patch that the layers command
downloads to the terminal before layers are created and
command_list is executed.

Each layer is in most ways functionally identical to a separate termi-
nal. Characters typed on the keyboard are sent to the standard input of
the UNIX system process attached to the current layer (called the host
process), and characters written on the standard output by the host pro-
cess appear in that layer. When a layer is created, a separate shell is
established and bound to the layer. If the environment variable
SHELL is set, the user will get that shell, otherwise, /bin/sh will be
used. In order to enable communications with other users via
wrtte(C) layers invokes the command relogm(ADM) when the first
layer is created. reloginltADM) will reassign that layer as the user’s
logged-in terminal. An alternative layer can be designated by using
relogin(ADM) directly. layers will restore the original assignment on
termination,

Layers are created, deleted, reshaped, and otherwise manipulated in a
terminal-dependent manner. For instance, the AT&T TELE-
TYPE 5620 DMD terminal! provides a mouse-activated pop-up menu
of layer operations. The method of ending a layers session is also
defined by the terminal.

Example

layers -f startup
where startup contains

8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec S$SHELL

Notes

The xt(HW) driver supports an alternate data transmission scheme
known as ENCODING MODE. This mode makes layers operation pos-
sible even over data links which intercept control characters or do not
transmit 8-bit characters. ENCODING MODE is selected either by set-
ting a configuration option on your windowing terminal or by setting
;he environment variable DMDLOAD to the value hex before running
ayers:

export DMDLOAD; DMDLOAD=hex
If, after executing layers -f file, the terminal does not respond in one

or more of the layers, often the last command in the command-list for
that layer did not invoke a shell.

March 15, 1989 ' LAYERS-2

LAYERS (C) LAYERS (C)

Wl{en invoking layers with the -s, -t, -d, or -p options, it is best to
redirect standard error to another file to save the statistics and tracing

output (e.g., layers -s 2>stats); otherwise all or some of the output
may be lost.

Files

/dev/xt??[0-7]
lust/lib/layersys/lsys.8;7;3
fust/lib/layersys/lsys.8;?;?

See Also

relogin(ADM), sh(C), write(C), wtinittADM), xts(ADM), xtt(ADM),
xt(HW), libwindows(S), layers(M)

March 15, 1989 . LAYERS-3

LC (C) LC (C)

lc

lists directory contents in columns

Syntax

Ic [-1ACFRabcdfgilmnopgrstux] name ...

Description

Ic lists the contents of files and directories, in columns. If name is a
directory name, Ic lists the contents of the directory; if name is a
filename, Ic repeats the filename and any other information requested.
Output is given in columns and sorted alphabetically. If no argument
is given, the current directory is listed. If several arguments are given,
they are sorted alphabetically, but file arguments appear before direc-
tories.

Files that are not the contents of a directory being interpreted are
always sorted across the page rather than down the page in columns.
A stream output format is available in which files are listed across the
page, separated by commas. The -m option enables this format.

The options are:

-1 Forces an output format with one entry per line.

-A If not the root directory, this option displays all files that begin
with ““.”” (except ‘“.”’ and ‘“..”" themselves). Otherwise, files are
displayed normally.

-C Forces columnar output, even if redirected to a file.

-F Causes directories to be marked with a trailing ‘‘/’” and executable
files to be marked with a trailing “***’.

-R Recursively lists subdirectories.
-a Lists all entries; “*.”’ and ““..”” are not suppressed.

-b Forces printing of nongraphic characters in the \ddd notation, in
octal.

-¢ Sorts by time of file creation, for use with -t option.

-d If the argument is a directory, lists only its name, not its contents
(mostly used with -l to get status on directory).

March 15, 1989 LC-1

LC (C) LC (C)

-f

g

-m

-n

-0

r

-8

-t

-u

-X

Forces each argument to be interpreted as a directory and lists the
name found in each slot. This option turns off -1, -t, -s, and -r, and
turns on -a. The order is the order in which entries appear in the
directory.

The same as -1, except that the owner is not printed.

Prints inode number in first column of the report for each file
listed.

Lists in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. If the file

is a special file, the size field contains the major and minor device
numbers instead.

Forces stream output format.

Same as the -1 switch, but the owner’s user ID appears instead of
the owner’s name. If used in conjunction with the -g switch, the
owner’s group ID appears instead of the group name.

The same as -1, except that the group is not printed.

Pad output with spaces.

Forces printing of nongraphic characters in filenames as the char-
acter ‘7"’

Reverses the order of sort to get reverse alphabetic or oldest first as
appropriate.

Gives size in 512-byte blocks, including indirect blocks for each
entry. :

Sorts by time modified (latest first) instead of by name, as is nor-
mal.

Uses time of last access instead of last modification for sorting (-t)
or printing (-1).

Forces columnar printing to be sorted across rather than down the
page.

The following are alternate invocations of the lc command:

If

Ir

Produces the same output as Ic -F.

Produces the same output as Ic -R.

March 15, 1989 LC-2

LC (C) LC (C)

Ix Produces the same output as l¢ -x.

The mode printed under the -1 option contains 11 characters. The first
character is:

- If the entry is a plain file

d If the entry is a directory

b If the entry is a block-type special file

¢ If the entry is a character-type special file

p If the entry is a named pipe

s If the entry is a semaphore

m If the entry is shared data (memory)

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to owner permissions; the next to permissions of others in
the same user-group; and the last to all others. Within each set, the 3
characters indicate permission to read, to write, or to execute the file
as a program, respectively. For a directory, ‘‘execute’’ permission is
interpreted to mean permission to search the directory for a specified
file. The permissions are indicated as follows:

r If the file is readable

w If the file is writable

x If the file is executable

- If the indicated permission is not granted

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission character is

given as s if the file has set-user-ID mode.

The last character of the mode (normally “‘x”’ or *‘-**) is t if the 1000
bit of the mode is on. See chmod(C) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of
blocks, including indirect blocks, is displayed.

March 15, 1989 LC-3

LC (C) LC (C)

Files
fetc/passwd To gét user IDs for ““Ic -0”’
fetc/group To get group IDs for “‘lc -g”’
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Newline and tab are considered printing characters in filenames. The
output device is assumed to be 80 columns wide. Column width
choices are poor for terminals that can tab.

This utility reports sizes in 512 byte blocks. Ic -s will report 2 blocks

used, rather than 1 block, since the file uses one system block of 1024
bytes.

March 15, 1989 LC-4

LINE (C) LINE (C)

line

reads one line

Syntax

line

Description

line copies one line (up to a newline) from the standard input and
writes it on the standard output. It returns an exit code of 1 on end-
of-file and always prints at least a newline. It is often used within
shell files to read from the user’s terminal.

See Also

gets(CP), sh(C)

Standards Conformance

line is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ' LINE-1

LN (C) LN (C)

In

makes a link to a file

Syntax

In [-f]filel [file2 ...] target

Description

A link is a directory entry referring to a file. The same file (together
with its size, all its protection information, etc) may have several links
to it. There is no way to distinguish a link to a file from its original
directory entry. Any changes to the file are effective independent of
the name by which the file is known.

If target is a directory, then one or more files are linked to that direc-
tory.

If In determines that the mode of target forbids writing, it will print
the mode [see chmod(C)], ask for a response, and read the standard
input for one line. If the line begins with y, the /n occurs, if permissi-
ble; if not, the command exits.

When the -f option is used or if the standard input is not a terminal, no
questions are asked and the /n is done.

See Also

cp(C), mv(C), rm(C)

Standards Conformance

In is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 LN-1

LOCK (C) 'LOCK (C)

lock

locks a user’s terminal

Syntax

lock [-v] [-number]

Description

lock requests a password from the user, requests it again for verifica-
tion, then locks the terminal until the password is reentered. If a
-number 1is specified in the lock command, the terminal is automati-
cally logged out and made available to another user after that number
of minutes has passed.

This command uses the file /etc/default/lock. This file has two entries:

DEFLOGOUT
MAXLOGOUT

number
number

DEFLOGOUT specifies the default time in minutes a terminal will
remain locked before the user is logged out. This default value is
overridden if the -number option is used on the command line. If
DEFLOGOUT and -number are not specified, the MAXLOGOUT
value is used.

MAXLOGOUT is the maximum number of minutes a user is permit-
ted to lock a terminal. If a user attempts to lock a terminal for longer
than this time, lock will issue a warning to the user that it is using the
system maximum time limit. If DEFLOGOUT and -number and
MAXLOGOUT are not specified, users are not logged out.

DEFLOGOUT and MAXLOGOUT are configured by the system
administrator to reflect the demand for terminals at the site.

The lock may be terminated by killing the lock process. Only the
superuser and the user who invoked lock may do so.

Options

-number Sets the time limit for lock to number of minutes, instead
of the system default.

March 15, 1989 LOCK~-1

LOCK (C) LOCK (C)

-v Specifies verbose operation.
Files

Jetc/default/lock
Notes

The file /etc/default/lock is shipped with the following default values:

30
60

DEFLOGOUT
MAXLOGOUT

]

March 15, 1989 LOCK-2

LOGNAME (C) LOGNAME (C)

logname

gets login name

Syntax

logname

Description

logname returns the user’s login name as found in /etc/utmp. If no log-
in name is found, logname returns the user’s user ID number.

See Also

env(C), id(C), getlogin(S), getuid(S), login(M), logname(S)

Standards Conformance

logname is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 LOGNAME-1

LP (C) LP (C)

Ip, cancel

send/cancel requests to lineprinter

Syntax

Ip [options] files
Ip -i id printing options
cancel [ids] [printers]

Description

The first form of the /p shell command arranges for the named files
and associated information (collectively called a request) to be
printed. If no file names are specified on the shell command line, the
standard input is assumed. The standard input may be specified along
with named files on the shell command line using the file name. The

{?les will be printed in the order they appear on the shell command
ine.

