
""':',

Altos UN/X®Systern V/386
Release 3.2

User's Reference (C, M, F)

.... <. :-
'. ,',

Document
History

Copyright
Notice

Trademarks

Limitations

EDITION

Preliminary I;dltlon
First Edition
Second Edition

PART NUMBER

690-23414-001A
690-23414-001
690-23414-002

DATE

February 1990
April 1990
March 1991

Manual Portions Copyright © 1990, 1991 AHos Computer Systems.

Manual Portions Copyright © 1989 AT&T.

Manual Portions Copyright © 1980, 1981, 1982, 1983, 1984, 1985, 1986,
1987,1988,1989 Microsoft Corporation.

Manual Portions Copyright © 1983, 1984,1985,1986,1987,1988,1989
The Santa Cruz Operation, Inc.

All rights reserved. Printed In U.S.A.

Unless you request and receive written permission from Altos Computer
Systems, you may not copy any part of this document or the software you
received, except In the normal use of the software or to make a backup
copy of each diskette you receiVed.

The Altos logo, as It appears In this manual, Is a registered trademark of
Altos Computer Systems.

386 and 486 are trademarks of Intel Corporation.

HACER Fast File System" Is a trademark of ACER Technologies

Corporation.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft
Corporation.

PostScript Is a registered trademark of Adobe Systems, Inc.

UNIX Is a registered trademark of UNIX System Laboratories, Inc.

Altos Computer Systems reserves the right to make changes to the product
described In this manual at any time and without notice. Neither Altos nor its
suppliers make any warranty wHh respect to the accuracy of the information
in this manual.

GUIDE TO YOUR ALTOS UNIX® SYSTEM V /386
RELEASE 3.2 DOCUMENTATION

RUN-TIME SYSTEM
These books come with every system:

~
Installation Guide
Part Number: 690-24096-nnn

=- • Operating System installaiion
Upgrade procedure

System Administrator's
Guide
Part Number: 690-23415-nnn
• Sysadmsh
• Security
• System tuning, troubleshooting
• Peripherals
• Virtual Disks

User's Guide
Part Number: 690-23408-nnn
• Vi, ed, mail, awk, sed
• Shells: sh and csh
• Job scheduling commands

User's Reference (C, M, F)
Part Number: 690-23414-nnn
(also provided online with each
operating system)
• (C) Commands
• (M) Miscellaneous files and

commands
• (F) File formats

System Administrator's
Reference (ADM, HW)
Part Number: 690-23416-nnn
(also provided online with each
operating system)
• (ADM) Administrative

commands
• (HW) Hardware information

These books may be ordered separately:

~
Using the AOM
Menu System

=- Part Numbers: 690-23814-nnn
• Easy-to-use menus to use

programs
• Menu manager to add,

update, remove menus

~
Tutorial
Part Number: 690-23407-nnn

=- • Basic concepts and tasks
Files and directories

• Utilities

~
International Operating
System Guide

-- Part Number: 690-23810-nnn
• Character sets
• 7-bit vs. 8-bit characters

DEVELOPMENT SYSTEM
Set Part Number: 690-23417-000

Programmer's Reference
(CP,S)
• (CP) Programming commands
• (S) System services, library

routines

Programmer's Guide
• Lex, lint, yacc
• SCCS, make
• Extended Terminal

Interface (ETI)
• Sdb, adb
• Shared libraries
• File and record locking

C Language Guide
• C User's Guide
• C Language Reference

Library Guide
• C Library Guide
• XENIX Development and

Portability Guide
• International Development

Guide

Developer's Guide
• DOS and OS/2 Development

Guide
• STREAMS Primer
• STREAMS Programmer's Guide
• STREAMS Network

Programmer's Guide

CodeView and Macro
Assembler User's Guide
• The CodeView Debugger
• Macro Assembler User's Guide

Device Driver Writer's Guide
• Writing, compiling, and linking

drivers
• SCSI drivers
• STREAMS and line disciplines
• (K) Kernel routines

To order any of the above manuals, call 408/434-6688, ext. 3004 and give the
manual title and part number.

Operating System Documents
for Different Audiences
As shown on the previous page, Altos offers many manuals with Altos UNIX System V-the manu­
als you receive will depend on your configuration. To help you decide which manuals are best
suited to your needs, we have listed below the manuals according to three broad groups of users.

These lists are only suggested starting points in your search for information. They are not meant to
imply that certain users should not read certain manuals. Find the user group that best applies to
you, and use its list of manuals as a starting point for your reading, from which you can move on to
other manuals.

Note that every Run-time System includes five manuals: the Installation Guide, the User's Guide,
the User's Reference, the System Administrator's Guide, and the System Administrator's Refer­
ence. The Run-time System reference pages that describe the C, M, F, ADM, and HW commands
("man pages") are provided online as'well. If you have the Development System, all manuals
listed under "For Programmers:" come with your operating system. (All Development System
reference pages are also provided online.) To order additional manuals, call (408) 434-6688, exten­
sion 3004 and give the manual title and part number.

For General Users (especially Beginners):
Tutorial
User's Guide
User's Reference (C, M, F)
Using the AOM Menu System

For System Administrators (and Advanced Users):
Installation Guide
System Administrator's Guide
System Administrator's Reference (ADM, HW)
International Operating System Guide
Programmer's Reference (CP, S)

For Programmers:
Programmer's Guide
Programmer's Reference (CP, S)
C Language Guide
Library Guide
Developer's Guide
CodeView and Macro Assembler User's Guide
Device Driver Writer's Guide

Preface

Throughout the documentation, a given command, routine, or file is
referred to by its name and a section (in parentheses). For example, the
programming command cc, is listed as cc(CP), which indicates that cc is
described in the Programming Commands (CP) section.

There is a total of twelve reference sections in Altos UNIX System V, in
different volumes of the Operating System and the Development System
documents. (These reference sections are often called manual pages, or
just man pages, in short.) For example, the cc(CP) command mentioned
above is located in the CP section found in the Programmer's Reference.

This document, the User's Reference (e, M, F), contains the following
three reference sections:

Section Description Volume

C Commands - used with the User's Reference
Operating System.

M Miscellaneous - information used User's Reference
for access to devices, system
maintenance, and communi-
cations.

F File Formats - description of User's Reference
various system files not defined in
section M.

The following table lists the remaining reference sections, the type of
commands they contain, and in which document each is located.

Section Description Volume

ADM Administrative Commands - used System Administrator's
for system administration. Reference

CP Programming Commands - used Programmer's Reference
with the Development System.

DOS DOS Cross-development Developer's Guide
subroutines and libraries

HW Hardware device manual pages - System Administrator's
information about hardware Reference
devices and device nodes.

K Kernel routines - used for writing Device Driver Writer's
device drivers. Guide

NSL Network Services Library - used Developer's Guide
with the STREAMS System.

S System Calls and Library Programmer's Reference
Routines - available for C and
assembly language programming.

STR STREAMS manual pages Developer's Guide

XNX XENIX cross-development Library Guide
manual pages

The alphabetized table of contents following this preface lists all Altos
UNIX System V commands, system calls, library routines, and file
formats. In addition, in the front of each individual reference section there
is an alphabetized list of all the manual pages contained in that section.

The permuted index, found at the end of the User's Reference, and the
end of the Programmer's Reference, is useful in matching a desired task
with the manual page that describes it. It too is an organized list of all
Altos UNIX System V commands, system calls, library routines, and file
formats, but organized according to function, not alphabetically.

Note that some pages in the Operating System documents refer to
"include" files that are actually part of the Development System.

Alphabetized List
Commands, Systems Calls, Library Routines and File Formats

300 300(C) assert assert(S)
4014 4014(C) assign assign(C)
450 450(C) asx asx(CP)
86rel 86rel (F) at at(C)
_exit exit (S) atan trig(S)
a.out a.out(F) atan2 trig (S)
a641 a641(S) atcronsh atcronsh(ADM)
abort abort(S) atof atof(S)
abs abs(S) atof strtod(S)
accept accept(ADM) atoi atof(S)
access access (S) atoi strtol (S)
acct acct(ADM) atol ;. atof(S)
acct acct (F) atol strtol (S)
acct acct (S) audit audit(ADM)
acctcms acctcms (ADM) auditcmd auditcmd(ADM)
acctcom acctcom (ADM) auditd auditd(ADM)
acctdisk acct(ADM) auditsh auditsh (ADM)
acctdusg acct(ADM) authcap authcap(F)
acctmerg acctmerg (ADM) authck authck(ADM)
accton acct(ADM) auths auths(C)
accton accton (ADM) authsh authsh(ADM)
acctprc acctprc (ADM) authsh authtsh (ADM)
acctprcl acctprc (ADM) autoboot autoboot(ADM)
acctprc2 acctprc (ADM) awk awk(C)
acctsh acctsh(ADM) backup backup (ADM)
acctwtmp acct(ADM) backupsh backupsh(ADM)
acos trig (S) badtrk badtrk(ADM)
adb adb(CP) banner banner(C)
add.vd add.vd(ADM) basename basename(C)
addxusers addxusers(ADM) batch at(C)
adfmt adftnt(ADM) bc bc(C)
admin admin(CP) bcheckrc brc(ADM)
alarm alarm(S) bdiff bdiff(C)
aom aom(M) bdos bdos(DOS)
ar ar(CP) bessel bessel (S)
ar ar(F) bfs bfs(C)
arc~ive archi~~ (F)
ascII ascu (M)

boot boot(HW)
brc brc(ADM)

asctime ctime (S) brk sbrk(S)
asin trig (S) brkctl brkctl (S)
asktime asktime (ADM) bsearch bsearch(S)

cal cal(C) coltbl ; .. coltbl (M)
calendar calendar(C) comb comb(CP)
calloc malloc(S) comm comm(C)
cancel lp (C) compress compress(C)
captoinfo captoinfo (ADM) configure configure (ADM)
card Jnfo card_info (F) console console (M)
cat cat(C) consoleprint. consoleprint (ADM)
cb cb(CP) conv conv(S)
cc cc(CP) convkey mapkey (M)
cd cd(C) copy copy (C)
cdc cdc(CP) core core (F)
cdrom cdrom(HW) cos trig(S)
ceil jloor(S) cosh sinh(S)
cflow cjlow(CP) cp cp(C)
cgets cgets (DOS) cpio cpio(C)
chargefee acctsh (ADM) cpio cpio (F)
chdir chdir(S) cpp cpp(CP)
checkaddr .. checkaddr(ADM) cprintf cprintj(DOS)
checklist checklist (F) cputs cputs(DOS)
checkmail checkmail (C) crash crash(ADM)
checkque checkque (ADM) creat creat(S)
checkup checkup (ADM) creatsem creatsem (S)
chg audit chg audit(ADM)
chgrp : chgrp(C)

cref cref(CP)
cron : cron(C)

chmod chmod(C) "crontab" "crontab"(C)
chmod chmod(S) crypt crypt (C)
chown chown(C) cscanf cscanf(DOS)
chown chown(S) csh csh(C)
chroot chroot(ADM) csplit csplit (C)
chroot chroot(S) ctags ctags(CP)
chrtbl chrtbl (M) ctermid ctermid (S)
chsize chsize (S) ctime clime (S)
ckpacct acctsh (ADM) ctype ctype (S)
cleantmp cleantmp (ADM) cu cu(C)
clear clear(C) curses curses(S)
clearerr ferror(S) curtbl curtbl (M)
clock clock (F) cuserid cuserid(S)
clock clock(S) custom custom (ADM)
close close (S) cut cut(C)
clone clone (M) cvtcoff cvtcoff(M)
closedir directory (S) cvtomf cvtomf(M)
clri elri (ADM) cxref cxref(CP)
cmchk cmchk(C) daemon.mn daemon.mn(M)
cmos cmos(HW) date date (C)
cmp crnp(C) dbmbuild dbmbuild(ADM)
col col(C) dbminit dbm(S)

ii

de dc(C) dosrmdir dos(C)
dcopy dcopy (ADM) dparam dparam(ADM)
dd dd(C) drand48 drand48(S)
deassign assign(C) dtox dtox(C)
default default (F) dtype dtype(C)
defopen defopen (S) du du(C)
defread de/open (S) dumpdir dumpdir(C)
delete dbm(S) dup dup(S)
deliver deliver(ADM) dup2 dup(S)
delta delta (CP) echo echo(C)
del.vd del.vd(ADM) ecvt ecvt (S)
devices devices (F) ed ed(C)
devom devnm(C) edata end(S)
df df(C) edit ex(C)
dial dial(ADM) egrep grep(C)
dial dial(S) enable enable (C)
dialcodes dialcodes (F) end end(S)
dialers dialers (F) endgrent getgrent (S)
diff diff(C) endpwent getpwent(S)
dift3 dijJ3 (C) endutent getut(S)
dir dir(F) env env(C)
dircmp dircmp(C) environ environ (M)
directory directory (S) eof eo/(DOS)
dirent dirent (F) erand48 drand48(S)
dirname dirname(C) erf eif(S)
disable disable (C) erfc eif(S)
diskcmp diskcp (C) errno perror(S)
diskcp diskcp(C) error error(M)
diskusg diskusg (ADM) etext end(S)
display display (HW)
displaypkg . displaypkg (ADM)
divvy divvy (ADM)
dlayout dlayout(ADM)

ev block ev block (S)
ev -close ev-close (S)
ev-count ev -count(S)
ev =Oush eVJush(S)

dlvr audit .. dlvr audit(ADM)
dmesg dmesg (ADM)

ev _getdev ev _getdev (S)
ev _getemask ev _gtemsk(S)

dodisk acctsh (ADM) ev _gindev ev _gindev (S)
dos dos(C)
doscat dos(C)
doscp : dos(C)

ev init ev init (S)
ev = open ev _open (S)
ev Jlop ev yop (S)

dosdir dos(C)
dosexterr dosexter (DOS)
dosformat dos(C)
dosld dosld(CP)

ev read ev read (S)
ev -resume ev resume (S)
ev - setemask ev stemsk (S)
ev =suspend ev _susp(S)

dosls dos(C) ex ex(C)
dosmkdir dos(C) execl exec(S)
dosrm dos(C) execle exec (S)

iii

execlp exec (S) fopen Jopen(S)
execseg execseg (S) fork Jork(S)
execv exec (S) format Jormat(C)
execve exec (S) fp_off fp_seg(DOS)
execvp exec (S) fp_seg fp_seg(DOS)
e~it exit (DOS) fprintf printj(S)
exit exit (S) fputc fputc(DOS)
exp exp(S) fputc putc(S)
expr expr(C) fputchar fputc (DOS)
fabs jloor(S) fputs puts(S)
factor Jactor(C) fread /read(S)
false Jalse(C) free malloc(S)
fclose Jclose(DOS) freopen Jopen(S)
fclose Jclose(S) frexp Jrexp(S)
fcloseall Jclose (DOS) fsave Jsave (ADM)
fconvert /convert (M) fscanf scan/(S)
fcntl Jcntl (M) fsck /sck(ADM)
fcntl Jcntl(S) fsdb Jsdb(ADM)
fcvt ecvt(S) fseek Jseek(S)
fd Jd(HW) fsname Jsname(ADM)
fdisk•... Jdisk(ADM) fspec Jspec(F)
fdopen Jopen(S) fsphoto Jsphoto(ADM)
fdswap /dswap(ADM) fsstat Jsstat(ADM)
feof /error(S) fstat stat(S)
ferror Jerror(S) fstatfs statjs(S)
fetch ... : dbm(S) fstyp Jstyp(ADM)
mush /close (S) ftell Jseek(S)
fgetc /getc(DOS) ftime time(S)
fgetc getc(S) ftok stdipc(S)
fgetchar /getc (DOS) ftw ftw(S)
fgets gets(S) fuser Juser(C)
fgrep grep(C) fwrite /read(S)
file file (C) fwtmp fwtmp(ADM)
filehdr filehdr(F) fxlist xlist (S)
filelength fileleng(DOS) gamma gamma(S)
fileno /error(S) gcvt ecvt (S)
filesys filesys (F) get get (CP)
filesystem filesystem (F) getc getc (S)
find find(C) getch getch (DOS)
finger finger(C) getchar getc(S)
firstkey dbm(S) getche getche (DOS)
fixhdr fixhdr(C) getclk getclk (M)
fixperm fixperm(ADM) getcwd getcwd (S)
floor jloor(S) getdents getdents (S)
f1ushall jlushall (DOS) getegid getuid(S)
fmod jloor(S) getenv getenv (S)

iv

geteuid getuid(S) hdestroy hsearch (S)
getgid getuid(S) hdr hdr(CP)
getgrent getgrent (S) hdutil hdutil (ADM)
getgrgid getgrent(S) head head(C)
getgrnam getgrent (S) hello hello (C)
gethostid gethostid(S) help help (CP)
getkernelid getsystemid (S) hostid hostid(C)
getlogin get login (S) hp hp(C)
getopt getopt(C) hs hs(F)
getopt getopt(S) hsearch hsearch (S)
getoptcvt getopts (C) hwconfig hwconfig(C)
getopts getopts (C) hypot hypot(S)
getpass getpass (S) i286emul i286emul (C)
getpgrp getpid(S) i386 machid(C)
getpid getpid(S) . id id(ADM)
getppid getpid(S) id id(C)
getpw getpw(S) idaddld idaddld(ADM)
getpwent getpwent(S) idbuild idbuild(ADM)
getpwnam getpwent(S) idcheck idcheck (ADM)
getpwuid getpwent (S) idinstall idinstall (ADM)
gets gets (C) idleout idleout (ADM)
gets gets (S) idload idload(ADM)
getsystemid getsystemid (S) idmemtune . idmemtune (ADM)
getty getty (M) idmkinit idmkinit (ADM)
"gettydefs" "gettydefs "(F) idspace idspace (ADM)
getuid getuid(S) idtune idtune (ADM)
getut getut (S) imacct imacct(C)
getutent getut (S) infocmp infocmp (ADM)
getutid getut (S) inir init (M)
getutline getut (S) init init (M)
getw getc(S) initcond initcond (ADM)
gmtime ctime (S) inittab inittab (F)
goodpw goodpw(ADM) inode inode (F)
gps gps(F) inp inp(DOS)
graph graph(ADM) install install (ADM)
greek greek(C) installpkg installpkg (ADM)
grep grep(C) int86 int86 (DOS)
group group (F) int86x int86x(DOS)
grpcheck grpcheck (C) intdos intdos (DOS)
gsignal ssignal (S) intdosx intdosx (DOS)
haltsys haltsys (ADM) integrity integrity (ADM)
hashcheck spell (C) ioctl ioctl (S)
hashmake spell(C) ipcrm ipcrm(ADM)
hcreate hsearch(S) ipcs ipcs (ADM)
hd hd(C) ips ips(ADM)
hd hd(IJW) isalnum ctype (S)

v

isalpha ctype (S) Id 1d(CP)
isascii ctype (S) Id 1d(M)
isatty isatty (DOS) Idexp frexp (S)
isatty ttyname (S) Idfcn Idfcn (F)
isbs ips(ADM) Idfcn Idfcn (F)
iscntrl ctype(S) lex 1ex(CP)
isdigit ctype (S) Hind lsearch (S)
isgraph ctype(S) limits limits (F)
islower ctype (S) line line (C)
ismpx ismpx(C) linenum linenum (F)
isprint ctype (S) link link(ADM)
ispunct ctype (S) link link(S)
!sspace ~type (S)
Issue zssue (F)

link unix link unix(ADM)
lint -:: : lint(CP)

isupper ctype (S) list list(ADM)
isverify isverify (M) In In(C)
isxdigit ctype (S) locale locale (M)
itoa itoa(DOS) localtime ctime (S)
jO bessel (S) lock 10ck(C)
jl bessel(S) lock lock (S)
jagent jagent (M) lockf 10ck[(S)
~n be~s~l (S)
JOlD •..•..•...•......•••...•.••..•.. }ozn(C)

locking locking (S)
log exp(S)

jrand48 drand48(S) log 10g(M)
jterm jterm(C) loglO exp(S)
jwin jwin(C) login 10gin(M)
kbhit kbhit (DOS) logname log name (C)
kbmode kbmode(ADM) logname log name (S)
keyboard keyboard(HW) logs 10gs(F)
kill kill (C) longjmp setjmp (S)
kill kill (S) lorder 10rder(CP)
killall killall (ADM) Ip lp(C)
kmem mem(F) Ip lp(HW)
ksh ksh(C) IpO lp(HW)
I ... 1(C) Ipadmin 1padmin(ADM)
13tol 13tol (S) Ipfilter Ipfilter(ADM)
164a a641(S) Ipforms 1pforms(ADM)
labelit labelit (ADM) Ipmove 1psched(ADM)
labs labs(DOS) Iprint 1print(C)
langinfo lang info (F) Ipsched Ipsched (ADM)
last last (C) Ipsh lpsh(ADM)
lastlogin acctsh (ADM) Ipshut Ipsched (ADM)
layers layers (C) Ipstat lpstat(C)
layers layers (M) Ipusers 1pusers(ADM)
Ic .. 1c(C) Irand48 drand48(S)
lcong48 drand48(S) Is .. 1s(C)

vi

Isearch Isearch (S)
Iseek Iseek (S)
Itoa ltoa(DOS)
Itol3 13tol (S)
m4 m4(CP)
machid machid(C)
machine machine (HW)
mail mail (C)
maiideUvery .. maildelivery (F)
majorsinuse. majorsinuse (ADM)
make make (CP)
makekey makekey (ADM)
malloc malloc(S)
man man (C)
mapchan mapchan(F)
mapchan mapchan(M)
mapkey mapkey (M)
mapscrn mapkey (M)
mapstr mapkey (M)
masm masm(CP)
math math(M)
matherr matherr(S)
maxuuscheds . maxuuscheds (F)
maxuuxqts maxuuxqts (F)
mconvert mconvert (M)
mdevice mdevice (F)
meisa meisa (F)
mem mem(F)
memccpy memory (S)
memchr memory (S)
memcmp memory(S)
memcpy memory (S)
memset memory (S)
memtune memtune (F)
mesg mesg(C)
messages messages(M)
mestbl mestbl (M)
mfsys mfsys (F)
micnet '" micnet (F)
mkdev mkdev (ADM)
mkdir mkdir(C)
mkdir mkdir(DOS)
mkfs mkfs(ADM)
mknod mknod(C)
mknod mknod(S)
mkstr mkstr(CP)

mktemp mktemp (S)
mmdf mmdf(ADM)
mmdfalias .. mmdfalias (ADM)
mnlist mnlist(ADM)
mnttab mnttab (F)
modf frexp(S)
monacct acctsh(ADM)
monitor monitor(S)
montbl montbl (M)
more more(C)
mount mount(ADM)
mount mount(S)
mountall mountall (ADM)
mouse mouse(HW)
movedata movedata (DOS)
mrand48 drand48(S)
mscreen mscreen (M)
msgctl msgctl (S)
msgget msgget(S)
msgop msgop(S)
mtune mtune (F)
multiscreen multiscreen (M)
mv mv(C)
mvdir mvdir(ADM)
nap nap(S)
nbwaitsem waitsem (S)
ncheck ncheck(ADM)
netutil netutil (ADM)
newform newform(C)
newgrp newgrp(C)
news news(C)
nextkey dbm(S)
nice nice (C)
nice nice (S)
nictable nictable (ADM)
nl nl(C)
nUst nlist(S)
nlsadmin nlsadmin(ADM)
nl_ type nC type (F)
nm nm(CP)
nohup nohup(C)
nrand48 drand48(S)
null null (F)
nulladm acctsh (ADM)
numtbl numtbl (M)
od od(C)

vii

open open(S) ps ps(C)
opendir directory (S) pseat pscat(C)
opensem opensem(S) pstat pstat(C)
otar otar(C) ptraee ptrace (S)
outp outp(DOS) purge purge (C)
pack pack(C) purge purge(F)
parallel parallel (HW) pute putc(S)
passwd passwd(C) puteh putch (DOS)
passwd passwd(F) putehar putc(S)
paste paste (C) putenv putenv(S)
pause pause(S) putpwent putpwent(S)
pax pax(C) puts puts(S)
peat pack (C) pututline getut (S)
pclose popen(S) putw putc(S)
pepio pcpio(C) pweheek pwcheck(C)
peu pcu(ADM) pwd pwd(C)
permissions permissions (F) qsort qsort(S)
perror perror(S) queue queue (F)
pg pg(C) queuedefs queuedeJs(F)
pipe pipe(S) quot quot(C)
plock plock(S) ramdisk ramdisk(HW)
plot plot(F) rand rand(S)
pneh pnch (F) random random(C)
poll poll (F) ranlib ranlib(CP)
popen popen(S) ratfor ratfor(CP)
pow ~ exp(S) reO rcO(ADM)
powerfail powerfail (M) re2 rc2(ADM)
pr pr(C) rep rcp(C)
prctmp acctsh (ADM) revtrip rcvtrip (C)
prdaily acctsh (ADM) rdehk rdchk(S)
prf prf(HW) read read(S)
prfde profiler(ADM) readdir directory (S)
prfld profiler(ADM) realloc malloc(S)
prfpr profiler(ADM) reboot haltsys (ADM)
prfsnap profiler(ADM) red ed(C)
prfstat profiler(ADM) reduce reduce (ADM)
printf printf(S) regemp regcmp (CP)
proctl proctl (S) regemp regex(S)
prof proJ(CP) regex regex(S)
profil profil(S) regexp regexp (S)
profile profile (M) reject accept (ADM)
profiler profiler(ADM) reloc reloc(F)
promain promain(M) relogin relogin (ADM)
proto proto (ADM) remote remote(C)
prs prs(CP) removepkg . removepkg (ADM)
prtaect acctsh (ADM) rename rename (DOS)

viii

restart restart (M) semctl semctl (S)
restore restore (ADM) semget semget(S)
rewind fseek(S) semop semop(S)
rewinddir directory (S) send send (ADM)
rm rm(C) serial serial (HW)
rmail rmail (ADM) setbuf setbuf(S)
rmb rnzb(M) setclock setclock (ADM)
rmdel rmdel (CP) setcolor setcolor(C)
rmdir rm(C) setgid setuid (S)
rmdir rmdir(DOS) setgrent getgrent(S)
routines routines (ADM) setjmp setjmp (S)
rsh rsh(C) setkey setkey (C)
rtc rtc(HW) setlocale setlocale (S)
runacct acctsh (ADM) setmnt setmnt(ADM)
runacct runacct(ADM) setmode setmode(C)
sal sar(ADM) setmode setmode (DOS)
sa2 sar(ADM) setpgrp setpgrp (S)
sact sact(CP) setpwent getpwent (S)
sadc sar(ADM) settime settime (ADM)
sag sag (ADM) setuid setuid (S)
sar sar(ADM) setutent getut(S)
sbrk sbrk(S) setvbuf setbuf(S)
scanf scanf(S) sfsys sfsys (F)
sccsdiff sccsdijf(CP) sgetl sputl(S)
sccsfile sccsfile (F) sh sh(C)
schedule schedule (ADM) shl shl(C)
scnhdr scnhdr(F) shmctl shmctl(S)
scr_dump scr_dump(F) shmget shmget(S)
screen screen (HW) shmop shmop(S)
scsi scsi (HW) shutacct acctsh (ADM)
scsinfo scsinfo (ADM) shutdn shutdn(S)
sdb sdb(CP) shutdown shutdown(ADM)
sddate sddate (C) signal signal(S)
sdenter sdenter(S) sigsem sigsem(S)
sdevice sdevice (F) sin trig (S)
sdfree sdget(S) sinh sinh(S)
sdget sdget(S) size size (CP)
sdgetv sdgetv (S) sleep sleep (C)
sdiff sdiff(C) sleep sleep (S)
sdleave sdenter(S) sop en sopen(DOS)
sdwaitv sdgetv(S) sort sort(C)
sed sed (C) spawnl spawn(DOS)
seed48 drand48(S) spawnvp spawn(DOS)
seekdir directory (S) spell spell (C)
segread segread(DOS) spellin spell (C)
select select (S) spline spline (C)

ix

split split (C) su su(C)
sprintf printf(S) submit submit(ADM)
sputl sputl (S) subsystem subsystem (M)
sqrt exp (S) sulogin sulogin(ADM)
srand48 rand(S) sum sum(C)
sscanf scanf(S) swab swab(S)
ssignal ssignal (S) swap swap(ADM)
startup acctsh (ADM) swconfig swconfig(C)
stat stat (F) sxt sxt(M)
stat stat(S) syms syms (F)
statfs statfs (S) sync sync(ADM)
stdio stdio(S) sync sync(S)
stime stime (S) sys_errlist perror(S)
store dbm(S) sys_nerr perror(S)
strace strace(ADM) sysadmsh sysadmsh(ADM)
strcat string(S) sysdef sysdef(ADM)
strchr string(S) sysfiles sysfiles (F)
strclean strclean (ADM) sysi86 sysi86(S)
strcmp string (S) system system(S)
strcpy string(S) systemid systemid (F)
strcspn string(S) systems systems (F)
strdup string (S) systty systty (M)
strerr strerr(ADM) tables tables (F)
streamio streamio (M) tabs tabs (C)
strftime strftime (S) tail tail (C)
string string(S) tam tam(S)
strings strings (C) tan trig(S)
strip strip (CP) tanh sinh(S)
strlen strlen (DOS) tape tape(C)
strlwr strlwr(DOS) tape tape (HW)
strmcfg strmcfg (ADM) tapecntl tapecntl (C)
strmtune strmtune(ADM) tapedump tapedump(C)
strncat string (S) tar tar (C)
strncmp string (S) tar tar(F)
strncpy string (S) tcbck tcbck (ADM)
strpbrk string (S) tdelete tsearch (S)
strrchr string(S) tee tee (C)
strrev strrev(DOS) tell tell (DOS)
strset strset (DOS) telldir directory (S)
strspn string(S) tempnam tmpnam(S)
strtod strtod(S) term term(F)
strtok string(S) termcap termcap (F)
strtol strtol (S) terminal terminal (HW)
strupr strupr(DOS) terminals terminals (M)
stty stty (C) "terminfo" "terminfo"(F)
stune stune (F) "terminfo" "terminfo"(M)

x

"terminfo" "terminfo"(S) TZ tz(M)
termio termio (M) tzset ctime (S)
termios termios (M) uadmin uadmin(S)
test test(C) uconfig uconfig(ADM)
tfind tsearch (S) uUmit ulimit(S)
tgetent termcap (S) ultoa ultoa(DOS)
tgetfiag termcap(S) umask umask(C)
tgetnum termcap (S) umask umask(S)
tgetstr termcap (S) umount umount(ADM)
tgoto termcap (S) umount umount(S)
tic tic (C) umountall mountall (ADM)
time time (C) uname uname (C)
time time (S) uname uname(S)
times times (S) uncompress compress(C)
time" timex(ADM) unget unget(CP)
timezone timezone (F) ungetc ungetc(S)
timod timod (M) ungetch ungetch (DOS)
tirdwr tirdwr(M) uniq uniq(C)
tmpfile tmPfile(S) unistd unistd (F)
tmpnam tmpnam(S) units units(C)
toascii conv(S) unlink link (ADM)
toascii ctype (S) unlink unlink(S)
tolower conv(S) unpack pack(C)
tolower ctype (S) upcfg upsc[g (S)
top top(F) upsconfig upsconfig(ADM)
top.ned top (F) uptime uptime (C)
touch touch (C) usemouse usemouse(C)
toupper conv(S) ustat ustat(S)
toupper ctype (S) utime utime(S)
tplot tplot(ADM) utmp utmp(F)
tput tput(C) utmpname getut(S)
tputs termcap(S) uuchat dial (ADM)
tr .. tr(C) uucheck uucheck(ADM)
translate translate (C) uucico uucico (ADM)
trchan trchan(M) uuclean uuclean (ADM)
true true (C) uucp uucp(C)
tsearch tsearch (S) uuencode uuencode(C)

- tset tset(C) uugetty uugetty (ADM)
tsort tsort(CP) uuinstall uuinstall (ADM)
tty tty (C) uulist uulist(ADM)
tty tty(M) uulog uucp(C)
ttyname tty name (S) uuname uucp(C)
ttyslot ttyslot (S) uupick uuto(C)
turnacct acctsh(ADM) uusched uusched(ADM)
twalk tsearch(S) uustat uustat(C)
types types (F) uuto uuto(C)

xi

uutry uutry(ADM) xt xt(HW)
uux UUX(C) xtod xtod (C)
uuxqt uuxqt(ADM) xtproto xtproto (M)
val val(CP) xts xts(ADM)
values values (M) xtt xtt(ADM)
varargs varargs(S) yO bessel (S)
ve vc(C) yl bessel (S)
vddaemon ... vddaemon(ADM) yaee yacc (CP)
vdinfo vdinfo (ADM) yes yes (C)
vdutil vdutil (ADM) yn bessel (S)
vectorsinuse. vectorsinuse (ADM) zeat compress(C)
vedit vi(C)
vfprintf vprint/(S)
vi vi(C)
vidi vidi (C)
view vi(C)
vmstat vmstat (C)
voleopy volcopy (ADM)
vprintf vprint/(S)
vsprintf vprint/(S)
w .. w(C)
wait wait(C)
wait wait(S)
waitsem waitsem(S)
wall wall(ADM)
we wc(C)
what what(C)
who who(C)
whodo whodo(C)
write write (C)
write write (S)
wtinit wtinit(ADM)
wtmp utmp(F)
wtmpfix fwtmp(ADM)
x286emul x286emul (C)
xatgs xargs(C)
xbaekup xbackup (ADM)
xbaeku p xbackup (F)
xinstall xinstall (ADM)
xlist xlist (S)
xpreat xprcat(C)
xprsetup xprsetup (ADM)
xprtab xprtab (F)
xref xre/(CP)
xrestore xrestore (ADM)
xstr xstr(CP)

xii

Altos UNIX® System V/386
Release 3.2

(C) Commands

...... :-:: ..
.. '.'

' ...

Contents

Commands (C)

Intro
300,300s

4014
450
assign, deassign
at, batch
auths
awk
banner
basename
bc
bdiff
bfs
cal
calendar
cat
cd
checkmail

chgrp
chmod
chown
clear
cmchk
cmp
col
comm
compress,
uncompress, zcat

copy
cp
cpio
cron

crontab

introduces Altos UNIX System V commands
handle special functions of DASI 300 and 300s
terminals
paginator for the TEKTRONIX 4014 terminal
handle special functions of the DASI 450 terminal
assigns and deassigns devices
executes commands at a later time
list and/or restrict kernel authorizations
pattern scanning and processing language
prints large letters
removes directory names from pathnames
invokes a calculator
compares files too large for diff(e)
scans big files
prints a calendar
invokes a reminder service
concatenates and displays files
changes working directory
checks for mail which has been submitted but not
delivered
changes group ID
changes the access permissions of a file or directory
changes owner ID
clears a terminal screen
reports hard disk block size
compares two files
filters reverse linefeeds
selects or rejects lines common to two sorted files

compress data for storage, uncompress and display
compressed files
copies groups of files
copies files
copy file archives in and out
executes commands scheduled by at, batch, and
crontab
schedule commands to be executed at regular
intervals

crypt
csb

csplit
cu
cut
date
dc
dd
devnm
df
ditf
dift3
dircmp
dirname
disable
diskcp, diskcmp
dos: doscat,
doscp, dosdir,
dosformat,
dosmkdir, dosls,
dosrm, dosrmdir

dtox
dtype
du
echo
ed, red
enable
env
ex, edit
expr
factor
false
file
find
finger
fixhdr
format
fuser
getopt
getopts, getoptcvt
gets
greek

ii

encode/decode
invokes a shell command interpreter with C-like
syntax
splits files according to context
call another UNIX/XENIX system
cuts out selected fields of each line of a file
prints and sets the date
invokes an arbitrary precision calculator
converts and copies a file
identi fies device name
report number of free disk blocks
compares two text files
compares three files
compares directories
delivers directory part of pathname
turns off terminals and printers
copies or compares floppy disks

access to and manipulation of DOS files and DOS
filesystems
change file fonnat from MS-DOS to UNIX
detennines disk type
summarizes disk usage
echo arguments
invokes the text editor
turns on terminals and line printers
sets environment for command execution
invokes a text editor
evaluates arguments as an expression
factor a number
returns with a nonzero exit value
determines file type
finds files
finds infonnation about users
changes executable binary file headers
fonnat floppy disks and mini-cartridge tapes
Identify processes using a file or file structure
parses command options
parses command options
gets a string from the standard input
select terminal filter

grep, egrep, fgrep
grpcheck
hd
head
hello
hostid
hp

hwconfig
i286emul
id
ismpx
join
jterm
jwin
kill
ksh,rksh

last
layers
Ic
line
In
lock
logname
Ip, cancel
Iprint
Ipstat
Is
machid: i386
mail
man
mesg
mkdir
mknod
mnt, umnt
more
mv
newform
newgrp
news
nice
nl

searches a file for a pattern
checks group file
displays files in hexadecimal format
prints the first few lines of a file
send a message to another user
Print unique hardware ID
handle special functions of Hewlett-Packard
terminals
read the configuration information
emulate UNIX 80286
prints user and group IDs and names
return windowing terminal state
joins two relations
reset layer of windowing terminal
print size of layer
terminates a process
KornShell, a standard/restricted command and
programming language
lists information about contents of directory
indicate last logins of users and teletypes
layer multiplexer for windowing terminals
lists directory contents in columns
reads one line
makes a link to a file
locks a user's terminal
gets login name
send/cancel requests to lineprinter
print to a printer attached to the user's terminal
print information about status of LP print service
gives information about contents of directories
get processor type truth value
interactive message processing system
prints reference pages in this guide
permits or denies messages sent to a terminal
makes a directory
builds special files
mount a filesystem
views a file one screen full at a time
moves or renames files and directories
changes the format of a text file
logs user into a new group
print news items
runs a command at a different scheduling priority
adds line numbers to a file

iii

nohup
od
otar
pack, pcat,
unpack
passwd

paste
pax
pcpio
pg
pr
ps
pscat
pstat
ptar
purge
pwcheck
pwd
quot
random
rcp
rcvtrip
remote
rm
rmdir
rsh
sddate
sdiff
sed
setcolor,
setcolour
setkey
setmode
sh
shl
sleep
sort
spell, hashmake,
spellin,
hashcheck
spline
split
strings

iv

runs a command immune to hangups and quits
displays files in octal format
original tape archive command

compresses and expands files
change login, modem (dialup shell), filesystem, or
group password
merges lines of files
portable archive exchange
copy file archives in and out
file perusal filter for soft-copy terminals
prints files on the standard output
reports process status
ASCII-to-PostScript filter
reports system information
process tape archives
overwrites specified files
checks password file
prints working directory name
summarizes file system ownership
generates a random number
copies files across systems
notifies mail sender that recipient is away
executes commands on a remote system
removes files or directories
removes directories
invokes a restricted shell (command interpreter)
prints and sets backup dates
compares files side-by-side
invokes the stream editor

set screen color and other screen attributes
assigns the function keys
Port modes utility
invokes the shell command interpreter
shell layer manager
suspends execution for an interval
sorts and merges files

finds spelling errors
interpolates smooth curve
splits a file into pieces
find the printable strings in an object file

stty
su
sum
swconfig

tabs
tail
tape, mcart
tapecntl
tapedump
tar
tee
test
tic
time
touch
tput
tr
translate
true
tset
tty
umask
uname
uniq
units
uptime
usemouse

uucp, uulog,
uuname
uuencode,
uudecode
uustat
uuto, uupick
uux
vc
vi, view, vedit
vidi
vmstat
w

wait
wc

sets the options for a terminal
makes the user a super-user or another user
calculates checksum and counts blocks in a file
produces a list of the software modifications to the
system
set tabs on a tenninal
displays the last part of a file
magnetic tape maintenance program
AT&T tape control for QIC-24/QIC-02 tape device
dumps magnetic tape to output file
archives files
creates a tee in a pipe
tests conditions
terminfo compiler
times a command
updates access and modification times of a file
queries the terminfo database
translates characters
translates files from one format to another
returns with a zero exit value
provide information to set terminal modes
gets the terminal's name
sets file-creation mode mask
prints the name of the current system
reports repeated lines in a file
converts units
displays information about system activity
maps mouse input to keystrokes for use with non­
mouse based programs

UNIX-to-UNIX system copy

encode/decode a binary file for transmission via mail
uucp status inquiry and job control
public UNIX-to-UNIX system file copy
UNIX-to-UNIX system command execution
version control
invokes a screen-oriented display editor
sets the font and video mode for a video device
report paging and system statistics
displays information about who is on the system and
what they are doing
awaits completion of background processes
counts lines, words and characters

v

what
who
whodo
write
x286emul
xargs
xprcat
xtod
yes

vi

identi fies files
lists who is on the system
determines who is doing what
writes to another user
emulate XENIX 80286
constructs and executes commands
use transparent printer over modem line
change file format from UNIX to MS-DOS
prints string repeatedly

INTRO (C) INTRO (C)

Intro
introduces Altos UNIX System V commands

Description

This section describes how to use many of the general-purpose com­
mands available in the Altos UNIX System V Operating System.
These command are labeled with a C, as with date (C). The letter
"c" stands for "command."

Other commands have different labels, such as CP (for "Command
Programming") or M (for "Miscellanous "). Refer to the "Preface"
of this manual for a list of all the different reference sections, what
commands and utilities each section describes, and in which manual
each section is located.

Note that some reference sections, most notable the CP and S sections,
are included only with the Development System, which is an optional
supplemental package not always included with the standard Operat­
ing System.

Syntax

Unless otherwise noted, commands described in the Syntax section of
a manual page accept options and other arguments according to the
following syntax and should be interpreted as explained below.

name [-option ... J [cmdarg ... J

where:

[] Square brackets surround an option or cmdarg that is
not required.

A pipe (vertical bar) separates mutually exclusive
options. Choose one of the items separated by this
symbol.

Ellipses (three periods) indicate multiple occurrences
of the option or cmdarg .

name This specifies the name of an executable file.

option (Always preceded by a "-".)
noargletter ... or,
argletter optarg [, ...]

March 15,1991 INTR0-1

INTRO (C)

noargletter

argletter

optarg

cmdarg

INTRO (C)

A single letter representing an option without an
option-argument. Note that more than one noargletter
option can be grouped after one "-" (Rule 5 in the
following text).

A single letter representing an option requiring an
option-argument.

An option-argument (character string) satisfying a
preceding argletter. Note that groups of optargs fol­
lowing an argletter must be separated by commas or
separated by white space and quoted (Rule 8 below).

Path name (or other command argument) not begin­
ning with "-", or "-" by itself indicating the standard
input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current com­
mands, but all new commands use them. getopts (C) should be used
by all shell procedures to parse positional parameters and to check for
legal options. It supports Rules 3-10 below. The enforcement of the
other rules must be done by the command itself.

1. Command names (name above) must be between two and
nine characters long.

2. Command names must include only lowercase letters and
digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by "-".

5. Options with no arguments may be grouped after a. single
" "

6. The first option-argument (optarg above) following an
option must be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either
be separated by commas or separated by white space and
quoted (e.g., -0 xxx,z,yy or -0 "xxx Z yylt).

9. All options must precede operands (cmdarg above) on the
command line.

March 15, 1991 INTR0-2

INTRO (C) INTRO (C)

10. " •• " may be used to indicate the end of the options.

11. The order of the options relative to one another should not
matter.

12. The relative order of the operands (cmdarg above) may
affect their significance in ways determined by the command
with which they appear.

13. "." preceded and followed by white space should only be
used to mean standard input.

See Also

getopts(C), exit(S), waiteS), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the
case of "normal" termination) one supplied by the program (see
waiteS) and exit(S». The former byte is 0 for normal termination; the
latter is customarily 0 for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It is
called variously "exit code", "exit status", or "return code", and is
described only where special conventions are involved.

Notes

Not all commands adhere to the syntax described here.

March 15, 1991 INTR0-3

300 (C) 300 (C)

300,300s
handle special functions of DASI 300 and 300s termi­
nals

Syntax

300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

Description

The 300 command supports special functions and optimizes the use of
the DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same
functions for the DASI 300s (GSI 300s or DTC 300s) terminal. It con­
verts half-line forward, half-line reverse, and full-line reverse motions
to the correct vertical motions. In the following discussion of the 300
command, it should be noted that unless your system contains the text
processing software, references to certain commands (e.g., nroff,
neqn, eqn, etc.) will not work. It also attempts to draw Greek letters
and other special symbols. It permits convenient use of l2-pitch text.
It also reduces printing time 5 to 70%. The 300 command can be used
to print equations neatly, in the sequence:

neqn file •.. I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned
on before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle l2-pitch text, fractional line spacings, messages, and delays.

+12 permits use of l2-pitch, 6 lines/inch text. DASI 300 termi­
nals normally allow only two combinations: lO-pitch, 6
lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch,
6 lines per inch combination, the user should turn the
PITCH switch to 12, and use the +12 option.

March 15, 1989 300-1

300 (C)

-n

-dt,l,c

300 (C)

controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because each
increment equals 1/48 of an inch, a 10-pitch line-feed
requires 8 increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the default value, thus
allowing for individual taste in the appearance of sub­
scripts and superscripts. For example, nroffhalf-lines could
be made to act as quarter-lines by using -2. The user could
also obtain appropriate half-lines for 12-pitch, 8 lines/inch
mode by using the option -3 alone, having set the PITCH
switch to 12-pitch.

controls delay factors. The default setting is -d3,90,30.
DASI 300 terminals sometimes produce peculiar output
when faced with very long lines, too many tab characters,
or long strings of blankless, non-identical characters. One
null (delay) character is inserted in a line for every set of t
tabs, and for every contiguous string of c non-blank, non­
tab characters. If a line is longer than I bytes, 1 +(total
length)/20 nulls are inserted at the end of that line. Items
can be omitted from the end of the list, implying use of the
default values. Also, a value of zero for t (c) results in two
null bytes per tab (character). The former may be needed
for C programs, the latter for files like letc/passwd.
Because terminal behavior varies according to the specific
characters printed and the load on a system, the user may
have to experiment with these values to get correct output.
The -d option exists only as a last resort for those few cases
that do not otherwise print properly. For example, the file
/etc/passwd may be printed using -d3,30,5. The value
-dO,! is a good one to use for C programs that have many
levels of indentation.

Note that the delay control interacts heavily with the pre­
vailing carriage return and line-feed delays. The stty (C)
modes nIO cr2 or nIO cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests,
when it is necessary to insert paper manually or change fonts in the
middle of a document. Instead of hitting the return key in these cases,
you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -DOO files. .. and nroff files ... I 300
nroff -T300-12 files . . . and nroff files. .. I 300 + 12

The use of 300 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move­
ment optimization of 300 may produce better aligned output.

March 15, 1989 300-2

300 (C)

See Also

450(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

Notes

300 (C)

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction­
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 300-3

4014 (C)

4014
paginator for the TEKTRON IX 4014 terminal

Syntax

4014 [-t] [-n] [-eN] [-pL] [file]

Description

4014 (C)

The output of 4014 is intended for a TEKTRONIX 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen into
N columns, and contributes an eight-space page offset in the (default)
single-column case. Tabs, spaces, and backspaces are collected and
plotted when necessary. TELETYPE Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014
waits for a new-line (empty line) from the keyboard before continuing
on to the next page. In this wait state, the command !cmd will send
the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.

-eN
Divide the screen into N columns and wait after the last column.

-pL
Set page length to L; L accepts the scale factors i (inches) and I
(lines); default is ·lines.

See Also

pr(C)

March 15, 1 989 4014-1

450 (C) 450 (C)

450
handle special functions of the DASI 450 terminal

Syntax

450

Description

The 450 command supports special functions of, and optimizes the
use of, the DASI 450 terminal, or any terminal that is functionally
identical, such as the Diablo 1620 or Xerox 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct
vertical motions. It also attempts to draw Greek letters and other spe­
cial symbols in the same manner as 300(C). It should be noted that,
unless your system contains text processing software, certain com­
mands (e.g., eqn, nroff, tbI, etc.) will not work. Use 450 to print
equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: Make sure that the PLOT switch on your terminal is ON
before 450 is used. The SPACING switch should be put in the desired
position (either 10- or 12-pitch). In either case, vertical spacing is 6
lines/inch, unless dynamically changed to 8 lines per inch by an ap­
propriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to
insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line­
feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor
of one of the following:

nroff -T450 files ...
or

nroff -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move­
ment optimization of 450 may produce better aligned output.

See Also

300(C), mesg(C), stty(C), tabs(C), graph(ADM), tplot(ADM)

March 15. 1989 450-1

450 (C)

Notes

450 (C)

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use it friction­
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 450-2

ASSIGN (C)

assign, deassign
assigns and deassigns devices

Syntax

assign [-u] [-v] [-d] [device] ...

deassign [-u] [-v] [device] ...

Description

ASSIGN (C)

assign attempts to assign device to the current user. The device argu­
ment must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable de­
vices along with the name of the user to whom they are assigned.

deassign is used to "deassign" devices. Without any arguments,
deassign will deassign all devices assigned to the user. When argu­
ments are given, an attempt is made to deassign each device given as
an argument.

With these commands you can exclusively use a device, such as a tape
drive or floppy drive. This keeps other users from using the device.
They have a similar effect as chown(C) and chmod(C), although they
only act on devices in /dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded
in device names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error check-
ing.

The assign command will not assign any assignable devices if it can­
not assign all of them. deassign gives no diagnostic if the device can­
not be deassigned. Devices can be automatically deassigned at
logout, but this is not guaranteed. Device names can be just the begin­
ning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of de­
vice will also be assigned, e.g., the raw floppy disk devices /dev/rfd?
would be assigned in the above example.

March 15, 1989 ASSIGN-1

ASSIGN (C) ASSIGN (C)

Note that in many installations the assignable devices such as floppy
disks have general read and write access, so the assign command may
not be necessary. This is particularly true on single-user systems. De­
vices supposed to be assignable with this command should be owned
by the user asg. The directory Idev should be owned by bin and have
mode 755. The assign command (after checking for use by someone
else) will then make the device owned by whoever invokes the com­
mand, without changing the access permissions. This allows the sys­
tem administrator to set up individual devices that are freely avail­
able, assignable (owned by asg), or nonassignable and restricted (not
owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable de­
vices table letc/atab. This table is used in subsequent invocations to
save repeated searches of the Idev directory. If one of the devices in
Idev is changed to be assignable or unassignable (Le., owned by asg),
then letc/atab should be removed (by the super-user) so that a correct
list will be built the next time the command is invoked.

Files

/etc/atab Table of assignable devices
/dev/asglock File to prevent concurrent access

Diagnostics

Exit code 0 returned if successful, 1 if problems, 2 if device cannot be
assigned.

March 15, 1989 ASSIGN-2

AT (C) AT (C)

at, batch
executes commands at a later time

Syntax

at time [date] [increment]

at -r job-id .. .

at -l[job-id ...]

at -qletter time [date] [increment]

batch

Description

at and batch both accept one or more commands from the standard
input to be executed at a later time. at and batch differ in the way the
set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when
the system load level permits. After a job is queued with either com­
mand, the program writes a job identifier (a number and a letter),
along with the time the job will execute, to standard error.

at takes the following arguments:

time The time can be specified as 1, 2, or 4 digits. One- and two­
digit numbers are taken to be hours, four digits to be hours and
minutes. The time can alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
can be appended; otherwise a 24-hour clock time is understood.
The suffix zulu can be used to indicate Greenwich Mean Time
(GMT). The special names noon, midnight, and now are also
recognized.

date An optional date can be specified as either a month name fol­
lowed by a day number (and possibly year number preceded by
an optional comma) or a day of the week (fully spelled or abbre­
viated to three characters). Two special "days," today and
tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less
than the current month (and no year is given), next year is
assumed.

March 15, 1989 AT-1

AT (C) AT (C)

increment
The time and optional date arguments can be modified with an
increment argument of the form "+n units", where n is an
integer and units is one of the following: minutes, hours, days,
weeks, months, or years. The singular form is also accepted,
and "+1 unit" can also be written "next unit". Thus, legiti­
mate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday next week

-r job-id ...
Removes the specified job or jobs previously scheduled by the at
or batch command. job-id is a job identifier returned by at or
batch. Unless you are the super-user, you can only remove your
own jobs.

-I [job-id ...]
Lists schedule times of specified jobs. If no job-ids are specified,
lists all jobs currently scheduled for the invoking user. Unless you
are the super-user, you can only list your own jobs.

-qletter
Places the specified job in a queue denoted by letter, where letter
is any lowercase letter from "a" to "z". The queue letter is
appended to the job identifier. The following letters have special
significance:

a at queue
b batch queue
c cron queue

For more information on the use of different queues, see the
queuedefs (F) manual page.

batch takes no arguments; it submits a job for immediate execution at
lower priority than an ordinary at job.

at and batch jobs are executed using sh(C). Standard output and stan­
dard error output are mailed to the user unless they are redirected else­
where. The shell environment variables, current directory, umask, and
ulimit are retained when the commands are executed. Open file
descriptors, traps, and priorities are lost.

Users are permitted to use at and batch if their names appear in the
file /usrlIib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if a given user should
be denied access to at and batch. If neither file exists, only root is
allowed to submit a job. If only the at.deny file exists, and it is empty,
global usage is permitted. The allow/deny files consist of one user
name per line.

March 15, 1989 AT-2

AT (C)

Examples

AT (C)

The simplest way to use at is to place a series of commands in a file,
one per line, and execute these commands at a specified time with the
following command:

at time < file

The following sequence can be used at a terminal to format the file
infile using the text formatter nrojJ{CT), and place the output in the file
outfile.

batch
nroff injile > outjile
(CfL)-d

The next example demonstrates redirecting standard error to a pipe
(I), which is useful in a shell procedure. The file infile is formatted
and the output placed in outfile, with any errors generated being
mailed to user (output redirection is covered on the sh(C) manual
page).

batch «I
nroff injile 2>&1 >outfile I mail user
1

To have a job reschedule itself, invoke at from within the job. For
example, if you want shellfile to run every Thursday, executing a
series of commands and then rescheduling itself for the next Thursday,
you can include code similar to the following within shell file:

echo fIsh shellfile" I at 1900 thursday next week

Files

/usr/lib/cron

/usr/lib/cron/at.allow

/usr/lib/cron/at.deny

/usr/lib/cron/queuedefs

/usr/spool/cron/atjobs

March 15, 1989

main cron directory

list of allowed users

list of denied users

scheduling information

spool area

AT-3

AT(C)

See Also

cron(C). kill(C). mail(C). nice(C). ps(C). sh(C), queuedefs(F)

Diagnostics

Complains about syntax errors and times out of range.

Standards Conformance

at and batch are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15. 1989

AT (C)

AT-4

AUTHS(C) AUTHS(C)

auths
list and/or restrict kernel authorizations

Syntax

auths [-v] [-a authlist] [-r authlist] [-c command]

Description

auths performs actions associated with system privilege manipulation.
With no arguments, auths returns the kernel authorizations associated
with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authori­
zations in order to run a shell or a single command. The -a option
requires a list of comma-separated authorizations, which become the
absolute set of kernel authorizations for the new process. This new set
must be a subset of the kernel authorizations of the invoking process.
To start a process with a null set of kernel authorizations, use the
empty string '"'). The -r option also takes as argument a comma
separated list of authorizations. These are removed from the authori­
zation set of the invoking process when forming the kernel authoriza­
tions for the new process.

The argument to the -c option is passed to the user's shell as specified
in the user's /etc/passwd entry which is run as a single command. The
user's shell must support the

-c command

syntax similar to sh(C). When the argument is absent (and -a or -r is
specified), the user's shell is invoked as a process with adjusted
authorizations. Exiting that shell will resume execution in the previ­
ous shell and the original kernel authorizations will be in effect. This
option may be used to run a command with restricted authorizations,
i.e. fewer than those allowed the user in the protected Password data­
base entry.

The -v option lists the. new kernel authorizations before the new com­
mand or shell is run. It also warns with the -a option when more
authorizations are attempted to be set than already exist or with the -r
option when more authorizations are attempted to be removed than
already exist.

March 15, 1989 AUTHS-1

AUTHS(C) AUTHS(C)

The kernel authorizations are:

execsuid - allows the running of SUID programs
nopromain - does not restrict file access when running SUID
programs
writeaudit - process can write directly to the audit trail
configaudit - process can change audit subsystem parameters
suspendaudit - process is not audited by the kernel
chmodsugid - process can set SUID and OlD bits on files
chown - process can change file ownership

Examples

To execute a shell without the execsuid kernel authorization:

auths -r execsuid

To list the current kernel authorizations:

auths

To execute yourprog with no kernel authorizations:

auths -a "" -c yourprog

To execute myprog with chmodsugid and execsuid:

auths -a chmodsugid,execsuid -c myprog

See Also

sh(C), promain(M), getpriv(S), setpriv(S), getprpwent(S), "Using a
Trusted System" in the User's Guide

March 15, 1989 AUTHS-2

AWK (C) AWK.(C)

awk

pattern scanning and processing language

Syntax·

awk [-F re] [parameter ...] ['prog'] [-fprogfile] [file ...]

Description

The -F re option defines the input field separator to be the regular
expression reo

Parameters, in the form X= ... y= ... may be passed to awk, where x and
yare awk built-in variables (see list below).

awk scans each input file for lines that match any of a set of patterns
specified in prog. The prog string must be enclosed in single quotes
(') to protect it from the shell. For each pattern in prog there may be
an associated action performed when a line of a file matches the pat­
tern. The set of pattern-action statements may appear literally as prog
or in a file specified with the -f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name - means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space.
(This default can be changed by using the FS built-invariable or the
-F re option.) The fields are denoted $1, $2, ... ; $0 refers to the entire
line. '

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action with a
pattern, the matching line is printed. If there is no pattern with an
action, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (!, I I,' &&, and
parentheses) of rational expressions and regular expressions. A rela-

March 15, 1989 AWK-1

AWK (C) AWK (C)

tional expression is one of the following:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop
is either - (contains) or ! - (does not contain). A conditional is an
arithmetic expression, a relational expression, the special expression

var in array,

or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(C». In patterns they
must be surrounded by slashes. Isolated regular expressions in a pat­
tern apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and next occurrence of
the second pattern.

A regular expression may be used to separate fields by using the -F re
option or by assigning the expression to the built-in variable FS . The
default is to ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

Other built-in variables include:

ARGC
ARGV
FILENAME
FNR
FS

NF
NR
OFMT

OFS

ORS

RS

March 15, 1989

command line argument count
command line argument array
name of the current input file
ordinal number of the current record in the current file
input field separator regular expression (default blank)
number of fields in the current record
ordinal number of the current record
output format for numbers (default %.6g)
output field separator (default blank)
output record separator (default new-line)
input record separator (default new-line)

AWK-2

AWK (C) AWK (C)

An action is a sequence of statements. A statement may be' one of the
following:

if (conditional) statement [else statement]
while (conditional) statement
do statement while (conditional)
for (expression ; conditional ; expression) statement
for (var in array) statement
delete array [subscript]
break
continue
{ [statement] ... }
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new lines, or right braces.
An empty expression-list stands for the whole input line. Expressions
take on string or numeric values as appropriate, and are built using the
operators +, ., *, /, %, and concatenation (indicated by a blank). The
C operators ++, --, +=, -=, *=, /=, and %= are also available in
expressions. Variables may be scalars, array elements (denoted xli]),
or fields. Variables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output, or on
a file if >expression is present, or on a pipe if I cmd is present. The
arguments are separated by the current output field separator and ter­
minated by the output record separator. The printf statement formats
its expression list according to the format (see printf(S) in the
Programmer's Reference).

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt,
and srand. int truncates its argument to an integer. rand returns a ran­
dom number between 0 and 1. srand (expr) sets the seed value for
rand to expr or uses the time of day if expr is omitted.

The string functions are:

gsub(for, repl, in)

March 15, 1989

behaves like sub (see below), except that it replaces
successive occurrences of the regular expression
(like the ed global substitute command).

AWK-3

AWK (C)

index(s, t)

Zength(s)

match(s, re)

split(s, a,fs)

AWK (C)

returns the position in string s where string t first
occurs, or 0 if it does not occur at all.

returns the length of its argument taken as a string, or
of the whole line if there is no argument.

returns the position in string s where the regular
expression re occurs, or 0 if it does not occur at all.
RSTART is set to the starting position (which is the
same as the returned value), and RLENGTH is set to
the length of the matched string.

splits the string s into array elements a[1], a[2], a[n],
and returns n. The separation is done with the regu­
lar expressionfs or with the field separator FS if fs is
not given.

sprintfifmt, expr, expr, ...)
formats the expressions according to the printf(S)
format given by fmt and returns the resulting string.

sub(for, repl, in) substitutes the string repl in place of the first
instance of the regular expression for in string in and
returns the number of substitutions. If in is omitted,
awk substitutes in the current record ($0).

substr(s, m, n) returns the n-character substring of s that begins at
position m.

The input/output and general functions are:

close(jilename) closes the file or pipe named filename.

cmd/getline

getline

getline <file

getline var

pipes the output of cmd into getline; each successive
call to get line returns the next line of output from
cmd.

sets $0 to the next input record from the current input
file.

sets $0 to the next record fromfile.

sets variable var instead.

getline var <file sets var from the next record offile.

system(cmd) executes cmd and returns to its. exit status.

All forms of getline return I for successful input, 0 for end of file, and
-1 for an error.

March 15, 1989 AWK-4

AWK (C) AWK (C)

awk also provides user-defined functions. Such functions may be
defined (in the pattern position of a pattern-action statement) as

function name(args, ...) { stmts }
func name(args, ...) { stmts }

Function arguments are passed by value if scalar and by reference if
array name. Argument names are local to the function; all other vari­
able names are global. Function calls may be nested and functions
may be recursive. The return statement may be used to return a
value.

Examples

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [\t]*[\t]+" }
{ print $2, $1 }

Add up the first column, print sum and average:

{ s += $1 }
END { print "sum is", s," average is", S/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/ i /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

March 15, 1989 AWK-5

AWK (C)

Simulate echo(C):

BEGIN
for (i = 1; i < ARGC; i++)

printf "%s", ARGV[i]
printf "\n"
exit
}

Print file, filling in page numbers starting at 5:

/Page/ {$2 = n++; }
{ print }

command line: awk -f program n=5 input

See Also

grep(C), sed(C), lex(CP), printf(S)

Notes

AWK (C)

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To
force an expression to be treated as a number add 0 to it; to force it to
be treated as a string concatenate the null string (" ") to it.

Standards Conformance

awk is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 AWK-6

BANNER (C)

banner
prints large letters

Syntax

banner strings

Description

BANNER (C)

banner prints its arguments (each up to 10 characters long) in large
letters on the standard output. This is useful for printing names at the
front of printouts.

See Also

echo(C)

Standards Conformance

banner is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 BANNER-1

BASENAME (C) BASE NAME (C)

basename
removes directory names from pathnames

Syntax

basename string [suffix]

Description

basename deletes any prefix ending in / and the sUffLX (if present in
string) from string, and prints the result on the standard output. The
result is the "base" name of the file, i.e., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (,,) in shell procedures to construct new
filenames.

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.

Examples

The following command displays the filename memos on the standard
output:

basename /usr/johnh/memos.old .old

The following shell procedure, when invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and moves the output to a
file named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

See Also

dimame(C), sh(C)

Standards Conformance

basename is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 BASENAME-1

BC(C) BC (C)

be
invokes a calculator

Syntax

be [-e] [-I] [file ...]

Description

be is an interactive processor for a language that resembles C but pro­
vides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The -I argument stands for the
name of an arbitrary precision math library. The syntax for be pro­
grams is as follows: L means the letters a-z, E means expression, S
means statement.

Comments:

Enclosed in 1* and *!

Names:

Simple variables: L
Array elements: L [E]
The words "base", "ibase", "obase", and "scale"; "base" and
"ibase" are interchangeable.

Other operands:

Arbitrarily long numbers with· optional sign and decimal point
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

Additive operators:

+

Number of significant decimal digits
Number of digits right of decimal point

Multiplicative operators:

* I
% (remainder)
" (exponentiation)

March 15, 1989 BC-1

Be (e)

Unary operators:

++
(prefix and postfix; apply to names)

Relational operators:

<=
>=
!=
<
>

Assignment operators:

=
=+

=*
=/
=%

Statements:

E
{ S; ... ; S }
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions:

define L (L , ... , L) {
auto L, ... , L
S; ... S
return (E)

March 1 5, 1989

Be (e)

Be-2

BC(C)

Functions in -I math library:

s(x)
c(x)
e(x)
l(x)
a(x)
j(n,x)

Sine
Cosine
Exponential
Log
Arctangent
Bessel function

All function arguments are passed by value.

BC (C)

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of de(C).
Assignments to ibase or abase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari­
able simultaneously. All variables are global to the program. "Auto"
variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

be is actually a preprocessor for de(C), which it invokes automatical­
ly, unless the -c (compile only) option is present. If the -c option is
present, the de input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

March 15, 1 989

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=l; 1==1; i++) {

a = a*x
b = b*i
c = alb
if(c == 0) return(s)
s = s+c

BC-3

BC (C) BC(C)

The following prints the approximate values of the exponential func­
tion of the fIrst ten integers:

Files

/usr/lib/lib.bc

/usr/bin/dc

See Also

dc(C)
User's Guide

Notes

for(i=l; i<=10; i++) e(i)

Mathematical library

Desk calculator proper

A For statement must have all three E's.

Quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

March 15, 1989 BC-4

BDIFF (C)

bdiff
compares files too large for diff(C)

Syntax

bditT file 1 file2 [n] [-s]

Description

BDIFF (C)

bdiff compares two files, finds lines that are different, and prints them
on the standard output. It allows processing of files that are too large
for diff. bdiff splits each file into n-line segments, beginning with the
frrst nonmatching lines, and invokes diff upon the corresponding seg­
ments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments are
too large for dijf.

-s Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from dijf.

If filel (or file2) is a dash (-), the standard input is read.

The output of bdiff is exactly that of diff. Line numbers are adjusted to
account for the segmenting of the files, and the output looks as if the
files had been processed whole.

Files

/tmplbd?????

See Also

diff(C)

Notes

Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far
down in the file for diff and an error is received.

March 15, 1 989 BDIFF-1

BFS(C) BFS (C)

bfs
scans big files

Syntax

bfs [-] name

Description

hfs is like ed (C) except that it is read-only and processes much larger
files. Files can be up to l024K bytes and 32K lines, with up to 255
characters per line. hfs is usually more efficient than ed for scanning
a file, since the file is not copied to a buffer. It is most useful for iden­
tifying sections of a large file where csplit(C) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk (*)
when "P" and RETURN are typed. The "P" acts as a toggle, so
prompting can be turned off again by entering another "P" and a
RETURN. Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols other than
the standard slash (I) and (?): A greater-than sign (» indicates down­
ward search without wraparound, and a less-than sign «) indicates
upward search without wraparound. Note that parentheses and curly
braces are special and need to be escaped with a backslash (\). Since
hfs uses a different regular expression-matching routine from ed, the
regular expressions accepted are slightly wider in scope (see
regex (S». Differences between ed and hfs are listed below:

+ A regular expression followed by + means one or more times.
For example, [0-9]+ is equivalent to [0-9][0-9]*.

\{m\} \{m,\} \{m,u\}
Integer values enclosed in \{ \} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which is
the maximum. If only m is present (e.g., \{ m\}), it indicates
the exact number of times the regular expression is to be
applied. \{ m,\} is analogous to \{ m,infinity\} . The plus (+)
and star (*) operations are equivalent to \{ l,\} and \{ O,\}
respectively.

March 11, 1990 BFS-1

BFS(C) BFS (C)

(0 0 0)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ 1)th argument
following the subject argument. At most ten enclosed regular
expressions are allowed. regex makes its assignments uncon­
ditionally.

(000) Parentheses are used for grouping. An operator, e.g. *, +,
\{ \}, can work on a single character or a regular expression
enclosed in parenthesis. For example, \(a*\(cb+\)*\)$O.

There is also a slight difference in mark names: only the letters "a"
through "z" may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described
under ed except that e doesn't remember filenames and g and v when
given no arguments return the line after the line you were on. Com­
mands such as ---, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered
filename. The w command is independent of output diversion, trunca­
tion' or crunching (see the XO, xt and xc commands, below). The fol­
lowing additional commands are available:

xffile
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com­
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation
of the file.

: label
This positions a label in a command file. The label is ter­
minated by a newline, and blanks between the: and the start of
the label are ignored. This command may also be used to insert
comments into a command file, since labels need not be refer­
enced.

(0 , 0)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi­
tions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

March 11, 1990 BFS-2

BFS(C) BFS(C)

3. The regular expression doesn't match at least one line
in the specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made
to label. This command is the only one that doesn't issue an
error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are executed.
Note that the command

xbr/label

is an unconditional jump.

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to a max­
imum of number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv.
xv5100 or xvS 100 both assign the value 100 to the variable 5.
xv61,100p assigns the value 1,100p to the variable 6. To refer­
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

prints the first 100 lines.

gI%5/p

globally searches for the characters 100 and prints each line
containing a match. To escape the special meaning of %, a \
must precede it. For example,

gi". *\%[cds]/p

could be used to match and list lines containing print! charac­
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a Altos UNIX System V command can be stored into a
variable.

March 11, 1990 BFS-3

BFS (C) BFS (C)

The only requirement is that the first character of value be a !.
For example,

xv5 !cat junk
!rmjunk
!echo "%5"
xv6!expr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of! as the first
character of value, precede it with a \. For example,

xv7\! date

stores the value !date into variable 7.

xbz label

xbn label
These two commands test the last saved return code from the
execution of an Altos UNIX System V command (!command) or
nonzero value, respectively, and jump to the specified label.
The two examples below search for the next five lines contain­
ing the string size:

xc [switch]

xv55
: I
/size/
xv5 !expr %5 - 1
!if 0%5 != 0 exit 2
xbnl
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines
suppressed.

See Also

csplit(C), ed(C), umask(C)

March 11, 1990 BFS-4

BFS (C)

Diagnostics

BFS (C)

? for errors in commands if prompting is turned off. Self-explanatory
error messages when prompting is on.

March 11, 1 990 BFS-5

CAL (C) CAL (C)

cal
prints a calendar

Syntax

cal [[month] year]

Description

cal prints a calendar for the specified year. If a month is also speci­
fled, a calendar for that month only is printed. If no arguments are
specified, the current, previous, and following months are printed,
along with the current date and time. The year must be a number
between 1 and 9999; month must be a number between 1 and 12 or
enough characters to specify a particular month. For example, May
must be given to distinguish it from March, but S is sufficient to
specify September. If only a month string is given, only that month of
the current year is printed.

Notes

Beware that "cal 84" refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note that
England switched from the Julian to the Gregorian calendar in Sep­
tember of 1752, at which time eleven days were excised from the year.
To see the result of this switch, try "cal 9 1752".

Standards Conformance

cal is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CAL-1

CALENDAR (C) CALENDAR (C)

calendar
invokes a reminder service

Syntax

calendar [-]

Description

calendar consults the file calendar in the user's current directory and
mails him lines that contain today's or tomorrow's date. Most reason­
able month-day dates, such as "Sep. 14," "september 14", and
"9/14", are recognized, but not "14 September", or "14/9".

On weekends "tomorrow" extends through Monday. Lines that con­
tain the date of a Monday will be sent to the user on the previous Fri­
day. This is not true for holidays.

When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends the result to the
standard output. Normally this is done daily, in the early morning,
under the control of cron (e).

Files

calendar

/usr/lib/calprog To figure out today's and tomorrow's dates

/etc/passwd

/tmp/cal*

See Also

cronCe), mail(e)

Notes

To get reminder service, a user's calendar file must have read permis­
sion for all.

March 1 5, 1989 CALENDAR-1

CALENDAR (C) CALENDAR (C)

Standards Conformance

calendar is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CALENDAR-2

CAT (C) CAT (C)

cat
concatenates and displays files

Syntax

cat [-u] [-s] [-v] [-t] [-e] file ...

Description

cat reads each file in sequence and writes it on the standard output. If
no input file is given, or if a single dash (-) is given, cat reads from the
standard input. The options are:

-s Suppresses warnings about nonexistent files.

-u Causes the output to be unbuffered.

-v Causes non-printing characters (with the exception of tabs, new-
lines, and form feeds) to be displayed. Control characters are dis­
played as "AX" (Ctrl-X), where X is the key pressed with the Ctrl
key (for example, Ctrl-M is displayed as AM). The DEL character
(octal 0177) is printed as "A?" Non-AScn characters (with the
high bit set) are printed as "M -x," where x is the character
speci fied by the seven low order bits.

-t Causes tabs to be printed as "AI" and form feeds as "AL". This
option is ignored if the -v option is not specified.

-e Causes a "$" character to be printed at the end of each line (prior
to the new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a
special file.

Examples

The following example displays file on the standard output:

cat file

March 15, 1989 CAT-1

CAT (C) CAT (C)

The following example concatenates file] and file2 and places the
result in file3 :

cat file1 file2 >file3

The following example concatenates file1 and appends it to file2 :

cat file1 » file2

See Also

cP(C), pr(C)

Warning

Command lines such as:

cat filet file2> file1

will cause the original data in file1 to be lost; therefore, you must be
careful when using special shell characters.

Standards Conformance

cat is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15. 1989 CAT-2

CD (C) CD (C)

cd
changes working directory

Syntax

cd [directory]

Description

If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory .

Because a new process is created to execute each command, cd would
be ineffective if it were written as a normal command; therefore, it is
recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the "correct" name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
n means "no", and anything else is taken as "yes".

Notes

Wildcard designators will work with the cd command.

See Also

pwd(C), sh(C), chdir(S)

March .15, 1 989 CD-1

CHECKMAIL (C) CHECKMAIL (C)

checkmail
checks for mail which has been submitted but not
delivered

Syntax

checkmail [·a] [·f] [·m]

Description

checkmail checks the mail queue on the local machine for messages
which have been sent by the invoker. If invoked without any argu­
ments, the "Subject:" of each message found is given along with a
list of addressees that have not yet received the message. Usually,
messages are still in the queue because the addressee's host is down.

The -a (all addresses) option causes all addresses to be shown (both
delivered and undelivered). Some delivered addresses may not appear
since some sites prune already delivered addresses from the address
list files for efficiency. The·f (fast) option suppresses the printing of
the "Subject" line. The·m (all messages) option causes checkmail to
check all messages in the mail queue, not just those of the invoker.
This is only useful for mail system maintainers who wish to find
obstinate hosts.

See Also

send(ADM), deliver(ADM), mmdf(ADM)

March 15, 1989 CHECKMAIL-1

CHGRP (C)

chgrp
changes group 10

Syntax

chgrp group file ...

Description

CHGRP (C)

chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file /etc/group.

Files

/ete/passwd

fete/group

See Also

ehown(C), chown(S), passwd(F), group(F)

Notes

Only the owner or the super-user can change the group ID of a file.

Standards Conformance

chgrp is eonformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHGRP-1

CHMOD (C) CHMOD (C)

chmod
changes the access permissions of a file or directory

Syntax

chmod mode file
chmod [who] [+1-1=] [permission ...] file ...

Description

The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who] [+1-1=] [permission ...] filename

In place of who you can use one or any combination of the following
letters:

a Stands for "all users". If who is not indicated on the command
line, a is the default. The definition of "all users" depends on the
user's umask. See umask(C).

g Stands for "group", all users who have the same group ID as the
owner of the file or directory .

o Stands for "others", all users on the system.

u Stands for' 'user", the owner of the file or directory.

The operators are:

+ Adds permission

- Removes permission

= Assigns the indicated permission and removes all other permis­
sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

March 15, 1989 CHMOO-1

CHMOD (C) CHMOD (C)

Permissions can be any combination of the following letters:

x Execute (search permission for directories)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the owner
of the file. The mode "u+s" sets the user ID bit for the file. The
mode "g+s" sets the group ID bit. Other combinations have no
effect. When the group ID bit is set on a directory, all files created
under it thereafter receive the group ID of that directory. When
the group ID bit is not set, files are created with the group ID of the
creating· process/user.

t This is known as the "sticky bit." (see chmod(S)). Only the mode
"u+t" sets the sticky bIt. All other combinations have no effect.
When this bit is set on a directory, files within the directory cannot
be removed by anyone but the owner or the super-user. The owner
can set or remove the sticky bit.

Mandatory locking will occur during access

Multiple symbolic modes may be given, separated by commas, on a
single command line. See the following Examples section for sample
permission settings.

Mandatory file and record locking refers to a file having locked read­
ing or writing permissions while a program is accessing that file. A file
cannot have group execution permission and be able to be locked on
execution. In addition, it is not possible to turn on the set-group-ID
and enable a file to be locked on execution at the same time. The fol­
lowing examples show illegal uses of chmod and will generate error
messages:

chmod g+x,+ljilename

chmod g+s,+ljilename

A chmod command using absolute mode has the form:

chmod mode jilename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

20#0 Set group ID on execution if "#" is 7, 5, 3, or 1 and
enable mandatory locking if "#" is 6,4,2, or O.

March 15, 1989 CHMOD-2

CHMOD(C) CHMOD(C)

1000 Sets the sticky bit (see chmod(S»

0400 Read by owner

0200 Write by owner

0100 Execute (search in directory) by owner

0040 Read by group

0020 Write by group

0010 Execute (search in directory) by group

0004 Read by others

0002 Write by others

0001 Execute (search in directory) by others

0000 No permissions

Examples

Symbolic Mode

The following command gives all users execute permission for file:

chmod +xfile

The following command removes read and write permission for group
and others fromfile:

chmod go-rw file

The following command gives other users read and write permission
for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,o+r file

Absolute Mode

March 15, 1989 CHMOD-3

CHMOD (C) CHMOD (C)

The following command gives all users read, write and execute per­
mission for file:

chmod 0777 file

The following command gives read and write permission to all users
for file:

chmod 0666 file

The following command gives read and write permission to the owner
of file only:

chmod 0600 file

The following example causes the file to be locked on access:

chmod +lfile

See Also

Is(C), chmod(S)

Notes

The setuid, setgid and sticky bit settings have no effect on shell
scripts.

Standards Conformance

chmod is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHMOD-4

CHOWN (C) CHOWN (C)

chown
changes owner ID

Syntax

chown owner file ...

Description

chown changes the owner ID of the files to owner. The owner may be
either a decimal user ID or a login name found in the file letc/passwd.

Files

/etc/passwd

/etc/group

See Also

chgrp(C), chown(S), group(F), passwd(F)

Notes

Use of this utility is governed by the chown kernel authorization. If
this authorization is not granted, ownership of files can only be
changed by root. Restricted chown is required for NIST FlPS 151-1
conformance. The chown authorization should not be assigned to
users if you wish to conform to these requirements ..

Standards Conformance

chown is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
NISTFlPS 151-1;
and The X/Open Portability Guide II of January 1987.

March 15. 1989 CHOWN-1

CLEAR (C) CLEAR (C)

clear
clears a terminal screen

Syntax

clear [term]

Description

The clear command clears the screen. If term is not specified, the ter­
minal type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines
are output to scroll the screen clear. If the terminal is a hardcopy, the
paper is advanced to the top of the next page.

Files

/etc/termcap

See Also

environ(M), termcap(F), tput(C)

Notes

If the standard output is not a terminal, clear issues an error message.

March 15, 1989 CLEAR-1

CMCHK (C) CMCHK (C)

cmchk
reports hard disk block size

Syntax

cmchk

Description

Reports the hard disk block size in 512-byte blocks.

Value Added

cmchk is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1990 CMCHK-1

CMP (C) CMP (C)

cmp
compares two files

Syntax

cmp [-I] [-s] file 1 file2

Description

cmp compares two files and, if they are different, displays the byte and
line number of the differences. Iffilel is ., the standard input is used.

The options are:

-I Prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-s Returns an exit code only, 0 for identical files, 1 for different
files and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use dijf(C) or
diff3 (C) to compare text files.

See Also

comm(C), diff(C), dift3(C)

Standards Conformance

cmp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CMP-1

COL (C) COL (C)

col
filters reverse linefeeds

Syntax

col [-bfxp]

Description

col prepares output from processes, such as the text formatter
nroff(CT), for output on devices that limit or do not allow reverse or
half-line motions. col is typically used to process nroff output text
that contains tables generated by the tbl program. A typical command
line might be:

tblfile I nroff I coilipr

col takes the following options:

-b Assumes the output device in use is not capable of backspacing. If
two or more characters appear in the same place, col outputs the
last character read.

-f Allows forward half linefeeds. If not given, col accepts half line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse full and half linefeeds
are never allowed with this option.

-x Prevents conversion of whitespace to tabs on output. col normally
converts whitespace to tabs wherever possible to shorten printing
time.

-p Causes col to ignore unknown escape sequences found in its input
and pass them to the output as regular characters. Because these
characters are subject to overprinting from reverse line motions,
the use of this option is discouraged unless the user is fully aware
of the position of the escape sequences.

col assumes that the ASCII control characters SO (octal 016) and SI
(octal 017) start and end text in an alternate character set. If you have
a reverse linefeed (ESC 7), reverse half linefeed (ESC 8), or forward
half linefeed (ESC 9), within an SI-SO sequence, the ESC 7,8 and 9
are still recognized as line motions.

On input, the only control characters col accepts are space, backspace,
tab, return, newline, reverse linefeed (ESC 7), reverse half linefeed
(ESC 8), forward half linefeed (ESC 9), alternate character start(SI),

March 15, 1989 COL-1

COL (C) COL (C)

alternate character end (SO), and vertical tag (VT). (The VT charac­
ter is an alternate form of full reverse linefeed, included for compati­
bility with some earlier programs of this type.) All other nonprinting
characters are ignored.

See Also

nroff(CT), tbl(CT)

Notes

col cannot back up more than 128 lines.

col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the document
are ignored. Therefore, the first line must not contain any superscripts.

Standards Conformance

col is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 COL-2

COMM (C) COMM (C)

comm
selects or rejects lines common to two sorted files

Syntax

comm [-123] file 1 file2

Description

comm reads filel and file2 , which should be ordered in ASCII collat­
ing sequence (see sort (e)), and produces a three-column output: lines
only infilel ; lines only infile2 ; and lines in both files. The filename
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123 is a
no-op.

See Also

cmp(e), diff(e), sort(e). uniq(C)

Standards Conformance

comm is conformant with:
AT&TSVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 COMM-1

COMPRESS (C) COMPRESS (C)

compress, uncompress, zcat
compress data for storage, uncompress and display
compressed files

Syntax

compress [-dfFqc] [-b bits] file
uncompress [-fqc] file
zcatfile

Description

compress takes a file and compresses it to the smallest possible size,
creates a compressed output file, and removes the original file unless
the -c option is present. Compression is achieved by encoding com­
mon strings within the file. uncompress restores a previously
compressed file to its uncompressed state and removes the
compressed version. zcat uncompresses and displays a file on the stan­
dard output.

If no file is specified on the command line, input is taken from the
standard input and the output is directed to the standard output. Output
defaults to a file with the same filename as the input file with the suf­
fix ".Z" or it can be directed through the standard output. The output
files have the same permissions and ownership as the corresponding
input files or the user's standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written
unless the -F flag is present on the command line.

Options

The following options are available from the command line:

-d Decompresses a compressed file.

-c Writes output on the standard output and does not remove
original file.

-bbits Specifies the maximum number of bits to use in encoding.

-f Overwrites previous output file.

March 15, 1989 COMPRESS-1

COMPRESS (C) COMPRESS (C)

-F Writes output file even if compression saves no space.

-q Generates no output except error inessages, if any.

See Also

pack(C), ar(C). tar(C), cat(C)

March 15. 1989 COMPRESS-2

COpy (C) COpy (C)

copy
copies groups of files

Syntax

copy [option] ... source ... dest

Description

The copy command copies the contents of directories to another direc­
tory. It is possible to copy whole file systems since directories are
made when needed.

If files, directories, or special files do not exist at the destination, then
they are created with the same modes and flags as the source. In addi­
tion' the super-user may set the user and group ID. The owner and
Illode are not changed if the destination file exists.

Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the same destination directory for each copy.

Options do not have to be given as separate arguments, and may
appear in any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does
not begin with a "y", then a copy is not done. When used
together with the -v option, it overrides the verbose option
so that messages regarding the copy action are not dis­
played.

-I Uses links instead whenever they can be used. Otherwise a
copy is done. Note that links are never done for special files
or directories.

-0 Requires the destination file to be new. If not, then the copy
command does not change the destination file. The -0 flag is
meaningless for directories. For special files a -0 flag is
assumed (i.e." the destination of a special file must not
exist).

-0 If set then every file copied has its owner and group set to
those of the source. If not set, then the file's owner is the
user who invoked the program.

March 15, 1989 COPY-1

COpy (C) COpy (C)

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time is set to the time of the copy.

-r If set, then every directory is recursively examined as it is
encountered. If not set then any directories that are found
are ignored.

-ad Asks the user whether a -r flag applies when a directory is
discovered. If the answer does not begin with a "y", then
the directory is ignored.

-v Messages are printed that reveal what the program is doing.
If used with the -a option, the -a option is given priority so
that it overrides the verbose option, and the copy action
message is not displayed.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If
it is .not a directory, then the results of the command are the
same as for the cp command.

dest The destination must be either a file or directory name that
is different from the source.

If the source and destination are anything but directories, then copy
acts just like a cp command. If both are directories, then copy copies
each file into the destination directory according to the flags that have
been set.

Examples

This command line verbosely copies all files in the current directory
to /tmp/food:

copy -v . Itmp/food

The next command line copies all files, except for those that begin
with a period (.), and copies the immediate contents of any child
directories:

copy * Itmp/logic

This command is the same as the previous one, except that it recur­
sively examines all subdirectories, and it sets group and ownership
permissions on the destination files to be the same as the source files:

copy -ro * Itmp/logic

March 15, 1989 COPY-2

COpy (C)

Notes

COpy (C)

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

March 1 5, 1989 COPY-3

CP(C) CP (C)

cp
copies files

Syntax

cp file 1 file2

cp files directory

Description

There are two ways to use the cpcommand. With the first way,filel
is copied tofile2. Under no circumstance canfilel andfile2 be ident­
ical. With the second way, directory is the location of a directory into
which one or more files are copied. This directory must exist prior to
the execution of the cp command.

See Also

copy(C), cpio(C), In(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then the
data in the pipe is copied to a regular file. Similarly, if the file is a de­
vice, then the file is read until the end-of-file is reached. and that data
is copied to a regular file. It is not possible to copy a directory to a
file.

Standards Conformance

cp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CP-1

ePlo (e) ePlo (e)

epio
copy file archives in and out

Syntax

cpio -0 [acBvV] [-C bufsize] [[-0 file] [-K volumesize] [-M mes­
sage]]

cpio -i [BcdmrtTuvVfsSb6k] [-C bufsize] [[-I file] [-K volumesize]
[-M message]] [pattern ...]

cpio -p [adlmuvV] directory

Description

cpio -0 (copy out) reads the standard input to obtain a list of path
names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte
boundary by default.

cpio -i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. patterns are regular expres­
sions given in the filename-generating notation of sh(C). In patterns,
metacharacters ?, *, and [... J match the slash (I) character, and
backslash (\) is an escape character. A! metacharacter means not.
(For example, the !abc* pattern would exclude all files that begin with
abc.) Multiple patterns may be specified and if no patterns are speci­
fied, the default for patterns is * (i.e., select all files). Each pattern
must be enclosed in double quotes otherwise the name of a file in the
current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio
-0 . The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner
and group of the files of the previous cpio -0 . NOTE: If cpio -i tries
to create a file that already exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file.
(The -u option can be used to unconditionally overwrite the existing
file.)

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination
directory tree based upon the options described below. Archives of
text files created by cpio are portable between implementations of
UNIX System V.

March 15, 1991 ePIO-1

ePlo (e) ePlo (e)

The meanings of the available options are:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pia is
specified.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(.8 does not apply to the pass option; -8 is meaningful only with
data directed to or from a character-special device, e.g.,
Idev/rdsklfOqlSdt.)

-c Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-C bujsize
Input/output is to be blocked bujsize bytes to the record, where buf­
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -8 options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or
from a character-special device, e.g., Idev/rmtlcOsO.) When used
with the -K option, bujsize is forced to be a lK multiple.

-d directories are to be created as needed.

-f Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

-I file
Read the contents of file as input. If file is a character-special de­
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

·k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is cor­
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prema­
turely. cpio will find the next good header, which may be one for a
smaller archive, and terminate when the smaller archive's trailer is
encountered.)· Used only with the·i option.

·1 Whenever possible, link files rather than copying them. Usable
only with the -p option.

March 15, 1991 CPIO-2

ePlo (e) ePlo (e)

-m
Retain previous file modification time. This option is ineffective
on directories that are being copied.

-K volumesize
Specifies the size of the media volume. Must be in lK blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must
include the -C option with a bufsize multiple of lK.

-M message
Define a message to use when switching media. When you use the
-0 or -I options and specify a character-special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in the mes­
sage to print the sequence number of the next medium needed to
continue.

-0 file
Direct the output of cpio to file. If file is a character-special de­
vice, when the first medium is full, replace the medium and type a
carria~e return to continue to the next medium. Use only with the
-0 optIon.

-r Interactively rename files. If the user types a null line, the file is
skipped. If the user types a ".", the original pathname will be
copied. (Not available with cpio -p.)

-s swap bytes within each half word. Use only with the -i option.

-S Swap halfwords within each word. Use only with the -i option.

-T Truncate long filenames to 14 characters. Use only with the -i
option.

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

-v verbose: causes a list of file names to be printed. When used with
the ·t option, the table of contents looks like the output of an Is -1
command [see Is(C)].

-v SpecialVerbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

·6 Process an old (i.e., UNIX System Sixth Edition format) file. Use
only with the ·i option.

NOTE: cpio assumes 4-byte words.

March 15, 1991 CPIO-3

ePlo (C) ePlo (e)

If cpio reaches end of medium (end of a diskette for example) when
writing to (-0) or reading from (;.i) a character-special device, and -0
and -I are not used, cpio will print the message:

ff you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character­
special device name (/dev/rdsk/fOqISdt for example) and a carriage
return. You may want to continue by directing cpio to use a different
device. For example, if you have two floppy drives, you may want to
switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

Examples

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the
files so they can be directed (» to a single file (•• /newfile). The-c
option insures that the file will be portable to other machines. Instead
of Is(C), you could use find(C), echo(C), cat(C), etc., to pipe a list of
names to cpio. You could direct the output to a device instead of a
file.

Is I cpio .,.oc > .. Inewfile

cpio -i uses the output file of cpio -0 (directed through a pipe with cat
in the example), extracts those files that match the patterns (memo/ai,
memolb *), creates directories below the .current directory as needed
(-d option), and places the files in the appropriate directories. The-c
option is used when the file is created with a portable header .. If no
patterns were given, all files from newfile would be placed in the
directory.

cat new file I cpio -icd "memo/al" "memo/b*"

cpio -p takes the file names piped to it and copies or links (-I option)
those files to another directory on your machine (newdir in the exam­
pIe). The -d options says to create directories as needed. The-m
option says retain the modification time. [It is important to use the
-depth option of find (C) to generate path names for cpio. This elim­
inates problems cpio could have trying to create files under read-only
directories.]

find. -depth -print I cpio -pdlmv newdir

See Also

cat(C), echo(C), find(C), Is(C), tar(C), cpio(F)

March 15, 1991 ePIO-4

ePlo (e)

Notes

1) Path names are restricted to 256 characters.
2) Only the super-user can copy special files.
3) Blocks are reported in 512-byte quantities.

ePlo (e)

4) If a file has 000 pennissions, contains more than 0 characters of data,
and the user is not root, the file will not be saved or restored.

Standards Conformance

cpio is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1991 CPIO-5

CRON (C) CRON (C)

eran
executes commands scheduled by at, batch, and
crontab

Syntax

letc/erOD

Description

cron is the clock daemon that executes commands at specified dates
and times. cron processes jobs submitted with at (C), batch (C). and -
crontab(C). cron never exits; the cron command usually appears in
the letc/rc2 scripts to be invoked by init (M) when the system is
brought up in multi-user mode.

Files

/etc/default/cron

lusrllib/cron

/usr/lib/cron/atjobs

/usr/spool/cron/crontabs

/usr/lib/cron/log

/usr/lib/cron/queuedefs

/usr/lib/ cron/. proto

See Also

cron logging default information

main cron directory

at directory

crontab directory

accounting information

cron data file

cron environment information

at(C), crontab(C), queuedefs(F), sh(C)

Diagnostics

A history of all actions by cron can be recorded in lusr/lib/croD/log.
This logging occurs only if the variable CRONLOG is set to YES in
letc/default/croD. By default this value is set to NO and no logging
occurs. If logging should be turned on, be sure to check the size of the

March 15, 1989 CRON-1

GRON (G) GRON (G)

log file regularly.

Standards Conformance

cron is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 GRON-2

CRONTAB (C) CRONTAB (C)

crontab
schedule commands to be executed at regular inter­
vals

Syntax

crontab [file]
crontab -r
crontab -I

Description

The crontab command can be used to schedule commands to be exe­
cuted at regular intervals. These commands are stored in the user's
crontab file, lusrlspoollcron/crontabslusername. Any output or
errors generated by the commands are mailed to the user.

If called with no options, crontab copies the specified file, or standard
input if no file is specified, into the crontabs directory (if the user has
a previous crontab file, it is replaced).

The -r option removes the user's crontab file from the crontab direc­
tory.

The -I option lists the contents of the user's crontab file.

If the file lusr/lib/cron/cron.allow exists, only the users listed in that
file are allowed to use crontab. If cron.allow does not exist, and the
file lusr/lib/cron/cron.deny does, then all users not listed in
cron.deny are allowed access to crontab, with an empty croD.deny
allowing global usage. If neither file exists, only the super user is
allowed to submit a job. The allow/deny files consist of one user name
per line.

The crontabs files consist of lines of six fields each. The fields are
separated by spaces or tabs.. The first five are integer patterns that
&pecify the minute (0-59), hour (0-23), day of the month (1-31), month
of the year (1-12), and day of the week (0-6, with O=Sunday). Each of
these patterns may contain:

- A number in the (respective) range indicated above

- Two numbers separated by a minus (indicating an inclusive range)

March ,15, 1989 CRONTAB-1

CRONTAB (C) CRONTAB (C)

- A list of numbers separated by commas (meaning all of these num­
bers)

- An asterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of ele­
ments, both are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be
set to * (for example, 0 0 * * 1 would run a command only on Mon­
days).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character. Only
the first line (up to a % or end-of-line) of the command field is exe­
cuted by the shell. The other lines are made available to the command
as standard input.

The shell is invoked from your $HOME directory with an argO of sh.
Users who desire to have their .profile executed must explicitly do so
in the crontab file. cron supplies a default environment for every
shell, defining HOME, LOGNAME, SHELL (=/bin/sh), and
PATH (=/bin:/usr/bin:).

Examples

An example crontabs file follows:

o 4 * * * calendar-
15 4 * * * find /usr/preserve -mtime +7 -exec r.m -f {} ;
30 4 1 * 1 /usr/lib/uucp/uuc1ean
40 4 * * * find / -name '#*' -atime +3 -exec r.m -f {} ;
1,21,41 * * * * (echo -n ' '; date; echo) >/dev/console

The lines in this example do the following: run the calendar program
every night at 4:00 am, clear old files from the /etc/preserve directory
every night at 4: 15 am, clean up the uucp spool directory every Mon­
day and the first of every month at 4:30 am, find and remove any old
files with names beginning with "#" every night at 4:40 am, and echo
the current date and time to the console three times an hour at one
minute, 21 minutes, and 41 minutes past the hour.

Files

/usr/lib/cron main cron directory

March 1 5, 1989 CRONTAB-2

CRONTAB (C)

/usr/spool/cron/crontabs

/usr/lib/cron/cron.allow

/usr/lib/cron/cron.deny

/usr/lib/cron/.proto

/usr/lib/cron/queuedefs

See Also

at(C), cron(C), sh(C)

Diagnostics

crontab directory

list of allowed users

list of denied users

CRONTAB (C)

cron environment information

cron data file

crontab exits and returns a value of 55 if it cannot allocate enough
memory. If it exits for any other reason, it returns a value of 1.

Notes

crontab commands are executed by cron(C). cron reads. the files in
the crontabs directory only on startup or when a new crontab is sub­
mitted with the crontab command, so changes made to these files by
hand will not take effect until the system is rebooted. Changes sub­
mitted with the crontab command will take effect as soon as cron is
free to read them (that is, when cron is not in the process of running a
scheduled job or reading another newly submitted at(C) or crontab
job.).

Users who do not wish to have output from their commands mailed to
them may want to redirect it to a file:

o * * * * who » /tmp/whofile 2> /dev/null

The example above would append the output of the who(C) command
to a file, and throwaway any errors generated. For more details on
output redirection, see the sh(C) manual page.

Users should remember to redirect the standard output and standard
error of their commands otherwise any generated output or errors will
be mailed to the user.

crontab will overwrite any previous crontab submitted by the same
user.

March 15, 1989 CRONTAB-3

CRONTAB (C) CRONTAB (C)

Standards Conformance

crontab is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CRONTAB-4

CRYPT (C)

crypt
encode/decode

Syntax

crypt [password]
crypt [-k]

. Description

CRYPT (C)

The crypt command reads from the standard input and writes to the
standard output. The password is a key that selects a particular
transformation. If no argument is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. If the
-k option is used, crypt will use the key assigned to the environment
variable CRYPTKEY. The crypt command encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the edi­
tors ed(C), edit(C), ex(C), and vi(C) in encryption mode.

The security of encrypted files depends on three factors: the funda­
mental method must be hard to· solve; direct search of the key space
must be infeasible; "sneak paths" by which keys or clear text can
become visible must be minimized.

The crypt command implements a one-rotor machine designed along
the lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not widely; more­
over the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial frac­
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visi­
ble to users executing ps(C) or a derivative. To minimize this possi­
bility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulner­
able aspect of crypt.

Marcn 15, 1989 CRYPT-1

CRYPT (C)

Files

/dev/tty

See Also

for typed key

ed(C), edit(C), ex(C), makekey(C), ps(C), stty(C), vi(C)

Notes

CRYPT (C)

If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the frrst ~
of the original files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the U.S.
Government and are not available to sites outside of the United States
and its territories. Because we cannot control the destination of the
software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the crypt
software through your product distributor or reseller.

March 15, 1989 CRYPT-2

CSH (C) CSH(C)

csh
invokes a shell command interpreter with C-like syntax

Syntax

csh [-cefinstvVxX] [arg ...]

Description

csh is a command language interpreter. It begins by executing com­
mands from the file .cshrc in the home directory of the invoker. If
this is a login shell, it also executes commands from the file .login
there. In the normal case, the shell begins reading commands from the
terminal, prompting with % . Processing of arguments and the use of
the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of
'command input is read and broken into words. This sequence of words
is placed on the command history list and then parsed. Finally, each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
.logout in the user's home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the fol­
lowing exceptions. The characters &, I, ;, <, >, (,), form separate
words. If doubled in &&, II, «, or », these pairs form single words.
These parser metacharacters may be made part of other words, or their
special meaning prevented, by preceding them with \ A newline pre­
ceded by a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, " " or ",
form parts of a word; metacharacters in these strings, including blanks
and tabs, do not form separate words. These quotations have seman­
tics to be described subsequently. Within pairs of ' or II characters, a
newline preceded by a \ gives a true newline character.

When the shell's input is not a terminal, the character # introduces a
comment which continues to the end of the input line. It does not
have this special meaning when preceded by \ and placed inside the
quotation marks ", " or ".

March 15, 1989 CSH-1

CSH(C) CSH(C)

Commands

A simple command is a sequence of words, the first of which specifies
the command to be executed. A simple command or a sequence of
simple commands separated by I characters forms a pipeline. The out­
put of each command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ;,and are then exe­
cuted sequentially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with a &. Such a sequence
is automatically prevented from being terminated by a hangup signal;
the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple com­
mand (which may be a component of a pipeline, etc.) It is also possi­
ble to separate pipelines with I I or && indicating, as in the C lan­
guage, that the second is to be executed only if the first fails or
succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell
performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on these
words. Thus, history substitutions provide a generalization of a redo
function.

History substitutions begin with the character! and may begin any­
where in the input stream if a history substitution is not already in
progress. The! may be preceded by a \ to prevent its special meaning;
a ! is passed unchanged when it is followed by a blank, tab, newline,
=, or (. History substitutions may also occur when an input line begins
with ". This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been entered without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained. Com­
mands are numbered sequentially from 1.

March 1 5, 1989 CSH-2

CSH(C) CSH(C)

For example, enter the command:

history

Now, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing a ! in the prompt string.

With the current event 13 we can refer to previous events by event
number !l1, relatively as in !-2 (referring to the same event), by a pre­
fix of a command word as in !d for event 12 or !w for event 9, or by a
string contained in a word in the command as in !?mic? also referring
to event 9. These forms, without further modification, simply reintro­
duce the words of the specified events, each separated by a single
blank. As a special case !! refers to the previous command; thus !!
alone is essentially a redo. The form !# references the current com­
mand (the one being entered). It allows a word to be selected from
further left in the line, to avoid retyping a long name, as in !#: 1.

To select words from an event, we can follow the event specification
by a : and a designator for the desired words. The words of an input
line are numbered from 0, the first (usually command) word being 0,
the second word (first argument) being 1, and so on. The basic word
designators are:

o First (command) word

n nth argument

,. First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s? search

x-y
Range of words

-y Abbreviates 0-y

* Abbreviates" -$, or nothing if only 1 word in event

March 15, 1989 CSH-3

CSH(C) CSH (C)

x * Abbreviates x-$

x - Like x * but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a ", $, *, - or %. After
the optional word designator, a sequence of modifiers can be placed,
each preceded by a:. The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

sll /r I
Substitutes I for r

Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing substitutions

x Like q, but breaks into words at blanks, tabs, and new lines

Unless preceded by a g, the modification is applied only to the first
modifiable word. In any case it is an error for no word to be applica­
ble.

The left sides of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the de­
limiter in place of I; a \ quotes the delimiter within the I and r strings.
The character & in the right side is replaced by the text from the left.
A \ quotes & also. A null I uses the previous string either from a I or
from a contextual scan string s in !?s? The trailing delimiter in the
substitution may be omitted if a newline follows immediately as may
the trailing? in a contextual scan.

A history reference may be given without an event specification, e.g.,
!$. In this case the reference is to the previous command unless a pre­
vious history reference occurred on the same line in which case this
form repeats the previous reference. Thus !?foo?"!$ gives the first and
last arguments from the command matching ?foo?

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a ". This is equivalent to ! :s",
providing a convenient shorthand for substitutions on the text of the
previous line. Thus "lb"lib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {

March 15, 1989 CSH-4

CSH (C) CSH (C)

and } if necessary to insulate it from the characters that follow. Thus,
after Is -ld -paul we might do ! {l}a to do Is -ld -paula, while !la would
look for a command starting lao

Quotations With ' and "

The quotation of strings by , and " can be used to prevent all or some
of the remaining substitutions. Strings enclosed in ' are prevented any
further interpretation. Variable and command expansion occurs in
strings enclosed in It.

In both cases, the resulting text becomes (all or part ot) a single word;
only in one special case (see Command Substitution below) does a "
quoted string yield parts of more than one word; , quoted strings never
do.

Alias Substitution

The shell maintains a list of aliases which can be established, dis­
played and modified by the alias and unalias commands. After a com­
mand line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an
alias. If it does, then the text which is the alias for that command is
reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the com­
mand and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is "Is -1" the command "Is lusr" would map to
"Is -1 lusr". Similarly if the alias for "lookup" was "grep \!A
letc/passwd" then "lookup bill" would map to "grep bill
letc/passwd" .

If an alias is found, the word transformation of the input text is per­
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the same
as the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn­
tax. Thus we can alias print "'pr\l* I lpr'" to make a command that
paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd,
and ftipd. These aliases maintain a directory stack.

pusbd dir
Pushes the current directory. onto the top of the directory stack,
then changes to the directory dir.

March 15, 1989 CSH-5

CSH(C) CSH (C)

popd
Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the current
directory.

swapd
Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top direc­
tory becomes the top directory.

flipd
Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl,and dir2 is on
the top of the stack, when f1ipd is invoked, you change to dir2 and
dirl is replaced as the top directory on the stack. When f1ipd is
again invoked, you change to dirl and dir2 is again the top direc­
tory on the stack.

Variable Substitution

The shell maintains a set of variables, each of which has a list of zero
or more words as its value. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image of
the shell's argument list, and words of this variable's value are
referred to in special ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell a num­
ber are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a tog­
gle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) com­
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by dollar sign ($)
characters. This expansion can be prevented by preceding the dollar
sign with a backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks (') where it
never occurs. Strings quoted by back quotation marks (') are inter­
preted later (see Command substitution below) so dollar sign substitu­
tion does not occur there until later, if at all. A dollar sign is passed
unchanged if followed by a blank, tab, or end-of-line.

March 15, 1989 CSH-6

CSH (C) CSH (C)

Input and output redirections are recognized before variable expan­
sion, and are expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be subject to com­
mand and filename substitution. Within double quotation marks ("), a
variable whose value consists of multiple words expands to a portion
of a single word, with the words of the variable's value separated by
blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a vari­
able which is not set.

$name
$(name}

Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under­
scores.

If name is not a shell variable, but is set in the environment, then that
value is returned (but: modifiers and the. other forms given below are
not available in this case).

$name[selector]
$ (name[selector] }

May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con­
sist of a single number or two numbers separated by a -. The
first word of a variables value is numbered 1. If the first number
of a range is omitted it defaults to 1. If the last member of a,
range is omitted it defaults to $#name. The selector * selects all
words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name
$ (#name}

Gives the number of words in the variable. This is useful for
later use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

March 15, 1989 CSH-7

CSH (C) CSH(C)

$number
$ {number}

Equivalent to $argv[number].

$* Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one:
modifier is allowed on each $ expansion.

The following substitutions may not be modified with: modifiers.

$?name
${?l1ame}

Substitutes the string 1 if name is set, 0 if it is not.

$?O Substitutes 1 if the current input filename is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of expres­
sions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name
is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main
shell.

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks. The output from such a command is normally bro­
ken into separate words at blanks, tabs and newlines, with null words
being discarded. This text then replaces the original string. Within
double quotation marks, only newlines force new words; blanks and
tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is possible for a command substitution to yield only part of a
word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the
character -, then that word is a candidate for filename substitution,
also known as globbing. This word is then regarded as a pattern, and
is replaced with an alphabetically sorted list of filenames which match
the pattern. In a list of words specifying filename substitution it is an

March 15, 1989 CSH-8

CSH(C) CSH (C)

error for no pattern to match an existing filename, but it is not required
for each pattern to match. Only the metacharacters *, ?, and [imply
pattern matching. The characters - and { are more akin to abbrevia­
tions.

In matching filenames, the character . at the beginning of a filename or
immediately following a I, as well as the character I must be matched
explicitly. The character * matches any string of characters, including
the null string. The character ? matches any single character. The
sequence within square brackets [] matches anyone of the characters
enclosed. Within square brackets [], a pair of characters separated by
- matches any character lexically between the two.

The character - at the beginning of a filename is used to refer to home
directories. Standing alone, it expands to the invoker's home directory
contained in the variable HOME. When followed by a name consist­
ing of letters, digits and - characters the shell searches for a user with
that name and substitutes their home directory; thus Ken might
expand to lusr/ken and -ken/chmach to lusr/ken/chmach. If the charac­
ter - is followed by a character other than a letter or I, or if it does not
appear at the beginning of a word, it is left unchanged.

The metanotation a {b,c,d} e is a shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. Thus
-source/sl/{ oldls,ls}.c expands to lusrlsource/s1 loldls.c
/usr/source/sl/ls.c, whether or not these files exist, assuming that the
home directory for source is lusrlsource. Similarly . ./{memo,*box}
might expand to . ./memo .. /box . ./mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, } and
{} are passed unchanged. This construct can be nested.

Spelling Checker

If the local variable cdspel/ has been set, the shell checks spelling
whenever you use cd to change directories. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter "y" and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter "n", then retype the command line. In this example the csh(C)
response is boldfaced:

% cd /usr/spol/uucp
/usr/spoo1/uucp? y
ok

March 15, 1989 CSH-9

CSH(C) CSH(C)

Input/Output

The standard input and standard output of a command may be
redirected with the following syntax:

<name
Opens file name (after variable, command and filename expan­
sion) as the standard input.

«word
Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi­
tution, and each input line is compared to word before any sub­
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing \ to quote $, \ and
Commands which are substituted have all blanks, tabs, and new­
lines preserved, except for the final newline which is dropped.
The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name
>! name
>&name
>&! name

The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable noclobber is set, then an error results if the file
already exists or if it is not a character special file (e.g., a termi­
nal or /dev/null). This helps prevent accidental destruction of
files. In this case, the ! forms can be used to suppress this check.

The forms involving & route the diagnostic output into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

»name
»&name
»! name
»&! name

Uses file name as standard output like> but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the! forms is given. Other­
wise similar to >.

If a command is run in the background (followed by &) then the
default standard input for the command is the empty file Idev Inull.
Otherwise, the command receives the input and output parameters
from its parent shell. Thus, unlike some previous shells, commands
run from a file of shell commands have no access to the text of the

March 15, 1989 CSH-10

CSH (C) CSH (C)

commands by default; rather they receive the original standard input
of the shell. The« mechanism should be used to present in line data.
This permits shell command scripts to function as components of pipe­
lines and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard
output. Simply use the form I & rather than just I.

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

I I && I A & == != <= >= < > « »
+-*/%!-()

Here the precedence increases to the right, == and !=, <=, >=, <, and
>, « and », + and -, * / and % being, in groups, at the same level.
The == and != operators compare their arguments as strings, all others
operate on numbers. Strings which begin with 0 are considered octal
numbers. Null or missing· arguments are considered O. The result of
all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear
in the same word unless a word is adjacent to components of expres­
sions which are syntactically significant to the parser (& I < > (», it
should be surrounded by spaces.

Also available in expressions as primitive operands are command exe­
cutions enclosed in { and } and file enquiries of the form -I name
where I is one of:

r Read access
w Write access
x Exec·ute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

Command and filename expansion is applied to the specified name,
then the result is tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible then all enquiries
return false, i.e. O. Command executions succeed, returning true, i.e.
I, if the command exits with status 0, otherwise they fail, returning
false, i.e. O.

If more detailed status information is required then the command
should be executed outside of an expression and the variable status
examined.

March 15, 1989 CSH-11

CSH(C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regu­
late the flow of control in command files (shell scripts) and (in limited
but useful ways) from terminal input. Due to the implementation,
some restrictions are placed on the word placement for the foreach,
switch, and while statements, as well as the if-then-else form of the if
statement. Please pay careful attention to these restrictions in the
descriptions in the next section.

If the shell's input is not seekable, the shell buffers up input whenever
a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto commands will succeed on nonseekable
inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in com­
mand occurs as any component of a pipeline except the last, then it is
executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name; wordlist is command and filename substitution is
applied to wordlist. Name is not allowed to be alias or unalias

break
Causes execution to resume after the end of the nearest enclos­
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi­
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
This is part of the switch statement discussed below.

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If no
argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc­
tory (and does not begin with /, ./, or .. /), then each component of
the variable cdpath is checked to see if it has a subdirectory
name. Finally, if all else fails but name is a shell variable

March 15, 1989 CSH-12

CSH (C) CSH (C)

whose value begins with I, then this is tried to see if it is a direc­
tory.

If cdspell has been set, the shell runs a spelling check as follows. If
the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory in a
search for the "correct" name. The shell then asks whether or not to
try and change the directory to the corrected directory name; an
answer of n means "no," and anything else is taken as "yes."

continue
Continues execution of the. nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

echo wordlist
The specified words are written to the shell's standard output. A
\c causes the echo to complete without printing a newline. A \n
in wordlist causes a newline to be printed. Otherwise the words
are echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and while state­
ments below.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first
fonn) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command
and the matching end are executed. (Both
foreach narne(wordlist) and end must appear alone on separate
lines.)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the

March 15, 1989 CSH-13

CSH (C) CSH (C)

contents of the loop are read by prompting with ? until end is
typed before any statements in the loop are executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delim­
ited by null characters in the output. Useful for programs which
wish to use the shell to apply filename expansion to a list of
words.

goto word
Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the speci fied line.

history
Displays the history event Jist.

if (expr) command
If the specified expression evaluates true, then the single com­
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. Command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, and com­
mand is not executed.

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

logout
Terminates a login shell. The only way to log out if ignoreeof is
set.

March 15, 1989 CSH-14

CSH (C) CSH(C)

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. By default, com­
mands run under C-Shell have a "nice value" of O. The second
form sets the nice to the given number. The final two forms run
command at priority 4 and number respectively .. The super-user
may specify negative niceness by using "nice -number " The
command is always executed in a subshell, and the restrictions
placed on commands in simple ifstatements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with & are automatically
nohuped.

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr, causes all interrupts to be
ignored. The final form causes the shell to execute a goto label
when an interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed .. This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command

set

The specified command, which is subject to the same restric­
tions as the command in the simple if statement above, is exe­
cuted count times. I/O redirection occurs exactly once, even if
count is O.

set name
set name=word

March 15, 1989 CSH-15

CSH(C) CSH (C)

set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell vari­
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the
list of words in wordlist. Command and filename expansion is
applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note howevert that variable expansion
happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari­
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift variable
In the first form, the members of argv are shifted to the left, dis­
carding argv[lJ. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the speci fied variable.

source name
The shell reads commands from name. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter­
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

switch (string)
case strl:

breaksw

default:

breaksw
endsw

Command and filename substitution is applied to string. The
each case label is successively matched against the result. Vari­
able expansion is also applied to the case labels, so the file
metacharacters *, ?, and [...] can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label

March 15. 1989 CSH-16

CSH (C)

time

CSH (C)

must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control
may fall through· case labels and default labels, as in C. If no
label matches and there is no' default, execution continues after
the endsw.

time command
With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above.

umask
umask value

The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask' are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern ,
All aliases whose names match the specified pattern are dis­
carded. Thus, all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro­
grams is disabled.

unset pattern

wait

All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; this has
noticeably distasteful side-effects. It is not an error for nothing
to be unset.

All child processes are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding.

while (expr)

end
While the speci fied expression evaluates nonzero, the com­
mands between the while and the matching end. are evaluated.
Break and continue may be used to terminate or continue the

March 15, 1989 CSH-17

CSH(C)

@

CSH (C)

loop prematurely. (The while (expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a ter­
minal.

@name=expr
@ name[index] = expr

The first form prints the values of all the shell variables. The
second form sets the speci fied name to the value of expr. If the
expression contains <, >, & or I then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words. The space between @ and
name is also mandatory.

Special postfix ++ and -- operators increment and decrement
name respectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argv, child, home, path, prompt, shell and status are always set by the
shell. Except for child and status this setting occurs only at initializa­
tion; these variables will not be modified unless done explicitly by the
user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever path is
set. Thus it is not necessary to worry about its setting other than in the
file .cshrc since inferior csh processes will import the definition of
path from the environment.

argv

cdpath

child

March 15. 1989

Set to the arguments to the shell, it is from this vari­
able that positional parameters are substituted, i.e.,
$1 is replaced by $argv[1], etc. argv[O] is not
defined, but $0 is.

Gives a list of alternate directories searched to find
subdirectories in cd commands.

The process number of the last command forked
with &. This variable is unset when this process
terminates.

CSH-18

CSH(C)

echo

histchars

history

home

ignoreeof

mail

noclobber

March 15, 1989

CSH(C)

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the A substi­
tution mechanism. For example, set histchars=",;"
will cause the history characters to be comma and
semicolon.

Can be given a numeric value to control the size of
the history list. Any command which has been
referenced in this many events will not be dis­
carded. A history that is too large may run the shell
out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of -
refers to this variable.

If set, the shell ignores end-of-file from input de­
vices that are terminals. This prevents a shell from
accidentally being terminated by pressing Ctrl-D.

The files where the shell checks for mail. This
check is executed after each command completion.
The shell responds with, "You have new mail" if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval: in
seconds, rather than the default, which is 10
minutes.

If multiple mail files are specified, then the shell
responds with "New mail in name", when there is
mail in the file name.

As described in the section Input/Output, restric­
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that »
redirections refer to existing files.

CSH-t9

CSH (C)

noglob

nonomatch

path

prompt

shell

status

March 15, 1989

CSH (C)

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi­
tive pattern to be malformed, i.e., echo [still gives
an error.

Each word of the path variable speci fies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, then only full pathnames will
execute. The usual search path is /bin, fusr/bin, and
., but this may vary from system to system. For the
super-user, the default search path is fetc, /bin and
fusr/bin. A shell which is given neither the -c nor
the -t option will normally hash the contents of the
directories in the path variable after reading .cshrc,
and each time the path variable is reset. If new
commands are added to these directories while the
shell is active, it may be necessary to give the
rehash command, or the commands may not be
found.

The string which is printed before reading each
command from an interactive terminal input. If a !
appears in the string, it will be replaced by the
current event number unless a preceding \ is given.
Default is % , or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Exe­
cution below.) Initialized to the home of the shell.

The status returned by the last command. If it ter­
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, otherwise these commands set status to O.

CSH-20

CSH(C)

time

verbose

CSH(C)

Controls automatic tlmmg of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be sent to the
screen displaying user time, system time, real time,
and a utilization percentage which is the ratio of
user plus system times to real time.

Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is found to not be a built-in com­
mand, the shell attempts to execute the command via exec (S). Each
word in the variable path names a directory from which the shell will
attempt to execute the command. If it is given neither a -c nor a -t
option, the shell will hash the names in these directories into an inter­
nal table so that it will only try an exec in a directory if there is a pos­
sibility that the command resides there. This greatly speeds command
location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the
shell was given a -c or -t argument, and for each directory component
of path which does not begin with a I, the shell concatenates each
directory component of path with the given command name to form a
pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus

(cd; pwd); pwd

prints the home directory; leaving you where you were and printing
the name of the current directory, while

cd; pwd

leaves you in the home directory. Parenthesized commands are
always executed in a subshell. Thus

(cd; pwd); pwd

prints the home directory but leaves you in the original directory,
while

cd; pwd

moves you to the home directory.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

March 15, 1989 CSH-21

CSH (C) CSH(C)

If there is an alias for shell then the words of the alias are prepended
to the argument list to form the shell command. The first word of the
alias should be the full path name of the shell (e.g. $shell). Note that
this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without
modification.

Argument List Processing

If argument 0 to the shell is - then this is a login shell. The flag argu­
ments are interpreted as follows:

-c Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker's home
directory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syn­
tactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that com­
mand input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is exe­
cuted.

-x Causes the echo variable to be set even before .cshrc is exe­
cuted.

After processing the flag arguments, if arguments remain but none of
the -c, -i, -s, or -t options were given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by $0. On a typical sys­
tem, most shell scripts are written for the standard shell (see sh(C)).

March 15, 1989 CSH-22

CSH(C) CSH(C)

The C shell will execute such a standard shell if the first character of
the script is not a # (Le. if the script does not start with a comment).
Remaining arguments initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed by
&; otherwise the signals have the values which the shell inherited
from its parent. The shells handling of interrupts can be controlled by
onintr. By default, login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell's parent.
In no case are interrupts allowed when a login shell is reading the file
.logout.

Files

-/.cshrc

/etc/cshrc

-/.login

-/.logout

/bin/sh

/tmp/sh*

/dev/null

letc/passwd

Limitations

Read at by each shell at the beginning
of execution

Systemwide default cshrc file if none is present

Read by login shell, after .cshrc at login

Read by login shell, at logout

Shell for scripts not starting with a #

Temporary file for «

Source of empty file

Source of home directories for -name

Words can be no longer than 512 characters. The number of argu­
ments to a command which involves filename expansion is limited to
1/6 the number of characters allowed in an argument list, which is
5120, less the characters in the environment. Also, command substitu­
tions may substitute no more characters than are allowed in an argu­
ment list.

To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),

March 15, 1989 CSH-23

CSH (C) CSH (C)

a.out(F), environ(M)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Built-in control structure commands like foreach and while cannot be
used with I, & or;.

Coinmands within loops, prompted for by ?, are not placed in the his­
tory list.

It is not possible to use the colon (:) modifiers on the output of com­
mand substitutions.

The C-shell has many built-in commands with the same name and
functionality as Bourne shell commands. However, the syntax of
these C-shell and Bourne shell commands often differs. Two examples
are the nice and echo commands. Be sure to use the correct syntax
when working with these built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands
in letclcshrc before executing commands in the user's $HOMEI.cshrc.
You can, therefore, modify the C-shell environment for all users on the
system by editing letclc~hrc.

During intervals of heavy system load, pressing the delete key while
at a C-shell prompt (%) may cause the shell to exit. If csh is the login
shell, the user is logged out.

csh attempts to import and export the PATH variable for use with reg­
ular shell scripts. This only works for simple cases, where the PATH
contains no command characters.

March 15, 1989 CSH-24

CSPLlT(C)

csplit
splits files according to context

Syntax

csplit [-s] [-k] [-f prefix] file argl [.•• argn]

Description

CSPLlT(C)

csplit reads file and separates it into n+ 1 sections, defined by the
arguments argl • •• argn. By default the sections are placed in files
xxOO .•• xxn (n may not be greater than 99). These sections get the
following pieces of file:

00: From the start of file up to (but not including) the line refer­
enced by arg 1 .

01: From the line referenced byargl up to the line referenced by
arg2.

n+ l: From the line referenced byargn to the end offile.

The options to cspUt are:

-s csplit normally prints the character counts for each file creat­
ed. If the -s option is present, csplit suppresses the printing
of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f pre[u If the -f option is used, the created files are named prefixOO
••. prefixn. The default is xxOO . .. xxn.

The arguments (argl •.. argn) to csplit can be a combination of the
following:

!rexp / A file is to be created for the section from the current line
down to (but not including) the line containing the regular
expression rexp. The current line becomes the line contain­
ing rexp. This argument may be followed by an optional +
or - some number of lines (e.g., /Page/.S).

March 15, 1989 CSPLlT-1

CSPLIT (C) CSPLIT (C)

%rexp % This argument is the same as Irexp I, except that no file is
created for the section.

lnno A file is to be created from the current line down to (but not
including) lnno. The current line becomes lnno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows lnno, the
file will be split every lnno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other charac­
ters meaningful to the shell in the appropriate quotation marks. Regu­
lar expressions may not contain embedded newlines. csplit does not
affect the original file; it is the users responsibility to remove it.

Examples

csplit -f cobol file '/procedure division/' '/parS./' '/par16.(

This example creates four files, coboIOO ..• coboI03. After editing
the "split" files, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The ·k option causes the created files to be retained if there are less
than 10,000 lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' T}/+ l' {20}

Assuming that prog.c follows the normal C coding convention of end­
ing routines with a } at the beginning of the line, this example will
create a file containing each separate C routine (up to 21) in prog.c.

March 15, 1989 CSPLlT-2

CSPLlT(C)

See Also

ed(C), sh(C), regex(S)

Diagnostics

Self-explanatory except for:

arg - out of range

CSPLlT(C)

which means that the given argument did not reference a line between
the current position and the end of the file.

Standards Conformance

csplit is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CSPLlT-3

CU (C)

cu
call another UNIXlXENIX system

Syntax

Cll [-sspeed] [-lline] [-h] [-t] [-xn] [-0 I-e I-oe] [-n] telno
Cll [-s speed] [-h] [-xn] [[-0 I-e I-oe] -I line [dir]
Cll [-h] [-xn] [-0 I-e I-oe] systemname

Description

CU (C)

cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers
of ASCII files.

cu accepts the following options and arguments:

-sspeed Specifies the transmission speed (150, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400). The default value is
"Any" speed which will depend on the order of the lines
in the lusrllib/uucp/Devices file. A speed range can
also be specified (for example, -s1200-48oo).

-lline Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -I option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -I and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con­
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not be
made. The specified device is generally a directly con­
nected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The
specified device need not be in the /dev directory. If
the specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with system name rather than telno will not give the
desired result (see systemname below).

-h Emulates local echo, supporting calls to other computer
systems which expect terminals to be set to half-duplex
mode.

March 15, 1989 CU-1

CU (C) CU (C)

-t U sed to dial an ASCII terminal which has been set to
auto answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set.

-xn Causes diagnostic traces to be printed; it produces a
detailed output of the program execution on stderr. The
debugging level. n. is a single digit; -x9 is the most
useful value.

-n For added security. will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

telno When using an automatic dialer. the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

systemname A UUCP system name may be used rather than a tele­
phone number. In this case. cu will obtain an appropri­
ate direct line or telephone number from
lusr/lib/uuep/Systems. Note: the systemname option
should not be used in conjunction with the -I and -s
options as cu will connect to the first available line for
the system name specified. ignoring the requested line
and speed.

dir The keyword dir can be used with eu -lline. in order to
talk directly to a modem on that line. instead of talking
to another system via that modem. This can be useful
when debugging or checking modem operation. Note:
only users with write access to the Devices file are per­
mitted to use eu -lline dir.

In addition. cu uses the following options to determine communica­
tions settings:

-0 If the remote system expects or sends 7 -bit with odd parity.

-e If the remote system expects or sends 7 -bit with even parity.

-oe
If the remote system expects or sends 7-bit. ignoring parity and
sends 7-bit with either parity.

By default. cu expects and sends 8-bit characters without parity. If the
login prompt received appears to contain incorrect 8-bit characters. or
a correct login is rejected. use the 7-bit options described above.

After making the connection. cu runs as two processes: the transmit
process reads data from the standard input and. except for lines begin­
ning with -, passes it to the remote system; the receive process accepts

March 15, 1989 CU-2

CU (C) CU (C)

data from the remote system and, except for lines beginning with -,
passes it to the standard output. Normally, an automatic DC3/DCl
protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with - have special meanings.

The transmit process interprets the following user initiated com­
mands:

-!cmd ...

-$cmd ...

-%take from [to]

-%put from [to]

--line

-%break

-%debug

March 15, 1989

terminate the conversation.

escape to an interactive shell on the local sys­
tem.

run cmd on the local system (via sh -e).

run cmd locally and send its output to the
remote system.

change the directory on the local system.
Note: -fed will cause the command to be run
by a sub-shell, probably not what was
intended.

copy file from (on the remote system) to file
to on the local system. If to is omitted, the
from argument is used in both places.

copy file from (on local system) to file to on
remote system. If to is omitted, the from
argument is used in both places.

For both -%take and -%put commands, as
each block of the file is transferred, consecu­
tive single digits are printed to the terminal.

send the line -line to the remote system.

transmit a BREAK to the remote system
(which can also be specified as -%b).

toggles the -x debugging level between 0 and
9 (which can also be specified as -%d).

prints the values of the termio structure vari­
ables for the user's terminal (useful for
debugging).

prints the values of the termio structure vari­
ables for the remote communication line
(useful for debugging).

CU-3

CU (C)

-%nostop

CU (C)

toggles between DC3/DC1 input control pro­
tocol and no input. control. This is useful in
case the remote system is one which does not
respond properly to the DC3and DC1 charac­
ters.

The receive process normally copies data from the remote system to
its standard output. Internally the program accomplishes this by ini­
tiating an output diversion to a file when a line from the remote begins
with -. Data from the remote is diverted (or appended, if» is used)
to file on the local system. The trailing -> marks the end of the diver­
sion.

The use of -%put requires stty(C) and cat(C) on the remote side. It
also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of-%take requires the existence of echo(S) and cat(C) on the
remote system. Also, tabs ·mode (See stty(C)) should be set on the
remote system if tabs are to be copied without expansion to spaces.

When cu is used on system] to connect to system2 and subsequently
used on system2 to connect to system3, commands on system2 can be
executed by using -. Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on sys­
tems 1, 2, and 3 as follows:

uname
system3
-system 1 !uname
system 1
-system2!uname
system2

In general, - causes the command to be executed on the original ma­
chine, -- causes the command to be executed on the next machine in
the chain.

Examples

To dial a system whose telephone number is 9 201 555 1212 using
1200 baud (where dialtone is expected after the 9):

cu -s1200 9=12015551212

If the speed is not speci tied, "Any" is the default value.

To login to a system connected by a direct line:

cu -1 Idev Itty xx

March 15, 1989 CU-4

CU(C) CU (C)

or

cu -I ttyXX

To dial a system with the specific line and a specific speed:

cu -sl2oo -I ttyXX

To dial a system using a specific line associated with an auto dialer:

cu -I ttyXX 9=12015551212

To use a system name:

cu systemname

To talk directly to an ACU (connect directly with the modem and
enter modem commands manually):

cu -lttyXX dir

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/lib/uucp/LCK. .(tty-device)

See Also

cat(C), ct(C), echoeS), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

March 15, 1989 CU-5

CU (C)

Warnings

CU (C)

The cu command does not do any integrity checking on data it
transfers. Data fields with special cu characters may not be
transmitted properly. Depending on the interconnection hardware,
it may be necessary to use a -. to terminate the conversion even if
stty 0 has been used. Non-printing characters are not dependably
transmitted using either the -%put or -%take commands. cu
between an IMBR 1 and a penril modem will not return a login
prompt immediately upon connection. A carriage return will
return the prompt.

Notes

There is an arti ficial slowing of transmission by cu during the
-%put operation so that loss of data is unlikely.

Standards Conformance

cu is conformant with:
AT&TSVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CU-6

CUT (C) CUT (C)

cut
cuts out selected fields of each line of a file

Syntax

cut -c list [filel file2 ...]
cut -f list [-d char] [-s] [filel file2 ...]

Description

Use cut to cut out columns from a table or fields from each line of a
file. The fields as specified by list can be fixed length, i.e., character
positions as on a punched card (-c option), or the length can vary from
line to line and be marked with a field delimiter character like tab (-f
option). cut can be used as a filter. If no files are given, the standard
input is used.

The meanings of the options are:

list A comma-separated list of integers (in increasing order), with
an optional dash (-), indicates ranges, as in the -0 option of
nroff/troff for page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field).

-clist The list following -c (no space) specifies character positions
(e.g., -cl-72 would keep the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated
in the file by a delimiter character (see -d); e.g., -fl,7 copies
the first and seventh field only. Lines with no field delimiters
will be passed through intact (useful for table subheadings),
unless -s is speci fied.

-dchar The character following -d is the field delimiter (-f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

-s If the -f option is used, -s suppresses lines with no delimiter
characters. Unless specified, lines with no delimiters will be
passed through untouched.

Either the -c or -f option must be specified.

March 15, 1989 CUT-1

CUT (C)

Notes

CUT (C)

Use grep(C) to make horizontal "cuts" (by context) through a file, or
paste(C) to put files together horizontally. To reorder columns in a
table, use cut and paste.

Examples

cut -d: -fl,5 /etc/passwd Maps user ID's to names.

name=' who am i I cut -fl -d" ",

See Also

grep(C), paste(C)

Diagnostics

Sets name to current login name.

line too long A line can have no more than 511 characters or
fields.

bad list for c / f option
Missing -c or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

no fields The list is empty.

Standards Conformance

cut is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CUT-2

DATE (C) DATE (C)

date
prints and sets the date

Syntax

date [-ems] [mmddhhmm[yy]] [+fonnat]

Description

If no argument is given, or if the argument begins with +, the current
date and time are printed as defined by the locale. Otherwise, the
current date is set. The first mm is the month number; dd is the day
number in the month; hh is the hour number (24-hour system); the
second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM, if the local language is set to English.
The current year is the default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local
standard and daylight time.

If the argument begins with +, the output of date is under the control
of the user. The fonnat for the output is similar to that of the first
argument to printf (S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by a percent sign (%)
and will be replaced in the output by its corresponding value. A single
percent sign is encoded by doubling the percent sign, i.e., by specify­
ing "%%". All other characters are copied to the output without
change. The string is always tenninated with a newline character.

Field Descriptors:

n Inserts a new line character

t Inserts a tab character

m Month of year - 01 to 12

d Day of month - 01 to 31

y Last 2 digits of year - 00 to 99

D Date as mmjdd/yy

March 16, 1991 DATE-1

DATE (C) DATE (C)

H Hour - 00 to 23

M Minute - 00 to 59

S Second - 00 to 59

T Time as Iffi:MM:SS

j Julian date - 001 to 366

w Day of the week - Sunday = 0

a Abbreviated weekday - Sun to Sat

h Abbreviated month - Jan to Dec

r Time in AMJPM notation

Options

-c Prints the current date and time from the hardware real-time
clock. Thus, date -c mmddhhmm[yy] sets the real-time clock.

-m Updates the year on the hardware real-time clock, if it is Janu­
ary 1, and makes adjustments to the real-time clock if it is
February 29 in a leap year. These dates are not automatically
incremented. Be sure to use this option after midnight. The-m
option determines if it is January 1 or February 29, and then
updates the hardware real-time clock if necessary. For the -m
option to work correctly, the software clock and the hardware
clock should be within twelve hours of each other. Use cron(C)
to execute date m each day.

-s Sets (synchronizes) the system (i.e., software) clock to the
current time and date from the hardware real-time clock.

The operating system normally uses only the system (software) clock.
It uses the hardware real-time clock only with the date command.

Example

The line

date ' +DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output:

March 16, 1991 DATE-2

DATE (C) DATE (C)

DATE: 08/01/90
TIME: 14:45:05

Diagnostics

no permission You aren't the super-user and you are trying to
change the date.

bad conversion The date set is syntactically incorrect.

badforrnat character The field descriptor is not recognizable.

Standards Conformance

date is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 16, 1991 DATE-3

DC(C) DC (C)

de
invokes an arbitrary precision calculator

Syntax

de [file]

Description

de is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall struc­
ture of de is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is
an unbroken string of the digits 0-9. It may be preceded by an
underscore () to input a negative number. Numbers may con­
tain decimal points.

+_1*%"
The top two values on the stack are added (+), subtracted (.),
multiplied (*), divided (/), remaindered (%), or exponentiated
C). The two entries are popped off the stack and the result
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

sx The top of the stack is popped and stored into a register named
x, where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the I is capi­
talized' register x is treated as a stack and its top value is
popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. p interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

March 11, 1990 DC-1

DC (C) DC(C)

q Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x Treats the top element of the stack as a character string and
executes it as a string of de commands.

X Replaces the number on the top of the stack with its scale fac­
tor.

[•.•] Puts the bracketed ASCII string onto the top of the stack.

<X >x =x
The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

Interprets the rest of the line as an Altos UNIX System V com­
mand.

c All values on the stack are popped.

I

o

o

k

z

z

?

, .

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non­
negative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi­
sion, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed
together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the ter­
minal) and executed.

Used by be for array operations.

March 11, 1990 DC-2

DC (C)

Example

DC (C)

This example prints the first ten values of n!:

[lal+dsa*plalO>y]sy
Osal
lyx

See Also

bc(C)

Diagnostics

x is unimplemented

stack empty

Out of space

Out of headers

Out of pushdown

Nesting Depth

Notes

The octal number x corresponds to a character
that is not implemented as a command

Not enough elements on the stack to do what
was asked

The free list is exhausted (too many digits)

Too many numbers being kept around

Too many items on the stack

Too many levels of nested execution

be is a preprocessor for dc, providing infix notation and a C-like syn­
tax which implements functions and reasonable control structures for
programs. For interactive use, be is preferred to de .

March 11,1990 DC-3

DO (C) DO (C)

dd
converts and copies a file

Syntax

dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw
physical 1/0.

Option Value

if=Jile Input filename; standard input is default

of=Jile Output filename; standard output is default

ibs=n Input block size is n bytes (default is BSlZE block
size)

obs=n Output block size (default is BSIZE block size)

bs=n Sets both input and output block size, superseding ibs
and obs. If no conversion is specified, it is particu­
larly efficient since no in-core copy needs to be done

cbs=n Conversion buffer size

skip=n Skips n input records before starting copy

seek=n Seeks n records from beginning of output file before
copying

count=n Copies only n input records

conv=ascii Converts EBCDIC to ASCII

conv=ebcdic Converts ASCII to EBCDIC

conv=ibm Slightly different map of ASCII to EBCDIC

conv=lcase Maps a~phabetic characters to lowercase

March 15, 1989 00-1

DD (C)

Option

conv=ucase

conv=swab

conv=sync

conv=" ..• , .•. "

Value

Maps alphabetic characters to uppercase

Swaps every pair of bytes

Pads every input record to ibs

Several comma-separated conversions

DD (C)

Where sizes are specified, a number of bytes is expected. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a
product.

cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer, con­
verted to ASCII, and trailing blanks trimmed and newline added before
sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks
added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile :

dd if=/dev /rmtO of=outfile ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. dd is especially suited to I/O on raw
physical devices because it allows reading and writing in arbitrary
record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

j+p records in(out)

March 15, 1989

Numbers of full and partial records
read(written)

00-2

DO (C)

Notes

OO(C)

The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion cor­
responds better to certain IBM print train conventions. There is no
universal solution.

Newlines are inserted only on conversion to ASCII; padding is done
only on conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple
of 512-byte blocks. For example, to use a 9K block size, enter:

dd if=file of=/dev IrfdO bs= 18b

You could also enter:

dd if=file of=/dev IrfdO bs=9K

Standards Conformance

dd is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The XIOpen Portability Guide II of January 1987.

March 15, 1989 00-3

DEVNM (C) DEVNM (C)

devnm
identifies device name

Syntax

/etc/devnm [names]

Description

devnm identifies the special file associated with the mounted file sys­
tem where the argument name resides.

This command is most commonly used by the /etc/rc2 scripts to con­
struct a mount table entry for the root device.

Examples

Be sure to type full pathnames in this example:

/etc/devnm /usr

If /dev/hdb is mounted on /usr, this produces:

hdb /usr

Files

/dev /* Device names

/etc/rc2 Startup commands

See Also

setmnt(ADM)

Standards Conformance

devnm is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 17, 1991 DEVNM-1

DF(C) DF(C)

df

report number of free disk blocks

Syntax

df [-t] [-f] [-v] [filesystems]

Description

df prints out the number of free blocks and free inodes available for
on-line filesystems by examining the counts kept in the super-blocks;
filesystems may be specified by device name (e.g., /dev/root). If the
filesystems argument is unspecified, the free space on all of the
mounted filesystems is sent to the standard output. The list of
mounted filesystems is given in /etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as
number of free blocks.

-f Reports only an actual count of the blocks in the free list (free
inodes are not reported). With this option, df reports on raw de-
vices. .

-v Reports the percent of blocks used as well as the number of
blocks used and free.

The -v option can not be used with other df options.

Files

Idev/*
letc/mnttab

See Also

mount(ADM), fsck(ADM), mnttab(F)

Notes

See Notes under mount(ADM).

March 15, 1989 DF-1

DF(C) DF(C)

This utility reports sizes in 512 byte blocks. df will report 2 blocks
less free space, rather than 1 block, since the file uses one system
block of 1024 bytes.

The directory /etc/fscmd.d/TYPE contains programs for each filesys­
tern type, df invokes the appropriate binary.

Authorization

The behavior of this utility is affected by assignment of the querys­
pace authorization, which is usually reserved for system administra­
tors. Refer to the "Using a Trusted System" chapter of the User's
Guide for more details.

Standards Conformance

dfis conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DF-2

DIFF (C) DIFF (C)

diff

compares two text files

Syntax

difT [-beth] filel file2

Description

diff tells what lines must be changed in two files to bring them into
agreement. If fUel or file2 is a dash (-), the standard input is used. If
filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (fUe2 or filel respectively) it is compared to.
For example:

diff Itmp dog

compares the file named dog that is in the Itmp directory, with the file
dog in the current directory. The normal output contains lines of these
forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3 ,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one may ascertain equally how to convert
file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second
file flagged by>.

The -b option causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for the editor
ed, which will recreate file2 fromfilel. The -f option produces a simi­
lar script, not useful with ed, in the opposite order. In connection with
-e, the following shell procedure helps maintain multiple versions of a
file:

(shift; cat $*; echo 'l,$p') led - $1

March 15, 1989 DIFF-1

DIFF (C) DIFF (C)

This works by performing a set of editing operations on an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on the
command line. The set of editing operations is then piped as an edit­
ing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only an
ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3, ...) made by diffneed be on hand.

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The -h option does a fast, less-rigorous job. It works only when
changed stretches are short and well separated, but the files can be of
unlimited length. The -e and -f options cannot be used with the -h
option.

Files

/tmp/d?????

/usr/lib/diflh

See Also

(executable used when -h option is specified)

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is 0 for no differences, 1 for some differences, 2 for errors.

Notes

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single period (.).

Standards Conformance

diffis conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIFF-2

DIFF3 (C) DIFF3 (C)

diff3
compares three files

Syntax

diff.3 [-ex3] filel file2 file3

Description

diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

====1

====2

====3

All three files differ

Filel is different

File2 is different

File3 is different

The type of change suffered in converting a given range of a given file
to some other range is indicated in one of these ways:

f: nl a

f: nl ,n2 c

Text is to be appended after line number nl in
file f, where f = 1,2, or 3.

Text is to be changed in the range line nl to
line n2. If nl = n2, the range may be abbrevi­
ated to nl.

The original contents of the range follows immediately after a c indi­
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the
changes that normally would be flagged ==== and ====3. The -x
option produces a script to incorporate changes flagged with "====".
Similarly, the -3 option produces a script to incorporate changes
flagged with "====3". The following command applies a resulting
editing script to filel :

(cat script; echo 'l,$p') led - filel

March 15, 1989 DIFF3-1

DIFF3 (C)

Files

/tmp/d3*

/usr/lib/difi3prog

See Also

diff(C)

Notes

DIFF3 (C)

The -e option does not work properly for lines consisting of a single
period.

The input file size limit is 64K bytes.

March 15, 1989 DIFF3-2

DIRCMP (C) DIRCMP (C)

dircmp
compares directories

Syntax

dircmp [-d] [-s] [-wn] dirl dir2

Description

dircmp examines dir 1 and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical.

-s Suppresses output of identical filenames.

-w n Changes the width of the output line to n characters. The
default width is 72.

See Also

cmp(C), diff(C)

Standards Conformance

dircmp is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRCMP-1

DIRNAME (C) DIRNAME (C)

dirname
delivers directory part of pathname

Syntax

dirname string

Description

dirname delivers all but the last component of the pathname in string
and prints the result on the standard output. If there is only one com­
ponent in the pathname, only a "dot" is printed. It is normally used
inside substitution marks (......) within shell procedures.

The companion command basename deletes any prefix ending in a
slash (f) and the suffLX (if present in string) from string, and prints the
result on the standard output.

Examples

The following example sets the shell variable NAME to lusrlsre/emd:

NAME=' dimame lusrlsrc/cmd/cat.c'

This example prints la/b/e on the standard output:

dirname la/b/c/d

This example prints a "dot" on the standard output:

dim arne file. ext

This example moves to the location of a file being searched for (lost­
file):

cd 'find. -name lostfile -exec dim arne { } ;'

See Also

basename(C), sh(C)

Standards Conformance

dirname is conformant with:

March 15, 1989 DIRNAME-1

DIRNAME (C) DIRNAME (C)

The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRNAME-2

DISABLE (C) DISABLE (C)

disable
turns off terminals and printers

Syntax

disable tty ...
disable [-c][-r[reason]] printers

Description

For terminals, this program manipulates the letc/conf/cf.d/init.base
file and signals init to disallow logins on a particular terminal. For
printers, disable stops print requests from being sent to the named
printer. The following options can be used:

-c

-r[reason]

Examples

Cancels any requests that are currently printing.

Associates a reason with disabling the printer. The rea­
son applies to all printers listed up to the next -r option.
If the -r option is not present or the -r option is given
without a reason, then a default reason is used. Reason
is reported by lpstat (C).

In this example, a printer named linepr is disabled because of a paper
jam:

disable -r"paper jam" linepr

Files

Idev/tty*

letc/conf/cf.d/init. base

lusrlspool/lp/*

See Also

10gin(M), enable(C), inittab(F), getty(M), init(M), Ip(C), Ipstat(C),
uugetty(ADM)

March 15, 1989 DISABLE-1

DISABLE (C)

Authorization

DISABLE (C)

The behavior of this utility is affected by assignment of the printer­
stat authorization, which is usually reserved for system administra­
tors. Refer to the "Using a Trusted System" chapter of the User's
Guide for more details.

March 15, 1989 DISABLE-2

DISKCP (C)

diskcp, diskcmp
copies or compares floppy disks

Syntax

DISKCP (C)

diskcp [-f] [-d] [-s] [-48ds9] [-96ds9] [-96dslS] [-13Sds9] [-13Sds18]
diskcmp [-d] [-s] [-48ds9] [.96ds9] [-96dslS] [-13Sds9] [·13Sds18]

Description

diskcp is used to make an image (exact copy) of a source floppy disk
on a target floppy disk. On machines with one floppy drive diskcp
temporarily transfers the image to the hard disk until a "target"
floppy is inserted into the floppy drive. On machines with two floppy
drives diskcp immediately places the image of the source floppy
directly on the target floppy.

diskcmp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp
utility.

The options are:

·f Format the target floppy disk before the image is copied (diskcp
only).

-d The computer has dual floppy drives. diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target
floppies; gives an error message if the two do not match.

-48ds9
This setting is for low density 48tpi floppies. It is the default set­
ting.

-96ds9
This setting is for high density 96tpi floppies.

-96ds15
This setting is for quad density 96tpi floppies.

-135ds9
This setting is for high density 135tpi 3.5 inch floppies.

March 11, 1990 DISKCP-1

DISKCP (C) DlSKCP (C)

-135ds18
This setting is for quad density 135tpi 3.5 inch floppies.

When using the -96ds9 and -96ds15 options of diskcp without the -f
option, if the first target disk is unfonnatted, the program will note it,
fonnat it and make the copy. If another copy is requested and another
unfonnatted target disk inserted, diskcp exits with a "System error."
Quit, fonnat the floppy, and reinvoke diskcp to make another copy.

Examples

To make a copy of a floppy, place the source floppy in the drive and
type:

diskcp

When diskcp is finished copying to the hard disk, it prompts you to
insert the target floppy in the drive. If you specify the -f flag when you
invoke diskcp , the program fonnats the target floppy. When the copy
is finished, diskcp asks if you would like to make another copy of the
same source disk. If you enter 'n', it asks if you would like to copy
another source disk.

Specify the -d flag on the command line if you have two floppy drives:

diskcp -d

Notes

If diskcp encounters a write error while copying the source image to
the target disk, it fonnats the disk and tries to write the source image
again. This happens most often when an unfonnatted floppy is used
and the -f flag is not specified.

Files

/usr/bin/diskcp
/usr/bin/diskcmp
/tmp/disk????

See Also

cmp(C), dd(C), fonnat(C), sum(C)

Value Added

diskcmp and diskcp are extensions of AT&T System V provided by
Altos UNIX System V.

March 11, 1990 DISKCP-2

DOS (C) DOS (C)

dos: doseat, dosep, dosdir, dosfor­
mat, dosmkdir, dosls, dosrm,
dosrmdir
access to and manipulation of DOS files and DOS
filesystems

Syntax

doscat [-r I -m] file ...

doscp [-r I -m] filet file2

doscp [-r I-m] file ... directory

dosdir directory ...

dosformat [-fqv] drive

dosls directory ...

dosmkdir directory ...

dosrm file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and directories on MS­
DOS disks and on a DOS partition of a hard disk. Note that in order to
use these commands on a DOS partition of a hard disk, the partition
must be bootable, although not active. It is also possible to mount and
access a DOS filesystem while operating from the Altos UNIX System
V partition.

The dos commands perform the following actions:

doscat

doscp

Copies one or more DOS files to the standard output. If
-r is given, the files are copied without newline conver­
sions. If -m is given, the files are copied with newline
conversions (see "Conversions" below).

Copies files between a DOS disk and an Altos UNIX
System V filesystem. If filel and file2 are given, filel is
copied to file2. If a directory is given, one or more files

September 19, 1990 DOS-1

DOS (C)

dosdir

dosformat

dosls

dosrm

dosmkdir

dosrmdir

DOS (C)

are copied to that directory. If -r is given, the files are
copied without newline conversions. If -m is given, the
files are copied with newline conversions (see
"Conversions" below).

Lists DOS files in the standard DOS style directory for­
mat.

Creates a DOS 2.0 formatted diskette. The drive may
be specified in either DOS drive convention, using the
default file /etc/default/msdos, or using the Altos UNIX
System V special file name. dosformat cannot be used
to format a hard disk. The -f option suppresses the
interactive feature. The -q (quiet) option is used to
suppress information normally displayed during dosfor­
mat. The -q option does not suppress the interactive
feature. The -v option prompts the user for a volume
label after the diskette has been formatted. The max­
imum size of the volume label is 11 characters.

Lists DOS directories and files in an Altos UNIX Sys­
tem V format (see Is(C».

Removes files from a DOS disk.

Creates a directory on a DOS disk.

Deletes directories from a DOS disk.

The file and directory arguments for DOS files and directories have the
form:

device:name

where device is an Altos UNIX System V pathname for the special de­
vice file containing the DOS disk, and name is a pathname to a file or
directory on the DOS disk. The two components are separated by a
colon (:). For example, the argument:

/dev /fdO:/src/file.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the
device file /dev/fdO. Note that slashes (and not backslashes) are used
as filename separators for DOS pathnames. Arguments without a de­
vice: are assumed to be Altos UNIX System V files.

For convenience, the user configurable default file,
/etc/default/msdos, can define DOS drive names to be used in place of
the special device file pathnames. It can contain lines with the follow­
ing format:

September 19, 1990 DOS-2

DOS (C)

A=/dev/fdO
C=/dev /hdad
D=/dev /hdbd

OOS.(C)

The drive letter "A" may be used in place of special device file path­
name /dev/fdO when referencing DOS files (see "Examples" below).
The drive letter "C" or "D" refer to the DOS partition on the first or
second hard disk.

The commands operate on the following kinds of disks:

DOS partitions on a hard disk
5 1/4 inch DOS
3 1/2 inch DOS
8,9, 15, or 18 sectors per track
40 tracks per side
1 or 2 sides
·DOS versions 1.0, 2.0 or 3.0

Conversions

In the case of doscp, certain conversions are performed when copying
an Altos UNIX System V file. Filenames with a basename longer than
eight characters are truncated. Filename extensions (the part of the
name following separating period) longer than three characters are
truncated. For example, the file 123456789.12345 becomes
12345678.123. A message informs the user that the name has been
changed and the altered name is displayed. Filenames containing ille­
gal DOS characters are stripped when writing to the MS-DOS format.
A message informs the user that characters have been removed and
displays the name as written.

All DOS text files use a carriage-return/linefeed combination, CR-LF ,
to indicate a newline. Altos UNIX System V files use a single newline
LF character. When the doscat and doscp commands transfer DOS
text files to the Altos UNIX System V filesystem, they automatically
strip the CR. When text files are transferred to DOS , the commands
insert a CR before each LF character.

Under some circumstances the automatic newline conversions do not
occur. The -m option may be used to ensure the newline conversion.
The -r option can be used to override the automatic conversion and
force the command to perform a true byte copy regardless of file type.

Examples

doscat /dev/fdO:/docs/memo.txt
doscat /tmp/fl /tmp/fl /dev /fdO:/src/file.asm

September 19, 1990 00S-3

DOS (C)

dosdir /dev/fdO:/src
dosdir A:/src A:/dev

doscp /tmp/myfile.txt /dev/fdO:/docs/memo.txt
doscp /tmp/fl /tmp/fl /dev /fdO:/mydir
dosformat /dev /fdO

dosls /dev/fdO:/src
dosls B:

dosmkdir /dev/fdO:/usr/docs

dosrm /dev/fdO:/docs/memo.txt
dosrm A:/docs/memo l.txt

dosrmdir /dev /fdO:/usr/docs

DOS (C)

~ccessing DOS Filesystems From the UNIX Parti­
tion

The ability to mount DOS filesystems is an extension of the DOS utili­
ties documented here.

There are several limitations with the DOS directory structure which
makes this a difficult task. These limitations are due to insufficient in­
formation when compared to the Altos UNIX System V filesystem.

The DOS directory structure contains the following information:

• Filename: up to 8 characters with 3 character extension
(foo.bat)

• File Attribute: read-only/read-write, hidden/visible file,
system/normal file, Volume name/normal file name,
subdirectory/normal file, archive/modified bit

• Time of last modification

• Date of last modification

• Starting point (reference through FAT)

• File size in bytes

Using this information, it is converted to an actual UNIX inode. There
are some Altos UNIX System V provisions that cannot be carried over,
because the filesystem must remain sane under DOS.

• Any date in the UNIX inode table for the DOS filesystem is the
same as the modification date (ctime = atime = mtime).

• The only types of nodes allowed in the DOS filesystem are

September 19, 1990 DOS-4

DOS (C) DOS (C)

directories and normal files. Pipes, semaphores, and special de­
vice files do not exist because they do not have a counterpart
under DOS.

• The permissions are 0777 for readable/writable files and 0555
for read only files. If a user can access the filesystem, the user
will be limited by the permissions available under the DOS
directory structure. This permission is read-only or read write.
When creating a file, the creator's umask/mode is examined.
The creation mode is based on the owner write bit.

• The gid/uid for all files on the DOS filesystem is the same as
the mountpoint. The mount point will maintain the necessary
security. If a user can get into the mountpoint, then the user has
the same access as the owner.

• There is only one link for each file under the DOS filesystem.
" ." and " .. " are a special case and are not links.

• On every change of the modification time (which on an Altos
UNIX System V system would change atime, ctime, mtime) the
DOS archive bit is set.

• Following DOS filesystem requirements, all blocks previous to
a written block are allocated before the original block is writ­
ten. This differs from Altos UNIX System V systems where the
program may seek out beyond the end of a file and write a
block. Altos UNIX System V systems do not necessarily write
blocks that have been skipped over.

• If a program does not use the directory(S) system calls, but
opens the directory in the DOS filesystem as a file, the program
should see the DOS directory structure as it really exists. By
using the directory(S) system calls, the filesystem switch code
will put together an Altos UNIX System V style directory entry.

• File contents are not mapped from the OOS filesystem. The file
appears exactly as it is under DOS. For example, '\Nt combina­
tions are left as '\Nt and not mapped to just \no The file and

. directory names are mapped to uppercase.

DOS File Conversion

The utilities xtod(C) and dtox(C) can be used to convert the EOL
sequences used to and from DOS, respectively.

September 19, 1990 DOS-5

DOS (C)

Files

/etc/default/msdos
/dev/fd*
/dev/hd*

See Also

DOS (C)

Default information
Floppy disk devices
Hard disk devices

assign(C), dtype(C), mkfs(ADM), dtox(C), xtod(C), and "Using
DOS" in the System Administrator's Guide

Notes

Using the DOS utilities, is not possible to refer to DOS directories with
wild card specifications. The programs mentioned above cooperate
among themselves so no two programs will access the same DOS disk.
Only one process will access a given DOS disk at any time, while
other processes wait. If a process has to wait too long, it displays the
error message, "can't seize a device," and exits with an exit code of
1.

You cannot use the dosformat command to format device A: because
it is aliased to /dev/install, which cannot be formatted. Use /dev/rfdO/
instead.

The following hard disk devices:

/dev/hdad
/dev/rhdad
/dev/hdbd
/dev/rhdbd

are similar to /dev/hdaa in that the disk driver determines which parti­
tion is the DOS partition and uses that as hd?d. This means that soft­
ware using the DOS partition does not need to know which partition is
DOS.

The Development System supports the creation of DOS executable
files, using cc (CP). Refer to the C User's Guide and C Library Guide
for more information on using your Altos UNIX System V system to
create programs suitable for DOS systems.

All of the DOS utilities leave temporary files in Itmp. These files are
automatically removed when the system is rebooted. They can also be
manually removed.

You must have DOS 3.3 or earlier. Extended DOS partitions are not
supported.

September 19, 1990 DOS-6

DOS (C) DOS (C)

Value Added

doscat, doscp, dosdir, dos/ormat, dosls, dosmkdir, dosrm and dosrmdir
are extensions of AT&T System V provided by Altos UNIX System V.

September 19,1990 005-7

DTOX(C) DTOX (C)

dtox
change file format from MS-DOS to UNIX

Syntax

dtox filename > output file

Descri ption

The dtox command converts a file from MS-DOS format to Altos UNIX
System V format. MS-DOS files terminate a line of text with a carriage
return and a linefeed, while Altos UNIX System V files terminate a
line with a linefeed only. Also MS-DOS places a (CfL)z at the end of a
file, while Altos UNIX System V systems do not. Some programs and
utilities are sensitive to this difference and some are not. If a text or
data file is not being interpreted correctly, then use the dtox and xtod
conversion utilities. The dtox command strips the extra carriage
return from the end of each line and strips the (CfL)z from the end of
the file. This utility is not required for binary object files.

If no filename is specified on the command line, dtox takes input from
standard input. Output of the utility goes to standard output.

See Also

xtod(C)

Value Added

dtox is an extension of AT&T System V provided by Altos UNIX Sys­
temV.

March 11, 1990 DTOX-1

DTYPE(C) DTYPE(C)

dtype
determines disk type

Syntax

dtype [-s] device ...

Descri ption

dtype determines type of disk, prints pertinent information on the stan­
dard output unless the silent (-s) option is selected, and exits with a
corresponding code (see below). When more than one argument is
given, the exit code corresponds to the last argument.

Disk Exit Messa2e
Type Code (optional)
Misc. 60 error (specified)

61 empty or unrecognized data
Storage 70 backup format, volume n

71 tar format[, extent e of n]
72 cpio format
73 cTJio character (-c) format

MS-DOS 80 DOS 1.x, 8 sec/track, single sided
81 DOS 1.x, 8 sec/track, dual sided
90 DOS 2.x, 8 sec/track, single sided
91 DOS 2.x, 8 sec/track, dual sided
92 DOS 2.x, 9 sec/track, single sided
93 DOS 2.x, 9 sec/track, dual sided
94 DOS 2.x, fixed disk
110 DOS 3.x, 9 sec/track, dual sided

XENIX 120 XENIX 2.x filesystem [needs cleaning]
130 XENIX 3.x or later filesystem [needs cleaning]

UNIX 140 UNIX 1K filesystem [needs cleaning]

Notes

word-swapped refers to byte ordering of long words in relation to the
host system.

XENIX filesystems and backup and cpio binary formats may not be
recognized if created on a foreign system. This is due to such system
differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

March 11, 1900 DTYPE-1

DTYPE(C) DTYPE(C)

Value Added

dtype is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1 900 DTYPE-2

DU (C) DU (C)

du
summarizes disk usage

Syntax

du [-afrsu] [names]

Description

du gives the number of blocks contained in all files and directories
recursively within each directory and file specified by the names
argument. The block count includes the indirect blocks of the file. If
names is missing, the current directory is used.

-s causes only the grand total (for each of the specified names) to be
given. -a causes an entry to be generated for each file. Absence of
either causes an entry to be generated for each directory only.

The -f option causes du to display the usage of files in the current file
system only. Directories containing mounted file systems will be
ignored. The -u option causes du to ignore files that have more than
one link.

du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate mes­
sages in such instances.

A file with two or more links is only counted once.

Notes

If the -a option is not used, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count.

This utility reports sizes in 512 byte blocks. du interprets 1 block
from a 1024 byte block system as 2 of its own 512 byte blocks. Thus a
500 byte file is interpreted as 2 blocks rather than 1.

March 15, 1989 DU-1

DU (C) DU (C)

Standards Conformance

du is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DU-2

ECHO (C) ECHO (C)

echo
echo

Syntax

echo [-n] [arg] ...

Description

The echo command writes its arguments separated by blanks and ter­
minated by a new-line on the standard output. The -n option prints a
line without the new-line; same as using the \c escape sequence.

echo also understands C-like escape conventions; beware of conflicts
with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab
\ \ backslash
\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal

number. In all cases, n must start with a zero. For example:

echo "\{J7"
echo "\{J07"
echo "\{J65 "
echo "\{JI0l"

- Echoes Ctrl-G.
- Also echoes Ctrl-G.
- Echoes the number" 5".
- Echoes the letter "A".

The echo command is useful for producing diagnostics in com­
mand files and for sending known data into a pipe.

See Also

sh(C)

March 19, 1990 ECH0-1

ECHO (C)

Notes

ECHO (C)

When representing an 8-bit character by using the escape conven­
tion \On, the n must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' will print the phrase
WARNING: and sound the "bell" on your terminal. The use of
single (or double) quotes (or two backslashes) is required to protect
the "\" that precedes the "01".

For the octal equivalents of each character, see ascii (M).

March 19, 1990 ECH0-2

ED (C)

ed, red
invokes the text editor

Syntax

ed [-] [-p string] [file]

red [file]

Description

ED (C)

ed is the standard text editor. If the file argument is given, ed simu­
lates an e command (see below) on the named file; that is to say, the
file is read into ed's buffer so that it can be edited. ed operates on a
copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is
only one buffer.

red is a restricted version of ed(C). It will only allow editing of files
in the current directory. It prohibits executing sh(C) commands via
the ! command. red displays an error message on any attempt to
bypass these restrictions.

In general, red does not allow commands like

!date

or

Ish

Furthermore, red will not allow pathnames in its command line. For
example, the command:

red /etc/passwd

when the current directory is not lete causes an error.

Options

The options to ed are:

Suppresses the printing of character counts by the e, r, and w
commands, of diagnostics from e and q commands, and the !
prompt after a !shell command.

March 15, 1989 ED-1

EO(C) EO(C)

-p Allows t~e user to specify a prompt string.

ed supports formatting capability. After including a format specifica­
tion as the first line of file and invoking ed with your terminal in sUy
-tabs or sUy tab3 mode (see stty (C)), the specified tab stops will auto­
matically be used when scanning file. For example, if the first line of
a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: While inputing text, tab char­
acters are expanded to every eighth column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed
by parameters to that command. These addresses specify one or more
lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain com­
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely
collected. Input mode is left by entering a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com­
mands (e.g., s) to specify portions of a line that are to be substituted.
A regular expression speci fies a set of character strings. A member of
this set of strings is said to be matched by the regular expression. The
regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single char­
acter:

1.1 An ordinary character (not one of those discussed in 1.2 below)
is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one­
character regular expression that matches the special character
itself. The special characters are:

a. ., *, [, and \ (dot, star, left square bracket, and backslash,
respectively), which are otherwise special, except when they
appear within square brackets ([]); see 1.4 below).

b. "(caret), which is special at the beginning of an entire regu­
lar expression (see 3.1 and 3.2 below), or when it immedi­
ately follows the left of a pair of square brackets ([]) (see
1.4 below).

March 15, 1989 EO-2

ED (C) ED (C)

c. $ (dollar sign), which is special at the end of an entire regu­
lar expression (see 3.2 below).

d. The character used to bound (Le., delimit) an entire regular
expression, which is special for that regular expression (for
example, see how slash (/) is used in the g command below).

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters. enclosed in square brackets ([])
is a one-character regular expression that matches anyone char­
acter in that string. If, however, the first character of the string is
a caret (,,), the one-character regular expression matches any
character except newline and the remaining characters in the
string. The star (*) also has this special meaning only if it occurs
first in the string. The dash (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The dash (-) loses this special meaning if it
occurs first (after an initial caret (,,), if any) or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character withiJ1 it (after an initial caret (,,), if
any); e.g., []a-f1 matches either a right square bracket (]) or one
of the letters "a" through "f" inclusive. Dot, star, left bracket,
and the backslash lose their special meaning within such a string
of characters.

Ranges of characters (characters separated by -) are treated according
to the current locale's collation sequence (see locale (M)). Therefore,
if the collation sequence in use is A, a, B, b, C, c, then the expression
[a-d] is equivalent to the expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed
between [. and .] . Two character to one collation item mappings must
be specified this way. For example, if the current collation rules
specify that the characters "Ch" map to one character for collation
purposes (as in Spanish), then this collation item would be specified as
[.Ch.] .

To specify a group of collation items, which are classi fied as equal
unless all other collation items in the string also match, in which case
a secondary "weight" becomes significant, a single member of that
group must be enclosed between [= and =] . For example, if the char­
acters A and a are in the same group then the class expressions
[[=a=]b], [[=A=]b] and [Aab] are all equivalent.

The ctype classes can also be specified within regular expressions.
These are enclosed between [: and :] . The possible ctype classes are:

March 15, 1989 ED-3

ED (C) ED (C)

[:alpha:]
[:upper:]
[:Iower:]
[:digit:]
[:alnum:]
[:space:]
[:print:]
[:punct:]
[:graph:]
[:cntrl:]

Matches alphabetic characters
Matches upper case characters
Matches lower case characters
Matches digits
Matches alphanumeric characters
Matches white space
Matches printable characters
Matches punctuation marks
Matches graphical characters
Matches control characters

The following rules may be used to construct regular expressions from
one-character regular expressions:

2.1

2.2

2.3

2.4

2.5

A one-character regular expression followed by a star (*) is a regu­
lar expression that matches zero or more occurrences of the one­
character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,n\} is a regular expression that matches a range of occurren­
ces of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exactly
m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many
occurrences as possible. .

The concatenation of regular expressions is a regular expression
that matches the concatenation of the strings matched by each
component of the regular expression.

A regular expression enclosed between the character sequences \(
and \) is a regular expression that matches whatever the unadorned
regular expression matches. See 2.6 below for a discussion of why
this is useful.

The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same regular expression. Here n is a digit; the subexpression
specified is that beginning with the n-th occurrence of \(counting
from the left. For example, the expression "\(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

March 15, 1989 ED-4

EO(C) EO(C)

3.1 A caret (,,) at the beginning of an entire regular expression con­
strains that regular expression to match an initial segment of a
line.

3.2 A dollar sign ($) at the end of an entire regular expression con­
strains that regular expression to match a final segment of a line.
The construction "entire regular expression $ constrains the
entire regular expression to match the entire line.

The null regular expression (e.g., 1/) is equivalent to the last regular
expression encountered.

To understand addressing in ed , it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is dis­
cussed under the description of each command. Addresses are con­
structed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the k
command described below.

5. A regular expression enclosed by slashes (I) addresses the first
line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the first
line containing a string matching the regular expression. If
necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the
entire buffer is searched.

6. A regular expression enclosed in question marks (?) addresses
the first line found by searching lJackward from the line preced­
ing the current line toward the beginning of the buffer and stop­
ping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See
also the last paragraph before Files below.

7. An address followed by a plus sign (+) or a minus sign (-) fol­
lowed by a decimal number speci fies that address plus or minus
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, -5 is understood to
mean .-5.

March 15, 1989 EO-5

ED (C) ED (C)

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and
of rule 8 immediately above, the. address - refers to the line
preceding the current line. (To maintain compatibility with ear­
lier versions of the editor, the character'" in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case, the
current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting
line for forward and backward searches (see rules 5 and 6 above). The
second address of any two-address sequence must correspond to a line
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line.
However, any command (except e ,I, r, or w) may be suffixed by p or
by I, in which case the current line is either printed or listed, respec­
tively, as discussed below under the p and I commands.

(.)a
<text>

The append command reads the given text and appends it after the
addressed line; dot is left at the address of the last inserted line, or,
if there were no inserted lines, at the addressed line. Address 0 is
legal for this command: it causes the "appended" text to be
placed at the beginning of the buffer.

(.)c
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the
last line input, or, if there were none, at the first line that was not
deleted.

(.,.)d
The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the

March 15, 1989 EO-6

ED (C) ED (C)

lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

efile
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem­
bered filename, if any, is used (see the f command). The number
of characters read is typed. file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (!), the rest of the line is taken to be a
shell command. The output of this command is read for the e and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is not
remembered as the current filename.

Efile
The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

ffile
If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1 , $)glregular-expression Icommand list
In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with. initially set to that line.
A single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list
except the last line must be ended with a \; a, i, and c commands
and associated input are permitted; the. terminating input mode
may be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G, v,
and V commands are not permi tted in the command list. See also
Notes and the last paragraph before Files below.

(1, $)Glregular-expression I
In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
anyone command (other than one of the a, c, i, g, G, v, and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on. A new­
line acts as a null command. An ampersand (&) causes the re­
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the exe­
cution of the G command may address and affect any lines in the
buffer. The G command can be terminated by entering an INTER­
RUPT (pressing the DEL key).

March 15, 1989 EO-7

ED (C) ED (C)

h

H

The help command gives a short error message that explains the
reason for the most recent? diagnostic.

The Help command causes ed to enter a mode in which error mes­
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

(.)i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command.

(.,.+l)j
The join command joins contiguous lines by removing the appro­
priate newline characters. If only one address is given, this com­
mand does nothing.

(.)kx
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address 'x then addresses this line.
Dot is unchanged.

(.,.)1
The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac­
ters are printed in octal, and long lines are folded. An I command
may be appended to any command other than e ,f, r, or w.

(. ,.)ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(.,.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e ,f, r, or w.

(.,.)p
The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

March 15, 1989 EO-8

ED (C) ED (C)

p

q

Q

command other than e, i, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off.

The quit command causes ed to exit. No automatic write of a file
is done.

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and i commands). The currently remembered
filename is not changed unless file is the very first filename men­
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc­
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(.,.)slregular-expression Ireplacement I or

(.,.)slregular-expression Ireplacement Ig or

(.,.)slregular-expression Ireplacement In n=1-S12

The substitute command searches each addressed line for an oc­
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of I to delimit regular­
expression and replacement. Dot is left at the address of the last
line on which a substitutioT). occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

March 15, 1989 ED-9

ED (C) EO(C)

where n is a digit, are replaced by the text matched by the n-th reg­
ular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized sUbexpressions are
present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in
replacement, the replacement used in the most recent substitute
command is used as the replacement in the current substitute com­
mand. The % loses its special meaning when it is in a replace­
ment string of more than one character or when it is preceded by a
\.

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
\. Such a substitution cannot be done as part of a g or v command
list.

(.,.)ta

u

This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

The undo command nullifies the effect of the most recent com­
mand that modified anything in the buffer, namely the most recent
a, c, d, g, i,j, m, r, s, t, v, G, or V command.

(1 , $)vlregular-expression Icommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1 ,$)Vlregular-expression I
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(1, $)w file
The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writeable by everyone), unless the umask setting (see sh(C» dic­
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see e and! commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command to which the addressed lines
are supplied as the standard input. Such a shell command is not
remembered as the current filename.

March 15, 1989 EO-10

EO(C) ED (C)

($)=
The line number of the addressed line is typed. Dot is unchanged
by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX shell
(sh(C» to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem­
bered filename. If a ! appears as the first character of the shell
command, it is replaced with the text of the previous. shell com­
mand. Thus,!! will repeat the last shell command. If any expan­
sion is performed, the expanded line is echoed. Dot is unchanged.

(.+1)
An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+lp. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ques­
tion mark (?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K characters
in the buffer. The limit on the number of lines depends on the amount
of user memory .

When reading a file, ed discards ASCII NUL characters and all charac­
ters after the last newline. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited byed.

If the closing delimiter of a regular expression or of a replacement
string (e.g., I) would be the last character before a newline, that delim­
iter may be omitted, in which case the addressed line is printed. Thus,
the following pairs of commands are equivalent:

Files

s/sl/s2
g/sl
?sl

s/sl/s2/p
g/sl/p
?sl?

Itmp/e#

ed.hup

Temporary; # is the process number

Work is saved here if the terminal is hung up

See Also

coltbl(M), grep(C), 10cale(M), sed(C), sh(C), stty(C), regexp(S)

March 15, 1989 EO-11

ED (C)

Diagnostics

? Command errors
? file An inaccessible file

Use the help and Help commands for detailed explanations.

ED (C)

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to de­
stroy ed's buffer via the e or q commands by printing? and allowing
you to continue editing. A second e or q command at this point will
take effect. The dash (.) command-line option inhibits this feature.

Notes

An exclamation (!) command cannot be subject to a g or a v com­
mand.

The ! command and the! escape from the e, r, and w commands can­
not be used if the the editor is invoked from a restricted shell (see
sh(C».

The sequence \n in a regular expression does not match any character.

The I command mishandles DEL.

Because 0 is an illegal address for the w command, it is not possible to
create an empty file with ed.

If the editor input is coming from a command file (i.e., ed file < ed­
cmd-file), the editor will exit at the first failure of a command in the
command file.

Standards Conformance

ed is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ED-12

ENABLE (C)

enable
turns on terminals and line printers

Syntax

enable tty ...
enable printers

Description

ENABLE (C)

For terminals this program manipulates the letc/conf/init.base file and
signals init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them
to print requests taken by Ip(C). Use Ipstat(C) to find the status of the
printers.

Examples

A simple command to enable ttyOl follows:

enable ttyOI

Files

/dev/tty*

/etc/conf/init.base

/usr/spool/lp/*

See Also

disable(C), getty(M), init(M), 10gin(M), Ip(C), Ipstat(C), inittab(F),
uugetty(M)

Authorization

The behavior of this utility is affected by assignment of the printer­
stat authorization, which is usually reserved for system administra­
tors. Refer to the "Using a Trusted System" chapter of the User's
Guide for more details.

March 15, 1989 ENABLE-1

ENV(C) ENV(C)

env
sets environment for command execution

Syntax

env [-] [name=value] ... [command [args]]

Description

env obtains the current environment, modifies it according to its argu­
ments, then executes the command with the modified environment.
Arguments of the form name =value are merged into the inherited
environment before the command is executed. The - flag causes the
inherited environment to be ignored completely, so that the command
is executed with exactly the environment specified by the arguments.

If no command is specified, the environment is printed, one name­
value pair per line.

See Also

sh(C), exec(S), profile(F), environ(M)

Notes

The old printenv command was replaced in and System V by the env
command. The current printenv is a link to env.

Standards Conformance

env is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ENV-1

EX (C) EX (C)

ex, edit
invokes a text editor

Syntax

ex [-s 1 [-v) (-t tag II -r file II -L II -R II -c cOll,lmand I name ...

edit [-rl [-x] I-C) name ...

Description

ex is the root of the editors ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based
editing is the focus of vi.

edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented editor. It operates pre­
cisely as ex(C) with the following options automatically set:

novice ON

report ON

showmode ON

magic OFF

These options can be turned on or off via the set command in ex(C).

Refer to the vi(C) page for a complete description of the ex com­
mands.

Files

lusr/lib/ex3.7strings

lusr/lib/ex3.7recover

lusrllib/ex3.7preserve

letc/termcap

$HOME/.exrc

Itmp/Exnnnnn

Itmp/Rxnnnnn

March 15, 1989

Error messages

Recover command

Preserve command

Describes capabilities of terminals

Editor startup file

Editor temporary

Named buffer temporary

EX-1

EX(C) EX (C)

/usr/preserve Preservation directory

See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termcap(F), vi(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Standards Conformance

ex is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1 989 EX-2

EXPR(C) EXPR(C)

expr
evaluates arguments as an expression

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that zero is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 32-bit, 2's complement num­
bers.

The operators and keywords are listed below. Expressions should be
quoted, since many of the characters that have special meaning in the
shell also have special meaning in expr. The list is in order of increas­
ing precedence, with equal precedence operators grouped within
braces ((and }).

expr I expr
Returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr & expr
Returns the first expr if neither expr is null nor 0, otherwise
returns 0.

expr { =, >, >=, <, <=, != } expr
Returns the result of an integer comparison if both arguments
are integers, otherwise returns the result of a lexical com­
parison, as defined by the locale.

expr { +, - } expr
Addition or subtraction of integer-valued arguments.

expr { *, t, % } expr
Multiplication, division, or remainder of the integer-valued
arguments.

expr: expr
The matching operator : compares the first argument with the
second argument which must be a regular expression; regular

March 1 5, 1989 EXPR-1

EXPR (C) EXPR(C)

expression syntax is the same as that of ed(C), except that all
patterns are "anchored" (i.e., begin with a caret C)) and there­
fore the caret is not a special character in that context. (Note
that in the shell, the caret has the same meaning as the pipe
symbol (I).) NormalJy the matching operator returns the num­
ber of characters matched (zero on failure). Alternatively, the
\(••. \) pattern symbols can be used to return a portion of the
first argumen t.

Examples

1. a='expr $a + l'

Adds 1 to the shell variable a.

2. # For $a ending in "/file"
expr $a : '.*/\(.*\)'

Returns the last segment of a pathname (Le., file). Watch out
for the slash alone as an argument: expr will take it as the divi­
sion operator (see Notes on the next page).

3. expr $VAR : '.*'

Returns the number of characters in $VAR.

See Also

coltbl(M), ed(C), 10cale(M), sh(C)

Diagnostics

As a side effect of expression evaluation, expr returns the following
exit values:

o If the expression is neither nulJ nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator/operand errors, including unset vari­
ables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

March 15, 1989 EXPR-2

EXPR{C)

Notes

EXPR(C)

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
equals sign (=). the command:

expr $a = =

looks like:

expr = = =

The arguments are passed to expr and will all be taken as the = opera­
tor. The following permits comparing equals signs:

expr X$a = X=

Standards Conformance

expr is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 \::XPR-3

FACTOR (C) FACTOR (C)

factor
factor a number

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a number to
be typyd in. If you type in a positive number less than 246 (about
7.2xl013

) it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

The time it takes to factor a number, n, is proportional to ~. It usu­
ally takes longer to factor a prime or the square of a prime, than to fac­
tor other numbers.

Diagnostics

factor returns an error message if the supplied input value is greater
than 246 or is not an integer number.

March 15, 1989 FACTOR-1

FALSE (C) FALSE (C)

false
returns with a nonzero exit value

Syntax

false

Description

false does nothing except return with a nonzero exit value. true (C),
false's counterpart, does nothing except return with a zero exit value.
"False" is typically used in shell procedures such as:

until false
do

done

See Also

sh(C), true(C)

Diagnostics

command

false is any non-zero value.

Standards Conformance

false is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 FALSE-1

FILE (C) FILE (C)

file
determines file type

Syntax

file [-m] file ...

file [·m] ·f namesfile

Description

file performs a series of tests on each argument in an attempt to clas­
sify it. If an argument appears to be ASCII,file examines the first 512
bytes and tries to guess its language.

If the ·f option is given,file takes the list of filenames from namesfile.
If the ·m option is given,file sets the access time for the examined file
to the current time. Otherwise, the access time remains unchanged.

Several object file formats are recognized. For a.out and x.out format
object files, file reports "separate" if the file was linked with cc ·i,
"pure" if the file was linked with cc ·n, and "not stripped" if the
file was not linked with cc -s or if strip(CP) was not run.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

file makes errors; in particular it often mistakes command files for C
programs.

The file command can only distinguish English text. If an 8 bit char­
acter (a character not in the English alphabet) is found, then the text
will be defined as "8 bit text".

Standards Conformance

file is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 FILE-1

FIND (C) FIND (C)

find
finds files

Syntax

find pathname-list expression

Description

The find command is used to find files matching a certain set of selec­
tion criteria. find recursively descends the directory hierarchy for each
pathname in the pathname-list (i.e., one or more pathnames) seeking
files that match a Boolean expression written in the primaries given
below.

Expressions

For each file encountered, find evaluates the specified expression,
formed of one or more of the following primary expressions, which
may evaluate as true or false. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, -n means less
than nand n means exactly n.

-name file

-perm onum

-type x

-links n

-inurn num

March 1.5, 1989

True if file matches the current file name. Normal
shell argument syntax may be used if escaped
(watch out for the left bracket ([), the question
mark (?) and the star (*».

True if the file permission flags exactly match
onum (see chmod(C». If onum is prefixed by a
minus sign, all other modes become significant
(see mknod(S», including the file type, setuid, set­
gid, and sticky bits rather than just
read/write/execute modes for owner/group/other.

True if the type of the file is x, where x is b for
block special file, c for character special file, d for
directory, p for named pipe (first-in-first-out), or f
for regular file.

True if the file has n links.

True if the file's inode is num. This is useful for
locating files with matching inodes.

FIND-1

FIND (C)

-user uname

-group gname

-size n

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-cpio device

-depth

-print

-newer file

(expression)

March 15, 1989

FIND (C)

True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the /etc/passwd file, it is taken as a user
ID.

True if the file belongs to the group gname. If
gname is numeric and does not appear in the
letc/group file as a group name, it is taken as a
group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file was last accessed n days ago.

True if the data in the file was last modified n days
ago.

True if the file's status was last changed (Le. creat­
ed or modified) n days ago.

Executes shell command cmd. The end of cmd
must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current
path name. True if the executed cmd returns a
zero value as exit status (most commands return a
zero value on successful completion and a non­
zero value if an error is encountered).

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Writes the current file on device in cpio (F) format
(5 I 20-byte records). Always true.

Causes all entries in a directory to be acted upon
before the directory itself. This can be useful
when used with cpio(C) or the -cpio expression to
transfer files located in directories without write
permission. Always true.

