

An overview of the MATHILDA system *

by

Peter Kornerup, Univet'sity of Aarhus, Aarhus, Denmark
Bruce D. Shriver, University of Southwestern Louisiana,

Lafayette, Louisiana

Abstract

A dynamically microprogrammable processor called MATHILDA
is described. MATHILDA has been designed to be used as a tool in
emulator and processor design research. It has a very general micro
instruction sequencing scheme, sophisticated masking and shifting
capability, high speed local storage, a 64-bit wide main data path, a
horizontally encoded microinstruction, and other facilities which make
it reasonably well suited for this purpose. This paper presents an
overview of the MATHILDA system.

* This work is being partially supported by NATO Grant No. 755
and the Danish Research Council Grant 511-1546.

1. INTRODUCTION

1.0 Background and general design criteria

In the spring of 1 971 the Department of Computer Science at the
University of Aarhus was considering buying a standard minicomputer
to control some peripherals and to simulate a standard medium-
speed batch-terminal. At the same time a group was working with an
integrated software and hardware description language called BPL [1 J.
To support this group, and,additional-Iy, - make the use- of such a
minicomputer more flexible, it was instead decided to design and con
struct a microprogrammable mini within the department itself. The de-
sign was started and went on during the summer 71. The resulting machine,
the RIKKE-O, was partially constructed, and started running in early 1972.
In the meantime, a number of additional departmental projects were pro
posed, some of them were started while others were considered not to
fit in with the present design. Among the latter projects were some from
numerical analysis, the problem being the data width. RIKKE-O has a
short word size (l6-bit) and in order to obtain an efficient implementa-
tion of even standard arithmetic operations a wider word was needed.

It was therefore suggested that a microprogrammed functional unit with a
wider data path could be attached to RIKKE-O as an I/O device, together
with a wider memory. This organization would allow the problems of
numerical analysis and those of the system-software to be more or less
separated on the independent units. It was the functional unit which even
tually became the MATHILDA machine (a detai led description of this
mach ine can be found in [2J).

The design of MATHILDA went on during mid-1 972. It became apparent
during the design phase that those features which were felt needed and
those which came as side effects, covered and extended those of the pro
totype RIKKE-O. As it was previously decided to construct more RIKKEs
by other funding, the MATHILDA design was adapted for the further con
structed RIKKEs with the (almost only) exception of the data widths being
respectively 64-bit and 16-bit. Thus, together with a modularity and
homogeneity in the hardware deSign, an economy in print-layout and con
struction was desired. As an example, all resources of the main data
path are laid out on one print board, 8-bits wide. Two of the boards
comprise one whole RIKKE bus structure with all registers, shifters,etc.
Again, four of these RIKKE boards give the MATHILDA bus. Also the
microprogrammed control unit for each machine is identical and is, in
fact, also made up of several modules.

Modularity and homogeneity were general criteria for the design. It was,
from the very beginning, apparent that the design was going to be rather
complex, and we had to keep the number of different features low. This
was partwise achieved by using a standard "control-register group" for
control I ing the various resources of the system.

Two general software ideas used in appl ications had a good deal of im
pact on the design: (1) the ability to run, on the higher level, a number of
virtual machines which are to be multiprogrammed {or multiplexed} on the
microlevel, and (2) the virtual machines are to be defined through several

2

layers, e. g. in a bleck-structured envirenment. These ideas greatly
influenced the design ef the centre I unit, especially with respect to. the
capabilities ef addressing. Many addressing facilities knewn at·the virtual
level, and in seme cases mere than these, are here vi sible en the micro.
level.

Anether criteria was to. have a clean and censistent way ef dealing with
the timing preblems. We decided net to. ferce the speed, rather we weuld
have a slewer but less tricky machine.

2. A BRIEF DESCRIPTION OF MATHILDA

2.0 An everview

One may censider MATHILDA, shewn in Figure 1, as cempesed by three
layers, each of which is centrelling the lewer enes:

a)
b)
c)

The deceding and sequencing unit.
Centrel-faci I ities.
The main data path.

Decoding and Sequencing Unit.

Control Instruction
Store Sequencing t

I Standard Groups I r--H Funct.ional unit ~
or Register

I System Counters I L

• 2
u I Condi tion Saves I
~

and Swi tches Q;

/ • Ul
~ Es Registers I
~

• aJ

I Snooper Regi sIers I
Y Functional unit ~

or Register _

--1 Bus Shifter

Control Facilities Main Data Path Structure

The MATHILDA Processor.

Figure 1.

I

3

MATHILDA has a single 64-bit wide data path (called the Main Data
Path, MDP) with 8 inputs consisting of various 64-bit wide registers,
shifters, masks, and so on. It also has a number of control-information
data paths and storage elements dedicated to those places where control
of system resources can be exercised. The MDP can itself act as a data
transformational element. All information transported over the MDP is
subject to the following three transformations, in this order:

1) Masking by a selected, stored mask which has been Specified
by the user.

2) Shifting by a specified number of bit-positions via a right
cyclic barrel shifter.

3) Masking by either an end-off mask of specified amount
from the right or left, or by a selected stored mask as in (1).

Furthermore, during data transport, two functional units are operating
on the transported informat ion (as present between step 1 and 2 above),
and without effecting the information, provid ing the system wi th control
information (bus parity, test if the BUS == 0, and bit-encoding, see 2.3.3).

The amount of parallelism in data transfers which MATHILDA allows for
is restricted, in some sense, on the MOP. The parallelism does not con
cern the moving of actual data, but controlling the source, data path,
destination of the transported data, and the control of functional units
operating on the actual data.