The second form of Ip is used to change the options for a request. The
print request identified by the request-id is changed according to the
printing options specified with this shell command. The printing
options available are the same as those with the first form of the Ip
shell command. If request-id has finished printing, the change is
rejected. If the request-id is already printing, it will be stopped and
restarted from the beginning, unless the -P option has been given.

Ip associates a unique id with each request and prints it on the stan-
dard output. This id can be used later to cancel, change, or find the
status of the request. (See the section on cancel for details about can-
celing a request, the previous paragraph for an explanation of how to
change a request, and Ipstat(C) for information about checking the
status of a print request.)

Sending a Print Request

The first form of the Jp command is used to send a print request to a
particular printer or group of printers.

Options to Ip must always precede file names but may be listed in any
order. The following options are available for Ip:

-C When Ip is invoked, copies of the files to be printed are
made immediately. Normally, files will not be copied. If
the -c option is not given, then the user should be careful not
to remove any of the files before the request has been printed

March 15, 1989 LP-1

LP (C)

-d dest

LP (C)

in its entirety. It should also be noted that in the absence of
the -c option, any changes made to the named files after the
request is made but before it is printed will be reflected in
the printed output.

Prints this request using dest as the printer or class of
printers. Under certain conditions (lack of printer availabil-
ity, capabilities of printers, and so on), requests for specific
destinations may not be accepted [see accept(ADM) and
Ipstat (C)]. By default, dest is taken from the environment
variable LPDEST (if it is set). Otherwise, a default destina-
tion (if one exists) for the computer system is used. Destina-
tion names vary between systems [see Ipstat (C)].

-f form-name [-d any]

Prints the request on the form form-name. The LP print ser-
vice ensures that the form is mounted on the printer. If
form-name is requested with a printer destination that can-
not support the form, the request is rejected. If form-name
has not been defined for the system or if the user is not
allowed to use the form, the request is rejected [see
Ipforms(ADM)]. When the -d any option is given, the
request is printed on any printer that has the requested form
mounted and can handle all other needs of the print request.

-H special-handling

-m

Prints the request according to the value of special-handling.
Acceptable values for special-handling are hold, resume,
and immediate, as defined below:

hold Won’t print the request until notified. If already
printing, stops it. Other print requests will go
ahead of a held request until it is resumed.

resume Resumes a held request. If it had been printing
when held, it will be the next request printed,
unless subsequently bumped by an immediate
request.

immediate
(Available only to LP administrators)
Prints the request next. If more than one request is
assigned immediate, the requests are printed in
the reverse order queued. If a request is currently
printing on the desired printer, you have to put it
on hold to allow the immediate request to print.

Sends mail [see mail(C)] after the files have been printed.
By default, no mail is sent upon normal completion of the
print request.

March 15, 1989 LP-2

LP (C)

-n number

LP (C)

Prints number copies of the output (default is 1).

-0 option Specifies printer-dependent or class-dependent options.
Several such options may be collected by specifying the -0
keyletter more than once. The standard interface recognizes
the following options:

nobanner

Does not print a banner page with this request. (The
administrator can disallow this option at any time.)

nofilebreak

Does not insert a form feed between the files given if
submitting a job to print more than one file.

length=scaled-decimal-number

Prints the output of this request with pages scaled-
decimal-number lines long. A scaled-decimal-num-
ber is an optionally scaled decimal number that gives
a size in lines, columns, inches, or centimeters, as ap-
propriate. The scale is indicated by appending the
letter ““i’” (for inches) or the letter ‘‘c’’ (for centime-
ters). For length or width settings, an unscaled num-
ber indicates lines or columns; for line pitch or char-
acter pitch settings, an unscaled number indicates
lines per inch or characters per inch (the same as a
number scaled with ‘‘i’’). For example, length=66
indicates a page length of 66 lines, length=11i indi-
cates a page length of 11 inches, and length=27.94c
indicates a page length of 27.94 centimeters.

This option cannot be used with the -f option.

width=scaled-decimal-number

Prints the output of this request with page-width set
to scaled-decimal-number columns wide. (See the
explanation above for scaled-decimal-numbers.)
This option cannot be used with the -f option.

Ipi=scaled-decimal-number

Prints this request for ‘‘lines per inch’’ with the line
pitch set to scaled-decimal-number lines per inch.
This option cannot be used with the -f option.

cpi=scaled-decimal-number

March 15, 1989

Prints this request for ‘‘characters per inch’’ with the
character pitch set to scaled-decimal-number charac-
ters per inch. Character pitch can also be set to pica
(representing 10 columns per inch) or elite
(representing 12 columns per inch), or it can be
compressed, which is as many columns as a printer
can handle. There is no standard number of columns

LP-3

LP (C) LP (C)

per inch for all printers; see the terminfo(F) database
for the default character pitch for your printer. The
cpi option cannot be used in conjunction with the -f
option.

stty=stty-option-list
Set the printer with a list of options valid for the stty
command. Enclose the list with quotes if it contains
blanks.

-P page-list
Prints the page(s) specified in page-list. This option can be
used only if there is a filter available to handle it; otherwise,
the print request will be rejected.

The page-list may consist of range(s) of numbers, single
page numbers, or a combination of both. The pages will be
printed in ascending order.

-q priority-level
Assigns this request priority-level in the printing queue.
The values of priority-level range from 0, the highest prior-
ity, to 39, the lowest priority. If a priority is not specified,
the default for the print service is used, as assigned by the
system administrator.

-S Suppresses messages from Ip(C) such as “‘request id is ..."".

-S character-set [-d any]

-S print-wheel [-d any]
Prints this request using the specified character-set or print-
wheel. If a form has been specified that requires a
character-set or print-wheel other than the one specified
with the -S option, the request is rejected.

For printers that take print wheels: if the print-wheel
specified is not one listed by the administrator as acceptable
for the printer involved in this request, the request is
rejected unless the print wheel is already mounted on the
printer. For printers that use selectable or programmable
character sets: if the character-set specified is not one
defined in the terminfo database for the printer [see
terminfo(F)] or is not an alias defined by the administrator,
the request is rejected.

‘When the -d any option is used, the request is printed on any
printer that has the print wheel mounted or any printer that
can select the character set and can handle all other needs of
the request.

-t title Prints title on the banner page of the output. The default is
no title.

March 15, 1989 LP-4

LP (C) LP (C)

-T content-type [-T]

While the printer type information tells the print service
what type of printer is being added, the content type infor-
mation tells the print service what types of files can be
printed. Prints the request on a printer that can support the
specified content-type. If no printer accepts this type
directly, a filter will be used to convert the content into an
acceptable type. If the -r option is specified, a filter will not
be used. If -r is specified but no printer accepts the
content-type directly, the request is rejected. If the content-
type is not acceptable to any printer, either directly or with a
filter, the request is rejected.

-W Writes a message on the user’s terminal after the files have
been printed. If the user is not logged in, then mail will be
sent instead.

-y mode-list
Prints this request according to the printing modes listed in
mode-list. The allowed values for mode-list are locally
defined. This option can be used only if there is a filter
available to handle it; if there is no filter, the print request
will be rejected.

Canceling a Print Request

The cancel command cancels printer requests that were made by the
Ip(C) shell command. The shell command line arguments may be
either request-ids [as returned by lp(C)] or printer names [for a com-
plete list, use Ipstat(C)]. Specifying a request-id cancels the associ-
ated request even if it is currently printing. Specifying a printer can-
cels the request that is currently printing on that printer. In either
case, the cancellation of a request that is currently printing frees the
printer to print its next available request.

Special Options
-R Removes file after sending it.
-L Local printing option. Sends print job to printer

attached to the terminal.

The file /etc/default/Ipd contains the setting of the variable
BANNERS, whose value is the number of pages printed as a banner
identifying each printout. This is normally set to either 1 or 2.

The variables LPR and PRINTER can each be set to ‘spooler’ or ‘local’.

These variables let you send files to the S})OOI printer or the terminal’s
local printer, respectively. The file /usr/bin/spool contains the

March 15, 1989 LP-5

LP (C) | LP (C)

‘spooler’ setting for both variables. The file /usr/bin/local contains
the ‘local’ setting. The following are a few examples: of variable
usage:

Ip -option spooler
LPR=local

LPR=spooler

spool 1p -option device file

Notes

Printers for which requests are not being accepted will not be con-
sidered when the destination is any. (Use the Ipstat -a command to
see which printers are accepting requests.) On the other hand, if a
request is destined for a class of printers and the class itself is accept-
ing requests, all printers in the class will be considered, regardless of
their acceptance status, as long as the printer class is accepting
requests.

Warning

For printers that take mountable print wheels or font cartridges, if you
do not specify a particular print wheel or font with the -S option,
whichever happens to be mounted at the time your request prints will
be used. Use the Ipstat -p -1 command to see what print wheels are
available. For printers that have selectable character sets, you will get
the standard set if you don’t give the -S option.

Files

Jusr/spool/lp/*
fetc/default/lpd

See Also

enable(C), Ipstat(C), mail(C), accept(ADM), Ipadmin(ADM),
Ipfilter(ADM), lpforms(ADM), Ipsched(ADM), Ipusers(ADM),
terminfo(F)

Standards Conformance

cancel and Ip are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 LP-6

LPRINT (C) LPRINT (C)

Iprint

print to a printer attached to the user’s terminal

Syntax

Iprint [-] [file]

Description

Iprint(C) accepts a filename to print or - to read from the keyboard. If
the terminal has local printing abilities, it will then print the file to a
printer attached to the printer port of the terminal.

This command uses the file /etc/termcap.

Options

- Tells Iprint to use the standard input for printing.