Causes the current path name to be printed. This
option is used to create a list of all files matched
by the previous primaries. Always true.

True if the current file has been modified more
recently than the argument file .

True if the parenthesized expression is true. Usu­
ally used with the -0 operator (see below),
parentheses are used for grouping. Parentheses are

FIND-2

FIND (C) FIND (C)

special to the shell and must be escaped.

The primaries may be combined using the following operators (in
order of decreasing precedence):

The ! operator speci fies the negation of the next primary (i.e., !
-newer file is true if the current file is not newer than file.). Tnis is
the equivalent of the logical "not>t operator.

-0 Placing the -0 operator between two primaries creates an expres­
sion that is true if either of the two primaries is true. It should be
used with parentheses (i.e., \(-perm 644 -0 -perm 664 \) is true if
the current file has permissions 644 or 664). This is equivalent to
the logical "inclusive or" operator.

Note that placing two primaries next to each other is the equivalent of
the logical "and" operation. The precedence of this operation is less
than that of the! operator but greater than that of the -0 operator.

Examples

The following command searches for files named chapter 1 in the
current directory and all directories below it and sends the pathname
of any such files it finds to the standard output:

find . -name chapterl -print

The following removes all files named core or with names ending in
.out that have not been accessed in the last seven days.

find / \(-name core -0 -name "*.out" \) -atime +7 -exec rm {} \;

Files

/etc/passwd

/etc/group

See Also

User names and uids

Group names and gids

cpio(C)(F), sh(C), stateS), test(C)

Standards Conformance

find is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 FIND-3

FINGER (C) FINGER (C)

finger

finds information about users

Syntax

finger [-bfllpqsw] [login! [login2 ...]]

Description

By default finger lists the login name, full name, terminal name and
write status (as a "*,, before the terminal name if write permission is
denied), idle time, login time, office location, and phone number (if
they are known) for each current user. (Idle time is minutes if it is a
single integer, hours and minutes if a colon (:) is present, or days and
hours if a "d" is present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multiline format; it includes all the in­
formation described above as well as the user's home directory and
login shell, any plan which the person has placed in the file .plan in
their home directory, and the project on which they are working from
the file .project which is also in the home directory.

finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-j Quick list of users with idle times.

-I Forces long output format.

-p Suppresses printing of the .plan tiles.

-q Quick list of users.

-s Forces short output format.

-w Forces narrow format list of speci tied users.

March 15, 1989 FINGER-1

FINGER (C) FINGER (C)

Files

/etc/utmp Who file
/etc/passwd User names, offices, phones, login directories, and shells
$HOME/.plan Plans
$HOME/.project Projects

See Also

who(C), w(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Only the first line of the .project file is printed.

Entries in the /etc/passwd file have the following format:

login name:user password(coded):user ID:group ID:comments:home
directory:login shell

The comment field corresponds to what appears in the finger output.
For example, in the following /etc/passwd entry:

blf:*:47:5:Brian Foster, Mission, x70, 767-1234
:/u/blf:/bin/sh

the comment field, "Brian Foster, Mission, x70, 767-1234" ,contains
data for the "In Real Life" , "Office" ,and "Home Phone" ,columns
of the finger listings.

Idle time is computed as the elapsed time since any activity on the
given terminal. This includes previous invocations of finger which
may have modified the terminal's corresponding device file {dey/tty??~

March 15, 1989 FINGER-2

FIXHDR (C) FIXHDR (C)

fixhdr
changes executable binary file headers

Syntax

fixhdr option files

Description

fuhdr changes the header of output files created by link editors or
assemblers. The kinds of modifications include clianging the format of
the header, the fixed stack size, the standalone load address, and sym­
bol names.

Using fixhdr allows the use of binary executable files, created under
other versions or machines, by simply changing the header informa­
tion so that it is usable by the target cpu.

These are the options to fuhdr :

-xa

-xb

-x4

-xS [-n]

Change the x.out format of the header to the a.out format.

Change the x.out format of the header to the b.out format.

Change the x.out format of the header to the 4.2BSD a.out
format.

Change the x.out format of the header to Altos UNIX Sys­
tem V a.out format. The -n flag causes leading under­
scores on symbol names to be passed with no
modifications.

-ax -c [11,86]
Change the a.out format of the header to the x.out format.
The -c flag specifies the target CPU. 11 specifies a PDP-
11 CPU. 86 specifies one of the 8086 family of CPUs
(8086,8088,80186,80286 or 80386).

-bx Change the b.out format of the header to the x.out format.

-Sx [-n] Change the Altos UNIX System V a.out format of the
header to the x.out format. The -n flag causes leading
underscores on symbol names to be passed with no
modifications.

March 11, 1990 FIXHDR-1

FIXHDR (C) FIXHDR (C)

-86x Add the x.out header format to the 86rel object module
format. See 86rel (F).

-F num Add (or change) the fixed stack size specified in the x.out
format of the header. num must be a hexadecimal num­
ber.

-A num Add (or change) the standalone load address specified in
the x.out format of the header. num must be a hexadeci­
mal number.

-M[smlh] Change the model of the x.out or 86rel format. Model
refers to the compiler model specified when creating the
binary. s refers to small model, m refers to medium
model, Irefers to large model, and h refers to huge model.

-v [2,3,5,7] Change the version of .XENIX specified in the header.
XENIX version 2 was based on UNIX Version 7.

-s s1=s2 [-s s3=s4]

-r

-Ccpu

Files

Change symbol names, where symbol name sl is changed
tos2.

Ensure that the resolution table is of non-zero size.

Set the cpu type. cpu can be 186,286,386,8086, others.

lusrlbin/fixhdr

See Also

a.out(F), 86rel(F)

Notes

Give fixhdr one option at a time. If you need to make more than one
kind of modification to a file, use fixhdr on the original file. Then use it
again on the fixhdr output, specifying the next option. Copy the origi­
nal file if you need an unmodified version as fixhdr makes the
modifications directly to the file.

Value Added

fixhdr is an extension of AT&T System V provided by Altos UNIX
System V.

March 11 •. 1990 FIXHDR-2

FORMAT (C)

format
format floppy disks and mini-cartridge tapes

Syntax

format [-0] [-v] [-f] [-q] [device] [-i interleave]

Description

FORMAT (C)

format formats diskettes for use on an Altos UNIX System V system.
It may be used either interactively or from the command line. The
default drive is /dev/rfdO.

Options

The following command line options are available:

-f Suppresses the interactive feature. The format program does not
wait for user-confirmation before starting to format the diskette.
Regardless of whether or not you run format interactively, track
and head information is displayed.

device
This specifies the device to be formatted. The default device is
/dev/rfdO.

-i interleave
Specifies the interleave factor.

-q Quiet option. Suppresses the track and head output information
normally displayed. Although this option does not suppress the
interactive prompt, it would typically be used with .. f to produce no
output at all.

-v Specifies format verification.

-0 Specifies that the diskette is not to be verified (overrides verify
entry in /etc/default/format).

The file /etc/default/format is used to specify the default device to be
formatted and whether or not each diskette is to be verified. The
entries must be in the format DEVlCE=/dev/rfdnnn and
VERIFY = [yYnN], as in the following example:

March 11, 1990 FORMAT-1

FORMAT (C)

DEVICE=/dev/rfd096ds15
VERIFY=y

The device must be a character (raw) device.

Usage

To runformat interactively, enter:

format

FORMAT (C)

followed by any of the legal options except ·f, and press RETURN.
When you runformat interactively, you see the prompt:

insert diskette in drive and press return when ready

When you press RETURN at this prompt, format begins to format the
diskette.

If you specify the ·f option, you do not see this prompt. Instead, the
program begins formatting immediately upon invocation.

Unless you specify the .q option, format displays which track and
head it is currently on:

track # head #

The number signs above are replaced by the actual track and head in­
formation.

Files

/etc/default/format

/dev/rfd[O - n]

See Also

fd(HW)

Notes

The format utility does not format floppies for use under DOS; use the
dosformat command documented in dos(C).

March 11, 1990 FORMAT-2

FORMAT (C) FORMAT (C)

Altos UNIX System V systems require error free floppies.

It is not advisable to format a low density (48tpi) diskette on a high
density (96tpi) floppy drive. Diskettes written on a high density drive
should be read on high density drives. A low density diskette written
on a high density drive may not be readable on a low density drive.

The device Idevlinstall is used only for installing and reading floppies.
Attempts made to format this device may result in an error.

March 11, 1990 FORMAT-3

FUSER(C) FUSER (C)

fuser
Identify processes using a file or file structure

~ &~"
~ylnaA

letc/fuser [-ku]file ... 1 resource ... [-] [[-ku]file ... 1 resource ...]

Description

The fuser utility displays the process IDs of processes that are using
the files or remote resources specified as arguments. Each process 10
is followed by a letter code, interpreted as follows if the process is
using the file as:

c current directory

p parent of its current directory (only when the file is being used
by the system)

r root directory

For block special devices with mounted filesystems, all processes
using any file on that device are listed. For remote resource names, all
processes using any file associated with that remote resource (Remote
File Sharing) are reported. (fuser cannot use the mount point of the
remote resource; it must use the resource name.) For all other types of
files (e.g., text files, executables, directories, devices), only the pro­
cesses using the specified file are reported.

The following options may be used with fuser:

-u The user login name, in parentheses, also follows the process
10.

-k The SIGKILL signal is sent to each process. Since this option
spawns kills for each process, the kill messages may not show
up immediately (see kill(S».

If more than one group of files is specified, the options any be
specified again for each additional group of files. A lone dash cancels
the options currently in force; then, the new set of options applies to
the next group of files.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single newline. All other
output is written to standard error.

September 19, 1990 FUSER-1

FUSER(C) FUSER(C)

You cannot list processes using a particular file from a remote
resource mounted on your machine. You can only use the resource
name as an argument.

Any user with pennission to read /devlkmem and /dev/mem can use
fuser. Only the superuser can terminate another user's process, how­
ever.

Files

/unix for system namelist
/dev /kmem for system image
/dev/mem also for system image

See Also

mount(ADM), ps(C), ldll(S), signal(S)

September19,1990 FUSER-2

GETOPT(C) GETOPT(C)

getopt
parses command options

Syntax

set •• 'getopt optstring $*'

Description

getopt is used to check and break up options in command lines for
parsing by shell procedures. optstring is a string of recognized option
letters (see getopt (S)). If a letter is followed by a colon, the option is
expected to have an argument which mayor may not be separated
from it by whitespace. The special option •• is used to delimit the end
of the options. getopt will place •• in the arguments at the end of the
options, or recognize it if used explicitly. The shell arguments ($1 $2 .
. .) are reset so that each option is preceded by a dash (-) and in its own
shell argument. Each option argument is also in its own shell argu­
ment.

Example

The following code fragment shows how one can process the argu­
ments for a command that can take the options a and b, and the option
0, which requires an argument:

set - - 'getopt abo: $* ,
if [$? != 0]
then

fi

echo ''usage: $0 [-a I -b) [-0 <arg»"
exit 2

for i in $*
do

case $i in
-a I -b) shift: FLAG=$i::
-0) OARG=$3: shift; shift;;
- -) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg
cmd -a -0 arg
cmd -oarg -a
cmd -a -oarg --

March 15, 1989 GETOPT-1

GETOPT(C)

See Also

sh(C), getopt(S)

Diagnostics

GETOPT(C)

getopt prints an error message on the standard error when it
encounters an option letter not included in optstring .

Notes

The "Syntax" given for this utility assumes the user has a sh(C) shell.

Standards Conformance

getopt is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 GETOPT-2

GETOPTS(C)

get9pts, getoptcvt
parses command options

Syntax

getopts optstring name [arg ...]

lusrlIib/getoptcvt [·b] file

Description

GETOPTS(C)

The getopts command is used by shell procedures to parse positional
parameters and to check for legal options. It supports all applicable
rules of the command syntax standard [see Rules 3-10, intro (C)]. It
should be used in place of the getopt(C) command. (See the Notes
below.)

This feature is only available in the Bourne shell.

optstring must contain the option letters the command using getopts
will recognize; if a letter is followed by a colon, the option is expected
to have an argument, or group of arguments, which must be separated
from it by white space.

Each time it is invoked, getopts will place the next option in the shell
variable name and the index of the next argument to be processed in
the shell variable OPTIND. Whenever the shell or a shell procedure is
invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the
shell variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero
exit status. The special option " •• " may be used to delimit the end of
the options.

By default, getopts parses the positional parameters. If extra argu­
ments (arg ...) are given on the getopts command line, getopts will
parse them instead.

The lusrl libl getoptcvt command reads the shell script in file, converts
it to use getopts (C) instead of getopt (C), and writes the results to the
standard output.

January 16. 1991 GETOPTS-1

GETOPTS(C) GETOPTS(C)

-b the results of running lusrl libl getoptcvt will be portable to earlier
UNIX releases. lusrl Jibl getoptcvt modifies the shell script in file so
that when the resulting shell script is executed, it determines at run
time whether to invoke getopts(C) or getopt(C).

So all new commands will adhere to the command syntax standard
described in intro (C), they should use getopts (C) or getopt (S) to
parse positional parameters and check for options that are legal for
that command (see Notes below).

Examples

The following fragment of a shell program shows how one might pro­
cess the arguments for a command that can take the options a or b, as
well as the option 0, which requires an option-argument:

while getopts abo: c
do

case $c in
a I b) FLAG=$C; ;
0) OARG=$OPTARG;;
?) echo $USAGE

exit 2;;
esac

done
shift 'expr $OPTIND - l'

This code will accept any of the following as equivalent:

cmd -a -b -0 "xxx Z yy"
cmd -a -b -0 "xxx Z yy"
cmd -ab -0 xxx,z,yy
cmd -ab -0 "xxx Z yy"
cmd -0 xxx,z,yy -b -a

See Also

intro(C), sh(C), getopt(S)

Notes

Although the following command syntax rule [see Intro(C)] relaxa­
tions are permitted under the current implementation, they should not
be used because they may not be supported in future releases of the
system. As in the Examples section above, a and b are options, and
the option 0 requires an option-argument:

cmd -aboxxx file (Rule 5 violation: options with option­
arguments must not be grouped with other
options.)

January 16. 1991 GETOPTS-2

GETOPTS(C) GETOPTS(C)

cmd -ab -oxxx file (Rule 6 violation: there must be white space
after an option that takes an option­
argument.)

Changing the value of the shell variable OPfIND or parsing different
sets of arguments may lead to unexpected results.

Diagnostics

getopts prints an error message to the standard error when it
encounters an option letter not included in optstring.

January 16, 1991 GETOPTS-3

GETS (C) GETS (C)

gets
gets a string from the standard input

Syntax

gets [string]

Description

gets can be used with csh (C) to read a string from the standard input.
If string is given it is used as a default value if an error occurs. The
resulting string (either string or as read from the standard input) is
written to the standard output. If no string is given and an error
occurs, gets exits with exit status 1.

See Also

line(C), csh(C)

March 15, 1989 GETS-1

GREEK (C) GREEK (C)

greek
select terminal filter

Syntax

greek [-Tterminal]

Description

greek is a filter that reinterprets the extended character set, as well as
the reverse and half-line motions, of a 128-character TELETYPE
Model 37 terminal for certain other terminals. Special characters are
simulated by overstriking, if necessary and possible .. If the argument.
is omitted, greek attempts to use the environment variable $TERM
[see environ(M)]. Currently, the following terminals are recognized:

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

Files

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

See Also

DASI3oo.
DASI 300 in 12-pitch.
DASI300s.
DASI 300s in 12-pitch.
DASI450.
DASI 450 in 12-pitch.
Diablo 1620 (alias DASI 450).
Diablo 1620 (alias DASI450) in 12-pitch.
Hewlett-Packard 2621,2640, and 2645.
Hewlett-Packard 2621,2640, and 2645.
Hewlett-Packard 2621,2640, and 2645.
Tektronix 4014.
Hewlett-Packard 2621,2640, and 2645.
Tektronix 4014.

300(C), 4014(C), 450(C), hp(C), tplot(ADM), environ(M), term(M)

March 15. 1989 GREEK-1

GREP (C)

grep, egrep, fgrep
searches a file for a pattern

Syntax

grep [-bchlnsvy] [-e expression] [files]

egrep [-bchlnv] [-e expression] [files]

fgrep [.bclnvxy] [-f expfile] [files]

Description

GREP (C)

Commands of the grep family search the input files (or standard input
if no files are specified) for lines matching a pattern. Normally, each
matching line is copied to the standard output. If more than one file is
being searched, the name of the file in which each match occurs is
also written to the standard output along with the matching line
(unless the ·h option is used, see below).

grep patterns are limited regular expression s in the style of ed(C).
grep uses a compact nondeterministic algorithm. egrep patterns are
full regular expression s; it uses a fast deterministic algorithm that
sometimes needs exponential space. jgrep patterns are fixed strings.
jgrep is fast and compact. The following options are recognized:

-v All lines but those matching are displayed.

-x Displays only exact matches of an entire line. lfgrep only.)

-c Only a count of matching lines is displayed.

-I Only the names of files with matching lines are displayed,
separated by newlines.

-h Prevents the name of the file containing the matching line from
being prepended to that line. Used when searching multiple
files. (This option works with grep and egrep only.)

·n Each line is preceded by its relative line number in the file.

·b Each line is preceded by the block number on which it was
found. This is sometimes useful in locating disk block num­
bers by context.

March 15, 1989 GREP-1

GREP (C) GREP (C)

-8 Suppresses error messages produced for nonexistent or unread­
able files. (grep only). Note that the .. s option will not
suppress error messages generated by the ·f option .

.. y Thrns on matching of letters of either case in the input so that
case is insignificant. Conversion between uppercase and
lowercase letters is dependent on the locale setting. .y does
not work with egrep.

·e expression orstrings
Same as a simple expression argument, but useful when the
expression begins with a dash (.).

·f expfile
The regular expression for grep or egrep, or strings list for
/grep is taken from the expfile.

In all cases (except with ·h) the filename is output if there is more
than one input file. Care should be taken when using the characters $,
., [, ", I , (,), and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression or strings argu­
ment in single quotation marks. For example:

grep '[Ss]omeone' text.file

This command would find all lines containing the word "someone" in
the file text.file, whether the initial "s" is uppercase or lowercase.

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to Imbed
newlines in the string argument. For example. if you were using the
Bourne shell (sh(C» you might enter the following on the command
line:

fgrep'Someone
someone' text. file

This would have the same effect as the grep example above. See the
csh(C) manual page for ways to imbed newlines in a string when
using csh(C).

egrep accepts regular expressions as in ed(C). with the addition of the
following:

- A regular expression followed by a plus sign (+) matches one or
more occurrences of the regular expression.

- A regular expression followed by a question mark (1) matches 0 or
1 occurrences of the regular expression.

March 15, 1989 GREP-2

GREP (C) GREP (C)

- Two regular expressions separated by a vertical bar (I) or by a
newline match strings that are matched by either regular expres­
sion.

- A regular expression may be enclosed in parentheses () for group­
ing. For example:

egrep '([Ss]omel[Aa]ny)one' text.file

This example displays all lines in text.file containing the words
"someone" qr "anyone", whether or not they are spelled with initial
capital letters. Without the parentheses, this example would display
all lines containing the words "some" or "anyone" (because the vert­
ical bar (I) operator is of lower precedence than concatenation, see
below).

Because of the algorithm used, egrep does not support extended
ranges as in ed(C): Ranges like [a-z] are interpreted on the basis of
the machine's collating sequence, not the collating sequence defined
by the locale. grep supports col(C) extended ranges.

The \(and \) operators, supported by ed(C), are not supported by
egrep.

The order of precedence of operators is [], then * ? +, then concatena­
tion, then backslash (\) with newline or vertical bar (I).

See Also

coltbl(M), ed(C), 10cale(M), sed(C), sh(C)

Diagnostics

Exit status is 0 if any matches are found, 1 if no matches are found,
and 2 for syntax errors or inaccessible files.

Notes

Ideally there should be only one grep, but there isn't a single algo­
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters. Longer lines are truncated.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

March 15, 1989 GREP-3

GREP (0) GREP (C)

Standards Conformance

egrep,/grep and grep are conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 GREP-4

GRPCHECK (C)

grpcheck
checks group file

Syntax

grpeheek [file]

Description

GRPCHECK (C)

grpcheck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ill, and
whether all login names appear in the password file. The default group
file is fete/group.

Files

/etc/group

/etc/passwd

See Also

pwcheck(C), group(F), passwd(F)

Diagnostics

Group entries in fete/group with no login names are flagged.

March 15, 1989 GRPCHECK-1

HD(C) HD(C)

hd
displays files in hexadecimal format

Syntax

hd [.format [·s offset] [-0 count] [file] ...

Description

The hd command displays the contents of files in hexadecimal, octal,
decimal, and character formats. Control over the specification of
ranges of characters is also available. The default behavior is with the
following flags set: "-abx -A". This says that addresses (file offsets)
and bytes are printed in hexadecimal and that characters are also
printed. If no file argument is given, the standard input is read.

Options include:

-s offset

·0 count

Specify the beginning offset in the file where printing is
to begin. If no 'file' argument is given, or if a seek fails
because the input is a pipe, 'offset' bytes are read from
the input and discarded. Otherwise, a seek error will
terminate processing of the current file.

The offset may be given in decimal, hexadecimal (pre­
ceded by 'Ox'), or octal (preceded by a '0'). It is option­
ally followed by one of the following multipliers: w, I,
b, or k; for words (2 bytes), long words (4 bytes), half
kilobytes (512 bytes), or kilobytes (1024 bytes), respec­
tively. Note that this is the one case where "b" does
not stand for bytes. Since specifying a hexadecimal
offset in blocks would result in an ambiguous trailing
'b', any offset and multiplier may be separated by an
asterisk (*).

Specify the number of bytes to process. The count is in
the same format as offset, above.

Format Flags

Format flags may specify addresses, characters, bytes, words (2 bytes)
or longs (4 bytes) to be printed in hex, decimal, or octal. Two special
formats may also be indicated: text or ascii. Format and base
specifiers may be freely combined and repeated as desired in order to
specify different bases (hexadecimal, decimal or octal) for different
output formats (addresses, characters, etc.). All format flags appearing
in a single argument are applied as appropriate to all other flags in that

March 15, 1989 HD-1

HD (C) HD (C)

argument.

acbwlA
Output fonnat specifiers for addresses, characters, bytes, words,
longs and ascii respectively. Only one base specifier will be used
for addresses. The address will appear on the first line of output
that begins each new offset in the input.

The character fonnat prints all printable characters without
change, special C escapes as defined in the language, and the
remaining values in the specified base.

The ascii fonnat prints all printable characters without change, and
all others as a period (.). This fonnat appears to the right of the
first of other specified output fonnats. A base specifier has no
meaning with the ascii fonnat. If no other output fonnat (other than
addresses) is given, bx is assumed. If no base specifier is given, all
of xdo are used.

xdo
Output base specifiers for hexadecimal, decimal and octal.

t Print a text file, each line preceded by the address in the file. Nor­
mally, lines should be terminated by a \n character; but long lines
will be broken up. Control characters in the range OxOO to Ox If are
printed as '''@' to '''_'. Bytes with the high bit set are preceded by
a tilde (-) and printed as if the high bit were not set. The special
characters (", -, \) are preceded by a backslash (\) to escape their
special meaning. As special cases, these two values are
represented numerically as ,\177' and '\377'. This flag will over­
ride all output fonnat specifiers except addresses.

If no output fonnat is given, but a base specifier is present, the output
format is set to -acbwl. If no base specifier is given, but an output for­
mat is present, the base specifier is set to -xdo. If neither is present,
the format flag is set to -abx -A.

Value Added

hd is an extension of AT&T System V provided in Altos UNIX System
V.

March 15, 1989 HD-2

HEAD (C)

head
prints the first few lines ofa file

Syntax

head [-count] [file...]

Description

HEAD (C)

This filter prints the first count lines of each of the specified files. If
no files are specified t head reads from the standard input. If no count
is specified t then 10 lines are printed.

See Also

tail(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 15. 1989 HEAD-1

HELLO (C) HELLO (C)

hello
send a message to another user

Syntax

hello user [tty]

Description

hello sends messages from one user to another. When frrst called,
hello displays the following message:

Message from sender's-system! sender's-name sender's-tty

The recipient of the message should write back at this point. Commu­
nication continues until an interrupt is sent. (On most terminals, press­
ing the Del key sends an interrupt.) At that point hello prints "(end of
message)" on the other terminal, and exits.

To write to a user who is logged in more than once, the user can
employ the tty argument to specify the appropriate terminal name.
The who(C) command can be used to determine the correct terminal
name.

Permission to write may be allowed or denied by the recipient, using
the mesg command. Writing is allowed by default. Certain com­
mands, such as nroff and pr, prohibit messages in order to prevent
disruption of output.

If the character ! is found at the beginning of a line, hello calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using hello. When frrst writ­
ing to another user, the sender should wait for that user to write bac~
before sending a message. Each party should end each message with a
signal indicating that the other may reply: 0 for "over" is conven­
tional. The signal 00 for "over and out" is suggested when conversa­
tion is about to be terminated.

Files

/etc/utmp
/bin/sh

March 15, 1989 HELLO-1

HELLO (C)

See Also

mesg(C), who(C), mail(C)

Value Added

HELLO (C)

hello is an extension of AT&T System V provided in Altos UNIX Sys­
temV.

March 15, 1989 HELLO-2

HOSTID (C)

hostid
Print unique hardware I D

Syntax

hostid

Description

HOSTID (C)

The hostid utility prints the system's unique hardware ID to standard
output. This ID is set at the factory during manufacture.

If a hardware ID is not available (for example, on a non-Altos ma­
chine), the operating system serial number is returned instead.

Value Added

hostid is an extension of AT&T System V provided by Altos UNIX
System V.

September 4, 1990 HOSTID-1

HP(C) HP (C)

hp
handle special functions of Hewlett-Packard terminals

Syntax

bp [-e] [-m]

Description

hp supports special functions of the Hewlett-Packard 2640 series of
terminals, with the primary purpose of producing accurate representa­
tions of most nroff output. A typical usage is in conjunction with text
processing software:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tri!!S to do
sensible things with underlining and reverse line-feeds. If the termi­
nal has the "display enhancements" feature, subscripts and super­
scripts can be indicated in distinct ways. If it has the "mathematical­
symbol" feature, Greek and other special characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the "display enhancements"
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underlined mode.
Superscripts are shown in Half·bright mode, and subscripts in
Half-bright, Underlined mode. If this flag is omitted, hp assumes
that your terminal lacks the "display enhancements" feature. In
this case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usuallight-on-dark.

-m
Requests minimization of output by changing new lines to AM's.
Any contiguous sequence of 3 or more new-lines is converted into
a sequence of only 2 new-lines; i.e., any number of successive
blank lines produces only a single blank output line. This allows
you to retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the
same set as 300(C), except that "not" is approximated by a right
arrow, and only the top half of the integral sign is shown.

March 15, 1989 HP-1

HP(C)

Diagnostics

HP (C)

line too long if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

See Also

300(C), greek(C)

Notes

An "overstriking sequence" is defined as a printing character fol­
lowed by a backspace followed by another printing character. In such
sequences, if either printing character is an underscore, the other print­
ing character is shown underlined or in Inverse Video; otherwise, only
the first printing character is shown (again, underlined or in Inverse
Video). Nothing special is done if a backspace is adjacent to an ASCII
control character. Sequences of control characters (e.g., reverse line­
feeds, backspaces) can make text "disappear". In particular, tables
generated by tbl(CT) that contain vertical lines will often be missing
the lines of text that contain the "foot" of a vertical line, unless the
input to hp is piped through col (C).

Although some terminals do provide numerical superscript characters,
no attempt is made to display them.

March 15, 1989 HP-2

HWCONFIG (C) HWCONFIG (C)

hwconfig
read the configuration information

Syntax

letc/bwcootig [-nIh] [.ffilename] [[-] param] [[-] param=va!] ...

Description

hwconfig returns the configuration information contained in the file
lusr/admlhwcootig or the file specified on the command line with the
·f filename option. Using combinations of the remaining options, the
user can view as much information as needed from the configuration
file. The display format is as follows:

magic_char device_name base+finish vec dma rest

where:

magic_char

device_name

base+finish

vec

dma

rest

is the character %

is the name of the device driver

is the starting and the finishing addresses of
the driver working space

is the interrupt vector number

is the dma channel number

is a possibly empty list of parameter=value
pairs

The default hwconfig display looks similar to this:

device address vector dma comment

~u 35
floppy 0x3F2-0x3F7 06
serial 0x2F8-0x2FF 03
parallel 0x378-0x37A 07
console -
disk OxlFO-OxlF7 36

Options

type=80387
2 unit=O type=96ds15

unit=l type=Standard nports=l
unit=O
unit=ega type=O
type=WO unit=O cyls=791 hds=16 secs=48

·0 the device name is always printed out.

March 15, 1989 HWCONFIG-1

HWCONFIG (C) HWCONFIG (C)

-I

-h

-f.lile

param

-param

the long format of the device configuration
content is used.

uses the long format, with headers.

uses file as the input file instead of the default
lusrfadm/hwconfig.

any of the 12 pre-defined parameters avail­
able: name, base, offset, vee, dma, unit, type,
nports, hds, cyls, sees, and drvr.

shows all values of param throughout the con­
figuration file. param can be any valid system
parameter.

-param=va[shows only information from the line where
param equals the value val.

The -n, -I and -h options are in increasing overriding power. That is, if
-n and -I are both specified, -I will be used. param on its own indi­
cates a query for its corresponding value(s), whereas param=va[ue
indicates a matching <token,val> pair in the input file. -I is used by
default if there are no queries and no explicit option.

Command line queries, i.e. those with parameters· only, are always dis­
played in short format.

Examples

hwconfig The entire contents of the file lusr/adm/hwconfig is
printed.

hwconfig base
All the values of the base parameter found in
lusr/adm/hwconfig are printed.

hwconfig -f conf base=300 vec=19
All entries in eon[that match the base and vee values
given are printed.

hwconflg name=floppy base
The name and value of base in lusr/adm/hwconfig for the
drivers with the name floppy are printed for all entries.

hwconfig -n base dma
The device name associated with the base and dma is dis­
played. For example:

March 15, 1989 HWCONFIG-2

HWCONFIG (C) HWCONFIG (C)

name=scsi base=Ox234 dma=4

hwconfig base dma vec=4
The base and dma values of all lusr/admlbwconfig entries with
matching vec=4 are printed.

hwconfig -I base dma vec=4
is like

hwconfig -I vec=4
except that base and dma values will be printed first.

hwconfig -h
Everything is printed in the long format, with a header similar to
the one shown at boot-up time. It will ignore all queries, but do
matching on the token values. For example,

hwconfig -h vec=4 dma=l

will print in long format, with header, all those entries with vec=4 and
dma=l

Files

/usr/adm/hwconfig

Value Added

hwconfig is an extension of AT&T System V provided in Altos UNIX
System V.

March 15, 1989 HWCONFIG-3

1286EMUL (C) 1286EMUL (C)

i286emul
emulate UNIX 80286

Syntax

i286emul [arg ...] prog286

Description

i286emul is an emulator· that allows programs from UNIX System V
Release 2 or Release 3 on the Intel 80286 to run on UNIX System V
Release 3 on the Intel 80386.

The Altos UNIX System V system recognizes an attempt to exec(S) a
286 program, and automatically exec's the 286 emulator with the 286
program name as an additional argument. It is not necessary to
specify the i286emul emulator on the command line. The 286 pro­
grams can be invoked using the same command format as on the 286
UNIX System V.

i286emul reads the 286 program's text and data into memory and maps
them through the LDT (Local Descriptor Table) (via sysi86(S)) as 286
text and data segments. It also sets callgate 89 in the GDT (Global
Descriptor Table) (which is used by 286 programs for system calls) to
point to a routine in i286emul. i286emul starts the 286 program by
jumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes
control. It does any conversions needed between the 286 system call
and the equivalent 386 system call, and performs the 386 system call.
The results are converted to the form the 286 program expects, and the
286 program is resumed.

The following are some of the differences between a program running
on a 286 and a 286 program using i286emul on a 386:

• A 286 program under i286emul always has 64K in the stack
segment if it is a large-model process, or 64K in the data seg­
ment if it is a small-model process.

• System calls and signal handling use more space on the stack
under i286emul than it does on a 286.

• Attempts to unlink or write on the 286 program will fail on the
286 with ETXTBSY. Under i286emul, they will not fail.

• ptrace (S) is not supported under i286emul.

March 11, 1990 1286EMUL-1

1286EMUL (C) 1286EMUL (C)

• The 286 program must be readable for the emulator to read it.

Files

lbinli286emul

Notes

The emulator must have this name and be in Ibin if it is to be
automatically invoked when exec (S) is used on a 286 program.

The signal mechanism under the emulator is the System V release 2
signal mechanism rather than the System V release 3 mechanism.

March 11, 1990 1286EMUL-2

10 (C) 10 (C)

id
prints user and group I Ds and names

Syntax

id

Description

id writes a message on the standard output, giving the user and group
IDs and the corresponding names of the invoking process. If the effec­
tive and real IDs do not match, both are printed.

See Also

logname(C), getuid(S)

Standards Conformance

id is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1 989 10-1

ISMPX (C) ISMPX (C)

ismpx
return .windowing terminal state

Syntax

ismpx [-s]

Description

The ismpx command reports whether its standard input is connected to
a multiplexed xt(HW) channel; i.e., whether it's running under
layers(C) or not. It is useful for shell scripts that download programs
to a windowing terminal or depend on screen size.

The ismpx command prints yes and returns 0 if invoked under
layers(C), and prints no and returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

Diagnostics

Returns 0 if invoked under layers(C), 1 if not.

See Also

jwin(C), layers(C), xt(HW)

Example

if ismpx -s
then

jwin
fi

March 15. 1989 ISMPX-1

JOIN (C) JOIN (C)

join

joins two relations

Syntax

join [options] filel file2

Description

join prints to the standard output a join of the two relations specified
by the lines of filel and file2. If filel is a dash (-), the standard input
is used.

Filel and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in each
line.

There is one line in the output for each pair of lines in filel and file2
that have identical join fields. The output line normally consists of
the common field, then the rest of the line from filel , then the rest of
the line fromfile2 .

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are discarded.

These options are recognized:

-an

-e s

-jn m

-0 list

-tc

In addition to the normal output, produces a line for each
unpairable line in file n, where n is 1 or 2.

Replaces empty output fields by string s.

Joins on the mth field of file n. If n is missing, uses the
mth field in each file.

Each output line comprises the fields specified in list,
each element of which has the form n.m, where n is a file
number and m is a field number.

Uses character c as a field separator. Every appearance of
c in a line is significant.

March 15, 1989 JOIN-1

JOIN (C)

See Also

awk(C), comm(C), sort(C)

Notes

JOIN (C)

With default field separation, the collating sequence is that of sort -b.
With -t, the sequence is that of a plain sort.

Standards Conformance

join is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 JOIN-2

JTERM (C) JTERM (C)

jterm
reset layer of windowing terminal

Syntax

jterm

Description

The jterm command is used to reset a layer of a windowing terminal
after downloading a terminal program that changes the terminal
attributes of the layer. It is useful only under Zayers(C). In practice, it
is most commonly used to restart the default terminal emulator after
using an alternate one provided with a terminal-specific application
package. For example, on the AT&T TELETYPE 5620 DMD termi­
nal, after executing the hp2621(C) command in a layer, issuing the
jterm command will restart the default terminal emulator in that layer.

Diagnostics

Returns 0 upon successful completion, 1 otherwise.

Notes

The layer that is reset is the one attached to standard error; that is, the
window you are in when you type the jterm command.

See Also

layers(C)

March 15, 1989 JTERM~1

JWIN (C)

jwin

print size of layer

Syntax

jwin

Description

JWIN (C)

The jwin command runs only under layers(C) and is used to determine
the size of the layer associated with the current process. It prints the
width and the height of the layer in bytes (number of characters across
and number of lines. respectively). For bit-mapped terminals only, it
also prints the width and height of the layer in bits.

Diagnostics

Returns 0 on successful completion. 1 otherwise.

If layers(C) has not been invoked. an error message is printed:

jwin: not mpx

Note

The layer whose size is printed is the one attached to standard input;
that is, the window you are in when you type the jwin command.

See Also

layers(C)

Example

In the following example, the user input is in bold:

$jwi.n
bytes: 86 25
bits: 780 406

March 15, 1989 JWIN-1

KILL (C) KILL (C)

kill
terminates a process

Syntax

kill [-signo] processid ...

Description

kill sends signal 15 (tenninate) to the specified process(es). This will
nonnally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process (background process)
started with & is reported by the shell (unless more than one process is
started in a pipeline, in which case the number of the last process in
the pipeline is reported). Process numbers can also be found by using
ps(C).

For example, if process number 0 is specified, all processes in the pro­
cess group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by - is given as the first argument, that
signal is sent instead of the tenninate signal (see signal(S». In partic­
ular "kill -9 ... " is a sure kill.

See Also

ps(C), sh(C), kill(S), signal(S)

Standards Conformance

kill is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 KILL-1

KSH (C) KSH (C)

ksh, rksh
KornShell, a standard/restricted command and pro­
gramming language

Syntax

ksh [±aefhikmnoprstuvx] [±o option] . .. [-c string] [arg ...]
rksh [±aefhikmnoprstuvx] [±o option] . .. [-c string] [arg ...]

Description

ksh is a command and programming language that executes com­
mands read from a terminal or a file. rksh is a restricted version of the
command interpreter ksh; it is used to set up login names and execu­
tion environments whose capabilities are more controlled than those
of the standard shell. See Invocation below for the meaning of argu­
ments to the shell.

Definitions

A metacharacter is one of the following characters:

; & () I < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore. Identifiers
are used as names for functions and named parameters. A word is a
sequence of characters separated by one or more non-quoted meta­
characters.

A command is a sequence of characters in the syntax of the shell lan­
guage. The shell reads each command and carries out the desired
action either directly or by invoking separate utilities. A special. com­
mand is a command that is carried out by the shell without creating a
separate process. Except for documented side effects, most special
commands can be implemented as separate utilities.

Commands

A simple-command is a sequence of blank separated words which may
be preceded by a parameter assignment list. (See Environment
below). The first word specifies the name of the command to be exe­
cuted. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as
argument 0 (see exec(S». The value of a simple-command is its exit
status if it terminates normally, or (octal) 200+status if it terminates

March 19, 1990 KSH-1

KSH (C) KSH (C)

abnormally (see signal (S) for a list of status values).

A pipeline is a sequence of one or more commands separated by I.
The standard output of each command but the last is connected by a
pipe(S) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to ter­
minate. The exit status of a pipeline is the exit status of the last com­
mand.

A list is a sequence of one or more pipelines separated by;, &, &&,
or I I, and optionally terminated by;, &, or I &. Of these five sym­
bols, ;, &, and I & have equal precedence, which is lower than that of
&& and I I. The symbols && and I I also have equal precedence. A
semicolon (;) causes sequential execution of the preceding pipeline;
an ampersand (&) causes asynchronous execution of the preceding
pipeline (Le., the shell does not wait for that pipeline to finish). The
symbol I & causes asynchronous execution of the preceding command
or pipeline with a two-way pipe established to the parent shell. The
standard input and output of the spawned command can be written to
and read from by the parent Shell using the -p option of the special
commands read and print described later. The symbol && (I I)
causes the list following it to be executed only if the preceding pipe­
line returns a zero (non-zero) value. An arbitrary number of new-lines
may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

for identifier [in word . ..] ;do list ;done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word ... is omitted, then
the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execu­
tion ends when there are no more words in the list.

select identifier [in word ...] ;do list ;done
A select command prints on standard error (file descriptor. 2), the
set of words, each preceded by a number. If in word ... is omit­
ted, then the positional parameters are used instead (see Parameter
Substitution below). The PS3 prompt is printed and a line is read
from the standard input. If this line consists of the number of one
of the listed words, then the value of the parameter identifier is set
to the word corresponding to this number. If this line is empty the
selection list is printed again. Otherwise the value of the parame­
ter identifier is set to null. The contents of the line read from stan­
dard input is saved in the parameter REPLY. The list is executed
for each selection until a break or end-oj-file is encountered.

case word in [[(]pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that

March 19. 1990 KSH-2

KSH (C) KSH (C)

used for file-name generation (see File Name Generation below).

if list ;then list [eUf list ;then list] ... [;else list] ;fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol­
lowing eUf is executed and, if its value is zero, the list following
the next then is executed. Failing that, the else list is executed. If
no else list or then list is executed, then the if command returns a
zero exit status.

while list ;do list ;done
until list ;do list ;done

A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes the do
list; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test.

(list)
Execute list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted
to avoid arithmetic evaluation as described below.

{ list;}
list is simply executed. Note that unlike the metacharacters (and
), { and } are reserved words and must at the beginning of a line or
after a ; in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expres­
sion is true. See Conditional Expressions below, for a description
of expression.

function identifier {list ;}
identifier () { list ;}

Define a function which is referenced by identifier. The body of
the function is the list of commands between { and }. (See Func­
tions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user
and system time are printed on standard error.

The following reserved words are only recognized as the first word of
a command and when not quoted:

if then else eUf fi case esac for while until do done
{ } function select time [[]]

March 19, 1990 KSH-3

KSH (C) KSH(C)

Comments

A word beginning with # causes that word and all the following char­
acters up to a new-line to be ignored.

Aliasing

The first word of each command is replaced by the text of an alias if
an alias for this word has been defined. The first character of an alias
name can be any non-special printable character, but the rest of the
characters must be the same as for a valid identifier. The replacement
string can contain any valid Shell script including the metacharacters
listed above. The first word of each command in the replaced text,
other than any that are in the process of being replaced, will be tested
for aliases. If the last character of the alias value is a blank then the
word following the alias will also be checked for alias substitution.
Aliases can be used to redefine special builtin commands but cannot
be used to redefine the reserved words listed above. Aliases can be
created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in effect
for scripts invoked by name, but must be reinitialized for separate
invocations of the Shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are exe­
cuted. Therefore, for an alias to take effect the alias definition com­
mand has to be executed before the command which references the
alias is read.

Aliases are frequently used as a short hand for full path names. An
option to the aliasing facility allows the value of the alias to be auto­
matically set to the full pathname of the corresponding command.
These aliases are caned tracked aliases. The value of a tracked alias
is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will
redefine the value. Several tracked aliases are compiled into the shell.
The -h option of the set command makes each referenced command
name into a tracked alias.

The following exported aliases are compiled into the shell but can be
unset or redefined:

March 19, 1990

autoload= 'typeset -fu'
false='let 0'
functions= 'typeset -f'
hash='alias -t'
history= 'fc -1'
integer= 'typeset -i'
no~up='I?ohup ,
r= fc -e -

KSH-4

KSH(C)

Tilde Substitution

true=': '
type='whence -v'

KSH (C)

After alias substitution is performed, each word is checked to see if it
begins with an unquoted -. If it does, then the word up to a / is
checked to see if it matches a user name in the /etc/passwd file. If a
match is found, the - and the matched login name is replaced by the
login directory of the matched user. This is called a tilde substitution.
If no match is found, the original text is left unchanged. A - by itself,
or in front of a /, is replaced by the value of the HOME parameter. A
- followed by a + or - is replaced by $PWD and $OLDPWD respec­
tively.

In addition, tilde substitution is attempted when the value of a vari­
able assignment parameter begins with a-.

Command Substitution

The standard output from a command enclosed in parenthesis pre­
ceded by a dollar sign ($()) or a pair of grave accents (") may be
used as part or all of a word; trailing new-lines are removed. In the
second (archaic) form, the string between the quotes is processed for
special quoting characters before the command is executed. (See
Quoting below). The command substitution $(cat file) can be
replaced by the equivalent but faster $(<file). Command substitution
of most special commands that do not perform input/output redirection
are carried out without creating a separate process.

An arithmetic expression enclosed in double parenthesis preceded by
a dollar sign ($«») is replaced by the value of the arithmetic expres­
sion within the double parenthesis.

Parameter Substitution

A parameter is an identifier, one or more digits, or any of the charac­
ters *, @, #, ?, -, $, and!. A named parameter (a parameter denoted
by an identifier) has a value and zero or more attributes. Named
parameters can be assigned values and attributes by using the
typeset special command. The attributes supported by the Shell are
described later with the typeset special command. Exported parame­
ters pass values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an
array parameter is referenced by a subscript. A subscript is denoted
by a [, followed by an arithmetic expression (see Arithmetic evalua­
tion below) followed by a]. To assign values to an array, use set -A
name value The value of all subscripts must be in the range of 0
through 1023. Arrays need not be declared. Any reference to a named

March 19, 1990 KSH-S

KSH (C) KSH (C)

parameter with a valid subscript is legal and an array will be created if
necessary. Referencing an array without a subscript is equivalent to
referencing the element zero.

The value of a named parameter may also be assigned by writing:

name =value [name =value] ...

If the integer attribute, -i, is set for name the value is subject to arith­
metic evaluation as described below.
Positional parameters, parameters denoted by a number, may be
assigned values with the set special command. Parameter $0 is set
from argument zero when the shell is invoked.
The character $ is used to introduce substitutable parameters.
${parameter}

The shell reads all the characters from ${ to the matching } as part
of the same word even if it contains braces or metacharacters. The
value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or under­
score that is not to be interpreted as part of its name or when a
named parameter is subscripted. If parameter is one or more digits
then it is a positional parameter. A positional parameter of more
than one digit must be enclosed in braces. If parameter is * or @,
then all the positional parameters, starting with $1, are substituted
(separated by a field separator character). If an array identifier
with subscript * or @ is used, then the value for each of the ele­
ments is substituted (separated by a field separator character).

${#parameter}
If parameter is * or @, the number of positional parameters is sub­
stituted. Otherwise, the length of the value of the parameter is
substituted.

${#identifier[*]}
The number of elements in the array identifier is substituted.

${parameter: -word}
If parameter is set and is non-null then substitute its value; other­
wise substitute word.

${parameter: =word}
If parameter is not set or is null then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

${parameter: ?word}
If parameter is set and is non-null then substitute its value; other­
wise, print word and exit from the shell. If word is omitted then a
standard message is printed.

${parameter :+word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

${parameter#pattern }
${parameter##pattern}

If the Shell pattern matches the beginning of the value of parame­
ter, then the value of this substitution is the value of the parameter
with the matched portion deleted; otherwise the value of this

March 19, 1990 KSH-6

KSH(C) KSH(C)

parameter is substituted. In the first form the smallest matching
pattern is deleted and in the second form the largest matching pat­
tern is deleted.

${parameter %pattern}
${parameter % %pattern}

If the Shell pattern matches the end of the value of parameter,
then the value of this substitution is the value of the parameter
with the matched part deleted; otherwise substitute the value of
parameter. In the first form the smallest matching pattern is

. deleted and in the second form the largest matching pattern is
deleted.

In the above, word is not evaluated unless it is to be used as the substi­
tuted string, so that, in the following example, pwd is executed only if
d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
• Flags supplied to the shell on invocation or by the set com-

mand.
? The decimal value returned by the last executed command.
$ The process number of this shell.
_ Initially, the value _ is an absolute pathname of the shell or

script being executed as passed in the environment. Subse­
quently it is assigned the last argument of the previous com­
mand. This parameter is not set for commands which are asyn­
chronous. This parameter is also used to hold the name of the
matching MAIL file when checking for mail.
The process number of the last background command invoked.

ERRNO
The value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debug­
ging purposes.

LINE NO
The line number of the current line within the script or function
being executed.

OLDPWD
The previous working directory set by the cd command.

OPTARG
The value of the last option argument processed by the getopts
special command.

OPTIND
The index of the last option argument processed by the getopts
special command.

March 19. 1990 KSH-7

KSH(C) KSH (C)

PPID
The process number of the parent of the shell.

PWD
The present working directory set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer, uni­
formly distributed between 0 and 32767, is generated. The
sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds
since shell invocation is returned. If this parameter is assigned
a value, then the value returned upon reference will be the
value that was assigned plus the number of seconds since the
assignment.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select
lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see
Special Command set below) will be turned on.

ENV
If this parameter is set, then parameter substitution is per­
formed on the value to generate the pathname of the script that
will be executed when the shell is invoked. (See Invocation
below.) This file is typically used for alias and function
definitions.

FCEDIT
The default editor name for the fc command.

FPATH
The search path for function definitions. This path is searched
when a function with the -u attribute is referenced and when a
command is not found. If an executable file is found, then it is
read and executed in the current environment.

IFS
Internal field separators, normally space, tab, and new-line that
is used to separate command words which result from com­
mand or parameter substitution and for separating words with
the special command read. The first character of the IFS
parameter is used to separate arguments for the "$*" substitu­
tion (See Quoting below).

March 19. 1990 KSH-8

KSH (C) KSH (C)

HISTFILE
If this parameter is set when the shell is invoked, then the value
is the pathname of the file that will be used to store the com­
mand history. (See Command re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the num­
ber of previously entered commands that are accessible by this
shell will be greater than or equal to this number. The default
is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL
If this parameter is set to the name of a mail file and the MAIL­
PATH parameter is not set, then the shell informs the user of
arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the MAILPATH or MAIL parameters. The default
value is 600 seconds. When the time has elapsed the shell will
check before issuing the next prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set
then the shell informs the user of any modifications to the
specified files that have occurred within the last MAILCHECK
seconds. Each file name can be followed by a ? and a message
that will be printed. The message will undergo parameter sub­
stitution with the parameter, $ defined as the name of the file
that has changed. The default message is you have mail in $_.

PATH
The search path for commands (see Execution below). The
user may not change PATH if executing under rksh (except in
.profile).

PSI
The value of this parameter is expanded for parameter substitu­
tion to define the primary prompt string which by default is "$
". The character! in the primary prompt string is replaced by
the command number (see Command Re-entry below).

PS2
Secondary prompt string, by default "> ".

PS3
Selection prompt string used within a select loop, by default
"#? ".

PS4
The value of this parameter is expanded for parameter substitu­
tion and precedes each line of an execution trace. If omitted,
the execution trace prompt is "+ ".

March 19, 1990 KSH;...9

KSH (C) KSH (C)

SHELL
The pathname of the shell is kept in the environment. At invo­
cation, if the basename of this variable matches the pattern
*r*sh, then the shell becomes restricted.

TMOUT
If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of
seconds after issuing the PSI prompt. (Note that the shell can
be compiled with a maximum bound for this value which can­
not be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PSI, PS2, MAILCHECK,
TMOUT and IFS, while HOME, SHELL ENV and MAIL are not set at
all by the shell (although HOME is set by login(M». On some sys­
tems MAIL and SHELL are also set by login (M».

Blank Interpretation

After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit
null arguments (" II or ") are retained. Implicit null arguments (those
resulting from parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the char­
acters *, ?, and [unless the -f option has been set. If one of these
characters appears then the word is regarded as a pattern. The word is
replaced with lexicographically sorted file names that match the pat­
tern. If no file name is found that matches the pattern, then the word is
left unchanged. When a pattern is used for file name generation, the
character. at the start of a file name or immediately following a I, as
well as the character I itself, must be matched explicitly. In other
instances of pattern matching the I and. are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...]

Matches anyone of the enclosed characters. A pair of charac­
ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening "["
is a "! "then any character not enclosed is matched. A - can be
included in the character set by putting it as the first or last
character.

March 19, 1990 KSH-10

KSH (C) KSH (C)

A pattern-list is a list of one or more patterns separated by each other
with a I. Composite patterns can be formed with one or more of the
following:

?(pattern-list)
Optionally matches anyone of the given patterns.

*(pattern-list)
Matches zero or more occurrences of the given patterns.

+(pattern-list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches exactly one of the given patterns.

!(pattern-list)
Matches anything, except one of the given patterns.

Quoting

Each of the metacharacters listed above (See Definitions above) has a
special meaning to the shell and causes termination of a word unless
quoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All characters
enclosed between a pair of single quote marks (' '), are quoted. A sin­
gle quote cannot appear within single quotes. Inside double quote
marks (n "), parameter and command substitution occurs and \ quotes
the characters \, " n, and $. The meaning of $* and $@ is identical
when not quoted or when used as a parameter assignment value or as a
file name. However, when used as a command argument, n$*" is
equivalent to n$1d$2d .. . n, where d is the first character of the IFS
parameter, whereas "$@" is equivalent to "$1" "$2n Inside
grave quote marks (, ,) \ quotes the characters \, " and $. If the grave
quotes occur within double quotes then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by
quoting any character of the reserved word. The recognition of func­
tion names or special command names listed below cannot be altered
by quoting them.

Arithmetic Evaluation

An ability to perform integer arithmetic is provided with the special
command let. Evaluations are performed using long arithmetic. Con­
stants are of the form [base#]n where base is a decimal number
between two and thirty-six representing the arithmetic base and n is a
number in that base. If base is omitted then base lOis used.

An arithmetic expression uses the same syntax, precedence, and asso­
ciativity of expression of the C language. All the integral operators,
other than ++, •• , ?:, and, are supported. Named parameters can be
referenced by name within an arithmetic expression without using the
parameter substitution syntax. When a named parameter is refer­
enced, its value is evaluated as an arithmetic expression.

March 19, 1990 KSH-11

KSH (C) KSH (C)

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command. Arith­
metic evaluation is performed on the value of each assignment to a
named parameter with the -i attribute. If you do not specify an arith­
metic base, the first assignment to the parameter determines the arith­
metic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command which begins
with a «, all the characters until a matching » are treated as a quoted
expression. More precisely, «(. .. » is equivalent to let" ... ".

Prompting

When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secondary
prompt (Le., the value of PS2) is issued.

Conditional Expressions

A conditional expression is used with the [[compound command to
test attributes of files and to compare strings. Word splitting and file
name generation are not performed on the words between [[and]].
Each expression can be constructed from one or more of the following
unary or binary expressions:
-a file

True, if file exists.
-bfile

True, if file exists and is a block special file.
-cfile

True, if file exists and is a character special file.
-dfile

True, if file exists and is a directory.
-ffile

True, if file exists and is an ordinary file.
-gfile

True, if file exists and is has its setgid bit set.
-kfile

True, if file exists and is has its sticky bit set.
-n string

True, if length of string is non-zero.
-0 option

True, if option named option is on.
-pfile

True, if file exists and is a fifo special file or a pipe.
-r file

True, if file exists and is readable by current process.

March 19, 1990 KSH-12

KSH (C)

-sfile
True, iffile exists and has size greater than zero.

-tfildes

KSH (C)

True, if file descriptor number fildes is open and associated with a
terminal device.

-ufile
True, if file exists and is has its setuid bit set.

-w file
True, if file exists and is writable by current process.

-x file
True, if file exists and is executable by current process. If file
exists and is a directory, then the current process has permission to
search in the directory.

-z string
True, if length of string is zero.

-0 file
True, if file exists and is owned by the effective user id of this pro­
cess.

-Gfile
True, if file exists and its group matches the effective group id of
this process.

filel -ntfile2
True, if filel exists and is newer than file2 .

filel -otfile2
True, iffilel exists and is older thanfile2 .

filel -effile2
True, iffileJ andfile2 exist and refer to the same file.

string = pattern
True, if string matches pattern.

string != pattern
True, if string does not match pattern .

stringl < string2
True, if string1 comes before string2 based on ASCII value of their
characters.

stringl > string2
True, if string J comes after string2 based on ASCII value of their
characters.

expl -eq exp2
True, if expJ is equal to exp2.

expl -ne exp2
True, if expJ is not equal to exp2.

expl -It exp2
True, if expJ is less than exp2.

expl -gt exp2
True, if expJ is greater than exp2.

expJ -Ie exp2
True, if expJ is less than or equal to exp2.

expl -ge exp2
True, if expl is greater than or equal to exp2.

March 19, 1990 KSH-13

KSH (C) KSH (C)

In each of the above expressions, if file is of the form /dev/fd/n, where
n is an integer, then the test applied to the open file whose descriptor
number is n.

A compound expression can be constructed from these primitives by
using any of the following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expression1 && expression2

True, if expression] and expression2 are both true.
expression] II expression2

True, if either expression] or expression2 is true.

Spelling Checker

By default, the shell checks spelling whenever you use cd to change
directories. For example, if you change to a different directory using
cd and misspell the directory name, the shell responds with an alterna­
tive spelling of an existing directory. Enter "y" and press RETURN
(or just press RETURN) to change to the offered directory. If the of­
fered spelling is incorrect, enter "n", then retype the command line.
In this example the ksh response is boldfaced:

cd /usr/spol/uucp
/usr/spool/uucp? y
ok

The spell check feature is controlled by the CDSPELL environment
variable. The default value of CDSPELL is set to the string "cdspell"
whenever a ksh session is run. A user can change it to any value,
including the null string, but the value is immaterial, if CDSPELL is
set to any value, the spell check feature is engaged.

To disable the spelling checker, enter the following at the ksh prompt:
®.DE
When the user does a set at the ksh prompt,
CDSPELL is not listed if the unset was successful.

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command and are not passed on to the invoked command. Command
and parameter substitution occurs before word or digit is used except
as noted below. File name generation occurs only if the pattern
matches a single file and blank interpretation is not performed.

March 19, 1990 KSH-14

KSH (C)

<word

>word

>Iword

»word

<>word

«[-]word

<&digit

<&-

<&p

>&p

KSH(C)

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1).
If the file does not exist then it is created. If the file
exists, and the noclobber option is on, this causes an
error; otherwise, it is truncated to zero length.

Sames as >, except that it overrides the noclobber
option.

Use file word as standard output. If the file exists
then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

Open file word for reading and writing as standard
input.

The shell input is read up to a line that is the same as
word, or to an end-of-file. No parameter substitu­
tion, command substitution or file name generation is
performed on word. The resulting document, called
a here-document, becomes the standard input. If any
character of word is quoted, then no interpretation is
placed upon the characters of the document; other­
wise, parameter and command substitution occurs,
\new-line is ignored, and \ must be used to quote the
characters \, $, "', and the first character of word. If­
is appended to «, then all leading tabs are stripped
from word and from the document.

The standard input is duplicated from file descriptor
digit (see dup(S». Similarly for the standard output
using >& digit.

The standard input is closed. Similarly for the stan­
dard output using >&-.

The input from the co-process is moved to standard
input.

The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file descriptor num­
ber referred to is that sped fied by the digit (instead of the default 0 or
1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

March 19, 1990 KSH-15

KSH (C) KSH (C)

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor, file) associ­
ation at the time of evaluation. For example:

... l>[name 2>&1

first associates file descriptor 1 with file fname. It then associates file
descriptor 2 with the file associated with file descriptor 1 (Le. fname).
If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file [name.

If a command is followed by & and job control is not active, then the
default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains
the file descriptors of the invoking shell as modified by input/output
specifications.

Environment

The environment (see environ (M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value and marking it
export . Executed commands inherit the environment. If the user
modifies the values of these parameters or creates new ones, using the
export or typeset -x commands they become part of the environment.
The environment seen by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must
be noted in export or typeset -x commands.

The environment for any simple-command or function may be aug­
mented by prefixing it with one or more parameter assignments. A
parameter assignment argument is a word of the form
identifier=value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all parameter assignment arguments are placed in
the environment, even if they occur after the command name. The fol­
lowing first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

March 19. 1990 KSH-16

KSH (C) KSH (C)

This feature is intended for use with scripts written for early versions
of the shell and its use in new scripts is strongly discouraged. It is
likely to disappear someday.

Functions

The function reserved word, described in the Commands section
above, is used to define shell functions. Shell functions are read in
and stored internally. Alias names are resolved when the function is
read. Functions are executed like commands with the arguments
passed as positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files
and present working directory with the caller. Traps caught by the
caller are reset to their default action inside the function. A trap con­
dition that is not caught or ignored by the function causes the function
to terminate and the condition to be passed on to the caller. A trap on
EXIT set inside a function is executed after the function completes in
the environment of the caller. Ordinarily, variables are shared
between the calling program and the function. However, the typeset
special command used within a function defines local variables whose
scope includes the current function and all functions it calls.

The special command return is used to return from function calls.
Errors within functions return control to the caller.

Function identi fiers can be listed with the -f or +f option of the typeset
special command. The text of functions will also be listed with -f.
Function can be undefined with the -f option of the unset special com­
mand.

Ordinarily, functions are unset when the shell executes a shell script.
The -xf option of the typeset command allows a function to be
exported to scripts that are executed without a separate invocation of
the shell. Functions that need to be defined across separate invoca­
tions of the shell should be specified in the ENV file with the -xf
option of typeset

Jobs

If the monitor option of the set command is turned on, an· interactive
shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell
prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job
number 1 and had one (top-level) process, whose process id was 1234.

March 19, 1990 KSH-17

KSH (C) KSH (C)

This paragraph and the next require features that are not in all versions
of the UNIX operating system and may not apply. If you are running a
job and wish to do something else you may hit the key "z (control-Z)
which sends a STOP signal to the current job. The shell will then nor­
mally indicate that the job has been 'Stopped', and print another
prompt. You can then manipulate the state of this job, putting it in the
background with the bg command, or run some other commands and
then eventually bring the job back into the foreground with the fore­
ground command fg. A "z takes effect immediately and is like an
interrupt in that pending output and unread input are discarded when it
is typed.

A job being run in the background will stop if it tries to read from the
terminal. Background jobs are normally allowed to produce output,
but this can be disabled by giving the command "stty tostop". If you
set this tty option, then background jobs will stop when they try to
produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be
referred to by the process id of any process of the job or by one of the
following:
% number

The job with the given number.
% string

Any job whose command line begins with string.
%?string

Any job whose command line contains string.
%%

Current job.
%+

Equivalent to % %.
%-

Previous job.

This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no
further progress is possible, but only just before it prints a prompt.
This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that completes
triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you
will be warned that 'You have stopped(running) jobs.' You may use
the jobs command to see what they are. If you do this or immediately
try to exit again, the shell wiII not warn you a second time, and the
stopped jobs will be terminated.

March 19, .1990 KSH-18

KSH (C) KSH (C)

Signals

The INT and QUIT signals for an invoked command are ignored if the
command is followed by & and job monitor option is not active. Oth­
erwise, signals have the values inherited by the shell from its parent
(but see also the trap command below).

Execution

Each time a command is executed, the above substitutions are carried
out. If the command name matches one of the Special Commands
listed below, it is executed within the current shell process. Next, the
command name is checked to see if it matches one of the user defined
functions. If it does, the positional parameters are saved and then
reset to the arguments of the function call. When the function com­
pletes or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a
function is the value of the last command executed. A function is also
executed in the current shell process. If a command name is not a spe­
cial command or a user defined function, a process is created and an
attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is /bin:/usr/bin: (specifying /bin,
/usr/bin, and the current directory in that order). The current direc­
tory can be specified by two or more adjacent colons, or by a colon at
the beginning or end of the path list. If the command name contains a
/ then the search path is not used. Otherwise, each directory in the
path is searched for an executable file. If the file has execute permis­
sion but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. All
non-exported aliases, functions, and named parameters are removed in
this case. If the shell command file doesn't have read permission, or if
the setuid and/or setgid bits are set on the file, then the shell executes
an agent whose job it is to set up the permissions and execute the shell
with the shell command file passed down as an open file. A
parenthesized command is executed in a sub-shell without removing
non-exported quantities.

Command Re-entry

The text of the last HISTSIZE (default 128) commands entered from a
terminal device is saved in a history file. The file $HOME/.sh_history
is used if the HISTFILE variable is not set or is not writable. A shell
can access the commands of all interactive shells which use the same
named HISTFILE. The special command fc is used to list or edit a
portion of this file. The portion of the file to be edited or listed can be
selected by number or by giving the first character or characters of the
command. A single command or range of commands can be specified.

March 19, 1990 KSH-19

KSH(C) KSH (C)

If you do not specify an editor program as an argument to fc then the
value of the parameter FCEDIT is used. If FCEDIT is not defined then
Ibin/ed is used. The edited command(s) is printed and re-executed
upon leaving the editor. The editor name - is used to skip the editing
phase and to re-execute the command. In this case a substitution
parameter of the form old=new can be used to modify the command
before execution. For example, if r is aliased to 'fc -e -' then typing 'r
bad=good c' will re-execute the most recent command which starts
with the letter c, replacing the first occurrence of the string bad with
the string good.

In-line Editing Options

Normally, each comr.nand line entered from a terminal device is sim­
ply typed followed by a new-line ('RETURN' or 'LINE FEED'). If
either the emacs, gmacs, or vi option is active, the user can edit the
command line. To be in either of these edit modes set the correspond­
ing option. An editing option is automatically selected each time the
VISUAL or EDITOR variable is assigned a value ending in either of
these option names.

The editing features require that the user's terminal accept 'RETURN'
as carriage return without line feed and that a space (") must
overwrite the current character on the screen. ADM terminal users
should set the "space - advance" switch to 'space'. Hewlett-Packard
series 2621 terminal users should set the straps to 'bcGHxZ etX'.

The editing modes implement a concept where the user is looking
through a window at the current line. The window width is the value
of COLUMNS if it is defined, otherwise 80. If the line is longer than
the window width minus two, a mark is displayed at the end of the
window to notify the user. As the cursor moves and reaches the win­
dow boundaries the window will be centered about the cursor. The
mark is a > «, *) if the line extends on the right (left, both) side(s) of
the window.

The search commands in each edit mode provide access to the history
file. Only strings are matched, not patterns, although a leading A in the
string restricts the match to begin at the first character in the line.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option.
The only difference between these two modes is the way they handle
AT. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the edit­
ing commands are control characters or escape sequences. The nota­
tion for control characters is caret (A) followed by the character. For
example, AF is the notation for control F. This is entered by depress­
ing 'f' while holding down the 'CTRL' (control) key. The 'SHIFf'

March 19, 1990 KSH-20

KSH (C) KSH (C)

key is not depressed. (The notation A? indicates the DEL (delete)
key.)

The notation for escape sequences is M- followed by a character. For
example, M·f (pronounced Meta f) is entered by depressing ESC (ascii
033) followed by 'f'. (M-F would be the notation for ESC followed by
'SHIFf' (capital) 'F'.)

All edit commands operate from any place on the line (not just at the
beginning). Neither the "RETURN" nor the "LINE FEED" key is
entered after edit commands except when noted.

"F
M .. r

"B
M-b
"A
"E
"]char
M·"]char
"X"X
erase

"D
M·d
M·"H
M·h
M·"?

AT

"C
M·c
M·I AK

"W
M·p
kill

Move cursor forward (right) one character.
Move cursor forward one word. (The emacs editor's idea
of a word is a string of characters consisting of only
letters, digits and underscores.)
Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor forward to character char on current line.
Move cursor back to character char on current line.
Interchange the cursor and mark.
(User defined erase character as defined by the stty (C)
command, usually AU or#.) Delete previous character.
Delete current character.
Delete current word.
(Meta-backspace) Delete previous word.
Delete previous word.
(Meta-DEL) Delete previous word (if your interrupt char­
acter is A? (DEL, the default) then this command will not
work).
Transpose current character with next character in emacs
mode. Transpose two previous characters in gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lower case.
Delete from the cursor to the end of the line. If preceded
by a numerical parameter whose value is less than the
current cursor position, then delete from given position up
to the cursor. If preceded by a numerical parameter
whose value is greater than the current cursor position,
then delete from cursor up to given cursor position.
Kill from the cursor to the mark.
Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the stty com­
mand, usually AG or @.) Kill the entire current line .. If
two kill characters are entered in succession, all kill char­
acters from then on cause a line feed (useful when using
paper terminals).

March 19, 1990 KSH-21

KSH(C)

"Y

"L
"@
M-space
"J
"M
eo!

"P

M-<
M->
"N

"Rstring

"0

M-digits

M-letter

M-.

M­
M-*'

KSH (C)

Restore last item removed from line. (Yank item back to
the line.)
Line feed and print current line.
(Null character) Set mark.
(Meta space) Set mark.
(New line) Execute the current line.
(Return) Execute the current line.
End-of-file character, normally "D, is processed as an
End-of-file only if the current line is null.
Fetch previous command. Each time "P is entered the
previous command back in time is accessed. Moves back
one line when not on the first line of a multi-line com­
mand.
Fetch the least recent (oldest) history line.
Fetch the most recent (youngest) history line.
Fetch next command line. Each time "N is entered the
next command line forward in time is accessed.
Reverse search history for a previous command line con­
taining string. If a parameter of zero is given, the search
is forward. String is terminated by a "RETURN" or
"NEW LINE". If string is preceded by a ", the matched
line must begin with string. If string is omitted, then the
next command line containing the most recent string is
accessed. In this case a parameter of zero reverses the
direction of the search.
Operate - Execute the current line and fetch the next line
relative to current line from the history file.
(Escape) Define numeric parameter, the digits are taken
as a parameter to the next command. The commands that
accept a parameter are "F, "B, erase, "C, "D, "K, "R, "P,
"N, "], M-" M-"], M- ,M-b, M-c, M-d, M-f, M-h M-I and
M-"H. -
Soft-key - Your alias list is searched for an alias by the
name letter and if an alias of this name is defined, its
value will be inserted on the input queue. The letter must
not be one of the above meta-functions. M-] letter Soft­
key - Your alias list is searched for an alias by the name

letter and if an alias of this name is defined, its value
will be inserted on the input queue. The can be used to
program functions keys on many terminals.
The last word of the previous command is inserted on the
line. If preceded by a numeric parameter, the value of
this parameter determines which word to insert rather
than the last word.
Same as M-,.
Attempt file name generation on the current word. An
asterisk is appended if the word doesn't match any file or
contain any special pattern characters.

March 19, 1990 KSH-22

KSH (C) KSH (C) .

M-ESC File name completion. Replaces the current word with
the longest common prefix of all filenames matching the
current word with an asterisk appended. If the match is
unique, a / is appended if the file is a directory and a space
is appended if the file is not a directory .

M-=

"U

List files matching current word pattern if an asterisk
were appended.
Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user's
erase, kill and interrupt (normally"?) characters may be
entered in a command line or in a search string if pre­
ceded by a \. The \ removes the next character's editing
features (if any).

"V
M-#

Display version of the shell.
Insert a # at the beginning of the line and execute it. This
causes a comment to be inserted in the history file.

Vi Editing Mode

There are two typing modes. Initially, when you enter a command you
are in the input mode. To edit, the user enters control mode by typing
ESC (033) and moves the cursor to the point needing correction and
then inserts or deletes characters or words as needed. Most control
commands accept an optional repeat count prior to the command.
When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200
baud or greater and it contains any control characters or less than one
second has elapsed since the prompt was printed. The ESC character
terminates canonical processing for the remainder of the command
and the user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echoing of
raw mode.
If the option viraw is also set, the terminal will always have canonical
processing disabled. This mode is implicit for systems that do not
support two alternate end of line delimiters, and may be helpful for
certain terminals.

Input Edit Commands

By default the editor is in input mode.
erase (User defined erase character as defined by the stty

command, usually AH or #.) Delete previous character.
"W Delete the previous blank separated word.
"D Terminate the shell.
"V Escape next character. Editing characters, the user's

erase or kill characters may be entered in a command
line or in a search string if preceded bya "V. The "V
removes the next character's editing features (if any).

\ Escape the next erase or kill character.

March 19, 1990 KSH-23

KSH(C) KSH (C)

Motion Edit Commands

These commands will move the cursor.
[count]l
[count]w
[count]W

[count]e
[count]E
[count]h
[count]b
[count]B
[count] I
[count]fc
[count]Fc
[count]tc
[count]Tc
[count];

[count],

o

$

Cursor forward (right) one character.
Cursor forward one alpha-numeric word.
Cursor to the beginning of the next word that follows a
blank.
Cursor to end of word.
Cursor to end of the current blank delimited word.
Cursor backward (left) one character.
Cursor backward one word.
Cursor to preceding blank separated word.
Cursor to column count.
Find the next character c in the current line.
Find the previous character c in the current line.
Equivalent to f followed by h.
Equivalent to F followed by l.
Repeats count times, the last single character find
command, f, F, t, or T.
Reverses the last single character find command count
times.
Cursor to start of line.
Cursor to first non-blank character in line.
Cursor to end of line.

Search Edit Commands

These commands access your command history.
[count]k Fetch previous command. Each time k is entered the

[count]­
[count]j

previous command back in time is accessed.
Equivalent to k.
Fetch next command. Each time j is entered the next
command forward in time is accessed.

[count] + Equivalent to j.
[count]G The command number count is fetched. The default is

/string

?string

n

N

March 19, 1990

the least recent history command.
Search backward through history for a previous com­
mand containing string. String is terminated by a
"RETURN" or "NEW LINE", If string is preceded by
a ", the matched line must begin with string. If string
is null the previous string will be used.
Same as / except that search will be in the forward
direction.
Search for next match of the last pattern to / or ? com­
mands.
Search for next match of the last pattern to / or ?, but
in reverse direction. Search history for the string
entered by the previous / command.

KSH-24

KSH (C) KSH (C)

Text Modification Edit Commands

These commands will modify the line.
a Enter input mode and enter text after the current char-

acter.
A Append text to the end of the line. Equivalent to $a.
[count]cmotion
c[count]motion

c
S
D

Delete current character through the character that
motion would move the cursor to and .enter input
mode. If motion is c, the entire line will be deleted
and input mode entered.
Delete the current character through the end of line
and enter input mode. Equivalent to c$.
Equivalent to cc.
Delete the current character through the end of line.
Equivalent to d$.

[count]dmotion
d[count]motion

I

Delete current character through the character that
motion would move to. If motion is d , the entire line
will be deleted.
Enter input mode and insert text before the current
character.
Insert text before the beginning of the line. Equivalent
to Oi.

[count]P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R Enter input mode and replace characters on the screen

with characters you type overlay fashion.
[count]rc Replace the count character(s) starting at the current

[count]x
[count]X
[count].
[count]-

cursor position with c, and advance the cursor.
Delete current character.
Delete preceding character.
Repeat the previous text modification command.
Invert the case of the count character(s) starting at the
current cursor position and advance the cursor.

[count]_ Causes the count word of the previous command to be
appended and input mode entered. The last word is

*

\

March 19, 1990

used if count is omitted.
Causes an * to be appended to the current word and
file name generation attempted. If no match is found,
it rings the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.
Filename completion. Replaces the current word with
the longest common prefix of all filenames matching
the current word with an asterisk appended. If the
match is unique, a / is appended if the file is a direc­
tory and a space is appended if the file is not a direc­
tory.

KSH-25

KSH (C)

Other Edit Commands

Miscellaneous commands.
[count]ymotion
y[count]motion

KSH(C)

Yank current character through character that motion
would move the cursor to and puts them into the delete
buffer. The text and cursor are unchanged.

Y Yanks from current position to end of line. Equivalent
to y$.

u Undo the last text modifying.command.
U Undo all the text modifying commands performed on

the line.
[count]v Returns the command fc -e

${VISUAL:-${EDITOR:-vi}} count in the input buffer.
If count is omitted, then the current line is used.

"L Line feed and print current line. Has effect only in
control mode.

"J (New line) Execute the current line, regardless of
mode.

AM (Return) Execute the current line, regardless of mode.
Sends the line after inserting a # in front of the line.

Useful for causing the current line to be inserted in the
history without being executed.

= List the file names that match the current word if an
asterisk were appended it.

@letter Your alias list is searched for an alias by the name
letter and if an alias of this name is defined, its value

will be inserted on the input queue for processing.

Special Commands.

The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. Unless otherwise indicated, the
output is written on file descriptor 1 and the exit status, when there is
no syntax error, is zero. Commands that are preceded by one or two t
are treated specially in the following ways:
1. Parameter assignment lists preceding the command remain in

effect when the command completes.
2. I/O redirections are processed after parameter assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by tt that are in the format

of a parameter assignment, are expanded with the same rules as a
parameter assignment. This means that tilde substitution is per­
formed after the = sign and word splitting and file name generation
are not performed.

March 19, 1990 KSH-26

KSH (C) KSH (C)

t: [arg ...]
The command only expands parameters.

t .file [arg •••]
Read the complete file then execute the commands. The com­
mands are executed in the current Shell environment. The search
path specified by PATH is used to find the directory containing file.
If any arguments arg are given, they become the positional param­
eters. Otherwise the positional parameters are unchanged. The
exit status is the exit status of the last command executed.

tt alias [-tx] [name[=value]] ...
Alias with no arguments prints the list of aliases in the fonn
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The -t flag is used to set
and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the aliases remained
tracked. Without the -t flag, for each name in the argument list for
which no value is given, the name and value of the alias is printed.
The -x flag is used to set or print exported aliases. Anexported
alias is defined for scripts invoked by name. The exit status is
non-zero if a name is given, but no value, for which no alias has
been defined.

bg [job ...]
This command is only on systems that support job control. Puts
each speci fied job into the background. The current job is put in
the background if job is not specified. See Jobs for a description
of the format of job.

t break [n]
Exit from the enclosing for while until or select loop, if any. If n
is specified then break n levels.

t continue [n]
Resume the next iteration of the enclosing for while until or
select loop. If n is specified then resume at the n-th enclosing
loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first fonn it
changes the current directory to arg. If arg is _. the directory is
changed to the previous directory. The shell parameter HOME is
the default arg. The parameter PWD is set to the current directory.
The shell parameter CDPATH defines the search path for the direc­
tory containing arg. Alternative directory names are separated by
a colon (:). The default path is <null> (specifying the current
directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or

March 19, 1990 KSH-27

KSH (C) KSH (C)

between the colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used. Otherwise, each
directory in the path is searched for arg.
The second form of cd substitutes the string new for the string old
in the current directory name, PWD and tries to change to this new
directory.
The cd command may not be executed by rksh.

echo [arg ...]
See echo (C) for usage and description.

t eval [arg . ..]
The arguments are read as input to the shell and the resulting
command(s) executed.

t exec [arg ...]
If arg is given, the command specified by the arguments is exe­
cuted in place of this shell without creating a new process.
Input/output arguments may appear and affect the current process.
If no arguments are given the effect of this command is to modify
file descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

t exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed.
An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

tt export [name[=value]] ...
The given name s are marked for automatic export to the environ­
ment of subsequently-executed commands.

fc [-e ename] [-nlr] [first [last]]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands that were typed at the terminal.
The arguments first and last may be specified as a number or as a
string. A string is used to locate the most recent command starting
with the given string. A negative number is used as an offset to the
current command number. If the flag -I, is selected, the commands
are listed on standard output. Otherwise, the editor program
ename is invoked on a file containing these keyboard commands.
If ename is not supplied, then the value of the parameter FCEDIT
(default /bin/ed) is used as the editor. When editing is complete,
the edited command(s) is executed. If last is not specified then it
will be set to first. If,first is not specified the default is the previ­
ous command for editing and -16 for listing. The flag -r reverses
the order of the commands and the flag -n suppresses command
numbers when listing. In the second form the command is re­
executed after the substitution old=new is performed.

March 19, 1990 KSH-28

KSH (C) KSH (C)

fg [job ...]
This command is only on systems that support job control. Each
job specified is brought to the foreground. Otherwise, the current
job is brought into the foreground. See Jobs for a description of
the format of job.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional
parameters are used. An option argument begins with a + or a -.
An option not beginning with + or - or the argument - - ends the
options. optstring contains the letters that getopts recognizes. If a
letter is followed by a :, that option is expected to have an argu­
ment. The options can be separated from the argument by blanks.
getopts places the next option letter it finds inside variable name
each time it is invoked with a + prepended when arg begins with a
+. The index of the next arg is stored in OPTIND. The option
argument, if any, gets stored in OPTARG.
A leading : in optstring causes getopts to store the letter of an
invalid option in OPTARG, and to set name to ? for an unknown
option and to : when a required option is missing. Otherwise,
getopts prints an error message. The exit status is non-zero when
there are no more options.

jobs [-Inp] [job ... 1
Lists information about each given job; or all active jobs if job is
omitted. The -I flag lists process ids in addition to the normal in­
formation. The -n flag only displays jobs that have stopped or
exited since last notified. The -p flag causes only the process
group to be listed. See Jobs for a description of the format of job.

kill [-sig] job ...
kill -I

Sends either the TERM (terminate) signal or the specified signal to
the specified jobs or processes. Signals are either given by number
or by names (as given in lusr/include/signal.h, stripped of the
prefix "SIG"). If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (con­
tinue) signal if it is stopped. The argument job can the process id
of a process that is not a member of one of the active jobs. See
Jobs for a description of the format of job. In the second form, kill
-I, the signal numbers and names are listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See
Arithmetic Evaluation above, for a description of arithmetic
expression evaluation.
The exit status is 0 if the value of the last expression is non-zero,
and 1 otherwise.

t newgrp [arg ...]
Equivalent to exec Ibin/newgrp arg

March 19, 1990 KSH-29

KSH (C) KSH (C)

print [-Rnprsu [n]] [arg ...]
The shell output mechanism. With no flags or with flag - or - - the
arguments are printed on standard output as described by echo (C).
In raw mode, -R or -r, the escape conventions of echo are ignored.
The -R option will print all subsequent arguments and options
other than -n. The -p option causes the ar~uments to be written
onto the pipe of the process spawned with I & instead of standard
output. The -s option causes the arguments to be written onto the
history file instead of standard output. The -u flag can be used to
specify a one digit file descriptor unit number n on which the out­
put will be placed. The default is 1. If the flag -n is used, no new­
line is added to the output.

pwd
Equivalent to print -r - $PWD

read [-prsu [n]] [name?prompt] [name ...]
The shell input mechanism. One line is read and is broken up into
fields using the characters in IFS as separators. In raw mode, -r, a \
at the end of a line does not signify line continuation. The first
field is assigned to the first name, the second field to the second
name, etc., with leftover fields assigned to the last name. The-p
option causes the input line to be taken from the input pipe of a
process spawned by the shell using I &. If the -s flag is present, the
input will be saved as a command in the history file. The flag -u
can be used to specify a one digit file descriptor unit to read from.
The file descriptor can be opened with the exec special command.
The default value of n is O. If name is omitted then REPLY is used
as the default name. The exit status is 0 unless an end-of-file is
encountered. An end-of-file with the -p option causes cleanup for
this process so that another can be spawned. If the first argument
contains a ?, the remainder of this word is used as a prompt on
standard error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered.

tt readonly [name[=value]] ...
The given names are marked readonly and these names cannot be
changed by subsequent assignment.

t return [n]
Causes a shell function to return to the invoking script with the
return status speci fied by n. If n is omitted then the return status is
that of the last command executed. If return is invoked while not
in afunction or a . script, then it is the same as an exit.

set [±aefbkmnopstuvx] [±o option] ... [±A name] [arg ...]
The flags for this command have meaning as follows:
-A Array assignment. Unset the variable name and assign

values sequentially from the list arg. If +A is used, the
variable name is not unset first.

March 19, 1990 KSH-30

KSH (C)

-a

-e

-f
-h

-k

-m

-n

-0

March 19, 1990

KSH (C)

All subsequent parameters that are defined are automati­
cally exported.
If a command has a non-zero exit status, execute the
ERR trap, if set, and exit. This mode is disabled while
reading profiles.
Disables file name generation.
Each command becomes a tracked alias when first
encountered.
All parameter assignment arguments are placed in the
environment for a command, not just those that precede
the command name.
Background jobs will run in a separate process group and
a line will print upon completion. The exit status of
background jobs is reported in a completion message.
On systems with job control, this flag is turned on auto­
matically for interactive shells.
Read commands and check them for syntax errors, but do
not execute them. Ignored for interactive shells.
The following argument can be one of the following
option names:
all export Same as -a.
errexit Same as -e.
bgnice All background jobs are run at a lower prior-

emacs

gmacs

ity. This is the default mode. ,
Puts you in an emacs style in-line editor for
command entry.
Puts you in a gmacs style in-line editor for
command entry.

ignoreeof The shell will not exit on end-of-file. The
command exit must be used.

keyword Same as -k. .
markdirs All directory names resulting from file name

generation have a trailing / appended.
monitor Same as -m.
noclobber Prevents redirection> from truncating exist­

ing files. Require > I to truncate a file when
turned on.

noexec
noglob
nolog

nounset
privileged
verbose
trackall
vi

Same as -n.
Same as -f.
Do not save function definitions in history
file.
Same as -u.
Same as -p.
Same as -v.
Same as -h.
Puts you in insert mode of a vi style in-line
editor until you hit escape character 033.
This puts you in move mode. A return sends
the line.

KSH-31

KSH (C)

-p

-s
-t
-u
-v
-x

KSH(C)

viraw Each character is processed as it is typed in
vi mode.

xtrace Same as -x.
If no option name is supplied then the current option set­
tings are printed.
Disables processing of the $HOME/.profile file and uses
the file letc/suid profile instead of the ENV file. This
mode is on whenever the effective uid (gid) is not equal
to the real uid (gid). Turning this off causes the effective
uid and gid to be set to the real uid and gid.
Sort the positional parameters lexicographically.
Exit after reading and executing one command.
Treat unset parameters as an error when substituting.
Print shell input lines as they are read.
Print commands and their arguments as they are exe­
cuted.
Turns off -x and -v flags and stops examining arguments
for flags.
Do not change any of the flags; useful in setting $1 to a
value beginning with -. If no arguments follow this flag
then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. Unless -A is specified, the remaining
arguments are positional parameters and are assigned, in order, to
$1 $2 If no arguments are given then the names and values of
all named parameters are printed on the standard output. If the
only argument is +, the names of all named parameters are printed.

t shift [n]
The positional parameters from $n+ 1 ... are renamed $1 ... ,
default n is 1. The parameter n can be any arithmetic expression
that evaluates to a non-negative number less than or equal to $#.

t times
Print the accumulated user and system times for the shell and for
processes run from the shell.

t trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Each sig can be given as a num­
ber or as the name of the signal. Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. If arg is
omitted or is -, then all trap(s) sig are reset to their original values.
If arg is the null string then this signal is ignored by the shell and
by the commands it invokes. If sig is ERR then arg will be exe­
cuted whenever a command has a non-zero exit status. sig is
DEBUG then arg will be executed after each command. If sig is 0
or EXIT and the trap statement is executed inside the body of a

March 19, 1990 KSH-32

KSH(C) KSH (C)

function t then the command arg is executed after the function
completes. If sig is 0 or EXIT for a trap set outside any function
then the command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands associated
with each signal number.

tt typeset [±HLRZfilrtux [n]] [name[=value]] ...
Sets attributes and values for shell parameters. When invoked
inside a function, a new instance of the parameter name is created.
The parameter value and type are restored when the function com­
pletes. The following list of attributes may be specified:
-H This flag provides UNIX system to host-name file mapping on

non-UNIX system machines.
-L Left justify and remove leading blanks from value. If n is non­

zero it defines the width of the field t otherwise it is determined
by the width of the value of first assignment. When the param­
eter is assigned tOt it is filled on the right with blanks or trun­
catedt if necessary t to fit into the field. Leading zeros are
removed if the -Z flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it
defines the width of the field, otherwise it is determined by the
width of the value of first assignment. The field is left filled
with blanks or truncated from the end if the parameter is reas­
signed. The L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If n is non­
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment.

-f The names refer to function names rather than parameter
names. No assignments can be made and the only other valid
flags are -t, -u and -x. The flag -t turns on execution tracing for
this function. The flag -u causes this function to be marked
undefined. The FPATH variable will be searched to find the
function definition when the function is referenced. The flag -x
allows the function definition to remain in effect across shell
procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is
non-zero it defines the output arithmetic baset otherwise the
first assignment determines the output base.

-I All upper-case characters converted to lower-case; The upper­
case flag t -u is turned off.

-r The given names are marked readonly and these names cannot
be changed by subsequent assignment.

-t Tags the named parameters: Tags are user definable .and have
no special meaning to the shell.

-u All lower-case characters are converted to upper-case charac­
ters. The lower-case flag, -I is turned off.

-x The given name s are marked for automatic export to the
environment of subsequently-executed commands.

March 19, 1990 KSH-33

KSH(C) KSH (C)

Using + rather than - causes these flags to be turned off. If no
name arguments are given but flags are specified, a list of names
(and optionally the values) of the parameters which have these
flags set is printed. (Using + rather than - keeps the values from
being printed.) If no name s and flags are given, the names and -
attributes of all parameters are printed.

uUmit [-HS] [limit]
The number of 512-byte blocks on files written by child processes
(files of any size may be read). The limit is set when limit is
specifed. The value of limit can be a number or the value unlim­
ited. The Hand S flags specify whether the hard limit or the soft
limit is set. A hard limit cannot be increased once it is set. A soft
limit can be increased up to the value of the hard limit. If neither
the H or S options is speci fied, the limit applies to both. The
current limit is printed when limit is omitted. In this case the soft
limit is printed unless H is speci fied.

umask [mask]
The user file-creation mask is set to mask (see umask(C». mask
can either be an octal number or a symbolic value as described in
chmod(C). If a symbolic value is given, the new umask value is
the complement of the result of applying mask to the complement
of the previous umask value. If mask is omitted, the current value
of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the
alias list.

unset [-f] name ...
The parameters given by the list of names are unassigned, i. e.,
their values and attributes are erased. Readonly variables cannot
be unset. If the flag, -f, is set, then the names refer to junction
names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT, and causes removes
their special meaning even if they are subsequently assigned to.

t wait [job]
Wait for the speci fled job and report its termination status. If job is
not given then all currently active child processes are waited for.
The exit status from this command is that of the process waited for.
See Jobs for a descri pti on of the format of job.

whence [-pv] name ...
For each name, indicate how it would be interpreted if used as a
command name.
The flag, -v, produces a more verbose report.
The flag, -p, does a path search for name even if name is an alias, a
function, or a reserved word.

March 19, 1990 KSH-34

KSH (C) KSH(C)

Invocation.

If the shell is invoked by exec (S), and the first character of argument
zero ($0) is -, then the shell is assumed to be a login shell and com­
mands are read from letc/profile and then from either .profile in the
current directory or $HOME/.profile, if either file exists. Next, com­
mands are read from the file named by performing parameter substitu­
tion on the value of the environment parameter ENV if the file exists.
If the -s flag is not present. and arg is, then a path search is performed
on the first arg to determine the name of the script to execute. The
script arg must have read permission and any setuid and getgid set­
tings will be ignored. Commands are then read as described below;
the following flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from
string.

-s

-i

-r

If the -s flag is present or if no arguments remain then
commands are read from the standard input. Shell output,
except for the output of the Special commands listed
above, is written to file descriptor 2.
If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctl (S» then this shell
is interactive. In this case TERM is ignored (so that kill 0
does not kill an interactive shell) and INTR is caught and
ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.
If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set com­
mand above.

rksh Only.

rksh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rksh are identical to those of ksh, except that the following
are disallowed:

changing directory (see cd(C»,
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing I,
redirecting output (>, >1 , <> , and »).

The restrictions above are enforced after .profile and the ENV files are
interpreted.

When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end­
user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and execute permissions
in the same directory.

March 19, 1990 KSH ... 35

KSH(C) KSH (C)

The net effect of these rules is that the writer of the .profile has com­
plete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

The system administrator often sets up a directory of commands (i.e.,
/usr/rhin) that can be safely invoked by rksh. Some systems also pro­
vide a restricted editor red.

Diagnostics

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command
above). If the shell is being used non-interactively then execution of
the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error con­
dition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after
the command or function name.

Files

/etc/passwd
/etc/profiIe
/etc/ suid_pro file
$HOME/. profile
/tmp/sh*
/dev/null

See Also

cat(C), cd(C), chmod(C), cut(C), echo(C), env(C), newgrp(C), stty(C),
test(C), umask(C), vi(C), dup(S), exec(S), fork(S), ioctl(S), Iseek(S),
paste(C), pipe(S), signal(S), umask(S), ulimit(S), wait(S), rand(S),
a.out(F), profile(M), environ(M).

Notes

If a command which is a tracked alias is executed, and then a com­
mand with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell
will continue to exec the original command. Use the ·t option of the
alias command to correct this situation.

March 19, 1990 KSH-36

KSH (C) KSH (C)

Some very old shell scripts contain a A as a synonym for the pipe char­
acter. I.

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command .file reads the whole file before any commands
are executed. Therefore, alias and unalias commands in the file will
not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foregrpund pro­
cess. Thus, a trap on CHLD won't be executed until the forground job
terminates.

March 19, 1990 KSH-37

L(C) L(C)

lists information about contents of directory

Syntax

I [-ACFRabcdfgilnopqrstu] name ...

Description

For each directory argument, 1 lists the contents of the directory. For
each name, 1 repeats its name and other requested information. The
output is sorted alphabetically by default. When no argument is
given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments
appear before directories and their contents. Information is listed in
the format of the "Is -1" command. which is identical to the 1 com­
mand. This format and all provided switches are described in Is(C)
and ic(C), to which should you should refer for a complete discussion
of the capabilities of I.

Files

/etc/passwd

/etc/group

Notes

Contains user IDs

Contains group IDs

Newline and tab are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

March 15, 1989 L-1

LAST (C)

last
indicate last logins of users and teletypes

Syntax

last [·h] [-D limit] [·t tty] [-w wtmpfile] [name]

Description

LAST (C)

last checks the wtmp file, which records all logins and logouts for in­
formation about a user, a serial line or any group of users and lines.
Arguments specify a user name and/or tty.

last -t 01 root

would list all "root" sessions as well as all sessions on /dev/ttyOl.
last prints the sessions of the specified users and ttys, including login
name, the line used, the device name, the process 10, plus start time
and elapsed time.

last with no arguments prints a record of all logins and logouts, in
reverse chronological order.

The options behave as follows:

-h no header.

-D limit
limits the report to n lines.

-t line
speci ties the tty.

-wwtmpfile
uses wtmpfile instead of /etc/wtmp.

Files

/etc/wtmp login data base

See Also

tinger(C), utmp(M), accton(AOM), acctcom(AOM), acct(F)

March 15, 1989 LAST-1

LAYERS (C) LAYERS (C)

layers
layer multiplexer for windowing terminals

Syntax

layers [-s] [-t] [-d] [-p] [-f file] [layersys-prgm]

Description

The layers command manages asynchronous windows [see layers(M)]
on a windowing terminal. Upon invocation, layers finds an unused
xt(HW) channel group and associates it with the terminal line on its
standard output. It then waits for commands from the terminal.

Command-line options:

-s Reports protocol statistics on standard error at the end of the
session after you exit from layers. The statistics may be
printed during a session by invoking the program xts(ADM).

-t Turns on xt(HW) driver packet tracing, and produces a trace
dump on standard error at the end of the session after you
exit from layers. The trace dump may be printed during a
session by invoking the program xtt(ADM).

-d If a firmware patch has been downloaded, prints out the
sizes of the text, data, and bss portions of the firmware patch
on standard error.

-p lf a firmware patch has been downloaded, prints the down­
loading protocol statistics and a trace on standard error.

-ffile Starts layers with an initial configuration specified by file.
Each line of the file represents a layer to be created, and has
the following format:

The coordinates specify the size and position of the layer on
the screen in the terminal's coordinate system. If all four are
0, the user must define the layer interactively.
command _list, a list of one or more commands, must be pro­
vided. It is executed in the new layer using the user's shell
(by executing: $SHELL -i -c "command_list"). This means
that the last command should invoke a shell, such as Ibin/sh.
(If the last command is not a shell, then, when the last com­
mand has completed, the layer will not be functional.)

March 15, 1989 LAYERS-1

LAYERS (C) LAYERS (C)

layersys-prgm
A file containing a firmware patch that the layers command
downloads to the terminal before layers are created and
command list is executed.

Each layer is in most ways functionally identical to a separate termi­
nal. Characters typed on the keyboard are sent to the standard input of
the UNIX system process attached to the current layer (called the host
process), and characters written on the standard output by the host pro­
cess appear in that layer. When a layer is created, a separate shell is
established and bound to the layer. If the environment variable
SHELL is set, the user will get that shell, otherwise, Ibin/sb will be
used. In order to enable communications with other users via
write(C), layers invokes the command relogin(ADM) when the first
layer is created. relogin(ADM) will reassign that layer as the user's
logged-in terminal. An alternative layer can be designated by using
relogin(ADM) directly. layers will restore the original assignment on
tennination.

Layers are created, deleted, reshaped, and otherwise manipulated in a
tenninal-dependent manner. For instance, the AT&T TELE­
TYPE 5620 DMD terminal provides a mouse-activated pop-up menu
of layer operations. The method of ending a layers session is also
defined by the terminal.

Example

layers -f startup

where startup contains

Notes

8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec $SHELL

The xt(HW) driver supports an alternate data transmission scheme
known as ENCODING MODE. This mode makes layers operation pos­
sible even over data links which intercept control characters or do not
transmit 8-bit characters. ENCODING MODE is selected either by set­
ting a configuration option on your windowing terminal or by setting
the environment variable DMDLOAD to the value hex before running
layers:

export DMDLOAD; DMDLOAD=hex

If, after executing layers -f file, the terminal does not respond in one
or more of the layers, often the last command in the command-list for
that layer did not invoke a shell.

March 15, 1989 LAYERS-2

LAYERS (C) LAYERS (C)

When invoking layers with the -s, -t, -d, or -p options, it is best to
redirect standard error to another file to save the statistics and tracing
output (e.g., layers -s 2>stats); otherwise all or some of the output
may be lost.

Files

/dev /xt??[O-7]
/usr/lib/layersys/lsys.8;7 ;3
/usr/lib/layersys/lsys.8;?;?

See Also

relogin(ADM), sh(C), write(C), wtinit(ADM), xts(ADM), xtt(ADM),
xt(HW), libwindows(S), layers(M)

March 15, 1989 LAYERS-3

LC (C) LC (C)

Ie
lists directory contents in columns

Syntax

Ie [-IACFRabcdfgilmnopqrstux] name ...

Description

Ie lists the contents of files and directories, in columns. If name is a
directory name, Ie lists the contents of the directory; if name is a
filename, Ie repeats the filename and any other information requested.
Output is given in columns and sorted alphabetically. If no argument
is given, the current directory is listed. If several arguments are given,
they are sorted alphabetically, but file arguments appear before direc­
tories.

Files that are not the contents of a directory being interpreted are
always sorted across the page rather than down the page in columns.
A stream output format is available in which files are listed across the
page, separated by commas. The -m option enables this format.

The options are:

-1 Forces an output format with one entry per line.

-A If not the root directory, this option displays all files that begin
with ". " (except "." and " .. " themselves). Otherwise, files are
displayed normally.

-C Forces columnar output, even if redirected to a file.

-F Causes directories to be marked with a trailing "I" and executable
files to be marked with a trailing "*".

-R Recursively lists subdirectories.

-a Lists all entries; "." and" .. " are not suppressed.

-b Forces printing of nongraphic characters in the 'ddd notation, in
octal.

-c Sorts by time of file creation, for use with -t option.

-d If the argument is a directory, lists only its name, not its contents
(mostly used with ·1 to get status on directory).

March 15, 1989 LC-1

LC (C) LC (C)

-f Forces each argument to be interpreted as a directory and lists the
name found in each slot. This option turns off -I, -t, -s, and -r, and
turns on -a. The order is the order in which entries appear in the
directory.

-g The same as -I, except that the owner is not printed.

-i Prints inode number in first column of the report for each file
listed.

-I Lists in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. If the file
is a special file, the size field contains the major and minor device
numbers instead.

-m
Forces stream output format.

-n Same as the -I switch, but the owner's user ID appears instead of
the owner's name. If used in conjunction with the -g switch, the
owner's group ID appears instead of the group name.

-0 The same as -I, except that the group is not printed.

-p Pad output with spaces.

-q Forces printing of nongraphic characters in filenames as the char­
acter "?".

-r Reverses the order of sort to get reverse alphabetic or oldest first as
appropriate.

-s Gives size in 512-byte blocks, including indirect blocks for each
entry.

-t Sorts by time modified (latest first) instead of by name, as is nor­
mal.

-u Uses time of last access instead of last modification for sorting (-t)
or printing (-I).

-x Forces columnar printing to be sorted across rather than down the
page.

The following are alternate invocations of the Ie command:

If Produces the same output as Ie -F.

Ir Produces the same output as Ie -R.

March 15, 1 989 LC-2

LC (C) LC (C)

Ix Produces the same output as Ie -x.

The mode printed under the -I option contains 11 characters. The first
character is:

If the entry is a plain file

d If the entry is a directory

b If the entry is a block-type special file

c If the entry is a character-type special file

p If the entry is a named pipe

s If the entry is a semaphore

m If the entry is shared data (memory)

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to owner permissions; the next to permissions of others in
the same user-group; and the last to all others. Within each set, the 3
characters indicate permission to read, to write, or to execute the file
as a program, respectively. For a directory, "execute" permission is
interpreted to mean permission to search the directory for a specified
file. The permissions are indicated as follows:

r If the file is readable

w If the file is writable

x If the file is executable

If the indicated permission is not granted

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission character is
given as s if the file has set-user-ID mode.

The last character of the mode (normally "x" or "_") is t if the 1000
bit of the mode is on. See chmod(C) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of
blocks, including indirect blocks, is displayed.

March 15, 1989 LC-3

LC (C)

Files

/etc/passwd

/etc/group

Credit

LC (C)

To get user IDs for "lc -0"

To get group IDs for "lc -g"

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Newline and tab are considered printing characters in filenames. The
output device is assumed to be 80 columns wide. Column width
choices are poor for terminals that can tab.

This utility reports sizes in 512 byte blocks. Ie -s will report 2 blocks
used, rather than 1 block, since the file uses one system block of 1024
bytes.

March 15, 1989 LC-4

LINE (C) LINE (C)

line
reads one line

Syntax

line

Description

line copies one line (up to a newline) from the standard input and
writes it on the standard output. It returns an exit code of 1 on end­
of-file and always prints at least a newline. It is often used within
shell files to read from ,the user's terminal.

See Also

gets(CP), sh(C)

Standards Conformance

line is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 L1NE-1

LN (C) LN (C)

In
makes a link to a file

Syntax

In [.f] filel [file2 ...] target

Description

A link is a directory entry referring to a file. The same file (together
with its size, all its protection information, etc) may have several links
to it. There is no way to distinguish a link to a file from its original
directory entry. Any changes to the file are effective independent of
the name by which the file is known.

If target is a directory, then one or more files are linked to that direc­
tory.

If In determines that the mode of target forbids writing, it will print
the mode [see chmod(C)], ask for a response, and read the standard
input for one line. If the line begins with y, the In occurs, if permissi­
ble; if not, the command exits.

When the ·f option is used or if the standard input is not a terminal, no
questions are asked and the In is done.

See Also

cp(C), mv(C), rm(C)

Standards Conformance

In is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15. 1989 LN-1

LOCK (C) LOCK (C)

lock
locks a user's terminal

Syntax

lock [-v] [-number]

Description

lock requests a password from the user, requests it again for verifica­
tion, then locks the terminal until the password is reentered. If a
-number is specified in the lock command, the terminal is automati­
cally logged out and made available to another user after that number
of minutes has passed.

This command uses the file /etc/deJaultliock. This file has two entries:

DEFLOGOUT

MAXLOGOUT

number
number

DEFLOGOUT specifies the default time in minutes a terminal will
remain locked before the user is logged out. This default value is
overridden if the -number option is used on the command line. If
DEFLOGOUT and -number are not specified, the MAXLOGOUT
value is used.

MAXLOGOUT is the maximum number of minutes a user is permit­
ted to lock a terminal. If a user attempts to lock a terminal for longer
than this time, lock will issue a warning to the user that it is using the
system maximum time limit. If DEFLOGOUT and -number and
MAXLOGOUT are not specified, users are not logged out.

DEFLOGOUT and MAXLOGOUT are configured by the system
administrator to reflect the demand for terminals at the site.

The lock may be terminated by killing the lock process. Only the
superuser and the user who invoked lock may do so.

Options

-number Sets the time limit for lock to number of minutes, instead
of the system default.

March 15, 1989 LOCK-1

LOCK (C) LOCK (C)

-v Specifies verbose operation.

Files

letc/defaultllock

Notes

The file letcldefaultllock is shipped with the following default values:

DEFLOGOUT 30
MAXLOGOUT 60

March 15, 1989 LOCK-2

LOGNAME (C)

logname
gets login name

Syntax

logname

Description

LOGNAME (C)

log name returns the user's login name as found in letc!utmp. If no log­
in name is found, logname returns the user's user ID number.

See Also

env(C), id(C), getlogin(S), getuid(S), login(M), logname(S)

Standards Conformance

logname is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 LOGNAME-1

LP (C)

Ip, cancel
send/cancel requests to lineprinter

Syntax

Ip [options]files

Ip -i id printing options

cancel [ids] [printers]

Description

LP (C)

The first form of the lp shell command arranges for the named files
and associated information (collecti vel y called a request) to be
printed. If no file names are specified on the shell command line, the
standard input is assumed. The standard input may be specified along
with named files on the shell command line using the file name. The
files will be printed in the order they appear on the shell command
line.

The second form of lp is used to change the options for a request. The
print request identified by the request-id is changed according to the
printing options specified with this shell command. The printing
options available are the same as those with the first form of the lp
shell command. If request -id has finished printing, the change is
rejected. If the request -id is already printing, it will be stopped and
restarted from the beginning, unless the -P option has been given.

lp associates a unique id with each request and prints it on the stan­
dard output. This id can be used later to cancel, change, or find the
status of the request. (See the section on cancel for details about can­
celing a request, the previous paragraph for an explanation of how to
change a request, and Ipstat(C) for information about checking the
status of a print request.)

Sending a Print Request

The first form of the lp command is used to send a print request to a
particular printer or group of printers.

Options to lp must always precede file names but may be listed in any
order. The following options are available for lp:

-c When lp is invoked, copies of the files to be printed are
made immediately. Normally, files will not be copied. If
the -c option is not given, then the user should be careful not
to remove any of the files before the request has been printed

March 15. 1989 LP-1

LP (C) LP (C)

in its entirety. It should also be noted that in the absence of
the -c option, any changes made to the named files after the
request is made but before it is printed will be reflected in
the printed output.

-d dest Prints this request using dest as the printer or class of
printers. Under certain conditions (lack of printer availabil­
ity, capabilities of printers, and so on), requests for specific
destinations may not be accepted [see accept (ADM) and
Ipstat(C)]. By default, dest is taken from the environment
variable LPDEST (if it is set). Otherwise, a default destina­
tion (if one exists) for the computer system is used. Destina­
tion names vary between systems [see Ipstat(C)].

-f form-name [-d any]
Prints the request on the formform-name. The LP print ser­
vice ensures that the form is mounted on the printer. If
form-name is requested with a printer destination that can­
not support the form, the request is rejected. If form-name
has not been defined for the system or if the user is not
allowed to use the form, the request is rejected [see
Ipforms(ADM)]. When the -d any option is given, the
request is printed on any printer that has the requested form
mounted and can handle all other needs of the print request.

-H special-handling
Prints the request according to the value of special-handling.
Acceptable values for special-handling are hold, resume,
and immediate, as defined below:

hold Won't print the request until notified. If already
printing, stops it. Other print requests will go
ahead of a held request until it is resumed.

resume Resumes a held request. If it had been printing
when held, it will be the next request printed,
unless subsequently bumped by an immediate
request.

immediate
(Available only to LP administrators)
Prints the request next. If more than one request is
assigned immedJate, the requests are printed in
the reverse order queued. If a request is currently
printing on the desired printer, you have to put it
on hold to allow the immediate request to print.

-m Sends mail [see mail(C)] after the files have been printed.
By default, no mail is sent upon normal completion of the
print request.

March 15, 1989 LP-2

LP (C) LP (C)

-n number
Prints number copies of the output (default is 1).

-0 option Specifies printer-dependent or class-dependent options .
Several such options may be collected by specifying the -0
keyletter more than once. The standard interface recognizes
the following options:

nobanner
Does not print a banner page with this request. (The
administrator can disallow this option at any time.)

nofilebreak
Does not insert a form feed between the files given if
submitting a job to print more than one file.

length=scaled-decimal-number
Prints the output of this request with pages scaled­
decimal-number lines long. A scaled-decimal-num­
ber is an optionally scaled decimal number that gives
a size in lines, columns, inches, or centimeters, as ap­
propriate. The scale is indicated by appending the
letter "i" (for inches) or the letter "c" (for centime­
ters). For length or width settings, an unsealed num­
ber indicates lines or columns; for line pitch or char­
acter pitch settings, an unsealed number indicates
lines per inch or characters per inch (the same as a
number scaled with "i"). For example, length=66
indicates a page length of 66 lines, length=lli indi­
cates a page length of 11 inches, and length=27.94c
indicates a page length of 27.94 centimeters.
This option cannot be used with the -f option.

width=scaled-decimal-number
Prints the output of this request with page-width set
to scaled-decimal-number columns wide. (See the
explanation above for scaled-decimal-numbers.)
This option cannot be used with the -f option.

Ipi=scaled-decimal-number
Prints this request for "lines per inch" with the line
pitch set to scaled-decimal-number lines per inch.
This option cannot be used with the -f option.

cpi=scaled-decimal-number

March 15, 1989

Prints this request for "characters per inch" with the
character pitch set to scaled-decima/~number charac­
ters per inch. Character pitch can also be set to pica
(representing 10 columns per inch) or elite
(representing 12 columns per inch), or it can be
compressed, which is as many columns as a printer
can handle. There is no standard number of columns

LP-3

LP (C) LP (C)

per inch for all printers; see the terminfo(F) database
for the default character pitch for your printer. The
cpi option cannot be used in conjunction with the -f
option.

stty=stty-option-list
Set the printer with a list of options valid for the 8tty
command. Enclose the list with quotes if it contains
blanks.

-p page-list
Prints the page(s) specified in page-list. This option can be
used only if there is a filter available to handle it; otherwise,
the print request will be rejected.

The page-list may consist of range(s) of numbers, single
page numbers, or a combination of both. The pages will be
printed in ascending order.

-q priority-level
Assigns this request priority-level in the printing queue.
The values of priority-level range from 0, the highest prior­
ity, to 39, the lowest priority. If a priority is not specified,
the default for the print service is used, as assigned by the
system administrator.

-8 Suppresses messages from Ip(C) such as "request id is ... ".

-S character-set [-d any]

-S print-wheel [-d any]
Prints this request using the specified character-set or print­
wheel. If a form has been specified that requires a
character-set or print-wheel other than the one specified
with the -S option, the request is rejected.

For printers that take print wheels: if the print-wheel
specified is not one listed by the administrator as acceptable
for the printer involved in this request, the request is
rejected unless the print wheel is already mounted on the
printer. For printers that use selectable or programmable
character sets: if the character-set specified is not one
defined in the terminfo database for the printer [see
terminfo(F)] or is not an alias defined by the administrator,
the request is rejected.

When the -d any option is used, the request is printed on any
printer that has the print wheel mounted or any printer that
can select the character set and can handle all other needs of
the request.

-t title Prints title on the banner page of the output. The default is
no title.

March 15, 1989 LP-4

LP (C) LP (C)

-T content-type [-r]
While the printer type infonnation tells the print service
what type of printer is being added, the content type infor­
mation tells the print service what types of files can be
printed. Prints the request on a printer that can support the
specified content-type. If no printer accepts this type
directly, a filter will be used to convert the content into an
acceptable type. If the -r option is specified, a filter will not
be used. If -r is specified but no printer accepts the
content-type directly, the request is rejected. If the content­
type is not acceptable to any printer, either directly or with a
filter, the request is rejected.

-w Writes a message on the user's terminal after the files have
been printed. If the user is not logged in, then mail will be
sent instead.

-y mode-list
Prints this request according to the printing modes listed in
mode-list. The allowed values for mode-list are locally
defined. This option can be used only if there is a filter
available to handle it; if there is no filter, the print request
will be rejected.

Canceling a Print Request

The cancel command cancels printer requests that were made by the
Ip(C) shell command. The shell command line arguments may be
either request-ids [as returned by lp(C)] or printer names [for a com­
plete list, use lpstat(C)]. Specifying a request-id cancels the associ­
ated request even if it is currently printing. Specifying a printer can­
cels the request that is currently printing on that printer. In either
case, the cancellation of a request that is currently printing frees the
printer to print its next available request.

Special Options

-R Removes file after sending it.

-L Local printing option. Sends print job to printer
attached to the tenninal.

The file letel defaultllpd contains the setting of the variable
BANNERS, whose value is the number of pages printed as a banner
identifying each printout. This is nonnally set to either 1 or 2.

The variables LPR and PRINTER can each be set to 'spooler' or 'local'.
These variables let you send files to the spool printer or the terminal's
local printer, respectively. The file lusrlliin/spool contains the

March 15, 1989 LP-5

LP (C) LP (C)

'spooler' setting for both variables. The file lusr/binflocal contains
the 'local' setting. The following are a few examples· of variable
usage:

lp -option spooler
LPR=local
LPR=spooler
spoollp -option device file

Notes

Printers for which requests are not being accepted will not be con­
sidered when the destination is any. (Use the Ipstat -a command to
see which printers are accepting requests.) On the other hand, if a
request is destined for a class of printers and the class itself is accept­
ing requests, all printers in the class will be considered, regardless of
their acceptance status, as long as the printer class is accepting
requests.

Warning

For printers that take mountable print wheels or font cartridges, if you
do not specify a particular print wheel or font with the -S option,
whichever happens to be mounted at the time your request prints will
be used. Use the Ipstat -p -I command to see what print wheels are
available. For printers that have selectable character sets, you will get
the standard set if you don't give the -S option.

Files

fusrfspool/lpf*
fete/ default/lpd

See Also

enable(C), Ipstat(C), mail(C),
Ipfilter(ADM), Ipforms(ADM),
terminfo(F)

Standards Conformance

cancel and lp are conformant with:

accept(ADM),
Ipsched(ADM),

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989

Ipadmin(ADM),
Ipusers(ADM),

LP-6

LPRINT (C) LPRINT (C)

Iprint
print to a printer attached to the user's terminal

Syntax

Iprint [-] [file]

Description

Iprint(C) accepts a filename to print or - to read from the keyboard. If
the terminal has local printing abilities, it will then print the file to a
printer attached to the printer port of the terminal.

This command uses the file letc/termcap.

Options

Tells lprint to use the standard input for printing.

The variables LPR and PRINTER can each be set to 'spooler' or 'local'.
These variables let you send files to the spool printer or the terminal's
local printer, respectively. The file lusrlliin/spool contains the
'spooler' setting for both variables. The file lusr/bin/spool contains
the 'local' setting. The following are a few examples of variable
usage:

Files

lp -option spooler
LPR=local
LPR=spooler
spoollp -option device file

/etc/termcap
/usr/bin/spool
/usr/bin/local

March 11, 1990 LPRINT-1

LPRINT (C)

Notes

LPRINT (C)

Only certain terminals have entries in /etc/termcap with this capabil­
ity already defined (for example, Tandy's DT-IOO and DT-I, and
Hewlett-Packard's HP-92).

To add attach¢ printer capability to the termcap file for a different
terminal, add entries for PN (start printing) and PS (end printing) with
the appropriate control or escape characters for your terminal.

Terminal communications parameters (such as baud rate and parity)
must be set up on the terminal by the user.

See Also

"Using Printers" in the System Administrator's Guide

Value Added

lprint is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1990 LPRINT-2

LPSTAT(C) LPSTAT (C)

Ipstat
print information about status of LP print service

Syntax

Ipstat [options]

Description

lpstat prints information about the current status of the LP print ser­
vice.

If no options are given, then Ips tat prints the status of all requests
made to lp(C) by the users. Any arguments that are not options are
assumed to be request-ids (as returned by lp), printers, or printer
classes. lpstat prints the status of such requests, printers, or printer
classes. Options may appear in any order and may be repeated and
intermixed with other arguments. Some of the keyletters below may
be followed by an optional list that can be in one of two forms: a list
of items separated from one another by a comma, or a list of items
enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u "user!, user2, user3"

Specifying "all" after any keyletters that take "list" as an argument
causes all information relevant to the keyletter to be printed. For
example, the command

Ips tat -0 all

prints the status of all output requests.

-a [list] Print acceptance status (with respect to /p) of destinations
for requests [see accept(ADM)]. list is a list of intermixed
printer names and class names; the default is all.

-c [list] Print class names and their members. list is a list of class
names; the default is all.

-d Print the system default destination for /p.

-f [list] [.. I]
Print a verification that the forms in form-list are recog­
nized by the LP print service. The -I option will list the
form descriptions.

March 15, 1989 LPSTAT-1

LPSTAT(C) LPSTAT (C)

-0 [list] [-I]
Print the status of output requests. list is a list of intermixed
printer names, class names, and request-ids; the default is
all. The -I option gives a more" detailed status of the
request.

-p [list] [-D] [-I]
Print the status of printers named in list. If the -D option is
given, a brief description is printed for each printer in list.
If the -I option is given, a full description of each printer's
configuration is given, including the form mounted, the
acceptable content and printer types, a printer description,
the interface used, and so on.

-r Print the status of the LP request scheduler.

-s Print a status summary, including the system default desti-
nation, a list of class names and their members, a list of
printers and their associated devices, a list of all forms
currently mounted, and a list of all recognized character
sets and print wheels.

-8 [list] l-l]
Print a veri fication that the character sets or the print
wheels specified in list are recognized by the LP print ser­
vice. Items in list can be character sets or print wheels; the
default for the list is all. lithe -I option is given, each line
is appended by a list of printers that can handle the print
wheel or character set. The list also shows whether the
print wheel or character set is mounted or specifies the
built-in character set into which it maps.

-t Print all status information.

-u [list] Print status of output requests for users. List is a list of log­
in names. The default is all.

-v [list] Print the names of printers and the path names of the de­
vices associated with them. list is a list of printer names.
The default is all.

Files

/usr/spool/lp/*

See Also

enable(C), Ip(C)

March 15, 1989 LPSTAT-2

LPSTAT(C) LPSTAT (C)

Standards Conformance

Ipstat is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 LPSTAT-3

LS (C) LS (C)

Is
gives information about contents of directories

Syntax

Is [-ACFRabcdfgilmnopqrstux] [names]

Description

For each directory named, Is lists the contents of that directory; for
each file named, Is repeats its name and any other information
requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several argu­
ments are given, the arguments are first sorted appropriately, file argu­
ments are processed before directories and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multi-column formats, and
the -m option enables stream output format in which files are listed
across the page, separated by commas. In order to determine output
format for the -C, -x, and -m options, is uses an environment variable,
COLUMNS, to determine the number of character positions available
on one output line. If this variable is not set, the termcap database is
used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns
are assumed.

There are many options:

-A List all entries. Entries whose name begin with a period (.) are
listed. Does not list current directory (.) and directory above
(..).

-a Lists all entries. Entries whose name begin with a period (.) are
listed.

-R Recursively lists subdirectories encountered.

-d If an argument is a directory, lists only its name (not its con-
tents); often used with -1 to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down
the page.

March 15, 1989 LS-1

LS(C) LS(C)

-m Stream output format.

-I Lists in long format, gIVIng mode, number of links, owner,
group, size in bytes, and time of last modification for each file
(see below). If the file is a special file, the size field will contain
the major and minor device numbers, rather than a size.

-n The same as -I, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-r Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

-t Sorts by time modified (latest first) instead of by name.

-u Uses time of last access instead of last modification for sorting
use with the -t option.

-c Uses time of last modification of the inode (file created, mode
changed, etc.) for sorting use with -t option.

-p Puts a slash (I) after each filename if that file is a directory.

-F Puts a slash (I) after each filename if that file is a directory and
puts an asterisk (*) after each filename if that file is executable.

-b Forces printing of non-graphic characters to be in the octal \ddd
notation.

-q Forces printing of non-graphic characters in file names as the
character (?).

-i For each file, prints the inode number in the first column of the
report.

-s Gives size in blocks, including indirect blocks, for each entry.

-f Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off -I, -t, -s, and -
r, and turns on -a. The order is the order in which entries appear
in the directory.

March 15, 1989 LS-2

LS (C) LS (C)

The mode printed under the ·1 option consists of 11 characters. The
first character is:

If the entry is an ordinary file.

d If the entry is a directory.

b If the entry is a block special file.

c If the entry is a character special file.

p If the entry is a named pipe.

s If the entry is a semaphore.

m If the entry is a shared data (memory) file.

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to the owner's permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set,
the 3 characters indicate permission to read, to write, and to execute
the file as a program, respectively. For a directory, "execute" permis­
sion is interpreted to mean permission to search the directory for a
speci fied file.

The permissions are indicated as follows:

r If the file is readable.

w If the file is writable.

x If the file is executable.

If the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-ID mode. The last character of the
mode (normally x or .) is t if the 1000 (octal) bit of the mode is on.
See chmod(C) for the meaning of this mode. The indications for set­
ID and the 1000 bit of the mode are capitalized if the corresponding
execute permission is not set.

When the sizes of the files in a directory are listed, a total count of
blocks including indirect blocks is printed.

March 15, 1989 LS-3

LS (C)

Files

LS (C)

/etc/passwd

/etc/group

/etc/termcap

See Also

Gets user IDs for Is -1 and Is -0

Gets group IDs for Is -1 and Is -g

Gets terminal information

chmod(C), coltbl(M), find(C), I(C), Ie(C), 10cale(M), termcap(F)

Notes

Sorts according to the collating sequenced defined by the locale.

Newline and tab are considered printing characters in filenames.

Unprintable characters in filenames may confuse the columnar output
options.

This utility reports sizes in 512 byte blocks. Is -s interprets 1 block
from a 1024 byte block system as 2 of its own 512 byte blocks. Thus a
500 byte file is interpreted as 2 blocks rather than 1.

Standards Conformance

Is is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 LS-4

MACHID (C)

machid: i386
get processor type truth value

Syntax

i386

Description

MACHID (C)

If the machine is a 386, the i386 command will return a true value
(exit code of 0), otherwise it will return a false (non-zero) value.
These type of commands are often used within makefiles [see
make(CP)] and shell procedures [see sh(C)] to increase portability.

See Also

sh(C), test(C), true(C), make(CP)

March 15, 1989 MACHID-1

MAIL (C) MAIL (C)

mail
interactive message processing system

Syntax

mail [options] [name ...]

Description

mail provides a comfortable, flexible environment for sending and
receiving messages electronically. For reading mail, mail provides
commands to facilitate saving, deleting, and responding to messages.
For sending mail, mail allows editing, reviewing, and other modifica­
tion of the message as it is entered.

Many of the remote features of mail will only work if the UUCP pack­
age is installed on your system.

Incoming mail is stored in a standard file for each user, called the
mailbox for that user. When mail is called to read messages, the
mailbox is the default place to find them. As messages are read, they
are marked to be moved to a secondary file for storage, unless specific
action is taken, so that the messages need not be seen again. This sec­
ondary file is called the mbox and is normally located in the user's
HOME directory (see MBOX under Environment Variables). Mes­
sages can be saved in other secondary files named by the user. Mes­
sages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mail
command. Messages in the secondary file can then be read or other­
wise processed using the same commands as in the primary mailbox.
This gives rise to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other argu­
ments are taken to be destinations (recipients). If no recipients are
specified, mail attempts to read messages from the mailbox.
Command-line options are:

-e

. -f [filename]

March 11, 1990

Test for presence of mail. mail prints nothing and
exits with a successful return code if there is mail
to read .

Read messages from filename instead of mailbox.
If no filename is specified, the mbox is used.

MAIL-1

MAIL (C)

-F

-h number

-H

-i

-n

-N

-r address

-s subject

-u user

-u

MAIL (C)

Record the message in a file named after the first
recipient. Overrides the record variable, if set
(see Environment Variables).

The number of network "hops" made so far.
This is provided for network software to avoid
infinite delivery loops. (See addsopt under
Environment Variables).

Print header summary only.

Ignore interrupts. (See ignore under Environ­
ment Variables).

Do not initialize from the system default mailrc
file.

Do not print initial header summary.

Pass address to network delivery software. All
tilde commands are disabled. (See addsopt under
Environment Variables).

Set the Subject header field to subject.

Read user's mailbox. This is only effective if
user's mailbox is not read protected.

Convert uucp style addresses to internet stan­
dards. Overrides the conv environment variable.
(See addsopt under Environment Variables).

When reading mail, mail is in command mode. A header summary of
the first several messages is displayed, followed by a prompt indicat­
ing mail can accept regular commands (see Commands below). When
sending mail, mail is in input mode. If no subject is specified on the
command line, a prompt for the subject is printed. (A subject longer
than 1024 characters will cause mail to dump core.) As the message is
typed, mail will read the message and store it in a temporary file.
Commands may be entered by beginning a line with the tilde C)
escape character followed by a single command letter and optional
arguments. See Tilde Escapes for a summary of these commands.

At any time, the behavior of mail is governed by a set of environment
variables. These are flags and valued parameters which are set and
cleared via the set and unset commands. See Environment Variables
below for a summary of these parameters.

Recipients listed on the command line may be of three types: login
names, shell commands, or alias groups. Login names may be any
network address, including mixed network addressing. If mail is
found to be undeliverable, an attempt is made to return it to the

March 11, 1990 MAIL-2

MAIL (C) MAIL (C)

sender's mailbox. If the recipient name begins with a pipe symbol (I),
the rest of the name is taken to be a shell command to pipe the mes­
sage through. This provides an automatic interface with any program
that reads the standard input, such as ip(C), for recording outgoing
mail on paper. Alias groups are set by the alias command (see Com­
mands below) and are lists of recipients of any type.

Regular commands are of the form:

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In
input mode, commands are recognized by the tilde escape character,
and lines not treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any
time the notion of a current message, marked by a right angle bracket
(» in the header summary. Many commands take an optional list of
messages (msglist) to operate on. The default for msglist is the current
message. A msglist is a list of message identifiers separated by
spaces, which may include:

n

S
*
n-m
user
/string

:c

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case
ignored).
All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type
of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on
the command involved. File names, where expected, are expanded via
the normal shell conventions [see sh(C)]. Special characters are
recognized by certain commands and are documented with the com­
mands below.

At start-up time, mail tries to execute commands from the optional
system-wide file (/usr/lib/mail/mailrc) to initialize certain parame­
ters, then from a private start-up file (SHOME/.mailrc) for personal­
ized variables. With the exceptions noted below, regular commands
are legal inside start-up files. The most common use of a start-up file

March 11, 1990 MAIL-3

MAIL (C) MAIL (C)

is to set up initial display options and alias lists. The following com­
mands are not legal in the start-up file: !, Copy, edit, forward, For­
ward, hold, mail, preserve, reply, Reply, shell, and visual. An error
in the start-up file causes the remaining lines in the file to be ignored.
The .mailrc file is optional and must be constructed locally.

Commands

The following is a complete list of mail commands:

!shell-command
Execute shell command and return. (See SHELL under Environ­
ment Variables).

comment
Null command (comment). This may be useful in .mailrc files.

=
Print the current message number.

?
Print a summary of commands.

alias alias name .. .
group alias name .. .

Declare an alias for the given names. The names will be substi­
tuted when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declare a list of alternate names for your login. When responding
to a message, these names are removed from the list of recipients
for the response. With no arguments, alternates prints the current
list of alternate names. (See allnet under Environment Variables).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved.
Otherwise equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived from
the author of the message to be saved, without marking the mes­
sages as saved. Otherwise equivalent to the Save command.

March 11, 1990 MAIL-4

MAIL (C) MAIL (C)

delete [msglist]
Delete messages from the mailbox. If autoprint is set, the next
message after the last one deleted is printed (see Environment
Variables).

discard [header-field ...]
ignore [header-field ...]

Suppress printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc". The fields are included when the message is
saved. The Print and Type commands override these commands.

dp [msglist]
dt [msglist]

Delete the speci fied messages from the mailbox and print the next
message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string ...
Echo the given strings [like echo (C)].

edit [msglist]
Edit the given messages. The messages are placed in a temporary
file and the EDITOR variable is used to get the name of the editor
(see Environment Variables). Default editor is ed(C).

exit
xit

Exit from mail- without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names,
with the following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the folder vari­
able (see Environment Variables).

forward [message] name ...
Forward the specified message to the specified users, shifting the
forwarded text to the right one tab stop.

March 11, 1990 MAIL-5

MAIL (C) MAIL (C)

Forward [message] name ...
Forward the specified message to the specified users, with no
indentation.

from [msglist]
Prints the header summary for the specified messages.

group alias name ...
See alias.

headers [+ I-I msglist]
Lists the current range of headers. The screen variable sets the
number of headers per page (see Environment Variables). If a "+"
argument is given, then the next page is printed, and if a "-" argu­
ment is given, the previous page is printed. Both" +" and "-" can
take a number to view a particular window. If a message list is
given, it prints the specified headers, disregarding all windowing.
See also the z command.

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if sir
mail-commands
else
mail-commands
endif

Conditional execution, where s causes the first mail commands, up
to an else or endif to be executed if the program is in send mode,
and r causes the mail commands to be executed only in receive
mode. The mail-commands after the else are executed if the pro­
gram is in the opposite mode from the one indicated. Useful in the
.mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc". All fields are included when the message is
saved. The Print and Type commands override this command.

Prints all commands available. No explanation is given.

lpr [msglist]
Print the specified messages on the lineprinter.

March 11, 1990 MAIL-6

MAIL (C) MAIL (C)

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox
save file when mail terminates normally. See the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be
specified, but in this case the first valid message in the list is the
only one used. This is useful for jumping to the next message from
a specific user, since the name would be taken as a command in
the absence of a real command. See the discussion of msglists
above for a description of possible message specifications.

pipe [msglist] [shell-command]
I [msglist] [shell-command]

Pipe the message through the given shell-command. The message
is treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of
the cmd variable. If the page variable is set, a form feed character
is inserted after each message (see Environment Variables).

preserve [msglist]
See hold.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header
fields. Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If crt is set, the messages longer than
the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com­
mand is more (C) (see Environment Variables).

quit
Exit from mail, storing messages that were read in mbox and
unread messages in the mailbox. Messages that have been explic­
itly saved in a file are deleted from the mailbox.

Reply [msglist]
Respond [msglist]

Reply to the specified message, including all other recipients of the
message. If record is set to a file name, the response is saved at

March 11, 1990 MAIL-7

MAIL (C) MAIL (C)

the end of that file (see Environment Variables).

reply [message]
respond [message]

Send a response to the author of each message in the msglist. The
subject line is taken from the first message. If record is set to a
file name, the response is saved at the end of that file (see Environ­
ment Variables).

Save [msglist]
Save the specified messages in a file whose name is derived from
the author of the first message. The name of the file is taken to be
the author's name with all network addressing stripped off. See
also the Copy commands and outfolder (Environment Variables).

save ffilename]
save [msglist] filename

set

Save the specified messages in the given file. The file is created if
it does not exist. The message is deleted from the mailbox when
mail terminates unless keepsave is set (see also Environment Vari­
ables and the exit and quit commands).

set name
set name=string
set name=number

Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables
and their values. See Environment Variables for detailed descrip­
tions of the mail variables.

shell
Invoke an interactive shell (see SHELL under Environment Vari­
ables).

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the toplines
variable is set, it is taken as the number of lines to print (see
Environment Variables). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not spe­
cifically saved in a file, it will be placed in the mbox, or the file
specified in the MBOX environment variable, upon normal termi­
nation. See exit and quit.

March 11, 1990 MAIL-8

MAIL (C) MAIL (C)

Type [msglist]
See Print.

type [rnsglist]
See print.

undelete [rnsglist]
Restore the specified deleted messages. Will only restore mes­
sages deleted in the current mail session. If autoprint is set, the
last message of those restored is printed (see Environment Vari­
ables).

unset name ...
Causes the speci fied variables to be erased. If the variable was
imported from the execution environment (Le., a shell variable),
then it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are
placed in a temporary file and the VISUAL variable is used to get
the name of the editor (see Environment Variables).

write [msglist] filename

xit

Write the given messages on the specified file, minus the header
and trailing blank line. Otherwise equivalent to the save com­
mand.

See exit. quit).

z[+ 1-]
Scroll the header display forward or backward one full screen. The
number of headers displayed is set by the screen variable (see
Environment Variables).

Tilde Escapes

The following commands may be entered only from input mode, by
beginning a line with the tilde escape character r). See escape under
Environment Variables for changing this special character.

-! shell-command
Execute the shell command and return.

Simulate end of file (terminate message input).

March 11, 1990 MAIL-9

MAIL (C) MAIL (C)

-:command
- command
- Perform the command-level request. Valid only when sending a

-A

-a

message while reading mail.

Print a summary of tilde escapes.

Insert the autograph string Sign into the message (see Environment
Variables).

Insert the autograph string sign into the message (see Environment
Variables).

-b name ...
Add the names to the blind carbon copy (Bcc) list.

-c name ...

-d

Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. (See DEAD under Environment Vari­
ables for a description of this file.)

Invoke the editor on the partial message. (See EDITOR under
Environment Variables.)

-r [msglist]

-h

Forward the specified messages. The messages are inserted into
the message without alteration.

Prompt for Subject line and To, Cc, Bcc, and Retum-Receipt-to
lists. If the field is displayed with an initial value, it may be edited
as if you had just typed it.

-i variable
Insert the value of the named variable into the text of the message.
For example, -A is equivalent to '-i Sign.' Environment variables
set and exported in the shell are also accessible by-i.

-M [msglist]
Insert the specified messages into the letter, with no indentation.
Valid only when sending a message while reading mail.

-m [msglist]
Insert the specified messages into the letter, shifting the new text
to the right one tab stop. Valid only when sending a message while
reading mail.

March 11, 1990 MAIL-10

MAIL (C) MAIL (C)

-p

q

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.letter.
(See DEAD under Environment Variables).

-r filename
--< filename
--< !shell-command

Read in the specified file. If the argument begins with an exclama­
tion point (!), the rest of the string is taken as an arbitrary shell
command and is executed, with the standard output inserted into
the message.

s string ...
Set the subject line to string.

-t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. (See also
VISUAL under Environment Variables.)

-wfilename
Write the partial message onto the given file, without the header.

-x
Exit as with -q except the message is not saved in dead.letter.

-I shell-command
Pipe the body of the message through the given shell-command. If
the shell-command returns a successful exit status, the output of
the command replaces the message.

Environment Variables

The following are environment variables taken from the execution
environment and are not alterable within mail.

HOME=directory
The user's base of operations.

March 11, 1990 MAIL-11

MAIL (C) MAIL (C)

MAILRC=jiiename
The name of the start-up file. Default is SHOME/.mailre.

The following variables are internal mail variables. They may be
imported from the execution environment or set via the set command
at any time. The unset command may be used to erase variables.

addsopt
Enabled by default. If !bin/mail is not being used as the deliverer,
noaddsopt should be specified. (See Notes below)

allnet
All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifica­
tions to behave similarly. Default is noallnet. See also the alter­
nates command and the metoo variable.

append
Upon termination, append messages to the end of the mbox file
instead of prepending them. Default is noappend.

askcc
Prompt for the Cc list after message is entered. Default is
noaskcc.

asksub
Prompt for subject if it is not specified on the command line with
the -s option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete
commands. Default is noautoprint.

bang
Enable the special-casing of exclamation points (I) in shell escape
command lines as in vi(C). Default is nobang.

chron
Causes messages to be displayed in chronological order. The
default is reverse chronological order (most recent message first).
See also mchron below.

cmd=shell-command
Set the default command for the pipe command. Not set by
default.

conv=conversion
Convert uucp addresses to the specified address style. The only
valid conversion now is internet, which requires a mail delivery
program conforming to the RFC822 standard for electronic mail
addressing. Conversion is disabled by default. See also the send­
mail variable and the -U command-line option.

March 11, 1990 MAIL-12

MAIL (C) MAIL (C)

crt=number
Pipe messages having more than number lines through the com­
mand specified by the value of the PAGER variable (more(C) by
default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of
untimely interrupt. Default is $HOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug.

dot
Take a period on a line by itself during input from a terminal as
end-of-file. Default is nodot.

EDITOR=shell-command
The command to run when the edit or -e command is used. Default
is ed(C).

escape=c
Substitute c for the - escape character. Takes effect with next mes­
sage sent.

folder=directory
The directory for saving standard mail files. User-specified file
names beginning with a plus (+) are expanded by preceding the file
name with this directory name to obtain the real file name. If
directory does not start with a slash (I), $HOME is prepended to it.
In order to use the plus (+) construct on a mail command line,
folder must be an exported sh environment variable. There is no
default for the folder variable. See also outfolder below.

header
Enable printing of the header summary when entering mail.
Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of put­
ting them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial­
up lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated
by a period (.) on a line by itself or by the -. command. Default is
noignoreeof. See also the dot variable above.

March 11, 1990 MAIL-13

MAIL (C) MAIL (C)

keep
When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX=jilename
The name oflhe file to save messages which have been read. The
xit command overrides this function, as does saving the message
explicitly in another file. Default is $HOME/mbox.

mchron
Causes message headers to be listed in numerical order (most
recently received first), but displayed in chronological order. See
also chron above.

metoo
If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the
folder directory. The default is Is(C).

onehop
When responding to a message that was originally sent to several
recipients, the other recipient addresses are normally forced to be
relative to the originating author's machine for the response. This
flag disables alteration of the recipients' addresses, improving
efficiency in a network where all machines can send directly to all
other machines (Le., one hop away).

outfolder
Record outgoing messages in files located in the directory
specified by the folder variable unless the path name is absolute.
Default is nooutfolder. See the folder variable above and the
Save and Copy commands.

page
U sed with the pipe command to insert a form feed after each mes­
sage sent through the pipe. Default is nopage.

PAGER=shell-command
Use shell-command as a filter for paginating output. This can also
be used to specify the options to be used. Default is more(C).

prompt=string
Set the command mode prompt to string. Default is ? .

March 11, 1990 MAIL-14

MAIL (C) MAIL (C)

quiet
Refrain from printing the opening message and version when
entering mail. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See
also outfolder above.

save
Enable saving of messages in dead.letter on interrupt or delivery
error. See DEAD for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a full screen of headers for the headers
command.

sendmail=shell-command
Alternate command for delivering messages. Default is
/binirmail(C).

send wait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is sh(C).

showto
When displaying the header summary and the message is from you,
print the recipient's name instead of the author's name.

sign=string
The variable inserted into the text of a message when the -a (auto­
graph) command is given. Not set by default (see -i under Tilde
Escapes).

Sign=string
The variable inserted into the text of a message when the -A com­
mand is given. Not set by default (see also -i under Tilde Escapes).

toplines=number
The number of lines of header to print with the top command.
Default is 5. .

VISUAL=shell-command
The name of a preferred screen editor. Default is vi (C).

March 11, 1 990 MAIL-15

MAIL (C)

Files

$HOME/.mailrc personal start-up file
$HOME/mbox secondary storage file
lusr/spool/mail post office directory
/usr/lib/mail/mail.help* help message files
/usr/lib/mail/mailrc optional global start-up file
/tmp/R[emqsx]* temporary files

See Also

Is(C), mail(C), more(C)

Notes

MAIL (C)

The ·h, ·r and ·U options can be used only if mail is built with a
delivery program other than /bin/mail.

Where shell-command is shown as valid, arguments are not always
allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be
unset.

The full internet addressing is not fully supported by mail. The new
standards need some time to settle down.

A line consisting only of a "." is treated as the end of the message.

Standards Conformance

mail is conformant with:

AT&TSYID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 11, 1990 MAIL-16

MAN (C)

man
prints reference pages in this guide

Syntax

man [-afbcw] [-tproc] [-p pager] [-d dir] [-T term]
[section] [title]

/usr/lib/manprog file

Descri ption

MAN (C)

The man program locates and prints the named title from the desig­
nated reference section. For historical reasons, "page" is often used
as a synonym for "entry" in this context.

Since Altos UNIX System V commands are given in lowercase, the
title is always entered in lowercase. If no section is specified, the
whole guide is searched for title and the first occurrence of it is
printed. You can search for a group of sections by separating the sec­
tion names with colons (:) on the command line.

The options and their meanings are:

-a ' , All" mode. Displays all matching titles. Incompatible
with the -f option.

-f "First" mode. Displays only the first matching title.
Incompatible with -a option. This is the default mode for
man(C).

-b Leaves blank lines in output. nrofJ'pads entries with blank
lines for line printer purposes. man normally filters out
these excess blank lines. Normally, man does not display
more than 2 consecutive blank lines. The -b flag leaves
blank lines in the CRT output.

-c Causes man to invoke col(C). Note that col is invoked
automatically by man unless term is one of the follow­
ing: 300, 300s, 450,37, 4000a, 382, 4014, tek, 1620, and
X.

-w Prints on the standard output only the pathnames of the
entries.

September 19, 1990 MAN-1

MAN (C)

-tproc

-ppager

-ddir

-Tterm

MAN (C)

Indicates that if an unprocessed manual page is available,
it is to be passed to proc for formatting. proc can be any
command script in lusrlmanlbin or an absolute filename of
a text processing program elsewhere on the system, for
example Ibinlnroff.

The scripts in lusrlmanlbin invoke the actual processing
programs with the correct flags and arguments. The
default processor is /usr/manlbinlnr, which invokes
Ibinlnroff and produces output that safely prints on any
terminal. The text is also preprocessed by eqn and tbl as a
default. Note that the operating system does not include
these formatting programs; you must install them yourself
or specify alternatives with the -t option.

Selects paging program pager to display the entry. Paging
systems such as more(C), pg(C), cat(C), or any custom
pagers that you may have are valid arguments for this
flag. The default pager, pg(C), is set in letc/default/man.

Specifies directory dir to be added to the search path for
entries. You can specify several directories to be
searched by separating the directory names with colons
(:) on the command line.

Format the entry and pass the given term value to the pro­
cessing program, then print it on the standard output (usu­
ally, the terminal), where term is the terminal type (see
term(M) and the explanation below).

Section Names

The names and general descriptions· of the available manual sections
are:

ADM
C
M
F
HW
S
CP
DOS
K
NSL
STR
XNX

System Administration
Commands
Miscellaneous
File Formats
Hardware Dependent
Subroutines and Libraries
Programming Commands
DOS Subroutines and Libraries
Kernel Routines
Network Services Library
STREAMS
XENIX Cross-development

September 19, 1990 MAN-2

MAN (C) MAN (C)

LOCAL Local utilities for your system

You can add other section names as you desire. Each new section,
however, must follow the standard section directory structure. The
LOCAL directory is shipped without contents, as no LOCAL manual
pages are included.

lusr/man Directory Structure

The source files for the man(C) program are kept in the directory
/usr/man. Each man section is comprised of two directories, and there
is a directory called bin for programs and shell scripts related to
man(C). There is also an index file called index in /usr/man. This
index is a list of all Altos UNIX System V commands and their sec­
tions.

Each manual section has two directories in /usr/man. These directories
are called man and cat, plus the name of the section as a suffix. For
example, the C manual section is comprised of two directories, man.C
and cat.C, both located in /usr/man.

The unprocessed source text is in the man directory and the printable
processed output is in the cat directory. When a title is requested, both
directories are checked. The most recent copy of the manual page is
used as the current copy. If the most recent title is in the source text
directory and it is processed by the default processor with the default
terminal type, a display copy of the output is placed in the cat direc­
tory for future use. Note that a file that must be processed takes longer
to appear on the screen than a display copy.

Environment Variables

There is a shell environment variable for use with the man(C) utility.
This variable is called MANPATH and it is used to change or aug­
ment the path man(C) searches for entries. Multiple directories set
with this variable must be delimited by colon characters (:). If the
MANPATH environment variable is present, the directories are
searched in the order that they appear. /usr/man must appear in the
MANPATH list to be included. If you set this environment variable,
it supersedes the MANPATH entry in the /etc/default/man file. Alter­
nate subdirectories are expected to have the same form as the default
directories in /usr/man.

/etc/ default/man

There is a file called man in the / etc/ default directory that contains the
default settings for the man utility. The following options are set in
/ etc/ default/ man:

September 19, 1990 MAN-3

MAN (C)

PAGER=/usr/bin/pg
MANPATH=/usr/man
TERM=lp
ORDER=ADM:C:S:CP:M:F:HW:DOS:LOCAL
MODE=FIRST
PROC=nr

MAN (C)

You can select a different paging system, search path, terminal type,
search order, mode, and processor for the man(C) system by changing
the information in this file.

To change the search order for manual sections, edit the list following
the ORDER variable. Be certain the section names are separated with
colons (:). Section names not present in ORDER are searched in arbi­
trary order after those specified in fete/default/man.

Creating New Manual Entries

You can create new manual pages for utilities and scripts that you
have developed. Use an existing manual page as an example of manu­
al page structure. Use the man macros to format your manual page.
Note that the operating system does not include nroff and the related
family of formatting utilities. You must install them separately or
specify another formatter with the -t option.

You must be logged in as root (the "Super-User") to place a new
manual page in your /usr/man directory structure. Place your new
page in /usr/man/man.LOCAL while logged in as root and view it
using the man(C) command, since only root has write permission for
the cat-able directories. Once man has produced the cat-able output,
any user can view the new page in the same manner as any other on
line manual page.

Additionally, you can create your own custom sections by creating
another manual directory and putting it in the MANPATH. For exam­
ple, if subdirectories manX and catX are present, then man(C) recog­
nizes that X is a valid manual section.

If you wish to use another text processing program (such as troff to
process your custom manual pages, use the -tproc flag of man. proc
can be any shell script in /usr/man/bin. To place a cat-able copy of the
manual page in the cat directory, use the tee(C) command to send the
output to a file, as well as to the standard output. Your command
should have the form:

man -tproc filename I tee pathname

In the above example, proc is the text processing script, filename is the
manual page source file, and pathname is the path of the directory for
the cat-able output.

September 19, 1990 MAN-4

MAN (C) MAN (C)

Custom manual sections can have an index, if the format is the same
as the index in /usr/man. man(C) uses the index to locate multiple
commands that are listed on the same page as well as commands that
have pages in several different sections.

The man Macro Package

The man macro package is located in /usrl/ib/macroslan. It is
included for use with the nroff/troff formatting package, which must
be separately installed. There are 15 basic macros in the package.
Here is a table of the macros and brief descriptions of their functions:

See Also

Macro

.TH title

.SH title

.SS title

.SMtext

.PP

.IP

.HP

.TP

.RSn

.RE

.I text

.B text

.R text

.PM

environ(M), term(F)

Notes

Description

Title Heading
Section Heading
Subsection Heading
Reduce Point Size
New Paragraph
Indented Paragraph
Hanging Paragraph
Tagged Paragraph
Relative Indent
Release Relative Indent
Italic Font
Bold Font
Roman Font
Proprietary Mark (copyright)

All entries are supposed to be reproducible either on a typesetter or on
a terminal. However, on a terminal some information, such as eqn
and tbl output, is either lost or approximated as it cannot be exactly
reproduced.

September 19,1990 MAN-5

MESG (C) . MESG (C)

mesg
permits or denies messages· sent to a terminal

Syntax

mesg [n] [y]

Description

mesg with argument n forbids messages via write (C) by revoking
nonuser write permission on the user's terminal. mesg with argument
y reinstates permission. All by itself, mesg reports the current state
without changing it. '

Files

/dev/tty*

See Also

write(C)

Diagnostics

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Standards Conformance

mesg is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

May 16,1988 MESG-1

MKDIR (C) MKDIR (C)

mkdir
makes a directory

Syntax

mkdir [-m mode] [-p] dirname ...

Description

The mkdir command creates the named directories in mode 777 [pos­
siblyaltered by umask(C)].

Standard entries in a directory (e.g., the files ., for the directory itself,
and .. , for its parent) are made automatically. mkdir cannot create
these entries by name. Creation of a directory requires write permis­
sion in the parent directory.

The owner ID and group ID of the new directories are· set to the pro­
cess's real user ID and group ID, respectively.

Two options apply to mkdir:

-m This option allows users to specify the mode to be used for new
directories. Choices for modes can be found in chmod(C).

-p With this option, mkdir creates dirname by creating all the non­
existing parent directories first.

See Also

sh(C), rm(C), rmdir(C), umask(C), mkdir(S)

Diagnostics

The mkdir command returns exit code 0 if all directories given in the
command line were made successfully. Otherwise, it prints a diagnos­
tic and returns non-zero. An error code is stored in errno.

Standards Conformance

mkdir is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 MKDIR-1

MKNOD (C)

mknod
builds special files

Syntax

letc/mknod name [c I b] major minor .

letc/mknod name p

letc/mknod name s

letc/mknod name m

Description

MKNOD (C)

mknod makes a directory entry and corresponding inode for a special
file. The first argument is the name of the entry. In the first case, the
second argument is b if the special file is block-type (disks, tape) or c
if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g.,
unit, drive, or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each system.
Major device numbers can be found in the system source file
letc/conf/cf.d/mdevice.

mknod can also be used to create named pipes with the p option,
semaphores with the s option, and shared data (memory) with the m
option.

Only the super-user can use the first form of the syntax.

See Also

mknod(S)

Standards Conformance

mknod is conformant with:
AT&TSVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 MKNOD-1

MNT (C) MNT (C)

mnt, urnnt
mount a filesystem

Syntax

lusr/bin/mnt [-urat] [directory

lusr/bin/umnt directory

Description

mnt allows users other than the super-user to access the functionality
of the mount(ADM) command to mount selected filesystems. The
super-user can define how and when a file system mount is permitted
via special entries in the letcldefaultlfilesys file.

The filesystem requirements are the same as defined for mount(ADM).

umnt removes the mountable filesystem previously mounted in direc­
tory .

mnt is invoked from the letclrc scripts with the -r and possibly the -a
flag to mount filesystems when the system comes up multiuser. The
-a flag is used when the system has autobooted. Neither of these flags
should be specified during normal use.

The -t flag displays the contents of /etc/default/filesys.

The -u flag forces mnt to behave like umnt.

Options

The following options can be defined in the letcldeJaultlfilesys entry
for a filesystem:

bdev=/dev /device

cdev=/dev /device

mountdir=/directory

March 11, 1 990

Name of block device associated with the
filesystem.

Name of character (raw) device associated
with the filesystem.

The directory the filesystem is to be mounted
on.

MNT-1

MNT (C)

desc=name

passwd=string

MNT (C)

A string describing the filesystem.

An optional password prompted for at mount
request time. Cannot be a simple string; must
be in the format of /etc/passwd. (See Notes.)

fsck=yes, no, dirty, prompt

fsckflags=jlags

If yes/no, tells explicitly whether or not to run
fsek. If dirty, fsek is run only if the filesystem
requires cleaning. If prompt, the user is
prompted for a choice. If no entry is given,
the default value is dirty.

Any flags to be passed to fsek.

rcfsck=yes, no, dirty, prompt

maxcleans=n

mount=yes, no, prompt

Similar to fsck entry, but only applies when
the -r flag is passed.

The number of times to repeat cleaning of a
dirty filesystem before giving up. If
undefined, default is 4.

If yes or no, users are allowed or disallowed
to mount the filesystem, respectively. If
prompt, the user specifies whether the filesys­
tern should be mounted.

rcmount=yes, no, prompt

mountflags=jlags

If yes, the filesystem is mounted by / etel re2
when the system comes up multiuser. If no,
the filesystem is never mounted by /ete/re2.
With prompt, a query is displayed at boot
time to mount the filesystem.

Any flags to be passed to mount.

prep=yes, no, prompt Indicates whether any prepcmd entry should
always be executed, never executed, or exe­
cuted as specified by user.

prepcmd=command An arbitrary shell command to be invoked
immediately following password check and
prior to runningfsek.

init=yes, no, prompt Indicates whether an initcmd entry should
always be executed, never be executed, or
executed as specified by user.

March 11, 1990 MNT -2

MNT (C) MNT (C)

initcmd=command An optional, arbitrary shell command to be
invoked immediately following a successful
mount.

Any entries containing spaces, tabs, or new lines must be contained in
double quotes (").

The only mandatory entries in letcldefaultlfilesys are bdev and
mountdir. The prepcmd and initcmd options can be used to execute
another command before or after mounting the filesystem. For exam­
ple, initcmd could be defined to send mail to root whenever a given
filesystem is mounted.

When invoked without arguments, mnt attempts to mount all filesys­
terns that have the entries mount=yes or mount=prompt.

Examples

The following is a sample letclde!aultlfilesys file:

bdev=/dev/root cdev=/dev/rroot mountdir=/ \
desc="The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes \
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no \
mount=yes fsckflags=-y desc="The Extra Filesystem"

Of the examples above, only Ix is mountable by the user.

Files

/etc/default/filesys Filesystem data

See Also

mount(ADM), default(F)

Diagnostics

mnt will fail if the filesystem to be mounted is currently mounted
under another name.

Busy filesystems cannot be unmounted with umnt. A filesystem is busy
if it contains an open file or if a user's present working directory
resides within the filesystem.

March 11, 1990 MNT-3

MNT (C)

Notes

MNT (C)

Some degree of validation is done on the filesystem, however it is gen­
erally unwise to mount corrupt filesystems.

In order to create a password for a filesystem, the system administrator
must run the passwd(C) command using the ·f option.

Value Added

mnt is an extension of AT&T System V provided by Altos UNIX Sys­
temV.

March 11, 1990 MNT-4

MORE (C) MORE (C)

more
views a file one screen full at a time

Syntax

more [-cdflsuvw] [-n] [+linenumber] [+/pattern] [name ...

Description

This filter allows examination of a continuous text one screen full at a
time. It normally pauses after each full screen, displaying:

--More--

at the bottom of the screen. If the user then presses a carriage return,
one more line is displayed. If the user presses the SPACE bar, another
full screen is displayed. Other possibilities are described below.

The command line options are:

-n An integer which is the size (in lines) of the window which more
will use instead of the default.

-c more draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to clear
to the end of a line.

-d more prompts with the message "Hit space to continue, Rubout to
abort" at the end of each full screen. This is useful if more is being
used as a filter in some setting, such as a class, where many users
may be inexperienced.

-f This option causes more to count logical, rather than screen lines.
That is, long lines are not folded. This option is recommended if
nroffoutput is being piped through ul, since the latter may generate
escape sequences. These escape sequences contain characters that
would ordinarily occupy screen positions, but do not print when
they are sent to the terminal as part of an escape sequence. Thus
more may think that lines are longer than they actually are and fold
lines erroneously.

-I Does not treat Ctrl-L (form feed) specially. If this option is not
given, more pauses after any line that contains a Ctrl-L, as if the
end of a full screen has been reached. Also, if a file begins with a
form feed, the screen is cleared before the file is printed.

September 19, 1990 MORE-1

MORE (C) MORE (C)

-s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

-u Normally, more handles underlining, such as that produced by nroff
in a manner appropriate to the particular terminal: if the terminal
can perform underlining or has a stand-out mode, more outputs ap­
propriate escape sequences to enable underlining or stand-out
mode for underlined information in the source file. The -u option
suppresses this processing.

-v Normally, more ignores control characters that it does not interpret
in some way. The -v option causes these to be displayed as "'c
where C is the corresponding printable ASCII character. Non­
printing non-ASCII characters (with the high bit set) are displayed
in the format M-C, where C is the corresponding character without
the high bit set. If output is not going to a terminal, more does not
interpret control characters.

-w Noimally, more exits when it comes to the end of its input. With -
w however, more prompts and waits for any key to be struck before
exiting.

+linenumber
Starts up at linenumber.

+/pattern
Starts up two lines before the line containing the regular expres­
sion pattern.

more looks in the file letc/termcap to determine terminal characteris­
tics, and to determine the default window size. On a terminal capable
of displaying 24 lines, the default window size is 22 lines.

more looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -c mode of
operation, the shell command "MORE=-c" in the .profile file causes
all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is dis­
played along with the "--More--" prompt. This gives the fraction of
the file (in characters, not lines) that has been read so far.

Other sequences which may be entered when more pauses, and their
effects, are as follows (i is an optional integer argument, defaulting to
1 where not specified otherwise):

i<space>
Displays i more lines, (or another full screen if no argument is
given).

September 19, 1990 MORE-2

MORE (C) MORE (C)

Ctrl-D
Displays 11 more lines (a "scroll"). If i is given, then the scroll
size is set to i .

d Same as Ctrl-D.

i z Same as entering a space except that i, if present, becomes the
new window size.

is Skips i lines and displays a full screen of lines.

if Skips i full screens and displays a full screen of lines.

qorQ
Exits from more.

= Displays the current line number.

v Starts up the screen editor vi at the current line. Note that vi may
not be available with your system.

h or?
Help command; Gives a description of all the more commands.

i/expr
Searches for the i th occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a full screen is displayed, starting two
lines before the place where the expression was found. The user's
erase and kill characters may be used to edit the regular expres­
sion. Erasing back past the first column cancels the search com­
mand.

in Searches for the i th occurrence of the last regular expression
entered.

(Single quotation mark) Goes to the point from which the last
search started. If no search has been perfonned in the current file,
this command goes back to the beginning of the file.

!command

i :n

Invokes a shell with command. The characters % and ! in "com­
mand" are replaced with the current filename and the previous
shell command respectively. If there is no current filename, % is
not expanded. The sequences "\%" and "\I" are replaced by
"%" and "!" respectively.

Skips to the i th next file given in the command line (skips to last
file if i doesn't make sense). .

September 19, 1990 MORE-3

MORE (C) MORE (C)

i :p
Skips to the i th previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If i doesn't make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

:f Displays the current filename and line number.

:qor:Q
Exits from more (same as q or Q).

Repeats the previous command.

The commands take effect immediately. It is not necessary to enter a
carriage return. Up to the time when the command character itself is
given, the user may enter the line kill character to cancel the numeri­
cal argument being formed. In addition, the user may enter the erase
character to redisplay the "--More--(xx%)" message.

The terminal is set to no echo mode by this program so that the output
can be continuous. What you enter will not show on your terminal,
except for the slash (I) and exclamation (!) commands.

If the standard output is not a teletype, more acts just like cat, except
that a header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more-s

Files

/etc/termcap

/usr/lib/more.help

See Also

csh(C), sh(C), environ(M)

Credit

Terminal data base

Help file

This utility was developed at the University of California at Berkeley
and is used with permission.

September 19. 1990 MORE-4

MORE (C)

Notes

The vi and help options may not be available.

MORE (C)

Before displaying a file, more attempts to detect whether it is a non­
printable binary file such as a directory or executable binary image. If
more concludes that a file is unprintable, it refuses to print it. How­
ever, more cannot detect all possible kinds of non-printable files.

September 19. 1990 MORE-5

MV (C)

mv
moves or renames files and directories

Syntax

mv [·f] filel file2

mv [.f] directoryl directory2

mv [·f 1 file ... directory

Description

MV (C)

mv moves (changes the name of) file1 to file2 (or directory1 to direc­
tory2).

If file2 already exists, it is removed before file1 is moved. If file2 has
a mode which forbids writing, mv prints the mode (see chmod(S» and
reads the standard input to obtain a line. If the line begins with y, the
move takes place; if not, mv exits.

In the third form, one or more files are moved to the directory with
their original filenames.

No questions are asked when the ·f option is given.

mv refuses to move a file onto itself.

mv can only rename directories, not physically move them.
mvdir(ADM) should be used to move directories within a filesystem.

See Also

cP(C), chmod(S), copy(C)

Notes

If file1 and file2 lie on different file systems, mv must copy the file
and delete the original. In this case the owner name becomes that of
the copying process and any linking relationship with other files is
lost.

March 15, 1989 MV-1

MV (C) MV (C)

Standards Conformance

mv is conformant with:

AT&T svm Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 MV-2

NEWFORM (C)

newform
changes the format ofa text file

Syntax

NEWFORM (C)

newform [as] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-cchar] [-In] [file ...]

Description

newform reads lines from the named files, or the standard input if no
input file is named, and reproduces the lines on the standard output.
Lines are reformatted in accordance with command line options in
effect.

Except for as, command line options may appear in any order, may be
repeated, and may be intermingled with files. However, note that
command line options are processed in the order typed. This means
that option sequences like "·e15 -160" will yield results different
from "·160 ·e15". Options are applied to all files on the command
line .

• itabspec Input tab specification: expands tabs to spaces, according
to the tab specifications given. Tabspec recognizes all tab
specification forms described below. In addition, tabspec
may be •• , in which newform assumes that the tabspecifi­
cation is to be found in the first line read from the stan­
dard input. If no tabspec is given, tabspec defaults to ·8.
A tabspec of ·0 expects no tabs; if any are found, they are
treated as -1.

·otabspec Output tab specification: replaces spaces by tabs, accord­
ing to the tab specifications given. The tab specifications
are the same as for -itabspec. If no tabspec is given,
tabspec defaults to -8. A tabspec of ·0 means that no
spaces will be converted to tabs on output.

·In Sets the effective line length to n characters. If n is not
typed, ·1 defaults to 72. The default line length without
the ·1 option is 80 characters. Note that tabs and back­
spaces are considered to be one character (use -i to
expand tabs to spaces).

Note that the ·1 option used alone does not produce the
expected output unless accompanied by other line­
altering options, such as -e.

September 19, 1990 NEWFORM-1

NEWFORM (C) NEWFORM (C)

-bn Truncates n characters from the beginning of the line
when the line length is greater than the effective line
length (see -In). The default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no n is used. This
option can be used to delete the sequence numbers from a
COBOL program as follows:

new form -11 -b7 file-name

The option -11 must be used to set the effective line length
shorter than any existing line in the file so that the -b
option is activated.

-en Truncates n characters from the end of the line.

-ck Changes the prefix/append character to k. Default charac­
ter for k is a space (see options -p and -c).

-pn Prefixes n characters (see -ck) to the beginning of a line
when the line length is less than the effective line length.
The default is to prefix the number of characters neces­
sary to obtain the effective line length.

-an Appends n characters to the end of a line. The default is
to append the number of characters necessary to get the
effective line length.

-f Writes the tab specification format line on the standard
output before any other lines are output. The tab specifi­
cation format line which is printed will correspond to the
format specified in the last -0 option. If no -0 option is
specified, the line which is printed will contain the default
specification of -8.

-s Shears off leading characters on each line up to the first
tab and places up to 8 of the sheared characters at the end
of the line. If more than 8 characters (not counting the
first tab) are sheared, the eighth character is replaced by a
* and any characters to the right of it are discarded. The
first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all other
options specified are applied to that line. The characters
are then added at the end of the processed line.

September 19, 1990 NEWFORM-2

NEWFORM (C) NEWFORM (C)

Tabs

Four types of tab specification are accepted for tabspec: "canned,"
repetitive, arbitrary, and file. The lowest column number is 1. For
tabs, column 1 always refers to the leftmost column on a terminal,
even one whose column markers begin at 0, e.g. the DASI 300, DASI
300S, and DASI 450.

The "canned" tabs are given as -code where code (and its meaning) is
from the following list:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42A6,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than COBOL -c2. This is the recommended
format for COBOL. The appropriate format specification
is:

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 +n,
1 +2* n, etc. Note that such a setting leaves a left margin of
n columns on TermiNet terminals only. Of particular

September 19, 1990 NEWFORM-3

NEWFORM (C) NEWFORM (C)

nl,n2, ...

- -file

importance is the value -8: this represents the Altos UNIX
System V system "standard" tab setting, and is the most
likely tab setting to found at a terminal. It is required for
use with nroff -h option for high-speed output. Another
special case is the value -0, implying no tabs at all.

The arbitrary format permits the user to type any chosen
set of number, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre­
ment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+ 1 0, + 10 are considered identical.

If the name of a file is given, newform reads the first line
of the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise it
sets them as -8. This type of specification may be used to
make sure that a tabbed file is printed with correct tab set­
tings.

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

-Ttype
newform usually needs to know the type of terminal in
order to set tabs and always needs to know the type to set
margins. type is a name listed in term(CT). If no -T flag
is supplied, newform searches for the $TERM value in
the environment (see environ (M». If no type can be
found, newform tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+ 1 the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The normal (leftmost)
margin on most terminals is obtained by +mO. The mar­
gin for most terminals is reset only when the +m flag is
given explicitly.

Example

In the following example, newform converts a file named text with
leading digits, one or more tabs, and text on each line to a file begin­
ning with the text and the leading digits placed at the end of each line
in column 73 (-s option).. All tabs after the first one are expanded to
spaces (-i option). To reach the line length of 72 characters (-I option),
spaces are appended to each line up to column 72 (-a option) or lines

September 19. 1990 NEWFORM-4

NEWFORM (C) NEWFORM(C)

are truncated at column 72 (-e option). To reformat the sample file
text in this manner, enter:

newform -s -i -1 -a -e text

Exit Codes

o -normal execution
1 - for any error

See Also

csplit(C)

Diagnostics

All diagnostics are fatal.
usage: ...
not -s format
can't open file
internal line too long

tabspec in error

newform was called with a bad option.
There was no tab on one line.
Self-explanatory .
A line exceeds 512 characters after being
expanded in the internal work buffer.
A tab specification is incorrectly format­
ted, or speci fied tab stops are not ascend-
ing.

tabspec indirection illegal A tabspec read from a file (or standard
input) may not contain a tabspec referenc­
ing another file (or standard input).

Notes

newform normally only keeps track of physical characters; however,
for the ·i and -0 options, newform will keep track of backspaces in
order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the
standard input (by use of -i;·· or ·0··).

If the ·f option is used, and the last ·0 option specified was "-0--" ,
and was preceded by either "-0--" or a "-i--" , the tab specification
format line will be incorrect.

September 19, 1990 NEWFORM-5

NEWGRP (C) NEWGRP (C)

newgrp
logs user into a new group

Syntax

newgrp [-] GROUP

Description

newgrp changes the group identification of its caller. The same per­
son remains logged in, and the current directory is unchanged, but cal­
culations of access permissions to files are performed with respect to
the new group ID.

newgrp without an argument changes the group identification to the
group in the password file. This changes the caller's group identifica­
tion back to the original group.

If the first argument to newgrp is a hyphen (-), the user will actually
be logged in again as a member of the new group, GROUP. (that is,
newgrp - GROUP)

If the first argument to newgrp is a " - ," but GROUP is not specified,
the user will be logged in again as a member of the caller's original
group identification according to the password file.

Files

/etc/group

/etc/passwd

See Also

10gin(M), group(F)

Notes

The· newgrp command executes, but does not fork, a new shell. If your
login shell is a C shell and you invoke newgrp , you will have to press
CTRL-D when you wish to log out. Typing the csh (C) logout com­
mand will result in an error message. Note also that the newgrp com­
mand causes the csh history list to start again at 1.

March 15, 1989 NEWGRP-1

NEWGRP (C) NEWGRP (C)

Standards Conformance

newgrp is conformant with:

AT&T SVID Issue 2, Select Code 307~127;
and The XlOpen Portability Guide II of January 1987.

March 15, 1989 NEWGRP-2

NEWS (C) NEWS (C)

news
print news items

Syntax

news [-a] [-n] [-s] [items]

Description

news is used to keep the user informed of current events. By conven­
tion, these events are described by files in the directory lusr/news.

When invoked without arguments, news prints the contents of all
current files in lusr/news, most recent first, with each preceded by an
appropriate header. news stores the "currency" time as the modifica­
tion date of a file named .news time in the user's home directory (the
identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are con­
sidered "current."

The -a option causes news to print all items, regardless of currency.
In this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the
stored time.

All other arguments are assumed to be specific news items that are to
be printed.

If the INTERRUPT key is struck during the printing of a news item,
printing stops and the next item is started. Another INTERRUPT
within one second of the first causes the program to terminate.

Files

/usr/news/*
$HOME/.news_time

March 15, 1989 NEWS-1

NEWS (C)

See Also

profile(M). environ(M)

Standards Conformance

news is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989

NEWS (C)

NEWS-2

NICE (C) NICE (C)

nice
runs a command at a different scheduling priority

Syntax

nice [-increment] command [arguments]

Description

The nice command is used to execute a command at a different sched­
uling priority than usual. Each process has a "nice value" which is
used to calculate its priority. Nice values range from 0 to 39, with
higher nice values resulting in lower priorities. By default, commands
have a nice value of 20. nice executes command with a nice value
equal to 20 plus increment. If no increment is given, an increment of
lOis assumed.

The super-user may run commands with priority higher than normal
by using a double negative increment. For example, an argument of
--10 would decrement the default to produce a nice value of 10, which
is a higher scheduling priority than the default of 20.

See Also

nohup(C), csh(C), nice(S)

Diagnostics

nice returns the exit status of command.

Notes

If the default nice value plus increment is larger than 39, a nice value
of 39 will be used. If a nice value less than zero is requested, zero will
be used.

Note also that this description of nice applies only to programs run
under the Bourne Shell. The C-Shell has its own nice command,
which is documented in csh(C).

Standards Conformance

nice is conformant with:

March 15, 1989 NICE-1

NICE (C) NICE (C)

AT&T SVID Issue 2, Select Code 307-127.

March 15. 1 989 NICE-2

NL(C) NL (C)

nl
adds line numbers to a file

Syntax

nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p] [-Inurn] [-ssep]
[-wwidth] [-nformat] file

Description

nl reads lines from the named file, or the standard input if no file is
named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in
effect.

nl views the text it reads in terms of logical pages. Line numbering is
reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid. Dif­
ferent line numbering options are independently available for header,
body, and footer (e.g. no numbering of header and footer lines while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines containing
nothing but the following character(s):

Page Section

Header

Body

Footer

Line Contents

\:\:\:

\:\:

\:

Unless signaled otherwise, nl assumes the text being read is in a sin­
gle logical page body.

Command options may appear in any order and may be intermingled
with an optional filename. Only one file may be named. The options
are:

-btype Specifies which logical page body lines are to be num­
bered. Recognized types and their meaning are: a, num­
ber all lines; t, number lines with printable text only; n,
no line numbering; pstring, number only lines that con­
tain the regular expression specified in string. Default
type for logical page body is t (text lines numbered).

March 15, 1989 NL-1

NL(C) NL(C)

-htype Same as -btype except for header. Default type for logi­
cal page header is n (no lines numbered).

-ftype Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

-p Does not restart numbering at logical page delimiters.

-vstart# Start# is the initial value used to number logical page
lines. Default is 1.

-iincr [ncr is the increment value used to number logical page
lines. Default is 1.

-ssep Sep is the character(s) used in separating the line number
and the corresponding text line. Default sep i& a tab.

-wwidth Width is the number of characters to be used for the line
number. Default width is 6.

-nJormat Format is the line numbering format. Recognized values
are: In, left justified, leading zeroes suppressed; rn, right
justified, leading zeroes suppressed; rz, right justified,
leading zeroes kept. Default Jormat is rn (right justified).

-Inurn Nurn is the number of blank lines to be considered as one.
For example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or, -fa
option is set). Default is 1.

See Also

pr(C)

Standards Conformance

nl is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 NL-2

NOHUP (C) NOHUP (C)

nohup
runs a command immune to hangups and quits

Syntax

nohup command [arguments]

Description

nohup executes command with hangups and quits ignored. If output is
not redirected by the user, it will be sent to nohup.out. If the user
does not have write permission in the current directory, output is
redirected to $HOME/nohup.out.

See Also

nice(C), signal(S)

Standards Conformance

nohup is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 NOHUP-1

00 (C) 00 (C)

od
displays files in octal format

Syntax

od [-bcdox] [file] [[+]offset[.][b]]

Description

od displays file in one or more formats as selected by the first argu­
ment. If the first argument is missing, -0 is default. The meanings of
the format options are:

-b Interprets bytes in octal.

-c Interprets bytes in ASCII. Certain nongraphic characters
appear as C escapes: nu11=\O, backspace=\b, form feed=\f,
newline=\n, return=\r, tab=\t; others appear as 3-digit octal
numbers.

-d Interprets words in decimal.

-0 Interprets words in octal.

-x Interprets words in hex.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where displaying is
to start. This argument is normally interpreted as octal bytes. If. is
appended, the offset is interpreted in decimal. If b is appended, the
offset is interpreted in blocks. If the file argument is omitted, the
offset argument must be preceded by +.

The display continues until end-of-file.

See Also

hd(C), adb(CP)

Standards Conformance

od is conformant with:
AT&T SVID Issue 2, Select Code 307-127;

March 15, 1989 00-1

00 (C) 00 (C)

and The X/Open Portability Guide II of January 1987.

March 15, 1989 00-2

OTAR(C) OTAR (C)

otar
original tape archive command

Syntax

otar

Syntax

tar [crtux] [bBefFiIhklmnopsvVw 0, ... ,7] [arguments] file ...

Description

The otar command saves and restores files on magnetic tape or floppy
disk. Altos UNIX System V contains otar to provide compatibility
with original tar archives made on the earlier Altos System Voperat­
ing system. Refer to the "Notes" section below for other guidelines
on using tar to read archives produced with otar (or with tar on Altos
System V).

In addition to providing compatability with Altos System V's original
tar command, otar offers these other features:

• Creates/copies directories even if they are empty, whereas tar
does not.

• Copies device nodes and pipes, whereas tar does not.

• Retains file and directory permissions as originally copied
(unless when used with the 0 option).

• Incremental backups (with the I option).

• Multivolume archiving.

The actions produced by otar are controlled by a key argument, which
contains at least one function letter followed by one or more function
modifiers. Other arguments to the command are file or directory
names specifying which files are to be dumped or restored. In all
cases, a directory name refers to the files and (recursively) subdirec­
tories of that directory.

Tar permits a file to extend across media boundaries.

March 15, 1991 OTAR-1

OTAR (C) OTAR (C)

Specify the function portion of the key by one of the following letters:

e Creates a new tape; writing begins at the beginning of the tape
instead of after the last file. When you use this command, all pre­
vious data is erased.

r Writes the named files at the end of the tape (only for seekable de­
vices).

t Lists the named file each time it occurs on the tape. If no file argu­
ment is given, all of the names on the tape are listed.

u Adds the named file to the tape if it is not already there or if it has
been modified since last put on the tape. This option can be slow
(only for seekable devices).

x Extracts the named file from the tape. If the named file matches a
directory whose contents have been written on the tape, this direc­
tory is (recursively) extracted. The owner and mode are restored
(if possible). If no file argument is given, the entire content of the
tape or floppy is extracted. If multiple entries specifying the same
file are on the tape, the last version will overwrite all preceding
versions.

In addition to the key argument function, you can use the following
modifiers. Arguments to the modifiers are given in the same order as
the modifiers themselves.

b Causes otar to use the next argument as the blocking factor for
tape records. The default blocking size is 18 for floppies, 126 for
cartridge tapes, 20 for other tapes, and 1 for all other devices. Use
the same blocking factor on the x (extract) as used on the e (create)
option. (The tar default for Altos System V on 386 computers was
also 18, and the maximum was 1024. The blocking defaults for the
Altos UNIX System V tar are set in /ete/default/tar.)

This option should be used to set different blocking factors only on
raw magnetic tape archives (see f below). Use the default block­
ing factors for all other devices.

Don't use the b option with archives that are going to be updated.
If the archive is on a disk file, the b option should not be used at
all, as updating an archive stored in this manner can destroy it.

B Archives all files modified after the modification date and time of
the file you specify (instead of /ete/bkupdate).

March 15, 1991 OTAR-2

OTAR (C) OTAR (C)

Can only be used with the I option. Also otar sets the modification
time of the given file after the backup is complete. The B option
sets the modification time in the user-specified file. For example:

otar cvtbBI /dev /rctO 1024 /etc/time file ./*

The user-specified file is set to zero length when its modification
date is set.

e Prevents files from being split across volumes (tapes or disks). If
there is not enough room on the present volume for a given file,
otar prompts for a new volume. This is only valid when you also
specify the k option.

f Causes otar to use the next argument as the name of the archive
instead of /dev/tar. If the name of the file is '.', otar writes to
standard output or reads from standard input, whichever is appro­
priate. Thus, you can use tar to move hierarchies with the com­
mand:

cd fromdir; Otar cf - . I (cd todir; Otar xf -)

You must use this option with magnetic tape and add-on hard
disks. The default is to floppy disk.

F Causes otar to use the next argument as the name of a file from
which succeeding arguments are taken. A dash (.) signifies that
arguments are taken from.the standard input.

h Archives the contents of the symbolically-linked named files. otar
cv will only archive linkage information; tar chv will archive the
contents.

i date time
Archives all files modified after date and time. The format for date
and time is:

MM/DD/Yf ,HH:MIN:SEC

Files modified before date and time will be skipped. Any trailing
portion may be omitted. DD, HH, and MIN default to 0; IT
defaults to the current year. For example:

otar cvif 12/22/86,04:00:00 /dev/rctO files

I Archives all files modified after the date and time as defined by the
modification time of the file /etc/bkupdate. Also, sets the
modification time of /etc/bkupdate after the backup is complete.
To use a different file, see the B option.

March 15, 1991 OTAR-3

OTAR (C) OTAR (C)

k Causes otar to use the next argument as the size of an archive vol­
ume in kilobytes. The minimum value allowed is 250. This value
must be a multiple of the blocking factor (9K by default). For tape,
you can specify the block size using the b option. Very large files
are split into "extents" across volumes. When restoring from a
multivolume archive, otar only prompts for a new volume if a split
file has been partially restored.

Tells otar to notify you if the link count of a dumped file doesn't
match the actual number of dumped links to that file. If this option
is not specified, no error messages are printed.

m Tells otar not to restore the modification time; the time of extrac­
tion then becomes the modification time.

n Indicates the archive device is not a magnetic tape. The k option
implies this. Because it can seek over files it wishes to skip, otar
can quickly list and extract the contents of an archive. Sizes are
printed in kilobytes instead of tape blocks.

o Causes extracted files to take on the user/group identifier of the
user running the program, rather than those on the tape.

p Indicates that files are extracted using their original permissions.
It is possible that a regular user may be unable to extract files
because of the permission associated with the files or directories
being extracted.

s file
Runs the /bin/sum algorithm on the archive and writes the resulting
checksum in file.

v Displays the name of each file it treats preceded by the function
letter. With the t function, v gives more information about the tape
entries than just the name and path.

V Verifies the named file on the tape. otar will compare the tape file
to the disk file and report any file change or comparison errors. If
no file argument is given, the entire contents of the tape or floppy
is verified. otar will exit with an exit code of 9 if there are any
verify errors.

w Causes otar to display the action to be taken and file name, then
wait for user confirmation. If you type y, the action is performed.
Any other input causes the file to be skipped.

0, ... ,7
Selects the drive on which the archive is mounted. This option
should only be selected if you have linked the appropriate /dev/mt
to the desired device.

March 15, 1991 OTAR-4

OTAR (C)

Files

/dev/tar
/tmp/tar*

Examples

OTAR (C)

Default input/output device

This command copies the directory /usr/john to floppy disk(s}:

otar cv /usr/john

This command copies the files on the floppy disk to the directory
/usr/john. The cd command is used first to make sure you are in the
correct directory:

cd /usr/john
otar xv

This command displays the contents of the floppy disk you have in the
drive:

otar tv

This command pipes the otar tv command through the lpr command.
This causes the contents of the floppy disk to be printed out on your
serial printer:

otar tv I lpr

This command copies files from a floppy disk device named
/dev/fdI96dsI5, a 5~ inch floppy drive configured as the second
floppy drive (fdl). (Other arguments are files, the names of files to
archive, and 1152, the capacity of the disk in kilobytes). Arguments
to key letters are given in the same order as the key letters themselves,
thus the fk key letters have corresponding arguments /dev/fdI96dsI5
and 1152. If a file is a directory, the contents of the directory are
recursively archived:

otar cvfk /dev/fdI96dsI5 1152 files

This command extracts all the files with the exact same pathnames
used when the archive was created:

otar xvf /dev /fd096ds 15

This command copies the directory /usr/john to cartridge tape(s}:

otar cvtb /dev/rctO 126 /usr/john

March 15, 1991 OTAR-5

OTAR (C)

Notes

OTAR (C)

If you use tar to read an archive created by otar, you may see error
messages concerning directories, pipes, or device nodes. You should
ignore these messages. Your tar operation will still work. Note, how­
ever, that you should still use the same blocking factor to read a tape
as was used to originally create the tape.

Value Added

otar is an extension of AT&T System V provided by Altos UNIX Sys­
temV.

March 15, 1991 OTAR-6

PACK (C)

pack, peat, unpack
compresses and expands files

Syntax

pack [-] name ...

pcat name ...

unpack name ...

Description

PACK(C)

pack attempts to store the specified files in a compressed form. Wher­
ever possible, each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and
the owner of name. If pack is successful, name will be removed.
Packed files can be restored to their original form using unpack or
pcat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte
basis. If the - argument is used, an internal flag is set that causes pack
to display information about the file compression. Additional occur­
rences of - in place of name will cause the internal flag to be set and
reset.

The amount of compression obtained depends on the size of the input
file and the character frequency distribution. Because a decoding tree
forms the first part of each .z file, it is usually not worthwhile to pack
files smaller than three blocks, unless the character frequency distri­
bution is very scattered, which may occur with printer plots or pic­
tures.