The control-faci I ities consist of storage-elements, data paths and func
tional units which allows for a high degree of parallelism and permits a
variety of external, stored or computed control upon the units on the main
data bus. The possible sources of control-information are the following:

1) eM: the current microinstruction
2) EX: an external register (from controlling processor)
3) BE: the bit-encoder unit (see 2.3.3)
4) SB: ~ightmost bits of the shifted bus
5) SG: registers for residual or saved control

It should be noted that item (1) above allows the user "immediate control"
over the system"s resources whereas items (2-5) offer varying degrees of
"residual control" in the context of Flynn and Rosin [3 J. Furthermore,
among the control facilities are system counters, local storage groups,
and condition save register. There are also "status" and "snooper" fa
cilities, which can be used to gather data useful in computing statistics con
cerning the system and thus enhance the experimental nature of this ma-
ch ine.

A microinstruction is 64-bits wide. Particular fields of a microinstruction
are highly encoded while others are minimally encoded. The minimally en
coded fields (from 1 to 3 bits) control particular highly used system re
sources and the instruction sequencing. The high Iy encoded fi elds (typ. 8-
bits) are mostly used for exercising the control facilities associated with
the arithmetic logical unit, the residual control standard groups, addressing
of loca I storage elements, and so on. Up to 4 high Iy encoded m icroopera
tions can be specified in one microinstruction while at least 7 minimally
encoded operations can occur.

4

2.1 The Main Data Path, MOP

The MOP forms the base of the system, and we will begin a more detailed
di scussion of the system wi th it, the lowest level, where the actual data
handling takes placet controlled by the upper levels. The tvOP is shown
in Figure 2.

Shifted Bus

Bus Masks

Loading Masks A I--..J---..<r&---W-o-rk-;n-g--'

Registers A

Loading Masks B I--L-~'i}---

Various Standard
Regi ster Groups

Variable Width
Shifter

Double
Shifter

Status Port ---i-------~

Devices In ut Port A

Devices In ut Port

Postsh ift Masks

GUS

Parity
Generator

Bit Encoder

Output Port C

Output Port 0

Output Port A 1------ Device

__ ----- Device

MATi IILDA Main Data Path

Contl'ol Ports

Deviceo,

Devices

In every microinstruction it is possible to take the contents of a specified
64-bit wide source and mask it by use of a mask, BM, which has been
specified by the user. The masked data is buffered in a latch, the output
of which is termed the BUS.

The data on the BUS is continuously being encoded, yielding various types
of control-information (parity and bit-encoding, see 2.3.3). Furthermore,
the BUS information may directly be used for loading into various special
destinations, e. g. output buffers. The data on the BUS is passed through
the bus shifter, BS, which when enabled shifts the data n bit position
right cycl iC; where 1 :::; n:::; 63. The physical shifter is constructed in a

5

manner quite similar to the barrel shifter of the CDC 6400 series ma
chines. After shifting, the hformation is masked again, this time by a
combined mask PM V PG, PM being similar to BM, and PG as an end-off
mask generator, which allows the Bus-shifter combined with PG to result
in a logical shift. The information after shifting and postshift-masking is
buffered in a latch, ~lled the SB Latch. The output of the SB Latch is
called the Shifted Bus, SB, and is finally loaded into selected destinations.

The Bus Mask, BM
The Bus Mask, BM, is composed from two independently stored masks:
BM = MA V MB. Both MA and MB are read from a store each containing
16 such masks. The stores have their own address register, as shown in
Figure 3.

Set.

L+l -1 C

SS(0: 631--..0-,-1

MA

BD Load

Mask Registers

MS

Bus Masks. 8M

Figure 3

Bus Selector

MS

The reason for the inclusion of double masks is that one group of
masks (say MB) containing a no-mask and an all-mask can be used to
enable/disable the other group of masks (say MA). Data is loaded into
MA and MB from the SB.

The Bus Sh ifter, BS
The implementation of the BS is 64 parallel selectors: one selector for
every position in the output .which selects which of the 64 input lines of
the BUS is to be used (in a right cyclic connection) as the corresponding
output bit. When no shift is required, the selectors all reside in a standard
no shift position by disabling the selector via a dedicated bit in each
microinstruction. When the BS is enabled, a BS Source Selector, BSS,
see Figure 4, determines the source which is to be used as the shift
specification.

eM

Right Cyclic Shift

The Postshjft Masks, PM and PG.

Shifted Bus
5B(0:63)

6

The output of the BS is again masked by the masks PM V PG, see
Figure 5. Here PM == PA V PB is identical to BM with the single exception
that PA and PB are loaded from the BUS whereas MA and MB are loaded
from the SB. The PG is a PROM whose contents can be combined to yield
the 128 masks which are required to make the BS appear as a logical
left/right shifter as well as a cyclic left/right shifter. The enabling of the
PG is determined by the PM, i. e. PM contains both a no-mask and an all
mask, thus allowing it to be thought of as a switch for the operation of PG.
The control of the PG, i. e., the specification of which mask to apply is
simi lar to the specification of the shift amount for the BS, i. e., a selector
PGS, as shown in Figure 5, determines the source.

eM

eM
EX
5B

5G

Sel.

L+l -1 C

BU5(0:63)
Postshift

PB

Postshift Mask PROM) PG

Postshift Masks.

Figure 5

PA

PG

Bus
Shifter

7

If the same source of control is used for BS and PG, the six low order
bits will specify an amount n of right cyclic shift in BS, and the seventh
bit will specify whether a logical rightshift of n places, or a logical
leftshift of 64-n bit positions will be the result when PG is enabled
(i. e., PM == PA V PB == no mask).

2.2 Additional MOP resources
The other MOP resources, shown in Figure 2, will now be briefly dis
cussed. These resources are either possible sources of a bus-transport,
or destinations for a transport, or both. Except for the ari thmetic.-Iogic

. unit, ALU, they are all some sort of registers, some are pure storage
elements (WA, WB, LR), some are shifters (AS, VS, OS), and the rest
for I/O communication (lA, IB, OA, OB, OC, 00).