The variables LPR and PRINTER can each be set to ‘spooler’ or ‘local’.
These variables let you send files to the spool printer or the terminal’s
local printer, respectively. The file }lJlSl‘/biIl/S ool contains the
‘spooler’ setting for both variables. The file /usr/bin/spool contains
the ‘local’ setting. The following are a few examples of variable
usage:

Ip -option spooler
LPR=local

LPR=spooler

spool Ip -option device file

Files

fetc/termcap
[usr/bin/spool
Jusr/bin/local

March 11, 1990 LPRINT-1

LPRINT (C) LPRINT (C)

Notes

Only certain terminals have entries in /etc/ftermcap with this capabil -
ity already defined (for example, Tandy’s DT-100 and DT-1, and
Hewlett-Packard’s HP-92).

To add attached printer capability to the termcap file for a different
terminal, add entries for PN (start printing) and PS (end printing) with
the appropriate control or escape characters for your terminal.

Terminal communications parameters (such as baud rate and parity)
must be set up on the terminal by the user.

See Also

“‘Using Printers’’ in the System Administrator’s Guide

Value Added

Iprint is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1990 LPRINT-2

LPSTAT (C) , LPSTAT (C)

Ipstat

print information about status of LP print service

Syntax

Ipstat [options]

Description

Ipstat prints information about the current status of the LP print ser-
Vvice.

If no options are given, then Ipstat prints the status of all requests
made to Ip(C) by the users. Any arguments that are not options are
assumed to be request-ids (as returned by Ip), printers, or printer
classes. Ipstat prints the status of such requests, printers, or printer
classes. Options may appear in any order and may be repeated and
intermixed with other arguments. Some of the keyletters below may
be followed by an optional list that can be in one of two forms: a list
of items separated from one another by a comma, or a list of items
enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u "userl; user2, user3"
Specifying "all” after any keyletters that take "list" as an argument
causes all information relevant to the keyletter to be printed. For
example, the command
Ipstat -o all
prints the status of all output requests.
-a [list] Print acceptance status (with respect to /p) of destinations
for requests [see accept(ADM)]. list is a list of intermixed
printer names and class names; the default is all.

-¢ [list] Print class names and their members. list is a list of class
names; the default is all.

-d Print the system default destination for /p.
-f [list] [-1]
Print a verification that the forms in form-list are recog-

nized by the LP print service. The -1 option will list the
form descriptions.

March 15, 1989 LPSTAT-1

LPSTAT (C)

LPSTAT (C)

-0 [list] [-1]

Print the status of output requests. list is a list of intermixed
printer names, class names, and request-ids; the default is
all. The -1 option gives a more detailed status of the
request.

-p [list] [-D] [-1]

Print the status of printers named in list. If the -D option is
given, a brief description is printed for each printer in lisz.
If the -1 option is given, a full description of each printer’s
configuration is given, including the form mounted, the
acceptable content and printer types, a printer description,
the interface used, and so on.

-r Print the status of the LP request scheduler.

-S Print a status summary, including the system default desti-
nation, a list of class names and their members, a list of
printers and their associated devices, a list of all forms
currently mounted, and a list of all recognized character
sets and print wheels.

=S [list] [-1] ;

" Print a verification that the character sets or the print
wheels specified in list are recognized by the LP print ser-
vice. Items in list can be character sets or print wheels; the
default for the list is all. If‘the -1 option is given, each line
is appended by a list of printers that can handle the print
wheel or character set. The list also shows whether the
print wheel or character set is mounted or specifies the
built-in character set into which it maps.

-t Print all status information.

-u {list] Print status of output requests for users. List is a list of log-
in names. The default is all.

-v [list} Print the names of printers and the path names of the de-
vices associated with them. [ist is a list of printer names.
The default is all.

Files
fusr/spool/lp/*

See Also
enable(C), 1p(C)

March 15, 1989 LPSTAT-2

LPSTAT (C)

Standards Conformance

LPSTAT (C)

Ipstat is conformant with:
AT&T SVID Issue 2, Select Code 307-127;

and The X/Open Portability Guide II of January 1987.

March 15, 1989

LPSTAT-3

LS (C) LS (C)

Is

gives information about contents of directories

Syntax

Is [~ACFRabcdfgilmnopgrstux] [names]

Description

For each directory named, Is lists the contents of that directory; for
each file named, Is repeats its name and any other information
requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several argu-
ments are given, the arguments are first sorted appropriately, file argu-
ments are processed before directories and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multi-column formats, and
the -m option enables stream output format in which files are listed
across the page, separated by commas. In order to determine output
format for the -C, -x, and -m options, Is uses an environment variable,
COLUMNS, to determine the number of character positions available
on one output line. If this variable is not set, the termcap database is
used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns
are assumed.

There are many options:
-A List all entries. Entries whose name begin with a period (.) are
listed. Does not list current directory (.) and directory above

..).

-a Lists all entries. Entries whose name begin with a period (.) are
listed.

-R Recursively lists subdirectories encountered.

-d If an argument is a directory, lists only its name (not its con-
tents); often used with -1 to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-X - Multi-column output with entries sorted across rather than down
the page.

March 15, 1989 LS

LS (C)

-m

-

-0
g

-r

-u

-C

-F

-b

-q

-i

-S

LS (C)

Stream output format.

Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each file
(see below). If the file is a special file, the size field will contain
the major and minor device numbers, rather than a size.

The same as -l, except that the owner’s UID and group’s GID
numbers are printed, rather than the associated character strings.

The same as -1, except that the group is not printed.
The same as -1, except that the owner is not printed.

Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

Sorts by time modified (latest first) instead of by name.

Uses time of last access instead of last modification for sorting
use with the -t option.

Uses time of last modification of the inode (file created, mode
changed, etc.) for sorting use with -t option.

Puts a slash (/) after each filename if that file is a directory.

Puts a slash (/) after each filename if that file is a directory and
puts an asterisk (¥) after each filename if that file is executable.

Forces printing of non-graphic characters to be in the octal \ddd
notation.

Forces printing of non-graphic characters in file names as the
character (?).

For each file, prints the inode number in the first column of the
Teport.

Gives size in blocks, including indirect blocks, for each entry.

Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off -1, -t, -s, and -
r, and turns on -a. The order is the order in which entries appear
in the directory.

March 15, 1989 LS-2

LS (C) : LS (C)

The mode printed under the -l option consists of 11 characters. The
first character is:

If the entry is an ordinary file.

d If the entry is a directory.
b If the entry is a block special file.
¢ If the entry is a character special file.

p If the entry is a named pipe.
s If the entry is a semaphore.
m If the entry is a shared data (memory) file.

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to the owner’s permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set,
the 3 characters indicate permission to read, to write, and to execute
the file as a program, respectively. For a directory, ‘‘execute’’ permis-
sion is interpreted to mean permission to search the directory for a
specified file.

The permissions are indicated as follows:

r Ifthe file is readable.

w If the file is writable.

x If the file is executable.

- I the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-ID mode. The last character of the
mode (normally x or -) is t if the 1000 (octal) bit of the mode is on.
See chmod(C) for the meaning of this mode. The indications for set-
ID and the 1000 bit of the mode are capitalized if the corresponding
execute permission is not set.

When the sizes of the files in a directory are listed, a total count of
blocks including indirect blocks is printed.

March 15, 1989 LS-3

LS (C) LS (C)

Files
Jetc/passwd Gets user IDs for Is -1 and Is -0
fetc/group Gets group IDs forIs -1 and Is -g
[etc/termcap Gets terminal information
See Also

chmod(C), coltbl(M), find(C), 1(C), 1c(C), locale(M), termcap(F)

Notes

Sorts according to the collating sequenced defined by the locale.
Newline and tab are considered printing characters in filenames.

Unprintable characters in filenames may confuse the columnar output
options.

This utility reports sizes in 512 byte blocks. Is -s interprets 1 block

from a 1024 byte block system as 2 of its own 512 byte blocks. Thus a
500 byte file is interpreted as 2 blocks rather than 1.

Standards Conformance

Is is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 : : LS-4

MACHID (C) MACHID (C)

machid: i386

get processor type truth value

Syntax

i386

Description

If the machine is a 386, the 1386 command will return a true value
(exit code of 0), otherwise it will return a false (non-zero) value.
These type of commands are often used within makefiles [see
make (CP)] and shell procedures [see s#(C)] to increase portability.

See Also

sh(C), test(C), true(C), make(CP)

March 15, 1989 MACHID-1

MAIL (C) MAIL (C)

mail

interactive message processing system

Syntax

mail [options] [name...]

Description

mail provides a comfortable, flexible environment for sending and
receiving messages electronically. For reading mail, mail provides
commands to facilitate saving, deleting, and responding to messages.
For sending mail, mail allows editing, reviewing, and other modifica-
tion of the message as it is entered.

Many of the remote features of mail will only work if the UUCP pack-
age is installed on your system.

Incoming mail is stored in a standard file for each user, called the
mailbox for that user. When mail is called to read messages, the
mailbox is the default place to find them. As messages are read, they
are marked to be moved to a secondary file for storage, unless specific
action is taken, so that the messages need not be seen again. This sec-
ondary file is called the mbox and is normally located in the user’s
HOME directory (see MBOX under Environment Variables). Mes-
sages can be saved in other secondary files named by the user. Mes-
sages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mail
command. Messages in the secondary file can then be read or other-
wise processed using the same commands as in the primary mailbox.
This gives rise to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other argu-
ments are taken to be destinations (recipients). If no recipients are
specified, mail attempts to read messages from the mailbox.
Command-line options are:

-e Test for presence of mail. mail prints nothing and
exits with a successful return code if there is mail
to read.

. -f [filename] Read messages from filename instead of mailbox.
If no filename is specified, the mbox is used.

March 11, 1990 MAIL-1

MAIL (C) MAIL (C)

-F Record the message in a file named after the first
recipient. Overrides the record variable, if set
(see Environment Variables).

-h number The number of network ‘‘hops’ made so far.
This is provided for network software to avoid
infinite delivery loops. (See addsopt under
Environment Variables).

-H Print header summary only.

-i Ignore interrupts. (See ignore under Environ-
ment Variables).

-n Do not initialize from the system default mailrc
file.

-N Do not print initial header summary.