Typically, text files are reduced to 60-75 % of their original size. Load
modules, which use a larger character set and have a more uniform
distribution of characters, show little compression, the packed ver­
sions being about 90% of the original size.

pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

- The file appears to be already packed

March 15. 1989 PACK-1

PACK (C) PACK (C)

- The filename has more than 12 characters

- The file has links

- The file is a directory

- The file cannot be opened

- No disk storage blocks will be saved by packing

- A file called name.z already exists

- The .z file cannot be created

- An I/O error occurred during processing

The last segment of the filename must contain no more than 12 char­
acters to allow space for the appended .z extension. Directories can­
not be c?mpressed.

Pcat does for packed files what cat(C) does for ordinary files. The
specified files are unpacked and written to the standard output. Thus
to view a packed file named name.z use:

peat name.z

or just:

peat name

To make an unpacked copy, say nnn, of a packed file named name.z
without destroying name .z, enter the command:

peat name >nnn

Pcat returns the number of files it was unable to unpack. Failure may
occur if:

- The filename (exclusive of the .z) has more than 12 characters

- The file cannot be opened

- The file does not appear to be the output of pack

unpack expands files created by pack. For each file name specified in
the command, a search is made for a file called name.z (or just name,
if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .z suffix
stripped from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

March 15, 1989 PACK-2

PACK (C) PACK (C)

unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in pcat, as
well as in a file where the "unpacked" name already exists, or if the
unpacked file cannot be created.

Standards Conformance

pack, pcat and unpack are conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 PACK-3

PASSWD (C) PASSWD (C)

passwd
change login, modem (dialup shell), filesystem, or
group password

Syntax

passwd [-mgF] [-dluf] [-n minimum] [-x expiration] [-r retries]
[name]
passwd -s [-a] [name]

Description

The passwd command is used by ordinary users to:

• Change or delete their own login password.

• List some of the attributes that apply to their account.

In addition, system administrators can use the passwd command to:

• Change or delete any user's login password.

• Change or delete modem (dialup shell), filesystem mount, and
group passwords.

• Lock or unlock any user's account.

• Invalidate (lock) dialup shell, filesystem, and group passwords.

• List some of the attributes of all users, or any single user.

• Change some of the attributes of any user.

However, it is recommended that system administrators use the
sysadmsh(ADM) Accounts selection to administrate passwords. A
user is considered to be a system administrator if they are logged in as
someone who has the auth subsystem authorization.

Choosing a good password.

Your login password is one of the most important defenses against
security breaches. If a malicious person cannot log into a system, it is
much harder for that person to steal or tamper with your data. Hence,
by choosing a hard-to-guess password (either of your own invention or
one suggested by the system), regularly changing it, and keeping it
secret, you can foil many attacks on your system.

March 19, 1990 PASSWD-1

PASSWD (C) PASSWD (C)

In general, a password should:

• Consist of a mixture of upper- and lower-case letters, digits (0 - 9),
and other non-letters (such as @, *, -, I, space, tab, and control
characters).

• Be changed frequently (at least once every six months to a year,
and more often as necessary).

• Be different on different machines.

• Be easy to remember, so you don't have to write it down.

• Be kept secret and known only by you.

Passwords should not:

• Be the name of a person, place, or thing; nor should a password be
the same as any user's login name, any machine's name, or the
name of any group.

• Be a correctly spelt word, street or telephone number, ZIP or postal
code; nor should a password be a birthday or anniversary of you or
anyone you know.

• Be written down (anywhere! - not on paper or in a file); nor should
passwords be stored in the function keys of a terminal or memory
of an intelligent modem.

• Be told to any other person (not even for use in an "emergency");
nor should a password be kept if you suspect someone else knows
it.

Spelling a word backwards or appending a digit to a word do not turn
a poor password choice into a "good" password. However, taking
two or three unrelated words and combining them with some non­
letters is a reasonable way of choosing an easy-to-remember but
hard-to-crack password. On Altos UNIX System V, passwords can be
up to 80 characters long, so nonsensical rhymes (for example) can also
be used as passwords.

User login passwords.

When passwd is used to change or delete the password for user name,
the old password (if any) is prompted for. (The password is not dis­
played as it is being entered.) System administrators are not prompted
for the old password unless they are attempting to change their own
password; the superuser is never prompted for the old password. The
passwd command can only be used to change or delete the password
for user name by system administrators and the user authorized to
change user name's password. Normally, users are authorized to
change their own password.

March 19, 1990 PASSWD-2

PASSWD (C) PASSWD (C)

Depending on how the system administrator has configured the
account, the user mayor may not be able to choose their own pass­
word, or may have a password chosen for them. If they can neither
choose their own password nor have passwords generated for them,
the password cannot be changed. If the user is able to do both, passwd
asks which should be done.

A password is considered valid until it has expired. Passwords expire
if they are not changed or deleted before the expiration time has
passed. Once expired, the user is required to change (not delete) their
password the next time they log in. If a user fails to do so before the
password's lifetime has passed, the password is considered dead and
the user's account is locked.

Once locked, the user may not log in, may not be su(C),ed to, and no
at (C), batch (C), or cron(C) jobs for that user may run. Only a system
administrator can unlock a user with a dead password; a new password
must be assigned.

To discourage re-use of the same password, the system administrator
may set a minimum change time. After changing or deleting a pass­
word, the password may not be changed again (even by a system
administrator) until at least that much time has elapsed.

Passwords may be deleted (or changed to be empty) only if the user is
authorized to not have a password. Users without passwords are not
recommended. (An empty password is prompted for when logging in,
but a deleted password is not prompted for at login.)

If a password is being changed and the user has elected (or is forced)
to choose a system-generated password, each suggested password is
printed along with a hyphenated spelling that suggests how the pass­
word could be pronounced. To accept a suggested password, enter the
password; if entered correctly, passwd will prompt for the suggested
password to be entered again as confirmation. To reject a suggestion,
just enter RETURN ; to abort the change altogether, either enter
, 'quit" or interrupt passwd.

If a password is being changed and the user has elected (or is forced)
to assign a password of their own choosing, the new password is
prompted for twice. It is checked for being "obvious" after the first
prompt, and if deemed to be acceptable is prompted for again. If the
proposed password is successfully entered a second time, it becomes
the new password for user name.

Both system-generated and self-chosen passwords are checked for
being easy-to-guess. See the section on "Checking for obvious pass­
words" (below) for a description of the checks.

March 19, 1990 PASSWD-3

PASSWD (C) PASSWD (C)

When dealing with a user's login password, the following options are
recognized:

-d Delete the password. A password may be deleted only if the user
is authorized to not have a password. System administrators must
always specify name; otherwise, the name of the user who logged
in is used.

-f Force user name to change their password the next time they log
in. This option may be specified only by system administrators,
and only when the user's password is not being changed or deleted;
name must be explicitly given.

-) Lock user name out of the system by applying an administrative
lock; only system administrators may do this and they must specify
name.

-u Remove any administrative lock applied to user name; only system
administrators may do this and they must specify name.

-n minimum
Set the amount of time which must elapse between password
changes for user name to minimum days. Only system administra­
tors may do this and they must specify name.

-x expiration
Set the amount of time which may elapse before the password of
user name expires to expiration days. Only system administrators
may do this and they must specify name. Once a password has
expired, the user must change it the next time they log in.

-r retries
Up to retries attempts may be made to choose a new password for
user name.

-s Report the password attributes of user name (or, if the -a option is
given, of all users). The format of the report is:

name status mmldd/yy minimum expiration

where status is PS if the user has a password, LK is the user is
administratively locked, or NP when the user does not have a pass­
word. The date of the last successful password change (or dele­
tion) is shown as mmldd/yy. If neither name nor -a is specified, the
name of the user who logged in is assumed. Only system adminis­
tratorS can examine the attributes of users other than themselves.

March 19, 1990 PASSWD-4

PASSWD (C) PASSWD (C)

If no -d, -f, -I, -u, or -s option is specified, the password for user name
is changed as described above. If no name is given and no option
which requires name is given, then the name of the user who logged in
is used. Only the -3 option may be specified with the -s option.

Modem (dialup shell) passwords.

When a user whose login shell is listed in letc/dY3SSwd with a
(encrypted) password logs in on a terminal line listed in letc/di3lups,
the password in letc/dY3SSwd must be supplied before the login
succeeds. The -m option to password allows system administrators to
change, delete, or invalidate (lock) the passwords for login shell
name:

-d Delete the password.

-I Invalidate ("lock") the password by arranging so that no matter
what the user enters, it will not be a valid password. Doing so
causes the old password to be lost.

-r retries
Up to retries attempts may be made to choose a new password.

The name must always be specified. If name begins with a slash (" /' ')
the entire shell pathname must match. Otherwise the password for
every shell whose basename is name is changed.

If neither the -d nor -I option is specified, the password is changed.
The new password is prompted for twice, and must pass checks similar
to those for login passwords (see below).

Filesystem mount passwords.

A password may be required when mounting a filesystem; see mnt(C).
The -F option to passwd allows system administrators to change,
delete, or invalidate (lock) the password for filesystem name. The
options are the same as for modem passwords (see above).

Group passwords.

A password may be required when a user changes their current work­
ing group; see newgrp(C). The -g option to passwd allows system
administrators to change, delete, or invalidate (lock) the password for
group name. The options are the same as for modem passwords (see
above).

March 19, 1990 PASSWD-5

PASSWD (C) PASSWD (C)

Checking for obvious passwords.

To discourage poor password choices, various checks are applied to
reject unacceptable passwords. The checks which are applied depend
on the type of password being checked and the system's configuration.
Most of the checks for being easy-to-guess are configurable; see
goodpw(ADM).

The check procedure is as follows (a password is restricted if, accord­
ing to sysadmsh Accounts, it is to be "checked for obviousness"):

la.

lb.

User login passwords only: The new password must not be the
same as the old password. The password must not be empty (or be
deleted) unless the user is not required to have a password.

All other passwords: The new and old password may be the same.
Empty passwords are treated as deleted passwords and are always
acceptable.

2. All (non-empty) passwords: If the password is not empty, it must
be at least PASSLENGTH characters long (see below).

3. All (non-empty) passwords: If the goodpw utility can be run, it is
used to perform all further checks. If the file
CHECKDIR/type /strength exists (and can be read by goodpw) that
file is used to modify the default settings in /etc/default/goodpw.
The CHECKDIR is specified by CHECKDIR in
/etc/default/passwd and type is the kind of password being
checked (user, modem, group, or filsys). The strength is the
degree of checking to be done: secure if the user is restricted (or,
for all other password types, if the system default is restricted);
otherwise weak.

4. When goodpw cannot be run (all passwords): If the password is
not empty, it must contain at least one character which is not a
lower case letter (but must not consist solely of digits).

5. When goodpw cannot be run (user login passwords only): Finally,
for user login passwords which are restricted, the password must
not be a palindrome, any user's login name, the name of any group,
or a correctly spelt English word (American spelling); see
acceptyw(S).

System-generated passwords are not checked unless the user is re­
stricted (see above), in which case the generated password must pass
the checks in step 5 before it is suggested to the user. Generated pass­
words are never checked by goodpw. The minimum value for
PASSLENGTH, and the minimum length of a generated password,
are computed based on the password's lifetime, delay between login
attempts, and other factors; see passien(S).

March 19, 1990 PASSWD-6

PASSWD (C) PASSWD (C)

Defaults.

Several parameters may be specified in /etc/default/passwd. The
various settings, and their default values are:

PASSLENGTH=5
The minimum length of a password. If outside the range 3 to 80
(inclusive), then it is set to 5. The actual minimum length used by
passwd is the maximum of this value and a value computed by tak­
ing into consideration the lifetime of the password (and other fac­
tors).

RETRIES =4
The maximum number of repeated attempts to change a password
that has been rejected. If less than 2, then 2 is assumed.

ONETRY=YES
If set to YES, a rejected password is added to the stop-list passed
to goodpw. This prevents simplistic modifications of a rejected
password from being accepted on a later attempt.

DESCRIBE=/usr/lib/ goodpw /describe
The contents of this file are shown once (before the new password
is prompted for) and should describe the the difference between
acceptable and unacceptable passwords.

SUMMARY =/usr/lib/goodpw /summary
The contents of this file are shown each time a password is
rejected, and should be a (short) reminder of what are and are not
acceptable passwords.

CHECKDIR=/usr/lib/ goodpw /checks
A hierarchy of additional checks goodpw should perform, based on
password type and restrictions (see above).

GOODPW=/usr/bin/goodpw
An independent program that applies various checks in an attempt
to determine whether or not a password is easily guessed.

The values for the default settings may be changed to reflect the
system's security concerns.

If /etc/default/passwd does not exist or is not readable, the above
default values are used.

If the DESCRIBE or SUMMARY file defined in /etc/default/passwd
does not exist or cannot be read, short (and vague) descriptions or
summaries are issued instead. In addition, if the user who logged in is
a system administrator, an error message describing the problem is
printed.

March 19, 1990 PASSWD-7

PASSWD (C) PASSWD (C)

If the GOODPW program does not exist or is not executable, simpler
checks are done (see above). In addition, if the user who logged in is a
system administrator, an error message describing the problem is
printed.

Files

letc/passwd
List of user accounts.

Itcb/filesl authlinitiallname
Protected Password database entry for user name (where the first
character in name is initial).

letc/group
List of groups.

letc/d .Jlasswd
List of dialup shells and passwords (one per line):

shell : encrypted-password : reserved
where shell is the pathname of a login shell as used in letc/passwd.

letcl auth/systemlfiles
File Control database.

letc/auth/systeml default
System Defaults database; contains default parameters.

letc/default/passwd
Configurable settings (see above).

See Also

accepcpw(S), authcap(F), authsh(ADM), default(F), goodpw(ADM),
group(F), login(M), mnt(C), newgrp(C), passlen(S), passwd(F)

March 19, 1990 PASSWD-8

PASSWD (C)

Notes

PASSWD (C)

Group passwords should be avoided; see newgrp(C). Not all systems
support group passwords.

Not all systems support filesystem mount passwords.

Not all systems support modem (dialup shell) passwords.

The -r option is mostly useful during installation to force the newly­
installed superuser to have a password.

March 19, 1990 PASSWD-9

PASTE (C) PASTE (C)

paste
merges lines of files

Syntax

paste file I file2 .. .

paste -dIe I file2 .. .

paste -s [-dlist] filel file2 ...

Description

In the first two forms, paste concatenates corresponding lines of the
given input files filel , file2 ,etc. It treats each file as a column or
columns of a table and pastes them together horizontally (parallel
merging). It is the counterpart of cat(C) which concatenates verti­
cally, i.e., one file after the other. In the last form above, paste sub­
sumes the function of an older command with the same name by com­
bining subsequent lines of the input file (serial merging). In all cases,
lines are glued together with the tab character, or with characters from
an optionally specified list. Output is to the standard output, so it can
be used as the start of a pipe, or as a filter, if - is used in place of a
filename.

The meanings of the options are:

-d Without this option, the newline characters of each but the last file
(or last line in case of the -s option) are replaced by a tab charac­
ter. This option allows replacing the tab character by one or more
alternate characters. (See below.)

list
One or more characters immediately following -d replace the
default tab as the line concatenation character. The list is used cir­
cularly, i. e. when exhausted, it is reused. In parallel merging (i. e.
no -s option), the lines from the last file are always terminated with
a newline character, not from the list. The list may contain the
special escape sequences: \n (newline), \t (tab), \\ (backslash), and
\0 (empty string, not a null character). Quoting may be necessary,
if characters have special meaning to the shell (e.g. to get one
backslash, use -d''\\\\'').

-s Merges subsequent lines rather than one from each input file. Use
tab for concatenation, unless a list is specified with -d option.
Regardless of the list, the very last character of the file is forced to
be a newline.

March 15, 1989 PASTE-1

PASTE (C) PASTE (C)

- May be used in place of any filename to read a line from the stan­
dard input. (There is no prompting.)

Examples

Is I paste -d" " -

Is I paste - - - -

paste -s -d"\t\n" file

See Also

cut(C), grep(C), pr(C)

Diagnostics

line too long

too many files

Lists directory in one column

Lists directory in four columns

Combines pairs of lines into lines

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input
files may be specified.

Standards Conformance

paste is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 PASTE-2

PAX (C) PAX (C)

pax
portable archive exchange

Syntax

pax [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern ...]

pax -r [-cimnopuvy] [-f archive] [-s replstr] [-t device] [pattern ...]

pax -w [-adimuvy] [-b blocking] [-f archive] [-s replstr] [-t device]
[-xformat] [pathname ...]

pax -rw [-ilmopuvy] [-s replstr] [pathname ...] directory

Descri ption

pax reads and writes archive files which conform to the
ArchivelInterchange File Format specified in IEEE Std. 1003.1-
1988. pax can also read, but not write, a number of other file formats
in addition to those specified in the ArchivelInterchange File For­
mat description. Support for these traditional file formats, such as V7
tar and System V binary cpio format archives, is provided for back­
ward compatibility and to maximize portability.

pax will also support traditional cpio and System V tar interfaces if
invoked with the name "cpio" or "tar" respectively. See the cpio(C)
or tar(C) manual pages for more details.

Combinations of the -r and -w command line arguments specify
whether pax will read, write or list the contents of the specified
archive, or move the specified files to another directory.

The command line arguments are:

-w writes the files and directories specified by pathname operands
to the standard output together with the pathname and status in­
formation prescribed by the archive format used. A directory
pathname operand refers to the files and (recursively) subdirec­
tories of that directory. If no pathname operands are given,
then the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path­
names appearing on the standard input are copied.

-r pax reads an archive file from the standard input. Only files
with names that match any of the pattern operands are selected
for extraction. The selected files are conditionally created and

March 15, 1989 PAX-1

PAX (C) PAX (C)

copied relative to the current directory tree, subject to the
options described below. By default, the owner and group of
selected files will be that of the invoking process, and the per­
missions and modification times will be the sames as those in
the archive.

The supported archive formats are automatically detected on
input. The default output format is ustar, but may be overrid­
den by the -xformat option described below.

-rw pax reads the files and directories named in the pathname
operands and copies them to the destination directory. A direc­
tory pathname operand refers to the files and (recursively) sub­
directories of that directory. If no pathname operands are
given, the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path­
names appearing on the standard input are copied. The direc­
tory named by the directory operand must exist and have the
proper permissions before the copy can occur.

If neither the -r or -w options are given, then pax will list the contents
of the specified archive. In this mode, pax lists normal files one per
line, hard link pathnames as

pathname == linkname

and symbolic link pathnames (if supported by the implementation) as

pathname -> linkname

where path name is the name of the file being extracted, and linkname
is the name of a file which appeared earlier in the archive.

If the -v option is specified, then pax list normal pathnames in the
same format used by the Is utility with the -I option. Hard links are
shown as

<Is -I listing> == linkname

and symbolic links (if supported) are shown as

<Is -I listing> -> linkname

pax is capable of reading and writing archives which span multiple
physical volumes. Upon detecting an end of medium on an archive
which is not yet completed, pax will prompt the user for the next vol­
ume of the archive and will allow the user to specify the location of
the next volume.

March 15, 1989 PAX-2

PAX (C) PAX (C)

Options

The following options are available:

-a The files specified by pathname are appended to the
specified archive .

.. b blocking Block the output at blocking bytes per write to the
archive file. A k suffix multiplies blocking by 1024, a b
suffix multiplies blocking by 512 and a m suffix multi­
plies blocking by 1048576 (l megabyte). If not
specified, blocking is automatically determined on input
and is ignored for -rw.

-c Complement the match sense of the the pattern
operands.

-d Intermediate directories not explicitly listed in the
archive are not created. This option is ignored unless
the -r option is specified.

-f archive The archive option specifies the pathname of the input
or output archive, overriding the default of standard
input for -r or standard output for -w.

-i Interactively rename files. Substitutions specified by -s
options (described below) are performed before request­
ing the new file name from the user. A file is skipped if
an empty line is entered and pax exits with an exit status
of 0 if EOF is encountered.

-I Files are linked rather than copied when possible.

-m File modification times are not retained.

-n When -r is specified, but -w is not, the pattern argu­
ments are treated as ordinary file names. Only the first
occurrence of each of these files in the input archive is
read. The pax utility exits with a zero exit status after
all files in the list have been read. If one or more files in
the list is not found, pax writes a diagnostic to standard
error for each of the files and exits with a non-zero exit
status. the file names are compared before any of the -i,
-s, or -y options are applied.

-0 Restore file ownership as specified in the archive. The
invoking process must have appropriate privileges to
accomplish this.

-p Preserve the access time of the input files after they have
been copied.

March 15, 1989 PAX-3

PAX (C)

-s replstr

PAX (C)

File names are modified according to the substitution
expression using the syntax of ed(C) as shown:

-s /old/new/[gp]

Any non null character may be used as a delimiter (a I is
used here as an example). Multiple -s expressions may
be specified; the expressions are applied in the order
specified terminating with the first successful substitu­
tion. The optional trailing p causes successful mappings
to be listed on standard error. The optional trailing g
causes the old expression to be replaced each time it
occurs in the source string. Files that substitute to an
empty string are ignored both on input and output.

-t device The device option argument is an implementation­
defined identifier that names the input or output archive
device, overriding the default of standard input for -r
and standard output for -w.

-u Copy each file only if it is newer than a pre-existing file
with the same name. This implies -a.

-v List file names as they are encountered. Produces a ver­
bose table of contents listing on the standard output
when both -r and -ware omitted, otherwise the file
names are printed to standard error as they are encoun­
tered in the archive.

-x format Specifies the output archive format. The input format,
which must be one of the following, is automatically
determined when the -r option is used. The supported
formats are:

cpio The extended CPIO interchange format specified in
Extended CPIO Format in IEEE Std. 1003.1-1988.

ustar The extended TAR interchange format specified in
Extended TAR Format in IEEE Std. 1003.1-1988. This
is the default archive format.

-y Interactively prompt for the disposition of each file.
Substitutions specified by -s options (described above)
are performed before prompting the user for disposition.
EOF or an input line starting with the character q
caused pax to exit. Otherwise, an input line starting
with anything other than y causes the file to be ignored.
This option cannot be used in conjunction with the -i
option.

March 15, 1989 PAX-4

PAX (C) PAX (C)

Only the last of multiple -f or -t options take effect.

When writing to an archive, the standard input is used as a list of path­
names if no path name operands are specified. The format is one path­
name per line. Otherwise, the standard input is the archive file, which
is formatted according to one of the specifications in
ArchivelInterchange File format in IEEE Std. 1003.1-1988, or some
other implementation-de fined format.

The user ID and group ID of the process, together with the appropriate
privileges, affect the ability of pax to restore ownership and permis­
sions attributes of the archived files. (See format-reading utility in
ArchivelInterchange File Format in IEEE Std. 1003.1-1988.)

The options -a, -c, -d, -i, -I, -p, -t, -U, and -yare provided for func­
tional compatibility with the historical cpio and tar utilities. The
option defaults were chosen based on the most common usage of these
options, therefore, some of the options have meanings different than
those of the historical commands.

Operands

The following operands are available:

directory The destination directory pathname for copies when
both the -r and -woptions are specified. The directory
must exist and be writable before the copy or and error
results.

pathname A file whose contents are used instead of the files named
on the standard input. When a directory is named, all of
its files and (recursively) subdirectories are copied as
well.

pattern A pattern is given in the standard shell pattern matching
notation. The default if no pattern is specified is *,
which selects all files.

Examples

The following command

pax -w -f /dev/rmtO .

copies the contents of the current directory to tape drive O.

The commands

March 15, 1989

mkdir newdir
cd olddir

PAX-5

PAX (C)

pax -TW • newdir

copies the contents of olddir to newdir .

The command

pax -r -s ''//*usr//*,,' -fpax.out

PAX (C)

reads the archive pax. out with all files rooted in "/usr" in the archive
extracted relative to the current directory.

Files

/dev/tty used to prompt the user for information when the -i or -y
options are speci fied.

See Also

cpio(C), find(C), tar(C), cpio(M), tar(F)

Diagnostics

pax will terminate immediately, without processing any additional
files on the command line or in the archive.

pax will exit with one of the following values:

o All files in the archive were processed successfully.

>0 pax aborted due to errors encountered during operation.

Notes

Special permissions may be required to copy or extract special files.

Device, user ID, and group ID numbers larger than 65535 cause addi­
tional header records to be output. These records are ignored by some
historical version of cpio(C) and tar(C).

The archive formats described in Archive/Interchange File Format
have certain restrictions that have been carried over from historical
usage. For example, there are restrictions on the length of pathnames
stored in the archive.

When getting an "Is -1" style listing on tar format archives, link
counts are listed as zero since the ustar archive format does not keep
link count information.

March 15, 1989 PAX-6

PAX (C)

Copyright

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

PAX (C)

Redistribution and use in source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso­
ciation.

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI­
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

March 15, 1989 PAX-7

PCPIO (C) PCPIO (C)

pcpio
copy file archives in and out

Syntax

pcpio -o[Bacv]
pcpio -i[Bcdfmrtuv] [pattern ...]
pcpio -p[adlmruv] directory

Description

The pcpio utility produces and reads files in the format specified by
the cpio ArchivelInterchange File Format specified in IEEE Std.
1003.1-1988.

The pcpio -i (copy in) utility extracts files from the standard input,
which is assumed to be the product of a previous pcpio -0 • Only files
with names that match patterns are selected. Multiple patterns may
be specified and if no patterns are specified, the default for patterns is
selecting all files. The extracted files are conditionally created and
copied into the current directory, and possibly any levels below, based
upon the options described below and the permissions of the files will
be those of the previous pcpio -0 • The owner and group of the files
will be that of the current user unless the user has appropriate
privileges, which causes pcpio to retains the owner and group of the
files of the previous pcpio -0 •

The pcpio -p (pass) utility reads the standard input to obtain a list of
path names of files that are conditionally created and copied into the
destination directory based upon the options described below.

If an error is detected, the cause is reported and the pcpio utility will
continue to copy other files. pcpio will skip over any unrecognized
files which it encounters in the archive.

The following restrictions apply to the pcpio utility:

Pathnames are restricted to 256 characters.

2 Appropriate privileges are required to copy special files.

3 Blocks are reported in 512-byte quantities.

Options

The following options are available:

March 15, 1989 PCPIO-1

PCPIO (C) PCPIO (C)

-B Input/output is to be blocked 5120 bytes to the record. Can
only be used with pcpio -0 or pcpio -i for data that is directed
to or from character special files.

-a Reset access times of input files after they have been copied.
When the -I option is also specified, the linked files do not have
their access times reset. Can only be used with pcpio -0 or
pcpio -i.

-c Write header information in ASCII character for for portability.
Can only be used with pcpio -i or pcpio -0 • Note that this
option should always be used to write portable files.

-d Creates directories as needed. Can only be used with pcpio -i
orpcpio -p.

-f Copy in all files except those in patterns. Can only be used
with pcpio -i •

-I Whenever possible, link files rather than copying them. Can
only be used with pcpio -p •

-m Retain previous modification times. This option is ineffective
on directories that are being copied. Can only be used with
pcpio -i or pcpio -p •

-r Interactively rename files. The user is asked whether to rename
pattern each invocation. Read and write permissions for
Idev/tty are required for this option. If the user types a null
line, the file is skipped. Should only be used with pcpio -i or
pcpio -0.

-t Print a table of contents of the input. No files are created. Can
only be used with pcpio -i •

-u Copy files unconditionally; usually an older file will not
replace a new file with the same name. Can only be used with
pcpio -i or pcpio -p •

-v Verbose: cause the names of the affected files to be printed.
Can only be used with pcpio -i • Provides a detailed listing
when used with the -t option.

March 15, 1989 PCPIO-2

PCPIO (C) PCPIO (C)

Operands

The following operands are available:

patterns Simple regular expressions given in the name-generating
notation of the shell.

directory The destination directory.

Exit Status

The pcpio utility exits with one of the following values:

o All input files were copied.

2 The utility encountered errors in copying or accessing files or
directories. An error will be reported for nonexistent files or
directories, or permissions that do not allow the user to access
the source or target files.

It is important to use the -depth option of the find utility to generate
pathnames for pcpio • This eliminates problems pcpio could have try­
ing to create files under read-only directories.

The following command:

Is I pcpio -0 > .. /newfile

copies out the files listed by the Is utility and redirects them to the file
newfile.

The following command:

cat new file I pcpio -id "memo/al" "memo/b*"

uses the output file newfile from the pcpio -0 utility, takes those files
that match the patterns memo/al and memo/b* , creates the direc­
tories below the current directory, and places the files in the appropri­
ate directories.

The command

find. -depth -print I pcpio -pdlmv newdir

takes the file names piped to it from the find utility and copies or links
those files to another directory named newdir , while retaining the
modification time.

March 15, 1989 PCPIO-3

PCPIO (C)

Files

PCPIO (C)

/dev/tty used to prompt the user for information when the ·i or·r
options are specified. .

See Also

find(C), pax(C), tar(C), tar(F)

Copyright

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

Redistribution and use in· source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso­
ciation.

THE SOFIWARE IS PROVIDED "AS IS" AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI­
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

Standards Conformance

pcpio is conformant with:
IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NIST FIPS 151-1.

March 15, 1989 PCPIO-4

PG(C) PG (C)

pg
file perusal filter for soft-copy terminals

Syntax

pg [- number] [-p string] [-cefns] [+ linenumber] [+/ pattern /]
[files ...]

Description

The pg command is a filter which allows the examination of files one
screenful at a time on a soft-copy terminal. (The dash (-) command
line option and/or NULL arguments indicate that pg should read from
the standard input.) Each screenful is followed by a prompt. If you
press the RETIJRN key, another page is displayed; other possibilities
are listed below. This command is different from previous paginators
because it allows you to back up and review something that has
already passed.

To determine terminal attributes, pg scans the termcap(F) data base
for the terminal type specified by the environment variable TERM. If
TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-number Specifies the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24
lines, the default window size is 23.)

-p string Causes pg to use string as the prompt. If the prompt
string contains a "%d", the first occurrence of "%d"
in the prompt will be replaced by the current page num­
ber when the prompt is issued. The default prompt
string is a colon (:).

-c Homes the cursor and clears the screen before display­
ing each page. This option is ignored if clear _screen
is not defined for this terminal type in the termcap (F)
data base.

-e Causes pg not to pause at the end of each file.

-f Inhibits pg from splitting lines. In the absence of the -f
option, pg splits lines longer than the screen width, but
some sequences of characters in the displayed text (for
example, escape sequences for underlining) give

March 15, 1989 PG-1

PG (C) PG (C)

-0

-s

undesirable results.

Normally, commands must be terminated by pressing
the RETURN key (ASCII newline character). This
option causes an automatic end of command as soon as
a command letter is entered.

Causes pg to display all messages and prompts in stan­
dout mode (usually inverse video).

+linenumber Starts up at linenumber.

+Ipatternl Starts up at the first line containing the· regular expres­
sion pattern.

The responses that may be entered when pg pauses can be divided into
three categories: those that cause further perusal, those that search,
and those that modify the perusal environment.

Commands which cause further perusal normally take a preceding
address (an optionally signed number indicating the point from which
further text should be displayed). pg interprets this address in either
pages or lines depending on the command. A signed address specifies
a point relative to the current page or line, and an unsigned address
specifies an address relative to the beginning of the file. Each com­
mand has a default address if no address is provided.

The perusal commands and their defaults are as follows:

(+ 1)RETURNkey
Causes one page to be displayed. The address is specified in
pages.

(+1) I
With a signed address, causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an
unsigned address this command displays a full screen of text
beginning at the specified line.

(+ 1) d or Ctrl-D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address:

• or Ctrl-L
Causes the current page of text to be redisplayed.

$ Displays the last window full in the file. Use with caution when
the input is a pipe.

March 15, 1989 PG-2

PG (C) PG (C)

The following commands are available for searching for text patterns
in the text. The regular expressions described in ed(C) are available.
They must always be terminated by a newline character, even if the -n
option is speci fied.

i/patternl
Search forward for the ith (default i=l) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of the current file, without wrap-around.

r'pattern A

i?pattern?
Search backwards for the ith (default i=l) occurrence of pattern.
Searching begins immediately before the current page and contin­
ues to the beginning of the current file, without wrap-around. The
caret C) notation is useful for terminals which will not properly
handle the question mark (?).

After searching, pg displays the line found at the top of the screen.
You can modify this by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from
now on. Use the suffix t to restore the original situation.

The following commands modify the environment of perusal:

in Begins perusing the ith next file in the command line. The
default value of i is 1.

ip Begins perusing the ith previous file in the command line.
The default value of i is 1.

iw Displays another window of text. If i is present, set the win­
dow size to i.

sfilename
Saves the input in the named file. Only the current file being
perused is saved. The white space between the s and filename
is optional. This command must always be terminated by a
newline character, even if the -n option is specified.

h Help displays abbreviated summary of available commands.

q orQ Quitpg.

!command
command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the
default shell is used. This command must always be ter­
minated by a newline character, even if the -n option is
specified.

March 15, 1989 PG-3

PG(C) PG (C)

At any time when output is being sent to the terminal, the user can
press the quit key (normally Ctrl-\) or the INTERRUPT (BREAK) key.
This causes pg to stop sending output, and display the prompt. The
user may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, because any
characters waiting in the terminal's output queue are flushed when the
quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(C),
except that a header is printed before each file (if there is more than
one).

Example

,To use pg to read system news, enter:

news I pg -p "(Page %d):"

Files

/etc/termcap Terminal information data base

/tmp/pg* Temporary file when input is from a pipe

See Also

ed(C), grep(C), termcap(M)

Notes

If terminal tabs are not set every eight positions, undesirable results
may occur.

When using pg as a filter with another command that changes the ter­
minalI/O options terminal settings may not be restored correctly.

While waiting for terminal input, pg responds to "BREAK and DEC' by
terminating execution. Between prompts, however, these signals
interrupt pg's current task and place you in prompt mode. Use these
signals with caution when input is being read from a pipe, since an
interrupt is likely to terminate the other commands in the pipeline.

The z and f commands used with more are available, and the terminal
slash (I), caret C), or question mark (?) may be omitted from the
searching commands.

March 15, 1989 PG-4

PG(C) PG (C)

Standards Conformance

pg is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X10pen Portability Guide II of January 1987.

March 15. 1989 PG-5

PR (C)

pr

prints files on the standard .output

Syntax

pr [options] [files]

Description

PR (C)

pr prints the named files on the standard output. If file is -, or if no
files are specified, the standard input is assumed. By default, the list­
ing is separated into pages, each headed by the page number, date and
time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the -s option is used.
lines are not truncated and columns are separated by the separation
character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

Options may appear singly or combined in any order. Their meanings
are:

+k Begins printing with page k (default is 1).

-k Produces k -column output (default is 1). The options -e and -i
are assumed for multicolumn output.

-a Prints multicolumn output across the page.

-m Merges and prints all files simultaneously, one per column
(overrides the -k, and -a options).

-d Double-spaces the output.

-eck Expands input tabs to character positions k+l, 2*k+l, 3*k+l,
etc. If k is 0 or is omitted, default tab settings at every 8th posi­
tion are assumed. Tab characters in the input are expanded into
the appropriate number of spaces. If c (any nondigit character)
is given, it is treated as the input tab character (default for c is
the tab character).

-ick In output, replaces whitespace wherever possible by inserting
tabs to character positions k+l, 2*k+l, 3*k+l, etc. If k is 0 or
is omitted, default tab settings at every 8th position are

March 15, 1989 PR-1

PR(C) PR (C)

assumed. If c (any nondigit character) is given, it is treated as
the output tab character (default for c is the tab character).

-nck Provides k-digit line numbering (default for k is 5). The number
occupies the first k+ 1 character positions of each column of nor­
mal output or each line of -m output. If c (any nondigit charac­
ter) is given, it is appended to the line number to separate it
from whatever follows (default for c is a tab).

-wk Sets the width of a line to k character positions (default is 72 for
equal-width multicolumn output, no limit otherwise).

-ok Offsets each line by k character positions (default is 0). The
number of character positions per line is the sum of the width
and offset.

-Ik Sets the length of a page to k lines (default is 66).

-h Uses the next argument as the header to be printed instead of
the filename.

-p Pauses before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a car­
riage return).

-f Uses form feed character for new pages (default is to use a
sequence of linefeeds). Pauses before beginning the first page if
the standard output is associated with a terminal.

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the 5-line identifying header nor the 5-line trailer
normally supplied for each page. Quits printing after the last
line of each file without spacing to the end of the page.

-sc Separates columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

March 15, 1989 PR-2

PR (C)

Examples

PR (C)

The following prints filel and file2 as a double-spaced, three-column
listing headed by "file list' ':

pr -3db "file list" filel file2

The following writes filel on file2, expanding tabs to columns 10, 19,
28,37, ... :

pr -e9 -t <filel >file2

See Also

cat(C)

Standards Conformance

pr is conformant with:
AT&T SVID Issue 2, Select Code 307 .. 127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 PR-3

PS (C) PS (C)

ps
reports process status

Syntax

ps [options]

Description

ps prints certain information about active processes. Entering ps
without any options calls up information about processes associated
with the current terminal. The following options control the amount
and type of information displayed.

Options

-e Prints information about all processes.

-d Prints information about all processes, except process
group leaders.

-a Prints information about all processes, except process
group leaders and processes not associated with a ter­
minal.

-f Generates afull listing. Normally, a short listing con­
taining only process ID, terminal ("tty") identifier,
cumulative execution time, and the command name is
printed. Under the -f option, ps tries to determine and
print the process' original command name and argu­
ments. If it cannot, it prints the short listing version of
the command name within square brackets. See below
for the meaning of columns in a full listing.

-I Generates a long listing, including status, priority, loca­
tion, and memory usage information for each process.

-t tlist Restricts listing to data about the processes associated
with the terminals given in tlist, where tlist can be in
one of two forms: a list of terminal identifiers
separated from one another by a comma, or a list of ter­
minal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or
more spaces.

March 16,1991 PS-1

PS(C) PS(C)

-p plist Restricts listing to data about processes whose process
ID numbers are given in plist , where plist is in the same
format as tlist .

-u ulist Restricts listing to data about processes whose user ID
numbers or login names are given in ulist, where ulist
is in the same format as tlist. In the listing, the numeri­
cal user ID is printed unless the -f option is used, in
which case the login name is printed.

-g g list Restricts listing to data about processes whose process
groups are given in glist, where glist is a list of process
group leaders and is in the same format as tlist.

-n name list The argument is taken as the name of an alternate
name list (/unix is the default).

Display Columns

The column headings and the meaning of the columns in a ps listing
are given below; the letters f and I indicate the option (full or . long)
that causes the corresponding heading to appear; all means that the
heading always appears. Note that these two options only determine
what information is provided for a process; they do not determine
which processes will be listed.

F (1)

s (1)

March 16. 1991

A status word consisting of flags associated with
the process. Each flag is associated with a bit in
the status word. These flags are added to form a
single octal number. Process flag bits and their
meanings are:

01 in core;
02 system process;
04 locked in core (e.g., for physical I/O);
10 being swapped;
20 being traced by another process.

The state of the process:

o
S
R
I
Z
T
B

non-existent;
sleeping;
running;
intermediate;
terminated;
stopped;
waiting.

PS-2

PS (C)

UID (f,I)

PID (all)

PPID (f,I)

C (f,I)

STIME (0

PRI (1)

NI (1)

ADDRl,
ADDR2 (1)

SZ (1)

WCHAN(I)

TTY (all)

TIME (all)

CMD (all)

PS (C)

The user ID number of the process owner; the log­
in name is printed under the -f option. Login
names are truncated after 7 characters.

The process ID; used when killing a process (see
kill (C».

The process ID of the parent process.

Processor utilization for scheduling.

Starting time of the process.

The priority of the process; higher numbers mean
lower priority.

Nice value; used in priority computation.

The memory addresses (physical page frame num­
bers) of u-area of the process, if resident; other­
wise, the disk address. ADDRI gives the frame
number of the first half of the u-area, and ADDR2
gives the number of the second half.

The size in blocks of the core image of the pro­
cess, but not including the size of text shared with
other processes. Since this size includes the
current size of the stack, it will vary as the stack
size varies.

The event for which the process is waiting or
sleeping; if blank, the process is running.

The controlling terminal for the process.

The cumulative execution time for the process.

The command name; the full command name and
its arguments are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited
for by the parent, is marked <defunct>.

Files

/unix system namelist

March 16, 1991 PS-3

PS (C) PS (C)

/dev/mem memory

/dev searched to find swap device and tenninal e'tty") names.

See Also

kill(C), nice(C)

Notes

Things can change while ps is running; the picture it gives is only a
close approximation to the current system state.

Some data printed for defunct processes are irrelevant.

Authorization

The behavior of this utility is affected by assignment of the mem
authorization, which is usually reserved for system administrators. If
you do not have this authorization, the output will be restricted to data
pertaining to your activities only. Refer to the "Using a Trusted Sys­
tern" chapter of the User's Guide for more details.

Standards Conformance

ps is confonnant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 16, 1991 PS-4

PSCAT(C)

pscat
ASCII-to-PostScript filter

Syntax

/usr/altos/bin/pscat [-C] [-I num]

Description

PSCAT (C)

The pscat utility is a simple filter that converts ASCII text to
PostScript®. This utility takes its input from standard input and pro­
duces output to standard output. Typically, pscat is used in an lp(C)
printer interface script to prepare ordinary text files for printing on a
PostScript printer.

pscat recognizes most PostScript files. So, if a PostScript file is used
as input, the text passes through unmodified. Unrecognized files can
be forced through with the -C option.

The·1 num option allows non-standard paper sizes, where num is the
number of lines per page. The default is 66.

See Also

Ip(C)

Value Added

pscat is an extension of AT&T System V provided by Altos UNIX Sys­
temV.

March 15, 1991 PSCAT-1

PSTAT(C) PSTAT(C)

pstat
reports system information

Syntax

pstat [-aipf] [-u ubasel ubase2] [-n namelist] [file]

Description

pstat interprets the contents of certain system tables. pstat searches
for these tables in Idev/mem and Idevlkmem. With the file given, the
tables are sought in the specified file rather than Idev/mem. The
required namelist is taken from lunix. Options are:

-a Under -p, describe all process slots rather than just active
ones.

-i Print the inode table with these headings:
LaC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L Locked
U Update time jilesystem (F) must be corrected
A Access time must be corrected
M File system is mounted here
W Wanted by another process (L flag is on)
T Contains a text file
C Changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in

which this inode resides.
INa I-number within the device.
MODE Mode bits, see chmod(S).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and
minor device of special file.

-p Prints process table for active processes with these head­
ings:
LaC The core location of this table entry.
S Run state encoded thus:

o No process

March 15, 1989

1 Waiting for some event
3 Runnable

PSTAT-1

PSTAT(C) PSTAT (C)

4 Being created
5 Being terminated
6 Stopped under trace

F Miscellaneous state variables, ORed together:
01 Loaded
02 The scheduler process
04 Locked
010

Swapped out
020

Traced
040

U sed in tracing
0100

Locked in by lock(S).
PRI Scheduling priority, see nice (S).
SIGNAL Signals received (signals 1-16 coded in bits 0-15).
UID Real user ID.
TIM Time resident in seconds; times over 127 coded as

127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see nice (S).
PGRP Process number of root of process group (the

opener of the controlling terminal).
PID The process ID number.
PPID The process ID of parent process.
ADDR1,ADDR2

WCHAN

If in core, the physical page frame numbers of the
u-area of the process. These numbers can be
translated into the addresses of the u-area, which
is split and stored in two pages. If swapped out,
the position in the swap area is measured in multi­
pIes of BSIZE bytes.

Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table

entry (286 only).
INODP Pointer to location of shared inode (386 only).
CLKT Countdown for alarm(S) measured in seconds.

-u ubasel ubase2
Print information about a user process. Ubasel and Ubase2
are the physical page frame numbers of the u-area of the
process. The numbers may be obtained by using the long
listing (-I option) of the ps(C) command.

-n name list
Use the file namelist as an alternate namelist in place of
lunix.

March 15, 1989 PSTAT-2

PSTAT(C) PSTAT(C)

·f Print the open file table with these headings:
LOC The core location of this table entry.
FLO Miscellaneous state variables:

R Open for reading
W Open for writing
P Pipe

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS The file offset, see lseek (S).

Files

lunix Namelist

Idev Imem Default source of tables

See Also

ps(C), stat(S), filesystem(F)

Authorization

The behavior of this utility is affected by assignment of the mem
authorization, which is usually reserved for system administrators. If
you do not have this authorization, the output will be restricted to data
pertaining to your activities only. Refer to the "Using a Trusted Sys­
tern" chapter of the User's Guide for more details.

Value Added

pstat is an extension of AT&T System V provided by Altos UNIX Sys­
temV.

March 15, 1989 PSTAT-3

PTAR (C) PTAR (C)

ptar
process tape archives

Syntax

ptar -c[bfvw] device block filename .. .
ptar -r[bvw] device block ffilename ...]
ptar -t[fv] device
ptar -u[bvw] device block
ptar -x[flmovw] device ffilename ...]

Description

Tar reads and writes archive files which confonn to the
ArchivelInterchange File Format specified in IEEE Std. 1003.1-
1988.

Options

The following options are available:

-c Creates a new archive; writing begins at the beginning
of the archive, instead of after the last file.

-r Writes names files to the end of the archive.

-t Lists the names of all of the files in the archive.

-u Causes named files to be added to the archive if they are
not already there, or have been modified since last writ­
ten into the archive. This implies the -r option.

-x Extracts named files from the archive. If a named file
matches a directory whose contents had been written
onto the archive, that directory is recursively extracted.
If a named file in the archive does not exist on the sys­
tem, the file is create with the same mode as the one in
the archive, except that the set-user-id and get-group-id
modes are not set unless the user has appropriate
privileges.

If the files exist, their modes are not changed except as described
above. The owner, group and modification time are restored if possi­
ble. If no filename argument is given, the entire contents of the
archive is extracted. Note that if several files with the same name are
in the archive, the last one will overwrite all earlier ones.

March 15, 1989 PTAR-1

PTAR (C)

-b

-f

-I

-m

-0

-v

-w

Files

/dev/tty

See Also

PTAR (C)

Causes ptar to use the next argument on the command
line as the blocking factor for tape records. The default
is 1; the maximum is 20. This option should only be
used with raw magnetic tape archives. Normally, the
block size is determined automatically when reading
tapes.

Causes ptar to use the next argument on the command
line as the name of the archive instead of the default,
which is usually a tape drive. If - is specified as a
filename ptar writes to the standard output or reads from
the standard input, whichever is appropriate for the
options given. Thus, ptar can be used as the head or tail
of a pipeline.

Tells ptar to report if it cannot resolve all of the links to
the files being archived. If -I is not specified, no error
messages are written to the standard output. This
modifier is only valid with the -C, -r and -u options.

Tells ptar not to restore the modification times. The
modification time of the file will be the time of extrac­
tion. This modifier is invalid with th -t option.

Causes extracted files to take on the user and group
identifier of the user running the program rather than
those on the archive. This modifier is only valid with the
-x option.

Causes ptar to operate verbosely. Usually, ptar does its
work silently, but the v modifier causes it to print the
name of each file it processes, preceded by the option
letter. With the -t option, v gives more information
about the archive entries than just the name.

Causes ptar to print the action to be taken, followed by
the name of the file, and then wait for the user's
confirmation. If a word beginning with y is given, the
action is performed. Any other input means "no". This
modifier is invalid with the -t option.

used to prompt the user for information when the -i or -y
options are specified.

cpio(C), dd(C), find(C), pax(C), pcpio(C)

March 15, 1989 PTAR-2

PTAR (C)

Copyright

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

PTAR (C)

Redistribution and use in source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso­
ciation.

THE SOFfWARE IS PROVIDED "AS IS" AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI­
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

Standards Conformance

ptar is conformant with:

IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NISTFIPS 151-1.

March 15, 1989 PTAR-3

PURGE (C) PURGE (C)

purge
overwrites specified files

Syntax

purge [-f] [-r] [-v] [-m num] [-suo] [-t type] ... [-z][files] ...

Description

The command is used to overwrite various parts of the system. It
overwrites files specified on the command line, or those listed in a
policy file maintained by the system administrator. The policy file
defines types of files and devices which are purged as a group. The
utility can be used to purge individual files, divvy(ADM) divisions,
fdisk(ADM) partitions, or other devices like magnetic tapes and flop­
pies. An option even exists to zero memory.

The optional flags are outlined below:

-f Do not warn about files which are not present or inaccessi­
bIe. Attempts to purge a floppy which is inaccessible" (e.g.,
the door is open) will always generate a diagnostic on the
system console.

-r Recursively purge directories. Without this flag no action is
taken upon directories.

-v Verbose operation, list the name of each file as it is
overwritten.

-m num Overwrite each file num times.

-s Overwrite files and devices designated as "system" in the
policy file. (Equivalent to "-t system".)

-u Overwrite files and devices designated as "user" in the
policy file. (Equivalent to "-t user".)

-0 Overwrite other (non-system and non-user) files and
filesystems. This purges all entries in the policy file which
are not of either type system or user. This flag, by the
nature of its implicit definition, has no "-t" equivalent.

March 11, 1990 PURGE-·1

PURGE (C) PURGE (C)

-t type Overwrite the files identi fied in the policy file as being part
of group type.

-z Writes binary zeroes to system memory, including memory
buffers of intelligent devices (Le. disk controller cache,
etc.). This will close down the system immediately. This
should only be done from single-user mode, or when no
users are logged on. The system will autoboot if so config­
ured (see autoboot(M». Only the superuser may use this
option.

files Regular, directory or special files to purge.

Similarly to regular files, most special files can be purged by being
placed in the policy file or with the command purge /dev/speciaIJzle.
Block special files and some character special files can be overwritten.
The console, ttys, printers and other infinite output devices cannot be
purged with this command. Disks, floppies and magnetic tapes can be
overwritten. Tape devices are first erased once and then overwritten
the specified number of times.

When both types andfiles are specified on the command line, all of the
indicated files are overwritten by the utility. In particular, first the files
selected from the policy file, and then those specified on the command
line, are overwritten.

Each line in the policy file (/etc/default/purge) designates a file,
filesystem or device as a member of some type. The syntax of a line is:

file type [count]

The optional count field is the number of times to overwrite file. The
default count is one. The utility will overwrite file any time the com­
mand

purge -t type

is given.

Blank lines in the policy file and lines beginning with 'I' are ignored.

Files

/etc/default/purge The policy file

See Also

autoboot(ADM), dd(C), hd(C), od(C), nn(C) , purge(F),
sysadmsh(ADM)

March 11, 1990 PURGE-2

PURGE (C)

Diagnostics

purge: warning: invalid entry in policy file Oine n)

PURGE (C)

An invalid line was read from the policy file where n is the number of
the incorrectly formatted line.

purge: filename is a directory

If the -r switch is not specified no action is taken upon directories and
this diagnostic is displayed.

purge: only the superuser can zero memory

This message is displayed when a user other than the superuser tries to
use the -z option.

Notes

When files are overwritten multiple times, the first pass writes binary
zeros. Subsequent passes alternate writing binary ones and binary
zeros.

After being overwritten, od(C), dd(C) or hd(C) may be used to verify
that no data remains on the device or in the file.

Only the superuser may use the -z option to zero the system's memory.

Value Added

purge is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1990 PURGE-3

PWCHECK (C) PWCHECK (C)

pwcheck
checks password file

Syntax

pwcheck [file]

Description

pwcheck scans the password file and checks for any inconsistencies.
The checks include validation of the number of fields, login name,
user ID, group ID, and whether the login directory and optional pro­
gram name exist. The default password file is letc/passwd.

Files

/etc/passwd

See Also

grpcheck(C), group(F), passwd(F)

March 15, 1989 PWCHECK-1

PWD (C)

pwd
prints working directory name

Syntax

pwd

Description

pwd prints the pathname of the working (current) directory.

See Also

cd(C)

Diagnostics

PWO (C)

"Cannot open .. " and "Read error in .. " indicate possible file system
trouble. In such cases, see the System Administrator's Guide for infor­
mation on fixing the filesystem.

Standards Conformance

pwd is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 PWO-1

QUOT (C) QUOT (C)

quot
summarizes file system ownership

Syntax

quot [option] ... [filesystem]

Description

quot prints the number of blocks in the named jilesystem currently
owned by each user. If no jilesystem is named, the file systems given
in letc/mottab are examined.

The following options are available:

-0 Processes standard input. This option makes it possible to produce
a list of all files and their owners with the following command:

ncheck filesystem I sort +On I quot -n filesystem

-c Prints three columns giving file size in blocks, number of files of
that size, and cumulative total of blocks in that size or smaller file.
Data for files of size greater than 499 blocks are included in the
figures for files of exactly size 499.

-f Prints a count of the number of files as well as space owned by
each user.

Files

Gets user names /etc/passwd

/etc/mnttab Contains list of mounted file systems

See Also

cmchk(C), du(C), Is(C), machine(HW)

Notes

Holes in files are counted as if they actually occupied space.

March 15. 1989 QUOT-1

QUOT (C)

Blocks are reported in 512 byte blocks.

See also Notes under mount (ADM).

March 15. 1989

QUOT(C)

aUOT-2

RANDOM (C) RANDOM (C)

random
generates a random nu mber

Syntax

random [-s] [scale]

Description

random generates a random number on the standard output. and
returns the number as its exit value. By default, this number is either
o or 1 (i.e., scale is 1 by default). If scale is given a value between 1
and 255, then the range of the random value is from 0 to scale. If scale
is greater than 255, an error message is printed.

When the -s , "silent" option is given, the random number is returned
as an exit value but is not printed on the standard output. If an error
occurs, random returns an exit value of zero.

See Also

rand(S)

Notes

This command does not perform any floating point computations.

random uses the time of day as a seed.

March 15, 1989 RANDOM-1

Rep (e) Rep (C)

rep
copies files across systems

Syntax

rep [options] [srcmachine:]srcfile [destmachine:]destfile

Description

rcp copies files between systems in a Micnet network. The command
copies the srcmachine:srcfile to destmachine:destfile, where srcma­
chine: and destmachine: are optional names of systems in the net­
work, and srcfile and destfile are pathnames of files. If a machine
name is not given, the name of the current system is assumed. If - is
given in place of srcfile, rcp uses the standard input as the source.
Directories named on the destination machine must have write per­
mission, and directories and files named on a remote source machine
must have read permission.

The available options are:

-m
Mails and reports completion of the command, whether there is an
error or not.

-u [machine:]user
Any mail goes to the named user on machine. The default ma­
chine is the machine on which the rcp command is completed or
on which an error was detected. If an alias for user exists in the
system alias files on that. machine, the mail will be redirected to
the appropriate mailbox(es). Since system alias files are usually
identical throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To prevent alias­
ing, user must be escaped with at least two \ characters (at least
four if given as a shell command).

March 15, 1989 Rep-1

RCP(C) RCP (C)

rep is useful for transferring small numbers of files across the network.
The network consists of daemons that periodically awaken and send
files from one system to another. The network must be installed using
netutil (ADM) before rep can be used.

Also, to enable transfer of files from a remote system, either:

This line should be in letclde!aultlmienet on the systems in the net­
work:

rcp=/usr/bin/rcp

Or, these lines should be in that file:

executeall
execpath=P ATH= path

where path must contain lusrlbin.

Example

rcp -m machinel:/etc/mnttab /tmp/vtape

See Also

mail(C), micnet(F), netutil(ADM), remote(C)

Diagnostics

If an error occurs, mail is sent to the user.

Notes

Full pathnames must be specified for remote files.

rep handles binary data files transparently, no extra options or proto­
cols are needed to handle them. Wildcards are not expanded on the
remote machine.

March 15, 1989 RCP-2

RCVTRIP (C) RCVTRIP (C)

rcvtrip
notifies mail sender that recipient is away

Syntax

lusrlbin/rcvtrip [-d] [address]

Description

The rcvtrip command makes it possible for you to notify the sender of
a message that you are on holiday and you won't be answering your
mail for some time. MMDF runs rcvtrip on your behalf rather than by
you directly.

To enable use of rcvtrip, put the following line in your .maildelivery
file:

* pipe R rcvtrip $(sender)

Make sure that your .maildelivery file is not writable by anyone but
you. You may also place a "custom" reply message in a file named
tripnote. Finally, you should create an empty triplog file.

When rcvtrip processes a message, it performs the following steps:

1. Decide if this type of message should receive a reply.

2. Decide to whom the reply should be sent.

3. Decide whether this sender has already gotten a reply.

The rcvtrip command decides whether this is the type of message that
should get a reply by looking at the contents of the "Resent-To:",
"Resent-Cc:", "To:" and "Cc:" header fields. If the recipient has an
.alter egos file (described next), then one of the addresses in that file
must appear in the one of these header fields for a reply to be sent. If
the recipient does not have an .alter egos file, then the recipient's
name or a fIrst-order alias of the recipient's name (for example,
dlong-->long) must appear in one of these header fields for a reply to
be sent. This procedure ensures that rcvtrip will not reply to messages
sent to mailing lists, unless the recipient's name (or some variant of
the recipient's name) is explicitly mentioned in a header field.

If rcvtrip has decided that it should send a reply for the message, then
it looks at several other address fields to determine to whom the reply
should be sent. It uses, in order of precedence:

March 19, 1990 RCVTRIP-1

RCVTRIP (C) RCVTRIP (C)

1. addresses in 'Resent-Reply-To:'

2. addresses in 'Resent-From:' and, if present, 'Resent-Sender:'

3. addresses in 'Reply-To:'

4. addresses in 'From:' and either 'Sender:', if present, or the
address argument from the command line.

The rcvtrip command notifies any originator of mail who has not pre­
viously been notified unless you pre-load their address into the triplog
file (refer to the Files section). The reply begins with some standard
text (supplied by rcvtrip) followed by whatever text the user has
placed in the tripnote file (or a canned message if the tripnote file is
missing). The originators' names are recorded in triplog, along with
the date and time the message came in, an indication of whether it was
answered (' +' =yes), and the first few characters of the subject. This
appears as:

+ jpo@nott.ac.uk Wed Oct 8 16:08 » about your last message

Files

$HOME/tripnote contains a reply message to be sent to those sending
you mail.

$HOME/triplog contains a list of who sent a message, what was its
subject, when it arrived, and if a response was sent. It can also be ini­
tialized by hand to contain the addresses, one per line, which are not
to receive replies.

$HOME/logfile, it it exists, becomes an output file for logging diag­
nostic information. If the -d option is specified, then extensive output
is generated for debugging purposes. It is not a good idea to leave -d
enabled if this file is left lying around, as the output can be quite
voluminous.

$HOME/. alter_egos , an optional file composed of 'uset@domain'
lines for all addresses to be considered 'you'. This is needed if you
have multiple hosts forwarding their mail to you. If this file is present,
then the standard comparisons against your usemame and first-level
aliases of your usemame do not occur.

$HOME/.maildelivery is your mail delivery specification file. The
previous example shows the line that should be added to .mail­
delivery to enable use of rcvtrip. In this line, the $(sender) argument
is optional (but recommended). You may need to give the full path­
name of rcvtrip if it is not in your search path.

March 19, 1990 RCVTRIP-2

RCVTRIP (C)

See Also

maildelivery(F)

March 19, 1990

RCVTRIP (C)

RCVTRIP-3

REMOTE (C) REMOTE (C)

remote
executes commands on a remote system

Syntax

remote [-] [-f file] [-m] [-u user] machine
command [arguments]

Description

remote is a limited networking facility that permits execution of Altos
UNIX System V commands across serial lines. Commands on any
connected system may be executed from the host system using remote.
A command line consisting of command and any blank-separated
arguments is executed on the remote machine. A machine's name is
located in the file /etc/systemid. Note that wild cards are not
expanded on the remote machine, so they should not be specified in
arguments. The optional -m switch causes mail to be sent to the user
telling whether the command is successful.

The available options follow:

-ffile

-m

-u user

A dash signifies that standard input is used as the standard
input for command on the remote machine. Standard
input comes from the local host and not from the remote
machine.

Use the specified file as the standard input for command
on the remote machine. The file exists on the local host
and not on the remote machine.

Mails the user to report completion of the command. By
default, mail reports only errors.

Any mail goes to the named user on machine. The default
machine is the machine on which an error was detected,
or on which the remote command was completed. The
mail will be redirected to the appropriate mailbox(es), if
an alias for user exists in the system alias files on that ma­
chine . Since system alias files are usually identical
throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To
prevent aliasing, user must be escaped with at least two \
characters (at least four if given as a shell command).

March 11,1990 REMOTE-1

REMOTE (C) REMOTE (C)

Before remote can be successfully used, a network of systems must
first be set up and the proper daemons initialized using netutil (ADM).
Also, entries for the command to be executed using remote must be
added to the letcldefaultlmicnet files on each remote machine.

Example

The following command executes an Is command on the directory
Itmp of the machine machine} :

remote machine 1 Is Itmp

See Also

rcp(C), mail(C), netutil(ADM), micnet(F)

Notes

The mail command uses the equivalent of remote to send mail
between machines.

March 11. 1990 REMOTE-2

RM (C) RM (C)

rm
removes files or directories

Syntax

rm [-fri] file ...

Description

rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor
write permission on the file itself.

If the user does not have write permission on a specified file and the
standard input is a terminal, the user is prompted for confirmation.
The file's name and permissions are printed and a line is read from the
standard input. If that line begins with y, the file is deleted, otherwise
the file remains. If the -f option is given or if the standard input is not
a terminal, no messages are issued; files are simply removed.

rm will not delete directories unless the -r option is used.

Options

The following options are recognized.

-f When invoked with the -f option, rm does not prompt the user for
confirmation for files on which the user does not have write per­
mission. The files are simply removed.

-r The -r (recursive) option causes rm to recursively delete the entire
contents of the any directories specified, and the directories them­
selves. Note that the rmdir(C) command is a safer way of remov­
ing directories.

-i The -i (interactive) option causes rm to ask whether to delete each
file, and if the -r option is in effect, whether to examine each direc­
tory.

The special option "--" can be used to delimit options. For example,
a file named "-f" could not be removed by rm because the hyphen is
interpreted as an option; the command rm -f would do nothing, since
no file is specified. Using rm -- -fremoves the file successfully.

March 15, 1989 RM-1

RM (C)

See Also

rmdir(C)

Notes

RM (C)

It is forbidden to remove the file •. to avoid the consequences of inad­
vertently doing something like:

rm -r.*

It is also forbidden to remove the root directory of a given file system.

No more than 17 levels of subdirectories can be removed using the -r
option.

Standards Conformance

rm is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 RM-2

RMDIR (C) RMDIR (C)

rmdir
removes directories

Syntax

rmdir [-p] [-s] dirname ...

Description

rmdir removes the entries for one or more subdirectories from a direc­
tory. A directory must be empty before it can be removed. Note that
the "rm -r dir" (command is a more dangerous alternative to rmdir.)
If the parent directory has the sticky bit set, removal occurs only if one
of the following is true:

the parent directory is owned by the user
the dirname directory is owned by the user
the dirname directory is writable to the user
the user is the super-user

The -p option allows users to remove the directory dirname and its
parent directories which become empty. A message is printed on stan­
dard output as to whether the whole path is removed or part of the path
remains for some reason.

The -s option is used to suppress the message printed on standard error
when -p is in effect.

rmdir will refuse to remove the root directory of a mounted filesys­
tern.

See Also

rm(C)

Diagnostics

rmdir returns an exit code of 0 if all the specified directories are
removed successfully. Otherwise, it returns a non-zero exit code.

Standards Conformance

rmdir is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 RMDIR-1

RSH(C) RSH(C)

rsh
invokes a restricted shell (command interpreter)

Syntax

rsh [flags] [name [argt ...]]

Description

rsh is a restricted version of the standard command interpreter sh(C).
It is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rsh are identical to those of sh, except that changing direc­
tory with cd, setting the value of $PATH, using command names con­
taining slashes, and redirecting output using > and » are all disal­
lowed.

When invoked with the name -rsh, rsh reads the user's .profile (from
$HOME/.profile). It acts as the standard sh while doing this, except
that an interrupt causes an immediate exit, instead of causing a return
to command level. The restrictions above are enforced after .profile
is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end user
shell procedures that have access to the full power of the standard
shell, while restricting him to a limited menu of commands; this
scheme assumes that the end user does not have write and execute per­
missions in the same directory.

The net effect of these rules is that the writer of the .profile has com­
plete control over user actions, by performing guaranteed setup
actions, then leaving the user in an appropriate directory (probably not
the login directory).

rsh is actually just a link to sh and any flags arguments are the same
as for sh(C).

The system administrator often sets up a directory of commands that
can be safely invoked by rsh.

See Also

sh(C), profile(M)

March 15. 1989 RSH-1

SDDATE (C) SDDATE (C)

sddate
prints and sets backup dates

Syntax

sddate [name lev date]

Description

If no argument is given, the conten.ts of the backup date file letc/ddate
are printed. The backup date file is maintained by backup (C) and
contains the date of the most recent backup for each backup level for
each filesystem.

If arguments are given, an entry is replaced or made in letc/ddate.
name is the last component of the device pathname, lev is the backup
level number (from 0 to 9), and date is a time in the form taken by
date (C):

mmddhhmm[yy]

Where the first mm is a two-digit month in the range 01-12, dd is a
two-digit day of the month, hh is a two-digit military hour from 00-23,
and the final mm is a two-digit minute from 00-59. An optional two­
digit year, yy, is presumed to be an offset from the year 1900, i.e.,
19yy.

Some sites may wish to back up file systems by copying them verba­
tim to backup media. sddate could be used to make a "level 0" entry
in letc/ddate, which would then allow incremental backups.

For example:

sddate rhda 5 10081520

makes an letc/ddate entry showing a level 5 backup of Idev/rhda on
October 8, at 3 :20 PM.

Files

letc/ddate

March 17, 1991 SDDATE-1

SDDATE (C)

See Also

backup(C), dump(C), date(C)

Diagnostics

bad conversion If the date set is syntactically incorrect.

March 17, 1991

SDDATE (C)

SDDATE-2

SDIFF (C) SDIFF (C)

sdiff

compares files side-by-side

Syntax

sdifT [options ...] file! file2

Description

sdlff uses the output of dlff(C) to produce a side-by-side listing of two
files indicating those lines that are different. Each line of the two files
is printed with a blank gutter between them if the lines are identical, a
< in the gutter if the line only exists in filel , a > in the gutter if the
line only exists infile2, and a I for lines that are different.

For example:

x
a
b
c
d

<
<

y
a

d
> C

The following options exist:

-w n Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

-I Only prints the left side of any lines that are identical.

-s Does not print identical lines.

-0 output Uses the next argument, output, as the name of a third

March 15. 1989

file that is created as a user-controlled merging of filel
and file2. Identical lines of filel and file2 are copied to
output. Sets of differences, as produced by diff(C), are
printed; where a set of differences share a common
gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the
following user-typed commands:

Appends the left column to the output file

r Appends the right column to the output file

SDIFF-1

SDIFF (C)

See Also

difI(C), ed(C)

March 15. 1989

SDIFF (C)

s Turns on silent mode; does not print identi­
cal lines

v Turns off silent mode

e I
Calls the editor with the left column

e r
Calls the editor with the right column

e b
Calls the editor with the concatenation of
left and right

e Calls the editor with a zero length file

q Exits from the program

On exit from the editor, the resulting file is concatenated
on the end of the output file.

SDIFF-2

SED (C) SED (C)

sed
invokes the stream editor

Syntax

sed [-n] [-e script] [-f sfile] [files]

Description

sed copies the namedfiles (standard input default) to the standard out­
put, edited according to a script of commands. The -f option causes
the script to be taken from file sfile; these options accumulate. If
there is just one -e option and no -f options, the flag -e may be omit­
ted. The -n option suppresses the default output. A script consists of
editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern
space (unless there is something left after a D command), applies in
sequence all commands whose addresses select that pattern space,
and at the end of the script copies the pattern space to the standard
output (except under -n) and deletes the pattern space.

A semicolon (;) can be used as a command delimiter.

Some of the commands use a hold space to save all or part of the pat­
tern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumula­
tively across files, a $ that addresses the last line of input, or a context
address, i.e., a/regular expression/ in the style of ed(C) modified as
follows:

- In a context address, the construction \?regular expression?, where
? is any character, is identical to /regular expression/. Note that
in the context address \xabc\xdefx, the second x stands for itself,
so that the regular expression is abcxdef.

- The escape sequence \n matches a newline embedded in the pat­
tern space.

- A period. matches any character except the terminal newline of
the pattern space.

March 15, 1989 SED-1

SED (C) SED (C)

- A command line with no addresses selects every pattern space.

- A command line with one address selects each pattern space that
matches the address.

- A command line with two addresses selects the inclusive range
from the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter, the process is
repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces
by use of the negation function! (below).

In the following list of functions, the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument copsists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in text
are treated like backslashes in the replacement string of an s com­
mand, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rftle or wfile argument
must terminate the command line and must be preceded by exactly
one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

(l)a\
text Appends text, placing it on the output before reading the

next input line.

(2) b label Branches to the : command bearing the label. If label is
empty, branches to the end of the script.

(2)c\
text Changes text by deleting the pattern space and then

appending text. With 0 or 1 address or at the end of a 2-
address range, places text on the output and starts the next
cycle.

(2) d Deletes the pattern space and starts the next cycle.

(2) D Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

(2) g Replaces the contents of the pattern space with the con­
tents of the hold space.

(2) G Appends the contents of the hold space to the pattern
space.

March 15, 1989 SED-2

SEO(C) SEO(C)

(2) h Replaces the contents of the hold space with the contents
of the pattern space.

(2) H Appends the contents of the pattern space to the hold
space.

(l)i\
text Insert. Places text on the standard output.

(2) I Lists the pattern space on the standard output with non­
printing characters spelled in two-digit ASCII and long
lines folded.

(2) 0 Copies the pattern space to the standard output. Replaces
the pattern space with the next line of input.

(2) N Appends the next line of input to the pattern space with an
embedded newline. (The current line number changes.)

(2) p Prints (copies) the pattern space on the standard output.

(2) P Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

(1) q Quits sed by branching to the end of the script. No new
cycle is started.

(2) r rfile Reads the contents of rfile and places them on the output
before reading the next input line.

(2)s/regular expression/replacement/flags
Substitutes the replacement string for instances of the
regular expression in the pattern space. Any character
may be used instead of I. For a more detailed description,
see ed(C). Flags is zero or more of:

o 0=1-512. Substitute for just the nth occurrence of the
regular expression.

g Globally substitutes for all nonoverlapping instances
of the regular expression rather than just the first one.

p Prints the pattern space if a replacement was made.

wwfile
Writes the pattern space to wfile if a replacement was
made.

(2) t label Branches to the colon (:) command bearing label if any
substitutions have been made since the most recent read­
ing of an input line or execution of a t command. If label
is empty, t branches to the end of the script.

March 15, 1989 SEO-3

SED(C) seD (C)

(2) w wfile Writes the pattern space to wfile.

(2) x Exchanges the contents of the pattern and hold spaces.

(2) y/string1 /string2/
Replaces all occurrences of characters in string 1 with the
corresponding characters in string2. The lengths of
string 1 and string2 must be equal.

(2)! function
Applies the function (or group, if function is {) only to
lines not selected by the address(es).

(0): label This command does nothing; it bears a label for b and t
commands to branch to.

(1) = Places the current line number on the standard output as a
line.

(2) { Executes the following commands through a matching }
only when the pattern space is selected.

(0) An empty command is ignored.

See Also

awk(C), ed(C), grep(C)

Notes

This command is explained in detail in the User's Guide.

Standards Conformance

sed is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SEO-4

SETCOLOR (C) SETCOLOR (C)

setcolor, setcolour
set screen color and other screen attributes

Syntax

setcolor -[nbrgopc] argument [argument]

Description

setcolor allows the user to set the screen color on a color screen. Both
foreground and background colors can be set independently in a range
of 16 colors. setcolor can also set the reverse video and graphics
character colors. setcolor with no arguments produces a usage mes­
sage that displays all available colors, then resets the screen to its pre­
vious state.

For example, the following strings are possible colors.

blue
It_blue
cyan
It_cyan

magenta
It_magenta
white
hi_white

brown
yellow
green
It_green

black
gray
red
It_red

The following flags are available. In the arguments below, "color" is
taken from the above list.

-0 Set the screen to "normal" white characters on black background.

color [color]
Set the foreground to the first color. Sets background to second
color if a second color choice is specified.

-b color
Set the background to the specified color.

-r color color
Set the foreground reverse video characters to the first color. Set
reverse video characters' background to second color.

-g color color
Set the foreground graphics characters to the first color. Set graph­
ics characters' background to second color.

-0 Set the color of the screen border (overscan region).

March 11, 1 990 SETCOLOR-1

SETCOLOR (C) SETCOLOR (C)

-p pitch duration
Set the pitch and duration of the bell. Pitch is the period in
microseconds, and duration is measured in fifths of a second.
When using this option,. a control-G (bell) must be echoed to the
screen for the command to work. For example:

setcolor -p 2500 2
echo "G

-c first last
Set the first and last scan lines of the cursor. (For more informa­
tion see screen(HW).)

Notes

The ability of setcolor to set any of these described functions is ulti­
mately dependent on the ability of devices to support them. setcolor
emits an escape sequence that mayor may not have an effect on mono­
chrome devices.

Occasionally changing the screen color can help prolong the life of
your monitor.

See Also

screen(HW)

Value Added

setcolor and setcolour are extensions of AT&T System V provided by
Altos UNIX System V.

March 11, 1990 SETCOLOR-2

SETKEY (C) SETKEY(C)

_ setkey
assigns the function keys

Syntax

setkey keynum string

Description

The setkey command assigns the given ANSI string to be the output
of the computer function key given by keynum. For example, the
command:

setkey 1 date

assigns the string "date" as the output of function key 1. The string
can contain control characters, such as a newline character, and
should be quoted to protect it from processing by the shell. For exam­
ple, the command:

setkey 2 "pwd ; lc\n"

assigns the command sequ~nce "pwd ; lc" to function key 2. Notice
how the newline character is embedded in the quoted string. This
causes the commands to be carried out when function key 2 is pressed.
Otherwise, the Enter key would have to be pressed after pressing the
function key, as in the previous example.

setkey translates A into "", which, when passed to the screen driver, is
interpreted as a right angle bracket (», or greater than key.

Notes

setkey works only on the console keyboard.

The string mapping table is where the function keys are defined. It is
an array of 512 bytes (typedef strmap _t) where null terminated strings
can be put to redefine the function keys. The frrst null terminated
string is assigned to the frrst string key, the second to the second string
key, and so on. There is one string mapping table per multi screen.

Although the size of the setkey string mapping table is 512 bytes,
there is a limit of 30 characters that can be assigned to any individual
function key.

March 15, 1989 SETKEY-1

SETKEY (C) SETKEY(C)

Assigning more than 512 characters to the string mapping table causes
the function key buffer to overflow. When this happens, the sequences
sent by the arrow keys are overwritten, effectively disabling them.
Once the function key buffer overflows, the only way to enable the
arrow keys is to reboot the system.

The table below lists the keynum values for the function keys:

Function key keynum Function key keynum

FI 1 Ctrl-FIO 34
F2 2 Ctrl-Fl1 35
F3 3 Ctrl-FI2 36
F4 4 Ctrl-Shift-FI 37
F5 5 Ctrl-Shift-F2 38
F6 6 Ctrl-Shift-F3 39
F7 7 Ctrl-Shift-F4 40
F8 8 Ctrl-Shift-F5 41
F9 9 Ctrl-Shift-F6 42
FlO 10 Ctrl-Shift-F7 43
F11 11 Ctrl-Shift-F8 44
Fl2 12 Ctrl-Shift-F9 45
Shift-F1 13 Ctrl-Shift-F10 46
Shift-F2 14 Ctrl-Shift-F11 47
Shift-F3 15 Ctrl-Shift-FI2 48
Shift-F4 16
Shift-F5 17 Numeric Key-Pad keynum
Shift-F6 18
Shift-F7 19 7 49
Shift-F8 20 8 50
Shift-F9 21 9 51
Shift-FlO 22 - 52
Shift-F11 23 4 53
Shift-F12 24 5 54
Ctrl-FI 25 6 55
Ctrl-F2 26 + 56
Ctrl-F3 27 1 57
Ctrl-F4 28 2 58
Ctrl-F5 29 3 59
Ctrl-F6 30 0 60
Ctrl-F7 31
Ctrl-F8 32
Ctrl-F9 33

For a table of the escape sequences, refer to keyboard(HW).

March 15, 1989 SETKEY-2

SETKEY(C)

Files

/bin/setkey

See Also

keyboard(HW)

March 15, 1989

SETKEY (C)

SETKEY-3

SETMODE (C)

setmode
Port modes utility

Syntax

setmode device mode ...

Description

SETMODE (C)

The setmode utility sets tty modes (see tty(M» for tty ports that are
being used for serial devices. (Use this utility to set baud rate, tab
expansion, and newline actions for programs that communicate
directly through a serial port.)

This utility takes a list of tty modes from its command line, performs
stty(C) on the indicated device, and sleeps forever, which keeps device
open with the desired modes. Invoke setmode once for each port de­
vice.

To ensure that setmode is run every time the system enters multiuser
mode, invoke setmode in the letc/inittab file.

You must invoke setmode with at least two arguments: the name of the
device special file (for example, Idev/ttyOl), and at least one tty mode.

Files

Idev Itty* tty devices
letc/inittab

Related Commands

disable(C), enable(C), stty(C), inittab(F), pcu(ADM),

See Also

tty(M)

Value Added

setmode is an extension of AT&T System V provided by Altos UNIX
System V.

September 19, 1990 SETMODE-1

SH (C) SH (C)

sh
invokes the shell command interpreter

Syntax

sh [-aceiknrstuvx] [args]

Description

The shell is the standard command programming language that exe­
cutes commands read from a terminal or a file. See Invocation below
for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of nonblank words separated by
blanks (a blank is a tab or a space). The first word specifies the name
of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see exec (S)). The value
of a simple-command is its exit status if it terminates normally, or
(octal) lOOO+status if it terminates abnormally (Le., if the failure pro­
duces a core file). See signal (S) for a list of status values.

A pipeline is a sequence of one or more commands separated by a
vertical bar (I). (The caret (..), is an obsolete synonym for the verti­
cal bar and should not be used in a pipeline.) The standard output of
each command but the last is connected by a pipe(S) to the standard
input of the next command. Each command is run as a separate pro­
cess; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, &&,
or II, and optionally terminated by ; or &. Of these four symbols, ;
and & have equal precedence, which is lower than that of & & and II.
The symbols && and II also have equal precedence. A semicolon (;)
causes sequential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol && (II)
causes the list following it to be executed only if the preceding pipe­
line returns a zero (nonzero) exit status. An arbitrary number of new­
lines may appear in a list, instead of semicolons, to delimit com­
mands.

March 15, 1989 SH-1

SH (C) SH (C)

A command is either a simple-command or one of the following com­
mands. Unless otherwise stated, the value returned by a command is
that of the last simple-command executed in the command:

for name [in word . ..]
do

list
done

Each time a for command is executed, name is set to the next word
taken from the in word list. If in word is omitted, then the for com­
mand executes the do list once for each positional parameter. that is
set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in
[pattern [I pattern] ...) list

;;]
esac

A case command executes the list associated with the fITst pat­
tern that matches word. The form of the patterns is the same as that
used for filename generation (see Filename Generation below).

if list then
list

[elif list then
list]

[else list]
ti

The list following if is executed and, if it returns a zero exit status, the
list following the fITst then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next
then is executed. Failing that, the else list is executed. If no else list
or then list is executed, then the if command returns a zero exit status.

while list
do

list
done

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth­
erwise the loop terminates. If no commands in' the do list are exe­
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

(list)
Executes list in a subshell.

{list ;}
list is simply executed.

March 15, 1989 SH-2

SH (C) SH (C)

name () {list;}
Define a function which is referenced by name. The body of func­
tions is the list of commands between { and }. Execution of func­
tions is described later (see Execution.)

The following words are recognized only as the first word of a com­
mand and when not quoted:

if then else elif ti case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following char­
acters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave
accents (........) may be used as part or all of a word; trailing new lines
are removed.

No interpretation is done on the command string before the string is
read, except to remove backslashes (\) used to escape other characters.
Backslashes may be used to escape grave accents (') or other
backslashes and are removed before the command string is read.
Escaping grave accents allows nested command substitution. If the
command substitution lies wi thing a pair of double quotes (" , ••• ' "),
backslashes used to escape a double quote (\") will be removed; other­
wise, they will be left intact.

If a backslash is used to escape a newline character, both the
backslash and the newline are removed (see the section on "Quot­
ing"). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string
before it is read, inserting a backslash to escape a dollar sign has not
effect. Backslashes that precede characters other than \, "', ", newline,
and $ are left intact.

Parameter Substitution

The character $ is used to introduce substitutable parameters. There
are two types of parameters, positional and keyword. If parameter is a
digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters, (also known as vari­
abIes) may be assigned values by writing:

March 15, 1989 SH-3

SH (C) SH (C)

name =value [name =value] ...

Pattern-matching is not performed on value. There cannot be a func­
tion and a variable with the same name.

${parameter}
A parameter is a sequence of letters, digits, o!!!nderscores (a
name), a digit, or any of the characters *, @, #, ?, -, $, and!. The
value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A name
must begin with a letter or underscore. If parameter is a digit then
it is a positional parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted (separated
by spaces). Parameter $0 is set from argument zero when the shell
is invoked.

${parameter :-word}
If parameter is set and is not a null argument, substitute its value;
otherwise substitute word.

${parameter :=word}
If parameter is not set or is null, then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

${parameter: ?wordl
If parameter is set and is not a null argument, substitute its value;
otherwise, print word and exit from the shell. If word is omitted,
the message "parameter null or not set" is printed.

${parameter :+word}
If parameter is set and is not a null argument, substitute word; oth­
erwise substitute nothing. In the above, word is not evaluated
unless it is to be used as the substituted string, so that in the fol­
lowing example, pwd is executed only if d is not set or is null:

echo ${d:-' pwd')

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal

- Flags supplied to the shell on invocation or by the set command

? The decimal value returned by the last synchronously executed
command

March 15, 1989 SH-4

SH(C) SH (C)

$ The process number of this shell

The process number of the last background command invoked

The following parameters are used by the shell:

CDPATH
Defines search path for the cd command. See the section Special
Commands, "cd".

HOME
The default argument (home directory) for the cd command

PATH
The search path for commands (see Execution below)

MAIL
If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the
MAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If set to 0, the shell will check before each
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that
will be printed when the modification time changes. The default
message is you have mail.

PSt
Primary prompt string, by default "$ "

PS2
Secondary prompt string, by default "> ".

IFS
Internal field separators, normally space, tab, and newline

SHACCT
If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed. Accounting routines such as acctcom(ADM)
and accton(ADM) can be used to analyze the data collected. This
feature does not work with all versions of the shell.

March 15, 1989 SH-5

SH (C) SH (C)

SHELL
When the shell is invoked, it scans the environment (see Environ­
ment below) for this name. If it is found and there is an 'r' in the
file name part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PSt, PS2, and IFS, while
HOME and MAiL are not set at an by me sheH (aiibough HOlYIE is Sct
by login(M)).

Blank Interpretation

After parameter and command substitution, the results of substitution
are scanned for internal field separator characters (those found in IFS)
and split into distinct arguments where such characters are found. Ex­
plicit null arguments ("" or ' ,) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

Filename Generation

Following substitution, each command word is scanned for the char­
acters *, ?, and [. If one of these characters appears, the word is
regarded as a pattern. The word is replaced with alphabetically sorted
filenames that match the pattern. If no filename is found that matches
the pattern, the word is left unchanged. The character. at the start of a
filename or immediately following a /, as well as the character / itself,
must be matched explicitly. These characters and their matching pat­
terns are:

* Matches any string, including the null string.

? Matches any single character.

[...]
Matches anyone of the enclosed characters. A pair of characters
separated by • matches any character lexically between the pair,
inclusive. If the first character following the opening bracket ([) is
an exclamation mark (1), then any character not enclosed is
matched.

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () I A < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding
it with a \. The pair \newline is ignored. All characters enclosed
between a pair of single quotation marks ("), except a single

March 15, 1989 SH-6

SH (C) SH (C)

quotation mark, are quoted. Inside double quotation marks (" "),
parameter and command substitution occurs and \ quotes the charac­
ters \, " ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@"
is equivalent to "$1" "$2" ...

Prompting

When used interactively, the shell prompts with the value of pst
before reading a command. If at any time a newline is typed and
further input is needed to complete a command, the secondary prompt
(Le., the value of PS2) is issued.

Spelling Checker

When using cd(C) the shell checks spelling. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter "y" and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter "n", then retype the command line. In this example the sh(C)
response is boldfaced:

$ cd /usr/spol/uucp
cd /usr/spool/uucp?y
ok

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command. They are not passed on to the invoked command; substitu­
tion occurs before word or digit is used:

<word

>word

>word

<[-]word

March 15, 1989

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1).
If the file does not exist, it is created; otherwise, it is
truncated to zero length.

Use file word as standard output. If the file exists,
output is appended to it (by first seeking the
end-of-file); otherwise, the file is created. .

The shell input is read up to a line that is the same as
word, or to an end-of-file. The resulting document
becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the char­
acters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \newline
is ignored, and \ must be used to quote the characters

SH-7

SH (C)

<&digit

<&.

SH (C)

\, $, "', and the first character of word. If· is
appended to ®all leading tabs are stripped from
word and from the document.

The standard input is duplicated from file descriptor
diqit (see dup(S». Similarly for the standard output
uSIIlg >.

The standard input is closed. Similarly for the stan­
dard output using >.

If one of the above is preceded by a digit, the file descriptor created is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, the default standard input for the
command is the empty file Idev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invok­
ing shell as modified by input/output specifications.

Environment

The environment (see environ (M» is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value. Executed
commands inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of these affect
the environment unless the export command is used to bind the shell's
parameter to the environment. The environment seen by any executed
command is composed of any unmodified name-value pairs originally
inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export com­
mands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

March 15, 1989 SH-8

SH (C) SH (C)

If the -k flag is set, all keyword arguments are placed in the environ­
ment, even if they occur after the command name.

Signals

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent, with the exception of sig­
nal 11. See the trap command below.

Execution

Each time a command is executed, the above substitutions are carried
out. If the command name does not match a Special Command, but
matches the name of a defined function, the function is executed in the
shell process (note how this differs from the execution of shell pro­
cedures). The positional parameters $1, $2, ... are set to the arguments
of the function. If the command name matches neither a Special C om­
mand nor the name of a defined function, a new process is created and
an attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is :/bin:/usrlbin (specifying the
current directory, Ibin, and lusr/bin, in that order). Note that the
current directory is specified by a null pathname, which can appear
immediately after the equal sign or between the colon delimiters any­
where else in the path list. If the command name contains a I, then the
search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but
is not an a.out file, it is assumed to be a file containing shell com­
mands. A subshell (Le., a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Shell procedures are often used by users running the csh. However, if
the first character of the procedure is a # (comment character), csh
assumes the procedure is a csh script, and invokes Ibinlcsh to execute
it. Always start sh procedures with some other character if csh users
are to run the procedure at any time. This invokes the standard shell
/binlsh.

The location in the search path where a command was found is
remembered by the shell (to help avoid unnecessary execs later). If
the command was found in a relative directory, its location must be
re-determined whenever the current directory changes. The shell for­
gets all remembered locations whenever the PATH variable is changed
or the hash -r command is executed (see hash in next section).

March 15, 1989 SH-9

SH (C) SH (C)

Special Commands

Input/output redirection is permitted for these commands:

: No effect; the command does nothing. A zero exit code is
returned .

• file
Reads and executes commands from file and returns. The search
path specified by PATH is used to find the directory containing file.

break [n]
Exits from the enclosing for or while loop, if any. If n is specified,
it breaks n levels.

continue [n]
Resumes the next iteration of the enclosing for or while loop. If n
is specified, it resumes at the n-th enclosing loop.

cd [arg]
Changes the current directory to arg. The shell parameter HOME
is the default argo The shell parameter CDPATH defines the
search path for the directory containing arg. Alternative directory
names are separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current directory
is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else
in the path list. If arg begins with a /, the search path is not used.
Otherwise, each directory in the path is searched for arg.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the "correct" name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
n means "no", and anything else is taken as "yes".

echo [arg]
Writes arguments separated by blanks and terminated by a newline
on the standard output. Arguments may be enclosed in quotes.
Quotes are required so that the shell correctly interprets these spe­
cial escape sequences:

\b Backspace
\c Prints line without newline.
\f Formfeed
\n Newline
\r Carriage return

March 15, 1989 SH-10

SH (C)

\t Tab
\v Vertical tab
\\ Backslash

SH (C)

\n The 8-bit character whose ASCII code is the 1, 2 or 3-digit octal
number n must start with a zero

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An
end-of-file will also cause the shell to exit.

export [name ...]
The given name s are marked for automatic export to the environ­
ment of subsequently executed commands. If no arguments are
given, a list of all names that are exported in this shell is printed.

getopts
Use in shell scripts to support command syntax standards (see
intro(C)); it parses positional parameters and checks for legal
options. See getopts(C) for usage and description.

hash [-r] [name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The
-r option causes the shell to forget all remembered locations. If no
arguments are given, information about remembered commands is
presented. Hits is the number of times a command has been
invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. There are certain
situations which require that the stored location of a command be
recalculated. Commands for which this will be done are indicated
by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

newgrp [arg ...]
Equivalent to exec newgrp arg ...

pwd
Print the current working directory. See pwd(C) for usage and
description.

read [name ...]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

March 15, 1989 SH-11

SH(C) SH (C)

readonly [name ...]
The given name s are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu­
ments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n
is omitted, the return status is thai of the iast cOimlland executed.

set [-eknuvx [arg ...]]

-a Mark variables which are modified or created for export.
-e If the shell is noninteractive, exits immediately if a command

exits with a nonzero exit status.
-f Disables file name generation.
-h Locates and remembers function commands as functions are

defined (function commands are normally located when the
function is executed).

-k Places all keyword arguments in the environment for a com-
mand, not just those that precede the command name.

-n Reads commands but does not execute them.
-u Treats unset variables as an error when substituting.
-v Prints shell input lines as they are read.
-x Prints commands and their arguments as they are executed.

Although this flag is passed to subshells, it does not enable trac­
ing in those subshells.
Does not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. The remaining arguments are posi­
tional parameters and are assigned, in order, to $1, $2, ... If no
arguments are given, the values of all names are printed.

shift
The positional parameters from $2 . .. are renamed $1 ...

test
Evaluates conditional expressions. See test(C) for usage and
description.

times
Prints the accumulated user and system times for processes run
from the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in
order of signal number. The highest signal number allowed is 16.
Any attempt to set a trap on a signal that was ignored on entry· to
the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent, all trap(s) n are
reset to their original values. If arg is the null string, this signal is

March 15, 1989 SH-12

SH (C) SH (C)

ignored by the shell and by the commands it invokes. If n is 0, the
command arg is executed on exit from the shell. The trap com­
mand with no arguments prints a list of commands associated with
each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
imposes a size limit of n blocks on files written by the shall and its
child processes (files of any size may be read). Any user may
decrease the file size limit, but only the super-user (root) can
increase the limit. With no argument, the current limit is printed.

If no option is given and a number is specified, -f is assumed.
unset [name ...]
For each name, remove the corresponding variable or function. The
variables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset.
umask [000]

The user file-creation mask is set to the octal number 000 where 0 is
an octal digit (see umask(C». If 000 is omitted, the current value of
the mask is printed.
wait [n]
Waits for the specified process to terminate, and reports the termina­
tion status. If n is not given, all currently active child processes are
waited for. The return code from this command is always O.

Invocation

If the shell is invoked through exec (S) and the first character of argu­
ment 0 is -, commands are initially read from letclprofile and then
from SHOME/.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is
invoked as Ibin/sh. The flags below are interpreted by the shell on
invocation only; note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands,
and the remaining arguments are passed as positional parameters to
that command file: .

-c string If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, com-
mands are read from the standard input. Any remaining
arguments specify the positional parameters. Shell output
is written to file descriptor 2.

-t If the -t flag is present, a single command is read and exe­
cuted, and the shell exits. This flag is intended for use by
C programs only and is not useful interactively.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this
case, TERMINATE is ignored (so that kill 0 does not kill
an interactive shell) and INTERRUPT is caught and

March 15. 1989 SH-13

SH (C) SH (C)

ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell (see
rsh(C».

The remainine: flae:s and are:uments are described under the set com-
mand above. - - -

Exit Status

Errors detected by the shell, such as syntax errors, cause the shell to
return a nonzero exit status. If the shell is being used noninterac­
tively, execution of the shell file is abandoned. Otherwise, the shell
returns the exit status of the last command executed. See the exit com­
mand above.

Files

/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

See Also

system default profile if none is present
read by login shell at login
temporary file for«
source of empty file

cd(C), env(C), 10gin(M), newgrp(C), rsh(C), test(C), umask(C),
duP(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), profile(M), environ(M)

Notes

The command readonly (without arguments) produces the same out­
put as the command export.

If « is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input docu­
ment; a garbage file /tmp!sh* is created and the shell complains about
not being able to find that file by another name.

If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory where
the original command was found, the shell will continue to exec the
original command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give
the correct response. Use the cd command with a full path name to
correct this situation.

March 15, 1989 SH-14

SH (C) SH(C)

When a sh(C) user logs in, the system reads and executes commands
in fete/profile before executing commands in the user's
$HOME/.profile. You can, therefore, modify the environment for all
sh(C) users on the system by editing fete/profile.

The shell doesn't treat the high (eighth) bit in the characters of a com­
mand line argument specially, nor does it strip the eighth bit from the
characters of error messages. Previous versions of the shell used the
eighth bit as a quoting mechanism.

Existing programs that set the eighth bit of characters in order to quote
them as part of the shell command line should be changed to use of the
standard shell quoting mechanisms (see the section on "Quoting' ').

Words used to filenames in input/output redirection are not interpreted
for filename generation (see the section on "File Name Generation ").
For example, cat filel > a* will create a file named a*.

Because commands in pipelines are run as separate processes, vari­
ables set in a pipeline have no effect on the parent shell.

If you get the error message:
fork failed - too many processes

try using the wait(C) command to clean up your background pro­
cesses. If this doesn't help, the system process table is probably full or
you have too many active foreground processes (there is a limit to the
number of processes that can associated with your login, and to the
number the system can keep track of.).

Warnings

If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory where
the original command was found, the shell will continue to exee the
original command. Use the hash command to correct this situation.

Not all processes of a 3- or more-stage pipeline are children of the
shell, and thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently
active background processes are waited for and the return code will be
zero.

Standards Conformance

sh is conformant with:

AT&TSVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SH-15

SHL(.C) SHL(C)

shl
shell layer manager

Syntax

shl

Description

shl allows a user to interact with more than one shell from a single ter~
minal .. The user controls these shells, known as layers, using the com~
mands described below.

The current layer is the layer that can receive input from the key­
board.· Other layers attempting to read from the keyboard are blocked.
Output from multiple layers is multiplexed onto the terminal. To have
the output of a layer blocked when it is not current, the stty(C) option
loblk may be set within the layer.

The stty character swtch (set to ''Z if NUL) is used to switch control to
shl from a layer. shl has its own prompt, >, to help distinguish it from
a layer.

A layer is a shell that has been bound to a virtual tty device
(/dev/sxt???). The virtual device can be manipulated like a real tty
device using stty (C) and ioctl (S). Each layer has its own process
groupid.

Definitions

A name is a sequence of characters delimited by a blank, tab or new­
line. Only the frrst eight characters are significant. The names (1)
through (7) cannot be used when creating a layer. They are used by
shl when no name is supplied. They may be abbreviated to just the
digit.

Commands

The following commands may be issued from the shl prompt level.
Any unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the form
(#) where # is the last digit of the virtual device bound to the layer.

March 15, 1989 SHL-1

SHL(C) SHL(C)

The shell prompt variable PSI is set to the name of the layer fol­
lowed by a space, or, if superuser, the name followed by a sharp (#)
and a space. A maximum of seven layers can be created.

block name [name ...]
For each name, block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option
loblk within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in
the process group of the layer are sent the SIGHUP signal (see sig­
na/(2».

help (or?)
Print the syntax of the shl commands.

layers [-I] [name ...]
For each name, list the layer name and its process group. The-I
option produces a ps(1)-like listing. If no arguments are given, in­
formation is' presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argu­
ment is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
stty option loblk within the layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
Make the layer referenced by name the current layer.

Files

Virtual tty devices /dev/sxt???
$SHELL Variable containing path name of the shell to

use (default is /bin/sh).

See Also

ioctl(S), mkdev(ADM), sh(C), signal(S), stty(C), sxt(M)

March 15. 1989 SHL-2

SHL(C)

Note

It is inadvisable to kill shl.

SHL (C)

If shl does not run properly on a particular terminal, you may have to
set istrip fur mai ierrninai' s iine by entering me foHowing command
at the terminal:

stty istrip

By default, the Operating System is not configured for sheUlayers. To
add this to kernel, use the command:

mkdev shl

This executes a script which prompts you for the number of sessions
desired. The script also allows you to relink the kernel. The new ses­
sion limit becomes effective after the kernel is rebooted. (For more in­
formation, see mkdev(ADM).)

Standards Conformance

shl is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SHL-3

SLEEP (C) SLEEP (C)

sleep
suspends execution for an interval

Syntax

sleep time

Description

sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

See Also

alarm(S), sleep(S)

Notes

It is recommended that time be less than 65536 seconds. If this
amount is exceeded, time will be arbitrarily set to some value less
than 65536 seconds.

Standards Conformance

sleep is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SLEEP-1

SORT (C) SORT (C)

sort
sorts and merges files

Syntax

sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl]
[-pos2] [files]

Description

sort sorts lines of all the named files together and writes the result on
the standard output. The standard input is read if - is used as a file
name or if no input files are named.

Comparisons are based on one or more sort keys extracted from each
line of input. By default, there is one sort key, the entire input line,
and ordering is determined by the collating sequence defined by the
locale (see locale (M».

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal
keys. This option can result in unwanted characters placed at
the end of the sorted file.

-ooutput
The argument given is the name of an output file to use instead
of the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -0 and output.

-ykmem
The amount of main memory used by the sort has a large impact
on its performance. Sorting a small file in a large amount of
memory is a waste. If this option is omitted, sort begins using a
system default memory size, and continues to use more space as
needed. If this option is presented with a value, kmem, sort will
start using that number of kilobytes of memory, unless the
administrative minimum or maximum is violated, in which case
the corresponding extremum will be used. Thus, -yO is
guaranteed to start with minimum memory. By convention, -y
(with no argument) starts with maximum memory.

March 15, 1989 SORT-1

SORT (C) SORT (C)

·zrecsz
Causes sort to use a buffer size of recsz bytes for the merge
phase. Input lines longer than the buffer size will cause sort to
terminate abnormally. Normally, the size of the longest line
read during the sort phase is recorded and this maximum is used
as the record size during the merge phase, eliminating the need
for the·z option. However, when the sort phase is omitted (·c or
·m options) a system default buffer size is used, and if this is not
large enough, the ·z option should be used to prevent abnormal
termination.

The following options override the default ordering rules.

·d "Dictionary" order: only letters, digits and blanks (spaces and
tabs) are significant in comparisons. Dictionary order is defined
by the locale setting (see locale (M».

·f Fold lower case letters into upper case. Conversion between
lowercase and uppercase letters are governed by the locale set­
ting (see locale (M».

·i Ignore non-printable characters in non-numeric comparisons.
Non-printable characters are defined by the locale setting (see
locale (M».

·M Compare as months. The first three non-blank characters of the
field are folded to upper case and compared so that "JAN" <
"FEB" < ... < "DEC". Invalid fields compare low to "JAN".
The·M option implies the -b option (see below).

·0 An initial numeric string, consisting of optional blanks, an
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. The ·0 option
implies the ·b option (see below). Note that the ·b option is
only effective when restricted sort key specifications are in
effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifica­
tions' the requested ordering rules are applied globally to all sort keys.
When attached to a specific sort key (described below), the specified
ordering options override all global ordering options for that key.

The notation +posl ·pos2 restricts a sort key to one beginning at posl
and ending at pos2. The characters at positions pos 1 and pos2 are
included in the sort key (provided that pos2 does not precede posl). A
missing ·pos2 means the end of the line.

March 15, 1989 SORT-2

SORT (C) SORT (C)

Specifying posl and pos2 involves the notion of a field (a minimal
sequence of characters followed by a field separator or a newline). By
default, the first blank (space or tab) of a sequence of blanks acts as
the field separator. All blanks in a sequence of blanks are considered
to be part of the next field; for example, all blanks at the beginning of
a line are considered to be part of the first field. The treatment of field
separators ,can be altered using the options:

-tx Use x as the field separator character; x is not considered to be
part of a field (although it may be included in a sort key). Each
occurrence of x is significant (e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending
positions of a restricted sort key. If the -b option is specified
before the first +posl argument, it will be applied to all +posl
arguments. Otherwise, the b flag may be attached indepen­
dently to each +posl or -pos2 argument (see below).

Posl and pos2 each have the form m.n optionally followed by one or
more of the flags b, d, C, i, n, or r. A starting position specified by
+m.n is interpreted to mean the n+lst character in the m+lst field. A
missing .n means .0, indicating the first character of the m+ 1 st field. If
the b flag is in effect, n is counted from the first non-blank in the
m+ 1st field; +m.Ob refers to the first non-blank character in the m+ 1st
field.

A last position specified by -m.n is interpreted to mean the nth charac­
ter (including separators) after the last character of the mth field. A
missing .n means .0, indicating the last character of the mth field. If
the b flag is in effect, n is counted from the last leading blank in the
m+ 1st field; -m.1 b refers to the first non-blank in the m+ 1st field.

When there are multiple sort keys, later keys are compared only after
all earlier keys compare equal. Lines that otherwise compare equal
are ordered with all bytes significant.

Examples

Sort the contents of infile with the second field as the sort key:

sort + 1 -2 infile

Sort, in reverse order, the contents of infilel and infile2, placing the
output in outfile and using the first character of the second field as the
sort key:

sort -r -0 out file + 1.0 -1.2 infile 1 infile2

Sort, in reverse order, the contents of infilel and infile2 using the first
non-blank character of the second field as the sort key:

March 15, 1989 SORT-3

SORT (C) SORT (C)

sort -r + 1.0b -1.1 b infilel infile2

Print the password file (passwd(F» sorted by the numeric user ID (the
third colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the
first occurrence of lines having the same third field (the options -urn
with just one input file make the choice of a unique representative
from a set of equal lines predictable):

sort -urn +2 -3 in file

Files

/usr/tmp/stm???

See Also

coltbl(M), comm(C), join(C), 10cale(M), uniq(C)

Diagnostics

Comments and exits with non-zero status for various trouble condi­
tions (e.g., when input lines are too long), and for disorders discovered
under the -c option. When the last line of an input file is missing a
newline character, sort appends one, prints a warning message, and
continues.

Standards Conformance

sort is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SORT-4

SP!;LL (C) SPI;LL(C)

spell, hashmake, spellin, hashcheck
finds spelling errors

Syntax

spell [-v] [-b] [-x] [-I] [.. i] [+locaCfile] [files]

/usr/lib/spelllhashmake

/usr/lib/spell/spellio n

/usr/lib/speUlhashcheck spelling_list

Description

spell collects words from the named files and looks them up in a spel..,
ling list. Words that neither occur among nor are derivable (by apply~
ing certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no files are named,
words are collected from the standard input.

spell ignores most troff(CT), tbl(CT), and eqn(CT) constructions.

Under the -v option, all words not literally in the spelling list are
printed, and. plausible derivations from the words in the spelling list
are indicated.

Under the -b option, British spelling is checked. Besides preferring
centre, colour, programme, speciality, travelled, etc., this option
insists upon ~ise in words like standardise.

Under the .. x option, every plausible stem is printed with ::; for each
word.

By default, spell (like deroff(CT)) follows chains of included files (.so
and .ox troff(CT) requests), unless the names of such included files
begin with lusrllib. Under the -I option, spell will follow the chains of
all included files. Under the -i option, spell will ignore all chains of
included files.

Under the +localJile option, words found in localJile are removed
from spell's output. LocalJile is the name of a user-provided file that
contains a sorted list of words, one per line. With this option, the user
can specify a set of words that are correct spellings (in addition to
spell's own spelling list) for each job.

March 15, 1989

SPELL (C) SPELL (C)

The spelling list is based on many sources, and while more haphazard
than an· ordinary dictionary, it is also more effective with respect to
proper names and popular technical words. Coverage of the special­
ized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indi­
cated below with their default settings (see FILES). Copies of all out­
put are accumulated in the history file. The stop list filters out
misspellings (e.g., thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes
the corresponding nine-digit hash codes on the standard
output.

spellin n Reads n hash codes from the standard input and writes a
compressed, or hashed spelling_list, such as
lusrlliblspelllhlista or lusrlliblspelllhlistb , on the stan­
dard output. Information about the hash coding is
printed on standard error.

hashcheck Reads a compressed, or hashed spelling_list, such as
lusrlliblspelllhlista or lusrlliblspelllhlistb , and recreates
the nine-digit hash codes for all the words in it, writing
these codes on the standard output.

Examples

This example adds the words in newwords to the on-line dictionary
(Iusrlliblspelllhlista):

cd /usr/lib/spell
cat newwords I ./hashmake I sort -u > newcodes
cat hlista I ./hashcheck > hashcodes
cat newcodes hashcodes I sort -u > newhash
cat newhash I./spellin 'cat newhash I wc -1' > hlist

mv hlista hlista.OO
mv hlist hlista

cd /usr/diet
cat newwords words I sort -du > tempwords
mv words words.OO
mv tempwords words

Remember to remove all temporary files after you are sure everything
works.

March 15, 1989 SPELL-2

SPELL (C) SPELL (C)

The following example removes words from the on~line dictionary.
You should first make a copy of /usr/diet/words that does not have the
words you want to remove. Make sure the file is sorted in alphabetical
order. Then, follow these steps:

cd /usr/lib/spell
cat /usr/dict/words I ./hashmake > hashcodes
cat hashcodes I ./spellin 'cat hashcodes I we -I' > newhlist

mv hlista hlista.OO
mv newhlist hlista

Note that when you are manipulating large text, hash and hash code
files, you should use cat (C) to open the files, since they may be
extremely large.

Files

D_SPELL=!usr/lib/spell/hlist[ab] hashed spelling lists, American &
British

S_SPELL=!usr/lib/speU/hstop hashed stop list
H_SPELL=!usr/lib/spell/spellhist history file
/usr/lib/spell/spellprog program

See Also

deroff(CT), eqn(CT), sed(C), sort(C), tbl(CT), tee(C), troff(CT)

Notes

The spelling list coverage is uneven; new installations will probably
wish to monitor the output for several months to gather local addi­
tions; typically, these are kept in a separate local file that is added to
the hashed spelling_list via spellin.

By default, logging of errors to /usr/Jib/spell/spellhist is turned off.

D_SPELL and S_SPELL can be overridden by placing alternate
definitions in your environment.

Standards Conformance

hashcheck, hashmake and spellin are conformant with:
AT&T SVID Issue 2, Select Code 307-127.

spell is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SPELL.:....3

SPLINE (C) SPLINE (C)

spline
interpolates smooth curve

Syntax

spline [option] ...

Description

spline takes pairs of numbers from the standard input as abscissas and
ordinates of a function. It produces a similar set, which is approxi­
mately equally spaced and includes the input set, on the standard out­
put. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

-a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is assumed to
be 1 if next argument is not a number.

-k The constant k used in the boundary value computation

y~ = ky~ , ... , y~ = ky:-l

is set by the next argument. By default k = o.
-n Spaces output points so that approximately n intervals occur

between the lower and upper x limits. (Default n = 100.)

-p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should nonnally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Nor­
mally these limits are calculated from the data. Automatic
abscissas start at lower limit (default 0).

Diagnostics

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

Notes

A limit of 1000 input points is silently enforced.

March 15, 1989 SPLlNE-1

SPLIT (C)

split
splits a file into pieces

Syntax

split [-n] [file [name]]

Description

SPLIT (C)

split reads file and writes it in as many n-line pieces as necessary
(default 1(00), onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically. If no out­
put name is given, x is default.

If no input file is given, or if a dash (-) is given instead, the standard
input file is used.

See Also

bfs(C), csplit(C)

Standards Conformance

split is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SPLIT -1

STRINGS (C)

strings
find the printable strings in an object file

Syntax

strings [-] [-0] [-number] filename ...

Description

STRINGS (C)

strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline or
a null character. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -0 flag is given, then each
string is preceded by its decimal offset in the file. If the -number flag
is given then number is used as the minimum string length rather than
4.

strings is useful for identifying random object files and many other
things.

See Also

hd(C),od(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 15, 1989 STRINGS-1

STTY (C) STTY(C)

stty

sets the options for a terminal

Syntax

stty [-a] [-g] [options]

Description

stty sets certain terminal I/O options for the device that is the current
standard input; without arguments, it reports the settings of certain
options. With the -a option, stty reports all of the option settings. The
-g option causes stty to output the current stty settings of the terminal
as a list of twelve hexadecimal numbers seperated by colons. This
output may· be used as a command line argument to stty to restore
these settings later on. It is a more compact form than stty -a. For
example, the following shell script uses stty -g to store the current stty
settings, then turns off character echo while reading a line of input.
The stored stty values are then restored to the terminal:

echo "Enter your secret code: \c"
old='stty -g'
stty -echo intr Aa
read code
stty Sold

The various modes are discussed in several groups that follow.
Detailed information about the modes listed in the frrst four. groups
may be found in termio (M). options in the last group are implemented
using options in the previous groups. Refer to vidi(C) for hardware
specific information that describes control modes for the video moni­
tor and other display devices.

Common Control Modes

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

cs5 cs6 cs7 csS
Selects character size (see termio (M».

September 19, 1990 STTY-1

STTY(C}

o Hangs up phone line immediately.

5075110134150200300600
1200 1800 2400 4800 9600 19200

Sets tenninal baud rate to the number given, if possible.

ispeed 5075110134150
1200 1800 3400 4800 9600 19200

sets tenninal output baud rate separately.

ospeed 5075110134150
1200 1800 3400 4800 9600 19200

sets tenninal input baud rate separately.

hupcl (-hupcl)

STTY (C)

Hangs up (does not hang up) phone connection on last close.

hup (-hup)
Same as hupcl (-hupcl).

cstopb (-cstopb)
Uses two(one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (-clocal)
Assumes a line without (with) modem control.

ctsflow (-ctsflow)
Enables (disables) CTS protocol for a modem or non-modem line.

rtsflow (-rtsflow)
Enables (disables) RTS signaling for a modem or non-modem line.

dtrflow (-dtrflow)
Enables (disables) DTR output flow control.

dsrflow (-dsrflow)
Enables (disables) DSR input flow control. Valid for non-modem
lines only (Le., when clocal is set.)

Input Modes

ignhrk (-ignhrk)
Ignores (does not ignore) break on input.

hrkint (-hrkint)
Signals (does not signal) INTERRUPT on break.

September 19,1990 STTY-2

STTY{C) STTY (C)

ignpar (-ignpar)
Ignores (does not ignore) parity errors.

parmrk (-parmrk)
Marks (does not mark) parity errors (see tty (M».

inpek (-inpck)
Enables (disables) input parity checking.

istrip (-istrip)
Strips (does not strip) input characters to 7 bits.

inler (-inler)
Maps (does not map) NL to CR on input.

igner (-igner)
Ignores (does not ignore) CR on input.

iernl (~iernl)
Maps (does not map) CR to NL on input.

iude (-iude)
Maps (does not map) uppercase alphabetics to lowercase on input.

ixon (-ixon)
Enables (disables) START/STOP output control. Output is stopped
by sending an ASCII DC3 and started by sending an ASCII DCl.

ixany (-ixany)
Allows any character (only DCI) to restart output.

ixoff (-ixoff)
Requests that the system send (not send) START/STOP characters
when the input queue is nearly empty/full.

Output Modes

opost (-opost)
Post-processes output (does not post-process output; ignores all
other output modes).

oleue (.. olcuc)
Maps (does not map) lowercase alphabetics to uppercase on out­
put.

onler (-onlcr)
Maps (does not map) NL to CR-NL on output.

oeml (-oernl)
Maps (does not map) CR to NL on output.

September 19, 1990 STTY-3

STTY(C) STTY(C)

onocr (-onocr)
Does not (does) output CRs at column zero.

onlret (-onlret)
On the terminal NL performs (does not perform) the CR function.

ofill (-0611)
Uses fill characters (use timing) for delays.

of del (-ofdel)
Fill characters are DELETEs (NULs).

crO crl cr2 cr3
Selects style of delay for RETURNs (see tty (M».

nlO nIl
Selects style of delay forLINEFEEDs (see tty (M».

tabO tabl tab2 tab3
Selects style of delay for horizontal TABs (see tty (M».

bsO bsl
Selects style of delay for BACKSPACEs (see tty (M».

ffO ff1
Selects style of delay for FORMFEEDs (see tty(M».

vtO vtl
Selects style of delay for Vertical TABs (see tty (M».

Local Modes

isig (-isig)
Enables (disables) the checking of characters against the special
control characters INTERRUPT and QUIT.

icanon (-icanon)
Enables (disables) canonical input (ERASE and KILL processing).

xcase (-xcase)
Canonical (unprocessed) upper/lowercase presentation.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Echoes (does not echo) ERASE character as a SPACEBAR string.
Note: this mode will erase the ERASE character on many CRT ter­
minals; however, it does not keep track of column position and, as
a result, may be confusing on escaped characters, TABs, and
BACKSPACEs.

September 19, 1990 STTY-4

STTY(C) STTY(C)

echok (-echok)
.Echoes (does not echo) NL after KILL character.

Ifkc (-Ifkc)
The same as echok (-echok); obsolete.

echonl (-echonl)
Echoes (does not echo) NL.

noOsh (-noOsh)
Disables (enables) flush after INTERRUPr or QUIT.

iexten (-iexten)
Enables extended implementation (implementation-de fined) func­
tion.

tostop (·tostop)
Disables/enables background process group to write to controlling
terminal only if job control is supported.

Control Assignments

control-character C
control-character C Sets control-character to C, where control­
character is erase, kill, interrupt, quit, eof, eol, switch, or susp. If
C is preceded by a caret (") (escaped from the shell), then the value
used is the corresponding crRL character (e.g., ""0" is a crRL-D
); "AT' is interpreted as DELETE and ""_,, is interpreted as
undefined.

min i, time i (O<i<127)
When -icanon is set, and one character has been received, read
requests are not satisfied until at least min characters have been
received or the timeout value time has expired and one character
has been received. See tty(C).

line i
Sets the line discipline to i (0 < i < 127). There are currently no
line disciplines implemented.

Combination Modes

evenp or parity
Enables parenb and cs7.

oddp
Enables parenb, cs7, and parodd.

September 19, 1990

STTY(C)

-parity, -evenp, or -oddp
Disables parenb, and sets es8.

raw (-raw or cooked)

STTY (C)

Enables (disables) raw input and output (no ERASE, KILL, INTER­
RUPT, QUIT, EOT, or output post-processing).

nl (-nl)
Un sets (sets) iernl, onler. In addition -nl un sets inler, igner,
ocrnl, and onlret.

lease (-lease)
Sets (un sets) xease, iude, and oleue.

LCASE (-LCASE)
Same as lease (-lease).

tabs (-tabs or tab3)
Preserves (expands to spaces) tabs when printing.

ek Resets ERASE and KILL characters back to normal CfRL-H and
CfRL-U.

sane
Resets all modes to some reasonable values. Useful when a
terminal's settings have been hopelessly scrambled.

term
Sets all modes suitable for the terminal type, TERM, where TERM
is one of tty33, tty37, vt05, tn300, ti700, or tek.

See Also

console(M), ioct1(S), vidi(C), tty(M), termio(M), termios(M)

Notes

Many combinations of options make no sense, but no checking is per­
formed.

Standards Conformance

stty is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

September 19. 1990 STTY-6

SU (C) SU(C)

su
makes the user a super-user or another user

Syntax

su [-] [name [arg ...]]

Description

su allows authorized users to become another user without logging
off. The default user name is root (Le., super-user).

su cannot be used to simply assume the login of another user in this
implementation of UNIX. Instead, su can be used under four cir­
cumstances:

• The super-user can "su" to any account.

• An administrative user with the su authorization can "su" to
the super-user account.

• A user can "su" to their own account (silly, but possible).

• A system daemon can "su" to an account.

To use su, the appropriate password must be supplied (unless you are
already a super-user). If the password is correct, su will execute a
new shell with the effective user ID set to that of the specified user.
(The LUID is not changed.) The new shell will be the optional pro­
gram named in the shell field of the specified user's password file
(/bin/sh if none is specified (see sh(C». To restore normal user ID
privileges, press EOF (Ctrl-D) to the new shell.

Any additional arguments given on the command line are passed to
the program invoked as the shell. When using programs like sh(C), an
arg of the form -c string executes string via the shell and an arg of -r
gives the user a restricted shell.

The following statements are true only if the optional program named
in the shell field of the specified user's password file entry is like
sh(C). If the frrst argument to su is a -, the environment is changed to
what would be expected if the user actually logged in as the specified
user. This is done by invoking the program used as the shell with an
argO value whose frrst character is ., thus causing frrst the system's
profile (/etc/profile) and then the specified user's profile (.profile in
the new HOME directory) to be executed. Otherwise, the environ­
ment is passed along with the possible exception of $PATH, which is

March 15, 1989 SU-1

su (C) su (C)

set to Ibin:/etc:/usrlbin for root. Note that if the optional program
used as the shell is Ibinlsh, the user's .profile can check argO for -sh
or -su to determine if it was invoked by login(M) or su(C), respec­
tively. If the user's program is other than Ibin/sh, then .profile is
invoked with an argO of -program by both login(M) and su(C).

The file /etc/default/su can be used to control several aspects of how
su is used. Several entries can be placed in /etc/default/su:

SULOG Name of log file to record all attempts to use suo Usually
/usr/adm/sulog. If not set, no logfile is kept. (See example
below.)

PATH The PATH environment variable to set for non-root users.
If not set, it defaults to ":/bin:/usr/bin." The current
PATH environment variable is ignored.

SUPATH When invoked by root, the path is set by default to
"/bin:/usr/bin:/etc", unless this variable is defined., The
current PATH is ignored.

CONSOLE Attempts to use su are logged to the named device,
independently of SULOG.

For example, if you want to log all attempts by users to become root,
create the file /etc/default/su. In this file, place a string similar to:
SULOG==/usr/adm/sulog This causes all attempts by any user to switch
user IDs to be recorded in the file lusr/adm/sulog. This filename is
arbitrary. The su log file records the original user, the UID of the su
attempt, and the time of the attempt. If the attempt is successful, a
plus sign (+) is placed on the line describing the attempt. A minus
sign (-) indicates an unsuccessful attempt.

Examples

To become user bin while retaining your previously exported environ­
ment, enter:

su bin

To become user bin but change the environment to what would be
expected if bin had originally logged in, enter:

su - bin

To execute command with the temporary environment and permissions
of user bin, enter:

su - bin -c "command args"

March 15, 1989 SU-2

SU (C)

Files

The system password file

SU (C)

/etc/passwd
/etc/default! su
/etc/profile
$HOME/.profile

Optional file containing control options .
The system profile
The user profile

See Also

env(C), environ(M), login(M), passwd(F), profile(M), sh(C), auths(C)

Standards Conformance

su is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SU-3

SUM (C) SUM (C)

sum
calculates checksum and counts blocks in a file

Syntax

sum [-r] file

Description

sum calculates and prints a 16-bit checksum for the named file, and
also prints the number of 512-byte blocks in the file. It is typically
used to look for bad spots, or to validate a file communicated over a
transmission line. The option -r causes an alternate algorithm to be
used in computing the checksum.

See Also

cmchk(C), machine(HW), wc(C)

Diagnostics

"Read error" is indistinguishable from end-of-file on most devices;
check the block count.

Standards Conformance

sum is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 SUM-1

SWCONFIG (C) SWCONFIG (C)

swconfig
produces a list of the software modifications to the
system

Syntax

swcontig [-a] [.. p]

Description

swconfig displays the modifications to the system software since its
initialization; in much the same way that hwconfig tells the user what
hardware is installed on the 'system. The program can tell the user
what sets have been installed or removed from the system, as well as
what release and what parts of the packages were installed at that
time.

Options

Additional flags let the user ask to see all of the description of each
installation on the system.

The default behavior is simple so that the information is displayed
quickly. Additional flags can be used to perform more complex mani­
pulations. Updates are recognized and noted as such. The release
number is displayed in all cases.

Without options, swconfig generates a display similar to the following
example:

Set Release. Notes

Operating System 2.3.1a
International XENIX 0.5. Supplem 2.0.0e
Development System 2.3.0b

partially removed
partially installed
removed

-a The -a flag lists all the information contained in
/usr/lib/custom/history, but sorted by date. It groups prod­
ucts that were installed at the same time, but displays
entries in reverse chronological order.

-p The flag -p is used to display package information in addi­
tion to the default information. A list of all the packages in
a set is stored and their installed status tracked by the
sequence of information in /usrllib/ custom/history.

March 15, 1989 SWCONFIG-1

SWCONFIG (C) SWCONFIG (C)

Examples

Here is a sample output using the -a option:

Set: Operating System (prd = xos)
Fri Mar 17 07:51:02 PST 1989
removed successful
Packages: HELP MOUSE

Release 2.3.1a Type: 386GT

Fri Mar 17 10:43:09 PST 1989
removed successful Release 2.3.1a Type: 386GT
Packages: VSH

Set: International XENIX O.S. Supplement (prd = sup.os)
Fri Dec 16 10:32:53 PST 1988
installed successful Release 2.0.0e Type: n286
Packages: RTSUP BASE SYSADM FILE

Fri Dec 16 11:03:37 PST 1988
installed successful
Packages: MAPFILE

Release 2.0.0e Type: n286

Here is a sample output generated by the -p option:

Set Release Notes

Operating System 2.3.1a
Operating System 2.3.1a
International XENIX O.S. Supplem 2.0.0e

International XENIX O.S. Supplem 2.0.0e
Develoment System 2.3.0b

See Also

custom(ADM)

rerroved
rerroved
installed

installed
removed

Packages

HELP MOUSE
VSH
RTSUP BASE
SYSADM FILE

MAPFlLE
ALL

March 15, 1989 SWCONFIG-2

TABS (C) TABS (C)

tabs
set tabs on a terminal

Syntax

tabs [tabspec] [-Ttype] [+mn]

Description

The tabs command sets the tab stops on the user's tenninal according
to the tab specification tabspec, after clearing any previous settings.
The user's tenninal must have remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec.
They are described below: canned (-code), repetitive (-n),
arbitrary (nl,n2, ...), and file (--file). If no tabspec is given,
the default value is -8, i.e., "standard" Altos UNIX System
V tabs. The lowest column number is 1. Note that for tabs,
column 1 always refers to the leftmost column on a tenninal,
even one whose column markers begin at 0, e.g., the DASI
300, DASI 3OOs, and DASI 450.

-code Use one of the codes listed below to select a canned set of
tabs. The legal codes and their meanings are as follows:

.. a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49

.. c3

March 12,1990

COBOL compact format (columns 1-6 omitted).
U sing this code, the first typed character corre­
sponds to card column 7, one space gets you to
column 8, and a tab reaches column 12. Files
using this tab setup should include a format specif­
ication as follows [seeJspec(F)]:

<:t-c2 m6 s66 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted),
with more tabs than -c2. This is the recommended

TABS-t

TABS (C) TABS (C)

format for COBOL. The appropriate format specif­
ication is [seeJspec(F)]:

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PUI

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

-n A repetitive specification requests tabs at columns 1 +n,
1 +2*n, etc. Of particular importance is the value 8: this
represents the "standard" Altos UNIX System V tab setting,
and is the most likely tab setting to be found at a terminal.
Another special case is the value 0, implying no tabs at all.

nl ,n2 ,... The arbitrary format permits the user to type any chosen set
of numbers, separated by commas, in ascending order. Up to
40 numbers are allowed. If any number (except the first one)
is preceded by a plus sign, it is taken as an increment to be
added to the previous value. Thus, the formats 1,10,20,30,
and 1,10,+10,+10 are considered identical.

--file If the name of a file is given, tabs reads the first line of the
file, searching for a format specification [see Jspec(F)]. If it
finds one there, it sets the tab stops according to it, otherwise
it sets them as -8. This type of specification may be used to
make sure that a tabbed file is printed with correct tab set­
tings, and would be used with the pr(C) command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more
than once, the last value given takes effect:

-Ttype tabs usually needs to know the type of terminal in order to
set tabs and always needs to know the type to set margins.
type is a name listed in term(M). If no -T flag is supplied,
tabs uses the value of the environment variable TERM. If
TERM is not defined in the environment [see environ(M)],
tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+ 1 the left margin. If +m is given without a value

March 12, 1990 TABS-2

TABS (C) TABS (C)

of n, the value assumed is 10. Fora TermiNet, the first value
in the tab list should be 1, or the margin will move even
further to the right. The normal (leftmost) margin on most
terminals is obtained by +mO. The margin for most termi­
nals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

Examples

tabs -a

tabs -8

tabs 1,8,36

example using -code (canned specification) to set tabs
to the settings required by the IBM assembler:

columns 1, 10, 16, 36, 72.

example of using -n (repetitive specification), where n
is 8, causes tabs to be set every eighth position:

1 +(1 *8), 1 +(2*8), ... which evaluate to columns
9,17, ...

example of using nl ,n2 ,... (arbitrary specification) to
set tabs at columns 1, 8, and 36.

tabs --$HOME/fspec.list/att4425

Diagnostics

example of using --file (file specification) to indicate
that tabs should be set according to the first line of
$HOME/fspec.list/att4425 [see jspec(F)].

illegal tabs when arbitrary tabs are ordered incorrectly

illegal increment when a zero or missing increment is found in an
arbitrary specification

unknown tab code when a canned code cannot be found

can't open

file indirection

See Also

if --file option used and file can't be opened

if --file option used and the specification in that
file points to yet another file. Indirection of this
form is not permitted

newform(C), pr(C), tput(C),' fspec(F), terminfo(F), environ(M),

March 12. 1990 TABS-3

TABS (C) TABS (C)

term(M)

Notes

There is no consistency among different terminals regarding ways of
clearing tabs and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but
is willing to set 64.

The tabs pee used with the tabs command is different from the one
used with the new/orm(C) command. For example, tabs -8 sets every
eighth position; whereas newform -i-8 indicates that tabs are set
every eighth position.

Standards Conformance

tabs is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 12, 1990 TABS-4

TAIL (C)

tail
displays the last part of a file

Syntax

tail [±[number][lbc] [-f]] [file]

Description

TAIL (C)

tail copies the named file to the standard output beginning at adesig­
nated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number
from the end of the input (if number is null, the value 10 is assumed).
Number is counted in units of lines, blocks, or characters, according to
the appended option I, b, or c. When no units are specified, counting
is by lines.

With the ·f (' 'follow' ') option, if the input file is not a pipe, the pro­
gram will not terminate after the line of the input file has been copied,
but will enter an endless loop, wherein it sleeps for a second and then
attempts to read and copy further records from the input file. Thus it
may be used to monitor the growth of a file that is being written by
some other process. For example, the command:

tail -f file

will print the last ten lines of file, followed by any lines that are
appended to file between the time tail is initiated and kil1ed~

See Also

dd(C)

Notes

Tails relative to the end of the file are kept in a buffer, and thus are
limited to approximately 300 lines. Unpredictable results can occur if
character special files are "tailed".

Standards Conformance

tail is conformant with:

AT&T SVID Issue 2, Select Code 307-127;

March 15, 1989 TAIL-1

TAIL (C) TAIL (C)

and The X/Open Portability Guide II of January 1987.

March 15, 1989 TAll-2

TAPE (C)

tape, mcart
magnetic tape maintenance program

Syntax

tape [~C] [.. f] [~a arg] command [device]

mcart command [device]

Description

TAPE (C)

tape sends commands to and receives status from the tape subsystem.
tape can communicate with QIC-02 cartridge tape drives, SCSI tape
drives, and QIC-40, QIC-80 and Irwin mini-cartridge tape drives.
(The meart program is automatically invoked by tape when options
specific to the Irwin driver are used.)

tape reads letc/default/tape to find the default device name for send­
ing commands and receiving status. For example, the following line
in letc/default/tape will cause tape to communicate with the QIC-02
cartridge tape device:

device = Idev IxctO

If a device name is specified on the command line, it overrides the
default device. tape queries the device to determine its device type.
If the device does not respond to the query, for example if the car­
tridge tape driver is from an earlier release, tape will print a warning
message and assume the device is a QIC-02 cartridge tape.

You can explicitly specify the type of the device by using the device
type flags, as follows:

-c QIC-02 cartridge tape
-s SCSI tape
-f QIC-40 mini-cartridge tape
-8 QIC-80 mini-cartridge tape
-i Irwin mini -cartridge tape

The ~a flag allows you to pass an argument to commands that can use
them. The only command that currently can take an argument is the
format command, and a format argument is only valid with QIC-40
and QIC-80 tape drives.

March 19, 1990 TAPE-1

TAPE (C) TAPE (C)

The following commands can be used with the various tape drivers
s\1pported under UNIX. The letters following each description indi­
cate. which drivers support each command:

A All drivers
C QIC-02 cartridge tape driver
S SCSI tape driver
F QIC-40 and QIC-80 mini-cartridge tape drivers
I Irwin mini-cartridge tape driver

amount
Report amount of data in current or last transfer. (C,S,F)

erase
Erase and retension the tape cartridge. (C,S,F)

reset
Reset tape controller and tape drive. Clears error conditions and
returns tape subsystem to power-up state. (C,S,F)

reten
Retension tape cartridge. Should be used periodically to remedy
slack tape problems. Tape slack can cause an unusually large
number of tape errors. (A)

rewind
Rewind to beginning of tape. (A)

status
The status output looks like this:

status: status message
soft errors: n
underruns : m

status message is a report of the current status of the drive; "no
cartridge, " "write protected." or "beginning of tape" are typical
status messages.

soft errors is the number of recoverable errors that occurred during
the last tape operation. A recoverable error is one which is
correctable by the drive or controller. An example of a non­
recoverable "hard" error is an attempt to write to a write­
protected cartridge. Note that if the number of soft errors greatly
exceeds the manufacturer's specifications, the drive may require
service or replacement.

March 19, 1990 TAPE-2

TAPE (C) TAPE (C)

underruns is the number of times' the tape drive' had to stop and
restart due to tape buffer underflows. Underruns are not an error
indication, but that the data transfer did not occur at the drive's
maximum data transfer rate. The number of overruns can be
affected by system load. (C,S,F)

format
Format the tape cartridge; Tapes must be formatted before they
can be used. This command takes approximately one minute per
megabyte of tape capacity. Note that on Irwin mini-cartridge tape
drives, blank tapes must be servo-written with the servo command
before they can be formatted. If an argument is provided with the
-a flag, the number of tracks specified by the argument will be for­
matted. Only even numbers less than or equal to the number of
tracks on the tape are allowed. (See tape(HW) for more informa­
tion.) If no argument is given, the entire tape will be formatted.
(F,I)

getbb
Prints a list of bad tape blocks detected during the last tape opera­
tion. This listing can be saved in a file for use by the putbb com­
mand. (F)

map
Prints out a map of the bad blocks on the tape. The format is a
series of lines of the format:

trackn: -------------x------ ...
Each '-' represents a good block on the track; an 'X' represents a
block marked as bad. (F,I)

putbb
Reads a list of bad tape blocks from the standard input and adds
them to the bad block table on the tape. The format expected by
putbb is the same as generated by the getbb command. (F)

rfm
Wind tape forward to the next file mark. (C,S)

wfm
Write a file mark atthe current tape position. (C,S)

'March 19, 1990 TAPE.:...3

TAPE (C)

Irwin-specific Commands

The following commands are all specific to Irwin drives.

drive

TAPE (C)

displays information about the Irwin driver and the tape drive. An
example display is:

Special file: /dev/rmcO
Driver version: 1.0.6a
Drive type: 285XL
Drive firmware: AO
Controller type: SYSFDC
Unit select (0-3): 3

Special file is the name of the special file used to access the driver.

Driver version is the version of the driver linked with the kernel.

Drive type is an "equivalent" tape drive model number as deter­
mined by the MC driver. Since the exact model number of the tape
drive depends on the drive's form factor and whether the drive is
mounted in its own cabinet, the equivalent model number may not
be the exact model of the installed tape drive. The following is a
list of equivalent drives:

110: 110,310,410
120[XL]: 120,220, 320,420, 720, 2020
125: 125,225,325,425,725
145[XL]: 145,245,345,445, 745,2040
165: 165,265,465,765
285XL: 285, 485, 785, 2080
287XL: 287,487, 787, 2120

The brackets in the 120[XL] and 145[XL] mean the letters "XL"
mayor may not be present. When the letters "XL" appear, the
drive is capable of servo writing extra long (i.e., 307.5 foot
DC2120) tapes.

Note: When this field displays" 125/145," either a 125 drive or an
early model 145 drive·with a DCl000 is present, the driver can't
distinguish between the two. A 125 drive will only accept a
DCl000 cartridge (a DC2000 or DC2120 will not fit). A 145 drive
will accommodate DCl000, DC2000, or DC2120 cartridges.

Drive firmware is the firmware part number and revision level.
This line is present only for drives which report this information.

March 19, 1990 TAPE-4

TAPE (C) TAPE (C)

Controller type: is a mnemonic for the floppy controller to which
the tape drive is attached:

Mnemonic Description
System floppy controller
Alternate floppy controller

SYSFDC
ALTFDC
4100MC
4100MCB
4100
4100B

Irwin 4100MC Micro Channel controller
Second 4100MC Micro Channel controller
Irwin 4100 PC Bus controller
Second 4100 PC Bus controller

Unit select (0-3) gives the controller's unit select, in the range 0
through 3. The unit select selects the drive.

servo
Prepares a blank tape for formatting by writing servo information
on each track. This command must be used on blank mini­
cartridge tapes before they can be used in an Irwin mini-cartridge
drive. If the tape has been previously servo-written, it must be
bulk-erased with a commercial tape eraser before it can be servo­
written again. Normally, a tape should only be servo-written once
in its lifetime, although it can be formatted with the format com­
mand many times.

info
displays Irwin cartridge information. For example:

Cartridge state: Formatted
Cartridge format: 145
Write protect slider position: RECORD

Cartridge state is the current state of the cartridge's format.

Cartridge format indicates the format on the cartridge's tape. The
format is given in a code which is the same as the drive model on
which the cartridge was originally formatted (see drive and
tape(HW) for details). When the cartridge is blank, the code has
the format which would be applied by the format command.

Write protect slider position is RECORD or PROTECT.

capacity
cartridge capacity in 512-byte blocks.

kapacity
cartridge capacity in 1024-byte blocks.

These two commands give the total usable data storage capacity of
a formatted tape cartridge. Variations in cartridge capacity are due
to differing numbers of bad blocks.

March 19, 1990 TAPE-5

TAPE (C)

Files

/dev/rStpO
/dev /nrStpO
/dev/xStpO
/dev/rftO
/dev/xftO

/dev/rctO
/dev/nrctO
/dev/rct2
/dev/nrct2
/dev/xctO

/etc/default/tape

Include files:

/usr/include/sys/tape.h
/usr/include/ sys/ct.h
/usr/include/sys/ft.h
/usr/include/ sys/ir.h

See Also

/dev/erctO
/dev/xctO
/dev /rctmini
/dev /xctmini
/dev/rmcO

TAPE (C)

/dev/rmc!
/dev/mcdaemon

backup(ADM), cpio(C), dd(C), restore(ADM), tape(HW), tar(C) ,
xbackup(ADM), xrestore(ADM)

Notes

See tape (HW) for a list of supported tape drives.

The amount and reset commands can be used while the tape is busy
with other operations. All other commands wait until the currently
executing command has been completed before proceeding.

When you are using the non-rewinding tape device or the tape com­
mands rfm and wfm, the tape drive light remains on after the com­
mand has been completed, indicating that more operations may be
performed on the tape. The tape rewind command may be used to
clear this condition. c.

For more information on device files, (listed above), see the tape(HW)
manual page.

If you use the status command while the tape drive is busy, no mes­
sage is displayed until the drive is free.

The amount command doesn't work with QIC-40 mini-cartridge tape
devices.

March 19, 1990 TAPE-6

TAPECNTL (C) TAPECNTL (C)

tapecntl

AT&T tape control for QIC-24/QIC-02 tape device

Syntax

tapecntl [-etrw] [-p arg]

Description

tapeentl will send the optioned commands to the tape device driver
sub-device Idev/rmt/cOsO for all commands except "position," which
will use sub-device Idev/rmt/cOsOn using the ioetl command function.
Sub-device Idev/rmt/cOsO provides a rewind on close capability,
while Idev/rmt/cOsOn allows for closing of the device without rewind.
Error messages will be written to standard error.

-e erase tape
-t retension tape
-r reset tape device
-w rewind tape
-p[n] position tape to "end of file" mark- n

Erasing the tape causes the erase bar to be activated while moving the
tape from end to end, causing all data tracks to be erased in a single
pass over the tape.

Retensioning the tape causes the tape to be moved from end to end,
thereby repacking the tape with the proper tension across its length.

Reset of the tape device initializes the tape controller registers and
positions the tape at the beginning of the tape mark (BOT).

Rewinding the tape ~will move the tape to the BOT.

Positioning the tape command requires an integer argument. Position­
ing the tape will move the tape forward relative to its current position
to the end of the specified file mark. The positioning option used with
an argument of zero will be ignored. Illegal or out-of-range value
arguments to the positioning command will leave the tape positioned
at the end of the last valid file mark.

Options may be used individually or strung together with selected
options being executed sequentially from left to right in the command
line.

March 15, 1989 TAPECNTL-1

TAPECNTL (C) TAPECNTL (C)

Files

/usr /Ii b/tape/tapecntl
/dev /rmt/cOsOn
/dev /rmt/cOsO

Notes

Exit codes and their meanings are as follows:

exit (1) device function could not initiate properly due to miscon­
nected cables or poorly inserted tape cartridge.

exit (2) device function failed to complete properly due to unre­
coverable error condition, either in the command setup or
due to mechanical failure.

exit (3) device function failed due to the cartridge being write
protected or to the lack of written data on the tape.

exit (4) device Idev/rmt/cOsOn or /dev/rmtlcOsO failed to open
properly due to already being opened or claimed by
another process.

March 15. 1989 TAPECNTL-2

TAPEDUMP (C) TAPEDUMP (C)

tapedump
dumps magnetic tape to output file

Syntax

tapedump [-al-e] [-ol-h] [-btsnnum] tape_device outputJile

Description

tape dump dumps the contents of magnetic tapes according to the
options specified. Options include conversion from input format to
user specified output format, specification of input and output block­
size, and the ability to specify that the dump begin at a specific start
block on the tape and proceed for a specified number of blocks.

Options

Option Value

tape_device

-3

-e

-0

-h

-b num

-t num

-s num

-n num

outputJile

Examples

The input tape device.

Convert from EBCDIC input to ASCII output.

Convert from ASCII input to EBCDIC output.

Display tape output in octal format.

Display tape output in hexadecimal format.

skips n input records before starting dump.

Specify which tape file to begin dump from,
where num is the tape file sequence number.

Specify tape block address from which to start dump.

Specify dump of only num blocks.

The output filename; standard output is the default.

This command reads a tape starting at block 400 and outputs the
results in hexadecimal format into a user specified file called
/tmp/hex.dump:

March 15, 1989 TAPEDUMP-1

TAPEDUMP (C) TAPEDUMP (C)

tapedump -b400 -h IdevlrctO Itmplhexdump

This command reads an EBCDIC tape and converts the standard out­
put to ASCII:

tapedump -a IdevlrctO

See Also

sysadmsh(ADM), dd(C), hd(C), od(C), tape(C)

Notes

The output file may be specified to be another tape device.

March 15, 1989 TAPEDUMP-2

TAR (C) TAR (C)

tar
archives files

Syntax

tar [key] [files]

Description

tar saves and restores files to and from an archive medium, which is
typically a storage device such as floppy disk or tape, or a regular file.
Its actions are controlled by the key argument. The key is. a string of
characters containing at most one function letter and possibly one or
more function modifiers. Valid function letters are c, t, x, and e.
Other arguments to the command are files (or directory names) speci­
fying which files are to be backed up or restored. In all cases, appear­
ance of a directory name refers to the files and (recursively) subdirec­
tories of that directory. The r and u option cannot be used with tape
devices.

The function portion of the key is specified by one of the following
letters:

r The named files are written to the end of an existing archive.

x The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if pos­
sible). If no files argument is given, the entire contents of
the archive are extracted. Note that if several files with the
same name are on the archive, the last one overwrites all
earlier ones.

t The names of the speci fied files are listed each time that
they occur on the archive. If no files argument is given, all
the names on the archive are listed.

u The named files are added to the archive if they are not
already there, or if they have been modified since last writ­
ten on that archive.

C Creates a new archive; writing begins at the beginning of the
archive, instead of after the last file.

March 15. 1989 TAR-1

TAR (C) TAR (C)

The following characters may be used in addition to the letter that
selects the desired function:

0, ••• ,9999
This modifier selects the drive on which the archive is
mounted. The default is found in the file letc/default/tar.

v Normally, tar does its work silently. The v (verbose) option
causes it to display the name of each file it treats, preceded
by the function letter. With the t function, v gives more in­
formation about the archive entries than just the name.

w Causes tar to display the action to be taken, followed by the
name of the file, and then wait for the user's confirmation. If
a word beginning with y is given, the action is performed.
Any other input means "no".

f Causes tar to use the next argument as the name of the
archive instead of the default device listed in
letcl default/tar. If the name of the file is a dash (-), tar
writes to the standard output or reads from the standard
input, whichever is appropriate. Thus, tar can be used as the
head or tail of a pipeline. tar can also be used to move
hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking factor
for archive records. The default is 1, the maximum is 20.
This option should only be used with raw magnetic tape
archives (see f above). The block size is determined auto­
matically when reading tapes (key letters x and t).

F Causes tar to use the next argument as the name of a file
from which succeeding arguments are taken.

Tells tar to display an error message if it cannot resolve all
of the links to the files being backed up. If I is not specified,
no error messages are displayed.

m Tells tar to not restore the modification times. The
modification time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an archive
volume in kilobytes. The minimum value allowed is 250.
Very large files are split into "extents" across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been partially
restored. To override the value of k in the default file,
specify k as 0 on the command line.

March 15, 1989 TAR-2

TAR (C)

e

n

p

A

TAR (0)

Prevents files from being split across volumes (tapes· or
floppy disks). If there is not enough room on the present vol­
ume for a given file, tar prompts for a new volume. This is
only valid when the k option is also specified on the com­
mand line.

Indicates the archive device is not a magnetic tape. The k
option implies this. Listing and extracting the contents of an
archive are sped because tar can seek over files it wishes to
skip. Sizes are printed in kilobytes instead of tape blocks.

Indicates that files are extracted using their original permis­
sions. It is possible that a non-super-user may be unable to
extract files because of the permissions associated with the
files or directories being extracted.

Suppresses absolute filenames. Any leading "/"characters
are removed from filenames. During extraction arguments
given should match the relative (rather than the absolute)
pathnames. With the c, r, u options the A options can be
used to inhibit putting leading slashes in the archive
headers.

tar reads /etc/default/tar to obtain default values for the device,
blocking factor, volume size, and the device type (tape or non-tape).
If no numeric key is specified on the command, tar looks for a line in
the default file beginning with the string archive = . Following this
pattern are 4 blank separated strings indicating the values for the de­
vice, blocking factor, volume size and device type, in that order. A
volume size of '0' indicates infinite volume length. This entry should
be modified to reflect the size of the tape volumes used.

For example, the following is the default device entry from
/etc/default/tar :

archive=/dev/fd096ds15 10 1200 n

The n in the last field, means that this device is not a tape. Use y for
tape devices. Any default value may be overridden on the command
line. The numeric keys (0-7) select the line from the default value
beginning with archive#=, where # is the numeric key. When the f
key letter is speci fied on the command line, the entry "archive!=" is
used. In this case, the default file entry must still contain 4 strings, but
the first entry (specifying the device) is not significant. The default
file /etc/default/tar need not exist if a device is specified on the com­
mand line.

Notes

A critical consideration when creating a tar volume involves the use

March 15, 1989 TAR-3

TAR (C) TAR (C)

of absolute or relative pathnames. Consider the following tar com­
mand examples, as executed from the directory lu/target:

tar cv /U/target/ arrow

tar cv arrow

The first command creates a tar volume with the absolute pathname:
lu/target/arrow. The second yields a tar volume with a relative path­
name: .farrow. (The .I is implicit and shown here as an example, .I
should not be specified when retrieving the file from the archive.)
When restored, the first example results in the file arrow being writ­
ten to the directory /u/target (if it exists and you have write permis­
sion) no matter what your working directory. The second example
simple writes the file arrow to your present working directory.

Absolute pathnames specify the location of a file in relation to the root
directory (/); relative pathnames are relative to the current directory.
This must be taken into account when making a tar tape or disk.
Backup volumes use absolute pathnames so that they can be restored
to the proper directory. Use relative pathnames when creating a tar
volume where absolute pathnames are unnecessary.

Examples

If the name of a floppy disk device is /dev/fdt, then a tar format file
can be created on this device by entering:

assign /dev Ifd
tar cvfk /dev Ifd 1 360 files

where files are the names of files you want archived and 360 is the
capacity of the floppy disk in kilobytes. Note that arguments to key
letters are given in the same order as the key letters themselves, thus
the fk key letters have corresponding arguments Idev/fd! and 360.
Note that if afile is a directory, the contents of the directory are recur­
sively archived. To display a listing of the archive, enter:

tar tvf /dev /fd 1

At some later time you will likely want to extract the files from the
archive floppy. You can do this by entering:

tar xvf /dev/fdl

The above command extracts all files from the archive, using the exact
same pathnames as used when the archive was created. Because of
this behavior, it is normally best to save archive files with relative
pathnames rather than absolute ones, since directory permissions may
not let you read the files into the absolute directories specified. (See
the A flag under Options.)

March 15. 1989 TAR-4

TAR (C) TAR (C)

In the above examples, the v verbose option is used simply to confirm
the reading or writing of archive files on the screen. Also, a normal file
could be substituted for the floppy device /dev/fdl shown in the exam­
ples.

Files

/etc/default/tar

/tmp/tar*

Diagnostics

Default devices, blocking and
volume sizes, device type

Displays an error message about bad key characters and archive
read/write errors. .

Displays an error message if not enough memory is available to hold
the link tables.

Notes

There is no way to ask for the nth occurrence of a file.

tar does not verify the selected media type.

The u option can be slow.

The limit on filename length is 100 characters.

When archiving a directory that contains subdirectories, tar will only
access those subdirectories that are within 17 levels of nesting. Sub­
directories at higher levels will be ignored after tar displays an error
message.

When using tar with a raw device, specify the block size with the b
option as a multiple of 512 bytes. For example, to use a 9K block size,
enter:

tar cvtb /dev /rfdO 18 file

Do not enter:

tar xfF --

March 15, 1 989 " TAH 5

TAR (C) TAR (C)

This would imply taking two things from the standard input at the
same time.

Use error-free floppy disks for best results with tar.

Standards Conformance

tar is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TAR-6

TEE (C) TEE (C)

tee

creates a tee in a pipe

Syntax

tee [-i] [-a] [-u] [file] ...

Description

tee transcribes the standard input to the standard output and makes
copies in the files. The -i option ignores interrupts; the -a option
causes the output to be appended to the files rather than overwriting
them. The -u option causes the output to be unbuffered.

Examples

The following example illustrates the creation of temporary files at
each stage in a pipeline:

grep ABC I tee ABC.grep I sort I tee ABC.sort I more

This example shows how to tee output to the terminal screen:

grep ABC I tee /dev /ttyxx I sort I uniq >final.file

Standards Conformance

tee is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TEE-1

TEST (C) TEST (C)

test

tests conditions

Syntax

test expr

[expr]

Description

test evaluates the expression expr, and if its value is true, returns a
zero (true) exit status; otherwise, test returns a nonzero exit status if
there are no arguments. The following primitives are used to con­
struct expr:

-r file

-w file

-x file

-ffile

-dfile

-cfile

-bfile

-ufile

-gfile

-kfile

-sfile

-t [fildes]

-z sl

-n sl

March 15, 1989

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True iffile exists and its set-user-ID bit is set.

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal de­
vice.

True if the length of string sl is zero.

True if the length of string sl is nonzero.

TEST-1

TEST (C)

s1 =s2

s1 != s2

s1

n1 -eq n2

True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.

True if s 1 is not the null string.

TEST (C)

True if the integers n1 and n2 are algebraically equal.,
Any of the comparisons -ne, -gt, -ge, -It, and -Ie may
be used in place of -eq.

These primaries may be combined with the following operators:

-a

Unary negation operator

Binary and operator

-0 Binary or operator (-a has higher precedence than
-0)

(expr) Parentheses for grouping

Notice that all the operators and flags are separate arguments to test.
Notice also, that parentheses ,are meaningful to the shell and, there­
fore, must be escaped.

See Also

find(C), sh(C)

Warning

In the second form of the command (i.e., the one that uses [], rather
than the word test), the square brackets must be delimited by blanks.

Standards Conformance

test is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TEST-2

TIC (C) TIC (C)

tic
terminfo compiler

Syntax

tic I-v [n] [-p permlist]] file ...

Description

tic tr(lnslates terminfo files from the source format into the compiled
format. The results are placed in the directory lusr/lib/terminfo.

The -v (verbose) option causes tic to output trace information showing
its progress. If the optional digit n is appended, the level of verbosity
can be increased.

The -p option directs tic to create a permissions file permlist for use
with ftxperm(ADM).

tic compiles all terminfo descriptions in the given files. When a use=
field is discovered, tic first searches the current file and then the mas­
ter file .Iterminfo.src.

If the environment variable TERMINFO is set, the results are placed
there instead of lusr/lib/terminfo.

Some limitations: the total size of a description cannot exceed 4096
bytes; the name field cannot exceed 128 bytes.

Files

lusr!lib/terminfo/* 1* -Compiled terminal capability database.

See Also

terminfo(M), terminfo(S), terminfo(F)

Standards Conformance

tic is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 TIC-1

TIME (C) TIME (C)

time

times a command

Syntax

time command

Description

The given command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times(S)

Standards Conformance

time is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TIME-1

TOUCH (C) TOUCH (C)

touch
updates access and modification times of a file

Syntax

touch [-arne] [mmddhhmm[yy]] files

Description

touch causes the access and modification times of each argument to
be updated. If no time is specified (see date(C)) the current time is
used. If a new file is created using touch, the modification and access
times can be set to any time. However, the creation time is automati­
cally set to the current time at the time of creation, and cannot be
changed. The first mm refers to the month, dd refers to the day, hh
refers to the hour, the second mm refers to the minute, and yy refers to
the year. The -a and -rn options cause touch to update only the access
or modification times respectively (default is -am). The -c option
silently prevents touch from creating the file if it did not previously
exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist
and were not created).

See Also

date(C), utime(S)

Standards Conformance

touch is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TOUCH-1

TPUT(C) TPUT(C)

tput
queries the terminfo database

Syntax

tput [• Ttype] attribute

Description

The command tput uses the terminfo database to make the values of
terminal-dependent attributes available to the shell. tput outputs a
string if the. terminal attribute is of type string, or an integer if the
attribute is of type integer. If the attribute is of type Boolean, tput
simply sets the exit code (0 for true if the terminal has the capability,
1 for false if it does not) and produces no output.

The· T flag indicates the type of the terminal. Normally this option is
unnecessary, as the default is taken from the environment variable
TERM.

attribute is the terminal capability name from the terminfo database.

Examples

tput clear

tput cols

tput • T450 cols

bold='tput smso'
offbold='tput rmso'

March 1 5, 1989

Echo clear-screen sequence for the current ter­
minal.

Print the number of columns for the current ter­
minal.

Print the number of columns for the 450 termi­
nal.

Set the shell variables "bold" to begin stan­
dout mode sequence and "offbold" to end
standout mode sequence for the current tenni­
nal. This might be followed by a prompt, such
as:

echo "${bold}Name: ${offbold}'c"

TPUT-1

TPUT(C) TPUT{C)

tput he Set exit code to indicate if the current tenninal
is a hardcopy terminal.

Files

/usr/lib/terminfo/*/* -Compiled tenninal capability database.

See Also

terminfo(M), terminfo(S), tic(C), stty(C)

Notes

If the attribute is of type boolean, a value of 0 is returned for TRUE
and a value of 1 for FALSE.

If the attribute is of type string or integer, a value of 0 is returned upon
successful completion. Any other value returned indicates an error.
For example, the specification of a bad attribute (any capability name
that is not found in the tenninfo database) produces an error.

Standards Conformance

tput is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 TPUT-2

TR(C) TR(C)

tr

translates characters

Syntax

tr [-cds] [string 1 [string2]]

Description

tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string1 are
mapped into the corresponding characters of string2. Any combina­
tion of the options -cds may be used:

-c Complements the set of characters i.n string 1 with respect to
the universe of characters whose ASCII codes are 001
through 377 octal

-d Deletes all input characters in string 1

-s Squeezes all strings of repeated output charac'ters that are ill'
string2 to single characters

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A
zero or missing n is taken to be huge; this facility is useful
for padding string2 .

The escape character \ may be used as in the shell to remove special
meaning from any character in a string. In addition, \ followed by 1, 2,
or 3 octal digits, stands for the character whose ASCII code is given by
those digits.

March 15, 1989

TR (C) TR (C)

The following example creates a list of all the words in fileI, one per
line infile2, where a word is taken to be a maximal string of alphabet­
ics. The strings are quoted to protect the special characters from
interpretation by the shell; 012 is the ASCII code for newline:

tr -cs "[A-Z][a-z]" "[\{H2*]" <filel >file2

See Also

ed(C), sh(C), ascii(M)

Notes

Won't handle ASCII NUL in string] or string2; always deletes NUL
from input.

Standards Conformance

Ir is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TR-2

TRANSLATE (C) TRANSLATE (0)

translate

translates files from one format to another

Syntax

translate option [infile] [outfile]

Description

translate translates files according to the options specified. Transla­
tion is done according to the options defined below.

format is assumed to be a file in the. directory
/usrlIib/mapchan/translate if a fullpathname is not provided.

translate uses standard input and standard output unless otherwise
specified via the optional filename arguments.

Options

-ea

-ae

-feformat

-fa format

-efformat

-afformat

-bm

-mb

Files

From EBCDIC to ASCII.

From ASCII to EBCDIC.

From a user defined format to EBCDIC format.

From a user defined format to ASCII format.

From EBCDIC format to a user defined format.

From ASCII format to a user defined format.

From binary/object code to mailable ASCII
uuencode format.

From mailable ASCII uuencode format to
original binary.

/usr/lib/mapchan/translate/*

March 1 5, 1989 TRANSLATE-1

TRANSLATE (C) TRANSLATE (C)

See Also

uuencode(C), dd(C), mapchan(M), sysadmsh(ADM)

Notes

The -bm and -mb options are, for example, used to translate execut­
able object code format to ASCII for transfer across communications
networks.

The syntax for the user defined format file is the same as the syntax
for the mapping files for mapchan(M) and trchan.

Use dd to convert character and file formats (especially tapes) to the
format specified. Example:

dd if=/dev IrmtO of=outfile ibs=800 cbs=80 conv=ascii,lcase

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile. For more informa­
tion on conversion options, refer to dd(C) in the User's Reference.

March 15, 1989 TRANSLATE-2

TRUE (C) TRUE (C)

true
returns with a zero exit value

Syntax

true

Description

true does nothing except return with a zero exit value. jaise(C), true's
counterpart, does nothing except return with a nonzero exit value.
true is typically used in shell procedures such as:

while true
do

command
done

See Also

sh(C), false (C)

Diagnostics

true has exit status zero.

Standards Conformance

true is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15. 1989 TRUE-1

TSET(C) TSET(C)

tset

provide information to set terminal modes

Syntax

tset [options] [type]

Description

tset allows the user to set a terminal's ERASE and KILL characters,
and define the terminal's type and capabilities by creating values for
the TERM environment variable. tset initializes or resets the terminal
with tput(e). If a type is given with the -s option, tset creates informa­
tion for a terminal of the specified type. The type may be any type
given in the terminfo database. If the type is not specified with the -s
option, tset creates information for a terminal of the type defined by
the value of the environment variable, TERM, unless the -h or -m
option is given. If the TERM variable is defined, tset uses the
terminfo database entry. If these options are used, tset searches the
letc/ttytype file for the terminal type corresponding to the current
serial port; it then creates information for a terminal based on this
type. If the serial port is not found in letc/ttytype, the terminal type is
set to unknown. '

tset displays the created information at the standard output. The infor­
mation is in a form that can be used to set the current environment
variables. The exact form depends on the login shell from which tset
was invoked. The following examples illustrate how to use this infor­
mation to change the variables.

There are the following options:

-ere]
Sets the ERASE character to e on all terminals. The default setting
is the BACKSPACE, or CfRL-H.

-E[e]
Identical to the -e command except that it only operates on termi­
naIs that can BACKSPACE.

-k[e]
Sets the KILL character to e, defaulting to CfRL-U.

- Prints the terminal type on the standard output.

March 19, 1990 TSET-1

TSET(C) TSET(C)

-s Outputs the "setenv" commands [for csh(C)], or "export" and
assignment commands [for sh(l)]. The type of commands are
determined by the user's login shell.

-h Forces tset to search letc/ttytype for infonnation and to overlook
the environment variable, TERM.

-s Only outputs the strings to be placed in the environment variables,
without the shell commands printed for -So

-r Prints the tenninal type on the diagnostic output.

-Q Suppresses the printing of the "Erase set to" and "Kill set to"
messages.

-I Suppresses printing of the terminal initialization strings, e.g.,
spawns tput reset instead of tput init.

-m[ident][test baudrate]:type .
Allows a user to specify how a given serial port is is to be mapped
to an actual terminal type. The option applies to any serial port in
letc/ttytype whose type is indetenninate (e.g., dialup, plugboard.
etc.). The type specifies the terminal type to be used, and ident
identifies the name of the indetenninate type to be matched. If no
ident is given, all indetenninate types are matched. The
test baudrate defines a test to be perfonned on the serial port
before the type is assigned. The baudrate must be as defined in
stty(C). The test may be any combination of: >, =, <, @, and !.
If the type begins with a question mark, the user is asked if he
really wants that type. A null response means to use that type; oth­
erwise, another type can be entered which will be used instead.
The question mark must be escaped to prevent. filename expansion
by the shell. If more than one -m option is given, the first correct
mapping prevails.

tset is most useful when included in the .login [for csh(C)] or .profile
[for sh(C)] file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

Examples

tset gt42

tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e#

tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k"U

To use the information created by the -s option for the Bourne shell,
(sh), repeat these commands:

March 19, 1990 TSET-2

TSET(C)

tset -s .,. > /tmp/tset$$
/tmp/tset$ $
rm /tmp/tset$ $

To use the information created for csh, use:

Files

set noglob
set term=('tset -s ')
setenv TERM $term[l]
unset term
unset noglob

TSET(C)

/etc/ttytype
/usr/lib/terminfo/*

Port name to terminal type map database
Terminal capability database

See Also

stty(C), termio(M), tput(C), tty(M), terminfo(F)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 19, 1990 TSET-3

TTY (C) TTY (C)

tty
gets the terminal's name

Syntax

tty [-8]

Description

The tty command prints the pathname of the user's terminal on the
standard output. The -s option inhibits printing, allowing you to test
just the exit code.

Exit Codes

o if the standard input is a terminal, 1 otherwise.

Diagnostics

not a tty If the standard input is not a terminal and -s is not
specified

Standards Conformance

tty is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TTY-1

UMASK (C) UMASK (C)

umask
sets file-creation mode mask

Syntax

umask [000]

Description

The user file-creation mode mask is set to 000. The three octal digits
refer to read/write/execute permissions for owner, group, and others,
respectively. Only the low-order 9 bits of onask and the file mode
creation mask are used. The value of each specified digit is "sub­
tracted" from the corresponding "digit" specified by the system for
the creation of any file (see umask(S) or createS)). This is actually a
binary masking operation, and thus the name "umask". In general,
binary ones remove a given permission, and zeros have no effect at
all. For example, umask 022 removes group and others write permis­
sion (files normally created with mode 777 become mode 755 ; files
created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell. By default, login
shells have a umask of 022.

umask is built in to csh and sh.

See Also

chmod(C), csh(C), sh(C), chmod(S), createS), umask(S)

Standards Conformance

umask is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 UMASK-1

UNAME (C)

uname
prints the name of the current system

Syntax

uname [-snrvma]
uname [-S system name]

Description

UNAME (C)

The uname command prints the current system name of the Altos
UNIX System V system on the standard output file. It is mainly useful
to detennine which system you are using. The options cause selected
information returned by uname(S) to be printed:

-s print system name (default).

-n print node name (the nodename is the name by which the system
is known to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

On your computer, the system name and the nodename may be
changed by specifying a system name argument to the -S option. The
system name argument is restricted to 8 characters. Only the super-
user is allowed this capability. .

See Also

uname(S)

Standards Conformance

uname is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 11, 1990 UNAME-1

UNIQ (C) UNIQ (C)

uniq
reports repeated lines in a file

Syntax

uniq l -ude [+n] [-n]] [input [output]]

Description

uniq reads the input file and compares adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are removed;
the remainder is written on the output file. Input and output should
always be different. Note that repeated lines must be adjacent in order
to be found; see sort(C). If the -u flag is used, just the lines that are
not repeated in the original file are output. The -d option specifies
that one copy of just the repeated lines is to be written. The normal
mode output is the union of the -u and -d mode outputs.

The -e option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of
times it occurred.

The n arguments specify skipping an initial portion of each line in the
comparison:

-n The first n fields together with any blanks before each are
ignored. A field is defined as a string of nonspace, non tab
characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

See Also

comm(C), sort(C)

Standards Conformance

uniq is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 UNIQ-1

UNITS (C) UNITS (C)

units
converts units

Syntax

units

Description

units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.S40000e+OO
/3.937008e-Ol

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated by
suffixed positive integers, division is shown by the usual sign:

You have: 15 Ibs force/in2
You want: atm

* 1.02068ge+OO
/9.79729ge-Ol

units only does multiplicative scale changes; thus it can convert Kel­
vin to Rankine, but not Centigrade to Fahrenheit. Most familiar units,
abbreviations, and metric prefixes are recognized, as well as the fol­
lowing:

pi Ratio of circumference to diameter

c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g

mole
Avogadro's number

water
Pressure head per unit height of water

March 15. 1989 UNITS-1

UNITS (C) UNITS (C)

au Astronomical unit

Pound is not recognized as a unit of mass; Ib is. Compound names are
run together, (e.g. light year). British units that differ from their US
counterparts are prefixed with "br". For a complete list of units,
enter:

cat lusrllib/unittab

Files

lusr/lib/unittab

March 15, 1989 UNITS-2

UPTIME (C) UPTIME (C)

uptime
displays information about system activity

Syntax

uptime

Description

uptime prints the current time of day, the length of time the system has
been up, and the number of users logged onto the system. On systems
that maintain the necessary data, load averages are also shown. Load
averages are the number of processes in the run queue averaged over
1, 5, and 15 minutes. All of this information is also contained in the
ftrst line of the w(C) command.

See Also

w(C)

March 15, 1989 UPTIME-1

USEMOUSE (C) USEMOUSE (C)

usemouse
maps mouse input to keystrokes for use with non­
mouse based programs

Syntax

usemouse [-f conffile] [-t type] [-h horiz_sens] [-v vert_sens]
[-c cmd] [-b] parameters

Description

This utility allows you to use a mouse with any program that would
otherwise accept only keyboard input.

For example, you can use a mouse with vi(C) to move the cursor
around the screen and generate your most commonly used vi com­
mands. The usemouse(C) command translates mouse input into spe­
cific keystrokes required by a program. You can use any of several
predefined mouse keystroke sets (called maps) that correspond to dif­
ferent popular programs. You can also define your own maps with
keystrokes that match different mouse movements and mouse buttons.

Options

The options are:

-f conffile
The -f flag may be used to select an alternate configuration file.
The alternate configuration file, conffile, should use the format of
letc/defaultlusemouse and be entered as an absolute pathname on
the command line. For example:

usemouse -f lu/daniel/mouseconf

is the correct form to specify an alternate configuration file. The -f
and -t flags are mutually exclusive.

-t type
The -t flag may be used to select a predefined configuration file.
type can be the name of any file in lusrllib/mouse, such as vi,
rogue, or any others the system administrator chooses to place
there. These files are identical in format to letc/defaultlusemouse.

-h horiz sens
Defines the horizontal sensitivity. Horizontal mouse movements
smaller than this threshold are ignored. Mouse movements that are

March 11, 1990 USEMOUSE-1

USEMOUSE (C) USEMOUSE (C)

multiples of this value generate multiple strings. The sensitivity
defaults to 5 units. The minimum value is 1 unit, and the max­
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-v vert_sens
Defines the vertical sensitivity. Vertical mouse movements
smaller than this threshold are ignored. Mouse movements that are
multiples of this value generate multiple strings. The sensitivity
defaults to 5 units. The minimum value is 1 unit, and the max­
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-ccmd
This option selects a command for usemouse to run. This defaults
to the shell specified in the SHELL environment variable. If
SHELL is unspecified, Ibin/sh is used. Note that the command
given with this flag can contain blank spaces if the entire command
is placed within double quotes. For example:

usemouse -c "vi letc/termcap"

is valid.

-b Suppresses bell CO) for the duration of mouse usage. Useful with
vi(C).

parameters
These are name=value pairs indicating what ASCII string to insert
into the tty input stream, when the given event is received. Valid
parameters include:

rbu=string
rbd=string
mbu=string
mbd=string
lbu=string
lbd=string
rt=string
1t=string
up=string
dn=string
ul=string
ur=string

March 11, 1990

String to generate on right button up
String to generate on right button down
String to generate on middle button up
String to generate on middle button down
String to generate on left button up
String to generate on left button down
String to generate on mouse right
String to generate on mouse left
String to generate on mouse up
String to generate on mouse down
String to generate on mouse up-left
String to generate on mouse up-right

USEMOUSE-2

USEMOUSE (C)

dr=string
dl=string
hsens=num
vsens=num
bells=yeslno

USEMOUSE (C)

String to generate on mouse down-left
String to generate on mouse down-right
Sensitivity to horizontal motion
Sensitivity to vertical motion
Whether to remove "0 characters

Parameters may be specified in any order. They may contain octal
escapes. They may be quoted with single or double quotes if they con­
tain blank spaces. Any parameters may be omitted and their value, if
any, is taken from the configuration file.

The usemouse(C) Command

To start using the mouse with a text program, enter the command:

usemouse

This command sets the mouse for use with the default map, which is
found in letcl default/mouse. Alternate map files can be found in the
directory lusr/lib/mouse. You can create your own alternate map files
and place them in this directory or in your own custom map file direc­
tory. The default map file has the following values:

Mouse

Left Button
Middle Button
Right Button
Up
Down
Left
Right
Up and Left
Up and Right
Down and Left
Down and Right
Bells

Keystroke

vi top of file (1G) command
vi delete character (x) command
vi bottom of file (0) command
UpArrow Key
Down Arrow Key
Left Arrow Key
Right Arrow Key
not defined
not defined
not defined
not defined
no

Invoking the usemouse command without specifying any options
makes the mouse ready for use with a wide variety of programs or
applications. Invoking usemouse with no options causes the mouse to
use the default keystroke map. Invoking the mouse in this way creates
a new command shell. You can continue to use the mouse for the dura­
tion of the shell. To terminate usemouse, simply enter Ctrl-D.

You can also invoke usemouse for the duration of a specific command:

usemouse -c command

March 11, 1 990 USEMOUSE-3

USEMOUSE (C) USEMOUSE (C)

This puts you in the program specified by command using the mouse.
When you leave the program, mouse input is terminated.

Using the Mouse with Specific Programs

You can use any of several predefined maps that are set up specifically
for use with different programs. (These maps are found in
lusrlIib/mouse.) For example:

usemouse -t vi

This invokes the vi-specific map, which includes mapping the tradi­
tional h-j-k-I direction keys to the mouse movements. The terminal
bell is automatically silenced by the vi map entry bells=no. This is
done to prevent the bell being activated continuously when the user
generates a spurious command with the mouse. (There is also a -b
option that can be used on the usemouse command line to do the same
thing.)

You can combine a command with a selected map file by putting both
on the command line. For example:

usemouse -t vi -c vi filename

This invokes the vi map along with the command; when you quit out
of vi the mouse disengages.

Setting Up Abbreviated (Aliased) Mouse Commands

If you plan to use the mouse frequently, you can substitute short, easy
to use commands that will call up the longer command lines. This is
known as command aliasing. For more information on command alias­
ing, consult the section "Using Aliases" inthe "e-Shell" chapter of
the User's Guide.

Specifying Map keystrokes on the Command Line

You can also specify the characters to be generated by mouse motions
on the usemouse command line. You can specify button actions or
motion actions to supplement or replace a definition from a map file.
For example, assume you want to use the default usemouse file, but
you want to redefine the middle mouse button mbd (middle button
down) as the vi "i" (insert) instead of the "x" (delete character) com­
mand. The following command line does this:

usemouse -c vi mbd=i

The mouse operations are defined by a series of acronyms that are the
same as used in the actual map file:

March 11, 1990 USEMOUSE-4

USEMOUSE (C) USE MOUSE (C)

Parameter Mouse Operation Default

rbu right button up not used
rbd right button down IG
mbu middle button up not used
mbd middle button down x
lbu left button up not used
lbd left button down G
ul mouse up-left \033[A\033[C
ur mouse up-right \033[A\033[D
dr mouse down-left \033[B\033[C
dl mouse down-right \033[B\033[D
rt mouse right \033[C
It mouse left \033[D
up mouse up \033[A
dn mouse down \033[B
hsens horiz. sensitivity 5
vsens vert. sensitivity 5

Creating Customized Maps

You can create your own personal map files for use with the mouse.
The easiest way to do this is to copy the default map in
letc/defaultlusemouse and edit it. You can use quoted strings or the
octal sequences found in the ascii(M) page. The mouse
direction/button parameters are defined in the usemouse table above.
For example, after placing a customized file, mine, in your home
directory, you would invoke the following command to use it with the
program prog:

usemouse -f mine -c prog

How usemouse Works

usemouse merges data from a mouse into the input stream of a tty. The
mouse data is translated to arrow keys or any other arbitrary ASCII
strings. Mouse movements up, down, left right, up-left, up-right,
down-left, and down-right, as well as individual up and down button
transitions, are programmable. This permits the mouse to be used
with programs that are not designed to accept mouse input.

By default, the usemouse utility gets value configurations from the file
letc/defaultlusemouse.

After running the utility, provided a mouse is available, the user will
be running a command with mouse motions and button events
translated to ASCII strings and merged into their tty input stream. By
default, the command is a shell.

March 11, 1990 USEMOUSE-5

USEMOUSE (C)

Files

/dev/mouse
/dev /mouse/bus[O-l]
/dev /mouse/vpix[O-l]
/dev /mouse/microsofcser
/dev /mouse/logitech_ser
/dev /mouse/mousesys_ser
/dev /mouse/ttyp[O-7]
/dev /mouse/ptyp[O-7]
/etc/default/usemouse
/usr/lib/event/devices
/usr/lib/event/ttys
/usr/lib/mouse/*

See Also

mouse(HW)

March 11, 1990

USEMOUSE(C)

Directory for mouse-related special device files.
Bus mouse device files.
vpix-mouse device files.
Microsoft serial mouse device files.
Logitech serial mouse device files.
Mousesys serial mouse device files.
Special pseudo-tty files for mouse input.
Special pseudo-tty files for mouse input.
Default map file for mouse-generated characters.
File containing device information for mice.
File listing ttys eligible to use mice.
Alternate map files for mice.

USEMOUSE-6

UUCP (C)

uucp, uulog, uuname
UNIX-to-UNIX system copy

Syntax

uucp [options] source-files destination-file
uulog [options] -ssystem
uulog [options] system
uulog [options] -fsystem
uuname [-I] [-c]

Description

UUCP (C)

uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on your
machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names that uucp
knows about. The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified
route, to the destination. See Warnings and Notes below for restric­
tions. Care should be taken to ensure that intermediate nodes in the
route are willing to forward information (see Warnings below for re­
strictions).

The shell metacharacters ?, * and [•••] appearing in path-name will
be expanded on the appropriate system.

Path names may be one of:

(1)

(2)

(3)

a full path name;

a path name preceded by -user where user is a login name
on the specified system and is replaced by that user's login
directory;

a path name preceded by -Idestination where destination is
appended to 7usrlspool/uucppublic; (NOTE: This destina­
tion will be treated as a file name unless more than one file is
being transferred by this request or the destination is already
a directory. To ensure that it is a directory, follow the desti­
nation with a '/'. For example -/dan/ as the destination will

March 15, 1989 UUCP-1

UUCP (C) UUCP (C)

make the directory /usr/spool/uucppublic/dan if it does not
exist and put the requested file(s) in that directory).

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy
will fail. If the destination-file is a directory, the last part of the
source-file name is used.

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(S».

The following options are interpreted by uucp:

-c

-c

-d

-f

-ggrade

-j

-m

-nuser

-r

-sfile

Do not copy local file to the spool directory for transfer to
the remote machine (default).

Force the copy of local files to the spool directory for
transfer.

Make all necessary directories for the file copy (default).

Do not make intermediate directories for the file copy.

Grade is a single letter/number; lower ascii sequence
characters will cause the job to be transmitted earlier dur­
ing a particular conversation.

Output the job identification ASCII string on the standard
output. This job identi fication can be used by uustat to
obtain the status or terminate a job.

Send mail to the requester when the copy is completed.

Notify user on the remote system that a file was sent.

Do not start the file transfer, just queue the job.

Report status of the transfer to file. Note that the file must
be a full path name.

-xdebug level
- Produce debugging output on standard output. The

debug_level is a number between 0 and 9; higher numbers
give more detailed information.

uulog queries a log file of uucp or uuxqt transactions in a file
/usr/spool/uucp/.Log/uucico/ system, or
/usr/spool/uucp/.Log/uuxqt/system.

March 15, 1989 UUCP-2

UUCP(C) UUCP(C)

The options cause uulog to print logging information:

-ssys Print information about file. transfer work involving sys­
tem sys.

-fsystem Does a "tail -f" of the file transfer log for system. (You
must press DELETE or BREAK to exit this function.)
Other options used in conjunction with the above:

-x Look in the uuxqt log file for the given system, instead of
the uucico log file (default).

-number Indicates that a "tail" command of number lines should
be executed.

uuname lists the names of systems known to uucp. The -c option
returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for cu and
uucp. See the Sysfiles file.) The -1 option returns the local system
name.

Files

/usr/spoo1!uucp spool directories
/usr/spoo1!uucppublic/*public directory for receiving and

sending (/usrlspool/uucppuhIic)
/usr/lib/uucp/* other data and program files

See Also

mail(C), uustat(C), uux(C), uuxqt(C), chmod(S)

Warnings

The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely
not be able to fetch files by path name; ask a responsible person on the
remote system to send them to you. For the same reasons you will
probably not be able to send files to arbitrary path names. As distrib­
uted, the remotely accessible files are those whose names begin
lusr/spool/uucppublic (equivalent to -I).

All files received by uucp will be owned by uucp. The -m option will
only work sending files or receiving a single file. Receiving multiple
files specified by special shell characters? * [...] will not activate
the -m option.

March 15, 1989 UUCP-3

UUCP (C) UUCP (C)

The forwarding of files through other systems may not be compatible
with the previous version of Uucpo If forwarding is used, all systems in
the route must have the same version of uucpo

Notes

Protected files and files that are in protected directories that are owned
by the requester can be sent by uucp 0 However, if the requester is
root, and the directory is not searchable by "other" or the file is not
readable by "other," the request will fail.

Standards Conformance

uucp, uulog and uuname are conformant with:

AT&TSVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January. 19870

March 15, 1989 UUCP-4

UUENCODE(C) UUENCODE (C)

uuencode,uudecode
encode/decode a binary file for transmission via mail

Syntax

uuencode [source] remotedest I mail sysl !sys2!"!decode
uudecode [file]

Description

uuencode and uudecode are used to send a binary file via uucp (or
other) mail. This combination can be used over indirect mail links.

uuencode takes the named source file (default standard input) and pro­
duces an encoded version on the standard output. The encoding uses
only printing ASCII characters, and includes the mode of the file and
the remotedest for recreation on the remote system.

uudecode reads an encoded file, strips off any leading and trailing
lines added by mailers, and recreates the original file with the speci­
fied mode and name.

The intent is that all mail to the user "decode" should be filtered
through the uudecode program. This way the file is created automati­
cally without human intervention. This is possible on the uucp net­
work by either using sendmail or by making rmail be a link to mail
instead of mail . In each case, an alias must be created in a master file
to get the automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the
remote machine who can uudecode it manually.

The encode file has an ordinary text form and can be edited by any
text editor to change the mode or remote name.

See Also

uucp(C), uux(ADM), mail(C)

March 15, 1989 UUENCODE-1

UUENCODE (C)

Restrictions

UUENCODE(C)

The file is expanded by 35% (3 bytes become 4 plus control informa­
tion) causing it to take longer to transmit.

The user on the remote system who is invoking uudecode (often uucp)
must have write permission on the specified file.

March 15, 1989 UUENCODE-2

UUSTAT (C)

uustat

uucp status inquiry and job control

Syntax

uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q]
uustat [-kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser]

Description

UUSTAT (C)

uustat will display the status of, or cancel, previously specified uucp
commands, or provide general status on uucp connections to other sys­
tems. Only one of the following options can be specified with uustat
per command execution:

-a Output all jobs in queue.
-m Report the status of accessibility of all machines.
-p Execute a "ps -fip" for all the process-ids that are in the

lock files.
-q List the jobs queued for each machine. If a status file

exists for the machine, its date, time and status informa­
tion are reported. In addition, if a number appears in 0
next to the number of C or X files, it is the age in days of
the oldest C./X. file for that system. The Retry field
represents the number of hours until the next possible call.
The Count is the number of failure attempts. NOTE: for
systems with a moderate number of outstanding jobs, this
could take 30 seconds or more of real-time to execute. As
an example of the output produced by the -q option:

eagle 3C 04/07-11:07NO DEVICES AVAILABLE
mh3bs3 2C 07/07-10:42SUCCESSFUL

The above output tells how many command files are wait­
ing for each system. Each command file may have zero or
more files to be sent (zero means to call the system and
see if work is to be done). The date and time refer to the
previous interaction with the system followed by the
status of the interaction.

-kjobid Kill the uucp request whose job identi fication is jobid.
The killed uucp request must belong to the person issuing
the uustat command unless one is the super-user.

March 15, 1989 UUSTAT-1

UUSTAT(C) UUSTAT(C)

-rjobid Rejuvenate jobid. The files associated with jobid are
touched so that their modification time is set to the
current time. This prevents the cleanup daemon from
deleting the job until the jobs modification time reaches
the limit imposed by the daemon.

Either or both of the following options can be speci fied with uustat:

-ssys Report the status of all uucp requests for remote system
sys.

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglenOOOO
eagleN1bd7
eagleClbd8

4/07-11:01:03 (POLL)
4/07-11:07 Seagledan522 /usr/dan/A
4/07-11:07 Seagledan59 D.3b2a12ce4924
4/07-11: 07 Seagledanrmail mike

With the above two options, the first field is the jobid of the job. This
is followed by the date/time. The next field is either an'S' or 'R'
depending on whether the job is to send or request a file. This is fol­
lowed by the user-id of the user who queued the job. The next field
contains the size of the file, or in the case of a remote execution (
rmail - the command used for remote mail), the name of the command.
When the size appears in this field, the file name is also given. This
can either be the name given by the user or an internal name (e.g.,
D.3b2alce4924) that is created for data files associated with remote
executions (rmail in this example).
When no options are given, uustat outputs the status of all uucp
requests issued by the current user.

Files

/usr/spool/uucp/* spool directories

See Also

uucP(C)

Standards Conformance

uustat is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 UUSTAT-2

UUTO(C)

uuto, uupick
public UNIX-to-UNIX system file copy

Syntax

uuto [options] source-files destination
uupick [-s system]

Description

UUTO(C)

uuto sends source-files to destination. uuto uses the uucp(C) facility
to send files, while it allows the local system to control the file access.
A source-file name is a path name on your machine. Destination has
the form:

system! user

where system is taken from a list of system names that uucp knows
about (see uuname). User is the login name of someone on the speci­
fied system.