Working registers (WA and WS) and their Loading Masks (LA and LS)
The system contains two local storages, WA and WS both containing
256 words. They are composed of 80 nsec, 256 x 1 bit chips. As they
are identical we wi II only consider one of them, say WA, which is shown
in Figure 6. Addressing of WA is made by a 8-bit pOinter, WAP, which
determines which location to read.or write. WAP is, in fact, composed
of two 4-bit pOinters which may be coupled together (or be decoupled),
wh ich a Ilows for considering WA as either 256 elements, or as 16 groups
of 16 registers.

Sel.

eM EX 58 SG eM EX 5B 5G

Shifted Bus
5B(0:63)

256

Working Registers,

WA

Working Registers A. WA

Figure 6.

Bus
Selector

The writing of data into WA is also masked by means of a loading mask,
LA. LA makes it possible to load only selected fields of the addressed
WA-word, without affecting the remaining word. This permits the con
struction of say the result of a floating point operation, by loading the
fields of the packed representation separately as they are being computed.
LA (and LB on WS) is again a group of 16 masks with its own address
mechanism. (In fact LA is identical to a register group as shown in
Figure 10.)

8

The Arithmetic and Logical unit. ALU
This is a standard 64-bit wide ALU, see Figure 7, operating within
the cycle time of the machine. It is implemented in 3 level carry look
ahead logic. It can give 16 arithmetic and 16 logical operations on two
operands. The operation to be performed and the carry-input is specified
by the contents of a function register, ALF, which can be preset to cer
tain standard functions or loaded from a standard group.

Sel.
Bus Selector

Arithmetical Logical Unit. ALU

Figure 7

The inputs to the ALU, i.e. LR and AS, are discussed below.

The Local Registers, LR
One of the inputs to the ALU is the output of a 4 element register group,
the Local Registers, LR, see Figure 8. LR has independent address
mechanisms for reading and writing. The 2-bit read-address LROP
(LR-output pointer) can be specified (loaded) in such a way that it allows
for a fast small table-look-up. The input address pOinter, LRIP, is
loaded simi larly and both addresses can be incremented and decremented
(wrap-around). The DS (V:V+1) input to LRIP is discussed below. LR
has no direct access to the bus, but its contents must be gated through
the ALU.

L +1 -1 C

D5Iv:v+1l

5BIO:63)

SD Load

LRO

LRI

LR2

LR3

Local Regi sters; LR

Figure 8,

L +1 -1 C

1----1 A Input of ALU

9

The Accumulator Shifter, AS
The other input to ALU is the Accumulator Shifter, AS, see Figure 9.
The AS is a register which can shift one position left or right in one
operation. Any 1 of 8 possible specified sources can be loaded into the
vacated bit position. One of these inputs may be an arbitrary selected
bit of AS itself, thus allowing AS to act as a cyc I ic shifter of an arbi trary
length n, 1 ::; n::; 64. AS has no direct path to the bus but must gate its
contents through the ALU.

eM SB EX SG

Sel.

Source AS(63) AS(O)
no. Input Input

0 0 0
1 1 1
2 AS(O) AS(63)
3 AS(63) BUS(63)

" CR SB(63)
5 DS(V+l) DS(V+l)
6 AS(V) AS(V)
7 VS(V) VS(V)

Accumulator Shifter. AS

Figure 9.

The Variable Width Shifter, VS
The variable width shifter, VS, is logically identical to the AS, but
has direct output to the bus. Together with the AS, it can form a cyclic
sh ifter of arbitrary length n, 1 ::; n::; 1 28.

The Double Shifter, OS
The Double Shifter, OS, is also logically identical to AS, except for
the fact that it shifts two positions at a time. The two variably addressed
bit positions (besides from being used as input to vacated bits in shifts)
may be used to load LRIP and LROP as shown in Figure 8. Thus the 64-bit
content of OS may be used in 32 steps to control algorithms two bits in
one step (e. g. in a mul tipl ication algorithm) by table look-up in LR. The
OS, AS, and VS can be interconnected so that two 32-bit words can be
merged (interlaced) together and so that one 64-bit word can be decom
posed in the reverse fashion.

The Status Port, SP
This port provides a path between various control and microinstruction
sequencing facilities and the tvlDP. Its functioning is explained in section
2.3.5.

The Input Ports IA and IB
Each of the ports can potentially access 16 different input devices,
addressed by associated device address-registers lAD and lAB.

10

The Output Ports OA and OB
Simi larly to the input ports, OA and OB can access 16 devices, al
though ports may be dedicated to a single device in the case that a
device is expected to be very heavily used. As an example a standard
memory will be considered as such a device, where an input port and
an output port may be ded icated.

The Output Ports, OC and OD
These are identical to OA and OB, except for the fact that they are
loaded from the BUS and not as normal destinations of the SB, but
loading is specified by microoperations.

2.3 Control faci I ities

As it can be seen from the previous description of the MDP and its
associated storage and functional elements, most of these resources
require some sort of control-information. It may be an address (e. g.
for WA and \1\8), data for a functional unit (e. g. a shift specification
for BS or mask specification for PG), a functional specification (e. g.
control of ALU function) or a selector-specification (e. g. for vacated
bit input to a shifter).

2.3. 1 The standard groups
As one of the main objectives of the design was to offer a host upon
which a wide variety of experiments could be conducted, it was decided
to delay the binding of as many design decisions as possible and to give
the user capability to bind some decisions. With respect to the specifi
cation of control information for all functional units, the user is able to
choose between immediate control and some form of residual control.