-r address Pass address to network delivery software. All
tilde commands are disabled. (See addsopt under
Environment Variables).

-s subject Set the Subject header field to subject .

-u user Read user’s mailbox. This is only effective if

user’s mailbox is not read protected.

-U Convert uucp style addresses to internet stan-
dards. Overrides the conv environment variable.
(See addsopt under Environment Variables).

‘When reading mail, mail is in command mode. A header summary of
the first several messages is displayed, followed by a prompt indicat-
ing mail can accept regular commands (see Commands below). When
sending mail, mail is in input mode. If no subject is specified on the
command line, a prompt for the subject is printed. (A subject longer
than 1024 characters will cause mail to dump core.) As the message is
typed, mail will read the message and store it in a temporary file.
Commands may be entered by beginning a line with the tilde (7)
escape character followed by a single command letter and optional
arguments. See Tilde Escapes for a summary of these commands.

At any time, the behavior of mail is governed by a set of environment
variables. These are flags and valued parameters which are set and
cleared via the set and unset commands. See Environment Variables
below for a summary of these parameters.

Recipients listed on the command line may be of three types: login
names, shell commands, or alias groups. Login names may be any
network address, including mixed network addressing. If mail is
found to be undeliverable, an attempt is made to return it to the

March 11, 1990 MAIL-2

MAIL (C) MAIL (C)

sender’s mailbox. If the recipient name begins with a pipe symbol (|),
the rest of the name is taken to be a shell command to pipe the mes-
sage through. This provides an automatic interface with any program
that reads the standard input, such as Ip(C), for recording outgoing
mail on paper. Alias groups are set by the alias command (see Com-
mands below) and are lists of recipients of any type.

Regular commands are of the form:
[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In
input mode, commands are recognized by the tilde escape character,
and lines not treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any
time the notion of a current message, marked by a right angle bracket
(>) in the header summary. Many commands take an optional list of
messages (msglist) to operate on. The default for msglist is the current
message. A msglist is a list of message identifiers separated by
spaces, which may include:

n Message number n.
The current message.
The first undeleted message.

.
A

$ The last message.

* All messages.

n-m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the subject line (case
ignored).

¢ All messages of type c, where c is one of:

d deleted messages

N new messages

0o old messages

r read messages

u unread messages
Note that the context of the command determines whether this type
of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on
the command involved. File names, where expected, are expanded via
the normal shell conventions [see sh(C)]. Special characters are
recognized by certain commands and are documented with the com-
mands below.

At start-up time, mail tries to execute commands from the optional
system-wide file (fusr/lib/mail/mailrc) to initialize certain parame-
ters, then from a private start-up file (SHOME/.mailrc) for personal-
ized variables. With the exceptions noted below, regular commands
are legal inside start-up files. The most common use of a start-up file

March 11, 1990 ‘ MAIL-3

MAIL (C) MAIL (C)

is to set up initial display options and alias lists. The following com-
mands are not legal in the start-up file: !, Copy, edit, forward, For-
ward, hold, mail, preserve, reply, Reply, shell, and visual. An error
in the start-up file causes the remaining lines in the file to be ignored.
The .mailrc file is optional and must be constructed locally.

Commands
The following is a complete list of mail commands:

{shell-command
Execute shell command and return. (See SHELL under Environ-
ment Variables).

comment ’
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

Print a summary of commands.

alias alias name ...

group alias name ...
Declare an alias for the given names. The names will be substi-
tuted when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declare a list of alternate names for your login. When responding
to a message, these names are removed from the list of recipients
for the response. With no arguments, alternates prints the current
list of alternate names. (See allnet under Environment Variables).

cd [directory]
chdir [directory]
Change directory. If directory is not specified, SHOME is used.

copy {filename]

copy [msglist] filename
Copy messages to the file without marking the messages as saved.
Otherwise equivalent to the save command.

Copy [msglist}
Save the specified messages in a file whose name is derived from
the author of the message to be saved, without marking the mes-
sages as saved. Otherwise equivalent to the Save command.

March 11, 1990 MAIL-4

MAIL (C) MAIL (C)

delete [msglist]
Delete messages from the mailbox. If autoprint is set, the next
message after the last one deleted is printed (see Environment
Variables).

discard [header-field ...]

ignore [header-field ...]
Suppress printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
“‘status’” and ‘‘cc’’. The fields are included when the message is
saved. The Print and Type commands override these commands.

dp [msglist]

dt [msglist]
Delete the specified messages from the mailbox and print the next
message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string ...
Echo the given strings [like echo (C)].

edit [msglist]
Edit the given messages. The messages are placed in a temporary
file and the EDITOR variable is used to get the name of the editor
(see Environment Variables). Default editor is ed(C).

exit

xit
Exit from mail without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]
Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names,
with the following substitutions:
% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.
Default file is the current mailbox.

folders
Print the names of the files in the directory set by the folder vari-
able (see Environment Variables).

forward [message] name ...

Forward the specified message to the specified users, shifting the
forwarded text to the right one tab stop.

March 11, 1990 MAIL-5

MAIL (C) ' MAIL (C)

Forward [message] name ...

Forward the specified message to the specified users, with no
indentation.

from [msglist]
Prints the header summary for the specified messages.

group alias name ...
See alias.

headers [+ 1 - | msglist]

Lists the current range of headers. The screen variable sets the
number of headers per page (see Environment Variables). Ifa *‘+”’
argument is given, then the next page is printed, and if a “*-’” argu-
ment is given, the previous page is printed. Both ‘‘+’* and ‘‘-*’ can
take a number to view a particular window. If a message list is
given, it prints the specified headers, disregarding all windowing.
See also the z command.

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]
Holds the specified messages in the mailbox.

ifslr

mail-commands

else

mail-commands

endif
Conditional execution, where s causes the first mail commands, up
to an else or endif to be executed if the program is in send mode,
and r causes the mail commands to be executed only in receive
mode. The mail-commands after the else are executed if the pro-
gram is in the opposite mode from the one indicated. Useful in the
.mailrc file.

ignore header-field ...

discard header-field ...
Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
“‘status’’ and ‘‘cc’’. All fields are included when the message is
saved. The Print and Type commands override this command.

list
Prints all commands available. No explanation is given.

Ipr [msglist]
Print the specified messages on the lineprinter.

March 11, 1990 MAIL-6

MAIL (C) MAIL (C)

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox
save file when mail terminates normally. See the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be
specified, but in this case the first valid message in the list is the
only one used. This is useful for jumping to the next message from
a specific user, since the name would be taken as a command in
the absence of a real command. See the discussion of msglists
above for a description of possible message specifications.

pipe [msglist] [shell-command]

| [msglist] [shell-command)
Pipe the message through the given shell-command. The message
is treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of
the cmd variable. If the page variable is set, a form feed character
is inserted after each message (see Environment Variables).

preserve [msglist]
See hold.

Print [msglist]

Type [msglist]
Print the specified messages on the screen, including all header
fields. Overrides suppression of fields by the ignore command.

print [{msglist]

type [msglist]
Print the specified messages. If crt is set, the messages longer than
the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com-
mand is more(C) (see Environment Variables).

quit
Exit from mail, storing messages that were read in mbox and
unread messages in the mailbox. Messages that have been explic-
itly saved in a file are deleted from the mailbox.

Reply [msglist]

Respond [msglist]
Reply to the specified message, including all other recipients of the
message. If record is set to a file name, the response is saved at

March 11, 1990 MAIL-7

MAIL (C) MAIL (C)

the end of that file (see Environment Variables).

reply [message]

respond [message]
Send a response to the author of each message in the msglist. The
subject line is taken from the first message. If record is set to a
file name, the response is saved at the end of that file (see Environ-
ment Variables).

Save [msglist]
Save the specified messages in a file whose name is derived from
the author of the first message. The name of the file is taken to be
the author’s name with all network addressing stripped off. See
also the Copy commands and outfolder (Environment Variables).

save [filename]

save [msglist] filename
Save the specified messages in the given file. The file is created if
it does not exist. The message is deleted from the mailbox when
mail terminates unless keepsave is set (see also Environment Vari-
ables and the exit and quit commands).

set

set name

set name=string

set name=number
Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables
and their values. See Environment Variables for detailed descrip-
tions of the mail variables.

shell
Invoke an interactive shell (se¢ SHELL under Environment Vari-
ables).

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the toplines
variable is set, it is taken as the number of lines to print (see
Environment Variables). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not spe-
cifically saved in a file, it will be placed in the mbox, or the file
specified in the MBOX environment variable, upon normal termi-
nation. See exit and quit.

March 11, 1990 MAIL-8

MAIL (C) MAIL (C)

Type [msglist]
See Print.

type [msglist]
See print.

undelete [msglist]
Restore the specified deleted messages. Will only restore mes-
sages deleted in the current mail session. If autoprint is set, the
last message of those restored is printed (see Environment Vari-
ables).

unset name ...
Causes the specified variables to be erased. If the variable was
imported from the execution environment (i.e., a shell variable),
then it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are
placed in a temporary file and the VISUAL variable is used to get
the name of the editor (see Environment Variables).

write [msglist] filename
Write the given messages on the specified file, minus the header
and trailing blank line. Otherwise equivalent to the save com-
mand.

Xit
See exit. quit).
z[+ -]
Scroll the header display forward or backward one full screen. The

number of headers displayed is set by the screen variable (see
Environment Variables).

Tilde Escapes
The following commands may be entered only from input mode, by
beginning a line with the tilde escape character (7). See escape under
Environment Variables for changing this special character.
~! shell-command
Execute the shell command and return.

Simulate end of file (terminate message input).

March 11, 1990 MAIL-9

MAIL (C) MAIL (C)

“: command

_ command
Perform the command-level request. Valid only when sending a
message while reading mail.

-9
Print a summary of tilde escapes.

“A
Insert the autograph string Sign into the message (see Environment
Variables).

a

Insert the autograph string sign into the message (see Environment
Variables).