Two options are available:

-p Copy the source file into the spool directory before transmis-
sion.

-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR
on system, where PUBDIR is a public directory defined in the uucp
source. By default this directory is /usr/spool/uucppublic. Specifical­
ly the files are sent to

PUBDIR!receive/user/mysystem/files.

The destined recipient is notified by mai/(C) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifical­
ly, uupick searches ~UBDIR for files destined for the user. For each
entry (file or directory) found, the following message is printed on the
standard output:

from system: [file file-name] [dir dirname] ?

uupick then reads a line from the standard input to determine the
disposition of the file:

March 15, 1989 UUT0-1

UUTO(C)

<new-line>

d

m [dir]

a [dir]

p

q

EOT (control-d)

!command

*

UUTO (C)

Go on to next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not
specified as a complete path name (in which
$HOME is legitimate), a destination relative to the
current directory is assumed. If no destination is
given, the default is the current directory.

Same as m except moving all the files sent from
system.

Print the content of the file.

Stop.

Same as q.

Escape to the shell to do command.

Print a command summary.

uupick invoked with the -ssystem option will only search the PUBDIR
for files sent from system.

Files

PUBDIR /usr/spool/uucppublic public directory

See Also

mail(C), uucp(C), uustat(C), uux(C), uuclean(ADM)

Warnings

In order to send files that begin with a dot (e.g., .profile) the files must
by qualified with a dot. For example: .profile, .prof*, .profil? are
correct; whereas *prof*, ?profile are incorrect.

Standards Conformance

uupick and uuto are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 UUTQ-2

uux (C) UUX (C)

uux
UNIX-to-UNIX system command execution

Syntax

uux [options] command-string

Description

uux will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to a file
on a specified system.

NOTE: For security reasons, most installations limit the list of com­
mands executable on behalf of an incoming request from UUX, permit­
ting only the receipt of mail (see mail (C». (Remote execution per­
missions are defined in /usrlIib/uucp/Permissions.)

The command-string is made up of one or more arguments that look
like a shell command line, except that the command and file names
may be prefixed by system-name!. A null system-name is interpreted
as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on
the specified system and is replaced by that user's login
directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diffusg!/usr/dan/filel pwba!/a4/dan/file2 > !-/dan/file.diff"

will get the filel and file2 files from the "usg" and "pwba" machines,
execute a dijf(C) command and put the results in file.diffin the local
PUBDIR/dan/ directory.

Any special shell characters such as <>; I should be quoted either by
quoting the entire command-string, or quoting the special characters
as individual arguments.

March 15. 1989 UUX-1

UUX (C) UUX (C)

uux will attempt to get all files to the execution system. For files that
are output files, the file name must be escaped using parentheses. For
example, the command

uux a!cut -fl b!/usr/file \(c!/usr/file\)

gets /usr/file from system "b" and sends it to system "a", performs a
cut command on that file and sends the result of the cut command to
system "c".

uux will notify you if the requested command on the remote system
was disallowed. This notification can be turned off by the -0 option.
The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

-aname

-b

-c

-c

-ggrade

-j

-0

-p

-r

-sfile

The standard input to uux is made the standard input to
the command-string.

Use name as the user identification replacing the initiator
user-id. (Notification will be returned to the user.)

Return whatever standard input was provided to the uux
command if the exit status is non-zero.

Do not copy local file to the spool directory for transfer to
the remote machine (default).

Force the copy of local files to the spool directory for
transfer.

Grade is a single letter/number; lower ASCII sequence
characters will cause the job to be transmitted earlier dur­
ing a particular conversation.

Output the jobid ASCII string on the standard output
which is the job identification. This job identification can
be used by uustat to obtain the status or terminate a job.

Do not notify the user if the command fails.

Same as -: The standard input to uux is made the standard
input to the command-string.

Do not start the file transfer, just queue the job.

Report status of the trjplsfer infile.

-xdebug_level
Produce debugging output on the standard output. The
debug_level is a number between 0 and 9; higher numbers
give more detailed information.

March 15, 1989 UUX-2

UUX (C)

-z Send success notification to the user.

Files

/usr/spool/uucp/*
/usr/lib/uucp/Permissions
/usr/lib/uucp/*

See Also

mail(C), uucP(C), uustat(C)

Warnings

spool directories
remote execution permissions
other data and programs

UUX (C)

Only the first command of a shell pipeline may have a system-name!.
All other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you
want it to do. The shell tokens « and » are not implemented.

The execution of commands on remote systems takes place in an exe­
cution directory known to the uucp system. All files required for the
execution will be put into this directory unless they already reside on
that machine. Therefore, the simple file name (without path or ma­
chine reference) must be unique within the uux request. The follow­
ing command will NOT work:

uux "a!diffb!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

but the command

uux "a!diff a!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

will work. (If dijfis a permitted command.)

Notes

Protected files and files that are in protected directories that are owned
by the requester can be sent in commands using uux. However, if the
requester is root, and the directory is not searchable by "other," the
request will fail.

Standards Conformance

uux is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 UUX-3

VC (C) VC (C)

vc
version control

Syntax

vc [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

Description

The vc command copies lines from the standard input to the standard
output under control of its arguments and control statements encoun­
tered in the standard input. In the process of performing the copy
operation, user declared keywords may be replaced by their string
value when they appear in plain text and/or control statements.

The copying of lines from the standard input to the standard output is
conditional, based on tests (in control statements) of keyword values
specified in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control
character is colon (:), except as modified by the -c keyletter (see
below). Input lines beginning with a backslash (\) followed by a con­
trol character are not control lines and are copied to the standard out­
put with the backslash removed. Lines beginning with a backslash
followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or fewer alphanumerics; the first must be
alphabetic. A value is any ASCII string that can be created with
ed(C); a numeric value is an unsigned string of digits. Keyword
values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur­
rounded by control characters is encountered on a version control
statement. The -a keyletter (see below) forces replacement of key­
words in all lines of text. An uninterpreted control character may be
included in a value by preceding it with \. If a literal \ is desired, then
it too must be preceded by \.

Keyletter Arguments

-a Forces replacement of keywords surrounded by control char­
acters with their assigned value in all text lines and not just in
vc statements.

March 15, 1989 VC-1

VC (C)

-t

VC(C)

All characters from the beginning of a line up to and including
the first tab character are ignored for the purpose of detecting
a control statement. If one is found, all characters up to and
including the tab are discarded.

-cchar Specifies a control character to be used in place of the colon.

-s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ••• , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides
the assignment for the corresponding keyword on the vc com­
mand line and all previous asg's for that keyword. Keywords
declared, but not assigned values have null values.

:if condition

:end
U sed to skip lines of the standard input. If the condition is true,
all lines between the if statement and the matching end state­
ment are copied to the standard output. If the condition is false,
all intervening lines are discarded, including control statements.
Note that intervening if statements and matching end state­
ments are recognized solely for the purpose of maintaining the
proper if-end matching.

The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(" <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<" I ">"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

= equal
!= not equal
& and
I or
> greater than
< less than
() used for logical groupings

March 15, 1989 VC-2

VC (C) VC (C)

not may only occur immediately after the if, and when
present, inverts the value of the entire condition

The> and < operate only on unsigned integer values (e.g., : 012
> 12 is false). All other operators take strings as arguments
(e.g.,: 012 != 12 is true). The precedence of the operators (from
highest to lowest) is:

= ! = > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at
least one blank or tab.

::text Used for keyword replacement on lines that are copied to the
standard output. The two leading control characters are
removed, and keywords surrounded by control characters in text
are replaced by their value before the line is copied to the output
file. This action is independent of the -a keyletter.

:on

: off Tum on or ofIkeyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ••• (915)
on the diagnostic output. vc halts execution and returns an exit
code of 1.

See Also

ed(C)

Diagnostics

0- normal
1- any error

March 15, 1989 VC-3

VI (C) VI (C)

vi, view, vedit
invokes a screen-oriented display editor

. Syntax

vi [-option ...] [command ...] [filename ...]

view [-option ...] [command ...] [filename ...]

vedit [-option ...] [command ...] [filename ...]

Description

vi offers a powerful set of text editing operations based on a set of
mnemonic commands. Most commands are single keystrokes that
perform simple editing functions. vi displays a full screen "window"
into the file you are editing. The contents of this window can be
changed quickly and easily within vi. While editing, visual feedback
is provided (the name vi itself is short for "visual").

The view command is the same as vi except that the read-only option
(-R) is set automatically. The file cannot be changed with view.

The vedit command is the same as vi except for differences in the
option settings. vedit uses novice mode, turns off the magic option,
sets the option report=1 and turns on the options showmode and
redraw.

The showmode option informs the vedit user, in a message in the
lower right hand comer of the screen, which mode is being used. For
instance after the ESC-i command is used, the message reads
"INSERT MODE".

Note that you can not set the novice option from within vi or ex. If
you want to use the novice option you must use the vedit utility. (It is
possible to set the nonovice option from within vedit.)

vi and the line editor ex are one and the same editor: the names vi and
ex identify a particular user interface rather than any underlying func­
tional difference. The differences in user interface, however, are quite
striking. ex is a powerful line-oriented editor, similar to the editor ed.
However, in both ex and ed, visual updating of the terminal screen is
limited, and commands are entered on a command line. vi, on the
other hand, is a screen-oriented editor designed so that what you see
on the screen corresponds exactly and immediately to the contents of
the file you are editing. In the following discussion, vi commands and
options are printed in boldface type.

March 15, 1989 VI-1

VI (C) VI (C)

Options available on the vi command line include:

-x Encryption option; when used, the file will be encrypted as it is
being written and will require an encryption key to be read. vi
makes an educated guess to determine if a file is encrypted or not.
See crypt(C). Also, see the Notes section at the end of this manual
page.

-c Encryption option; the same as -x except that vi assumes files are
encrypted.

-c command

-t tag

-r file

-1

-L

-wn

-R

Begin editing by executing the specified editor command
(usually a search or positioning command).

Equivalent to an initial tag command; edits the file con­
tainin. tag and positions the editor at its definition.

Used in recovering after an editor or system crash,
retrieves the last saved version of the named file.

Specific to editing LISP, this option sets the showmatch
and lisp options.

List the names of all files saved as a result of an editor or
system crash. Files may be recovered with the -r option.

Sets the default window size to n. Useful on dialups to
start in small windows.

Sets a read-only option so that files can be viewed but not
edited.

The Editing Buffer

vi performs no editing operations on the file that you name during
invocation. Instead, it works on a copy of the file in an "editing
buffer."

When you invoke vi with a single filename argument, the named file is
copied to a temporary editing buffer. The editor remembers the name
of the file specified at invocation, so that it can later copy the editing
buffer back to the named file. The contents of the named file are not
affected until the changes are copied back to the original file.

Modes of Operation

Within vi there are three distinct modes of operation:

March 15, 1989 VI-2

VI (C) VI (C)

Command Mode Within command mode, signals from the
keyboard are interpreted as editing com­
mands.

Insert Mode Insert mode can be entered by typing any
of the vi insert, append, open, substitute,
change, or replace commands. Once in
insert mode, letters typed at the key­
board are inserted into the editing buffer.

ex Escape Mode The vi and ex editors are one and the
same editor differing mainly in their user
interface. In vi , commands are usually
single keystrokes. In ex, commands are
lines of text terminated by a RETURN.
vi has a special "escape" command that
gives access to many of these line­
oriented ex commands. To use the ex
escape mode, type a colon (:). The colon
is echoed on the status line as a prompt
for the ex command. An executing com­
mand can be aborted by pressing INTER­
RuPT. Most file manipulation com­
mands are executed in ex escape mode
(for example, the commands to read in a
file and to write out the editing buffer to
a file).

Special Keys

There are several special keys in vi. The following keys are used to
edit, delimit, or abort commands and command lines.

ESC

RETURN

Used to return to vi command mode or to cancel par­
tially formed commands.

Terminates ex commands when in ex escape mode.
Also used to start a newline when in insert mode.

INTERRUPT Often the same as the DEL or RUBOUT key on many
terminals. Generates an interrupt, telling the editor to
stop what it is doing. Used to abort any command that
is executing.

/ Used to specify a string to be searched for. The slash
appears on the status line as a prompt for a search
string. The question mark (?) works exactly like the
slash key, except that it is used to search backward in a
file instead of forward.

March 15, 1989 VI-3

VI (C) VI (C)

The colon is a prompt for an ex command. You can
then type in any ex command, followed by an ESC or
RETURN, and the given ex command is executed.

The following characters are special in insert mode:

BKSP

Ctrl-U

Ctrl-V

Ctrl-W

Ctrl-T

Ctrl-@

Backs up the cursor one character on the current line. The
last character typed before the BKSP is removed from the
input buffer, but remains displayed on the screen.

Moves the cursor back to the first character of the inser­
tion and restarts insertion.

Removes the special significance of the next typed char­
acter. Use Ctrl-V to insert control characters. Linefeed
and Ctrl-l cannot be inserted in the text except as newline
characters. Ctrl-Q and Ctrl-S are trapped by the operating
system before they are interpreted by vi, so they too can­
not be inserted as text.

Moves the cursor back to the first character of the last
inserted word.

During an insertion, with the autoindent option set and at
the beginning of the current line, entering this character
will insert shiftwidth whitespace.

If entered as the first character of an insertion, it is
replaced with the last text inserted, and the insertion ter­
minates. Only 128 characters are saved from the last
insertion. If more than 128 characters were inserted, then
this command inserts no characters. A Ctrl-@ cannot be
part of a file, even if quoted.

Starting and Exiting vi

To enter vi, enter:

vi

vi file

vi + 123 file

vi +45 file

vi +/word file

vi +/tty file

March 15, 1989

Edits empty editing buffer

Edits named file

Goes to line 123

Goes to line 45

Finds first occurrence of "word' ,

Finds first occurrence of" tty' ,

VI-4

VI (C) VI (C)

There are several ways to exit the editor:

'ZZ The editing buffer is written to the file only if any changes were
made.

:x The editing buffer is written to the file only if any changes were
made.

:q! Cancels an editing session. The exclamation mark (!) tells vi to
quit unconditionally. In this case, the editing buffer is not writ­
ten out.

vi Commands

vi is a visual editor with a window on the file. What you see on the
screen is vi's notion of what the file contains. Commands do not
cause any change to the screen until the complete command is
entered. Most commands may take a preceding count that speci fies
repetition of the command. This count parameter is not given in the
following command descriptions, but is implied unless overridden by
some other prefix argument. When vi gets an improperly formatted
command, it rings a bell.

Cursor Movement

The cursor movement keys allow you to move your cursor around in a
file. Note in particular the direction keys (if available on your termi­
nal), the H, J, K, and L cursor keys, and SPACEBAR, BKSP, Ctrl-N, and
Ctrl-P. These three sets of keys perform identical functions.

Forward Space ·1, SPACEBAR, or right direction key

Syntax: I
SPACEBAR
right direction key

Function: Moves the cursor forward one character. If a count is
given, move forward count characters. You cannot move
past the end of the line.

Backspace· h, BKSP, or left direction key

Syntax: h
BKSP
left direction key

Function: Moves cursor backward one character. If a count is given,
moves backward count characters. Note that you cannot
move past the beginning of the current line.

March 15, 1989 VI-5

VI (C) VI (C)

Next Line - +, RETURN, j, Ctrl-N, and LF

Syntax: +
RETURN

Function: Moves the cursor down to the beginning of the next line.

Syntax: j
Ctrl-N
LF
down direction key

Function: Moves the cursor down one line, remaining in the same
column. Note the difference between these commands
and the preceding set of next line commands which move
to the beginning of the next line.

Previous Line - k, Ctrl-P, and up direction key

Syntax: k
Ctrl-P
up direction key

Function: Moves the cursor up one line, remammg in the same
column. If a count is given, the cursor is moved count
lines.

Syntax:

Function: Moves the cursor up to the beginning of the previous line.
If a count is given, the cursor is moved up a count lines.

Beginning of Line - 0 and A

Syntax:
o

Function: Moves the cursor to the beginning of the current line.
Note that 0 always moves the cursor to the first character
of the current line. The caret (A) works somewhat
differently: it moves to the first character on a line that is
not a tab or a space. This is useful when editing files that
have a great deal of indentation, such as program texts.

March 15, 1989 VI-6

VI (C) VI (C)

End of Line - $

Syntax: $

Function: Moves the cursor to the end of the current line. Note that
the cursor resides on top of the last character on the line.
If a count is given, the cursor is moved forward count-l
lines to the end of the line.

Goto Line - G

Syntax: [linenumber]G

Function: Moves the cursor to the beginning of the line specified by
linenumber. If no linenumber is given, the cursor moves
to the beginning of the last line in the file. To find the line
number of the current line, use Ctrl-G.

Column -I

Syntax: [column] 1

Function: Moves the cursor to the column in the current line given
by column. If no column is given, the cursor is moved to
the first column in the current line.

Word Forward - wand W

Syntax: w
W

Function: Moves the cursor forward to the beginning of the next
word. The lowercase w command searches for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase W command searches for a
word defined as a string of nonwhitespace characters.

Back Word - band B

Syntax: b
B

Function: Moves the cursor backward to the beginning of a word.
The lowercase b command searches backward for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (Le., tab, newline, or space
characters). The uppercase B command searches for a
word defined as a string of non-whitespace characters. If
the cursor is already within a word, it moves backward to
the beginning of that word.

March 15, 1989 VI-7

VI (C) VI (C)

End -eand E

Syntax: e
E

Function: Moves the cursor to the end of a word. The lowercase e
command moves the cursor to the last character of a word,
where a word is defined as a string of alphanumeric char­
acters separated by punctuation or whitespace (i.e., tab,
newline, or space characters). The uppercase E moves the
cursor to the last character of a word where a word is
defined as a string of nonwhitespace characters. If the
cursor is already within a word, it moves to the end of that
word.

Sentence - (and)

Syntax: (
)

Function: Moves the cursor to the beginning (left parenthesis) or
end of a sentence (right parenthesis). A sentence is
defined as a sequence of characters ending with a period
(.), question mark (?), or exclamation mark (!), followed
by either two spaces or a newline. A sentence begins on
the first nonwhitespace character following a preceding
sentence. Sentences are also delimited by paragraph and
section delimiters. See below.

Paragraph. { and}

Syntax: }
{

Function: Moves the cursor to the beginning (0 or end (}) of a para­
graph. A paragraph is defined with the paragraphs
option. By default, paragraphs are delimited by the nroff
macros ".IP", ".LP", ".P", ".QP", and ".bp". Para­
graphs also begin after empty lines.

Section . [[and]]

Syntax:]]
[[

Function: Moves the cursor to the beginning ([[) or end (]]) of a sec­
tion. A section is defined with the sections option. By
default, sections are delimited by the nroff macros ".NH"
and ".SH". Sections also start at formfeeds (Ctrl-L) and
at lines beginning with a brace ({).

March 15, 1989 VI-8

VI (C) VI (C)

Match Delimiter - %

Syntax: %

Function: Moves the cursor to a matching delimiter, where a delim­
iter is a parenthesis, a bracket, or a brace. This is useful
when matching pairs of nested parentheses, brackets, and
braces.

Home-H

Syntax: [offiet]H

Function: Moves the cursor to the upper left comer of the screen.
Use this command to quickly move to the top of the
screen. If an offiet is given, the cursor is homed offset-1
number of lines from the top of the screen. Note that the
command "dH" deletes all lines from the current line to
the top line shown on the screen.

Middle Screen - M

Syntax: M

Function: Moves the cursor to the beginning of the screen's middle
line. Use this command to quickly move to the middle of
the screen from either the top or the bottom. Note that the
command "dM" deletes from the current line to the line
specified by the M command.

Lower Screen - L

Syntax: [offset]L

Function: Moves the cursor to the lowest line on the screen. Use
this command to quickly move to the bottom of the
screen. If an offiet is given, the cursor is homed offset-1
number of lines from the bottom of the screen. Note that
the command "dL" deletes all lines from the current line
to the bottom line shown on the screen.

Previous Context - " and"

Syntax:
'character

'character

Function: Moves the cursor to previous context or to context marked
with the m command. If the single quotation mark or
back quotation mark is doubled, the cursor is moved to
previous context. If a single character is given after either

March 15, 1989 VI-9

VI (C) VI (C)

quotation mark, the cursor is moved to the location of the
specified mark as defined by the m command. Previous
context is the location in the file of the last "nonrelative"
cursor movement. The single quotation mark (') syntax
is used to move to the beginning of the line representing
the previous context. The back quotation mark (') syntax
is used to move to the previous context within a line.

The Screen Commands

The screen commands are not cursor movement commands and cannot
be used in delete commands as the delimiters of text objects. How­
ever, the screen commands do move the cursor and are useful in pag­
ing or scrolling through a file. These commands are described below:

Scroll- Ctrl-U and Ctrl-D

Syntax: [size]Ctrl-U
[size]Ctrl-D

Function: Scrolls the screen up a half window (Ctrl-U) or down a
half window (Ctrl-D). If size is given, the scroll is size
number of lines. This value is remembered for all later
scrolling commands.

Page - Ctrl-F and Ctrl-B

Syntax: Ctrl-F
Ctrl-B

Function: Pages screen forward and backward. Two lines of con­
tinuity are kept between pages if possible. A preceding
count gives the number of pages to move forward or back­
ward.

Status - Ctrl-G

Syntax: BELL
Ctrl-G

Function: Displays vi status on status line. This gives you the name
of the file you are editing, whether it has been modified,
the current line number, the number of lines in the file,
and the percentage of the file (in lines) that precedes the
cursor.

Zero Screen - z

Syntax: [linenumber]z[size]RETURN
[linenumber]z[size].
[linenumber]z[size] -

March 15, 1989 VI-10

VI (C) VI (C)

Function: Redraws the display with the current line placed at or
"zeroed" at the top, middle, or bottom of the screen,
respectively. If you give a size, the number of lines dis­
played is equal to size. If a preceding linenumber is
given, the given line is placed at the top of the screen. If
the last argument is a RETURN, the current line is placed
at the top of the screen. If the last argument is a period
(.), the current line is placed in the middle of the screen.
If the last argument is a minus sign (-), the current line is
placed at the bottom of the screen.

Redraw - Ctrl-R or Ctrl-L

Syntax: Ctrl-R
Ctrl-L
(Command depends on terminal type.)

Function: Redraws the screen. Use this command to erase any sys­
tem messages that may scramble your screen. Note that
system messages do not affect the file you are editing.

Text Insertion

The text insertion commands always place you in insert mode. Exit
from insert mode is always done by pressing ESC. The following
insertion commands are ' 'pure" insertion commands; no text is
deleted when you use them. This differs from the text modification
commands, change, replace, and substitute, which delete and then
insert text in one operation.

Insert - i and I

Syntax: i[text]ESC
l[text]ESC

Function: Insert text in editing buffer. The lowercase i command
places you in insert mode. Text is inserted before the
character beneath the cursor. To insert a newline, press a
RETURN. Exit insert mode by typing the ESC key. The
uppercase I command places you in insert mode, but
begins text insertion at the beginning of the current line,
rather than before the cursor.

Append - a and A

Syntax: a[text]ESC
A [text]ESC

Function: Appends text to the editing buffer. The lowercase a com­
mand works exactly like the lowercase i command, except
that text insertion begins after the cursor and not before.
This is the one way to add text to the end of a line. The

March 15, 1989 VI-11

VI (C) VI (C)

uppercase A command begins appending text at the end of
the current line rather than after the curSOT.

Open New Line - 0 and 0

Syntax: o[text]ESC
O[text]ESC

Function: Opens a new line and inserts text. The lowercase 0 com­
mand opens a new line below the current line; uppercase
o opens a new line above the current line. After the new
line has been open~, both these commands work like the
I command.

Text Deletion

Many of the text deletion commands use the D key as an operator.
This operator deletes text objects' delimited by the cursor and a cursor
movement command. Deleted text is always saved away in a buffer.
The delete commands are described below:

Delete Character - x and X

Syntax: x
X

Function: Deletes a character. The lowercase x command deletes
the character beneath the cursor. With a preceding count,
count characters are deleted to the right beginning with
the character beneath the cursor. This is a quick and easy
way to delete a few characters. The uppercase X com­
mand deletes the character just before the cursor: With a
preceding count, count characters are deleted backward,
beginning with the character just before the cursor.

Delete - d and D

Syntax: dcursor-movement
dd
D

Function: Deletes a text object. The lowercase d command takes a
cursor-movement as an argument. If the cursor-movement
is an intraline command, deletion takes place from the
cursor to the end of the text object delimited by the
cursor-movement. Deletion forward deletes the character
beneath the cursor; deletion backward does not. If the
cursor-movement is a multi-line command, deletion takes
place from and including the current line to the text object
delimited by the cursor-movement.

March 15, 1989 VI-12

VI (C) VI (C)

The dd command deletes whole lines. The uppercase D command
deletes from and including the cursor to the end of the current line.

Deleted text is automatically pushed on a stack of buffers numbered 1
through 9. The most recently deleted text is also placed in a special
delete buffer that is logically buffer O. This special buffer is the
default buffer for all (put) commands using the double quotation mark
(") to specify the number of the buffer for delete, put, and yank com­
mands. The buffers 1 through 9 can be accessed with the p and P (put)
commands by appending the double quotation mark (") to the number
of the buffer. For example:

"4p

puts the contents of delete buffer number 4 in your editing buffer just
below the current line. Note that the last deleted text is "put" by
default and does not need a preceding buffer number.

Text Modification

The text modification commands all involve the replacement of text
with other text. This means that some text will necessarily be deleted.
All text modification commands can be "undone" with the u com­
mand:

Undo - uand U

Syntax: u
U

Function: Undoes the last insert or delete command. The lowercase
u command undoes the last insert or delete command.
This means that after an insert, u deletes text; and after a
delete, u inserts text. For the purposes of undo, all text
modification commands are considered insertions.

Repeat -.

Syntax:

The uppercase U command restores the current line to its
state before it was edited, no matter how many times the
current line has been edited since you moved to it.

Function: Repeats the last insert or delete command. A special case
exists for repeating the p and P "put" commands. When
these commands are preceded by the name of a delete
buffer, successive u commands display the contents of the
delete buffers.

March 15, 1989 VI-13

VI (C)

Change - c and C

Syntax: ccursor-movement text ESC
CtextESC
cctext ESC

VI (C)

Function: Changes a text object and replaces it with text . Text is
inserted as with the i command. A dollar sign ($) marks
the extent of the change. The c command changes arbi­
trary text objects delimited by the cursor and a cursor­
movement . The C and cc commands affect whole lines
and are identical in function.

Replace - rand R

Syntax: rchar
RtextESC

Function: Overstrikes character or line with char or text , respec­
tively. Use r to overstrike a single character and R to
overstrike a whole line. A count multiplies the replace­
ment text count times.

Substitute - sand S

Syntax: stext ESC
StextESC

Function: Substitutes current character or current line with text. Use
s to replace a single character with new text. Use S to
replace the current line with new text. If a preceding
count is given, text substitutes for count number of char­
acters or lines depending on whether the command is s or
S, respectively.

Filter - !

Syntax: !cursor-movement cmd RETURN

Function: Filters the text object delimited by the cursor and cursor­
movement through the UNIX command, cmd. For exam­
ple, the following command sorts all lines between the
cursor and the bottom of the screen, substituting the
designated lines with the sorted lines:

!Lsort

Arguments and shell metacharacters may be included as
part of cmd; however, standard input and output are
always associated with the text object being filtered.

March 15, 1989 VI-14

VI (C) VI (C)

Join Lines - J

Syntax: J

Function: Joins the current line with the following line. If a count is
given, count lines are joined.

Shift - < and>

Syntax: > [cursor-movement]
<[cursor-movement]
»
«

Function: Shifts text right (» or left «). Text is shifted by the value
of the option shiftwidth, which is normally set to eight
spaces. Both the > and < commands shift all lines in the
text object delimited by the current line and cursor­
movement. The» and « commands affect whole lines.
All versions of the command can take a preceding count
that acts to multiply the number of objects affected.

Text Movement

The text movement commands move text in and out of the named
buffers a-z and out of the delete buffers 1-9. These commands either
"yank" text out of the editing buffer and into a named buffer or "put"
text into the editing buffer from a named buffer or a delete buffer. By
default, text is put and yanked from the "unnamed buffer", which is
also where the most recently deleted text is placed. Thus it is quite
reasonable to delete text, move your cursor to the location where you
want the deleted text placed, and then put the text back into the edit­
ing buffer at this new location with the p or P command.

The named buffers are most useful for keeping track of several chunks
of text that you want to keep on hand for later access, movement, or
rearrangement. These buffers are named with the letters a through z.
To refer to one of these buffers (or one of the numbered delete buffers)
in a command, use a quotation mark. For example, to yank a line into
the buffer named a, enter:

"ayy

To put this text back into the file, enter:

"ap

If you delete text in the buffer named A rather than a, text is appended
to the buffer.

March 15, 1989 VI-15

VI (C) VI (C)

Note that the contents of the named buffers are not destroyed when
you switch files. Therefore, you can delete or yank text into a buffer.
switch files, and then do a put. Buffer contents are destroyed when you
exit the editor, so be careful.

Put - pand P

Syntax: [It alphanumeric]p
[It alphanumeric]P

Function: Puts text from a buffer into the editing buffer. If no buffer
name is specified,. text is put from the unnamed buffer.
The lowercase p command puts text either below the
current line or after the cursor, depending on whether the
buffer contains a partial line or not. The uppercase P
command puts text either above the current line or before
the cursor, again depending on whether the buffer contains
a partial line or not.

Yank - y and Y

Syntax: [It letter]ycursor-movement
[It letter]yy
[It letter]Y

Function: Copies text in the editing buffer to a named buffer. If no
buffer name is specified, text is yanked into the unnamed
buffer. If an uppercase letter is used, text is appended to
the buffer and does not overwrite and destroy the previous
contents. When a cursor-movement is given as an argu­
ment, the delimited text object is yanked. The Y and yy
commands yank a single line, or, if a preceding count is
given, multiple lines can be yanked.

Searching

The search commands search either forward or backward in the edit­
ing buffer for text that matches a given regular expression.

Search - I and ?

Syntax:

Function:

l[pattern]/[offiet]RETURN
l[pattern]RETURN
?[pattern]?[offiet]RETURN
?[pattern]RETURN

Searches forward (f) or backward (?) for pattern. A string
is actually a regular expression. The trailing delimiter is
not required. If no pattern is given, then last pattern
searched for is used. After the second delimiter, an offset
may be given, specifying the beginning of a line relative
to the line on which pattern was found. For example:

March 15, 1989 VI-16

VI (C) VI (C)

/word/-

finds the beginning of the line immediately preceding the
line containing "word" and the following command:

/word/+2

finds the beginning of the line two lines after the line con­
taining "word". See also the ignorecase and magic
options.

Next String - nand N

Syntax: n
N

Function: Repeats the last search command. The n command
repeats the search in the same direction as the last search
command. The N command repeats the search in the
opposite direction of the last search command.

Find Character - f and F

Syntax: fchar
Fchar

Function: Finds character char on the current line. The lowercase f
searches forward on the line; the uppercase F searches
backward. The semicolon (;) repeats the last character
search. The comma (,) reverses the direction of the
search.

To Character - t and T

Syntax: tchar
Tchar

Function: Moves the cursor up to but not on char. The semicolon
(;) repeats the last character search. The comma (,) rev­
erses the direction of the search.

Mark -m

Syntax: mletter

Function: Marks a place in the file with a lowercase letter. You can
move to a mark using the "to mark" commands described
below. It is often useful to create a mark, move the

March 15, 1989 VI-17

VI (C) VI (C)

cursor, and then delete from the cursor to the mark "a"
with the following command:

d'a

To Mark - ' and'

Syntax: 'letter
'letter

Function: Move to letter. These commands let you move to the
location of a mark. Marks are denoted by single lower­
case alphabetic characters. Before you can move to a
mark, it must first be created with the m command. The
back quotation mark (') moves you to the exact location
of the mark within a line; the forward quotation mark (')
moves you to the beginning of the line containing the
mark. Note that these commands are also legal cursor
movement commands.

Exit and Escape Commands

There are several commands that are used to escape from vi command
mode and to exit the editor. These are described in the following sec­
tion.

ex Escape -:

Syntax:

Function: Enters ex escape mode to execute an ex command. The
colon appears on the status line as a prompt for an ex
command. You then can enter an ex command line ter­
minated by either a RETURN or an ESC and the ex com­
mand will execute. You are then prompted to type
RETURN to return to vi command mode. During the input
of the ex command line or during execution of the ex
command, you may press INTERRUPT to stop what you
are doing and return to vi command mode.

Exit Editor - ZZ

Syntax: ZZ

Function: Exit vi and write out the file if any changes have been
made. This returns you to the shell from which you
started vi.

Quit to ex - Q

March 15, 1989 VI-18

VI (C) VI (C)

Syntax: Q

Function: Enters the ex editor. When you do this, you will still be
editing the same file. You can return to vi by entering the
vi command from ex.

ex Commands

Entering the colon (:) escape command when in command mode pro­
duces a colon prompt on the status line. This prompt is for a command
available in the line-oriented editor, ex. In general, ex commands let
you write out or read in files, escape to the shell, or switch editing
files.

Many of these commands perform actions that affect the "current"
file by default. The current file is normally the file that you named
when you started vi, although the current file can be changed with the
"file" command, f, or with the "next" command, n. In most respects,
these commands are identical to similar commands for the editor, ed.
All such ex commands are aborted by either RETURN or ESC. We
shall use RETURN in our examples. Command entry is terminated by
typing INTERRUPT.

Command Structure

Most ex command names are English words, and initial prefixes of the
words are acceptable abbreviations. In descriptions, only the abbrevi­
ation is discussed, since this is the most frequently used form of the
command. The ambiguity of abbreviations is resolved in favor of the
more commonly used commands. As an example, the command sub­
stitute can be abbreviated s , while the shortest available abbreviation
for the set command is see

Most commands accept prefix addresses specifying the lines in the file
that they are to affect. A number of commands also may take a trail­
ing count specifying the number of lines to be involved in the com­
mand. Counts are rounded down if necessary. Thus, the command
"lOp" displays the tenth line in the buffer while "move 5" moves the
current line after line 5.

Some commands take other information or parameters, stated after the
command name. Examples might be option names in a set command,
such as "set number", a filename in an edit command, a regular
expression in a substitute command, or a target address for a copy
command. For example:

1,5 copy 25

March 15. 1989 VI-19

VI (C) VI (C)

A number of commands have variants. The variant form of the com­
mand is invoked by placing an exclamation mark (I) immediately after
the command name. Some of the default variants may be controlled
by options; in this case, the exclamation mark turns off the meaning of
the default.

In addition, many commands take flags, including the characters "p"
and "1". A "p" or "1" must be preceded by a blank or tab. In this
case, the command abbreviated by these characters is executed after
the command completes. Since ex normally displays the new current
line after each change, p is rarely necessary. Any number of plus (+)
or minus (-) characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before
the printing command is executed.

Most commands that change the contents of the editor buffer give
feedback if the scope of the change exceeds a threshold given by the
report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with the undo
command. After commands with global effect, you will be informed if
the net change in the number of lines in the buffer during this com­
mand exceeds this threshold.

Command Addressing

The following specifies the line addressing syntax for ex commands:

n

$

%

+n or-n

The current line. Most commands leave the current
line as the last line which they affect. The default
address for most commands is the current line, thus
"." is rarely used alone as an address.

The nth line in the editor's buffer, lines being num­
bered sequentially from 1.

The last line in the buffer.

An abbreviation for" 1 ,$", the entire buffer.

An offset, n relative to the current buffer line. The
forms ".+3" "+3" and "+++" are all equivalent.
If the current line is line 1 00 they all address line
103.

/pattern! or ?pattern?

March 15, 1989

Scan forward and backward respectively for a text
matching the regular expression given by pattern.
Scans normally wrap around the end of the buffer.
If all that is desired is to print the next line contain­
ing pattern, the trailing slash (I) or question mark
(1) may be omitted. If pattern is omitted or explic-

VI-20

VI (C)

or 'x

VI (C)

itly empty, the string matching the last specified
regular expression is located. The forms
"RETURN" and "?RETURN" scan using the last
named regular expression. After a substitute,
"RETURN" and "??RETURN" would scan using
that substitute's regular expression.

Before each nonrelative motion of the current line
dot (.), the previous current line is marked with a
label, subsequently referred to with two single quo­
tation marks ("). This makes it easy to refer or
return to this previous context. Marks are esta­
blished with the vi m command, using a single
lowercase letter as the name of the mark. Marked
lines are later referred to with the following nota­
tion:

'x.

where x is the name of a mark.

Addresses to commands consist of a series of addresses, separated by
a colon (,) or a semicolon (;). Such address lists are evaluated left to
right. When addresses are separated by a semicolon (;) the current
line (.) is set to the value of the previous addressing expression before
the next address is interpreted. If more addresses are given than the
command requires, all but the last one or two are ignored. If the com­
mand takes two addresses, the first addressed line must precede the
second in the buffer. Null address specifications are permitted in a list
of addresses, the default in this case is the current line "."; thus
'''100'' is equivalent to ".,100". It is an error to give a prefix address
to a command which expects none.

Command Format

The following is the format for all ex commands:

[address] [command] [!] [parameters] [count] [flags]

All parts are optional depending on the particular command and its
options. The following section describes specific commands.

Argument List Commands

The argument list commands allow you to work on a set of files, by
remembering the list of filenames that are specified when you invoke
vi. The args command lets you examine this list of filenames. The
file command gives you information about the current file. The n
(next) command lets you either edit the next file
in the argument list or change the list. And the rewind command lets

March 15, 1989 VI-21

VI (C) VI (C)

you restart editing the files in the list. All of these commands are
described below:

args

f

ffile

n

n!

The members of the argument list are displayed, with
the current argument delimited by brackets.
For example, a list might look like this:

filel file2 [file3] file4 fileS

The current file is file3 .

Displays the current filename, whether it has been
modified since the last write command, whether it is
read-only, the current linenumber, the number of
lines in the buffer, and the percentage of the buffer
that you have edited. In the rare case that the current
file is "[Not edited]", this is noted also; in this case
you have to use w! to write to the file, since the edi­
tor is not sure that a w command will not destroy a
file unrelated to the current contents of the buffer.

The current filename is changed to file which is con­
sidered "[Not edited]' '.

The next file in the command line argument list is
edited.

This variant suppresses warnings about the
modifications to the buffer not having been written
out, discarding irretrievably any changes that may
have been made.

n [+commandlfilelist

rew

rew!

The specified ./ilelist is expanded and the resulting
list replaces the current argument list; the first file in
the new list is then edited. If command is given (it
must contain no spaces), then it is executed after
editing the first such file.

The argument list is rewound, and the first file in the
list is edited.

Rewinds the argument list discarding any changes
made to the current buffer.

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as a filename when
you use these commands. This causes unexpected problems. To avoid
these problems, use the default prompt value as specified in
lusrlliblmkuserlmkuser.cshrc.

March 15, 1989 VI-22

VI (C) VI (C)

Edit Commands

To edit a file other than the one you are currently editing, you will
often use one of the variations of the e command.

In the following discussions, note that the name of the current file is
always remembered by vi and is specified by a percent sign (%). The
name of the previous file in the editing buffer is specified by a number
sign (#).

The edit commands are described below:

efile

e!file

e +nfile

Ctrl-A

Used to begin an editing session on a new file. The edi­
tor first checks to see if the buffer has been modified
since the last w command was issued. If it has been, a
warning is issued and the command is aborted. The
command otherwise deletes the entire contents of the
editor buffer, makes the named file the current file, and
displays the new filename. After ensuring that this file
is sensible, (i.e., that it is not a binary file, directory, or
a device), the editor reads the file into its buffer. If the
read of the file completes without error, the number of
lines and characters read is displayed on the status line.
If there were any non-ASCII characters in the file, they
are stripped of their non-ASCII high bits, and any null
characters in the file are discarded. If none of these
errors occurred, the file is considered edited. If the last
line of the input file is missing the trailing newline
character, it is supplied and a complaint issued. The
current line is initially the first line of the file.

This variant form suppresses the complaint about
modifications having been made and not written from
the editor buffer, thus discarding all changes that have
been made before editing the new file.

Causes the editor to begin editing at line n rather than
at the first line. The argument n may also be an editor
command containing no spaces; for example, "+/pat­
tern".

This is a shorthand equivalent for ":e #RETURN",
which returns to the previous position in the last edited
file. If you do not want to write the file, you should use
":e! #RETURN" instead.

Write Commands

The write commands let you write out all or part of your editing buffer
to either the current file or to some other file. These commands are
described below:

March 15, 1989 VI-23

VI (C)

wJile

w»Jile

w! name

w!command

VI (C)

Writes changes made back to file, displaying the num­
ber of lines and characters written. Normally, file is
omitted and the buffer is written to the name of the
current file. If file is specified, text is written to that
file. The editor writes to a file only if it is the current
file and is edited, or if the file does not exist Other­
wise, you must give the variant form w! to force the
write. If the file does not exist it is created. The
current filename is changed only if there is no current
filename; the current line is never changed.

If an error occurs while writing the current and edited
file, the editor displays:

No write since last change

even if the buffer had not previously been modified.

Appends the buffer contents at the end of an existing
file. Previous file contents are not destroyed.

Overrides the checking of the normal write command,
and writes to any file that the system permits.

Writes the specified lines into command. Note the
difference between

w!file

which overrides checks and

w!cmd

which writes to a command. The output of this com­
mand is displayed on the screen and not inserted in the
editing buffer.

Read Commands

The read commands let you read text into your editing buffer at any
location you specify. The text you read in must be at least one line
long, and can be either a file or the output from a command.

r Jile Places a copy of the text of the given file in the editing
buffer after the specified line. If no file is given, the
current filename is used. The current filename is not
changed unless there is none, in which case the file
becomes the current name. If the file buffer is empty
and there is no current name, this is treated as an e
command.

March 15, 1989 VI-24

VI (0) VI (0)

Address 0 is legal for this command and causes the file
to be read at the beginning of the buffer. Statistics are
given as for the e command when the r successfully ter­
minates. After an r the current line is the last line read.

r !command Reads the output of command into the buffer after the
specified line. A blank or tab before the exclamation
mark (!) is mandatory.

Quit Commands

There are several ways to exit vi. Some abort the editing session,
some write out the editing buffer before exiting, and some warn you if
you decide to exit without writing out the buffer. All of these ways of
exiting are described below:

q Exits vi. No automatic write of the editor buffer to a file
is performed. However, vi displays a warning message if
the file has changed since the last w command was issued,
and does not quit. vi also displays a diagnostic if there are
more files in the argument list left to edit. Normally, you
will wish to save your changes, and you should enter a w
command. If you wish to discard them, enter the q! com­
mand variant.

q! Quits from the editor, discarding changes to the buffer
without complaint.

wq name Like a w and then a q command.

wq! name Overrides checking normally made before execution of
the w command to any file. For example, if you own a file
but do not have write permission turned on, the wq!
allows you to update the file anyway.

x name If any changes have been made and not written, writes the
buffer out and then quits. Otherwise, it just quits.

Global and Substitute Commands

The global and substitute commands allow you to perform complex
changes to a file in a single command. Learning how to use these
commands is a must for an experienced vi user.

glpatternl cmds
The g command has two distinct phases. In the first
phase, each line matching pattern in the editing buffer is
marked. Next, the given command list is executed with
the current line, dot (.), initially set to each marked line.

March 15, 1989 VI-25

VI (C)

g/s1!p

g/sl/s//s2/

g/sl/s/!s2/g

VI (C)

The command list consists of the remaining commands on
the current input line and may continue to multiple lines
by ending all but the last such line with a backslash (\).
This multiple-line option will not work from within vi,
you must switch to ex to do it. If cmds (or the trailing
slash (/) delimiter) is omitted, each line matching pattern
is displayed.

The g command itself may not appear in cmds. The
options autoprint and autoindent are inhibited during a
global command and the value of the report option is
temporarily infinit~, in deference to a report for the entire
global. Finally, the context mark (') or (..) is set to the
value of the current line (.) before the global command
begins and is not changed during a global command.

The following global commands, most of them substitu­
tions, cover the most frequent uses of the global com­
mand.

This command simply prints all lines that contain
the string "sl" .

This command substitutes the first occurrence of
"sl" on all lines that contain it with the string
"s2".

This command substitutes all occurrences of "sl"
with the string "s2". This includes multiple occur­
rences of "sl" on a line.

g/sl/s/!s2/gp This command works the same as the preceding
example, except that in addition, all changed lines
are displayed on the screen.

g/sl/s/!s2/gc

g/sO/s/sl/s2/g

g!/patternl cmds

g/A/S/! Ig

March 15, 1989

This command prompts you to confirm that you
want to make each substitution of the string "sl"
with the string "s2". If you enter a Y , the given
substitution is made, othenyise it is not.

This command marks all those lines that contain the
string "sO", and then for those lines only, substi­
tutes all occurrences of the string "sl" with "s2".

This variant form of g runs cmds at each line not
matching pattern.

This command inserts blank spaces at the beginning
of each line in a file.

VI-26

VI (C) VI (C)

s/pattern/ repll options
On each specified line, the first instance of text
matching the regular expression pattern is replaced
by the replacement text repl. If the global indicator
option character g appears, all instances on a line
are substituted. If the confirm indication character
c appears, before each substitution the line to be
substituted is printed on the screen with the string
to be substituted marked with caret (A) characters.
By entering Y , you cause the substitution to be per­
formed; any other input causes no change to take
place. After an s command, the current line is the
last line substituted.

v/patternlcmds A synonym for the global command variant g!, run­
ning the specified cmds on each line that does not
match pattern.

Text Movement Commands

The text movement commands are largely superseded by commands
available in vi command mode. However, the following two com­
mands are still quite useful:

co addr flags

[range]maddr

A copy of the specified lines is placed after addr,
which may be "0". The current line"." addresses
the last line of the copy.

The m command moves the lines specified by range
after the line given by addr. For example, m+
swaps the current line and the following line, since
the default range is just the current line. The first of
the moved lines becomes the current line (dot).

Shell Escape Commands

You will often want to escape from the editor to execute normal UNIX
commands. You may also want to change your working directory so
that your editing can be done with respect to a different working direc­
tory. These operations are described below:

cd directory

March 15, 1989

The specified directory becomes the current direc­
tory. If no directory is specified, the current value
of the home option is used as the target directory.
After a cd , the current file is not considered to have
been edited so that write restrictions on preexisting
files still apply.

VI-27

VI (C)

sh

!command

VI (C)

A new shell is created. You may invoke as many
commands as you like in this shell. To return to vi,
enter a Ctrl-D to tenninate the shell.

The remainder of the line after the exclamation (!)
is sent to a shell to be executed. Within the text of
command , the characters "%" and "#" are
expanded as the filenames of the current file and the
last edited file and the character ' , ! " is replaced
with the text of the previous command. Thus, in
particular, "!!" repeats the last such shell escape.
If any such expansion is performed, the expanded
line is echoed. The current line is unchanged by
this command.

If there has been "[No write]" of the buffer contents since the last
change to the editing buffer, a diagnostic is displayed before the com­
mand is executed as a warning. A single exclamation (!) is displayed
when the command completes.

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as an argument for
command in shell escapes. This causes unexpected problems. To
avoid these problems, use the default prompt value as specified in
lusrlliblmkuserlmkuser.cshrc.

Other Commands

The following command descriptions explain how to use miscellane-
0us ex commands that do not fit into the above categories.

The abbr, map, and set commands can also be defined with the
EXINIT environment variable, which is read by the editor each time it
starts up. For more information, see environ(M). Alternatively, these
commands can be placed in a .exrc file in your home directory, which
the editor reads if EXINIT is not defined.

abbr Maps the first argument to the following string. For exam­
ple, the following command

:abbr rainbow yellow green blue red

maps "rainbow" to "yellow green blue red". Abbrevia­
tions can be turned off with the unabbreviate command,
as in:

:una rainbow

map, map! Maps any character or escape sequence to a command
sequence. For example, the following command maps the
CfRL-A key to a shell escape that runs the clear(C)

March 15. 1989 VI-28

VI (C) VI (C)

command:

map A A : lclearAM

To include the CfRL-A and CfRL-M characters in the
mapping, you must use vi's CfRL-V escape.

Characters mapped with map work in command mode,
while characters mapped with map! work in insert mode.
Characters mapped with map! cannot be unmapped using
unmap.

nu Displays each specified line preceded by its buffer line
number. The current line is left at the last line displayed.
To get automatic line numbering of lines in the buffer, set
the number option.

preserve The current editor buffer is saved as though the system
had just crashed. This command is for use only in emer­
gencies when a w command has resulted in an error and
you do not know how to save your work.

= Displays the line number of the addressed line. The
current line is unchanged.

recover file
Recovers file from the system save area. The system
saves a copy of the editing buffer only if you have made
changes to the file, the system crashes, or you execute a
preserve command. When you use preserve , you are
notified by mail when a file is saved.

set argument
With no arguments, set displays those options whose
values have been changed from their defaults; with the
argument all, it displays all of the option values.

Giving an option name followed by a question mark (?)
causes the current value of that option to be displayed.
The question mark is unnecessary unless the option is a
Boolean value. Switch options are given values either
with:

set option

to tum them on or:

set nooption

to tum them off. String and numeric options are assigned
with:

March 15, 1989 VI-29

VI (C) VI (C)

set option=value

More than one option can be given to set; all are inter­
preted from left to right. See "Options" for a complete
list and descriptions.

tag label The focus of editing switches to the location of label. If
necessary, vi will switch to a different file in the current
directory to find label. If you have modified the current
file before giving a tag command, you must first write it
out. If you give another tag command with no argument,
the previous label is used.

unmap

Options

Similarly, if you press Ctrl-] , vi searches for the word
immediately after the cursor as a tag. This is equivalent
to entering ":tag", the word following the cursor, and
then pressing the RETURN key.

The tags file is normally created by a program· such as
ctags, and consists of a number of lines with three fields
separated by blanks or tabs. The first field gives the name
of the tag, the second the name of the file where the tag
resides, and the third gives an addressing form which can
be used by the editor to find the tag. This field is usually a
contextual scan using / pattern / to be immune to minor
changes in the file. Such scans are always performed as if
the nomagic option was set. The tag names in the tags
file must be sorted alphabetically.

Unmaps any character or escape sequence that has been
mapped using the map command.

There are a number of options that can be set to affect the vi environ­
ment. These can be set with the ex set command while editing, with
the EXINIT environment variable, or in the vi start-up file, .exrc. This
file normally sets the user's preferred options so that they do not need
to be set manually each time you invoke vi.

The first thing that must be done before you can use vi, is to set the
terminal type so that vi understands how to talk to the particular termi­
nal you are using.

There are only two kinds of options: switch options and string options.
A switch option is either on or off. A switch is turned off by prefixing
the word no to the name of the switch within a set command. String
options are strings of characters that are assigned values with the syn­
tax option=string. Multiple options may be specified on a line. vi
options are listed below:

March 15, 1989 VI-30

VI (C) VI (C)

autoindent, ai default: noai
Can be used to ease the preparation of structured program text. For
each line created by an append, change, insert, open, or substitute
operation, vi looks at the preceding line to determine and insert an
appropriate amount of indentation. To back the cursor up to the
preceding tab stop, press Ctrl-D. The tab stops going backward are
defined as multiples of the shiftwidth option. You cannot back­
space over the indent, except by pressing Ctrl-D.

Specially processed in this mode is a line with no characters added
to it, which turns into a completely blank line (the whitespace pro­
vided for the autoindent is discarded). Also, specially processed
in this mode are lines beginning with a caret (") and immediately
followed by a Ctrl-D. This causes the input to be repositioned at
the beginning of the line, but retains the previous indent for the
next line. Similarly, a "0" followed by a Ctrl-D, repositions the
cursor at the beginning without retaining the previous indent.
Autoindent doesn't happen in global commands.

autoprint ap default: ap
Causes the current line to be displayed after each ex copy, move,
or substitute command. This has the same effect as supplying a
trailing "p" to each such command. Autoprint is suppressed in
globals, and only applies to the last command on a line.

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically written to the
current file if you have modified it when you give a next, rewind,
tag, or ! command, or a Ctrl-A (switch files) or Ctrl-] (tag go to)
command.

beautify, bf default: nobeautify
Causes all control characters except tab, newline and formfeed to
be discarded from the input. A complaint is registered the first
time a backspace character is discarded. Beautify does not apply
to command input.

directory, dir default: dir=/tmp
Specifies the directory in which vi places the editing buffer file. If
the directory does not have write permission, the editor will exit
abruptly when it fails to write to the buffer file.

edcompatible default: noedcompatible
Causes the presence or absence of g and c suffixes on substitute
commands to be remembered, and to be toggled on and off by
repeating the suffixes. The suffix r causes the substitution to be like
the tilde C) command, instead of like the ampersand command
(&).

errorbells, eb default: noeb
Error messages are preceded by a bell. If possible, the editor
always places the error message in inverse video instead of ringing

March 15, 1989 VI-31

VI (C) VI (C)

the bell.

hard tabs, ht default: ht=8
Gives the boundaries on which tenninal hardware tabs are set or on
which tabs the system expands.

ignorecase, ic default: noic
Maps all uppercase characters in the text to lowercase in regular
expression matching. In addition, all uppercase characters in regu ..
lar expressions are mapped to lowercase except in character class
specifications enclosed in brackets.

lisp default: nolisp
Autoindent indents appropriately for LISP code, and the () { } [[
and]] commands are modified to have meaning for LISP.

list default: nolist
All printed lines are displayed, showing tabs and end-of-lines.

magic default: magic
If nomagic is set, the number of regular expression metacharacters
is greatly reduced, with only up-arrow C) and dollar sign ($) hav­
ing special effects. In addition, the metacharacters ' ,-" and "&"
in replacement patterns are treated as normal characters. All the
normal metacharacters may be made magic when nomagic is· set
by preceding them with a backslash (\).

mesg default: nomesg
Causes write pennission to be turned off to the terminal while you
are in visual mode, if nomesg is set. This prevents people writing
to your screen with the UNIX write command and scrambling your
screen as you edit.

number, n default: nonumber
Causes all output lines to be printed with their line numbers.

open default: open
If set to noopen, the commands open and visual are not permitted
from ex. This is set to prevent confusion resulting from accidental
entry to open or visual mode.

optimize, opt default: optimize
Output of text to the screen is expedited by setting the terminal so
that it does not perform automatic carriage returns when displaying
more than one line of output, thus greatly speeding output on ter­
minals without addressable cursors when text with leading whi ..
tespace is printed.

paragraphs, para default: para =IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and } operations. The pairs
of characters in the option's value are the names of the nroff mac­
ros that start paragraphs.

March 15, 1989 VI-32

VI (C) VI (C)

prompt default: prompt
ex input is prompted for with a colon (:). If noprompt is set, when
ex command mode is entered with the Q command, no colon
prompt is displayed on the status line.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent
terminal on a dumb terminal. Useful only at very high speed.

remap default: remap
If on, mapped characters are repeatedly tried until they are
unchanged. For example, if 0 is mapped to 0 and 0 is mapped to I,
o will map to I if remap is set, and to 0 if noremap is set.

report default: report=5
Specifies a threshold for feedback from commands. Any command
that modifies more than the specified number of lines will provide
feedback as to the scope of its changes. For global commands and
the undo command, the net change in the number of lines in the
buffer is presented at the end of the command. Thus notification is
suppressed during a g command on the individual commands per­
formed.

scroll default: scroll= Yz window
Determines the number of logical lines scrolled when Ctrl-D is
received from a terminal input in command mode, and the number
of lines displayed by a command mode z command (double the
value of scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations. The pairs
of characters in the option's value are the names of the nroff mac­
ros that start paragraphs.

shell, sh default: sh=/bin/sh
Gives the pathname of the shell forked for the shell escape com­
mand (I), and by the shell command. The default is taken from
SHELL in the environment, if present.

shiftwidth, sw default:sw=8
Gives the width of a software tab stop, used in reverse tabbing with
Ctrl-D when using autoindent to append text, and by the shift com­
mands.

showmatch, sm default: nosm
. When a) or } is typed, moves the cursor to the matching (or { for
one second if this matching character is on the screen.

showmode default: noshowmode
Causes the message "INPUT MODE to appear on lower right
comer of the screen when insert mode is activated.

'March 15, 1989 VI-33

VI (C) VI (C)

slowopen default: noslowopen
Postpones update of the display during inserts.

tabstop, ts default: ts:::8
The editor expands tabs in the input file to be on n boundaries for
the purposes of display.

taglength, tl default: tl:::O
The first n characters in a tag name are significant, but all others
are ignored. A value of zero (the default) means that aU characters
are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially. By
default, files named tag are searched for in the current directory
and in lusr/lib.

term default:::value of shell TERM variable
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

timeout , to default: noto
Eliminates the 1 second time limit for maps (character mappings).

warn default: warn
Warn if there has been "[No write since last change]" before a
shell escape command (!).

window default: window = speed dependent
This specifies the number of lines in a text window. The default is
8 at slow speeds (600 baud or less), 16 at medium speed (1200
baud), and the full screen (minus one line) at higher speeds.

w300, wl200, w9600
These are not true options but set window (above) only if the
speed is slow (300), medium (1200), or high (9600), respectively.

wrapscan, ws default: ws
Searches, using the regular expressions in addressing, will wrap
around past the end of the file.

wrapmargin, wm default: wm=O
Defines the margin for automatic insertion of newlines during text
input. A value of zero specifies no wrap margin.

writeany, wa default: nowa
Inhibits the checks normally made before write commands. allow­
ing a write to any file that the system protection mechanism will
allow.

March 15, 1989 VI-34

VI (C) VI (C)

Regular Expressions

A regular expression specifies a set of strings of characters. A mem­
ber of this set of strings is said to be "matched" by the regular expres­
sion. vi remembers two previous regular expressions: the previous
regular expression used in a substitute command and the previous reg­
ular expression used elsewhere, referred to as the previous scanning
regular expression. The previous regular expression can always be
referred to by a null regular expression: e.g., "II" or "??".

The regular expressions allowed by vi are constructed in one of two
ways depending on the setting of the magic option. The ex and vi
default setting of magic gives quick access to a powerful set of regu­
lar expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and precede
them with the backslash (\) to use them as "ordinary" characters.
With nomagic· set, regular expressions are much simpler, there being
only two metacharacters. The power of the other metacharacters is
still available by preceding the now ordinary character with a "\".
Note that ''\'' is always a metacharacter. In this discussion, the magic
option is assumed. With nomagic , the only special characters are the
caret C) at the beginning of a regular expression, the dollar sign ($) at
the end of a regular expression, and the backslash (\). The tilde (-)
and the ampersand (&) also lose their special meanings related to the
replacement pattern of a substitute.

The following basic constructs are used to construct magic mode reg­
ular expressions.

char An ordinary character matches itself. Ordinary characters are
any characters except a caret (") at the beginning of a line, a
dollar sign ($) at the end of line, a star (*) as any character other
than the first, and any of the following characters:

These characters must be preceded by a backslash (\) if they are
to be treated as ordinary characters.

At the beginning of a pattern, forces the match to succeed only
at the beginning of a line.

S At the end of a regular expression, forces the match to succeed
only at the end of the line.

Matches any single character except the newline character.

\< Forces the match to occur only at the beginning of a "word";
that is, either at the beginning of a line, or just before a letter,
digit, or underline and after a character not one of these.

March 15, 1989 VI-35

VI (C) VI (C)

\:> Similar to ''\<'', but matching the end of a "word", i.e., either
the end of the line or before a character which is not a letter, a
digit, or the underline character.

[string]
Matches any single character in the class defined by string.
Most characters in string define themselves. A pair of charac­
ters separated by a dash (-) in string defines the set of characters
between the specified lower and upper bounds, thus "[a-z]" as a
regular expression matches any single lowercase letter. If the
first character of string is a caret (") then the construct matches
those characters which it otherwise would not. Thus "["a-z]"
matches anything but a lowercase letter or a newline. To place
any of the characters caret, left bracket, or dash in string they
must be escaped with a preceding backslash (\).

The concatenation of two regular expressions first matches the left­
most regular expression and then the longest string that can be recog­
nized as a regular expression. The first part of this new regular
expression matches the first regular expression and the second part
matches the second. Any of the single character matching regular
expressions mentioned above may be followed by a star 0 to form a
regular expression that matches zero or more adjacent occurrences of
the characters matched by the prefixing regular expression. The tilde
C) may be used in a regular expression to match the text that defined
the replacement part of the last s command. A regular expression may
be enclosed between the sequences ''\('' and "\)" to remember the
text matched by the enclosed regular expression. This text can later
be interpolated into the replacement text using the following notation:

\ digit

where digit enumerates the set of remembered regular expressions.

The basic metacharacters for the replacement pattern are the amper­
sand (&) and the tilde C); these are given as "\&" and "\ -" when
nomagic is set. Each instance of the ampersand is replaced by the
characters matched by the regular expression. In the replacement pat­
tern, the tilde stands for the text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always
introduced by a backslash (\). The sequence "\n" is replaced by the
text matched by the nth regular subexpression enclosed between "\("
and ''\)''. When nested, parenthesized subexpressions are present, n
is determined by counting occurrences of ''\('' starting from the left.
The sequences ''\u'' and ''\1'' cause the immediately following char­
acter in the replacement to be converted to uppercase or lowercase,
respectively, if this character is a letter. The sequences "\U" and
',\L" tum such conversion on, either until "\E" or "\e" is encoun­
tered, or until the end of the replacement pattern.

March 15, 1989 VI-36

VI (C)

Files

/tmp

/usr/lib/terminfol? /*

/usr/lib/.COREterm/? /*

Credit

VI (C)

default directory where temporary work
files are placed; it can be changed using
the directory option (see the ex(C) set
command.).

compiled terminal description database

subset of compiled terminal description
database

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

The /usrlIib/ex3.7preserve program can be used to restore vi buffer
files that were lost as a result of a system crash. The program searches
the /tmp directory for vi buffer files and places them in the directory
/usr/preserve. The owner can retrieve these files using the -r option.

The /usrlIib/ex3.7preserve program must be placed in the system
startup file, /etc/rc.d/3/recovery, before the command that cleans out
the Itmp directory. See the System Administrator's Guide for more in­
formation on the letc/rc2 scripts.

Two options, although they continue to be supported, have been re­
placed in the documentation by the options that follow the Command
Syntax Standard (see intro(C)). A -r option that is not followed with
an argument has been replaced by -L and +command has been re­
placed by -c command.

vi does not strip the high bit from 8 bit characters read in from text
files, text insertion, and editing commands. It does not look for magic
numbers of object files when reading in a text file. It also writes out
text and displays text without stripping the high bit.

vi uses the LC CTYPE environment variable to determine if a char­
acter is printable, displaying the octal codes of non-printable 8 bit
characters. It also uses LC CTYPE and LANG to convert between
upper and lowercase characters for the tilde command and for the ig­
norecase option.

March 15, 1989 VI-37

VI (C) VI (C)

When the percent sign (%) is used in a shell escape from vi via the
exclamation mark (!) the % is replaced with the name of the file being
edited. In previous versions of vi, each character in this replacement
had the high bit set to 1 to quote it; in the current version of vi it is left
alone.

Warnings

Tampering with the entries in /usr/lib/.COREterm/?/* or
lusrllib/terminfol? 1* (for example, changing or removing an entry)
can affect programs such as vi that expect all entries to be present and
correct. In particular, removing the "dumb" terminal entry may
cause unexpected problems.

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert
and delete operations in the terminal.

Refer to the crypt(C) page for information about restrictions on the
availability of encryption options.

Standards Conformance

vedit and view are conformant with:

AT&T SVID Issue 2, Select Code 307-127.

vi is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 VI-38

VIOl (C) VIOl (C)

vidi
sets the font and video mode for a video device

Syntax

vidi [-d] [-f fontfile] command

Description

vidi sets video mode or loads/extracts a font from the device that is the
current standard input; without arguments, it lists the all of the valid
video mode and font commands.

Some video cards support changeable character fonts. The vidi font
commands (font8x8, font8x14, and font8x16) are used to load and
extract fonts from the tables stored in the kernel. If neither of the -d
or -f options has been specified, vidi will attempt to load the specified
font from ilusrlIib/vidilJontname. he -d option causes vidi to read the
specified font from the kernel and write (dump) the font to the stan­
dard output.

The -f option is used to load fonts other than those in /usr/lib/vidi or to
specify an output file other than standard output. When loading a font,
-f filename will load the font from filename instead of from
/usr/lib/vidi/fontname. When extracting a font (-d option) -f filename
causes vidi to write the extracted font into filename instead of writing
the font to the standard output.

The other vidi commands set the video mode of the video adapter con­
nected to vidi's standard input. The commands are :

mono
move current screen to the monochrome adapter.

cga
move current screen to the Color Graphics adapter.

ega
move current screen to the Enhanced Graphics adapter.

vga
move current screen to the Video Graphics adapter.

internal
activate the internal monitor on portable with a plasma screen.

external
activate the external monitor on portable with a plasma screen.

March 15, 1989 VIOI-1

VIOl (C) VIOl (C)

Text Modes
Command Cols Rows Font Adapter

c40x25 40 25 8x8 eGA (EGA VGA)
e4Ox25 40 25 8x14 EGA (VGA)
v4Ox25 40 25 8x16 VGA
m8Ox25 80 25 8x14 MONO (EGA~MONO VGA_MONO)
c80x25 80 25 8x8 eGA (EGA VGA)
em80x25 80 25 8x14 EGA_MONO (VGA_MONO)
e80x25 80 25 8x14 EGA (VGA)
vm80x25 80 25 8x16 VGA_MONO
v80x25 80 25 8x16 VGA
e80x43 80 43 8x14 EGA (VGA)

Graphics Modes
Command Pixel Resolution Colors
mode5 32Ox200 4
mode6 640x200 2
modeD 320x200 16
modeE 640x200 16
modeF 64Ox350 2 (mono)
mode 10 640x350 16
mode11 640x480 2
mode 12 640x480 16
mode 13 320x200 256

See Also

screen(HW)

Notes

The internal and external commands do not work with
all types of portables.

March 15, 1989 VIOI-2

VMSTAT (C) VMSTAT (C)

vmstat
report paging and system statistics

Syntax

vrnstat [-fs] [-n namelist] [-I lines] [interval [count]]

Description

vmstat reports some statistics kept by the system on processes,
demand paging, and cpu and trap activity. Three types of reports are
available:

(default)
A summary of the number of processes in various states, paging
activity, system activity, and cpu cycle consumption.

-f Number ofjork(S)'s done.

-s A verbose listing of paging and trap activity.

If no interval or count is specified, the totals since system bootup are
displayed.

If an interval is given, the number of events that have occurred in the
last interval seconds is shown. If no count is specified, this display is
repeated forever every interval seconds. Otherwise, when a count is
also specified, the infonnation is displayed count times.

Other flags that may be speci fied include:

-0 namelist
Use file namelist as an alternate symbol table instead of lunix.

-I lines
For the default display, repeat the header every lines reports
(default is 20).

The fields in the default report are:

procs
The number of processes which are:

r In the run queue.

March 15, 1989 VMSTAT-1

VMSTAT (C) VMSTAT (C)

b Blocked waiting for resources.

w Swapped out.

These values always reflect the current situation, even if the totals
since boot are being displayed.

paging
Reports on the perfonnance of the demand paging system. Unless
the totals since boot are being displayed, this information is aver­
aged over the proceeding interval seconds:

frs Free swap space.

dmd
Demand zero and demand fill pages.

sw Pages on swap.

cch
Pages in cache.

til Pages on file.

pft
Protection faults.

frp
Pages freed.

pos
Processes swapped out successfully.

pif
Processes swapped out unsuccessfully.

rso
Regions swapped out.

rsi Regions swapped in.

system
Reports on the general system activity. Unless the totals since
boot are being shown, these figures are averaged over the last
interval seconds:

sy Number of system calls.

cs Number of context switches.

March 15, 1989 VMSTAT-2

VMSTAT (C) VMSTAT (C)

cpu
Percentage of cpu cycles spent in various operating modes:

us User.

su System.

id Idle.

This information may not be displayed on some systems.

The -f and -s reports are a series of lines of the form:

number description

which means that number of the items described by description hap­
pened (either since boot or in the last interval seconds, as appropri­
ate). These reports should be self-explanatory.

Files

lunix
Default namelist.

Idev/kmem
Default source of statistics.

See Also

fork(S), ps(C), pstat(C)

Authorization

The behavior of this utility is affected by assignment of the mem
authorization, which is usually reserved for system administrators. If
you do not have this authorization, the command will not work. Refer
to the "Using a Trusted System" chapter of the User's Guide for more
details.

March 15, 1989 VMSTAT-3

W(C) W(C)

w
displays information about who is on the system and
what they are doing

Syntax

w [-blqtw] [-n namelist] [-s swapdev] [-u utmpfile] [users ...]

Description

w prints a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time of
day, how long the system has been up, and the number of users logged
onto the system. On systems that maintain the necessary data, the
heading line also shows load averages. Load averages are the number
of processes in the run queue averaged over 1,5, and 15 minutes.

The options are:

-b Don't print the heading or title lines.

-I
Long format (default): For each user, w outputs the user's login
name, the terminal or pseudo terminal the user is currently using,
when the user logged onto the system, the number of minutes the
user has been idle (how much time has expired since the user last
typed anything), the CPU time used by all processes and their chil­
dren attached to the terminal, the CPU time used by the currently
active process, and the name and arguments of the currently active
process.

-q Quick format: For each user, woutputs the user's login name, the
terminal or pseudo terminal the user is currently using, the number
of minutes the user has been idle, and the name of the currently
active process.

-t
Only the heading line is output (equivalent to uptime(C».

-w Both the heading line and the summary of users is output.

-nnamelist
The argument is taken as the name of an alternate namelist
(/unix is the default).

March 15, 1989 W-1

W(C) W (C)

-sswapdev
Uses the file swapdev in place of /dev/swap. This is useful when
examining a corefile.

-uutmpfile
The file utmpfile is used instead of letc!utmp as a record of who is
currently logged in.

If any users are given, the user summary is restricted to reporting on
those users.

Files

/unix
/etc/utmp
/dev/kmem
/dev/swap

See Also

date(C), finger(C), ps(C), uptime(C), who(C), whodo(C)

Notes

The "currently active process" is only an approximation and is not
always correct. Pipelines can produce strange results, as can some
background processes. If w is completely unable to guess at the
currently active process, it prints "-."

Authorization

The behavior of this utility is affected by assignment of the mem
authorization, which is usually reserved for system administrators. If
you do not have this authorization, the output will be restricted to data
pertaining to your activities only. Refer to the "Using a Trusted Sys­
tern" chapter of the User's Guide for more details.

March 15, 1989 W-2

WAIT (C) WAIT (C)

wait

awaits completion of background processes

Syntax

wait

Description

Waits until all background processes started with an ampersand (&)
have finished, and reports on abnormal terminations.

wait is built in to csh and sh.

Because the wait(S) system call must be executed in the parent pro­
cess, the shell itself executes wait, without creating a new process.

See Also

csh(C), sh(C)

Notes

Not all the processes of a pipeline with three or more stages are chil­
dren of the shell, and thus cannot be waited for.

Standards Conformance

wait is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 WAIT-1

WC(C) WC (C)

we
counts lines, words and characters

Syntax

we [-lwe] [names]

Description

we counts lines, words and characters in the named files, or in the
standard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newlines.

The options I, w, and e may be used in any combination to specify that
a subset of lines, words, and characters are to be reported. The default
is -Iwe.

When names are specified on the command line, they are printed
along with the counts.

Standards Conformance

we is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 WC-1

WHAT (C) WHAT (C)

what
identifies files

Syntax

what files

Description

what searches the given files for all occurrences of the pattern @(#)
and prints out what follows until the first tilde (-), greater-than sign
(>), new-line, backslash (\) or null character. The sees command
get(CP) substitutes this string as part of the @(#) string.

For example, if the shell procedure in file print contains

t @(t)this is the print program
t @(t)syntax: print [files]
pr $* I lpr

then the command

what print

displays the name of the file print and the identifying strings in that
file:

print:
this is the print program
syntax: print [files]

what is intended to be used with the get(CP) command, which auto­
matically inserts identifying information, but it can also be used where
the information is inserted manually.

See Also

admin(CP), get(CP)

Standards Conformance

what is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 WHAT-1

WHO (C) WHO (C)

who

lists who is on the system

Syntax

who [-uATHldtasqbrp] [file]

who am i

who am I

Description

who can list the user's name, terminal line, login time, and the elapsed
time since activity occurred on the line; it also lists the process ID of
the command interpreter (shell) for each current user. It examines the
/tcb/files/inittab file to obtain information for the Comments column,
and /etc/utmp to obtain all other information. If file is given, that file
is examined. Usually,file will be /etc/wtmp, which contains a history
of all the logins since the file was last created.

who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries
is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the
system clock, as well as other processes spawned by the init process.
These options are:

-u This option lists only those users who are currently logged in.
The name is the user's login name. The line is the name of the
line as found in the directory /dev. The time is the time that
the user logged in. The activity is the number of hours and
minutes since activity last occurred on that particular line. A
dot (.) indicates that the terminal has seen activity in the last
minute and is therefore "current' '. If more than twenty-four
hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying
to determine whether a person is working at the terminal or
not. The pid is the process ID of the user's shell. The comment
is the comment field. It can contain information about where
the terminal is located, the telephone number of the dataset,
the type of terminal if hard-wired, etC.

March 15, 1989 WH0-1

WHO (C) WHO (C)

-A This option displays UNIX accounting information.

-T This option is the same as the -u option, except that the state of
the terminal line is printed. The state describes whether some­
one else can write to that terminal. A plus character (+)
appears if the terminal is writable by anyone; a minus charac­
ter (-) appears if it is not. Root can write to all lines having a
plus character (+) or a minus character (-) in the state field. If
a bad line is encountered, a question mark (1) is displayed.

-1 This option lists only those lines on which the system is wait­
ing for someone to login. The name field is LOGIN in such
cases. Other fields are the same as for user entries except that
the state field does not exist.

-H This option displays column headings above the regular output.

-q This is a quick who, displaying only the names and the number
of users currently logged on. When this option is used, all
other options are ignored.

-d This option displays all processes that have expired and have
not been respawned by init. The exit field appears for dead
processes and contains the termination and exit values (as
returned by wait(S», of the dead process. This can be useful in
determining why a process terminated.

-t This option indicates the last change to the system clock (via
the date (C) command) by root. See su(C).

-a This option processes the letc/utmp file or the named file with
all options turned on.

-s This option is the default and lists only the name, line, and
time fields.

-p This option lists any other process which is currently active
and has been previously spawned by init. The name field is the
name of the program executed by init as found in
Itcb/files/inittab. The state, line, and idle fields have no
meaning. The comment field shows the id field of the line from
Itcb/files/inittab that spawned this process. See inittab(F).

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process.
In addition, it produces the process termination status, process
id, and process exit status [see utmp(F)] under the idle, pid,
and comment headings, respectively.

March 15, 1989 WH0-2

WHO (C)

Files

/etc/utmp
/etc/wtmp
/tcb/ files/inittab

See Also

WHO (C)

date(C), login(M), mesg(C), su(C), utmp(F), inittab(F), wait(S)

Standards Conformance

who is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 WH0-3

WHO DO (C) WHODO (C)

whodo
determines who is doing what

Syntax

letc/whodo

Description

whodo produces merged, reformatted, and dated output from the
who(C) and ps(C) commands.

See Also

ps(C), who(C)

Authorization

The behavior of this utility is affected by assignment of the mem
authorization, which is usually reserved for system administrators. If
you do not have this authorization, the output will be restricted to data
pertaining to your activities only. Refer to the "Using a Trusted Sys­
tern" chapter of the User's Guide for more details.

Standards Conformance

whodo is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 WHOD0-1

WRITE (C) WRITE (C)

write
writes to another user

Syntax

write user r tty]

Des.cription

write copies lines from your terminal to that of another user. When
first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Commu­
nication continues until an end-of-file is read from the terminal or an
interrupt is sent. At that point, write displays:

(end of message)

on the other terminal and exits.

If you want to write to a user who is logged in more than once, the tty
argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(C)
command. At the outset, writing is allowed. Certain commands, in
particular nroff(CT) and pr(C), disallow messages in order to prevent
messy output.

If the character ! is found at the beginning of a line, write calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you first
write to another user, wait for him or her to write back before starting
to send. Each party should end each message with a distinctive signal
«0) for "over" is conventional), indicating that the other may reply;
(00) for "over and out" is suggested when conversation is to be ter­
minated.

Files

/etc/utmp

/bin/sh

March 15, 1989

To find user

To execute!

WRITE-1

WRITE (C) WRITE (C)

See Also

mail(C), mesg(C), who (C)

Standards Conformance

write is conformant with:

AT&T sym Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 WRITE-2

X286EMUL (C) X286EMUL (C)

x286emul
emulate XENIX 80286

Syntax

x286emul [arg ...] prog286

Description

x286emul is an emulator that allows programs from XENIX
System V/286 Release 2.3 or XENIX System V/286 Release 2.3.2 on
the Intel 80286 to run on the Intel 80386 processor under UNIX
System V Release 3.2 or later.

Altos UNIX System V recognizes an attempt to exec(S) a 286 pro­
gram, and automatically exec's the 286 emulator with the 286 pro­
gram name as an additional argument. It is not necessary to specify
the x286emul emulator on the command line. The 286 programs can
be invoked using the same command format as on the XENIX
System V/286.

x286emul reads the 286 program's text and data into memory and
maps them through the LDT (via sysi86(S)) as 286 text and data seg­
ments. It also fills in the jam area, which is used by XENIX programs
to do system calls and signal returns. x286emul starts the 286 program
by jumping to its entry point.

When the 286 program attempts to do a system call, x286emul takes
control. It does any conversions needed between the 286 system call
and the equivalent 386 system call, and performs the 386 system call.
The results are converted to the form the 286 program expects, and the
286 program is resumed.

The following are some of the differences between a program running
on a 286 and a 286 program using x286emul on a 386:

Attempts to unlink or write on the 286 program will fail on the 286
with ETXTBSY. Under x286emul, they will not fail.

ptrace (S) is not supported under x286emul.

The 286 program must be readable for the emulator to read it.

March 11, 1990 X286EMUL-1

X286EMUL (C)

Files

/bin/x286emul

X286EMUL (C)

The emulator must have this name and be in Ibin if it is to be
automatically invoked when exec (S) is used on a 286 program.

March 11, 1990 X286EMUL-2

XARGS (C) XARGS (C)

xargs
constructs and executes commands

Syntax

xargs [flags] [command [initial-arguments]]

Description

xargs combines the fixed initial-arguments with arguments read from
the standard input to execute the specified command one or more
times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the
flags specified.

Command, which may be a shell file, is searched for using the shell
$PATH variable. If command is omitted, Ibin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or new­
lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted: Characters
enclosed in quotes (single or double) are taken literally, and the de­
limiting quotes are removed. Outside of quoted strings, a backslash (\)
will escape the next character.

Each argument list is constructed starting with the initial-arguments,
followed by some number of arguments read from standard input
(exception: see -i flag). Flags -i, -I, and -0 determine how arguments
are selected for each command invocation. When none of these flags
are coded, the initial-arguments are followed by arguments read con­
tinuously from standard input until an internal buffer is full, and com­
mand is executed with the accumulated args. This process is repeated
until there are no more args. When there are flag conflicts (e.g., -I vs.
-0), the last flag has precedence. Flag values are:

-Inumber Command is executed for each number lines of
nonempty arguments from the standard input. This is
instead of the default single line of input for each com­
mand. The last invocation of command will be with
fewer lines of arguments if fewer than number remain.
A line is considered to end with the first newline unless
the last character of the line is a blank or a tab; a trail­
ing blank/tab signals continuation through the next
nonempty line. If number is omitted, 1 is assumed.
Option -x is forced.

March 15, 1989 XARGS-1

XARGS(C) XARGS(C)

-ireplstr Insert mode: command is executed for each line from
the standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also forced.
{} is assumed for replstr if not specified.

-onumber Executes command , using as many standard input
arguments as possible, up to the number of arguments
maximum. Fewer arguments are used if their total size
is greater than size characters, and for the last invoca­
tion if there are fewer than number arguments remain­
ing. If option -x is also coded, each number of argu­
ments must fit in the size limitation, or xargs ter­
minates execution.

-t Trace mode: The command and each constructed argu­
ment .list are echoed to file descriptor 2 just prior to
their execution.

-p Prompt mode: The user is prompted whether to execute
command at each invocation. Trace mode (-t) is turned
on to display the command instance to be executed, fol­
lowed by a ? .. prompt. A reply of y (optionally fol­
lowed by anything), will execute the command; any­
thing else, including a carriage return, skips that partic­
ular invocation of command.

-x Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the
options -i and -I. When neither of the options -i, -I, or
-0 are coded, the total length of all arguments must be
within the size limit.

-ssize The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

-eeo/str Eo/str is taken as the logical end-of-file string. Under­
score (_) is assumed for the logical EOF string if -e is
not coded. -e with no eo/str coded turns off the logical
EOF string capability (underscore is taken literally).
xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

March 15, 1989 XARGS-2

XARGS (C) XARGS (C)

xargs tenninates if it either receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it
should explicitly exit (see sh(C» with an appropriate value to avoid
accidentally returning with -1.

Examples

The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 I xargs -i -t mv $1/{ } $2/{ }

The following will combine the output of the parenthesized com­
mands onto one line, which is then echoed to the end of file log:

(Iogname; date; echo $0 $*) I xargs »Iog

The user is prompted to enter which files in the current directory are to
be printed and prints them one at a time:

Is I xargs -p -I Ipr

Or many at a time:

Is I xargs -p -I I xargs Ipr

The following will execute dijf(C) with successive pairs of arguments
originally entered as shell arguments:

echo $* I xargs -n2 diff

Standards Conformance

xargs is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 XARGS-3

XPRCAT (C) XPRCAT (C)

xprcat
use transparent printer over modem line

Syntax

xpreat [-bf] flUe] ...

Description

The xprcat utility "transparently" prints files over modem lines. The
modem port must have an entry in the xprtab(F) file. Entries may be
made in the xprtab file using pcu(ADM). The TERM environment
variable must be set to a valid terminfo(M) terminal name that sup­
ports the meS (printer_on) and me4 (printer_off) terminfo(M) capabil­
ities. Only one xprcat request per modem port may be posted at a
time.

If no input file is given, or if a single dash (-) is given, xprcat reads
from the standard input. The process ID of the xprcat job is printed on
the standard output. The process ID may be used to kill the tran­
sparent print request. The options are:

-b A formfeed is printed before the first file.

-f A formfeed is printed after each file.

Files

letc/xprtab
Idev Ixpr/xpr*
Idev/tty*

See Also

pcu(ADM), xprsetup(ADM), xprtab(F)

Value Added

xprcat is an extension of AT&T System V provided by Altos UNIX
System V.

March 15, 1991 XPRCAT-1

XTOD (C)

xtod

change file format from UNIX to MS-DOS

Syntax

xtod [filename] > [output. file]

Description

XTOD (C)

The xtod command converts a file from UNIX format to MS-DOS for­
mat. The MS-DOS files terminate a line of text with a carriage return
and a linefeed, while UNIX files terminate a line with a linefeed only.
Also MS-DOS places a (CfL)z at the end of a file, while UNIX does
not. Some programs and utilities are sensitive to this difference and
some are not. If a text or data file is not being interpreted correctly,
use the dtox and xtod conversion utilities. The xtod command adds
the extra carriage return to the end of each line and adds the (CfL)z to
the end of the file. This utility is not required for converting binary
object files.

If no filename is specified on the command line, xtod takes input from
standard input. Output of the utility goes to standard output.

See Also

dtox(C)

March 15, 1989 XTOD-1

YES (C)

yes
prints string repeatedly

Syntax

yes [string]

Description

YES (C)

yes repeatedly outputs "y", or if a single string argument is given, arg
is output repeatedly. The command will continue indefinitely unless
aborted. Useful in pipes to commands that prompt for input and
require a' 'y" response for a yes. In this case, yes terminates when
the command it pipes to terminates, so that no infinite loop occurs.

March 15, 1989 YES-1

Altos UNIX® System V/386
Release 3.2

(M) Miscellaneous

Contents

Miscellaneous (M)

Intro
aom
ascii
chrtbl
clone
coltbl
console
cvtcoff
cvtomf
daemon.mn
environ
error
fcntl
fconvert
getclk
getty
in it, telinit
isverify
jagent
layers

Id
locale
log

login
mapchan
mapkey,
mapscrn, mapstr,
convkey
math
mconvert
messages
mestbl
montbl
mscreen
multiscreen

introduction to miscellaneous features and files
Altos Office Manager Menu System
map of the ASCII character set
create a ctype locale table
open any minor device on a STREAMS driver
create a collation locale table
system console device
convert 386 COFF files to XENIX format
convert XENIX files to UNIX COFF format
micnet mailer daemon
the user environment
kernel error output device
file control options
create form file
gets string from real-time clock
sets terminal type, modes, speed, and line discipline
process control initialization
verifies IS AM database records
host control of windowing terminal
protocol used between host and windowing terminal
under layers(C)
invokes the link editor
the international locale
interface to STREAMS error logging and event
tracing
gives access to the system
configure tty device mapping

configure monitor screen mapping
math functions and constants
compile menu into AOM
description of system console messages
create a messages locale table
create a currency locale table
serial multiscreens utility
multiple screens (device files) .

numtbl
powerfail
prof
profile
promain,
nopromain
restart
rmb
streamio
subsystem
sxt
systty
term
terminals
terminfo
termio
termios
timod
timtbl
tirdwr

trchan
tty
tz
values
xtproto

ii

create a numeric locale table
perform power failure shutdown service
profile within a function
sets up an environment at login time

restrict the execution domain of a program
perform power failure recovery service
remove extra blank lines from a file
STREAMS ioctl commands
security subsystem component description
pseudo-device driver
system maintenance device
conventional names for terminals
list of supported terminals
terminal capability data base
general terminal interface
POSIX general terminal interface
Transport Interface cooperating STREAMS module
create a time locale table
Transport Interface read/write interface STREAMS
module
translate character sets
special terminal interface
time zone environment variable
machine-dependent values
multiplexed channels protocol used by xt(HW) driver

INTRO (M) INTRO (M)

Intro
introduction to miscellaneous features and files

Description

This section contains miscellaneous infonnation useful in maintaining
the system. Included are descriptions of files, devices, tables and pro­
grams that are important in maintaining the entire system.

March 15, 1989 INTR0-1

AOM (M)

aom
Altos Office Manager Menu System

Syntax

aom

Description

AOM (M)

The Altos Office Manager Menu System (referred to as AOM) pro­
vides a user-friendly interface to applications (such as Uniplex and
Informix) and specific system utilities (such as creating directories,
backing up files, and listing files).

When you enter AOM, you will see four squares containing menus for
the applications and utilities that are installed on your system. You
will also see three lines of information about the menus.

If you have installed an application with an AOM menu, you can link
the menu into the AOM by using the add command on the Menu Man­
ager Screen.

For more details see Altos manual Using the AOM Menu System, part
number 690-23814-xxx.

Files

/usr/aom/AOMcap
/usr/aom/aomtext
/usr/aom/aom.msgs
/usr/aom/defupdate
/usr/aom/form.format
/usr/aom/form.recover
/usr/aom/aomnames
/usr/aom/aomplanes
/usr/aom/creatext
/usr/aom/form.archive
/usr/aom/form.fsck
/usr/aom/setmsg

See Also

fconvert(M), mconvert(M)

April 11, 1990 AOM-1

ASCII (M) ASCII(M)

ascii
map of the ASCII character set

Description

ascii is a map of the 7-bit ASCII character set. It lists both octal and
hexadecimal equivalents of each character. It contains:

Octal

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 aek 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 er 016 so 017 si
020 dIe 021 del 022 de2 023 de3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042" 043# 044 $ 045 % 046 & 047 '
050 (051) 052 * 053 + 054 , 055 - 056 • 057 I
0600 061 1 0622 063 3 064 4 0655 066 6 0677
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112J 113 K 114 L 115 M 116 N 117 0
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131Y 132 Z 133 [134\ 135] 136 A 137 -
140 ' 141 a 142 b 143 e 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 I 155 m 156 n 157 0

160 P 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 (174 I 175) 176 - 177 del

Hexadecimal

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt Oc np Od cr Oc so Of si
10 die 11 del 12 de2 13 de3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em la sub Ib esc Ie fs Id gs Ie rs If us
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '
28 (29) 2a* 2b + 2c, 2d - 2c . 2f I
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; 3e < 3d = 3e > 3f ?

40 @ 41 A 42 B 43 C 44D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4e L 4d M 4e N 4f 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5e \ 5d] 5e

A 5f -
60' 61 a 62 b 63 e 64d 65 e 66f 67 g
68h 69 i 6aj 6b k 6c1 6dm 6en 6f 0

70 P 71 q 72r 73 s 74 t 75 u 76 v 77w
78 x 79 y 7a z 7b { 7e I 7d } 7e - 7f del

March 15, 1989 ASCII-1

ASCII(M) ASCII(M)

The extended 8-bit ASCII character set is shown here, again with the
octal and hexadecimal value of each character. The mapchan(C) util­
ity allows access to these characters. Display of these characters is
dependent on the capabilities of the hardware device. (A. indicates
an unassigned character.)

Octal

200 • 201 • 202. 203. 204 ind 205 nel 206 ssa 207 esa
210 hts 211 htj 212 vts 213 pld 214 plu 215 ri 216 ss2 217 ss3
220 des 221 pu1 222 pu2 223 sts 224 eeh 225 mw 226 spa 227 epa
230. 231 • 232. 233 esi 234 st 235 osc 236 pm 237 ape
240 nbsp 241 i 242¢ 243£ 244 c 245 ¥ 246 I 247 §
250 " 251 © 252 I 253 « 254 -, 255 shy 256 ® 257
260 0 261 ± 262 2 263 3 264 ' 265 J.l 266 , 267 '
270 • 271 1 272 II 273 » 274 X 275 ~ 276 X 277 l
300 A 301 A 302 A 303 'fit. 304 A 305 A 306 .IE 307 C;
310 E 311 E 312 E 313 E 314 I 315 f 316 j 317 I
320 D 321 N 322 0 323 6 324 () 325 0 3260 327 is:
330 0 331 tr 332 U 333 0 3340 335 Y 336 I> 337 8
340 a 341 a 342 a 343 a 344 A 345 re 346 re 347 ~
350 e 351 e 352 e 353 ~ 354 1 355 i 356 i 357 i'

360 d' 361 ft 362 0 363 6 364 0 365 0 366 0 367 is:
370 ~ 371 U 372 t1 373 fi 374 ii 375 Y 376 1> 377 Y

Hexadecimal

80. 81 is: 82. 83. 84 ind 85 nel 86 ssa 87 esa
88 hts 89 htj 8a vts 8b pid 8e plu 8d ri 8e ss2 8f ss3
90 des 91 pu1 92 pu2 93 sts 94 eeh 95 mw 96 spa 97 epa
98. 99. 9a. 9b esi ge st 9d ose ge pm 9f ape
aO nbsp al i a2 ¢ a3£ a4c a5¥ a6 I a7 §
a8 .. a9 © aa l ab « ac-. ad shy ae ® af
bO° b1 ± b2 2 b3 3 b4' b5 J.l b611 b7 '
b8 • b9 1 ba II bb » beX bd ~ heX bf l
cO A el A e2 A e3 'fit. e4 A e5 A e6 .IE e7 C;
e8 E e9 E ea e eb E cc I cd f ee j ef I
dO D dl N d20 d3 6 d4 () d5 0 d60 d7.
d80 d9 tr daU db 0 de 0 dd Y de l> df 8
eO a e1 a e2 a e3 a e4ii e5 A e6 re e7 ~
e8 e e9 e eae eb ~ ecl edi eei ef i'
rod' f1 ft f20 f36 f4 0 f5 0 f60 f7.
f8~ f9u fa t1 fufi fe ii fd Y fe 1> ff Y

Files

/usr/pub/ascii

March 15, 1989 ASCII-2

CHRTBL(M) CHRTBL(M)

chrtbl
create a ctype locale table

Syntax

chrtbl [specjile]

Description

The utility chrtbl is provided to allow new LC_CfYPE locales to be
defined; It reads a specification file, containing definitions of the
attributes of characters in a particular character set, and produces a
binary table file, to be read by setlocale (S), which detennines the
behavior of the ctype (S) and conv(S) routines.

The infonnation supplied in the specification file consists of lines in
the following format:

char type conv

The three fields, which are separated by space or tab characters, have
the following meanings and syntax:

char This is the character which is being defined. It may be
specified in one of six different ways (the following exam­
ples all specify the ASCII character "A"):

65
0101
Ox41
'A'
'\101 '
'\x41 '

decimal
octal
hexadecimal
quoted character
quoted octal
quoted hexadecimal

type This specifies the classification of the character, as reported
by the ctype (S) routines. There are 7 basic classifications:

C iscntrl
D sdigit
L islower
P ispunct
S isspace

March 12, 1990 CHRTBL-1

CHRTBL(M) CHRTBL(M)

U isupper
X isxdigit

Other ctype macros use combinations of these 7 basic
classifications. Zero, one or more of these classification
letters can be specified, in any order, although only certain
combinations are logically reasonable, as follows:

c
CS
U
UX
UL
L
LX
DX
S
P
blank

control character
spacing control character
uppercase alphabetic
uppercase alphabetic hex digit
dual case character
lowercase alphabetic
lowercase alphabetic hex digit
decimal and hex digit
spacing character
punctuation (all other printing chars)
undefined (all classifications false)

conv This optional field specifies the corresponding upper case
character for a lower case character, or the corresponding
lower case character for an upper case character. Dual case
characters should have their own values repeated in this
field.

The syntax is as for the char field.

All characters following a hash (#) are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
character.

The initial LC_CfYPE table used is that for the ascii (M) character set,
with the entries for the higher 128 characters (Ox80 - Oxft) set to zero
(i.e. all classi fications false). Thus an empty specification file will
result in a table for US ASCII. Any specifications found in the input
to chrtbl will overwrite the specifications for that character only, thus
additions and modifications to the ASCII table can be made without
respecifying those characters which are unchanged.

The binary table output is placed in a file named ctype, within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale (M)). To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the chrtbl utility is run in a directory containing a write­
protected "ctype" file, the utility will ask if the existing file should be
replaced; any response other than "yes" or "y" will cause chrtbl to
terminate without overwriting the existing file.

March 12, 1990 CHRTBL-2

CHRTBL(M) CHRTBL(M)

If the spec file argument is missing, the specification infonnation is
read from the standard input.

Diagnostics

If the input table file cannot be opened for reading, processing will ter­
minate with the error message, "Cannot open specification file".

Any lines in the specification file which are syntactically incorrect
will cause an error message to be issued to the standard error output,
specifying the line number on which the error was detected. The line
will be ignored, and processing will continue.

If the output file, "ctype", cannot be opened for writing, processing
will terminate with the error message, "Cannot create table file."

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

Specification File Format

The chrtbl specification file has the following fonnat (the order of the
specifications is not significant):

chrtbl file for TVI 7-bit Spanish character set
Note that only non-ASCII characters need be specified

, @' p # inverted ?
, [' L '] , # n ti1ge
, \ \' p # inverted
,] , U ' [' # N tilde
, - , p # degree sign

Files

/usr/include/ctype.h

See Also

ascii(M), conv(S), ctype(S), 10cale(M), setlocale(S)

Value Added

chrtbl is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 CHRTBL-3

CLONE (M) CLONE (M)

clone
open any minor device on a STREAMS driver

Description

clone is a STREAMS software driver that finds and opens an unused
minor device on another STREAMS driver. The minor device passed
to clone during the open is interpreted as the major device number of
another STREAMS driver for which an unused minor device is to be
obtained. Each such open results in a separate stream to a previously
unused minor device.

The clone driver consists solely of an open function. This open func­
tion performs all of the necessary work so that subsequent system calls
[including close(S)] require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the
minor device number provided does not correspond to a valid major
device, or if the driver indicated is not a STREAMS driver.

Warnings

Multiple opens of the same minor device cannot be done through the
clone interface. Executing stat(S) on the file system node for a cloned
device yields a different result from executing !stat(S) using a file
descriptor obtained from opening the node.

See Also

10g(M)

STREAMS Programmer's Guide

March 15, 1989 CLONE-,1

COLTBL (M) COLTBL (M)

coltbl
create a collation locale table

Syntax

coltbl [specfile]

Description

The utility coltbl is provided to allow LC_COLLATE locales to be
defined. It reads in a specification file (or standard input if specfile is
not defined), containing defintions for a particular locale's collation
ordering, and produces a concise fonnat table file, to be read by
setlocale(S).

In general, characters may be specified in one of six different ways
(the following examples all specify the ASCII character" A"):

65
0101
Ox41
'A'
'\101 '
'\x41 '

decimal
octal
hexadecimal
quoted character
quoted octal
quoted hexadecimal

The infonnation in the specification file is to an extent free fonnat. A
particular type of definition is started by one of the following key­
words:

PRIM:
ZERO:
EQUIV:
DOUBLE:

The keywords, PRIM:, ZERO: and EQUIV:, are concerned directly with
the setting of the collation ordering of characters

A group of characters which are to be collated as equal, unless all
other characters in a pair of strings are also equal, are grouped
together with the PRIM: keyword. The position of a particular group in
the specification file is significant as far as the collation ordering is
concerned. Collating elements following the PRIM: keyword are
separated by white spaces. A two character collating element can be
specified here by (a b), where a and b are the two characters making
up the sequence. The order of the collating elements defined in one
group is significant in secondary collation ordering. It is also possible
to define a range of characters, for example:

March 15, 1989 COLTBL-1

COLTBL (M) COLTBL (M)

PRIM: 'a' - 'z'

Collating elements following the ZERO: keyword, are to be ignored
when collating. The format of the definitions is the same as with
PRIM: . Ranges of characters can also be defined, as for example:

ZERO: Ox80 - Ox9f

EQUW: is used to give two collating elements identical positions in
the collation ordering. The syntax is:

EQUIV: a=b

where a and b are the two equal collating elements. There can be only
one definition for each occurrence of this keyword.

Single characters which are to be collated as two characters, for exam­
ple the German sharp s, are defined with the DOUBLE: keyword. The
syntax. is:

DOUBLE: a = (b c)

where a is the single character, and band c are the two characters in
the collating sequence. There can be only one definition for each oc­
currence of this keyword. The single character a must not also appear
after a PRIM: , a ZERO: or a EQUW: keyword.

All characters following the hash character are treated as a comment
and ignored up to the end of the line, unless the hash is within a
quoted string.

The concise format locale table is placed in a file named collate in the
current directory. This file should be copied or moved to the correct
place in the setlocale(S) file tree (see locale (M)). To prevent acciden­
tal corruption of the output data, the file is created with no write per­
mission; if the coltbl utility is run in a directory containing a write­
protected collate file, the utility will ask if the existing file should be
replaced - any response other than "yes" or "y" will cause coltbl to
terminate without overwriting the existing file.

See Also

chrtbl(M), collation(S), 10cale(M), numtbl(M), mestbl(M), montbl(M),
timtbl(M), setlocale(S)

Diagnostics

All error messages printed are self explanatory.

March 15, 1989 COLTBL-2

COLTBL(M) COLTBL (M)

Value Added

coltbl is an extension of AT&T System V provided in Altos UNIX Sys'­
temV.

March 15, 1989

CONSOLE(M) CONSOLE (M)

console
system console device

Descri ption

The file /dev/console is the device used by the system administrator
for system maintenance (single-user) operations. It is the tty to which
the frrst default shell is attached.

The system console device can be either a tenninal (a serial adapter
device, ttyla) or a sytem keyboard display adapter monitor (ttyOl).

Many programs, such as the Altos UNIX System V kernel, redirect
error messages to /dev/console. Initially /dev/console is linked to
/dev/systty.

Files

/dev Iconsole

See Also

boot(HW), screen (HW), systty(M), tty(M)

Notes

/dev/console should not be enabled, instead either the the display
adapter (ttyOl) or the serial adapter device (ttyla) should be enabled.

A serial console cannot be attached to a multiport card or one that
uses special drivers; it must be on a standard COMI card.

Standards Conformance

console is conformant with:

The X/Open Portability Guide II of January 1987.

March 12, 1990 CONSOLE-1

·CVTCOFF (M) CVTCOFF(M)

cvtcoff
convert 386 COFF files to XEN IX format

Syntax

cvtcoff [-v] [-0 outfile] coff-file

Description

cvtcoff converts 386 Common Object Format Files (COFF) to the ap­
propriate XENIX file format. If the file specified is a relocatable
object module it is converted to Microsoft OMP format. If it is an
executable binary it is converted to x.out format.

If the file is a UNIX System V archive, it is converted to XENIX
archive format and each file in the archive is converted as appropriate.
Any files in the archive which are not in 386 COFF format are copied
to the new archive unchanged. cvtcoJf also creates a XENIX format
_.SYMDEF symbol directory for the new archive.

Options are:

-v Verbose mode. The name of each member of an archive is dis­
played as it is converted.

-0 Output file name. The output file will be named a.out by default
if no output file name is given.

Notes

Only essential symbol table information is converted. Source line
numbers and additional symbol information for use by the symbolic
debugger sdb will be ignored.

Note that cvtcoJf only converts 386 COFF files. It is not possible to
convert 286 COFF files.

Files

x.out Default output file

See Also

cvtomf(M), 86rel(F), a.out(F), ar(F)

March 12, 1990 ·CVTCOFF-1

CVTCOFF(M)

Value Added

CVTCOFF(M)

cvtcoffis an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 CVTCOFF-2

CVTOMF (M) CVTOMF (M)

cvtomf
convert XENIX files to UNIX COFF format

Syntax

cvtomf omf-file

Description

cvtomf converts XENIX file format to 386 Common Object Format
Files (COFF). If the file specified is a relocatable object module it is
converted to COFF format.

Notes

Note that cvtomf only converts 386 XENIX files. It is not possible to
convert 286 XENIX files.

Be sure and consult the XENIX Compatibility Guide for possible pit­
falls relating to file conversion.

See Also

cvtcoff(M), 86rel(F), a.out(F), ar(F), cc(CP)

Value Added

cvtomf is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 CVTOMF-1

DAEMON.MN (M) DAEMON.MN (M)

daemon.mn
micnet mailer daemon

Syntax

/usr/lib/mail/daemon.mn [-ex]

Description

The mailer daemon performs the "backend" networking functions of
the mail , rep, and remote commands by establishing and servicing the
serial communication link between computers in a Micnet network.

When invoked, the daemon creates multiple copies of itself, one copy
for each serial line used in the network. Each copy opens the serial
line, creates a startup message for the LOG file, and waits for a
response from the daemon at the other end. The startup message lists
the names of the machines to be connected, the serial line to be used,
and the current date and time. If the daemon receives a correct
response, it establishes the serial link and adds the message "first
handshake complete" to the LOG file. If there is no response, the dae­
mon waits indefinitely.

If invoked with the -x switch, the daemon records each transmission in
the LOG file. A transmission entry shows the direction of the
transmission (tx for transmit, rx for receive), the number of bytes
transmitted, the elapsed time for the transmission (in minutes and
seconds), and the time of day of the transmission (in hours, minutes,
and seconds). Each entry has the form:

direction byte_count elapsed _time time _01_ day

The daemon also records the date and time every hour. The date and
time have the same format as described for the date command.

If invoked with the -e switch, the daemon records all transmission
errors in the LOG file. An error entry shows the cause of the error pre­
ceded by the name of the daemon subroutine which detected the error.

The mailer daemon is normally invoked by the start option of the
netutil command and is stopped by the stop option.

During the normal course of execution, the mailer daemon uses
several files in the /usr/spool/micnet/remote directory. These files
provide storage for LOG entries, commands issued by the remote{C)
command, and a list of processes under daemon control.

March 15, 1989 DAEMON.MN-1

DAEMON.MN (M)

Files

/usr/lib/mail/daemon.mn

/usr/spool/micnet/remote/* /LOO

lusr /spool/micnet/remote/* Imn

lusr/spool/micnet/remote/locall mn *

lusrlspool/micnet/remote/lock

/usr/spool/micnet/remote/pids

See Also

netutil(ADM)

March 15, 1989

DAEMON.MN (M)

DAEMON.MN-2

ENVIRON (M) ENVIRON (M)

environ
the user environment

Description

The user environment is a collection of information about a user, such
as login directory, mailbox, and terminal type. The environment is
stored in special "environment variables," which can be assigned
character values, such as names of files, directories, and terminals.
These variables are automatically made available to programs and
commands invoked by the user. The commands can then use the
values to access the user's files and terminal.

The following is a short list of commonly used environment variables.

PATH

HOME

EXINIT

March 15, 1989

Defines the search path for the directories containing
commands. The system searches these directories
whenever a user types a command without giving a full
pathname. The search path is one or more directory
names separated by colons (:). Initially, PATH is set to
:/bin:/usr/bin.

Names the user's login directory. Initially, HOME is set
to the login directory given in the user's passwd file
entry.

Used to set vi options and define vi abbreviations and
mappings. For Bourne Shell users, the syntax is:

EXINIT = 'set options'

For C-Shell users, the syntax is:

setenv EXINIT 'set options'

For example, a C-Shell user might place the following
command in $HOME/.cshrc:

setenv EXINIT'set wm=24 I map gIG'

This would automatically set vi's wrapmargin option to
24 and would define the "g" key to move to the top of
the file (just as "G" moves to the bottom of the file).

ENVIRON-1

ENVIRON (M)

TERM

TZ

March'15, 1989

ENVIRON (M)

You can set more than one option with the same set
command. If you define abbreviations or mappings
with this environment variable, you must separate the
abbr and map commands from the set command and
from each other with a bar (I). The function of the bar
is similar to that of the semicolon that separates com­
mands on a shell command line.

If you are defining many customizations, you might
prefer to use the .exrc file, where each command can be
listed one per line (see vi(C».

Defines the type of terminal being used. This informa­
tion is used by commands such as more(C) which rely
on information about the capabilities of the user's ter­
minal. The variable may be set to any valid terminal
name (see terminals(M» directly or by using the
tset(C) command.

Defines time zone information. This information is used
by date (C). to display the appropriate time. The vari­
able may have any value of the form:

xxxnzzzs; start/time, end/time

where xxx is standard local time zone abbreviation (1-9
characters), . n is· the standard time zone difference from
GMT, and may be given as hh:mm:ss
(hours:minutes:seconds), zzz is the summertime local
time zone abbreviation of 1-9 characters (if any), s is
the summertime time zone difference from GMT, and
may be given as hh:mm:ss (hours:minutes:seconds),
start and end specify the day to begin and end sum­
mertime based on one of four rules, and time is the
time of day the change to or from summertime occurs.
The rules for specifying start and end are:

In
n
Wn.d
Mm.n.d

For example:

1 based Julian day n
o based Julian day n
nth day of week d
nth day of week d in month m

EST5:00:00EDT4:00:00;M4.1.0/2:00:00,M10.5.0/2:00:00.

Refer to the tz(M) manual page for more on 12.

ENVIRON-2

ENVIRON (M) ENVIRON (M)

HZ Defines, with a numerical value, the number of clock
interrupts per second. The value of this variable is
dependent on the hardware, and configured in the file
etc/default/login. If HZ is not defined, programs which
depend on this hertz value, such as pro./t.CP) and
times(S), will not run.

LANG Represents the international locale in the format lan­
guage _territory.codeset. This is used by setlocale (S)
to establish the default locale on program startup.

Individual locale-specific functions can be affected independently
using the following optional environment variables:

LC_CTYPE Locale affecting character classification routines
(ctype(S).

LC_NUMERIC
Locale affecting numeric formatting.

LC_ TIME Locale affecting time and date format.

LC_COLLATE
Locale affecting collation/sorting sequence.

LC_MESSAGES
Locale affecting message language.

LC_MONETARY
Locale affecting currency formatting.

The environment can be changed by assigning a new value to a vari­
able. An assignment has the form:

name=value

For example, the assignment:

TERM=h29

sets the TERM variable to the value "h29". The new value can be
"exported" to each subsequent invocation of a shell by exporting the
variable with the export command (see sh(C» or by using the env(C)
command.

You may also add variables to the environment, but you must be sure
that the new names do not conflict with exported shell variables such
as MAIL, PS 1, PS2, and IFS. Placing assignments in the .profile file is
a useful way to change the environment automatically before a session
begins.

March 15, 1989 ENVIRON-3

ENVIRON (M) ENVIRON (M)

Note that the environment is made available to all programs as an
array of strings. Each string has the form:

ruime=value

where the name is the name of an exported variable and the value is
the variable's current value. For programs started with a exec(S) call,
the environment is available through the external pointer environ. For
other programs, individual variables in environment are available
through getenv(S) calls.

See Also

env(C), exec(S), getenv(S) setlocale(S), 10cale(M), 10gin(M),
profile(M), sh(C)

Standards Conformance

environ is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NIST PIPS 151-1.

March 15, 1989 ENVIRON-4

ERROR(M) ERROR(M)

error
kernel error output device

Description

System error messages are collected and made available to error log­
ging daemons through the /dev/error device. /dev/error is a read­
only device which returns one error per read and no EOF character.
The /etc/rc2 scripts use a utility to read messages from /dev/error and
write them to the system error log file /usr/adm/messages:

fete/logger /dev/error /usr/adm/messages ~

Any process can read /dev/error or arrange to be signaled when errors
are queued in /dev/error. The following ioctl causes the error device
to signal the process with SIGUSRI when an error message is queued
in /dev/error.

#inelude <signal.h>
#include <sys/eio.h>
#inelude <fentl.h>

int fd;

fd = open (" /dev/error", 0 RDONLY);
ioctl(fd, EMSG_SIG, SIGUSRl);

Before exiting, the process must return /dev/error to its normal state.
Do this with the following ioctl:

ioctl (fd,EMSG_NOSIG, 0);

Panic error messages are not logged in /dev/error.

Files

/dev/error

See Also

messages(M)

March 15, 1989 ERROR-1

FCNTL(M) FCNTL(M)

fcntl
file control options

Syntax

#include <fcntl.h>

Description

The Jentl (S) function provides for control over open files. This
include file describes requests and arguments toJentl and open(S).

/* Flag values accessible to open(S) and fcntl(Sj */
/* (The first three can only be set by open) *1
#define O_RDC.M.Y 0
#define O_~ 1

/* Non-blocking I/o */
#define O_RDWR 2
#define O_NDEIAY 04
#define O_APPEND 010
#define O_Sm: 020

1* aRJel1d (writes guaranteed at the end) * /
1* synchronous write option *1

/* Flag values accessible only to open(S) */
#define O_CREAT 00400 1* open with file create (uses third open arg)*1
#define O_TRUN:: 01000 /* open with truncation */
#define O_EXCL 02000 /* exclusive open *1

/* fcntl(S) ~ests */
#define F _DUPED 0
#define F _ GETED 1
#define F _SETED 2
#define F _ GETFL 3
#define F_SETFL 4
#define F_GETLK 5
#define F _ SETLK 6

1* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */
/* Get file lock */
/* Set file lock */
/* Set file lock and wait *1 #define F _SETLKW 7

#define F _ CHKFL 8 /* Check legality of file flag changes */

/* file segrrent locking control structure * /
struct flock {

short l_type;
short 1_ whence;
long l_start;
long l_len;
short l_sysid;
short lyid;

March 15, 1989

/* if 0 then until EOF */
/* returned with F_GETLK*I
/* returned with F _ GETLK* I

FCNTL-1

FCNTL(M)

/* file segnent locking types */
:/kiefine F_RDICK 01 /* Read lock */
:/kiefine F _ WRUl{ 02 /* Write lock * /
:/kiefine F_UNICK 03 /* Rarove lockS */

See Also

fcntl(S), open(S)

Standards Conformance

Jentl is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989

FCNTL{M)

FCNTL-2

FCONVERT(M) FCONVERT(M)

fconvert
create form file

Syntax

fconvert inpucfile outpucfile

Description

If you used a fonn command in your menu file, you must create a fonn
file.

The [convert command is used for compiling a fonn file into an AOM
fonn file. The inpucfile is the path and file name of a fonn file, and
the outpucfile is the path and file name of the compiled AOM fonn
file that can be integrated to AOM Menu System.

For more details see Altos manual ADM Tool Kit User's Guide, part
number 690-17464-xxx.

Files

/usr/aorn/ AOMcap
/usr/aorn/aomtext
/usr/aorn/aom.msgs
/usr/aorn/defupdate
/usr/aorn/fonnJormat
/usr/aorn/fonn.recover
/usr/aorn/aomnames
/usr/aorn/aomplanes
/usr/aorn/creatext
/usr/aorn/fonn.archive
/usr/aorn/fonnJsck
/usr/aorn/setmsg

See Also

aom(M), mconvert(M)

April 11,1990 FCONVERT-1

GETCLK(M) GETCLK(M)

getclk
gets string from real-time clock

Syntax

letc/getclk

Description

getclk get a string suitable for date(C) from the real-time clock and
write it to stdout. Exit code 1 if it doesn't work, 0 if successful.

See Also

date(C)

March 15, 1989 GETCLK-1

GETTY(M) GETTY(M)

getty
sets terminal type, modes, speed, and line discipline

Syntax

letc/getty [-h] -g] [-b blanktime] [-t timeout] line [speed [type
[linedisc]]]

letc/getty -c file

Description

getty is a program that is invoked by init(M). It is the second process
in the series, (init-getty-login-shell), that ultimately connects a user
with the UNIX system. Initially getty displays the login message field
for the entry it is using from letc/gettydefs. getty reads the user's log­
in name and invokes the login(M) command with the user's name as
argument. While reading the name, getty attempts to adapt the system
to the speed and type of terminal being used.

Line is the name of a tty line in Idev to which getty is to attach itself.
getty uses this string as the name of a file in the Idev directory to open
for reading and writing. The -t flag, plus timeout in seconds, specifies
that getty should exit if the open on the line succeeds and no one
enters anything in the specified number of seconds. The optional
second argument, speed, is a label to a speed and tty definition in the
file letc/gettydefs. This definition tells getty what speed to initially
run, what the login message should look like, what the initial tty set­
tings are, and what speed to try next should the user indicate that the
speed is inappropriate (by entering a BREAK character). The default
speed is 9600 baud.

Type, the optional third argument, is a character string describing to
getty what type of terminal is connected to the line in question. getty
recognizes the following types:

none
ds40-1
tektronix,tek
vt61
vt100
hp4S
clOO

default
DATASPEED terminal40/l
TEKTRONIX
Digital Equipment vt61
Digital Equipment vt100
Hewlett-Packard 45
Concept 100

The default terminal is none; i.e., any crt or normal terminal unknown
to the system. For terminal type to have any meaning, the virtual ter­
minal handlers must be compiled into the operating system. They are

October 17,1990 GETTY-1

GETTY (M) GETTY(M)

available, but not compiled in the default condition. The optional
fourth argument, linedise, is a character string describing which line
discipline to use in communicating with the terminal. Again the
hooks for line disciplines are available in the operating system but
there is only one presently available, the default line discipline,
LDISCO.

If the .g option is invoked, getty will use the OIF viewer to display the
file lusr/lib/gif/default.gif on the specified terminal. The OIF viewer
is a program that displays OIF format picture files. The program
always displays the default.gif file. Common practice is to keep a
library of OIF pictures in lusr/lib/gif and to simply link the desired
OIF file to default.gif to have it displayed by the viewer on lines set
with getty -g. This option is intended for use on an a virtual terminal
with bit-mapped graphics capability.

The ·b option, too, is useful only only an a virtual terminal. When
specified with ·b, getty will cause the screen to "blank" if nothing is
typed for blanktime seconds. Pressing any key will re-activate a
blanked screen.

When given no optional arguments, getty sets the speed of the inter­
face to 9600 baud, specifies that raw mode will be used (awaken on
every character), that echo will be suppressed, either parity allowed,
that new-line characters will be converted to carriage return-line feed,
and that tab expansion is performed on the standard output. It displays
the login message before reading the user's name a character at a time.
If a null character (or framing error) is received, it is assumed to be
the result of the user pushing the BREAK key. This will cause getty to
attempt the next speed in the series. The series that getty tries is
determined by what it finds in letc/gettydefs.

The user's name is terminated by a new-line or carriage-return charac­
ter. The latter results in the system being set to treat carriage returns
appropriately (see ioetl (S)).

The user's name is scanned to see if it contains any lower-case alpha­
betic characters. getty suggests that the user use all lower-case charac­
ters. If the user uses upper case characters, the system is told to map
any future upper-case characters into the corresponding lower-case
characters.

Finally, login is exec'd with the user's name as an argument. Addi­
tional arguments may be typed after the login name. These are passed
to login, which will place them in the environment [see login(M)].

A check option is provided. When getty is invoked with the -c option
and file, it scans the file as if it were scanning letc/gettydefs and
prints out the results to the standard output. If there are any unrecog­
nized modes or improperly constructed entries, it reports these. If the
entries are correct, it displays the values of the various flags. See
ioetl (S) to interpret the values. Note that some values are added to the

October 17, 1990 GETTY-2

GETTY (M)

flags automatically.

Files

fetcf gettydefs
fusr/libfgiffdefault.gif

See Also

GETTY (M)

init(M), 10gin(M), uugetty(M), tty(HW) , ioctl(S), gettydefs(F),
inittab(F)

Notes

While getty understands simple single character quoting conventions,
it is not possible to quote certain special control characters used by
getty. Thus, you cannot log in via getty and type a #, @, f,!, ,back­
space, "u, "0, or & as part of your login name or arguments. getty
uses them to determine when the end of the line has been reached,
which protocol is being used, and what the erase character is. They
will always be interpreted as having their special meaning.

When connecting two computers using a direct connection, never
invoke getty (M) on the ports of both machines. Instead, use
uugetty (M).

October 17, 1990 GETTY-3

INIT (M)

init, telinit
process control initialization

Syntax

lete/init [01234S6SsQqabe]

Ibin/telinit [01234S6SsQqabe]

Description

INIT (M)

init is a general process spawner. Its primary role is to create pro­
cesses from information stored in the file lete/inittab [see inittab(F)].

At any given time, the system is in one of eight possible run levels. A
run level is a software configuration of the system under which only a
selected group of processes exist. The processes spawned by in it for
each of these run levels is defined in lete/inittab. init can be in one of
eight run levels, 0-6 and S or s (run levels Sand s are identical). The
run level changes when a privileged user runs lete/init. This user­
spawned init sends appropriate signals to the original init spawned by
the operating system when the system was booted, telling it which run
level to change to.

If the file /ete/default/boot contains the string MAPKEY=YES, in it
invokes the mapkey program (see mapkey(M» to map the console key­
board. If the call to mapkey succeeds, the console is set to 8-bits no
parity. If the call fails, and the string SERIALS= YES appears in
lete/default/boot, a serial console device is assumed and set to 8-bits
no parity.

The following are the arguments to init:

o shut the machine down so it is safe to remove the power.
Have the machine remove power if it can. This state can
be executed only from the console.

1 put the system in single-user mode. Unmount all file sys­
tems except root. All user processes are killed except
those connected to the console. This state can be exe­
cuted only from the console.

2 put the system in multiuser mode. All multiuser environ­
ment terminal processes and daemons are spawned. This
state is commonly referred to as the multiuser state.

March 17, 1991 INIT-1

INIT (M) INIT (M)

3 Start the remote file sharing processes and daemons.
Mount and advertise remote resources. Run level 3
extends multiuser mode and is known as the remote- file­
sharing state.

4 This is available to be defined as an alternative multiuser
environment configuration. It is not necessary for system
operation and is usually not used.

5 Stop the UNIX system and go to the firmware monitor.

6 Stop the UNIX system and reboot to the state defined by
the initdefault entry in lete/inittab.

a,b,e Process only those lete/inittab entries having the a, b or e
run level set. These are pseudo-states, which may be
defined to run certain commands, but which do not cause
the current run level to change.

Q,q Re-examine lete/inittab.

8,s Enter single-user mode. When this occurs, the terminal
which executed this command becomes the system con­
sole (see Notes for more information about console device
assignment). This is the only run level that doesn't require
the existence of a properly formatted lete/inittab file. If
this file does not exist, then by default the only legal run
level that init can enter is the single-user mode. When the
system enters 8 or s, all mounted file systems remain
mounted and only processes spawned by init are killed.

When a UNIX system is booted, init is invoked and the following
occurs. init first looks in lete/default/boot to determine if autoboot
on panic is desired. init looks to see if DEFAULT_LEVEL=N is
specified in lete/default/boot. If it is, then N is the default level, oth­
erwise, the user is prompted to see if they wish to go to multiuser or
system maintenance mode (single-user mode). In the single-user
state, the virtual console terminal is assigned to the user's terminal
and is opened for reading and writing. The sulogin command, which
requires the user to enter the root password, is invoked and a message
is generated on the physical console saying where the virtual console
has been relocated. Use either init or teUnit to signal init to change
the run level of the system. Note that if the shell is terminated (via an
end-of-file), init will only re-initialize to the single-user state if the
lete/inittab file does not exist.

If a 0 through 6 is entered, init enters the corresponding run level.
Note that, on your computer, the run levels 0, 1, 5, and 6 are reserved
states for shutting the system down; the run levels 2, 3, and 4 are
available as normal operating states.

March 17, 1991 INIT-2

INIT (M) INIT (M)

If this is the first time since power up that init has entered a run level
other than single-user state, init first scans letc/inittab for boot and
bootwait entries [see inittab(F)]. These entries are performed before
any other processing of letc/inittab takes place, providing that the run
level entered matches that of the entry. In this way, any special ini­
tialization of the operating system, such as mounting filesystems, can
take place before users are allowed onto the system. init then scans
letc/inittab and executes all other entries that are to be processed for
that run level.

In a multiuser environment, letc/inittab is set up so that init will cre­
ate a getty process for each terminal that the administrator sets up to
respawn.

To spawn each process in letc/inittab, init reads each entry and for
each entry that should be respawned, it forks a child process. init
spawns each process by forking a shell to run the job in. To set up the
environment for this shell, init uses the letc/initscript file which con­
tains the definitions of some global variables, for example, n, HZ,
and PATH. After it has spawned all of the processes specified by
letc/inittab, init waits for one of its descendant processes to die, a
powerfail signal, or a signal from another init or telinit process to
change the system's run level. When one of these conditions occurs,
init re-examines letc/inittab. New entries can be added to letclinittab
at any time; however, init still waits for one of the above three condi­
tions to occur before re-examining letc/inittab. To get around this, an
init Q or init q command wakes init to re-examine letc/inittab
immediately.

When init comes up at boot time and whenever the system changes
from the single-user state to another run state, init sets the ioetl (S)
states of the virtual console to those modes saved in the file
letc/ioctl.syscon. This file is written by init whenever the single-user
state is entered.

When a run level change request is made, init sends the warning sig­
nal (SIGTERM) to all processes that are undefined in the target run
level. init waits 5 seconds before forcibly terminating these processes
via the kill signal (SIGKILL).

The shell running on each terminal will terminate when the user types
an end-of-file or hangs up. When init receives a signal telling it that a
process it spawned has died, it records the fact and the reason it died
in letc/utmp and letc/wtmp if it exists [see who(C)]. A history of the
processes spawned is kept in letc/wtmp.

If init receives a powerfail signal (SIGPWR) it scans letc/inittab for
special entries of the type powerfail and powerwait. These entries are
invoked (if the run levels permit) before any further processing takes
place. In this way init can perform various cleanup and recording
functions during the powerdown of the operating system. Note that in
the single-user states, S and s, only powerfail and powerwait entries

March 17, 1991 INIT-3

INIT (M) INIT (M)

are executed. If in it receives a powerfail signal (SIGPWR) on a warm
restart of the system after a power failure, it scans letc/inittab for spe­
cial entries of the type restart. These. entries are invoked, causing
some processes (e.g., network daemons) to start up.

teUnit, which is linked to letc/init, is used to direct the actions of init.
It takes a one-character argument and signals init to take the appropri­
ate action.

Files

letc/defaultlboot
letc/inittab
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/etc/initscript
/dev/console
/dev/contty

See Also

disable(C), enable(C), 10gin(M), sh(C), stty(C), who(C), getty(M),
powerfail(M), restart(M), shutdown(M), sulogin(ADM), termio(HW),
kill(S), gettydefs(F), inittab(F), utmp(F)

Diagnostics

If init finds that it is respawning an entry from letc/inittab more than
10 times in 2 minutes, it will assume that there is an error in the com­
mand string in the entry, and generate an error message on the system
console. It will then refuse to respawn this entry until either 5 minutes
has elapsed or it receives a signal from a user-spawned init (teUnit).
This prevents init from eating up system resources when someone
makes a typographical error in the inittab file or a program is removed
that is referenced in letc/inittab.

When attempting to boot the system, failure of init to prompt for a
new run level may be because the virtual system console is linked to a
device other than the physical system console.

March 17, 1991 INIT-4

INIT (M)

Notes

init and telinit can be run only by someone who is super-user.

INIT (M)

The S or s state must not be used indiscriminately in the /etc/inittab
file. A good rule to follow when modifying this file is to avoid adding
this state to any line other than the initdefault.

The assignment of the console device may seem confusing at first.
Whenever the system is rebooted, the first boot up messages will be
displayed on the "normal" system console (ttyOl), then the prompt
for going multiuser will be displayed on the the tty from which init S
was last invoked, which could be any tty on the system. The system
console device (ldev/syscon) remains linked to the tty from which the
last init S is invoked. Rebooting the system does NOT reset this to
ttyOl.

If the /etc/initscript file is not present, init will print a warning on the
console and spawn the job without setting up the global environment.

The change to /etc/geUydefs described in the Notes section of the
gettydefs(F) manual page will permit terminals to pass 8 bits to the
system as long as the system is in multiuser state (run level greater
than 1). When the system changes to single-user state, the getty is
killed and the terminal attributes are lost. To permit a terminal to pass
8 bits to the system in single-user state, after you are in single-user
state, type:

stty -istrip cs8

The letcffIMEZONE file must exist. /etc/initscript executes this file
to set the correct TZ variable for the system.

Standards Conformance

init is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 17, 1991 INIT-5

ISVERIFY (M) ISVERIFY (M)

isverify

verifies ISAM database records

Syntax

isverify [-lilpyn] tablelist

Description

isverify detects and, if specified, repairs inconsistencies between
ISAM data (.dat) files and index (.idx) "files. 'The isverify utility
checks that every valid record in the data file is properly represented
in the index file; it also checks that every index entry points to a valid
data record.

tablelist is the list of tables to be checked by isverify. The .dat and
.idx suffixes should not be included in the tablelist.

Options

You can specify any of the following flags when invoking isverify:

-I after a system restore, an ISAM application can fail with
the message:

Error: Incorrect SeQ Runtime System installed

You can correct this situation by logging in as root and
invoking isverify -I.

-i Check only the index file (as opposed to checking both the
index and the data files) for consistency. Use this option as
a quick check if you think the data files are probably not
corrupted.

-I prints a long listing of the information for each defined key
(index), along with the associated data record pointer. The
key value for each data record is displayed by key part,
along with the byte position of the data record in the data
file. This information is useful only if you understand the
Indexed Sequential Access Method (ISAM).

-p pauses after displaying information about each index. If
you select this option, you must press the Break key before
the isverify process continues.

March 13; 1991 ISVERIFY":1

ISVERIFY (M) ISVERIFY (M)

.y causes isverify to assume a "yes" answer to each error
state and to attempt to make the specified correction. It is
recommended that you use this fl~g so that the isverify util­
ityattempts to correct any discrepancies automatically.

-0 causes isverify to assume a "no" answer to each error state
and ,to leave the files unchanged. It also allows you see
where errors are by displaying them on the screen.

Whether or not you use isverify with the ·1 or -p flags, if an error is
detected, you have the option of making a correction or leaving the
files unchanged. If no errors are detected, no response is required. If
you choose to make a correction, isverify attempts to repair the files.
Unless the .y or ·0 flags are specified on the command line, you must
choose interactively whether or not to make each correction.

March 13, 1991 ISVERIFY-2

JAGENT (M)

jagent
host control of windowing terminal

Syntax

#include <sys/jioetl.h>

ioetl (cntlfd, JAGENT, &arg)

int cntlfd
struct bagent arg

Description

JAGENT(M)

The ioctl(S) system call, when perfonned on an xt(HW) device with
the JAGENT request, allows a host program to send infonnation to a
windowing terminal.

ioetl has three arguments:

cntlfd the xt(HW) control channel file descriptor

JAGENT the xt(HW) ioctl(S) request to invoke a windowing tenni­
nal agent routine.

arg the address of a bagent structure, defined in <sys/jioetl.h>
as follows:

struct bagent {
long size; /* size of src in & dest out */
char *src; /* the source byte string */
char *dest; /* the destination byte string */

} ;

The src pointer must be initialized to point to a byte string which is
sent to the windowing tenninal. See layers(M) for a list of JAGENT
strings recognized by windowing terminals. Likewise, the dest
pointer must be initialized to the address of a buffer to receive a byte
string returned by the tenninal. When ioctl(S) is called, the size argu­
ment must be set to the length of the src string. Upon return, size is
set by ioctl(S) to the length of the destination byte string, dest.

See Also

ioctl(S), libwindows(S), layers(M), xt(HW)

March 15, 1989 JAGENT-1

JAGENT{M)

DIagnostics

JAGENT (M)

Upon successful completion, the size of the destination byte string is
returned. If an error occurs, -1 is returned.

March 15. 1989 JAGENT-2

LAYERS (M) LAYERS (M)

I.ayers
protocol used between host and windowing terminal
under layers(C)

Syntax

#include <sys/jioctl.h>

Description

layers are asynchronous windows supported by the operating system
in a windowing tenninal. Communication between the Altos UNIX
System V processes and tenninal processes under layers(C) occurs via
multiplexed channels managed by the respective operating systems
using a protocol as specified in xtproto(M).

The contents of packets transferring data between an Altos UNIX Sys­
tem V process and a layer are asymmetric. Data sent from the Operat­
ing System to a particular tenninal process is undifferentiated and it is
up to the tenninal process to interpret the contents of packets.

Control information for tenninal processes is sent via channel O. Pro­
cess 0 in the windowing tenninal performs the designated functions on
behalf of the process connected to the designated channel. These
packets take the form:

command,channel

except for timeout and jagent information which take the form

command, data ...

The commands are the bottom eight bits extracted from the following
ioctl(S) codes:

JBOOT

JTERM

JTIMO

Prepare to load a new tenninal program into the desig­
nated layer.

Kill the downloaded layer program and restore the default
window program.

Set the timeout parameters for the protocol. The data
consist of two bytes: the value of the receive timeout in
seconds and the value of the transmit timeout in seconds.

March 12, 1990 LAYERS-1

LAYERS (M) LAYERS (M)

JTIMOM Set the timeout parameters for the protocol. The data
consist of four bytes in two groups: the value of the
receive timeout in milliseconds (the low eight bits fol­
lowed by the high eight bits) and the value of the transmit
timeout (in the same format).

JZOMBOOT
Like JBOOT, but do not execute the program after loading.

JAGENT Send a source byte string to the terminal agent routine and
wait for a reply byte string to be returned.

The data are from a bagent structure [see jagent(M)] and
consist of a one-byte size field followed by a two-byte
agent command code and parameters. Two-byte integers
transmitted as part of an agent command are sent with the
high-order byte first. The response from the terminal is
generally identical to the command packet, with the two
command bytes replaced by the return code: 0 for success,
-1 for failure. Note that the routines in the libwindows(S)
library all send parameters in an agentrect structure. The
agent command codes and their parameters are as fol­
lows:

March 12, 1990

followed by a two-byte channel num­
ber and a rectangle structure (four
two-byte coordinates).

followed by a two-byte channel num­
ber.

followed by a two-byte channel num­
ber.

followed by a two-byte channel num­
ber.

followed by a two-byte channel num­
ber.

followed by a two-byte channel num­
ber and a point to move to (two two­
byte coordinates).

followed by a two-byte channel num­
ber and the new rectangle (four two­
byte coordinates).

followed by a two-byte channel num­
ber and a rectangle structure (four
two-byte coordinates).

LAYERS-2

LAYERS (M) LAYERS (M)

no parameters needed.

A_ROMVERSION no parameters needed. The response
packet contains the size byte, two­
byte return code, two unused bytes,
and the parameter part of the terminal·
id string (e.g., "8;7;3").

Packets from the windowing tenninal to Altos UNIX System V all take
the following fonn:

command, data ...

The single-byte commands are as follows:

C_SENDCHAR

March 12, 1990

Send the next byte to the UNIX system pro­
cess.

Create a new UNIX system process group
for this layer. Remember the window size
parameters for this layer. The data for this
command is in the fonn described by the
jwinsize structure. The size of the window
is specified by two 2-byte integers, sent
low byte first.

Unblock transmission to this layer. There
is no data for this command.

Delete the UNIX system process group
attached to this layer. There is no data for
this command.

Exit. Kill all UNIX system process groups
associated with this terminal and tenninate
the session. There is no data for this com­
mand.

Layer program has died, send a tenninate
signal to the UNIX system process groups
associated with this terminal. There is no
data for this command.

The rest of the data are characters to be
passed to the UNIX system process.

LAYERS-3

LAYERS (M)

See Also

LAYERS (M)

The layer has been reshaped. Change the
window size parameters for this layer. The
data takes the same fonn as for the C NEW
conunand. -

libwindows(S), jagent(M), xtproto(M), layers(C), xt(HW)

March 12, 1990 LAYERS-4

lO (M) lO (M)

Id
invokes the link editor

Syntax

Id [options] filename

Description

The ld command combines several object files into one, performs relo­
cation, resolves external symbols, and supports symbol table informa­
tion for symbolic debugging. It creates an executable program by
combining one or more object files and copying the executable result
to the file a.out. The filename must name an object or library file. By
convention these names have the ".0" (for object) or ".a" (for
archive library) extensions. If more than one name is given, the names
must be separated by one or more spaces. If any input file, filename,
is not an object file, ld assumes it is either an archive library or a text
file containing link editor directives. By default, the file a.out is
excutable if no errors occurred during the load. If errors occur while
linking, ld displays an error message; the resulting a.out file is unexe­
cutable.

ld concatenates the contents of the given object files in the order given
in the command line. Library files in the command line are examined
only if there are unresolved external references encountered from pre­
vious object files.

The library is searched iteratively to satisfy as many references as
possible and only those routines that define unresolved external refer­
ences are concatenated. The library (archive) symbol table (see ar(F»
is searched sequentially with as many passes as are necessary to
resolve external references which can be satisfied by library members.
Thus, the ordering of library members is functionally unimportant,
unless there exist multiple library members defining the same external
symbol. The library may be either a relocatable archive library or a
shared library. Object and library files are processed at the point they
are encountered in the argument list, so the order of files in the com­
mand line is important. In general, all object files should be given
before library files. ld sets the entry point of the resulting program to
the beginning of the first routine.

ld should be invoked using the cc(CP) command instead of invoking it
directly. cc invokes ld as the last step of compilation, providing all
the necessary C-Ianguage support routines. Invoking ld directly is not
recommended since failure to give command line arguments in the
correct order can result in errors.

March 15, 1989 lO-1

LD (M) LD (M)

Generating COFF vs. x.out Binaries

When Id is called, it scans all the object files that are to be linked. If
they are all COFF objects, then the resulting binary will be in COFF
format. If any of the object files to be linked are in x.out format, any
COFF modules in the group will be converted to x.out and the result­
ing binary will be in x.out format.

Common Options

The following options are recognized by ld, and are common to pro­
ducing both COFF and x.out binaries. Refer to the sections "Linking
COFF Binaries" and "Linking x.out Binaries" for options specific to
producing these binaries.

-0 name
Sets the executable program filename to name instead of a.out.

-r XENIX VERSION: Invokes the incremental linker, Ilib/ldr, with
the arguments passed to ld to produce a relocatable output file.

AT&T VERSION: Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is to become an
input file in a subsequent ld run. The link editor will not complain
about unresolved references, and the output file will not be executable.

-s Strips line number entries and symbol table information from the
output object file.

-u symbol
Designates the specified symbol as undefined. This is useful for
loading entirely from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the loading
of the first routine. The placement of this option on the ld line is
significant; it must be placed before the library which will define
the symbol.

-V Outputs a message giving information about the version of Id being
used.

Linking COFF Binaries

The following options are recognized by ld for linking COFF binaries:

-e epsym
Set the default entry point address for the output file to be that of
the symbol epsym.

March 15, 1 989 LD-2

LD (M) LD (M)

.ffill
Set the default fill pattern for "holes" within an output section as
well as initialized bss sections. The argument fill is a two-byte
constant.

·Ix Search a library libx.a, where x is up to nine characters. A library
is searched when its name is encountered, so the placement of a ·1
is significant. By default, libraries are located in LIBDIR or LLIB­
DIR.

·m
Produce a map or listing of the input/output sections on the stan­
dard output.

-a Create an absolute file. This is the default if the -r option is not
used. Used with the ·r option, ·a allocates memory for common
symbols.

-t Tum off the warning about multiply-defined symbols that are not
the same size.

·x Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This option saves some space in
the output file.

·z Do not bind anything to address zero. This option will allow run­
time detection of null pointers.

-L dir

-M

Change the algorithm of searching for libx.a to look in dir before
looking in UBDIR and LLIBDIR. This option is effective only if it
precedes the -I option on the command line.

Output a message for each multiply-defined external definition.

·N Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately
following text in the core image.

·VS num
Use num as a decimal version stamp identifying the a.out file that
is produced. The version stamp is stored in the optional header.

·Y[LU],dir
Change the default directory used for finding libraries. If L is
specified, the first default directory which ld searches, UBDIR, is
replaced by dir. If U is specified and ld has been built with a
second default directory, LLIBDIR, then that directory is replaced
by dir. If ld was built with only one default directory and U is
specified a warning is printed and the option is ignored.

March 15, 1989 LD-3

LD (M) LD (M)

Linking x.out Binaries

The user must make sure that the most recent library versions have
been processed with ranlib(CP) before linking. Library files for x.out
format binaries must be in ranlib(CP) format, that is, the first member
must be named __ .SYMDEF, which is a dictionary for the library. ld
compares the modification dates of the library and the __ .SYMDEF
entry, so if object files have been added to the library since __ .SYM­
DEF was created, the link may result in an "invalid object module"
that cannot run.

The following options are recognized by ld (or linking x.out binaries:

-Anum
Creates a standalone program whose expected load address (in
hexadecimal) is num. This option sets the absolute flag in the
header of the a.out file. Such program files can only be executed as
standalone programs. Options -A and -F are mutually exclusive.

-Bnum
Sets the text selector bias to the specified hexadecimal number.

-cnum

-c

Alters the default target CPU in the x.out header. num can be 0, 1,
2, or 3 indicating 8086, 80186, 80286 and 80386 processors,
respectively. The default on 8086/80286 systems is O. The default
on 80386 systems is 3. Note that this option only alters the default;
if object modules containing code for a higher numbered processor
are linked, then that will take precedence over the default.

Causes the link editor to ignore the case of symbols.

-Dnum
Sets the data selector bias to the specified hexadecimal number.

-F num
Sets the size of the program stack to num bytes where num is a
hexadecimal number. This option is ignored for 80386 programs
which have a variable sized stack. By default 8086 programs have
a variable stack located at the top of the first data segment, and
80286 programs have a fixed size 4096 byte stack. The -F option
is incompatible with the -A option that cannot be opened by more
than one user at the same time.

-g Includes symbolic information for sdb.

-i Creates separate instruction and data spaces for small model pro-
grams. When the output file is executed, the program text and data
areas are allocated separate physical segments. The text portion
will be read-only and shared by all users executing the file.

March 15, 1989 LD-4

LD (M) LO (M)

·La
Sets advisory file locking. Advisory locking is used on files with
access modes that do not require mandatory locking.

·Lm
Sets mandatory file locking. Mandatory file locking is used on files
that cannot be opened by more than one process at a time.

·mname
Creates a link map file named name that includes public symbols.

·Mx
Specifies the memory model. x can have the following values:
s small
m middle
I large
h huge
e mixed

·nnum
Truncates symbols to the length specified by num.

·Nnum

• p

Sets the pagesize to hex-num (which should be a multiple of 512)­
the default is 1024 for 80386 programs. 8086/80186/80286 pro­
grams do not normally have page-aligned x.out files and the default
for these is O .

Disables packing of segments

·R Ensures that the relocation table is of non-zero size. Important for
8086 compatibility.

·Rd num
Specify the data segment relocation offset (80386 only). num is
hexadecimal.

·Rt num
Specify the text segment relocation offset (80386 only) num is
hexadecimal.

·Snum
Sets the maximum number of segments to num. If no argument is
given,·the default is 128.

March 15, 1989 LO-5

LD(M)

Files

LD (M)

/bin/ld
UBDIR/libx.a
LUBDIR/lihx.a
a.out

libraries

libraries

output file

usually /lib

usually /usr/lib

UBDIR
LUBDIR

See Also

as(CP), cc(CP), masm(CP), mkshlib(CP), ranlib(CP), exit(S), end(S),
a.out(F), ar(F).

Notes

Through its options and input directives, the common link editor gives
users great flexibility; however, those who use the input directives
must assume some added responsibilities. Input directives and options
should insure the following properties for programs:

C defines a zero pointer as null. A pointer to which zero has
been assigned must not point to any object. To satisfy this, users
must not place any object at virtual address zero in the
program's address space.

When the link editor is called through cc(CP), a startup routine
is linked with the user's program. This routine calls exit() [see
exit (S)] after execution of the main program. If the user calls
the link editor directly, then the user must insure that the pro­
gram always calls exit() rather than falling through the end of
the entry routine.

The symbols etext, edata, and end (see end(S» are reserved and are
defined by the link editor. It is incorrect for a user program to redefine
them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and
will attempt to parse it. This will occasionally produce an error mes­
sage complaining about "syntax errors".

Arithmetic expressions may only have one forward referenced symbol
per expression.

If you are using XENIX binaries, please refer to the manual entry for
this utility in the XENIX Development Guide for information on the
appropriate usage with XENIX binaries.

March 15, 1989 LD-6

LD (M) LD (M)

Standards Conformance

ld is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 LD-7

LOCALE (M) LOCALE (M)

locale
the international locale

Syntax

language [_ [territory] [• [codeset]]]
"C"

Description

The international locale is a definition of the local conventions to be
used by Altos UNIX System V libraries (and hence utilities and appli­
cations) for features whose behavior varies internationally.

The locale is specified by a character string of the form lan­
guage _territory.codeset , where:

language

territory

codeset

represents both the language of text files being used,
and the preferred language for messages (where the
utility or application is ~apable of displaying messages
in many languages),

represents the geographical location (usually the coun­
try) determining such factors as currency and numeric
formats, and

represents the character set in use for the internal
representation of text.

The locale string "french_canada.8859" could therefore represent a
Canadian user using the French language, processing data using the
ISO 8859/1 standard international character set.

Each element (language, territory or codeset) can be up to 14 charac­
ters long, and should use only alphanumeric ASCII characters (see
ascii(M).

Note that the locale is not required to be completely specified: terri­
tory and codeset are optional. When a locale is incompletely
specified, missing values are sought in the following sequence:

1. For each subclass, such as LC_TIME , in an environment variable
of the same name as the subclass.

2. In the LANG environment variable.

March 12, 1990 LOCALE-1

LOCALE (M) LOCALE (M)

3. In the file /etc/defaultllang .

The special locale string "C", used to represent the minimal environ­
ment needed for the C programming language, is taken to be
equivalent to "english_us.ascii' '.

The format of the file / etc/ default/ lang is at least one line, of the form:

LANG= "language_territory. codeset"

A partly specified locale string will be expanded to the first LANG =
entry in which the specified locale fields match.

Thus if the /etc/default/lang file contains the following:

LANG=english_us.ascii
LANG=english_uk.8859
LANG=french_france.8859

A locale string "english_uk" will get expanded to
"english_uk.8859", whereas a locale string "french" will get
expanded to "french_france.8859' '.

The information used to configure a particular locale is generated by
the utilities chrtbl (M), coltbl (M), mestbl (M), montbl (M), numtbl (M)
and timtbl (M). The output files produced by these utilities (ctype, col­
late, currency, messages, numeric and time respectively) must be
installed in the correct place in the directory structure /usr/Ub/lang.
The correct directory name is found by substituting the language, ter­
ritory and codeset names into the string "/usr/lib/lang/ian -
guage/territory/codeset' '. The files should be installed into this direc­
tory with their existing file name (such as ctype).

A suggested naming convention for locales is as follows:

language The name of the language, in English, such as: english,
french, german.

territory The name of the nation, in English, such as: us, uk,
canada, france, germany, switzerland.

codeset An identification of the codeset, such as: ascii, 8859.

See Also

chrtbl(M), coltbl(M), environ(M), mestbl(M), montbl(M), numtbl(M),
setlocale(S), timtbl(M)

March 12, 1990 LOCALE-2

LOCALE (M) LOCALE (M)

Value Added

locale is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 LOCALE-3

LOG (M) LOG (M)

log
interface to STREAMS error logging and event tracing

Description

log is a STREAMS software device driver that provides an interface
for the STREAMS error logging and event tracing processes
[strerr(ADM), strace(ADM)]. log presents two separate interfaces: a
function call interface in the kernel through which STREAMS drivers
and modules submit log messages; and a subset of ioctl(S) system
calls and STREAMS messages for interaction with a user level error
logger, a trace logger, or processes that need to submit their own log
messages.

Kernel Interface

log messages are generated within the kernel by calls to the function
strlog:

strlog (mid, sid, level, flags, fmt, argl, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argl;

Required definitions are contained in <sys/strlog.h> and <sys/log.h>.
mid is the STREAMS module id number for the module or driver sub­
mitting the log message. sid is an internal sub-id number usually used
to identify a particular minor device of a driver. level is a tracing
level that allows for selective screening out of low priority messages
from the tracer. flags are any combination of SL_ERROR (the mes­
sage is for the error logger), SL_TRACE (the message is for the tracer),
SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY
(request that a copy of the message be mailed to the system adminis­
trator). fint is a print/(S) style fonnat string, except that %s, %e, %E,
%g, and %0 conversion specifications are not handled. Up to NLO­
GARGS (currently 3) numeric or character arguments can be provided.

User Interface

log is opened via the clone interface, /dev/log. Each open of /dev/log
obtains a separate stream to log. In order to receive log messages, a
process must first notify log whether it is an error logger or trace
logger via a STREAMS CSTR ioctl call (see below). For the error
logger, the CSTR ioctl has an ic_cmd field of CERRLOG with no
accompanying data. For the trace logger, the ioctl has an ie_cmd field

March 15, 1989 LOG-1

LOG (M) LOG (M)

of CTRCLOG, and must be accompanied by a data buffer containing
an array of one or more struct trace_ids elements. Each trace_ids
structure specifies an mid, sid, and level from which message will be
accepted. strlog will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or
equal to the level given in the trace_ids structure. A value of -1 in any
of the fields of the trace_ids structure indicates that any value is
accepted for that field.

At most one trace logger and one error logger can be active at a time.
Once the logger process has identified itself via the ioetl call, log will
begin sending up messages subject to the restrictions noted above.
These messages are obtained via the getmsg(S) system call. The con­
trol part of this message contains a log_ctl structure, which specifies
the mid, sid, level, flags, time in ticks since boot that the message was
submitted, the corresponding time in seconds since Jan. 1, 1970, and a
sequence number. The time in seconds since 1970 is provided so that
the date and time of the message can be easily computed, and the time
in ticks since boot is provided so that the relative timing of log mes­
sages can be determined.

Different sequence numbers are maintained for the error and trace log­
ging streams, and are provided so that gaps in the sequence of mes­
sages can be determined (during times of high message traffic, some
messages may not be delivered by the logger to avoid hogging system
resources). The data part of the message contains the unexpanded text
of the format string (null terminated), followed by NLOGARGS words
for the arguments to the format string, aligned on the first word bound­
ary following the format string.

A process may also send a message of the same structure to log, even
if it is not an error or trace logger. The only fields of the log_ctl struc­
ture in the control part of the message that are accepted are the level
and flags fields; all other fields are filled in by log before being for­
warded to the appropriate logger. The data portion must contain a null
terminated format string, and any arguments (up to NLOGARGS) must
be packed one word each, on the next word boundary following the
end of the format string.

Attempting to issue an CTRCLOG or CERRLOG when a logging pro­
cess of the given type already exists will result in the error ENXIO
being returned. Similarly, ENXIO is returned for CTRCLOG ioetls
without any trace_ids structures, or for any unrecognized CSTR ioetl
calls. Incorrectly formatted log messages sent to the driver by a user
process are silently ignored (no error results).

March 15, 1989 LOG-2

LOG (M) LOG (M)

Examples

Example of CERRLOG notification:

struet strioetl ioe;

ioe. ie cm:i = I ERRI.OO;
ioe.ie-timout ~ 0;
ioe.ie-len = 0;
ioe.ie=dp = NULL;

1* default timeout (15 sees.) *1

ioetl (log, I_STR, &icc);

Example of CTRCLOG notification:

struet traee~ds tid[2];

tid[O].ti mid = 2;
tid[O].ti-sid = 0;
tid[O].t~level = 1;

tid[1].ti mid = 1002;
tid[1].ti-sid = -1;
tid[1].ti=level = -1;

ioe, ie cm:i = I 'l'RCI.CX3;
ioe.ie~imout ~ 0;

1* any sub-id will be allowed *1
1* any level will be allowed *1

ioe.ie-len = 2 * sizeof(struet traee ids):
ioe.ie=dp = (ehar *)tid: -

ioetl(log, I_STR, &ioe);

Example of submitting a log message (no arguments):

struet strbuf etl, dati
struet log_etl Ie;
ehar *message "" "Don't forget to piek up some milk on the way home";

etl.len"" etl.maxlen "" sizeof(le);
etl.buf"" (ehar *)≤

dat.len = dat.maxlen = strlen(message);
dat.buf = message;

le.level = 0;
le.flags = SL_ERRORISL_NCYl'IFY;

putmsg(log, &etl, &dat, 0);

Files

/dev/log <sys/log.h> <sys/strlog.h>

March 15, 1989 LOG-3

LOG (M)

See Also

LOG(M)

strace(ADM), strerr(ADM), c1one(M), intro(S), getmsg(S), putmsg(S)
STREAMS Programmer's Guide

March 15, 1989 LOG-4

LOGIN (M) LOGIN (M)

login
gives access to the system

Syntax

login [name [env-var ...]]

Description

The login command is used at the beginning of each terminal session
to identify the user and allow them access to the system. It cannot be
invoked except when a connection is fIrst established, or after the pre­
vious user has logged out by sending an end-of-file (Ctrl-D) to their
initial shell.

login asks for your user name (if not supplied as an argument), and, if
appropriate, your password and a dialup password. Echoing is turned
off (where possible) during the typing of the passwords, so it will not
appear on the written record of the session.

If you make a mistake in the login procedure you will receive the mes­
sage

Login incorrect

and a new login prompt will appear. The number of login attempts
you are allowed, is configurable. If you make too many unsuccessful
login attempts, you or the tenninal can be locked out.

If the login sequence is not completed successfully within a configur­
able period of time (e.g., one minute), the user is returned to the "log­
in:" prompt or silently disconnected from a dial-in line.

After a successful login, accounting files (Jetc/utmp and Jetc/wtmp) are
updated, the user is notified if they have mail, and the start-up shell
files (i.e., .profile for the Bourne shell or .login for the C-shell) if any,
are executed.

login checks fete/default/login for the following definitions of the the
form DEFINE=value:

ALTSHELL
If ALTSHELL is set to YES or if it is not present in
fete/default/login, then the SHELL environment variable is set to
whatever shell is specified in the user's /ete/passwd entry. If ALT­
SHELL is set to NO, then the SHELL environment variable is set
only if the shell is defined in the /usrlIib/mkuser directory (which

March 19, 1990 LOGIN-1

LOGIN (M) LOGIN (M)

is list of recognized shells).

CONSOLE
The CONSOLE=device entry means that root can only log in on
the device listed. For example, CONSOLE=/dev/console restricts
root logins to the console device.

IDLEWEEKS
If a password has expired, the user is prompted to choose a new
one. If it has expired beyond IDLEWEEKS, the user is not
allowed to log in, and must consult system administrator. Works in
conjunction with passwd(C). See cautions under Notes.

OVERRIDE
This allows root to log in on the console even if the protected pass­
word database entry for root is corrupted. login checks
/etc/default/login to see if there is an entry similar to the follow­
ing, which identifies the tty to be used when doing an override log­
in for root:

OVERRIDE=ttyOl

PASSREQ
If P ASSREQ= YES, this forces the user to select a password if they
do not have one. PASSREQ=NO allows users to have accounts
without passwords. See cautions under Notes.

SUPATH
If a user's UID is 0 (i.e. if this is the superuser), the PATH variable
is set to SUPATH, if SUPATH is specified in /etc/default/login. It
is not advisable for SUPATH to include the current directory sym­
bol (.). Note that an empty directory ("::" or ":" at the begin­
ning or end) is equivalent to ".".

ULIMIT
This variable defnes the maximum allowable file size. The default
is 2,097,152 blocks, or 1 gigabyte. When setting ULIMIT, be sure
to specify even numbers, as the ULIMIT variable accepts a number
of 512-byte blocks.

UMASK
This is the default file creation mask (see umask(C».

login initializes the user and group IDs and the working directory,
then executes a command interpreter (usually sh(C» according to spe­
cifications found in the /etc/passwd file. Argument 0 of the command

March 19, 1990 LOGIN-2

LOGIN (M) LOGIN (M)

interpreter is a dash (.) followed by the last component of the
interpreter's pathname. The basic environment (see environ(M» is
initialized to:

HOME= your-login-directory
SHELL=last field of passwd entry
MAll..=/usr/spool/mail/your-login-name

Initially, umask is set to octal 022 by login.

Flies

/etc/utmp

/etc/wtmp

/usr/spool/mail/name

/etc/motd

/etc/default/login

Information on current logins

History of logins since last multiuser

Mailbox for user name

/etc/passwd

/etc/profile

$HOME/. profile

See A.lso

Message of the day

Default values for environment
variables

Password file

System profile

Personal profile

environ(M), getty(ADM), initscript(F), machine(HW), mail (C) ,
newgrp(C), passwd(C), passwd(F), profile(M), su(C), sh(C), ulimit(S),
umask(C), who(C)

Diagnostics

Not on system console
login is set up to allow root to log on on the console only,
and you are not on the system console.

Login incorrect
The login or dialup password is incorrect.

Unable to change directory to dir
login cannot change directories to the home directory as
specified by /etclpasswd.

No utmp entry. You must exec' login' from the lowest level' sh'.
init did not put an entry in utmp.

March 19, 1990 LOGIN-3

LOGIN (M) LOGIN (M)

No Root Directory
The shell field starts with a '*', and the attempt to do a
chroot to the home directory failed.

You don't have a password.
A password is required and it hasn't been set previously.

Protected Password information suddenly vanished
During the course of working with the protected password
database information the pointer pointing to the static ver­
sion of the information has suddenly disappeared.

Cannot execute passwd program
The password program cannot be executed for some rea­
son.

Login aborted due to no password.
The password program has returned an error while setting a
password, as when the key is pressed.

Can't rewrite protected password entry for user name,
Authentication error; see Account Administrator

The login program cannot update the protected password
database entry.

Protected Password database problem
After updating Protected Password data, login reads the in­
formation again and the entry cannot be read.

Account is disabled but console login is allowed.
Account is disabled -- see Account Administrator.

If the account is locked, but root is logging in on the con­
sole (OVERRIDE tty), the first message is displayed; an
ordinary user will see the second.

Account has been retired -- logins are no longer allowed.
The account is retired (no override for this condition).

Cannot set terminal mode.
The chmod of the tty failed.

Bad login user id.
No uid has been set. This can be due to a missing critical
database file, such as letclauthlsystemlauthorize. Run
authck(ADM) and check any error messages. This mes­
sage will also be issued if login is run from an established
login session rather that from init(M).

Wait for login retry.
Wait for login exit.

A login attempt has failed, and the system is configured to
enforce a delay between login attempts.

March 19, 1990 LOGIN-4

LOGIN (M) LOGIN (M)

user appears in letclpasswd but not in Protected Password database
If the user is in letc/passwd but not in the Protected Pass­
word database, there is no message printed, but login gen­
erates the following audit record.

Cannot obtain database information on this terminal
login cannot get information from the letclauthlsystemlttys
file for the tty line.

Error in terminal setup.
Something is wrong with the terminal setup (for example,
stdin in, stdout, and stderr are the same thing).

Cannot obtain settings for this terminal
The ioctl(S) on the tty device failed.

No login program on root
When attempting to do a sublogin (chrooting to a subtree
for a restricted login), no login program was found.

Can't rewrite terminal control entry for tty,
Authentication error; see Account Administrator

The information for the login tty cannot be updated.

Terminal Control information suddenly vanished
During the course of working with the terminal database
information the pointer pointing to the static version of the
information suddenly disappeared.

Bad priority setting.
nice failed to set the nice value specified in the Protected
Password entry for the user.

Bad group id.
The call to setgid failed.

Bad user id.
The call to setuid failed.

Unable to set kernel authorizations.
The call to set the kernel authorizations failed.

Login timed out
login received an ALARM signal. Note: login sets this
itself, but it could conceivably come from somewhere else.

Terminal is disabled but root login is allowed.
Terminal is disabled -- see Account Administrator.

If the terminal is disabled, but you are root login in on the
console (OVERRIDE tty) the first message is displayed;
the second is displayed for ordinary users.

March 19, 1990 LOGIN-5

LOGIN (M) LOGIN (M)

The security databases are corrupt.
However, root login at terminal tty is allowed,

This is the message displayed when the OVERRIDE tty is
used during a security problem.

Impossible to execute Ibinlsh!
login cannot execute the shell program for doing an
OVERRIDE.

Notes

login cannot be executed from a shell.

Environment variables such as HZ, PATH, and so forth should not be
defined in fete/default/login. Instead use letC/initscript to set global
variables.

Sublogins (indicated by a shell of "*") are not supported and cause a
warning.

Although IDLEWEEKS and PASSREQ are supported for compatibil­
ity with other UNIX systems, their use is not recommended. The
proper way to set the behavior defined by these variables is by use of
the sysadmsh(ADM) Accounts selection.

March 19, 1990 LOGIN-6

MAPCHAN(M)

mapchan
configure tty device mapping

Syntax

mapchan [-ans] [-f mapftle] [channels ...]
mapchan [[-0] [-d]] [channel]

Description

MAPCHAN(M)

mapchan configures the mapping of information input and output.
The mapchan utility is intended for users of applications that employ
languages other than English (character sets other than 7 -bit ASCII).

mapchan translates codes sent by peripheral devices, such as termi­
nals' to the internal character set used by the Altos UNIX System V
system. mapchan can also map codes in the internal character set to
other codes, for output to peripheral devices (such as terminals,
printers, console screen, etc.), Note that PC keyboard configuration is
accomplished through the mapkey (M) utility,

mapchan has several uses: to map a channel (-a or -s); to unmap a
channel (-n and optionally -a); or to display the map on a channel
(optionally -0, -d, channels).

mapchan with no options displays the map on the user's channel. The
map displayed is suitable as input for mapchan.

The options are:

-a when used alone, sets all channels given in the default file
(/etc/default/mapchan) with the specified map. When used
with -n, it refers to all channels given in the default file. Super­
user maps or unmaps all channels, other users map only chan­
nels they own. -a can not be used with -d, -0, or -so

-d causes the mapping table currently in use on the given device,
channel, to be displayed in decimal instead of the default hexa­
decimal. An ASCII version is displayed on standard output. This
output is suitable as an input file to mapchan for another chan­
nel. Mapped values are displayed. Identical pairs are not out­
put. -d can not be used with -a, -f, -n, -0, or -s.

-f causes the current channel or list of channels to be mapped with
mapfile. -f can not be used with -d, -n, -s, or -0.

March 12, 1990 MAPCHAN-1

MAPCHAN(M) MAPCHAN(M)

-n causes null mapping to be performed. All codes are input and
output as received. Mapping is turned off for the user's channel
or for other channels, if given. -a used with -n will tum map­
ping off on all channels given in the default file. This is the
default mapping for all channels unless otherwise configured. -
n can not be used with -d, -f, -0, or -so

-0 causes the mapping table currently in use on the given device,
channel, to be displayed in octal instead of the default hexadec­
imal. An ASCII version is displayed on standard output. This
output is suitable as an input file to mapchan for another port.
Mapped values are displayed. Identical pairs are not output. -0
can not be used with -a, -d, -f, -n, or -so

-s sets the user's current channel with the mapfile given in the
default file. -s can not be used with any other option.

The user must own the channel in order to map it. The super-user can
map any channel. Read or write permission is required to display the
map on a channel.

Each tty device channel (display adapter and video monitor on com­
puter, parallel port, serial port, etc.) can have a different map. When
Altos UNIX System V boots, mapping is off for all channels.

mapchan is usually invoked in the letc/rc2 scripts. These scripts are
executed when the system enters multi-user mode and sets up the
default mapping for the system. Users can invoke mapchan when they
log in by including a mapchan command line in their .profile or .login
file. In addition, users can remap their channel at any time by invok­
ing mapchan from the command line. channels not listed in the
default file are not automatically mapped. channels are not changed
on logout. Whatever mapping was in place for the last user remains in
effect for the next user, unless they modify their .profile or .login file.

For example, the default file letc/default/mapchan can contain:

tty02
tty 1 a
tty2a
lp

ibm

wy60.ger
ibm

The default directory containing map files is lusr/lib/mapchan. The
default directory containing channel files is Idev. Full pathnames may
be used for channels or mapfiles. If a channel has no entry, or the
entry field is blank, no mapping is enabled on that channel. Addi­
tional channels added to the system, (for example, adding a serial or
parallel port) are not automatically entered in the mapchan default
file. If mapping is required, the system administrator must make the
entries.

March 12, 1990 MAPCHAN-2

MAPCHAN (M) MAPCHAN (M)

The fonnat of the map/ties is documented in the mapchan(F) manual
page.

Using a Mapped channel

The input infonnation is assumed to be 7- or 8-bit codes sent by the
peripheral device. The device may make use of "dead" or "com­
pose" keys to produce the codes. If the device does not have dead or
compose keys, these keys can be simulated using mapchan.

One to one mapped characters are displayed when the key is pressed,
and the mapped value is passed to the kernel.

Certain keys are designated as dead keys in the map/tie. Dead key
sequences are two keystrokes that produce a single mapped value that
is passed to the kernel. The dead key is usually a diacritical character,
the second key is usually the letter being modified. For example, the
sequence' e could be mapped to the ASCII value OxE9, and display as
e.
One key is designated as the compose key in the map/tie. Compose
key sequences are composed of three keystrokes that produce a single
mapped value that is passed to the kernel. The compose key is usually
a seldom used character or ctrl-letter combination. The second key is
usually the letter being modified. The third key may be another char­
acter being combined, or a diacritical character. For example, if '@' is
the compose key, the sequence @ c 0 could be mapped to the ASCII
value OxA9, and display as ©.

Characters are not echoed to the screen during a dead or compose
sequence. The mapped character is echoed and passed to the kernel
once the sequence is correctly completed.

Characters are always put through the input map, even when part of
dead or compose sequences. The character is then checked for the
internal value. The value may also be mapped on output. This should
be kept in mind when preparing map files.

The following conditions will cause an error during input:

• non-recognized (not defined in the mapfile) dead or compose
sequence

• restarting a compose sequence before completion by pressing
the compose key in the middle of a dead or compose sequence.
This is an error, but a new compose sequence is initiated.

If the mapfile contains the keyword beep, a bell sounds when either of
the above conditions occurs. In either case, the characters are not
echoed to the screen, or passed to the kernel.

March 12, 1990 MAPCHAN-3

MAPCHAN(M) MAPCHAN(M)

In order to allow for character sequences sent to control the terminal
(move the cursor, and so on) rather than to print characters on the
screen, mapchan allows character sequences to be specified as special
sequences which are not passed through the normal mapping pro­
cedure. Two sections may be specified, one for each of the input (key­
board) and output (screen) controls.

Character Sets

The internal character set used is defined by the mapfiles used. By
default, this is the ISO 8859/1 character set which is also known as the
dpANS X3.4.2 and ISOrrC97/SC2. It supports most of the Latin
alphabet and can represent most European languages.

Several partial map files are provided as examples. They must be
modified for use with specific peripheral devices. Consult your hard­
ware manual for the codes needed to display the desired characters.
Two map files are provided for use with the console device:
/usr/lib/mapchan/ibm for systems with a standard PC character set
ROM, and lusrlIib/mapchan/iso for systems with an optional ISO
8859/1 character set ROM.

Care should be taken that the stty(C) settings are correct for 8-bit ter­
minals. The /etc/gettydefs file may require modification to allow log­
ging in with the correct settings.

7-bit U.S. ASCII (ANSI X3.4) should be used if no mapping is enabled
on the channel.

Files

/etc/default/mapchan
/usr/lib/mapchan/*

See Also

ascii(M), keyboard(HW), Ip(C), Ipadmin(ADM), mapchan(F),
mapkey(M), parallel(HW), screen(HW), serial(HW), setkey(M),
trchan(M), tty(M)

Notes

Some non-U.S. keyboards and display devices do not support charac­
ters commonly used by Altos UNIX System V command shells and the
C programming language. It is not recommended that these devices be
used for system administration tasks.

March 12, 1990 MAPCHAN-4

MAPCHAN(M) MAPCHAN(M)

Printers can be mapped, output only, and can either be sent 8-bit codes
or one-to-many character strings using mapchan. Line printer spooler
interface scripts can be used (setuid root) to change the output map on
the printer when different maps are required (as in changing print
wheels to display a different character set). See lp(C) and
lpadmin(ADM) for information on installing and administering inter­
face scripts.

Not all terminals or printers can display all the characters that can be
represented using this utility. Refer to the device's hardware manual
for information on the capabilities of the peripheral device.

Warnings

Use of mapfiles that specify a different "internal" character set per­
channel, or a set other than the 8-bit ISO 8859 set supplied by default
can cause strange side effects. It is especially important to retain the
7-bit ASCII portion of the character set (see ascii(M)). Altos UNIX
System V utilities and many applications assume these values.

Media transported between machines with different internal code set
mappings may not be portable as no mapping is performed on block
devices, such as tape and floppy drives. However, trchan with an ap­
propriate map/tie can be used to "translate" from one internal charac­
ter set to another.

Do not set ISTRIP (see stty(C)) when using mapchan. This option
causes the eighth bit to be stripped before mapping occurs.

Value Added

mapchan is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 MAPCHAN-5

MAPKEY (M) MAPKEY (M)

mapkey, mapscrn, mapstr, convkey
configure monitor screen mapping

Syntax

mapkey ['-dox][datafile]
mapscrn [-d] [datafile]
mapstr [-d] [datafile]
convkey [in [out]]

Description

mapscrn configures the output mapping of the monitor screen on
which it is invoked. mapkey and mapstr configure the mapping of the
keyboard and string keys (eg. function keys) of the monitor (and mul­
tiscreens if present). mapkey can only be run by the super-user.

mapstr functions on a per-screen basis. Mapping strings on one screen
does not affect any other screen.

If a file name is given on the argument line the respective mapping
table is configured from' the contents of the input file. If no file is
given, the default files in /usr/liblkeyboard and /usr/lib/console is
used. The -d option causes the mapping table to be read from the ker­
nel instead of written and an ASCII version to be displayed on the
standard output. The format of the output is suitable for input files to
mapscrn, mapkey, or mapstr . Non-super-users can run mapkey and
mapstr when the -d option is given.

With the -0 or -x options, mapkey displays the mapping table in octal
or hexadecimal.

convkey translates an old-style mapkey file into the current format. If
in or out are missing, they default to stdin or stdout.

'Files

/usr/lib/keyboard/*
/usr/lib/console/*

March 15, 1989 MAPKEY-1

MAPKEY (M)

Notes

MAPKEY (M)

There is no way to specify that the map utilities read their configura­
tion tables from standard input.

See Also

keyboard(HW), screen(HW), setkey(C)

Value Added

convkey, mapkey, mapscrn and mapstr are extensions of AT&T Sys­
tem V provided in Altos UNIX System V.

March 15, 1989 MAPKEY-2

MATH (M) MATH (M)

math
math functions and constants

Syntax

#include <math.h>

Description

This file contains declarations of all the functions in the Development
System Math Library as well as various functions in the C Library that
return floating-point values.

It defines the structure and constants used by the matherr(S) error­
handling mechanisms, including the following constant used as an
error-return value:

HUGE The maximum value of a single-precision
floating-point number.

The following mathematical constants are defined for user conveni­
ence:

M_E

M_LOG2E

M_LOGIOE

M_LN2

M_LNlO

March 15, 1989

The base of natural logarithms (e).

The base-2 logarithm of e .

The base-IO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

1t, the ratio of the circumference of a circle to
its diameter.

1t/2.

1t/4.

l/1t.

2/1t.

2hj1t.

MATH-1

MATH(M)

The positive square root of 2.

The positive square ro~t of 1/2.

MATH (M)

For the definitions of various machine-dependent "constants," see the
description of the <values.h> header file.

See Also

intro(S), matherr(S), values(M)

Standards Conformance

math is conformant with:
The X/Open Portability Guide II of January 1987.

March 15. 1989 MATH-2

MCONVERT (M)

mconvert
compile menu into AOM

Syntax

mconvert inpucfile outpucfile

Description

MCONVERT(M)

The mconvert command is used for compiling a menu into an AOM
menu file. The inpucfile is the path and file name of a form file. and
the outpucfile is the path and file name of the compiled AOM menu
file which can be

For more details see the Altos manual AOM Tool Kit User's Guide,
part number 690-17464-xxx.

Files

/usr/aom/AOMcap
/usr/aom/aomtext
/usr/aom/aom.msgs
/usr/aom/defuIKiate
/usr/aom/form.format
/usr/aom/form.recover
/usr/aom/aomnames
/usr/aom/aomplanes
/usr/aom/creatext
/usr/aom/form.archive
/usr/aom/form.fsck
/usr/aom/setmsg

See Also

aom(M), fconvert(M)

April 11, 1990 MCONVERT-1

MESSAGES(M) MESSAGES(M)

messages
description of system console messages

Description

This section describes the various system messages which may appear
on the system console. All messages are displayed in the following
format:

label:severity:comment:action

The segments break down as follows:

label
Name of the driver or routine where the error occurred.

severity
The level of error severity, consisting of four levels:

PANIC

ERROR

These fatal messages indicate hardware problems
or kernel inconsistencies that are too severe for
continued operation. After displaying a PANIC
message, the system stops. Rebooting is required.

Resource use has been affected. Some corrective
action is needed.

WARNING An error indication that should be monitored
(example, free file space is low) but requires no
immediate action.

INFO Some information about the system is provided.

comment
A field containing information about the problem at hand.

action
The course of action to remedy the situation.

The system services error messages are generated by the shell and do
not follow the above convention.

System Message Meanings

The following c1assi fications are meant to be a key for you to use to
determine the actions to take to correct an error situation. Each kernel
message will have one of the following three c1assi fications listed
with it. The c1assi fications are:

March 12, 1990 MESSAGES-1

MESSAGES (M) MESSAGES(M)

System inconsistency
A contradictory situation exists in the kernel.

Abnormal
A probably legitimate but extreme situation exists.

Hardware
Indicates a hardware problem.

System inconsistency messages indicate problems usually traceable to
hardware malfunction, such as memory failure. These messages
rarely occur since associated hardware problems are generally
detected before such an inconsistency can occur.

Abnormal messages represent kernel operation problems, such as the
overflow of critical tables. It takes extreme situations to bring these
problems about, so they should never occur in normal system use.
However, in some cases you can modify the kernel parameters that are
causing the error message. Use the configure(ADM) utility to make
the necessary changes.

Hardware messages normally specify the device, dey, that caused the
error. Each message gives a device specification of the form nnlmm
where nn is the major number of the device, and mm is its minor num­
ber. The command pipeline

Is -I Idev I grep nn I grep mm

may be used to list the name of the device associated with the given
major and minor numbers.

System Messages

** Normal System Shutdown **
This message appears when the system has been shutdown prop­
erly. It indicates that the machine may now be rebooted or
powered down. '

kernel:P ANIC:** ABNORMAL System Shutdown **
This message appears when errors occur during system shut­
down. It is usually accompanied by other system messages.
System inconsistency, fatal.

kernel:W ARNING:bad block on dev nnlmm
A nonexistent disk block was found on, or is being inserted in,
the structure's free list. System inconsistency.

kernel:W ARNING:bad count on dev nnlmm
A structural inconsistency in the superblock of a file system.
The system attempts a repair, but this message will probably be

March 12, 1990 MESSAGES-2

MESSAGES(M) MESSAGES(M)

followed by more complaints about this file system. System
inconsistency .

kernel:W ARNING:Bad free count on dev nnlmm
A structural inconsistency in the superblock of a file system.
The system attempts a repair, but this message will probably be
followed by more complaints about this file system. System
inconsistency .

kernel:ERROR:error on dev name (nnlmm)
This is the way that most device driver diagnostic messages
start. The message will indicate the specific driver and com­
plaint. The name is a word identifying the device.

kernel:ERROR:iaddress > 2"24
This indicates an attempted reference to an illegal block num­
ber, one so large that it could only occur on a file system larger
than 8 billion bytes. Abnormal.

kernel:W ARNING:lnode table overflow
Each open file requires an inode entry to be kept in memory.
When this table overflows, the specific request (usually open(S)
or creat(S» is refused. Although not fatal to the system, this
event may damage the operation of various spoolers, daemons,
the mailer, and other important utilities. Abnonnal results and
missing data files are a common result. Use configure(ADM) to
raise the number of inodes. Abnormal.

kernel:W ARNING:interrupt from unknown device, vec=num
The CPU received an interrupt via a supposedly unused vector.
This message is followed by "panic:unknown interrupt." Typi­
cally, this event comes about when a hardware failure miscom­
putes the vector of a valid interrupt. Hardware.

kernel:W ARNING:stray interrupt on vector num
The CPU received an interrupt via a supposedly unused vector.
Hardware.

kernel:W ARNING:no file
There are too many open files. The system has run out of entries
in its "open file" table. The warnings given for the message
"inode table overflow" apply here. Use configure(ADM) to
raise the total number of available files or the number of files
available per process. Abnormal.

kernel:W ARNING:no space on dev nnlmm
This message means that the specified file system has run out of
free blocks. Although not nonnally as serious, the warnings dis­
cussed for "inode table overflow" apply: of ten user programs
are written casually and ignore the error code returned when
they tried to write to the disk; this results in missing data and
"holes" in data files. The system administrator should keep

March 12, 1990 MESSAGES-3

MESSAGES(M) MESSAGES(M)

close watch on the amount of free disk space and take steps to
avoid this situation. Abnormal.

kernel:WARNING:Out of inodes on dev nn/mm
The indicated file system has run out of free inodes. The number
of inodes available on a file system is detennined when the file
system is created (using m,lfs(ADM». The default number is
quite generous; this message should be very rare. The only
recourse is to remove some worthless files from that file system,
or dump the entire system to a backup device, run m,lfs(ADM)
with more inodes specified, and restore the files from backup.
Abnormal.

kernel:P ANIC:blkdev
An internal disk I/O request, already verified as valid, is discov­
ered to be referring to a nonexistent disk. System inconsistency,
fatal.

kernel:P ANIC:devtab
An internal disk I/O request, already verified as valid, is discov­
ered to be refering to a nonexistent disk. System inconsistency,
fatal.

kernel:P ANIC:iinit
The super-block of the root file system could not be read. This
message occurs only at boot time. Hardware, fatal.

kernel:P ANIC:swap 10 error
A fatal I/O error occurred while reading or writing the swap
area. System inconsistency, fatal.

kernel:P ANIC:memory failure - parity error
A hardware memory failure trap has been taken. System incon­
sistency, fatal.

kernel:P ANIC:no fs
A mounted file system's entry has disappeared from the system
mount table. System inconsistency, fatal.

kernel:P ANIC:no imt
A mounted file system has disappeared from the mount table.
System inconsistency, fatal.

kernel:P ANIC:no procs
Each user is limited in the amount of simultaneous processes he
can have; an attempt to create a new process when none is
available or when the user's limit is exceeded and refused. That
is an occasional event and produces no console messages; this
panic occurs when the kernel has certified that a free process
table entry is available and can't find one when it goes to get it.
System inconsistency, fatal.

March 12, 1990 MESSAGES-4

MESSAGES (M) MESSAGES(M)

kernel:W ARNING:Out of swap
There is insufficient space on the swap disk to hold a task. The
system refuses to create tasks when it feels there is insufficient
disk space, but it is possible to create situations to circumvent
this mechanism. Abnormal.

kernel:P ANIC:general protection trap
General protection trap taken in kernel. System inconsistency,
fatal.

kernel:P ANIC:segment not present
An attempt has been made to access an invalid segment. It may
also indicate the segment-not-present trap has been taken in the
kernel. System inconsistency, fatal.

kernel:P ANIC:Timeout table overflow
The timeout table is full. Timeout requests are generated by de­
vice drivers, there should usually be room for one entry per sys­
tem serial line plus ten more for other usages. Use config­
ure(ADM) to raise the number of timeout table entries.

kernel:P ANIC:Trap in system
The CPU has generated an illegal instruction trap while execut­
ing kernel or device driver code. This message is preceded with
an information dump describing the trap. System inconsistency,
fatal.

kernel:P ANIC:lnvalid TSS
Internal tables have become corrupted. System inconsistency,
fatal.

kernel:W ARNING:bootstring invalid, ignored
A bad bootstring was entered at the Boot prompt.

kernel:ERROR:bad syntax - string
A bad bootstring was entered at the Boot prompt.

kernel:PANIC:bad mapping in copyio
Copyio was called with a strange request. Usually a bad driver.

kernel:WARNING:HARDWARE FAILURE:386 incorrectly multi­
plies 32-bit numbers
The cpu is displaying the 32-bit multiply bug.

kernel:P ANIC:*** POWER CYCLE TO REBOOT ***
This message follows the above HARDWARE FAILURE 32 bit
error message.

kemel:INFO:I0 bits of I/O address decoding
The hardware is only decoding 10 bits of i/o addresses. This
amount is sufficient in most cases. This condition is only an
issue if you are strapping i/o devices with a base address above

March 12, 1990 MESSAGES-5

MESSAGES(M) MESSAGES(M)

400 (hex).

kernel:WARNING:A31 CPU bug workaround not possible for this
machine
A31 was specified on the boot line, but cannot be applied to the
current system.

kernel:INFO:A31 CPU bug workaround in effect
A31 was specified on the boot line and the software workaround
is currently in effect.

kernel:P ANIC:bad boot string An invalid boot string was entered at
the Boot prompt.

kernel:P ANIC:out of both memory & swap
No more memory pages or swap pages are free.

kernel:P ANIC:not enough contiguous memory
The kernel memory allocation routines require more physically
contiguous memory. Either decrease the size of some kernel
parameters (like disk buffers) or add more physical memory.

kernel:W ARNING:filesystem page read failed
An error occurred trying to read a page from the disk. This is
not fatal, but usually indicates hardware problems.

kernel:P ANIC:free inode isn't
There is internal inode table corruption within the kernel.

kernel:ERROR:Map overflow (num), shutdown and reboot, mp­
>mpent
There are internal kernel map inconsistencies. Reboot your sys­
tem.

kernel:P ANIC:write_sbO:cannot cvts3superb() yet
This message is found in the 386 kernel only. A write of a non
SYS III or SYS V filesystem superblock is being attempted.
This action should be impossible due to earlier checks.

kernel:WARNING:Can't allocate message buffer
This message indicates a lack of memory. Processes should be
killed to make more room. Another option is to add more physi­
cal memory.

kernel:P ANIC:Large model 386 ssig
Internal kernel error in processing large model 386 signals.