Each resource of the system can be controlled from a field within any
particular microinstruction, thus allowing the immediate control source.
Another such control source might be some storage element that could
have been set up by a particular microinstruction to be used by a later
microinstruction, i. e., residual control. Possible residual control
sources might be from the external world (e. g. another computer), the
data carried on the bus, or a result of some computation thereon. In MA
THILDA, control information may be selected among four possible sour
ces, among which CM (the current microinstruction), EX (external re
gister), and the output of a RG (a register group) form three inputs to a
control selector. The fourth input is either 58 (least significant bits of
the shifted bus) or the output of BE (the bit-encoder, see section 2.3.3),
the choice of which is bound by the designers depending on the needs of the
unit in question.

The selection of the control source is normally specified in the very same
microinstruction wh ich specifies the use of a particular resource. The
control information normally is buffered (e. g. as in the ALU-function
buffer, ALF, a working register address pOinter, or in a resource itself
as in the case with system counters). Only where the control information
is directly affecting the bus transport, as with BS and PG, was it ne
cessary to bind the selection of source prior to the use of the information.
This is obviously because the selected information is not being buffered,
but directly affects the bus transport when the unit is enabled.

1 1

The amount of residual control facilities is large and could have been
rather complex. However, a great deal of simplicity and modularity has
been achieved both logically and physically by use of a uniform residual
control concept, the standard group and its selector, see Figure 10.

"* The width of the registers
depends on the particular selector involved.

Typical Standard Group

Figure 10.

Selector

A Standard Group is a storage element of 16 words wi th an address
mechanism. The local storage associated with a standard group is
called a Register Group, RG, and is of an appropriate width depending
on which unit the standard group is associated with. The storage is used
for residual control, and in these cases where the information residing
there is part of a fixed enVironment, the loading of the storage takes place
from the SB. However, in connection with some units, it was more na
tural to load the storage from the unit itself, so that the information there
could be saved and later restored. Loading a standard group from the SB
then becomes a two-step proces: first load the unit from SB, and then
"save it".

The reading of and writing into the storage of a register group is con
trolled by an address or pointer contained in a register, the RGP which
can be loaded, cleared, incremented or decremented. Loading of a RGP
can also take place from four sources, two of which are local to the re
gister group, the Save-1 and Save-2 registers. The timing is so that it
is possible in one microoperation to save the contents of a RGP in its
Save-2 (S2)-register, and load new data into RGP (which might be the
contents of its S1-register).

2.3.2 System counters CA and CB

Among the control-information units are also two 16-bit system counters
CA and CB, which can be used in controlling algorithms, e. g. for counting
in loops, etc., see Figure 11. It should be noted in Figure 11 that the
content of a counter can be saved and later restored, so that one counter
can control up to 16 levels of embedded loops.

S8

CM

Sel

CA
Save Registers

CM S8 EX ;:-C""AS"--_-'

Counter A. CA

Figure 11.

1 2

L +I-IC

The counter itself can be incremented, decremented and cleared, and the
actual content of the counter can be tested towards zero, and some of the
bits can be tested individually.

The only difference between CA and CB is that where the sources for
loading CA are: CM, EX, SB, and CA-save-group, the similar sources
for CB are CM, EX, BE, and CB-save-group (BE is the output of the
bit-encoder, described below).

2.3.3 The Bit-encoder BE
One resource of the MATHILDA is to our knowledge a new invention. It
is what we call the Bit-encoder, BE. In many algorithms it would be use
ful to have easy access to information about a given bit-pattern as to
where is the first bit on, and where is the last:

word containing 64 bits

I O •••••••••• 01 xx . •....•••. xx1 O •••••••••• 0

63 0
I

-m

- ,.

We call the quantities I and m respectively LSB (least significant
bit) and MSB (most significant bit). The bit-encoder can provide the
user with such numbers, and certain computations using LSB and MSB.

1 3

The Bit-encoder is continuously encoding the information on the BUS,
yielding the two quantities I and m corresponding to the transported
bit-pattern. By a microoperation these can be loaded into two registers
LSB1 and MSB1 • The computational network of the Bit~encoder further
contains two additional registers LSB;a and MSB;a, which can be loaded
from LSB1 and MSB1 respectively or be interchanged with these. As
suming LSB;a and MSB;a contain the encodings from a previous BUS
transport, the circuitry of the Bit-encoder continuously computes the
following quantities:

BU5(O:63) --t-------,

eM
EX
5B
5G

Sel.

M5B
Encoder

F

G

BE Functions FandG

LSB1

L5B, -1

MSB1

M5B, +1

L,

AL::: L1 - L2

L5B. - L5B,

M5B. - M5B,

[~J + 1

(] ::~ integer
part of

The Bit Encoder and its associated functions

Figure 12.

Control Ports
and

Condition Selector

The output of the BE may be used in various control elements of the
system. Furthermore the Bit-encoder always provides the following
testable conditions:

Conditions

LSB 1 !5 0

MSB 1 = 63

Ll = 0 (i. e .• LSB 1 = MSB 1)

L2 = 0 (i. e .• LSB2 = MSB2)

Ll = L2

sign (L 2 - L 1)

LSB 1 = LSB 2

sign (LSB 2 - LsEi 1)

MSB 1 = MSB 2

sign (MSB 2 - MSB 1)

BUS = 0

1 4

Based on these conditions, it is possible to compare some of the charac
teristics of the two bit.,..patterns whose encodings have been loaded to:
a) direct decisions about the algorithm, b) choose BE-function, or c)
interchange (LSB 1, MSB 1) and (LSB 2 , MSB 2) before selecting the
BE-function and use the selected information.

Since bit-patterns and bit-matrices play an intensive role in many non
numerical algorithms, fundamental operations providing the encodings
I and m, may prove to be useful on the virtual machine-level, and also
high-level languages.