“b name ...
Add the names to the blind carbon copy (Bcc) list.

"¢ name ...
Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. (See DEAD under Environment Vari-
ables for a description of this file.)

e

Invoke the editor on the partial message. (See EDITOR under
Environment Variables.)

“f [msglist]
Forward the specified messages. The messages are inserted into
the message without alteration.

“h
Prompt for Subject line and To, Cc, Bee, and Return-Receipt-to
lists. If the field is displayed with an initial value, it may be edited
as if you had just typed it.

“ivariable
Insert the value of the named variable into the text of the message.
For example, "A is equivalent to *"i Sign.” Environment variables
set and exported in the shell are also accessible by 7i.

"M [msglist]
Insert the specified messages into the letter, with no indentation.
Valid only when sending a message while reading mail.

“m [msglist]
Insert the specified messages into the letter, shifting the new text
to the right one tab stop. Valid only when sending a message while
reading mail.

March 11, 1990 MAIL-10

MAIL (C) MAIL (C)

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.letter.
(See DEAD under Environment Variables).

“r filename

“"< filename

““< lshell-command
Read in the specified file. If the argument begins with an exclama-
tion point (1), the rest of the string is taken as an arbitrary shell
command and is executed, with the standard output inserted into
the message.

s string ...
Set the subject line to string.

“t name ...
Add the given names to the To list.

v
Invoke a preferred screen editor on the partial message. (See also
VISUAL under Environment Variables.)

“w filename
Write the partial message onto the given file, without the header.

X
Exit as with "q except the message is not saved in dead.letter.

"| shell-command
Pipe the body of the message through the given shell-command. If
the shell-command returns a successful exit status, the output of
the command replaces the message.

Environment Variables

The following are environment variables taken from the execution
environment and are not alterable within mail.

HOME=directory
The user’s base of operations.

March 11, 1990 MAIL-11

MAIL (C) MAIL (C)

MAILRC=filename
The name of the start-up file. Default is SHOME/ mailre.

The following variables are internal mail variables. They may be
imported from the execution environment or set via the set command
at any time. The unset command may be used to erase variables.

addsopt
Enabled by default. If /bin/mail is not being used as the deliverer,
noaddsopt should be specified. (See Notes below)

allnet
All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifica-
tions to behave similarly. Default is noallnet. See also the alter-
nates command and the metoo variable.

append
Upon termination, append messages to the end of the mbox file
instead of prepending them. Default is noappend.

askcc

Prompt for the Cc list after message is entered. Default is
noaskcec.

asksub
Prompt for subject if it is not specified on the command line with
the -s option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete
commands. Default is noautoprint.

bang
Enable the special-casing of exclamation points (!) in shell escape
command lines as in vi(C). Default is nobang.

chron
Causes messages to be displayed in chronological order. The
default is reverse chronological order (most recent message first).
See also mchron below.

cmd=shell-command

Set the default command for the pipe command. Not set by
default.

conv=conversion
Convert uucp addresses to the specified address style. The only
valid conversion now is internet, which requires a mail delivery
program conforming to the RFC822 standard for electronic mail
addressing. Conversion is disabled by default. See also the send-
mail variable and the -U command-line option.

March 11, 1990 MAIL-12

MAIL (C) MAIL (C)

crt=number
Pipe messages having more than number lines through the com-
mand specified by the value of the PAGER variable (more(C) by
default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of
untimely interrupt. Default is SHOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug.

dot
Take a period on a line by itself during input from a terminal as
end-of-file. Default is nodot.

EDITOR=shell-command
The command to run when the edit or "e command is used. Default
is ed(C).

escape=c
Substitute ¢ for the ~ escape character. Takes effect with next mes-
sage sent.

folder=directory

The directory for saving standard mail files. User-specified file
names beginning with a plus (+) are expanded by preceding the file
name with this directory name to obtain the real file name. If
directory does not start with a slash (/), $HOME is prepended to it.
In order to use the plus (+) construct on a mail command line,
folder must be an exported sh environment variable. There is no
default for the folder variable. See also outfolder below.

header
Enable printing of the header summary when entering mail.
Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of put-
ting them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-
up lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated
by a period (.) on a line by itself or by the ~. command. Default is
noignoreeof.. See also the dot variable above.

March 11, 1990 MAIL-13

MAIL (C) MAIL (C)

keep
When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by defauit.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been read. The
xit command overrides this function, as does saving the message
explicitly in another file. Default is SHOME/mbox.

mchron
Causes message headers to be listed in numerical order (most
recently received first), but displayed in chronological order. See
also chron above.

metoo

If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the
folder directory. The default is Is(C).

onehop
‘When responding to a message that was originally sent to several
recipients, the other recipient addresses are normally forced to be
relative to the originating author’s machine for the response. This
flag disables alteration of the recipients’ addresses, improving
efficiency in a network where all machines can send directly to all
other machines (i.e., one hop away).

outfolder
Record outgoing messages in files located in the directory
specified by the folder variable unless the path name is absolute.
Default is nooutfolder. See the folder variable above and the
Save and Copy commands.

page
Used with the pipe command to insert a form feed after each mes-
sage sent through the pipe. Default is nopage.

PAGER=shell-command
Use shell-command as a filter for paginating output. This can also
be used to specify the options to be used. Default is more(C).

prompt=string
Set the command mode prompt to string. Default is ? .

March 11, 1990 MAIL-14

MAIL (C) MAIL (C)

quiet
Refrain from printing the opening message and version when
entering mail. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See
also outfolder above.

save
Enable saving of messages in dead.letter on interrupt or delivery
error. See DEAD for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a full screen of headers for the headers
command.

sendmail=shell-command
Alternate command for delivering messages. Default is
/bin/rmail (C).

sendwait

Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is sh(C).

showto
When displaying the header summary and the message is from you,
print the recipient’s name instead of the author’s name.

sign=string
The variable inserted into the text of a message when the "a (auto-
graph) command is given. Not set by default (see i under Tilde
Escapes).

Sign=string
The variable inserted into the text of a message when the A com-
mand is given. Not set by default (see also “i under Tilde Escapes).

toplines=number
The number of lines of header to print with the top command.
Default is 5. '

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(C).

March 11, 1990 MAIL-15

MAIL (C) MAIL (C)

Files
$HOME/.mailrc personal start-up file
$HOME/mbox secondary storage file
fusr/spool/mail post office directory

fusr/lib/mail/mail.help* help message files
fusr/lib/mail/mailrc optional global start-up file
/tmp/R [emgsx]* temporary files

See Also

15(C), mail(C), more(C)

Notes

The -h, -r and -U options can be used only if mail is built with a
delivery program other than /bin/mail.

Where shell-command is shown as valid, arguments are not always
allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be
unset.

The full internet addressing is not fully supported by mail. The new
standards need some time to settle down.

A line consisting only of a **.”” is treated as the end of the message.

Standards Conformance

mail is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 11, 1990 MAIL-16

MAN (C)

man

MAN (C)

prints reference pages in this guide

Syntax

man [-afbcw] [-tproc] [-ppager] [-ddir] [-Tterm}
[section] [title]

/usr/lib/manprog file

Description

The man program locates and prints the named fitle from the desig-
nated reference section. For historical reasons, ‘‘page’’ is often used
as a synonym for ‘‘entry’’ in this context.

Since Altos UNIX System V commands are given in lowercase, the
title is always entered in lowercase. If no section is specified, the
whole guide is searched for title and the first occurrence of it is
printed. You can search for a group of sections by separating the sec-
tion names with colons (:) on the command line.

The options and their meanings are:

-a

-f

-C

-W

““All’” mode. Displays all matching titles. Incompatible
with the -f option.

“First’” mode. Displays only the first matching title.
Incompatible with -a option. This is the default mode for
man(C).

Leaves blank lines in output. nroff pads entries with blank
lines for line printer purposes. man normally filters out
these excess blank lines. Normally, man does not display
more than 2 consecutive blank lines. The -b flag leaves
blank lines in the CRT output.

Causes man to invoke col(C). Note that col is invoked
automatically by man unless term is one of the follow-
ing: 300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and
X.

Prints on the standard output only the pathnames of the
entries.

September 19, 1990 MAN-1

MAN (C)

-tproc

-ppager

-ddir

-Tterm

MAN (C)

Indicates that if an unprocessed manual page is available,
it is to be passed to proc for formatting. proc can be any
command script in /usr/man/bin or an absolute filename of
a text processing program elsewhere on the system, for
example /bin/nroff.

The scripts in /usr/man/bin invoke the actual processing
programs with the correct flags and arguments. The
default processor is /usr/man/bin/inr, which invokes
/bin/nroff and produces output that safely prints on any
terminal. The text is also preprocessed by eqn and tbl as a
default. Note that the operating system does not include
these formatting programs; you must install them yourself
or specify alternatives with the -t option.

Selects paging program pager to display the entry. Paging
systems such as more(C), pg(C), cat(C), or any custom
pagers that you may have are valid arguments for this
flag. The default pager, pg(C), is set in /etc/default/man.

Specifies directory dir to be added to the search path for
entries. You can specify several directories to be
searched by separating the directory names with colons
(:) on the command line.

Format the entry and pass the given term value to the pro-
cessing program, then print it on the standard output (usu-
ally, the terminal), where term is the terminal type (see
term(M) and the explanation below).

Section Names

The names and general descriptions-of the available manual sections

are:

ADM
C

M

F
HW
S

CpP
DOS
K
NSL
STR
XNX

System Administration
Commands

Miscellaneous

File Formats

Hardware Dependent
Subroutines and Libraries
Programming Commands
DOS Subroutines and Libraries
Kernel Routines

Network Services Library
STREAMS

XENIX Cross-development

September 19, 1990 MAN-2

MAN (C) MAN (C)

LOCAL Local utilities for your system

You can add other section names as you desire. Each new section,
however, must follow the standard section directory structure. The
LOCAL directory is shipped without contents, as no LOCAL manual
pages are included.