March 12, 1990 MESSAGES-6

MESSAGES(M) MESSAGES(M)

Trap type
This message precedes a "kernel:P ANIC:" message. The type
is the trap number given by the processor. The message is fol­
lowed by a dump of registers. System inconsistency, Jatal.

fpsave:P ANIC:no fp_task
No floating point"context to save, internal kernel error.

mdep.386/fp.c:WARNING:No floating point emulator found in string,
No !ete!emulator was present in the root filesystem. The System
Administrator should install one and reboot.

fp_OVERRUN:PANIC:coprocessor overrun - with no 287/387
Internal coprocessor error. fatal.

fp_COPROC:PANIC:, coprocessor error - with no 287/387
Inconsistent kernel internal state.

fp_COPROC:PANIC:coprocessor error - switched away from fp_task
Internal kernel mismanagement of floating point processes.

fp_DNA:PANIC:
A device trap happened while emulating floating point instruc­
tions.

iinit:P ANIC:cannot copy in superblock
An error happened during the root filesystem superblock load­
ing.

srmount:PANIC:cannot cvtv7superb() yet
A root filesystem superblock was not recognized as a SYS III or
SYS V superblock. V7 superblocks cannot currently be con­
verted on the 386 kernel.

mapphys:PANIC:sptmap overflow
No system page table pages are available. This is an internal
error in the kernel, usually caused by a faulty device driver.

physio:PANIC:bad state A device driver made an invalid request to
physio.

badint:P ANIC:bad interrupt handler Invalid interrupt request, usually
fault hardware.

setup:P ANIC:sptmap overflow This message indicates possible kernel
image corruption or lack of physical memory.

setup:P ANIC:u-area not page aligned This indicates possible kernel
image corruption.

March 12, 1990 MESSAGES-7

MESSAGES(M) MESSAGES (M)

setup:P ANIC:u-area address does not match SPTADDR
Indicates possible kernel image corruption.

cmn_err:PANIC:DOUBLE PANIC The kernel panicked while trying
to panic. You must power cycle at this point to reboot the ma­
chine.

cmn_err:PANIC:unknown level in cmn_err (level=num, msg=string),
The kernel's cmn_errO routine was called with an invalid argu­
ment.

Kernel Paging Messages

The following messages indicate system inconsistencies in the kernel
paging code. These inconsistencies can be caused by hardware or soft­
ware problems. Reboot your system and note the circumstances if you
see one of these messages:

mfalloc:P ANIC:page not free

mfalloc:P ANIC:page not free at exit

mfIree:P ANIC:page already free

mfIree:P ANIC:page is locked

dfalloc:P ANIC:frame not free at exit

x1check:P ANIC:xlink serial mismatch

impcode:P ANIC:called to load impure 386

impcode:P ANIC:more than 1 data segment?

preload:P ANIC:, invalid page (num, num)

kernel:P ANIC:bad page type for protection fault

kernel:P ANIC:protection fault on read access

kernel:P ANIC:not present fault on shared data

kernel:P ANIC:added strange page table - num, index

pgfind:PANIC:not in cache

pghash:P ANIC:not in cache

pginval:P ANIC:list broken

March 12, 1990 MESSAGES-8

MESSAGES(M)

pginval:P ANIC:not in cache

mftomp:PANIC:bad frameno num

mptomf:PANIC:bad mp num

swapadd:P ANIC:no space for dpfi

dftodp:P ANIC:bad frameno num

dptodf:P ANIC:bad dp num

dptodf:PANIC:bad dp num

pgread:P ANIC:no xlink

pgfree:P ANIC:invalid page marked present

pgfree:P ANIC:freeing intransit page

pgpid:WARNING:setting disk pid

kemel:P ANIC:page table under page table?

kemel:P ANIC:swapping intransit page

MESSAGES (M)

dftomf:P ANIC:non-swap page table entry changed

dftomf:PANIC:swap disk frame rcnt(num) != 1, dp=num, dp-
>dp_rcnt,dp

dftomf:P ANIC:page type mismatch - mptype num dptype num mp num
dp num, mp->mp_type, dp->dp_type, mp, dp

dftomf2:PANIC:, swap memory frame rcnt(num)!= 1, mp=num,

dftomf3 :PANIC:swap mem frame rcnt(num) != 1, mp=num, mp-
>mp_rcnt, mp

mftodfl :PANIC:swap mem frame rcnt(num) != 1, mp=num, mp-
>mp_rcnt, mp

mftodf:P ANIC:memory frame marked in transit

mftodf:PANIC:page type mismatch - dptype num mptype num dp num
mpnum

mftodf2:PANIC:swap disk frame rcnt(num) != 1, dp=num

mftodf3:PANIC:swap disk frame rcnt(num) != 1, dp=num, dp­
>dp_rcnt, dp

March 12, 1990 MESSAGES-9

MESSAGES (M) MESSAGES(M)

tItomf:PANIC:page type(num) not TE_FILSYS, mp = num,mp­
>mp_type, mp

mfcvt:P ANIC:zero ref count

ptdup:PANIC:TE_SWAPpage rcnt(num) > 1,

ptdup:P ANIC:xlinked page has reference

ptdup2:PANIC:TE_SW AP page rcnt > 1

ptdup:P ANIC:xlinked page has reference

ptdup:P ANIC:locked page not present

ptdup:P ANIC:intransit page

pgcheck:P ANIC:page type mismatch:ptp num type num xtype
num,ptp,type,xtype

The above listed messages indicate system inconsistencies in the ker­
nel paging code. These inconsistencies can be caused both by hard­
ware or software problems. Reboot your system.

cputok:P ANIC:

cpktou:P ANIC:

sdfrcm:P ANIC:sdp->sd_inode not found

The above 3 errors indicate internal shared data errors within the ker­
nel.

v86sighdlint:W ARNING:lost signal

v86setint:P ANIC:xtss pte not present

The above 2 errors indicate internal VPIX processing errors within the
kernel.

namei:P ANIC:null cache ino

namei:P ANIC:duplicating cache

The above 2 messages indicate internal file management errors in the
kernel.

System Services Messages

The following messages are displayed by the shell when a system call
fails.

March 12, 1990 MESSAGES-10

MESSAGES(M) MESSAGES(M)

Not owner:
Typically, this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

No such file or directory:
This error occurs when a filename is specified and the file should
exist but doesn't, or when one of the directories in a pathname does
not exist.

No such process:
No process can be found corresponding to that specified by pid in
kill or ptrace .

Interrupted system call:
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter­
rupted system call returned this error condition.

I/O error:
Some physical I/O error. This error may in some cases occur on a
call following the one to which it actually applies.

No such device or address:
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

Arg list too long:
An argument list longer than 5,120 bytes is presented to a member
of the exec family.

Exec format error:
A request is made to execute a file which, although it has the ap­
propriate permissions, does not start with a valid magic number
(see a.out(F».

Bad file number:
Either a file descriptor refers to no open file, or a read (respectively
write) request is made to a file which is open only for writing
(respectively reading).

No child processes:
A wait was executed by a process that had no existing or
unwaited-for child processes.

No more processes:
A/ork failed because the system's process table is full or the user
is not allowed to create any more processes.

March 12, 1990 MESSAGES-11

MESSAGES(M) MESSAGES(M)

Not enough space:
During an exec, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap
space during a fork.

Permission denied:
An attempt was made to access a file in a way forbidden by the
protection system.

Bad address:
The system encountered a hardware fault in attempting to use an
argument of a system call.

Block device required:
A nonblock file was mentioned where a block device was required,
e.g., in mount.

Device busy:
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text seg­
ment). It will also occur if an attempt is made to enable account­
ing when it is already enabled.

File exists:
An existing file was mentioned in an inappropriate context, e.g.,
link.

Cross-device link:
A link to a file on another device was attempted.

No such device:
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

Not a directory:
A nondirectory was specified where a directory is required, for
example, in a path prefix or as an argument to chdir(S).

Is a directory:
An attempt to write on a directory.

Invalid argument:
An invalid argument (e.g., dismounting a nonmounted device;
mentioning an undefined signal in signal or kill; reading or writing
a file for which lseek has generated a negative pointer). Also set
by the math functions described in the (S) entries of this manual.

March 12, 1990 MESSAGES-12

MESSAGES (M) MESSAGES(M)

File table overflow:
The system's table of open files is full and temporarily no more
opens can be accepted.

Too many open files:
No process may have more than 60 file descriptors open at a time.

Not a character device

Text file busy:
An attempt to execute a· pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
for writing a pure-procedure program that is being executed.

File too large:
The size of a file exceeded the maximum file size (1,082,201,088
bytes) orULIMIT; see ulimit(S).

No space left on device:
During a write to an ordinary file, there is no free space left on the
device.

Illegal seek:
An [seek was issued to a pipe.

Read-only file system:
An attempt to modify a file or directory was made on a device
mounted read-only.

Too many links:
An attempt to make more than the maximum number of links
(1000) to a file.

Broken pipe:
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

Arg out of domain of func:
The argument of a function in the math package is out of the
domain of the function.

Result too large:
The value of a function in the math package is not representable
within machine precision.

File system needs cleaning:
An attempt was made to mount(S) a file system whose super-block
is not flagged clean.

March 12, 1990 MESSAGES-13

MESSAGES(M) MESSAGES(M)

Would deadlock:
A process' attempt to lock a file region would cause a deadlock
between processes vying for control of that region.

Not a name file:
A ereatsem(S),opensem(S), waitsem(S), or sigsem(S) was issued
using an invalid semaphore identifier.

Not available:
An opensem(S), waitsem(S) or sigsem(S) was issued to a sema­
phore that has not been initialized by a call to ereatsem (S). A sig­
sem was issued to a semaphore out of sequence; i.e., before the
process has issued the corresponding waitsem to the semaphore.
An nbwaitsem was issued to a semaphore guarding a resource that
is currently in use by another process. The semaphore on which a
process was waiting has been left in an inconsistent state when the
process controlling the semaphore exits without relinquishing con­
trol properly; i.e., without issuing a waitsem on the semaphore.

A name file:
A name file (semaphore, shared data, etc.) was specified when not
expected.

No message of desired type: An attempt was made to receive a mes­
sage of a type that does not exist on the specified message queue
[see msgop(S)].

Identifier removed:
This error is returned to a process that resumes execution due to
the removal of an identifier from the file system's
name space; see msgetl (S), semetl (S), and shmetl (S).

No record locks available:
In/entl(S) the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries left on
the system.

Channel number out of range

Level 2 not synchronized

Level 3 halted

Level 3 reset

Link number out of range

Protocol driver not attached

No CSI structure available

March 12, 1990 MESSAGES-14

MESSAGES (M) MESSAGES(M)

Level 2 halted

Deadlock situation detected! avoided
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

No record locks available

Bad exchange descriptor

Bad request descriptor

Message tables full

Inode table overflow

Bad request code

Invalid slot

File locking deadlock

Bad font file format

Not a stream device
A putmsg(S) or getmsg(S) system call was attempted on a file
descriptor that is not a STREAMS device.

No data available

Timer expired
The timer set for a STREAMS ioctl(S) call has expired. The cause
of this error is device specific and could indicate either a hardware
or software failure, or perhaps a timeout value that is too short for
the specific operation. The status of the ioctl(S) operation is
indeterminate.

Out of stream resources
During a STREAMS open(S), either no STREAMS queues or no
STREAMS head data structures were available.

Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper startup to
connect to the network.

Package not installed
This error occurs when users attempt to use a system call from a
package which has not been installed.

March 12, 1990 MESSAGES-15

MESSAGES (M) MESSAGES(M)

Object is remote
This error is RFS specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mount/unmount a device (or pathname) that is on a remote ma­
chine.

Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

Advertise error
This error is RFS specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

Srmount error
This error is RFS specific. It occurs when users try to stop RFS
while there are resources still mounted by remote machines.

Communication error on send
This error is RFS specific. It occurs when trying to send messages
to remote machines but no virtual circuit can be found.

Protocol error
Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to access
remote resources which are not directly accessible.

Not a data message
During a read(S), getmsg(S), or ioctl(S) CRECVFD system call to a
STREAMS device, something has come to the head of the queue
that can't be processed. That something depends on the system
call:

read(S) - control information or a passed file descriptor.
getmsg(S) - passed file descriptor.
ioctl(S) - control or data information.

N arne not unique on network

File descriptor in bad state

Remote address changed

Cannot access a needed shared library
Trying to exec(S) an a.out that requires a shared library (to be
linked in) and the shared library doesn't exist or the user doesn't
have permission to use it.

March 12, 1990 MESSAGES-16

MESSAGES(M) MESSAGES (M)

Accessing a corrupted shared library
Trying to exec(S) an a.out that requires a shared library (to be
linked in) and exec(S) could not load.the shared library. The shared
library is probably corrupted.

Trying to exec(S) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the a.out. The
.lib section tells exec(S) what shared libraries are needed. The
a.out is probably corrupted.

Attempting to link in more shared libraries than system limit
Trying to exec(S) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys­
tem. See the System Administrator's Guide.

Cannot exec a shared library directly
Trying to exec(S) a shared library directly. This is not allowed.

Driver Messages

The following messages are different from kernel messages in that
they are generated by the device drivers for the various hardware sup­
ported under Altos UNIX System V. The source of the message can be
determined by checking the label field of the message.

Console Driver Messages

console:WARNING:Kernel messages lost on non-text screen
(also check /usr/adm/messages)

Kernel messages were lost while the console was in graphics
mode and did not appear. Check the last lines of lusr/admlmes­
sages to find the messages.

console:W ARNING:Too many keyboard groups
There are more video devices attached to your system than your
kernel is designed to support.

Irwin Driver Messages

IRWIN:ERROR:Tape bad block table was not successfully read.
When the tape device is open the bad block table is read into
memory. This messages indicates that the read did not work
correctly.

IRWIN:ERROR:Tape is not formatted.
The tape must be formatted before use.

March 12, 1990 MESSAGES-17

MESSAGES(M) MESSAGES(M)

IRWIN:ERROR:Tape is write protected.
The write protect tab must be removed for use.

IRWIN:ERROR:Cannot write to DC1000 cartridge.
Only Irwin model 110 or 125 drives can write to DC1000 car­
tridges.

IRWIN:ERROR:Not enough memory for mini-cartridge; retrying ...
The Irwin is waiting for enough user memory to become avail­
able to use the device.

IRWIN:ERROR:Not enough memory for mini-cartridge; open failed.
The Irwin did not get enough memory to be able to use the de­
vice after several retries.

IRWIN:ERROR:Tape write error.
A write attempt was unsuccessful for an unknown reason.

IRWIN:ERROR:Tape verify error.
A verify attempt was unsuccessful for an unknown reason.

IRWIN:ERROR:Tape read error.
A read attempt was unsuccessful for an unknown reason.

IRWIN:ERROR:Tape uncorrectable ECC error.
An uncorrectable ECC memory error has occurred, check your
hardware for defective chips.

IRWIN:ERROR:Cannot format DC1000 cartridge.
Only Irwin model 110 or 125 drives can write to DC1000 car­
tridges.

IRWIN :ERROR:Bad state:num
Unknown state in the interrupt routine.

IRWIN:ERROR:DMA boundary error - start address:num ending
address:num
Device tried to transfer data from a buffer that crosses a 64k
boundary.

Cartridge Driver Messages

CT:ERROR:Tape controller (type=name) not found
The controller specified in in the file lusrlsysliolctconfasm was
not found.

CT:ERROR:Cartridge tape is write protected
You must remove the write protect tab from the cartridge before
use.

March 12, 1990 MESSAGES-18

MESSAGES (M) MESSAGES(M)

CT:ERROR:system too busy for efficient tape use
There is not enough user memory available to allow the device
to work.

CT:WARNING:attempted to free invalid buffer
The driver attempted free a buffer that was not active. The buffer
must be activated before use.

SCSI Driver Messages

scsi:ERROR:No controller response :num
Requested controller is not present on SCSI bus num. Check
your system setup and connections.

scsi:ERROR:CTLR num LUN num not attached
Requested unit not present on controller. Check your system
setup.

scsi:ERROR:CTLR num LUN num:invalid type <num>,
Requested unit is not a disk or tape. Disk and tape and printer
are currently the only supported SCSI devices.

scsi:ERROR:CTLR num LUN num:device not ready, ctlr, x);
Requested device is busy.

scsi:ERROR:adstrategy:device/type error Oxtype/Oxtype
Intemalerror - open device is not disk, tape or printer.

scsi:ERROR:adioctl:ADMODESENSE rc num host num unit num
ioctl sense command did not complete as expected.

scsi:WARNING:adioctl:ADEXECUTE rc num host num unit num
ioctl execute command did not complete as expected.

scsi:INFO:adioctl:num reassigned
ioctl bad block mapping completed (done in pairs)

scsi:WARNING:adsetparam:ADMODESENSE rc num host num unit
num
Mode sense command did not complete as expected.

scsi:ERROR:adgetcdb:unsupported command num
Internal error - unexpected command.

scsi:WARNING:adintr:adapter num SR_DETECTED status=num,
intr=num
SCSI reset detected.

scsi:WARNING:Unexpected MBI status num
Unexpected condition after interrupt.

March 12; 1990 MESSAGES-19

MESSAGES(M) MESSAGES(M)

scsi:WARNING:ad_sndcmd:unexpected port status = num
Unable to send command to adapter.

scsi:ERROR:adpresent:Adapter num internal failure:num
Adapter returned bad status on initialization.

scsi:ERROR:on disk dev=numlnum ha=num id=num lun=num
block=num sector=num, cylinder/head = numlnum
Disk I/O failure.

scsi:ERROR:on tape ha=num id=num lun=num hst num ust num
AHA-1540 cmd :num [num .. ,]
AHA-1540 sense :num [num ...]

Tape I/O failure; followed by one of these messages:

end of tape
tape is write protected
wrong record length

Disk Driver Messages

disk:ERROR:Diskinfo table overflow
Too many disk drives in use - reconfigure kernel to increase the
available number of disks.

disk:ERROR:lnvalid partition sector on hard disk
Master boot block on disk is unrecognizable. Run fsck(ADM).

Floppy Driver Messages

floppy:WARNING:CMOS indicates no diskette drives installed
Configuration memory invalid - run your DOS SETUP disk.

floppy:WARNING:CMOS indicates diskette drive num not present
Configuration memory invalid - run your DOS SETUP disk.

floppy:ERROR:fdnum being formatted
The floppy drive is in use.

floppy:ERROR:disk is write protected
The disk cannot be written because it is protected.

floppy:ERROR:on dev (numlnum), block=num cmd=num status=num
Floppy 1/0 failure. possibly followed by the message:
insert disk or close floppy door
if appropriate.

floppy:WARNING:cmd result error
1/0 error on the floppy drive.

March 12, 1990 MESSAGES-20

MESSAGES(M)

VPIX Messages

VPIX:command completed unexpectedly
Processtenrrrinated prematurely.

OMTI Driver Messages

omti:ERROR:cannot allocate a GDT descriptor
Internal error - kernel dscralloc routine failed.

omti:ERROR:unit=num controller not configured

MESSAGES(M)

Internal error - driver open failed to identify disk type.

omti:WARNING:already busy
Internal error - omtistart called for a busy drive.

omti:ERROR:unknown command(num), bp->b_cmd
Internal error - omtistart encountered an unrecognized com­
mand.

omti:ERROR:command setup failed
Controller failed to accept command.

omti:WARNING:non-omti interrupt (num), omti_status
Controller did not signal an interrupt when an interrupt was
received.

omti: W ARNING:unexpected omti interrupt (num), omtCstatus
Internal error - no pending command when interrupt received.

omti:W ARNING:still busy
Controller still busy after generating an interrupt.

omti:ERROR:during omti_sense
Interrupt received during an OMTI sense command.

omti:ERROR:initialization failure
Error indicated during an initialization.

omti:ERROR:sense command setup failed
Controller failed to accept setup command.

omti:ERROR:minor=num, block=num, errtype=num, code=num,
unit=num [sector=num, cylinder/head=num/ num,] <message>
Disk I/O failure. <message> is one of:

No error or no sense information,
No Index,
No Seek/Command Complete,
Write/Drive Fault,
Drive Not SelectedlNot Ready,

March 12, 1990 MESSAGES-21

MESSAGES(M)

No Track zero or Cylinder zero found,
Multiple Drives Selected,
Seek/Command in progress,
Cartridge Changed
IDCRC,
Uncorrectable Data ECC,
ID Address Mark Not Found,
Data Address Mark Not Found,
Sector Not Found,
Seek Error,
Sequence/DMA,
Write Protected,
Correctable ECC,
Bad Track Encountered,
Illegal Interleave Factor,
Unknown Error,

MESSAGES(M)

Ilegal Access To An Alternated TracklUnable to Read the Alternate
Track Address,
Alternate of Bad Track Already Assigned,
No Alternate Track Found,
Illegal Alternate Track Address
Invalid Command,
Illegal Disk Address,
Illegal Function for Drive Type,
Volume Overflow
RAM error,
EPROM ChecksumlInternal Diagnostic error
Error with unknown type or code

omti:ERROR:controller already in select state
Internal error - controller busy when sending command.

omti:ERROR:cannot enter command phase
Controller failed to accept select command.

omti:ERROR:C D bit stuck off
Controller failed to indicate readiness for command.

omti:ERROR:OMTI BUSY bit still stuck on
Controller failed to obey reset command.

omti:INFO:unloading all requests
Preparing for manual reset because programmed reset did not
work.

omti:WARNING:colliding polling routines ...
Internal error - multiple instances of omtipoll.

omti:ERROR:timed out
Expected interrupt did not arrive.

March 12, 1990 MESSAGES-22

MESSAGES(M) MESSAGES (M)

omti:ERROR:please use sfmt to modify disk parameters
Attempt to write disk characteristics directly with DIOWDISK
ioctl.

Serial Driver Messages

serial:ERROR:Garbage or loose cable on dev num, port shut down
Too many interrupts were received together. Check your con­
nections.

Winchester Driver Messages

wd:ERROR:on fixed disk dev=num/num block=num cmd=num
status=num sector=num, cylinder/head = num/num
Disk I/O failure.

Event Driver Messages

eventERROR:event channel full
There are no more devices available in the event queue.

event:ERROR:event table full
All of the system's event queues are opened.

Keyboard Driver Messages

kb:ERROR:keyboard is in an unknown mode
The keyboard has been set in an invalid mode through an ioellO.
The only valid keyboard modes are XT (0) and AT(1).

Notes

Not all messages appear on all machines. Some messages are pro­
cessor dependent.

March 12, 1990 MESSAGES-23

MESTBL(M) MESTBL(M)

mestbl
create a messages locale table

Syntax

mestbl [speejile]

Description

The utility mestbl is provided to allow LC _MESSAGES locales to be
defined. It reads in a specification file (or standard input if speejile is
not defined), containing a definition for a particular locale's response
strings to yes/no queries, and produces a concise format table file, to
beread by setloeale(S).

The response strings may be specified as a string held within double
quotes or as a series of characters which are specified in one of six dif­
ferent ways (the following examples all specify the ASCII character
'A'):

65 - decimal
0101 - octal
Ox41 - hexadecimal
, A' - quoted character
,\101' - quoted octal
'\x41' - quoted hexadecimal

or a combination of both methods, for example:

'y' "es"

is identical to:

"yes"

To specify the response strings, the above string definitions must be
preceded by the keyword YESSTR= for affirmative responses, and
NOSTR= for negative responses.

All characters following the hash character are treated as a comment
and ignored up to the end of the line, unless the hash is within a
quoted string.

The concise format locale table is placed in a file named messages in
the current directory. This file should be copied or moved to the
correct place in the setloeale (S) file tree (see locale (M)). To prevent
accidental corruption of the output data, the file is created with no

March 12, 1990 MESTBL-1

MESTBL(M) MESTBL(M)

write permission; if the mestbl utility is run in a directory containing a
write-protected "messages" file, the utility will ask if the existing file
should be replaced - any response other than "yes" or "y" will cause
mestbl to terminate without overwriting the existing file.

See Also

chrtbl(M), montbl(M), coltbl(M), locale(M), numtbl(M), timtbl(M),
setlocale(S)

Diagnostics

All error messages printed are self explanatory.

Value Added

mestbl is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 MESTBL-2

MONTBl(M) MONTBl (M)

montbl
create a currency locale table

Syntax

montbl [specfile]

Description

The utility montbl is provided to allow new LC_MONETARY locales
to be defined; it reads a specification file, containing a definition of
the currency symbol for a particular locale, and produces a binary
table file, to be read by setlocale (S), which determines the behavior of
the nl_langinfo (S) routine.

The information supplied in the specification file consists of a line in
the following format:

CRNCYSTR = string

The " = " can be separated from the keyword and string fields by
zero or more space or tab characters.

The string is a sequence of characters surrounded by quotes ("). The
first character of the string should be "-" if the symbol is to precede
the currency value, or "+" if it should appear after the value. Charac­
ters within the string can be specified both literally and using" \ "
escapes; the following three strings are equivalent:

"+DM"
"+\X44M"
"+D\l15"

literal
hexadecimal escapes
octal escapes

All characters following a hash (#) are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
string.

The binary table output is placed in a file named currency , within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale (M)). To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the montbl utility is run in a directory containing a write­
protected currency file, the utility will ask if the existing file should be
replaced - any response other than "yes" or "y" will cause montbl to
terminate without overwriting the existing file.

March 12, 1990 MONTBL-1

MONTBl (M) MONTBl (M)

If the spec file argument is missing, the specification information is
read from the standard input.

See Also

chrtbl(M), locale(M), msgtbl(M), nClanginfo(S), numtbl(M),
setlocale(S), timtbl(M)

Diagnostics

If the input table file cannot be opened for reading, processing will ter­
minate with the error message, "Cannot open specification file".

Any lines in the specification file which are syntactically incorrect, or
contain an unrecognized value instead of CRNCYSTR will cause an
error message to be issued to the standard error output, specifying the
line number on which the error was detected. The line will be
ignored, and processing will continue.

If the output file, currency. cannot be opened for writing, processing
will terminate with the error message, "Cannot create table file".

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

Value Added

montbl is an extension of AT&T System V provided in Altos UNIX
System v.

March 12, 1990 MONTBl-2

MSCREEN(M) MSCREEN(M)

mscreen
serial multiscreens utility

Syntax

mscreen [-s] [-n number] [-t]

Description

mscreen allows a serial terminal to have multiple login screens similar
to the multiscreen(M) console.

Note: For full mscreen support the terminal must have the ability to
switch internal screen pages on command and it must retain a separate
cursor position for each screen page.

The options are used as follows:

-s Silent mode. This flag suppresses the startup messages,
and on "dumb" terminals it suppresses the screen switch
messages

-n Selects the number of serial multi screens desired up to the
maximum defined for the terminal type.

-t Disables the transparent tty checking. mscreen normally
exits silently if the terminal device name starts with the
characters "ttyp". Device names beginning with "ttyp"
are used as slave devices for mscreen. The correct names
for the master tty devices begin with "ptyp".

mscreen can be used on both "smart" and "dumb" terminals.
Although it is optimized to take advantage of smart terminals with
screen memory, mscreen also works on dumb terminals, although the
screen images are not saved during screen changes. mscreen also sup­
ports terminals with two (or more) serial ports that are connected to
different computers.

mscreen is designed to be invoked from the .profile or .Iogin files. Use
mscreen in place of the SHELL variable so that serial multi screens
can be automatic at login time. The "stop" and "quit" keys allow
you to logout from all screens with a single keystroke.

Configuration

mscreen determines the terminal type of the terminal it is invoked

March 12, 1990 MSCREEN-1

MSCREEN(M) MSCREEN(M)

from by examining the environment variable TERM. mscreen looks
in letc/mscreencap or in the filename contained in the environment
variable MSCREENCAP to get the capabilities for the terminal type.

The pseudo terminals assigned to the user are automatically deter­
mined at startup by mscreen. Manual assignment of ttys can be
accomplished by creating a file in the user's home directory called
.mscreenrc.

mscreencap format

mscreencap contains an entry for each terminal type supported. An
entry may have several names if the support for several terminal types
are the same. Within an entry are the key mappings for each potential
pseudo terminal. Each pseudo terminal has a help key string, an input
string (the sequence generated by the key that selects this screen), and
an optional output string (the sequence to send to the terminal that
will cause a page switch). The input and output strings are in a
termcap like format: (the backslash and caret are special lead in
(escape) characters)

\nnn an octal number, one to three digits are allowed

\n newline

\r carriage return

\t tab

\ b backspace

\f form feed

\E escape (hex 1 b octal 33).

\ enter backslash as a data character

\ A enter caret as a data character
\ AX ctrl-X where X can be: @ABCDEFGlllJKLM­

NOPQESTUVWXYZ[r _ effectively the caret
can generate hex 01 through hex If.

If a terminal type has no output strings then it is assumed to be a dumb
terminal that does not have multiple internal memory pages.

There are five special entries that allow the user to define keys to sup­
port the other functions of mscreen. They are the help key (which
prints a list of all of the keys that are currently available and their
functions), the who key (prints the name of the current screen), the
stop key (terminates mscreen and returns a good (zero) shell return
code), and quit key (terminates mscreen and returns a bad (non-zero)
shell return code and the dummy entry that is used for terminals with
multiple ports.

March 12, 1990 MSCREEN-2

MSCREEN(M) MSCREEN (M)

The fonnat is:

#this is a comment and may only appear between entries
entrynamelaliasllaliasl ... laliasn:

:specialname,helpname,inputstring,pageselectstring:
:specialname,helpname,inputstring,pageselectstring:

entrynamelaliasllaliasl •.. laliasn:
:specialname,helpname,inputstring,pageselectstring:
:specialname,helpname,inputstring,pageselectstring:

The specialname is empty for real screen entries. See the provided
/etc/mscreencap for examples .

• mscreenrc format

.mscreenrc contains a list of ttynames if the user wants to allocate a
fixed set of ttys for use:

ttypO
ttypl
ttypn

Shell return codes and auto login/logout

mscreen exits with a bad (non-zero) return code if there is an error or
when the "quit" key is pressed. The "stop" key causes mscreen to
exit with a good (zero) return code. This allows users to place mscreen
in the .login or . profile files. The .login or . profile files should set up an
automatic logout if the mscreen return code is good (zero). The fol­
lowing is a csh sample invocation of mscreen for a .login file:

mscreen -n 4
if ($status == 0) logout

The single key logout feature of mscreen works as if a nonnal logout
was entered on each pseudo-terminal. A hangup signal is sent to all of
the processes on all the pseudo terminals.

Multiple Port Option

mscreen provides a dummy entry type. It allows mscreen to be placed
in an inactive state while the user uses his terminal to converse
through another (physical) io port to another computer. see the pro­
vided /etc/mscreentennmap for an example. To be used, you must
take the example and configure it for your needs.

March 12, 1990 MSCREEN-3

MSCREEN(M) MSCREEN(M)

mscreen Driver

The mscreen driver is already installed in the Altos UNIX System V
kernel with eight pseudo terminals available for use. You must enable
a pseudo terminals to use it. See the link-kit instructions for relinking
the kernel to have more available pseudo terminals.

Notes

mscreen has a VTIM timeout of 1/5 second for input strings.

mscreen has a limit of twenty multiscreens per user.

You should not switch screen pages in mscreen when output is occur­
ring because if an escape sequence is cut in half it may leave the ter­
minal in an indeterminate state and distort the screen image.

Terminals that save the cursor location for each screen often do not
save states such as insert mode, inverse video, and others. For exam­
ple, you should not change screens if you are in insert mode in vi, and
you should not change screens during an inverse video output
sequence.

For inactive screens (screens other than the current one) mscreen
saves the last 2048 characters of data (2K). Data older than this is
lost. This limit occasionally results in errors for programs that require
a memory of more data than this. The user-defined screen redraw key
restores the screen to normal appearance.

mscreen depends on the pseudo terminal device names starting with
ttyp for the slave devices and ptyp for the master devices. The number
of trailing character in the device name is not significant.

See Also

multiscreen(M), enable(C), "Adding Ports, Terminals, and Modems"
in the System Administrator's Guide

Value Added

mscreen is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 MSCREEN-4

MULTISCREEN (M)

multiscreen
multiple screens (device files)

Syntax

alt-Fn
alt-ctrl-Fn
alt-shift-Fn
alt-ctrl-shift-Fn

Description

MULTISCREEN (M)

With the multiscreen feature, a user can access up to twelve different
"screens," each corresponding to a separate device file. Each screen
can be viewed one at a time through the primary monitor video dis­
play.

The number of screens on a system depends upon the amount of mem­
ory in the computer. The system displays the number of enabled
screens during the boot process.

Access

To see the next consecutive· screen, enter:

Ctrl-PrtSc

To move to any screen from any other screen, enter:

alt-Fn or alt-ctrl-Fn or alt-shift-Fn
alt-Fn or alt-ctrl-Fn (screens 1-12)
alt-shift-Fn or alt-ctrl-shift-Fn (screens 11-16,7-12)

where n is the number of one of the "F" function keys on the primary
monitor keyboard. For example:

alt-F2

selects tty02, and all output in that device's screen buffer is displayed
on the monitor screen.

The second form (using the SHIFT key) permits access to screens 11
and 12 on keyboards that have only ten function keys. It is also possi­
ble to configure the kernel for up to 16 screens, but 12 is the default.

March 12, 1990 MUL TISCREEN-1

MULTISCREEN (M) MULTISCREEN (M)

The function key combinations used to display the various screens are
defined in the keyboard mapping file. The /usrllib/keyboard/keys or
other mapkey(ADM) file can be modified to allow different key com­
binations to change multiscreens. Use the mapkey utility to create a
new keyboard map.

Files

Idev /tty[OI-12]

See Also

multiscreen devices
(number available depends on system
memory)

mapkey(ADM), keyboard(HW), screen(HW), serial(HW), stty(C)

Notes

Any system error messages are normally output on the console device
file (/dev/console). When an error message is output, the video dis­
play reverts to the console device file, and the message is displayed
on the screen. The console device is the only teletype device open
during the system boot sequence and when in single user, or system
maintenance mode.

Limitations to the number of multiscreens available on a system does
not affect the number of serial lines or devices available. See
serial (M) for information on available serial devices.

Note that the keystrokes given here are the default, but your keyboard
may be different. If 'so, see keyboard(M) for the appropriate substi­
tutes. Also, any key can be programmed to generate the screen
switching sequences by using the mapkey utility.

Value Added

multiscreen is an extension of AT&T System V provided in Altos
UNIX System V.

March 12, 1990 MUL TISCREEN-2

NUMTBL (M) NUMTBL (M)

numtbl
create a numeric locale table

Syntax

numtbl [table_file]

Description

This utility will create a numeric locale table to be interpreted by the
setlocale (S) system call.

The table Jile contains information about the numeric locale in a user
readable form.

At present, two pieces of information can be supplied. These are: the
character to be used as a decimal place marker (radix character), and
the character to be used as a thousands delimiter, for example the
commas in 1,000,000. To specify these, there must be lines, in the
table file, of the form:

DEClMAL=d
THOUSANDS=t

Where "d" is the character to be used as the decimal place mark and
"t" is the character to be used as the thousands delimiter. The char­
acters "d" and "t" may be specified in six different ways. The fol­
lowing lines show different formats for the letter b.

98
0142
Ox62

'b'
'\0142'

'\x62'

- decimal
- octal
- hexadecimal
- quoted character
- quoted octal
- quoted hexadecimal

Any line starting with a hash ("#") is treated as a comment.

The output is a file, called numeric, which is placed in the current
directory. This file is in a form which can be interpreted by the
setlocale(S) system call. For more information on where this file
should be placed, please see locale(M).

If no table file is specified, the information is taken from the standard
input. The format of the information is identical.

March 15, 1989 NUMTBL-1

NUMTBL (M) NUMTBL (M)

If either DECIMAL or THOUSANDS is not specified, its value will
default to "." or" ,", respectively.

See Also

locale(M), environ(M)

Diagnostics

Any lines of input which are in the wrong fonnat will cause a warning
to be issued on the tenninal, but will not tenninate the program.

"Character syntax error" will be issued on the tenninal if the fonnat
of the character specification does not match one of those specified
above. The program will then tenninate.

If the input table file cannot be opened for reading, the program will
also tenninate with the error message, "Cannot open table file".

If the output file, numeric, cannot be opened for writing, the program
will tenninate with the error message, "Cannot create numeric locale
file".

Notes

The thousands delimiter is not currently used within any of the stan­
dard Altos UNIX System V libraries or utilities, although it can be
accessed by application programs using the nClanginfo (S) function.

The string RADIXCHAR may be used as an alternative to DECIMAL ,
and THOUSEP as an alternative to THOUSANDS, if required. These
alternatives are provided for consistency with the identifiers used by
nl_langinfo (S).

Value Added

numtbl is an extension of AT&T System V provided in Altos UNIX
System V.

March 15, 1989 NUMTBL-2

POWERFAIL (M) POWERFAIL (M)

powerfail

perform power failure shutdown service

Syntax

letc/powerfail [-t seconds]

Description

If the system is equipped with an uninterruptible power supply (UPS),
when init(M) receives the power failure signal, it invokes
/ etc/power/ail (via inittab(M» to shut down various system services
during a power failure.

The specific system services to be shut down are specified by shut­
down shell scripts in the appropriate letc/rc?d directory. These shell
scripts must have filenames that begin with the letter For example, if
the current run level is 2 (multi-user mode), all letc/rc2.d/P* scripts
will be executed.

A timeout mechanism is provided in case a particular shut-down script
does not exist. In such cases, power/ail will abort that script and con­
tinue to the next one. The timout value in seconds can be specified on
the command line with the -t option. If no -t option is used, then there
is no timeout.

Files

letc/rc? .d/P*
letc/inittab
letc/conf/cf.d/init. base

See Also

init(M), upsconfig(ADM)

Value Added

/etc/power/ail is an extension of AT&T System V provided in Altos
UNIX System V.

March 17, 1991 POWERFAIL-1

PROFILE (M) PROFILE (M)

profile
sets up an environment at login time

Description

The optional file, .profile, permits automatic execution of commands
whenever a user logs in. The file is generally used to personalize a
user's work environment by setting exported environment variables
and terminal mode (see environ(M».

When a user logs in, the user's login shell looks for .profile in the log­
in directory. If found, the shell executes the commands in the file
before beginning the session. The commands in the file must have the
same format as if they were entered at the keyboard. Any line begin­
ning with the number sign (#) is considered a comment and is ignored.
The following is an example of a typical file:

* Tell me when new mail comes in
MAIL=/usr/mail/myname
* Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
* Make some environment variables global
export MAIL PATH TERM
* Set file creation mask
umask 22

Note that the file /etc/profile is a system-wide profile that, if it exists,
is executed for every user before the user's .profile is executed.

Files

$HOME/.profile
/etc/profile

See Also

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M)

March 15, 1989 PROFILE-1

PROMAIN (M) PROMAIN (M)

promain, nopromain
restrict the execution domain of a program

Syntax

auths -r nopromain

Description

The promain feature allows you to control the damage an SUID pro­
gram can do to your files. An SUID program starts execution with
effective user ID equal to the owner of the SUID program file and real
user ID equal to the invoker of the SUID program. On traditional
UNIX systems, an SUID program has complete access to all files, pro­
cesses; and IPC objects (collectively called resources) to which the
invoker or the owner has access, because the program can use
setuid(S) to switch between the invoker and owner user ID. Outside a
promain, this power is restricted to resources to which the invoker and
the owner have access, as described in this section.

The SUID feature is used when one user (or system function) needs to
protect files from access except through a well-defined set of pro­
grams. An example is the suite of line printer commands, which work
with a set of configuration files, status files, and shell scripts to keep
track of which print jobs are queued to which printers. Users and line
printer administrators use several commands to submit and cancel
jobs, change and query the status of printers, and add and remove
printers from the system or from active duty. All printer files are
owned by the pseudo user lp , the user ID which is the owner of all
files used by the line printer subsystem, including the printer special
devices themselves.

When you invoke the lp(C) command to print a file, the program can
access the files in the database, but can also access files that you
request to be printed because the program can setuid to your user ID to
access your files. A malicious lp program could just as easily look for
protected files in your directory hierarchy and copy them to a place
protected such that only Ip could read them. Thus, the fact that you
trust lp enough to run it as a program means that you trust that it will
not abuse the power you give when you run it.

If you run a SUID program on a trusted system and the promain ker­
nel authorization is off, a promain is created, and the current directory
is noted as the promain root. Files in the subtree starting at the
promain root are said to be inside the promain, while files outside that
subtree are said to be outside the promain. Promains protect a user
against a malicious SUID program by restricting the kinds of accesses

March 12, 1990 PROMAIN-1

PROMAIN (M) . PROMAIN (M)

the program can do outside the promain when running as you (the
invoker). When running with the invoker's effective user ID outside
the promain, the program can access files if both the invoker and the
owner have access (public files). Inside the promain, the program has
access according to the rules associated with normal UNIX systems.

To run untrustworthy SUID programs with promain protection, do the
following:

1. Start a subshell without the nopromain authorization, as in this
example:

$ autha
Kernel authorizations: nopromain,execsuid
$ autha -r nopromain
$ autha
Kernel authorizations: nopromain

2. Change directory to one in which you will place all files which you
expect the program to modify, and put all the files the program
needs there, as in the following example:

$ cd tmp
$ cp path/fi1el path/fi1e2
$ 1a -1d . fi1el fi1e2
total 10
drwxrwx--­
-rw-rw----
-rw-rw----
$ pwd
/usr/drb/tmp

2 drb
1 drb
1 drb

mktng
mktng
mktng

64 Jul 30 07:53
10345 Ju1 30 07:52 file1

9200 Jul 30 07:52 file1

3. Run the program. In lusr/drb/tmp , the program has complete
access to file! , file2 , and the lusr/drb/tmp directory. Assuming
that all files owned by drb outside the lusr/drb/tmp directory are
protected, the program has access only if drb allows public access.

Note that promain protection is enforced for all system actions outside
the promain when running under the effective user ID of the invoker.
The program cannot read or write files unless they are accessible to
the program owner and the invoker. The program cannot use
chown(S) or chmod(S) on files outside the promain as drb because
drb and the SUID program owner cannot possibly both own the file
unless drb is the program owner as well. In addition, the program
cannot link files outside the promain to a file inside the promain unless
the file is accessible to both the invoker and the owner. This protects
against a malicious program getting around promain protection by
changing the search path used to access the file.

What Promains Guard Against

Promains were designed to guard against one specific type of Trojan

March 12. 1990 PROMAIN-2

PROMAIN (M) PROMAIN (M)

Horse attack, where another user supplies you with a SUID program
which steals some of your files into a location or directory to which
you do not have access. It also stops the common case of creating a
program which is SUID to your user ID by using setuid (S) to:

1. Set the program's effective user ID to you (the real user ID),

2. Create a file (which sets you as the owner), and

3. Change the program's mode such that the SUID bit is on.

Promains stop these attacks by only allowing file creation if both the
invoker and the program owner are allowed an action. Thus, the pro­
gram will only be able to access your public files (world or group
readable) and will never be able to use the SUID attack to create a
malicious program (e.g., a shell) which is SUID to you. If your file
hierarchy is suitably protected, you can stop attempts to steal data or
create damaging files (e.g., programs which have the same name as
system programs which you execute because you have included the
current directory in your search path).

What Promains Do Not Guard Against

Promains do not protect against running a SUID program which has
access to public files or directories in your hierarchies. Neither do
they protect against Trojan Horses which are not SUID. A program
which is not SUID is effectively given access to any objects to which
you have access. Thus, running a program which you do not trust is in
effect giving your entire discretionary capability to that process.
Always suspect a program which is given to you from someone whose
motives you have no reason to trust. The newspapers today are full of
stories of Trojan Horses and computer viruses (one special case of a
Trojan Horse) which were planted by someone who was able to
arrange for a user to run a program which did something malicious.

See Also

auths(C), "Maintaining System Security" in the System
Administrator's Guide

March 12, 1990 PROMAIN-3

RESTART (M) RESTART(M)

restart
perform power failure recovery service

Syntax

letelrestart

Description

During a shutsave restart operation (see upsconfig(ADM», init(M)
invokes /etc/restart (via inittab(F)) to restart various system services.

The specific system services to be restarted are specified by start-up
shell scripts in the appropriate lete/re?d directory. These shell scripts
must have filenames that begin with the letter For example, if the
current run level is 2 (multi-user mode), all lete/re2.d/P* scripts will
be executed.

Files

/etc/rc? .dJR *
letc/inittab
letc/conf/cf.d/init. base

See Also

init(M), upsconfig(ADM)

Value Added

/etc/restart is an extension of AT&T System V provided in Altos
UNIX System V.

March 17, 1991 , RESTART-1

RMB (M) RMB (M)

rmb
remove extra blank lines from a file

Syntax

lusrlbin/rmb

Description

lusrlbinlrmb acts as a filter to remove any series of blank lines greater
than two lines in length. This means that all long sequences of blank
lines will be reduced to two blank lines. This is particularly useful for
cleaning nroff output of blank lines before putting the output in a file.

See Also

man(C), your nroff documentation

Notes

Because lusrlbinlrmb is a filter, it must be used within a piped com­
mand sequence as shown in the following examples:

cat infile I lusr/bin/rmb > outfile

nroff infile I lusr/bin/rmb > outfile

It cannot be used in the form lusrlbin/rmb filename.

Also note that Altos UNIX System V is not shipped with nroff or other
standard UNIX text formatting utilities. These must be purchased
separatel y.

March 17, 1991 RMB-1

STREAMIO (M)

streamio
STREAMS ioctl commands

Syntax

#include <stropts.h>
intioctl (fildes,cornrnand,arg)
int fildes, cornrnand;

Description

STREAMIO (M)

STREAMS [see intro(S)] ioctl cornrnands are a subset of ioctl(S) sys­
tem calls which perform a variety of control functions on streams.
The arguments command and arg are passed to the file designated by
fildes and are interpreted by the stream head. Certain combinations of
these arguments may be passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. command
determines the control function to be performed as described below.
arg represents additional information that is needed by this cornrnand.
The type of arg depends upon the cornrnand, but it is generally an
integer or a pointer to a command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are sub­
ject to the errors described there. In addition to those errors, the call
will fail with errno set to EINV AL, without processing a control func­
tion, if the stream referenced by fildes is linked below a multiplexer,
or if command is not a valid value fora stream.

Also, as described in ioctl, STREAMS modules and drivers can detect
errors. In this case, the module or driver sends an error message to the
stream head containing an error value. This causes subsequent system
calls to fail with errno set to this value.

Command Functions

The following ioctl commands, with error values indicated, are appli­
cable to all STREAMS files:

CPUSH Pushes the module whose name is pointed to by arg
onto the top of the current stream, just below the
stream head. It then calls the open routine of the
newly-pushed module. On failure, errno is set to one
of the following values:

March 15, 1989 STREAMIO-1

STREAMIO (M)

Cpop

CLOOK

CFLUSH

March 15, 1989

[EINVAL]

[EFAULT]

[ENXIO]

[ENXIO]

STREAMIO (M)

Invalid module name.

arg points outside the allocated
address space.

Open routine of new module failed.

Hangup received on fildes.

Removes the module just below the stream head of
the stream pointed to by fildes. arg should be 0 in an
CPOP request. On failure, errno is set to one of the
following values:

[EINVAL]

[ENXIO]

No module present in the stream.

Hangup received onfildes.

Retrieves the name of the module just below the
stream head of the stream pointed to by fildes, and
places it in a null terminated character string pointed
at by arg. The buffer pointed to by arg should be at
least FMNameSZ+l bytes long. An [#include
<sys/conf.h>] declaration is required. .. On failure,
errno is set to one of the following values:

[EFAULT]

[EINVAL]

arg points outside the allocated
address space.

No module present in stream.

This request flushes all input and/or output queues,
depending on the value of argo Legal arg values are:

FLUSHR

FLUSHW

FLUSHRW

Flush read queues.

Flush write queues.

Flush read and write queues.

On failure, errno is set to one of the following values:

[ENOSR]

[EINVAL]

[ENXIO]

Unable to allocate buffers for flush
message due to insufficient STREAMS
memory resources.

Invalid arg value.

Hangup received onfildes.

STREAMIO-2

STREAMIO (M) STREAMIO (M)

CSETSIG Informs the stream head that the user wishes the ker­
nel to issue the SIGPOLL signal [see signal(S) and
sigset(S)] when a particular event has occurred on the
stream associated with jildes. CSETSIG supports an
asynchronous processing capability in STREAMS.
The value of arg is a bitmask that specifies the events
for which the user should be signaled. It is the
bitwise-OR of any combination of the following con­
stants:

March 15, 1989

S_HIPRI

A non-priority message has arrived on
a stream head read queue, and no
other messages existed on that queue
before this message was placed there.
This is set even if the message is of
zero length.

A priority message is present on the
stream head read queue. This is set
even if the message is of zero length.

The write queue just below the stream
head is no longer full. This notifies
the user that there is room on the
queue for sending (or writing) data
downstream.

A STREAMS signal message that con­
tains the SIGPOLL signal has reached
the front of the stream head read
queue.

A user process may choose to be signaled only of
priority messages by setting the arg bitmask to the
value S_HIPRI.

Processes that wish to receive SIGPOLL signals must
explicitly register to receive them using CSETSIG. If
several processes register to receive this signal for the
same event on the same Stream, each process will be
signaled when the event occurs.

If the value of arg is zero, the calling process will be
unregistered and will not receive further SIGPOLL sig­
nals. On failure, errno is set to one of the following
values:

[EINVAL] arg value is invalid or arg is zero and
process is not registered to receive the
SIGPOLL signal.

STREAMIO-3

STREAMIO (M)

CGETSIG

CFIND

CPEEK

March 15, 1989

[EAGAIN]

STREAMIO (M)

Allocation of a data structure to store
the signal request failed.

Returns the events for which the calling process is
currently registered to be sent a SIGPOLL signal. The
events are returned as a bitmask pointed to by arg,
where the events are those specified in the description
of CSETSIG above. On failure, errno is set to one of
the following values:

[EINVAL]

[EFAULT]

Process not registered to receive the
SIGPOLL signal.

arg points outside the allocated
address space.

Compares the names of all modules currently present
in the stream to the name pointed to by arg, and
returns 1 if the named module is present in the stream.
It returns 0 if the named module is not present. On
failure, errno is set to one of the following values:

[EFAULT]

[EINVAL]

arg points outside the allocated
address space.

arg does not contain a valid module
name.

Allows a user to retrieve the information in the first
message on the stream head read queue without taking
the message off the queue. arg points to a strpeek
structure which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuj struc­
tures [see getmsg(S)] must be set to the number of
bytes of control information and/or data information,
respectively, to retrieve. If the user sets flags to
RS_HIPRI, CPEEK will only look for a priority mes­
sage on the stream head read queue.

CPEEK returns 1 if a message was retrieved, and
returns 0 if no message was found on the stream head
read queue, or if the RS_HIPRI flag was set in flags
and a priority message was not present on the stream
head read queue. It does not wait for a message to
arrive. On return, ctlbuf specifies information in the
control buffer, databuf specifies information in the
data buffer, and flags contains the value 0 or
RS_HIPRI. On failure, errno is set to one of the

STREAMIO-4

STREAMIO (M)

CSRDOPT

CGRDOPT

CNREAD

STREAMIO (M)

following values:

[EFAULT] arg points, or the buffer area specified
in ctlbu! or databu! is, outside the
allocated address space.

[EBADMSG] Queued message to be read is not
valid for CPEEK

Sets the read mode using the value of the argument
arg. Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

Read modes are described in read(S). On failure,
errno is set to the following value:

[EINVAL] arg is not one of the above legal
values.

Returns the current read mode setting in an int pointed
to by the argument arg. Read modes are described in
read(S). On failure, errno is set to the following
value:

[EFAULT] arg points outside the allocated
address space.

Counts the number of data bytes in data blocks in the
first message on the stream head read queue, and
places this value in the location pointed to by arg.
The return value for the command is the number of
messages on the stream head read queue. For exam­
ple, if zero is returned in arg, but the ioetl return value
is greater than zero, this indicates that a zero-length
message is next on the queue. On failure, errno is set
to the following value:

[EFAULT] arg points outside the allocated
address space.

CFDINSERT Creates a message from user specified buffer(s), adds
information about another stream and sends the mes­
sage downstream. The message contains a control
part and an optional data part. The data and control
parts to be sent are distinguished by placement in
separate buffers, as described below.

March 15, 1989 STREAMIO-5

STREAMIO (M)

March 15, 1989

STREAMIO (M)

arg points to a strfdinsert structure which contains the
following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

The len field in the ctlbuJ strbuJ structure [see
putmsg(S)] must be set to the size of a pointer plus the
number of bytes of control information to be sent with
the message. fildes in the strfdinsert structure
specifies the file descriptor of the other stream. offset,
which must be word-aligned, specifies the number of
bytes beyond the beginning of the control buffer where
CFDINSERT will store a pointer. This pointer will be
the address of the read queue structure of the driver
for the stream corresponding to fildes in the strfdinsert
structure. The len field in the databuJ strbuJ structure
must be set to the number of bytes of data information
to be sent with the message or zero if no data part is to
be sent.

flags specifies the type of message to be created. A
non-priority message is created if flags is set to 0, and
a priority message is created if flags is set to
RS_HIPRI. For non-priority messages, CFDINSERT
will block if the stream write queue is full due to
internal flow control conditions. For priority mes­
sages, CFDINSERT does not block on this condition.
For non-priority messages, CFDINSERT does not
block when the write queue is full and O_NDELAY is
set. Instead, it fails and sets errno to EAGAIN.

CFDINSERT also blocks, unless prevented by lack of
internal resources, waiting for the availability of mes­
sage blocks in the stream, regardless of priority or
whether O_NDELAY has been specified. No partial
message is sent. On failure, errno is set to one of the
following values:

[EAGAIN]

[ENOSR]

A non-priority message was specified,
the O_NDELAY flag is set, and the
stream write queue is full due to inter­
nal flow control condit,ons.

Buffers could not be allocated for the
message that was to be created due to
insufficient STREAMS memory
resources.

STREAMIO-6

STREAMIO (M)

CSTR

March 15, 1989

[EFAULT]

[EINVAL]

[ENXIO]

[ERANGE]

STREAMIO (M)

arg points, or the buffer area specified
in etlbuf or databuf is, outside the
allocated address space.

One of the following: fildes in the
strfdinsert structure is not a valid,
open stream file descriptor; the size of
a pointer plus offset is greater than the
len field for the buffer specified
through etlptr; offset does not specify
a properly aligned location in the data
buffer; an undefined value is stored in
flags.

Hangup received on fildes of the ioetl
call or fildes in the strfdinsert struc­
ture.

The len field for the buffer specified
through databuf does not fall within
the range speci fied by the maximum
and minimum packet sizes of the top­
most stream module, or the len field
for the buffer specified through data­
buf is larger than the maximum con­
figured size of the data part of a mes­
sage, or the len field for the buffer
specified through etlbuf is larger than
the maximum configured size of the
control part of a message.

CFDINSERT can also fail if an error message was
received by the stream head of the stream correspond­
ing to fildes in the strfdinsert structure. In this case,
errno will be set to the value in the message.

Constructs an internal STREAMS ioctl message from
the data pointed to by arg and sends that message
downstream.

This mechanism is provided to send user ioetl requests
to downstream modules and drivers. It allows infor­
mation to be sent with the ioetl and will return to the
user any information sent upstream by the downstream
recipient. CSTR blocks until the system responds
with either a positive or negative acknowledgment
message or until the request "times out" after some pe­
riod of time. If the request times out, it fails with
errno set to ETIME.

STREAMIO-7

STREAMIO (M)

March 15, 1989

STREAMIO (M)

At most, one CSTR can be active on a stream. Further
CSTR calls will block until the active CSTR com­
pletes at the stream head. The default timeout inter­
val for these requests is 15 seconds. The O_NDELAY
[see open(S)] flag has no effect on this call.

To send requests downstream, arg must point to a
strioetl structure which contains the following mem­
bers:

int
int
int
ehar

ie emd;
ie-timout;
ie-len;
*ic_dp;

/* downstreameommand */
/* ACK/NAK timeout */
/* length of data arg */
/* ptr to data arg */

ie emd is the internal ioctl command intended for a
downstream module or driver; and ie timout is the
number of seconds (-1 = infinite, 0 = use default, >0 =
as specified) an CSTR request will wait for ack­
nowledgment before timing out. ie_len is the number
of bytes in the data argument and ie dp is a pointer to
the data argument. The ie_len field-has two uses: on
input, it contains the length of the data argument
passed in, and on return from the command, it con­
tains the number of bytes being returned to the user
(the buffer pointed to by ie _ dp should be large enough
to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information pointed
to by the strioetl structure to an internal ioctl com­
mand message and send it downstream. On failure,
errno is set to one of the following values:

[ENOSR]

[EFAULT]

[EINVAL]

[ENXIO]

[ETIME]

Unable to allocate buffers for the ioetl
message due to insufficient STREAMS
memory resources.

arg points, or the buffer area speci fied
by ie_dp and ie_len (separately for
data sent and data returned) is, outside
the allocated address space.

ie_len is less than 0 or ie_len is larger
than the maximum configured size of
the data part of a message or ie _timout
is less than -1.

Hangup received on /tIdes.

A downstream ioetl timed out before
acknowledgment was received.

STREAMIO-8

STREAMIO (M)

CSENDFD

CRECVFD

March 15, 1989

STREAMIO (M)

An CSTR can also fail while waiting for an ack­
nowledgment if a message indicating an error or a
hangup is received at the stream head. In addition, an
error code can be returned in the positive or negative
acknowledgment message, in the event the ioctl com­
mand sent downstream fails. For these cases, CSTR
will fail with errno set to the value in the message.

Requests the stream associated with fildes to send a
message, containing a file pointer, to the stream head
at the other end of a stream pipe. The file pointer cor­
responds to arg, which must be an integer file descrip­
tor.

CSENDFD converts arg into the corresponding system
file pointer. It allocates a message block and inserts
the file pointer in the block. The user id and group id
associated with the sending process are also inserted.
This message is placed directly on the read queue [see
intro(S)] of the stream head at the other end of the
stream pipe to which it is connected. On failure,
errno is set to one of the following values:

[EAGAIN]

[EAGAIN]

[EBADF]

[EINVAL]

[ENXIO]

The sending stream is unable to allo­
cate a message block to contain the
file pointer.

The read queue of the receiving
stream head is full and cannot accept
the message sent by CSENDFD.

arg is not a valid, open file descriptor.

fildes is not connected to a stream
pipe.

Hangup received onfildes.

Retrieves the file descriptor associated with the mes­
sage sent by an CSENDFD ioctl over a stream pipe.
arg is a pointer to a data buffer large enough to hold
an strrecvfd data structure containing the following
members:

int fd;
unsigned short uid;
unsigned short gid;
char fill[8];

fd is an integer file descriptor. uid and gid are the user
id and group id, respectively, of the sending stream.

STREAMIO-9

STREAMIO (M) STREAMIO (M)

If O_NDELAY is not set [see open(S)] , CRECVFD will
block until a message is present at the stream head. If
O_NDELAY is set, CRECVFD will fail with errno set
to EAGAIN if no message is present at the stream
head.

If the message at the stream head is a message sent by
an CSENDFD, a new user file descriptor is allocated
for the file pointer contained in the message. The new
file descriptor is placed in the /d field of the strrecv/d
structure. The structure is copied into the user data
buffer pointed to by arg. On failure, errno is set to one
of the following values: .

[EAGAIN] A message was not present at the
stream head read queue, and the
O_NDELAY flag is set.

[EBADMSG] The message at the stream head read
queue was not a message containing a
passed file descriptor.

[EFAULT] arg points outside the allocated
address space.

[EMFILE] NOFiles file descriptors are currently
open.

[ENXIO] Hangup received on/tldes.

The following two commands are used for connecting and disconnect­
ing multiplexed STREAMS configurations.

CLINK

March 15, 1989

Connects two streams, where fildes is the file descrip­
tor of the stream connected to the multiplexing driver,
and arg is the file descriptor of the stream connected
to another driver. The stream designated by arg gets
connected below the multiplexing driver. CLINK
requires the multiplexing driver to send an ack­
nowledgment message to the stream head regarding
the linking operation. This call returns a multiplexer
ID number (an identifier used to disconnect the multi­
plexer, see CUNLINK) on success, and a -Ion failure.
On failure, errno is set to one of the following values:

[ENXIO]

[ETIME]

Hangup received onfildes.

Time out before acknowledgment
message was received at stream head.

STREAMIO-10

STREAMIO (M)

CUNLINK

March 15, 1989

[EAGAIN]

[ENOSR]

[EBADF]

[EINVAL]

[EINVAL]

[EINVAL]

STREAMIO (M)

Temporarily unable to allocate storage
to perform the CLINK.

Unable to allocate storage to perform
the CLINK due to insufficient
STREAMS memory resources.

arg is not a valid, open file descriptor.

fildes stream does not support multi­
plexing.

arg is not a stream, or is already
linked under a multiplexer.

The specified link operation would
cause a "cycle" in the resulting config­
uration; that is, if a given stream head
is linked into a multiplexing configu­
ration in more than one place.

An CLINK can also fail while waiting for the multi­
plexing driver to acknowledge the link request, if a
message indicating an error or a hangup is received at
the stream head of fildes. In addition, an error code
can be returned in the positive or negative ack­
nowledgment message. For these cases, CLINK will
fail with errno set to the value in the message.

Disconnects the two streams speci fied by fildes and
arg. fildes is the file descriptor of the stream con­
nected to the multiplexing driver. fildes must corre­
spond to the stream on which the ioctl CLINK com­
mand was issued to link the stream below the multi­
plexing driver. arg is the multiplexer ID number that
was returned by the CLINK. If arg is -I, then all
Streams which were linked to fildes are disconnected.
As in CLINK, this command requires the multiplexing
driver to acknowledge the unlink. On failure, errno is
set to one of the following values:

[ENXIO]

[ETIME]

[ENOSR]

Hangup received on fildes.

Time out before acknowledgment
message was received at stream head.

Unable to allocate storage to perform
the CUNLINK due to insufficient
STREAMS memory resources.

STREAMIO-11

STREAMIO (M)

See Also

[EINVAL]

STREAMIO (M)

arg is an invalid multiplexer ID num­
ber or fildes is not the stream on which
the CLINK that returned arg was per­
formed.

An CUNLINK can also fail while waiting for the mul­
tiplexing driver to acknowledge the link request, if a
message indicating an error or a hangup is received at
the stream head of fildes. In addition, an error code
can be returned in the positive or negative ack­
nowledgment message. For these cases, CUNLINK
will fail with errno set to the value in the message.

close(S), fcnt1(S), intro(S), ioct1(S), open(S), read(S), getmsg(S),
pol1(S), putmsg(S), signal(S), sigset(S), write(S)

STREAMS Programmer's Guide
STREAMS Primer

Diagnostics

Unless speci tied otherwise above, the return value from ioctl is 0 upon
success and -1 upon failure with errno set as indicated.

March 15, 1989 STREAMIO-12

SUBSYSTEM (M) SUBSYSTEM (M)

subsystem
security subsystem component description

Description

Altos UNIX System V includes extensions to UNIX that segregate
commands and data that are used to implement system services.
Many of these commands have been grouped into subsystems. A
group of commands and data performing similar security relevant
tasks or together protecting a set of resources is termed a protected
subsystem.

The operating system has the following protected subsystems:

• Memory

• Terminal

• Line Printer

• Backup

• Authentication

• Cron

• Audit

The description of each subsystem includes the following information:

Group and Subsystem Authorization Name
Each subsystem is associated with a subsys­
tem authorization. The commands and files
associated with the subsystem take the sub­
system authorization name as their group
name. Users wishing to use the subsystem
must have the appropriate subsystem author­
ization.

Commands Each subsystem has a set of commands.

Helper Programs Some subsystems use helper programs.
These are programs which call other pro­
grams.

Data Files A subsystem's programs use permanent and
temporary data files.

The administrative functions associated with each subsystem can be
selected from the sysadmsh menu. Help information is available with
each option.

March 12, 1990 SUBSYSTEM-1

SUBSYSTEM (M) SUBSYSTEM (M)

The Memory Subsystem

The mem subsystem authorization is defined to grant users the ability
to use the memory subsystem commands to view total system activity.
Users without this authorization may only view their own processes.
Traditional UNIX allowed any user to view total system activity. This
authorization was introduced to allow the administrator to isolate
users, and restrict their ability to sense the activity of other users.

Mem Authorization and Group Name

In order to look at information in the mem subsystem, an administra­
tor must have the mem authorization. The administrator responsible
for maintaining users' processes should be the only person with this
authorization. This administrator may need to list users' processes in
order to select one or more of them for removal (using the kill(C)
command). The following is a table of command modifications
managed by the mem authorization:

Command WithMem Withoutmem
ps lists all processes list processes owned

(standard behavior) by login user ID, or
owned by real user ID
of current process on
current terminal

whodo lists all processes list processes on ter-
(standard behavior) minals owned by user

ipcs llsts all objects list objects for which
(standard behavior) user is creator or

owner or for which
user has read access

sysadmsh Selection

The Memory subsystem does not have a sysadmsh selection as the
Printer subsystem does. The Memory subsystem includes the system
tables that contain information about memory and processes, which is
accessed by several commonly-used Altos UNIX System V utilities.

Commands

ps An administrator with mem authorization can use the
ps(C) command to list all users' processes. Using the
command without the mem authorization shows only
those processes associated with the user invoking it.

whodo An administrator with mem authorization can use the
whodo(ADM) command to list processes by terminal.
Someone using the command without mem

March 12,1990 SUBSYSTEM-2

SUBSYSTEM (M) SUBSYSTEM (M)

authorization sees only the processes associated with
his/her terminal.

ipcs An administrator with mem authorization can use this
command to view active semaphores, shared memory
segments and message queues (known collectively as
IPC entities). Without mem authorization, a user is
restricted to viewing IPC entities that they own or
created and those which have read permission. Even
entities that are writable, but not readable, cannot be
displayed.

crash An administrator with mem authorization can run the
crash program to report information on kernel data
structures. The report includes security information.

An administrator can search for information by running crash and
specifying an identifier name.

Helper Programs

timex Because timex uses internal kernel data structures, it
must be run from an account in the mem group.

Accounting Programs

Accounting programs such as sa (ADM), acctcom (ADM), and
sar(ADM) also use information in the mem subsystem. These pro­
grams must be run from an account in the mem group.

Data Files

All files through which programs may access kernel memory are pro­
tected with owner root, group mem, and mode -r--r-----. As for all
files, the root account bypasses the discretionary check on these files,
and root programs may violate the System Architecture requirement.
All root programs (those running with effective ID equal to root) must
take care when running other programs, because those programs
inherit the rightto modify the running copy of the TCB. The following
files are protected by the mem subsystem according to the above
owner, group, and mode:

The terminal subsystem protects the use of terminals by restricting
the use of the write (C) and mesg(C) commands.

Terminal Authorization and Group Name

In order to send information from one terminal to another, the user

March 12, 1990 SUBSYSTEM-3

SUBSYSTEM (M) SUBSYSTEM (M)

sending information must have the terminal authorization and the
receiving terminal must be configured to accept information from
other terminals.

All terminals belong to the terminal group. Each terminal is owned
by and can only be used by a given user identity.

sysadmsh Selection

The terminal subsystem does not control sysadmsh functions.

Commands

When an unauthorized user uses the write command, any special con­
trol codes or escape sequences he sends are trapped and converted to
presentable ASCII characters. All control codes are output as

where <char> is the character whose ASCII code is the character sent
plus 0100. For instance, ASCII NUL (0), SOH (1), and ACK (6) are
output as A@ (@ is 01(0), AA (A is 0101) and AF, respectively, on the
recipient's terminal. The ASCII ESC (033) character writes as A[and
the DEL (0177) character writes as A?

As an example of using the trusted write command, assume there is a
hypothetical terminal that silently stores any string between two
ASCII DC4 (024) characters. This string is transmitted from the same
hypothetical terminal to the computer when the terminal receives a
DC2 (022) character. Assume that a devious user knows the recipient
of a write command has this terminal and tries to corrupt the
recipient's session by sending a damaging message. If this user did
not have the terminal authorization, the recipient would see the
message:

The recipient would be alerted to an attempt on his session. In addi­
tion' the terminal subsystem audits this event so you can locate
suspect activity. On the other hand, if the sending user has the termi­
na� authorization, the recipient would see the message:

How are you today?

The following commands are modified to support the terminal subsys­
tem.

March 12, 1990 SUBSYSTEM-4

SUBSYSTEM (M) SUBSYSTEM (M)

Command With Tenninal Without Tenninal
write unrestricted control codes output as A <char>

(standard behavior)
mesg changes sense of same

group write pennis-
sion only

A person with terminal authorization can use the write (C) command
to write to another terminal and send control codes and escape
sequences. A malicious user might use the command to send mali­
cious commands and breach system security.

Without the authorization, a user can use the write(C) command, but
control codes and escape sequences are displayed on the receiving ter­
minal in their ASCII form, thus warning the recipient of suspicious
activity. Such activity is recorded by the audit facilities.

The mesg y form of the command allows messages, but sets write per­
mission for the terminal device group that has been set to terminal by
the login program. The new write command is SGID to terminal,
which allows it to send characters to user terminals that have used
mesg y. of the file enough for the terminal group to write to the termi­
nal. The new write command handles this change. Unlike the less
trusted mesg, Altos UNIX System V mesg never allows any permission
to all users.

Data Files

The data files for the terminal subsystem are the terminals themselves.
They belong to the terminal group at the start and end· of each ses­
sion, and all access is denied except to the user. The preferred way for
a user to open and close access to a terminal is to use the mesg com­
mand. When a session is not in progress on a terminal, only the super
user can access the device file. Some terminal files are presented
below.

/dev/console This is the system console. Use of this terminal as
a user terminal is discouraged because:

• Messages from the kernel appear on
/dev/console. To avoid losing these
messages or intermixing them with user
messages, it is better to use the console
solely for the message output.

• On some systems, physical access to the
console is equivalent to having access to
the entire system. Use another terminal
unless the system configuration prevents
this. In any event, allow physical access to
/dev/console only to the most trusted users

March 12, 1990 SUBSYSTEM-5

SUBSYSTEM (M)

/dev/tty·

SUBSYSTEM (M)

of the system.

Most of the terminals on the system are named
/dev/tty! , /dev/tty2 , /dev/tty3 ,... These devices
may at times be owned by a protected subsystem
(such as uucp or terminal) and be unavailable for
general use. You have the option of configuring
the terminals for login sessions, protected subsys­
tems, or for nothing.

Line Printer Subsystem

The purpose of the lp subsystem is to provide an administrative role
that has control over printing facilities. Unlike the less trusted version
of the Ip commands, the trusted version does not require a special
printer account that owns and executes (with the SUID bit set) all the
printer programs. Instead, there is an Ip group with multiple users as
its members.

Authorization/Group Name

The Ip authorization allows the user to be a printer administrator.
This allows multiple Printer administrators. They force the adminis­
trator to have a login userid (LUID) of 0 or a login name of Ip , a
scheme that does not allow you much flexibility in account setups or
individual accountability.

All printer administrators are allowed to execute some commands that
non-authorized users cannot, and can perform certain actions within
commands that are restricted from other users. Only administrators
may run accept, Ipadmin, lpmove, lpsched, lpshut, reject and topq.
For the other commands, enhancements due to Ip authorization are
detailed under each command heading.

sysadmsh Selection

The lp authorization allows access to the printing functions under the
System--+Printer selection as described in the "Using Printers"
chapter.

Commands

To determine the invoker, the Printer subsystem command uses the
immutable login user ID (LUID). Less trusted versions use various
other schemes, all of which could be fooled. The commands listed
here perform exactly like their traditional (less trusted) versions
except where noted:

March 12, 1990 SUBSYSTEM-6

SUBSYSTEM (M) SUBSYSTEM (M)

accept The accept command may only be used by printer
administrators.

cancel The less trusted version of cancel allowed any user to
cancel any job. The originating user is notified of the
cancellation via mail. The trusted version of cancel
gives this right to printer administrators only. Mail is
still sent to the originator when a job is canceled by the
printer administrator. Other users can only remove jobs
they submitted.

disable The disable command operates without change from
the less trusted version.

enable The enable command operates without change from the
less trusted version.

Ip The trusted version of the lp command, with the -w
option enabled by you, never writes to the terminal
directly as does the less trusted version of Ip. The
trusted version of /p knows that the system prohibits
direct writing to another user's terminal. Instead, the
write (C) program is used to send the message; refer to
the previous discussion of write in the terminal subsys­
tem.

The trusted version of the /p command creates an out­
put label for each file submitted. The output label con­
tains the system label (the same as seen on most termi­
nals), the owner, group, and mode of the file. To accu­
rately determine the output label, the Ip command can­
not accept input from pipes. This is because the discre­
tionary attributes of a file are not available if the file
was accessed on the other end of a pipe. Note that
input redirection and temporary files may still be
printed.

Printer files are always copied to the printer spool by
assuming the -c (copy) option, even if the user did not
explicitly request it. By doing this, the Ip subsystem
ensures that the file cannot be altered between the time
the request was made and the time it is printed. (The
less trusted version of /p does not guarantee that the file
cannot be updated, even while the printer is running.)
As added protection, the file being copied is locked
during the formation of the output label and the copy
operation, so that the file and label output accurately
reflects the file being printed.

Ipadmin The Ipadmin command may only be used by printer
administrators.

March 12, 1990 SUBSYSTEM-7

SUBSYSTEM (M) SUBSYSTEM (M)

lpfonns The lpforms command operates without change from
the less trusted version.

lpmove The lpmove command may only be used by printer
administrators.

lpsched The lpsched command may only be used by printer
administrators. When the lpsched command uses a
printer device dedicated to the Ip subsystem, the sub­
system guarantees exclusive use of the printer device
each time it is used. Any prior activity (outside the Ip
subsystem) on that device is forcibly stopped. In this
way, the Ip subsystem ensures that the file being output
is not interspersed with other output, unlike less trusted
versions.

lpshut The lpshut command may only be used by printer
administrators.

lpstat The trusted version of lpstat does not display other
users' jobs if the invoking user does not have the Ip
authorization. Knowing the jobs of other users is not
necessary since unauthorized users cannot hold or can­
cel those jobs anyway. printer administrators see all
printer jobs, and they can hold or cancel any job that
has been submitted.

reject The reject command may be used only by printer
administrators.

topq The topq command may be used only by printer
adminis trators.

Data Files

lusrlspoollip All the files in this file hierarchy have the same
formats and purposes as their counterparts in less
trusted versions of UNIX. In the trusted version,
the files are accessible by any printer administra­
tor, so that the group permissions are the only ones
of true importance. In all cases, the spool, its
directories, and all data files allow no access to the
user population. Hence, a user can be assured that
a private file that is spooled for printing cannot be
accessed or changed by untrusted users.

Backup Subsystem

The purpose of the backup subsystem is to provide a full set of disk
and tape management tools without requiring detailed knowledge of

March 12, 1990 SUBSYSTEM-8

SUBSYSTEM (M) SUBSYSTEM (M)

Altos UNIX System V. The backup administrator assumes responsibil­
ity of file system maintenance. The backup administrator is responsi­
ble for all actions which do not modify the format of file systems,
while the root account is still responsible for formatting, configuring,
and maintaining the consistency of file system disk partitions.

Authorization/Group Name

The user with backup authorization, a Backup administrator, may per­
form file backups. Restorations can only be made by the root user.
The following authorizations are defined for the backup subsystem:

ose
enables system backup command
allows use of d ro ram

All disk partitions are protected with owner root, group backup and
mode -r--r---- .. The mount table (/etc/mnttab) is publicly readable,
modified only by the mount command. The df program is SGID to
backup, enforcing the queryspace and backup authorizations.

sysadmsh Selection

The backup authorization allows access to the backup functions under
the Backups selection.

Commands

df

mkfs

labelit

The df command may only be used by Backup
administrators. Otherwise, the options and output
format remain the same as the less trusted version.

The mkfs command may only be used by a
member of the backup group (or by the super-user,
which is discouraged). As always, this command
must be used to initialize a filesystem after the
partitions are laid out. Immediately after mkfs is
run, you should run labelit to complete the initiali­
zation.

The labelit program, documented in
volcopy (ADM), associates the filesystem with a
directory mount point.

Helper Programs

/etc/mount

March 12, 1990

This program is used by backupif to display
and modify the mounted file systems.

SUBSYSTEM~9

SUBSYSTEM(M) SUBSYSTEM(M)

letcf/sck This program is used by backup to check and
repair filesystems.

lusrlbinlbackup This program is used to copy entire UNIX and
XENIX filesystems to either magtape or car­
tridge tape.

lusrlbinlxbackup This program is used to copy entire XENIX
disk filesystems to either magtape or cartridge
tape.

lusrlbinlxrestore This program is used by replace entire XENIX
filesystem images on magtape or cartridge tape
to a clean (newly formatted with mkfs)

lusrlbinlrestore This program is used by replace entire XENIX
or UNIX filesystem images on magtape or car­
tridge tape.

lusrlbinlcpio This is the default backup program. cpio
makes non-filesystem specific copies of
filesystem data.

Data Files

letcl default! filesys
This file contains the relationship between mounted
filesystem devices and the directories on which they
are mounted (mount points). It is used to display that
relationship in both df and the backup selection.
Because altering this file would display erroneous
information to backup administrators and reading
this file defaults the access protection created for the
backup subsystem, this file must be accessible to the
backup group only.

Idev/[r]d[s]k*
These block and character special files are the
buffered interfaces to the disk partitions you have set
up. They are used for mounting the filesystem they
contain onto a directory. The backup group must be
able to read and write these files. It is a severe secu­
rity breach if others can access these files in any
way.

Authentication Subsystem

The Authentication subsystem provides you with an exhaustive set of
account management services. These services are:

March 12, 1990 SUBSYSTEM-10

SUBSYSTEM (M) SUBSYSTEM (M)

• self-checking to prevent dangerous actions, and

• monitored extensively by the auditing system.

Authorization/Group Name

The auth authorization allows an Authentication administrator to per­
form sensitive actions on the Authentication database. This database
contains all information on account ownership, types, authorizations,
locked. status, login times, password change times, and various other
parameters.

With the auth authorization, an Authentication administrator may
alter Authentication parameters for other users. Because this database
directly controls the attributes of any account on the system, this sub­
system controls user access to your system. The trust you place in the
system can be no greater than that placed in the Authentication
administrators. Not only must they be trustworthy people, but they
must also not leave any uncorrected mistakes when assigning authori­
zations to the accounts they manage.

sysadmsh Selection

The auth authorization allows access to the user account management
functions under Accounts.

Commands

passwd The passwd command in Altos UNIX System V has
been greatly enhanced for both security and flexibility.
The trusted system checks on system-wide password
parameters as well as user-specific ones and, depending
on the results found, the user has a choice of choosing
their own password or having one chosen for them.
You can set each account to do either one of these, or
do both. A closely related change is that, regardless of
the method for getting the password, you can have the
system screen passwords that are probable guesses by
intruders. The password selection method, as well as
the optional restriction screening, are set by Authenti­
cation administrators in sysadmsh for a single account
or for system-wide use.

login The login command is no longer available as a com­
mand used in a session to start a new session. Instead,
a user must first log out before logging in as another
user.

March 12, 1990 SUBSYSTEM-11

SUBSYSTEM (M) SUBSYSTEM (M)

Sublogins are forbidden since the LUID of a session may not change
once it is set. This is to guarantee to you that the owner of a session is
known at all times. If the login program were allowed to be run from
a session, the login USERID would have to change and the guarantee
would be broken.

The login program is still invoked from getty to start a user session.
The procedure for logging in is almost the same. The user supplies a
login name and the system requests a password. Once the password is
entered, the system either lets the user log in or rejects the login
attempt. A user may be rejected for a number of reasons:

1. The account does not exist.

2. The password was entered incorrectly.

3. The password lifetime has been passed.

4. The number of unsuccessful attempts made to the account has
surpassed a system or account threshold.

S. The number of unsuccessful attempts made to the terminal has
surpassed a system or tenninal threshold.

6. An Authentication administrator has unconditionally locked
the account.

Reasons 3 throughh 6 notify the user that the Authentication adminis­
trator has locked the account.

If the user enters the correct login name/password combination, the
last successful and unsuccessful login times are displayed on the ter­
minal. The user should view the dates and times of each to detennine
if someone else has used the account. These dates may also be used to
determine whether a Trojan horse program is simulating the login pro­
cedure to obtain a password. A user with doubts about the authenticity
of the login dates and times should report it to you. The earlier you
take action on this, the better you can use fresh audit trails and
people's recollections to find the source of the problem.

su The su program has been strengthened a great deal for
security. It now uses infonnation from the Authentication
database in detennining whether or not to allow a user to
"switch" to another user. The following rules apply:

• A user cannot use su to enter an account that has
been locked.

• The su command cannot be used as a means to
bypass the lock-checking done by login, at, and
cron.

March 12, 1990 SUBSYSTEM 12

SUBSYSTEM (M) SUBSYSTEM (M)

newgrp The newgrp command operates without change from the
less trusted version.

auths The auths command is especially tailored for Altos UNIX
System V to allow all users to adjust their authorizations.
No user can increase authorizations, but one can tem­
porarily decrease authorizations in order to run an
untrusted program or to prevent mistakes. More details on
the authorizations and syntax. are given in the man page for
auths (C).

Data Files

/usr/adm/sulog
This file keeps track of the history of use of the su program.
Each line represents an attempt to run the su program. The
date and time are first recorded on the line. Then, a '-'
means the attempt failed; a' +' means the attempt suc­
ceeded. After the '-' or '+' code, the terminal of the
attempt is provided. Last, the login name (using the login
UID) of the invoker of su , together with the login name of
the (attempted) changed real UID is presented. As an
example, the following log excerpt presents some interest­
ing situations:

su
su
su
SU
SU
SU
SU
SU
SU
SU
SU
SU
SU

02/29 19:19 + tty?? root-Ip
03/01 20:22 + tty2 bIf-root
03/04 04:13 + tty2 fred-proj1
03/07 20:30 - tty2 reese-star
03/07 20:30 + tty2 reese-star
03/07 21:38 + modem auth-root
03/07 21:39 + tty2 bIf-root
03/07 21:39 - tty7 daa-root
03/07 21:40 - tty7 daa-root
03/07 21:40 - tty7 daa-root
03/07 21:41 - tty7 daa-root
03/07 21:41 - tty7 daa-root
03/07 21:47 + tty2 fred-proj1

• Foremost, it appears as though the user daa is
attempting to break into the root account, for there
are many unsuccessful attempts (denoted with the
, -' attribute) in rapid succession. That should be
investigated further.

• The su program does not require one to become the
root user. In the log above, users root, fred and
reese chose to assume the identities of other users.

March 12, 1990 SUBSYSTEM-13

SUBSYSTEM (M) SUBSYSTEM(M)

• In the effort by reese to become the star user, the
first attempt failed and the next immediately suc­
ceeded. This occurs frequently and is quite natural
when users mistype the password of the other
account. You should get suspicious, however, when
the number of unsuccessful attempts becomes large.
Such attempts, like the case with daa above, prob­
ably means a breach of security.

• The su program was used by root to enter the lp
account. This occurrence was detached from any
terminal, because of the special terminal designa­
tion of tty?? This particular case occurred from
letclrc where the lpsched daemon is run.

The lusrladmlsulog file needs attention periodically. It should be
examined and then pruned, saving the most recent entries. The entries
removed from the file should be archived if possible rather than com­
pletely deleted.

Itcb/files/auth
This directory consists of subdirectories that contain
private account data for all the accounts in the system.
There is a file for each account. Because of the sensitive
nature of the data here, all these files are completely
protected from the users.

letc/auth/system
This directory contains the system-wide authorization
data for the machine. The letclauthlsystem directory
contains the Terminal Control database, the File Control
database, the Command Control database and the Sys­
tem Defaults database. This information is accessible to
the users but not writable. The letclauthlsubsystems
directory contains one file per protected subsystem, each
containing the user permissions for that protected sub­
system. This permissions file may only be read by the
programs that are part of that protected subsystem, and
is written by the auth user.

eron Subsystem

The purpose of the cron subsystem is to allow cron, at, and batch ser­
vices that are audited as closely as normal login sessions. The cron
subsystem provides a useful interface for controlling these facilities.

Authorization/Group Name

The authorization for the cron subsystem is given to cron administra­
tors that are allowed to view or alter the authority for users to run the

March 12, 1990 SUBSYSTEM-14

SUBSYSTEM (M) SUBSYSTEM (M)

services associated with the cron subsystem. A user may run the pro­
grams of the cron subsystem (excluding the use of the sysadmsh selec­
tions) without the authorization, so long as a cron administrator has
granted the authority.

sysadmsh Selection

The cron authorization allows access to the process management
functions under Jobs.

Commands

at, batch, crontab
These at commands operate without change from
the less trusted version, except that the LUID
(login UID), rather than the real UID, is used by at
in determining the user. Because the LUID cannot
be altered during a session, it promotes better
accountability. at and batch jobs run with all of
the login, real, and effective UIDs set to that of the
login user.

Helper Programs

Itcbllibl cron This is the cron daemon that actually runs all at,
batch, and crontab jobs. The at, batch, and cron­
tab commands merely queue the jobs for the cron
daemon to run. This daemon validates the account
(ensures the account is not locked) before running
the job.

Data Files

Although enumerated here, these data files are not manipulated
directly by the cron administrator because of the arcane rules histori­
cally applied to them by the cron subsystem programs. Instead, the
sysadmsh provides a more coherent interface, reducing the possibility
that users or permissions are set up incorrectly.

lusrlIib/cron

lusrllib/cron/at.allow

lusrllib/cron/at.deny

March 12, 1990

This is the directory containing all the
cron administrative files.

This file lists the users allowed to exe­
cute the at or batch programs. If this
file exists, it is used to determine the
user's authority.

This file lists the users denied access

SUBSYSTEM-15

SUBSYSTEM (M) SUBSYSTEM (M)

to the at or batch programs. If
lusr/lib/cron/at.allow does . not exist,
lusrlliblcronlat.deny is used to deter­
mine the user's authority. You should
be aware that an empty at.deny file
permits access for all users.

lusrlIib/cron/cron.allow This file lists the users allowed to exe­
cute the crontab program. If this file
exists, it is used to determine the
user's authority.

lusr/lib/cron/cron.deny This file lists the users denied access
to the crontab program. If
I usrllibl cronl cron.allow does not
exist, lusrlliblcronlcron.deny is used
to determine the user's authority. You
should be aware that an empty
cron.deny file permits access for all
users.

lusr/lib/cron/.proto This file contains a list of commands
that are executed before every at job.
It contains commands primarily used
to fix and restrict the environment of
the user before running the job sub­
mitted.

lusr/lib/cron/.proto.b This file contains a list of commands
that are executed before every batch
job. It contains commands primarily
used to fix and restrict the environ­
ment of the user before running the
job submitted.

lusrlIib/cron/log This is a log of all at, batch, and cron­
tab activity reported by the cron
daemon since the system was
rebooted. It provides an accurate
ASCII log of all user initiated non­
terminal activity. If the system is up
for a very long time and there are
many job submissions or crontab
activity, this file should be
periodically examined, pruned, and
archived.

lusr/lib/cron/OLDlog This is the log associated with the last
time the system was up. Upon startup,
the cron daemon moves any
lusrlIib/cron/log file here.

March 12, 1990 SUBSYSTEM-16

SUBSYSTEM (M)

lusrlspool/cron

Audit Subsystem

SUBSYSTEM (M)

This is the root of the subtree where
all at, crontab, and batch jobs are
stored. at and batch jobs are
automatically cleared when they have
finished executing. The -r option of
crontab removes a crontab job.

The purpose of the audit subsystem is to provide an administrative
role that has control over auditing facilities.

Authorization/Group Name

The audit authorization allows the user to be the audit administrator.
The audit adminsitrator can enable and disable auditing, examine
audit records, generate reports and alter audit parameters.

sysadmsh Selection

The audit authorization allows access to the audit functions under the
System--+Audit selection as described in the "Maintaining System
Security" chapter.

Commands

auditcmd The command interface for audit subsystem activation,
termination, statistic retrievel, and subsystem
notification.

auditd The auditd utility is the daemon that runs when audit­
ing is enabled.

reduce This program performs audit data analysis and rduc­
tion.

Data Files

Itcb/files/audit/audityarms
Audit parameters file.

Itcbl files/audit/*
Audit log file directory.

Itcb/audittmp Audit compaction file directory.

March 12, 1990 SUBSYSTEM-17

SUBSYSTEM (M)

See Also

SUBSYSTEM (M)

auditcmd(ADM), auditd(ADM), authck(ADM), integrity(ADM),
reduce(ADM), ch!Laudit(ADM), auths(C), authcap(F), audit(HW)
"Maintaining System Security" in the System Administrator's Guide

Value Added

subsystem is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 SUBSYSTEM-18

SXT(M) SXT(M)

sxt
pseudo-device driver

Description

sxt is a pseudo-device driver that interposes a discipline between the
standard tty line disciplines and a real device driver. The standard dis­
ciplines manipulate virtual tty structures (channels) declared by the
sxt driver. sxt acts as a discipline manipulating a real tty structure
declared by a real device driver. The sxt driver is currently only used
by the shl(C) command.

Virtual ttys are named Idev/sxt??? and are allocated in groups of up
to eight. To allocate a group, a program should exclusively open a file
with a name of the form Idev/sxt??O (channel 0) and then execute a
SXTIOCLINK ioetl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the
keyboard at a time; others attempting to read will be blocked.

There are two groups of ioetl (S) commands supported by sxt. The
first group contains the standard ioetl commands described in
termio (M), with the addition of the following:

TIOCEXCL Set exclusive use mode: no further opens are permit­
ted until the file has been closed.

TIOCNXCL Reset exclusive use mode: further opens are once
again permitted.

The second group are directives to sxt itself. Some of these may only
be executed on channel O.

SXTIOCLINK Allocate a channel group and multiplex the
virtual ttys onto the real tty. The argument is

. the number of channels to allocate. This com­
mand may only be executed on channel O.
Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a
real tty.

ENXIO linesw is not configured with sxt.

March 15, 1989 SXT -1

SXT(M) SXT(M)

EBUSY An SXTIOCLINK command has
already been issued for this real tty.

ENOMEM
There is no system memory avail­
able for allocating the virtual tty
structures.

EBADF Channel 0 was not opened before
this call.

SXTIOCSWTCH Set the controlling channel. Possible errors
include:

EINV AL An invalid channel number was
given.

EPERM The command was not executed
from channel O.

SXTIOCWF Cause a channel to wait until it is the control­
ling channel. This command will return the
error, EINVAL, if an invalid channel number is
given.

SXTIOCUBLK Turn off the loblk control flag in the virtual tty
of the indicated channel. The error EINV AL
will be returned if an invalid number or chan­
nel 0 is given.

SXTIOCSTAT Get the status (blocked on input or output) of
each channel and store in the sxtblock structure
referenced by the argument. The error
EFAULT will be returned if the structure can­
not be written.

SXTIOCTRACE Enable tracing. Tracing information is written
to the console. This command has no effect if
tracing is not configured.

SXTIOCNOTRACE Disable tracing. This command has no effect if
tracing is not configured.

Files

/dev/sxt??[O-7]
/usr/include/sys/sxt.h

March 15, 1 989

virtual tty devices
driver specific definitions

SXT-2

SXT(M)

See Also

shl(C), stty(C), ioct1(S), open(S), tennio(M)

March 15, 1989

SXT(M)

SXT-3

SYSTTY (M) SYSTTY (M)

systty

system maintenance device

Description

The file /dev/systty is the device on which system error messages are
displayed. The actual physical device accessed via /dev/systty is
selected during boot, and is typically the device used to control the
bootup procedure. The default physical device /dev/systty is deter­
mined by boot(HW) when the system is brought up.

Initially /dev/console is linked to /dev/systty.

Files

/dev /systty

See Also

boot(HW), console(M)

March 15, 1 989 SYSTTY-1

TERM (M) TERM (M)

term

conventional names for terminals

Description

These names are used by certain commands [e.g., man(C), tabs(C),
tput(C), vi(C) and curses(S)] and are maintained as part of the shell
environment in the environment variable TERM [see sh(C),
profile (F), and environ (M)].

Entries in terminfo (F) source files consist of a number of comma­
separated fields. [To obtain the source description for a terminal, use
the -I option of infocmp (ADM).] White space after each comma is
ignored. The first line of each terminal description in the terminfo (F)
data base gives the names by which terminfo (F) knows the terminal,
separated by bar (I) characters. The first name given is the most com­
mon abbreviation for the terminal [this is the one to use to set the
environment variable TERMINFO in $HOMEI.profile; see profile(F)],
the last name given should be a long name fully identifying the termi­
nal, and all others are understood as synonyms for the terminal name.
All names but the last should contain no blanks and must be unique in
the first 14 characters; the last name may contain blanks for readabil­
ity.

Terminal names (except for the last, verbose entry) should be chosen
using the following conventions. The particular piece of hardware
making up the terminal should have a root name chosen. For example,
for the AT&T 4425 terminal, the root name is att4425. This name
should not contain hyphens, except that synonyms may be chosen that
do not conflict with other names. Up to 8 characters, chosen from
[a-zO-9], make up a basic terminal name. Names should generally be
based on original vendors, rather than local distributors. A terminal
acquired from one vendor should not have more than one distinct
basic name. Terminal sub-models, operational modes that the hard­
ware can be in, or user preferences, should be indicated by appending
a hyphen and an indicator of the mode. Thus, an AT&T 4425 terminal
in 132 column mode would be att4425-w. The following suffixes
should be used where possible:

Suffix Meaning
-w Wide mode (more than 80 columns)
-am With auto. margins (usually default)
-nam Without automatic margins
-n Number oflines on the screen

March 15, 1989

Example
att4425-w
vt100-am
vt100-nam
aaa-60

TERM-1

TERM(M) TERM (M)

-na
-np
-rv

No arrow keys (leave them in local)
Number of pages of memory
Reverse video

clOO-na
c100-4p
att4415-rv

To avoid conflicts with the naming conventions used in describing the
different modes of a terminal (e.g., -w), it is recommended that a
terminal's root name not contain hyphens. Further, it is good practice
to make all terminal names used in the terminfo(F) data base unique.
Terminal entries that are present only for inclusion in other entries via
the use= facilities should have a '+' in their name, as in 4415+n1.

Some of the known terminal names may include the following (for a
complete list, type: Is -C lusrlIib/terminfol?):

2621,hp2621
2631
2631-c
2631-e
2640,hp2640
2645,hp2645
3270
33,tty33
35,tty35
37,tty37
4000a
40 14,tek4014
40,tty40
43,tty43
4410,5410
4410-ntk,541O-ntk
4410-nsl,5410-nsl
441O-w,5410-w
4410vl,541Ovl
4410vl-w,5410vl-w
4415,5420
4415-nl,5420-nl
4415-rv ,5420-rv
4415-rv-nl,5420-rv-nl
4415-w,5420-w
4415-w-nl,5420-w-nl

4415-w-rv,5420-w-rv
4415-w-rv-nl,5420-w-rv-nl

4418,5418
44I8-w,5418-w
4420
4424
4424-2
4425,5425
4425-tk,5425-tk
4425-nl,5425-nl

4425-w,5425-w
4425-w-tk,5425-w-tk

4425-nl-w,5425-nl-w

4426

March 15, 1989

Hewlett-Packard 2621 series
Hewlett-Packard 26311ine printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard 2645 series
IBM Model 3270
AT&T TELETYPE Model 33 KSR
AT&T TELETYPE Model 35 KSR
AT&T TELETYPE Model 37 KSR
Trendata 4000a
TEKTRONIX 4014
AT&T TELETYPE Dataspeed 40/2
AT&T TELETYPE Model 43 KSR
AT&T 4410/5410 terminal in 80-column mode - version 2
AT&T 4410/5410 without function keys - version 1
AT&T 4410/5410 without pin defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 terminal in 80-column mode - version 1
AT&T 4410/5410 terminal in 132-column mode - version 1
AT&T 4415/5420 in 80-column mode
AT&T 4415/5420 without changing labels
AT&T 4415/5420 80 columns in reverse video
AT&T 4415/5420 reverse video without changing labels
AT&T 4415/5420 in 132-column mode
AT&T 4415/5420 in 132-column mode without changing
labels

AT&T 4415/5420 132 columns in reverse video
AT&T 4415/5420 132 columns reverse video
without changing labels

AT&T 5418 in 80-column mode
AT&T 5418 in I32-column mode
AT&T TELETYPE Model 4420
AT&T TELETYPE Model 4424
AT&T TELETYPE Model 4424 in display function group ii
AT&T 4425/5425
AT&T 4425/5425 without function keys
AT&T 4425/5425 without changing labels in 80-column
mode

AT&T 4425/5425 in 132-column mode
AT&T 4425/5425 without function keys in 132-column
mode

AT&T 4425/5425 without changing labels in I32-column
mode

AT&TTELETYPEModel4426S

TERM-,2

TERM (M)

450
450-12
500,attSOO
51O,51Oa
513bet,attS13
5320
5420_2
5420 2-w
5620Amd
562O-24,dmd-24
562O-34,dmd-34
61O,610bet
61O-w,61Obet-w
7300,pc7300,unix-pc
735,ti .
745
dumb

hp
lp
ptS05
ptS05-24
sync

DASI 450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 tenninal
AT&T 51O/51Oa in 80-column mode
AT&T 513 bet tenninal
AT&T 5320 hardcopy tenninal
AT&T 5420 model 2 in 80-column mode
AT&T 5420 model 2 in 132-column mode
AT&T 5620 tennina! 88 columns

TERM (M)

AT&T TELETYPE Model DMD 5620 in a 24x80 layer
AT&T TELETYPE Model DMD 5620 in a 34x80 layer
AT&T 610 bet tenninal in 80-column mode
AT&T61Obct tenninal in 132-column mode
AT&T UNIX PC Model 7300
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for tenninals that lack reverse
line-feed and other special escape sequences

Hewlett-Packard (same as 2645)
generic name for a line printer
AT&T Personal Tenninal505 (22 lines)
AT&T Personal Tenninal505 (24-line mode)
generic name for synchronous TELETYPE Model
4540-compatible tenninals

Commands whose behavior depends on the type of terminal should
accept arguments of the form -Tterm where term is one of the names
given above; if no such argument is present, such commands should
obtain the terminal type from the environment variable TERM ,
which, in turn, should contain term.

Files

lusr/lib/terminfol? compiled terminal description data base

See Also

curses(S), profile(F), terminfo(M), terminfo(F), environ(M),
infocmp(ADM), sh(C), stty(C), tabs(C), tput(C), tplot(ADM), vi(C)

Notes

Not all programs follow the above naming conventions.

March 15, 1989 TERM-3

TERMINALS (M) TERMINALS (M)

terminals
list of supported terminals

Description

The following list, derived from the file letc/termcap, shows the ter­
minal name (suitable for use as a TERM shell variable), and a short
description of the terminal. The advice in termcap (F) will assist users
in creating termcap entries for terminals not currently supported.

Name

1200
1620
1640
2392
2392an
2392ne
2621
2621k45
2621nl
2621nt
2621wl
2622
262x
2640
2640b
300
3045
33
37
40
4025
4025-17
4025-17ws
4025ex
43
515
5410
5410-nfk
5410132
5420132
5425
5425-w

March 15, 1989

Terminal

terminet 1200
diablo 1620
diablo 1640
239x series
hp 239x in ansi mode
239x series
hp 2621
hp 2621 with 45 keyboard
hp 2621 with no labels
hp 2621 wIno tabs
hp 2621 with labels
hp2622
hp 262x series
hp2640a
hp 264x series
terminet 300
datamedia 3045a
model 33 teletype
model 37 teletype
teletype dataspeed 40/2
tektronix 4024/4025/4027
tek 4025 17 line window
tek 4025 17 line window in workspace
tek 4025 wI!
model 43 teletype
AT&T-IS 515 terminal in native mode
5410 terminal 80 columns
version 1 tty5410 entry without function keys
5410132 columns
5420 132columns
AT&T Teletype 5425 80 columns
AT&T Teletype 5425 132 columns

TERMINALS-1

TERMINALS (M)

610bct
615mt
620mtg
7900
8001
912b
925
925so
AIT5620
Ma2
TWO
a980
aa
aaa
aaa30
aaa48db
aaadb
act5s
adds
adds25
admll
adm12
adm2
adm3
adm31
adm3a
adm3a+
adm3a19.2
adm3aso
adm42
adm5
aj830
altos3
altos4
altos5
am219w
amp219
amp232
ampex
ansi
ansi-nam
arpanet
at386
at386-m
atarist
att513

att513-w

March 15, 1989

TERMINALS (M)

AT&T 610; 80 column; 98key keyboard
AT&T 615; 80 column; 98key keyboard
AT&T 620; 80 column; 98key keyboard
NCR 7900-1
intecolor
new televideo
newer televideo
newer televideo with attribute byte workaround
5620 terminal 88 columns
Ampex Model 232 / 132 lines
Altos Computer Systems II
adds consul 980
ann arbor
ann arbor ambassador/48 lines
ann arbor ambassador 30/destructive backspace
ann arbor ambassador 48/destructive backspace
ann arbor ambassador 48/destructive backspace
skinnyact5
adds viewpoint
adds regent 25 with local printing
lsi admll
lsi adm12
lsi adm2
lsi adm3
Lear Siegler ADM31
lsi adm3a
lsi adm3a+
lsi adm3a at 19.2 baud
lsi adm3a with {} for standout
lsi adm42
lsi adm5
anderson jacobson
Altos III
Altos IV
Altos V
Ampex 132 Cols
Ampex with Automargins
Ampex Model 232
ampex dialogue 80
Ansi standard crt
Ansi standard crt without auto margin
network
at/386 console
at/386 console
Atari ST vt52
AT&T-IS 513 Business Communications Terminal 80
columns
AT&T-IS 513 Business Communications Terminal 132
columns

TERMINALS-2

TERMINALS (M)

att605
att630
bct500
bh3m
big2621
c100
c1004p
c100rv
c100rv4p
c100rv4pna
c100rv4ppp
c100rvs
c100s
c3102
carlock
cci
cdc456
cdc456tst
cdi
cie467
cit80
cit80nam
compucolor
d132
datapoint
delta
dg
digilog
dml520
dm1521
dm2500
dm3025
dmterm
dosansi
dtlOO
dtlOOw
dt200
dt80
dt80132
dtc300s
du
dumb
dw1
dw2
ep40
ep48
esp925
espHA

March 15, 1989

AT&T605BCT
AT&T 630 windowing terminal
teletype 5541
beehiveIIlm
48 line 2621
concept 100
c100 w/4 pages
c 100 rev video
c100 w/4 pages
clOO with no arrows
c100 with printer port
slow reverse concept 100
slow concept 100
cromemco 3102
klc
cci 4574
cdc
cdc456tst
cdi1203
C.Itoh 467, 414 Graphics
c.itoh 80
C.Itoh 80 without automargins
compucolorII
datagraphix 132a
datapoint 3360
delta data 5000
data general 6053
digilog 333
datamedia 1520
datamedia 1521
datamedia 2500
datamedia 3025a
Tandy deskmate terminal
ANSI.SYS standard crt
Tandy DT -100 terminal
Tandy DT -100 terminal
Tandy DT-200
datamedia dt80/l
datamedia dt80/l in 132 char mode
dtc 300s
dialup
unknown
decwriter I
decwriter II
execuport 4000
execuport 4080
esprit tvi925 emulation

TERMINALS (M)

esprit 6310 in hazeltine emulation mode

TERMINALS-3

TERMINALS (M)

ethemet
exidy
fos
fox
free 1 00
free 11 0
ftl024
gt40
gt42
h1500
h1510
h1520
h1552
h1552rv
h19
h19a
h19nk
h2000
hp
hp2626
hp2648
hpansi

hpansi-24
hpex
hpsub
BOO
ibm3101
ibm3151
ibm3161
ibm3163
ibm3164
ibm5151
ibmcons
ibmcons-43
intext
ipc
k10
kn
kt7ix
lisa
m100
mac term
macterm-nam
md1110
microb
microterm
microterm5

March 15; 1989

network
exidy sorcerer as dm2500
Fortune system
perkin elmer 1100
liberty freedom 100
Freedom 110

TERMINALS (M)

Forward Technology graphics controller
dec gt40
dec gt42
hazel tine 1500
hazeltine 1510
hazeltine 1520
hazeltine 1552
hazeltine 1552 reverse video
heathkit h 19 wI function keypad
heathkit h 19 ansi mode
heathkit w/numeric keypad (not function keys)
hazeltine 2000
hp 264x series
hp2626
lIP 2648a graphics terminal
Hewlett Packard 700/44 in HP-PCterm mode, PC char­
acter set
lIP 700/44 in HP-PCterm 24 line mode, PC character set
hp extended capabilites
hp terminals -- capability subset
General Terminall00A (formerly Infoton 1(0)
IBM3101-10
3151
3161
3163
3164
ibm console
Ansi standard with EGA
Ansi EGA console in 43 line mode
ISC modified owl 1200
Intel IPC
Kaypro 10
kt70pcix
kimtron kt-7
apple lisa xenix console display (white on black)
radio shack model 100
macintosh MacTerm in vt-1oo mode
MacTerm in vt-l00 mode with automargin NOT set
cybemex mdl-110
micro bee series
micro term act iv
micro term act v

TERMINALS-4

TERMINALS (M)

mime
mime2a
mime2as
mime3a
mime3ax
mimefb
mimehb
mt70
nabu
netx.
nucterm
oadm3l
omron
ot80
owl
pe550
pixel
plasma
ptl500
pt2l0
qume5
qvtlOl
qvtlOl+
qvtlOl+so
qvtlOlb
qvtl02
qvtl03
qvtl08
qvtl09
qvt119
qvtll9+
qvt20l
qvt202
qvt203
regent
regentlOO
regent20
regent25
regent25a
regent40
regent60
regent60na
rx303
sbl
sb2
sexidy
sk8620
soroc

March 15, 1989

TERMINALS (M)

microterm mimel
microterm mime2a (emulating an enhanced vt52)
microterm mime2a (emulating an enhanced soroc iq 120)
mimel emulating 3a
mimel emulating enhanced 3a
full bright mimel
half bright mimel
morrow mt70
nabu terminal
netronics
NUC homebrew
old adm3l
Omron 8025AG
onyx ot80
perkin elmer 1200
perkin elmer 550
Pixel terminal
plasma panel
Convergent Technologies PT
Tandy TRS-80 PT -210 printing terminal
Qume Sprint 5
Qume QVT-lOl vers c
Qume QVT-lOl Plus vers c
Qume QVT-lOl + with protected mode/standout
QVT-lOI with cursor set to blinking underline
QumeQVT 102
Qume QVT-I03
QVT-l08
QVT-l09
Qume QVT-119
Qume QVT-119 Plus vers c
Qume QVT-20l
Qume QVT-202
Qume QVT 203 PLUS
adds regent series
adds regent 100
adds regent 20
adds regent 25
adds regent 25a
adds regent 40
adds Regent 60
regent 60 w /no arrow keys
rexon 303 terminal
beehive super bee
fixed superbee
exidy smart
Seiko 8620
Soroc 120

TERMINALS-5

TERMINALS (M)

sun
sun-cmd

sun-nie

sunl
superbeeic
svtlOO
svt1210
svtl220
svt52
switch
swtp
tl061
tl06lf
t3700
t3800
td200
tek
tek4013
tek4014
tek4014sm
tek4015
tek4015sm
tek4023
tek4107
teletec
terak
ti
ti745
ti924
ti924-8
ti926
ti931
trs100
trs16
trs600
tty4420
tty4424
tty4424-w
tty541 0
tty5410-w
tvi910
tvi910+
tvi912
tvi9220
tvi9220w
tvi924

March 15, 1989

TERMINALS (M)

Sun Microsystems Workstation console
Sun Microsystems Workstation console with scrollable
history
Sun Microsystems Workstation console without insert
character
old Sun Microsystems Workstation console
super bee with insert char
1220/pC, Sperry in VT100 mode
Sperry 1210, standard setup
Sperry 1220, standard setup
1210/1220/PC, Sperry in VT52 mode
intelligent switch
southwest technical products ct82
teleray 1061
teleray 1061 with fast PROMs
dumb teleray 3700
teleray 3800 series
Tandy 200
tektronix 40 12
tektronix 4013
tektronix 4014
tektronix 4014 in small font
tektronix 4015
tektronix 4015 in small font
tektronix 4023
tektronix 4107
Teletec Datascreen
Terak emulating Datamedia 1520
ti silent 700
ti silent 745
Texas Instruments 924 VDT 7 bit
Texas Instruments 924 VDT 8 bit
Texas Instruments 926 VDT
Texas Instruments 931 VDT
Tandy TRS-80 Model 100
Tandy trs-80 model 16 console
Tandy Model 600
teletype 4420
teletype 4424
teletype 4424 in display function group ii
Teletype 5410 terminal in 80 column mode
Teletype 5410 in 132 column mode
old televideo 910
tekwideo 910 PLUS
old televideo
Televideo 9220 w /status line @ bottom
Televideo 9220 132 col w/status line @ bottom
televideo924

TERMINALS-6

TERMINALS (M)

tvi950
tvi950-2p
tvi950-4p
tvi950-ap
tvi950b
tvi950ns
v50
v55
vi200
vi200f
vi200ic
vi200rv
vi200rvic
vi50
vi55
vis613
vs100
vs100s
vt100
vt100n .
vt100nam
vt100s
vt100w
vtl02
vt131
vt132
vt220
vt220d

vt50
vt50h
vt52
vt52so
vtz
w2110A
ws584
ws584fr
ws584gr
ws584nr
ws584sp
ws584sw
ws584uk
ws584us
ws685
wy100
wy120
wy120-25
wy120-vb

March 15, 1 989

TERMINALS (M)

televideo950
tvi 950 w 12 pages
tvi 950 w 14 pages
tvi 950 w lalt pages
bare tvi950 no is
tvi950 wino standout
Visual 50 emulation of DEC VT52
Visual 55 emulation of DEC VT52 (called V55)
visual 200 with function keys
visual 200 no function keys
visual 200 using insert char
visual 200 reverse video
visual 200 reverse video using insert char
Visual 50 in ADDS viewpoint emulation
Visual 55 using ADDS emulation
Visual 613
xterm terminal emulator
xterm terminal emulator (small screen 24x80)
dec vt100
vt100 wino init
DEC VT100 without automargins
dec vt100 132 cols 14 lines
dec vt100 132 cols
dec vt102
dec vt131
vt-132
dec vt220 generic
DEC VT220 in vt100 mode with DEC function key
labeling
dec vt50
dec vt50h
dec vt52
dec vt52 with brackets added for standout use
Zilog vtz 2/10
Wang 2110 Asynch Data Entry Terminal - 80 column
Olivetti WS584
Olivetti WS584 with French keyboard
Olivetti WS584 with German keyboard
Olivetti WS584 with Norwegian/Danish keyboard
Olivetti WS584 with Spanish keyboard
Olivetti WS584 with Swedish/Finnish keyboard
Olivetti WS584 with U.K. keyboard
Olivetti WS584 with U.S.A. keyboard
Olivetti WS685
wyse 100
Wyse 120
Wyse 120 80-column 25-lines
Wyse 120 Visible bell

TERMINALS-7

TERMINALS (M)

wyl20-wvb
wy120w
wy12Ow-25
wy150
wy150-25
wyl50-vb
wyl50-wvb
wy150w
wy15Ow-25
wy30
wy30-vb
wy350
wy350-vb
wy350-wvb
wy350w
wy50
wy50-wvb
wy50l

wy50n
wy50vb
wy50w

wy60

wy60-25
wy60-42
wy60-43
wy60-vb
wy60ak
wy60w

wy60w-25
wy60w-42
wy60w-43
wy6Ow-vb
wy75
wy75-mc
wy75-vb
wy75-wvb
wy75ap

wy75w
wy75x
wy85
wy85-vb
wy85-wvb

March 15, 1989

TERMINALS (M)

wysel20-wvb
Wyse 120 132-column
Wyse 120 132-column 25-lines
Wyse 150
Wyse 150 80-column 25-lines
Wyse 150 Visible bell
wysel50-wvb
Wyse 150 132-column
Wyse 150 132-column 25-lines
Wyse WY -30 in wy30 mode
wyse 30 Visible bell
Wyse 350 80 column color terminal emulating wy50
wyse 350 Visible bell
wyse 350 132-column Visible bell
Wyse 350 132 column color terminal emulating wy50
Wyse 50/80 Wyse WY -50 with 80 column screen
wyse 50 132-column Visible bell
Wyse WY -60 with 80 column/43 line screen in WY50+
mode
Wyse WY -50 - 80 column screen, no automargin
Wyse WY-50/80vb Wyse WY-50/80 with visible bell
Wyse WY-50/132 Wyse WY-50 with 132 column
screen
Wyse WY-60 with 80 column/24 line screen in wy60
mode
wyse 60 80-column 25-lines
wyse 60 80-column 42-lines
wyse 60 80-column 43-lines
Wyse 60 Visible bell
Wyse 60 in wy60 mode with ANSI arrow keys +
Wyse WY-60 with 132 column/24 line screen in wy60
mode
wyse 60 132-column 25-lines
wyse 60 132-column 42-lines
wyse 60 132-column 43-lines
Wyse 60 132-column Visible bell
Wyse WY-75 with 80 column line
wyse 75 with magic cookies
wyse 75 with visible bell
wyse 75 with visible bell 132 columns
Wyse WY -75 with Applications and Cursor keypad
modes
Wyse WY-75 in 132 column mode
Wyse WY-75 with 132 column lines in vi editor mode
Wyse 85 in 80 column mode, vtl 00 emulation
wyse 85 with visible bell
wyse 85 with visible bell 132-columns

TERMINALS-8

TERMINALS (M)

wy85w
wy85w
wy99gt
wy99gt-25
wy99gt-25-w
wy99gt-vb
wy99gt-w
wy99gt-w-vb
wyse120ak
x1720
xitex
z29
z39
zen30
zen40
zen50
zephyr
zephyrnam

Files

/etc/termcap

See Also

TERMINALS (M)

Wyse 85 in 132 column mode, vt100 emulation
wyse 85 in 132-column mode
Wyse 99gt
wyse 99gt 80-column 25-lines
wyse 99gt 132-column 25-lines
Wyse 99gt Visible bell
wyse 99gt 132-column
wyse99gt-wvb
Wyse 120 with ANSI key values
xerox 1720
xitex set-1oo
zenith z29
Zenith Z-39
zentec 30
zentec 40
zentec 50
zentec zephyr220 in vt100 mode
zentec zephyr220 in vt100 mode w/out automargins

tset(C), environ(M), termcap(F)

March 15, 1989 TERMINALS-9

TERMINFO (M) TERMINFO (M)

terminfo
terminal capability data base

Syntax

lusr/lib/terminfol? 1*

Description

terminfo is a compiled database [see tic(C)] describing the capabilities
of terminals. Terminals are described in terminfo source descriptions
by giving a set of capabilities which they have, by describing how
operations are performed, by describing padding requirements, and by
specifying initialization sequences. This database is used, for exam­
ple, by vi(C) and curses(S), so they can work with a variety of termi­
nals without changes to the programs. To obtain the source descrip­
tion for a terminal, use the -I option of infocmp (ADM). When doing
an infocmp for the terminal you are on, there is no difference between
infocmp and infocmp -I.

Entries in terminfo source files consist of a number of fields separated
by commas. White space after each comma is ignored. The frrst line
of each terminal description in the terminfo database gives the name
by which terminfo knows the terminal, separated by bar (I) charac­
ters. The first name given is the most common abbreviation for the
terminal [this is the one to use to set the environment variable TERM
in $HOMEI.profile; see profile(F)]; the last name given should be a
long name fully identifying the terminal, and all others are understood
as synonyms for the terminal name. All names but the last should
contain no blanks and must be unique in the frrst 14 characters; the
last name may contain blanks for readability.

Terminal names (except for the last verbose entry) should be chosen
using the following conventions. The particular piece of hardware
making up the terminal should have a root name chosen, for example,
for the AT&T 4425 terminal, att4425. Modes that the hardware can
be in, or user preferences, should be indicated by appending a hyphen
and an indicator of the mode. See term(M) for examples and more in­
formation on choosing names and synonyms.

PART 1: TERMINAL CAPABILITIES

Capabilities in terminfo are of three types: boolean capabilities
(which show that the terminal has some particular feature), numeric
capabilities (which specify the size of the terminal or particular fea­
tures), and string capabilities (which provide a sequence that can be

March 12, 1990 TERMINF0-1

TERMINFO (M) TERMINFO (M)

used to perform particular terminal operations).

In the following tables, a Variable is the name by which a C program­
mer accesses a capability (at the terminfo level). A Capname is the
short name for a capability used in the source description. It is used
by a person updating the database and by the tput(C) command when
asking what the value of the capability is for a particular terminal. A
Termcap Code is a two-letter code that corresponds to the old
termcap capability name.

Capability names have no hard length limit, but an informal limit of
five characters has been adopted to keep them short. Whenever possi­
ble, names are chosen to be the same as or similar to those specified
by the ANSI X3.64-1979 standard. Semantics are also intended to
match those of the ANSI standard.

All string capabilities listed below may have padding specified, with
the exception of those used for input. Input capabilities, listed under
the Strings section in the following table, have names beginning with
key _. The following indicators may appear at the end of the Descrip­
tion for a variable.

(0)

(*)

indicates that the string is passed through tparm() with parameters
(parms) as given (# i)

indicates that padding may be based on the number of lines
affected

(#.)
I indicates the ith parameter

March 12, 1990 TERMINF0-2

TERMINFO (M) TERMINFO (M)

Booleans
Variable Cap- Termcap Description

name Code

auto_lefcmargin bw bw cubl wraps from column 0 to last column

auto_righcmargin am am Tenninal has automatic margins

back_colocerase . bee be Screen erased with background color

can_change ccc cc Tenninal can re-define existing color

ceoCstandout....glitch xbp xs Standout not erased by overwriting (hp)

col_addr....glitch xbpa YA Only positive motion for bpll/mbpa caps

cpi_changes_res cpix YF Changing character pitch changes resolution

cr_cancels_micro_mode crxm YB Using cr turns offmicro mode

eacnewline....glitch xenl xn Newline ignored after 80 columns (Concept)

erase_overstrike eo eo Can erase overstrikes with a blank

generic_type gn gn Generic line type (e.g., dialup, switch)

hard_copy hc hc Hardcopy terminal

hard_cursor chts HC. Cursor is hard to see

has_meta_key km km Has a meta key (shift, sets parity bit)

has-Pl'incwheel daisy YC Printer needs operator to change character set

has_status_line hs hs Has extra "status line"

hue_lightness_saturation his hi Tenninal uses only HLS color notation (Tektronix)

insercnulCglitch in in Insert mode distinguishes nulls

Ipi_changes_res Ipix YG Changing line pitch changes resolution

memory_above da da Display may be retained above the screen

memory_below db db Display may be retained below the screen

move_inserCmode mir mi Safe to move while in insert mode

move_standouCmode msgr ms Safe to move in standout modes

needs_xon_xoff nxon nx Padding won't work, xonlxoffrequired

no_esc_cdc xsb xb Beehive (f1=escape, f2=ctrl C)

nO...J>ad_char npc NP Pad character doesn't exist

non_descscroll_region ndscr ND Scrolling region is non-destructive

non_rev _rmcup nrrmc NR smcup does not reverse rmcup

over_strike os os Terminal overstrikes on hard-copy terminal

prtr_silent mc5i

row _addr--8litch xvpa YD Only positive motion for vpa/mvpa caps

semi_auto_righcmargin sam YE Printing in last column causes cr

status_line_esc_ok eslok es Escape can be used on the status line

desCtabs_magic_smso xt xt Destructive tabs, magic smso char (tl061)

tilde--8litch hz hz Hazeltine; can't print tilde n
transparencunderline ul ul Underline character overstrikes

xon_xoff xon xo Tenninal uses xon/xoffhandshaking

March 12, 1990 TERMINF0-3

TERMINFO (M) TERMINFO (M)

Numbers
Variable Cap- Tenncap Description name Code

buffeccapacity bufsz Ya Number of bytes buffered before printing

columns cols co Number of columns in a line

doC vercspacing spinv Yb Spacing of pins vertically in pins per inch

dOChorz_spacing spinh Yc Spacing of dots horizontally in dots per inch

iniUabs it it Tabs initially every 1# spaces

label_height 1h 1h Number of rows in each label

labeCwidth lw lw Number of columns in each label

lines lines Ii Number of lines on a screen or a page

lines_oCmemory 1m 1m Lines of memory if > lines; 0 means varies

magic_cookie..gIitch xmc sg Number of blank characters left by smso or nnso

max_attributes ' rna rna Maximum combined video attributes terminal can display
max_colors colors Co Maximum number of colors on the screen

max_micro_address maddr Yd Maximum value in mlcro_",_address

max_micro.Jump mjump Ye Maximum value in parm _ ",_micro

max..,pairs pairs pa Maximum number of color-pairs on the screen

maximum_windows wnum MW Maximum number of definable windows

micro_coCsize mcs Yf Character step size when in micro mode

micro_line_size mls Yg Line step size when in micro mode

no_color_video nev NC Video attributes that can't be used with colors

number_of..,pins npins Yh Number of pins in print-head

num_labels nlab Nl Number of labels on screen (start at 1)

output_res_char ore Yi Horizontal resolution in units per character

outpucres_line or! Yj Vertical resolution in units per line

outpucres_hon_inch orm Yk Horizontal resolution in units per inch

outpuCres_ verCinch orvi Yl Vertical resolution in units per inch

paddin!-baud_rate pb pb Lowest baud rate where padding needed

princrate cps Ym Print rate in characters per second

virtual_terminal vt vt Virtual terminal number (UNIX system)

wide:....char_size widcs Yn Character step size when in double wide mode

width_status_line wsl ws Number of columns in status line

March 12, 1990 TERMINFO-4

TERMINFO (M) TERMINFO (M)

Strings
Variable Cap- Tenncap Description

name Code

acs_chars acsc ac Graphic charset pairs aAbBcC - def=vtl 00

back_tab cbt bt Back tab

bell bel bl Audible signal (bell)

carriage_return cr cr Carriage return (*)

change_char_pitch cpi ZA Change number of characters per inch (dg

change_tine_pitch lpi ZB Change number of lines per inch (dg

change_res_horz chr ZC Change horizontal resolution (dg

change_res_ vert cvr ZD Change vertical resolution (dg

change_scroll_region csr cs Change to lines #1 through #2 (vt100) (G)

char-padding nnp rP Like Ip but when in replace mode

char_seCnames csnm Zy List of character set names

clear_all_tabs tbc ct Clear all tab stops

clear_margins mgc MC Clear all margins (top, bottom, and sides)

clear_screen clear cl Clear screen and home cursor (*)

clr_bol ell cb Clear to beginning of tine, inclusive

clr_eol el ce Clear to end of line

clr_eos ed cd Clear to end of display (*)

column_address hpa ch Horizontal position absolute (0)

command_character cmdch CC Tenninal settable cmd character in prototype

create_window cwin CW Define win #1 to go from #2,#3 to #4,#5

cursor_address cup cm Move to row #1 col #2 (G)

cursor_down cudl do Down one line

cursor_home home ho Home cursor (if no cup)

cursocinvisible civis vi Make cursor invisible

cursor_left cub! Ie Move left one space.

cursocmem_address mrcup CM Memory relative cursor addressing (G)

cursor_nonnal cnorm ve Make cursor appear nonnal (undo vslvl)

cursocright cufl nd Non-destructive space (cursor or carriage right)

cursocto_ll 11 11 Last line, first column (if no cup)

cursocup cuul up Upline (cursor up)

cursoc visible cvvis vs Make cursor very visible

define3har defc ZE Define a character in a character set t
delete_character dchl dc Delete character (*)

delete_line dll dl Delete line (...)

delete-phone dial DI Dial phone number #1

dis_status_line dsl ds Disable status line

display_clock dclk DK Display time-of-day clock

down_halUine hd hd Half-line down (forward If]. linefeed)

ena_acs enacs eA Enable alternate character set

enter_alCcharsecmode smacs as Start alternate character set

enter_am_mode smam SA Tum on automatic margins

enter_blink_mode blink mb Tum on blinking

enter_bold_mode bold md Tum on bold (extra bright) mode

enter_ca_mode smcup ti String to begin programs that use cup

enter_delete_mode smdc dm Delete mode (enter)

March 12, 1990 TERMINFO-5

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Termcap Description name Code

entecdim_mode dim mh Tum on half-bright mode

entecdoublewide_mode swidm ZF Enable double wide printing

entecdrafcquality sdrfq ZG Set draft quality print

enter_insercmode smir im Insert mode (enter)

enter_italics_mode sitm ZH Enable italics

enter_leftward_mode s1m ZI Enable leftward carriage motion

enter_micro_mode smicm ZJ Enable micro motion capabilities

enter_neaclettecquality snlq ZK Set near-letter quality print

enter_normal_quality snrmq ZL Set normal quality print

enter-Pl'otectC(Cmode prot mp Tum on protected mode

enter_reverse_mode rev mr Tum on reverse video mode

enter_secure_mode invis rnk Tum on blank mode (characters invisible)

enter_shadow _mode sshm ZM Enable shadow printing

enter_standoucmode smso so Begin standout mode

enter_subscripcmode ssubm ZN Enable subscript printing

enter_superscripcmode ssupm ZO Enable superscript printing

enter_underline_mode smul us Start underscore mode

enter_upward_mode sum ZP Enable upward carriage motion

enter_xon_mode srnxon SX Tum on xon/xoffhandshaking

erase_chars ech ec Erase #1 characters (G)

exiCalccharseCmode rmacs ae End alternate character set

exicam_mode rmam RA Tum off automatic margins

exicattribute_mode sgrO me Tum off all attributes

exicca_mode rmcup te String to end programs that use cup

exiCdelete_mode rmdc ed End delete mode

exicdoublC?wide_mode rwidm ZQ Disable double wide printing

exiCinserCmode rmir ei End insert mode

exiUtalics_mode ritm ZR Disable italics

exiUeftward_mode rIm ZS Enable rightward (normal) carriage motion

exiCmicro_mode rmicm zr Disable micro motion capabilities

exiCshadow _mode rshm ZU Disable shadow printing

exiCstandouCmode rmso se End standout mode

exicsubscripcmode rsubm ZV Disable subscript printing

exicsuperscripcmode rsupm ZW Disable superscript printing

exiCunderline_mode rmul ue End underscore mode

exicupward_mode rum ZX Enable downward (normal) carriage motion

exiCxon_rnode rmxon RX Tum off xon/xoffhandshaking

fixC(Cpause pause PA Pause for 2-3 seconds

flash_hook hook fh Flash the switch hook

flash_screen flash vb Visible bell (may not move cursor)

form_feed ff ff Hardcopy terminal page eject (+)

from_status_line fsl fs Return from status line

goto_window wingo WG Got to window #1

hangup hup HU Hang-up phone

March 12, 1990 TERMINFO-6

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable
Cap- Tenncap

Description
name Code

iniUstring isl il Tenninal or printer initialization string

inic2string is2 is Tenninal or printer initialization string

iniC3string is3 i3 Tenninal or printer initialization string

iniUHe if if Name of initialization file

init-pwg iprog iP Path name of program for initialization

initialize_color initc Ic Initialize the definition of color

initialize..,pair initp Ip Initialize color-pair

inserccharacter ichl ic Insert character

insert_line ill al Add new blank line (.)

insert..,padding ip ip Insert pad after character inserted (.)

key_at kal Kl KEY_AI, 0534, upper left of keypad

key_a3 ka3 K3 KEY _A3, 0535, upper right of keypad

key_b2 kb2 K2 KEY _B2, 0536, center of keypad

key_backspace kbs kb KEY_BACKSPACE, 0407, sent by backspace key

key_beg kbeg @1 KEY_BEG, 0542, sent by beg(inning) key

key_btab kcbt kB KEY_BTAB, 0541, sent by back-tab key

key_cl kcl K4 KEY_Cl, 0537, lower left of keypad

key_c3 kc3 K5 KEY_C3, 0540, lower right of keypad

key_cancel kcan @2 KEY_CANCEL, 0543, sent by cancel key

key_catab ktbc ka KEY_CATAB, 0526, sent by clear-aIl-tabs key

key_clear kclr kC KEY_CLEAR, 0515, sent by clear-screen or erase key

key_close kclo @3 KEY_CLOSE, 0544, sent by close key

key_command kcmd @4 KEY_COMMAND, 0545, sent by cmd (command) key

key_copy kcpy @5 KEY_COPY, 0546, sent by copy key

key_create kcrt @6 KEY_CREATE, 0547, sent by create key

key_ctab kctab kt KEY_crAB, 0525, sent by clear-tab key

key_dc kdchl kD KEY_DC, 0512, sent by delete-character key

key_dl kdll kL KEY_DL, 0510, sent by delete-line key

key_down kcudl kd KEY_DOWN, 0402, sent by terminal down-arrow key

key_eic krmir kM KEY_EIC, 0514, sent by rmir or smir in insert mode

key_end kend @7 KEY_END, 0550, sent by end key

key_enter kent @8 KEY_ENTER, 0527, sent by enter/send key

key_eol kel kE KEY_EOL, 0517, sent by clear-to-end-of-line key

key_eos ked kS KEY_EOS, 0516, sent by clear-to-end-of-screen key

key_exit kext @9 KEY_EXIT, 0551, sent by exit key

key_ill kID kO KEY_F(O), 0410, sent by function key ill

key_fl kfl kl KEY_F(C), 0411, sent by function key fl

key_f2 kf2 k2 KEY_F(S), 0412, sent by function key f2

key_f.3 ill k3 KEY_F(S), 0413, sent by function key f.3

key_f4 kf4 k4 KEY_F(F), 0414, sent by function key f4

key_fS kf5 k5 KEY_F(M), 0415, sent by function key fS

key_f6 kf6 k6 KEY_F(6), 0416, sent by function key f6

key_t7 kt7 k7 KEY _F(7), 0417, sent by function key t7

key_f8 kf8 k8 KEY _F(8), 0420, sent by function key f8

March 12, 1990 TERMINF0-7

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable
Cap- Tenncap

Description name Code

key_19 kf9 k9 KEY_F(9), 0421, sent by function key 19
key_flO kflO k; KEY_F(ADM), 0422, sent by function key flO
key_fll kfll Fl KEY_F(ADM), 0423, sent by function key fll
key_fl2 kfl2 F2 KEY_F(ADM), 0424, sent by function key fl2
key_fl3 kfl3 F3 KEY _F(ADM), 0425, sent by function key fl3
key_fl4 kfl4 F4 KEY_F(ADM), 0426, sent by function key fl4
key_fl5 kfl5 F5 KEY_F(ADM), 0427, sent by function key fl5
key_fl6 kfl6 F6 KEY_F(ADM), 0430, sent by function key fl6
key_fl7 kfl7 F7 KEY_F(ADM), 0431, sent by function key fl7
key_fl8 kfl8 F8 KEY_F(ADM), 0432, sent by function key fl8
key_fl9 kfl9 F9 KEY_F(ADM), 0433, sent by function key fl9
key_flO kflO FA KEY _F(20), 0434, sent by function key flO
key_fll kfll FB KEY_F(21), 0435, sent by function key fll
key_fl2 kfl2 FC KEY _F(22), 0436, sent by function key fl2
key_f23 kf23 FD KEY_F(23), 0437, sent by function key fl3
key_f24 kf24 FE KEY _F(24), 0440, sent by function key f24
key_f25 kf25 FF KEY_F(25), 0441, sent by function key fl5
key_fl6 kfl6 FO KEY _F(26), 0442, sent by function key fl6
key_fl7 kfl7 FH KEY_F(27), 0443, sent by function key fl7
key_fl8 kfl8 FI KEY _F(28), 0444, sent by function key fl8
key_fl9 kfl9 FJ KEY_F(29), 0445, sent by function key fl9
key_f30 kf30 FK KEY_F(S), 0446, sent by function key f30
key_f31 kf31 FL KEY_F(S), 0447, sent by function key f31
key_f32 kf32 FM KEY_F(S), 0450, sent by function key f32
key_f33 kf33 FN KEY_F(ADM), 0451, sent by function key fl3
key_f34 kf34 FO KEY_F(S), 0452, sent by function key f34
key_f35 kf35 FP KEY_F(S), 0453, sent by function key f35
key_f36 kf36 FQ KEYY(S), 0454, sent by function key f36
key_f37 kf37 FR KEY_F(S), 0455, sent by function key f37
key_f38 kf38 FS KEY_F(S), 0456, sent by function key f38
key_f39 kf39 Ff KEY_F(S), 0457, sent by function key f39
key_f40 kf40 FU KEY_F(40), 0460, sent by function key f40
key_f41 kf41 FV KEY_F(41), 0461, sent by function key f41
key_f42 kf42 FW KEY_F(42), 0462, sent by function key f42
key_f43 kf43 FX KEY_F(43), 0463, sent by function key f43
key_f44 kf44 FY KEY_F(44), 0464, sent by function key f44
key_f45 kf45 FZ KEY_F(45), 0465, sent by function key f45
key346 kf46 Fa KEY_F(46), 0466, sent by function key f46
key_f47 kf47 Fb KEY _F(47), 0467, sent by function key f47
key_f48 kf48 Fc KEY_F(48), 0470, sent by function key f48
key_f49 kf49 Fd KEY_F(49), 0471, sent by function key f49
key_f50 kf50 Fe KEY_F(50), 0472, sent by function key f50
key_f51 kf51 Ff KEY_F(51), 0473, sent by function key f51

March 12, 1990 TERMINF0-8

TERMINFO (M) TERMINFO (M)

Strings (coot.)

Variable Cap- Tenncap Description name Code

key_f52 kf52 Fg KEY_F(52), 0474, sent by function key f52

key_f53 kf53 Ph KEY_F(53), 0475, sent by function key f53

key_f54 kf54 Fi KEY_F(54), 0476, sent by function key f54

key_f55 kf55 Fj KEY_F(55), 0477, sent by function key f55

key_f56 kf56 Fk KEY_F(56), 0500, sent by function key f56

keyj57 kf57 A KEY_F(57), 0501, sent by function key f57

key_f58 kes8 Fm KEY _F(58), 0502, sent by function key f58

key_f59 kf59 Fn KEY_F(59), 0503, sent by function key f59

key_f60 kf60 Fo KEY_F(60), 0504, sent by function key f60

key_f61 kf61 Fp KEY_F(61), 0505, sent by function key f61

keyj62 kf62 Fq KEY_F(62), 0506, sent by function key f62

keyj63 kf63 Fr KEY _F(63), 0507, sent by function key f63

key_find kfnd @O KEY_FIND, 0552, sent by find key

key_help kblp %1 KEY_HELP, 0553, sent by help key

key_home khome kh KEY_HOME, 0406, sent by home key

key_ic kichl kI KEY_IC, 0513, sent by ins-char/enter ins-mode key
key_il kill leA KEY _IL, 0511, sent by insert-line key

key_left kcubl kl KEY _LEFf, 0404, sent by tenninalleft-arrow key

key_ll kll kH KEY _LL, 0533, sent by home-down key

key_mark kmrk %2 KEY_MARK, 0554, sent by mark key

key_message kmsg %3 KEY_MESSAGE, 0555, sent by message key

key_move kmov %4 KEY_MOVE, 0556, sent by move key

key_next knxt %5 KEY_NEXT, 0557, sent by next key

key_npage knp kN KEY_NPAGE, 0522, sent by next-page key

key_open kopn %6 KEY_OPEN, 0560, sent by open key

key_options kopt %7 KEY_OPTIONS, 0561, sent by options key

key-J>page kpp kP KEY _PPAGE, 0523, sent by previous-page key

key -Pl'evious kprv %8 KEY_PREVIOUS, 0562, sent by pervious-object key

key_print kprt %9 KEY_PRINT, 0532, sent by print or copy key

key_redo krdo 0 KEY_REOO, 0563, sent by redo key

key 3eference kref &1 KEY_REFERENCE, 0564, sent by ref(erence) key

key_refresh krfr &2 KEY_REFRESH, 0565, sent by refresh key

key_replace krpl &3 KEY_REPLACE, 0566, sent by replace key

key_restart krst &4 KEY _RESTART, 0567, sent by restart key

key_resume kres &5 KEY_RESUME, 0570, sent by resume key

key_right kcufl kr KEY_RIGHT, 0405, sent by tenninal right-arrow key

key_save ksav &6 KEY_SAVE, 0571, sent by save key

key_sbeg kBEG &9 KEY_SBEG, 0572, sent by shifted beginning key

key _scancel kCAN &0 KEY _SCANCEL, 0573, sent by shifted cancel key

key _scommand kCMD *1 KEY_SCOMMAND,0574, sent by shifted command key

key_scopy kCPY *2 KEY_SCOPY, 0575, sent by shifted copy key

key _screate kCRT *3 KEY_SCREATE, 0576, sent by shifted create key

key_sdc kDC *4 KEY_SOC, 0577, sent by shifted delete-char key

March 12, 1990 TERMINF0-9

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable
Cap- Tenncap

Description
name Code

key_sdl kDL *5 KEY_SDL,06OO, sent by shifted delete-line key

key_select kslt *6 KEY_SELECf, 0601, sent by select key

key_send kEND *7 KEY_SEND, 0602, sent by shifted end key

key_sool kEOL *8 KEY_SEOL, 0603, sent by shifted clear-line key

key_sexit kEXT *9 KEY _SEXIT, 0604, sent by shifted exit key

key_sf kind 1cF KEY_SF, 0520, sent by scroll-forward/down key

key_sfind lcFND *0 KEY_SFIND, 0605, sent by shifted find key

key_shelp kHLP #1 KEY_SHELP, 0606, sent by shifted help key

key_shome kHOM #2 KEY_SHOME, 0607, sent by shifted home key

key_sic klC #3 KEY_SIC, 0610, sent by shifted input key

key_sleft kLFf #4 KEY_SLEFf, 0611, sent by shifted left-arrow key

key _smessage kMSG %a KEY_SMESSAGE, 0612, sent by shifted message key

key_smove kMOV %b KEY_SMOVE, 0613, sent by shifted move key

key_snext kNXT %c KEY _SNEXT, 0614, sent by shifted next key

key _soptions kOPT %d KEY_SOPTlONS, 0615, sent by shifted options key

key JPfevious kPRV %e KEY_SPREVIOUS, 0616, sent by shifted prev key

key_sprint kPRT %f KEY_SPRINT, 0617, sent by shifted print key

key_sr kri kR KEY_SR, 0521, sent by scroll-backward/up key

key_sredo kRDO %g KEY _SREDO, 0620, sent by shifted redo key

key _sreplace kRPL %h KEY_SREPLACE, 0621, sent by shifted replace key

key_sright kRIT %i KEY_SRIGHT, 0622, sent by shifted right-arrow key

key_srsume kRES %j KEY_SRSUME, 0623, sent by shifted resume key

key_ssave kSAV !1 KEY_SSAVE, 0624, sent by shifted save key

key _ssuspend kSPD !2 KEY_SSUSPEND, 0625, sent by shifted suspend key

key_stab khts kT KEY_STAB, 0524, sent by set-tab key

key_sundo kUND !3 KEY_SUNDO, 0626, sent by shifted undo key

key_suspend kspd &7 KEY_SUSPEND, 0627, sent by suspend key

key_undo kund &8 KEY_UNDO, 0630, sent by undo key

key_up kcuul ku KEY_UP, 0403, sent by terminal up-arrow key

keypad_local nnkx ke Out of "keypad-transmit' , mode

keypa(Cxmit smkx ks Put terminal in "keypad-transmit' , mode

lab_ill lID 10 Labels on function key ill if not ill

lab31 1fl 11 Labels on function key fl if not fl

lab32 lf2 12 Labels on function key f2 if not f2
lab_t3 1t3 13 Labels on function key t3 if not t3

lab34 1f4 14 Labels on function key f4 if not f4

lab_f5 1f5 15 Labels on function key f5 if not f5

lab_f6 1f6 16 Labels on function key f6 if not f6

lab_f7 lf7 17 Labels on function key f7 if not f7

lab_fS lf8 18 Labels on function key fS if not fS

lab_19 lf9 19 Labels on function key 19 if not 19

lab_flO 1f1O la Labels on function key flO if not flO

labeCformat fin Lf Label format

March 12, 1990 TERMINF0-10

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description
name Code

labeCoff nnln LF Tum off soft labels

label_on smln LO Tum on soft labels

meta_off rmm mo Tum off "meta mode"

meta_on snun nun Tum on "meta mode" (8th bit)

micro_colunUI_address mbpa ZY Like column_address for micro adjustment t
micro_down mcudl ZZ Like cursor_down for micro adjustment

micro_left mcubl Za Like cursor _left for micro adjustment

micro_right mcufl Zb Like cursor Jight for micro adjustment

micro_row _address mvpa Zc Like row_address for micro adjustment t
micro_up mcuul Zd Like cursor_up for micro adjustment

newline nel nw Newline (behaves like cr followed by If)

order_oCpins puder Ze Matches software bits to print-head pins

ori&.-colors oc oc Set all color(-pair)s to the original ones

ori&-pair op op Set default color-pair to the original one

Pad3har pad pc Pad character (rather than null)

parm_dch dch IX: Delete #1 chars (G*)

parm_delete_line dl DL Delete #1 lines (G*)

parm_down_cursor cud DO Move down #1 lines. (G*)

parm_down_micro mcud Zf Like parm_doWD_cursor for micro adjust. (G*)

parm_ich ich IC Insert #1 blank chars (G*)

parm_index indn SF Scroll forward #1 lines. (G)

parm_inserUine il AL Add #1 new blank lines (G*)

parm_lefccursor cub LE Move cursor left #1 spaces (G)

parm_Iefcmicro mcub Zg Like parm_left_cursor for micro adjust. t
parm_righccursor cuf RI Move right #1 spaces. (G*)

parm_righcmicro mcuf Zh Like parm]ight_cursor for micro adjust. t
parm_rindex rin SR Scroll backward #1 lines. (G)

parm_up_ cursor cuu UP Move cursor up #1 lines. (G*)

parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust. t
pkey_key pfkey pk Prog funct key #1 to type string #2

pkey_local pfioc pI Prog funct key #1 to execute string #2

pkey_xmit pfx px Prog funct key #1 to xmit string #2

plab_nonn pin pn Prog label #1 to show string #2

princscreen mcO ps Print contents of the screen

prtr_non mc5p pO Tum on the printer for # 1 bytes

prtcoff mc4 pf Tum off the printer

prtr_on mc5 po Tum on the printer

pulse pulse PU Select pulse dialing

quick_dial qdial QD Dial phone number #1, without progress detection

remove_clock nnclk RC Remove time-of-day clock

repeat_char rep rp Repeat char #1 #2 times (G*)

rC'l-for_input rfi RF Send next input char (for ptys)

March 12, 1990 TERMINF0-11

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Termcap Description name Code

reseClstring rsl rl Reset terminal completely to sane modes

resec2slring rs2 r2 Reset terminal completely to sane modes

reseC3string rs3 r3 Reset terminal completely to sane modes

reset_file rf rf Name of file containing reset siring

restore_cursor rc rc Restore cursor to position of last sc

row_address vpa cv Vertical position absolute (0)

save_cursor sc sc Save cursor position

scro1l3orward ind sf Scroll text up

scroll_reverse ri sr Scroll text down
selecechar_set scs Zj Select character set t
secattributes sgr sa Define the video attributes (0) #1-4#9

set_background setb Sb Set current background color

seCbottom_margin smgb Zk Set bottom margin at current line

seCbottom_margin"'parm smgbp Z1 Set bottom margin at line #1 t
set_clock sclk SC Set time-of-day clock

seccolor"'pair scp sp Set current color-pair

secforeground setf Sf Set current foreground color 1

seUefcmargin smgl ML Set left margin at current line

set_lefcmargin_parm smglp Zm Set left margin at column #1 t
secrighcmargin smgr MR Set right margin at current column

secrighcmargin"'parm smgrp Zn Set right margin at column #1 t
seCtab hts st Set a tab in all rows, current column

seCtop_margin smgt Zo Set top margin at current line

seCtop_margin"'parm smgtp Zp Set top margin at line #1 t
secwindow wind wi Current window is lines #1-#2 cols #3-#4 (0)

starcbiUmage shim Zq Start printing bit image graphics t
start_char_seCdef scsd 'h: Start definition of a character set t
stop_biCimage rbim Zs End printing bit image graphics

stop_char_seedef rcsd Zt End definition of a character set

subscripccharacters subcs Zu List of • 'subscript-able" characters

superscripccharacters supcs Zv List of • 'superscript-able" characters

tab ht ta Tab to next 8-space hardware tab stop

these_C8use_cr docr Zw Printing any of these chars causes cr

to_status_line tsl ts 00 to status line, col #1 (0)

tone tone TO Select touch tone dialing

underline_char uc uc Underscore one char and move past it

up_half_line hu hu Half-line up (reverse 1/2 linefeed)
userl) uO uO User string 0
userl ul ul User string 1

user2 u2 u2 User string 4

user3 u3 u3 User siring 3

user4 u4 u4 User string 4

March 12, 1990 TERMINF0-12

TERMINFO (M)

Strings (cont.)

Variable

userS

uscr6

user7

userS

user9

wait_tone

xoff_character

xon_character

zero_motion

March 12, 1990

Cap-
name

u5

u6

u7

uS

u9

wait

xoffc

xone

zerom

TERMINFO (M)

Termcap Description
Code

u5 User string S

u6 User string 6

u7 User string 7

uS User string 8

u9 User string 9

WA Wait for dial tone

XF X-off character

XN X-on character

Zx No motion for the subsequent character

TERMINF0-13

TERMINFO (M) TERMINFO (M)

Booleans

Cap- Variable Tenncap Description name Code'

am auto_righcmargin am Terminal has automatic margins

bw auto_left_margin bw cubl wraps from column 0 to last column

ccc can_change cc Terminal can re-define existing color

chts hard_cursor HC Cursor is hard to see

cpix cpi_changes_res YF Changing character pitch changes resolution

cps princrate Ym Print rate in characters per second

crxm cccancels_micro_modem YB Using cr turns off micro mode

cwin create_window CW Define win #1 to go from #2,#3 to #4,#5

da memory_above da Display may be retained above the screen

daisy has-PfinC wheel YC Printer needs operator to change character set

dclle display_clock DK Display time-of-day clock

db memory_below db Display may be retained below the screen

dial diaCphone DI Dial phone number # 1

eo erase_overstrike eo Can erase overstrikes with a blank

eslok status_Iine_esc_ok es Escape can be used on the status line

gn generic_type gn Generic line type (e.g., dialup, switch)

hc hard_copy hc Hardcopy terminal

his hue_lightness_saturation hI Terminal uses only HLS color notation (fektronix)

hs has_status_line hs Has extra "status line"

hz tilde-81itch hz Hazeltine; can't print tilde n
in insercnull-8litch in Insert mode distinguishes nulls

km has_meta_key km Has a meta key (shift, sets parity bit)

Ipix Ipi_changes_res YG Changing line pitch changes resolution

mc5i prlr_silent

mir move_insercmode mi Safe to move while in insert mode

msgr move_standouCmode ms Safe to move in standout modes

npc no-pad_char NP Pad character doesn't exist

nrrmc non_rev _rmcup NR smcup does not reverse rmcup

nxon needs_xon_xoff nx Padding won't work, xonlxoffrequired

os over_strike os Terminal overstrikes on hard-copy terminal

sam semi_auto_righcmargin YE Printing in last column causes cr

ul transparencunderline ul Underline character overstrikes

xenl eat_newline-8litch xn Newline ignored after 80 columns (Concept)

xhp ceoCstandout-8litch xs Standout not erased by overwriting (hp)

xhpa col_addr-8litch YA Only positive motion for bpa/mhpa caps

xon xon_xoff xo Terminal uses xonlxoffhandshaking

xsb no_esc_ctlc xb Beehive (f1=escape, f2=ctrl C)

xt desuabs_magic_smso xt Destructive tabs, magic smso char (tl06l)

xvpa row_addr-8litch YO Only positive motion for vpa/mvpa caps

March 12, 1990 TERMINF0-14

TERMINFO (M) TERMINFO (M)

Numbers

Cap- Variable Tenncap Description name Code

bufsz buffeccapacity Ya Number of bytes buffered before printing

colors max_colors Co Maximum number of colors on the screen

cols columns co Number of columns in a line

cps prinuate Ym Average print rate in characters per second

it iniUabs it Tabs initially every # spaces

1h labeUteight 1h Number ofrows in each label

lines lines Ii Number of lines on a screen or a page

1m lines_oCmemory 1m Lines of memory if> HDes; 0 means varies

lw label_width lw Number of columns in each label

maddr max_micro_address Yd Maximum value in micro_",_address

mcs micro_coCsize Yf Character step size when in micro mode

mjump max_microjump Ye Maximum value in parm _ ",_micro

mls micro_line_size Yg Line step size when in micro mode

ncv no_color_video NC Video attributes that can't be used with colors

nlab num_labels Nl Number of labels on screen (start at 1)

npins numbecoCpins Yh Number of pins in print-head

orc outpucres_char Yi Horizontal resolution in units per character

orhi outpucres_horz_inch Yk: Horizontal resolution in units per inch

od outpucres_line Yj Vertical resolution in units per line

orvi outpuCres_ verCinch Yl Vertical resolution in units per inch

pairs max-pairs pa Maximum number of color-pairs on the screen

pb paddin8-baudJate pb Lowest baud rate where padding needed

spinh dot_horz_spacing Yc Spacing of dots horizontally in dots per inch

spinv doC vercspacing Yb Spacing of pins vertically in pins per inch

vt virtual_terminal vt Virtual terminal number (UNIX system)

widcs wide_char_size Yn Character step size when in double wide mode

wsl width_status_line ws Number of columns in status line

xmc magic_cookie~litch sg Number of blank characters left by smso or rmso

March 12, 1990 TERMINF0-15

TERMINFO (M) TERMINFO (M)

Strings

Cap-
Variable

Termcap
Description

name Code

acsc acs_chars ac Graphic charset pairs aAbBcC - def=vtloo

bel bell bl Audible signal (bell)

blink entecblinJcmode mb Thrn on blinking

bold enter_bold_mode md Thrn on bold (extra bright) mode

cbt back_tab bt Back tab

chr change_res_horz ZC Change horizontal resolution t
civis cursor_invisible vi Make cursor invisible

clear clear_screen cl Clear screen and horne cursor (*)

cmdch command_character CC Terminal settable emd character in prototype

cnorm cursor_normal ve Make cursor appear normal (undo vsfvl)

cpi change_char-pitch ZA Change number of characters per inch t
er carriage_return er Carriage return (*)

csnm char_seCnames Zy List of character set names

csr change_seroll_region cs Change to lines #1 through #2 (vt100) (0)

cub parnUefccursor LE Move cursor left #1 spaces (G)

cub1 cursor_left Ie Move left one space.

cud parm_down_cursor DO Move down #1 lines. (G*)

cuf parm_righccursor RI Move right #1 spaces. (G*)

cuf1 cursor_right nd Non-destructive space (cursor or carriage right)

cup cursocaddress em Move to row #1 col #2 (G)

cuu parm_up_cursor UP Move cursor up #1 lines. (G*)

cvr change_res_ vert ZD Change vertical resolution t
cvvis cursor_visible vs Make cursor very visible

deh parm_dch DC; Delete #1 chars (G*)

dch1 delete_character dc Delete character (*)

defc define_char ZE Define a character in a character set

dim enter_dim_mode mh Turn on half-bright mode

dl delete_line dll Delete line (*)

dl parm_delete_line DL Delete #1 lines (G*)

do cursor_down do Down one line

doer these_cause_er Zw Printing any of these chars causes cr

dsl dis_status_line ds Disable status line

ech erase3hars ec Erase #1 characters (G)

ed cleeos cd Clear to end of display (*)

el clr_eol ce Clear to end of line

ell clr_bol cb Clear to beginning of line, inclusive

enacs ena_acs eA Enable alternate character set

fI form_feed fI Hardcopy terminal page eject (*)

flash flash_screen vb Visible bell (may not move cursor)

fin label_format Lf Label format

fsl from_status_line fs Return from status line

hd down_halOine hd Half-line down (forward 1/2 linefeed)

home cursochome ho Home cursor (if no cup)

March 12, 1990 TERMINF0-16

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description
name Code

hook flash_hook th Flash the switch hook

hpa column_adchess ch Horizontal position absolute (0)

ht tab ta Tab to next 8-space hardware tab stop

hts seCtab 8t Set a tab in all rows. C\DTent column

hu up_halUine hu Half-line up (reverse l!2linefeed)

hup hangup HU Hang-up phone

ich pamUch IC Insert 1#1 blank chars (0*)

ich1 inserCcharacter ic Insert character

if iniUile if Name of initialization file

il pann_inserCline AL Add 1#1 new blank lines (0*)

ill inserCline al Add new blank line (*)

ind scroll_forward sf Scroll text up

indn pann_index SF Scroll forward #1 lines. (0)

inite initialize_color Ic Initialize the definition of color

initp initialize-pair Ip Initialize color-pair

invis enter_secure_mode mk Thrn on blank mode (characters invisible)

ip insert-padding ip Insert pad after character inserted (*)

iprog iniCprog iP Path name of program for initialization

is1 iniUstring i1 Terminal or printer initialization string

is2 iniC2string is Terminal or printer initialization string

is3 iniUstring i3 Terminal or printer initialization string

kBEO key_sbeg &9 KEY_SBEO. 0572. sent by shifted beginning key

kCAN key _scancel &0 KEY_SCANCEL. 0573. sent by shifted cancel key

kCMO key _scommand *1 KEY _SCOMMANO. 0574. sent by shifted command key

kCPY key_scopy *2 KEY _SCOPY. 0575. sent by shifted copy key

kCRT key _screate *3 KEY _SCREATE. 0576. sent by shifted create key

kDC key_sdc *4 KEY_SOC. 0577. sent by shifted delete-char key

kDL key_sdl *5 KEY_SOL. 0600. sent by shifted delete-line key

kEND key_send *7 KEY_SEND. 0602. sent by shifted end key

kEOL key_seol *8 KEY_SEOL. 0603. sent by shifted clear-line key

kEXT key_sexit *9 KEY _SEXIT. 0604. sent by shifted exit key

kFND key_sfind *0 KEY_SFIND. 0605. sent by shifted find key

kHLP key_shelp #1 KEY_SHELP. 0606. sent by shifted help key

kHOM key_shome #2 KEY_SHOME. 0607. sent by shifted home key

klC key_sic #3 KEY_SIC. 0610. sent by shifted input key

kLFT key_sleft #4 KEY_SLEFT. 0611. sent by shifted left-arrow key

kMOV key_smove b KEY_SMOVE. 0613. sent by shifted move key

kMSO key _smessage %a KEY_SMESSAOE. 0612. sent by shifted message key

kNXT key_snext %c KEY_SNEXT. 0614. sent by shifted next key

kOPT key _sopuons %d KEY_SOPTIONS. 0615. sent by shifted options key

kPRT key_sprint %f KEY_SPRINT. 0617. sent by shifted print key

kPRV key _sprevious %e KEY_SPREVIOUS. 0616. sent by shifted prev key

kRDO key_sredo %g KEY _SREDO. 0620. sent by shifted redo key

kRES key_srsume %j KEY _SRSUME. 0623. sent by shifted resume key

March 12, 1990 TERMINF0-17

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Teoncap
Description

name Code

kRIT key_sright %i KEY_SRIGHT, 0622, sent by shifted right-arrow key

kRPL key _sreplace %h KEY_SREPLACE, 0621, sent by shifted replace key

kSAV key_ssave !1 KEY _SSAVE, 0624, sent by shifted save key

kSPD key _ssuspend !2 KEY_SSUSPEND, 0625, sent by shifted suspend key

kUND key_sundo !3 KEY_SUNDO, 0626, sent by shifted undo key

kal key_al Kl KEY_AI, 0534, upper left of keypad

ka3 key_a3 K3 KEY_A3, 0535, upper right of keypad

kb2 key_b2 K2 KEY _B2, 0536, center of keypad

kbeg key_beg @1 KEY_BEG, 0542, sent by beg(inning) key

kbs key_backspace kb KEY_BACKSPACE, 0401, sent by backspace key

kcl key_cl K4 KEY_CI, 0531, lower left of keypad

kc3 key_c3 K5 KEY_C3, 0540, lower right of keypad

kcan key_cancel @2 KEY_CANCEL, 0543, sent by cancel key

kcbt key_btab kB KEY_BTAB, 0541, sent by back-tab key

kclo key_close @3 KEY_CLOSE, 0544, sent by close key

kclr key_clear kC KEY_CLEAR, 0515, sent by clear-screen or erase key

kcmd key_command @4 KEY_COMMAND,0545, sent by cmd (command) key

kcpy key_copy @5 KEY_COPY, 0546, sent by copy key

kcrt key_create @6 KEY_CREATE, 0541, sent by create key

kctab key_ctab kt KEY_crAB, 0525, sent by clear-tab key

kcubl key_left kl KEY _LEFf, 0404, sent by terminal left-arrow key

kcudl key_down kd KEY_DOWN, 0402, sent by terminal down-arrow key

kcufl key_right kr KEY_RIGHT, 0405, sent by terminal right-arrow key

kcuul key_up ku KEY_UP, 0403, sent by terminal up-arrow key

kdchl key_dc kD KEY_DC, 0512, sent by delete-character key

kdll key_dl kL KEY_DL, 0510, sent by delete-line key

ked key_eos ked KEY_EOS, 0516, sent by clear-to-end-of-screen key

kel key_eol kE KEY_EOL, 0511, sent by clear-to-end-of-line key

kend key_end @1 KEY_END, 0550, sent by end kee

kent key_enter @8 KEY_ENTER, 0521, sent by enter/send key

kext key_exit @9 KEY_EXIT, 0551, sent by exit key

kID key_fO kO KEY_F(O), 0410, sent by function key fO

kfl key_fl k1 KEY _F(C), 0411, sent by function key f1

kflO key_flO k; KEY_F(ADM). 0422. sent by function key flO

kfll key311 F1 KEY_F(ADM), 0423, sent by function key f11

kf12 key312 F2 KEY_F(ADM), 0424, sent by function key f12

kfl3 key313 F3 KEY_F(ADM), 0425, sent by function key f13

kfl4 key_fl4 F4 KEY_F(ADM). 0426, sent by function key f14

kfl5 key_fl5 F5 KEY_F(ADM), 0421, sent by function key f15

kf16 key316 F6 KEY_F(ADM), 0430, sent by function key f16

kf11 key_f11 F1 KEY _F(ADM), 0431, sent by function key f11

kfl8 key_fl8 F8 KEY _F(ADM), 0432, sent by function key f18

kf19 key_f19 F9 KEY_F(ADM), 0433, sent by function key f19

kf2 key_fl k2 KEY_F(S), 0412, sent by function key fl

March 12, 1990 TERMINF0-18

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description name Code
kflO key_flO FA KEY _F(20), 0434, sent by function key flO
kfll key_fll FB KEY_F(21), 0435, sent by function key fll
kfl2 key_fl2 FC KEY_F(22), 0436, sent by function key fl2
kf23 key_fl3 FD KEY_F(23), 0437, sent by function key fl3
kf24 key_f24 FE KEY_F(24), 0440, sent by function key f24
kf25 key_f25 FF KEY_F(25), 0441, sent by function key f25
kfl6 key_fl6 FO KEY _F(26), 0442, sent by function key fl6
kfl7 key_fl7 FH KEY _F(27), 0443, sent by function key fl7
kfl8 key_fl8 FI KEY _F(28), 0444, sent by function key fl8
kfl9 key_fl9 FJ KEY _F(29), 0445, sent by function key fl9
kf3 key_13 k3 KEY_F(S), 0413, sent by function key 13
kf30 key_130 FK KEY_F(S), 0446, sent by function key 130
kf31 key_131 FL KEY_F(S), 0447, sent by function key 131
kf32 key_132 FM KEY _F(S), 0450, sent by function key 02
kf33 key_133 FN KEY_F(ADM), 0451, sent by function key f13
kf34 key_04 FO KEY _F(S), 0452, sent by function key 04
kf35 key_05 FP KEY _F(S), 0453, sent by function key 05
kf36 key_136 FQ KEY_F(S), 0454, sent by function key 06
kf37 key_07 FR KEY _F(S), 0455, sent by function key 07
k08 key_138 FS KEY _F(S), 0456, sent by function key 08
kf39 key_139 PI' KEY_F(S), 0457, sent by function key 139
kf4 key_f4 k4 KEY_F(F), 0414, sent by function key f4
kf40 key_f40 FU KEY_F(40), 0460, sent by function key f40
kf41 key_f41 FV KEY_F(41), 0461, sent by function key f41
kf42 key_f42 FW KEY_F(42), 0462, sent by function key f42
kf43 key_f43 FX KEY_F(43), 0463, sent by function key f43
kf44 key_f44 FY KEY_F(44), 0464, sent by function key f44
kf45 key_f45 FZ KEY_F(45), 0465, sent by function key f45
kf46 key_f46 Fa KEY_F(46), 0466, sent by function key f46
kf47 key_f47 Fb KEY_F(47), 0467, sent by function key f47
kf48 key_f48 Fc KEY_F(48), 0470, sent by function key f48
kf49 key_f49 Fd KEY_F(49), 0471, sent by function key f49
kf5 key_fS k5 KEY_F(M), 0415, sent by function key fS
kf50 key_fSO Fe KEY _F(50), 0472, sent by function key fSO
kf51 key_f51 Ff KEY_F(51), 0473, sent by function key fSl
kf52 key_fS2 Fg KEY _F(52), 0474, sent by function key fS2
kf53 key_fS3 Fh KEY_F(53), 0475, sent by function key fS3
kf54 key_fS4 Fi KEY_F(54), 0476, sent by function key f54
kf55 key_fS5 Fj KEY_F(55), 0477, sent by function key f55
kf56 key_fS6 Fk KEY_F(56), 0500, sent by function key fS6
kfS7 key_fS7 F1 KEY_F(57), 0501, sent by function key fS7
kfS8 key_fS8 Fm KEY_F(58), 0502, sent by function key f58
kf59 key_fS9 Fn KEY _F(59), 0503, sent by function key f59
kf6 key_f6 k6 KEY_F(6), 0416, sent by function key f6

March 12, 1990 TERMINF0-19

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description
name Code

kf60 key_f60 Po KEY _F(60), 0504, sent by function key f60

kf61 key_f61 Fp KEY_F(61), 0505, sent by function key f61

kf62 key_f62 Fq KEY_F(62), 0506, sent by function key f62

kf63 key_f63 Fr KEY_F(63), 0507, sent by function key f63

ld7 key_f7 k7 KEY_F(7), 0417, sent by function key f7

kf8 key38 k8 KEY_F(8), 0420, sent by function key f8

ld9 key_19 k9 KEY_F(9), 0421, sent by function key 19

kfnd key_find @O KEY_FIND, 0552, sent by find key

kblp key_help %1 KEY_HELP,0553, sent by help key

khome key_home kh KEY_HOME, 0406, sent by home key

khts key_stab }{f KEY_STAB, 0524, sent by set-tab key

kich1 key_ic ld KEY_IC, 0513, sent by ins-char/enter ins-mode key

kill key_il kA KEY _IL, 0511, sent by insert-line key

kind key_sf kF KEY_SF, 0520, sent by scroll-forward/down key

kll key_ll kH KEY _LL, 0533, sent by home-down key

kmov key_move ty04 KEY_MOVE, 0556, sent by move key

kmrk key_mark %2 KEY_MARK, 0554, sent by mark key

kmsg key_message %3 KEY_MESSAGE, 0555, sent by message key

knp key_npage leN KEY_NPAGE,0522, sent by next-page key

knxt key_next %5 KEY_NEXT, 0557, sent by next-object key

kopn key_open %6 KEY_OPEN, 0560, sent by open key

kopt key_options %7 KEY_OPTIONS, 0561, sent by options key

kpp keY-PPllge kP KEY _PPAGE, 0523, sent by previous-page key

kprt key_print %9 KEY_PRINT, 0532, sent by print or copy key

kprv key -Pl'evious %8 KEY_PREVIOUS, 0562, sent by previous-object key

krdo key_redo %0 KEY _REOO, 0563, sent by redo key

kref key_reference &1 KEY_REFERENCE, 0564, sent byref(erence) key

kres key_resume &5 KEY_RESUME, 0570, sent by resume key

krfr key_refresh &2 KEY_REFRESH, 0565, sent by refresh key

kri key_sr kR KEY _SR, 0521, sent by scroll-backward/up key

krmir key_eic kM KEY_EIC, 0514, sent by rmir or smir in insert mode

krpl key_replace &3 KEY_REPLACE, 0566, sent by replace key

krst key_restart &4 KEY _RESTART, 0567, sent by restart key

ksav key_save &6 KEY_SAVE, 0571, sent by save key

kslt key_select *6 KEY_SELECT, 0601, sent by select key

kspd key_suspend &7 KEY_SUSPEND, 0627, sent by suspend key

ktbc key_catab ka KEY_CATAB, 0526, sent by clear-alI-tabs key

kund key_undo &8 KEY_UNOO, 0630, sent by undo key

lID lab_ID 10 Labels on function key ID if not ID

1f1 lab_fl 11 Labels on function key fl if not fl

1f1O lab_flO la Labels on function key fl 0 if not fl 0

lf2 labJl 12 Labels on function key f2 if not f2

lf3 lab_1'3 13 Labels on function key 1'3 if not 1'3

1f4 lab_f4 14 Labels on function key f4 if not f4

March 12, 1990 TERMINFO-20

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable
Cap- Termcap Description
name Code

If5 lab_fS 15 Labels on function key fS if not fS

If6 lab_f6 16 Labels on function key f6 if not f6

If7 lab_f7 17 Labels on function key f7 if not f7

IfB lab_fB 18 Labels on function key fB if not fB

119 lab_19 19 Labels on function key 19 if not 19

II cursor_to_ll 11 Last line. first column (if no cup)

Ipi change_line..Jlitch ZB Change number of lines per inch t
rna max_attributes rna Maximum combined video attributes terminal can display

mcO princscreen ps Print contents of the screen

mc4 prtcoff pf ThIn off the printer

mc5 prtcon po ThIn on the printer

mc5p prtr_non pO Tum on the printer for # 1 bytes

meub parm_left_miero Zg Like pann_Ieft_ cursor for micro adjust. t
meubl micro_left Za Like cursor Jeft for micro adjustment

meud parm_down_miero Zf Like pann_doWD_cursor for micro adjust. (0*)

meudl micro_down ZZ Like cursor_down for micro adjustment

meuf parmJighcmiero Zh Like pann]lght_cursor for micro adjust. t
meufl micro_right Zb Like cursor]ight for micro adjustment

mcuu parm_up_micro Zi Like pann _up_cursor for micro adjust. t
mcuul micro_up Zd Like cursor_up for micro adjustment

mge clear_margins MC Clear all margins (top, bottom, and sides)

mbpa micro_column_address ZY Like column_address for micro adjustment t
mrcup cursocmem_address CM Memory relative cursor addressing (0)

mvpa micro_row _address Zc Like row_address for micro adjustment t
ndscr non_descscrolCregion ND Scrolling region is non-destructive

nel newline nw Newline (behaves like cr followed by If)

oc ori&....colors oe Set all color(-pair)s to the original ones

op ori&....pair op Set default color-pair to the.original one

pad pad3har pc Pad character (rather than null)

pause fixed..Jlause PA Pause for 2-3 seconds

pfkey pkey_key pk Prog funct key #1 to type string #2

pfioc pkey_local pI Prog funct key #1 to execute string #2

pfx pkey_xmit px Prog funet key #1 to xmit string #2

pin plab_nonn pn Prog label #1 to show string #2

porder order_oCpins Ze Matches software bits to print-head pins

prot enter..,protected_mode mp Tum on protected mode

pulse pulse PU Select pulse dialing

qdial quick_dial QD Dial phone number #1, without progress detection

rbim stop_bicimage Zs End printing bit image graphics

rc restore_cursor re Restore cursor to position of last se

resd stop_ehar_seCdef Zt End definition of a character set

rep repeat_char rp Repeat char #1 #2 times (0*)

rev enter_reverse_mode mr ThIn on reverse video mode

rf reseCfile rf Name of file containing reset string

March 12, 1990 TERMINF0-21

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description name Code

r6 teq..focinput RF Send next input char (for ptys)

ri scroll_reverse sr Scroll text down

rin parm_rindex SR Scroll backward #1 lines. (0)

ritm exiUtalics_mode ZR Disable italics

rIm exiUeftwarcCmode ZS Enable rightward (nonnal) carriage motion

rmacs exiCalccharsecmode ae End alternate character set

rmam exiCam_mode RA Turn off automatic margins

rmclk remove_clock RC Remove time-of-day clock

rmcup exicca_mode te String to end programs that use cup

rmdc exit_delete_mode ed End delete mode

rmicm exicmicro_mode zr Disable micro motion capabilities

rmir exicinsert_mode ei End insert mode

rmkx keypad_local ke Out of "keypad-transmit' , modey

rmln labeCoff LF Thrn off soft labels

rmm meta_off mo Turn off "meta mode"

rmp char"'padding rP Like ip but when in replace mode

rmso exiCstandoucmode se End standout mode

rmul exiCunderlineJIlode ue End underscore mode

rmxon exicxon_mode RX Turn offxonlxoffhandshaking

rsl reseClstring rl Reset terminal completely to sane modes

rs2 resec2string 12 Reset terminal completely to sane modes

rs3 reseC3string r3 Reset terminal completely to sane modes

rshm exicshadow _mode ZU Disable shadow printing

rsubm exiCsubscripcmode ZV Disable subscript printing

rsupm exicsuperscripcmode ZW Disable superscript printing

rum exicupward_mode ZX Enable downward (normal) carriage motion

rwidm exiCdoublewide_mode ZQ Disable double wide printing

sbim start_bicimage Zq Start printing bit image graphics t
sc save_cursor sc Save cursor position

sclk secclock SC Set time-of-day clock

scp set_color-pair sp Set current color-pair

scs seleccchar_set Zj Select character set t
scsd starcchacseCdef Zr Start definition of a character set t
sdrfq entecdrafcquality ZG Set draft quality print

setb set_background Sb Set current background color

setf secforeground Sf Set current foreground color

sgr set_attributes sa Define the video attributes #1-#9 (0)

sgrO exicattribute_mode me Turn off all attributes

sitm enter_italics_mode ZH Enable italics

s1m enter_leftward_mode ZI Enable leftward carriage motion

smacs enter_alCcharseCmode as Start alternate character set

smam enter_aM_mode SA Tum on automatic margins

smcup enter_ca_mode ti String to begin programs that use cup

smdc enter_delete_mode dm Delete mode (enter)

March 12, 1990 TERMINF0-22

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable Cap- Tenncap Description name Code

smgb seUX>ttom_margin Zk Set bottom margin at current line

smgbp seCbottom_margin...,parm Zl Set bottom margin at line # 1 t
smgl seUefcmargin ML Set left margin at current line

smglp seUefcmargin_parm Zm Set left margin at column #1 t
smgr setJighcmargin MR Set right margin at current column

smgrp secrighcmargin...,parm Zn Set right margin at column #1 t
smgt seCtop_margin Zo Set top margin at current line

smgtp seCtop_margin-parm Zp Set top margin at line #1 t
smicm enter_micro_mode ZJ Enable micro motion capabilities

smir enter_insert_mode im Insert mode (enter)

smkx keypa(Cxmit ks Put terminal in "keypad-transmit' , mode

smln label_on LO Thm on soft labels

smm meta_on mm Tum on "meta mode" (Sth bit)

smso enter_standoucmode so Begin standout mode

smxon enter_xon_mode SX Tum on xonlxofIhandshaking

snlq enter_neacletter_quality ZK Set near-letter quality print
snrmq enter_normal_quality ZL Set normal quality print

sshm enter_shadow _mode ZM Enable shadow printing
ssubm enter_subscripcmode ZN Enable SUbscript printing
ssupm enter_superscripcmode ZO Enable superscript printing

subes subscripccharacters Zu List of • 'subscript-able " characters

sum enter_upward_mode ZP Enable upward carriage motion

supcs superscripccharacters Zv List of • 'superscript-able" characters

swidm enter_doublewide_mode ZF Enable double wide printing

tbe clear_aU_tabs ct Clear all tab stops

tone tone TO Select touch tone dialing

tsl to_status_line ts 00 to status line, col #1 (0)

uO userO uO User string 0
ul userl ul User string 1

u2 user2 u2 User string 2

u3 user3 u3 User string 3

u4 user4 u4 User string 4

uS user5 uS User string 5

u6 user6 u6 User string 6

u7 user7 u7 User string 7

u8 userS u8 User string S

u9 user9 u9 User string 9

March 12, 1990 TERMINF0-23

TERMINFO (M) TERMINFO (M)

Strings (cont.)

Variable
Cap- Tenncap

Description
Code name

uc underline_char uc Underscore one char and move past it

up cursocup cuu1 Upline (cursor up)

vpa row_address cv Vertical position absolute (G)

wait waiCtone WA Wait for dial tone

wind set_window wi Current window is lines #1-#2 cols #3-#4 (G)

wingo goto_window WG Got to window #1

wnum maximum_windows MW Maximum number of definable windows

xoft'c xofCcharacter XF X-off character

xonc xon_character XN X-on character

zerom zero_motion Zx No motion for the subsequent character

Sample Entry

The following entry, which describes the AT&T 610 tenninal, is
among the more complex entries in the terminfo file as of this writing.

610 I 610bct I ATT610 I att610 I ~&T 610; SO column; 9Skey keyboaDd
am, eslok, hs, mir, msgr, xenl, xon,
cols'SO, it'S, lh'2, lines'24, lw'S, nlabfS, wsl'SO,
acsc="aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{ I I }}--,
bel=~G, blink=\E [5m, bold=\E [1m, cbt=\E [Z,
civis=\E[?251, clear=\E[H\E[J, cnODm=\E[?25h\E[?121,
cr=\r, csr=\E[%i%Pl%d;%p2%dr, cub=\E[%Pl%dD, cubl=\b,
cud=\E [%P1%dB, cudl=\E [B, cuf=\E [%P1 %cC, cuf1=\E [C,
cup=\E[%i%P1%d;%p2%dH, cuu=\E[%P1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%P1%dP, dch1=\E[P, dimF\E[~
dl=\E[%P1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[lK,
flash=\E[?5h$<200>\E[?51, fsl=\ES, home=\E[H, ht=\t,
ich=\E[%Pl%cte, il=\E[%P1%dL, il1=\E[L, ind=\ED,
invis=\E[8m,
is1=\E[S;0 I \E[?3;4;5;13;151\E[13;201\E[?7h\E[12h\E(B\E)0,
is2=\E[Qm~O, is3=\E(B\E)O, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=\b, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kf1=\EOc, kflO=\ENp,
kfll=\ENq, kf12=\ENr, kfl3=\ENs, kf14=\ENt, kf2=\EO::i,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kfS=\EOj, kf9=\ENO, khome=\E [H, kind=\E [5, kri=\E [T,
11=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfx=\E [%P1%d; %P2%1%02dq\s\s\sF%p1%ld\s\s\s\s\s

\s\s\s\s\s\s%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\ES, rev=\E[7~
ri=\EM, nnacs=~O, nnir=\E [41, IllIl.n=\E [2p, nnso=\E [~
mul=\E[~ rs2=\Ec\E[?31, sc=\E7,
sgr=\E[0%?%P6%ti1%i%?%p5%ti2%i%?%p2%ti4%;%?%P4%ti5%i

%?%P3%P1% I %ti7%i%?%p7%tiS%i~?%p9%t~N%e~O%i,
sgrO=\E[m~O, smacs=~N, smir=\E[4h, smln=\E[p,
smso=\E[7~ smul=\E[~ tsl=\E7\E[25i%i%pl%dx,

Types of Capabilities in the Sample Entry

The sample entry shows the formats for the three types of terminfo
capabilities listed: Boolean, Numeric, and String. The names of
Boolean capabilities are often listed as abbreviations or acronyms,

March 12, 1990 TERMINFO-24

TERMINFO (M) TERMINFO (M)

such as am (short for "automatic margins") in the sample entry.
("Automatic margins" is a short description of an automatic return and
linefeed when the end of a line is reached.)

Numeric capabilities are followed by the character '#' and then the
value. Thus, in the sample, cols (which shows the number of columns
available on a tenninal) gives the value 80 for the AT&T 610. (Values
for numeric capabilities may be specified in decimal, octal or hexa­
decimal, using nonnal C conventions.)

Finally, string-valued capabilities such as el (clear to end of line
sequence) are listed by a two- to five-character capname, an '=', and a
string ended by the next occurrence of a comma. A delay in mil­
liseconds may appear anywhere in such a capability, enclosed in $< •• >
brackets, as in el=\EK$<3>. Padding characters are supplied by
tputs(). The delay can be any of the following: a number (5), a num­
ber followed by a '*' (5*), a number followed by a 'I' (5/), or a num­
ber followed by both (5*/). A '*' shows that the padding required is
proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. (In the case of
insert characters, the factor is still the number of lines affected. This
is always 1 unless the terminal has in and the software uses it.) When
a '*' is specified, it is sometimes useful to give a delay of the fonn 3.5
to specify a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

A '/' indicates that the padding is mandatory. Absence of a '/' is not
shown, if the terminal has xon defined. Padding infonnation is
advisory and will be used only for cost estimates or when the terminal
is in raw mode. Mandatory padding will be transmitted regardless of
the setting of xon.

A number of escape sequences are provided in the string valued capa­
bilities for easy encoding of characters there. Both \E and \e map to
an ESCAPE character, AX maps to a control-x for any appropriate X,
and the sequences \n, \1, \r, \t, \b, \f, and \s give a newline, linefeed,
return, tab, backspace, fonnfeed, and space, respectively. Other
escapes include: \A for caret (A); \\ for backslash (\); \, for comma
(,); \: for colon (:); and \0 for null. (\0 will actually produce \200,
which does not terminate a string but behaves as a null character on

. most terminals.) Finally, characters may be given as three octal digits
after a backslash (e.g., \123).

Sometimes individual capabilities must be commented out. To do
this, put a period before the capability name. For example, see the
second ind in the example above. Note that capabilities are defined in
a left-to-right order and, therefore, a prior definition will override a
later definition.

March 12, 1990 TERMINFO-25

TERMINFO (M) TERMINFO (M)

Preparing Descriptions

The most effective way to prepare a terminal description is by imitat­
ing the description of a similar terminal in terminfo and to build up a
description gradually, using partial descriptions with vi(C) to check
that they are correct. Be aware that a very unusual terminal may
expose deficiencies in the ability of the terminfo file to describe it or
the inability of vi(C) to work with that terminal. To test a new termi­
nal description, set the environment variable TERMINFO to a path­
name of a directory containing the compiled description you are work­
ing on and programs will look there rather than in lusrlliblterminfo.
To get the padding for insert-line correct (if the terminal manufacturer
did not document it) a severe test is to comment out xon, edit a large
file at 9600 baud with vi(C), delete 16 or so lines from the middle of
the screen, then hit the u key several times quickly. If the display is
corrupted, more padding is usually needed. A similar test can be used
for insert-character.

Section I-I: Basic Capabilities

The number of columns on each line for the terminal is given by the
eols numeric capability. If the terminal has a screen, then the number
of lines on the screen is given by the lines capability. If the terminal
can clear its screen, leaving the cursor in the home position, then this
is· given by the clear string capability. If the terminal overstrikes
(rather than clearing a position when a character is struck over) then it
should have the os capability. If the terminal is a printing terminal,
with no soft copy unit, give it both he and os. (os applies to storage
scope terminals, such as the Tektronix 4010 series, as well as hard­
copy and APL terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as cr. (Normally this will be
carriage return, control M.) If there is a code to produce an audible
signal (such as a bell or a beep), specify it as bel. If the terminal uses
the xon-xoff flow-control protocol, like most terminals, specify xon.

If there is a code to move the cursor one position to the left (such as
backspace), that capability should be given as cubl. Similarly, codes
to move to the right, up, and down should be given as cufl, euu1, and
eudl. These local cursor motions should not alter the text they pass
over; for example, you would not normally use "cufl=\S" because the
space would erase the character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a screen terminal.
Programs should never attempt to backspace around the left edge,
unless bw is given, and should never attempt to go up locally off the
top. In order to scroll text up, a program will go to the bottom left
corner of the screen and send the ind (index) string.

March 12, 1990 TERMINF0-26

TERMINFO (M) TERMINFO (M)

To scroll text down, a program goes to the top left comer of the screen
and sends the ri (reverse index) string. The strings ind and ri are
undefined when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin
which have the same semantics as ind and ri except that they take one
parameter, and scroll that many lines. They are also undefined except
at the appropriate edge of the screen.