2.3.4 Cond ition save registers, CR, and switches, KA, KB, KC and KD
A number of system conditions (almost 128) are continuously sampled and
in every instruction anyone of these may be selected for testing. The
main use of such a selected condition is of course in the sequencing which
will be described later (S. 2. 4. 4), but it may be useful to be able to save
a condition as it arises to be used in a later sequencing decision. The
Condition save registers (CR) are a 1 -bit wide (save register) group where
the value of a condition may be saved and later retrieved, see Figure 13.
Switches exist in two variants: KA and KB are console-switches, KG and
KD are programmable switches that furthermore also can be loaded with the
selected cond ition.

EX
CM

Sci.

--'-~~"L

CRSI
;1 0

L

CSB

__ ~~'A S r~"'B S .

.. . - .. ~ -- --"---"'--"--,

LRS LRS

Address Computation

Condition Save Registers and Switches.

Figure 13.

Mechanical
Switches on
Operators
Console

s = I'llt true

R = HOIl false

1 5

2.3.5 The Status Facility
The Status Facility establishes a data path between various control re
gisters, address pOinters, functional units (e. g. counters, and the bit
encoder) and the rv1DP. The Status Faci I ity provides a basis for gathering
both data concerning the operation of the system and data for use in al
gorithmic processes.

CM

sto
st1

st2

st63

t-
o
u
Q)

Q)
Bus-selector If)

III
::J
III
If)

Status Faci I ity

Figure 14

64 different sources of data are fed into a status selector. Which partic
ular source is to be gated onto the rv1DP as the bus-input is determined
by the content of the Status Port Pointer (SPp) register. It should be
noted here that sto is a 16-bit field from a microinstruction so that con,...
stants can be put on the MOP with relative ease.

2.3.6 The Snooper Facility
The Snooper Faci I ity consists of a) a Snooper Control Store and b)
Snooper Resources (e. g. 2 groups of 16-registers, counters, and com
parators). The Snooper unit works in the following way: when the address
of the next microinstruction to be executed is sent to the MATHILDA
Control Store address buffer, it is also gated into the Snooper Control
Store address buffer; at the same time the microinstruction is fetched
so that it can be executed, the contents of its associated Snooper Control
Store location is fetched; in parallel with the microinstruction being
executed, the contents of its associated Snooper Control Store just fetched
is used to control the operation of the Snooper Resources. Snooper Con
trol Store (80 nanosecond storage) is 16-bit wide and has the same
number of words as the MATHILDA Control Store. A snooper word can
specify for example, any two registers which can be counted up (or
down). 'The Snooper Faci I ities can be written or read through the normal
input/output ports of the system in much the same way as the Status Fa-

16

ci I ities. Snooper Control Store is writable so that different data gathering
routines can be associated with the same segment of microcode without
changing the microcode. The user is allowed to establ ish the correspondence
between any particular snooper resource and the routine upon which it is
snooping.

2.4 Microinstruction sequencing and execution

One microinstruction execution of the machine may be considered as con
sisting of four major sequentially executed steps:

A: Microinstruction fetch
B: Data transport on fvOP
C: Execution of microoperations
D: Address calculation (for the next microinstruction)

Steps B, C, and D are controlled by fields within the 64 bit wide micro
instruction. Logically, to the user, these steps and substeps within these
may be considered sequentially within the microinstruction execution,
although of course many of the activities take place in parallel in the
physical implementation. The execution of one microinstruction is to be
considered as totally completed before the next microinstruction is exe
cuted, i. e., actions initiated by the execution of a particular microopera
tion do not,span several microinstruction executions.

The microinstruction consists of three major fields, corresponding to the
control of the previously mentioned steps B, C, and D:

C B D

microoperation and data MOP-transport sequencing

63 23 22 1 6 15 0

The dealing of dynamic conditions has been made consistent. The machine
can be run in two modes, under program control:

Long cycle:

Short cycle:

Any condition arising as an effect of the execution of
steps A, B, C can be tested and used for sequencing
in step D.

All conditions used in the instruction is of the state of
the machine immediately prior to step A.

2.4.1 Microinstruction fetch (step A)
The control store may consist of up to 4096 words of 64-bits (80 nS).
Initially, 512 words of control store has been implemented. It is writeable
under program-control from an output port of the system itself, or from a
16-word deadstart PROM. The control store is addressed by the contents
of an address buffer, which is normally determined by the sequencing
part of the previously executed microinstruction. [However, after either
deadstart or an interrupt, the control store address buffer is forced to
contain a zero. J

17

2.4.2 MOP-transport (step B)
The specification of the MOP transport is given in this field. The source
of the transport, which is the input to the Bus Selector and latch (see
Figure 2), is specified by 3-bits as is the destination of the SB. 1 -bit
is used to enable the BS and, if necessary, data is supplied from the
C-field.