/usr/man Directory Structure

The source files for the man(C) program are kept in the directory
/usr/man. Each man section is comprised of two directories, and there
is a directory called bin for programs and shell scripts related to
man(C). There is also an index file called index in /usr/man. This
index is a list of all Altos UNIX System V commands and their sec-
tions.

Each manual section has two directories in /usr/man. These directories
are called man and cat, plus the name of the section as a suffix. For
example, the C manual section is comprised of two directories, man.C
and cat.C, both located in /usr/man.

The unprocessed source text is in the man directory and the printable
processed output is in the cat directory. When a title is requested, both
directories are checked. The most recent copy of the manual page is
used as the current copy. If the most recent title is in the source text
directory and it is processed by the default processor with the default
terminal type, a display copy of the output is placed in the cat direc-
tory for future use. Note that a file that must be processed takes longer
to appear on the screen than a display copy.

Environment Variables

There is a shell environment variable for use with the man(C) utility.
This variable is called MANPATH and it is used to change or aug-
ment the path man(C) searches for entries. Multiple directories set
with this variable must be delimited by colon characters (:). If the
MANPATH environment variable is present, the directories are
searched in the order that they appear. /usr/man must appear in the
MANPATH list to be included. If you set this environment variable,
it supersedes the MANPATH entry in the /etc/default/man file. Alter-
nate subdirectories are expected to have the same form as the default
directories in /usr/man.

/etc/default/man
There is a file called man in the /etc/default directory that contains the

default settings for the man utility. The following options are set in
letc/default/ man:

September 19, 1990 MAN-3

MAN (C) MAN (C)

PAGER=/usr/bin/pg
MANPATH=/usr/man

TERM=1p
ORDER=ADM:C:S:CP:M:F:HW:DOS :LOCAL
MODE=FIRST

PROC=nr

You can select a different paging system, search path, terminal type,
search order, mode, and processor for the man(C) system by changing
the information in this file.

To change the search order for manual sections, edit the list following
the ORDER variable. Be certain the section names are separated with
colons (:). Section names not present in ORDER are searched in arbi-
trary order after those specified in /etc/default/man.

Creating New Manual Entries

You can create new manual pages for utilities and scripts that you
have developed. Use an existing manual page as an example of manu-
al page structure. Use the man macros to format your manual page.
Note that the operating system does not include nroff and the related
family of formatting utilities. You must install them separately or
specify another formatter with the -t option.

You must be logged in as root (the ‘‘Super-User’’) to place a new
manual page in your /usr/man directory structure. Place your new
page in /usr/man/man.LOCAL while logged in as root and view it
using the man(C) command, since only root has write permission for
the cat-able directories. Once man has produced the cat-able output,
any user can view the new page in the same manner as any other on
line manual page.

Additionally, you can create your own custom sections by creating
another manual directory and putting it in the MANPATH. For exam-
ple, if subdirectories man.X and cat.X are present, then man(C) recog-
nizes that X is a valid manual section.

If you wish to use another text processing program (such as troff to
process your custom manual pages, use the -tproc flag of man. proc
can be any shell script in /usr/man/bin. To place a cat-able copy of the
manual page in the cat directory, use the tee(C) command to send the
output to a file, as well as to the standard output. Your command
should have the form:

man -tproc filename | tee pathname
In the above example, proc is the text processing script, filename is the

manual page source file, and pathname is the path of the directory for
the cat-able output.

September 19, 1990 MAN-4

MAN (C) MAN (C)

Custom manual sections can have an index, if the format is the same
as the index in /usr/man. man(C) uses the index to locate multiple
commands that are listed on the same page as well as commands that
have pages in several different sections.

The man Macro Package
The man macro package is located in /usr/lib/macrosian. It is
included for use with the nroff/troff formatting package, which must
be separately installed. There are 15 basic macros in the package.
Here is a table of the macros and brief descriptions of their functions:

Macro Description

.THtitle Title Heading
SHtitle Section Heading
SStitle Subsection Heading
.SMtext Reduce Point Size

PP New Paragraph

JP Indented Paragraph

.HP Hanging Paragraph

.TP Tagged Paragraph

RSn Relative Indent

.RE Release Relative Indent
Ttext Italic Font

.B text Bold Font

R text Roman Font

.PM Proprietary Mark (copyright)

See Also

environ(M), term(F)

Notes

All entries are supposed to be reproducible either on a typesetter or on
a terminal. However, on a terminal some information, such as eqn
and tbl output, is either lost or approximated as it cannot be exactly
reproduced.

September 19, 1990 MAN-5

MESG (C) , ' . 'MESG (C)

mesg

permits or denies messages sent to a terminal

Syntax

mesg (n][y]

Description

mesg with argument n forbids messages via write(C) by revoking
nonuser write permission on the user’s terminal. mesg with argument
y reinstates permission. All by itself, mesg reports the current state
without changing it. ‘

Files

[dev/tty*

See Also

write(C)

Diagnostics

Exit status is O if messages are receivable, 1 if not, 2 on error.

Standards Conformance

mesg is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

May 16, 1988 , ' MESG-1

MKDIR (C) MKDIR (C)

mkdir

makes a directory

Syntax

mkdir [-m mode] [-p] dirname ...

Description

The mkdir command creates the named directories in mode 777 [pos-
sibly altered by umask (C)).

Standard entries in a directory (e.g., the files ., for the directory itself,
and .., for its parent) are made automatically. mkdir cannot create
these entries by name. Creation of a directory requires write permis-
sion in the parent directory.

The owner ID and group ID of the new directories are set to the pro-
cess’s real user ID and group ID, respectively.

Two options apply to mkdir :

-m This option allows users to specify the mode to be used for new
directories. Choices for modes can be found in chmod(C).

-p With this option, mkdir creates dirname by creating all the non-
existing parent directories first.

See Also

sh(C), rm(C), rmdir(C), umask(C), mkdir(S)

Diagnostics

The mkdir command returns exit code 0 if all directories given in the
command line were made successfully. Otherwise, it prints a diagnos-
tic and returns non-zero. An error code is stored in errno .

Standards Conformance

mkdir is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 MKDIR-1

MKNOD (C) MKNOD (C)

mknod

builds special files

Syntax

fetc/mknod name [¢ | b] major minor :
/etc/mknod name p
Jetc/mknod name s

/etc/mknod name m

Description

mknod makes a directory entry and corresponding inode for a special
file. The first argument is the name of the entry. In the first case, the
second argument is b if the special file is block-type (disks, tape) or ¢
if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g.,
unit, drive, or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each system.
Major device numbers can be found in the system source file
letc/conf/cf.d/mdevice.

mknod can also be used to create named pipes with the p option,

semaphores with the s option, and shared data (memory) with the m
option.

Only the super-user can use the first form of the syntax,

See Also

mknod(S)

Standards Conformance

mknod is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portablhty Guide II of January 1987.

March 15, 1989 . MKNOD-1

MNT (C) MNT (C)

mnt, umnt

mount a filesystem

Syntax

fusr/bin/mnt [-urat][directory]

fusr/bin/umnt directory

Description

mnt allows users other than the super-user to access the functionality
of the mount(ADM) command to mount selected filesystems. The
super-user can define how and when a filesystem mount is permitted
via special entries in the /etc/default/filesys file.

The filesystem requirements are the same as defined for mount(ADM).

umnt removes the mountable filesystem previously mounted in direc-
tory .

mnt is invoked from the /etc/rc scripts with the -r and possibly the -a
flag to mount filesystems when the system comes up multiuser. The
-a flag is used when the system has autobooted. Neither of these flags
should be specified during normal use.

The -t flag displays the contents of /etc/default/filesys.

The -u flag forces mnt to behave like umnt.

Options

The following options can be defined in the /etc/default/filesys entry
for a filesystem:

bdev=/dev/device Name of block device associated with the
filesystem.
cdev=/dev/device Name of character (raw) device associated

with the filesystem.

mountdir=/directory =~ The directory the filesystem is to be mounted
on.

March 11, 1990 MNT-1

MNT (C)

desc=name

passwd=string

MNT (C)

A string describing the ﬁlesystein.

An optional password prompted for at mount
request time. Cannot be a simple string; must
be in the format of /etc/passwd. (See Notes.)

fsck=yes, no, dirty, prompt

fsckflags=flags

If yes/no, tells explicitly whether or not to run
fsck. If dirty, fsck is run only if the filesystem
requires cleaning. If prompt, the uwser is
prompted for a choice. If no entry is given,
the default value is dirty.

Any flags to be passed to fsck.

rcfsck=yes, no, dirty, prompt

maxcleans=n

mount=yes, no, prompt

Similar to fsck entry, but only applies when
the -r flag is passed.

The number of times to repeat cleaning of a
dirty filesystem before giving up. If
undefined, default is 4.

If yes or no, users are allowed or disallowed
to mount the filesystem, respectively. If
prompt, the user specifies whether the filesys-
tem should be mounted.

rcmount=yes, no, prompt

mountflags=flags

prep=yes, no, prompt

prepcmd=command

init=yes, no, prompt

March 11, 1990

If yes, the filesystem is mounted by /etc/rc2
when the system comes up multiuser. If no,
the filesystem is never mounted by /etc/rc2.
With prompt, a query is displayed at boot
time to mount the filesystem.

Any flags to be passed to mount.

Indicates whether any prepemd entry should
always be executed, never executed, or exe-
cuted as specified by user.

An arbitrary shell command to be invoked
immediately following password check and
prior to running fsck.

Indicates whether an initcmd entry should

always be executed, never be executed, or
executed as specified by user.

MNT-2

MNT (C) MNT (C)

initcmd=command An optional, arbitrary shell command to be
invoked immediately following a successful
mount.

Any entries containing spaces, tabs, or newlines must be contained in
double quotes (").