If the terminal wraps around to the beginning of the next line when it
reaches the right margin, then it should have the am capability. The
am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a
cun from the last column. The only local motion which is defined
from the left edge is if bw is given, then a cub 1 from the left edge will
move to the right edge of the previous row. If bw is not given, the
effect is undefined. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch selectable
automatic margins, the terminfo file usually assumes that this is on;
i.e., am. If the terminal has a command which moves to the first
column of the next line, that command can be given as nel (newline).
It does not matter if the command clears the remainder of the current
line, so if the terminal ·has no cr and If it may still be possible to craft
a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals.
Thus the model 33 teleprinter is described as:

he, os, xon
eols#72,
bel=AG, er=\r, eudl=\n, ind=\n,

while the Lear Siegler ADM-3 is described as:

ad.m3 I lsi adm3,
am, bel=AG, elear=AZ, eols#80, er=AM, eubl=AH,
eudl=AJ, ind=AJ, lines#24,

Section 1-2: Parameterized Strings

Cursor addressing and other strings requiring parameters in the termi­
nal are described by a parameterized string capability, with print/(S)­
like escapes (%x) in it. For example, to address the cursor, the cup
capability is given, using two parameters: the row and column to
address to. (Rows and columns are numbered from zero and refer to
the physical screen visible to the user, not to any unseen memory.) If
the tenninal has memory relative cursor addressing, that can be indi­
cated by mrcup.

The parameter mechanism uses a stack and special % codes to mani­
pulate it in the manner of a Reverse Polish Notation (postfix) calcula­
tor. Typically a sequence will push one of the parameters onto the

March 12, 1990 TERMINF0-27

TERMINFO (M) TERMINFO (M)

stack and then print it in some format. Often more complex opera­
tions are necessary. Binary operations are in postfix form with the
operands in the usual order. That is, to get x-5 one would use
%gx%{S}%-.

The % encodings have the following meanings:

%% outputs '%'
%[[:]flags][width[.precision]][doxXs]

as in printf, flags are [-+#] and space
%c print poP() gives %c

%p[I-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%1

push;th parm
set variable [a-z] to poP()
get variable [a-z] and push it
push char constant c
push decimal constant nn
push strlen(pop(»

%+%-%* %/%m

%&%1%"
%=%>%<
%A%O
%1%-

arithmetic (%m is mod): push(popO op poP(»
bit operations: push(pop() op poP(»

%i

logical operations: push(poP() op poP(»
logical operations: and, or
unary operations: push(op poP(»
(for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else-if's are possible ala Algol 68:
%? c

I
%t b

l
%e c

2
%t b2 %e c

3
%t b

3
%e c4 %t b4 %e bs%;

c. are conditions, b. are bodies.
1 1

If the "-" flag is used with "%[doxXs]", then a colon (:) must be
placed between the "%" and the "-" to differentiate the flag from the
binary "%-" operator, .e.g., "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and
column 12, needs to be sent \E&al2c03Y padded for 6 milliseconds.
Note that the order of the rows and columns is inverted here, and that
the row and column are zero-padded as two digits. Thus its cup capa­
bility is "cup=\E&a%p2%2.2dc%pl %2.2dY$<6>, '.

The Micro-Term ACf-N needs the current row and column sent pre­
ceded by a AT, with the row and column simply encoded in binary,
"cup=AT%pl %c%p2%c". Terminals which use "%c" need to be
able to backspace the cursor (cubl), and to move the cursor up one
line on the screen (cuul). This is necessary because it is not always
safe to transmit \n, AD, and \r, as the system may change or discard
them. (The library routines dealing with terminfo set tty modes so that

March 12, 1990 TERMINF0-28

TERMINFO (M) TERMINFO (M)

tabs are never expanded, so \t is safe to send. This turns out to be
essential for the Ann Arbor 4080.) .

A final example is the LSI ADM-3a, which uses row and column offset
by a blank character, thus
"cup=\E=%pl %'\s'%+%c%p2%'\s '%+%c". After sending "\E=",
this pushes the first parameter, pushes the ASCII value for a space (S),
adds them (pushing the sum on the stack in place of the two previous
values), and outputs that value as a character. Then the same is done
for the second parameter. More complex arithmetic is possible using
the stack.

Section 1-3: Cursor Motions

If the tenninal has a fast way to home the cursor (to very upper left
comer of screen) then this can be given as home; similarly a fast way
of getting to the lower left-hand comer can be given as II; this may
involve going up with cuul from the home position, but a program
should never do this itself (unless II does) because it can make no
assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the
top left comer of the screen, not of memory. (Thus, the \EH sequence
on Hewlett-Packard terminals cannot be used for home without losing
some of the other features on the terminal.)

If the tenninal has row or column absolute-cursor addressing, these
can be given as single parameter capabilities hpa (horizontal position
absolute) and vpa (vertical position absolute). Sometimes these are
shorter than the more general two-parameter sequence (as with the
Hewlett-Packard 2645) and can be used in preference to cup. If there
are parameterized local motions (e.g., move n spaces to the right)
these can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily useful if
the terminal does not have cup, such as the Tektronix 4025.

Section 1-4: Area Clears

If the tenninal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as el. If the
tenninal can clear from the beginning of the line to the current posi­
tion inclusive, leaving the cursor where it is, this should be given as
ell. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. ed is only defined from
the first column of a line. (Thus, it can be simulated by a request to
delete a large number of lines, if a true ed is not available.)

March 12, 1990 TERMINF0-29

TERMINFO (M) TERMINFO (M)

Section 1-5: InsertIDelete Line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as ill; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as dll; this is done only from the first position on
the line to be deleted. Versions of ill and dll which take a single
parameter and insert or delete that many lines can be given as iI and
dl.

If the terminal has a settable destructive scrolling region (like the
VTl (0) the command to set this can be described with the csr capa­
bility' which takes two parameters: the top and bottom lines of the
scrolling region. The cursor position is, alas, undefined after using
this command. It is possible to get the effect of insert or delete line
using this command -- the sc and rc (save and restore cursor) com­
mands are also useful. Inserting lines at the top or bottom of the
screen. can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster even on terminals with those
features.

To determine whether a terminal has destructive scrolling regions or
non-destructive scrolling regions, create a scrolling region in the mid­
dle of the screen, place data on the bottom line of the scrolling region,
move the cursor to the top line of the scrolling region, and do a reverse
index (ri) followed by a delete line (dll) or index (ind). If the data
that was originally on the bottom line of the scrolling region was
restored into the scrolling region by the dll or ind, then the terminal
has non-destructive scrolling regions. Otherwise, it has destructive
scrolling regions. Do not specify csr if the terminal has non­
destructive scrolling regions, unless ind, ri, indn, rin, dl, and dll all
simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory,
which all commands affect, it should be given as the parameterized
string wind. The four parameters are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capabil­
ity should be given; if display memory can be retained below, then db
should be given. These indicate that deleting a line or scrolling a full
screen may bring non-blank lines up from below or that scrolling back
with ri may bring down non-blank lines.

Section 1-6: InsertIDelete Character

There are two basic kinds of intelligent terminals with respect to
insert/delete character operations which can be described using -
terminfo. The most common insert/delete character operations affect
only the characters on the current line and shift characters off the end

March 12, 1990 TERMINF0-30

TERMINFO (M) TERMINFO (M)

of the line rigidly. Other terminals, such as the Concept 100 and the
Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to
two untyped blanks. You can determine the kind of terminal you have
by clearing the screen and then typing text separated by cursor
motions. Type "abe der' using local cursor motions (not spaces)
between the abc and the deC. Then position the cursor before the abe
and put the terminal in insert mode. If typing characters causes the
rest of the line to shift rigidly and characters to falloff the end, then
your terminal does not distinguish between blanks and untyped posi­
tions. If the abe shifts over to the deC which then move together
around the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability in,
which stands for "insert null". While these are two logically separate
attributes (one line versus multiline insert mode, and special treatment
of untyped spaces) no terminals whose insert mode cannot be
described with the single attribute have been seen.

terminfo can describe both terminals which have an insert mode and
terminals which send a simple sequence to open a blank position on
the current line. Give as smir the sequence to get into insert mode.
Give as rmir the sequence to leave insert mode. Now give as iehl
any sequence needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not give ichl;
terminals which send a sequence to open a screen position should give
it here. (If your terminal has both, insert mode is usually preferable to
iehl. Do not give both unless the terminal actually requires both to be
used in combination.) If post-insert padding is needed, give this as a
number of milliseconds padding in ip (a string option). Any other
sequence which may need to be sent after an insert of a single charac­
ter may also be given in ip. If your terminal needs both to be placed
into an 'insert mode' and a special code to precede each inserted char­
acter, then both smir/rmir and iehl can be given, and both will be
used. The ieh capability, with one parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert
mode, give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the inser­
tion position). If your terminal allows motion while in insert mode
you can give the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals (notably
Datamedia's) must not have mir because of the way their insert mode
works.

Finally, you can specify dehl to delete a single character, deh with
one parameter, n, to delete n characters, and delete mode by giving
smde and rmde to enter and exit delete mode (any mode the terminal
needs to be placed in for dehl to work).

March 12, 1990 TERMINF0-31

TERMINFO (M) TERMINFO (M)

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells

Your terminal may have one or more kinds of display attributes that
allow you to highlight selected characters when they appear on the
screen. The following display modes (shown with the names by which
they are set) may be available: a blinking screen (blink), bold or
extra-bright characters (bold), dim or half-bright characters (dim),
blanking or invisible text (invis), protected text (prot), a reverse­
video screen (rev), and an alternate character set (smacs to enter this
mode and rmacs to exit it). (If a command is necessary before you
can enter alternate character set mode, give the sequence in enacs or
"enable alternate-character-set" mode.) Thming on any of these
modes singly mayor may not tum off other modes.

If you set any display attributes for highlighting, you will also want to
provide the capability for turning them off. To do so, set sgrO.

You should choose one display method as standout mode [see
curses(S)] and use it to highlight error messages and other kinds of
text to which you want to draw attention. Choose a form of display
that provides strong contrast but that is easy on the eyes. (We recom­
mend reverse-video plus half-bright or reverse-video alone.) The
sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, as the TVI 912 and
Teleray 1061 do, then xmc should be given to tell how many spaces
are left.

Codes to begin underlining and end underlining can be given as smul
and rmul , respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such as
the Micro-Term MIME, this can be given as uc.

For historical reasons, some programs interpret rmso, rmul to mean
"tum off all attributes," not just standout and underline, respectively.

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking nine parameters. Each
parameter is either 0 or non-zero, as the corresponding attribute is on
or off. The nine parameters are, in order: standout, underline, reverse,
blink, dim, bold, blank, protect, alternate character set. Not all modes
need to be supported by sgr; only those for which corresponding
separate attribute commands exist should be supported. (See the
example at the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which affect
the display algorithm rather than having extra bits for each character.

March 12, 1990 TERMINF0-32

TERMINFO (M) TERMINFO (M)

Some terminals, such as the Hewlett-Packard 2621, automatically
leave standout mode when they move to a new line or the cursor is
addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline, unless the msgr capa­
bility, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement), then this can be given as flash; it must
not move the cursor. A good flash can be done by changing the screen
into reverse video, pad for 200 ms, then return the screen to normal
video.

If the cursor needs to be made more visible than normal when it is not
on the bottom line (to make, for example, a non-blinking underline
into an easier to find block or blinking underline) give this sequence as
cvvis. The boolean chts should also be given. If there is a way to
make the cursor completely invisible, give that as civis. The capabil­
ity cnorm should be given which undoes the effects of either of these
modes.

If the terminal needs to be in a special mode when running a program
that uses these capabilities, the codes to enter and exit this mode can
be given as smcup and rmcup. This arises, for example, from termi­
nals' such as the Concept, with more than one page of memory. If the
terminal has only memory relative cursor addressing and not screen
relative cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly. This is also
used for the Tektronix 4025, where smcup sets the command character
to be the one. used by terminfo. If the smcup sequence will not
restore the screen after a rmcup sequence is output (to the state prior
to outputting rmcup), specify nrrmc.

If your terminal generates underlined characters by using the under­
line character (with no special codes needed) even though it does not
otherwise overstrike characters, then you should give the capability
ul. For terminals where a character overstriking another leaves both
characters on the screen, give the capability os. If overstrikes are
erasable with a blank, then this should be indicated by giving eo.

Example of highlighting: assume that the terminal under question
needs the following escape sequences to tum on various modes.

tparm attribute escape sequence parameter
none \E[Om

pI standout \E[O;4;7m
p2 underline \E[O;3m
p3 reverse \E[O;4m

March 12, 1990 TERMINF0-33

TERMINFO (M)

p4
p5
p6
p7
p8
p9

blink
dim
bold
invis
protect
altcharset

\E[O;5m
\E[O;7m
\E[O;3;4m
\E[O;8m

TERMINFO (M)

not available
"0 (oft) "N(on)

Note that each escape sequence requires a 0 to tum off other modes
before turning on its own mode. Also note that, as suggested above,
standout is set up to be the combination of reverse and dim. Also,
because this terminal has no bold mode, bold is set up as the combina­
tion of reverse and underline. In addition, to allow combinations,
such as underline+blink, the sequence to use would be \E[O;3;Sm.
The terminal doesn't have protect mode, either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is
different in that it is either "0 or "N, depending on whether it is off or
on. If all modes were to be turned on, the sequence would be
\E[O;3;4;S;7;8m" N.

Now look at when different sequences are output. For example, ;3 is
output when either p2 or p6 is true, that is, if either underline or bold
modes are turned on. Writing out the above sequences, along with
their dependencies, gives the following:

sequence
\E[O
;3
;4
;5
;7
;8
m
"N or "0

when to output
always
ifp20rp6
if pi or p3 or p6
ifp4
ifplorp5
ifp7
always
if p9 "N, else "0

terminfo translation
\E[O
%?%p2%p6%I%t;3%;
%?%pl %p3%I%p6%I%t;4%;
%?%p4%t;5%;
%?%pl %p5%I%t;7%;
%?%p7%t;8%;
m
%?%p9%t"N%e"0%;

Putting this all together into the sgr sequence gives:

sgr=\E[O%?%p2%p6%I%t;3%;%?%pl %p3%I%p6%1%t;4%;%?%p5%t;5%;
% ?%pl %p5%I%t;7%;%?%p7%t;8%;m% ?%p9%t "N%e"O%;,

Section 1-8: Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted Hewlett-Packard 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
smkx and rmkx. Otherwise the keypad is assumed to transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow,
and home keys can be given as keubl, keuO, keuul, keudl, and
khome respectively. If there are function keys such as ro, fl, ... , f63,

March 12, 1990 TERMINF0-34

TERMINFO (M) TERMINFO (M)

the codes they send can be given as kfO, kfl, ... , kf63. If the first 11
keys have labels other than the default fO through flO, the labels can
be given as lfO, Ifl, ... , IflO. The codes transmitted by certain other
special keys can be given: kll (home down), kbs (backspace), ktbc
(clear all tabs), kctab (clear the tab stop in this column), kelr (clear
screen or erase key), kdchl (delete character), kdll (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end
of screen), kichl (insert character or enter insert mode), kill (insert
line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3 by 3 array of keys includ­
ing the four arrow keys, the other five keys can be given as kal, ka3,
kb2, kcl, and kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed. Further keys are defined above in the
capabilities list.

Strings to program function keys can be given as pfkey, pfioc, and
pfx. A string to program their soft-screen labels can be given as pIn.
Each of these strings takes two parameters: the function key number
to program (from 0 to 10) and the string to program it with. Function
key numbers out of this range may program undefined keys in a
tenninal-dependent manner. The difference between the capabilities
is that pfkey causes pressing the given key to be the same as the user
typing the given string; pfioc causes the string to be executed by the
tenninal in local mode; and pfx causes the string to be transmitted to
the computer. The capabilities nlab, Iw, and Ih define how many soft
labels there are and their width and height. If there are commands to
tum the labels on and off, give them in smln and rmln. smln is nor­
mally output after one or more pIn sequences to make sure that the
change becomes visible.

Section 1-9: Tabs and Initialization

If the tenninal has hardware tabs, the command to advance to the next
tab stop can be given as ht (usually control I). A "backtab" command
which moves leftward to the next tab stop can be given as cbt. By
convention, if the teletype modes indicate that tabs are being
expanded by the computer rather than being sent to the tenninal, pro­
grams should not use ht or cbt even if they are present, since the user
may not have the tab stops properly set. If the tenninal has hardware
tabs which are initially set every n spaces when the tenninal is
powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is nonnally used by tput init [see
tput(C)] to detennine whether to set the mode for hardware tab expan­
sion and whether to set the tab stops. If the tenninal has tab stops that
can be saved in nonvolatile memory, the terminfo description can
assume that they are properly set. If there are commands to set and
clear tab stops, they can be given as tbc (clear all tab stops) and hts
(set a tab stop in the current column of every row).

March 12, 1990 TERMINFQ-35

TERMINFO (M) TERMINFO (M)

Other capabilities include: isl, is2, and is3, initialization strings for
the terminal; iprog, the path name of a program to be run to initialize
the terminal; and if, the name of a file containing long initialization
strings. These strings are expected to set the terminal into modes con­
sistent with the rest of the terminfo description. They must be sent to
the terminal each time the user logs in and be output in the following
order: run the program iprog; output isl; output is2; set the margins
using mgc, smgl, and smgr; set the tabs using the and hts; print the
file if; and finally output is3. This is usually done using the init option
of tput(C); see profile (F).

Most initialization is done with is2. Special terminal modes can be
set up without duplicating strings by putting the common sequences in
is2 and special cases in isl and is3. Sequences that do a harder reset
from a totally unknown state can be given as rsl, rs2, rf, and rs3,
analogous to isl, is2, is3, and if. (The method using files, if and rf, is
used for a few terminals, from lusrllibltabsetl *; however, the recom­
mended method is to use the initialization and reset strings.) These
strings are output by tput reset, which is used when the terminal gets
into a wedged state. Commands are normally placed in rsl, rs2, rs3,
and rf only if they produce annoying effects on the screen and are not
necessary when logging in. For example, the command to set a termi­
nal into 80-column mode would normally be part of is2, but on some
terminals it causes an annoying glitch on the screen and is not nor­
mally needed since the terminal is usually already in 80-column
mode.

If a more complex sequence is needed to set the tabs than can be
described by using tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to
specify commands to set and clear margins, see "Margins" below
under "PRINTER CAPABILITIES.")

Section 1·10: Delays

Certain capabilities control padding in the tty(7) driver. These are pri­
marily needed by hard-copy terminals, and are used by tput in it to set
tty modes appropriately. Delays embedded in the capabilities cr, ind,
cubl, ff, and tab can be used to set the appropriate delay bits to be set
in the tty driver. If pb (padding baud rate) is given, these values can
be ignored at baud rates below the value of pb.

Section 1·11: Status Lines

If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an
extra line below the bottom line, into which one can cursor address
normally (such as the Heathkit h19's 25th line, or the 24th line of a
VT100 which is set to a 23-line scrolling region), the capability hs

March 12, 1990 TERMINFO.,...36

TERMINFO (M) TERMINFO (M)

should be given. Special strings that go to a given column of the
status line and return from the status line can be given as tsl and fsl.
(fsl must leave the cursor position in the same place it was before tsl.
If necessary, the sc and rc strings can be included in tsl and fsl to get
this effect.) The capability tsl takes one parameter, which is the
column number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work
while in the status line, the flag eslok can be given. A string which
turns off the status line (or otherwise erases its contents) should be
given as dsl. If the terminal has commands to save and restore the
position of the cursor, give them as sc and rc. The status line is nor­
mally assumed to be the same width as the rest of the screen, e.g.,
cols. If the status line is a different width (possibly because the termi­
nal does not allow an entire line to be loaded) the width, in columns,
can be indicated with the numeric parameter wsl.

Section 1-12: Line Graphics

If the terminal has a line drawing alternate character set, the mapping
of glyph to character would be given in acsc. The definition of this
string is based on the alternate character set used in the DEC VT100
terminal. extended slightly with some characters from the AT&T
441 Ov 1 terminal.

glyph name vtloo+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right comer j
upper right comer k
upper left comer 1
lower left comer m
plus n
scan line 1 0
horizontal line q
scan line 9 s
left tee (~) t

March 12, 1990 TERMINF0-37

TERMINFO (M)

right tee (-j)
bottom tee (1)
top tee (T)
vertical line
bullet

u
v
w
x

TERMINFO (M)

The best way to describe a new terminal's line graphics set is to add a
third column to the above table with the characters for the new termi­
nal that produce the appropriate glyph when the terminal is in the
alternate character set mode. For example,

glyph name vt100+ new tty
character character

upper left comer I R
lower left comer m F
upper right comer k T
lower right comer j G
horizontal line q
vertical line x

Now write down the characters left to right, as in
"acsc=IRmFkTjGq\x." .

In addition, terminfo allows you to define multiple character sets. See
Section 2-5 for details.

Section 1-13: Color Manipulation

There are two methods of color manipulation: the HP method and the
Tektronix method. Most existing color terminals belong to one of
these two classes.

The Tektronix method uses a set of N predefined colors (usually 8)
from which a user can select "current" foreground and background
colors. Thus the terminal can support up to N colors mixed into N*N
color-pairs to be displayed on the screen at the same time.

The HP method restricts the user from defining the foreground
independently of the background, or vice-versa. Instead, the user must
define an entire color-pair at once. Up to M color-pairs, made from
2*M different colors, can be defined this way.

The numeric variables colors and pairs define the number of colors
and color-pairs that can be displayed on the screen at the same time.
If a terminal can change the definition of a color (as can, for example,
the Tektronix 4100 and 4200 series terminals), this should be specified
with ccc (can change color). To change the definition of a color (Tek­
tronix method), use initc (initialize color). It requires four arguments:
color number (ranging from 0 to colors-I) and three ROB (red, green,
and blue) values (ranging from 0 to 1,000).

March 12, 1990 TERMINF0-38

TERMINFO (M) TERMINFO (M)

Tektronix 4100 series terminals use a type of color notation called
IlLS (Hue Lightness Saturation) instead of RGB color notation. For
such terminals one must define a boolean variable hIs. The last three
arguments to the inite string would then be IlLS values: H, ranging
from 0 to 360; and L and S, ranging from 0 to 100.

If a terminal can change the definitions of colors, but uses a color
notation different from ROB and IlLS, a mapping to either ROB or
IlLS must be developed.

To set current foreground or background to a given color, use setff (set
foreground) and setb (set background). They require one parameter:
the number of the color. To initialize a color-pair (lIP method), use
initp (initialize pair). It requires seven parameters: the number of a
color-pair (range = 0 to pairs-I), and six ROB values: three for the
foreground followed by three for the background. (Each of these
groups of three should be in the order ROB.) When inite or initp are
used, ROB or IlLS arguments should be in the order "red, green, blue"
or "hue, lightness, saturation"), respectively. To make a color-pair
current, use sep (set color-pair). It takes one parameter, the number of
a color-pair.

Some terminals (for example, most color terminal emulators for PCs)
erase areas of the screen with current background color. In such cases,
bee (background color erase) should be defined. The variable op (ori­
ginal pair) contains a sequence for setting the foreground and the
background colors to what they were at the terminal start-up time.
Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the lIP
method) to the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video
attributes should not be combined with colors. Information about
these video attributes should be packed into the nev (no color video)
variable. There is a one-to-one correspondence between the nine least
significant bits of that variable and the video attributes. The follow­
ing table depicts this correspondence.

March 12, 1990

Attribute

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_INVIS
A_PROTECT

NCVBit
Number

o
1
2
3
4
5
6
7

TERMINF0-39

TERMINFO (M) TERMINFO (M)

8

When a particular video attribute should not be used with colors, the
corresponding ncv bit should be set to 1; otherwise it should be set to
zero. For example, if the terminal uses colors to simulate reverse
video and bold, bits 2 and 5 should be set to 1. The resulting values
for ncv will be 22.

Section 1-14: Miscellaneous

If the tenninal requires other than a null (zero) character as a pad, then
this can be given as pad. Only the first character of the pad string is
used. If the terminal does not have a pad character, specify npc.

If the tenninal can move up or down half a line, this can be indicated
with hu (half-line up) and hd (half-line down). This is primarily use­
ful for superscripts and subscripts on hardcopy terminals. If a hard­
copy tenninal can eject to the next page (form feed), give this as ff
(usually control L).

If there is a command to repeat a given character a given number of
times (to save time transmitting a large number of identical charac­
ters) this can be indicated with the parameterized string rep. The first
parameter is the character to be repeated and the second is the number
of times to repeat it. Thus, tparm(repeat_char, 'x', 10) is the same as
xxxxxxxxxx.

If the terminal has a settable command character, such as the Tek­
tronix 4025, this can be indicated with cmdch. A prototype command
character is chosen which is used in all capabilities. This character is
given in the cmdch capability to identify it. The following conven­
tion is supported on some UNIX systems: If the environment variable
CC exists, all occurrences of the prototype character are replaced with
the character in CC.

Terminal descriptions that do not represent a specific kind of known
tenninal, such as switch, dialup, patch, and network, should include
the gn (generic) capability so that programs can complain that they do
not know how to talk to the tenninal. (This capability does not apply
to virtual terminal descriptions for which the escape sequences are
known.) If the terminal is one of those supported by the UNIX system
virtual tenninal protocol, the tenninal number can be given as vt. A
line-tum-around sequence to be transmitted before doing reads should
be speci fied in rfi.

If the terminal uses xon/xoff handshaking for flow control, give xon.
Padding information should still be included so that routines can make
better decisions about costs, but actual pad characters will not be
transmitted. Sequences to tum on and off xon/xoff handshaking may
be given in smxon and rmxon. If the characters used for handshaking
are not AS and "Q, they may be specified with xonc andxoffc.

March 12, 1990 TERMINF0-40

TERMINFO (M) TERMINFO (M)

If the tenninal has a "meta key" which acts as a shift key, setting the
8th bit of any character transmitted, this fact can be indicated with
km. Otherwise, software will assume that the 8th bit is parity and it
will usually be cleared. If strings exist to turn this "meta mode" on
and off, they can be given as smm and rmm.

If the tenninal has more lines of memory than will fit on the screen at
once, the number of lines of memory can be indicated with 1m. A
value of Im#O indicates that the number of lines is not fixed, but that
there is still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the
tenninal can be given as meO: print the contents of the screen, me4:
turn off the printer, and meS: turn on the printer. When the printer is
on, all text sent to the terminal will be sent to the printer. A variation,
meSp, takes one parameter, and leaves the printer on for as many
characters as the value of the parameter, then turns the printer off. The
parameter should not exceed 255. If the text is not displayed on the
tenninal screen when the printer is on, specify meSi (silent printer).
All text, including me4, is transparently passed to the printer while an
meSp is in effect.

Section 1-15: Special Cases

The working model used by terminfo fits most terminals reasonably
well. However, some terminals do not completely match that model,
requiring special support by terminfo. These are not to be construed
as deficiencies in the terminals; they are just differences between the
working model and the actual hardware. They may be unusual de­
vices or, for some reason, do not have all the features of the terminfo
model implemented.

Terminals which can not display tilde (-) characters, such as certain
Hazeltine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap,
such as the Concept 100, should indicate xenl. Those terminals whose
cursor remains on the right-most column until another character has
been received, rather than wrapping immediately upon receiving the
right-most character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing nonnal text
on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This capability is also
taken to mean that it is not possible to position the cursor on top of a
"magic cookie" therefore, to erase standout mode, it is instead neces­
sary to use delete and insert line.

March 12, 1990 TERMINF0-41

TERMINFO (M) TERMINFO (M)

Those Beehive Superbee terminals which do not transmit the escape
or control-C characters, should specify xsb, indicating that the fl key
is to be used for escape and the f2 key for control-Co

Section 1·16: Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability use
can be given with the name of the similar terminal. The capabilities
given before use override those in the terminal type invoked by use.
A capability can be canceled by placing xx@ to the left of the capabil­
ity definition, where xx is the capability. For example, the entry

att4424-2lTeletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and
smul capabilities, and hence cannot do highlighting. This is useful for
different modes for a terminal, or for different user preferences. More
than one use capability may be given.

PART 2: PRINTER CAPABILITIES

The terminfo database allows you to define capabilities of printers as
well as terminals. To find out what capabilities are available for
printers as well as for terminals, see the two lists under "TERMINAL
CAPABILITIES" that list capabilities by variable and by capability
name.

Section 2·1: Rounding Values

Because parameterized string capabilities work only with integer
values, we recommend that terminfo designers create strings that
expect numeric values that have been rounded. Application designers
should note this and should always round values to the nearest integer
before using them with a parameterized string capability.

Section 2·2: Printer Resolution

A printer's resolution is defined to be the smallest spacing of charac­
ters it can achieve. In general printers have independent resolution
horizontally and vertically. Thus the vertical resolution of a printer
can be determined by measuring the smallest achievable distance
between consecutive printing baselines, while the horizontal resolu­
tion can be determined by measuring the smallest achievable distance
between the left-most edges of consecutive printed, identical, charac­
ters.

March 12, 1990 TERMINF0-42

TERMINFO (M) TERMINFO (M)

All printers are assumed to be capable of printing with a uniform hor­
izontal and vertical resolution. The view of printing that the terminfo
currently presents is one of printing inside a uniform matrix: All char­
acters are printed at fixed positions relative to each "cell" in the
matrix; furthermore, each cell has the same size given by the smallest
horizontal and vertical step sizes dictated by the resolution. (The cell
size can be changed as will be seen later.)

Many printers are capable of "proportional printing," where the hor­
izontal spacing depends on the size of the character last printed. The­
terminfo does not make use of this capability, although it does provide
enough capability definitions to allow an application to simulate pro­
portional printing.

A printer must not only be able to print characters as close together as
the horizontal and vertical resolutions suggest, but also of "moving"
to a position an integral multiple of the smallest distance away from a
previous position. Thus printed characters can be spaced apart a dis­
tance that is an integral multiple of the smallest distance, up to the
length or width of a single page.

Some printers can have different resolutions depending on different
"modes." In "normal mode," the existing terminfo capabilities are
assumed to work on columns and lines, just like a video terminal.
Thus the old lines capability would give the length of a page in lines,
and the cols capability would give the width of a page in columns. In
"micro mode," many terminfo capabilities work on increments of
lines and columns. With some printers the micro mode may be con­
comitant with normal mode, so that all the capabilities work at the
same time.

Section 2·3: Specifying Printer Resolution

The printing resolution of a printer is given in several ways. Each
specifies the resolution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes move­
ment to the next column, except in special cases described later; the
distance moved is the same as the per-column resolution. Some
printers cause an automatic movement to the next line when a charac­
ter is printed in the rightmost position; the distance moved vertically
is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers.

March 12, 1990 TERMINF0-43

TERMINFO (M) TERMINFO (M)

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:
ore Steps moved horizontally
orl Steps moved vertically
Micro Mode:
mes Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance
moved when a wide character is printed in normal mode may be
different from when a regular width character is printed. The distance
moved when a wide character is printed in micro mode may also be
different from when a regular character is printed in micro mode, but
the differences are assumed to be related: If the distance moved for a
regular character is the same whether in normal mode or micro mode
(mes=ore), then the distance moved for a wide character is also the
same whether in normal mode or micro mode. This doesn't mean the
normal character distance is necessarily the same as the wide charac­
ter distance, just that the distances don't change with a change in nor­
mal to micro mode. However, if the distance moved for a regular
character is different in micro mode from the distance moved in nor­
mal mode (mes<ore), the micro mode distance is assumed to be the
same for a wide character printed in micro mode, as the table below
shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Characte~
Normal Mode or Micro Mode (mes = ore):
wides Steps moved horizontally
Micro Mode (mes < ore):
mes Steps moved horizontally

There may be control sequences to change the number of columns per
inch (the character pitch) and to change the number of lines per inch
(the line pitch). If these are used, the resolution of the printer changes,
but the type of change depends on the printer:

epi
epix
Ipi
Ipix

ebr

March 12, 1990

Specification of Printer Resolution
Changing the Character/Line Pitches

Change character pitch
If set, epi changes orbi, otherwise changes ore
Change line pitch
If set, Ipi changes orvi, otherwise changes orr

Change steps per column

TERMINF0-44

TERMINFO (M) TERMINFO (M)

evr Change steps per line

The epi and (pi string capabilities are each used with a single argu­
ment, the pitch in columns (or characters) and lines per inch, respec­
tively. The ehr and cvr string capabilities are each used with a single
argument, the number of steps per column and line, respectively.

Using any of the control sequences in these strings will imply a
change in some of the values of ore, orhi, orl, and orvi. Also, the dis­
tance moved when a wide character is printed, wides, changes in rela­
tion to ore. The distance moved when a character is printed in micro
mode, mcs, changes similarly, with one exception: if the distance is 0
or 1, then no change is assumed (see item marked with t in the follow­
ing table).

Programs that use epi, lpi, ehr, or cvr should recalculate the printer
resolution (and should recalculate other values - see "Section 2-7:
Effect of Changing Printing Resolution").

Specification of Printer Resolution
Effects of Changing the Character/Line Pitches

Before After
Using epi with epix clear:
orhi ' orhi

ore'

Using epi with epix set:
orhi '
ore'
Using lpi with lpix clear:
orvi '
orl'

Using lpi with lpix set:
orvi '
orl'
Using ehr:
orhi '
ore'
Using evr:
orvi '
orl'
Using cpi or ehr:

wides'

mes't

March 12, 1990

orhi
ore=--

Vcpi

orhi =orc' V cpi
ore

orvi

1
orvi

or=--
Vlpi

orvi =orl· V Ipi
orl

orhi
Vchr

orvi
Vcvr

"d "d' ore WI es=W1 es --,
ore

, ore
mes=mcs -­

ore'

TERMINF0-45

TERMINFO (M) TERMINFO (M)

V cl!i, V lpi' V chr' and V cvr are the arguments used with epi, Ipi, ehr,
and evr respectively. The t mark indicates the old value.

Section 2-4: Capabilities that Cause Movement

In the following descriptions, "movement" refers to the motion of the
"current position." With video terminals this would be the cursor;
with some printers this is the carriage position. Other printers have
different equivalents. In general, the current position is where a char­
acter would be displayed if printed.

terminfo has string capabilities for control sequences that cause move­
ment a number of full columns or lines. It also has equivalent string
capabilities for control sequences that cause movement a number of
smallest steps.

String Capabilities for Motion
meubl Move 1 step left
meufi Move 1 step right
meuul Move 1 step up
meudl Move 1 step down
meub Move N steps left
meuf Move N steps right
meuu Move N steps up
meud Move N steps down
mhpa Move N steps from the' left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a
page. Also, some printers don't accept absolute motion to the left of
the current position. terminfo has capabilities for specifying these
limits.

mjump
maddr
xhpa
xvpa

Limits to Motion
Limit on use of meubl, meufi, meuul, meudl
Limit on use of mhpa, mvpa
If set, hpa and mhpa can't move left
If set, vpa and mvpa can't move up

If a printer needs to be in a "micro mode" for the motion capabilities
described above to work, there are string capabilities defined to con­
tain the control sequence to enter and exit this mode. A boolean is
available for those printers where using a carriage return causes an
automatic return to normal mode.

March 12, 1990 TERMINF0-46

TERMINFO (M) TERMINFO (M)

Entering/Exiting Micro Mode
smiem Enter micro mode
rmiem Exit micro mode
erxm Using er exits micro mode

The movement made when a character is printed in the rightmost posi­
tion varies among printers. Some make no movement, some move to
the beginning of the next line, others move to the beginning of the
same line. terminfo. has boolean capabilities for describing all three
cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of
motion is reversed. This mode can be especially useful when there
exists no capabilities for leftward or upward motion, because those
capabilities can be built from the motion reversal. capability and the
rightward or downward motion capabilities. It is best to leave it up to
an application to build the leftward or upward capabilities, though,
and not enter them in the terminfo database. This allows several
reverse motions to be strung together without intervening wasted steps
that leave and reenter reverse mode.

Entering/Exiting Reverse Modes
slm Reverse sense of horizontal motions
rIm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions
While sense of horizontal motions reversed:
meubl Move 1 step right
meuO Move 1 step left
meub Move N steps right
meuf Move N steps left
cub! Move 1 column right
eufi Move 1 column left
cub Move N columns right
euf Move N columns left
While sense of vertical motions reversed:
meuul Move 1 step down
meudl Move 1 step up
meuu Move N steps down
meud Move N steps up
euul Move 1 line down
eudl Move 1 line up

March 12, 1990 TERMINF0-47

TERMINFO (M)

cuu
cud

Move N lines down
Move N lines up

TERMINFO (M)

The reverse motion modes should not affect the mvpa and mhpa abso­
lute motion capabilities. The reverse vertical motion mode should,
however, also reverse the action of the line "wrapping" that occurs
when a character is printed in the right-most position. Thus printers
that have the standard terminfo capability am defined should experi­
ence motion to the beginning of the previous line when a character is
printed in the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse
motion modes is not defined; thus, programs must exit reverse motion
modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of new motion capa­
bilities. One of these is needed for printers that move the current posi­
tion to the beginning of a line when certain control characters, like
"line-feed" or "form-feed," are used. The other is used for the capa­
bility of suspending the motion that normally occurs after printing a
character.

Miscellaneous Motion Strings
doer List of control characters causing cr
zerom Prevent auto motion after printing next single character

Margins

terminfo provides two strings for setting margins on terminals: one
for the left and one for the right margin. Printers, however, have two
additional margins, for the top and bottom margins of each page.
Furthermore, some printers do not require using motion strings to
move the current position to a margin and fixing the margin there, as
with the existing capabilities, but require the specification of where a
margin should be regardless of the current position. Therefore
terminfo offers six additional strings for defining margins with
printers.

smgl
smgr
smgb
smgt

smgbp
smglp

March 12, 1990

Setting Margins
Set left margin at current column
Set right margin at current column
Set soft bottom margin at current line
Set soft top margin at current line

Set soft bottom margin at line N
Set soft left margin at column N

TERMINF0-48

TERMINFO (M) TERMINFO (M)

smgrp Set soft right margin at column N
smgtp Set soft top margin at line N

The last four strings are used with a single argument, N, that gives the
line or column number, where line 0 is the top line and column 0 is the
left-most column. Note: Not all printers use 0 for the top line or the
left-most column.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

Five new sets of strings are used to describe the capabilities printers
have of enhancing printed text.

sshm
rshm.
sitm
ritm
swidm
rwidm
ssupm
rsupm
supcs
ssubm
rsubm
subcs

Enhanced Printing
Enter shadow-printing mode
Exit shadow-printing mode
Enter italicizing mode
Exit italicizing mode

Enter wide character mode
Exit wide character mode
Enter superscript mode
Exit superscript mode
List of characters available as superscripts
Enter subscript mode
Exit subscript mode
List of characters available as subscripts

If a printer requires the sshm control sequence before every character
to be shadow-printed, the rshm string is left blank. Thus programs
that find a control sequence in sshm but none in rshm should use the
sshm control sequence before every character to be shadow-printed;
otherwise, the sshm control sequence should be used once before the
set of characters to be shadow-printed, followed by rshm. The same
is also true of each of the sitm/ritm, swidm/rwidm, ssupm/rsupm,
and ssubm/rsubm pairs. .

Note that terminfo also has a capability for printing emboldened text
(bold). While shadow printing and emboldened printing are similar in
that they "darken" the text, many printers produce these two types of
print in slightly different ways. Generally, emboldened printing is
done by overstriking the same character one or more times. Shadow
printing likewise usually involves overstriking, but with a slight
movement up and/or to the side so that the character is "fatter."

It is assumed that enhanced printing modes are independent modes, so
that it would be possible, for instance, to shadow print italicized sub­
scripts.

March 12, 1990 TERMINF0-49

TERMINFO (M) TERMINFO (M)

As mentioned earlier, the amount of motion automatically made after
printing a wide character should be given in widcs.

If only a subset of the printable ASCII characters can' be printed as
superscripts or subscripts, . they should be listed in supcs or subcs
strings, respectively. If the ssupm or ssubm strings contain control
sequences, but the corresponding supcs or subcs strings are empty, it
is assumed that all printable ASCII characters are available as super­
scripts or subscripts.

Automatic motion made after printing a superscript or subscript is
assumed to be the same as for regular characters. Thus, for example,
printing any of the following three examples will result in equivalent
motion:

Bi B. Bi
1

Note that the existing msgr boolean capability describes whether
motion control sequences can be used while in "standout mode."
This capability is extended to cover the enhanced printing modes
added here. msgr should be set for those printers that accept any
motion control sequences without· affecting shadow, italicized,
widened, superscript, or subscript printing. Conversely, if msgr is not
set, a program should end these modes before attempting any motion.

Section 2-5: Alternate Character Sets

In addition to allowing you to define line graphics (described in Sec­
tion 1-12), terminfo also lets you define alternate character sets. The
following capabilities cover printers and terminals with multiple
selectable or definable character sets.

Alternate Character Sets

scs Select character set N
scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N
csnm List of character set names
daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a
number from 0 to 63 that identifies the character set. The scsd string
is also used with the argument N and another, M, that gives the num­
ber of characters in the set. The defc string is used with three argu­
ments: A gives the ASCII code representation for the character, B
gives the width of the character in dots, and D is zero or one depend­
ing on whether the character is a "descender" or not. The defc string
is also followed by a string of "image-data" bytes that describe how
the character looks (see below).

March 12, 1990 TERMINF0-50

TERMINFO (M) TERMINFO (M)

Character set 0 is the default character set present after the printer has
been initialized. Not every printer has 64 character sets, of course;
using scs with an argument that doesn't select an available character
set should cause a null result from tparm().

If a character set has to be defined before it can be used, the scsd con­
trol sequence is to be used before defining the character set, and the
rcsd is to be used after. They should also cause a null result from
tparm() when used with an argument N that doesn't apply. If a char­
acter set still has to be selected after being defined, the scs control
sequence should follow the rcsd control sequence. By examining the
results of using each of the scs, scsd, and rcsd strings with a character
set number in a call to tparm(), a program can determine which of the
three are needed.

Between use of the scsd and rcsd strings, the defc string should be
used to define each character. To print any character on printers
covered by terminfo, the ASCII code is sent to the printer. This is true
for characters in an alternate set as well as "normal" characters.
Thus the definition of a character includes the ASCII code that
represents it. In addition, the width of the character in dots is given,
along with an indication of whether the character should descend
below the print line (like the lower case letter "g" in most character
sets). The width of the character in dots also indicates the number of
image-data bytes that will follow the defc string. These image-data
bytes indicate where in a dot-matrix pattern ink should be applied to
"draw" the character; the number of these bytes and their form are
defined below under "Dot-Mapped Graphics".

It's easiest for the creator of terminfo entries to refer to each character
set by number; however, these numbers will be meaningless to the
application developer. The csnm string alleviates this problem by
providing names for each number.

When used with a character set number in a call to tparm(), the csnm
string will produce the equivalent name. These names should be used
as a reference only. No naming convention is implied, although any­
one who creates a terminfo entry for a printer should use names con­
sistent with the names found in user documents for the printer. Appli­
cation developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnm string to deter­
mine the correct number), or by name, where the application examines
the csnm string to determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers.
If they are not available, the strings should not be defined. For printers
that have manually changed print-wheels or font cartridges, the
boolean daisy is set.

March 12, 1990 TERMINF0-51

TERMINFO (M) TERMINFO (M)

Section 2-6: Dot-Matrix Graphics

Dot-matrix printers typically have the capability of reproducing
"raster-graphics" images. Three new numeric capabilities and three
new string capabilities can help a program draw raster-graphics
images independent of the type of dot-matrix printer or the number of
pins or dots the printer can handle at one time.

npins
spiny
spinh
porder
sbim
rbim

Dot-Matrix Graphics
Number of pins, N, in print-head
Spacing of pins vertically in pins per inch
Spacing of dots horizontally in dots per inch
Matches software bits to print-head pins
Start printing bit image graphics, B bits wide
End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the
image in dots.

The model of dot-matrix or raster-graphics that the terminfo presents
is similar to the technique used for most dot-matrix printers: Each
pass of the printer's print-head is assumed to produce a dot-matrix that
is N dots high and B dots wide. This is typically a wide, squat, rectan­
gle of dots. The height of this rectangle in dots will vary from one
printer to the next; this is given in the npins numeric capability. The
size of the rectangle in fractions of an inch will also vary; it can be
deduced from the spiny and spinh numeric capabilities. With these
three values an application can divide a complete raster-graphics
image into several horizontal strips, perhaps interpolating to account
for different dot spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix
image, respectively. The sbim string is used with a single argument
that gives the width of the dot-matrix in dots. A sequence of "image­
data bytes" are sent to the printer after the sbim string and before the
rbim string. The number of bytes is an integral multiple of the width
of the dot-matrix; the multiple and the form of each byte is determined
by the porder string as described below.

The porder string is a comma separated list of pin numbers; the posi­
tion of each pin number in the list corresponds to a bit in a data byte.
The pins are numbered consecutively from 1 to npins, with 1 being
the top pin. Note that the term "pin" is used loosely here; "ink-jet"
dot-matrix printers don't have pins, but can be considered to have an
equivalent method of applying a single dot of ink to paper. The bit
positions in porder are in groups of 8, with the first position in each
group the most significant bit and the last position the least significant
bit.

March 12, 1990 TERMINF0-52

TERMINFO (M) TERMINFO (M)

The "image-data bytes" are to be computed from the dot-matrix
image, mapping vertical dot positions in each print-head pass into
eight-bit bytes, using a 1 bit where ink should be applied and 0 where
no ink should be applied. If a position is skipped in porder, a 0 bit is
used. There must be a multiple of 8 bit positions used or skipped in
porder; if not, 0 bits are used to fill the last byte in the least signifi­
cant bits.

Section 2·7: Effect of Changing Printing Resolution

If the control sequences to change the character pitch or the line pitch
are used, the pin or dot spacing may change:

Dot-Matrix Graphics
Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes spinh
lpi Change line pitch
lpix If set, lpi changes spinY

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After
Using cpi with cpix clear:
spinh ' spinh

Using cpi with cpix set:
. h . h' orhi spm =spm .--.-,

orhl
spinh'

Using lpi with lpix clear:
spiny ' spiny

Using lpi with lpix set:
spinv'

Using chr:
spinh'

Using cvr:
spinv'

. ., orhi spmv=spmv .--.-,
orhl

spinh

spiny

orhi' and orhi are the values of the horizontal resolution in steps per
inch, before using cpi and after using cpi, respectively. Likewise,
orvi' and orvi are the values of the vertical resolution in steps per
inch, before using lpi and after using lpi, respectively. Thus, the
changes in the dots per inch for dot-matrix graphics follow the

March 12, 1990 TERMINF0-53

TERMINFO (M) TERMINFO (M)

changes in steps per inch for printer resolution.

Section 2-8: Print Quality

Many dot-matrix printers can alter the dot spacing of printed text to
produce near "letter quality" printing or "draft quality" printing.
Usually it is important to be able to choose one or the other because
the rate of printing generally falls off as the quality improves. There
are three new strings used to describe these capabilities.

snlq
snrmq
sdrfq

Print Quality
Set near-letter quality print
Set normal quality print
Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer
doesn't have all three levels, one or two of the strings should be left
blank as appropriate.

Section 2-9: Printing Rate and Buffer Size

Because there is no standard protocol that can be used to keep a pro­
gram synchronized with a printer, and because modem printers can
buffer data before printing it, a program generally cannot determine at
any time what has been printed. Two new numeric capabilities can
help a program estimate what has been printed.

Print Rate/Buffer Size
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints charac­
ters; if this value is not given, the rate should be estimated at one­
tenth the prevailing baud rate. bufsz is the maximum number of sub­
sequent characters buffered before the guaranteed printing of an ear­
lier character, assuming proper flow control has been used. If this
value is not given it is assumed that the printer does not buffer charac­
ters, but prints them as they are received.

As an example, if a printer has a l000-character buffer, then sending
the letter "a" followed by 1000 additional characters is guaranteed to
cause the letter "a" to print. If the same printer prints at the rate of
100 characters per second, then it should take 10 seconds to print all
the characters in the buffer, less if the buffer is not full. By keeping
track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

March 12, 1990 TERMINF0-54

TERMINFO (M) TERMINFO (M)

Note that most printer manufacturers advertise the maximum print
rate, not the nominal print rate. A good way to get a value to put in for
cps is to generate a few pages of text, count the number of printable
characters, then see how long it takes to print the text.

Applications that use these values should recognize the variability in
the print rate. Straight text, in short lines, with no embedded control
sequences will probably print at close to the advertised print rate and
probably faster than the rate in cps. Graphics data with a lot of con­
trol sequences, or very long lines of text, will print at well below the
advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text,
the application should pad the estimate. If the application is using cps
to decide how much text has already been printed, it should shrink the
estimate. The application will thus err in favor of the user, who wants,
above all, to see all the output in its correct place.

Files

/usr/lib/tenninfol? /*
/usr/lib/.COREterm/? /*

/usr/lib/tabset/ *

See Also

compiled terminal description database
subset of compiled terminal description
database
tab settings for some terminals, in a for­
mat appropriate to be output to the ter­
minal (escape sequences that set mar­
gins and tabs)

tput(C), vi(C), captoinfo(ADM), infocmp(ADM), tic(C), tenn(M),
curses(S), printf(S), profile(F), tenninfo(F)

Warning

As described in the "Tabs and Initialization" section above, a
terminal's initialization strings, is!, is2, and is3, if defined, must be
output before a curses (S) program is run. An available mechanism for
outputting such strings is tput init [see tput(C) and profile(F)].

If a null character (\0) is encountered in a string, the null and all char­
acters after it are lost. Therefore it is not possible to code a null char­
acter (\0) and send it to a device (either terminal or printer). The
suggestion of sending a'D200, where a'D (null) is needed can succeed
only if the device (terminal or printer) ignores the eighth bit. For
example, because all eight bits are used in the standard international
ASCII character set, devices that adhere to this standard will treat
'D200 differently from 'D.

March 12, 1990 TERMINF0-55

TERMINFO (M) TERMINFO (M)

Tampering with entries in lusrllibl.COREterml?l* or
lusrlliblterminJol? 1* (for example, changing or removing an entry) can
affect programs such as vi(C) that expect the entry to be present and
correct. In particular, removing the description for the "dumb" termi­
nal will cause unexpected problems.

March 12, 1990 TERMINF0-56

TERMIO (M) TERMIO (M)

termio
general terminal interface

Description

All asynchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this sec­
tion discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait
until a connection is established. In practice, users' programs seldom
open these files; they are opened by getty (M) and become a user's
standard input, output, and error files. The very first terminal file
opened by the process group leader of a terminal file not already asso­
ciated with a process group becomes the "control terminal" for that
process group. The control terminal plays a special role in handling
quit and interrupt signals, as discussed below. The control terminal is
inherited by a child process during afork(S). A process can break: this
association by changing its process group using setpgrp (S).

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters can be entered at any time, even while
output is occurring, and are only lost when the system's character
input buffers become completely full, which is rare, or when the user
has accumulated the maximum allowed number of input characters
that have not yet been read by some program. Currently, this limit is
256 characters. When the input limit is reached, all the saved charac­
ters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is
delimited by a newline (ASCII LF) character, an end-of-file (ASCII
EDT) character, or an end-of-line character. This means that a pro­
gram attempting to read will be suspended until an entire line has
been entered. Also, no matter how many characters are requested in
the read call, one line will be returned at most. It is not, however,
necessary to read a whole line at once; any number of characters may
be requested in a read, even one, without losing information.

Erase and kill processing is normally done during input. By default, a
Ctrl-H or BACKSPACE erases the last character typed, except that it
will not erase beyond the beginning of the line. By default, a Ctrl-U
kills (deletes) the entire input line, and optionally outputs a newline
character. Both these characters operate on a key-stroke basis,
independent of any backspacing or tabbing that may have been done.
Both the erase and kill characters may be entered literally by preced­
ing them with the escape character (\). In this case, the escape charac­
ter is not read. The erase and kill characters may be changed (see
stty(C».

March 15, 1989 TERMI0-1

TERMIO (M) TERMIO (M)

Certain characters have special functions on input. These functions
and their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) Generates an interrupt signal which
is sent to all processes with the associated control terminal.
Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location; see signal (S).

QUIT (Ctrl-\ or ASCII FS) Generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiv­
ing process has made other arrangements, it will not only be
terminated, but a core image file (called core) will be
created in the current working directory.

SWTCH (ASCII NUL) Is used by the job control facility, shl(C), to
change the current layer to the control layer.

ERASE (Ctrl-H) Erases the preceding character. It will not erase
beyond the start of a line, as delimited by a NL, EOF, or EOL
character.

KILL (Ctrl-U) Deletes the entire line, as delimited by a NL, EOF, or
EOL character.

EOF (Ctrl-D or ASCII EOT) May be used to generate an end-of-file
from a terminal. When received, all the characters waiting
to be read are immediately passed to the program, without
waiting for a newline, and the EOF is discarded. Thus, if
there are no characters waiting, which is to say the EOF
occurred at the beginning of a line, zero characters will be
passed back, which is the standard end-of-file indication.

NL (ASCII LF) Is the normal line delimiter. It cannot be changed
or escaped.

EOL (ASCII NUL) Is an additional line delimiter, like NL. It is not
normally used.

STOP (Ctrl-S or ASCII DC3) Temporarily suspends output. It is use­
ful with CRT terminals to prevent output from disappearing
before it can be read. While output is suspended, STOP char­
acters are ignored and not read.

START (Ctrl-Q or ASCII DCI) Resumes output which has been
suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
START/STOP characters cannot be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and
EOL may be changed to suit individual tastes. The ERASE, KILL, and
EOF characters may be escaped by a preceding backslash (\) character,

March 15, 1 989 TERMIO-2

TERMIO (M) TERMIO (M)

in which case no special function is carried out.

When the carrier signal from the dataset drops, a "hangup" signal is
sent to all processes that have this terminal as the control terminal.
Unless other arrangements have been made, this signal causes the
processes to terminate. If the hangup signal is ignored, any subse­
quent read returns with an end-of-file indication. Thus, programs that
read a terminal and test for an end-of-file can terminate appropriately
when hung up on.

When one or more characters are written, they are transmitted to the
terminal as soon as the previously typed characters have been entered.
Input characters ¥e echoed by putting them in the output queue as
they arrive. If a process produces characters more rapidly than they
can be typed, it will be suspended when its output queue exceeds a
given limit. When the queue has drained down to the given threshold,
the program is resumed.

Several ioctl (S) system calls apply to terminal files. The primary calls
use the following structure, defined in the file <termio.h>:

#define NCC 8
struct tennio {

unsigned short
unsigned short
unsigned short
unsigned short
char
unsigned char

}i

c_iflagi /* input m:xies */
c oflagi /* output rrodes */
c-cflagi /* control rrodes */
c=lflagi /* local rrodes */
c_linei /* line discipline */
c_cc[NCC]i/* control chars */

The special control characters are defined by the array c_cc. The rela­
tive positions and initial values for each function are as follows:

o
1
2
3
4
5
6
7

VINTR
VQUIT
VERASE
VKILL
VEOFNMIN
VEOUVTIME
VEOL2
VSWTCH

DEL
FS
Ctrl-H
Ctrl-U
EOT
NUL
EOL
NUL

The c _iflag field describes the basic terminal input control:

0000001 Ignores break condition
0000002 Signals interrupt on break

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
I STRIP
INLCR
IGNCR

0000004 Ignores characters with parity errors
0000010 Marks parity errors
0000020 Enables input parity check
0000040 Strips character
0000100 Maps NL to CR on input
0000200 Ignores CR

March 15, 1989 TERMI0-3

TERMIO (M) TERMIO (M)

ICRNL 0000400 Maps CR to NL on input
IUCLC 0001000 Maps uppercase to lowercase on input
IXON 0002000 Enables start/stop output control
lXANY 0004000 Enables any character to restart output
IXOFF 0010000 Enables start/stop input control

If IGNBRK is set, the break condition (a character framing error with
data all zeros) is ignored, that is, not put on the input queue and there­
fore not read by any process. Otherwise, if BRKINT is set the break
condition will generate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other framing and
parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is
not ignored is read as the 3-character sequence: 0377,0, X, where X
is the data of the character received in error.' To avoid ambiguity in
this case, if ISTRIP is not set, a valid character of 0377 is read as 0377,
0377. If PARMRK is not set, a framing or parity error which is not
ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set,
input parity checking is disabled. This allows output parity generation
without input parity errors.

If ISTRIP is set,-valid input characters are first stripped to 7-bits, other­
wise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR charac­
ter. If IGNCR is set, a received CR character is ignored (not read).
Otherwise, if ICRNL is set, a received CR character is translated into a
NL character.

If IUCLC is set, a received uppercase alphabetic character is translated
into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received STOP
character will suspend output and a received START character will
restart output. All start/stop characters are ignored and not read. If
IXANY is set, any input character will restart output which has been
suspended.

If IXOFF is set, the system will transmit START characters when the
input queue is nearly empty and STOP characters when nearly full.

If CTSFLOW or RTSFLOW are set, IXON and IXANY should also be
set so that these two types of flow control do not interfere with each
other.

The RTS and CTS lines for the RS-232 (i.e. serial) interface were ori­
ginally intended as handshaking signals between a Data Terminal
Equipment (DTE) device (computer, printer, etc,) and a Data
Communications Equipment (DCE) device (almost always a modem).

March 15, 1 989 TERMI0-4

TERMIO (M) TERMIO (M)

The RTS (Ready To Send) line is asserted by the DTE when it is ready
to send data to the DCE. The DCE asserts the CTS (Clear To Send)
line when it was ready to receive data. If the CTS line goes low, then
the DTE should stop sending data until CTS goes high again.

UNIX systems also use the RTS line for handshaking in the other
direction. If the system sees that its input buffer is nearly full, it will
lower the RTS line. The serial device should then stop sending, and
wait for the system to catch up. The system will raise the RTS line
when it is ready for more data.

The initial input control value is all bits clear.

The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocesses output
OLCUC 0000002 Maps lowercase to uppercase on output
ONLCR 0000004 Maps NL to CR-NL on output
OCRNL 0000010 Maps CR to NL on output
ONOCR 0000020 No CR output at column 0
ONLRET 0000040 NL performs CR function
OFILL 0000100 Uses fill characters for delay
OFDEL 0000200 Fills is DEL, else NUL
NIDLY 0000400 Selects newline delays:
NLO 0
NL1 0000400
CRDLY 0003000 Selects carriage return delays:
CRO 0
CR1 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Selects horizontal tab delays:
TABO 0
TAB1 0004000
TAB2 0010000
TAB3 0014000 Expands tabs to spaces
BSDLY 0020000 Selects backspace delays:
BSO 0
BS1 0020000
VrDLY 0040000 Selects vertical tab delays:
VIO 0
VI1 0040000
FFDLY 0100000 Selects form feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters are post-processed as indicated by
the remaining flags, otherwise characters are transmitted without
change.

If OLCUC is set, a lowercase alphabetic character is transmitted as the
corresponding uppercase character. This function is often used in con­
junction with IUCLC.

March 15, 1989 TERMI0-5

TERMIO (M) TERMIO (M)

If ONLCR is set, the NL character is transmitted as the CR-NL charac­
ter pair. If OCRNL is set, the CR character is transmitted as the NL
character. If ONOCR is set, no CR character is transmitted when at
column 0 (first position). If ONLRET is set, the NL character is
assumed to perform the carriage return function and the column
pointer is set to 0 and the delays specified for CR will be used. Other­
wise, the NL character is assumed to perform the linefeed function;
the column pointer will remain unchanged. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to the
terminal. In all cases, a value of 0 indicates no delay. If OFILL is set,
fill characters will be transmitted for delay instead of a timed delay.
This is useful for high baud rate terminals which need only a minimal
delay. If OFDEL is set, the fill character is DEL, otherwise NUL.

If a form feed or vertical tab delay is specified, it lasts for about 2
seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the car­
riage return delays are used instead of the newline delays. If OFILL is
set, 2 fill characters will be transmitted.

Carriage return delay type 1 is dependent on the current column posi­
tion' type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If
OFILL is set, delay type 1 transmits 2 fill characters, and type 2
transmits 4 fill characters.

Horizontal tab delay type 1 is dependent on the current column posi­
tion. Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be
expanded i~to spaces. If OFILL is set, 2 fill characters will be
transmitted for any delay.

Backspace delay lasts ab~ut 0.05 seconds. If OFILL is set, 1 fill char­
acter will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
B110
B134
B150
B200
B300
B600

March 15, 1989

0000017
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010

Baud rate:
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud

TERMI0-6

TERMIO (M) TERMIO (M)

B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B

CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Sends two stop bits, else one
CREAn 0000200 Enables receiver
PARENB 0000400 Parity enable
PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hangs up on last close
CLOCAL 0004000 Local line, else dial-up
WBLK 0010000 Block layer output
CTSFWW 0020000 Enables CTS protocol for a modem line
RTSFWW 0040000 Enables RTS signaling for a modem line

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used
to hang up the connection. If BO is specified, the data-terminal-ready
signal will not be asserted. Without this signal, the line is discon­
nected if it is connected through a modem. For any particular
hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any. If
CSTOPB is set, 2 stop bits are used, otherwise 1 stop bit. For example,
at 110 baud, 2 stops bits are required.

IfPARENB is set, parity generation and detection is enabled and a par­
ity bit is added to each character. If parity is enabled, the PARODD
flag specifies odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will
be received.

If HUPCL is set, the line will be disconnected when the last process
with the line open closes it or terminates. That is, the data-terminal­
ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection
with no modem control. The data-terminal-ready and request-to-send
signals are asserted, but incoming modem signals are ignored. If
CLOCAL is not set, modem control is assumed. This means the data­
terminal-ready and request-to-send signals are asserted. Also, the

March 15, 1989 TERMI0-7

TERMIO (M) TERMIO (M)

carrier-detect signal must be returned before communications can
proceed.

If LOBLK is set, the output of a job control layer will be blocked when
it is not the current layer. Otherwise the output generated by that
layer will be multiplexed onto the current layer.

The initial hardware control value after open is B9600, CS8, CREAD,
HUPCL.

The c _lflag field of the argument structure is used by the line discip­
line to control terminal functions. The basic line discipline (0) pro­
vides the following:

ISIG
lCANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH
XCLUDE

0000001 Enable signals
0000002 Canonical input (erase and kill processing)
0000004 Canonical upper/lower presentation
0000010 Enables echo
0000020 Echoes erase character as BS-SP-BS
0000040 Echoes NL after kill character
0000100 Echoes NL
0000200 Disables flush after interrupt or quit
0100000 Exclusive use of the line

If ISIG is set, each input character is checked against the special con­
trol characters INTR, SWTCH, and QUIT. If an input character
matches one of these control characters, the function associated with
that character is performed. If ISIG is not set, no checking is done.
Thus, these special input functions are possible only if ISIG is set.
These functions may be disabled individually by changing the value of
the control character to an unlikely or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the
erase and kill edit functions, and the assembly of input characters into
lines delimited by NL, EOF, and EOL. If ICANON is not set, read
requests are satisfied directly from the input queue. A read will not be
satisfied until at least VMIN characters have been received or the
timeout value VTIME has expired and at least one character has been
input. This allows fast bursts of input to be read efficiently while still
allowing single character input. (See the discussion of VMIN and
VTIME below.)

The VMIN and VTIME values are stored in the position for the EOF
and EOL characters respectively. VMIN and VTIME are interpreted as
EOF and EOL if ICANON is set. Default VMIN and VTIME values are
stored in the lusr/includel sys/termio.h file. To change these values,
set ICANON to off and use stty(C) to change the VMIN and VTIME
values as represented by EOF and EOL. The TIME value represents
tenths of seconds.

If XCASE and ICANON are set, an uppercase letter is accepted on
input by preceding it with a \ character, and is output preceded by a \
character. In this mode, the following escape sequences are generated

March 15, 1989 TERMI0-8

TERMIO (M) TERMIO (M)

on output and accepted on input:

For: Use:
\ ..

J \!
\"

{ \(
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \\ \no

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII BS
SP BS, which will clear the last character from a CRT screen. If
ECHOE is set and ECHO is not set, the erase character is echoed as
ASCII SP BS. If ECHOK is set, the NL character will be echoed after
the kill character to emphasize that the line will be deleted. Note that
an escape character preceding the erase or kill character removes any
special function. If ECHONL is set, the NL character will be echoed
even if ECHO is not set. This is useful for terminals set to local echo
(so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents ter­
minals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues asso­
ciated with the quit and interrupt characters will not be done.

If XCLUDE is set, any subsequent attempt to open the TTY device
using open(S) will fail for all users except the super-user. If the call
fails, it returns EBUSY in errno. XCLUDE is useful for programs
which must have exclusive use of a communications line. It is not
intended for the line to the program's controlling terminal. XCLUDE
must be cleared before the setting program terminates, otherwise sub­
sequent attempts to open the device will fail.

VMIN represents the minimum number of characters that should be
received when the read is satisfied (i.e., the characters are returned to
the user). VTIME is a timer of 0.10 second granularity used to time-out
bursty and short-term data transmissions. The four possible values for
VMIN and VTIME and their interactions are:

VMIN> 0, VTIME > 0
In this case, VTIME serves as an inter-character timer activated after
the first character is received, and reset upon receipt of each character.
VMIN and VTIME interact as follows:

As soon as one character is received the inter-character timer is
started.

March 15, 1989 TERMI0-9

TERMIO (M), TERMIO (M)

If VMIN characters are received before the inter-character timer
expires the read is satis fied.

If the timer expires before VMIN characters are received the char­
acters received to that point are returned to the user.

A read(S) operation will sleep until the VMIN and VTIME
mechanisms are activated by the receipt of the first character; thus,
at least one character must be returned.

VMIN > 0, VTIME = 0
In this case, because VTIME = 0, the timer plays no role and only
VMIN is significant. A read(S) operation is not satisfied until VMIN
characters are received.

VMIN = 0, VTIME > 0
In this case, because VMIN = 0, VTIME no longer serves as an inter­
character timer, but now serves as a read timer that is activated as
soon as the read(S) operation is processed. A read(S) operation is
satisfied as soon as a single character is received or the timer expires,
in which case, the read(S) operation will not return any characters.

VMIN = 0, VTIME = 0
In this case, return is immediate. If characters are present, they will
be returned to the user.

The initial line-discipline control value is all bits clear.

The primary ioctl (S) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Gets the parameters associated. with the terminal and
stores them in the termio structure referenced by argo

TCSETA Sets the parameters associated with the terminal from
the structure referenced by argo The change is
immediate.

TCSETA W Waits for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Waits for the output to drain, then flushes the input
queue and sets the new parameters.

Additional ioctl (S) calls have the form:

March 15, 1989 TERMIQ-10

TERMIO (M)

ioctl (fildes, command, arg)
int arg;

The commands using this fonn are:

TERMIO (M)

TCSBRK Waits for the output to drain. If arg is 0, then sends a
break (zero bits for 0.25 seconds).

TCXONC Starts/stops control. If arg is 0, suspends output; if 1,
restarts suspended output.

TCFLSH If arg is 0, flushes the input queue; if 1, flushes the
output queue; if 2, flushes both the input and output
queues.

Files

/dev/tty

/dev/tty*

/dev /console

See Also

fork(S), ioctl(S), mapchan(F), mapchan(M), read(S), setgprp(S),
signal(S), stty(C), tty(M), termios(M)

Standards Conformance

termio is confonnant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15. 1989 TERMI0-11

TERM lOS (M) TERMIOS (M)

termios
POS IX general terminal interface

Description

This page discusses the "POSIX termios extensions to the termio (M)
interface. Only those functions not described in termio (M) are
described here.

Certain characters have special functions on input. These functions
and their default character values are summarized as follows:

SUSP (ASCII NUL) If the ISIG flag is enabled, receipt of the SUSP
character causes A SIGTSTP signal to be sent to the current
process group. The SUSP character is discarded when
processed. It is normally set to Ctrl-Z.

Several library functions apply to terminal files. The primary calls use
the following structure, defined in the file <termios.h>:

#define NCCS
struct tennios

tcflag t
tcflag-t
tcflag-t
tcflag-t
char -
cc t
char
char

};

13
{

c iflag;
c=ofl~g;
c_cflag;
cJflag;
c_line;
c cc[NCCS];
c=ispeed;
c_ospeed;

/* input m:xies */
/* output m:xies */
/* control m:xies */
/* local (line discipline) modes */
/* line discipline */
/* control chars */
/* input baud rate */
/* output baud rate */

The additional special control characters defined by the array c _ cc .
are:

10 VSUSP NUL
11 VSTART DC1
12 VSTOP DC3

The following additional line discipline (0) functions are available in
the c _lflag field:

IEXTEN
TOSTOP

0000400 enable extended functions
0001000 SIGTTOU on background output

If IEXTEN is set, additional ~on-POSIX functions are recognized. This
is the default. If IEXTEN is not set, the modes ICANON, ISIG, IXON,
and IXOFF are assumed.

March 15, 1989 TERMIOS-1

TERM lOS (M) TERMIOS (M)

If TOSTOP is set, the signal SIGTTOU is sent to the process group of
a process that tries to write to its controlling tenninal if it is not the
foreground process group. By default, this signal stops the members
of the process group. If TOSTOP is not set, the output generated by the
process is output to the current output stream.

The associated library functions are found in tcattr(S) and tcjlow(S).

Files

/dey/tty

/dey/tty*

/dey /console

See Also

ioctl(S), signal(S), stty(C), tcattr(S), tcfiow(S), tennio(M), tty(M)

Standards Conformance

termios is confonnant with:
IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TERMIOS-2

TIMOD (M) TIMOD (M)

timod
Transport Interface cooperating STREAMS module

Description

timod is a STREAMS module for use with the Transport Interface (TI)
functions of the Network Services library. The timod module converts
a set of ioetl(S) calls into STREAMS messages that may be consumed
by a transport protocol provider which supports the Transport Inter­
face. This allows a user to initiate certain TI functions as atomic
operations.

The timod module must only be pushed (see Streams Primer) onto a
stream terminated by a transport protocol provider which supports the
TI.

All STREAMS messages, with the exception of the message types gen­
erated from the ioetl commands described below, will be transparently
passed to the neighboring STREAMS module or driver. The messages
generated from the following ioetl commands are recognized and pro­
cessed by the timod module. The format of the ioetl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_cmd = emd;
strioctl.ic_timeout = INFfIM;
strioctl.ic_len = size;
strioctl.ic_dp = (char *)buf

ioctl(fildes, CSTR, &strioctl);

where, on issuance, size is the size of the appropriate TI message to be
sent to the transport provider and on return, size is the size of the ap­
propriate TI message from the transport provider in response to the
issued TI message. buf is a pointer to a buffer large enough to hold the
contents of the appropriate TI messages. The TI message types are
defined in <sys/tihdr.h>. The possible values for the emd field are:

TCBIND

March 15, 1989

Bind an address to the underlying transport protocol
provider. The message issued to the TCBIND ioetl
is equivalent to the TI message type T_BIND_REQ
and the message returned by the successful comple­
tion of the ioetl is equivalent to the TI message type
T_BIND_ACK.

TIMOD-1

TIMOD (M) TIMOD (M)

TCUNBIND Unbind an address from the underlying transport
protocol provider. The message issued to the
TCUNBIND ioetl is equivalent to the TI message
type T_UNBIND_REQ and the message returned by
the successful completion of the ioell is equivalent
to the TI message type T_OK_ACK.

TCGETINFO Get the TI . protocol specific information from the
transport protocol provider. The message issued to
the TCGETINFO ioetl is equivalent to the TI mes­
sage type T_INFO_REQ and the message returned
by the successful completion of the ioetl is
equivalent to the TI message type T_INFO_ACK.

TI_ OPTMGMT Get, set, or negotiate protocol specific options with
the transport protocol provider. The message issued
to the TCOPTMGMT ioctl is equivalent to the TI
message type T_OPTMGMT_REQ, and the message
returned by the successful completion of the ioetl is
equivalent to the TI message type
T_OPTMGMT_ACK.

Files

<sys/timod.h>
<sys/tiuser .h>
<sys/tihdr.h>
<sys/ermo.h>

See Also

tirdwr(M)
STREAMS Primer
STREAMS Programmer's Guide
Network Programmer's Guide

Diagnostics

If the ioetl system call returns with a value greater than 0, the lower 8
bits of the return value will be one of the TI error codes as defined in
<sys/tiuser.h>. If the TI error is of type TSYSERR, then the next 8 bits
of the return value will contain an error as defined in <sys/errno.h>
[see intro(S)].

March 15, 1989 TIMOD-2

TIMTBL (M) TIMTBL (M)

timtbl
create a time locale table

Syntax

timtbl [speejile]

Description

The utility timtbl is provided to allow new LC_ TIME locales to be
defined. It reads a specification file, which contains definitions of the
way in which time and date information is presented for a particular
locale, and produces a binary table file, to be read by setloeale (S),
which determines the behavior of the strftime (S) routine.

The information supplied in the specification file consists of lines in
the following format:

item = string

The "=" can be separated from the item and string fields by zero or
more space or tab characters. The following values are meaningful for
item:

DATE_FMT specification of the format string for representing the
date. It will contain "%" directives representing vari­
able items such as the month number, as used in the for­
mat string for strftime (S).

TIME_FMT specification of the format string for representing the
time of day.

F _NOON string indicating 12-hour clock times before midday,
e.g. "AM".

A_NOON string indicating 12-hour clock times after midday, e.g.
"PM".

D _ T _FMT string for formatting combined date and time.

DAY _1 full name of the first day of the week (Sunday).

March 12, 1990 TIMTBL-1

TIMTBL (M) TIMTBL (M)

full name of the seventh day of the week.

abbreviated name of the first day of the week, e.g.
"Sun".

ABDAY_7 abbreviated name of the seventh day of the week.

MON_l full name of the first month in the Gregorian calendar.

MON_12 full name of the twelfth month.

ABMON_l abbreviated name of the first month.

ABMON_12 full name of the twelfth month.

The string is a sequence of characters surrounded by quotes ("). Char­
acters within the string can be specified both literally and using" \"
escapes; the following three strings are equivalent:

"Tuesday"
''\x54ue\x73da\x79"
'\124ue\163da\l71 II

-literal
- hexadecimal escapes
- octal escapes

The strings for the items DATE_FMT, TIME_FMT and D_T_FMT will
also include "%" directives as detailed in the strftime (S) manual
page, to specify variable portions of the string.

All characters following a hash (" #") are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
string.

The various item s may be specified in any order. If any items are not
specified, a warning message will be produced, and the null string ("11)
substituted.

The binary table output is placed in a file named "time", within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale (M». To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the timtbl utility is run in a directory containing a write­
protected "ctype" file, the utility will ask if the existing file should be
replaced - any response other than "yes" or "y" will cause timtbl to
terminate without overwriting the existing file.

March 12, 1990 TIMTBL-2

TIMTBL (M) TIMTBL (M)

If the specfile argument is missing, the specification infonnation is
read from the standard input.

See Also

chrtbl(M), locale(M), numtbl(M), setlocale(S), strftime(S)

Diagnostics

If the input table file cannot be opened for reading, processing will ter­
minate with the error message, "Cannot open specification file".

Any lines in the specification file which are syntactically incorrect, or
contain an urecognized value for the item, will cause an error message
to be issued to the standard error output, specifying the line number on
which the error was detected. The line will be ignored, and processing
will continue.

If a particular item is specified more than once, a warning message
will be produced, and processing will continue.

If the specification file does not contain specifications for all possible
item s, a warning message will be produced.

If the output file, time , cannot be opened for writing, processing will
terminate with the error message, "Cannot create table file".

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

Notes

The strings D_FMT , T _FMT , AM_STR and PM_STR may be used as
alternatives to DATE_FMT , TIME_FMT , F _NOON and A_NOON
respectively, if required. These alternatives are provided for con­
sistency with the identifiers used by nlJanginfo(S).

Value Added

timtbl is an extension of AT&T System V provided in Altos UNIX Sys­
temV.

March 12, 1990 TIMTBL-3

TIRDWR (M) TIRDWR (M)

tirdwr

Transport Interface readlwrite interface STREAMS
module

Descri ption

tirdwr is a STREAMS module that provides an alternate interface to a
transport provider which supports the 1Tansport Interface (TI) func­
tions of the Network Services library (see Section 3N). This alternate
interface allows a user to communicate with the transport protocol
provider using the read(S) and write(S) system calls. The putmsg(S)
and getmsg(S) system calls may also be used. However, putmsg and
getmsg can only transfer data messages between user and stream.

The tirdwr module must only be pushed [see CPUSH in streamio(M)]
onto a stream terminated by a transport protocol provider which sup­
ports the TI. After the tirdwr module has been pushed onto a stream,
none of the Transport Interface functions can be used. Subsequent
calls to TI functions will cause an error on the stream. Once the error
is detected, subsequent system calls on the stream will return an error
with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed
on the stream, popped [see CPOP in streamio(M)] off the stream, or
when data passes through it.

push-

write -

When the module is pushed onto a stream, it will check
any existing data destined for the user to ensure that only
regular data messages are present. It will ignore any mes­
sages on the stream that relate to process management,
such as messages that generate signals to the user pro­
cesses associated with the stream. If any other messages
are present, the CPUSH will return an error with errno set
to EPROTO.

The module will take the following actions on data that
originated from a write system call:

All messages with the exception of messages that con­
tain control portions (see the putmsg and getmsg sys­
tem calls) will be transparently passed onto the
module's downstream neighbor.

Any zero length data messages will be freed by the
module and they will not be passed onto the module's
downstream neighbor.

March 15. 1989 TIRDWR-1

TIRDWR (M)

read -

TIRDWR (M)

Any messages with control portions will generate an
error, and any further system calls associated with the
stream will fail with errno set to EPROTO.

The module will take the following actions on data that
originated from the transport protocol provider:

All messages with the exception of those that contain
control portions (see the putmsg and getmsg system
calls) will be transparently passed onto the module's
upstream neighbor.

The action taken on messages with control portions
will be as follows:

+ Messages that represent expedited data will
generate an error. All further system calls asso­
ciated with the stream will fail with errno set to
EPROTO.

+ Any data messages with control portions will
have the control portions removed from the
message prior to passing the message to the
upstream neighbor.

+ Messages that represent an orderly release indi­
cation from the transport provider will generate
a zero length data message, indicating the end
of file, which will be sent to the reader of the
stream. The orderly release message itself will
be freed by the module.

+ Messages that represent an abortive disconnect
indication from the transport provider will cause
all further write and putmsg system calls to fail
with errno set to ENXIO. All further read and
getmsg system calls will return zero length data
(indicating end of file) once all previous· data
has been read.

+ With the exception of the above rules, all other
messages with control portions will generate an
error and all further system calls associated with
the stream will fail with errno set to EPROTO.

Any zero length data messages will be freed by the
module and they will not be passed onto the module's
upstream neighbor.

pop - When the module is popped off the stream or the stream is
closed, the module will take the following action:

March 15, 1989 TIRDWR-2

TIRDWR (M)

See Also

TIRDW~ (M)

If an orderly release indication has been previously
received, then an orderly release request will be sent
to the remote side of the transport connection.

streamio(M), timod(M), intro(S), getmsg(S), putmsg(S), read(S),
write(S), intro(S)

STREAMS Primer
STREAMS Programmer's Guide
Network Programmer's Guide

March 15, 1989 TIRDWR-3

TRCHAN(M) TRCHAN(M)

trchan
translate character sets

Syntax

trchan [-ciko] mapfile

Description

trchan perfonns mapping as a filter, using the same fonnat of mapfile
as mapchan(M) (described in mapchan(F»). This allows a file consist­
ing of one internal character set to be "translated" to another internal
character set.

trchan reads standard input, maps it, and writes to standard output. A
mapfile must be given on the command line. Errors cause trchan to
stop processing unless -c is specified.

The following options can be used with trchan :

-c causes errors to be echoed on stderr, and processing is continued.

-i specifies that the "input" section of the map/zZe is used when
translating data.

-k specifies that the "dead" and "compose" sections of the map/tie
are used when translating data.

-0 specifies that the "output" section of the mapfile is used when
translating data.

The -i, -k and -0 options can be specified in any combination; if
none are specified, trchan uses the entire mapfile, as if all three
were specified together.

Files

/usr/lib/mapchan/*

See Also

ascii(M), mapchan(F), mapchan(M)

March 12, 1990 TRCHAN-1

TRCHAN(M)

Notes

TRCHAN(M)

trchan currently ignores the control sections of the mapfiie.

Value Added

trchan is an extension of AT&T System V provided in Altos UNIX
System V.

March 12, 1990 TRCHAN-2

TTY (M) TTY (M)

tty

special terminal interface

Description

The file /dev/tty is, in each process, a synonym for the control termi­
nal associated with the process group of that process, if any. It is use­
ful for programs or shell sequences that wish to be sure of writing
messages on the terminal no matter how output has been redirected. It
can also be used for programs that demand the name of a file for out­
put, when typed output is desired, and when it is tiresome to find out
what terminal is currently in use.

The general terminal interface is described in termio (M).

Files

/dev/tty
/dev/tty*

See Also

termio(M)

Standards Conformance

tty is conformant with:
AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 TTY-1

TZ (M) TZ (M)

tz

time zone environment variable

Syntax

letc/tz

Description

TZ is the shell environment variable for the time zone of the system
and is set in the files letc/default/login and letcffIMEZONE (see
timezone(F) for a complete description of the syntax for defining 12).

The shell script letc/tz, generally run during installation, prompts for
the correct time zone, prompts for the dates when time is shifted from
standard to daylight time and back, and for the number of hours to
shift (partial hours in the fonn of hh:mm:ss are acceptable). and sets
12 correctly in the appropriate files. The following files are exam­
ined to see if they read from letcffIMEZONE to set 12 for their
environment:

letc/cshrc
letc/profile
letc/rc2
I. profile

If these files do not read from /etcffIMEZONE, a warning is issued.

Users living in a time zone different than that of the host machine may
change 12 in their $HOME/.profile or $HOME/.login files.

To change the time zone for the entire system, run the shell script
letc/tz (as root) or use an editor to change the variable 12 in the files
/etcffIMEZONE and /etc/default/login. The 12 variable in
/etc/default/login causes the time zone to be set correctly on logging
in and for programs such as uucico.

Files

/etc/rc2
/etc/default/login
/etc/tz
$HOME/.profile
$HOME/.login

March 15, 1989 TZ-1

TZ (M) TZ(M)

See Also

environ(M), date(C), timezone(F), ctime(S)

Notes

The date (C) automatically switches from Standard Time to Summer
Time (Daylight Saving Time). Leap days are properly accounted for.

Changes to 12 are immediately effective, (i.e. if a process changes the
12 variable, the next call to a ctime (S) routine returns a value based
on the new value of the variable).

March 15, 1989 TZ-2

VALUES (M) VALUES (M)

values
machine-dependent values

Syntax

#include <values.h>

Description

This file contains a set of manifest constants, conditionally defined for
particular processor architectures.

The model assumed for integers is binary representation (one's or
two's complement), where the sign is represented by the value of the
high-order bit. .

BITS(type)

HIBITS

HIBITL

HIBIT!

MAXSHORT

MAXLONG

MAXINT

The number of bits in a specified type (e.g.,
int)o

The value of a short integer with only the
high-order bit set (in most implementations,
Ox8000).

The value of a long integer with only the
high-order bit set (in most implementations,
Ox80000000).

The value of a regular integer with only the
high-order bit set (usually the same as HIBITS
orHIBITL).

The maximum value of a signed short integer
(in most implementations, Ox7FFF = 32767).

The maximum value of a signed long integer
(in most implementations, Ox7FFFFFFF =
2147483647).

The maximum value of a signed regular
integer (usually the same as MAXSHORT or
MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single­
precision floating-point number,
and its natural logarithm.

March 15, 1989 VALUES-1

VALUES (M) VALUES (M)

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a
double-precision floating-point
number, and its natural loga­
rithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a
single-precision floating-point
number, and its natural loga­
rithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a
double-precision floating-point
number, and its natural loga­
rithm.

FSIGNIF

DSIGNIF

See Also

The number of significant bits in the mantissa
of a single-precision floating-point number.

The number of significant bits in the mantissa
of a double-precision floating-point number.

intro(S), limits(F), math(M)

Standards Conformance

values is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 VALUES-2

XTPROTO(M) XTPROTO(M)

xtproto
multiplexed channels protocol used by xt(HW) driver

Description

The xt(HW) driver contains routines which implement a multiplexed,
multi-buffered, full-duplex protocol with guaranteed delivery of
ordered data via an 8-bit byte data stream. This protocol is used for
communication between multiple UNIX system host processes and an
AT&T windowing terminal operating under layers(C).

The protocol uses packets with a 2-byte header containing a 3-bit
sequence number, 3-bit channel number, control flag, and data size.
The data part of a packet may not be larger than 32 bytes. The trailer
contains a CRC-16 code in 2 bytes. Each channel is double-buffered.

Correctly received packets in sequence are acknowledged with a con­
trol packet containing an ACK; however, out of sequence packets gen­
erate a control packet containing a NAK, which will cause the
retransmission in sequence of all unacknowledged packets.

Unacknowledged packets are retransmitted after a timeout interval
which is dependent on baud rate. Another timeout parameter specifies
the interval after which incomplete receive packets are discarded.

Files

/usr/inc1ude/sys/xtproto.h channel multiplexing protocol definitions

See Also

layers(M), layers(C), xt(HW)

March 15. 1989 XTPROT0-1

, : .. ~ ,: :::.:::-' '. ""':::.: ...
. . . ' :>: .:< :-.. . '.:-'

.' '.

Altos UNIX® System V/386
Release 3.2

(F) File Formats

Contents

File Formats (F)

Intro
86rel
a.out
acct
ar
archive
authcap
card info
checklist
clock
core
cpio
default
devices
dialcodes
dialers
dir
dirent
filehdr
filesys
filesystem
fspec
gettydefs
gps
group
hs
inittab, init.base
inode
issue
langinfo
ldfcn
limits
linenum
logs
maildelivery
mapchan
maxuuscheds

Introduction to file formats
Intel 8086 Relocatable Format for Object Modules
UNIX common assembler and link editor output
format of per-process accounting file
archive file format
default backup device information
authentication database
system tty controller card information file
list of file systems processed by fsck(ADM)
the system real-time (time of day) clock
format of core image file
format of cpio archive
default program information directory
format of UUCP devices file
format of UUCP Dialcode abbreviations file
format of UUCP Dialers file
format of a directory
filesystem-independent directory entry
file header for common object files
default information for mounting filesystems
format of filesystem types
format specification in text files
speed and terminal settings used by getty
graphical primitive string, format of graphical files
format of the group file
High Sierra/ISO-9660 CD-ROM filesystem
script for the init process
format of an inode
issue identi fication file
language information constants
common object file access routines
file header for implementation-specific constants
line number entries in a common object file
MMDF log files
user delivery specification file
format of tty device mapping files
UUCP uusched(ADM) limit file

maxuuxqts
mdevice
meisa
mem, kmem
memtune

mfsys
micnet
mmdftaiIor
mnttab
mtune
mvdevice
nl_types
null
passwd
permissions
plot
pnch
poll
purge
queue
queuedefs
reloc
sccsfile
scnhdr
scr dump
sdevice
sfsys
stat
stune
syms
sysfiles
systemid
systems
tables
tar
term
termcap
terminfo
timezone
top, top.next
types
unistd
utmp, wtmp

ii

UUCP uuxqt(C) limit file
device driver module description file
master system kernel configuration file
memory image file
table of tunable parameters to be adjusted when add­
ing more memory
configuration file for filesystem types
the Micnet default commands file
provides run-time tailoring for the MMDF mail router
format of mounted filesystem table
tunable parameter file
video driver backend configuration file
data types for native language support
the null file
the password file
format of UUCP Permissions file
graphics interface
file format for card images
format of UUCP Poll file
the policy file of the sanitization utility purge(C)
MMDF queue files for storing mail in transit
scheduling information for cron queues
relocation information for a common object file
format of an sees file
section header for a common object file
format of curses screen image file
local device configuration file
local file system type file
data returned by stat system call
local tunable parameter file
common object file symbol table format
format of UUCP Sysfiles file
the Micnet system identi fication file
format of UUCP Systems file
MMDF name tables for aliases, domains, and hosts
archive format
terminal driving tables for nrot!
terminal capability data base
format of compiled terminfo file
set default system time zone
the Micnet topology files
primitive system data types
file header for symbolic constants
formats of utmp and wtmp entries

x.out
xbackup
xprtab

fonnat of XENIX link editor output
XENIX incremental dump tape fonnat
system tty transparent printer map file

iii

INTRO (F) INTRO (F)

Intro
Introduction to file formats

Description

This section outlines the fonnats of various files. The C struct
declarations for the file fonnats are given where applicable. Usually,
these structures can be found in the directories lusr/include or
lusr/include/sys. Note that include files are part of the Development
System.

March 15, 1989 INTR0-1

86REL (F) 86REL (F)

86rel
Intel 8086 Relocatable Format for Object Modules

Syntax

#include <sys/relsym86.h>

Description

Intel 8086 Relocatable Format, or 86rel, is the object module format
generated by masm(CP), and the input format for the linker Id(CP).
The include file relsym86.h specifies appropriate definitions to access
86rel format files from C. For the technical details of the 86rel for­
mat, see Intel 8086 Object Module Format External Product Specifi­
cation.

An 86rel consists of one or more variable length records. Each record
has at least three fields: the record type, length, and checksum. The
frrst byte always denotes the record type. There are thirty-one dif­
ferent record types. Only eleven are used by Id(CP) and masm(CP).
The word after the frrst byte is the length of the record in bytes,
exclusive of the frrst three bytes. Following the length word are typi­
cally one or more fields. Each record type has a specific sequence of
fields, some of which may be optional or of varying length. The very
last byte in each record is a checksum. The checksum byte contains
the sum modulo 256 of all other bytes in the record. The sum modulo
256 of all bytes in a record, including the checksum byte, should equal
zero.

With few exceptions, 86rel strings are length prefixed and have no
trailing null. The frrst byte contains a number between 0 and 40,
which is the remaining length of the string in bytes. Although the
Intel specification limits the character set to upper case letters, digits,
and the characters "?", "@", ":", ".", and "_", masm(CP) uses the
complete ASCII character set.

The Intel Object Module Format (aMP) specification uses the term
"index" to mean a positive integer either in the range 0 to 127, or 128
to 32,768. This terminology is retained in this document and else­
where in the 86rel literature. An index has one or two bytes. If the
frrst byte has a leading 0 bit, the index is assumed to have only one
byte, and the remainder of the byte represents a positive integer
between 0 and 127. If the second byte has a leading 1 bit, the index is
assumed to take up two bytes, and the remainder of the word
represents a positive integer between 128 and 32,768.

March 13, 1990 86REL-1

86REL (F) 86REL (F)

Following is a list of record types and the hexadecimal value of their
first byte, as defined in relsym86.h.

#define MRHEADR
#define MRroINI'
#define MREOKl1\
#define MRIOKl1\
#define MJVI.DEF
#define MENOR&:
#define MBU<DEF
#define MBll<END
#define IDEBSYM
#define M1'HEADR

#define MLHEADR
#define MPEDKl1\
#define MPIDKl1\

#define KXMNl'
#define ~END
#define MEXlDEF
#define Ml'YPDEF
#define MPUBDEF
#define MICCSYM
#define MLINNtM
#define MLNAMES
#define MSFIDEF
#define M3RPDEF
#define MFIXUPP
#define ~1
#define MLEDKl1\
#define MLIDKl1\

#define MLIBHED
#define MLIENAM
#define MLm:t.CC
#define MLIBDIC
#define M386END
#define MPUB386
tdefine MUX:386
tdefine MLIN386
tdefine MSEG386
tdefine MFIX386
tdefine MIm386
fdefine MLID386

Ox6e /*rel Irodule header/*
Ox70 /*register initialization*/

Ox72 /*explicit (enunerated) data image*/
Ox74 /*repeated (iterated) data image*/
Ox76 /*overlay definition*/
Ox78 /*block or overlay end record*/
Ox7a /*block definition*/
Ox7c /*block end*/
Ox7e /*debug symbols*/

Ox80 /*mxiule header,
usually first in a rel file/

Ox82 /*link Irodule header* /
Ox84 /*absolute data image*/

Ox86 /*absolute repeated (iterated)
data image/

Ox88 /*cament record*/
Ox8a /*nodule end record*/

Ox8c /*external definition*/
Ox8e /*type definition*/
Ox90 /*public definition*/
Ox92 /*local symbols*/
Ox94 /*source line number*/

Ox96 /*name list record*/
Ox98 /*segment definition*/
Ox9a /*group definition*/
Ox9c /*fix up previous data Urege*/

Oxge /*none*/
OxaO /*logical data image*/

Oxa2 /*logical repeated (iterated)
data image/

Oxa4 /*libra:r:y header*/
Oxa6 /*libra:r:y names record*/
Oxa8 /*libra:r:y Irodule locations*/
Oxaa /*libra:r:y dictiona:r:y*/
Ox86 /*32 bit Irodule end record*/
Ox91 /*32 bit public definition*/
Ox93 /*32 bit logical symbols*/
Ox95 /*32 bit source line number*/
Ox99 /*32 bit segment definition*/
Ox9d /*fix up previous 32 bit data image*/
Oxal /*32 bit logical data image*/
Oxa3 /*32 bit logical repeated (iterated) data image* /

In the following discussion, the salient features of each record type are
given. If the record is not used by either masm(CP) or ld(CP), it is not
listed.

THEADR The record type byte is Ox80. The THEADR record
specifies the name of the source module at assembly­
time (see Notes). The sole field is the T-MODULE
NAME , which contains a length-prefixed string
derived from the base name of the source module.

March 13, 1990 86REL-2

86REL(F) 86REL(F)

COMENT The record type byte is Ox88. The COMENT record
may contain a remark generated by the compiler sys­
tem. masm(CP) inserts the string "UNIX 8086
ASSEMBLER ."

MODEND The record type byte is Ox8a. The MODEND record
terminates a module. It can specify whether the
current module is to be used as the entry point to the
linked executable. If the module is an entry point, the
MODEND record can then specify the address of the
entry point within the executable.

EXIDEF The record type byte is Ox8c. The EXTDEF record
contains the names and types of symbols defined in
other modules by a PUBDEF record (see below). This
corresponds to the C storage class "extern. " The
fields consist of one or more length-prefixed strings,
each with a following type index. The indices refer­
ence a TYPDEF record seen earlier in the module.
masm(CP) generates only one EXTDEF per exterior
symbol.

TYPDEF The record type byte is Ox8e. The TYPDEF record
gives a description of the type (size and storage
attributes) of an object or objects. This description
can then be referenced by EXTDEF , PUBDEF , and
other records.

PUBDEF The record type byte is Ox90. The PUBDEF record
gives a list of one or more names that may be refer­
enced by other modules at link-time ("publics"). The
list of names is preceded by a group and segment
index, which reference the location of the start of the
list of publics within the current segment and group.
If the segment and group indices are zero, a frame
number is given to provide an absolute address in the
module. The list consists of one or more of length­
prefixed strings, each associated with a 16-bit offset
within the current segment and a type index referring
to a TYPDEF.

LNAMES The record type byte is Ox96. The LNAMES record
gives a series of length-prefixed strings which are
associated with name indices within the current
module. Each name is indexed in sequence given
starting with 1. The names may then be referenced
within the current module by successive SEGDEF and
GRPDEF records to provide strings for segments,
classes, overlays or groups.

March 13, 1990 86REL-3

86REL (F)

SEGDEF

GRPDEF

FIXUPP

LEDATA

See Also

as(CP), Id(CP)

Notes

86REL (F)

The record type byte is Ox98. The SEGDEF record pro­
vides an index to reference a segment, and informa­
tion concerning segment addressing and attributes.
This index may be used by other records to refer to the
segment. The first byte in the record after the length
field gives information about the alignment, and about
combination attributes of the segment. The next word
is the segment length in bytes. Note that this restrains
segments to a maximum 65,536 bytes in length. Fol­
lowing this word is an index (see above) for the seg­
ment. Lastly, the SEGDEF may optionally contain
class and/or overlay index fields.

The record type is Ox9a. The GRPDEF record provides
a name to reference several segments. The group
name is implemented as an index (see above).

The record byte is Ox9c. The FIXUPP record specifies
one or more load-time address modifications
("fixups"). Each fixup refers to a location in a
preceding LEDATA (see below) record. The fixup is
specified by four data; a location, a mode, a target and
a frame. The frame and target may be specified ex­
plicitly or by reference to an already defined fixup.

The record type byte is OxaO. This record provides a
contiguous text or data image which the loader ld(CP)
uses to construct a portion of an 8086 run-time execut­
able. The image might require additional processing
(see FIXUPP) before being loaded into the executable.
The image is preceded by two fields, a segment index
and an enumerated data offset. The segment index
(see INDEX) specifies a segment given by a previously
seen SEGDEF. The enumerated data offset (a word)
specifies the offset from the start of this segment.

If you attempt to load a number of modules assembled under the same
basename, the loader will try to put them all in one big segment. In
286 programs, segment size is limited to 64K. In a large program the
resulting segment size can easily exceed 64K. A large model code
executable results from the link of one or more modules, composed of
segments that aggregate into greater than 64K of text.

March 13, 1990 86REL-4

86REL (F) 86REL (F)

Hence, be sure that the assembly-time name of the module has the
same basename as the source. This can occur if the source module is
preprocessed not by cc(CP), but, for example, by hand or shell script,
prior to assembly. The following example.is incorrect:

#incorrect
cc -E modulel.c I filter> x.C
ccx.c
mv x.O module1.o
cc -E module2.c I filter> x.C
cc x.c
mv x.o module2.0
cc -E module3.c I filter> x.C
ccx.C
mv x.o module3.0
ld modulel.o module2.0 module3.o

To avoid this, each of the modules should have a unique name when
assembled, as follows:

#correct
cc -E modulel.c I filter> x.C
cc -S x.c
mv x.s modulel.s
as module I.s

ld modulel.o module2.0 module3.0

Value Added

86rel is an extension of AT&T System V provided in Altos UNIX Sys­
temV.

March 13, 1 990 86REL-5

A.OUT (F) A.OUT (F)

a.out
UNIX common assembler and link editor output

Syntax

#include <a.out.h>

Description

The file name a.out is the default output file name from the link editor
ld(CP). The link editor will make a.out executable if there were no
errors in linking. The output file of the UNIX assembler as (CP) also
follows the common object file format of the a.out file although the
default file name is different.

A common object file consists of a file header, a UNIX system header
(if the file is link editor output), a table of section headers, relocation
information, (optional) line numbers, a symbol table, and a string
table. The order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and
string table) may be missing if the program was linked with the -s
option of ld(CP) or if they were removed by strip(CP). Also note that
the relocation information will be absent after linking unless the -r
option of ld(CP) was used. The string table exists only if the symbol
table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below)
are in bytes.

March 15, 1989 A.OUT-1

A.OUT (F) A.OUT (F)

When an a.out file is loaded into memory for execution, three logical
segments are set up: the text segment, the data segment (initialized
data followed by uninitialized, the latter actually being initialized to
all O's), and a stack. On your computer, the text segment starts at
location virtual address O.

The a.out file produced by ld(CP) may have one of two magic numbers
in the first field of the UNIX system header. A magic number of 0410
indicates that the executable must be swapped through the private
swapping store of the UNIX system, while the magic number 0413
causes the system to attempt to page the text directly from the a.out
file.

In a 0410 executable, the text section is loaded at virtual location
OxOOOOOOOO. The data section is loaded immediately following the
end of the text section.

For a 0413 executable, the headers (file header, UNIX system header,
and section headers) are loaded at the beginning of the text segment
and the text immediately follows the headers in the user address
space. The first text address will equal the sum of the sizes of the
headers, and will vary depending on the number of sections in the
a.out file. In an a.out file with 3 sections (.text, .data, and .bss) the first
text address is at OxOOOOOODO. The data section starts in the next page
table directory after the last one used by the text section, in the first
page of that directory, with an offset into that page equal to the 1st
unused memory offset in the last page of text. That is to say, given
that etext is the address of the last byte of the text section, the lst byte
of the data section will be at OxOO4OOOOO + (etext & OxFFCOOOOO) +
«etext+ 1) & OxFFCOOFFF).

On the 80386 computer the stack begins at location 7FFFFFFC and
grows toward lower addresses. The stack is automatically extended as
required. The data segment is extended only as requested by the
brk(S) system call.

For relocatable files the value of a word in the text or data portions
that is not a reference to an undefined external symbol is exactly the
value that will appear in memory when the file is executed. If a word
in the text involves a reference to an undefined external symbol, there
will be a relocation entry for the word, the storage class of the
symbol-table entry for the symbol will be marked as an "external
symbol", and the value and section number of the symbol-table entry
will be undefined. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol will be
added to the word in the file.

March 15, 1989 A.OUT-2

AOUT (F) AOUT (F)

File Header

The fonnat of the filehdr header is:

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

UNIX System Header

f_magic;
f nscns;
f-tim::iat;
f-syrrptr;
f-nsyms;
f-opthdr;
f=flags;

/* magic number */
/* number of sections */
/* time and date stamp */
/* file ptr to sy.mtab */
/* t symtab entries */
/* sizeof(opt hdr) */
/* flags */

The fonnat of the UNIX system header is:

typedef struct aouthdr
{

magic;
vstamp;
tsize;
dsize;
bsize;
entry;

/* magic number */
/* version stamp */
/* text size in bytes, padded */
/* initialized data (.data) */
/* uninitialized data (.bss) */
/* entry point */

short
short
long
long
long
long
long
long

text start;
data:start;

/* base of text used for this file */
/* base of data used for this file */

AOUTHDR;

Section Header

The fonnat of the section header is:

struct scnhdr
{

};

char
long
long
long
long
long
long
unsigned short
unsigned short
long

March 15, 1989

s name[SYMNMLEN);/* section name */
sJ>addr; /* physical address */
s vaddr; /* virtual address */
s=size; /* section size */
s scnptr; /* file ptr to raw data */
s-relptr; /* file ptr to relocation */
s -lnnoptr; /* file ptr to line numbers * /
s-nreloc; /* # reloc entries */
s-nlnno; /* # line number entries*/
s=flags; /* flags */

AOUT-3

A.OUT (F) A.OUT (F)

Relocation

Object files have one relocation entry for each relocatable reference in
the text or data. If relocation infonnation is present9 it will be in the
following format:

struct reloc
{

long
long
ushort

r vaddr:
r=symndx;
r_type;

1* (virtual) address of reference */
1* index into symbol table *1
1* relocation type *1

};

The start of the relocation infonnation is s relptr from the section
header. If there is no relocation infonnation9 ~relptr is O.

Symbol Table

The format of each symbol in the symbol table is

#define S~ 8
#define FInHEN 14
#define DDKM 4

stroet synent
{

union /* all ways to get a syrcbol narre */

};

char
stroet
{

long _n_zeroes;
long _n_offset;

/* = OL if .in string table */
/* location in string table */

char *_n_nptr[2]; /* allows overlaying */

long n_value;
short n _ scnurn;
unsigned short n_type;
char n_sclass;
char n -.nunaux;

/* value of syrcbol */
/* section number */
/* type and derived type */
/* storage class */
/* number of aux entries */

#define n_narre _n._n_nane
#define n _zeroes _ n. _ n -.n. _ n _zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[1]

Some symbols require more information than a single entry; they are
followed by auxiliary entries that are the same size as a symbol entry.
The format follows.

March 15, 1989 A.OUT-4

A.OUT (F) A.OUT (F)

union auxent {
struet {

long x tagndx:
union { -

struet {
unsigned short x _lnno:
unsigned short x_size;

} x lnsz;
long x_fsize:

x mise:
union {

struet
long
long

} x fen;
struet {

x lnnoptr:
x=:endndx;

unsigned short x _ di.Iren [DIMNlM] ;

}:

} x ary:
x_fenary;

unsigned short x_tvndx:
x_sym;

struct {
ehar x_fname[FILNMLEN}:

} x_file:

struet {
long x senlen:
unsigned short x nreloe:
unsigned short x=:nlinno:

x_sen:

struet {
long x tvfill:
unsigned short x-tvlen:
unsigned short x=:tvran[2]:

Indexes of symbol table entries begin at zero. The start of the symbol
table is f_ symptr (from the file header) bytes from the beginning of the
file. If the symbol table is stripped, f_ symptr is O. The string table (if
one exists) begins at f_ symptr + (f_ nsyms * SYMESZ) bytes from the
beginning of the file.

See Also

as(CP), cc(CP), Id(CP), brk(S). filehdr(F), Idfcn(F), linenum(F),
reloc(F), scnhdr(F), syms(F).

March 15, 1989 A.OUT-5

ACCT (F) ACCT (F)

acct
'format of per-process accounting file

Description

Files produced as a result of calling acct(S) have records in the form
defined by <sys/acct.h>.

In ac .flag, the AFORK flag is turned on by eachfork(S) and turned off
by an exec (S). The ac comm field is inherited from the parent pro­
cess and is reset by any-exec. Each time the system charges the pro­
cess with a clock tick, it also adds the current process size to ac _ mem
computed as follows:

(data size) + (text size) I (number of in-core processes using text)

The value of ac _ mem/ ac _stime can be viewed as an approximation to
the mean process size, as modified by text-sharing.

See Also

acctcom(ADM), acct(S)

Notes

The ac _ mem value for a short-lived command gives little information
about the actual size of the command, because ac _ mem may be incre­
mented while a different command (e.g., the shell) is being executed
by the process.

Standards Conformance

acct is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ACCT-1

AR (F) AR (F)

ar
archive file format

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor
Id(C).

A file produced by ar has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number is
0177545 octal (or Oxff65 hexadecimal). The header of each file is
declared in lusr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless the size given reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also

ar(CP), Id(CP)

March 15, 1989 AR-1

ARCHIVE (F) ARCHIVE (F)

archive
default backup device information

Description

The letcldefault/archive file contains information on system default
backup devices for use by sysadmsh(ADM). The device entries are in
the following format:

name=value [name=value] ...

value may contain white spaces if quoted, and new lines may be
escaped with a backslash.

The following names are defined for letc/default/archive:

bdev

cdev

size

density

format

blocking

desc

See Also

sysadmsh(ADM)

March 13, 1990

Name of the block interface device.

Name of the character interface device.

Size of the volume in either blocks or feet.

Volume density, such as 1600. If this value is miss­
ing or null, then size is in blocks; otherwise the size
is in feet.

Command used to format the archive device.

Blocking factor.

A description of the device, such as "Cartridge
Tape."

ARCHIVE-1

AUTHCAP (F)

authcap
authentication database

Syntax

/etc/auth/*
/tcb/files/ auth/*

Description

AUTHCAP (F)

The database contains authentication and identity information for
users, kernels, and TCB files as well as system-wide parameters. It is
intended to be used by programs to interrogate user and system values,
as well as by authentication programs to update that information.

Structure of the Hierarchies

The complete database resides in two hierarchies: /tcb/files/auth and
/etc/auth. The first hierarchy deals with user-specific files, and has
subdirectories of one letter each of which is the starting letter for user
name. Within each of these directories are regular files, each contain­
ing an authcap(F) format file for a particular user. Thus, all user
names beginning with x have their respective authentication and iden­
tity information in a file in directory /tcb/files/auth/x.

The directories within /etc/auth contain system-wide information.
The global system settings reside in the /etc/auth/system directory.
The subsystem authorizations associated with each protected subsys­
tem (a protected subsystem is privileged but does not require global
authority to perform actions) are located in the /etc/auth/subsystems
directory.

The following database files are contained in the system directory:

default
files
ttys
authorize

devassign

Default Control
File Control
Terminal Control
Primary and Secondary
Authorization Control File
Device Assignment

A subsystem file name is the group name associated with the pro­
tected subsystem. The owner of all files is auth and the group is the
group of the subsystem. Only the owner and group of this file may
view the contents. The file dOt users lists the users granted default
subsystem authorizations. -

March 13, 1990 AUTHCAP-1

AUTHCAP (F) AUTHCAP (F)

Format of a File

Each data file in the hierarchy, whether system-wide or user-specific,
has the same format. Each user file consists of one virtual line,
optionally split into multiple physical lines with the 'r character
present at the very end of all lines but the last. For instance, the line

blf:u_name=blf:u_id#16:u_encrypt=a78/al.eitfn6:u_type=sso:chkent:

may be split into:

blf:u name=blf:u id#16:\
:u_encrypt=a78/al.eitfn6:\

. :u_type=sso:chkent:

Note that all capabilities must be immediately preceded and followed
with the ':' separator; multiple line entries require additional ones -
one more per line. Multiple entries are separated by a newline:

drb:u-pame=drb:u_id#75:u_rnaxtries#9:u_type=general:chkent:
blf:u_name=blf:u_id#76:u_rnaxtries#5:u_type=general:chkent:

For subsystem files, the file is a set of lines, each containing a user
name terminated by a colon, followed by a comma-separated list of
primary and secondary authorizations defined for that subsystem.

Format of a Line

The format of a line (except for subsystem files) is briefly as follows:

name/alt name(s)/description:capl :cap2:cap3: ... :capn:chkent:

The entry can be referenced by the name or any of the alternate
names. A description field may document the entry. The entry
name(s) and description are separated by the 'I' character. The end of
the name/description part of the entry is terminated by the ':' charac­
ter. Alternate names and the description fields are optional.

At the end of each entry is the chkent field. This is used as an
integrity check on each entry. The authcap(S) routines will reject all
entries that do not have chkent at the very end.

Each entry has 0 or more capabilities, each terminated with the ':'
character. Each capability has a unique name. Numeric capabilities
have the format:

id#num

where num is a decimal or (0 preceded) octal number. Boolean capa­
bilities have the format:

March 13, 1990 AUTHCAP-2

AUTHCAP (F) AUTHCAP (F)

id

or

id@

where the frrst fonn signals the presence of the capability and the
second fonn signals the absence of the capability. String capabilities
have the fonnat:

id=string

where string is 0 or more characters. The'\' and ':' characters are
escaped as '\\' and '\:' respectively. Although it is not recommended,
the same id may be used for different numeric, boolean, and string
capabilities.

See Also

getprpwent(S), getdvagent(S), getprtcent(S), getprfient(S)

Value Added

authcap is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 AUTHCAP-3

card info
system tty controller card information file

Description

The card_info file is used by pcu(ADM) to map tty inittab(F) entries
to installed tty controller cards. Boards that control both serial and
parallel ports and that use different drivers to support these ports will
have two entries in the card Jnfo file.

Each line must contain the following seven fields, each separated by a
colon:

ID:port _ type:board _ name:regexp:!ormat:range:package _id

The first five fields are mandatory. The sixth and seventh fields are
only used by ISA tty controller card entries and should be blank for
EISA tty controllers. Each field is described below:

ID This field contains the uncompressed EISA identifier for the
board. A full seven-character ID (for example, ACS0301) can
be used, but the minor revision number may be omitted (for
example, ACS030). For ISA tty controller boards field one con­
tains the word ISA.

port type
- This field contains the type of the ports on the board or the EISA

subfunction type string. This string can be a simple EISA type
(e.g. COM,MDC), or may include subtype information (e.g.,
COM,ASY;COMl). In addition, an abbreviated type string can
be used. For example, COM,ASY will match both
COM,ASY;COMI and COM,ASY;COM2 on the specified
board. For ISA tty controller boards this field should contain
one of the following types:

COM - Indicates that this is a normal serial communications
port.

PAR - Indicates that this is a parallel printer port.

board name
This field contains the full name of the board which is displayed
for the user in the title bar of the ports window in peu.

regexp
This field contains a regex(S) pattern to identify the ports that
belong to this board or subfunction. This regex pattern returns a
value (usually numeric) that distinguishes one port on the board

March 18, 1991 CARD _INFO-1

from the next. For example, if the pattern tty([0.9]{2,4})SO was
given the port name tty03, the 03 would be returned and regex
would succeed.

format

range

This field contains a print.f{S) format string for printing a port's
ttyname and takes as its single argument the value returned by
the regexp pattern from field four. For example, the format
string tty%02d would be used with the regexp pattern example
given above. Also note that the format string should be for the
non-modem tty port name. For example, for comllcom2 ports
use tty%da not tty%dA.

This field contains a range of numbers of the form nl·n2 used as
arguments to the format string in field five to generate the
ttynames for the non-modem ports attached to the board. This
field is for ISA entries only. For EISA entries pcu gets the port
range from the slot info file, which is created by uconfig and its
execution of fetcfconffpack.df*f*node scripts.

package id
Tills field contains the device driver device name for the board
as found in the first field of the device driver's mdevice(F) file
entry. This field is for ISA entries only. For EISA entries pcu
gets the package_id from slot_info, which is created by uconfig.

Files

fetc/card_info
fetc/sloCinfo

See Also

pcu(ADM), uconfig(ADM)

Value Added

card _info is an extension to AT&T UNIX System V provided in Altos
UNIX System V.

March 18. 1991 CARD _INF0-2

CHECKLIST (F) CHECKLIST (F)

checklist
list of file systems processed by fsck(ADM)

Description

The letc/checklist file contains a list of the file systems to be checked
when fsck(ADM) is invoked without arguments. The list contains at
most 15 special file names. Each special file name must be on a
separate line and must correspond to a file system.

See Also

fsck(ADM)

March 15, 1989 CHECKLIST -1

CLOCK (F)

clock
the system real-time (time of day) clock

Description

CLOCK (F)

. The clock file provides access to the battery-powered, real-time time
of day clock. Reading this file returns the current time; writing to the
file sets the current time. The time, 10 bytes long, has the following
form:

MMddhhmmyy

where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. For example, the time:

0826150389

is 15:03 (3:03 PM) on August 26, 1989.

Files

/dev/clock

See Also

setclock(ADM)

April 20, 1990 CLOCK-1

CORE (F) CORE (F)

core
format of core image file

Description

The Operating System writes out a core image of a terminated process
when any of various errors occur. See signal (S) for the list of reasons;
the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The core image is called core
and is written in the process' working directory (provided it can be;
nonnal access controls apply). A process with an effective user ID
different from the real user ID will not produce a core image.

The fIrst section of the core image is a copy of the system's per-user
data for the process, including the registers as they were at the time of
the fault. The size of this section depends on the parameter usize,
which is defIned in lusr/includel sys/param.h. The remainder
represents the actual contents of the user's core area when the core
image was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The fonnat of the infonnation in the frrst section is described by the
user structure of the system, defined in lusr/include/sys/user.h. The
locations of registers, are outlined in lusr/includel sys/reg.h.

See Also

adb(CP), setuid(S), signal(S)

March 15, 1989 CORE-1

CPIO (F) CPIO (F)

epio
format of cpio archive

Description

The header structure, when the -c option of cpio (C) is not used, is:

struct {

} Hdr;

short h magic,
h-dev;

ushort h-ino,
h-mode,
h -uid,
h-gid;

short h-nlink,
h-rdev,
h - mtime [2] ,
h-namesize,
h-filesize[2];

char h=name [h_namesize rounded to word];

When the -c option is used, the header infonnation is described by:

sscanf(Chdr,"%6o%6o%6o%6o%6o%6o%6o%6o%11lo%6o%1l1o%s",
&Hdr.h magic, &Hdr.h dev, &Hdr.h ina, &Hdr.h mode,
&Hdr.h-uid, &Hdr.h gId, &Hdr.h nlink, &Hdr.h-rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.hJilesize, respectively. The contents of each file are recorded in
an element of the array of varying length structures, archive, together
with other items describing the file. Every instance of h _magic con­
tains the constant 070707 (octal). The items h _ dev through h _ mtime
have meanings explained in stat(S). The length of the null-tenninated
path name h _name, including the null byte, is given by h _ namesize .

The last record of the archive always contains the name TRAILER!!!.
Special files, directories, and the trailer are recorded with h Jilesize
equal to zero.

See Also

cpio(C), find(C), stat(S)

March 15, 1989 CPIO-1

CPIO (F) CPIO (F)

Standards Conformance

cpio is conformant with:
AT&T svm Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CPIO-2

DEFAULT (F) DEFAULT (F)

default
default program information directory

Description

The files in the directory /etc/default contain the default information
used by system commands such as xbackup(ADM) and remote(C).
Default information is any information required by the command that
is not explicitly given when the command is invoked.

The directory may contain zero or more files. Each file corresponds to
one or more commands. A command searches a file whenever it has
been invoked without sufficient information. Each file contains zero
or more entries which define the default information. Each entry has
the form:

keyword

or

keyword=value

where keyword identi fies the type of information available and value
defines its value. Both keyword and value must consist of letters,
digits, and punctuation. The exact spelling of a keyword and the ap­
propriate values depend on the command and are described with the
individual commands.

Any line in a file beginning with a number sign (#) is considered a
comment and is ignored.

Files

/etc/default/*

See Also

archive(F), xbackup(ADM), boot(HW), cron(C), dos(C), dumpdir(C),
filesys(F), 10gin(M), Ipr(C), mapchan(M), mapchan(F), micnet (F),
authsh(ADM) remote(C), xrestore(ADM), su(C), tar(C)

March /15, 1989 DEFAULT-1

DEFAULT (F) DEFAULT (F)

Note

Not all commands use leteldefault files. Please refer to the manual
page for a specific command to determine if letel default files are
used, and what information is specified.

Value Added

default is an extension of AT&T System V provided by the Santa Cruz
Operation.

March 15, 1989 DEFAULT-2

DEVICES (F) DEVICES (F)

devices
format of UUCP devices file

Description

The Devices file (/usr/lib/uucp/Devices) contains infonnation for all
the devices that can be used to establish a link to a remote computer.
These devices include automatic call units, direct links, and network
connections. This file works closely with the Dialers, Systems, and
Dialcodes files.

Each entry in the Devices file has the following fonnat:

type tty line dialerline speed dialer-token

where:

type can contain one of two keywords (direct or ACU),
the name of a Local Area Network switch, or a sys­
tem name.

ttyline contains the device name of the line (port) associ­
ated with the Devices entry. For example, if the
Automatic Dial Modem for a particular entry is
attached to the /dev/ttyll line, the name entered in
this field is ttyll.

dialerline is useful only for 801 type dialers, which do not
contain a modem and must use an additional line.
If you do not have an 801 dialer, enter a hyphen (-)
as a placeholder.

speed is the speed or speed range of the device. It may
contain an indicator for distinguishing different
dialer classes.

dialer-token contains pairs of dialers and tokens. Each
represents a dialer and an argument to be passed to
it. The dialer portion can be the name of an
automatic dial modem, or it may be a direct for a
direct link device.

For best results, dialer programs are preferred over Dialers entries.
The following entry is an example of an entry using a dialer binary:

ACU ttynn - 300-2400 /usr/lib/uucp/dialHA24

March 13, 1990 DEVICES-1

DEVICES (F) DEVICES (F)

Note all lines must have at least 5 fields. Use "-" for unused fields.
Types that appear in the 5th field must be either built-in functions
(801, Sytek, Tep, Unetserver, DK) or standard functions whose name
appears in the first field in the Dialers file.

Two escape characters can be used in this file:

\D which means don't translate the phone /token

\T translate the phone /token using the Dialcodes file

Both refer to the phone number field in the Systems file (field 5). \D
should always be used with entries in the Dialers file, since the
Dialers file can contain a T to expand the number if necessary. \T
should only be used with built-in functions that require expansion.

Note that if a phone number is expected and a \D or \T is not present a
\T is used for a built-in, and \D is used for an entry referencing the
Dialers file.

Examples

The following are examples of common Devices files.

Standard modem line

ACU ttyOO - 1200 801
ACU ttyOO - 1200 penril
or
ACU ttyOO - 1200 penril \D

A direct line

This example will allow cu -lttyOO to work. This entry could also be
used for certain modems in manual mode.

Direct ttyOO - 4800 direct

A ventel modem on a develcon switch

"vent" is the token given to the develcon to reach the ventel modem.

ACU ttyOO - 1200 develcon vent ventel
ACU ttyOO - 1200 develcon vent ventel \D

To reach a system on the local develcon switch

Develcon ttyOO - Any develcon \D

March 13, 1990 DEVICES-2

DEVICES (F) DEVICES (F)

A direct connection to a system

systemx ttyOO - Any direct

STREAMS Network Examples

A STREAMS network that conforms to the AT&T Transport Interface
with a direct connection to login service (i.e., without explicitly using
the Network Listener Service dial script):

networkx,eg devicex - - TLIS \0

The Systems file entry looks like:

systemx Any networkx - addressx in:--in: nuucp word: nuucp

You must replace systemx, networkx, addressx, and devicex with sys­
tem name, network name, network address and network device,
respectively. For example, entries for machine "sffo" on a STAR­
LAN NETWORK might look like:

sffoo Any STARLAN - sffoo in:--in: nuucp word: nuucp

and:

STARLAN,eg starlan - - TLIS \0

To use a STREAMS network that conforms to the AT&T Transport
Interface and that uses the Network Listener Service dial script to
negotiate for a server:

networkx,eg devicex - - TLIS \0 nls

To use a non-STREAMS network that conforms to the AT&T Trans­
port Interface and that uses the Network Listener Service dial script to
negotiate for a server:

networkx,eg devicex - - TLI \0 nls

See Also

uucico(ADM), UUCp(C), uux(C), uuxqt(C), dialers(F)

Notes

Blank lines and lines that begin with a <space>, <tab>, or are
ignored. protocols can be specified as a comma-subfield of the device
type either in the Devices file (where device type is field 1) or in the
Systems file (where it is field 3).

March 13, 1990 DEVICES-3

DIALCODES (F) DIALCODES (F)

dialcodes
format of UUCP Dialcode abbreviations file

Description

The Dialcodes file (/usrllib/uucp/Dialcodes) contains the Dialcode
abbreviations that can be used in the Phone field of the Systems file.
This feature allows you to create a standard Systems file for distribu­
tion among several sites that have different phone systems and area
codes.

If two remote sites in a network need to link with the same sites, but
have different· internal phone systems each site can share the same
Systems file, but have different entries in a Dialcodes file. Each entry
has the following format:

abb dial-seq

where:

abb

dial-seq

is the abbreviation used in the Systems file phone
field

is the dial sequence that is passed to the dialer
when that particular Systems file entry is accessed.

The following entry would be set up to work with a phone field in the
Systems file such as jt7867 :

jt 9=847-

When the entry containing jt7867 is encountered, the following
sequence is sent to the dialer if the token in the dialer-token-pair is \T

9=847-7867

The phone number is made up of an optional alphabetic abbreviation
and a numeric part. If an abbreviation is used, it must be one that is
listed in the Dialcodes file.

NY 9=1212555

See Also

uucico(ADM), uucp(C), uux(C), uuxqt(C), systems(F)

March 15, 1989 DIALCODES-1

DIALERS (F) DIALERS (F)

dialers
format of UUCP Dialers file

Description

The Dialers file (/usr/lib/uucplDialers) specifies the initial conversa­
tion that must take place on a line before it can be made available for
transferring data. This conversation is usually a sequence of ASCII
strings that is transmitted and expected, and it is often used to dial a
phone number using an ASCII dialer (such as the Automatic Dial
Modem).

A modem that is used for dialing in and out may require a second
Dialers entry. This is to reinitialize the line to dial-in after it has been
used for dial-out. The name of the dial-in version of a dialer must
begin with an ampersand. For example, the Dialers file contains a
hayes2400 and a &hayes2400 entry.

The fifth field in a Devices file entry is an index into the Dialers file
or a special dialer type. Here an attempt is made to match the fifth
field in the Devices file with the frrst field of each Dialers file entry.
In addition, each odd numbered Devices field starting with the seventh
position is used as an index into the Dialers file. If the match
succeeds, the Dialers entry is inte:rpreted to perform the dialer nego­
tiations. Each entry in the Dialers file has the following format:

dialer substitutions expect-send ...

The dialer field matches the fifth and additional odd numbered fields
in the Devices file. The substitutions field is a translate string: the
frrst of each pair of characters is mapped to the second character in the
pair. This is usually used to translate = and - into whatever the dialer
requires for "wait for dial tone " and "pause."

The remaining expect-send fields are character strings. Below are
some character strings distributed with the UUCP package in the
Dialers file.

March 15, 1989 DIALERS-1

DIALERS (F)

penril
ventel

hayes
rixon
vadiac
develcon

miean
diJ:eCt

DIALERS (F)

Dialers file entries

=W-P " •• \d> s\p9\c)-W\p\r\ds\p9\c-) y\c : \E\TP > 9\c a<
-=&-% '"' \r\p\r\c $ <K\T%%\r>\c CNLINE!

-,-, '"' \dAT\r\c a<\r \EATm'\T\r\c ~
=&-% '". \d\r\r\c $ s9\c)-W\r\ds9\c-) s\c : \T\r\c $ 9\c LINE

=K-K '"' \005\p *-\005\P-*\005\p-* O\p BER? \E\T\e \r\c LINE

"" "" \pr\ps\c est:\007 \E\D\e \007
"" \s\c NAME? \O\r\c 00

att2212c =+-,
att4000 =,-,

"" \r\c :-: ato12=y,T\T\r\c red

'111 \033\r\r\c OEM: \033s0401 \c \006 \03350901 \c \
\006 \033s1001 \c \006 \033s1102\c \006 \033dl'\T\r\c \006

att2224 =+-,
nls

'"' \r\c :-: T\T\r\c red

'"' NIPS:000:001:1 \N\c

The meaning of some of the escape characters (those beginning with
"\") used in the Dialers file are listed below:

\p

\d

\D

\T

\K

\E

\e

\r

\c

\n

\nnn

pause (approximately ~ to 12 second)

delay (approximately 2 seconds)

phone number or token without Dialcodes translation

phone number or token with Dialcodes translation

insert a BREAK

enable echo checking (for slow devices)

disable echo checking

carriage return

no new-line or carriage return

send new-line

send octal number.

Additional escape characters that may be used are listed in the section
discussing the Systems file.

The penril entry in the Dialers file is executed as follows. First, the
phone number argument is translated, replacing any = with a W (wait
for dial tone) and replacing any - with a P (pause). The handshake
given by the remainder of the line works as follows:

Wait for nothing.

\d Delay for 2 seconds.

> Wait for a >.

March 15, 1989 DIALERS-2

DIALERS (F) DIALERS (F)

s\p9\c Send an s, pause for Yz second, send a 9,
send no tenninating new-line

) -W\p\r\ds\p9\c-) Wait for a). If it is not received, process
the string between the - characters as
follows. Send a W, pause, send a
carriage-return, delay, send an s, pause,
send a 9, without a new-line,. and then
wait for the).

y\c Send a y.

\E\TP

>

9\c

OK

See Also

Wait for a:.

Enable echo checking. (From this point
on, whenever a character is transmitted,
it will wait for the character to be
received before doing anything else.)
Then, send the phone number. The \T
means take the phone number passed as
an argument and apply the Dialcodes
translation and .the modem function
translation specified by field 2 of this
entry. Then send a P.

Wait for a >.

Send a 9 without a new-line.

Waiting for the string OK.

dial(ADM), uucico(ADM), uucP(C), uux(C), uuxqt(C), devices(F)

Notes

Dialer binaries (located in lusr/lib/uucp) are preferred over Dialers
entries. Binaries are more reliable. Refer to the dial man page for
more information on creating your own dialer binaries.

March 15, 1989 DIALERS-3

DIR (F) DIR (F)

dir

format of a directory

Syntax

#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no user
may write into a directory. The fact that a file is a directory is indi­
cated by a bit in the flag word of its inode entry (see Jilesystem (F».
The structure of a directory is given in the include file
lusr/includel sys/dir .h. .

By convention, the frrst two entries in each directory are"dot" (.) and
"dotdot" (••). The frrst is an entry for the directory itself. The second
is for the parent directory. The meaning of dotdot is modified for the
root directory of the master file system; there is no parent, so dotdot
has the same meaning as dot.

See Also

filesystem(F)

March 15, 1989 DIR-1

DIRENT (F)

dirent
filesystem-independent directory entry

Syntax

#include <sys/types.h>
#include <sys/dirent.h>

Description

DIRENT (F)

Different file system types may have different directory entries. The
dirent structure defines a file-system-independent directory entry,
which contains information common to directory entries in different
file system types. A set of these structures is returned by the
getdents (S) system call.

The dirent structure is defined below.

struct dirent {

} ;

long
off t
unsigned short
char

d_ino;
doff;
d:=reclen;
d_name[l];

The d ino is a number which is unique for each file in the file system.
The fi"""eld d _off is the offset of that directory entry in the actual file
system directory. The field d _name is the beginning of the character
array giving the name of the directory entry. This name is null ter­
minated and may have at most MAXNAMLEN characters. This
results in file system independent directory entries being variable
length entities. The value of d _ree/en is the record length of this
entry. This length is defined to be the number of bytes between the
current entry and the next one, so that it will always result in the next
entry being on a long boundary.

Files

/usr/include/ sys/dirent.h

See Also

getdents(S)

March 15, 1989 DIRENT-1

DIRENT (F) DIRENT (F)

Standards Conformance

dirent is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRENT-2

FILEHDR (F) FILEHDR (F)

filehdr
file header for common object files

Syntax

#include <filehdr.h>

Description

Every common object file begins with a 20-byte header. The follow­
ing C struct declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f magic ;
f-nscns ;
f-tirrdat ;
f-symptr ;
f-nsyms ;
f-opthdr ;
f=flags ;

/* magic number */
/* number of sections */
/* time & date stamp */
/* file ptr to symtab */
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

F _symptr is the byte offset into the file at which the symbol table can
be found. Its value can be used as the offset in/seek(S) to position an
110 stream to the symbol table. The UNIX system optional header is
28-bytes. The valid magic numbers are given below:

#define 1286SMAGIC 0512 /* 80286 computers-small model
programs */

#define 1286LMAGIC 0522 /* 80286 computers-large model

#define 1386MAGIC
#define FBOMAGIC
#define N3BMAGIC
#define NTVMAGIC

programs */
0514 /* 80386 computers */
0560 /* 3B2 and 3B15 computers */
0550 /* 3B20 computer */
0551 /* 3B20 computer */

#define VAXWRMAGIC 0570 /* ~ writable text segments */
#define VAXROMAGIC 0575 /* ~ read only sharable

text segments */

The value in f timdat is obtained from the time (S) system call.
Flag bits currently defined are:

#define F RELFLG 0000001 /* relocation entries stripped */

March 15, 1989 FILEHDR-1

FILEHDR (F) FILEHDR (F)

#define F EXEC 0000002 /* file is executable */
#define F-LNNO 0000004 /* line numbers stripped */
#define F-LSYMS 0000010 /* local symbols stripped */
#define F-MINMAL 0000020 /* minimal object file */
#define F-UPD~ 0000040 /* update file, ogen produced */
#define F - 8WABD 0000100 /* file is ''pre-swabbed'' */
#define F - ARl6WR 0000200 /* 16-bit DEC host */
#define F-AR32WR 0000400 /* 32-bit DEC host */
#define F-AR32W 0001000 /* non-DEC host */
#define F-PATCH 0002000 /* ''patch'' list in opt hdr */
#define F-80186 010000 /* contains 80186 instructions */
#define F-80286 020000 /* contains 80286 instructions */
#define F=BM32ID 0160000 /* WE32000 family ID field */
#define F BM32B 0020000 /* file contains WE 32100 code */
#define F=BM32MAU 0040000 /* file reqs MAU to execute */
#define F BM32RST 0010000 /* this object file contains restore

- work around [3B15/3B2 only] */

See Also

time(S), fseek(S), a.out(F)

March 15, 1989 FILEHDR-2

FILESYS (F) FILESYS (F)

filesys
default information for mounting filesystems

Description

The /etc/default/filesys file contains infonnation for mounting filesys­
terns in the following fonnat:

name=value [name=value] ...

value may contain white spaces if quoted, and new lines may be
escaped with a backslash.

mnt(C) and sysadmsh(ADM) use the infonnation in the
/etc/default/filesys when the system comes up multiuser. The follow­
ing names are defined for /etc/defaultlfilesys:

bdev

cdev

size

mountdir

desc

mountflags

fsckflags

rcmount

See Also

Name of the block interface device.

Name of the character interface device.

Size in blocks.

Directory on which the filesystem is mounted.

A description of the filesystem. For example,
"User filesystem."

Any flags passed to the mount(ADM) command.

Any flags passed to the fsck(ADM) command.

Whether or not to mount the filesystem when the
system goes multiuser. Can be yes, no, or prompt.
If set to prompt, you are prompted when it is time
to mount the filesystem.

mount(ADM), mnt(C), sysadmsh(ADM)

March 13, 1990 FILESYS-1

FILESYSTEM (F)

filesystem
format of filesystem types

Syntax

#include <sys/fs/? ?filsys.h>
#include <sys/types.h>
#include <sys/param.h>

Descri ption

FILESYSTEM (F)

Every filesystem storage volume (for example, a hard disk) has a com­
mon format for certain vital information. Every such volume is
divided into a certain number of 1024-byte blocks. There are four
fileystem types available:

S51K (UNIX fileystem)
XENIX
AFS (ACER Fast Filesystem)
DOS

The DOS filesystem is a 512-byte filesystem. (The DOS filesystem
structure is shown in lusr/include/fsl dosfilsys.h. This page does not
discuss the format of the DOS file system in detail. Consult a DOS
reference for more information.)

Block 0 is unused and is available to contain a bootstrap program or
other information.

Block 1 is the super-block. The format of the S5IK, AFS, and XENIX
filesystem super-blocks are described in two files in the directory
lusr/include/fs: sSfilsys.h (S5IK and AFS), xxfilsys.h (XENIX). The
XENIX filesystem boot block is 1024-bytes; the S51K and UNIX boot
blocks are 512-byte blocks. In these include files, s_isize is the
address of the first data block after the i-list. The i-list starts just after
the super-block in block 2; thus the i-list is s_isize-2 blocks long.
s Jsize is the first block not potentially available for allocation to a
file. These numbers are used by the system to check for bad block
numbers. If an "impossible" block number is allocated from the free
list or is freed, a diagnostic is written on the console. Moreover, the
free array is cleared so as to prevent further allocation from a presum­
abl y corrupted free list.

The free list for S51K and XENIX volumes (but not AFS) is main­
tained as follows: The s Jree array contains, in s Jree [I], ... ,
sJree[s rifree-I], up to NICFREE-I numbers of free blocks.
s Jree [OT is the block number of the head of a chain of blocks

March 15, 1989 FILESYSTEM-1

FILESYSTEM (F) FILESYSTEM (F)

constituting the free list. The frrst short in each free-chain block is the
number (up to NICFREE) of free-block numbers . listed in the next
NICFREE longs of this chain member. The frrst of these NICFREE
blocks is the link to the next member of the chain. To allocate a
block: decrement s _ nfree, and the new block is s Jree [s _ nfree]. If
the new block number is 0, there are no blocks left, so give an error. If
s_nfree becomes 0, read in the block named by the new block number,
replace s _ nfree by its frrst word, and copy the block numbers in the
next NICFREE longs into the s Jree array. To free a block, check if
s _ nfree is NICFREE; if so, copy s _ nfree and the s Jree array into it,
write it out, and set s nfree to 0. In any event set s Jree [s nfree] to
the freed block's number and increment s _ nfree. -

In the AFS filesystem, the free list is maintained differently, The AFS
freelist is organized as a bitmap, one bit per (lK) block in the filesys­
tern. This organization makes it easy to find contiguous stretches of
free blocks.

s _tfree is the total free blocks available in the filesystem.

s _ ninode is the number of free i-numbers in the s _inode array. To
allocate an inode: if s_ninode is greater than 0, decrement it and
return s_inode[s_ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to NICINOD) into the s_inode array,
then try again. To free an inode, provided s_ninode is less than NICI­
NOD, place its number into s inode [s ninode] and increment
s_ninode. If s_ninode is already NiCINOD,-do not bother to enter the
freed inode into any table. This list of inodes only speeds up the allo­
cation process. The information about whether the inode is really free
is maintained in the inode itself.

s _tinode is the total free inodes available in the file system.

The following applies only to S51K and AFS fileystems: s_state indi­
cates the state of the file system. A cleanly unmounted, not damaged
file system is indicated by the FsOKA Y state. After a file system has
been mounted for update, the state changes to FsACTIVE. A special
case is used for the root file system. If the root file system appears
damaged at boot time, it is mounted but marked FsBAD. Lastly, after
a file system has been unmounted, the state reverts to FsOKA Y.

s Jlock and s _ilock are flags maintained in the core copy of the
filesystem while it is mounted and their values on disk are immaterial.
The value of s Jmod on disk is also immaterial, and is used as a flag to
indicate that the super-block has changed and should be copied to the
disk during the next periodic update of file system information.

s _ronly is a read-only flag to indicate write-protection.

s _time is the last time the super-block of the file system was changed,
and is a double precision representation of the number of seconds that
have elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot, the

March 15, 1989 FILESYSTEM-2

FILESYSTEM (F) FILESYSTEM (F)

s_time of the super-block for the root file system is used to set the
system's idea of the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 16 of them fit into a block. There­
fore, inode i is located in block (i+31)/16, and begins
64x«i+31) (mod 16» bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file system,
but no other i-number has a built-in meaning. Each inode represents
one file. For the format of an inode and its flags, see inode (F).

Files

/usr/include/ sys/filsys.h

/usr/include/ sys/stat.h

See Also

fsck(ADM), mkfs(ADM), inode(F)

March 15, 1989 FILESYSTEM-3

FSPEC (F) FSPEC (F)

fspec
format specification in text files

Description

It is sometimes convenient to maintain text files on the UNIX system
with non-standard tabs, (i.e., tabs which are not set at every eighth
column). Such files must generally be converted to a standard format,
frequently by replacing all tabs with the appropriate number of spaces,
before they can be processed by UNIX system commands. A format
specification occurring in the first line of a text file specifies how tabs
are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated
by blanks and surrounded by the brackets <: and :>. Each parameter
consists of a key letter, possibly followed immediately by a value. The
following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.
The value of tabs must be one of the following:

1. a list of column numbers separated by commas,
indicating tabs set at the specified columns;

2. a - followed immediately by an integer n, indicat­
ing tabs at intervals of n columns;

3. a - followed by the name of a "canned" tab spe­
cification.

Standard tabs are specified by t-8, or equivalently,
tl,9,17,25, etc. The canned tabs which are recognized
are defined by the tabs(C) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is per­
formed after tabs have been expanded, but before the
margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be an
integer.

d The d parameter takes no value. Its presence indicates
that the line containing the. format specification is to be
deleted from the converted file.

March 15, 1989 FSPEC-1

FSPEC (F)

e

FSPEC (F)

The e parameter takes no value. Its presence indicates
that the current format is to prevail only until another
format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8
and mO. If the s parameter is not specified, no size checking is per­
formed. If the first line of a file does not contain a format specifica­
tion, the above defaults are assumed for the entire file. The following
is an example of a line containing a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not
necessary to code the d parameter.

See Also

ed(C), newform(C), tabs(C)

March 15, 1989 FSPEC-2

GETTYDEFS (F) GETTYDEFS (F)

gettydefs
speed and terminal settings used by getty

Description

The /etc/gettydefs file contains information used by getty (M) to set up
the speed and terminal settings for a line. It supplies information on
what the login prompt should look like. It also supplies the speed to
try next if the user indicates the current speed is not correct by typing
a BREAK character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label [# log­
in-program]

Each entry must be followed by a carriage return and a blank line.
The various fields can contain quoted characters of the form \b, \0, \c,
etc., as well as \nnn, where nnn is the octal value of the desired char­
acter. The various fields are:

label This is the string against which getty (M) tries to match
its second argument. It is often the speed, such as
1200, at which the terminal is supposed to run, but it
need not be (see below).

initial-flags These flags are the initial ioetl (S) settings to which the
terminal is to be set if a terminal type is not speci tied to
getty (M). The flags that getty (M) understands are the
same as the ones listed in /usr/include/ sys/termio.h
[see termio(M)]. Normally only the speed flag is
required in the initial-flags. getty (M) automatically
sets the terminal to raw input mode and takes care of
most of the other flags. The initial-flag settings remain
in effect until getty (M) executes login(M).

final-flags Sets the same values as the initial-flags. These flags
are set just prior to getty executing login-program. The
speed flag is again required. The. composite flag SANE
is a composite flag that sets the following termio(M)
parameters:

March 13, 1990

modes set:
CREAD BRKINT IGNPAR ISTRIP ICRNL IXON
ISIG ICANON ECHO ECHOK OPOST ONLCR

GETTYDEFS-1

GETTYDEFS (F) GETTYDEFS (F)

modes cleared:
CLOCAL IGNBRK PARMRK INPCK INLCR JUCLC
IXOFF XCASE ECHOE ECHONL NOFLSH OLCUC
OCRNL ONOCR ONLRET OFILL OFDEL NLDLY
CRDLY TABDLY BSDLY VTDLY FFDLY

The other two commonly specifiedjinal-jiags are TAB3,
so that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final close.

login-prompt Contains login prompt message that greets users.
Unlike the above fields where white space is ignored (a
space, tab, or new-line), it is included in the login­
prompt field. The '@' in the login-prompt field is
expanded to the first line (or second line if it exists) in
letc/systemid (unless the '@' is preceded by a '\').
Several character sequences are recognized, including:
\n Linefeed
\r Carriage return
\ v Vertical tab
\nnn (3 octal digits) Specify ASCII character
\t Tab
\f Form feed
\ b Backspace

next-label Identifies the next entry in gettydefs for getty to try if
the current one is not successful. Getty tries the next
label if a user presses the BREAK key while attempting
to log in to the system. Groups of entries, for example,
for dial-up lines or for TIY lines, should form a closed
set so that getty cycles back to the original entry if
none of. the entries is successful. For instance, 2400
linked to 1200, which in tum is linked to 300, which
finally is linked to 2400.

login-program
The name of the program that actually logs the user in
to Altos UNIX System V. The default program is
/etc/login. If preceded by the keyword AUTO, getty
will not prompt for a username, but instead uses its first
argument as the username and executes the log in­
program immediately.

If getty is called without a second argument, then the first entry of
letc/gettydefs is used, thus making the first entry of letc/gettydefs the
default entry. The first entry is also used if getty can not find the
specified label. If letc/gettydefs itself is missing, there is one entry
built into the command which will bring up a terminal at 300 baud.

After modifying /etc/gettydefs, run it through getty with the check
option to be sure there are no errors.

March 13, 1990 GETTYDEFS-2

GETTYDEFS (F)

Files

/etc/gettydefs

See Also

stty(C), ioctl(S), getty(M), login(M)

March 13, 1990

GETTYDEFS (F)

GETTYDEFS-3

GPS (F) GPS (F)

gps
graphical primitive string, format of graphical files

Description

GPS is a format used to store graphical data. Several routines have
been developed to edit and display GPS files on various devices. Also,
higher level graphics programs such as plot [in stat (lG)] and vtoc [in
toc(lG)] produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES

lines The lines primitive has a variable number of points from
which zero or more connected line segments are pro­
duced. The first point given produces a move to that loca­
tion. (A move is a relocation of the graphic cursor
without drawing.) Successive points produce line seg­
ments from the previous point. Parameters are available
to set color, weight, and style (see below).

arc The arc primitive has a variable number of points to
which a curve is fit. The first point produces a move to
that point. If only two points are included, a line connect­
ing the points will result; if three points a circular arc
through the points is drawn; and if more than three, lines
connect the points. (In the future, a spline will be fit to
the points if they number greater than three.) Parameters
are available to set color, weight, and style.

text The text primitive draws characters. It requires a single
point which locates the center of the first character to be
drawn. Parameters are color,/ont, textsize, and textangle.

hardware The hardware primitive draws hardware characters or
gives control commands to a hardware device. A single
point locates the beginning location of the hardware
string.

comment A comment is an integer string that is included in a GPS
file but causes nothing to be displayed. All GPS files
begin with a comment of zero length.

March 15, 1 989 GPS-1

GPS (F) GPS (F)

GPS PARAMETERS

color Color is an integer value set for arc, lines, and text primi­
tives.

weight Weight is an integer value set for arc and lines primitives
to indicate line thickness. The value 0 is narrow weight,
1 is bold, and 2 is medium weight.

style Style is an integer value set for lines and arc primitives to
give one of the five different line styles that can be drawn
on TEKTRONIX 4010 series storage tubes. They are:

o solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

font An integer value set for text primitives to designate the
text font to be used in drawing a character string.
(Currently font is expressed as a four-bit weight value fol­
lowed by a four-bit style value.)

textsize Textsize is an integer value used in text primitives to
express the size of the characters to be drawn. Textsize
represents the height of characters in absolute universe­
units and is stored at one-fifth this value in the size­
orientation (so) word (see below).

textangle Textangle is a signed integer value used in text primitives
to express rotation of the character string around the
beginning point. Textangle is expressed in degrees from
the positive x-axis and can be a positive or negative
value. It is stored in the size-orientation (so) word as a
value 256/360 of it's absolute value.

ORGANIZATION

GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw

cw points sw
cw points sw
cw point sw so [string]
cw point [string]
cw [string]

cw is the control word and begins all primitives. It con­
sists of four bits that contain a primitive-type code and
twelve bits that contain the word-count for that primitive.

March 15, 1989 GPS-2

GPS (F) GPS (F)

point(s) Point(s) is one or more pairs of integer coordinates. Text
and hardware primitives only require a single point.
Point(s) are values within a Cartesian plane or universe
having 64K (-32K to +32K) points on each axis.

sw Sw is the style-word and is used in lines, arc, and text
primitives. For all three, eight bits contain color informa­
tion. In arc and lines eight bits are divided as four bits
weight and four bits style. In the text primitive eight bits
of sw contain the/onto

so So is the size-orientation word used in text primitives.
Eight bits contain text size and eight bits contain text
rotation.

string String is a null-terminated character string. If the string
does not end on a word boundary, an additional null is
added to the GPS file to insure word-boundary alignment.

See Also

graphics(ADM), stat(ADM), toc(ADM)

March 15, 1989 GPS-3

GROUP (F)

group
format of the group file

Description

group contains the following information for each group:

- Group name

~ Numerical group ID

- Comma-separated list of all users allowed in the group

GROUP (F)

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a newline. If the password field is null, no
password is demanded.

This file resides in directory lete. Because of the encrypted pass­
words, it can and does have general read permission and can be used,
for example, to map numerical group IDs to names.

Files

/etc/group

See Also

newgrp(C), passwd(C), passwd(F)

Standards Conformance

group is conformant with:

The X/Open Portability Guide II of January 1987;
IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NIST FIPS 151-1.

March 15, 1989 GROUP-1

HS (F) HS (F)

hs
High SierrallSO-9660 CD-ROM filesystem

Description

The hs filesystem module supports the mounting of CD-ROM filesys­
terns conforming the High Sierra/lSO-9660 format.

Files

/usr/include/ sys/fs/hs *
See Also

cdrom(HW), mkdev(ADM), mount(ADM)

Notes

Since the CD-ROM is a read-only device it is only possible to mount
CD-ROM filesystems as read-only. The kernel enforces this regardless
of whether the -r option of mount(ADM) was used when the filesys­
tern was mounted.

The command mkdev high-sierra can be used to interactively config­
ure High Sierra/lSO-9660 filesystem support.

March 19, 1990 HS-1

INIITAB (F) INITTAB (F)

inittab, init.base
script for the init process

Description

The inittab file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process /etc/getty that initiates indi­
vidual terminal lines. Other processes typically dispatched by init are
daemons and the shell.

The inittab file is recreated automatically by idmkinit at boot time
anytime the kernel has been reconfigured. To. construct a new inittab
file, idmkinit reads the file letc/conf/cf.d/init.base, which contains a
base set of inittab entries that are required for the system, and com­
bines these base entries with add-on entries from the device driver init
files in the directory letc/conf/init.d.

If you add an entry directly to inittab, the change exists only until the
kernel is relinked. To add an entry permanently, you must also edit
letc/conf/cf.d/init.base. The init.base file has the same format as
inittab.

The inittab file is composed of entries that are, position-dependent and
have the following format:

id:rstate:action:process

Each entry is delimited by a new-line; however, a backslash (\)
preceding a new-line indicates a continuation of the entry. Up to 512
characters per entry are permitted. Comments may be inserted in the
process field using the sh(C) convention for comments. Comments
for lines that spawn getty s are displayed by the who(C) command. It
is expected that they will contain some information about the line
such as the location. There are no limits (other than maximum entry
size) imposed on the number of entries within the inittab file. The
entry fields are:

id This is up to four characters used to uniquely identify an
entry.

rstate This defines the run-level in which this entry is to be pro­
cessed. Run-levels effectively correspond to a configuration
of processes in the system. That is, each process spawned by
init is assigned a run-level or run-levels in which it is
allowed to exist. The run-levels are represented by a number
ranging from 0 through 6. As an example, if the system is in
run-levell, only those entries having a 1 in the rstate field

March 18, 1991 INIITAB-1

INITTAB (F) INITTAB (F)

will be processed. When init is requested to change run­
levels, all processes which do not have an entry in the rstate
field for the target run-level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace period before
being forcibly terminated by a kill signal (SIGKILL). The
rstate field can define multiple run-levels for a process by
selecting more than one run-level in any combination from
0-6. If no run-level is specified, then the process is assumed
to be valid at all run-levels 0-6. There are three other values,
a, b, and c, which can appear in the rstate field, even though
they are not true run-levels. Entries which have these char­
acters in the rstate field are processed only when the teUnit
[see init(M)] process requests them to be run (regardless of
the current run-level of the system). They differ from run­
levels in that init can never enter run-level a, b, or c. Also, a
request for the execution of any of these processes does not
change the current run-level. Furthermore, a process started
by an a, b, or c command is not killed when init changes lev­
els. They are only killed if their line in letc/inittab is
marked otT in the action field, their line is deleted entirely
from letc/inittab, or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by init
are as follows:

respawn If the process does not exist, then start the pro­
cess, do not wait for its termination (continue
scanning the inittab file); and when it dies, res­
tart the process. If the process currently exists,
then do nothing and continue scanning the init­
tab file.

wait Upon init's entering the run-level that matches
the entry's rstate, start the process and wait for
its termination. All subsequent reads of the
inittab file while init is in the same run-level
will cause init to ignore this entry.

once Upon init's entering a run-level that matches
the entry's rstate, start the process, do not wait
for its termination. When it dies, do not restart
the process. If upon entering a new run-level,
where the process is still running from a previ­
ous run-level change, the program will not be
restarted.

boot The entry is to be processed only at init's boot­
time read of the inittab file. init is to start the
process, not wait for its termination; and when it
dies, not restart the process. In order for this
instruction to be meaningful, the rstate should

March 18, 1991 INITTAB-2

INITTAB (F) INITTAB (F)

be the default or it must match in it 's run-level
at boot time. This action is useful for an initial­
ization function following a hardware reboot of
the system.

bootwait The entry is to be processed the first time init
goes from single-user to multi-user state after
the system is booted. (If initdefault is set to 2,
the process will run right after the boot.) init
starts the process, waits for its termination and,
when it dies, does not restart the process.

powerfail Execute the process associated with this entry
only when init receives a power fail signal
[SIGPWR see signal(S)].

powerwait Execute the process associated with this entry
only when init receives a power fail signal
(SIGPWR) and wait until it terminates before
continuing any processing of inittab.

restart Execute the process associated with this entry
only when init receives a power fail signal
(SIGPWR) on a warm restart of the system after
a power failure.

ofT If the process associated with this entry is
currently running, send the warning signal
(SIGTERM) and wait 20 seconds before forci­
bly terminating the process via the kill signal
(SIGKILL). If the process is nonexistent, ignore
the entry.

ondemand This instruction is really a synonym for the
respawn action. It is functionally identical to
respawn but is given a different keyword in
order to divorce its association with run-levels.
This is used only with the a, b, or c values
described in the rstate field.

initdefault An entry with this action is only scanned when
init initially invoked. init uses this entry, if it
exists, to determine which run-level to enter ini­
tially. It does this by taking the highest run­
level specified in the rstate field and using that
as its initial state. If the rstate field is empty,
this is interpreted as 0123456 and so init will
enter run-level 6. Additionally, if init does not
find an initdefault entry in /etc/inittab, then it
will request an initial run-level from the user at
reboot time.

March 18, 1991 INITTAB-3

INITTAB (F)

sysinit

INITTAB (F)

Entries of this type are executed before init tries
to access the console (Le., before the Console
Login: prompt). It is expected that this entry
will be used only to initialize devices on which
init might try to ask the run-level question.
These entries are executed and waited for
before continuing.

process This is a sh command to be executed. The entire process
field is prefixed with exec and passed to a forked sh as sh -c
'exec command'. For this reason, any legal sh syntax can
appear in the process field. Comments can be inserted with
the ; #comment syntaX.

Files

letc/inittab
letc/conf/cf.d/init. base

See Also

idmkinit(ADM), sulogin(ADM), disable(C), enable(C), getty(M),
init(M), powerfail(M), restart(M) sh(C), who(C), exec(S), open(S),
signal(S)

March 18, 1991 INITTAB-4

INODE (F)

inode
format of an inode

Syntax

#include <sys/types.h>
#include <sys/ino.h>

Description

INODE (F)

An inode for a plain file or directory in a file system has the structure
defined by <sys/ino.h>. For the meaning of the defined types off_1
and lime_1 see types(F).

Files

/usr/include/sys/ino.h

See Also

stat(S), filesystem(F), types(F)

March 15, 1989 INODE-1

ISSUE (F) ISSUE (F)

issue
issue identification file

Description

The file /etc/issue contains the issue or project identification to be
printed as a login prompt. This is an ASCn file which is read by pro­
gram getty and then written to any terminal spawned or respawned
from the lines file.

Files

/etc/issue

See Also

10gin(M)

March 15, 1989 ISSUE-1

LANGINFO (F) LANGINFO (F)

langinfo
language information constants

Syntax

#include <Ianginfo.h>

Description

This is a header file that contains constants used to identify items of
ntlanginfo (S) data. (See ntlanginfo (S).)

The contents of the header file are shown below.

/*

* LC_crYPE is not queried. through this interface
*/

/*
*
*/

:f/:define RADIXCHAR
:f/:define THOUSEP

/*

*
*/
:f/:define D EM!'
:f/:define,T-EM!'
:f/:define PM STR
:f/:define AM -STR
:f/:define D T EM!'
:f/:define DAY-1
:f/:define DAY~2
:f/:define DAY-3
:f/:define DAY-4
:f/:define DAY -5
:f/:define DAY-6
:f/:define DAY-7
:f/:define ABDAY 1
:f/:define ABDAY-2
:f/:define ABDAY-3
:f/:define ABDAY-4
:f/:define ABDAY-5
:f/:define ABDAY =6

March 13. 1990

items:

2000 /* Decimal separator */
2001 /* Thousands separator */

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017

/* Date format only */
/* Time format only */
/* PM */
/* AM */
/* Date and time format */
/* Sunday */
/* Monday */
/* Tuesday * /
/* Wednesday */
/* Thursday */
/* Friday */
/* Saturday * /
/* Sun */
/* Men */
/* Tue */
/* Wed */
/* Thu */
/* Fri */

LANGINF0-1

LANGINFO (F)

idefine ABDAY 7
idefine mN 1-
idefine mN-2
idefine mN-3
idefine mN-4
idefine mN-5
idefine mN-6
idefine mN-7
idefine mN-8
idefine mN-9
idefine mN-10
idefine mN-ll
idefine mN -12
idefine ABMON 1
idefine AEH>N 2
idefine AEH>N-3
idefine AEH>N-4
ide fine AEH>N-5
idefine AEH>N-6
idefine AEH>N-7
idefine AEH>N-8
idefine AEH>N-9
idefine AEH>N-10
idefine AEH>N-11
idefine AEH>N=12

/*
* LC COLLATE
*/ -

/*
* LC MESSAGES
*/ -

idefine YESSTR
idefine NOSTR

/*
* LC MONE'mRY
*/ -

idefine CRNCYSTR

See Also

3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042

/* Sat */
/ * January * /
/* February * /
/* Max"ch*/
/* April */
/* May */
/* June */
/* July */
/* August */
/* September */
/* October */
/* November */
/* December * /
/* Jan */
/* Feb */
/* Max" */
/* Apr */
/* May */
/* Jun */
/* Jul */
/* Aug */
/* Sep */
/* Oct */
/* Nov */
/* Dec */

LANQINFO (F)

is not queried through this interface

items:

5000 /* Affirmative reply to yin question */
5001 /* Negative reply to yes/no question */

items:

6000 /* ~rency symbol */

nCtypes(F), nClanginfo(S)

Value Added

langinfo is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 LANGINF0-2

LDFCN (F) LDFCN (F)

Idfen
common object file access routines

Syntax

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

Description

The common object file access routines are a collection of functions
for reading common object files and archives containing common
object files. Although the calling program must know the detailed
structure of the parts of the object file that it processes, the routines
effectively insulate the calling program from knowledge of the overall
structure of the object file.

The interface between the calling program and the object file access
routines is based on the defined type LDFILE, defined as struct Idfile,
declared in the header file Idfcn.h. The primary purpose of this struc­
ture is to provide uniform access to both simple object files and to
object files that are members of an archive file.

The function ldopen(S) allocates and initializes the LDFILE structure
and returns a pointer to the structure to the calling program. The
fields of the LDFILE structure may be accessed individually through
macros defined in Idfcn.h and contain the following information:

LDFILE

TYPE(ldptr)

IOPTR(ldptr)

OFFSET(ldptr)

HEADER(ldptr)

*ldptr;

The file magic number used to distinguish between
archive members and simple object files.

The file pointer returned by [open and used by the
standard input/output functions.

The file address of the beginning of the object file;
the offset is non-zero if the object file is a member
of an archive file.

The file header structure of the object file.

The object file access functions themselves may be divided into four
categories:

March. 15. 1989 LDFCN-1

LDFCN (F)

(1) functions that open or close an object file

Idopen(S) and ldaopen [see ldopen(S)]
open a common object file

Idclose (S) and ldaclose [see Idclose (S)]
close a common object file

LDFCN (F)

(2) functions that read header or symbol table information

ldahread(S)
read the archive header of a member of an archive file

Idfhread (S)
read the file header of a common object file

Idshread(S) and Idnshread[see Idshread(S)]
read a section header of a common object file

Idtbread (S)
read a symbol table entry of a common object file

Idgetname (S) .
retrieve a -symbol name from a symbol table entry or from
the string table

(3) functions that position an object file at (seek to) the start of the
section, relocation, or line number information for a particular sec­
tion.

Idohseek (S)
seek to the optional file header of a common object file

Idsseek(S) and Idnsseek [see Idsseek(S)]
seek to a section of a common object file

Idrseek(S) and Idnrseek [see Idrseek(S)]
seek to the relocation information for a section of a common
object file

Idlseek(S) and Idnlseek [see Idlseek(S)]
seek to the line number information for a section of a com­
mon object file

Idtbseek (S) ,
seek to the symbol table of a common object file

(4) the function Idtbindex(S) which returns the index of a particu­
lar common object file symbol table entry.

These functions are described in detail on their respective manual
pages.

All the functions except Idopen(S), Idgetname(S), Idtbindex(S) return
either SUCCESS or FAILURE, both constants defined in Idfcn.h.
Ldopen(S) and ldaopen [(see Idopen(S)] both return pointers to an
LDFILE structure.

Additional access to an object file is provided through a set of macros
defined in Idfcn.h. These macros parallel the standard input/output
file reading and manipulating functions, translating a reference of the

March 15, 1989 LDFCN-2

LDFCN (F) LDFCN (F)

LDFILE structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c,ldptr)
FGETS(s, n, ldptr)
FREAD«char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, but)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table. See
the manual entries for the corresponding standard input/output library
functions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library
Iibld.a.

See Also

fseek(S), Idahread(S), Idclose(S), Idgetname(S), Idfhread(S),
Idlread(S), Idlseek(S), Idohseek(S), Idopen(S), Idrseek(S), Idlseek(S),
Idshread(S), Idtbindex(S), Idtbread(S), Idtbseek(S), stdio(S), intro(M)

Notes

The macro FSEEK defined in the header file ldfcn.h translates into a
call to the standard input/output function [seek (S). FSEEK should not
be used to seek from the end of an archive file, since the end of an
archive file may not be the same as the end of one of its object file
members.

March 15, 1989 LDFCN-3

LIMITS (F) LIMITS (F)

limits
file header for implementation-specific constal1ts

Syntax

#include <limits.h>

Description

The header file <limits.h> is a list of magnitude limitations imposed
by a specific implementation of the operating system. All values are
specified in decimal.

idefine ARG WIX
idefine aJAR BIT
idefine OIAR - WIX
idefine OIAR - MIN
idefine oum WIX
idefine CIK 1U<
idefine DBL -DIG
idefine DBL - WIX
idefineDBL-MIN
idefine E"C1IR WIX
idefine FIll' DIG
idefine FIll' - WIX
idefine FIll' - MIN
idefine HU<ii VAL
idefine !NT MAx
idefine INT-MIN
idefine LINK WIX
idefine IJJNG - WIX
idefine IJJNG -MIN
idefine Name-WIX
idefine Cl?EN - WIX
idefine PASS-WIX
idefine PATH - WIX
idefine PID MAx
idefine PIPE BUF
idefine PIPE - WIX
idefine SHRl' - WIX
idefine SIOO -MIN
idefine STD BrK
idefine SYS - NM[N

idefine UID - WIX
idefine USI - WIX
idefine ~_BIT

5120 1* max length of arguments to exec */
8 1* i of bits in a "char" */
127 /* max integer value of a "char" */
-128 /* min integer value of a "char" */
25 1* max t of processes per user id */
100 1* i of clock ticks per second */
16 /* digits of precision of a "double" *1
1.79769313486231470e+308 1*rraX decinal value of a "double"*/
4.94065645841246544e-324 l*min decinal value of a "double"*/
1048576 1* max size of a file in bytes */
7 /* digits of precision of a "float" *1
3.40282346638528860e+38 /*rraX decinal value of a "float" */
1.40129846432481707e-45 /*min decinal value of a "float" */
3.40282346638528860e+38 /*error value returned by Math lib*/
2147483647 /* max decinal value of an "int" *1
-2147483648 1* min decinal value of an "int" */
1000 1* max i of links to a single file */
21474836471* max decinal value of a "long" */
-2147483648 /* min decinal value of a "long" */
14 1* max i of characters in a file narre */
60 /* max i of files a process can have open */
8 1* max i of characters in a password */
256 /* max i of characters in a path narre */
30000 /* max value for a process ID */
5120 1* max t bytes atanic in write to a pipe *1
5120 1* max i bytes written to a pipe in a write */
32767 /* max decinal value of a "short" */
-32768 1* min decinal value of a "short" */
1024 /* i bytes in a };hysical I/O block *1
9 /* i of chars in uname-returned strings */
60000 1* max value for a user or group ID */
4294967295/* max decinal value of an ''unsigned'' */
32 /* i of bits in a ''word'' or "int" */

Standards Conformance

limits is conformant with:

The X/Open Portability Guide II of January 1987.

March 15, 1989 L1MITS-1

lINENUM (F) LlNENUM (F)

linenum
line number entries in a common object file

Syntax

#include <linenum.h>

Description

The cc command generates an entry in the object file for each C
source line on which a breakpoint is possible [when invoked with the
-g option; see cc(CP)]. Users can then reference line numbers when
using the appropriate software test system [see sdb(CP)]. The struc­
ture of these line number entries appears below.

struct lineno
{

union
{

long 1 symndx ;
long l~addr ;

1 addr
unsigned short l_lnno;

} :

Numbering starts with one for each function. The initial line number
entry for a function has Clnno equal to zero, and the symbol table
index of the function's entry is in l_symndx. Otherwise, Clnno is
non-zero, and lyaddr is the physical address of the code for the refer­
enced line. Thus the overall structure is the following:

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

See Also

cc(CP), sdb(CP), a.out(F)

March 15. 1989 LlNENUM-1

LOGS (F)

logs
MMDF log files

Syntax

System status, error, and statistics logging for MMDF

Description

LOGS (F)

MMDF maintains run-time log files at several levels of activity. The
primary distinction is among message-level, channel-level, and link­
level infonnation. All logging settings can be overridden by entries in
the runtime tailor file. In MMDF, that member is merged with·
/usr/mmd[/log to determine the full pathname to the log. Logs are pro­
tected so that any process may write into them, but only MMDF may
read them (Le., 0622).

The logging files may be the source of some confusion, since the llog
package entails some complexity. Its three critical factors are coordi­
nated access, restricted file length, and restricted verbosity.

The length of a logging file can be limited to 25-block units. This is
extremely important since files can grow very long over a period of
time, especially if there are many long messages sent or very. verbose
logging.

Restricted verbosity is a way of easily tuning the amount· of text
entered into the log. This is probably the one parameter you need
most to worry about. Set to full tilt (level=FfR), MMDF get notice­
ably slower and I/O bound. It also does a pretty good job of showing
what it is doing and hence helping you figure out the source of errors.
When you get to trust the code, setting the logging level down is
highly recommended. The lowest would be TMP or FAT, for tem­
porary or fatal errors. GEN will log errors and general infonnation.
FST logs errors, general and statistics infonnation.

March 13, 1990 LOGS-1

LOGS (F) LOGS (F)

Specific Logs

Even with the listed divisions, the logs .contain a variety of informa­
tion. Only the message-level log's format will be explained in signifi­
cant detail.

msg.log records enqueue and dequeue transitions, by submit
and deliver. Entries by a background deliver pro­
cess are noted with a "BG-xxxx" tag, where the x's
.contain the 4 least-significant decimal digits of the
daemon's process id. This is to allow distinguishing
different daemons. When deliver is invoked, by
submit, for an immediate attempt, the tag begins
with "DL" rather than "BG". Entries by submit
begin with "SB".

Every major entry will indicate the name of the message involved.
Entries from submit will show "lin" if the submission is from a user
on the local machine. In this case, the end of the entry will show the
login name of the sender. If the entry is labelled "rin," then the mail
is being. relayed. The channel name, source host, and sender address
are shown. Within parentheses, the number of addressees and the
byte-length of the message are listed.

Entries from deliver show final disposition of a message/addressee.
These are indicated by "end." Then, there is the destination channel
and mailbox name. In brackets, the queue latency for the address is
shown in hours, seconds, and minutes.

chan.log

ph.log

ph.trn

March 13, 1990

records activity by the channel programs, in
chndftdir[]. Entries have a tag indicating the type
of channel making the entry. Different channels
record different sorts of information. For example,
the local channel shows when a rcvmail private
reception program is invoked.

is used by the telephone link-level (packet) code.

is the one file that is not size-limited. It records a
transcript of every character sent and received on a
telephone channel. It is reset to zero length at the
beginning of every phone session. It is kept ver­
bose, in order to facilitate checking the status of
any telephone channel which is active. Hence, just
watching for the ph.trn file to get larger can indicate
that there is progress. Each telephone channel may
have its own transcript file specified in the channel
definition in the runtime tailor file.

LOG 5-2

LOGS (F)

See Also

mmdf(ADM)

Value Added

LOGS (F)

logs is an extension of AT&T System V provided in Altos UNIX Sys­
temV.

March 13, 1990 LOG 5-3

MAILDELIVERY (F) MAILDELIVERY (F)

maildelivery
user delivery specification file

Description

The delivery of mail by the local channel can run through various
courses, including using a user tailorable file. The delivery follows
the following strategy, giving up at any point it considers the message
delivered.

1) If the address indicates a pipe or file default, then that is car­
ried out.

2) The file .maildelivery (or something similar) in the home
directory is read if it exists and the actions in it are followed.

3) A system-wide file is consulted next, such as
lusrlliblmaildelivery and the actions are similar to step 2.

4) If the message still hasn't been delivered, then it is put into
the user's normal mailbox (.mail or mailbox) depending on
the system.

The format of the .maildelivery file is

field <FS> pattern <FS> action <FS> result <FS> string

where:

field is name of a field that is to be searched for a pattern. This
is any header field that you might find in a message. The
most commonly used headers are From, to, cc, subject and
sender. As well as the standard headers, there are some
pseudo-headers that can also be used. These are:

source

addr

default

March 19, 1990

The out-of-band sender information. This is
the address MMDF would use for reporting
delivery problems with the message.

the address that was used to mail to you, nor­
mally yourname or yourname=string (see
below).

if the message hasn't been delivered yet, this
field is matched.

MAILDELIVERY-1

MAILDELIVERY (F) MAILDELIVERY (F)

pattern

action

result

* this case is always true regardless of any
other action.

is some sequence of characters that may be matched in
the above fie ld. Case is not significant.

is one of the mail delivery actions supported by the local
channel. Currently the supported actions are file or >,
which appends the message to the given file, with delimit­
ers; pipe or I, which starts up a process with the message
as the standard input; and destroy which throws the mes­
sage away.
For piped commands, the exit status of the command is
significant. An exit status of 0 implies that the command
succeeded and everything went well. An exit status of
octal 0300-0377 indicates that a permanent failure
occurred and the message should be rejected. Any other
exit status indicates a temporary failure and the delivery
attempt will be aborted and restarted at a later time.

is one of the letters A, R or ? which stand for Accept,
Reject and "Accept if not delivered yet". They have the
following effects:

A If the result of this line's action is OK, then
the message can be considered delivered.

R The message is not to be considered delivered
by this action.

? This is equivalent to A except that the action
is not carried out if the message has already
been accepted.

The file is always read completely so that several matches can be
made, and several actions taken. As a security check, the .mail­
delivery file must be owned by either the user or root, and must not
have group or general write permission. In addition the system
delivery file has the above restrictions but must also be owned by root.
If the field specified does not need a pattern, a dash (-), or similar sym­
bol is usually inserted to show that the field is present but not used.
The field separator character can be either a tab, space or comma (,).
These characters can be included in a string by quoting them with
double quotes ("); double quotes can be included with a backslash ,,\'.

MMDF treats local addresses which contain an equal sign ('=') in a
special manner. Everything in a local address from an equals sign to
the '@' is ignored and passed on to the local channel. The local chan­
nel will make the entire string available for matching against the addr
string of the .maildelivery file. For example, if you were to subscribe
to a digest as "foo=digest@bar.NET", submit(ADM) and the local
channel will verify that it is legal to deliver to "foo", but then the

March 19, 1990 MAILDELIVERY -2

MAILDELIVERY (F) MAILDELIVERY (F)

entire string "foo=digest" will be available for string matching against
the .maildelivery file for the addr field.

Environment

The environment in which piped programs are run contains a few stan­
dard features, specifically:

HOME is set to the user's home directory.
USER is set to the user's login name.
SHELL is set to the user's login shell (defaults to /bin/sh).

The default umask is set up to 077, this gives a very protective crea­
tion mask. If further requirements are needed, then a shell script can
be run first to set up more complex environments.

There are certain built-in variables that you can give to a piped pro­
gram. These are $(sender) , $(address) , $(size) , $(reply-to) and
$(info). $(sender) is set to the return address for the message.
$(address) is set to the address that was used to mail to you, normally
'yourname' or 'yourname=string'. $(size) is set to the size in bytes of
this message. $(reply-to) is set to the Reply-To: field (or the From:
field if the former is missing) and so can be used for automatic replies.
$(info) is the info field from the internal mail header and is probably
only of interest to the system maintainers.

Example

Here is a rough idea of what a .maildelivery file looks like:

t lines starting with a 't' are ignored.
t as are blank lines
t file mail with nm::if2 in the "To:" line into file nm::if2 . log
To nm::if2 file A nm::if2.log
t Messages from nm::if pipe to the program err-message-archive
From nm::if pipe A err-message-archive
t Anything with the "Sender:" address ''uk-nm::if-workers''
t file in nm::if2.log if not filed already
Sender uk-mmdf-workers file ? mmdf2.log
t "To:" unix - put in file unix-news
To Unix > A unix-news
t if the address is jpo=mmdf - pipe into mmdf-redist
Addr jpo=mmdf I A nm::if-redist
t if the address is jpo=ack - send an acknowledgement copy back
Addr jpo=ack IR resend -r $ (reply-to)
t anything from steve - destroy!
from steve destroy A
t anything not matched yet - put into mailbox
default >? mailbox
t always run rcvalert

March 19, 1990 MAILDELIVERY -3

MAILDELIVERY (F) MAILDELIVERY (F)

* R rcvalert

Files

$HOME/.maildelivery normal location
/usr/lib/maildelivery the system file. This

should be protected.
The lusrlIib/maildelivery file contains contents such as:

default

*
pipe
pipe

A
R

stdreceive
ttynotify

This allows the system to interfaces with non-standard mail systems
that do not support delimiter-separated mailboxes.

See Also

rcvtrip(C)

March 19. 1990 MAILDELIVERY -4

MAPCHAN (F)

mapchan
format of tty device mapping files

Description

MAPCHAN (F)

mapchan configures the mapping of information input and output.

Each unique channel map requires a multiple of 1024 bytes (a lK
buffer) for mapping the input and output of characters. No buffers are
required if no channels are mapped. If control sequences are sped­
fled, an additional lK buffer is required.

A method of sharing maps is implemented for channels that have the
same map in place. Each additional, unique map allocates an addi­
tional buffer. The maximum number of map buffers available on a
system is configured in the kernel, and is adjustable via the link kit
NEMAP parameter (see configure (ADM». Buffers of maps no longer
in use are returned for use by other maps.

Example of a Map File

The internal character set is defined by the right column of the input
map, and the first column of the output map in place on that line. The
default internal character set is the 8-bit ISO 8859/1 character set,
which is also known as dpANS X3.4.2 and ISOrrC97/SC2. It supports
the Latin alphabet and can represent most European languages.

Any character value not given is assumed to be a straight mapping,
only the differences are shown in the mapfile. The left hand columns
must be unique. More than one occurrence of any entry is an error.
Right hand column characters can appear more than once. This is
"many to one" mapping. Nulls can be produced with compose
sequences or as part of an output string.

It is recommended that no mapping be enabled on the channel used to
create or modify the mapping files. This prevents any confusion of the
actual values being entered due to mapping. It is also recommended
that numeric rather than character representations be used in most
cases, as these are not likely to be subject to mapping. Use comments
to identify the characters represented. Refer to the ascii (M) manual
page and the hardware reference manual for the device being mapped
for the values to assign.

March 13, 1990 MAPCHAN-1

MAPCHAN (F) MAPCHAN (F)

* * sharp/pound/cross-hatch is the comment character
* however, a quoted * ('*') is Ox23, not a comment

* * beep, input, output, dead, compose and * control are special keywords and should appear as shown.

*
beep
input

ab
c d

dead p
qr
s t

dead u
vw

conpose x
y z A
BCD

output
e f
g h i j
klmno

control

input
E 1

output
FG 2

* sound the bell when errors occur

* p followed by q yields r.
* p followed by s yields t.

* u followed by v yields w.

* x is the compose key (only one allowed) .

* x followed by B and C yields D.

* e is mapped to f. * g is mapped to hi j - one to many.
* k is mapped to lmno.

* The control sections must be last

* The character E is followed by 1 more
unmapped character

* The characters FG are followed by 2
more unmapped characters

All of the single letters above preceding the "control" section must
be in one of these formats:

56
045
Oxfa
'b'
"'D76'
'\x.4a'

decimal
octal
hexadecimal
quoted char
quoted octal
quoted hex

All of the above formats are translated to single byte values.

The control sections (which must be the last in the file) contain spe­
cifications of character sequences which should be passed through to
or from the terminal device without going through the normal map­
chan processing. These specifications consist of two parts: a fixed
sequence of one or more defined characters indicating the start of a

March 13. 1990 MAPCHAN-2

MAPCHAN (F) MAPCHAN (F)

no-map sequence, followed by a number of characters of which the
actual values are unspecified.

To illustrate this, consider a cursor-control sequence which should be
passed directly to the terminal without being mapped. Such a
sequence would typically begin with a fixed escape sequence instruct­
ing the terminal to interpret the following two characters as a cursor
position; the values of the following two characters are variable, and
depend on the cursor' position requested. Such a control sequence
would be specified as:

\E= 2 # Cursor control: escape = <x> <y>

There are two subsections under control: the input section is used to
filter data sent from the terminal to Altos UNIX System V, and the
output section is used to filter data sent from Altos UNIX System V to
the terminal. The two fields in each control sequence are separated by
white space, that is ·the SPACE or TAB characters. Also the '#'
(HASH) character introduces a comment, causing the remainder of the
line to be ignored. Therefore, if any of these three characters are
required in the specification itself, they should be entered using one of
alternative means of entering characters, as follows:

AX The character produced by the terminal on pressing the CONTROL
and x keys together.

\E or\e
The ESCAPE character, octal 033.

\c Where c is one of b, f, 1, n, r or t, produces BACKSPACE, FORM
FEED, LINE FEED, NEWLINE, CARRIAGE RETURN or TAB char­
acters respectively.

\ 0 Since the NULL character can not be represented, this sequence is
stored as the character with octal value 0200, which behaves as a
NULL on most terminals.

\nn or\nnn
Specifies the octal value of the character directly.

\ followed by any other character is interpreted as that character.
This can be used to enter SPACE, TAB, or HASH characters.

March 13, 1990 MAPCHAN-3

MAPCHAN (F)

Diagnostics

MAPCHAN (F)

mapchan performs these error checks when processing the mapfile:

• More than one compose key.

• Characters mapped to more than one thing.

• Syntax errors in the byte values.

• Missing input or output keywords.

• Dead or compose keys also occurring in the input section.

• Extra information on a line.

• Mapping a character to null.

• Starting an output control sequence with a character that is
already mapped.

If characters are displayed as the 7 -bit value instead of the 8-bit value,
use stty ·a to verify that -istrip is set. Make sure input is mapping to
the 8859 character set, output is mapping from the 8859 to the device
display character set. dead and compose sequences are input map­
ping and should be going to 8859.

Files

/etc/defaultlmapchan
/usr/lib/mapchan/*

See Also

ascii(M), keyboard(HW), Ip(C), Ipadmin(ADM), mapchan(M),
trchan(M), mapkey(M), parallel(HW), screen(HW), serial(HW),
setkey(M), tty(M)

Notes

Some non-U.S. keyboards and display devices do not support charac­
ters commonly used by UNIX command shells and the C programming
language. Do not attempt to use such devices for system administra­
tion tasks.

Not all tenninals or printers can display all the characters that can be
represented using this utility. Refer to the device's hardware manual
for information on the capabilities of the peripheral device.

March 13, 1990 MAPCHAN-4

MAPCHAN (F)

Warnings

MAPCHAN (F)

Use of mapping files that specify a different "internal" character set
per-channel, or a set other than the 8-bit ISO 8859 set supplied by
default can cause strange side effects. It is especially important to
retain the 7-bit ASCII portion of the character set (see ascii (M)).
Altos UNIX System V utilities and applications assume these values.
Media transported between machines with different internal code set
mappings may not be portable as no mapping is performed on block
devices, such as tape and floppy drives. trchan can be used to
"translate" from one internal character set to another.

Do not set ISTRIP (see stty(C)) on channels that have mapping that
includes eight bit characters.

Value Added

mapchan is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 MAPCHAN-5

MAXUUSCHEDS (F) MAXUUSCHEDS (F)

maxuuscheds
UUCP uusched(ADM) limit file

Description

The Maxuuscheds (/usrlIib/uucp/Maxuuscheds) file contains a
numerical string to limit the number of simultaneous uusched pro­
grams running. Each uusched running will have one uucico associ­
ated with it; limiting the number will directly affect the load on the
system. The limit should be less than the number of outgoing lines
used by UUCP (a smaller number is often desirable). This file is
delivered with a default entry of 2. Again, this may be changed to
meet the needs of the local system. However, keep in mind that the
load on the system increases with the number of uusched programs
running.

See Also

uucico(ADM), uucp(C), uusched(ADM), uux(C), uuxqt(C)

March 13, 1990 MAXUUSCHEDS-1

MAXUUXQTS (F) MAXUUXQTS (F)

maxuuxqts
UUCP uuxqt(C) limit file

Description

The Maxuuxqts (/usr/lib/uucp/Maxuuxqts) file contains an ASCII
number to limit the number of simultaneous uuxqt programs running.
This file has a default entry of 2. If there is a lot of traffic from mail,
you can increase this number to reduce the time it takes for the mail to
leave your system. Keep in mind that the load on the system increases
with the number of uuxqt programs running.

See Also

uucico(ADM), uucp(C), uux(C), uuxqt(C)

March 13, 1990 MAXUUXQTS-1

MDEVICE (F) MDEVICE (F)

mdevice
device driver module description file

Syntax

letc/conf/cf.d/mdevice

Descri pUon

The mdevice file is included in the directory letc/conf/cf.d. It
includes a one-line description of each device driver and configurable
software module in the system to be built [except for file system
types, see nifsys(F)]. Each line in mdevice represents the Master file
component from a Driver Software Package (DSP) either delivered
with the base system or installed later via idinstall(ADM}.

Each line contains several whitespace-separated fields; they are
described below. Each field· must be supplied with a value or a '-'
(dash).