The sub-steps of step Bare:

B 1 : Selection of source
B 2 : Masking b y 1As/
B3: Buffering i~ ~e BUS-latch
B 4 : Shifting by BS if enabled
B5: Masking by PM V PG
B6: Buffering in the S8-latch
B7: Loading into a selected MOP destination

2.4.3 Execution of microoperations (step C)
The C-field is divided as follows:

Data and mops Shifter control

63 29 28 23

The" sh ifter control" field contains three 2-bit fields associated wi th
AS, VS, and OS. Each 2-bit fields specifies: shift left, shift right,
load or "do nothing", for each shifter respectively. The "data and mops"
field is again subdivided into several fields as follows:

[Fl F2 1M3 !. F3 F4

Fields F1 , F2, F3, and F4 are each 7 bits wide, fields Sl and S2 are
2 bits wide, and fields M2, M3, and M4 are 1 -bit fields. The mode-bits
M2, M3, and M4 determines whether F2, F3, and F4 are to be decoded as
microoperations ("mops"), or to be used as data. F1 is al-
ways decoded as a "mop", so up to four "mops" in addition to the AS, VS,
and DS control may be specified in one instruction. Many places in the
system may be suppl ied wi th data from the fields F2, F 3, and F 4. Most
often the data is supp I ied through a selector, which al so needs control.
Furthermore, the loading of the data into its destination is specified by a
"mop". The standard "set-up" for such a load is to specify the load-mop
in say F1, the selector-setting in Sl, and if the setting requires data
from CM, this is taken from F2, i. e., M2 is to be set to disable the de
coding of F2 as a mop. SimilarlyJ F3, S3, M4, and F4 may be used together
to control some resources.

*) The MOP destinations AS, VS, and OS have their own separate
loadl sh ift control bits in the C field.

18

Data requirements are normally 4-bit or 6-bit wide and are usually
taken from F2 and F4. PG requires 7-bits (F2), and CA and CB need
16 bits which are supplied from the fields F2, F3, and S3 concatenated,
acting as an lIexpanded F2" field, 'F3 is used for BS shift-specification,
when the BSS specifies CM as the data source, and BS is being enabled.
Furthermore data from F3 and F4 may be used in sequencing (step D) for
addressing computation.

When F1 , F2, F3, or F4 are being decoded as mops, they can specify a
variety of actions around the whole system. The decoding allows for 512
different interpretations, some are only dupl ications of the same action,
so that some space-confl icts among mops and data can be avoided.

Each mop has a clock-specification, dividing the set of mops into two
classes, clock 1-mops and clock 2-mops. The clocks are such that the
execution of a clock 1 -mop is completely finished before clock 2-mops are
being in itiated.

The execution of operations in step C can be thought of as being performed
in the follow ing substeps:

C1: Gate the information from S-fields and from F2,
F3, F4 fields to their destinations irrespective of
their expected or non-expected use.

C2: Decode the enabled F -fields depending on the
enabl ing by the respective M fields.

C3: Execute (clock) the specified clock 1 -mops

C4: Execute the specified load/shift actions in AS,
VS, and OS.

C5: Execute (clock) the specified clock 2-mops

The class division of mops with respect to clocking, allows as an example
for the loading of data into a particular RG, and then changing that par
ticular RG1s address pOinter within the same microinstruction.

2.4.4 Address-calculation (step D)
The determination of the address of the next microinstruction to be executed
is an implementation of the well known if-then-else construction. The
selection is among two modes of address-calculations (rather than addresses
themselves). Possible modes of address-calculations (as well as the way
the if-then-else clause is realized by the conditional use of the At or the
Af I) are illustrated in Figure 1 5. rue

a se

The D-field of the microinstruction consists of the following subfields:

Condition Afalse A true
BISB CISB Selection selection selection

1 9

where A and A I are 3-bits, Condition selection is7-bits, BISB
is 2-bitst,r'1:"h:J CIS~al~ea l-bit field. The particular condition which is
selected by the 7 CISB bits is denoted by "c" in Figure 1 5.

r

I
~~ _1
~ Adder

+1
I
L.J I ill Adder oj

t-~~~
I r Arithmetical L

ill Logical Unit o!

L
o
U
~ ..
Ul
00
00
~
L
1J

~

Force 0
Address

k~~_1
i-~~u,::enl~~eS';,1

I I
(C)