The only mandatory entries in /etc/default/filesys are bdev and
mountdir. The prepcmd and initcmd options can be used to execute
another command before or after mounting the filesystem. For exam-
ple, initemd could be defined to send mail to root whenever a given
filesystem is mounted.

When invoked without arguments, mnt attempts to mount all filesys-
tems that have the entries mount=yes or mount=prompt.

Examples

The following is a sample /etc/default/ filesys file:

bdev=/dev/root cdev=/dev/rroot mountdir=/ \
desc="The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes \
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no \
mount=yes fsckflags=-y desc="The Extra Filesystem"

Of the examples above, only /x is mountable by the user.

Files

fetc/default/filesys Filesystem data

See Also

mount(ADM), default(F)
Diagnostics

mnt will fail if the filesystem to be mounted is currently mounted
under another name.

Busy filesystems cannot be unmounted with umnt. A filesystem is busy

if it contains an open file or if a user’s present workmg directory
resides within the filesystem.

March 11, 1990 MNT--3

MNT (C) MNT (C)

Notes

Some degree of validation is done on the filesystem, however it is gen-
erally unwise to mount corrupt filesystems.

In order to create a password for a filesystem, the system administrator
must run the passwd(C) command using the -f option.

Value Added

mnt is an extension of AT&T System V provided by Altos UNIX Sys-
tem V.,

March 11, 1990 MNT-4

MORE (C) MORE (C)

more

views a file one screen full at a time

Syntax

more [-cdflsuvw] [-n] [+linenumber] [+/pattern] [name ...]

Description

This filter allows examination of a continuous text one screen full at a
time. It normally pauses after each full screen, displaying:

--More--

at the bottom of the screen. If the user then presses a carriage return,
one more line is displayed. If the user presses the SPACE bar, another
full screen is displayed. Other possibilities are described below.

The command line options are:

-n

-C

-d

An integer which is the size (in lines) of the window which more
will use instead of the default.

more draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to clear
to the end of a line.

more prompts with the message ‘‘Hit space to continue, Rubout to
abort" at the end of each full screen. This is useful if more is being
used as a filter in some setting, such as a class, where many users
may be inexperienced.

This option causes more to count logical, rather than screen lines.
That is, long lines are not folded. This option is recommended if
nroff output is being piped through ul, since the latter may generate
escape sequences. These escape sequences contain characters that
would ordinarily occupy screen positions, but do not print when
they are sent to the terminal as part of an escape sequence. Thus
more may think that lines are longer than they actually are and fold
lines erroneously.

Does not treat Cirl-L (form feed) specially. If this option is not
given, more pauses after any line that contains a Cul-L, as if the
end of a full screen has been reached. Also, if a file begins with a
form feed, the screen is cleared before the file is printed.

September 19, 1990 MORE-1

MORE (C) MORE (C)

-s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

-u Normally, more handles underlining, such as that produced by nroff
in a manner appropriate to the particular terminal: if the terminal
can perform underlining or has a stand-out mode, more outputs ap-
propriate escape sequences to enable underlining or stand-out
mode for underlined information in the source file. The -u option
suppresses this processing.

-v Normally, more ignores control characters that it does not interpret
in some way. The -v option causes these to be displayed as “C
where C is the corresponding printable ASCII character. Non-
printing non-ASCII characters (with the high bit set) are displayed
in the format M-C, where C is the corresponding character without
the high bit set. If output is not going to a terminal, more does not
interpret control characters.

-w Normally, more exits when it comes to the end of its input. With -
w however, more prompts and waits for any key to be struck before
exiting.

+linenumber
Starts up at linenumber.

+Ipattern
Starts up two lines before the line containing the regular expres-
sion pattern.

more looks in the file /etc/termcap to determine terminal characteris-
tics, and to determine the default window size. On a terminal capable
of displaying 24 lines, the default window size is 22 lines.

more looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -¢ mode of
operation, the shell command ‘‘“MORE=-c”’ in the .profile file causes
all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is dis-
played along with the ‘‘--More--"’ prompt. This gives the fraction of
the file (in characters, not lines) that has been read so far.

Other sequences which may be entered when more pauses, and their
effects, are as follows (i is an optional integer argument, defaulting to
1 where not specified otherwise):

i <space>

Displays i more lines, (or another full screen if no argument is
given).

September 19, 1990 MORE-2

MORE (C) MORE (C)

Cul-D

d

iz

is

if

Displays 11 more lines (a ‘‘scroll’’). If i is given, then the scroll
size isset to i.

Same as Ctrl-D.

Same as entering a space except that i, if present, becomes the
new window size.

Skips i lines and displays a full screen of lines.

Skips i full screens and displays a full screen of lines.

qorQ

v

Exits from more.
Displays the current line number.

Starts up the screen editor vi at the current line. Note that vi may
not be available with your system.

hor?

Help command; Gives a description of all the more commands.

i fexpr

Searches for the ith occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a full screen is displayed, starting two
lines before the place where the expression was found. The user’s
erase and kill characters may be used to edit the regular expres-
sion.d Erasing back past the first column cancels the search com-
mand.

Searches for the ith occurrence of the last regular expression
entered.

(Single quotation mark) Goes to the point from which the last
search started. If no search has been performed in the current file,
this command goes back to the beginning of the file.

lcommand

imn

Invokes a shell with command. The characters % and ! in ‘‘com-
mand"” are replaced with the current filename and the previous
shell command respectively. If there is no current filename, % is
not expanded. The sequences ‘\%’’ and ‘“\!I’’ are replaced by
““%’’ and “‘!”’ respectively.

Skips to the ith next file given in the command line (skips to last
file if i doesn’t make sense). ’

September 19, 1990 MORE-3

MORE (C) MORE (C)

ip
Skips to the ith previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If i doesn’t make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

:f Displays the current filename and line number.

:qor:Q
Exits from more (same as q or Q).

Repeats the previous command.

The commands take effect immediately. It is not necessary to enter a
carriage return. Up to the time when the command character itself is
given, the user may enter the line kill character to cancel the numeri-
cal argument being formed. In addition, the user may enter the erase
character to redisplay the ‘‘--More--(xx%)’’ message.

The terminal is set to noecho mode by this program so that the output
can be continuous. What you enter will not show on your terminal,
except for the slash (/) and exclamation (!) commands.

If the standard output is not a teletype, more acts just like cat, except
that a header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n | more -s

Files
fetc/termcap Terminal data base
fusr/lib/more.help Help file

See Also

¢sh(C), sh(C), environ(M)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

September 19, 1990 MORE-4

MORE (C) MORE (C)

Notes

The vi and help options may not be available.

Before displaying a file, more attempts to detect whether it is a non-
printable binary file such as a directory or executable binary image. If
more concludes that a file is unprintable, it refuses to print it. How-
ever, more cannot detect all possible kinds of non-printable files.

September 19, 1980 MORE-5

MV (C) Mv (C)

mv

moves or renames files and directories

Syntax

my [-f] filel file2
my [-f] directoryl directory2

my [-f] file ... directory

Description

my moves (changes the name of) filel to file2 (or directoryl to direc-
tory2).

If file2 already exists, it is removed before filel is moved. If file2 has
a mode which forbids writing, mv prints the mode (see chmod(S)) and
reads the standard input to obtain a line. If the line begins with y, the
move takes place; if not, mv exits.

In the third form, one or more files are moved to the directory with
their original filenames.

No questions are asked when the -f option is given.
mv refuses to move a file onto itself.

mv can only rename directories, not physically move them.
mvdir(ADM) should be used to move directories within a filesystem.

See Also

cp(C), chmod(S), copy(C)

Notes

If filel and file2 lie on different file systems, mv must copy the file
and delete the original. In this case the owner name becomes that of
the copying process and any linking relationship with other files is
lost.

March 15, 1989 MV-1

MV (C) MV (C)

Standards Conformance

my is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 Mv-2

NEWFORM (C) NEWFORM (C)

newform

changes the format of a text file

Syntax

newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-cchar] [-In] [file ...]

Description

newform reads lines from the named files, or the standard input if no
input file is named, and reproduces the lines on the standard output.
Lines are reformatted in accordance with command line options in

effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with files. However, note that
command line options are processed in the order typed. This means
that option sequences like ‘‘-el5 -160°" will yield results different
from *‘-160 -e15’’. Options are applied to all files on the command

line.

-itabspec

-otabspec

Input tab specification: expands tabs to spaces, according
to the tab specifications given. Tabspec recognizes all tab
specification forms described below. In addition, tabspec
may be --, in which newform assumes that the tab specifi-
cation is to be found in the first line read from the stan-
dard input. If no tabspec is given, tabspec defaults to -8.
A tabspec of -0 expects no tabs; if any are found, they are
treated as -1.

Output tab specification: replaces spaces by tabs, accord-
ing to the tab specifications given. The tab specifications
are the same as for -itabspec. If no tabspec is given,
tabspec defaults to -8. A tabspec of -0 means that no
spaces will be converted to tabs on output.

Sets the effective line length to n characters. If n is not
typed, -1 defaults to 72. The default line length without
the -1 option is 80 characters. Note that tabs and back-
spaces are considered to be one character (use -i to
expand tabs to spaces).

Note that the -1 option used alone does not produce the
expected output unless accompanied by other line-
altering options, such as -e.

September 19, 1990 NEWFORM-1

NEWFORM (C) NEWFORM (C)

-bn

-f

Truncates n characters from the beginning of the line
when the line length is greater than the effective line
length (see -1n). The default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no » is used. This
option can be used to delete the sequence numbers from a
COBOL program as follows:

newform -11 -b7 file-name

The option -11 must be used to set the effective line length
shorter than any existing line in the file so that the -b
option is activated.

Truncates n characters from the end of the line.

Changes the prefix/append character to k. Default charac-
ter for k is a space (see options -p and -c).

Prefixes n characters (see -ck) to the beginning of a line
when the line length is less than the effective line length.
The default is to prefix the number of characters neces-
sary to obtain the effective line length.