1. Device name: This field is the internal name of the device or
module, and may be up to 8 characters long. The first character
of the name must be an alphabetic character; the others may be
letters, digits, or underscores.

2. Function list: This field is a string of characters that identify
driver functions that are present. Using one of the characters
below requires the driver to have an entry point (function) of the
type indicated. If no functions in the following list are supplied,
the field should contain a dash.

o - open routine

c - close routine

r - read routine

w - write routine

i - ioctl routine

s - startup routine

I - init routine

March 18, 1991 MDEVICE-1

MDEVICE (F) MDEVICE (F)

h- halt routine

p- poll routine

E- enter routine

p- pre-main init routine

f- fork routine

e- exec routine

x- exit routine

x - kexit routine

S - switch routine

U - restart routine

D - shut routine

Note that if the device is a 'block' type device (see field 3.
below), a strategy routine and a print routine are required by
default.

3. Characteristics of driver: This field contains a set of characters
that indicate the characteristics of the driver. If none of the
characters below apply, the field should contain a dash. The
legal characters for this field are:

i-The device driver is installable.

n - The device driver is not installable.

a - The device driver is automatically installed.

c - The device is a 'character' device.

b - The device is a 'block' device.

t - The device is a tty.

o - This device may have only one sdevice entry.

r - This device is required in all configurations of the Ker­
nel. This option is intended for drivers delivered with
the base system only. Device nodes (special files in the
/dev directory), once made for this device, are never
removed. See idmknod.

March 18, 1991 MDEVICE-2

MDEVICE (F) MDEVICE (F)

S - This device driver is a STREAMS module.

H - This device driver controls hardware. This option dis­
tinguishes drivers that support hardware from those that
are entirely software (pseudo-devices).

G - This device does not use an interrupt though an interrupt
is specified in the sdevice entry. This is used when you
wish to associate a device to a specific device group.

D - This option indicates that the device driver can share its
DMA channel.

0- This option indicates that the lOA range of this device
may overlap that of another device.

s - Supress device count field.

N - This device has no driver.

R - This driver has a reset routine.

C - This driver allows cluster 1/0 requests (block device
only).

Z - This device may have multiple mdevice(F) entries.

I - This driver ignores pack.d entries.

4. Handler prefix: This field contains the character string
prepended to all the externally-known handler routines associ­
ated with this driver. The string may be up to 4 characters long.

5. Block Major number: This field should be set to zero in a DSP
Master file. If the device is a 'block' type device, a value will
be assigned by idinstall during installation.

6. Character Major number: This field should be set to zero in a
DSP Master file. If the device is a 'character' type device (or
'STREAMS ' type), a value will be assigned by idinstall during
installation.

7. Minimum units: This field is an integer specifying the minimum
number of these devices that can be specified in the sdevice file.

8. Maximum units: This field specifies the maximum number of
these devices that may be specified in the sdevice file. It con­
tains an integer.

9. DMA channel: This field contains an integer that specifies the
DMA channel to be used by this device. If the device does not
use DMA, place a '-1' in this field. Note that more than one de-

March 18, 1991 MDEVICE-3

MDEVICE (F) MDEVICE (F)

vice can share a DMA channel (previously disallowed).

Specifying STREAMS Devices and Modules

STREAMS modules and drivers are treated in a slightly different way
from other drivers in all UNIX systems, and their configuration
reflects this difference. To specify a STREAMS device driver, its
mdevice entry should contain both an'S' and a 'c' in the characteris­
tics field (see 3. above). This indicates that it is a STREAMS driver
and that it requires an entry in the UNIX kernel's cdevsw table, where
STREAMS drivers are normally configured into the system.

A STREAMS module that is not a device driver, such as a line discip­
line module, requires an'S' in the characteristics field of its mdevice
file entry, but should not include a 'c', as a device driver does.

See Also

mfsys(F), sdevice(F), idinstall(ADM)

March 18. 1991 MDEVICE-4

MEISA (F) MEISA (F)

meisa
master EISA system kernel configuration file

Description

The meisa file is used by uconfig(ADM) to maintain a mapping
between EISA hardware functions and UNIX device drivers. Each line
in the meisa file specifies one such mapping.

Each line must contain the following five fields, each separated by a
whitespace:

dev _name flags EISA _ID EISA_type majors

Each field is described below:

dev name This field contains the internal name of the driver. This
name must match the names in the first field of an mde­
vice file entry. If this field contains a single dash charac­
ter (-), then the EISA function specified later in this line
(in June type) will not be mapped to a device driver
(uconfig will ignore this EISA function).

flags This field is a string of characters that identify some spe­
cial driver characteristics. If no flags are specified, the
field should contain a single dash character (-). The legal
flag characters are listed below:

EISA ID

April 30, 1990

f Indicates that this driver contains an EISA NMI (non­
maskable interrupt) failure-handling routine.

Indicates that there is an associated shell script that
sets up the letc/conf/init.dldev _name file. This shell
script will be invoked by uconfig with the appropriate
arguments.

n Indicates that there is an associated shell script that
sets up the letc/conf/node.dldev _name file. This shell
script will be invoked by uconfig with the appropriate
arguments.

This field contains the EISA board ID string that is associ­
ated with the driver. A full seven-character ID (for exam­
ple, ACS0201) can be used, but the minor revision num­
ber may be omitted (for example, ACS02 or ACS020).
This field is mandatory.

MEISA-1

MEISA (F) MEISA (F)

EISA _type This field contains the EISA function type string that is
associated with the driver. This string can be a simple
EISA type (for example, COM,MDC), or may include sub­
type information (such as COM,ASY;COMl). In addi­
tion, an abbreviated type string can be used. For example,
COM,ASY will match both COM,ASY;COMI and
COM,ASY;COM2 on the specified board. If a type string
is not defined for the EISA function, the following syntax
may be used:

majors

Files

[fune no]

where June_no is the function number of the particular
EISA board. For example, [5] specifies function 5. For a
pseudo-driver that does not directly drive a hardware
function, this field should be a single dash character (-).

This field normally should be 0 (zero), except for drivers
with multiple major device numbers. In a such a case,
this field should contain the number of major numbers
occupied per instance of the hardware function.

letc/conf/cf.d/meisa

See Also

uconfig(ADM), mdevice(F), sdevice(F)

Notes

No more than one NMI failure handling routine may be specified for
functions in a single EISA slot.

Value Added

meisa is an extension to AT&T UNIX System V provided in Altos
UNIX System V.

April 30, 1990 MEISA-2

MEM (F) MEM (F)

mem, kmem
memory image file

Description

The mem file provides access to the computer's physical memory.
All byte addresses in the file are interpreted as memory addresses.
Thus, memory locations can be examined in the same way as individu­
al bytes in a file. Note that accessing a nonexistent location causes an
error.

The kmem file is the same as mem except that it corresponds to ker­
nel virtual memory rather than physical memory.

In rare cases, the mem and kmem files may be used to write to mem­
ory and memory-mapped devices. Such patching is not intended for
the naive user and may lead to a system crash if not conducted prop­
erly. Patching device registers is likely to lead to unexpected results
if the device has read-only or write-only bits.

Files

/dev/mem

/dev/kmem

March 13, 1990 MEM-1

MEMTUNE (F) MEMTUNE (F)

memtune
table of tunable parameters to be adjusted when add­
ing more memory

Description

The memtune file contains a table of tunable parameters and rules on
how they should be increased when more memory is added. It is used
by idmemtune(ADM) to achieve a more efficiently tuned system.

Each line in memtune must contain the following four fields, each
separated by whitespace:

param base increm max

Each field is described below:

param This field contains the name of the tunable parameter.

base This field specifies the value that idememtune (ADM) uses to
set the base memory configuration. Base memory, by
default, is 8 megabytes.

increm This field contains the value added to base for each 4-
megabyte increase in system memory above the base mem­
ory configuration.

max This field specifies the maximum value that the tunable
parameter param will be set by idmemtune(ADM).

Files

letc/conf/cf.d/memtune

See Also

idmemtune(ADM), stune(F), uconfig(ADM)

Value Added

memtune is an extension to AT&T System V provided in Altos UNIX
System V.

April 30. 1990 MEMTUNE-1

MFSYS (F) MFSYS (F)

mfsys
configuration file for filesystem types

Syntax

/etc/conf/cf.d/mfsys

Description

The mfsys file contains configuration information for filesystem types
that are to be included in the next system kernel to be built. It is
included in the directory /etc/conf/cf.d, and includes a one-line
description of each filesystem type. The mfsys file is gathered from
component files in the directory /etc/conf/mfsys.d. Each line contains
the following whitespace-separated fields:

1. name: This field contains the internal name for the file system
. type (example: SSlK, AFS). This name is no more than 32
characters long, and by convention is composed of uppercase
alphanumeric characters.

2. prefix: The prefix in this field is the string prepended to the
fstypsw handler functions defined for this filesystem type (exam­
ple: sS) The prefix must be no more that 8 characters long.

3. flags: The flags field contains a hex number of the form
"OxNN" to be used in populating the fsinfo data structure table
entry for this filesystem type.

4. notify flags: The notify flags field contains a hex number of the
form "OxNN" to be used in population the fsinfo data structure
table entry for this file system type.

S. function bitstring: The function bitstring is a string of 28 zeros
and ones. Each filesystem type potentially defines 28 functions
to populate the fstypsw data structure table entry for itself. All
filesystem types do not supply all the functions in this table,
however, and this bitstring is used to indicate which of the func­
tions are present and which are absent. A "1" in this string
indicates that a function has been supplied, and a "0" indicates
that a function has not been supplied. Successive characters in
the string represent successive elements of the fstypsw data
structure, with the first entry in this data structure represented
by the rightmost character in the string.

March 13, 1990 MFSYS-1

MFSYS (F)

See Also

sfsys(F), idinstall(ADM), idbuild(ADM)

March 13, 1990

MFSYS (F)

MFSYS-2

MICNET (F) MICNET (F)

micnet
the Micnet default commands file

Syntax

!etc! default!micnet

Description

The micnet file lists the system commands that may be executed
through the remote command. The file is required for each system in
a Micnet network. Whenever a remote command is received through
the network, the Micnet programs search the micnet file for the sys­
tem command specified with the remote command. If found, the com­
mand is executed. Otherwise, the command is ignored and an error
message is returned to the system which issued the remote command.

The file may contain one or more lines. If all commands may be exe­
cuted, only the line

executeall

is required in the file. Otherwise, the commands must be listed indi­
vidually. A line that defines an individual command has the form:

command=commandpath

Command is the command name to be specified in a remote command.
Commandpath is the full pathname of the command on the specified
system. The equal sign (=) separates the command and commandpath.
For example, the line:

cat=/bin/ cat

defines the command name cat (used in the remote command) to refer
to the system command cat in the Ibin directory.

When executeall is set, commands are sought in a series of default
directories. Initially, the directories are Ibin and lusr/bin. The
default directories can be explicitly defined in the file by including a
line of the form:

execpath=PATH=directory[:directory] ...

March 13, 1990 MICNET-1

MICNET (F) MICNET (F)

The first part of the line, execpath=P ATH=, is required. Each direc­
tory must be a valid pathname. The colon is required to separate
directories. For example, the line:

execpath=P ATH=/bin:/usr/bin:/usr/bobf/bin

sets the default directories to Ibin, lusr/bin, and lusr/bobf/bin.

Files

letc/default/micnet

See Also

aliases(M), netutil(ADM), systemid(F), top(F)

Notes

The rcp command cannot be executed from a remote system unless
the micnet file contains either executeall , or the line

rcp=/usr/bin/rcp

Value Added

micnet is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 MICNET-2

MMDFTAILOR (F) MMDFTAILOR (F)

mmdftailor
provides run-time tailoring for the MMDF mail router

Description

The MMDF mail router reads site-dependent information from the
ASCII file lusr/mmdf/mmdftailor each time it starts up.

Keywords in the tailor file are not case-sensitive; however, case is
important for filenames and similar values. Use quotation marks to
delimit strings to prevent them from being parsed into separate words
accidentally.

The following alphabetical list describes most of the information you
can set in the mmdftailor file. For information about additional
channel-specific settings, refer to the documentation about the partic­
ular channel.

ALIAS defines an alias table. The following parameters can be used:

table specifies the name of the table to be associated
with this alias entry

trusted allows the entries in the table to cause delivery
to files and pipes

nobypass does not allow the -address alias bypass mecha­
nism to work on this file

Here is an example:

ALIAS table=sysaliases, trusted, nobypass

AUTHLOG controls authorization information. See MCHANLOG and
MLOGDIR.

AUTHREQUEST is the address to which users should mail if they
have questions about why a message was not authorized for
delivery. It is also used as the sender of authorization warning
messages. It is not used if authorization is not enabled on some
channel. See the auth parameter under MCHN.

MADDID controls whether submit adds Message-ID: header lines if
they are missing from messages. It takes a number as an argu­
ment. If the number is 0, no action is taken. If the number is non­
zero, then submit adds Message-ID: header lines if they are miss­
ing from messages.

March 13, 1990 MMDFTAILOR-1

MMDFTAILOR (F) MMDFTAILOR (F)

MADDRQ is the address files directory. If it is not a full pathname, it
is taken relative to MQUEDIR.

MCHANLOG controls MMDF logging, except for authorization infor­
mation and information produced by deliver and submit. See also
MMSGLOG, AUTHLOG, and MLOGDIR.

Logging files and levels can also be specified in the channel
descriptions. The logging file, if specified there, overrides the
MCHANLOG definition. The logging level for the channel is set
to the maximum of the MCHANLOG level and the channel
description's level. The MCHANLOG level can therefore be used
to increase logging on all channels at once.

Here is an example:

MCHANLOG /tmp/mmdfchan.log, level=FST, size=40,
stat=SOME

An argument without an equal sign is taken as the name of the log.
Logging levels are:

FAT logs fatal errors only
TMP logs temporary errors and fatal errors
GEN saves the generally interesting diagnostics
BST shows some basic statistics
FST gives full statistics
PTR shows a program trace listing of what is happening
BTR shows more detailed tracing
FTR saves every possible diagnostic

The BTR and FTR conditions are enabled only if you have com­
piled the MMDF system with DEBUG #define'd. This amount of
tracing can quickly fill up log files. During normal operation, the
logging level should be set somewhere between GEN and FST.

The size parameter is the number of 25-block units you will allow
your log file to grow to. When a log file reaches that size, that
logging either stops or cycles around overwriting old data (see
cycle).

The stat parameter sets up various status flags for logging:

close

wait

cycle

March 13, 1990

closes the log after each entry; this allows other pro­
cesses to write to it as well

if the log is busy, waits a while for it to free

if the log is at the maximum length specified with
the size parameter, then cycles to the beginning

MMDFTAILOR-2

MMDFTAILOR (F) MMDFTAILOR (F)

some sets the values close and wait (the most common
setting)

timed opens the log and, after the timeout period (e.g., 5
minutes), closes the log and reopens it; this option
overrides all other options (used to reduce the over­
head of re-opening the log for every entry while still
retaining the ability to move the log file out from
under a running process and have the process begin
logging in the new log file soon thereafter)

Tailoring of the log files is generally done at the end of the tailor
file to prevent logging the tailoring action itself, thereby need­
lessly filling the log files when higher tracing levels are enabled.
If you have bugs in the tailoring, you can move the log-file tailor­
ing closer to the top of the tailor file.

MCHN defines a channel. The following parameters can be used:

name the name of the channel

show a display line, which is used for pretty printing
purposes to explain what the channel is all about

que the queue directory into which messages for this
channel should be queued

tbl the associated table entry of hosts that are accessi­
ble on this channel; if the specified table has not
been previously defined, it will be defined with
the same name, file, and show parameters as for
this channel (do not define two channels that pro­
cess the same queue, but use different tables
because it will cause queue structure problems)

pgm the channel program to invoke for this channel

mod the mode in which this channel works; if several
values are selected, they are cumulative:

reg regular mode (the default); the chan­
nel must be explicitly invoked by run­
ning deliver

host same as reg, but causes deliver to sort
by host after sorting by channel,
which allows as many mail messages
as possible to get sent to a particular
host before the connection is broken

March 13, 1990 MMDFTAILOR-3

MMDFTAILOR (F) MMDFTAILOR (F)

bak: channel can be invoked only by the
background deliver daemon

psv channel is passive; it is a pickup-type
channel (e.g., pobox)

imm channel can be invoked immediately;
no need to batch up mail

pick channel can pick up mail from the
remote host

send channel can send mail to the remote
host

ap the address-parser type to be used for reformatting
headers on messages going out on this channel; if
several values are selected, they are cumulative:

same does not reformat headers

822 selects RFC822-style source routes
(e.g., @A:B@C)

733 selects %-style (JNT) source routes
(e.g., B%C@A)

big selects NRS hierarchy ordering (for
the UK)

nodots selects output of leftmost part of
domain names (e.g., A in A.B.C)
for sites that cannot handle
domains (usually used in conjunc­
tion with the known= parameter to
hide domain names behind a smart
relay)

jnt is equivalent to 733 combined with
big

lname a name overriding the default MLNAME value for
this channel (used when the channel should have
non-standard values for the local domain)

ldomain . a name overriding the default MLDOMAIN value
for this channel

March 13, 1990 MMDFTAILOR-4

MMDFTAILOR (F) MMDFTAILOR (F)

host the name of the host that is being contacted by
this channel, usually used in the phone and pobox
channels, or the name of the relay host when all
mail to hosts in this channel's table gets relayed to
one host (this is required on the badusers and
badhosts pseudo-channels; it must be set to the
local host for the list channel)

poll . the frequency of polling the remote machine (0
disables polling, -1 requests polling to be done
every time the channel is started up, any other
value is the number of I5-minute intervals to wait
between polls); if any mail is waiting to be sent,
this value is ignored because a connection is
always attempted

insrc a table. of hosts controlling message flow

outsrc see insrc

indest see insrc

outdest see insrc

known a table of hosts that are known on this channel; be
sure that the table contains your own fully speci­
fied host name

confstr a string used by some channels for specifying the
invocation of another program

auth specifies the authorization tests that are made on
this channel:

free default, no checking takes place

inlog log information for incoming
messages

outlog log information for outgoing
messages

inwarn warn sender of incoming mes­
sage if authorization is inade­
quate (the message still goes
through)

outwarn as inwarn, but for outgoing mes­
sages

inblock reject incoming messages that
have inadequate authorization

March 13, 1990 MMDFTAILOR-5

MMDFTAILOR (F) MMDFTAILOR (F)

outblock as inblock, but for outgoing
messages

hau host and user authorizations are
required

dho (direct host only) when applying
host controls, the message must
be associated with a user local to
that host (Le., no source routes)

ttl (time-to-live) specifies the number of minutes for
which retries to a host are blocked when deliver
detects a connection failure to that host; this value
can be overridden on the deliver command line
(default is 2 hours)

log the name of the channel log file to be used instead
of the default MCHANLOO

level the logging level for this channel (see also
MCHANLOO)

Here is a simple example:

MCHN name=local, que=local, tbl=local,
show="Local Delivery", pgm=local,
poll=O, mod=imm, ap=822, level=BST

If the first argument does not have an equal sign, the values of the
name, que, thl, pgm, and show parameters take on this value.

MCHNDIR is where the channel programs are to be found.

MCMDDIR is the default commands directory where the various
MMDF commands are located. Any command that does not have
a full pathname is taken relative to this directory.

MDBM tells MMDF where to find the database file containing the
associative store. DBM-style databases get their speed and flexi­
bility by dynamic hashing and can get quite large. By default, the
file is located in the MTBLDIR directory, but it might need to be
relocated due to its size.

MDFLCHAN sets the default channel to something other than local.

MDLV is the name of the file used for tailoring the delivery for each
user.

MDLVRDIR is the directory in which to deliver mail. If this is null,
then the user's home directory is used. See also MMBXNAME and
MMBXPROT.

March 13, 1990 MMDFTAILOR-6

MMDFTAILOR (F) MMDFTAILOR (F)

MDMN defines a domain. The following parameters can be used:

name an abbreviated name for the domain

show a display line, which is used for pretty printing pur­
poses to explain what the domain is all about

dmn the full name (x.y.z ...) of this domain

table the associated table entry of known sites in this
domain; if the specified table has not been previ-
0usly defined, it will be defined with the same name,
file, and show parameters as for this domain

Here is an example:

MDMN name="Root", dmn="", show="Root Domain",
table=rootdomain

If the frrst argument does not have an equal sign, the values of the
name, dmn, and show parameters take on this value. If no table
parameter is specified, it defaults to the value of the name param­
eter.

MFAILTIME is the time a message can remain in a queue before a
failed-mail message is sent to the sender and the message is
purged from the queue. See also MW ARNTIME.

MLCKDIR is the directory where the locking of files takes place, this
is dependent on what style of locking you are doing.

MLDOMAIN gives your full local domain (this, combined with the
MLNAME, and possibly the MLOCMACHINE, gives the full net­
work address).

MLISTSIZE specifies the maximum number of addresses in a mes­
sage before it is considered to have a "big" list. If there are more
than the maximum number of addresses, then MMDF does not
send a warning message for waiting mail and only returns a "cita­
tion" for failed mail. A citation consists of the entire header plus
the frrst few lines of the message body.

MLNAME is the name of your machine or site as you wish it to be
known throughout the network, which can be a generic host name
used to hide a number of local hosts. If it is a generic host name,
internal hosts are differentiated by MLOCMACHINE. See also
MLDOMAIN.

MLOCMACHINE is the local name of the machine. It is used by a
site that has several machines, but wants the machines themselves
to appear as one address. See also MLNAMEand MLDOMAIN.

March 13, 1990 MMDFTAILOR-7

MMDFTAILOR (F) MMDFTAILOR (F)

MLOGDIR is the default directory in which the log files are kept. See
also MMSGLOG, AUTHLOG, and MCHANLOG.

MLOGIN is the user who owns the MMDF transport system.

MMAXHOPS specifies the maximum number of Received: or Via:
lines in a message before it is considered to be looping and is
rejected.

MMAXSORT controls sorting of messages based on the number of
messages in the queue. If the number of messages in the queue is
less then MMAXSORT, the messages are sorted by arrival time and
are dispatched in that order; otherwise, a message is dispatched as
it is found during the directory search.

MMBXNAME is the name of the mailbox. If this is null, then the
user's login name is used. See also MDLVRDIR and MMBXPROT.

MMBXPREF is a string written before the message is written into the
mailbox. It is usually set to a sequence of CfRL-A characters.
See also MMBXSUFF.

MMBXPROT gives the protection mode in octal for the user's mail­
box. See also MDLVRDIR and MMBXNAME.

MMBXSUFF is a string written after the message is written into the
mailbox. It is usually set to a sequence of CfRL-A characters.
See also MMBXPREF.

MMSGLOG controls the logging information produced by deliver and
submit. See also MCHANLOG, AUTHLOG, and MLOGDIR.

MMSGQ is the directory for the files of message text. If it is not a full
pathname, it is taken relative to MQUEDIR.

MPHSDIR is the directory in which the timestamps for the channels
are made, showing what phase of activity they are in.

MQUEDIR is the parent directory for the various queues and address
directories.

MQUEPROT gives the protection mode in octal that the parent of the
MQUEDIR directory should have.

MSIG is the signature that MMDF uses when notifying senders of mail
delivery problems.

MSLEEP is the length of time in seconds that the background delivery
daemon sleeps between queue scans.

March 13, 1990 MMDFTAILOR-8

MMDFTAILOR (F) MMDFTAILOR (F)

MSUPPORT is the address to which to send mail that MMDF cannot
cope with (i.e., that MMDF cannot deliver or return to its sender).

MTBL defines an alias, domain, or channel table. The following
parameters can be used:

name a short name by which the table can be referred to
later in the file

file the file from which the contents of the table are built

show a display line, which is used for pretty printing pur­
poses to explain what the table is all about

A typical example might be:

MTBL name=aliases, file=aliases,
show="User & list aliases"

If the frrst argument does not have an equal sign, the values of the
other parameters take on this value. The following example sets
the name, file, and show parameters to the string "aliases", then
resets the show parameter to the string "Alias table".

MTBL aliases, show="Alias table"

MTBLDIR is the default directory for the table files.

MTEMPT is the temporary files directory. If it is not a full pathname,
it is taken relative to MQUEDIR.

MW ARNTIME specifies the time in hours that a message can remain
in a queue before a warning message about delayed delivery is
sent to the sender. See also MFAILTIME.

UUname defines the UUCP sitename (short form, not full path) and is
used only by the UUCP channel. See also MLNAME.

See Also

dbmbuild(ADM), mmdf(ADM), tables(F), "Setting Up Electronic
Mail" in the System Administrator's Guide

Value Added

mmdftailor is an extension of AT&T System V provided in Altos
UNIX System V.

March 13, 1990 MMDFTAILOR-9

MNTTAB (F)

mnttab
format of mounted filesystem table

Syntax

#include <stdio.h>
#include <mnttab.h>

Description

MNTTAB (F)

The letc/mnttab file contains a table of devices mounted by the
mount(ADM) command.

Each table entry contains the pathname of the directory on which the
device is mounted, the name of the device special file, the read/write
permissions of the special file, and the date on which the device was
mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT, which defines the number of allowable mounted
special files.

See Also

mount(ADM)

March 15, 1 989 MNTTAB-1

MTUNE (F) MTUNE (F)

mtune
tunable parameter file

Syntax

/etc/conf/cf.d/mtune

Description

The mtune file contains information about all the system tunable
parameters. Each tunable parameter is specified by a single line in the
file, and each line contains the following whitespace-separated set of
fields:

1. parameter name: A character string no more than 20 characters
long. It is used to construct the preprocessor "#define's" that
pass the value to the system when it is built.

2. default value: This is the default value of the tunable parame­
ter. If the value is not specified in the stune file, this value will
be used when the system is built.

3. minimum value: This is the minimum allowable value for the
tunable parameter. If the parameter is set in the stune file, the
configuration tools will verify that the new value is equal to or
greater than this value.

4. maximum value: This is the maximum allowable value for the
tunable parameter. If the parameter is set in the stune file, the
configuration tools will check that the new value is equal to or
less than this value.

The file mtune normally resides in /etc/conf/cf.d. However, a user or
an add-on package should never directly edit the mtunefile to change
the setting of a system tunable parameter. Instead the idtune com­
mand should be used to modify or append the tunable parameter to the
stune file.

In order for the new values to become effective, the UNIX system ker­
nel must be rebuilt and the system must then be rebooted.

See Also

stune(F), idbuild(ADM), idtune(ADM)

March 13, 1990 MTUNE-1

MVDEVICE (F) MVDEVICE (F)

mvdevice

video driver backend configuration file

Syntax

letc/conf/cf.d/mvdevice

Description

The mvdevice file accomplishes configurability of video hardware by
permitting the linking of back ends to the console video driver. This
linking scheme includes a C library of video back ends for use with
the link kit and separate driver entries for each of the back ends.

The configuration program uses the mvdevice file to produce a space.c
for the console driver. This space.c includes the appropriate include
files and extern references to the appropriate video back ends. In
addition, the configuration program builds the console display switch
with in the space.c.

The mvdevice file has the following entries:

prefix

type

oem

paddr

March 15, 1989

name of driver from 1 to 4 characters
long (for example "mono") This is the
name of the video back end.

This mask tells which routines were sup­
ported by the particular back end. These
routines are: vvvinitO, vvvcmosO,
vvvinitscreenO, vvvscrollO, vvvcopyO,
vvvclearO, vvvpcharO, vvvscursO,
vvvsgrO, vvvioctlO, vvvadapctlO.

This is placed in the file as a literal. for
example, if the word MONO was put
into the file, it would include the word
MONO as the type entry of the adapter
structure.

OEM information treated exactly the
same as the type (Le. a literal)

the physical address which the video
RAM is located. This would allow a
user to configure a future driver. Also
included as a literal field.

MVDEVICE-1

MVDEVICE (F) MVDEVICE (F)

size The size of the video RAM. Also
included as a literal field.

This infonnation provides all the basic infonnation needed for the pro­
gram to generate an appropriate space.c and build the the correct
adapter switch.

The routine mask uses the following bits to signify the following rou­
tines:

OxOOOl vvvinitO
OxOOO2 vvvcmosO
OxOOO4 vvvinitscreenO
OxOOO8 vvvscrollO
OxOOlO vvvcopYO
OxOO20 vvvclearO
Ox0040 vvvpcharO
OxOO80 vvvscursO
OxOlOO vvvsgrO
Ox0200 vvvioctlO
Ox0400 vvvadapctlO

The default mvdevice file looks like this:

mvdevice: video configuration master file.

#prefix name rout ine s type oem paddr size
m::>no MONO Ox07fd MONO 0 0 0
cga CGA Ox07fd CGA 0 0 0
ega EGA Ox07ff EGA 0 0 0
vga VGA Ox07ff VGA 0 0 0

See Also

sdevice(F)

March 15, 1989 MVDEVICE-2

nl_types
data types for native language support

Syntax

#include <nl_ types.h>

Description

This is a header file that provides type definitions used in the native
language support interface. The types are:

nl item
A - type defintion for an item of language data as used by
nl lang info (S). The values for nl item are defined in the file
<iiinginfo.h>. -

nl catd
A - message catalogue descriptor. (Message catalogues are not
currently supported.)

See Also

langinfo(F), nClanginfo(S)

Value Added

nl_types is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990

NULL (F)

null
the null file

Description

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

Files

/dev/null

Standards Conformance

null is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989

NULL (F)

NULL-1

PASSWD (F) PASSWD (F)

passwd
the password file

Description

The passwd file contains the following infonnation for each user:

-Login name

-Numerical user ID

-Numerical group ID

-Comment

-Initial working directory

-Program to use as shell

Refer to jinger(C) for infonnation in the required fonnat of the com­
ment field for jinger(C) to display the infonnation. Each user is
separated from the next by a newline. If the password field is null, no
password is demanded; if the shell field is null, sh(C) is used.

This file resides in the directory fetc. Encrypted passwords are not
stored in fetcfpasswd.

Warning

Under no circumstances should you edit fetc/passwd with a text edi­
tor. This will cause a series of error messages to be displayed and
could prevent any further logins. Use the sysadmsh Accounts selec­
tion to modify or add user accounts.

Files

/etc/passwd

March 13. 1990 PASSWD-1

PASSWD (F)

See Also

login(M), passwd(C), a64I(S), getpwent(S), group(F)

Standards Conformance

acct is conform ant with:

AT&T SVID Issue 2, Select Code 307-127;
The X/Open Portability Guide II of January 1987;

PASSWD (F)

IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NIST FIPS 151-1.

March 13. 1990 PASSWD-2

PERMISSIONS (F) PERMISSIONS (F)

permissions
format of UUCP Permissions file

Description

The Permissions file (/usrllib/uucp/Permissions) specifies the per­
missions for remote computers concerning login, file access, and com­
mand execution. In the Permissions file, you can specify the com­
mands that a remote computer can execute and restrict its ability to
request or receive files queued by the local site.

Each entry is a logical line with physical lines terminated by a \ to
indicate continuation. Entries are made up of options delimited by
white space. Each option is a name-value pair in the following for­
mat:

name=value

-Note that no white space is allowed within an option assignment.

Comment lines begin with a pound sign (#) and they occupy the entire
line up to a newline character. Blank lines are ignored (even within
multi-line entries).

There are two types of Permissions file entries:

LOGNAME specifies the permissions that take effect when a
remote computer calls your computer.

MACillNE specifies permissions that take effect when your
computer calls a remote computer.

Examples

This entry is for public login. It provides the default permissions.
Note that use of this type of anonymous login is not encouraged.

LOGNAME=nuucp \
MACHINE=OTHER \
READ=/usr/spool/uucppublic \
WRITE=/usr/spool/uucppublic \
SENDFILES=call REQUEST=no \
COMMANDS=/bin/rmail

See Also

uucico(ADM), uucp(C), uux(C), uuxqt(C)

March 15, 1989 PERMISSIONS-1

PLOT (F) PLOT (F)

plot
graphics interface

Description

Files of this format are produced by routines described in plot(S) and
are interpreted for various devices by commands described in
tplot(ADM). A graphics file is a stream of plotting instructions. Each
instruction consists of an ASCII letter usually followed by bytes of
binary information. The instructions are executed in order. A point is
designated by four bytes representing the x and y values; each value is
a signed integer. The last designated point in an I, m, 0, or p instruc­
tion becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the corre­
sponding routine in plot(S).

m move: The next four bytes give a new current point.

° cont: Draw a line from the current point to the point given by the
next four bytes [see tplot(ADM)].

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t label: Place the following ASCII string so that its first character
falls on the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style
for drawing further lines. The styles are "dotted", "solid",
"longdashed", "shortdashed", and "dotdashed". Effective only
for the ·T4014 and ·Tver options of tplot(ADM) (TEK­
TRONIX 4014 terminal and VERSATEC plotter).

s space: The next four bytes give the lower left corner of the plot­
ting area; the following four give the upper right corner. The plot
will be magnified or reduced to fit the device as closely as possi­
ble.

Space settings that exactly fill the plotting area with unity scaling
appear below for devices supported by the filters of tplot(ADM). The
upper limit is just outside the plotting area. In every case the plotting
area is taken to be square; points outside may be displayable on de­
vices whose face is not square.

March 15, 1989 PLOT-1

PLOT (F)

DASI300
DASI300s
DASI450
TEKTRONIX 4014
VERSATEC plotter

See Also

space(O, 0, 4096, 4096);
space(O, 0,4096,4096);
space(O, 0, 4096, 4096);
space(O, 0,3120, 3120);
space(O, 0, 2048, 2048);

plot(S), term(M), graph(ADM), tplot(ADM)

Notes

PLOT (F)

The plotting library piot(S) and the curses library curses(S) both use
the names eraseO and moveO. The curses versions are macros. If you
need both libraries, put the piot(S) code in a different source file than
the curses(S) code, and/or #undef moveO and eraseO in the piot(S)
code.

March 15, 1989 PLOT-2

PNCH (F)

pnch
file format for card images

Description

PNCH{F)

The PNCH format is a convenient representation for files consisting of
card images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record
consists of a single control byte followed by a variable number of data
bytes. The control byte specifies the number (which must lie in the
range 0-80) of data bytes that follow. The data bytes are 8-bit codes
that constitute the card image. If there are fewer than 80 data bytes, it
is understood that the remainder of the card image consists of trailing
blanks.

March 15, 1989 PNCH-1

POLL (F) POLL (F)

poll
format of UUCP Poll file

Description

The Poll file (/usrlIib/uucp/Poll) contains information for polling
remote computers. Each entry in the Poll file contains the name of a
remote computer to call, followed by a tab character, and the hours the
computer should be called. The hours must be integers in the range
0-23.

Poll file entries have the following format:

sysname<rAB>hour ...

The following entry provides polling of computer gorgon every four
hours:

gorgon 0 4 8 12 16 20

The uudemon.poll script controls polling but does not perform the
poll. It sets up a polling file (C.sysnxxxx) in the
/usr/spool/uucp/nodename directory, where nodename is replaced by
the name of the machine. This file will in tum be acted upon by the
scheduler (started by uudemon.hour). The uudemon.poll script is
scheduled to run semi-hourly before uudemon.hour so that the work
files will be there when uudemon.hour is called. The default root
crontab entry for uudemon.poll is as follows:

1,30 * * * * "/usr/lib/uucp/uudemon.poll > /dev/null"

See Also

uucico(ADM), uucp(C), cron(C), crontab(C)

Standards Conformance

poll is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 POLL-1

PURGE (F) PURGE (F)

purge
the policy file of the sanitization utility purge(C)

Syntax

/etc/ default/purge

Description

This file is an ASCII file whose lines each designate a file, filesystem
or device to be a member of a type. The command:

purge -t type

would overwrite all the members of type.

Blank lines and lines beginning with '#' are ignored. Entries are of the
form:

file type [count]

This specifies thatfile is a member of type. The optional field count is
the number of times to overwrite file when it is purged. The default is
one.

The two types system and user are hardwired into the purge(C) util­
ity. These types can be overwritten with the -s and -u switches to
purge respectively.

This file should be configured on site to reflect files and devices
which are sensitive and need to be protected from unauthorized
access.

The initial contents of the file is:

Files

Itmp
luser

/etc/default/purge

system
user

purge(C), sysadmsh(ADM)

March 13, 1990 PURGE-1

PURGE (F) PURGE (F)

Value Added

purge is an extension of AT&T System V provided in Altos UNIX Sys­
tem V.

March 13, 1990 PURGE-2

QUEUE (F) QUEUE (F)

queue
MMDF queue files for storing mail in transit

Syntax

/usr/spool/mmdf/loclc/home

Description

MMDF stores mail in an isolated part of the file system, so that only
authorized software may access the mail. Mail is stored under the
directory sub-tree.

It must specify a path with at least two sub-directories. The next-to­
bottom one is used as a "locking" directory and the bottom one is the
home. For full protection, only authorized software can move through
the locking directory. Hence, it is owned by MMDF and accessible
only to it.

Queue Entries

When mail is queued by submit, it is actually stored as two files. One
contains the actual message text and the other contains some control
information and the list of addressees.

The text file is stored in the msg directory. The other file is stored in
the addr directory and is linked into one or more queue directories.
The queue directories are selected based on the channels on which this
message will be delivered. Each output channel typically has its own
queue directory.

Another directory below home is a temporary area called tmp. It
holds temporary address-lists as they are being built. Queuing of a
message is completed by linking this address file into addr and the
queue directories. The msg directory contains files with message text.
Addr and msg files are synchronized by giving them the same unique
name, which MMDF occasionally calls the message "name". The
message name is derived by use of mktemp(S), using msg as the base
directory. The files created in addr must be open read-write access;
the ones in msg must be open read access.

When submit runs, it changes into home for its working directory. It
then does a setuidO to run as the caller. This is necessary to permit
submit to access the caller's address-list files (specified as "< file"),
but probably will be changed. Deliver changes into the queue direc­
tory to minimize the time spent searching for messages to deliver.

March 15, 1989 QUEUE-1

QUEUE (F) QUEUE (F)

The following depicts the directory organization:

lock (lock: 07(0)
I (mmdf only)
I

home ___ (open: 0777)
/ I I \
/ I I \

tmp addr q.* msg (open: 0777)

addresses ==> moved and linked message text
built here ==> into here into here put here

entries: 0666 0666 0644

Queue File Formats

The msg portion of a queued message simply contains the message,
which must conform to the Arpanet standard syntax, specified in
RFC822. It is expected that the format of the message contents file
eventually will be more structured, permitting storage of multi-media
mail.

The following specifies the syntax of the addr (and queue directory)
address-list portion of the queued message:

Address File Contents

file ::=

creation ::=

late ::=

flags·::=

rtrn-addr ::=

March 15, 1989

creation late flags '\n' [rtrn-addr] '\n'
*(adr_queue '\n')

{long integer decimal representation of time
message was created}

ADR_MAIL / ADR_DONE {from adr_queue.h}

{decimal representation of 16-bits of flags}

{rfc822 return address}

temp_ok mode queue host local {conforms to
structure specified in adr_queue.h}

{temporary flag indicating whether this address
has been verified by the receiving host: "yes" is
"+"; "not yet" is "-"}

QUEUE-2

QUEUE (F)

mode ::=

queue ::=

host ::=

local ::=

QUEUE (F)

(send to mailbox(m), tty(t), both(b), either(e), or
processing completed(*)}

(name of the queue into which this message i~
linked for this address}

(official name (and domain) of recipient host}

(local address on receiving host}

Address File Description

An address queue file contains a creation time-stamp, an indication if
the sender has been notified of delayed delivery, some flags, an
optional return-mail address, and an address list. Several <flags> are
currently in use (as specified in msg.h). ADR_NOWARN indicates
whether late warnings should be sent to the return-mail address if the
entire address list has not been processed within the number of hours
specified by "warntime". ADR_NORET indicates whether mail
should be returned to the sender if it hasn't been completely processed
within the number of hours specified by "failtime". ADR_CITE indi­
cates whether warning and failure messages are to contain only a cita­
tion of the message. An ADR_DONE ("*") value, for the "late"
flag, indicates that a warning notice has been sent.

The creation date is coded as a long ASCII decimal string, terminated
by the "late" flag. This has to be stuffed into the file because Unix
doesn't maintain it. The date is used to sort the queue so that mail is
delivered in the order submitted.

The return address is a line of text and may be any address acceptable
to submit.

Each address entry is on a separate line, and conforms to the
adr_struct format, defined in adr queue.h. It contains several fields
separated by spaces or commas. Fields containing spaces or commas
must be enclosed in double quotes.

The temp_ok flag indicates whether the address has been accepted
during an "address verification" dialog with the receiving host.
When the message text is successfully accepted by the receiving host,
then this flag no longer applies and the mode is set to ADR_DONE
("*"). Before final acceptance of message text, the mode flag indi­
cates whether the mail is for a mailbox, terminal, both, or either.
(Currently only mailbox delivery, ADR_MAIL, is used.)

The queue name is the name of the sub-queue in which the message is
queued for this address. Each addressee's host may be on a separate
queue or some hosts may share the same queue. When all addressees
in the same queue have been delivered, the address file is removed
from that queue directory. When all queues have been processed, the

March 15, 1989 QUEUE-3

QUEUE (F) QUEUE (F)

address file (in both addr and the queue directory) and the text file (in
msg) are removed.

The host and local strings are used by the channel program. The host
determines the type of connection the channel program makes. The
local string is passed to the host; it should be something meaningful to
that host. The local string must not contain newline or null and it be a
valid local address per RFC822.

See Also

deliver(ADM), cleanque(ADM), submit(ADM)

March 15, 1989 QUEUE-4

QUEUEDEFS (F) QUEUEDEFS (F)

queuedefs
scheduling information for cron queues

Description

The queuedefs file is read by the clock daemon, cron, and controls
how jobs submitted with at, batch, and crontab are executed. Every
job submitted by one of these programs is placed in a certain queue,
and the behavior of these queues is defined in
!usr!lib!cron!queuedefs. Queues are designated by a single, lower­
case letter. The following queues have special significance:

a at queue
b batch queue
c cron queue

For a given queue, the queuedefs file specifies the maximum number
of jobs that may be executing at one time (njobs), the priority at which
jobs will execute (nice), and the how long cron will wait between
attempts to run a job (wait). If njobs jobs are already running in a
given queue when a new job is scheduled to begin execution, cron will
reschedule the job to execute wait seconds later. A typical file might
look like this:

a.4jln
b.2j2n90w

Each line gives parameters for one queue. The line must begin with a
letter designating a queue, followed by a period (.). This is followed
by the numeric values for njobs, nice, and wait, followed respectively
by the letters "j", "n", and "w". The values must appear in this
order, although a value and its corresponding letter may be omitted
entirely, in which case a default value is used. The default values are
njobs = 100, nice = 2, and wait = 60.

The value for nice is added to the default priority of the job (a higher
numerical priority results in a lower scheduling priority - see nice (C)).
wait is given in seconds.

Files

!usr/lib!cron!queuedefs queuedefs file

March 13, 1990 QUEUEDEFS-1

RELOC (F) RELOC (F)

reloc
relocation information for a common object file

Syntax

#include <reloc.h>

Description

Object files have one relocation entry for each relocatable reference
in the text or data. If relocation infonnation is present, it will be in the
following fonnat.

struct reloc
{

long r_vaddr; /* (virtual) address of
reference */

long r_symndx; /* index into symbol table */
short r_type ; /* relocation type */

} ;

define R_PCRLONG 024

As the link editor reads each input section and perfonns relocation,
the relocation entries are read. They direct how references found
within the input section are treated.

R_PCRLONG A "PC-relative" 32-bit reference to the symbol's vir­
tual address.

More relocation types exist for other processors. Equivalent reloca­
tion types on different processors have equal values and meanings.
New relocation types will be defined (with new values) as they are
needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for
both preserving and removing the relocation entries from object files.

See Also

as(CP), Id(CP), a.out(F), syms(F)

March 15, 1989 RELOC-1

SCCSFILE (F) SCCSFILE (F)

sccsfile
format of an sees file

Description

An sees file is an Asell file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of users
who may add deltas), flags (contains definitions of internal keywords),
comments (contains arbitrary descriptive information about the file),
and the body (contains the actual text lines intermixed with control
lines). Each logical part of an sees file is described in detail below.

Throughout an sees file there are lines which begin with the ASeII
SOH (start of heading) character (octal (01). This character is
hereafter referred to as the control character and will be represented
graphically as @. Any line described below which is not depicted as
beginning with the control character is prevented from beginning with
the control character. Entries of the form DDDDD represent a five
digit string (a number between ()()()()() and 99999).

Checksum

The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The@hRprovides a magic number of (octal) 064001.

Delta Table

The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD •••
@xDDDDD •••
@gDDDDD •••
@m <MR number>

.
@c <comments> ••.

.
@e

March 15, 1989 SCCSFILE-1

SCCSFILE (F) SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d) con­
tains the type of the delta (currently, normal: D, and removed: R), the
sees ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User Names

The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta.

Flags

Keywords used internally (see admin(CP) for more information on
their use). Each flag line takes the form:

@f<flag> <optional text>

The following flags are defined:

@ft <type of program>
@fv <program name>
@fi
@fb
@f m <module name>
@ff <floor>
@f c <ceiling>
@fd <default-sid>
@fn
@fj
@fl <lock-releases>
@f q <user defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; if the optional text is present it defines an MR number validity

March 15, 1989 SCCSFILE-2

SCCSFILE (F) SCCSFILE (F)

checking program. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not present, this mes­
sage is only a warning; when the i flag is present, this message will
cause a "fatal" error (the file will not be gotten, or the delta will not
be made). When the b flag is present the -b option may be used with
the get command to cause a branch in the delta tree. The m flag
defines the frrst choice for the replacement text of the sccsfile.F iden­
tification keyword. The f flag defines the "floor" release; the release
below which no deltas may be added. The c flag defines the "ceil­
ing" release; the release above which no deltas may be added. The d
flag defines the default SID to be used when none is specified on a get
command. The n flag causes delta to insert a "null" delta (a delta
that applies no changes) in those releases that are skipped when a
delta is made in a new release (e.g., when delta 5.1 is made after delta
2.7, releases 3 and 4 are skipped). The absence of the n flag causes
skipped releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The I flag defines a list
of releases that are locked against editing (get(CP) with the -e option).
The q flag defines the replacement for the identification keyword.

Comments

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically contains a description of the file's pur­
pose.

Body

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:

@IDDDDD
@DDDDDD
@EDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

Standards Conformance

sccsfile is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989 SCCSFILE-3

SCNHDR (F) SCNHDR (F)

scnhdr
section header for a common object file

Syntax

#include <scnhdr.h>

Description

Every common object file has a table of section headers to specify the
layout of the data within the file. Each section within an object file
has its own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s name[SYMNMLEN); /* section name */
sJ>addr; /* physical address */
s vaddr; /* virtual address */
s=size; /* section size */
s_scnptri /* file ptr to raw data */
s relptri /* file ptr to relocation */
s=lnnoptri /* file ptr to line numbers */
s_nreloci /* * reloc entries */
s_nlnno; /* # line number entries */
s_flagsi /* flags */

File pointers are byte offsets into the file; they can be used as the
offset in a call to FSEEK [see ldfcn(F)]. If a section is initialized, the
file contains the actual bytes. An uninitialized section is somewhat
different. It has a size, symbols defined in it, and symbols that refer to
it. But it can have no relocation entries, line numbers, or data. Conse­
quently, an uninitialized section has no raw data in the object file, and
the values for s _scnptr, s _relptr, s _lnnoptr, s _ nreloc , and s _ nlnno are
zero.

See Also

Id(CP), fseek(S), a.out(F)

March 15, 1989 SCNHDR-1

format of curses screen image file

Syntax

scr _ dump(file)

Description

The curses(S) function scr_dumpO will copy the contents of the
screen into a file. The format of the screen image is as described
below.

The name of the tty is 20 characters long and the modific;;ltion time
(the mtime of the tty that this is an image of) is of the type time_to All
other numbers and characters are stored as chtype (see <curses.h».
No new-lines are stored between fields.

<magic number: octal 0433>
<name of tty>
<mod time of tty>
<columns> <lines>
<line length> <chars in line>for each line on the screen
<line length> <chars in line>

<labels?> 1, if soft screen labels are present
<cursor row> <cursor column>

Only as many characters as are in a line will be listed. For example, if
the <line length> is 0, there will be no characters following <line
length>. If <labels?> is TRUE, following it will be

<number of labels>
<label width>
<chars in label 1>
<chars in label 2>

See Also

curses(S)

March 15, 1989

SDEVICE (F) SDEVICE (F)

sdevice
local device configuration file

Syntax

letc/conf/cf.d/sdevice

Description

The sdevice file contains local system configuration information for
each of the devices specified in the mdevice file. It contains one or
more entries for each device specified in mdevice. sdevice is present
in the directory I etc! conjl cfd, and is coalesced from component files
in the directory letclconf/sdevice.d. Files in letc!conjlsdevice.d are the
System file components either delivered with the base system or
installed later via idinstall.

Each entry must contain the following whitespace-separated fields:

1. Device name: This field contains the internal name of the driver.
This must match one of the names in the first field of an mdevice
file entry.

2. Configure: This field must contain the character 'Y' indicating
that the device is to be installed in the kernel. For testing pur­
poses, an 'N' may be entered indicating that the device will not
be installed.

3. Unit: This field can be encoded with a device dependent
numeric value. It is usually used to represent the number of
subdevices on a controller or pseudo-device. Its value must be
within the minimum and maximum values specified in fields 7
and 8 of the mdevice entry.

4. /pl: The ipl field specifies the system ipl level at which the
driver's interrupt handler will run in the new system kernel.
Legal values are 0 through 8. If the driver doesn't have an inter­
rupt handling routine, put a 0 in this field.

5. Type: This field indicates the type of interrupt scheme required
by the device. The permissible values are:

o -The device does not require an interrupt line.

1 - The device requires an interrupt line.
If the driver supports more than one hardware control­
ler, each controller requires a separate interrupt.

March 15, 1989 SDEVICE-1

SDEVICE (F) SDEVICE (F)

2 - The device requires an interrupt line.
If the driver supports more than one hardware control­
ler, each controller will share the same interrupt.

3 - The device requires an interrupt line.
If the driver supports more than one hardware control­
ler, each controller will share the same interrupt. Mul­
tiple device drivers having the same ipl level can share
this interrupt.

6. Vector: This field contains the interrupt vector number used by
the device. If the Type field contains a 0 (i.e., no interrupt
required), this field should be encoded with a O. Note that more
than one device can share an interrupt number.

7. SIOA: The SIOA field (Start I/O Address) contains the starting
address on the I/O bus through which the device communicates.
This field must be within Oxl and Ox3ftf. (If this field is not
used, it should be encoded with the value zero.)

8. EIOA: The field (End I/O Address) contains the end address on
the I/O bus through which the device communicates. This field
must be within Oxl and Ox3ftf. (If this field is not used, it should
be encoded with the value zero.)

9. SCMA: The SCMA field (Start Controller Memory Address) is
used by controllers that have internal memory. It specifies the
starting address of this memory. This field must be within
OxaOOOO and Oxtbftf. (If this field is not used, it should be
encoded with the value zero.)

10. ECMA: The ECMA (End Controller Memory Address) specifies
the end of the internal memory for the device. This field must
be within OxaOOOO and Oxtbftf. (If this field is not used, it
should be encoded with the value zero.)

See Also

mdevice(F), idinstall(ADM)

March 15, 1989 SDEVICE-2

SFSYS (F)

sfsys
local filesystem type file

Syntax

/etc/conf/cf.d/sfsys

Description

SFSYS (F)

The sfsys file contains local system information about each file sys­
tem type specified in the mfsys file. It is present in the directory
/etc/conf/cj.d, and contains a one-line entry for each file system type
specified in the mfsys file. The sfsys file is coalesced from com­
ponent files in the directory /etc/conf/sfsys.d. Each line in this file is
a whitespace-separated set of fields that specifies:

name This field contains the internal name of the file system type
(e.g., DUFST, S51K). By convention, this name is up to 32
characters long, and is composed of all uppercase
alphanumeric characters.

YIN This field contains either an uppercase "Y" (for "yes") or an
uppercase "N" (for "no") to indicate whether the named file
system type is to be configured into the next system kernel to
be built.

See Also

mfsys(F), idinstall(ADM), idbuild(ADM)

March 18, 1991 SFSYS-1

STAT (F) STAT (F)

stat
data returned by stat system call

Syntax

#include <sys/stat.b>

Description

The sys/stat.b include file contains the definition for the structure
returned by the stat and/stat functions. The structure is defined as:

struct stat{
dev t

} ;

ino_t
ushort
short
ushort
ushort
dev_t

off t
t:i.IOO t
time-t
time=t

st ino;
sh-rrode;
st-nHnk;
st-uid;
st-gid;
st=rd.ev;

st size;
st-atime;
st-mtime;
st=ctime;

/*

/* inode number */
/* file rrode */
/* * of links */
/* owner uid */
/* owner gid */
/*

/* file size in bytes */
/* time of last access */
/* time of last data rrodification */
/* time of last file status 'change' */

Note that the st atime, st mtime, and st ctime values are measured in
seconds since 00:00:00 (GMT) on January 1,1970.

March 15, 1989 STAT-1

STAT (F) STAT (F)

The st mode value is actually a combination of one or more of the fol­
lowing file mode values:

0170000
0040000
0020000
0060000
0100000
0010000
0050000
01

/* type of file */
/* directory */
/* character special */
/* block special */
/* regular */
/* fifo */
/* name special entry */
/* semaphore */
/* shared memory */
/* set user id on execution */
/* set group id on execution */

S IFMI'
S_IFDIR
S IFCHR
S_IFBLK
S IFREG
S_IFIFO
S_IFNAM.
S_INSEM
S_INSHD
S ISUID
S ISGID
S_ISvrX
S_IREAD
S_IWRITE
S IEXEC

02
04000
02000
01000
00400
00200
00100

/* save swapped text even after use */
/* read permission, owner */
/* write permission, owner */
/* execute/search permission, owner */

Files

/usr/include/sys/stat.h

See Also

stat(S)

Standards Conformance

stat is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
The X/Open Portability Guide II of January 1987;
IEEE POSIX Std 1003.1-1988 with C Standard Language-Dependent
System Support;
and NIST PIPS 151-1.

March 15. 1989 STAT-2

STUNE (F)

stune
local tunable parameter file

Syntax

/etc/conf/cf.d/stune

Description

STUNE (F)

The stune file contains local system settings for tunable parameters.
The parameter settings in this file replace the default values specified
in the mtune file, if the new values are within the legal range for the
parameter specified in mtune. The file contains one line for each
parameter to be reset. Each line contains two whitespace-separated
fields:

1. external name: This is the external name of the tunable parame­
ter used in the mtune file.

2. value: This field contains the new value for the tunable parame­
ter.

The file stune normally resides in /etc/conf/cf.d. However, a user or
an add-on package should never directly edit the mtune file. Instead
the idtune command should be used.

In order for the new values to become effective the Altos UNIX Sys­
tem V kernel must be rebuilt and the system must then be rebooted.

See Also

mtune(F), idbuild(ADM), idtune(ADM)

March 13, 1990 STUNE-1

SYMS (F)

syms
common object file symbol table format

Syntax

#include <syms.h>

Description

SYMS(F)

Common object files contain infonnation to support symbolic soft­
ware testing [see sdb(CP)]. Line number entries, linenum(F), and
extensive symbolic infonnation pennit testing at the C source level.
Every object file's symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static extems for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static extems for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name (null padded), its value, and other infonnation.
The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

union

char
struct

March 15, 1989

/* all ways to get symbol name */

SYMS-1

SYMS (F) SYMS (F)

};

long
long

n n;
chir-

_n_zeroes; /* = OL when in string table */
y_offset; /* location of name in table */

_n_nptr[2]; / allows overlaying */
_n;

long n_value;
short n_scnum;
unsigned short n_type;
char n_sclass:
char

/* value of symbol */
/* section number */
/* type and derived type */
/* storage class */
/* number of aux entries */

#define
#define
#define
#define

n zeroes n. n n. n zeroes
n=offset -n.-n-n.-n-offset
n_nptr =n.=n=nptr[l]

Meaningful values and explanations for them are given in both syms.h
and Common Object File Format. Anyone who needs to interpret the
entries should seek more information in these sources. Some symbols
require more information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol entry. The format
follows.

union auxent
{

struct
{

struct
{

March 15, 1989

long
union
{

struct
{

unsigned short x _lnno;
unsigned short x_size;

x lnsz;
long x_fsize;

x_misc;
union
{

struct
{

struct
{

long
long
x_fcn;

x lnnoptr;
x=endndx;

unsigned short x_dimen[DTIMNUM];
x ary;
x=fcnary;

unsigned short x _ tvndx;

SYMS-2

SYMS (F)

} ;

struct
{

struct
{

char x_fname[FILNMLEN);
x_file;

long x scnlen;
unsigned short x nreloc;
unsigned short x=nlinno;
x_scn;

long x tvfill;
unsigned short x-tvlen;
unsigned short x=tvran[2);
~tv;

Indexes of symbol table entries begin at zero.

See Also

sdb(CP), a.out(F), linenum(F).

Notes

SYMS (F)

On machines on which ints are equivalent to longs, all longs have
their type changed to into Thus the information about which symbols
are declared as longs and which, as ints, does not show up in the sym­
bol table.

March 15, 1989 SYMS-3

SYSFILES (F) SYSFILES (F)

sysfiles
format of UUCP Sysfiles file

Description

The /usr/lib/uucp/Sysfiles file lets you assign different files to be
used by uucp(C) and cu(C) as Systems, Devices, and Dialers files.

You can use different Systems files so that requests for login services
can be made to different addresses than UUCP services.

With different Dialers files you can use different handshaking for cu
and uucp. Multiple Systems, Dialers, and Devices files are useful if
anyone file becomes too large.

An active Sysfiles file is not included in the distribution. Instead a
Sysfiles.eg file is included, which contains comments and commented
examples of how such a file can be used. This is done because UUCP
runs faster without reading this file.

The format of the Sysfiles file is

service=w systems=x:x dialers=y:y devices=z:z

where w is replaced by uucico(ADM), cu, or both separated by a
colon; x is one or more files to be used as the Systems file, with each
file name separated by a colon and read in the order presented; y is
one or more files to be used as the Dialers file; and z is one or more
files to be used as the Devices file. Each file is assumed to be relative
to the /usrlIib/uucp directory, unless a full path is given. A
backslash-carriage return (\<CR>) can be used to continue an entry on
to the next line.

An example of using a local Systems file in addition to the usual Sys­
tems file follows:

service=uucico:cu systems=Systems:Local_Systems

If this is in lusrllibluucplSysjiles, then both uucico and cu will first
look in lusrllibluucplSystems. If the system they're trying to call
doesn't have an entry in that file, or if the entries in the file fail, then
they'll look in lusrllibluucplLocatSystems.

When different Systems files are defined for uucico and eu services,
your machine will store two different lists of Systems. You can print
the uucico list using the uuname command or the cu list using the
uuname -c command.

March 15, 1989 SYSFILES-1

SYSFILES (F)

Examples

SYSFILES (F)

The following example uses different Systems and Dialers files to
separate the uucico and cu-specific info, with information that they
use in common still in the "usual" Systems and Dialers files.

service--uucico systems=Systems.cico:Systems \
dialers=Dialers.cico:Dialers

service=cu systems=Systems.cu:Systems \
dialers=Dialers.cu:Dialers

This next example uses the same systems files for uucico and cu, but
has split the Systems file into local, company-wide, and global files.

service--uucico systems=Systems.local:Systems.company:Systems
service=cu systems=Systems.local:Systems.company:Systems

See Also

uucico(ADM), uucP(C), systems(F)

March 15. 1989 SYSFILES-2

SYSTEMID (F) SYSTEMID (F)

systemid
the Micnet system identification file

Description

The systemid file contains the machine and site names for a system in
a Micnet network. A machine name identifies a system and distin­
guishes it from other systems in the same network. A site name iden­
tifies the network to which a system belongs and distinguishes the net­
work from other networks in the same chain.

The systemid file may contain a site name and up to four different
machine names. The file has the form:

[site-name]
[machine-namel]
[machine-name2]
[machine-name3]
[machine-name4]

The file must contain at least one machine name. The other machine
names are optional, serving as alternate names for the same machine.
The file must contain a site name if more than one machine name is
given or if the network is connected to another through a uucp link.
The site name, when given, must be on the first line.

Each name can have up to eight letters and numbers but must always
begin with a letter. There is never more than one name to a line. A
line beginning with a pound sign (#) is considered a comment line and
is ignored.

The Micnet network requires one systemid file on each system in a
network with each file containing a unique set of machine names. If
the network is connected to another network through a uucp link, each
file in the network must contain the same site name.

The systemid file is used primarily during resolution of aliases. When
aliases contain site and/or machine names, the name is compared with
the names in the file and removed if there is a match. If there is no
match, the alias (and associated message, file, or command) is passed
on to the specified site or machine for further processing.

March 13. 1990 SYSTEMID-1

SYSTEMID (F) SYSTEMID (F)

Files

/etc/systemid

~ See Also
~

aliases(M), netutil(ADM), top(F)

Value Added

systemid is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 SYSTEMID-2

SYSTEMS (F) SYSTEMS (F)

systems
format of UUCP Systems file

Description

The Systems file (/usrlIib/uucp/Systems) contains the information
needed by the uucico daemon to establish a communication link to a
remote computer. Each entry in the file represents a computer that
your computer can call. You can configure the Systems file to prevent
unauthorized computers from logging in on your computer. More than
one entry may be present for a particular computer. These additional
entries represent alternative communication paths which the computer
tries in sequential order.

Each entry in the Systems file has the following format:

sitename schedule device speed phone login-script

site name field contains the node name of the remote com­
puter.

schedule field is a string that indicates the day-of-week and
time-of-day when the remote computer can be
called.

device is the device type that should be used to establish
the communication link to the remote computer.

speed indicates the transfer speed of the device used in
establishing the communication link.

phone provides the phone number of the remote com­
puter for automatic dialers. If you wish to create a
portable Systems file that can be used at a nutp.ber
of sites where the dialing prefixes differ, see the
dialcodes(F) man page.

login-script contains login information (also known as a "chat
script' ').

See Also

uucico(ADM), uucp(C), devices(F), dialers(F)

March 15, 1989 SYSTEMS-1

TABLES (F) TABLES (F)

tables
MMDF name tables for aliases, domains, and hosts

Description

All of the MMDF name tables are encoded into a database which is
built on top of the dbm(S) package. A number of tables are associated
with MMDF, the exact set being specified by the tailor file,
lusrlmmdjlmmdjtailor. Name tables all have the same format. Func­
tionally, they permit a simple key/value pairing. The syntax for tables
is specified here:

entries ::=

entry ::=

comment ::=

real-entry ::=

name ::=

separator ::=

value ::=

eol ::=

where:

name is

value is

Hosts and Domains

entries entry

comment / real-entry

'I' value eol

name separator value eol

{string of chars not containing a <separator>)

{see the chars in _hkeyend[], usually':' and
space)

{string of chars not containing an <eo!> }

{see the chars in _hvalend[])

a key

any relevant text.

Two basic types of table are host and domain tables. This section
gives a brief discussion of these concepts in terms of the MMDF sys­
tem. The domain namespace is treated as a logical global hierarchy,
according to the model of RFC 819, with subdomains separated by'.'s
(e.g ISI.USC.ARPA is a three level hierarchy with ARPA at the top
level). A host is a computer associated with a channel which may be
directly connected or reached through a relay associated with the
channel. The distinction between hosts as physical entities, and
domains as logical entities should be noted. All hosts known to an
MMDF system must have unique names. For this reason, the

March 13, 1990 TABLES-1

TABLES (F) TABLES (F)

convention of labelling hosts by an associated domain name is
adopted in many cases. This is a useful method to guarantee unique
names, but is not required. The domain and host table structures are
devised with three basic aims in mind:

1. To map a string into a fully expanded domain name.

2. To map this domain into a source route starting with a host.

3. To obtain the transport address associated with the host.

Domain Tables

Domains are split in a two-level manner, with the top part of the tree
specified in the tailor file and the lower parts of the tree in tables. The
two level structure is intended as a balance between generality and
efficiency. The order of searching is also speci fied in the tailor file.
The structure of a domain table is to have name as the part of the
domain not in the tailor file. Thus for ISI.USC.ARPA there might be a
domain ARPA with name=isi.usc or domain USC.ARPA with
name=isi. The structure of value is:

value ::= *(domain dm_separator) host

The possible values of dm_separator are given in tai(S), although typi­
cally ',' or ' , would be used. This value is essentially a source route
to be traversed from right to left. Consider an example table for the
domain ARPA:

41= Sample ARPA domain table
isi.usc:a.isi.usc.arpa
b.isi.usc:b.isi.usc.arpa
foobar.isi.usc:b.isi.usc.arpa
graphics.isi.usc:graphics.isi.usc.arpa z.mit.arpa

Thus, if the "isi.usc.arpa" is analyzed, domain table ARPA will be
selected, and host "a.isi.usc.arpa" associated with domain
"isLusc.arpa." If only "isLusc" were given, the domain tables would
be searched in order, and if the ARPA table were the first one to give a
match, then the same result would be reached. If "foobar.isi.usc" is
given, it would be mapped to host "b.isi.usc.arpa" and (official)
domain "b.isi.usc.arpa." If "graphics.isi.usc.arpa" is given, a source
route to domain "graphics.isi.usc.arpa" through HOST "z.mit.arpa"
will be identified. If "xy.isLusc.arpa" (or "xy.isLusc") is given, then
it will not be found. However, a subdomain will be stripped from the
left and the search repeated. Thus domain "xy.isi.usc.arpa" will be
identified as reached by a source route through host' 'a.isi.usc.arpa. "

As specified earlier, the order of searching is also specified in the
tailor file. For example, a host in domain UCL-CS.AC.UK, might
have a search order UCL-CS.AC.UK, AC.UK, UK, SWEDEN, ARPA,

March 13, 1990 TABLES-2

TABLES (F) TABLES (F)

"". Thus. if there were a domain isi.usc.ac.uk, it would be the pre­
ferred mapping for isi.usc over isi.usc.arpa. The last domain searched
is null. This could be used to contain random fully qualified domains
or to identify gateways to other domains. An example file is:

Sample Tbp level domain table
Odd host
basservax.australia:basservax.australia scunthorpe.ac.uk
UUCP Gateway
uucp:seismo.arpa
Mailnet Gateway (-> multics -> educom ->mailnet)
mailnet:educom.mailnet mit-multics.arpa

To specify the top domain in the tailor file. the name and dmn parame­
ters of the domain should be set to 'It'.

Host Tables

For every host associated with the channel, there will be one or more
entries. In each case, the key is the name identified from the domain
tables. A host may have multiple entries if it has more than one trans­
port address which the channel might utilise.

When a channel just sends all its mail to a relaying site, the address
portion (value) of the entry is not needed, directly, during the
transmission process. Hence, it need not be accurate. However, it
still is used to logically collect together host names, that is, all table
entries with the same value are regarded as being aliases for the same
host.

P.O. Box Channels

POBox channels, for passive, telephone-based exchange, operate in
two modes. In one case, a single login is authorized to pickup all mail
for the channel. In this case, the host-table addresses are only used for
the "collecting" function. For the second mode, different logins share
the channel and are to receive only some of the mail queued for the
channel. In this case, the login is treated as an "address", and the table
entries should have the value fields contain the name of the login
authorized to pickup mail for that "host".

March 13, 1990 TABLES-3

TABLES (F) TABLES (F)

Access control tables

Channels also have access control tables associated with them, to
determine whether a message is allowed to use a given route. Each
channel has four (optional) tables that determine the access controls
used: insrc, outsrc, indest, and outdest.

Reformatting tables

There may also be a "known hosts" table associated with each chan­
nel. This is exactly the same format as a host table. If a message is
being reformatted, and if an address does not have its host in this list,
then it will be modified to appear as a percent route (RFC733 or JNT
Mail route) address, with the local domain as the root.

Local Aliases

The password file specifies the name of all local recipients; their mail­
ing names are their login names. Since this is a rather restricted name
space, and since it is useful to have some other kinds of locally-known
names, there is a second file used to specify "aliases". The location of
the aliases file is specified in the tailor file.

An alias entry may be used for one of five functions:

1. True aliasing, where the key value maps to a local user's login
name, e.g. "dave:dcrocker;"

2. Forwarding, where the key value maps to a foreign address,
such as "dcrocker:dcrocker@udel;' , and

3. Address lists, where the key value maps to a set of addresses,
such as "mother:cotton,dcrocker,farber."

4. Redirection of a message to a file. For example,
"foobar:dpk/foobar" would cause user and group ids to be set
to dpk and the text of the message to be appended to the file
"foobar" in dpk's default login directory. Similarly,
"foobar:dpk//tmp/foobar" would do the same for file
/tmp/foobar.

5. Redirection of a message to a pipe. For example, "news­
inject:newsl!usr/lib/news/uurec" would cause a message to be
passed into an Altos UNIX System V pipe (see pipe(S» with
userid and groupid set to news.

As a convenience, the value-part of an entry may specify a file name,
so that the actual value is taken from the file. There are two possible
notations for this:

March 13, 1990 TABLES-4

TABLES (F) TABLES (F)

1. By having left-angle bracket C<') precede the value specifica­
tion. For example: "mother: < /etc/mmdf/mother_list@udel­
relay.arpa. "

2. By using a data type with value "include." For example:
"mother: :include: /etc/mmdf/mothet@udel-relay.arpa"

In both cases, the @HOST (not a domain) is optional. If specified, it
should be the local host.

Recursive specification is permitted. For example, "crocker" may
map to "dcrocker" and "dcrocker" may map to "dcrocker at udel,"
so that both "crocker" and "dcrocker" are locally-known names, but
mail sent to either of them will be forwarded to "dcrocker@udel."

In practice, it is useful to organize alias files into the following order­
ing:

List aliases
which contain a value referring to a later address list. This con­
stitutes a one-to-one mapping of a key to a value, where the
v':llue points into the "Lists" group.

Lists
which contain values referring to multiple addresses; This con­
stitutes a one-to-many mapping, where some of the addresses
may refer to other entries (address lists) in the Lists group, as
well as other entries (individual addresses) later in the table.

Mailbox aliases
which contain values referring to single addresses. These con­
stitute one-to-one mappings, where the value refers to an entry
in the password file or to an entry in the "Forwarding aliases"
group.

Forwarding aliases
which contain values referring to single addresses on other ma­
chines. These, also, are one-to-one mappings, where the value
always refers to an off-machine address.

By organizing the file in this manner, only the "Lists" portion
requires a topological sort. Since the other three sections will never
point to entries within their section, they may be sorted more con­
veniently, such as alphabetically. Such a structure also tends to make
changes easy. In particular, the handling of forwarding is easy, since
all references to a user will get intercepted, at the end of the table.

Mail-ID tables

The Mail-ID tables are used only if the Mail-IDs feature is enabled.
This can be done in the tailoring file, by defining MMAILID to be 1.
Mail-IDs are used to disassociate mail addresses from login names.

March 13, 1990 TABLES-5

TABLES (F) TABLES (F)

There are two tables that are used to map Mail-IDs to users login
names and login ids to Mail-IDs. The "users" file is used to map
users (login ids) to Mail-IDs, and the "mailids" file is used to map
Mail-IDs to users. The names of these files can be overridden, but it is
not recommended. Each file has lines with two entries per line (user
and Mail-ID, or Mail-ID and user).

A user can have more than one entry in the Mail-IDs file, but should
have only one entry in the users file. This does not prevent them from
sending mail with any of their Mail-IDs. The users file is just a source
of default Mail-IDs.

Value Added

tables is an extension of AT&T System V provided in Altos UNIX
System V.

March 13, 1990 TABLES-6

TAR (F) TAR (F)

tar
archive format

Description

The command tar(C) dumps files to and extracts files from backup
media or the hard disk.

Each file is archived in contiguous blocks, the frrst block being occu­
pied by a header, whose format is given below, and the subsequent
blocks of the files occupying the following blocks. All headers and
file data start on 512 byte block boundaries and any spare unused
space is padded with garbage. The format of a header block is as fol­
lows:

#define TBLOCK 512
#define NBLOCK 20
#define NAMSIZ 100
union hblock {

char dummy[TBLOCK];
struct header {

} dbuf;
dblock;

char name[NAMSIZ];
char mode [8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];
char extno[4];
char extotal[4];
char efsize[12];

The name entry is the path name of the file when archived. If the path­
name starts with a zero word, the entry is empty. It is at most 100
bytes long and ends in a null byte. Mode, uid, gid, size, and time modi­
fied are the same as described under i-nodes (refer to Jilesystem (F)).
The checksum entry has a value such that the sum of the words of the
directory entry is zero.

If the entry corresponds to a link, then linkname contains the path­
name of the file to which this entry is linked and linkflag is set to 0 if
there are no links, or 1 if there are links. No data is put in the archive
file.

March 15, 1989 TAR-1

TAR (F)

See Also

filesystem(F), tar(C)

Standards Conformance

tar is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989

TAR (F)

TAR-2

TERM (F) TERM (F)

term
terminal driving tables for nroff

Description

nroff uses driving tables to customize its output for various types of
output devices, such as printing terminals, special word-processing
printers (such as Diablo, Qume, or NEC Spinwriter mechanisms), or
special output filter programs. These driving tables are written as C
programs, compiled, and installed in lusrllib/termltabname, where
name is the name for that terminal type as shown in term.

The structure of the tables is as follows. Sizes are in 240ths of an
inch.

#define INCH 240
#include /usr/lib/term/terms.h

struct termtable tIp; { * lp is the name of the teDn, *\
int bset; * modify with new name, such as tnew *\
int breset;

} ;

int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *iton;
char *itoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

The meanings of the various fields are as follows:

March 18, 1991 TERM-1

TERM (F)

bset

breset

Hor

Vert

Newline

Char

Em

Halfline

Adj

TERM (F)

bits to set in termio.c_oflag see tty(M) and termio(M)).
after output.

bits to reset in termio.c_oflag before output.

horizontal resolution in fractions of an inch.

vertical resolution in fractions of an inch.

space moved by a newline (linefeed) character in frac­
tions of an inch.

quantum of character sizes, in fractions of an inch. (i.e.,
characters are multiples of Char units wide. See codetab
below.)

size of an em in fractions of an inch.

space moved by a half-linefeed (or half-reverse-linefeed)
character in fractions of an inch.

quantum of white space for margin adjustment in the
absence of the -e option, in fractions of an inch. (i.e.,
white spaces are a multiple of Adj units wide)

Note: if this is less than the size of the space character (in
units of Char; see below for how the sizes of characters
are defined), nroff will output fractional spaces using plot
mode. Also, if the -e switch to nroff is used, Adj is set
equal to Hor by nroff.

twin it set of characters used to initialize the terminal in a mode
suitable for nroff.

twrest set of characters used to restore the terminal to normal
mode.

twnl set of characters used to move down one line.

hlr set of characters used to move up one-half line.

hlf set of characters used to move down one-half line.

fir set of characters used to move up one line.

March 18,1991 TERM-2

TERM (F)

bdon

bdoff

iton

itoff

ploton

plotoff

up

down

right

left

codetab

zzz

TERM (F)

set of characters used to turn on hardware boldface mode,
if any. Nroff assumes that boldface mode is reset auto­
matically by the twnl string, because many letter-quality
printers reset the boldface mode when they receive a car­
riage return; the twnl string should include whatever char­
acters are necessary to reset the boldface mode.

set of characters used to tum off hardware boldface mode,
if any.

set of characters used to turn on hardware italics mode, if
any.

set of characters used to turn off hardware italics mode, if
any.

set of characters used to turn on hardware plot mode (for
Diablo-type mechanisms), if any.

set of characters used to turn off hardware plot mode (for
Diablo-type mechanisms), if any.

set of characters used to move up one resolution unit
(Vert) in plot mode, if any.

set of characters used to move down one resolution unit
(Vert) in plot mode, if any.

set of characters used to move right one resolution unit
(Hor) in plot mode, if any.

set of characters used to move left one resolution unit
(Hor) in plot mode, if any.

Array of sequences to print individual characters. Order
is nroiJ's internal ordering.' See the file
lusrlIib/term/tabuser.c for the exact order.

a zero terminator at the end.

The codetab sequences each begin with a flag byte. The top bit indi­
cates whether the sequence should be underlined in the .ul font. The
rest of the byte is the width of the sequence in units of Char.

The remainder of each codetab sequence is a sequence of characters
to be output. Characters with the top bit off are output as given; char­
acters with the top bit on indicate escape into plot mode. When such
an escape character is encountered, nroff shifts into plot mode, emit­
ting ploton, and skips to the next character if the escape character was
'\200'.

March 18, 1991 TERM-3

TERM(F) TERM (F)

When in plot mode, characters with the top bit off are output as given.
A character with the top bit on indicates a motion. The next bit indi­
cates coordinate, with 1 being vertical and 0 being horizontal.
The next bit indicates direction, with 1 meaning up or left. The
remaining five bits give the amount of the motion. An amount of zero
causes exit from plot mode.

When plot mode is exited, either at the end of the string or via the
amount-zero exit, plotoJfis emitted followed by a blank.

All quantities which are in units of fractions of an inch should be
expressed as INCH*num/denom, where num and denom are respec­
tively the numerator and denominator of the fraction; that is, 1/48 of
an inch would be written as "INCH/48".

If any sequence of characters does not pertain to the output device,
that sequence should be given as a null string.

The Development System must be installed on the computer to create
a new driving table. The source code for a generic output device is in
the file lusrllib/term/tabuser.c Copy this file and make the necessary
modifications, including the name of the termtable struct. Refer to the
hardware manual for the codes needed for the output device (terminal,
printer, etc.). Name the file according to the convention explained in
the term file accompanying your nroJf package. The makefile,
lusrllib/terml make file, should be updated to include the source file to
the new driving table. To perform the modification, enter the com­
mand:

cc -M3e -0 -c tabuser.c maketerm.o -0 maketerm

When the files are prepared, enter the command:

make

(See make(CP». The source to the new driving table is linked with
the object file mkterm.o, and the new driving table is created and
installed in the proper directory.

Files

/usr/lib/term/tabname driving tables
/usr/lib/term/tabuser.c generic source for driving tables
/usr/lib/term/makefile make file for creating driving tables
/usr/lib/term/mkterm.olinkable object file for creating driving tables
/usr/lib/term/terms.h used to create nroff driving tables

See Also

nroff and term in the documentation accompanying your text pro-

March 18, 1991 TERM-4

TERM (F) TERM (F)

cessing package.

Notes

Altos UNIX System V does not include nroff, its special tenn file, or
any of the other facilities commonly associated with it. You must pur­
chase this text processing package separately. The Development Sys­
tem and text processing software must be installed on the computer to
create new driving tables.

Not all UNIX facilities support all of these options.

March 18, 1991 TERM-5

TERMCAP (F)

termcap
terminal capability data base

Description

TERMCAP (F)

The file letc/termcap is a data base describing ~nals. This data
base is used by commands such as vi(C), Lyrix ,Multiplanbn and
sub-routine packages such as curses (S). Terminals are described in
termcap by giving a set of capabilities and by describing how opera­
tions are perfonned. Padding requirements and initialization
sequences are included in termcap.

Entries in termcap consist of a number of fields separated by colons
':'. The frrst entry for each tenninal gives the names that are known
for the terminal, separated by vertical bars (I). For compatibility
with older systems the first name is always 2 characters long. The
second name given is the most common abbreviation for the terminal
and the name used by vi (C) and ex(C). The last name given should be
a long name fully identifying the terminal. Only the last name can
contain blanks for readability.

Capabilities (including XENIX Extensions)

The following is a list of the capabilities that can be defined for a
given terminal. In this list, (P) indicates padding can be specified, and
(P*) indicates that padding can be based on the number of lines
affected. The capability type and padding fields are described in
detail in the following section "Types of Capabilities. "

The codes beginning with uppercase letters (except for CC) indicate
XENIX extensions. They are included in addition to the standard
entries and are used by one or more application programs. As with the
standard entries, not all modes are supported by all applications or ter­
minals. Some of these entries refer to specific terminal output capa­
bilities (such as GS for "graphics start"). Others describe character
sequences sent by keys that appear on a keyboard (such as PU for
PageUp key). There are also entries that are used to attribute special
meanings to other keys (or combinations of keys) for use in a particu-
1ar software program. Some of the XENIX extension capabilities have
a similar function to standard capabilities. They are used to redefine
specific keys (such as using function keys as arrow keys). The exten­
sion capabilities are included in the letc/termcap file, as they are
required for some utilities. The more commonly used extension capa­
bilities are described in more detail in the section "XENIX Exten­
sions."

March 15, 1989 TERMCAP-1

TERMCAP (F) TERMCAP (F)

Name Type Pad? Description

ae str (P) End alternate character set
al str (P*) Add new blank line

J
am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not AU
bs bool Terminal can backspace with AU
bt str (P) Back tab
bw bool Backspace wraps from column 0

to last column
CC str Command character in prototype

if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
CF str Cursor off
ch str (P) Like cm but horizontal motion only,

line stays same
CL str Sent by CHAR LEFf key
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
CO str Cursor on
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
CW str Sent by CHANGE WINDOW key
da bool Display may be retained above
DA bool Delete attribute string
db bool Display may be retained below
dB num Number of millisec of bs delay needed
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of iT delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give" :ei=: '

ific
EN str Sent by END key
eo bool Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default AL)
Gl str Upper-right (1st quadrant) comer character
G2 str Upper-left (2nd quadrant) comer character

March 15, 1989 TERMCAP-2

TERMCAP (F) TERMCAP (F)

Name Type Pad? Description

G3 str Lower-left (3rd quadrant) comer character
G4 str Lower-right (4th quadrant) comer character
GC str Center graphics character (similar to "+")
GD str Down-tick character
GE str Graphics mode end
GG num Number of chars taken by GS and GE
GH str Horizontal bar character
GL str Left-tick character
GR str Right-tick character
GS str Graphics mode start
GU str Up-tick character
GV str Vertical bar character
hc bool Hardcopy terminal
hd str Half-line down (forward 1!2linefeed)
HM str Sent by HOME key (if not kh)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im str Insert mode (enter); give ':im=' ific
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by 'other' function keys 0-9
kb str Sent by backspace. key
kd str Sent by terminal down arrow key
ke str Out of 'keypad transmit' mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of 'other' keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in 'keypad transmit' mode
ku str Sent by terminal up arrow key
10-19 str Labels on 'other' function keys
LD str Sent by line delete key
LF str Sent by line feed key
li num Number of lines on screen or page
11 str Last line, frrst column (if no cm)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
MP str Multiplan initialization string
MR str Multiplan reset string
ms bool Will scroll in stand-out mode
mu str Memory unlock (tum off memory lock)

March 15, 1989 TERMCAP-3

TERMCAP (F) TERMCAP (F)

Name Type Pad? Description

nc bool No correctly working carriage return
(DM2500,H2000)

nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll
NU str Sent by NEXT UNLOCKED CELL key
os bool Terminal overstrikes
pc str Pad character (rather than null)
PD str Sent by PAGE DOWN key
PN str Start local printing
PS str End local printing
pt bool Has hardware tabs

PU str
(may need to be set with is)
Sent by PAGE UP key

RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RT str Sent by RETURN key
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than "lor with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though

it doesn't overstrike
up str Upline (cursor up)
UP str Sent by up-arrow key (alternate to ku)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
WL str Sent by WORD LEFf key
WR str Sent by WORD RIGHT key
xb bool Beehive (f1=escape, f2=ctrl C)
xn bool A new line is ignored after a wrap

xr bool
(Concept)
Return acts like ce \r \n
(Delta Data)

xs bool Standard out not erased by writing over it
(HP264?)

xt bool Tabs are destructive, magic so char
(Teleray 1061)

March 15, 1989 TERMCAP-4

TERMCAP (F) TERMCAP (F)

A Sample Entry

The following entry describes the Concept-l()(), and is among the
more complex entries in the termcap file. (This particular Concept
entry is outdated, and is used as an example only.)

cl I clOO I conceptlOO: is=\EU\Ef\E7\E5\E8\El \ENH\EK\E\200\Eo&\200: \
:al=3*\EAR:am:bs:cd=16*\EAC:ce=16\EAS:cl=2*AL:\
:crnF\Ea%+ %+ :co#80:dc=16\EAA:dl=3*\EAB:\
:ei=\E\200:eo:imr\EAP:in:ip=16*:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue over to multiple lines by giving a backslash (\)
as the last character of a line. Empty fields can be included for reada­
bility between the last field on a line and the frrst field on the next.
Capabilities in termcap are of three types: Boolean capabilities,
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular
delays, and string capabilities, which give a sequence that can be used
to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has 'automatic margins' (i.e., an automatic return and
linefeed when the end of a line is reached) is indicated by the capabil­
it yam. The description of the Concept includes am. Numeric capa­
bilities are followed by the character '#' and then the value. Thus co,
which indicates the number of columns the terminal has, gives the
value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an '=', and then a
string ending at the next following ':'. A delay in milliseconds may
appear after the '=' in such a capability, and padding characters are
supplied by the editor after the rest of the string is sent to provide this
delay. The delay can be either a integer, e.g., '20', or an integer fol­
lowed by an '*', i.e. '3*'. A '*' indicates that the padding required is
proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a '*' is
specified, it is sometimes useful to give a delay of the form '3.5' to
specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capa­
bilities for easy encoding of characters there. A \E maps to an ESCAPE
character, "x maps to a control-x for any appropriate x, and the
sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a
\, and the characters A and \ may be given as \" and \\. If it is necessary
to place a colon (:) in a capability, it must be escaped in octal as \072.
If it is necessary to place a null character in a string capability, it must
be encoded as \200. The routines that deal with termcap use C strings,

March 15, 1989 TERMCAP-5

TERMCAP (F) TERMCAP (F)

and strip the high bits of the output very late so that a \200 comes out
as a \000 would.

Preparing Descriptions

The most effective way to prepare a terminal description is by imitat­
ing the description of a similar terminal in termcap and to build up a
description gradually, using partial descriptions with ex to check that
they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the termcap file to describe it. To test a
new terminal description, you can set the environment variable
TERMCAP to a pathname of a file containing the description you are
working on and the editor will look there rather than in lete/termeap.
TERM CAP can also be set to the termcap entry itself to avoid reading
the file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the
co numeric capability. If the terminal is a CRT, the number of lines on
the screen is given by the Ii capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, it
should have the am capability. If the terminal can clear its screen,
this is given by the cI string capability. If the terminal can backspace,
it should have the bs capability, unless a backspace is accomplished
by a character other than AU in which case you should give this char­
acter as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over), it should have the os capa­
bility.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the
screen. If the terminal has switch selectable automatic margins, the
termcap file usually assumes that this is on (i.e., am).

These capabilities suffice to describe hardcopy and "glass-tty" termi­
na�s. Thus the model 33 teletype is described as

t3 I 33 I tty33: co#72: os

while the Lear Siegler ADM-3 is described as:

cl ladm31311si adrn3:am:bs:cl=AZ:li#24:co#80

Cursor addressing

March 15, 1989 TERMCAP-6

TERMCAP (F) TERMCAP (F)

Cursor addressing in the terminal is described by a em string capabil­
ity. This capability uses print/(S) like escapes (such as % x) in it.
These substitute to encodings of the current line or column position,
while other characters are passed through unchanged. If the em string
is thought of as being a function, its arguments are the line and then
the column to which motion is desired, and the % encodings have the
following meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n

%B
%D

replaced by line/column position, 0 origin
like %2d - 2 digit field
like %3d - 3 digit field
like printj{S) %c
adds x to value, then %.
if value> x adds y, no output
reverses order of line and column, no output
increments line/column position (for 1 origin)
gives a single %
exclusive or row and column with 0140
(DM2500)
BCD (16*(x/l0)) + (x%10), no output
Reverse coding (x-2*(x%16)), no output
(Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to
be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of
the rows and columns is inverted here, and that the row and column
are printed as two digits. Thus its em capability is
'cm=6\E&%r%2c%2Y'. The Microterm ACf-IV needs the current row
and column sent preceded by a AT, with the row and column simply
encoded in binary, 'cm="T%.%.'. Terminals that use '%.' need to be
able to backspace the cursor (bs or be), and to move the cursor up one
line on the screen (up introduced below). This is necessary because it
is not always safe to transmit \t, \n AD and \r, as the system may
change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset
by a blank character, thus 'cm=\E=%+ %+ '.

Cursor motions

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, this sequence should
be given as nd (non-destructive space). If it can move the cursor up a
line on the screen in the same column, it should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor
(to very upper left corner of screen), this can be given as ho; similarly,
a fast way of getting to the lower left hand corner can be given as II;
this may involve going up with up from the home position, but the
editor will never do this itself (unless II does) because it makes no

March 15, 1989 TERMCAP-7

TERMCAP (F) TERMCAP (F)

assumption about the effect of moving up from the home position.

Area clears

If the teoninal can clear from the current position to the end of the
line, leaving the cursor where it is, the sequence should be given as ceo
If the teoninal can clear from the current position to the end of the dis­
play, the sequence should be given as cd. The editor only uses cd
from the frrst column of a line.

Insert/delete line

If the teoninal can open a new blank line before the line where the
cursor is, the sequence should be given as al. Note that this is done
only from the frrst position of a line. The cursor must then appear on
the newly blank line. If the teoninal can delete the line on which the
cursor rests, the sequence should be given as dl. This is done only
from the frrst position on the line to be deleted. If the teoninal can
scroll the screen backwards, the sequence can be given as sb, but al
can suffice. If the teoninal can retain display memory above, the da
capability should be given, and if display memory can be retained
below, then db should be given. These let the editor know that delet­
ing a line on the screen may bring non-blank lines up from below or
that scrolling back with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to the
insert/delete character that can be described using termcap. The most
common insert/delete character operations affect only the characters
on the current line and shift characters off the end of the line. Other
teoninals, such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which
is either eliminated, or expanded to two untyped blanks. You can find
out which kind of teoninal you have by clearing the screen and enter­
ing text separated by cursor motions. Enter 'abc def', using local
cursor motions (not spaces) between the 'abc' and the 'def'. Then
position the cursor before the 'abc' and put the terminal in insert
mode. If entering characters causes the rest of the line to shift rigidly
and characters to falloff the end, your terminal does not distinguish
between blanks and untyped positions. If the 'abc' shifts over to the
'def' which then move together around the end of the current line and
onto the next as you insert, you have the second type of terminal, and
should give the capability in, which stands for 'insert null'. No known
terminals have an insert mode, not falling into one of these two
classes.

The editor can handle both terminals that have an insert mode and ter­
minals that send a simple sequence to open a blank position on the
current line. Specify im as the sequence to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a

March 15, 1989 TERMCAP-8

TERMCAP (F) TERMCAP (F)

blank position. Specify ei as the sequence to leave insert mode
(specify this with an empty value if you also gave im an empty value).
Now specify ie as any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode
will not support ie, terminals that send a sequence to open a screen
position should give it here. (Insert mode is preferable to the sequence
to open a position on the screen if your terminal has both.) If post
insert padding is needed, give this as a number of milliseconds in ip (a
string option). Any other sequence that may need to be sent after an
insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the inser­
tion position). If your terminal allows motion while in insert mode,
you can give the capability mi to speed up inserting in this case. Omit­
ting mi will affect only speed. Some terminals (notably Datamedia's)
must not have mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and de to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode, these
can be given as so and se respectively. If there are several flavors of
standout mode (such as reverse video, blinking, or underlining - half
bright is not usually an acceptable 'standout' mode unless the terminal
is in reverse video mode constantly), the preferred mode is reverse
video by itself. It is acceptable, if the code to change into or out of
standout mode leaves one, or even two blank spaces on the screen, as
the TVI 912 and Teleray 1061 do. Although it may confuse some pro­
grams slightly, it cannot be helped.

Codes to begin underlining and end underlining can be given as us,
and ue respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the
Microterm Mime, the sequence can be given as ue. (If the underline
code does not move the cursor to the right, specify the code followed
by a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement), the sequence can be given as vb; it must
not move the cursor. If the terminal should be placed in a different
mode during open and visual modes of ex, the sequence can be given
as vs and ve, sent at the start and end of these modes respectively.
These can be used to change from a underline to a block cursor and
back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and teo This arises, for example, from terminals like the

March 15, 1989 TERMCAP-9

TERMCAP (F) TERMCAP (F)

Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed), even though it does not overstrike, you should
give the capability ul. If overstrikes are erasable with a blank, this
should be indicated by specifying eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note· that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be set
to transmit or not to transmit, enter these codes as ks and ke. Other­
wise, the keypad is assumed always to transmit. The codes sent by the
left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kl, kr, ku, kd, and kh. If there are function keys such as ro,
fl, ... , f9, the codes they send can be given as kO, kl, .•• , k9. If there
are other keys that transmit the same code as the terminal expects for
the corresponding function, such as clear screen, the termcap 2 letter
codes can be given in the ko capability, for example, ':ko=cl,ll,sf,sb:',
which says that the terminal has clear, home down, scroll down, and
scroll up keys that transmit the same thing as the cl, 11, sf, and sb
entries.

The rna entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete, but still in use in ver­
sion 2 of vi, which must be run on some minicomputers due to mem­
ory limitations. This field is redundant with kl, kr, ku, kd, and kh. It
consists of groups of two characters. In each group, the first character
is what an arrow key sends, the second character is the corresponding
vi command. These commands are h for kl, j for kd, k for ku, I for kr,
and H for kh. For example, the Mime would be :ma= "Kj"Zk"XI:
indicating arrow keys left CH), down CK), up CZ), and right CX).
(There is no home key on the Mime.)

Miscellaneous

If the terminal requires other than a null (zero) .character as a pad, this
can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a char­
acter other than "I to tab, the sequence can be given as tao

Terminals that do not allow ,-, characters to be displayed (such as
Hazeltines), should indicate hz. Datamedia terminals that echo
carriage-return-linefeed for carriage return, and then ignore a follow­
ing linefeed, should indicate DC. Early Concept terminals, that ignore
a linefeed immediately after an am wrap, should indicate XD. If an

March 15, 1989 TERMCAP-10

TERMCAP (F) TERMCAP (F)

erase-eol is required to get rid of standout (instead of merely writing
on top of it), xs should be given. Teleray terminals, where tabs turn all
characters moved over to blanks, should indicate xt. Other specific
terminal problems may be corrected by adding more capabilities of
the form xx.

If the leading character for commands to the terminal (normally the
escape character) can be set by the software, specify the command
character(s) with the capability CC.

Other capabilities include is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clear and then set the tabs on the ter­
minal, if the terminal has settable tabs. If both are given, is is dis­
played before if. This is useful where if is lusr/lib/tabsetl std , but is
clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability, te,
can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not
exceed 1024. Since termlib routines search the entry from left to right,
and since the te capability is replaced by the corresponding entry, the
capabilities given at the left override the ones in the similar terminal.
A capability can be canceled with xx@ where xx is the capability.
For example:

hn I 2621nl:ks@:ke@:tc=2621:

This defines a 2621nl that does not have the ks or ke capabilities, and
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user prefer­
ences.

XENIX Extensions

Capabilities This table lists the (previously listed) XENIX extensions
to the termcap capabilities. It shows which codes generate information
input from the keyboard to the program reading the keyboard and
which codes generate information output from the program to the
screen.

March 15, 1989 TERMCAP-11

TERMCAP (F) TERMCAP (F)

Name InputlOutputDescription

CF str Cursor off
CL str Sent by CHAR LEFf key
CO str Cursor on
CW str Sent by CHANGE WINDOW key
DA bool Delete attribute string
EN str Sent by END key
Gl str Upper-right (1st quadrant) comer character
G2 str Upper-left (2nd quadrant) comer character
G3 str Lower-left (3rd quadrant) comer character
G4 str Lower-right (4th quadrant) comer character
G5 str Upper right (Ist quadrant) comer character (double)
G6 str Upper left (2nd quadrant) comer character (double)
G7 str Lower left (3rd quadrant) comer character (double)
G8 str Lower right (4th quadrant) comer character (double)
GC str Center graphics character (similar to +)
Gc str Centre graphics character (double)
GD str Down-tick character
Gd str Down tick character (double)
GE str Graphics mode end
GG num Number of chars taken by GS and GE
GH str Horizontal bar character
Gh str Horizontal bar character (double)
GL str Left-tick character
Gl str left-tick character (double)
GR str Right-tick character
Gr str right-tick character (double)
GS. str Graphics mode start
GU str Up-tick character
Gu str Up-tick character (double)
GV str Vertical bar character
Gv str Vertical bar character (double)
HM str Sent by HOME key (if not kh)
mb str blinking on
me str blinking off
MP str Multiplan initialization string
MR str Multiplan reset string
NU str Sent by NEXT UNLOCKED CELL key
PD str Sent by PAGE DOWN key
PU str Sent by PAGE UP key
RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RT str Sent by RETURN key
UP str Sent by up-arrow key (alternate to ku)
WL str Sent by WORD LEFf key
WR str Sent by WORD RIGHT key

Cursor motion Some application programs make use of special editing
codes. CR and CL move the cursor one character right and left
respectively. WR and WL move the cursor one word right and left
respectively. CW changes windows, when they are used in the

March 15, 1989 TERMCAP-12

TERMCAP (F) TERMCAP (F)

program.

Some application programs turn off the cursor. This is accomplished
using CF for cursor off and CO to turn it back on.

Graphic mode. If the terminal has graphics capabilities, this mode
can be turned on and off with the GS and GE codes. Some terminals
generate graphics characters from all keys when in graphics mode
(such as the Visual 50). The other G codes specify particular graphics
characters accessed by escape sequences. These characters are avail­
able on some terminals as alternate graphics character sets (not as a
bit-map graphic mode). The vt100 has access to this kind of alternate
graphics character set, but not to a bit-map graphic mode.

Files

/etc/termcap File containing terminal descriptions

See Also

ex(C), curses(S), termcap(S), tset(C), vi(C), more(C), screen(HW)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

ex(C) allows only 256 characters for string capabilities. and the rou­
tines in termcap(S) do not check for overtlow of this buffer. The total
length of a single entry (excluding only escaped ncwlines) may not
exceed 1024.

The rna, VS, and ve entries are specific to the vi(C) program.

Not all programs support all entries. There are entries that are not
supported by any program.

XENIX termcap extensions are explained in detail in the software
application documentation.

Refer to the screen(HW) manual page, for a description of the charac­
ter sequences used by the monitor device on your specific system.

March 15, 1989 TERMCAP-13

TERMINFO (F) TERMINFO (F)

terminfo
format of compiled terminfo file

Description

Compiled terminfo descriptions are placed under the directory
lusr/lib/terminfo. In order to avoid a linear search of a huge UNIX
system directory, a two-level scheme is used:
lusrlIib/terminfol c/name where name is the name of the terminal,
and c is the first character of name. Thus, act4 can be found in the file
lusr/lib/terminfol a/act4. Synonyms for the same terminal are imple­
mented by mUltiple links to the same compiled file.

The format has been chosen so that it will be the same on all hard­
ware. An 8- or more-bit byte is assumed, but no assumptions about
byte ordering or sign extension are made.

The compiled file is created with the tic(C) program, and read by the
routine setupterm in terminjo(S). The file is divided into six parts:
the header, terminal names, boolean flags, numbers, strings, and string
table.

The header section begins the file. This section contains six short
integers in the format described below. These integers are (1) the
magic number (octal 0432); (2) the ~ize, in bytes, of the names sec­
tion; (3) the number of bytes in the boolean section; (4) the number of
short integers in the numbers section; (5) the number of offsets (short
integers) in the strings section; (6) the size, in bytes, of the string
table.

Short integers are stored in two 8-bit bytes. The frrst byte contains the
least significant 8 bits of the value, and the second byte contains the
most significant 8 bits. (Thus, the value represented is
256*second+frrst.) The value -1 is represented by 0377, 0377; other
negative values are illegal. The -1 generally means that a capability is
missing from this terminal. Note that this format corresponds to the
hardware of the VAX and PDP-II. Machines in which this does not
correspond to the hardware read the integers as two bytes and compute
the result.

The terminal names section comes next. It contains the frrst line of
the terminfo description, listing the various names for the terminal,
separated by the 'I' character. The section is terminated with an
ASCII NUL character.

March 15, 1989 TERMINFO-1

TERMINFO (F) TERMINFO (F)

The boolean flags have one byte for each flag. This byte is either 0 or
1, as the flag is present or absent. The capabilities are in the same
order as the file <term.h>.

Between the boolean section and the number section, a null byte will
be inserted, if necessary, to ensure that the number section begins on
an even byte. All short integers are aligned on a short-word boundary.

The numbers section is similar to the flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value
represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 means the capability is
missing. Otherwise, the value is taken as an offset from the beginning
of the string table. Special characters in "X or'c notation are stored in
their interpreted form, not the printing representation. Padding infor­
mation $<nn> and parameter information %x are stored intact in unin­
terpreted form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null­
terminated.

Note that it is possible for setupterm to expect a different set of capa­
bilities than are actually present in the file. Either the database may
have been updated since setupterm was recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recom­
piled more recently than the database was updated (resulting in miss­
ing entries). The routine setupterm must be prepared for both possibil­
ities; this is why the numbers and sizes are included. Also, new capa­
bilities must always be added at the end of the lists of boolean, num­
ber, and string capabilities.

As an example, an octal dump of the description for the Microterm
ACT 4 is included:

microterml act41microterm act iv,
cr=AM, cudl=AJ, ind=AJ, bel=AG, am, cubl=AH,
ed=A , el=AA, clear=AL, cup=AT%pl%c%p2%c,
cols#80, lines#24, cufl=AX, cuul="Z, home=A],

3000 032 001 \0 025 \0 \b \0 212 \0 II \0 m i c r
020 0 t e r m I act 4 I m i c r 0

040 t e r mac t i v \0 \0 001 \0 \0
060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377

March 15, 1989 TERMINF0-2

TERMINFO (F) TERMINFO (F)

540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0
560 024 % P 1 % c % P 2 % c \0 \n \0 035 \0
600 \b \0 030 \0 032 \0 \n \0

Some limitations: the total size of a compiled description cannot
exceed 4096 bytes; the name field cannot exceed 128 bytes.

Files

/usr/lib/terminfo/* /* compiled terminal capability data base

See Also

terminfo(M), terminfo(S), tic(C)

March 15. 1989 TERMINF0-3

TIMEZONE (F) TIMEZONE (F)

timezone
set default system time zone

Syntax

/etc/TIMEZONE

Description

This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone,
including /etc/cshrc, /etc/profile, /etc/rc2, .profile.

1Z contains the following information:

(sss)

(n)

(ddd)

(m)

(start)

(end)

(time)

One to nine letters designating the standard time zone.

Number of hours past Greenwich mean time for the stan­
dard time (partial hours are valid e.g. 12:30:01). Positive
hours are west of Greenwich, negative numbers are east of
Greeenwich.

One to nine letters designating the local daylight savings
time (summer time) zone. If not present, summer time is
assumed not to apply.

Number of hours past Greenwich mean time for the sum­
mer time (partial hours are valid e.g. 11:30:01). Positive
hours are west of Greenwich, negative numbers are east of
Greeenwich. If m is not given, the distance to GMT dur­
ing summer time is assumed to be one hour less than dur­
ing standard time.

The rule defining the day summer time begins. In the
southern hemisphere, the ending day will be earlier in the
year than the starting day.

The rule defining the day summer time ends.

The time of day the change to and from summer time
occurs. The default is 02:00:00 local time.

March 15, 1989 TIMEZONE-1

TIMEZONE (F) TIMEZONE (F)

The rules for defining the start and end of summer time are as fol-
lows: .

Jn
n

1 based Julian day n (l ~ n ~ 365)*
o based Julian day n (0 ~ n ~ 364)*

Wn.d
Mm.n.d

day d (0 ~ d ~ 6)** of week n (1 ~ n ~ 53)t
day d of week n (1 ~ n ~ 5)* of month m (1 ~ m ~ 12)

* Leap days (February 29) are never counted; that is, February 28
(J59) is immediately followed by March 1 (J6O) even in leap years.

** Sunday is the first day of the week (0). If d is omitted, Sunday is
assumed. Note that d is optional.

t The 5th week of the month is always the last week containing day
d, whether there are actually 4 or 5 weeks containing day d.

* The 53rd week of the year is always the last week containing day
d, whether there are actually 52 or 53 weeks containing day d.

If start and end are omitted, current U.S. law is assumed.

Examples

A simple setting for New Jersey could be

TZ='EST5EDT'

where EST is the abbreviation for the main time zone, 5 is the
difference, in hours, between GMT (Greenwich Mean Time) and the
main time zone, and EDT is the abbreviation for the alternate time
zone.

The most complex representation of the same setting, for the year
1986, is

TZ='EST5:oo:ooEDT4:00:oo; 117/2:00:00,299/2:00:00'

where EST is the abbreviation for the main time zone, 5:00:00 is the
difference, in hours, minutes, and seconds between GMT and the main
time zone, EDT is the abbreviation for the alternate time zone,
4:00:00 is the difference, in hours, minutes, and seconds between GMT
and the alternate time zone, 117 is the number of the day of the year
(Julian day) when the alternate time zone will take effect, 2:00:00 is
the number of hours, minutes, and seconds past midnight when the
alternate time zone will take effect, 299 is the number of the day of the
year when the alternate time zone will end, and 2:00:00 is the number
of hours, minutes, and seconds past midnight when the alternate time
zone will end.

March 15, 1989 TIMEZONE-2

TIMEZONE (F) TIMEZONE (F)

A southern hemisphere setting such as the Cook Islands could be

TZ='KDT9:30KSTI0:00;64/5:00,303/20:00'

This setting means that KDT is the abbreviation for the main time
zone, KST is the abbreviation for the alternate time zone, KST is 9
hours and 30 minutes later than GMT, KDT is 10 hours later than GMT,
the starting date of KDT is the 64th day at 5 AM, and the ending date
of KDT is the 303rd day at 8 PM.

Starting and ending times are relative to the alternate time zone. If
the alternate time zone start and end dates and the time are not pro­
vided, the days for the United States that year will be used and the
time will be 2 AM. If the start and end dates are provided but the time
is not provided, the time will be midnight.

Note that in most installations, TZ is set to the correct value by default
when the user logs on, via the local /etc/profile file [see profile (F)].

See Also

ctime(S), profile(F), environ(M), TZ(M), rc2(ADM)

Notes

Setting the time during the interval of change from the main time zone
to the alternate time zone or vice versa can produce unpredictable
results.

Standards Conformance

timezone is conformant with:

The X/Open Portability Guide II of January 1987.

March 15, 1989 TIMEZONE-3

TOP (F)

top, top.next
the Micnet topology files

Description

TOP (F)

These files contain the topology information for a Micnet network.
The topology information describes how the individual systems in the
network are connected, and what path a message must take from one
system to reach another. Each file contains one or more lines of text.
Each line of text defines a connection or a communication path.

The top file defines connections between systems. Each line lists the
machine names of the connected systems, the serial lines used to make
the connection, and the speed (baud rate) of transmission between the
systems. Each line has the following format:

machine 1 tty 1 a machine2 tty2a speed

machine] and machine2a are the machine names of the respective sys­
tems (as given in the systemid files). The ttys are the device names
(e.g., ttyla) of the connecting serial lines. The speed must be an
acceptable baud rate (e.g., 110,300, ... , 19200).

The top.next file contains information about how to reach a particular
system from a given system. There may be several lines for each sys­
tem in the network. Each line lists the machine name of a system, fol­
lowed by the machine name of a system connected to it, followed by
the machine names of all the systems that may be reached by going
through the second system. Such a line has the form:

machine 1 machine2 machine3 [machine4] ...

The machine names must be the names of the respective systems (as
given by the first machine name in the systemid files).

The top.next file must be present even if there are only two computers
in the network. In such a case, the file must be empty.

In the top and top.next files, any line beginning with a number sign
(#) is considered a comment, and is ignored.

Files

/usr/lib/mail/top

/usr/lib/mail/top.next

March 15, 1989 TOP-1

TOP (F)

See Also

netutil(ADM), systemid(F)

March 15, 1989

TOP (F)

TOP-2

TYPES (F)

types
primitive system data types

Syntax

#include <sys/types.h>

Description

TYPES (F)

The data types defined in the include file <sys/types.h> are used in
UNIX system code; some data of these types are accessible to user
code.

The form daddr _t is used for disk addresses except in an inode on
disk, see jilesystem (F). Times are encoded in seconds since 00:00:00
GMT, January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginning of a file.
The label_t variables are used to save the processor state while
another process is running.

See Also

filesystem(F)

Standards Conformance

types is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989· TYPES-1

UNISTD (F) UNISTD (F)

unistd
file header for symbolic constants

Syntax

#include <unistd.h>

Description

The header file <unistd.h> lists the symbolic constants and structures
not already defined or declared in some other header file.

/* Synbolic constants for the "access" routine: * /

*<3efine R OK 4
*<3efine W -OK 2
*<3efine X-OK 1
*<3efine F~K 0

:/tdefine F UIro< 0
*<3efine F - :ux:K 1

/*~st for Read peDmission */
/*~st for Write peDmission */
/*~t for eXecute peDmission */
/*~st for existence of File */

/*Unlock a previously locked region * /
/*Lock a region for exclusive use */

*<3efine F - TUX::K 2
*<3efine F=TEST 3

/*~st and lock a region for exclusive use */
/*~st a region for other processes locks */

/*Synbolic constants for the "lseek" routine: */

/* Set file pointer to "offset" * / :/tdefine SEEK SET 0
:/tdefine SEEK - aJR 1
*<3efine SEEK=END 2

/* Set file pointer to current plus "offset" * /
/* Set file pointer to EOF plus "offset" */

/*Path namas:*/

*<3efine GF PATH
*<3efine PF=PATH

" /etc/group"
" /etc/passwd"

Standards Conformance

unistd is conformant with:

/*Path nama of the group file */
/*Path nama of the passwd file * /

The X/Open Portability Guide II of January 1987.

March 13, 1990 UNISTD-1

UTMP (F) UTMP (F)

utmp, wtmp
formats of utmp and wtmp entries

Syntax

#include <sysltypes.h>
#include <utmp.h>

Description

These files, which hold user and accounting information for such com­
mands as who(C), write(C), and login(M), have the following struc­
ture as defined by <utmp.h>:

ldefine U'lMP _FILE
ldefine WIMP _FIIE
#define ut_name

, '/etc/uOrp' ,
, '/etc/wbrp' ,
ut_user

struct utIIp {
char
char
char
short
short
struct

} ;

short
short

ut user [8] ;
ut-id[4] ;
ut-line[12] ;
u(pid;
ut type;
exit status {

e temrlnation;
e=exit;

/* Definitions for ut_type */

ldefine EMPTY 0
ldefine RUN LVL 1
ldefine ~ TIME 2
#define OID TIME 3
ldefine NEW-TIME 4

/* User login name */
/* usually line * */
/* device name (console, lnxx) */
/* process id */
/* type of entry * /

/* Process temrlnation status */
/* Process exit status */
/* The exit status of a process

marked as DEl\D PROCESS. * /
/* tine entry was nade */

ldefine !NIT PROCESS 5 /* Process spawned by .. init" * /
ldefine rooIN PROCESS 6 /* A "getty" process waiting for login */
ldefine USER PROCESS 7 /* A user process * /
ldefine DEl\D -PROCESS 8
ldefine ACX:riiNrlN3 9
ldefine U'lMAXTYPE ACmUNTlN3 /* Iargest legal value of ut_type */

March 15, 1989 UTMP-1

UTMP (F) UTMP (F)

/* Special strings or fomats used in the "ut line" field when */
/* accounting for serrething' other than a process */
/* No string for the ut _line field can be rro:r:e than 11 chars + * /
/* a NULL in length * /
#define RUNDlL MSG "run-level %c"
#define BOOT MSG "system boot"
#define OTIME MSG "old time"
#define NTIMEC MSG ''new time"

Files

/usr/include/utmp.h
/etc/utmp
/etc/wtmp

See Also

getut(S), login(M), who(C), write(C)

Standards Conformance

utmp and wtmp are conformant with:

The X/Open Portability Guide II of January 1987.

March 15, 1989 UTMP-2

X.OUT (F) X.OUT (F)

x.out
format of XENIX link editor output

Syntax

#include <x.out.h>

Description

The output of the XENIX link editor, called the x.out or segmented
x.out format, is defined by the files lusr/include/x.out.h and
lusr/include/sys/relsym.h. The x.out file has the following general
layout:

1. Header.

2. Extended header.

3. File segment table (for segmented formats).

4. Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data segments,
depending on the memory model of the program. Segments within the
file begin on boundaries which are multiplies of 512 bytes as defined
by the file's pagesize.

Format

/*
* The main and extended header structures.
* For x.out segmented (XE SEG):
* 1) fields marked with (s) must contain sums of xs-psize for
* non-memory images, or xs vsize for memory images.
* 2) the contents of fieldS marked with (u) are undefined.
*/

struct xexec /* x.out header */
unsigned short x_magic; /* magic number */
unsigned short x ext; /* size of header extension */
long x text; - /* size of text segment (s) */
long x-data; /* size of initialized data (s) */
long x-bss; /* size of uninitialized data (s) */
long x-syms; /* size of symbol table (s) */
long x=reloc; /* relocation table length (s) */
long x_entry; /* entry point, machine dependent * /

March 13, 1990 X.OUT-1

X.OUT (F) X.OUT (F)

char x_cpu; /* cpu type & byte/word order */
char x relsym; /* relocation & symbol format (u) */
unsigned short x_renv; /* run-time environment */

};

struct xext
long
long
long
long
long

/* x.out heade~ extension */
xe trsize; /* size of text relocation (s) */
xe-drsize; /* size of data relocation (s) */
xe-tbase; /* text relocation base (u) */
xe=dbase; /* data relocation base (u) */
xe stksize; /* stack size (if XE FS set) */
/*-the following must be present if~ SEG */

};

long xe segpos; /* segment table position */
long xe-segsize; /* segment table size */
long xe - mitpos; /* machine dependent table position * /
long xe=mitsize; /* machine dependent table size */
char xe mittype; /* machine dependent table type */
char x~gesize; /* file pagesize, in multiples of 512 */
char xe ostype; /* operating system type */
char xe-osvers; /* operating system version */
unsigned short xe eseg; /* entry segment, machine dependent */
unsigned short xe:=sres; /* reserved */

struct xseg { /* x.out segment table entry */

} ;

unsigned short xs_type; /* segment type */
unsigned short xs attr; /* segment attributes */
unsigned short xs-seg; /* segment number */
char xs align; / * log base 2 of alignment * /
char xs-cres; /* unused */
long xs-filpos; /* file position */
long xs~size; /* physical size (in file) */
long xs_vsize; /* virtual size (in core) */
long xs rbase; /* relocation base address/offset */
unsigned short xs_noff; /* segment name string table offset */
unsigned short xs sres; / * unused * /
long xs _lres; - /* unused * /

struct xiter { /* x.out iteration record */
/* source byte count */ long xi_size;

long xi rep;
long xi=offset;

/* replication count */
/* destination offset in segment */

} ;

struct xlist { /* xlist structure for xlist(3). */
unsigned short xl type; /* symbol type * /
unsigned short xl-seg; /* file segment table index */
long xl value; /* symbol value */
char *xI_name; /* pointer to asciz name */

};

struct aexec /* a.out header */

March 13. 1990 X.OUT-2

X.OUT (F) X.OUT (F)

};

unsigned short xa_magic;
unsigned short xa text:
unsigned short xa - data:
unsigned short xa:= bss:
unsigned short xa_ syrns:
unsigned short xa _entry;
unsigned short xa unused;
unsigned short xa:= flag:

/* magic number */
/* size of text segment */
/* size of initialized data */
/* size of uninitialized data */
/* size of symbol table */
/* entry point */
/* not used */
/* relocation info stripped */

struct nlist { /* nlist structure for nlist(3). */
/* symbol name */

}:

char n name{8];
int n type:
unsigned n_value:

/* type flag */
/* value */

struet bexec { /* b.out header */

};

long xb_magic: /*. magic number */
long xb_text: /* text segment size *1
long xb_data; /* data segment size *1
long xb bss: /* bss size *1
long xb: syrns; 1* symbol table size * /
long xb trsize; 1* text relocation table size */
long xb -drsize; /* data relocation table size */
long xb:=entry; 1* entry point *1

See Also

masm(CP), Id(CP), nm(CP), strip(CP), xlist(S)

Value Added

x.out is an extension of AT&T System V provided in Altos UNIX Sys­
temV.

March 13, 1990 X.OUT-3

XBACKUP (F) XBACKUP (F)

xbackup
XENIX incremental dump tape format

Description

The xbackup and xrestore commands are used to write and read incre­
mental dump magnetic tapes.

The backup tape consists of a header record, some bit mask records, a
group of records describing file system directories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the frrst record of each description have the for­
mat described by the structure included by:

#include <dumprestor.h>

Fields in the dump restor structure are described below.

NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the number of
bit map words.

The TS_ entries are used in the c _type field to indicate what sort of
header this is. The types and their meanings are as follows:

MAGIC

March 13, 1990

Tape volume label.

A file or directory follows. The c _dinode field is a
copy of the disk inode and contains bits· telling what
sort of file this is.

A bit mask follows. This bit mask has one bit for each
inode that was backed up.

A subblock to a file (TS INODE). See the description
of c _count below. -

End of tape record.

A bit mask follows. This bit mask contains one bit for
all inodes that were empty on the file system when
backed up.

All header blocks have this number in c _magic.

XBACKUP,,-1

XBACKUP(F) XBACKUP(F)

CHECKSUM Header blocks checksum to this value.

The fields of the header structure are as follows:

c _type The type of the header.

c _date The date the backup was taken.

c ddate The date the file system was backed up.

c _volume The current volume number of the backup.

c _ tapea The current block number of this record. This is count­
ing 512 byte blocks.

c_inumber The number of the inode being backed up if this is of
type TS_INODE.

c _magic This contains the value MAGIC above, truncated as
needed.

c _checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

c _ dinode This is a copy of the inode as it appears on the file sys­
tem.

c _count The following count of characters describes the file.
A character is zero if the block associated with that
character was not present on the file system; other­
wise, the character is nonzero. If the block was not
present on the file system no block was backed up and
it is replaced as a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

c _ addr This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the tape­
mark.

The structure idates describes an entry of the file where backup his­
tory is kept.

See Also

xbackup(ADM), xrestore(ADM), filesystem(F)

March 13, 1990 XBACKUP-2

XBACKUP (F) XBACKUP (F)

Value Added

xbackup is an extension of AT&T System V provided in Altos UNIX
System V.

March 13. 1990 XBACKUP-3

XPRTAB (F) XPRTAB (F)

xprtab
system tty transparent printer map file

Description

The xprtab file is used by xprsetup(ADM) to map transparent printer
device nodes to tty device nodes. The xprtab file is normally main­
tained and updated using pcu(ADM). the Altos port configuration util­
ity. If the xprtab file is changed manually. the transparent printer tty
mapping change will not take place until xprsetup(ADM) is executed.

Each entry in the xprtab file contains three fields separated by white
space:

xprnum ttypathname termtype

Each field is described below:

xprnum This field contains a unique decimal number in the
range l·through 99. This number represents the minor
device number of the transparent printer device node.
Transparent printer· device node names range from
/dev/xpr/xprOl to /dev/xpr/xpr99.

ttypathname This field contains the absolute path name of the associ­
ated tty device node (e.g .• /dev/ttyla).

termtype

Files

/etc/xprtab

See Also

This field contains the terminal termin/o(M) name of
the tenninal connected to the tty port in field two. For
tty ports connected to modems this field should contain
the termtype dialup.

xprsetup(ADM). pcu(ADM)

Value Added

xprtab is an extension to AT&T UNIX System V provided in Altos
UNIX System V.

March 18, 1991 XPRTAB-1

Permuted Index
Commands, System Calls, Library Routines and File Formats

This permuted index is derived from the "Name" description lincs found on each
reference manual pagc. Each index line shows the title of the entry to which the line
refers, followed by the referencc manual section letter where the page is found.

To use the permuted index search the middle column for a key word or phrase. The right
hand column contains the name and section leller of the manual page that documents
the key word or phra~e. The left column contains additional useful information about
the command. Commands or routines arc also listed in the context of the index line,
followed by a colon (:). This denotes the "beginning" of the sentencc. Notice that in
many cases, the lines wrap, starting in the middle column and ending in the left column.
A slash (f) indicates that the description line is truncated.

300: 300, 300s - handle special
300, 300s - handle special
300 and 300s terminals /special
300s -handle special functions
300s terminals /functions
386 COFF files to XENIX format.

300(C)
300(C)

• 300(C)
300(C)
300(C)

• coffconv(M)
13101(S)

functions of DASI 300/
functions of DASI/ 300:

functions of DASI
of DASI 300/ 300: 300,

of DASI 300 and
coffconv: Convert

13101, Ito13: Converts betwcen
TEKTRONIX 4014 terminal

paginalor for the TEKTRONIX
the DASI 450 terminal

3-byte integers and long!
4014: paginator for the
4014terminal 4014:

• • • • • 4014(C)

450: handle special functions of
450 terminal /handle special
512-byte blocks. • • • . • •

40 14(C)

functions of the DASI
accepts a number of

/object downloader for the
between long integer and base

i286emul: emulate
x286emul: emulate XENIX

Object Modules. 86rel: Intel
asx: XENIX

Format for Object Modules.
long integer and base 64 ASCII.

5620 DMD terminal ••••••

• 450(C)
450(C)
10gin(M)
wtinit(ADM)
a641(S)
i286emul(C)
x286emul(C)
86rel(F)
asx(CP)
86re1(F)
a64I(S)
dialcodes(F)
abort(S)

Format of UUCP dial-code

64 ASOI. a64l, 164a: Converts
80286 ••••• • ••••
80286 •••••••••
8086 Relocatable Format for
8086/186/286/386 Assembler.
86rel: Intel 8086 Relocatable
a64l, 164a: Converts between
abbreviations file. dialcodes:
abort: Generates an lOT fault.

value. abs: Returns an integer absolute
abs: Retums an integer absolute value. .••••

and! /fabs, ceil, finod: Performs absolute value, ftoor, ceiling
integer. labs: Retums the absolute value of a long • •

blocks. accepts a number of 512-byte
Synchronizes shared data access. sdgetv, sdwaitv:

files. settime: Changes the access and modification dates of
utime: Sets file access and modification times.

• abs(S)
abs(S)
ftoor(S)
labs(DOS)
10gin(M)
sdgetv(S)

• settime(ADM)
utime(S)

I-I

Permuted Index

a file. touch: Updates access and modification times of . touch(C)
of a file. access: Detennines accessibility • access(S)

dosls, dosnn, dosnndir: Access DOS files. dos(C)
directory. chmod: Changes the access pennissions of a file or chmod(C)

ldfcn: common object file access routines Idfcn(F)
sulogin: access single-user mode • • • sulogin(ADM)

filesystems for optimal access time /copy UNIX dcopy(ADM)
a/ Inbwaitsem: Awaits and checks access to a resource governed by • waitsem(S)

sdenter, sdleave: Synchronizes access to a shared data segment. • sdenter(S)
sputl, sgetl: Accesses long integer data in a/ sputl(S)

endutent, utmpname: Accesses utmp file entry. getut(S)
access: Detennines accessibility of a file. access(S)

csplit: Splits files according to context. csplit(C)
Enables or disables process accounting. acct: acct(S)

accton: Thrns on accounting. • • • accton(ADM)
acctprcl, acctprc2 - process accounting acctprc: acctprc(ADM)

runacct: run daily accounting runacct(ADM)
turnacct - shell procedures for accounting /shutacct, startup, acctsh(ADM)

laccton, acctwtmp - overview of accounting and miscellaneousl acct(ADM)
of accounting and miscellaneous accounting commands 1- overview acct(ADM)

diskusg: generate disk accounting data by user ID diskusg(ADM)
acct: Format of per-process accounting file. •••••• acct(F)

Searches for and prints process accounting files. acctcom: acctcom(ADM)
acctmerg: merge or add total accounting files acctmerg(ADM)

command summary from per-process accounting records acctcms: acctcms(ADM)
wtmpfix: manipulate connect accounting records Ifwtmp, fwtmp(ADM)

imacct: Generate an IMAGEN accounting report. imacct(C)
accton, acctwtmp - overview ofl acct: acctdisk, acctdusg, • acct(ADM)

process accounting. acct: Enables or disables acct(S)
accounting file. acct: Fonnat of per-process acct(F)

per-process accounting records acctcms: command summary from • acctcms(ADM)
process accounting files. acctcom: Searches for and prints • acctcom(ADM)

acctwtmp - overview ofl acct: acctdisk, acctdusg, accton, • • acct(ADM)
overview ofl acct: acctdisk, acctdusg, accton, acctwtmp -. acct(ADM)

accounting files acctmerg: merge or add total acctmerg(ADM)
acct: acctdisk, acctdusg, accton, acctwtmp - overview ofl • acct(ADM)

accton: Thrns on accounting. accton(ADM)
process accounting acctprc: acctprcl, acctprc2 - acctprc(ADM)

accounting acctprc: acctprc 1, acctprc2 - process acctprc(ADM)
acctprc:acctprcl, acctprc2 - process accounting acctprc(ADM)

dodisk, lastlogin, monacct,1 acctsh: chargefee, ckpacct, acctsh(ADM)
acctdisk, acctdusg, accton, acctwtmp - overview ofl acct: acct(ADM)

sin, cos, tan, asin, acos, atan, atan2: Perfonnsl trig(S)
initcond: special security actions for init and getty initcond(ADM)

linterface for audit subsystem activation, tennination, auditcmd(ADM)
killall: kill all active processes killall(ADM)

Prints current SCCS file editing activity. sact: • • • • • sact(CP)
infonnation about system activity. uptime: Displays uptime(C)

report process data and system activity timex: time a command; • timex(ADM)
sag: system activity graph • • • • • • sag(ADM)

sar, sal, sa2, sadc -system activity report package sar: sar(ADM)

1-2

debugger.
vdutil:

add.vd:
device driver/ idinstall:

XENIX -style! addxusers:
kernel configuration! idaddld:

acctmerg: merge or
paramters to be adjusted when

Copies bytes from a specific
checkaddr. ~F

nl:
lineprinters. lpinit:

swapadd:
putenv: Changes or

match system!
SCCSfiles.

LP print service Ipfilter.
LP print service lpforms:

admin: Creates and
netuti1:

uuinstall:

adb: Invokes a general-purpose
add a virtual disk
add a virtual disk •••••
add. delete. update. or get
add new user accounts given a/
add or remove line disciplines from
add total accounting files
adding more memory • • •
address. movedata:
address verification program
Adds line numbers to a file.
Adds, reconfigures and maintains
Adds swap area. • • • • • •
adds value to environment.
adjusts tunable parameters to
admin: Creates and administers
administer filters used with the
administer forms used with the
administers SCCS files.
Administers the XENIX.network.
Administers UUCP control files.
administration nlsadmin:
administration utility
administration utility lpsh:
administration utility
administration utility

Permuted Index

adb(CP)
vdutil(ADM)
add. vd(ADM)
idinstall(ADM)
addxusers(ADM)
idaddld(ADM)
acctmerg(ADM)
memtune(F)
movedata(DOS)
checkaddr(ADM)
nl(C)

• Ipinit(ADM)
swapadd(S)
putenv(S)
idmemtune(ADM)
admin(CP)
Ipfilter(ADM)
Ipforms(ADM)
admin(CP)

• netutil(ADM)
• uuinstall(ADM)

nlsadmin(ADM)
atcronsh(ADM)
Ipsh(ADM)
auditsh(ADM)
backupsh(ADM)
sysadmsh(ADM)

network listener service
/Menu driven at and cron

Menu driven Ip print service
auditsh: Menu driven audit

backupsh: Menu driven backup
sysadmsh: Menu driven system

uadmin:
uadmin:

swap: swap

administration utility.
administrative control
administrative control.
administrative interface
administrator interface for

• • • • • uadmin(ADM)
uadmin(S)
swap(ADM)

authorization! authtsh:
alarm: Sets a process'

clock.
/MMDF hashed database of

mmdfalias: converts XENIX-style
brkctl:

malloc. free, realloc. calloc:
brk: Changes data segment space

file. inittab:
Generates programs for lexical

reduce: perform audit data
temporarily privs: print

link editor output.

libraries.

alarm clock. •••••
alarm: Sets a process' alarm
alias and routing infonnation.
aliases file to MMDF/ • • • •
Allocates data in a far segment.
Allocates main memory.
allocation. sbrk. • • • • •
Alternative login tenninals
analysis. lex: • • • • •
analysis and reduction
and/or restrict privileges • • • • •
a.out: Format of assembler and
ar. Archive file format.
ar: Maintains archives and • •

dc: Invokes an arbitrary preciSion calculator.
cpio: Format of cpio archive. •••••••

the names of files on a backup archive. dumpdir. Prints
otar: original tape archive command

pax: portable archive exchange
ar: Archive file format.

authtsh(ADM)
alarm(S)
alarm(S)
dbmbuild(ADM)
mmdfalias(ADM)
brkct1(S)
malloc(S)
sbrk(S)
inittab(F)
lex(CP)
reduce(ADM)
privs(C)
a.out(F)
ar(F)
ar(CP)
dc(C)
cpio(F)
dumpdir(C)
otar(C)
pax(C)
ar(F)

1-3

Permuted Index

tar: archive fonnat.
ar: Maintains archives and libraries.

tar: Archives files. • • • •
cpio: Copies file archives in and out.
ranlib: Converts archives to random libraries.

swapadd: Adds swap area. ••••••••••
output of a varargs argument list. /Prints fonnatted

varargs: variable argument list.
getopt: Gets option letter from argument vector. • • • • •

echo: Echoes arguments. ••••••••
expr: Evaluates arguments as an expression.

between long integer and base 64 ASCII. a64l, 164a: Converts
tzset: Converts date and time to ASCII. ~time, asctime,

ascii: Map of the ASCII character set.
character set. ascii: Map of the ASCII •

atof, atoi, atol: Converts ASCII to numbers. ••••
pscat: ASCII-to-PostScript filter

and! ctime, localtime, gmtime, asctime, tzset: Converts date
Performs/ sin, cos, tan, asin, acos, atan, atan2:

commands. help: Asks for help about SCCS • •
time of day. asktime: Prompts for the correct

asx: XENIX 8086/186/286/386 Assembler. • ••••••
masm: Invokes the XENIX assembler. ••••••••

output. a.out: Fonnat of assembler and link editor
program. assert: Helps verify validity of

deassigns devices. assign, deassign: Assigns and
assign, deassign: Assigns and deassigns devices.

setbuf, setvbuf: Assigns buffering to a stream.
setkey: Assigns the function keys. • •

Dose the event queue and all associated devices. ev 310se:
Assembler. asx: XENIX 8086/186/286/386
a later time. at, batch: Executes commands at

sin, cos, tan, asin, acos, atan, atan2: Perfonns/ • • • •
sin, cos, tan, asin, acos, atan, atan2: Perfonns trigonometric/

cron administration utility atcronsh: Menu driven at and •
to numbers. atof, atoi, atol: Converts ASCII

double-precision! strtod, atof: Converts a string to a • •
numbers. atof, atoi, atol: Converts ASCII to

integer. strtol, atol, atoi: Converts string to
integer. strtol, atol, atoi: Converts string to

atof, atoi, atol: Converts ASCII to numbers.
filesystem backup/ restore: AT&T UNIX incremental

QIC-24/QIC-02 tapel tapecntl: AT&T tape control for

1-4

xt: multiplexed tty driver for AT&T windowing tenninals
/Print file to printer attached to a serial console

lprint: Print to a printer attached to the user's tenninal
data segment. sdget, sdfree: Attaches and detaches a shared

tunable parameter idtune: attempts to set value of a
auditsh: Menu driven audit administration utility • •

device audit: audit subsystem interface
by the audit! auditd: read audit collection files generated

tar(F)
ar(CP)
tar(C)
cpio(C)
ranlib(CP)
swapadd(S)
vprintf(S)
varargs(S)
getopt(S)
echo(C)
expr(C)
a64I(S)
ctime(S)
ascii(M)
ascii(M)
atof(S)
pscat(C)
ctime(S)
trig(S)
help(CP)

• asktime(ADM)
asx(CP)
masm(CP)
a.out(F)
assert(S)
assign(C)
assign(C)
setbuf(S)
setkey(C)
ev_c1ose(S)
asx(CP)

• at(C)
trig(S)
trig(S)
atcronsh(ADM)
atof(S)
strtod(S)
atof(S)
strtol(S)
strtol(S)

• atof(S)
restore(ADM)
tapecntl(C)
xt(HW)
consoleprint(ADM)
Iprint(C)
sdget(S)
idtune(ADM)
auditsh(ADM)
audit(ADM)
auditd(ADM)

Permuted Index

reduction reduce: perfonn audit data analysis and reduce(ADM)
events dlvcaudit: produce audit records for subsystem dlvr_audit(ADM)

auditcmd: command interface for audit subsystem aCtivationJ auditcmd(ADM)
files generated by the audit subsystem and /collection • auditd(ADM)

audit: audit subsystem interface device • audit(ADM)
alldit subsystem activationJ auditcmd: command interface for • auditcmd(ADM)
files generated by the audit! auditd: read audit collection auditd(ADM)

ch~audit: enables and disable auditing for the next session chLaudit(ADM)
administration utility auditsh: Menu driven audit auditsh(ADM)

authcap: authentication database • authcap(ADM)
consistency of Authentication/ authck: check internal authck(ADM)

checker authckrc: trusted computing base • tcbck(ADM)
!examine system files against authentication database integrity(ADM)

authcap: authentication database ••••• authcap(ADM)
check internal consistency of Authentication database authck: • authck(ADM)

!administrator interface for authorization subsystem • • • authtsh(ADM)
for authorization subsystem authtsh: administrator interface authtsh(ADM)

the system. autoboot: Automatically boots autoboot(ADM)
schedule: Database for automated system backups • • schedule(ADM)

autoboot: Automatically boots the system. • autoboot(ADM)
resource! waitsem, nbwaitsem: Awaits and checks access to a waitsem(S)

processes. wait: Awaits completion of background • wait(C)
a pattern in a file. awk: Searches for and processes • awk(C)

wait: Awaits completion of background processes. wait(C)
Perfonns incremental file system backUp. backup: backup(ADM)

error-checking.filesystem backup fsave: Interactive. fsave(ADM)
incremental filesystem backup. IPerfonns XENIX xbackup(ADM)

backupsh: Menu driven backup administration utility backupsh(ADM)
Prints the names of files on a backup archive. dumpdir: dumpdir(C)

sddate: Prints and sets backup dates. •••••• sddate(C)
/Default backup device infonnation. archive(F)

backup: perfonns UNIX backup functions backup(ADM)
fonnat. backup: Incremental dump tape backup(F)

file system backup. backup: Perfonns incremental backup(ADM)
backup functions backup: perfonns UNIX backup(ADM)

incremental filesystem backup restore /UNIX restore(ADM)
Database for automated system backups schedule: ••• schedule(ADM)

perio,die semi-automated system backups fsphoto: Perfonns fsphoto(ADM)
administration utility backupsh: Menu driven backup backupsh(ADM)

vQutil: repair bad block on a mirrored disk. vdutil(ADM)
vdutil: display bad blocks for a mirrored disk vdutil(ADM)

fixed disk for flaws and creates bad track table. badtrk: Scans badtrk(ADM)
flaws and creates bad track/ badtrk: Scans fixed disk for badtrk(ADM)

banner: Prints large letters. banner(C)
Tenninal capability data base. tenncap: tenncap(M)

and sets the configuration data base. cmos: Displays • • • • • • cmos(HW)
and sets the configuration data base. cmos: Displays cmos(HW-86)

tenninal capability data base. "tenninfo:" tenninfo(M)
between long integer and base 64 ASCII. /164a: Converts a64I(S)

names from pathnames. basename: Removes directory basename(C)
later time. at, batch: Executes commands at a at(C)

1-5

Permuted Index

initialization! brc: brc,
fordiff.

cb:
jO,jl,jn, yO, yl, yn: Perfonns

Perfonns Bessel functions.

mail uudecode: decode a
mail uuencode: encode a

fixhdr: Changes executable
selected parts of executable

fread, fwrite: Perfonns buffered
bsearch: Perfonns a

tfind, tdelete, twalk: Manages
Creates an instance of a

Removes symbols and relocation
nnb: remove extra

shutdn: Flushes
cmchk: Reports hard disk

accepts a number of 512-byte
df: Report number of free disk

Calculates checksum and counts
fdswap: Swaps default

boot: XENIX

autoboot: Automatically
initialization procedures brc:

initialization procedures
allocation. sbrk,

segment.
search.

a character to the console
output. fread, fwrite: Perfonns

stdio: Perfonns standard
setbuf, setvbuf: Assigns

flushall: Flushes all output
idbuild:

kernel. link_unix:
mknod:

database of alias and! dbmbuild:
inp: Returns a
outp: Writes a
swab: Swaps

1-6

movedata: Copies
cc: Invokes the

cflow: Generates
cpp:The

lint: Checks
cxref: Generates

cb: Beauti fies

be: Invokes a calculator.
beheckrc - system
bdiff. Compares files too large
bdos: Invokes a DOS system call.
Beautifies C programs.
Bessel functions. bessel,
bessel, jO,jl,jn, yO, yl, yn:
bfs: Scans big files. • •
binary file for transmission via
binary file for transmission via
binary file headers.
binary files. hdr: Displays
binary input and output. •
binary search. • •
binary search trees. tsearch,
binary semaphore. creatsem:
bits. strip: ~ •
blank lines from a file
block I/O and halts the CPU.
block size. • •
blocks.
blocks.
blocks in a file. sum:
boot floppy drive.
boot program. •
boot: XENIX boot program.
boots the system.
brc, beheckrc - system
brc: brc, beheckrc - system
brk: Changes data segment space
brkctl: Allocates data in a far
bsearch: Perfonns a binary
buffer. ungetch: Returns
buffered binary input and
buffered input and output.
buffering to a stream.
buffers.
build new UNIX system kernel
builds a new UNIX system
Builds special files.
builds the MMDF hashed
byte. • •
byte to an output port.
bytes. •
bytes from a specific address.
C compiler. • ••
C flow graph. •• ••
C language preprocessor.
C language usage and syntax.
C program cross-reference.
Cprograms.

be(C)
brc(ADM)
bdifI(C)
bdos(DOS)
cb(CP)
bessel(S)
bessel(S)
bfs(C)
uuencode(C)
uuencode(C)
fixhdr(C)
hdr(CP)
fread(S)
bsearch(S)
tsearch(S)
creatsem(S)
strip(CP)
nnb(M)
shutdn(S)
cmchk(C)
10gin(M)
df(C)
surn(C)
fdswap(ADM)
boot(HW)
boot(HW)
autoboot(ADM)
brc(ADM)
brc(ADM)
sbrk(S)
brkctl(S)
bsearch(S)
ungetch(DOS)
fread(S)
stdio(S)
setbuf(S)
flushall(DOS)
idbuild(ADM)
link_unix(ADM)
mknod(C)
dbmbuild(ADM)
inp(DOS)
outp(DOS)
swab(S)
movedata(DOS)
cc(CP)
cflow(CP)
cpp(CP)
lint(CP)
cxref(CP)
cb(CP)

xref: Cross-references C programs.
xstr: Extracts strings from C programs.
an error message file from C source. mkstr: Creates

distance. hypot, cabs: Detennines Euclidean
cal: Prints a calendar. •

values stnncfg: calculate STREAMS parameter
blocks in a file. sum: Calculates checksum and counts

Invokes an arbitrary precision calculator. dc:
be: Invokes a calculator. ••• • • •

cal: Prints a calendar. • •
service.

Data returned by stat system
bdos: Invokes a DOS system

intdos: Invokes a DOS system
intdosx: .lnvokes a DOS system

exit: Tenninates the
malloc, free, realloc,

cu:
requests to lineprinter. lp,

lineprinter. lp
tenncap: Tenninal

"tenninfo:
description into a tenninfo/

pnch: file fonnat for
text editor (variant of ex for

files.

commentary of an SCCS delta.
hs: High Sierra ISO-9660
hs: High Sierra/lSO-9600

value, floor,! Hoor, fabs,
/Perfonns absolute value, Hoor,

delta: Makes a delta
allocation. sbrk, brk:

headers. fixhdr:
chgrp:

chmod:
environment. putenv:

chown:
nice:

command. chroot:
modification dates of/ settime:

of a file or directory. chmod:
an secs delta. cdc:

file. newfonn:
system fsname: Prints or

file. chown:

calendar: Invokes a reminder
call. stat: • •
call. •
call.
call.
calling process.
calloc: Allocates main memory.
Calls another XENIX system.
cancel: Send/cancel
cancel: -Send/cancel requests to
capability data base.
tenninal" capability data base.
captoinfo: convert a tenncap
card images
casual users) edit:
cat: Concatenates and displays
cb: Beauti fies C programs.
cc: Invokes the C compiler.
cd: Changes working directory.
cdc: Changes the delta
CD-ROM filesystem
CD-ROM filesystem
ceil, fmod: Perfonns absolute
ceiling and remainder functions.
cHow: Generates C How graph.
cgets: Gets a string.
(change) to an sces file.
Changes data segment space
Changes executable binary file
Changes group 10.
Changes mode of a file.
Changes or adds value to
Changes owner 10.
Changes priority of a process.
Changes root directory for •
Changes the access and
Changes the access pennissions
Changes the delta commentary of
Changes the fonnat of a text
changes the name of a file
Changes the owner and group of a

Permuted Index

xref(CP)
xstr(CP)
mkstr(CP)
hypot(S)
cal(C)
strmcfg(ADM)
sum(C)
dc(C)
be(C)
cal(C)
calendar(C)
stat(F)
bdos(DOS)
intdos(OOS)
intdosx(OOS)
exit(OOS)
malloc(S)
cu(C)
1p(C)
1p(C)
tenncap(M)

captoinfo(ADM)
pnch(F)
edit(C)
cat(C)
cb(CP)
cc(CP)
cd(C)
cdc(CP)
hs(F)
hs(F)
Hoor(S)
Hoor(S)
cHow(CP)
cgets(DOS)
delta(CP)
sbrk(S)
fixhdr(C)
chgrp(C)
chmod(S)
putenv(S)
chown(C)
nice(S)
chroot(ADM)
settime(ADM)
chmod(C)
cdc(CP)
newfonn(C)
fsname(ADM)
chown(S)

1-7

Permuted Index

chroot:
chsize:
chdir:

cd:
list: list processor

process NIC database into
xtproto: multiplexed

getch: Gets a
getche: Gets and echoes a

stream. ungetc: Pushes
isatty: Checks for a

ioctl: Controls
fgetc, fgetchar: Gets a

getc, getchar, fgetc, getw: Gets
/putchar, fputc, putw: Puts a

ascii:.Map of the ASOI
trchan: Translate

fpute, fputchar: Write a
putch: Writes a

ungetch: Returns a
Displays/changes hard disk

ltoa: Converts long integers to
toascii: Oassifies or converts

tolower, toascii: Translates
tr: Translates

Changes the root directory.
Changes the size of a file.
Changes the working directory.
Changes working directory.
channelforMMDF
channeVdomain tables nictable:
channels protocol used by/
character. • •••••
character. • •••••
character back into input
character device.
character devices.
character from a stream.
character or word from a stream.
character or word on a stream.
character set.
character sets ••••••
character to a stream. ••
character to the console.
character to the console bufler.
characteristics. dparam: • •
characters. •••••••
characters. /tolower, toupper,
characters. conv, toupper,
characters.

ultoa: Converts numbers to characters.

chroot(S)
chsize(S)
chdir(S)
cd(C)
list(ADM)

• nictable(ADM)
xtproto(M)
getch(DOS)
getche(DOS)
ungetc(S)
isatty(DOS)
ioct1(S)
fgetc(DOS)

• getc(S)
putc(S)
ascii(M)
trchan(M)
fputc(DOS)
putch(DOS)
ungetch(DOS)
dparam(ADM)
ltoa(DOS)
ctype(S)
conv(S)
tr(C)
ultoa(DOS)

wc: Counts lines, words and
strrev: Reverses the order of

charater. strset: Sets all
strlwr: Converts uppercase
strupr: Converts lowercase

characters in a string to one

characters. ••••• • •••• wc(C)

lastlogin, monacct,1 acctsh:
directory.

non-obviousness. goodpw:
fstab: File system mount and

Authentication database authck:
pennissions file uucheck:

tcbck: trusted computing base
processed by fsck.

has been submitted but not!
report generator

waitsem, nbwaitsem: Awaits and
fsck:

syntax. lint:
isatty:

submitted but not! checkmail:
grpcheck:
pwcheck:

keystroke. kbhit:
to be read. rdchk:

1-8

characters in a string.
characters in a string to one
characters to lowercase.
characters to uppercase. ••
charater. strset: Sets all ••
chargefee, ckpacct, dodisk,
chdir: Changes the working
Check a password for • • •
check commands.
check internal consistency of
check the uucp directories and
checker •••••••••
checklist: List of file systems •
checkmai1: checks for mail which
checkque: MMDF queue status
checks access to a resourcel
Checks and repairs file systems.
Checks C language usage and
Checks for a character device.
checks for mail which has been
Checks group file.
Checks password file. • • •
Checks the console for a
Checks to see if there is data

strrev(DOS)
strset(DOS)
strlwr(DOS)
strupr(DOS)
strset(DOS)
acctsh(ADM)
chdir(S)
goodpw(ADM)
fstab(F)
authck(ADM)

. uucheck(ADM)
tcbck(ADM)
checklist(F)

• checkmai1(C)
checkque(ADM)
waitsem(S)

• fsck(ADM)
lint(CP)
isatty(DOS)
checkmai1(C)
grpcheck(C)
pwcheck(C)
kbhit(DOS)
rdchk(S)

file. sum: Calculates checksum and counts blocks in a
auditing for the next session ch!Laudit: enables and disable

chgrp: Changes group ID.
times: Gets process and child process times.

terminate. wait: Waits for a child process to stop or
chrnod: Changes mode of a file.

permissions of a file or! chrnod: Changes the access
chown: Changes owner ID.

group of a file. chown: Changes the owner and
for command. chroot: Changes root directory

directory. chroot: Changes the root
table chrtbl: create a ctype locale
file. chsize: Changes the size of a

monacetJ acctsh: ehargefee. ckpacct, dodisk, lastlogin,
tolower, toupper, toascii: Classi fies or converts! !isascii,

in directories specified cleantmp: remove temporary files
uuclean: uucp spool directory clean-up •••••••••

STREAMS error logger cleanup program strClean: • •
clear: Clears a terminal screen.

stream status. ferror. feof, clearerr, fileno: Detennines
clear: Clears a tenninal screen.

clri: Clears inode. ••••••
a shell command interpreter with C-like syntax. csh: Invokes

alarm: Sets a process' alarm clock. •••••
gets string from real-time clock getclk:

system real-:-time (time of day) clock. clock: The
system real-time (time of day) clock. setclock: Sets the

rtc: real time clock interface
clock: Reports CPU time used.

(time of day) clock. clock: The system real-time
operations. closedir: Perfonns directory

close: Closes a file descriptor.
fclose. ftlush: Closes or flushes a stream. • •

shuts down the! haltsys, reboot: Closes out the file systems and
fclose, fcloseall: Closes streams. ••••••

clri: Clears inode. •••••
size. cmchk: Reports hard disk block

configuration data base. cmos: Displays and sets the
cmp: Compares two files.

coffconv: Convert,386 COFF files to XENIX format.
col: Filters reverse line feeds.

coltbl: create a collation locale table
the audit! auditd: read audit collection files generated by

setcolor. Set screen color. ••••.••••
screen: tty [Ol-n], color, monochrome, ega,.

locale table coltbl: create a collation • •
Ie: Lists directory contents in columns. • • • • • • • •

comb: Combines SCCS deltas.
comb: Combines SCCS deltas. • • •

common to two sorted files. comm: Selects or rejects lines
Changes root directory for command. chroot: ••••

Permuted Index

• sum(C)
eh!Laudit(ADM)
chgrp(C)
times(S)
waiteS)
chrnod(S)
chrnod(C)
chown(C)
chown(S)
chroot(ADM)
chroot(S)
chrtbl(M)
chsize(S)
acctsh(ADM)
ctype(S)

• cleantmp(ADM)
uuclean(ADM)
strclean(ADM)
clear(C)
ferror(S)
clear(C)
clri(ADM)
csh(C)
alarm(S)
getclk(M)
clock(F)
setclock(ADM)
rtc(HW)
clock(S)
clock(F)
directory(S)
elose(S)
felose(S)
haltsys(ADM)
felose(DOS)
clri(ADM)
cmchk(C)
cmos(HW)
emp(C)
coffconv(M)
col(C)
coltbl(M)
auditd(ADM)
setcolor(C)
sereen(HW)
coltbl(M)
le(C)
comb(CP)
comb(CP)
comm(C)
ehroot(ADM)

1-9

Permuted Index

system: Executes a shell command. • • system(S)
time: Times a command. • • time(CP)

language ksh: standard command and programming ksh(C)
language rksh: restricted command and programming ksh(C)

nice: Runs a command at a different priority. nice(C)
segread: command description. segread(DOS)

env: Sets environment for command execution. env(C)
quits. nohup: Runs a command immune to hangups and nohup(C)

subsystem activationJ auditcmd: command interface for audit auditcmd(ADM)
rsh: Invokes a restricted shell (command interpreter). • rsh(C)

sh: Invokes the shell command interpreter. • sh(C)
syntax. csh: Invokes a shell command interpreter with C-like csh(C)

uux: Executes command on remote XENIX. uux(C)
getopt: Parses command options. • getopt(C)

getopts, getoptcvt - parse command options getopts: getopts(C)
system activity timex: time a command; report process data and timex(ADM)
accounting records acctcms: command summary from per-process acctcms(ADM)
File system mount and check commands. fstab: fstab(F)
XENIX Development System commands. intro: Introduces Intro(CP)
and miscellaneous accounting commands loverview of accounting acct(ADM)

help: Asks for help about SCCS commands. help(CP)
intro: Introduces XENIX commands.. Intro(C)

xargs: Constructs and executes commands. xargs(C)
at, batch: Executes commands at a later time. at(C)

cron: Executes commands at specified times. cron(C)
micnet: The Micnet default commands file. • micnet(F)
system. remote: Executes commands on a remote XENIX remote(C)

environment rc2: run commands performed for multiuser rc2(ADM)
operating system rcO: run commands performed to stop the rcO(ADM)

cdc: Changes the delta commentary of an SCCS delta. cdc(CP)
line number entries in a common object file linenum: linenum(F)

relocation information for a common object file reloc: reloc(F)
scnhdr: section header for a common object file scnhdr(F)

routines ldfcn: common object file access Idfcn(F)
format syms: common object file symbol table syms(F)

filehdr: file header for common object files filehdr(F)
comm: Selects or rejects lines common to two sorted files. comm(C)

Ithe status of inter-process communication facilities. ipcs(ADM)
ftok: Standard interprocess communication package. stdipc(S)

cdrom: compact disk interface cdrom(HW)
descriptions infocmp: compare or print out terminfo infocmp(ADM)

dircmp: Compares directories. • dircmp(C)
sdiff. Compares files side-by-side. sdifltC)

diff. bdiff. Compares files too large for bdifltC)
diskcp, diskcmp: Copies or compares floppy disks. diskcp(C)

diff3: Compares three files. diff3(C)
cmp: Compares two files. cmp(C)
diff. Compares two text files. difltC)

file. sccsdiff. Compares two versions of an SCCS sccsdifltCP)
regexp: Regular expression compile and match routines. regexp(S)

"terminfo: furmat of' compiled terminfo file.

1-10

cc: Invokes the C
tic: Terminfo

yacc: Invokes a
expressions. regex, regcmp:

regcmp:
erf, erfc: Error function and

processes. wait: Awaits
subsystem: security subsystem

storage.
compress:

pack. peat, unpack:
scsi: Small

tcbck: trusted
cat:

system.
forI strmtune: STREAMS

update. or get device driver
cmos: Displays and sets the
master EISA system kernel

compiler .•••••
compiler .•••••
compiler-compiler.
Compiles and executes regular
Compiles regular expressions.
complementary error function.
completion of background ••
component description
compress: Compress data for
Compress data for storage. •
Compresses and expands files.
computer systems interface.
computing base checker
Concatenates and displays files.
conditions. test: Tests • • • •
config: Configures a XENIX
configuration interface
configuration data /add, delete,
configuration data base.
configuration file
configuration files
configuration information
configuration manager for

Permuted Index

cc(CP)
tic(C)
yacc(CP)
regex(S)
regcmp(CP)
erf(S)
wait(C)
subsystem(M)
compress(C)
compress(C)
pack(C)
scsi(HW)
tcbck(ADM)
cat(C)
test(C)
config(ADM)
strmtune(ADM)
idinstall(ADM)
cmos(HW)
meisa(F)
idaddld(ADM)
hwconfig(ADM)

/line disciplines from kernel
hwconfig: Read the

boards /UNIX kernel
strmcfg: STREAMS

upsconfig: UPS shutdown
pcu:

boards uconfig:
/mapscrn, mapstr, convkey:

mapchan:
config:

spooling system. Ipadmin:
/fwtmp. wtmpfix: manipulate

an out-going terminal line
database authck: check internal

cputs: Puts a string to the
putch: Writes a character to the

to printer attached to a serial
Returns a character to the

console: System
kbhit: Checks the

configuration utility ••••••
uconfig(ADM)
strmcfg(ADM)
upsconfig(ADM) configuration utility

configure ports
configure kernel for new
Configure monitor screen/
Configure tty device mapping.
Configures a XENIX system.
Configures the lineprinter
connect accounting records
connection. dial: Establishes
consistency of Authentication
console. • ••••
console. • •••••
console /print file
console buffer. ungetch:
console device.
console for a keystroke.

cscanf: Converts and formats console input. • • • • •
messages: Description of system console messages.

console: System console device.
printer attached to a seriaJI oonsoleprint: Print file to

for implementation-specific constants limits: file header
math: math functions and constants • • • • • •

unistd: file header for symbolic constants • • • • • •
mkfs: Constructs a file system.

commands. xargs: Constructs and executes
debugging on uutty: tty to contact remote system with

idmkinit: read files containing specifications

pcu(ADM)
uconfig(ADM)
mapkey(M)
mapchan(M)
config(ADM)
Ipadmin(ADM)
fwtmP(ADM)
dial(S)
authck(ADM)
cputs(DOS)
putch(DOS)
consoleprint(ADM)
ungetch(DOS)
console(M)
kbhit(DOS)
cscanf(DOS)
messages(M)

• console(M)
consoleprint(ADM)
limits(F)
math(M)
unistd(F)
mkfs(ADM)
xargs(C)
uutty(ADM)
idmkinit(ADM)

1-11

Permuted Index

ev _block: Wait until the queue contains an event . ev _block(S)
lc: Lists directory contents in columns. lc(C)

Is: Gives infonnation about contents of directories. Is(C)
1: Lists infonnation about contents of directory. I(C)

Splits files according to context. csplit: • • • • • csplit(C)
uadmin: administrative control uadmin(ADM)
uadmin: administrative control. uadmin(S)

uucp status inquiry and job control. uustat: uustat(C)
vc: version control • • • • • vc(C)

UUCP control files. uuinsta11: Administers uuinsta11(ADM)
device tapecnt1: AT&T tape control forQIC-24/QIC-02 tape tapecnt1(C)

init, inir: Process control initialization. init(M)
jagent: host control of windowing tenninal jagent(M)

msgctl: Provides message control operations. ••••• msgct1(S)
fcnt1: file control options •••••• fcnt1(M)

card_info: system tty controller card infonnation file canCinfo
ioct1: Controls character devices. ioct1(S)
fcnt1: Controls open files. • • • • • • • fcnt1(S)

semct1: Controls semaphore operations. semct1(S)
operations. shmct1: Controls shared memory shmct1(S)

Translates characters. conv, toupper, tolower, toascii: conv(S)
fcvt, gcvt: Perfonns output conversions. ecvt, ••••• ecvt(S)

fonnat. coffconv: Convert 386 COFF files to XENIX coffconv(M)
into a tenninfol captoinfo: convert a tenncap description captoinfo(ADM)

double-precision! strtod, atof: Converts a string to a • • • • strtod(S)
UUCP routing! uulist: converts a XENIX-style • • • uulist(ADM)
routing file tol mnlist: converts a XENIX-style Micnet mnlist(ADM)

dd: Converts and copies a file. • • dd(C)
input. cscanf: Converts and fonnats console cscanf(DOS)

scanf, fscanf, sscanf: Converts and fonnats input. scanf(S)
libraries. ranlib: Converts archives to random ranlib(CP)

atof, atoi, atol: Converts ASOI to numbers. atof(S)
and long! 13tol, ltol3: Converts between 3-byte integers • l3tol(S)

and base 64 ASOI. a64l, l64a: Converts between long integer a64l(S)
toupper, toascii: Classifies or converts characters. Itolower, ctype(S)

Igmtime, asctime, tzset: Converts date and time to ASCII. • ctime(S)
characters. ltoa: Converts long integers to ltoa(OOS)

uppercase. strupr: Converts lowercase characters to • strupr(DOS)
ultoa: Converts numbers to characters. • ultoa(DOS)

itoa: Converts numbers to integers. itoa(DOS)
standard FORTRAN. ratfor: Converts Rational FORTRAN into ratfor(CP)

strtol, atol, atoi: Converts string to integer. strtol(S)
units: Converts units. •••••••• units(C)

lowercase. strlwr: Converts uppercase characters to • strlwr(DOS)
file to MMDFI mmdfalias: converts XENIX-style aliases mmdfalias(ADM)

screen! mapkey, mapscm, mapstr, convkey: Configure monitor mapkey(M)
dd: Converts and copies a file. •••••• dd(C)

address. movedata: Copies bytes from a specific movedata(DOS)
cpio: Copies file archives in and out. cpio(C)

cp: Copies files. •••••• cp(C)
systems. rcp: Copies files across XENIX • • • • rcp(C)

1-12

copy:
diskcp, diskcmp:

Public XENIX -to-XENIX file

volcopy: make literal
for optimal access time dcopy:

core: Fonnat of
asktime: Prompts for the

atan2: Perfonns/ sin,
functions. sinh,

sum: Calculates checksum and
characters. wc:

cpio: Fonnat of
and out.

preprocessor.

Flushes block 1/0 and halts the
clock: Reports

console.

Permuted Index

Copies groups of files. ••••• copy(C)
Copies or compares floppy disks. • diskcp(C)
copy. uuto, uupick: uuto(C)
copy: Copies groups of files. copy(C)
copy of UNIX file system volcopy(ADM)
copy UNIX filesystems dcopy(ADM)
core: Fonnat of core image file. core(F)
core image file. core(F)
correct time of day. •••••. asktime(ADM)
cos,tan,asin,acos,atan, trig(S)
cosh, tanh: Perfonns hyperbolic sinh(S)
counts blocks in a file. sum(C)
Counts lines, words and wc(C)
cp: Copies files. CP(C)
cpio archive. ••••• cpio(F)
cpio: Copies file archives in cpio(C)
cpio: Fonnat of cpio archive. cpio(F)
cpp: The C language cpp(CP)
cprintf: Fonnats output. cprintf(DOS)
CPU. shutdn: • • . . • shutdn(S)
CPU time used. clock(S)
cputs: Puts a string to the cputs(DOS)
crash: examine system images crash(ADM)

rewrites an existing one. creat: Creates a new file or • • creat(S)
vdutil: create a virtual disk vdutil(ADM)
coltbl: create a collation locale table coltbl(M)
chrtbl: create a ctype locale table chrtbl(M)
curtbl: create a currency locale table curtbl(M)

mestbl: create a messages locale file mestbl(M)
numtbl: Create a numeric locale table. numtbl(M)

file. tmpnam, tempnam: Creates a name for a temporary tmpnam(S)
mkdir: Creates a new directory. • • • mkdir(DOS)

an existing one. creat: Creates a new file or rewrites creat(S)
fork: Creates a new process. fork(S)

spawnl, spawnvp: Creates a new process. spawn(DOS)
ctags: Creates a tags file. ctags(CP)

tee: . Creates a tee in a pipe. tee(C)
tmpfile: Creates a temporary file. tmpfile(S)

from C source. mkstr: Creates an error message file mkstr(CP)
profile. profil: Creates an execution time profil(S)

semaphore. creatsem: Creates an instance of a binary creatsem(S)
pipe: Creates an inteIprocess pipe.. pipe(S)

files. admin: Creates and administers SCCS admin(CP)
/Scans fixed disk for flaws and creates bad track table. badtrk(ADM)

umask: Sets and gets file creation mask. •••••• umask(S)
a binary semaphore. creatsem: Creates an instance of • creatsem(S)

listing. cref: Makes a cross-reference cref(CP)
atcronsh: Menu driven at and cron administration utility atcronsh(ADM)

specified times. cron: Executes commands at cron(C)
"crontab: user" "crontab

"crontab: user • • • • • • •
file"
crontab

1-13

Permuted Index

intro: Introduction to DOS cross development functions.
dosld: XENIX to MS-DOS cross linker. •••••

cxref: Generates C program cross-reference. ••••••
cref: Makes a cross-reference listing.

xref: Cross-references C programs.
crypt: encode/decode • • • •

console input. cscanf: Converts and formats
interpreter with C-like syntax. csh: Invokes a shell command

to context. csplit: Splits files according
terminal ct: spawn getty to a remote

ctags: Creates a tags file.
for a terminal. ctermid: Generates a filename

asctime, tzset: Converts date/ ctime, localtime, gmtime,
islower, isdigit, isxdigitJ ctype, isalpha, isupper,

chrtbl: create a ctype locale table •••••
cu: Calls another XENIX system.

curtbl: create a currency locale table
ev Jetemask: Return the current event mask.

rename login entry to show current layer relogin:
pointer. tell: Gets the current position of the file

activity. sact: Prints current SCCS file editing
the slot in the utmp file of the current user. ttyslot: Finds
getcwd: Get the patbname of current worldng directory.

uname: Gets name of current XENIX system.
uname: Prints the name of the current XENIX system.
!Returns the number of events currently in the queue.

ev _flush: Discard all events currently in the queue.
/displays the list of vectors currently specified in the/

/the list of major device numbers currently specified in the/
cursor functions. curses: Performs screen and

sccdump: format of curses screen image file. • • •
curses: Performs screen and cursor functions. • • • • •

table curtbl: create a currency locale
spline: Interpolates smooth curve. ••••••••••

the user. cuserid: Gets the login name of
each line of a file. cut: Cuts out selected fields of
line of a file. cut: Cuts out selected fields of each

cross-reference. cxref: Generates C program
STREAMS error logger daemon strerr:

daemon.mn: Micnet mailer daemon. ••••••••
vddaemon: virtual disk daemon ••••••••

daemon.mn: Micnet mailer daemon.
runacct: run daily accounting • • • • •

- handle special functions of DASI 300 and 300s/ /300s • •
handle special functions of the DASI 450 terminal 450: • • •
get device driver configuration data /add, delete, update, or

prof: Displays profile data. •••••• ••
sdwaitv: Synchronizes shared data access. sdgetv,

reduce: perform audit data analysis and reduction
time a command; report process data and system activity timex:

and sets the configuration data base. cmos: Displays • •

1-14

intro(DOS)
dosld(CP)
cxref(CP)
cref(CP)
xref(CP)
crypt(C)
cscanf(DOS)
csh(C)
csplit(C)
ct(C)
ctags(CP)
ctermid(S)
ctime(S)
ctype(S)
chrtbl(M)

• cu(C)
curtbl(M)
ev Jlemsk(S)
relogin(ADM)
tell(DOS)
sact(CP)
ttyslot(S)
getcwd(S)
uname(S)
uname(C)
ev _count(S)
ev _flush(S)
vectorsinuse(ADM)
majorsinuse(ADM)
curses(S)
sccdump(F)
curses(S)
curtbl(M)
spline(CP)
cuserid(S)
cut(C)
cut(C)
cxref(CP)
strerr(ADM)
daemon.mn(M)
vddaemon(ADM)
daemon.mn(M)
runacct(ADM)
300(C)
450(C)
idinsta11(ADM)
prof(CP)
sdgetv(S)
reduce(ADM)
timex(ADM)
cmos(HW)

tenncap: Terminal capability
"terminfo:

generate disk accounting
compress: Compress

brkct1: Allocates
/sget1: Accesses long integer
plock: Lock process. text. or

execseg: makes a
call. stat:

Attaches and detaches a shared
Synchronizes access to a shared

sbrk.brk:Changes
rdchk: Checks to see if there is

types: Primitive system
autbcap: authentication

consistency of Authentication
files against authentication

"terminfo:
tput: Queries the terminfo

isverify: verifies ISAM
backups schedule:

firstkey. nextkey: Performs
tables nictable: process NIC

!builds the MMDF hashed
date: Prints and sets the

time. ftime: Gets time and
/gmtime, asctime. tzset: Converts

sddate: Prints and sets backup
the access and modification

strftime: format
Prompts for the correct time of
The system real-time (time of
the system real-time (time of

MMDF hashed database ofl
firstkey. nextkey: Performsl

precision calculator.
filesystems for optimal access!

devices. assign,
assign, deassign: Assigns and

adb: Invokes a general-purpose
fsdb: File system

sdb: Invokes symbolic
to contact remote system with

transmission via mail uudecode:
fdswap: Swaps

micnet: The Micnet
information directory.

defopen, defread: Reads
directory. default:

data base.. ••
terminal capability"
data by user ID diskusg:
data for storage. •
data in a far segment. •
data in a machine-independent.
data in memory. •••
data region executable.
Data returned by stat system
data segment. sdget, sdfree:
data segment. sdenter. sdleave:
data segment space allocation.
data to be read. ••••
data types. ••• •
database •
database authck: check internal
database I examine system
terminal description"
database.
database entries
Database for automated system
database functions. Idelete.
database into channeVdomain
database of alias and routing!
date.. •
date. • • •
date and time to ASCII.
date: Prints and sets the date.
dates. •
dates of files. IChanges
date/time string •
day. asktime: • •
day) clock. clock:
day) clock. setclock: Sets
dbmbuild: builds the
dbminit, fetch, store, delete,
dc: Invokes an arbitrary
dcopy: copy UNIX
dd: Converts and copies a file.
deassign: Assigns and deassigns
deassigns devices.
debugger.
debugger.
debugger.
debugging on uutry: try
decode a binary file for
default boot floppy drive.
default commands file.
default: Default program
default entries.
Default program information

Permuted Index

termcap(M)
data base.
diskusg(ADM)
compress(C)
brkctl(S)
sputl(S)
plock(S)
execseg(S)
stat(F)
sdget(S)
sdenter(S)
sbrk(S)
rdcbk(S)
types(F)
authcap(ADM)
authck(ADM)
integrity(ADM)
database.
tput(C)
isverify(M)
schedule(ADM)
dbm(S)
nictable(ADM)
dbmbuild(ADM)
date(C)
time(S)
ctime(S)
date(C)
sddate(C)
settime(ADM)
strftime(S)
asktime(ADM)
clock(F)
setclock(ADM)
dbmbuild(ADM)
dbm(S)
dc(C)
dcopy(ADM)
dd(C)
assign(C)
assign(C)
adb(CP)
fsdb(ADM)
sdb(CP)
uutry(ADM)
uuencode(C)
fdswap(ADM)
micnet(F)
default(F)
defopen(S)
default(F)

1-15

Permuted Index

timezone: set
entries.

defopen,
de1.vd:

Perfonnsl dbminit, fetch, store,
driverl idinstall: add,

nndir:
process

which has been submitted but not
patbname. dimame:

file. tail:
maildelivery: user mail

deliver: MMDF mail
the delta commentary of an SCCS

delta: Makes a
delta. cdc: Changes the

nndel: Removes a
an SCCS file.

comb: Combines SCCS
tenninal. mesg: Pennits or
description into a tenninfo

security subsystem component
segread: command

"tenninfo:
captoinfo: convert a tenncap

Machine:
messages. messages:

compare or print out tenninfo
close: Closes a file

dup2: Duplicates an open file
sdget, sdfree: Attaches and

fstyp:
file. access:

dtype:
eof:

hypot, cabs:
file:

ferror, feof, clearerr, fileno:
whodo:

audit: audit subsystem interface
console: System console

control for QIC-24/QIC-02 tape
error: Kernel error output

font and video mode for a video
isatty: Checks for a character

systty: System maintenance
/add, delete, update, or get

/Default backup
scsinfo: display current SCSI

lp, lpO, lp 1, Ip2: Line printer
mapchan: Configure tty

1-16

default system time zone
defopen, defread: Reads default
defread: Reads default entries.
delete a virtual disk
delete, firstkey, nextkey:
delete, update, or get device
Deletes a directory.
deliver: MMDF mail delivery
delivered /checks for mail
Delivers directory part of
Delivers the last part of a
delivery specification file
delivery process • • • • • •
delta. cdc: Changes
delta (change) to an SCCS file.
delta commentary of an SCCS
delta from an SCCS file; • • •
delta: Makes a delta (change) to
deltas. • • • • • • • •••
denies messages sent to a
description /convert a tenncap
description subsystem:
description. • • • • • • • •
tenninal" deSCription database.
description into a tenninfol
Description of host machine.
Description of system console
descriptions infocmp:
descriptor. •••••••
descriptor. dup, ••••••
detaches a shared data segment.
detennine file system identi fier
Detennines accessibility of a
Detennines disk type. . • • .
Detennines end-of-file.
Detennines Euclidean distance.
Detennines file type.
Detennines stream status.
Detennines who is doing what.
device ••••••••••
device. • ••••.••••
device tapecnt1: AT&T tape
device. • •••••
device. vidi: Sets the

timezone(F)
defopen(S)
defopen(S)
del.vd(ADM)
dbm(S)
idinstall(ADM)
nndir(DOS)
deliver(ADM)
checkmai1(C)
dimame(C)
tail(C)
maildelivery(F)
deliver(ADM)
cdc(CP)
delta(cp)
cdc(CP)
nndel(CP)

• delta(CP)
comb(CP)
mesg(C)
captoinfo(ADM)
subsystem(M)
segread(DOS)

captoinfo(ADM)
machine(HW)
messages(M)
infocmp(ADM)
c1ose(S)
duP(S)

. sdget(S)
fstyp(ADM)
access(S)
dlype(C)
eof(DOS)
hypot(S)
file(C)
ferror(S)
whodo(C)
audit(ADM)
console(M)
tapecnt1(C)
error(M)

device. • ••••••••••
vidi(C)
isatty(DOS)
systty(M) device. • •••••••

device driver configuration data
device infonnation.
device infonnation
device interfaces. •••••
device mapping. • •

idinstall(ADM)
archive(F)
scsinfo(ADM)
Ip(HW)
mapchan(M)

Permuted Index

mapchan: Format of tty device mapping files.
devnm: Identifies device name.

mapchan(F)
devnm(C)
hdutil(ADM)
scsinfo(ADM)

Jdisplaying and removing hard disk device names •••••
current SCSI hard disks /display device names (letters) for

/displays the list of major device numbers currently/ majorsinuse(ADM)
disks /display major and minor device numbers for current SCSI

deassign: Assigns and deassigns devices. assign, •••••
event queue and all associated devices. ev 3lose: Oose the • • •

ioctl: Controls character devices. •••••••••
ev ~etdev: Gets a list of devices feeding an event queue.

devices: Format of UUCP devices file. • • • • • • • • • •
ev ~indev: include/exclude devices for event input. •••••

file. devices: Format of UUCP devices

blocks.

terminal line connection.
dialcodes: Format of UUCP
dial-code abbreviations file.

dialers: Format of UUCP
file.

dial:
uuchat:

passwd: Change login, group, or
Compares files too large for

dircmp: Compares
infonnation about contents of

link and unlink files and
mv: Moves or renames files and

rm, rmdir: Removes files or
nndir: Removes

uucheck:check the uucp
remove temporary files in

Default program infonnation
access permissions of a file or

cd: Changes working
chdir: Changes the working

chroot: Changes the root
dir: Format of a

information about contents of
mkdir: Creates a new

mkdir: Makes a
mvdir: Moves a

rename: renames a file or
rmdir: Deletes a

the pathname of current working
uuclean: uucp spool

devnm: Identifies device name.
df: Report number of free disk
dial: Dials a modem.
dial: Establishes an out-going
dial-code abbreviations file.
dialcodes: Format of UUCP
Dialers file. • • • • • • • •
dialers: Format of UUCP Dialers
Dials a modem.
dials a modem.
dialup shell password.
ditf. bdiff. •••••
diff. Compares two text files.
difl3: Compares three files.
dir: Format of a directory.
dircmp: Compares directories.
directories. ••••••••
directories. Is: Gives
directories link: link, unlink:
directories.
directories. •••••••
directories. ••••••••
directories and permissions file
directories speci fied c1eantmp:
directory. default: ••••.•.
directory. chmod: Changes the
directory.
directory.
directory.
directory.
directory. I: Lists
directory.
directory.
directory.
directory.
directory.
directory. getcwd: Get
directory clean-up

scsinfo(ADM)
assign(C)
eV310se(S)
ioctl(S)
ev....getdev(S)
devices(F)
ev ~indev(S)
devices(F)
devnm(C)
df(C)
dial(ADM)
dial(S)
dialcodes(F)
dialcodes(F)
dialers(F)
dialers(F)
dial(ADM)
dial(ADM)
passwd(C)
bdimC)
dimC)
difl3(C)
dir(F)
dircmp(C)
dircmp(C)
Is(C)
link(ADM)
mv(C)
rm(C)
rmdir(C)
uucheck(ADM)
cleantmp(ADM)
default(F)
chmod(C)
cd(C)
chdir(S)
chroot(S)
dir(F)
1(C)
mkdir(DOS)
mkdir(C)
mvdir(C)
rename (DOS)
rmdir(DOS)
getcwd(S)
uuclean(ADM)

1-17

Permuted Index

lc: Lists directory contents in columns.
file. getdents: read directory entries and put in a

dirent: file system independent directory entry.
dirent: file-system-independent directory entry

unlink: Removes directory entry.
chroot: Changes root directory for command.

uucico: Scan the spool directory for worlc..
pwd: Prints worlc.ing directory name.
basename: Removes directory names from pathnames.

closedir: Perfonns directory operations.
ordinary file. mknod: Makes a directory, or a special or •

dimame: Delivers directory part of pathname.
directory entry. dirent: file system independent
directory entry dirent: file-system-independent

of pathname. dimame: Delivers directory part
session chLaudit: enables and disable auditing for the next

printers. disable: 1Ums offtenninals and
acct: Enables or disables process accounting.

the queue. ev _flush: Discard all events currently in
type, modes, speed, and line discipline /set tenninal
type, modes, speed, and line discipline. /Sets tenninal

add.vd: add a virtual disk •
cdrom: compact disk interface •

vdinfo: display virtual disk infonnation
diskusg: generate disk accounting data by user ID

cmchk: Reports hard disk block size.
df: Report number of free disk blocks. •

dparam: Displays/changes hard disk characteristics.
/displaying and removing hard disk device names

hd: Internal hard disk drive.
track! badtrlc.: Scans fixed disk for flaws and creates bad

vddaemon: virtual disk initialization
and size/ display hard disk partition, division,

fdisk: Maintain disk partitions.
dtype: Detennines disk type.

du: Summarizes disk usage.
and removing! hdutil: hard disk utility for displaying

floppy disks. diskcp, diskcmp: Copies or compares
compares floppy disks. diskcp, diskcmp: Copies or

Copies or compares floppy disks. diskcp, diskcmp:
fonnat: fonnat floppy disks. •

accounting data by user ID diskusg: generate disk
umount: Dismounts a file structure.

major/minor numbers display specific hard disk
zcat: Display a stored file.

for a mirrored disk vdutil: display bad blocks
infonnation scsinfo: display current SCSI device

vedit: Invokes a screen-oriented display editor. vi, view, •
division, and size/ display hard disk partition,

displaypkg: display installed packages
vdinfo: display virtual disk infonnation

1-18

Ic(C)
getdents(S)
dirent(F)
dirent(F)
unlink(S)
chroot(ADM)
uucico(C)
pwd(C)
basename(C)
directory(S)
mknod(S)
dimame(C)
dirent(F)
dirent(F)
dirname(C)
chLaudit(ADM)
disable(C)
acct(S)
ev _flush(S)
uugetty(ADM)
getty(M)
add.vd(ADM)
cdrom(HW)
vdinfo(ADM)
diskusg(ADM)
cmchk(C)
df(C)
dparam(ADM)
hdutil(ADM)
hd(HW)
badtrlc.(ADM)
vddaemon(ADM)
dlayout(ADM)
fdisk(ADM)
dtype(C)
du(C)
hdutil(ADM)
diskcp(C)
diskcp(C)
diskcp(C)
fonnat(C)
diskusg(ADM)
umount(ADM)
hdutil(ADM)
compress(C)
vdutil(ADM)
scsinfo(ADM)
vi(C)
dlayout(ADM)
displaypkg(ADM)
vdinfo(ADM)

Permuted Index

specific hard disk names/ displaying and removing hdutil(ADM)
packages displaypkg: display installed displaypkg(ADM)

configuration data base. cmos: Displays and sets the cmos(HW)
cat: Concatenates and displays files. . . cat(C)

fonnat. hd: Displays files in hexadecimal hd(C)
00: Displays files in octal fonnat. OO(C)

system activity. uptime: Displays infonnation about uptime(C)
is on the system and what w: Displays infonnation about who w(C)

prof: Displays profile data. . prof(CP)
executable binary files. hdr: Displays selected parts of hdr(CP)

device numbers/ majorsinuse: displays the list of major majorsinuse(ADM)
currently/ vectorsinuse: displays the list of vectors vectorsinuse(ADM)
characteristics. dparam: Displays/changes hard disk dparam(ADM)

mail: Sends, reads or disposes of mail. mail(C)
cabs: Detennines Euclidean distance. hypot, hypot(S)

lcong48: Generates unifonnly distributed. srand48, seed48, drand48(S)
disk partition, division, and size infonnation dlayout(ADM)

divvy -b block_device -c c/ divvy(ADM)
records for subsystem events dlvr_audit: produce audit dlvcaudit(ADM)

object downloader for the 5620 DMD tenninal wtinit: wtinit(ADM)
acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct,/ acctsh(ADM)
whodo: Detennines who is doing what. ••• whodo(C)

promain: restrict the execution domain of a program promain(M)
intro: Introduction to DOS cross development functions. intro(DOS)

dosexterr: Gets DOS error messages. dosexter(DOS)
dosls, dosnn, dosnndir: Access DOS files. dos(C)

bdos: Invokes a DOS system call. bdos(DOS)
intdos: Invokes a DOS system call. intdos(DOS)

intdosx: Invokes a DOS system call. intdosx(DOS)
messages. dosexterr: Gets DOS error dosexter(DOS)

linker. dosld: XENIX to MS-DOS cross dosld(CP)
DOS files. dosls, dosnn, dosnndir: Access dos(C)

files. dosls, dosnn, dosnndir: Access DOS dos(C)
dosls, dosnn, dosnndir: Access DOS files. dos(C)

/atof: Converts a string to a double-precision number. strtod(S)
DMD/ wtinit: object downloader for the 5620 wtinit(ADM)
disk characteristics. dparam: Displays/changes hard dparam(ADM)

graph: draw a graph graph(ADM)
Swaps default boot floppy drive. fdswap: fdswap(ADM)

hd: Internal hard disk drive. hd(HW)
administration! atcronsh: Menu driven at and cron atcronsh(ADM)

utility auditsh: Menu driven audit administration auditsh(ADM)
utility backupsh: Menu driven backup administration backupsh(ADM)

administration! lpsh: Menu driven lp print service Ipsh(ADM)
utility. sysadmsh: Menu driven system administration sysadmsh(ADM)
protocol used by x t (7) driver ,multiplexed channels xtproto(M)

sxt:Pseudo-device driver. sxt(M)
delete, update, or get device driver configuration data /add, idinstall(ADM)

object module. routines: finds driver entry points in a driver routines(ADM)
tenninals xt: multiplexed tty driver for AT&T windowing xt(HW)
finds driver entry points in a driver object module. routines: routines(ADM)

1-19

Permuted Index

xtt: extract and print xt driver packet traces xtt(ADM)
xts: extract and print xt driver statistics • • • • . . xts(ADM)

term: Tenninal driving tables for nrofI tenn(F)
dtype: Determines disk type. dtype(C)
du: Summarizes disk usage. du(C)

backup: Incremental dump tape format. ••••• backup(F)
files on a backup archive. dumpdir: Prints the names of dumpdir(C)

file. tapedump: Dumps magnetic tape to output tapedump(C)
file descriptor. dup, dup2: Duplicates an open duP(S)

descriptor. dup, dup2: Duplicates an open file duP(S)
deSCriptor. dup, dup2: Duplicates an open file duP(S)

echo: Echoes arguments. echo(C)
getche: Gets and echoes a character. • • • • • getche(DOS)

echo: Echoes arguments. • • • echo(C)
output conversions. ecvt, fcvt, gcvt: Performs ecvt(S)

ed: Invokes the text editor. ed(C)
program. end, etext, edata: Last locations in end(S)

for casual users) edit: text editor (variant of ex edit(C)
sact: Prints current SCCS file editing activity. •••••••• sact(CP)

a screen-oriented display editor. /view, vedit: Invokes vi(C)
ed: Invokes the text editor. ed(C)

ex: Invokes a text editor. exeC)
ld: Invokes the link editor. • • • • • • Id(CP)
ld: Invokes the link editor. Id(M)

Format of assembler and link editor output. a.out: a.out(F)
the stream editor. sed: Invokes sed(C)

users) edit: text editor (variant of ex for casual edit(C)
effective user, real group, and effective group IDs. /real user, getuid(S)

/getgid, getegid: Gets real user, effective user, real group, and! getuid(S)
color, monochrome, ega,. /tty[Ol-n], ••• • • • • • screen(HW)
for a pattern. grep, egrep, fgrep: Searches a file grep(C)
file meisa: master EISA system kernel configuration • meisa(F)

i286emul: emulate 80286 •••••••• i286emul(C)
x286emul: emulate XENIX 80286 ••••• x286emul(C)

line printers. enable: Thrns on terminals and enable(C)
the next session ch1L-audit: enables and disable auditing for ch1L-audit(ADM)

accounting. acct: Enables or disables process acct(S)
transmission via mail uuencode: encode a binary file for uuencode(C)

crypt: encode/decode crypt(C)
makekey: Generates an encryption key. makekey(M)

locations in program. end, etext, edata: Last • • • end(S)
/getgrgid, getgrnam, setgrent, endgrent: Get group file entry. getgrent(S)

eof: Determines end-of-file. •.••••• eof(DOS)
/getpwuid, getpwnam, setpwent, endpwent: Gets password file/ getpwent(S)

utmp file entry. endutent, utmpname: Accesses getut(S)
submit: MMDF mail enqueuer • • • submit(ADM)

defopen, defread: Reads default entries. ••••••• defopen(S)
wtmp: Formats of utmp and wtmp entries. utmp, • • • • • • • utmp(F)

getdents: read directory entries and put in a file. getdents(S)
xlist, fxlist: Gets name list entries from files. ••••• xlist(S)

nlist: Gets entries from name list. nlist(S)

1-20

linenum: line number
directory

endgrent: Get group file
endpwent: Gets password file

putpwent: Writes a password file
system independent directory

unlink: Removes directory
utmpname: Accesses utmp file
module. routines: finds driver

relogin: rename login
command execution.

entries in a common object file
entry /file-system-independent
entry. /getgrnam, setgrent, •
entry. /getpwnam, setpwent.
entry.
entry. dirent: file
entry. •••••
entry. endutent.
entry points in a driver object
entry to show current layer • •
env: Sets environment for
environ: The user environment.