~ 1---+---+...., Control-Store I
u IllAddress B~~~l

~
c

~
u
i

I
LJ-,nter-ru,;tRecoVi- Status

h.L ___ :.':'y .~d_~:-=:-=--.£l Registers

I

5S(0:11) -411 Save Address 0 I
I i

~~~%';,al_~:ernal -"-~U 

Microinstruction Address Bus. 

Figure 15. 

Addressing thus allows straightforward transfer of control to neighbour 
instructions (A-1, and A+l, where A is the address of the current in
struction). The arithemtical-Iogical unit, CUAL, provides an address 
which is computed from A and B (address-constants as described below); 
such computed addresses provide, for example, relative and absolute 
addressing. Fur thermore the current address may be pushed onto 1. of 2 
return jump stacks (RA and RB) each of which is 16 levels deep. The top 
of either stack may be used in later steps through adders. The RA and RB 
stacks are automatically popped ·when they are being selected. Finally 
the Save address-buffer (SA) provides a path between the Shifted Bus 
and the address-bus, and the external buffer (EX) provides a path from an 
external source. A force-zero possibi I ity exists, it is used on deadstart 
and for "hard" interrupts. 



20 

The B-input, which can be used in various address computations, is 
specified to be one of the following four sources, determined by the 
BISB-field: 

0: 
t 1 : 

To t: 
OoSA(O:S): 

A constant zero 
Sign-extended version of t (t:6 bits from F4 of 
C-field) 
T concatenated with t (T:6 bits from F3 of C-field) 
The zero concatenated with the least significant 
part of the save-address buffer. 

The CISB-bit is used in specification of the carry-input to the address 
(+1 ) returns without need for non-zero B-input, and jumps to one of two 
consecutive locations depending on a condition. 

The execution of step D consists of the following logical substeps: 

Choose the selected condition, c. [In short cycle 
c is the value of the selected condition prior to 
step A, in long cycle the new value. J 

Select the carry-in and B-input into the return jump 
stack adders and the CUAL. 

Compute the results of the return jump stack addition 
and the CUAL function. 

Select the new address, using At if c = 1 or Af if 
c = 0 as the bus-selection, and load the address
buffers. 

If RA and RB has been selected then pop the stack 
that was used. 

If a force-zero situation has occurred then load the 
interrupt recovery address, and clear the address
buffers. 



21 

3. CONCLUSIONS AND EXPERIENCE 

3.1 Design and hardware considerations 

The design of MATHILDA as an experimental tool for research in emulation 
was partially initiated based on design experience gained earl ier by 
another group in the department on the construction of the RIKKE-O ma
chine. It was felt at the time when the MATHILDA design process was 
started, that no commercially marketed processor was available within 
the funding we could afford (or apply for), when justified as an initially 
pure research processor. 

As a department in a non-engineering university, our hardware-staff was 
very restricted (2 engineers + 1 technical assistant). This staff was main
ly intended for minor construction and interfacings, together with service 
on all standard equipment in the department. The design was originally in
tended to be for a functional un i t, very intimately connected to the con-
troll ing RIKKE-O. However, during the design process a number of complex 
faci I ities were added. Thus the functional unit grew into a selfcontained 
processor and, of course, our original time schedule for the construction 
was not satisfied. Besides the growth in design, unexpected other duties 
of the techniCians, delivery problems, lack of project management experience, 
and the fact that the project was, in retrospect, a bit overambitious for the 
staff, delayed the project. It was, however, decided to test the design on 
the 1 6-bit RIKKE version before the construction of the 64-bit MATHILDA. 

The basic design, including the bus structure and the concepts of standard 
groups bit encoder etc. ) was made by the authors in the period from 
February to August, 1972. The sequencing part and instruction format was 
designed in the fall, while the printboards for the bus-structure were laid 
out and actual mounting of RIKKE started. By August, 1973, the control 
unit and control facilities (register groups) were ready for initial hardware 
testing. In late October, the 1 6-bit bus structure was added for testing, and 
in January 1974 initial testing of the RIKKE processor was considered com
pleted. However no main memory was added before March due again to 
del ivery problems. At the time of th is wri ting (June 1 974), the RIKKE 
has interfaced to it a high speed paper tape reader and a small mini-printer. 
The RIKKE machine is complete as the MATHILDA machine described in this 
document except that the following faci I ities are not yet implemented: 
Snoopers, Status, Bit-Encoder, and the Force-O address and IRA faci I ity. 

The construction of MATHILDA was started in August, 1973, but since 
testing of the tvOP (and the print boards) was not done before January 1 974, 
the "go ahead" for the construction of the 64-bit bus structure could not be 
given before then. Here again del ivery problems for the print boards 
caused a further two-month delay. Currently, the mounting of the bus struc
ture is halfway through. 

The cost of the construction is-not easi Iy calculated. An estimated cost of 
$ 1 2,000 for components and $ 10,000 for mounting assistance was granted 
by the Danish Research Council. The support from the staff-technicians 
cannot be computed that simply because of their other duties and projects. 
An estimate of 2 man-years of design and documentation from the technicians 
might be adequate. The experience gained in the department during this pro
cess cannot be underestimated, we learned a lot about what to do, and 
especially what not to do in such a project. 



3.2 Experience with programming 

Since the summer 73 as assembler, MARIA r 4 J, and a simulator of the 
system have been in use. Four simulators for RIKKE r 5 J and MATHILDA 

22 

r 6,7] have been written in addition to emulators for an a-code machine 
for BCPL [ 8 J and a P-code machine for Pascal r 9 J. Furthermore, basic 
software (bootstrap loader, normalizer, etc.) and a large number of routines 
for the implementation of arithmetics has been implemented. Experience 
with the programming of the processors shows that the design seems to be 
suitable for experimental purposes, although coding is. not so straight
forward because of the horizontal nature of the microinstructions as on 
processors with more highly encoded (vertical) but more primitive instruc
tion formats (e. g. the B1700). Certain facilities of the system has proven to 
be extremely useful, the easy and natural sequencing possibi I ities, the BS, 
BM, PG, and especially the BE. 

Although the design of MATHILDA may seem somewhat compl icated, ex
perience from a course on computer architecture given at the University 
of Southwestern Louisiana indicates that the students learned the MATHIL
DA design with reasonable ease. We are at present only in the very be
ginning of the real use of the RIKKE and MATHILDA processors, and 
only in the future can real evaluations of the suitabi I ity be made. 

3.3 Acknowledgements 

The authors want to express their thanks to the Danish Research Counci I, 
who granted the construction costs and the stay of one of the authors 
during the design phase. Also thanks are directed towards NATO, 
Division of Scientific Affairs, which is supporting further collaboratic:m 
between the authors and their present institutions. Finally thanks are 