Appends r characters to the end of a line. The default is
to append the number of characters necessary to get the
effective line length.

Writes the tab specification format line on the standard
output before any other lines are output. The tab specifi-
cation format line which is printed will correspond to the
format specified in the last -o option. If no -0 option is
specified, the line which is printed will contain the default
specification of -8.

Shears off leading characters on each line up to the first
tab and places up to 8 of the sheared characters at the end
of the line. If more than 8 characters (not counting the
first tab) are sheared, the eighth character is replaced by a
* and any characters to the right of it are discarded. The
first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all other
options specified are applied to that line. The characters
are then added at the end of the processed line.

September 19, 1990 NEWFORM-2

NEWFORM (C) NEWFORM (C)

Tabs

Four types of tab specification are accepted for tabspec: ‘‘canned,”
repetitive, arbitrary, and file. The lowest column number is 1. For
tabs, column 1 always refers to the leftmost column on a terminal,
even one whose column markers begin at 0, e.g. the DASI 300, DASI
3008, and DASI 450.

The *‘canned’’ tabs are given as -code where code (and its meaning) is
from the following list:

-a

-a2

-C

-f

-8

-u

1,10,16,36,72
Assembler, IBM S/370, first format

1,10,16,40,72
Assembler, IBM S/370, second format

1,8,12,16,20,55
COBOL, normal format

1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 m6 s66 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than COBOL -c2. This is the recommended
format for COBOL. The appropriate format specification
is:

<:t-¢3 mé6 s66 d:>

1,7,11,15,19,23
FORTRAN

1,5,9,13,17,21,25,29,33,37,41,45,53,57,61
PL/I

1,10,55

SNOBOL

1,12,20,44
UNIVAC 1100 Assembler

In addition to these ‘‘canned’’ formats, three other types exist:

-n

A repetitive specification requests tabs at columns 1+n,
1+2#n, etc. Note that such a setting leaves a left margin of
n columns on TermiNet terminals only. Of particular

September 19, 1990 NEWFORM-3.

NEWFORM (C) NEWFORM (C)

importance is the value -8: this represents the Altos UNIX
System V system ‘‘standard’’ tab setting, and is the most
likely tab setting to found at a terminal. It is required for
use with nroff -h option for high-speed output. Another
special case is the value -0, implying no tabs at all.

nl,n2,.. The arbitrary format permits the user to type any chosen
set of number, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre-
ment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identical.

- -file
If the name of a file is given, newform reads the first line
of the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise it
sets them as -8. This type of specification may be used to
make sure that a tabbed file is printed with correct tab set-
tings.

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

-Ttype

newform usually needs to know the type of terminal in
order to set tabs and always needs to know the type to set
margins. type is a name listed in term(CT). If no -T flag
is supplied, newform searches for the $STERM value in
the environment (see environ(M)). If no type can be
found, newform tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+1 the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The normal (leftmost)
margin on most terminals is obtained by +m0. The mar-
gin for most terminals is reset only when the +m flag is
given explicitly.

Example

In the following example, newform converts a file named text with
leading digits, one or more tabs, and text on each line to a file begin-
ning with the text and the leading digits placed at the end of each line
in column 73 (-s option). All tabs after the first one are expanded to
spaces (-i option). To reach the line length of 72 characters (-1 option),
spaces are appended to each line up to column 72 (-a option) or lines

September 19, 1990 NEWFORM-4

NEWFORM (C) NEWFORM (C)

are truncated at column 72 (-e option). To reformat the sample file
text in this manner, enter:

newform -s -i -1 -a -e text

Exit Codes

0 - normal execution
1 - for any error

See Also
csplit(C)
Diagnostics
All diagnostics are fatal. '
usage: ... newform was called with a bad option.
not -s format There was no tab on one line.
can’t open file Self-explanatory.
internal line too long A line exceeds 512 characters after being
expanded in the internal work buffer.
tabspec in error A tab specification is incorrectly format-
ted, or specified tab stops are not ascend-
ing.

tabspec indirection illegal A tabspec read from a file (or standard
input) may not contain a tabspec referenc-
ing another file (or standard input).

Notes

newform normally only kéeps track of physical characters; however,
for the -i and -0 options, newform will keep track of backspaces in
order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the
standard input (by use of -i,-- or -0--).

If the -f option is used, and the last -0 option specified was ‘‘-0--"" ,

and was preceded by either ‘“-0--"’ or a ‘‘-i-->’ , the tab specification
format line will be incorrect.

September 19, 1990 NEWFORM-5

NEWGRP (C) NEWGRP (C)

newgrp

logs user into a new group

Syntax

newgrp [-] GROUP

Description

newgrp changes the group identification of its caller. The same per-
son remains logged in, and the current directory is unchanged, but cal-
culations of access permissions to files are performed with respect to
the new group ID.

newgrp without an argument changes the group identification to the
group in the password file. This changes the caller’s group identifica-
tion back to the original group.

If the first argument to newgrp is a hyphen (-), the user will actually
be logged in again as a member of the new group, GROUP. (that is,
newgrp - GROUP)

If the first argument to newgrp is a *“ - ;> but GROUP is not specified,

the user will be logged in again as a member of the caller’s original
group identification according to the password file.

Files

fetc/group

fetc/passwd

See Also

login(M), group(F)

Notes

The newgrp command executes, but does not fork, a new shell. If your
login shell is a C shell and you invoke newgrp , you will have to press
CTRL-D when you wish to log out. Typing the csh (C) logout com-
mand will result in an error message. Note also that the newgrp com-
mand causes the csh history list to start again at 1.

March 15, 1989 NEWGRP-1

NEWGRP (C)

Standards Conformance

NEWGRP (C)

newgrp is conformant with:
AT&T SVID Issue 2, Select Code 307-127;

and The X/Open Portability Guide II of January 1987.

March 15, 1989

NEWGRP-2

NEWS (C) NEWS (C)

news

print news items

Syntax

news[-alJ[-n][-s][items]

Description

news is used to keep the user informed of current events. By conven-
tion, these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all
current files in /usr/news, most recent first, with each preceded by an
appropriate header. news stores the ‘‘currency’’ time as the modifica-
tion date of a file named .news_time in the user’s home directory (the
identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are con-
sidered *‘current.”’

The -a option causes news to print all items, regardless of currency.
In this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the
stored time.

All other arguments are assumed to be specific news items that are to
be printed.

If the INTERRUPT key is struck during the printing of a news item,

printing stops and the next item is started. Another INTERRUPT
within one second of the first causes the program to terminate.

Files

Jusr/news/*
$HOME/.news_time

March 15, 1989 NEWS-1

NEWS (C)

See Also

NEWS (C)

profile(M), environ(M)

Standards Conformance

news is conformant with:
AT&T SVID Issue 2, Select Code 307-127;

and The X/Open Portability Guide II of January 1987.

March 15, 1989

NEWS-2

NICE (C) NICE (C)

nice

runs a command at a different scheduling priority

Syntax

nice [-increment] command [arguments]

Description

The nice command is used to execute a command at a different sched-
uling priority than usual. Each process has a ‘‘nice value’’ which is
used to calculate its priority. Nice values range from O to 39, with
higher nice values resulting in lower priorities. By default, commands
have a nice value of 20. nice executes command with a nice value
equal to 20 plus increment. If no increment is given, an increment of
10 is assumed.

The super-user may run commands with priority higher than normal
by using a double negative increment. For example, an argument of
--10 would decrement the default to produce a nice value of 10, which
is a higher scheduling priority than the default of 20.

See Also

nohup(C), ¢sh(C), nice(S)

Diagnostics

nice returns the exit status of command.

Notes

If the default nice value plus increment is larger than 39, a nice value
of 39 will be used. If a nice value less than zero is requested, zero will
be used.

Note also that this description of nice applies only to programs run
under the Bourne Shell. The C-Shell has its own nice command,
which is documented in csh(C).

Standards Conformance

nice is conformant with:

March 15, 1989 NICE-1

NICE (C) NICE (C)

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 NICE-2

NL (C) NL (C)

nl

adds line numbers to a file

Syntax

nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p] [-Inum] [-ssep]
[-wwidth] [-nformat] file

Description

nl reads lines from the named file, or the standard input if no file is
named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in
effect.

nl views the text it reads in terms of logical pages. Line numbering is
reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid. Dif-
ferent line numbering options are independently available for header,
body, and footer (e.g. no numbering of header and footer lines while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines containing
nothing but the following character(s):

Page Section Line Contents
Header NAN:

Body \\:

Footer \:

Unless signaled otherwise, nl assumes the text being read is in a sin-
gle logical page body.

Command options may appear in any order and may be intermingled
with an optional filename. Only one file may be named. The options
are:

-btype Specifies which logical page body lines are to be num-
bered. Recognized types and their meaning are: a, num-
ber all lines; t, number lines with printable text only; n,
no line numbering; pstring, number only lines that con-
tain the regular expression specified in string. Default
type for logical page body is t (text lines numbered).

March 15, 1989 NL-1

NL (C)

-htype
ftype

P

-vstart#
-iincr
-ssep
-wwidth

-nformat

-lnum

See Also

NL (C)

Same as -btype except for header. Default type for logi-
cal page header is n (no lines numbered).

Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

Does not restart numbering at logical page delimiters.

Start# is the initial value used to number logical page
lines. Default is 1.

Incr is the increment value used to number logical page
lines. Default is 1. '

Sep is the character(s) used in separating the line number
and the corresponding text line. Default sep is a tab.

Width is the number of characters to be used for the line
number. Default width is 6.

Format is the line numbering format. Recognized values
are: In, left justified, leading zeroes suppressed; rn, right
justified, leading zeroes suppressed; rz, right justified,
leading zeroes kept. Default format is r (right justified).

Num is the number of blank lines to be considered as one.
For example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or -fa
option is set). Default is 1.

pr(C)

Standards Conforman