Permuted Index

Set or read international environment setlocale:

linenum(F)
dirent(F)
getgrent(S)
getpwent(S)
putpwent(S)
dirent(F)
unlink(S)
getut(S)
routines(ADM)
relogin(ADM)
env(C)
environ(M)
setlocale(S)
rc2(ADM)
environ(M)
putenv(S)
profile(M)
env(C)
getenv(S)
tz(M)
eof(DOS)

commands performed for multiuser
environ: The user

putenv: Changes or adds value to
profile: Sets up an

execution. env: Sets
getenv: Gets value for

TZ: Time zone

complementary error function.
complementary error! erf.

perror, sys_errlist. sys_nerr.
Error function and complementary

error function. erf. erfc:
device.

strclean: STREAMS
strerr: STREAMS

source. mkstr: Creates an
dosexterr: Gets DOS

sys_nerr. ermo: Sends system
seIVices. library routines and

error: Kernel
fsave: Interactive.

matherr:
hashcheck: Finds spelling

terminal line connection. dial:
setmnt:

setmnt: Establishes
program. end.

hypot. cabs: Determines
expression. expr:
contains an event.

and all associated devices.
events currently in the queue.

Wait until the queue contains an
ev_read: Read the next

include/exclude devices for
ev _init: Invokes the

ev ~etemask: Return the current

environment rc2: run
environment. •••••.
environment.
environment at login time.
environment for command
environment name. • • • •
environment variable. • • .
eof: Determines end-of-file.
erf. erfc: Error function and erf(S)
erfc: Error function and ••••• erf(S)
ermo: Sends system error/
error function. erf. erfc: • .
Error function and complementary
error: Kernel error output
error logger cleanup program
error logger daemon
error message file from C
error messages. •••••
error messages. /sys_errlist.
error numbers. /system
error output device.
error-checking filesystem backup
Error-handling function. • •
errors. /hashmake. spellin. • •
Establishes an out-going
Establishes /etc/mnttab table.
/etc/mnttab table. •••••
etext. edata: Last locations in
Euclidean distance.
Evaluates arguments as an •
ev _block: Wait until the queue
ev _close: Oose the event queue
ev _count: Returns the number of
event. ev _block:
event in the queue.
event input. ev ~indev:
event manager.
event mask .••••••

perror(S)
erf(S)
erf(S)
error(M)
strclean(ADM)
strerr(ADM)
mkstr(CP)
dosexter(DOS)
perror(S)
Intro(S)
error(M)

• fsave(ADM)
matherr(S)
spell(C)
dial(S)
setmnt(ADM)
setmnt(ADM)
end(S)
hypot(S)
expr(C)
ev _block(S)

• ev 310se(S)
• ev _count(S)

ev _block(S)
ev_read(S)
ev ~indev(S)
ev_init(S)
ev~emsk(S)

1-21

Permuted Index

ev _setemask: Sets
ev _pop: Pop the next

a list of devices feeding an
ev _suspend: Suspends an

devices. ev _close: Close the
ev_open: Opens an

audit records for subsystem
ev 30unt: Returns the number of

ev _flush: Discard all
currently in the queue.

devices feeding an event queue.
event mask.

devices for event input.
manager.
for input.

the queue.
the queue.

queue.

event mask .•••••.••
event off the queue.
event queue. ev....getdev: Gets
event queue. •••••••
event queue and all associated
event queue for input. • • • .
events dlvcaudit: produce
events currently in the queue.
events currently in the queue.
ev _flush: Discard all events
ev....getdev: Gets a list of • •
ev....getemask: Return the current
ev....gindev: include/exclude
ev _init: Invokes the event
ev _open: Opens an event queue
ev --pop: Pop the next event off
ev _read: Read the next event in
ev _resume: Restart a suspended
ev _setemask: Sets event mask.

queue. ev _suspend: Suspends an event
edit: text editor (variant of ex for casual users) • • • • .

ex: Invokes a text editor.
authentication! integrity: examine system files against

crash: examine system images
pax: portable archive exchange ••••••.•

ev _stemsk(S)
ev_pop(S)
ev....getdev(S)
ev_susp(S)
ev _close(S)
ev_open(S)
dlvcaudit(ADM)
eV30unt(S)
ev_flush(S)
ev _flusheS)
ev....getdev(S)

• ev....gtemsk(S)
ev....gindev(S)
ev_init(S)
ev_open(S)
ev_pop(S)
ev_read(S)

. ev _resume(S)
ev _stemsk(S)
ev_susp(S)
edit(C)
exeC)
integrity(ADM)
crash(ADM)
pax(C)

execlp, execvp: Executes at execl, execv, execle, execve,
Executes a file. execl, execv, execle, execve, execlp, execvp:
execl, execv, execle, execve, execlp, execvp: Executes a file.

executable. execseg: makes a data region •
execseg: makes a data region executable. •••••••••.

fixhdr: Changes executable binary file headers.

exec(S)
exec(S)
exec(S)
execseg(S)
execseg(S)
fixhdr(C)

hdr: Displays selected parts of executable binary files.
execle, execve, execlp, execvp: Executes a file. execl, execv,

system: Executes a shell command.
int86: Executes an interrupt. • • • •

int86x: Executes an interrupt. • • •
XENIX. uux: Executes command on remote

xargs: Constructs and
time. at, batch:

times. cron:

executes commands.
Executes commands at a later
Executes commands at speci fied
Executes commands on a remote
executes regular expressions. .
execution. env: •••••.
execution domain of a program
execution for a short interval.
execution for an interval.
execution for an interval.
execution profile.

hdr(CP)
exec(S)
system(S)
int86(DOS)
int86x(DOS)
uux(C)
xargs(C)
at(C)

· cron(C)
• remote(C)

regex(S)
env(C)
promain(M)
napeS)
sleep(C)
sleep(S)

XENIX system. remote:
regex, regcmp: Compiles and

Sets environment for command
promain: restrict the

nap: Suspends
sleep: Suspends
sleep: Suspends

monitor: Prepares
profil: Creates an

execvp: Executes a file. execl,
execution time profile. •••••

monitor(S)
profileS)
exec(S)

a file. execl, execv, execle,

1-22

execv, execle, execve, execlp,
execve, execlp, execvp: Executes • exec(S)

Permuted Index

execv, execle, execve, execlp, execvp: Executes a file. execl, exec(S)
link: Links a new filename to an existing file. •••••• link(S)

a new file or rewrites an existing one. creat: Creates creat(S)
process. exit, _exit: Terminates a • • exit(S)

exit, _exit: Terminates a process. exit(S)
process. exit: Terminates the calling exit(DOS)

false: Returns with a nonzero exit value. •••••• false(C)
true: Returns with a zero exit value. •••••. true(C)

Performs exponentialJ exp, log, pow, sqn, 10glO: exp(S)
peat, unpack: Compresses and expands files. pack, pack(C)
number into a mantissa and an exponent. ISplits floating-point frexp(S)

/log, pow, sqn, 10glO: Performs exponential, logarithm, powerJ exp(S)
expression. expr: Evaluates arguments as an expr(C)

expr: Evaluates arguments as an expression. ••••• • • • expr(C)
routines. regexp: Regular expression compile and match regexp(S)

Compiles and executes regular expressions. regex, regcmp: regex(S)
regcmp: Compiles regular expressions. •••••• regcmp(CP)

nnb: remove extra blank lines from a file nnb(M)
packet traces xtt: extract and print xt driver xtt(ADM)

statistics xts: extract and print xt driver xts(ADM)
programs. xstr: Extracts strings from C ••••. xstr(CP)

absolute value, floorJ floor, fabs, ceil, fmod: Perfonns floor(S)
of inter-process communication facilities. /Reports the status ipes(ADM)

. factor: Factor a number. • • • factor(C)
factor: Factor a number. factor(C)

powerfail: perfonns power failure shutdown service powerfail(M)
restan: perfonns power failure recovery service restatt(M)

exit value. false: Returns with a nonzero false(C)
abon: Generates an lOT fault. •••.•••••• abon(S)

currently specified in the s d e vic e file lofvectors • vectorsinuse(ADM)
streams. fclose, fcloseall: Ooses ••••• fclose(DOS)

flushes a stream. fclose, ffiush: Closes or fclose(S)
fclose, fcloseall: Closes streams. fclose(DOS)

fcntl: Controls open files. fcntl(S)
fcntl: file control options fcntl(M)

conversions. ecvt, fcvt, gcvt: Perfonns output ecvt(S)
fdisk: Maintain disk panitions. fdisk(ADM)

fopen, freopen, fdopen: Opens a stream. • • • fopen(S)
floppy drive. fdswap: Swaps default boot fdswap(ADM)

Ito machine related miscellaneous features and files. Intro(HW)
Introduction to miscellaneous features and files. intro: Intro(M)

IGets a list of devices feeding an event queue. ev ~etdev(S)
Detennines stream! ferror, feof, clearerr, fileno: ferror(S)
Detennines stream status. ferror, feof, clearerr, fileno: ferror(S)

nextkey: Perfonnsl dbminit, fetch, store, delete, firstkey, dbm(S)
stream. fclose, ffiush: Closes or flushes a fclose(S)

character from a stream. fgetc, fgetchar: Gets a fgetc(DOS)
word from a/ getc, getchar, fgetc, getw: Gets character or getc(S)

a stream. fgetc, fgetchar: Gets a character from fgetc(DOS)
stream. gets, tgets: Gets a string from a gets(S)

pattern. grep, egrep, fgrep: Searches a file for a • . grep(C)

1-23

Permuted Index

cut: Cuts out selected
Alternative login terminals

Changes the format of a text
Changes the owner and group of a

Compares two versions of an SCCS
Creates a name for a temporary

Delivers the last part of a
Determines accessibility of a

Dumps magnetic tape to output
Format of UUCP Permissions

Format of UUCP Sysfiles
Format of compiled terminfo

Format of per-process accounting
Prints the size of an object

Removes a delta from an SCCS
Reports repeated lines in a

The Micnet default commands
The Micnet system identification

UUCP uusched limit
UUCP uuxqt limit

Undoes a previous get of an SCCS
a delta (change) to an SCCS

a new filename to an existing
and modification times of a

checksum and counts blocks in a
chmod: Changes mode of a

chsize: Changes the size of a
core: Format of core image

"crontab:
ctags: Creates a tags

dd: Converts and copies a
devices: Format of UUCP devices

dialers: Format of UUCP Dialers
directory entries and put in a

entries in a common object
exec1p, execvp: Executes a

fields of each line of a
filelength: Gets the length of a
for and processes a pattern in a
format of curses screen image

group: Format of the group
grpcheck: Checks group

header for a common object
information for a common object

issue: issue identification
In: Makes a link to a

mem, kmem: Memory image
mestbl: create a messages locale

n1: Adds line numbers to a
null: The null

of UUCP dial-code abbreviations

1-24

fields of each line of a file.
file. inittab:
file. newform:
file. chown:
file. sccsdiff.
file. tmpnam, tempnam:
file. tail: •••
file. access:
file. tapedump:
file. permissions:
file. sysfiles:
file. "terminfo:"
file. acet:
file. size:
file. rmdel:
file. uniq:
file. micnet:
file. systemid:
file. maxuuscheds: • • • • • • •
file. maxuuxqts: • •
file. unget:
file. delta: Makes
file. link: Links
file. touch: Updates access
file. sum: Calculates
file.
file.
file.
user crontab"
file.
file.
file.
file.
file. getdents: read
file linenum: line number
file. lexecv, execle, execve,
file. cut: Cuts out selected
file. ••••••
file. awk: Searches
file. sccdump: •••••
file. •••••••
file. ••••••
file scnhdr: section
file reloc: relocation
file •• •••
file.
file.
file
file.
file.
file. dialcodes: Format

cut(C)
inittab(F)
newform(C)
chown(S)
sccsdifltCP)
tmpnam(S)
tail(C)
access(S)
tapedump(C)
permissions(F)
sysfiles(F)
terminfo(F)
acct(F)
size(CP)
rmdel(CP)
uniq(C)
micnet(F)
systemid(F)
maxuuscheds(F)
maxuuxqts(F)
unget(CP)
delta(CP)
link(S)
touch(C)
sum(C)
chmod(S)
chsize(S)
core(F)
file
ctags(CP)
dd(C)
devices(F)
dialers (F)
getdents(S)
linenum(F)
exec(S)
cut(C)
fileleng(DOS)
awk(C)
sccdump(F)
group(M)
grpcheck(C)
scnhdr(F)
reloc(F)
issue(F)
In(C)
mem(M)
mestbl(M)
n1(C)
nUll(F)
dialcodes(F)

or a special or ordinary
passwd: The password

poll: Format of UUCP Poll
printable strings in an object

prs: Prints an SCCS
pwcheck: Checks password

read: Reads from a

file. mknod: Makes a directory,
file. •••••••
file.
file. strings: Finds the
file.
file.
file.

remove extra blank lines from a file rmb:
sccsfile: Format of an SCCS file.

specified in the s d e vic e file /list of vectors currently
specified in the mdevice file /device numbers currently

systems: Format of UUCP Systems file. • • • • • •
tmpfile: Creates a temporary file. ••••••••••

uncompress: Uncompress a stored file. ••••• •••
uucp directories and permissions file uucheck: check the

val: Validates an SCCS file.
write: Writes to a file. .•••.••

zeat: Display a stored file. ••••••.
fuser: identify processes using a file or file structure

times. utime: Sets file access and modification
ldfcn: common object file access routines • • • • •

cpio: Copies file archives in and out.
fcntl: file control options

uupick: Public XENIX-to-XENIX file copy. uuto,
umask: Sets and gets file creation mask.

close: Closes a file descriptor. • • •
dup, dup2: Duplicates an open file descriptor. • • •

file: Determines file type.
sact: Prints current SCCS file editing activity.
endpwent: Gets password file entry. /getpwnam, setpwent,

putpwent: Writes a password file entry. ••••••••
setgrent, endgrent: Get group file entry. /getgrgid, getgmam,

utmpname: Accesses utmp file entry. endutent,
grep, egrep, fgrep: Searches a file for a pattern. • • • •

proto: prototype job file for at • • • • • • • •
open: Opens file for reading or writing.

writing. sopen: Opens a file for shared reading and
uudecode: decode a binary file for transmission via mail
uuencode: encode a binary file for transmission via mail

ar: Archive file format.
mdevice: file format.

mfsys: file format.
mtune: file format.

sdevice: file format.
sfsys: file format.
stune: file format. •••••••
pnch: file format for card images

intro: Introduction to file formats. • • • •
mkstr: Creates an error message file from C source.

implementation-specific/ limits: file header for • •
files filehdr: file header for common object

Permuted Index

mknod(S)
passwd(F)
poll(F)
strings(CP)
prs(CP)
pwcheck(C)
read(S)
rmb(M)
sccsfile(F)
vectorsinuse(ADM)
majorsinuse(ADM)
systems(F)
tmpfile(S)
compress(C)
uucheck(ADM)
val(CP)
write(S)
compress(C)
fuser(C)
utime(S)
Idfcn(F)
cpio(C)
fcntl(M)
uuto(C)
umask(S)
close(S)
dupeS)
file(C)
sact(CP)

• getpwent(S)
putpwent(S)
getgrent(S)
getut(S)
grep(C)
proto(ADM)
open(S)
sopen(DOS)
uuencode(C)
uuencode(C)
ar(F)
mdevice(F)
mfsys(F)
mtune(F)
sdevice(F)
sfsys(F)
stune(F)
pnch(F)
Intro(F)
mkstr(CP)
limits(F)
filehdr(F)

1-25

Permuted Index

constants unistd:
Changes executable binary

split: Splits a
/Finds the slot in the utmp

purge(C) purge: the policy
rename: renames a

the access pennissions of a
one. creat: Creates a new

Gets the current position of the
lseek: Moves read/write

fftell, rewind: Repositions a
locking: Locks or unlocks a

stat, fstat: Gets
mount: Mounts a

umount: Dismounts a
/processes using a file or

syms: common object
Prints or changes the name of a

literal copy of UNIX
mkfs: Constructs a

mount: Mounts a
umount: Unmounts a

UNIX system volume fs:
backup: Perfonns incremental

fsdb:
volume.

fstyp: detennine
directory entry. dirent:

fstatfs: get
statfs: get

commands. fstab:
quot: Summarizes

XENIX incremental
restore, restor: Invokes incremental

ustat: Gets
fsstat: report

mnttab: Fonnat of mounted
- mount, unmount mUltiple

fsck: Checks and repairs
labelit: provide labels for

haltsys, reboot: Closes out the
fsck. checklist: List of

serial! consoleprint: Print
faXENIX-style Micnet routing
fconverts XENIX-style aliases

XENIX-style UUCP routing
tsort: Sorts a

the scheduler for the uucp
ftw: Walks a

file: Detennines
umask: Sets

1-26

file header for symbolic
file headers. fixhdr:
file into pieces.
file of the current user.
file of the sanitization utility
file or directory. ••••••
file or directory. fChanges
file or rewrites an existing
file pointer. tell: • • • •
file pointer. • • • • • •
file pointer in a stream.
file region for reading orf
file status. •••••
file structure.
file structure. ••••••
file structure fuser: identify
file symbol table fonnat • •
file system fsname:
file system volcopy: make
file system.
file system. ••••
file system. •••••
file system - fonnat of
file system backup. • •
File system debugger.
file system: Fonnat of a system

unistd(F)
fixhdr(C)
split(C)
ttyslot(S)
purge(F)
rename(DOS)
chmod(C)
createS)
tell(DOS)
lseek(S)
fseek(S)
10cking(S)
stateS)
mount(ADM)
umount(ADM)
fuser(C)
syms(F)
fsname(ADM)
volcopy(ADM)
mkfs(ADM)
mount(S)
umount(S)
fs(F)
backup(ADM)
fsdb(ADM)
filesystem(F)
fstyp(ADM) file system identifier

file system independent
file system infonnation.

• • • • • dirent(F)

file system infonnation. •••••
File system mount and check
file system ownership.
file system restorer. /Invokes
file system restorer.
file system statistics.
file system status
file system table. • • •
file systems /umountall
file systems.
file systems • • • • • •

statfs(S)
statfs(S)
fstab(F)
quot(C)
xrestore(ADM)
restore(ADM)
ustat(S)
fsstat(ADM)
mnttab(F)
mountall(ADM)
fsck(ADM)
labelit(ADM)

file systems and shuts down thef
file systems processed by

• haltsys(ADM)

file to printer attached to a
file to MMDF fonnat.
file to MMDF fonnat.
file to MMDF fonnat. fa
file topologically.
file transport program uusched:
file tree. ••••••
file type. ••••••••
file-creation mode mask.

checklist(F)
consoleprint(ADM)
mnlist(ADM)
mmdfalias(ADM)
uulist(ADM)
tsort(CP)
uusched(ADM)
ftw(S)
file(C)
umask(C)

object files
file.

mktemp: Makes a unique
ctennid: Generates a

link: Links a new
status. ferror, feof, clearerr,

Creates and administers SCCS
Fonnat of tty device mapping

Gets name list entries from
access and modification dates of

and prints process accounting
bfs: Scans big

cat: Concatenates and displays
cmp: Compares two

copy: Copies groups of
cp: Copies

diff.3: Compares three
diff. Compares two text

dosnn, dosnndir: Access DOS
fcnt1: Controls open

file header for common object
find: Finds

fonnat specification in text
lines common to two sorted

merge or add total accounting
miscellaneous features and

mknod: Builds special
parts of executable binary

paste: Merges lines of
purge: overwrites specified

semaphores· and record locking on
sort: Sorts and merges

string, fonnat of graphical
tar: Archives

to miscellaneous features and
top. next: The Micnet topology

unpack: Compresses and expands
what: Identifies

csplit: Splits
rcp: Copies

integrity: examine system
link, unlink: link and unlink

filehdr: file header for common
filelength: Gets the length of a
filename. • •
filename for a tenninal.
filename to an existing file.
fileno: Detennines stream
files. admin:
files. mapehan: •
files. xlist, fxlist:
files. settime: Changes the
files. acctcom: Searches for
files. • •
files.
files.
files.
files.
files.
files.
files. dosls,
files.
files filehdr:
files.
files fspec:
files. comm: Selects or rejects
files acctmerg:
files. /to machine related
files. •
files. hdr: Displays selected
files.. •
files •
files. lockf:~vide
files.
files gps: graphical primitive
files.
files. intro: Introduction
files. top,
files. pack, peat,
files.
files according to context.
files across XENIX systems.
files against authentication!
files and directories link:

mv: Moves or renames files and directories.
idmkinit: read files containing specifications

transit queue: MMDF queue files for storing mail in
translate: Translates files from one fonnat to another

auditd: read audit collection files generated by the audit!
cleantmp: remove temporary files in directories specified

hd: Displays files in hexadecimal fonnat.
od: Displays files in octal fonnat.

dumpdir: Prints the names of files on a backup archive.

Permuted Index

filehdr(F)
fileleng(DOS)
mktemp(S)
ctennid(S)
link(S)
ferror(S)
admin(CP)
mapehan(F)
xlist(S)
settime(ADM)
acctcom(ADM)
bfs(C)
cat(C)
cmp(C)
copy(C)
CP(C)
diff.3(C)
difl{C)
dos(C)
fcnt1(S)
filehdr(F)
find(C)
fspec(F)
comm(C)
acctmerg(ADM)
Intro(HW)
mknod(C)
hdr(CP)
paste(C)
purge(C)
10ckf(S)
sort(C)
gps(F)
tar(C)
Intro(M)
top(F)
pack(C)
what(C)
csplit(C)
rcp(C)
integrity(ADM)
link(ADM)
mv(C)
idmkinit(ADM)
queue(ADM)
translate(C)
auditd(ADM)
cleantmp(ADM)
hd(C)
od(C)
dumpdir(C)

1-27

Permuted Index

imprint: Prints text files on an IMAGEN printer.
pr: Prints files on the standard output.

nn, nndir: Removes files or directories.
sdiff: Compares files side-by-side.

cofIconv: Convert 386 COFF files to XENIX fonnat.
bdiff: Compares files too large for diff. • •

control files. uuinstall: Administers UUCP
ISO-9600 CD-ROM filesystem hs: High Sierra

mnt: Mount a filesystem •••••
High Sierra ISO-9660 CD-ROM filesystem •••••••

Interactive, error-checking filesystem backup fsave:
XENIX incremental filesystem backup. /Perfonns

/AT&TUNlX incremental filesystem backup restore
directory entry dirent: file-system-independent • •

!Default infonnation for mounting filesystems. • • • • • • • •
time dcopy: copy UNIX filesystems for optimal access

greek: select tenninal filter
pscat: ASCII-to-PostScript filter ••••••••

tplot: graphics filters ••••••••
col: Filters reverse linefeeds.

service lpfilter: administer filters used with the LP print
driver object module. routines: finds driver entry points in a

find: Finds files. •••••••
finger: Finds infonnation about users.

logname: Finds login name of user.
object library. lorder: Finds ordering relation for an

hashmake, spellin, hashcheck: Finds spelling errors. spell,
ttyname, isatty: Finds the name of a tenninal.

an object file. strings: Finds the printable strings in
of the current user. ttyslot: Finds the slot in the utmp file

users. finger: Finds infonnation about
dbminit, fetch, store, delete, firstkey, nextkey: Perfonns/

bad track table. badtrk: Scans fixed disk for flaws and creates
binary file headers. fixhdr: Changes executable

badtrk: Scans fixed disk for flaws and creates bad track!
frexp, ldexp, modf: Splits floating-point number into at

/fmod: Perfonns absolute value, floor, ceiling and remainder/
Perfonns absolute value, floorJ floor, fabs, ceil, fmod:

diskcmp: Copies or compares floppy disks. diskcp,
format: format floppy disks.

fdswap: Swaps default boot floppy drive.
cflow: Generates C flow graph.

buffers. flushall: Flushes all output
fclose, ffiush: Closes or flushes a stream. • • • •

flushall: Flushes all output buffers.
CPU. shutdn: Flushes block I/O and halts the

floor,/ floor, fabs, ceil, fmod: Performs absolute value,
device. vidi: Sets the font and video mode for a video

stream. fopen, freopen, fdopen: Opens a
fork: Creates a new pro~ss.

Convert 386 COFF files to XENlX format. coffconv: •••.•

1-28

imprint(C)
pr(C)
rm(C)
sdifltC)
cofIconv(M)
bdifltC)
uuinstall(ADM)
hs(F)
mnt(C)
hs(F)
fsave(ADM)
xbackup(ADM)
restore(ADM)
dirent(F)
filesys(F)
dcopy(ADM)
greek(C)
pscat(C)
tplot(ADM)
col(C)
Ipfilter(ADM)
routines(ADM)
find(C)
finger(C)
10gname(S)
10rder(CP)
spell(C)
ttyname(S)
strings(CP)
ttyslot(S)
finger(C)
dbm(S)
badtrk(ADM)
fixhdr(C)
badtrk(ADM)
frexp(S)
floor(S)
floor(S)
diskcP(C)
format(C)
fdswap(ADM)
cflow(CP)
flushall(DOS)
fclose(S)
flushall(DOS)
shutdn(S)
floor(S)
vidi(C)

. fopen(S)
fork(S)
coffconv(M)

Displays files in hexadecimal
aliases file to MMDF

ar: Archive file
backup: Incremental dump tape

common object file symbol table
mdevice: file

mfsys: file
mtune: file

od: Displays files in octal
routing file to MMDF
routing file to MMDF

sdevice: file
sfsys: file
stune: file

tar: archive
strftime:
fonnat:

pnch: file
86rel: Intel 8086 Relocatable

dir:
file system:

newfonn: Changes the
inode:

sccsfile:
editor output. a.out:

file. "terminfo:"
core:
cpio:

file. sccdump:
gps: graphical primitive string,

table. mnttab:
file. acct:

volume fs: file system -
volume fs: file system

group:
files. mapchan:

devices:
abbreviations file. dialcodes:

dialers:
pennissions:

poll:
sysfiles:
systems:

files fspec:
Translates files from one
intro: Introduction to file

cscanf: Converts and
fscanf, sscanf: Converts and

entries. utmp, wtmp:
cprintf:

Permuted Index

fonnat. hd: •••••••••• hd(C)
mmdfalias(ADM)
ar(F)

fonnat. ,ronverts XENIX-style
fonnat.
fonnat.
fonnat syms:
fonnat.
fonnat.
fonnat.
fonnat.
fonnat. /UUCP
fonnat. faXENIX -style Micnet
fonnat.
fonnat.
fonnat.
format. •••••
fonnat date/time string
fonnat floppy disks.
fonnat for card images
Fonnat for Object Modules.
fonnat: fonnat floppy disks.
funnat of a directory. • • •
Format of a system volume.
fonnat of a text file.
funnat of an inode.
Fonnat of an SCCS file. • •
funnat of assembler and link
funnat of compiled tenninfo
funnat of core image file.
funnat of cpio archive.
fonnat of curSes screen image
fonnat of graphical files • • •
Fonnat of mounted file system
Fonnat of per-process accounting
fonnat of UNIX system
fonnatofUNIX system
funnat of the group file.
Fonnat of tty device mapping
Fonnat of UUCP devices file.

backup(F)
syms(F)
mdevice(F)
mfsys(F)
mtune(F)
od(C)
uulist(ADM)
mnlist(ADM)
sdevice(F)
sfsys(F)
stune(F)
tar(F)
strfiime(S)
fonnat(C)
pnch(F)
86rel(F)
fonnat(C)
dir(F)
filesystem(F)
newfonn(C)
inode(F)
sccsfile(F)
a.out(F)
tenninfo(F)
core(F)
cpio(F)
scr_dump(F)
gps(F)
mnttab(F)

• acct(F)
fs(F)
fs(F)
group(M)
mapchan(F)

Fonnat of UUCP dial-code • • • •
Fonnat of UUCP Dialers file.

devices(F)
dialcodes(F)
dialers(F)

funnat of UUCP Permissions file.
funnat of UUCP Poll file.
Fonnat of UUCP Sysfiles file.
Fonnat of UUCP Systems file.
fonnat specification in text
fonnat to another translate:
fonnats.
fonnats console input.
fonnats input. scanf,
funnats of utmp and wtmp
funnats output. •••••

pennissions(F)
poll(F)
sysfiles(F)
systems(F)
fspec(F)
translate(C)
Intro(F)
cscanf(DOS)
scanf(S)
utmp(F)
cprintf(DOS)

1-29

Permuted Index

printf, fprintf, sprintf:
vfprintf, vsprintf: Prints

service lpfonns: administer
Rational FORTRAN into standard

ratfor: Converts Rational
and segment.

output. printf,
segment. fp_off,

character to a stream.
word on at putc, putchar,

stream. fputc,
stream. puts,

binary input and output.
main memory. malloc,

fopen,
floating-point number into at

UNIX system volume
error-Checking filesystem!

fonnats input. scanf,
of file systems processed by

systems.

Repositions a file pointer in at
name of a file system

text files
semi-automated system backups

status
check commands.

stat,
infonnation.

identifier
file pointer in at fseek,

time,
communication package.

function and complementary error
gamma: Perfonns log gamma

matherr: Error-handling
prof: profile within a

function. erf, erfc: Error
setkey: Assigns the

Perfonns screen and cursor
atan2: Perfonns trigonometric

cosh, tanh: Perfonns hyperbolic
floor, ceiling and remainder

jn, yO, yl, yn: Perfonns Bessel
logarithm, power, square root

nextkey: Perfonns database
perfonns UNIX backup

sysi86: machine specific
tgoto, tputs: Perfonns tenninal

1-30

ronnats output. •••••••• printf(S)
fonnatted output of at vprintf, vprintf(S)
fonns used with the LP print Ipfonns(ADM)
FORTRAN. ratfor: Converts. ratfor(CP)
FORTRAN into standard FORTRAN. ratfor(CP)
fp_off, fp_seg: Return oftSet
fprintf, sprintf: Fonnats
fp_seg: Return oftSet and
fputc, fputchar: Write a
fputc, putw: Puts a character or
fputchar: Write a character to a
fputs: Puts a string on a
fread, fwrite: Perfonns buffered
free, realloc, calloc: Allocates
freopen, fdopen: Opens a stream.
frexp, ldexp, modf: Splits
fs: file system - fonnat of
fsave: Interactive,
fscanf, sscanf: Converts and
fsek. checklist: List
fsck: Checks and repairs file
fsdb: File system debugger.
fseek, ftell, rewind: • • • • •
fsname: Prints or changes the
fspec: fonnat specification in
fsphoto: Perfonns periodic ••
fsstat: report file system • •
fstab: File system mount and
fstat: Gets file status.
fstatfs: get file system • •
fstyp: determine file system
ftell, rewind: Repositions a
ftime: Gets time and date.
ftok: Standard interprocess
ftw: Walks a file tree. ••
function. erf, erfc: Error
function.
function. • •••••
function •••••••
function and complementary error
function keys. • • • • • •
functions.· curses:
functions. /asin, acos, atan,
functions. sinh, •••••
functions. /absolute value,
functions. bessel, jO, j 1, •
functions. /exponential, •
functions. /delete, firstkey,
functions backup:
functions. • •••••
functions. /tgetflag, tgetstr,

fp_seg(DOS)
printf(S)
fp_seg(DOS)
fputc(DOS)
putc(S)
fputc(DOS)
puts(S)
fread(S)
malloc(S)
fopen(S)
frexp(S)
fs(F)
fsave(ADM)
scanf(S)
checklist(F)
fsck(ADM)
fsdb(ADM)
fseek(S)
fsname(ADM)
fspec(F)
fsphoto(ADM)
fsstat(ADM)
fstab(F)
stat(S)
statfs(S)
fstyp(ADM)
fseek(S)
time(S)
stdipc(S)
ftw(S)
erf(S)
gamma(S)
matherr(S)
prof(M)
erf(S)
setkey(C)
curses(S)
trig(S)
sinh(S)
floor(S)
bessel(S)
exp(S)
dbm(S)
backup(ADM)
sysi86(S)
tenncap(S)

to DOS cross development functions. intro: Introduction
math: math functions and constants

tenninals hp: handle special functions of Hewlett-Packard
300: 300, 300s - handle special functions of DASI 3001

450! 450: handle special functions of the DASI • • •
input and output. fread, fwrite: Perfonns buftered binary

manipulate connect accounting! fwtmp:.fwtmp, wtmpfix: •••
connect accounting! fwtmp: fwtmp, wtmpfix: manipulate

from files. xlist, fxlist: Gets name list entries
gamma: Perfonns log gamma function. • • • • •

function. gamma: Perfonns log gamma
conversions. ecvt, fcvt, gcvt: Perfonns output • • • •

adb: Invokes a general-purpose debugger. • •
report. imacct: Generate an IMAGEN accounting

user ID diskusg: generate disk accounting data by
and /read audit collection files generated by the audit subsystem

tenninal. ctennid: Generates a filename for a •
rand, srand: Generates a random number.

random: Generates a random number.
makekey: Generates an encryption key.

abort: Generates an lOT fault.
cflow: Generates C flow graph. • • •

cross-reference. cxref: Generates C program • • • •
numbers. ncheck: Generates names from inode

analysis. lex: Generates programs for lexical
srand48, seed48, lcong48: Generates unifonnly distributed.

MMDF queue status report generator checkque:
value machid: machid, i386 get processor type truth •••

character or word from a/ getc, getchar, fgetc, getw: Gets
getch: Gets a character.

character or word from at getc, getchar, fgetc, getw: Gets
character. getche: Gets and echoes a

real-time clock getclk: gets string from
current working directory. getcwd: Get the patbname of

and put in a file. getdents: read directory entries
getuid, geteuid, getgid, getegid: Gets real userJ ••

environment name. getenv: Gets value for
real user, eftective! getuid, geteuid, getgid, getegid: Gets •
eftective! getuid, geteuid, getgid, getegid: Gets real user,

setgrent, endgrent: Get group! getgrent, getgrgid, getgmam,
endgrent: Get group! getgrent, getgrgid, getgmam, setgrent,
Get group! getgrent, getgrgid, getgmam, setgrent, endgrent:

getlogin: Gets login name. •
argument vector. getopt: Gets option letter from

getopt: Parses command options.
options getopts: getopts, getoptcvt - parse command

command options getopts: getopts, getoptcvt - parse
parse command options getopts: getopts, getoptcvt -

getpass: Reads a password.
process group, and! getpid, getpgrp, getppid: Gets process,

process, process group, and! getpid, getpgrp, getppid: Gets

Permuted Index

intro(DOS)
math(M)
hP(C)
300(C)
450(C)

• fread(S)
fwtmP(ADM)
fwtmp(ADM)
xlist(S)
gamma(S)
gamma(S)
ecvt(S)
adb(CP)

• imacct(C)
• diskusg(ADM)
• auditd(ADM)

ctermid(S)
rand(S)
random(C)
makekey(M)
abort(S)
cflow(CP)
cxref(CP)
ncheck(ADM)
lex(CP)

· drand48(S)
checkque(ADM)
machid(C)
getc(S)
getch(DOS)
getc(S)
getche(DOS)
getclk(M)
getcwd(S)
getdents(S)
getuid(S)
getenv(S)
getuid(S)
getuid(S)
getgrent(S)
getgrent(S)
getgrent(S)
getlogin(S)
getopt(S)

• getopt(C)
getopts(C)
getopts(C)
getopts(C)
getpass(S)
getpid(S)
getpid(S)

1-31

Permuted Index

group, and! getpid, getpgrp,
user 10.

setpwent, endpwent: Gets!
Gets! getpwent, getpwuid,
endpwent: Gets! getpwent,

getch:
fgetc, fgetchar:

an event queue. ev ~etdev:
shmget:

cgets:
gets, fgets:

input. gets:
getche:
ulimit:

getc, getchar, fgetc, getw:
dosexterr:

nUst:
a stream.

umask: Sets and
stat, fstat:

ustat:
standard input.

getlogin:
logname:

msgget:
files. xlist, fxlist:

system. uname:
vector. getopt:

!getpwnam, setpwent, endpwent:
ID. getpw:

times. times:
getpid, getpgrp, getppid:

reall !geteuid, getgid, getegid:
semget:
getclk:

file pointer. tell:
filelength:

cuserid:
tty:

time, ftime:
getenv:

and terminal settings used by
security actions for init and

modes, speed, and line!
ct: spawn

settings used by getty.
getegid: Gets real user,!

from at getc, getchar, fgetc,
of directories. Is:

date and time! ctime, localtime,
non-obviousness.

1-32

getppid: Gets process, process
getpw: Gets password for a given
getpwent, getpwuid, getpwnam,
getpwnam, setpwent, endpwent:
getpwuid, getpwnam, setpwent,
Gets a character. • • • • • •
Gets a character from a stream.
Gets a list of devices feeding •
Gets a shared memory segment.

getpid(S)
• getpw(S)

getpwent(S)
· getpwent(S)

getpwent(S)
getch(DOS)
fgetc(DOS)
ev ~etdev(S)

Gets a string. •••••••••
Gets a string from a stream.

shmget(S)
cgets(DOS)
gets(S)

Gets a string from the standard
Gets and echoes a character.
Gets and sets user limits.
Gets character or word from at
Gets DOS error messages.
Gets entries from name list.
gets, fgets: Gets a string from
gets file creation mask.
Gets file status. •••••
Gets file system statistics.
gets: Gets a string from the
Gets login name. • • • •
Gets login name. • • • • •
Gets message queue.
Gets name list entries from
Gets name of current XENIX
Gets option letter from argument
Gets password file entry.
Gets password for a given user
Gets process and child process
Gets process, process group, and/
Gets real user, effective user, .
Gets set of semaphores.
gets string from real-time clock
Gets the current position of the
Gets the length of a file. • • •
Gets the login name of the user.
Gets the terminal's name.
Gets time and date. • • • • •
Gets value for environment name.
getty. "gettydefs:
getty initcond: special
getty: Sets terminal type,
getty to a remote terminal
"gettydefs: Speed ••••.
getuid, geteuid, getgid,
getw: Gets character or word
Gives information about contents
gmtime, asctime, tzset: Converts
goodpw: Check a password for

gets(CP)
getche(DOS)
ulimit(S)
getc(S)
dosexter(DOS)
nlist(S)
gets(S)
umask(S)
stat(S)
ustat(S)
gets(CP)
getlogin(S)
10gname(C)
msgget(S)
xlist(S)
uname(S)

• getopt(S)
getpwent(S)
getpw(S)
times(S)

· getpid(S)
getuid(S)
semget(S)
getclk(M)
tell(DOS)
fileleng(DOS)
cuserid(S)
tty(C)
time(S)
getenv(S)
Speed"
initcond(ADM)
getty(M)
ct(C)
and
getuid(S)
getc(S)

• Is(C)
• ctime(S)

goodpw(ADM)

Permuted Index

longjrnp: Performs a nonlocal "goto". setjmp, • • • • • • • . setjmp(S)
and checks access to a resource governed by a semaphore. /Awaits waitsem(S)

format of graphical files gps: graphical primitive string, gps(F)
cflow: Generates C flow graph. • • • • • • cflow(CP)

graph: draw a graph •••••• graph(ADM)
sag: system activity graph •••••• sag(ADM)

graph: draw a graph graph(ADM)
primitive string, format of graphical files gps: graphical gps(F)

format of graphical files gps: graphical primitive string, gps(F)
tplot: graphics filters tplot(ADM)
plot: graphics interface plot(F)

greek: select terminal filter greek(C)
file for a pattern. grep, egrep, fgrep: Searches a grep(C)

newgrp: Logs user into a new group. • • • • • • • • • • newgrp(C)
Ireal user, etrective user, real group, and etrective group IDs. getuid(S)

Igetppid: Gets process, process group, and parent process IDs. getpid(S)
passwd: Change login, group, or dialup shell password. passwd(C)

copy: Copies groups of files. •••••••• copy(C)
updates, and regenerates groups of programs. /Maintains, • make(CP)

grpcheck: Checks group file. grpcheck(C)
signals. ssignal, gsignal: Implements software ssignal(S)

shutdn: Flushes block I/O and halts the CPU. • • • • • • shutdn(S)
file systems and shuts down thel haltsys, reboot: Closes out the haltsys(ADM)
Hewlett-Packard terminals hp: handle special functions of • hp(C)

DASI 3001 300: 300, 300s handle special functions of • 300(C)
DASl/ 300: 300, 300s - handle special functions of • • 3OO(C)

DASI 450 terminal 450: handle special functions of the 450(C)
nohup: Runs a command immune to hangups and quits. nohup(C)

cmchk: Reports hard disk block size. cmchk(C)
dparam: Displays/changes hard disk characteristics. dparam(ADM)

hd: Internal hard disk drive. hd(HW)
scsinfo: display current SCSI hard disk information • • scsinfo(ADM)

and sizel display hard disk partition, division, dlayout(ADM)
and removing! hdutil: hard disk utility for displaying hdutil(ADM)

uconfig: system hardware changes uconfig(ADM)
hostid: print unique hardware ID ••••••• hostid(ADM)

hcreate, hdestroy: Manages hash search tables. hsearch, hsearch(S)
spell, hashmake, spellin, hashcheck: Finds spelling! • • spell(C)

routing! !builds the MMDF hashed database of alias and dbmbuild(ADM)
Finds spelling errors. spell, hashmake, spellin, hashcheck: spell(C)

search tables. hsearch, hcreate, hdestroy: Manages hash • hsearch(S)
hexadecimal format. hd: Displays files in hd(C)

hd: Internal hard disk drive. hd(HW)
tables. hsearch, hcreate, hdestroy: Manages hash search hsearch(S)

executable binary files. hdr: Displays selected parts of hdr(CP)
limits: file header fori •••••••• limits(F)

scnhdr: section header for a common object file scnhdr(F)
filehdr: file header for common object files filehdr(F)
unistd: file header for symbolic constants unistd(F)

Changes executable binary file headers. fixhdr: •••••• fixhdr(C)
user. hello: Send a message to another • hello(ADM)

1-33

Permuted Index

program. assert: Helps verify validity of assert(S)
hp: handle special functions of Hewlett~Packard tenninals hp(C)

hd: Displays files in hexadecimal fonnat. hd(C)
CD-ROM filesystem hs: High Sierra/lSO-9600 •••.. hs(F)

filesystem hs: High Sierra/lSO-9660 CD-ROM • hs(F)
layers: protocol used between host and windowing tenninal/ layers(M)

tenninal jagent: host control of windowing • • . . jagent(M)
Machine: Description of host machine. •••••••.. machine(HW)

Hewlett-Packard tenninals hp: handle special functions of hp(C)
Manages hash search tables. hsearch, hcreate, hdestroy: • . • . hsearch(S)

infonnation. hwconfig: Read the configuration . hwconfig(ADM)
sinh, cosh, tanh: Perfonns hyperbolic functions. sinh(S)

Euclidean distance. hypot, cabs: Detennines • • • hypot(S)
i286emu1: emulate 80286 i286emul(C)

value machid: machid, i386 - get processor type truth machid(C)
Gets password for a given user 10. getpw: • • • • • • . getpw(S)

chgrp: Changes group 10. •••••••• chgrp(C)
chown: Changes owner 10. •••••••• chown(C)

disk accounting data by user 10 diskusg: generate diskusg(ADM)
setpgrp: Sets process group 10. •••••••• setpgrp(S)

unique hardware 10 hostid: print hostid(ADM)
hard disks !display logical SCSI 10 numbers for current SCSI scsinfo(ADM)

IDs and names id: print user and group id(ADM)
and names. id: Prints user and group IDs id(C)

kernel idbuild: build new UNIX system • idbuild(ADM)
infonnation idcheck: returns selected idcheck(ADM)
issue: issue identification file • • • . . issue(F)

systemid: The Micnet system identification file. • • • • . systemid(F)
fstyp: detennine file system identifier • • • • . • • • . fstyp(ADM)

devnm: Identifies device name. devnm(C)
what: Identifies files. what(C)

file or file structure fuser: identify processes using a fuser(C)
or file structure fuser: identify processes using a file fuser(C)

or get device driver! idinsta11: add, delete, update, idinsta11(ADM)
idleout: Logs out idle users. •••••.• idleout(ADM)

idleout: Logs out idle users. idleout(ADM)
specifications idmkinit: read files containing idmkinit(ADM)

group, and parent process IDs. !Gets process, process getpid(S)
real group, and effective group IDs. /real user, effective user, getuid(S)

setgid: Sets user and group IDs. setuid, • • setuid(S)
id: Prints user and group IDs and names. •••••• id(C)
id: print user and group IDs and names ••••• id(ADM)

idspace: investigates free space idspace(ADM)
a tunable parameter idtune: attempts to set value of idtune(ADM)

accounting report. imacct: Generate an IMAGEN imacct(C)
core: Fonnat of core image file. core(F)

fonnat of curses screen image file. SeT_dump: sccdump(F)
mem, kmem: Memory image file. mem(M)

imacct: Generate an IMAGEN accounting report. imacct(C)
imprint: Prints text files on an IMAGEN printer. imprint(C)

crash: examine system images •••••••• crash(ADM)

1-34

pnch: file fonnat for card
nohup: Runs a command

limits: file header for
ssignal, gsignal:

IMAGEN printer.
event input. ev...,gindev:

backup:
restore, restor: Invokes

xrestore: Invokes XENIX
backup: Perfonns

restore: AT&T UNIX
xbackup: Perfonns XENIX

dirent: file system
and teletypes last:

"tenninfo descriptions"
/Default backup device

database of alias and routing
fstatfs: get file system

hwconfig: Read the configuration
prints lineprinter status

pstat: Reports system
statfs: get file system

vdinfo: display virtual disk
initialization. init,

special security actions for
initialization.

actions for init and getty
init, inir: Process control
vddaemon: virtual disk

brc: brc, bcheckrc - system
process. popcn, pclose:

tenninals file.
dri: Clears

images •••••••••
immune to hangups and quits.
implementation-specific/
Implements software signals.
imprint: Prints text files on an
include/exclude devices for
Incremental backup tape fonnat.
incremental file system! • • •
incremental file system! • • •
incremental file system backup.
incremental filesystem backup/
incremental filesystem backup.
independent directory entry.
Indicate last logins of users

infocmp: compare or print out
infonnation. •••••
infonnation. /hashed
infonnation.
infonnation.
infonnation. lpstat:
infonnation.
infonnation.
infonnation

Permuted Index

pnch(F)
nohup(C)
limits(F)
ssignal(S)
imprint(C)
ev...,gindev(S)

• backup(F)
restore(ADM)
xrestore(ADM)
backup(ADM)
restore(ADM)
xbackup(ADM)
dirent(F)
last(C)

archive(F)
dbmbuild(ADM)
statfs(S)
hwconfig(ADM)
Ipstat(C)
pstat(C)

inir: Process control ••••••
init and getty initcond:
init, inir: Process control
initcond: special security
initialization. ••••••
initialization
initialization procedures
Initiates I/O to or from a
inittab: Alternative login
inode. • ••••••

inode: Format of an inode. ••••••••
inode: Fonnat of an inode.

statfs(S)
vdinfo(ADM)
init(M)
initcond(ADM)
init(M)
initcond(ADM)
init(M)
vddaemon(ADM)
brc(ADM)
popen(S)
inittab(F)
clri(ADM)
inode(F)
inode(F)
ncheck(ADM)
inp(DOS)
cscanf(DOS)
gets(CP)
ev_open(S)
ev...,gindev(S)
scanf(S)

ncheck: Generates names from

Converts and fonnats console
Gets a string from the standard

Opens an event queue for
devices for event

sscanf: Converts and fonnats
Perfonns standard butrered

fwrite: Performs butrered binary
Pushes character back into

usemouse: Maps mouse
uustat: uucp status

script.
installpkg:

install:
xinstall: XENIX

inode numbers.
inp: Returns a byte.
input. cscanf: • •
input. gets: • • • •
input. ev _open: - •
input. /include/exclude
input. scanf, fscanf,
input and output. stdio:
input and output. fread,
input stream. ungetc: • •
input to keystrokes • • •
inquiry and job control.
install: Installation shell
install package •••••
Installation shell script. •••••
installation shell script

stdio(S)
fread(S)
ungetc(S)
usemouse(C)
uustat(C)
install(M)
installpkg(ADM)
install(M)
xinstall(ADM)

1-35

Permuted Index

removepkg: remove
displaypkg: display

creatsem: Creates an

call.
call.

atol, atoi: Converts string to
the absolute value of a long

abs: Returns an
/164a: Converts between long

sputl, sgetl: Accesses long
between 3-byte integers and long

itoa: Converts numbers to
/1to13: Converts between 3-byte

ltoa: Converts long
against authentication database

for Object Modules. 86rel:
filesystem backup fsave:

system mailx:
plot: graphics

rtc: real time clock
scsi: Small computer systems

swap: swap administrative
termio: General terminal

termios: POSIX general terminal
tty: Special terminal

cdrom: compact disk
audit: audit subsystem

STREAMS configuration
activationJ auditcmd: command

authtsh: administrator
I, tty2[a-hJ , tty2[A-HJ:

Ipl, Ip2: Line printer device
Authentication! authck: check

hd:

installed package
installed packages
installpkg: install package
instance of a binary semaphore.
int86: Executes an interrupt.
int86x: Executes an interrupt.
intdos: Invokes a DOS system
intdosx: Invokes a DOS system
integer. strtol,
integer. labs: Returns • • • •
integer absolute value.
integer and base 64 ASCII.
integer data in a/ • • • • •
integers. /1toI3: Converts
integers. • ••••••
integers and long integers.
integers to characters. • • •
integrity: examine system files
Intel 8086 Relocatable Format
Interactive, error-checking • •
interactive message processing
interface •••••
interface
interface.
interface
interface.
interface.
interface.
interface
interface device •••••
interface for networking!
interface for audit subsystem
interface for authorization!
Interface to serial ports.
interfaces. lp, lpO,
internal consistency of
Internal hard disk drive.

setlocale: Set or read international environment
locale: The international locale.

spline: Interpolates smooth curve.
a restricted shell (command interpreter). rsh: Invokes

sh: Invokes the shell command interpreter. •••••••
csh: Invokes a shell command interpreter with C-like syntax.

ipcs: Reports the status of inter-process communication!
package. ftok: Standard interprocess communication

pipe: Creates an interprocess pipe.
int86: Executes an interrupt. ••

int86x: Executes an interrupt. • •
Suspends execution for a short interval. nap:

sleep: Suspends execution for an interval. •••••
sleep: Suspends execution for an interval.

1-36

removepkg(ADM)
displaypkg(ADM)
installpkg(ADM)
creatsem(S)
int86(DOS)
int86x(DOS)
intdos(DOS)
intdosx(DOS)
strtol(S)
labs(DOS)
abs(S)
a64I(S)
sputl(S)
13tol(S)
itoa(DOS)
13tol(S)
ltoa(DOS)
integrity(ADM)
86rel(F)
fsave(ADM)
mailx(C)
plot(F)
rtc(HW)
scsi(HW)
swap(ADM)
tennio(M)
termios(M)
tty(M)
cdrom(HW)
audit(ADM)
stnntune(ADM)
auditcmd(ADM)
authtsh(ADM)
serial(HW)
1p(HW)
authck(ADM)
hd(HW)
setlocale(S)
10cale(M)
spline(CP)
rsh(C)
sh(C)
csh(C)
ipcs(ADM)
stdipc(S)
pipe(S)
int86(DOS)
int86x(DOS)
nap(S)
sleep(C)
sleep(S)

Permuted Index

services, library routines and! intro: Introduces system Intro(S)
Development System commands. intro: Introduces XENIX Intro(CP)

commands. intro: Introduces XENIX Intro(C)
miscellaneous features and! intro: Introduction to Intro(M)

development functions. intro: Introduction to DOS cross intro(DOS)
formats. intro: Introduction to file Intro(F)

related miscellaneous features! intro: Introduction to machine Intro(HW)
library routines and! intro: Introduces system services, Intro(S)

intro: Introduces XENIX commands. Intro(C)
System commands. intro: Introduces XENIX Development Intro(CP)

development functions. intro: Introduction to DOS cross intro(DOS)
intro: Introduction to file formats. Intro(F)

miscellaneous features! intro: Introduction to machine related Intro(HW)
features and files. intro: Introduction to miscellaneous Intro(M)

idspace: investigates free space idspace(ADM)
be: Invokes a calculator. be(C)

yacc: Invokes a compiler-compiler. yacc(CP)
bdos: Invokes a DOS system call. bdos(DOS)

intdos: Invokes a DOS system call. intdos(DOS)
intdosx: Invokes a DOS system call. intdosx(DOS)

debugger. adb: Invokes a general-purpose adb(CP)
m4: Invokes a macro processor. m4(CP)

calendar: Invokes a reminder service. calendar(C)
(command interpreter). rsh: Invokes a restricted shell rsh(C)

red: Invokes a restricted version of. red(C)
display! vi, view, vedit: Invokes a screen-oriented vi(C)

interpreter with C-like! csh: Invokes a shell command csh(C)
ex: Invokes a text editor. ex(C)

calculator. dc: Invokes an arbitrary precision dc(C)
restore, restor: Invokes incremental file system! restore(ADM)

incremental file! xrestore: Invokes XENIX . xrestore(ADM)
sdb: Invokes symbolic debugger. sdb(CP)
cc: Invokes the C compiler. cc(CP)

ev_init: Invokes the event manager. ev_init(S)
ld: Invokes the link editor. Id(CP)
ld: Invokes the link editor. Id(M)

interpreter. sh: Invokes the shell command sh(C)
sed: Invokes the stream editor. sed(C)
ed: Invokes the text editor. ed(C)

masm: Invokes the XENIX assembler. masm(CP)
vdutil: restart I/O on a mirrored disk vdutil(ADM)

shutdn: Flushes block I/O and halts the CPU. shutdn(S)
select: synchronous I/O multiplexing. select(S)

popen, pclose: Initiates I/O to or from a process. popen(S)
devices. ioct1: Controls character ioct1(S)

abort: Generates an lOT fault. abort(S)
semaphore set or shared memory. ipcrm: Removes a message queue, ipcrm(ADM)

inter-process communication! ipcs: Reports the status of ipcs(ADM)
!islower, isdigit, isxdigit, isalnum, isspace, ispunct./ ctype(S)

isdigit, isxdigitJ ctype, isalpha, isupper, islower, ctype(S)
isverify: verifies ISAM database entries isverify(M)

1-37

Permuted Index

/isprint, isgraph, iscntrl, isascii, tolower, toupperJ
device. isatty: Checks for a character

tenninal. ttyname, isatty: Finds the name of a
/ispunct, isprint, isgraph, iscntrl, isascii, tolowerJ •

/isalpha, isupper, islower, isdigit. isxdigit, isalnumJ
/isspace, ispunct. isprint, isgraph, iscntrl, isasciiJ •

ctype, isalpha, isupper, islower, isdigit, isxdigitJ
state ismpx: return windowing tenninal

hs: High Sierra ISO-9600 CD-ROM filesystem
filesystem hs: High Sierra ISO-9660 CD-ROM
lisalnum, isspace, ispunct. isprint. isgraph, iscntrlJ
/isxdigit, isalnum, isspace, ispunct, isprint, isgraphJ
/isdigit. isxdigit, isalnum, isspace, ispunct, isprintJ

issue: issue identification file
issue: issue identification file

isxdigitJ ctype, isalpha, isupper, islower, isdigit, • •
lisupper, islower, isdigit, isxdigit, isalnum, isspace,1

news: Print news items. •••••••••
integers. itoa: Converts numbers to

Bessel functions. bessel, jO,jl,jn, yO, yl, yn: Perfonns
Bessel functions. bessel, jO, j l, jn, yO, y l, yn: Perfonns •

windowing tenninal jagent: host control of
functions. bessel, jO, j l, jn, yO, yl, yn: Perfonns Bessel

join: Joins two relations.
join: Joins two relations. • • • • .

tenninal jtenn: reset layer of windowing
jwin: print size of layer

keystroke. kbhit: Checks the console for a
test keyboard support kbmode: Set keyboard mode or

builds a new UNIX system kernel. link_unix:
idbuild: build new UNIX system kernel •••••••

meisa: master EISA system kernel configuration file
lor remove line disciplines from kernel configuration files

error: Kernel error output device.
makekey: Generates an encryption key. • •••••••••

keyboard: The PC keyboard. ••••••
support kbmode: Set keyboard mode or test keyboard

Set keyboard mode or test keyboard support kbmode:
keyboard: The PC keyboard.

setkey: Assigns the function keys.
kbhit: Checks the console for a keystroke. •••••

usemouse: Maps mouse input to keystrokes •••••
killall: kill all active processes

process or a group ofl kill: Sends a signal to a
kill: Tenninates a process.

processes killa1l: kill all active

1-38

mem, kmem: Memory image file.
contents of directory. 1: Lists infonnation about

3-byte integers and long! 13tol, ltol3: Converts between
integer and base 641 a641, 164a: Converts between long

systems labelit: provide labels for file

ctype(S)
isatty(DOS)
ttyname(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)

• ismpx(C)
hs(F)
hs(F)
ctype(S)
ctype(S)
ctype(S)
issue(F)
issue(F)
ctype(S)
ctype(S)
news(C)
itoa(DOS)
bessel(S)
bessel(S)
jagent(M)
bessel(S)
join(C)
join(C)
jtenn(C)
jwin(C)
kbhit(DOS)
kbmode(ADM)
link_unix(ADM)
idbuild(ADM)
meisa(F)
idaddld(ADM)
error(M)
makekey(M)
keyboard(HW)

. kbmode(ADM)
kbmode(ADM)
keyboard(HW)
setkey(C)
kbhit(DOS)
usemouse(C)
killall(ADM)
kill(S)
kill(C)
killall(ADM)
mem(M)
1(C)
13tol(S)
a641(S)
labelit(ADM)

Permuted Index

labelit: provide labels for file systems labelit(ADM)
of a long integer. labs: Returns the absolute value labs(DOS)

cpp:The C language preprocessor. cpp(CP)
lint: Checks C language usage and syntax. lint(CP)

/chargefee, ckpacct, dodisk, lastlogin, monacct, nulladmJ acctsh(ADM)
jwin: print size of layer · jwin(C)

login entry to show current layer relogin: rename relogin(ADM)
shl: Shell layer manager. shl(C)

tenninals layers: layer multiplexer for windowing layers(C)
jtenn: reset layer of windowing tenninal jtenn(C)

windowing tenninals layers: layer multiplexer for layers(C)
host and windowing tenninal/ layers: protocol used between layers(M)

columns. lc: Lists directory contents in lc(C)
distributed. srand48, seed48, lcong48: Generates unifonnly drand48(S)

Id: Invokes the link editor. Id(CP)
Id: Invokes the link editor. Id(M)

floating-point number/ frexp, Idexp, modf: Splits frexp(S)
routines Idfcn: common object file access Idfcn(F)

filelength: Gets the length of a file. · fileleng(DOS)
strlen: Returns the length of a string. strlen(DOS)

getopt: Gets option letter from argument vector. getopt(S)
banner: Prints large letters. banner(C)

lexical analysis. lex: Generates programs for lex(CP)
lex: Generates programs for lexical analysis. · lex(CP)

and update. Isearch, lfind: Perfonns linear search lsearch(S)
Converts archives to random libraries. ranlib: ranlib(CP)

ar: Maintains archives and libraries. ar(CP)
ordering relation for an object library. lorder: Finds 10rder(CP)

/Introduces system services, library routines and error/ Intro(S)
maxuuscheds: UUCP uusched limit file. maxuuscheds(F)

maxuuxqts: UUCP uuxqt limit file. · maxuuxqts(F)
ulimit: Gets and sets user limits. · ulimit(S)
implementation-specific/ limits: file header for limits(F)

line: Reads one line. line(C)
idaddld: add or remove line disciplines from kerneV idaddld(ADM)

files idaddld: add or remove line disciplines from kerneV idaddld(ADM)
lsearch, lfind: Perfonns linear search and update. lsearch(S)

col: Filters reverse linefeeds. col(C)
a common object file linenum: line number entries in linenum(F)

cancel: Send/cancel requests to lineprinter. Ip Ip(C)
lpshut, lpmove: Starts/stops the lineprinter request lpsched, Ipsched(ADM)

Ipadmin: Configures the lineprinter spooling system. Ipadmin(ADM)
Ipstat: prints lineprinter status infonnation. Ipstat(C)

Adds, reconfigures and maintains lineprinters. lpinit: Ipinit(ADM)
files. comm: Selects or rejects lines common to two sorted comm(C)

nnb: remove extra blank lines from a file nnb(M)
uniq: Reports repeated lines in a file. uniq(C)

head: Prints the first few lines of a stream. head(C)
paste: Merges lines of files. paste(C)

wc: Counts lines, words and characters. wc(C)
directories link: link, unlink: link and unlink files and link(ADM)

1-39

Permuted Index

ld: Invokes the link editor.
ld: Invokes the link editor.

a.out: Fonnat of assembler and link editor output.
unlink files and directories link: link, unlink: link and

existing file. link: Links a new filename to an
In: Makes a link to a file. ••••••

files and directories link: link, unlink: link and unlink
dosld: XENIX to MS-DOS cross linker. • • • • • • . • • •

existing file. link: Links a new filename to an • •
UNIX system kernel. link_unix: builds a new

and syntax. lint: Checks C language usage
nlist: Gets entries from name list. •••••••••••

nm: Prints name list. •••••••••••
of a varargs argument list. /Prints fonnatted output

varargs: variable argument list. ••••••••••
xlist, fx1ist: Gets name list entries from files.

MMDF list: list processor channel for
queue. ev...,getdev: Gets a list of devices feeding an event

by jsck. checklist: List of file systems processed
majorsinuse: displays the list of major device numbers!

tenninals: List of supported tenninals.
swconfig: produces a list of the software! • • • • •

vectorsinuse: displays the list of vectors currently! • • •
list: list processor channel for MMDF

nlsadmin: network listener service administration
cref: Makes a cross-reference listing. • • • • • • • • • •

columns. lc: Lists directory contents in
of directory. 1: Lists infonnation about contents

who: Lists who is on the system.
file system volcopy: make literal copy of UNIX

In: Makes a link to a file.
locale: The international locale. • •

mestbl: create a messages locale file
chrtbl: create a ctype locale table

coltbl: create a collation locale table
curtbl: create a currency locale table • • • • •

numtbl: Create a numeric locale table.
locale. locale: The international

network. mmdf: routes mail locally and over any supported
tzsct: Converts date and! ctime, localtime, gmtime, asctime,

end, etext, edata: Last locations in program.
memory. lock: Locks a process in primary

lock: Locks a user's tenninal.
memory. plock: Lock process, text, or data in •

record locking on files. lockf: Provide semaphores and
region for reading or writing. locking: Locks or unlocks a file

Provide semaphores and record locking on files. lockf:

1-40

memory. lock: Locks a process in primary
lock: Locks a user's tenninal. •

for reading or! locking: Locks or unlocks a file region
gamma: Perfonns log gamma function.

Id(CP)
Id(M)
a.out(F)
link(ADM)

• link(S)
In(C)
link(ADM)
dosld(CP)
link(S)
link_unix(ADM)
lint(CP)
nlist(S)
nm(CP)
vprintf(S)
varargs(S)
xlist(S)
list(ADM)
ev...,getdev(S)
checklist(F)
majorsinuse(ADM)
tenninals(M)
swconfig(C)
vectorsinuse(ADM)

• list(ADM)
nlsadmin(ADM)
cref(CP)
Ic(C)

• 1(C)
who(C)
volcopy(ADM)
In(C)
10cale(M)
mestbl(M)
chrtbl(M)
coltbl(M)
curtbl(M)
numtbl(M)
10cale(M)
mmdf(ADM)
ctime(S)
end(S)

• 10ck(S)
10ck(C)
plock(S)
10ckf(S)
locking(S)
10ckf(S)
lock(S)
lock(C)
10cking(S)
gamma(S)

exponential, logarithm.! exp,
logarithm.! exp, log, pow, sqrt,

/logIO: Pcrfonns exponential,
10gs:MMDF

strclean: STREAMS error
strerr:STREAMSerror

current SCSI hard disks /display
layer relogin: rename

password. passwd: Change
getlogin: Gets
logname: Gets

cuserid: Gets the
logname: Finds

passwd: Changes
tenninal:

inittab: Alternative
Sets up an environment at

last: Indicate last
user.

idleout:
newgrp:

"goto". setjmp,
for an Object library.

Converts uppercase char-dcters to
uppercase. strupr: Converts

requests to lineprinter.
device interfaces.

administer filters used with the
administer fonns used with the

utility lpsh: Menu driven
device interfaces. lp,

interfaces. lp, lpO,
interfaces. lp, lpO, lp 1,

lineprinter spooling system.
used with the LP print service

with the LP print service
maintains lineprin~rs.

lineprinter/ Ipsched, Ipshut,
attached to the user's tenninal

Starts/stops the lineprinter/
service administration utility
lineprinter request. Ipsched,

status information.
priorities

contents of directories.
search and update.

pointer.
characters.

integers and long! 13tol,

log, pow, sqrt, log 10: Perfonns
log 10: Perfonns exponential, •
logarithm, power, square root!
logfiles •••• •••

Permuted Index

exp(S)
exp(S)
exp(S)

logger cleanup program • • • • •
10gs(F)
strclean(ADM)
strerr(ADM)
scsinfo(ADM)
relogin(ADM)
passwd(C)
getlogin(S)
10gname(C)
cuserid(S)
10gname(S)
passwd(C)
terminal(HW)
inittab(F)
profile(M)
last(C)
10gname(S)
10gname(C)
10gs(F)
idleout(ADM)
newgrp(C)
setjmp(S)
10rder(CP)
strlwr(DOS)
strupr(DOS)
Ip(C)

logger daemon •••••
logical SCSI ID numbers for
login entry to show current
login, group, or dialup shell
login name. • •••••
login name. • •••••
login name of the user.
login name of user.
login password.
Login tenninal.
login tenninals file.
login time. profile:
logins of users and teletypes
logname: Finds login name of
logname: Gets login name.
logs: MMDF log files
Logs out idle users.
Logs user into a new group.
longjmp: Performs a nonlocal
lorder: Finds ordering relation
lowercase. strlwr:
lowercase characters to
Ip, cancel: Send/cancel
lp, lpO, Ip 1, Ip2: Line printer
LP print service Ipfilter:
LP print service Ipforms:
lp print service administration
lpO, Ipl, Ip2: Line printer
lpl, Ip2: Line printer device
Ip2: Line printer device
Ipadmin: Configures the • • •
Ipfilter: administer filters
lpforms: administer forms used
Ipinit: Adds, reconfigures and
Ipmove: Starts/stops the
lprint: Print to a printer
lpsched, lpshut, lpmove:
lpsh: Menu driven lp print
lpshut, lpmove: Starts/stops the
lpstat: prints lineprinter
lpusers: set printing queue •
Is: Gives information about
lsearch, lfind: Performs linear
lseek: Moves read/write file
ltoa: Converts long integers to
ltol3: Converts between 3-byte

IP(HW)
Ipfilter(ADM)
Ipforms(ADM)
Ipsh(ADM)
Ip(HW)
lP(HW)
IP(HW)
Ipadmin(ADM)
Ipfilter(ADM)
Ipforms(ADM)
Ipinit(ADM)
Ipsched(ADM)
Iprint(C)
Ipsched(ADM)
Ipsh(ADM)
Ipsched(ADM)
Ipstat(C)
Ipusers(ADM)
ls(C)
lsearch(S)
lseek(S)
ltoa(DOS)
l3tol(S)

1-41

Permuted Index

m4: Invokes a macro processor.
type truth value machid: machid, i386 - get processor

processor type truth value machid: machid, i386 - get •
Machine: Description of host machine. • • • • • • • •

machine. Machine: Description of host
features/ intro: Introduction to machine related miscellaneous

sysi86: machine specific functions.
values: machine-dependent values •

Accesses long integer data in a machine-independent /sget1:
m4: Invokes a macro processor.

program. tape: Magnetic tape maintenance
tapedump: Dumps magnetic tape to output file.

Sends, reads or disposes of mail. mail: • • • • • •
binary file for transmission via mail uudecode: decode a
binary file for transmission via mail uuencode: encode a

msg: read mail • • • • • • • • •
maildelivery: user mail delivery specification file

deliver: MMDF mail delivery process
submit: MMDF mail enqueuer • • • • •

MMDF queue files for storing mail in transit queue: • •
supported network. mmdf: routes mail locally and over any

nnail: submit remote mail received via UUCP
away rcvtrip: notifies mail sender that recipient is

of mail. mail: Sends, reads or disposes
but not/ checkmail: checks for mail which has been submitted

daemon.mn: Micnet mailer daemon.
processing system mailx: interactive message

free, realloc, calloc: Allocates main memory. malloc,
fdisk: Maintain disk partitions.

libraries. ar: Maintains archives and
lpinit: Adds, reconfigures and maintains lineprinters.
regenerates groups of/ make: Maintains, updates, and

systty: System maintenance device.
tape: Magnetic tape maintenance program.

hard disk device major/minor numbers /display
of major device numbers/ majorsinuse: displays the list •

key. makekey: Generates an encryption
cref: Makes a cross-reference listing.

execseg: makes a data region executable.
SCCS file. delta: Makes a delta (change) to an •

mkdir: Makes a directory. •••••
or ordinary file. mknod: Makes a directory, or a special

In: Makes a link to a file. • • • •
mktemp: Makes a unique filename.

another user. su: Makes the user a super-user or
Allocates main memory. malloc, free, realloc, calloc:

ev _init: Invokes the event manager. • • • • • • • • •
shl: Shell layer manager. . • • • • • • • •

tsearch, tfind, tdelete, twalk: Manages binary search trees.
hsearch, hcreate, hdestroy: Manages hash search tables.

records fwtmp: fwtmp, wtmpfix: manipulate connect accounting

1-42

m4(CP)
machid(C)
machid(C)
rnachine(HW)
rnachine(HW)
Intro(HW)
sysi86(S)
values(M)
sput1(S)
m4(CP)
tape(C)
tapedurnp(C)
mail(C)
uuencode(C)
uuencode(C)
msg(C)
maildelivery(F)
deliver(ADM)
subrnit(ADM)
queue(ADM)
rnmdf(ADM)
nnail(ADM)
rcvtrip(C)
mail(C)
checkmail(C)
daemon.mn(M)
mailx(C)
malloc(S)
fdisk(ADM)
ar(CP)
Ipinit(ADM)
make(CP)
systty(M)
tape(C)
hdutil(ADM)
majorsinuse(ADM)
makekey(M)
cref(CP)

• execseg(S)
delta(CP)
mkdir(C)
mknod(S)
In(C)
mktemp(S)
su(C)
malloc(S)
ev_init(S)
shl(C)
tsearch(S)
hsearch(S)
fwtmp(ADM)

Permuted Index

Ifloating-point number into a mantissa and an exponent. frexp(S)
ascii: Map of the ASCII character set. ascii(M)

mapping. mapchan: Configure tty device mapchan(M)
mapping files. mapchan: Fonnat of tty device mapchan(F)

convkey: Configure monitorl mapkey, mapscm, mapstr, mapkey(M)
Configure monitor screen mapping. /mapstr, convkey: mapkey(M)

mapchan: Configure tty device mapping. • • • • • • • • mapchan(M)
mapchan: Fonnat of tty device mapping files. • • • • • • • mapchan(F)

Usemouse: Maps mouse input to keystrokes . usemouse(C)
Configure monitor I mapkey, mapscm, mapstr, convkey: • . mapkey(M)

monitor screen! mapkey, mapscm, mapstr, convkey: Configure mapkey(M)
Return the current event mask. ev ~etemask: ev -$lemsk(S)

Sets and gets file creation mask. umask: umask(S)
ev _setemask: Sets event mask. ••••••• ev _stemsk(S)

umask: Sets file-creation mode mask. •••••• umask(C)
assembler. masm: Invokes the XENIX masm(CP)

Regular expression compile and match routines. regexp: • regexp(S)
math: math functions and constants math(M)

constants math: math functions and math(M)
function. matherr: Error-handling matherr(S)
limit file. maxuuscheds: UUCP uusched maxuuscheds(F)
limit file. maxuuxqts: UUCP uuxqt maxuuxqts(F)

currently specified in the mdevice file Idevice numbers majorsinuse(ADM)
mdevice: file fonnat. mdevice(F)
mem, kmem: Memory image file. . mem(M)

Lock process, text, or data in memory. plock: . . • . . • • . plock(S)
lock: Locks a process in primary memory. . • • . • • • • . . • 10ck(S)

queue, semaphore set or shared memory. !Removes a message ipcnn(ADM)
realloc, calloc: Allocates main memory. malloc, free, malloc(S)

adjusted when adding more memory ,parameters to be memtune(F)
parameters to match system memory ladjust tunable idmemtune(ADM)

mem, kmem: Memory image file. mem(M)
shmctl: Controls shared memory operations. shmctl(S)
shmop: Perfonns shared memory operations. . shmop(S)

shmget: Gets a shared memory segment. • . • • • shmget(S)
Reports virtual memory statistics. vmstat: vrnstat(C)

administration! atcronsh: Menu driven at and cron atcronsh(ADM)
utility auditsh: Menu driven audit administration . auctitsh(ADM)

administration! backupsh: Menu driven backup backupsh(ADM)
administration utility lpsh: Menu driven lp print service Ipsh(ADM)
administration! sysadmsh: Menu driven system sysadmsh(ADM)

files acctmerg: merge or add total accounting acctmerg(ADM)
sort: Sorts and merges files. .•••••• sort(C)

paste: Merges lines of files. paste(C)
sent to a tenninal. mesg: Pennits or denies messages mesg(C)

msgctl: Provides message control operations. msgctl(S)
mkstr: Creates an error message file from C source. mkstr(CP)

msgop: Message operations. msgop(S)
mailx: interactive message processing system mailx(C)

msgget: Gets message queue. msgget(S)
shared memory. ipcnn: Removes a message queue, semaphore set or ipcnn(ADM)

1-43

Permuted Index

hello: Send a message to another user.
Description of system console messages. messages:

Prints STREAMS trace messages strace:
dosexterr: Gets DOS error messages.
errno: Sends system error messages. Isys_nerr.

console messages. messages: Description of system
mestbl: create a messages locale file

mesg: Permits or denies messages sent to a terminal.
file mestbl: create a messages locale

mfsys: file format. ••• • •
(F) mfsys: file format. •••••

micnet: The Micnet default commands file.
daemon.mn: Micnet mailer daemon.

mnlist: converts a XENIX-style Micnet routing file tol
file. systemid: The Micnet system identification

commands file. micnet: The Micnet default
top. top.next: The Micnet topology files.
vdutil: rebuild a mirrored disk

vdutil: repair bad block on a mirrored disk
vdutil: restart I/O on a mirrored disk

add.vd: add a mirrored (virtual) disk
de1.vd: delete a mirrored (virtual) disk

1- overview of accounting and miscellaneous accounting!
!Introduction to machine related miscellaneous features and!

files. intro: Introduction to miscellaneous features and
mkdir: Creates a new directory.
mkdir: Makes a directory.
mkfs: Constructs a file system.
mknod: Builds special files.

special or ordinary file. mknod: Makes a directory. or a
file from C source. mkstr: Creates an error message

mktemp: Makes a unique filename.
list: list processor channel for MMDF •••••••••

program checkaddr: MMDF address verification
/Micnet routing file to MMDF format.
/UUCP routing file to MMDF format. •••••

XENIX-style aliases file to MMDF format. lconverts
alias and! dbmbuild: builds the MMDF hashed database of

1-44

logs: MMDF log files •••••
deliver: MMDF mail delivery process
submit: MMDF mail enqueuer
tables: MMDF Name Tables

mail in transit queue: MMDF queue files for storing
generator checkque: MMDF queue status report

over any supported network. mmdf: routes mail locally and
aliases file to MMDFI mmdfalias: converts XENIX-style

Micnet routing file tol mnlist: converts a XENIX-style
mnt: Mount a filesystem • • •

system table. mnttab: Format of mounted file
setmode: Sets translation mode.

sulogin: access single-user mode

hello(ADM)
messages(M)
strace(ADM)
dosexter(DOS)
perror(S)
messages(M)
mestbl(M)
mesg(C)
mestbl(M)
mfsys(F)
mfsys
micnet(F)
daemon.mn(M)
mnlist(ADM)
systemid(F)
micnet(F)
top(F)
vdutil(ADM)
vdutil(ADM)
vdutil(ADM)
add.vd(ADM)
de1.vd(ADM)
acct(ADM)
Intro(HW)
Intro(M)
mkdir(DOS)
mkdir(C)
mkfs(ADM)
mknod(C)
mknod(S)
mkstr(CP)
mktemp(S)
list(ADM)
checkaddr(ADM)
mnlist(ADM)
uulist(ADM)
mmdfalias(ADW)
dbmbuild(ADM)
10gs(F)
deliver(ADM)
submit(ADM)
tables(F)
queue(ADM)
checkque(ADM)
mmdf(ADM)
mmdfalias(ADM)
mnlist(ADM)
mnt(C)
mnttab(F)
setmode(DOS)
sulogin(ADM)

Permuted Index

vidi: Sets the font and video mode for a video device. vidi(C)
umask: Sets file-creation mode mask. umask(C)

chmod: Changes mode of a file. . chmod(S)

h,
kbmode: Set keyboard mode or test keyboard support kbmode(ADM)

,/ dial: Dials a modem. dial(ADM)
pcu: modem port configuration pcu(ADM)

uuchat: dials a modem. dial(ADM)
xprcat: transparent printer over modem line command xprcat(C)

tset: Sets tenninal modes. . tset(C)
setmode: port modes utility setmode(C)

getty: Sets tenninal type, modes, speed, and line! getty(M)
uugetty: set tenninal type, modes, speed, and line! uugetty(ADM)

number into a/ frexp, ldexp, modf: Splits floating-point frexp(S)
settime: Changes the access and modification dates of files. settime(ADM)

utime: Sets file access and modification times. utime(S)
touch: Updates access and modification times of a file. touch(C)

/produces a list of the software modifications to the system swconfig(C)
entry points in a driver object module. routines: finds driver routines(ADM)

Relocatable Fonnat for Object Modules. 86rel: Intel 8086 86rel(F)
!ckpacct, dodisk, lastlogin, monacct, nulladm, prctmpJ acctsh(ADM)

profile. monitor: Prepares execution monitor(S)
/mapstr, convkey: Configure monitor screen mapping. mapkey(M)

uusub: Monitor uucp network. uusub(C)
tty[OI-n], color, monochrome, ega,. screen: screen(HW)

mnt: Mount a filesystem mnt(C)
fstab: File system mount and check commands. fstab(F)

mount: Mounts a file structure. mount(ADM)
mount: Mounts a file system. mount(S)

mountall: mountall, umountall - mount, unmount multiple file! mountall(ADM)
mountall: mountall, umountall mount, unmount multiple file! mountall(ADM)
mount, unmount multiple file! mounta1l: mountall, umountall - mountall(ADM)

unmount multiple file! mountall: mountall, umountall - mount, mountall(ADM)
mnttab: Fonnat of mounted file system table. mnttab(F)

!Default infonnation for mounting filesystems. filesys(F)
mount: Mounts a file structure. mount(ADM)
mount: Mounts a file system. mount(S)

mouse: System mouse. . . mouse(HW)
usemouse: Maps mouse input to keystrokes usemouse(C)

mouse: System mouse. mouse(HW)
specific address. movedata: Copies bytes from a movedata(DOS)

mvdir: Moves a directory. mvdir(C)
directories. mv: Moves or renames files and mv(C)

lseek: Moves read/write file pointer. lseek(S)
utility mscreen: Serial multi screens mscreen(M)

dosld: XENIX to MS-DOS cross linker. dosld(CP)
msg: read mail msg(C)

operations. msgctl: Provides message control msgctl(S)
msgget: Gets message queue. msgget(S)
msgop: Message operations. msgop(S)
mtune: file fonnat. mtune(F)

umountall - mount, unmount multiple file systems /mountall, mounta1l(ADM)

1-45

Permuted Index

used by x t (7)/ xtproto: multiplexed channels protocol xtproto(M)
windowing terminals xt: multiplexed tty driver for AT&T . xt(HW)

terminals layers: layer multiplexer for windowing layers(C)
select: synchronous I/O multiplexing. • • • • • select(S)

mscreen: Serial multi screens utility • • • mscreen(M)
rc2: run commands performed for multiuser environment rc2(ADM)

directories. mv: Moves or renames files and mv(C)
mvdir: Moves a directory. mvdir(C)

Gets value for environment name. getenv: ••••• getenv(S)
devnm: Identifies device name. • • • • • • • devnm(C)

getIogin: Gets login name. • • • • • getIogin(S)
logname: Gets login name. •••••••••••• 10gname(C)

pwd: Prints working directory name. •••••••••• pwd(C)
tty: Gets the terminal's name. • • • • • tty(C)

Prints user and group IDs and names. id: id(C)
user and group IDs and names id: print id(ADM)

specific hard disk device names /display and remove hdutil(ADM)
ncheck: Generates names from inode numbers. ncheck(ADM)

basename: Removes directory names from pathnames. basename(C)
archive. dumpdir: Prints the names of files on a backup . • dumpdir(C)

short interval. nap: Suspends execution for a napeS)
access to a resource/ waitsem, nbwaitsem: Awaits and checks waitsem(S)

inode numbers. ncheck: Generates names from ncheck(ADM)
network. netutil: Administers the XENIX netutil(ADM)

locally and over any supported network. mmdf: routes mail mmdf(ADM)
netutil: Administers the XENIX network. • • • • • • • netutil(ADM)

uusub: Monitor uucp network. •• • • • • • • . uusub(C)
administration nlsadmin: network listener service . • nlsadmin(ADM)

/configuration interface for networking products strmtune: strmtune(ADM)
/configuration utility for networking products strmcfg: stnncfg(ADM)

XENIX-style/ addxusers: add new user accounts given a • . addxusers(ADM)
text file. newform: Changes the format of a . newform(C)

group. newgrp: Logs user into a new newgrp(C)
news: Print news items. • • • • • • • • news(C)

news: Print news items. news(C)
/fetch, store, delete, firstkey, nextkey: Performs database/ dbm(S)

tables nictable: process NIC database into channel/domain nictable(ADM)
process. nice: Changes priority of a • • nice(S)

different priority. nice: Runs a command at a nice(C)
into channel/domain tables nictable: process NIC database nictable(ADM)

nl: Adds line numbers to a file. nl(C)
list. nlist: Gets entries from name nlist(S)

service administration nlsadmin: network listener • • nlsadmin(ADM)
nm: Prints name list. nm(CP)

hangups and quits. nohup: Runs a command immune to nohup(C)
setjmp, longjmp: Performs a nonlocal "goto". ••••• setjmp(S)

goodpw: Check a password for non-obviousness. ••••••• goodpw(ADM)
false: Returns with a nonzero exit value. • • • • • • • false(C)

is away rcvtrip: notifies mail sender that recipient . rcvtrip(C)
Terminal driving tables for nroff. term: term(F)

null: The null file. ••••••••••• null(F)

1-46

Permuted Index

null: The null file. . . null (F)
Idodisk, lastlogin, monacct, nulladm, prcbnp, prdailyJ acctsh(ADM)

a string to a double-precision number. strtod, atof: Converts strtod(S)
factor: Factor a number. . factor(C)

rand, srand: Generates a random number. rand(S)
random: Generates a random number. random (C)
Generates names from inode numbers. ncheck: ncheck(ADM)
atoi, atol: Converts ASQI to numbers. atof, atof(S)

hard disk device major/minor numbers ,uisplay hdutil(ADM)
library routines and error numbers. }.;ystem services, Intro(S)

thel /the list of major device numbers currently specified in majorsinuse(ADM)
nl: Adds line numbers to a file. nl(C)

ultoa: Converts numbers to characters. ultoa(DOS)
itoa: Converts numbers to integers. itoa(DOS)

numtbl: Create a numeric locale table. numtbl(M)
table. numtbl: Create a numeric locale numtbl(M)

DMD tenninal wtinit: object downloader for the 5620 wtinit(ADM)
infonnation for a common object file reloc: relocation reloc(F)

line number entries in a common object file linenum: linenum(F)
section header for a common object file scnhdr: scnhdr(F)

size: Prints the size of an object file. size(CP)
the printable strings in an object file. strings: Finds strings(CP)

ldfcn: common object file access routines Idfcn(F)
syms: common object file symbol table fonnat syms(F)

filehdr: file header for common object files filehdr(F)
Finds ordering relation for an object library. lorder: . . 10rder(CP)
driver entry points in a driver object module. routines: finds routines(ADM)
8086 Relocatable Fonnat for Object Modules. 86rel: Intel 86rel(F)

a process until a signal occurs. pause: Suspends pause(S)
od: Displays files in octal fonnat. . . od(C)

fonnat. od: Displays files in octal od(C)
Invokes a restricted version of. red: red(C)

fp_off, fp_seg: Return oflSet and segment. fp_seg(DOS)
new file or rewrites an existing one. creat: Creates a creat(S)

and writing. sopen: Opens a file (or shared reading sopen(DOS)
opensem: Opens a semaphore. opensem(S)

fopen, freopen, fdopen: Opens a stream. fopen(S)
ev_open: Opens an event queue for input. ev_open(S)

writing. open: Opens file for reading or open(S)
opensem: Opens a semaphore. opensem(S)

commands perfonned to stop the operating system rcO: run rcO(ADM)
prf: operating system pro filer prf(HW)

closedir: Perfonns directory operations. directory(S)
msgct1: Provides message control operations. msgct1(S)

msgop: Message operations. msgop(S)
semctl: Controls semaphore operations. semctl(S)
semop: Perfonns semaphore operations. semop(S)

shmct1: Controls shared memory operations. shmct1(S)
shmop: Perfonns shared memory operations. shmop(S)

strdup: Perfonns string operations. string(S)
UNIX filesystems for optimal access time dcopy: copy dcopy(ADM)

1-47

Permuted J ndex

vector. getopt: Gets
fcnt1: file control

getopt: Parses command
getoptcvt - parse command

stty: Sets the
library. lorder: Finds

a directory, or a special or
otar:

Copies file archives in and
dial: Establishes an

port.
buffered binary input and

cprintf: Formats
fprintf, sprintf: Formats

of assembler and link editor
pr: Prints files on the standard

standard buffered input and
ftushall: Flushes all

ecvt, fcvt, gcvt: Performs
error: Kernel error

tapedump: Dumps magnetic tape to
/vsprintf: Prints formatted

outp: Writes a byte to an
parameters sysdef:

/acctdusg, accton, acctwtmp -
/acctdusg, accton, acctwtmp

purge:
chown: Changes the

chown: Changes
quot: Summarizes file system

and expands files.
installpkg: install

interprocess communication
removepkg: remove installed
sadc - system activity report

displaypkg: display installed
xtt: extract and print xt driver

terminal 4014:
to set value of a tunable

strmcfg: calculate STREAMS
sysdef: output values of tunable

system! /adjusts tunable
when adding mote memory

Gets process, process group, and
getopts: getopts, getoptcvt -

getopts: getopts, getoptcvt
getopt:

fdisk: Maintain disk
files. hdr: Displays selected

dialup shell password.

1-48

option letter from argument
options •••••••
options. • ••••••
options getopts: getopts,
options for a terminal.
ordering relation for an object
ordinary file. mknod: Makes
original tape archive command
out. cpio: • • .'.
out-going terminal line/ • • •
outp: Writes a byte to an output
output. fread, fwrite: Performs
output •••••••
output printf, • • • •
output a.out: Format
output. •••••••
output. stdio: Performs
output buffers. • • • • • • •
output conversions.
output device. • • • • • • •
output file.
output of a varargs/
output port. • • •
output values of tunable
overview of accounting and!
overview of accounting and!
overwrites specified files
owner and group of a file.
ownerlD. • •••••••
ownership. • ••••••
pack, peat, unpack: Compresses
package ••••••••
package. ftok: Standard • •
package ••••••••
package sar: sar,sal,sa2,
packages ••••••••

getopt(S)
fcnt1(M)
getopt(C)
getopts(C)
stty(C)
10rder(CP)
mknod(S)
otar(C)
cpio(C) ,
dial(S)
outp(DOS)
fread(S)
cprintf(DOS)
printf(S)
a.out(F)
pr(C)
stdio(S)
ftushall(DOS)
ecvt(S)
error(M)
tapedump(C)
vprintf(S)
outp(DOS)
sysdef(ADM)
acct(ADM)
acct(ADM)
purge(C)
chown(S)
chown(C)
quot(C)

• pack(C)
installpkg(ADM)
stdipe(S)
removepkg(ADM:
sar(ADM)
displaypkg(ADM,

packet traces ••••••
paginator for the TEKTRONIX 4014
parameter idtune: attempts
parameter values

xtt(ADM)
4014(C)
idtune(ADM)
strmcfg(ADM)
sysdef(ADM)
idmemtune(ADM
mem~ne(F)

getpid(S)
getopts(C)
getopts(C)
getopt(C)
fdisk(ADM)
hdr(CP)

parameters •••••
parameters to match
paramters to be adjusted
parent process IDs. /getppid:
parse command options ••
parse command options ••
Parses command options.
partitions. ••••••
parts of executable binary
passwd: Change login, group, or
passwd: The password file.

• passwd(C)
passwd(F)

Permuted Index

getpass: Reads a password. •••••• getpass(S)
login, group, or dialup shell password. passwd: Change passwd(C)

passwd: The password file. •••••• passwd(F)
pwcheck: Checks password file. • • • • • pwcheck(C)

new user accounts given a/ password file addxusers: add addxusers(ADM)
putpwent: Writes a password file entry. putpwent(S)

setpwent, endpwent: Gets password file entry. /getpwnam, • getpwent(S)
getpw: Gets password for a given user ID. • • . getpw(S)

goodpw: Check a password for non-obviousness. goodpw(ADM)
paste: Merges lines of files. paste(C)

Delivers directory part of pathname. dirname: dirname(C)
directory. getcwd: Get the pathname of current working getcwd(S)

Removes directory names from pathnames. basename: basename(C)
fgrep: Searches a file for a pattern. grep, egrep, grep(C)

Searches for and processes a pattern in a file. awk: • • • • awk(C)
a signal occurs. pause: Suspends a process until pause(S)

pax: portable archive exchange pax(C)
keyboard: The PC keyboard. ••••••• keyboard(HW)

expands files. pack, peat, unpack: Compresses and pack(C)
a process. popen, pelose: Initiates I/O to or from popen(S)
reduction reduce: perform audit data analysis and reduce(ADM)

environment rc2: run commands performed for multiuser • • • • . rc2(ADM)
system rcO: run commands performed to stop the operating rcO(ADM)

bsearch: Performs a binary search. bsearch(S)
setjmp,longjmp: Performs a nonlocal "goto". setjmp(S)

qsort: Performs a quicker sort. ••• qsort(S)
floor, fabs, ceil, fmod: Performs absolute value, floor,/ floor(S)

bessel,jO,jl,jn, yO, yl, yo: Performs Bessel functions. • • • • bessel(S)
and output. fread, fwrite: Performs buffered binary input fread(S)
/delete, firstkey, nextkey: Performs database functions. • • • dbm(S)

closedir: Performs directory operations. directory(S)
exp, log, pow, sqrt, log 10: Performs exponential, logarithm,/ . exp(S)

sinh, cosh, tanh: Performs hyperbolic functions. sinh(S)
backup. backup: Performs incremental file system . backup(ADM)

update. lsearch,lfind: Performs linear search and • • lsearch(S)
gamma: Performs log gamma function. gamma(S)

ecvt, fcvt, gcvt: Performs output conversions. ecvt(S)
system backups fsphoto: Performs periodic semi-automated • fsphoto(ADM)

functions backup: performs UNIX backup backup(ADM)
incremental filesystem/ xbackup: Performs XENIX • • • • • • xbackup(ADM)

functions. curses: Performs screen and cursor curses(S)
semop: Performs semaphore operations. • semop(S)

operations. shmop: Performs shared memory shmop(S)
and output. stdio: Performs standard buffered input . stdio(S)

strdup: Performs string operations. • • string(S)
/tgetflag, tgetstr, tgoto, tputs: Performs terminal functions. termcap(S)

tan, asin, acos, atan, atan2: Performs trigonometric/ /cos, trig(S)
backups fsphoto: Performs periodic semi-automated system • fsphoto(ADM)

check the uucp directories and permissions file uucheck: uucheck(ADM)
permissions: Format of UUCP Permissions file. •• • • • • permissions(F)

Permissions file. permissions: Format of UUCP permissions(F)

1-49

Permuted Index

chmod: Changes the access pennissions of a file orl ••• chmod(C)
to a tenninal. mesg:

acct: Fonnat of
acctcms: command summary from

ermo: Sends system errorl
split: Splits a file into

pipe: Creates an interprocess
tee: Creates a tee in a

pipe.
data in memory.

images
lseek: Moves read/write file

the current position of the file
rewind: Repositions a file

routines: finds driver entry
utility purge(C) purge: the

poll: Fonnat of UUCP

queue. ev _pop:
or from a process.

outp: Writes a byte to an output
pcu:

setmode:
pax.:

tty2[A-H]: Interface to serial
pscat: ASCII -to­

exponentialJ exp, log,
powerfail: perfonns

restart: perfonns
/Perfonns exponential, logarithm,

output.
/lastlogin, monacct, nulladm,

/monacct, nulladm, prctmp,
dc: Invokes an arbitrary

monitor:
cpp: The C language

unget: Undoes a

Pennits or denies messages sent • mesg(C)
per-process accounting file. acct(F)
per-process accounting records acctcms(ADM)
perror, sys_errlist, sys_nerr, perror(S)
pieces. split(C)
pipe. •••••••••• pipe(S)
pipe. ••••••••• tee(C)
pipe: Creates an interprocess pipe(S)
plock: Lock process, text, or plock(S)
plot: graphics interface plot(F)
pnch: file fonnat for card pnch(F)
pointer. •••••• lseek(S)
pointer. tell: Gets tell(DOS)
pointer in a stream. Iftell, fseek(S)
points in a driver object! • routines(ADM)
policy file of the sanitization purge(F)
Fbll file. ••••••.• poll(F)
poll: Fonnat of UUCP Poll file. poll(F)
Pop the next event off the ev _pop(S)
popen, pelose: Initiates I/O to popen(S)
port. •••••••• outp(DOS)
port configuration utility pcu(ADM)
port modes utility • • • • • setmode(C)
portable archive exchange pax.(C)
ports. I, tty 1 [A-H], tty2[a-h], serial(HW)
FbstScript filter •••••• pscat(C)
pow, sqrt, 10glO: Perfonns • exp(S)
power failure shutdown service • powerfail(M)
power failure recovery service restart(M)
power, square root functions. exp(S)
pr: Prints files on the standard pr(C)
prctmp, prdaily, prtacctJ acctsh(ADM)
prdaily, prtacct, runacctJ acctsh(ADM)
precision calculator. dc(C)
Prepares execution profile. monitor(S)
preprocessor. •••••
previous get of an SCCS file.
prf: operating system profiler

cpp(CP)

profiler: prild, prfstat, prfdc, prfsnap, prfpr -I
prfpr - UNIX! profiler: prftd, prfstat, prfdc, prfsnap,

Iprftd, prfstat, prfdc, prfsnap, prfpr - UNIX system!

unget(CP)
prf(HW)
profiler(ADM)
profiler(ADM)
profiler(ADM)
profiler(ADM)
profiler(ADM)
10ck(S)

profiler: prftd, prfstat, prfdc, prfsnap, prfpr - UNIX! • • • •
-/ profiler: prftd, prfstat, prfdc, prfsnap, prfpr

lock: Locks a process in primary memory. •••••
graphical files gps: graphical primitive string, fonnat of • •

types: Primitive system data types.
temporarily privs: print and/or restrict privileges

to a serial/ consoleprint: Print file to printer attached
news: Print news items. •••••

infocmp: compare or print out tenninfo descriptions

I-50

gps(F)
types(F)
privs(C)
consoleprint(ADM
news(C)
infocmp(ADM)

filters used with the LP print service /administer
forms used with the LP print service /administer

utility Ipsh: Menu driven Ip print service administration
jwin: print size of layer

the user's terminal lprint: Print to a printer attached to
hostid: print unique hardware ID

and names id: print user and group IDs • •
xtt: extract and print xt driver packet traces
xts: extract and print xt driver statistics

file. strings: Finds the printable strings in an object
Prints text files on an IMAGEN printer. imprint: •• •

pcu: printer port configuration
xprsetup: transparent printer setup utility

command xprcat: transparent printer over modem line
consoleprint: Print file to printer attached to a seria1/
terminal Iprint: Print to a printer attached to the user's

Ip,lpO,lpl,lp2: Line printer device interfaces.
xprtab: system tty transparent printer map file

Thms on terminals and line printers. enable:
disable: Thms ofIterminals and printers. •.

Formats output. printf, fprintf, sprintf:
lpusers: set printing queue priorities

cal: Prints a calendar.
prs: Prints an SCCS file.

sddate: Prints and sets backup dates.
date: Prints and sets the date.

activity. sact: Prints current SCCS file editing
output. pr: Prints files on the standard •

vprintf, vfprintf, vsprintf: Prints formatted output of at
banner: Prints large letters.

information. lpstat: prints lineprinter status
om: Prints name list.

file system fsname: Prints or changes the name of a
acctcom: Searches for and prints process accounting files.

messages strace: Prints STREAMS trace
yes: Prints string repeatedly.

printer. imprint: Prints text files on an IMAGEN
stream. head: Prints the first few lines of a

UNIX system. uname: Prints the name of the current
backup archive. dumpdir: Prints the names of files on a

file. size: Prints the size of an object
names. id: Prints user and group IDs and

pwd: Prints working directory name.
lpusers: set printing queue priorities • • • •

Runs a command at a different priority. nice: • •
nice: Changes priority of a process.

privs: print and/or restrict privileges temporarily
privileges temporarily privs: print and/or restrict
- system initialization procedures brc: brc, bcheckrc

/startup, tumacct - shell procedures for accounting
Initiates I/O to or from a process. popen, pclose:

Permuted Index

Ipfilter(ADM)
Ipforms(ADM)
Ipsh(ADM)
jwin(C)
Iprint(C)
hostid(ADM)
id(ADM)
xtt(ADM)
xts(ADM)
strings(CP)
imprint(C)
pcu(ADM)
xprsetup(ADM)
xprcat(C)
consoleprint(ADM)
Iprint(C)
IP(HW)
xprtab(F)
enable(C)
disable(C)
printf(S)
Ipusers(ADM)
cal(C)
prs(CP)
sddate(C)
date(C)
sact(CP)
pr(C)
vprintf(S)
banner(C)
Ipstat(C)
nm(CP)
fsname(ADM)
acctcom(ADM)
strace(ADM)
yes(C)
imprint(C)
head(C)
uname(C)
dumpdir(C)
size(CP)
id(C)
pwd(C)
Ipusers(ADM)
nice(C)
nice(S)
privs(C)
privs(C)
brc(ADM)
acctsh(ADM)
popen(S)

I-51

Permuted Index

deliver: MMDF mail delivery process deliver(ADM)
exit, _exit: Tenninates a process. exit(S)

exit: Tenninates the calling process. exit(DOS)
fork: Creates a new process. • • • • • fork(S)

kill: Tenninates a process. kill(C)
nice: Changes priority of a process. nice(S)

ptrace: Traces a process. • • • • • ptrace(S)
spawnl, spawnvp: Creates a new process. spawn(DOS)

acct: Enables or disables process accounting. •••••• acct(S)
acctprc: acctprcl, acctprc2 - process accounting acetprc(ADM)

acetprc: acctprcl, acetprc2 process accounting • • • • • acctprc(ADM)
acctcom: Searches for and prints process accounting files. acctcom(ADM)

alarm: Sets a process' alarm clock. alarm(S)
times: Gets process and child process times. . times(S)

init, inir: Process control initialization. • • • init(M)
timex: time a command; report process data and system activity • timex(ADM)

/getpgrp, getppid: Gets process, process group, and parenti getpid(S)
setpgrp: Sets process group ID. ••••••• setpgrp(S)

process group, and parent process IDs. /Gets process, getpid(S)
lock: Locks a process in primary memory. lock(S)

channeVdomain tables nictable: process NIe database into • • nictable(ADM)
kill: Sends a signal to a process or a group of processes. kill(S)

getpid, getpgrp, getppid: Gets process, process group, and! getpid(S)
ps: Reports process status. • • • • ps(C)

memory. plock: Lock process, text, or data in plock(S)
times: Gets process and child process times. • • • • times(S)

wait: Waits for a child process to stop or tenninate. wait(S)
pause: Suspends a process until a signal occurs. pause(S)
sigsem: Signals a process waiting on a semaphore. • sigsem(S)

checklist: List of file systems processed by fsck. checklist(F)
Awaits completion of background processes. wait: •• • • • • • • wait(C)

killall: kill all active processes •••••••. killall(ADM)
to a process or a group of processes. kill: Sends a signal kill(S)

awk: Searches for and processes a pattern in a file. awk(C)
shutdown: Tenninates all processing. shutdown(ADM)

mailx: interactive message processing system mailx(C)
m4: Invokes a macro processor. m4(CP)

list: list processor channel for MMDF list(ADM)
machid: machid, i386 - get processor type truth value rnachid(C)

subsystem events dlvr_audit: produce audit records for dlvcaudit(ADM)
modifications to the/ swconfig: produces a list of the software swconfig(C)

prof: Displays profile data. . prof(CP)
prof: profile within a function prof(M)

time profile. profil: Creates an execution profil(S)
Creates an execution time profile. profil: profil(S)

monitor: Prepares execution profile. ••••••• monitor(S)
prof: Displays profile data. • • • • • • . prof(CP)
at login time. profile: Sets up an environment profile(M)

prof: profile within a function prof(M)
prf: operating system profiler •••••• prf(HW)
prfpr - UNIX system profiler /prfdc, prfsnap, profiler(ADM)

I-52

prfsnap, prfpr - UNIX/ profiler: prfld, prfstat, prfdc,
assert: Helps verify validity of program. • • •

boot: XENIX boot program. • • •
etext, edata: Last locations in program. end,

tape: Magnetic tape maintenance program. • •
ksh: standard command and programming language

rksh: restricted command and programming language
and regenerates groups of programs. /Maintains,updates,

cb: Beauti fies C programs.
xref: Cross-references C programs. ••••••••

xstr: Extracts strings from C programs. ••••••••
lex: Generates programs for lexical analysis.

domain of a program promain: restrict the execution
day. asktime: Prompts for the correct time of

proto: prototype job file for at
windowing terminal/ layers: protocol used between host and

xtproto: multiplexed channels protocol used by x t (7)/
proto: prototype job file for at

labelit: provide labels for file systems
locking on files. lockf: Provide semaphores and record

operations. msgctl: Provides message control
prs: Prints an SCCS file.

/nulladm, prctmp, prdaily, prtacct, runacct, shutacct.!
ps: Reports process status.

sxt: Pseudo-device driver. • •
information. pstat: Reports system • • •

ptrace: Traces a process.
files purge: overwrites specified

sanitization utility purge(C) purge: the policy file of the
file of the sanitization utility purge(C) purge: the policy

stream. ungetc: Pushes character back into input
a character or word on a/ putc, putchar, fputc, putw: Puts

console. putch: Writes a character to the
character or word on a/ putc, putchar, fputc, putw: Puts a

environment. putenv: Changes or adds value to
entry. putpwent: Writes a password file

putc, putchar, fputc, putw: Puts a character or word on a/
puts, fputs: Puts a string on a stream.

cputs: Puts a string to the console.
stream. puts, fputs: Puts a string on a

on a/ putc, putchar, fputc, putw: Puts a character or word
pwcheck: Checks password file.

name. pwd: Prints working directory
tapecntl: AT&T tape control for QIC-24/QIC-02 tape device

qsort: Performs a quicker sort.
tput: Queries the terminfo database.

Pop the next event off the queue. ev_pop:
Read the next event in the queue. ev _read: •• • •
all events currently in the queue. ev _flush: Discard

ev _resume: Restart a suspended queue. • • • • • •
ev _suspend: Suspends an event queue. • • • • • • • •

Permuted Index

profiler(ADM)
assert(S)
boot(HW)
end(S)
tape(C)
ksh(C)
ksh(C)
make(CP)
cb(CP)
xref(CP)
xstr(CP)
lex(CP)
promain(M)
asktime(ADM)
proto(ADM)
layers(M)
xtproto(M)
proto(ADM)
labelit(ADM)
lockf(S)
msgctl(S)
prs(CP)
acctsh(ADM)
ps(C)
sxt(M)
pstat(C)
ptrace(S)
purge(C)
purge(F)
purge(F)
ungetc(S)
putc(S)
putch(DOS)
putc(S)
putenv(S)
putpwent(S)
putc(S)
puts(S)
cputs(DOS)
puts(S)
putc(S)
pwcheck(C)
pwd(C)
tapecntl(C)
qsort(S)
tput(C)
ev-POp(S)
ev_read(S)
ev _flush(S)
ev _resume(S)
ev_susp(S)

I-53

Permuted Index

list of devices feeding an event
msgget: Gets message

of events currently in the
ev 3lose: Close the event

ev _block: Wait until the
transit queue: MMDF

ev _open: Opens an event
storing mail in transit

lpusers: set printing
ipcnn: Removes a message

checkque: MMDF
qsort: Perfonns a

a command immune to hangups and
ownership.

number.
number.

ranlib: Converts archives to
rand, srand: Generates a

random: Generates a
random libraries.

FORTRAN into standard FORTRAN.
FORTRAN. ratfor: Converts

stop the operating system
multiuser environment

systems.
data to be read.

to see if there is data to be
generated by the audit! auditd:

in a file. getdents:
specifications idmkinit:

setlocale: Set or
msg:

infOImation. hwconfig:
queue. ev _read:

sopen: Opens a file for shared
open: Opens file for

or unlocks a file region for
getpass:

defopen, defread:
read:

queue. ev ~etdev: Gets a
queue. • ••••••••
queue. /Returns the number
queue and all associated!
queue contains an event
queue files for storing mail in
queue for input. •••••
queue: MMDF queue files for
queue priorities •••••
queue, semaphore set or shared!
queue status report generator
quicker sort. ••••••
quits. nohup: Runs • • • •
quot: Summarizes file system
rand, srand: Generates a random
random: Generates a random
random libraries.
random number. • • • • •
random number. •••• •
ranlib: Converts archives to
ratfor: Converts Rational
Rational FORTRAN into standard
reO: run commands perfonned to
re2: run commands perfonned for
rep: Copies files across XENIX
rdchk: Checks to see if there is
read. rdchk: Checks
read audit collection files
read directory entries and put
read files containing
read international environment
read mail ••••••.
read: Reads from a file.
Read the configuration
Read the next event in the
reading and writing.
reading or writing.
reading or writing. /LOCks
Reads a password.
Reads default entries.
Reads from a file. •••••

ev ~etdev(S)
msgget(S)
eV30unt(S)
eV3Iose(S)
ev _block(S)
queue(ADM)
ev_open(S)
queue(ADM)
Ipusers(ADM)

• ipcnn(ADM)
checkque(ADM)
qsort(S)
nohup(C)
quot(C)

• rand(S)
random(C)
ranlib(CP)
rand(S)
random(C)
ranlib(CP)
ratfor(CP)

• ratfor(CP)
· reO(ADM)
• re2(ADM)

rep(C)
rdchk(S)
rdchk(S)
auditd(ADM)
getdents(S)
idmkinit(ADM)
setlocale(S)
msg(C)
read(S)
hwconfig(ADM)
ev_read(S)
sopen(DOS)
open(S)
locking(S)
getpass(S)
defopen(S)
read(S)

line: Reads one line. line(C)
mail: Sends.readsordisposesofmail.mail(C)

lseek: Moves read/write file pointer. lseek(S)
memory. malIoc, free, realIoc, calloc: Allocates main malloc(S)
getclk: gets string from real-time clock •••••• getclk(M)

clock: The system real-time (time of day) clock. clock(F)
setclock: Sets the system real-time (time of day) clock. setclock(ADM)

systems and shuts down! haltsys, reboot: Closes out the file haltsys(ADM)
vdutil: rebuild a mirrored disk ••••• vdutil(ADM)

Specifies what to do upon receipt of a signal. signal: signal(S)

I-54

nnail: submit remote mail
lineprinters. lpinit: Adds,

lockf: Provide semaphores and
from per-process accounting

manipulate connect accounting
dlvr_audit: produce audit

perfonns power failure
version of.

analysis and reduction
perfonn audit data analysis and

regular expressions. regex,
expressions.

make: Maintains, updates, and
executes regular expressions.
compile and match routines.

execseg: makes a data
locking: Locks or unlocks a file

match routines. regexp:
regcmp: Compiles and executes

regcmp: Compiles
sorted files. comm: Selects or
intro: Introduction to machine

lorder: Finds ordering
join: Joins two

for a common object file
Modules. 86rel: Intel 8086

strip: Removes symbols and
common object file reloc:

show current layer
value, floor, ceiling and

calendar: Invokes a
remote XENIX system.

nnail: submit
uutry: try to contact
ct: spawn getty to a

uux: Executes command on
remote: Executes commands on a

del.vd:
file nnb:

removepkg:
configuration/ idaddld: add or

directories speci fied cleantmp:
package

file. nndel:
semaphore set or shared! ipcnn:

nndir:
unlink:

pathnames. basename:
nn,nndir:
bits. strip:

device names/

received via UUCP. •
reconfigures and maintains
record locking on files.
records /command summary
records fwtmp: fwtmp, wtmpfix:
records for subsystem events
recovery service •
red: Invokes a restricted
reduce: perfonn audit data
reduction reduce:
regcmp: Compiles and executes
regcmp: Compiles regular
regenerates groups of programs.
regex, regcmp: Compiles and
regexp: Regular expression
region executable. ••
region for reading or writing.
Regular expression compile and
regular expressions. regex,
regular expressions.
rejects lines common to two
related miscellaneous features/
relation for an object library.
relations. • •
reloc: relocation infonnation
Relocatable Fonnat for Object
relocation bits. •
relocation infonnation for a
relogin: rename login entry to
remainder functions. /absolute
reminder service.
remote: Executes commands on a
remote mail received via UUCP
remote system with debugging on
remote tenninal
remote XENIX.
remote XENIX system.
remove a virtual disk
remove extra blank lines from a
remove installed package
remove line disciplines from kernel
remove temporary files in
removepkg: remove installed
Removes a delta from an SCCS
Removes a message queue,
Removes directories. •
Removes directory entry.
Removes directory names from
Removes files or directories.
Removes symbols and relocation
removing specific hard disk

Permuted Index

nnail(ADM)
Ipinit(ADM)
lockf(S)
acctcms(ADM)
fwtmp(ADM)
dlvcaudit(ADM)
restart(M)
red(C)
reduce(ADM)
reduce(ADM)
regex(S)
regcmp(CP)
make(CP)
regex(S)
regexp(S)
execseg(S)
locking(S)
regexp(S)
regex(S)
regcmp(CP)
comm(C)
Intro(HW)
10rder(CP)
join(C)
reloc(F)
86rel(F)
strip(CP)
reloc(F)
relogin(ADM)
floor(S)
calendar(C)
remote(C)
nnail(ADM)
uutry(ADM)
ct(C)
uux(C)
remote(C)
del.vd(ADM)
nnb(M)
removepkg(ADM)
idaddld(ADM)
cleantmp(ADM)
removepkg(ADM)
nndel(CP)
ipcnn(ADM)
nndir(C)
unllnk(S)
basename(C)
nn(C)
strip(CP)
hduti1(ADM)

I-55

Permuted Index

current layer relogin:
directory.

rename:
mv:Movesor

mirrored disk vdutil:
fsck: Checks and

uniq: Reports
yes: Prints string

Generate an IMAGEN accounting
fsstat:

checkque: MMDF queue status
blocks. df:

sa2, sadc - system activity
activity timex: time a command;

clock:
cmchk:

ps:
file. uniq:

pstat:
inter-process/ ipcs:

vmstat:
stream. fseek, fiell, rewind:

Starts/stops the lineprinter
lp, cancel: Send/cancel

terminal jterm:
/Awaits and checks access to a

ev_resume:
vdutil:

incremental file/ restore,
incremental filesystem backup

incremental filesystem backup/
Invokes incremental file system!
Invokes incremental file system

incremental file system
privs: print and/or

a program promain:
programming language rksh:

I-56

interpreter). rsh: Invokes a
red: Invokes a
fp_off, fp_seg:
ev....,getemask:

ismpx:
stat: Data

inp:
console buffer. ungetch:

value. abs:
idcheck:

long integer. labs:
strlen:

currently in the/ ev _count:
value. false:

rename login entry to show
rename: renames a file or
renames a file or directory.
renames files and directories.
repair bad block on a
repairs file systems.
repeated lines in a file.
repeatedly.
report. imacct:
report file system status

relogin(ADM)
rename(DOS)
rename(DOS)
mv(C)
vdutil(ADM)
fsck(AOM)
uniq(C)
yes(C)
imacct(C)

report generator • • • • •
fsstat(ADM)
checkque(ADM)
df(C) Report number of free disk

report package sar: sar, sal,
report process data and system
Reports CPU time used. • • •
Reports hard disk block size.
Reports process status.
Reports repeated lines in a • •
Reports system information.
Reports the status of
Reports virtual memory statistics.
Repositions a file pointer in a
request. /lpshut, lpmove:
requests to lineprinter.
reset layer of windowing
resource governed by a/
Restart a suspended queue.
restart I/O on a mirrored disk
restor: Invokes
restore /AT &T UNIX

sar(ADM)
timex(ADM)
c1ock(S)
cmchk(C)
ps(C)
uniq(C)
pstat(C)
ipcs(ADM)

• vmstat(C)
fseek(S)
Ipsched(ADM)
1p(C)
jterm(C)
waitsem(S)
ev _resume(S)
vdutil(ADM)
restore(ADM)

restore: AT&T UNIX ••••••
restore(ADM)
restore(ADM)
restore(ADM) restore, restor: • • •

restorer. /restor: • • •
restorer. /Invokes XENIX
restrict privileges temporarily
restrict the execution domain of
restricted command and • •
restricted shell (command
restricted version of.
Return offSet and segment.
Return the current event mask.
return windowing terminal state
returned by stat system call.
Returns a byte. •••••
Returns a character to the
Returns an integer absolute
returns selected information
Returns the absolute value of a
Returns the length of a string.
Returns the number of events
Returns with a nonzero exit

restore(ADM)
xrestore(ADM)
privs(C)
promain(M)
ksh(C)
rsh(C)
red(C)
fp_seg(DOS)
ev....,gtemsk(S)
ismpx(C)
stat(F)
inp(DOS)
ungetch(DOS)
abs(S)
idcheck(ADM)
labs(DOS)
strlen(DOS)
ev _count(S)
false(C)

Permuted Index

true: Returns with a zero exit value. true(C)
col(C) col: Filters reverse linefeeds. •••••

in a string. strrev:
pointer in a/ fseek, ftell,

creat: Creates a new file or
programming language

directories.
received via UUCP

from a file
SCCS file.

directories. rm,
chroot: Changes the

chroot: Changes
logarithm, power, square

supported network. mmdf:
expression compile and match

Idfcn: common object file access
/system services, library
points in a driver object!

/a XENIX-style UUCP
/converts a XENIX-style Micnet

!hashed database of alias and
(command interpreter).

multiuser environment rc2:
the operating system rcO:

runacct:

/prctmp, prdaily, prtacct,
priority. nice:

and quits. nohup:
activity report! sar: sar,

report package sar: sar, sal,
editing activity.

package sar: sar,sal,sa2,

purge: the policy file of the
activity report package sar:

system activity report package
space allocation.

work. uucico:
and formats input.

bfs:
creates bad track! badtrk:
help: Asks for help about

the delta commentary of an
comb: Combines

Compares two versions of an
Makes a delta (change) to an

Reverses the order of characters
rewind: Repositions a file
rewrites an existing one. • • •
rksh: restricted command and
rm, rmdir: Removes files or
rmail: submit remote mail
rmb: remove extra blank lines
rmdel: Removes a delta from an
rmdir: Deletes a directory. •
rmdir: Removes directories.
rmdir: Removes files or ••
root directory. • • • • • • •
root directory for command.
root functions. /exponential,
routes mail locally and over any
routines. regexp: Regular
routines ••••••••
routines and error numbers.
routines: finds driver entry
routing file to MMDF/
routing file to MMDF/ • • •
routing information.
rsh: Invokes a restricted shell
rtc: real time clock interface
run commands performed for
run commands performed to stop
run daily accounting

• strrev(DOS)
fseek(S)
createS)
ksh(C)
rm(C)
rmail(ADM)
rmb(M)

• rmdel(CP)
rmdir(DOS)
rmdir(C)
rm(C)
chroot(S)
chroot(ADM)
exp(S)

• mmdf(ADM)
regexp(S)
Idfcn(F)
Intro(S)
routines(ADM)
uulist(ADM)
mnlist(ADM)
dbmbuild(ADM)
rsh(C)
rtc(HW)
rc2(ADM)

• rcO(ADM)
runacct(ADM)
runacct(ADM)
acctsh(ADM)
nice(C)

runacct: run daily accounting • • •
runacct, shutacct, startupJ • •
Runs a command at a different
Runs a command immune to hangups
sa I, sa2, sadc - system

nohup(C)
sar(ADM)
sar(ADM)
sact(CP)
sar(ADM)
sag(ADM)
purge(F)
sar(ADM)
sar(ADM)

sa2, sadc - system activity
sact: Prints current SCCS file
sadc - system activity report
sag: system activity graph
sanitization utility purge(C)
sar, sal, sa2, sadc - system • •
sar: sar, sal, sa2, sadc -
sbrk, brk: Changes data segment
Scan the spool directory for
scanf, fscanf, sscanf: Converts
Scans big files. •••••
Scans fixed disk for flaws and
SCCS commands.
SCCS delta. cdc: Changes
SCCS deltas.

• sbrk(S)
uucico(C)
scanf(S)
bfs(C)
badtrk(ADM)
help(CP)
cdc(CP)
comb(CP)

SCCS file. sccsdiff.
SCCS file. delta:

sccsditItCP)
.•••• delta(CP)

I-57

Permuted Index

Undoes a previous get of an
prs: Prints an

nndel: Removes a delta from an
sccsfile: Fonnat of an

val: Validates an
sact: Prints current

admin: Creates and administers
of an SCCS file.

file.
system backups

transport program uusched: the
common object file

screen image file.
clear: Clears a tenninal

SCCS file. unget:
SCCS file.
SCCS file.
SCCS file.
SCCS file.
SCCS file editing activity.
SCCS files. • •••••••
sccsdiff. Compares two versions
sccsfile: Fonnat of an SCCS
schedule: Database for automated
scheduler for the uucp file
scnhdr: section header for a
sccdump: fonnat of curses
screen.

curses: Perfonns screen and cursor functions.
setcolor: Set screen color. ••••••

sccdump: fonnat of curses
convkey: Configure monitor

color, monochrome, ega,.
vi, view, vedit: Invokes a
XENIX installation shell
install: Installation shell
scsinfo: display current
scsinfo: display current

interface.
scsinfo: display current

dates.
access to a shared datal

shared data segment. sdget,
detaches a shared data segment.

shared data access.
side-by -side.

a shared data segment. sdenter,
data access. sdgetv,

bsearch: Perfonns a binary
lsearch, lfind: Perfonns linear

hcreate, hdestroy: Manages hash
tdelete, twalk: Manages binary

grep, egrep, fgrep:
accounting files. acctcom:

pattern in a file. awk:
object file scnhdr:

getty initcond: special
description subsystem:

screen image file.
screen mapping. /mapstr,
screen: tty [Ol-n],
screen-oriented display editor.
script xinstall:
script. ••• ••••••
SCSI device infonnation
SCSI hard disk infonnation
scsi: Small computer systems
SCSI tape drive infonnation
sdb: Invokes symbolic debugger.
sddate: Prints and sets backup
sdenter, sdleave: Synchronizes
sdevice: file fonnat.
sdfree: Attaches and detaches a
sdget. sdfree: Attaches and
sdgetv, sdwaitv: Synchronizes
sdiff. Compares files
sdleave: Synchronizes access to
sdwaitv: Synchronizes shared
search. • •••••
search and update.
search tables. hsearch,
search trees. tsearch, tfind,
Searches a file for a pattern.
Searches for and prints process
Searches for and processes a
section header for a common •
security actions for init and
security subsystem component
sed: Invokes the stream editor.
seed48, lcong48: Generates
segment. /sdleave: Synchronizes
segment. Isdfree: Attaches

unget(CP)
prs(CP)
nndel(CP)
sccsfile(F)
val(CP)
sact(CP)
admin(CP)

• sccsdiff(CP)
secs file(F)

· schedule(ADM)
uusched(ADM)
scnhdr(F)
sccdump(F)
clear(C)
curses(S)
setcolor(C)
sccdump(F)
mapkey(M)
screen(HW)
vi(C)
xinstall(ADM)
install(M)
scsinfo(ADM)
scsinfo(ADM)
scsi(HW)
scsinfo(ADM)

• sdb(CP)
sddate(C)
sdenter(S)
sdevice(F)
sdget(S)
sdget(S)
sdgetv(S)
sdiff(C)

• sdenter(S)
sdgetv(S)
bsearch(S)
lsearch(S)
hsearch(S)
tsearch(S)
grep(C)
acctcom(ADM)
awk(C)
senhdr(F)
initcond(ADM)
subsystem(M)
sed(C)
drand48(S) unifonnly distributed. srand48,

access to a shared data
and detaches a shared data

brkct1: Allocates data in a far

• sdenter(S)
sdget(S)
brkct1(S) segment. •••••••••••

I-58

Permuted Index

fp_seg: Return oOSet and segment fp_off, · . fp_seg(DOS)
shmget: Gets a shared memory segment. shmget(S)

sbrk, brk: Changes data segment space allocation. sbrk(S)
segread: command description. segread(DOS)

multiplexing. select: synchronous I/O select(S)
greek: select tenninal filter greek(C)

a file. cut: Cuts out selected fields of each line of cut(C)
idcheck: returns selected infonnation idcheck(ADM)

binary files. hdr: Displays selected parts of executable hdr(CP)
to two sorted files. comm: Selects or rejects lines common comm(C)

Creates an instance of a binary semaphore. creatsem: creatsem(S)
Signals a process waiting on a semaphore. sigsem: sigsem(S)

opensem: Opens a semaphore. · · opensem(S)
to a resource governed by a semaphore. land checks access waitsem(S)

semctl: Controls semaphore operations. semctl(S)
semop: Perfonns semaphore operations. semop(S)

ipcnn: Removes a message queue, semaphore set or shared memory. ipenn(ADM)
semget: Gets set of semaphores. · · semget(S)

files. lockf:~vide semaphores and record locking on 10ckf(S)
operations. semctl: Controls semaphore semctl(S)

semget: Gets set of semaphores. semget(S)
fsphoto: Perfonns periodic semi-automated system backups fsphoto(ADM)

operations. semop: Perfonns semaphore semop(S)
hello: Send a message to another user. hello(ADM)

lineprinter. lp, cancel: Send/cancel requests to 1p(C)
away rcvtrip: notifies mail sender that recipient is rcvtrip(C)

group of processes. kill: Sends a signal to a process or a kill(S)
mail. mail: Sends, reads or disposes of mail(C)

Isys_errlist, sys_nerr, ermo: Sends system error messages. perror(S)
mesg: Pennits or denies messages sent to a tenninal. mesg(C)

file to printer attached to a serial console /Print consoleprint(ADM)
mscreen: Serial multiscreens utility mscreen(M)

,tty2[A-H): Interface to serial ports. I, tty2[a-h) serial(HW)
calendar: Invokes a reminder service. · · calendar(C)

errorl intro: Introduces system services, library routines and Intro(S)
disable auditing for the next session ch~audit: enables and ch~audit(ADM)

Map of the ASCII character set. ascii: ascii(M)
peu: set port configuration peu(ADM)

buffuring to a stream. setbuf, setvbuf: Assigns setbuf(S)
real-time (time of day) clock. setclock: Sets the system setclock(ADM)

setcolor: Set screen color. setcolor(C)
setuid, setgid: Sets user and group IDs. setuid(S)

getgrent, getgrgid, getgrnam, setgrent, endgrent: Get groupl getgrent(S)
nonlocal "goto". setjmp, longjmp: Perfonns a setjmp(S)

keys. setkey: Assigns the function setkey(C)
international environment setlocale: Set or read setlocale(S)

table. setmnt: Establishes letc/mnttab setmnt(ADM)
setmode: Sets translation mode. setmode(DOS)
setpgrp: Sets process group ID. setpgrp(S)

getpwent, getpwuid, getpwnam, setpwent, endpwent: Getsl getpwent(S)
trchan: Translate character sets trchan(M)

I-59

Permuted Index

alann:
to one charater. strset:

mask. umask:
sddate: Prints and

execution. env:
ev _setemask:

modification times. utime:
umask:

setpgrp:
tset:

speed, and linel getty:
base. cmos: Displays and

date: Prints and
a video device. vidi:

stty:
of day) clock. setclock:

stime:
setmode:

time. profile:
setuid, setgid:

ulimit: Gets and
modification dates of files.

"gettydefs:
group IDs.

xprsetup: transparent printer
stream. setbuf,

(F)
data in at sputl,

interpreter.
sdgetv; sdwaitv: Synchronizes

Synchronizes access to a
sdfree: Attaches and detaches a

message queue, semaphore set or
shmctl: Controls
shmop: Perfonns

shmget: Gets a
sopen: Opens a file for

system: Executes a
rsh: Invokes a restricted

sh: Invokes the
C-like syntax. csh: Invokes a

shl:
Change login, group, or dialup

Ishutacct, startup, tumacct
Ishutacct, startup, tumacct -

install: Installation
xinstall: XENIX installation

1-60

operations.
segment.

Sets a process' alann clock.
Sets all characters in a string
Sets and gets file creation
sets backup dates. •••••.•

alann(S)
strset(DOS)
umask(S)
sddate(C)
env(C) Sets environment for command

Sets event mask. • • • • •
Sets file access and • • • • •
Sets file-creation mode mask.
Sets process group ID.
Sets tenninal modes.
Sets tenninal type, modes,
sets the configuration data
sets the date. ••••••
Sets the font and video mode for
Sets the options for a tennina!.
Sets the system real-time (time
Sets the time. •••••••
Sets translation mode.
Sets up an environment at login
Sets user and group IDs. • • •
sets user limits. ••••••
settime: Changes the access and
Speed and ••••••
setuid, setgid: Sets user and
setup utility • • • • • • •
setvbuf: Assigns buffering to a
sfsys: file fonnat.
sfsys: file fonnat. •••••
sgetl: Accesses long integer
sh: Invokes the shell command
shared data access. • • • • •
shared data segment. Isdleave:
shared data segment. sdget,
shared memory. ipcnn: Removes a
shared memory operations.
shared memory operations.
shared memory segment.
shared reading and writing.
shell command.
shell (command interpreter).
shell command interpreter. • •
shell command interpreter with
Shell layer manager.
shell password. passwd:

ev _stemsk(S)
utime(S)
umask(C)
setpgrp(S)
tset(C)
getty(M)
cmos(HW)
date(C)

'. vidi(C)
stty(C)
setclock(ADM)
stime(S)
setmode(DOS)
profile(M)
setuid(S)
ulimit(S)

• settime(ADM)
tenninal"
setuid(S)
xprsetup(ADM)
setbuf(S)
sfsys(F)
sfsys
sputl(S)
sh(C)
sdgetv(S)
sdenter(S)
sdget(S)
ipcnn(ADM)
shmctl(S)
shmop(S)
shmget(S)
sopen(DOS)
system(S)
rsh(C)
sh(C)
csh(C)
shl(C)

shell procedures forI ••••..
shell procedures for accounting

passwd(C)
acctsh(ADM)
acctsh(ADM)

shell script. • • • • •
shell script •••••••.
shl: Shell layer manager.
shmctl: Controls shared memory
shmget: Gets a shared memory

install(M)
xinstall(ADM)
shl(C)

• shmctl(S)
shmget(S)

operations. shmop: Perfonns shared memory
nap: Suspends execution for a short interval. •

/prdaily, prtacct, runacct, shutacct, startup, tumacct -!
halts the CPU. shutdn: Flushes block I/O and

perfonns power failure
processing.

Ooses out the file systems and
sdiff. Compares files

what to do upon receipt of a
Suspends a process until a

upon receipt of a signal.
of processes. kill: Sends a

gsignal: Implements software
semaphore. sigsem:

waiting on a semaphore.
atan2: Perfonns trigonometric!

sulogin: access
hyperbolic functions.

cmchk: Reports hard disk block
chsize: Changes the

size: Prints the
jwin: print
object file.

interval.
interval.

currentl ttyslot: Finds the
checker

spline: Interpolates
swconfig: produces a list of the

ssignal, gsignal: Implements
reading and writing.

qsort: Perfonns a quicker

or rejects lines common to two
tsort:
sort:

an error message file from C
idspace: investigates free

sbrk, brk: Changes data segment
ct:

process.
spawol,

movedata: Copies bytes from a
sysi86: machine

fspec: fonnat
idmkinit: read files containing

temporary files in directories
purge: overwrites

!the list of vectors currently
/major device numbers currently

cron: Executes commands at

shutdown service
shutdown: Tenninates all
shuts down the system. /reboot:
side-by-side.
signal. signal: Specifies
signal occurs. pause:
signal: Specifies what to do
signal to a process or a group
signals. ssignal, •
Signals a process waiting on a
sigsem: Signals a process
sin, cos, tan, asin, acos, atan,
single-user mode
sinh, cosh, tanh: Perfonns
size.
size of a file.
size of an object file.
size of layer
size: Prints the size of an
sleep: Suspends execution for an
sleep: Suspends execution for an
slot in the utmp file of the
smmck: trusted computing base
smooth curve. •
software modifications to the!
software signals. •
sopen: Opens a file for shared
sort.
sort: Sorts and merges files.
sorted files. comm: Selects
Sorts a file topologically.
Sorts and merges files.
source. mkstr: Creates
space •
space allocation. •
spawn getty to a remote tenninal
spawol, spawnvp: Creates a new
spawnvp: Creates a new process.
specific address. • •
specific functions.
specification in text files
specifications •
speci fied cleantmp: remove
specified files
specified in the s d e vic e /
speci fied in the mdevice file
specified times. •

Permuted Index

shmop(S)
nap(S)
acctsh(ADM)
shutdn(S)
powerfail(M)
shutdown(ADM)
haltsys(ADM)
sdiff{C)
signal(S)
pause(S)
signal(S)
kill(S)
ssignal(S)
sigsem(S)
sigsem(S)
trig(S)
sulogin(ADM)
sinh(S)
cmchk(C)
chsize(S)
size(CP)
jwin(C)
size(CP)
sleep(C)
sleep(S)
ttyslot(S)
tcbck(ADM)
spline(CP)
swconfig(C)
ssignal(S)
sopen(DOS)
qsort(S)
sort(C)
comm(C)
tsort(CP)
sort(C)
mkstr(CP)
idspace(ADM)
sbrk(S)
ct(C)
spawn(DOS)
spawn(DOS)
movedata(DOS)
sysi86(S)
fspec(F)
idmkinit(ADM)
cleantmp(ADM)
purge(C)
vectorsinuse(ADM)
majorsinuse(ADM)
cron(C)

1-61

Permuted Index

Specifies what to do upon
speed, and line discipline.
speed, and line discipline
Speed and tenninal settings used
spell, hashmake, spellin,
spellin, hashcheck: Finds
spelling errors. /hashmake,
spline: Interpolates smooth
split: Splits a file into •
Splits a file into pieces.
SplitS files according to •••••
Splits floating-point number
spool directory clean-up • •
spool directory for wolk.
spooling system. Ipadmin:
sprintf: Fonnats output.
sputl, sgetl: Accesses long
sqrt, log 10: Perfonns

signal(S)
getty(M)
uugetty(ADM)
gettydefs(F)
spell(C)
spell(C)
spell(C)
spline(CP)
split(C)
split(C)
csplit(C)
frexp(S)
uuclean(ADM)
uucico(C)
Ipadmin(ADM)
printf(S)
sput1(S)
exp(S)

receipt of a signal. signal:
/Sets tenninal type, modes,

/set tenninal type, modes,
by getty. "gettydefs:"

hashcheck: Finds spelling!
spelling! spell, hashmake,

spellin, hashcheck: Finds
curve.

pieces.
split:

context. csplit:
into a/ frexp, ldexp, modf:

uuclean: uucp
uucico: Scan the

Configures the lineprinter
printf, fprintf,

integer data in a/
exponentialJ exp, log, pow,

exponential, logarithm, power,
number. rand,

Generates unifonnly/
input. scanf, fscanf,

software signals.
output. stdio: Perfonns

Converts Rational FORTRAN into
gets: Gets a string from the

communication package. ftok:
pr: Prints files on the

lpsched, lpshut, lpmove:
/prtacct, runacct, shutacct,

system call.

square root functions. /Perfonns
srand: Generates a random • •
srand48, seed48, lcong48:

. exp(S)

stat: Data returned by
infonnation.

ustat: Gets file system
xts: extract and print xt driver

virtual memory
fileno: Detennines stream

fsstat: report file system
ps: Reports process
stat, fstat: Gets file

lpstat: prints lineprinter
uustat: uucp

communication! ipcs: Reports the
checkque: MMDF queue

buffered input and output.

sscanf: Converts and fonnats
ssignal, gsignal: Implements
standard buffered input and
standard FORTRAN. ratfor:
standard input.
Standard interprocess • • • •
standard output. ••••••
Starts/stops the lineprinter/
startup, tumacct - sheIV
stat: Data returned by stat
stat, fstat: Gets file status.
stat system call.
statfs: get file system
statistics. • • • • • •
statistics ••••••
statistics. vmstat: Reports
status. ferror, feof, clearerr,
status
status.
status. •• • • • •
status infonnation.
status inquiry and job control.
status of inter-process • •
status report generator
stdio: Perfonns standard
stime: Sets the time.

Waits for a child process to stop or tenninate. wait:
rcO: run commands perfonned to stop the operating system

compress: Compress data for storage. •••••
nextkey:/ dbminit, fetch, store, delete, firstkey, • • •

1-62

rand(S)
drand48(S)
scanf(S)
ssignal(S)
stdio(S)
ratfor(CP)
gets(CP)
stdipc(S)
pr(C)
Ipsched(ADM)
acctsh(ADM)
stat(F)
stat(S)
stat(F)
statfs(S)
ustat(S)
xts(ADM)
vmstat(C)
ferror(S)
fsstat(ADM)
ps(C)
stat(S)
Ipstat(C)
uustat(C)
ipcs(ADM)
checkque(ADM)
stdio(S)
stime(S)
wait(S)
rcO(ADM)
compress(C)
dbm(S)

uncompress: Uncompress a
zcat: Display a

queue: MMDF queue files for
trace messages

logger cleanup program
operations.

Gets a character from a
Gets character or word from a

Prints the first few lines of a
Pushes character back into input

Puts a character or word on a
Repositions a file pointer in a

fHush: Closes or flushes a
fgets: Gets a string from a

fopen, freopen, fdopen: Opens a
fputchar: Write a character to a

puts, fputs: Puts a string on a
setvbuf: Assigns buffering to a

Invokes the
clearerr, fileno: Detennines

fclose, fcloseall: Closes
cleanup program strclean:

daemon strerr:
strace: Prints

for networking! stnntune:
stnncfg:
stnncfg:

logger daemon
string

cgets: Gets a
strftime: fonnat date/time

strlen: Returns the length of a
the order of characters in a

files gps: graphical primitive
gets, fgets: Gets a

getclk: gets
gets: Gets a

puts, fputs: Puts a
strdup: Perfonns

yes: Prints
strtod, atof: Converts a

strtol, atol, atoi: Converts
strset: Sets all characters in a

cputs: Puts a
strings in an object file.

xstr: Extracts
strings: Finds the printable

relocation bits.
add.vd: add a

del.vd: delete a
vdinfo: display

stored file.
stored file.
storing mail in transit
strace: Prints STREAMS
strclean: STREAMS error
strdup: Perfonns string
stream. fgetc, fgetchar:
stream. /getchar, fgetc, getw:
stream. head: • • • • • • •
stream. ungetc: ••••••
stream. !putchar, fputc, putw:
stream. fseek, ftell, rewind:
stream. fclose,
stream. gets,
stream.
stream. fputc,
stream.
stream. setbuf,
stream editor. sed:
stream status. ferror, feof,
streams. • •••••••
STREAMS error logger
STREAMS error logger
STREAMS trace messages
STREAMS configuration interface
STREAMS configuration utility
STREAMS parameter calculated
strerr: STREAMS error
strftime: fonnat date/time
string.
string ••••• •••
string. •••••••
string. strrev: Reverses
string, fonnat of graphical
string from a stream.
string from real-time clock
string from the standard input.
string on a stream.
string operations. •••••
string repeatedly.
string to a double-precision!
string to integer. • • • •
string to one charater. • • • .
string to the console.
strings: Finds the printable
strings from C programs.

Permuted Index

compress(C)
compress(C)
queue(ADM)
strace(ADM)
strclean(ADM)
string(S)
fgetc(DOS)
getc(S)
head(C)
ungetc(S)
putc(S)
fseek(S)
fclose(S)
gets(S)
fopen(S)
fputc(DOS)
puts(S)
setbuf(S)
sed(C)
ferror(S)
fclose(DOS)
strclean(ADM)
strerr(ADM)
strace(ADM)

• stnntune(ADM)
stnncfg(ADM)

· stnncfg(ADM)
strerr(ADM)
strftime(S)
cgets(DOS)
strftime(S)
strlen(DOS)
strrev(OOS)
gps(F)
gets(S)
getclk(M)
gets(CP)
puts(S)
string(S)
yes(C)
strtod(S)
strtol(S)
strset(DOS)
cputs(DOS)
strings(CP)

strings in an object file. •••••
strip: Removes symbols and

xstr(CP)
strings(CP)
strip(CP)

striped (virtual) disk
striped (virtual) disk
striped (virtual) disk infonnation

add.vd(ADM)
del.vd(ADM)

• vdinfo(ADM)

1-63

Permuted Index

string. strlen: Returns the length of a strlen(DOS)
characters to lowercase. strlwr: Converts uppercase strlwr(DOS)

characters in a string. strrev: Reverses the order of strrev(OOS)
string to one charater. strset: Sets all characters in a strset(OOS)

to a double-precision number. strtod, atof: Converts a string strtod(S)
string to integer. strtol, atol, atoi: Converts strtol(S)

mount: Mounts a file structure. . . . mount(ADM)
umount: Dismounts a file structure. umount(ADM)
characters to uppercase. strupr: Converts lowercase strupr(DOS)

tenninal. stty: Sets the options for a stty(C)
stune: file fonnat. stune(F)

(F) stune: file fonnat. stune
or another user. su: Makes the user a super-user su(C)

submit: MMDF mail enqueuer submit(ADM)
UUCP nnail: submit remote mail received via · nnail(ADM)

!checks for mail which has been submitted but not delivered checkmail(C)
interface for authorization subsystem !administrator authtsh(ADM)

command interface for audit subsystem activationJ auditcmd: · auditcmd(ADM)
files generated by the audit subsystem and !audit collection · auditd(ADM)

subsystem: security subsystem component description · subsystem(M)
produce audit records for subsystem events dIvr_audit: dIvcaudit(ADM)

audit: audit subsystem interface device audit(ADM)
component description subsystem: security subsystem subsystem(M)

sulogin: access single-user mode · sulogin(ADM)
counts blocks in a file. sum: Calculates checksum and sum(C)

du: Summarizes disk usage. du(C)
ownership. quot: Summarizes file system quot(C)

accounting! acctcms: command summary from per-process acctcms(ADM)
sync: Updates the super-block. . . sync(ADM)
sync: Updates the super-block. sync(S)

su: Makes the user a super-user or another user. su(C)
keyboard mode or test keyboard support kbmode: Set kbmode(ADM)
routes maillocal1y and over any supported network. mmdf: mmdf(ADM)

terminals: List of supported tenninals. tenninals(M)
ev _resume: Restart a suspended queue. ev _resume(S)
signal occurs. pause: Suspends a process until a pause(S)

ev _suspend: Suspends an event queue. ev_susp(S)
interval. nap: Suspends execution for a short napeS)

interval. sleep: Suspends execution for an sleep(C)
interval. sleep: Suspends execution for an sleep(S)

swab: Swaps bytes. swab(S)
swap: swap administrative interface swap(ADM)

swapadd: Adds swap area swapadd(S)
interface swap: swap administrative swap(ADM)

swapadd: Adds swap area swapadd(S)
swab: Swaps bytes. swab(S)

fdswap: Swaps default boot floppy drive. fdswap(ADM)
software modifications to the! swconfig: produces a list of the swconfig(C)

sxt: Pseudo-device driver. sxt(M)
syms: common object file symbol table fonnat syms(F)

unistd: file header for symbolic constants unistd(F)

1-64

Permuted Index

sdb: Invokes symbolic debugger. sdb(CP)
strip: Removes symbols and relocation bits. strip(CP)

table format syms: common object file symbol syms(F)
sync: Updates the super-block. sync(ADM)
sync: Updates the super-block. sync(S)

data segment. sdenter, sdleave: Synchronizes access to a shared sdenter(S)
sdgetv, sdwaitv: Synchronizes shared data access. sdgetv(S)

select: synchronous I/O multiplexing. select(S)
Checks C language usage and syntax. lint: lint(CP)

command interpreter with C-like syntax. csh: Invokes a shell csh(C)
administration utility. sysadmsh: Menu driven system sysadmsh(ADM)

parameters sysdef: output values of tunable sysdef(ADM)
Sends system error! perror, sys_errlist, sys_nerr, ermo: perror(S)

sysfiles: Format of UUCP Sysfilesfile. . sysfiles(F)
Sysfiles file. sysfiles: Format of UUCP sysfiles(F)

functions. sysi86: machine specific sysi86(S)
error! perror, sys_errlist, sys_nerr, ermo: Sends system perror(S)
Automatically boots the system. autoboot: autoboot(ADM)

Gets name of current XENIX system. uname: uname(S)
commands on a remote XENIX system. remote: Executes remote(C)

config: Configures a XENIX system. config(ADM)
cu: Calls another XENIX system. cu(C)

file systems and shuts down the system. /reboot: Closes out the haltsys(ADM)
mkfs: Constructs a file system. . mkfs(ADM)

mount: Mounts a file system. mount(S)
the lineprinter spooling system. Ipadmin: Configures Ipadmin(ADM)

the name of the current XENIX system. uname: Prints uname(C)
umount: Unmounts a file system. umount(S)
who: Lists who is on the system. who(C)

sar:sar,sal,sa2,sadc system activity report/ . sar(ADM)
uconfig: system hardware changing uconfig(ADM)

uconfig: changing system hardware uconfig(ADM)
procedures brc: brc, bcheckrc system initialization brc(ADM)

information file card_info: system tty controller card . • card_info
map file xprtab: system tty transparent printer xprtab(F)

identification file. systemid: The Micnet system systemid(F)
- mount, unmount multiple file systems /mountall, umountall mounta11(ADM)

fsck: Checks and repairs file systems. fsck(ADM)
labelit: provide labels for file systems . . labelit(ADM)

rep: Copies files across XENIX systems. rcp(C)
/reboot: Closes out the file systems and shuts down the! haltsys(ADM)
systems: Format of UUCP Systems file. . . systems (F)

file. systems: Format of UUCP Systems systems(F)
scsi: Small computer systems interface. scsi(HW)
checklist: List of file systems processed by [sek. checklist(F)

device. systty: System maintenance systty(M)
Format of mounted file system table. mnttab: mnttab(F)

chrtbl: create a ctype locale table chrtbl(M)
create a collation locale table coltbl: coltbl(M)

curtbl: create a currency locale table curtbl(M)
for flaws and creates bad track table. badtrk: Scans fixed disk badtrk(ADM)

1-65

Permuted Index

numtbl: Create a numeric locale
setmnt: Establishes /etc/mnttab

syms: common object file symbol
NlC database into channeVdomain

hdestroy: Manages hash search
tables: MMDF Name

teon: Teonina! driving

tabs: set

ctags: Creates a
a file.

table.
table.
table foonat
tables nictable: process
tables. hsearch, hcreate,
Tables ••••••••
tables for nrofI
tables: MMDF Name Tables
tabs on a teoninal
tabs: set tabs on a teonina! • .
tags file. •••••••••
tail: Delivers the last part of
tan,asin,acos,atan,atan2:
tanh: Perfoons hyperbolic
tape archive command
tape control for QIC-24/QIC-02
tape device tapecnt1: AT&T
tape drive infoonation
tape fonnat. •••••••
tape: Magnetic tape maintenance
tape maintenance program.

numtbl(M)
setmnt(ADM)
syms(F)
nictable(ADM)
hsearch(S)
tables(F)
teon(F)
tables(F)
tabs(C)
tabs(C)
ctags(CP)
tail(C)
trig(S)
sinh(S)
otar(C)
tapecntl(C)
tapecntl(C)
scsinfo(ADM)
backup(F)

Perfoons/ sin, cos,
functions. sinh, cosh,

otar: original
tape device tapecnt1: AT&T

tape control for QIC-24/QIC-02
scsinfo: display current SCSI

backup: Incremental dump
program.

tape: Magnetic
tapedump: Dumps magnetic
QIC-24/QIC-02 tape device

output file.

. tape(C)
tape(C)
tapedump(C)
tapecntl(C)
tapedump(C)

tape to output file. ••••••.
tapecntl: AT&T tape control for • .
tapedump: Dumps magnetic tape to
tar: archive fonnat. • • • • • tar(F)
tar: Archives files. •••••

search trees. tsearch, tfind, tdelete, twa1k: Manages binary
tee: Creates a tee in a pipe.

tee: Creates a tee in a pipe. •••••••
4014: paginator for the TEKTRONIX 4014 teonina!
last logins of users and teletypes last: Indicate

temporary file. tmpnam, tempnam: Creates a name for a
print and/or restrict privileges temporarily privs:

tempnam: Creates a name for a temporary file. tmpnam,
tmpfile: Creates a temporary file.

specified cleantmp: remove temporary files in directories
for nrofI teon: Teoninal driving tables

"teoninfo/' captoinfo: convert a teoncap description into a •
data base. teoncap: Teoninal capability

Generates a filename for a teonina!. cteonid:
a printer attached to the user's teoninal lprint: Print to

ct: spawn getty to a remote teonina! ••••••
for the 5620 DMD teonina! /object downloader

host control of windowing teonina! jagent: • •
isatty: Finds the name of a teonina!. ttyname,

jteon: reset layer of windowing teonina! ••• ••
lock: Locks a user's terminal. • •••

of the DASI 450 teonina! /specia! functions
or denies messages sent to a tennina!. mesg: Permits

paginator for the TEKTRONIX 4014 teoninal 4014:
stty: Sets the options for a teonina!. .• • • • • •

1-66

tar(C)
tsearch(S)
tee(C)
tee(C)
40 14(C)
last(C)
tmpnam(S)
privs(C)
tmpnam(S)
tmpfile(S)
cleantmp(ADM)
teon(F)
captoinfo(ADM)
teoncap(M)
cteonid(S)
Iprint(C)
ct(C)
wtinit(ADM)
jagent(M)
ttyname(S)
jtenn(C)
lock(C)
450(C)
mesg(C)
4014(C)
stty(C)

Permuted Index

tenninal ••••••••• tabs(C) tabs: set tabs on a
tenninal: Login

tenncap:
"tenninfo:"

tenninal. • • • • • • • • tenninal(HW)
Tenninal capability data base. tenncap(M)
tennina! capability data base. tenninfo(M)

"tenninfo:"
mot[tenn:

greek: select
tgetstr, tgoto, tputs: Perfonns

tennio: General
tennios: POSIX general

tty: Special
dial: Establishes an out-going

tenninal description database. tenninfo(S)
lenninal driving tables for • • tenn(F)
tenninal filter ••••••• greek(C)
tenninal functions. /tgetftag, tenncap(S)
tenninal interface. tennio(M)
tenninal interface. tennios(M)
tennina! interface. tty(M)
tenninalline connection. dial(S)
tenninal: Login tenninal. tenninal(HW)

tset: Sets tennina! modes. tset(C)
clear: Clears a tenninal screen. clear(C)

"gettydefs: Speed and" • • tenninal settings used by getty.
ismpx: return windowing tenninal state • • • • • . • ismpx(C)

line discipline uugetty: set tenninal type, modes, speed, and • uugetty(ADM)
line discipline. getty: Sets tennina! type, modes, speed, and • getty(M)

used between host and windowing tenninal under layers: protocol layers(M)
functions of Hewlett-Packard tenninals hp: handle special hP(C)

layer multiplexer for windowing tenninals layers: layers(C)
of DASI 300 and 300s tenninals /special functions 300(C)

tenninals: List of supported tenninals. •••••••• tenninals(M)
tty driver for AT&T windowing tenninals xt: multiplexed xt(HW)

enable: Thms on tenninals and line printers. enable(C)
disable: Thms off tenninals and printers. ••••• disable(C)

inittab: Alternative login tenninals file. •••••• inittab(F)
tenninals. tenninals: List of supported tenninals(M)

tty: Gets the tenninal's name. • • • tty(C)
for a child process to stop or tenninate. wait: Waits ••••• wait(S)

exit, _exit: Tenninates a process. exit(S)
kill: Tenninates a process. kill(C)

shutdown: Tenninates all processing. shutdown(ADM)
exit: Tenninates the calling process. exit(DOS)

for audit subsystem activation, tennination, /command interface • auditcmd(ADM)
tic: "Tenninfo compiler." • •

tput: Queries the "tenninfo database."
a tenncap description into a "tenninfo description"

infocmp: compare or print out "tenninfo descriptions"
"tenninfo: funnat of

"tenninfo file." "tenninfo: • • •
data base. "tenninfo: tennina!
database. "tenninfo: tenninal

/convert

compiled"
funnat
capability"
description"
tennio(M) interface. tennio: General tenninal

interface. tennios: POSIX general tenninal • tennios(M)
kbmode(ADM)

• • • • • • test(C)
kbmode: Set keyboard mode or test keyboard support

test: Tests conditions.
test: Tests conditions.

ed: Invokes the text editor.
• • . . • • . . test(C)

• •••• ed(C)
ex: Invokes a text editor. ' ••••• ',' ex(C)

1-67

Permuted Index

casual users) edit:
newform: Changes the format of a

diff. Compares two
fspec: format specification in

imprint: Prints
plock: Lock process,

binary search trees. tsearch,
tgetstr, tgoto, tputs: Performs!

Performs/ tgetent, tgetnum,
tgoto, tputs: Performs/ tgetent,

tgetent, tgetnum, tgetftag,
/tgetnum, tgetftag, tgetstr,

Executes commands at a later
Sets up an environment at login

stime: Sets the

text editor (variant of ex for
text file.
text files. • • • • • • • •
text files ••••••••
text files on an IMAGEN printer.
text, or data in memory. • •
tfind, tdelete, twa1k: Manages
tgetent, tgetnum, tgetftag,
tgetftag, tgetstr, tgoto, tputs:
tgetnum, tgetftag, tgetstr,
tgetstr, tgoto, tputs: Performs/
tgoto, tputs: Performs terminal!
tic: Terminfo compiler.
time. at, batch:
time. profile:
time. • ••••••
time, ftime: Gets time and date.
(time of day) clock. setclock:

edit(C)
newform(C)
dimC)
fspec(F)

• imprint(C)
plock(S)
tsearch(S)
termcap(S)
termcap(S)
termcap(S)
termcap(S)
termcap(S)
tic(C)
at(C)
profile(M)
stime(S)
time(S)
setclock(ADM)
clock(F)

Sets the system real-time
clock: The system real-time

Executes commands at specified
Gets process and child process

file access and modification
process data and system/

time zone
file.

for a temporary file.
/isascii, tolower, toupper,

conv, toupper, tolower,
characters. conv, toupper,

/isgraph, iscntrl, isascii,
topology files.

files. top,
tsort: Sorts a file

top, top.next: The Micnet
acctmerg: merge or add

modification times of a file.
/iscntrl, isascii, tolower,

Translates characters. conv,

(time of day) clock.
times. cron: • •••• cron(C)

database.
/tgetftag, tgetstr, tgoto,

times. times:
times. utime: Sets
timex: time a command; report
timezone: set default system
tmpfile: Creates a temporary
tmpnam, tempnam: Creates a name
toascii: Classifies or converts/
toascii: Translates characters.
tolower, toascii: Translates
tolower, toupper, toascii:/
top, top.next: The Micnet
top.next: The Micnet topology
topologically. • • • • •
topology files. • • • • • • •
total accounting files
touch: Updates access and
toupper, toascii: Classifies or/
toupper, tolower, toascii:
tplot: graphics filters
tput: Queries the terminfo
tputs: Performs terminal!
tr: Translates characters.

strace: Prints STREAMS trace messages
and print xt driver packet traces xtt: extract

ptrace: Traces a process.
disk for ftaws and creates bad track table. /Scans fixed
queue files for storing mail in transit queue: MMDF

trchan: Translate character sets ••••.
one format to another translate: Translates files from

conv, toupper, tolower, toascii: Translates characters.
tr: 1hmslates characters. • • •

1-68

times(S)
utime(S)
timex(ADM)
timezone(F)
tmpfile(S)
tmpnam(S)
ctype(S)
conv(S)
conv(S)
ctype(S)
top(F)
top(F)
tsort(CP)
top(F)
acctmerg(ADM)
touch(C)
ctype(S)
conv(S)
tplot(ADM)
tput(C)
termcap(S)
tr(C)
strace(ADM)
xtt(ADM)
ptrace(S)
badtrk(ADM)
queue(ADM)
trchan(M)
translate(C)
conv(S)
tr(C)

Permuted Index

to another translate: Translates files from one fonnat • . translate(C)
setmode: Sets translation mode. ••••••• setmode(DOS)

decode a binary file for transmission via mail uudecode: • uuencode(C)
encode a binary file for transmission via mail uuencode: . uuencode(C)

xprsetup: transparent printer setup utility xprsetup(ADM)
file xprtab: system tty transparent printer map • • • • • xprtab(F)
line command xprcat: transparent printer over modem • xprcat(C)

the scheduler for the uucp file transport program uusched: uusched(ADM)
trchan: Translate character sets trchan(M)

ftw: Walks a file tree. • • • • • • • • • • • ftw(S)
twalk: Manages binary search trees. tsearch, tfind, tdelete, tsearch(S)

acos, atan, atan2: Perfonns trigonometric functions. lasin, trig(S)
tcbck: trusted computing base checker • tcbck(ADM)

i386 - get processor type truth value machid: machid, machid(C)
with debugging on uutry: try to contact remote system uutry(ADM)

Manages binary search trees. tsearch, Hind, tdelete, twalk: tsearch(S)
tset: Sets tenninal modes. tset(C)

topologically. tsort: Sorts a file .'. tsort(CP)
infonnation file card_info: system tty controller card card_info

mapchan: Configure tty device mapping. inapchan(M)
mapchan: Fonnat of tty device mapping files. mapchan(F)

tenninals xt: multiplexed tty driver for AT&T windowing xt(HW)
tty: Gets the tenninal's name. tty(C)
tty: Special tenninal interface. tty(M)

file xprtab: system tty transparent printer map xprtab(F)
monochrome, ega,. screen: tty [Ol-n], color, screen(HW)

tty2[a-h] ,tty2[A-H]:1 ttyI[a-h], ttyl[A-H] , serial(HW)
tty2[A-H]: Interfacel ttyl[a-h] ttyI[A-H], tty2[a-h] , serial(HW)

tty2[A-H]:1 tty I [a-h] , tty I [A-H] , tty2[a-h] , serial(HW)
Interfacel ttyl[a-h] ,ttyl[A-H] tty2[a-h], tty2[A-H]: serial(HW)

tol ttyl[a-h] ,ttyl[A-H], tty2[a-h], tty2[A-H]: Interface serial(HW)
I, tty I [A-H] ,tty2[a-h], tty2[A-H]: Interface to serial/ serial(HW)

ports. I, tty I [A-H] ,tty2[a-h] tty2[A-H]: Interface to serial • • • serial(HW)
of a tenninal. ttyname, isatty: Finds the name ttyname(S)

utmp file of the current user. ttyslot: Finds the slot in the ttyslot(S)
attempts to set value of a tunable parameter idtune: idtune(ADM)
sysdef: output values of tunable parameters • • • • sysdef(ADM)

system! ladjusts tunable parameters to match idmemtune(ADM)
when adding more memory tunable paramters to be adjusted • memtune(F)

/runacct, shutacct, startup, tumacct - shell procedures forI acctsh(ADM)
printers. disable: Turns ofItenninals and disable(C)

accton: Turns on accounting. accton(ADM)
printers. enable: Turns on tenninals and line enable(C)

trees. tsearch, tfind, tdelete, twalk: Manages binary search tsearch(S)
dtype: Detennines disk type. ••.••••••• dtype(C)

file: Detennines file type. •••••••••• file(C)
getty: Sets tenninal type, modes, speed, and linel getty(M)

uugetty: set tenninal type, modes, speed, and linel uugetty(ADM)
machid, i386 - get processor type truth value machid: machid(C)
types: Primitive system data types. ••••••••• types(F)

types. types: Primitive system data types(F)

1-69

Permuted Index

variable. TZ: Time zone environment tz(M)
/localtime, gmtime, asctime, tzset: Converts date and time tot • ctime(S)

uadmin: administrative control uadmin(ADM)
uadmin: administrative control. uadmin(S)

limits. ulimit: Gets and sets user ulimit(S)
characters. ultoa: Converts numbers to ultoa(DOS)

creation mask. umask: Sets and gets file umask(S)
mask. umask: Sets file-creation mode umask(C)

structure. umount: Dismounts a file umount(ADM)
umount: Unmounts a file system. . umount(S)

multiplet mountall: mountall, umountall - mount, unmount mountall(ADM)
XENIX system. uname: Gets name of current uname(S)

current XENIX system. uname: Prints the name of the uname(C)
uncompress: Uncompress a stored file. compress(C)

file. uncompress: Uncompress a stored . compress(C)
file. unget: Undoes a previous get of an SCCS unget(CP)

an SCCS file. unget: Undoes a previous get of unget(CP)
into input stream. ungetc: Pushes character back ungetc(S)

the console butrer. ungetch: Returns a character to ungetch(DOS)
seed48, lcong48: Generates uniformly distributed. srand48, drand48(S)

configuration! upsconfig: uninterruptible power supply. upsconfig(ADM)
a file. uniq: Reports repeated lines in uniq(C)

hostid: print unique hardware ID hostid(ADM)
mktemp: Makes a unique filename. • • • • • • mktemp(S)

constants unistd: file header for symbolic unistd(F)
units: Converts units. ••••••• units(C)

units: Converts units. •••• units(C)
backup: performs UNIX backup functions backup(ADM)

for boards uconfig: UNIX configuration manager uconfig(ADM)
volcopy: make literal copy of UNIX file system • • volcopy(ADM)

optimal access time dcopy: copy UNIX filesystems for dcopy(ADM)
filesystem backup/ restore: AT&T UNIX incremental restore(ADM)

link_unix: builds a new UNIX system kernel. link_unix(ADM)
/prfdc, prfsnap, prfpr - UNIX system pro filer profiler(ADM)

/prfstat, prfdc, prfsnap, prfpr UNIX system profiler profiler(ADM)
fs: file system - format of UNIX system volume fs(F)

link: link, unlink: link and unlink files and directories link(ADM)
and directories link: link, unlink: link and unlink files link(ADM)

unlink: Removes directory entry. . unlink(S)
reading or/ locking: Locks or unlocks a file region for • • • 10cking(S)
/mountall, umountall - mount, unmount multiple file systems mountall(ADM)

umount: Unmounts a file system. • • • umount(S)
files. pack, peat, unpack: Compresses and expands • pack(C)

Performs linear search and update. lsearch, lfind: ••••• lsearch(S)
idinstall: add, delete, update, or get device driver/ idinstall(ADM)

times of a file. touch: Updates access and modification . touch(C)
of programs. make: Maintains, updates, and regenerates groups . make(CP)

sync: Updates the super-block. sync(ADM)
sync: Updates the super-block. sync(S)

Converts lowercase characters to uppercase. strupr: strupr(DOS)
lowercase. strlwr: Converts uppercase characters to strlwr(DOS)

1-70

utility upsconfig: UPS shutdown configuration
about system activity. uptime: Displays infonnation
du: Summarizes disk usage. •• • • •

lint: Checks C language usage and syntax.
clock: Reports CPU time used. • • • • • •

keystrokes usemouse: Maps mouse input to
Gets the login name of the user. cuserid: •• • • • • .

hello: Send a message to another user. •••••••••
in the utmp file of the current user. ttyslot: Finds the slot

logname: Finds login name of user. •••••
the user a super-user or another user. su: Makes •••••

write: Writes to another user.
user. su: Makes the user a super-user or another

password! addxusers: add new user accounts given a XENIX-style
setuid, setgid: Sets user and group IDs.

id: Prints user and group IDs and names.
names id: print user and group IDs and

"crontab:" user crontab file
/getgid, getegid: Gets real user, effective user, real!

environ: The user environment.
generate. disk accounting data by user 10 diskusg: • •

Permuted Index

upsconfig(ADM)
uptime(C)
du(C)
lint(CP)
clock(S)

• usemouse(C)
cuserid(S)
hello(ADM)
ttyslot(S)
10gname(S)
su(C)
write(C)
su(C)
addxusers(ADM)
setuid(S)
id(C)
id(ADM)
crontab(C)
getuid(S)
environ(M)
diskusg(ADM)

getpw: Gets password for a given user ID. ••••• •
newgrp: Logs user into a new group.

ulimit: Gets and sets user limits.

• • • • • getpw(S)
newgrp(C)

file maildelivery: user mail delivery specification
group/ /Gets real user, effective user, real group, and effective

editor (variant of ex for casual users) edit: text
finger: Finds information about users.

idleout: Logs out idle users. • • • • •
wall: Writes to all users. ••••••••••

last: Indicate last logins of users and teletypes
lock: Locks a user's terminal. • ••••

to a printer attached to the user's terminal Iprint: Print
statistics. ustat: Gets file system

Menu driven audit administration utility auditsh:
at and cron administration utility atcronsh: Menu driven

driven backup administration utility backupsh: Menu • •
driven system administration utility. sysadmsh: Menu

Ip print service administration utility Ipsh: Menu driven
mscreen: Serial multi screens utility •••••••••

STREAMS configuration utility for networking products
policy file of the sanitization utility purge(C) purge: the

ulimit(S)
• maildelivery(F)

getuid(S)
edit(C)
finger(C)
idleout(ADM)
wall(ADM)
last(C)
10ck(C)
lprint(C)
ustat(S)
auditsh(ADM)
atcronsh(ADM)
backupsh(ADM)
sysadmsh(ADM)
lpsh(ADM)
mscreen(M)
strmcfg(ADM)
purge(F)
utime(S) modification times. utime: Sets file access and

utmp, wtmp: Formats of utmp and wtmp entries.
endutent, utmpname: Accesses utmp file entry.

••••• utmp(F)

ttyslot: Finds the slot in the utmp file of the current user.
wtmp entries. utmp, wtmp: Formats ofutmp and

entry. endutent, utmpname: Accesses utmp file
uuchat: dials a modem.

directories and permissions/ uucheck: check the uucp
for wort. uucico: Scan the spool directory

getut(S)
ttyslot(S)

• utmp(F)
getut(S)
dial(ADM)
uucheck(ADM)

• uucico(C)

1-71

Permuted Index

clean-up
submit remote mail received via

Administers
devices: Fonnat of

file. dialcodes: Fonnat of
dialers: Fonnat of

file uucheck: check the
uusched: the scheduler for the

maxuuscheds;
maxuuxqts:

uusub: Monitor
pennissions: Fonnat of

poll: Fonnatof
uullst: converts a XENIX-style

uuclean:
control. uustat:

sysfiles: Fonnat of
systems: Fonnat of

for transmission via mail
for transmission via mail

modes, speed, and linel
files.

UUCP routing file tol
file copy. uuto,

maxuuscheds: UUCP
uucp file transport program

job control.

XENIX-to-XENIX file copy.
system with debugging on

XENIX.
maxuuxql~: UUCP

val:
assert: Helps verify

Returns with a nonzero exit
abs: Returns an integer absolute

i386 - get processor type truth
true: Returns with a zero exit
ceil, fmod: Perfonns absolute

getenv: Gets
labs: Returns the absolute

idtune: attempts to set
putenv: Changes or adds

values: machine-dependent

1-72

sysdef: output
/Prints fonnatted output of a

vdutil:
TZ: Time zone environment

uuclean: uucp spool directory
UUCP nnail; •• • • • • •
UUCP control files. uuinstall:
UUCP devices file. • • • •
UUCP dial-code abbreviations
UUCP Dialers file. •••• •
uucp directories and pennissions .
uucp file transport program
UUCP uusched limit file.
UUCP uuxqt limit file.
uucp netwotX. • • • • • •
UUCP Permissions file.
UUCP Poll file.
UUCP routing file tol
uucp spool directory clean-up
uucp status inquiry and job
UUCP Sysfiles file. • • • • •
UUCP Systems file.
uudecode: decode a binary file
uuencode: encode a binary file
uugetty; set tenninal type,

uuclean(ADM)
nnail(ADM)
uuinstall(ADM)
devices(F)
dialcodes(F)
dialers(F)

• uucheck(ADM)
uusched(ADM)
maxuuscheds(F)
maxuuxqts(F)
uusub(C)
pennissions(F)
poll(F)
uullst(ADM)
uuclean(ADM)
uustat(C)
sysfiles(F)
systems(F)
uuencode(C)
uuencode(C)
uugetty(ADM)
uuinstall(ADM)
uullst(ADM)

• uuto(C)
maxuuscheds(F)
uusched(ADM)
uustat(C)
uusub(C)
uuto(C)
uutry(ADM)
uux(C)
maxuuxqts(F)
val(CP)

uuinstall: Administers UUCP control
uullst: converts a XENIX-style
uupick: Public XENIX-to-XENIX
uusched limit file. •••••
uusched: the scheduler for the
uustat: uucp status inquiry and
uusub: Monitor uucp netwotX.
uuto, uupick: Public
uutry: try to contact remote
uux: Executes command on remote
uuxqt limit file. •••••
val: Validates an SCCS file.
Validates an SCCS file. val(CP)
validity of program.
value. false:

• • • • • . assert(S)
• • • • . false(C)

value. • • • • • • • • • • • . abs(S)
value machid: machid,
value. • •••••••
value, floor, ceiling and! Ifabs,
value for environment name.
value of a long integer.
value of a tunable parameter
value to environment. • •••
values ••••••••••
values: machine-dependent values
values of tunable parameters
varargs argument list.
varargs: variable argument list.
fix a virtual disk
variable. • ••••••••.•

machid(C)
true(C)
ftoor(S)
getenv(S)
labs(DOS)
idtune(ADM)
putenv(S)
values(M)
values(M)
sysdef(ADM)
vprintf(S)
varargs(S)
vdutil(ADM)
tz(M)

Permuted Index

varargs: variable argument list. ••••. varargs(S)
edit: text editor (variant of ex for casual users) edit(C)

vc: version control •• • • vc(C)
Gets option letter from argument. vector. getopt: •••••. getopt(S)

the! !displays the list of vectors currently specified in vectorsinuse(ADM)
of vectors currently specified! vectorsinuse: displays the list vectorsinuse(ADM)

display editor. vi, view, vedit: Invokes a screen-oriented . vi(C)
checkaddr: MMDF address verification program checkaddr(ADM)

isverify: verifies ISAM database entries isverify(M)
assert: Helps verify validity of program. assert(S)

vc: version control ••••• vc(C)
red: Invokes a restricted version of. ••••••• red(C)
sccsdiff. Compares two versions of an SCCS file. sccsdifltCP)

fonnatted output of at vprintf, vfprintf, vsprintf: Prints vprintf(S)
screen-oriented display editor. vi, view, vedit: Invokes a vi(C)

a binary file for transmission via mail uudecode: decode uuencode(C)
a binary file for transmission via mail uuencode: encode uuencode(C)
submit remote mail received via UUCP nnail: nnail(ADM)

the font and video mode for a video device. vidi: Sets • vidi(C)
vidi: Sets the font and video mode for a video device. vidi(C)

mode for a video device. vidi: Sets the font and video vidi(C)
screen-oriented display! vi, view, vedit: Invokes a ••••• vi(C)

add.vd: add a virtual disk • • • • • • • • add.vd(ADM)
vdinfo: virtual disk infonnation utility vdinfo(ADM)
vdutil: virtual disk add vdutil(ADM)

del.vd: delete a virtual disk . • . • • • . del.vd(ADM)
vdinfo: display virtual disk infonnation vdinfo(ADM)

vddaemon: virtual disk initialization vddaemon(ADM)
vmstat. Reports virtual memory statistics. vmstat(C)

statistics. vmstat: Reports virtual memory vmstat(C)
UNIX file system vo1copy: make literal copy of • volcopy(ADM)

- fonnat of UNIX system volume fs: file system fs(F)
file system: Fonnat of a system volume. •••••• filesystem(F)

Prints fonnatted output of at vprintf, vfprintf, vsprintf: vprintf(S)
output of at vprintf, vfprintf, vsprintf: Prints fonnatted vprintf(S)

who is on the system and what w: Displays infonnation about w(C)
background processes. wait: Awaits completion of wait(C)

event. ev _block: Wait until the queue contains an . ev _block(S)
to stop or tenninate. wait: Waits for a child process wait(S)

sigsem: Signals a process waiting on a semaphore. • • • • • sigsem(S)
stop or terminate. wait: Waits for a child process to wait(S)

checks access to a resource! waitsem, nbwaitsem: Awaits and . waitsem(S)
ftw: Walks a file tree. • • • • • ftw(S)

wall: Writes to all users. • • wall(ADM)
characters. wc: Counts lines, words and wc(C)

whodo: Determines who is doing what. ••.•••••• whodo(C)
what. whodo: Determines who is doing . whodo(C)

jagent: host control of windowing tenninal • • • jagent(M)
jtenn: reset layer of windowing tenninal jterm(C)

ismpx: return windowing tenninal state ismpx(C)
!protocol used between host and windowing tenninal under layers(M)

1-73

Permuted Index

layers: layer multiplexer for windowing tenninals layers(C)
multiplexed tty driver for AT&T windowing tenninals xt: xt(HW)

Scan the spool directory for work. uucico: • • • • uucico(C)
Get the pathname of current working directory. getcwd: getcwd(S)

cd: Changes working directory. cd(C)
chdir: Changes the working directory. ••••. chdir(S)

pwd: Prints working directory name. pwd(C)
fputc, fputchar: Write a character to a stream. fputc(DOS)

write: Writes to a file. • • • write(S)
write: Writes to another user. write(C)

outp: Writes a byte to an output port. outp(DOS)
console. putch: Writes a character to the • • putch(DOS)

putpwent: Writes a password file entry. putpwent(S)
write: Writes to a file. write(S)
wall: Writes to all users. wall(ADM)

write: Writes to another user. write(C)
a file for shared reading and writing. sopen: Opens sopen(DOS)

a file region for reading or writing. /LOcks or unlocks 10cking(S)
open: Opens file for reading or writing. •••••••• open(S)

the 5620 DMD tenninal wtinit: object downloader for wtinit(ADM)
utmp, wtmp: Fonnats of utmp and wtmp entries. •••••• utmp(F)

entries. utmp, wtmp: Fonnats ofutmp and wtmp • utmp(F)
accounting! fwtmp: fwtmp, wtmpfix: manipulate connect • • • fwtmp(ADM)

x286emul: emulate XENIX 80286 • x286emul(C)
commands. xargs: Constructs and executes xargs(C)

incremental filesystem backup. xbackup: Perfonns XENIX xbackup(ADM)
uux: Executes command on remote XENIX. •••••••• uux(C)

/add new user accounts given a XENIX-style. password file addxusers(ADM)
x286emul: emulate XENIX 80286 ••••• x286emul(C)

Assembler. asx: XENIX 8086/186/286/386 asx(CP)
masm: Invokes the XENIX assembler. •• masm(CP)

boot: XENIX boot program. boot(HW)
intro: Introduces XENIX commands. Intro(C)

commands. intro: Introduces XENIX Development System Intro(CP)
Convert 386 COFF files to XENIX fonnat. coffconv: coffconv(M)

filesystem! xbackup: Perfonns XENIX incremental • • • • • xbackup(ADM)
system! xrestore: Invokes XENIX incremental file xrestore(ADM)

xinsta1l: XENIX installation shell script xinsta11(ADM)
netutil: Administers the XENIX network. netutil(ADM)

Executes commands on a remote XENIX system. remote: remote(C)
Prints the name of the current XENIX system. uname: uname(C)

config: Configures a XENIX system. config(ADM)
cu: Calls another XENIX system. cu(C)

uname: Gets name of current XENIX system. • • • • . uname(S)
rep: Copies files across XENIX systems. rep(C)

dosld: XENIX to MS-DOS cross linker. • dosld(CP)
mmdfalias: converts XENIX-style aliases file to/ mmdfalias(ADM)

to/ mnlist: converts a XENIX-style Micnet routing file • mnlist(ADM)
file to/ uulist: converts a XENIX-style UUCP routing uulist(ADM)

uuto, uupick: Public XENIX-to-XENIX file copy. uuto(C)
shell script xinsta1l: XENIX installation xinstall(ADM)

1-74

entries from files. xlist, fx1ist: Gets name list
programs. xref: Cross-references C • •

incremental file system! xrestore: Invokes XENIX
programs. xstr: Extracts strings from C

xtt: extract and print xt driver packet traces
xts: extract and print xt driver statistics •••••

AT&T windowing tenninals xt: multiplexed tty driver for
channels protocol used by xt(7) driver /multiplexed
protocol used by x t (7)1 xtproto: multiplexed channels

statistics xts: extract and print xt driver
packet traces xtt: extract and print xt driver

functions. bessel, jO, j 1, jn, yO, yl, yn: Perfonns Bessel
bessel, jO, j 1, jn, yO, yl, yn: Perfonns BesseV • • •
compiler-compiler. yacc: Invokes a •••••

yes: Prints string repeatedly.
bessel,jO,jl,jn, yO, yl, yn: Perfonns Bessel functions.

zcat: Display a stored file.
true: Returns with a zero exit value. ••••••

set default system time zone timezone: ••••••
TZ: Time zone environment variable.

Permuted Index

xlist(S)
xref(CP)
xrestore(ADM)
xstr(CP)
xtt(ADM)
xts(ADM)
xt(HW)
xtproto(M)
xtproto(M)
xts(ADM)
xtt(ADM)
bessel(S)
bessel(S)
yacc(CP)
yes(C)
bessel(S)
compress(C)
true(C)
timezone(F)
tz(M)

1-75

Change Information

Change Information
This is a summary of the changes that have been made to the previous
version of this manual. The chapters, page numbers, and/or paragraphs
mentioned in this summary refer to the previous manual.

Title: Altos UNIX System V/386 Release 3.2
User's Reference (C,M,F)

Revised Part Number: 690-23414-002

Previous Part Numbers: 690-23414-001 and 690-24536-001

Date: March 1991

Changes:

The phrase, "for the 486" (or in some manuals "for Entry-level Sys­
tems") was deleted to indicate that this operating system runs on a wider
range of platforms.

The "Guide to Your Altos UNIX System V/386 Release 3.2 Documenta­
tion" and the "Operating System Documents for Different Audiences"
pages located in the front matter of the manual were both changed to indi­
cate that a different combination of the available manuals are now
shipped with every run-time system. This has also affected which manu­
als are now available as spare parts.

Added fuser(C) , hostid(C), ksh(C), otar(C), pscat(C), rcvtrip(C),
setmode(C), xprcat(C), isverify(M), power/ail(M), restart(M),
card _info(F), hs(F), maildelivery(F), meisa(F), memtune(F), and
xprtab(F).

Deleted ct(C).

Miscellaneous editing and typographical changes were made throughout
the manual.

Change Information CH-1

Change Information

Page

1

1

3

1

1

6

1

1,5

1,2

1

1-5

2

CH-2

Command

cpio(C)

date(C)

dd(C)

devnm(C)

dos(C)

dos(C)

echo(C)

man(C)

more(C)

newform(C)

passwd(C)

ps(C)

Description

Added -T and -K options.

Added -c, -m, and -s options.

Corrected block size used in example, from 1 K
to 512-byte blocks

Corrected disk device reference, from hdl to
hdb.

Inserted description of dos(C) utilities, which
was mistakenly omitted from some versions of
the document.

Corrected disk device references, from rhdOd
and rhdld to rhdad and rhdbd respectively.

Added -n option. Removed the note detailing
differneces between csh built-in echo and
Ibinlecho. Added a note describing how to
echo octal characters. Removed "Standards
Conformance" section.

Deleted CT designator references, and
emphasized that nroif text processing package
must be installed separately.

Deleted -r option.

Added more information clarifying the use of
the -I option.

Substantially revised the description of passwd.
This included changing valid options and argu­
ments, and adding new settings to
/etc/default/passwd. Also, removed the "Stan­
dards Conformance" section.

Deleted -s option, for specifying an alternate
swap file.

Installation Guide

PIN 690-23414-002
PrInted In U.S.A.
8/91

Computer Systems
2641 Orchard Parkway, San Jose, CA 95134
408/432-6200, FAX 408/435-8517