expressed to our colleagues for their comments and advice, to the students 
who helped us with supportive work and software development, and to the 
technicians who patiently attended numerous discussions, accepted changes 
and additions from the authors during the design process. 



23 

Appendix A. 

GLOBAL SYSTEM DESI GN. 

A.1 The MATHILDA-RIKKE-Wide Memory system. 

Although the organization of the MATHILDA processor is the key issue 
of this report, and the use of it is in no essential way constrained to 
the specific environment iUs intended to operate within, it seems rea
sonabl e to expl a in the actual proposed system. 

The fact that MATHILDA is to be treated by RIKKE, as an I/O device, 
as shown in Figure 16, offers a great flexibility and proposed some 
interesting projects. A particul ar probl em associ ated with such an 
interconnection was whether synchroni sation was necessary or not. It 
was decided that, except for a few control signals, every information 
interchange should be queued up so that asynchronous operation was 
possible. The same principle was also used with respect to a 64-bit 
Wide Memory, this being a common resource to the system, and not 
dedicated to MATHILDA. 

In thi s way the system was desi gned to be three independent units ope
rating asynchronously and communicating through queues: 

RIKKE~--------~~------~-------------' 
incl. 
16 bit 

memor 

Wide 
Memory 

32K words 
64 bit wide 

MATHILDA 
64-bit wide syste 

The MATHILDA-RIKKE-V\lide Memory system. 

Figure 16. 

The Wide Memory is exclusively controlled by RIKKE, i. e. it is the 
onl y unit that can del iver requests for memory access. The data trans
fer can take place on a number of memory ports. RIKKE itself will be 
attached to a set of I/O-ports of the memory system. RIKKE al so has 
its own private memory (up to 64K 16-bit words). Standard I/O-devices 
are therefore intended to be coupl ed either directl y to RIKKE or to other 
minicomputers communicating with it. 

The idea of operation is to let RIKKE decode vi rtual machine instructions, 
and to do all address calculations involved, while MATHILDA was to 
perform the actual data transformation required. The philosophy of the 
design of MATHILDA was to give it capabil ities for doing transforma
tions upon a wide data word. Compl icated "macro" routines could be 
implemented in MATHILDA microcode and thereby define a IINano-ma
chine" which can be called upon from the microcode in RIKKE to define· 
the complete virtual machine. In fact it is not a nano-machine in the QM-1 
sense [1 OJ, but it may be operated in such a way that a similar effect 



24 

is achieved. Among the differences in these approaches is that RIK
KE, running in parallel with MATHILDA, normally will be ahead of 
it, preparing instructions and operands for it. 

A.2 Projects rei ated to the MATHILDA-RIKKE-Wide Memory system. 

The cooperation of RIKKE-MATHILDA-Wide Memory in a synchronous 
or asynchronous fashion seems to offer fundamental questions similar 
to those posed in other recent types of computer architecture, I ike 
the III i ac-IV or the CDC-Star computer systems. We are undertaking 
a wide range of projects both at the University of Aarhus in Denmark 
and the University of Southwestern Louisiana in Lafayette, Louisiana 
which are rei ated to thi s system. 

A. 2. 1 Projects within the computer systems and I anguage area. 
A major topic in the system area is the construction of distributed sys
tems architecture, that is, for example to evaluate operating systems 
and compilers for computer complexes with more than one processor. 
Notice here that the present system differs in a fundamental way from 
standard multi-unit, MATHILDA is a resource to a RIKKE, or a system 
of RIKKE's. 

It is, of course, not at all obvious what the architecture of the best ma
chine should be in order to assist in the efficient construction of various 
compl ex systems and architectures. VVe intend to investi gate the possi
bil ity of formal izing the capabil ity of various host architectures, to i
dentify what primitives are needed and can be implemented in microcode 
to support compilers, high level languages and operating systems. Thus 
MATHILDA is a tool in such research and not the answer to the ques
tions which are raised. 

An immediate project is the direct emulation of different virtual machines, 
either standard computer systems or given experimental machines e. g. 
the BCPL language running on emulated virtual O-code machine [ 8 J. 
Such an emulator has been implemented on the standalone RIKKE, this 
allowing a simpl e transfer of al ready accessibl e software in BCPL to 
be avai I abl e on the system, (e. g. [ 11 J). 
The RIKKE-MATHILDA-Wide Memory system offers a complex tool for 
handl ing of composite data structures. Most computer systems today o
perate within a multilevel store environment. A basic question within 
the field of data structures concerns how the distribution of different 
primitives in a program to the appropriate kind of store and processors 
is to be made. As an exampl e, the handl ing of I ist structures may be 
performed in RIKKE, while MATHILDA is doing the computations at the 
nodes. Also in the support of special peripheral devices on RIKKE, e. g. 
a graphical display or an electrostatic plotter, there is a demand for 
high speed access to large and complex data structures. 

A core project in the systems area is to define and implement a micro
monitor, resident in RIKKE control store, to allocate the resources of 
the system, I/O as well as processors, and which will allow multipro
gramming among emul ators, [ 1 2 J. 



25 

Another project concerns the impl ementat ion of the I anguage Pascal 
[1 31 to support the immedi ate appl ications. The basic tool in thi s 
and other language implementations is intended to be a compiler- gene
rator using LR(k) techniques (the BOBS - system[ 14 ]), which has al
ready been implemented at Aarhus, and being transferred to the RIK
KE-MATHILDA system. 

The target system for the Pascal-compiler is a stack-machine (called 
P-code machine [ 9 ]), running in such a way that evaluation stacks 
exists in RIKKE as well as in MATHILDA. 

The impl ementation of Pascal is considered as the first step in an ex
periment with developing a language for numerical algorithms in non
standard arithmetic. The goal of this project is to define a language 
where several real-datatypes can co-exist and be controlled. This 
will allow the experimentation with various "virtual arithmetic units", 
[ 15], for non-standard arithmetic to be performed on MATHILDA, con
troll ed by RIKKE. There are al so projects being undertaken 
which deal with an integrated approach to faul t tolerant virtual systems 
and thei r performance measurement. 

A. 2. 2 Projects in numerical analysis. 
We are currently undertaking projects where MATHILDA could be ap-
plied in making non-standard arithmetic available. An outline of such 
projects may be found in [ 16]. Many subroutines in both hi gh-or low
level languages have been written to allow the use of extended range, 
extended preci sion, significant di git, unnormal ized interval, rational 
and complex arithmetic. Special purpose hardware is much too expens
ive, but the general structure and microprogrammabi I ity of MATHILDA 
certainl y wi II offer more effici ent impl ementation of the arithmetic pri
mitives. The overall structure of the system wi II allow extensive ex
periments on various arithmetics, by changing underlying structure. 

A key question in the study and implementation of machine arithmetics 
as on higher levels will be to extract the fundamental "core" of the 
operations, i. e. to determine a fundamental set of operations on diffe
rent bases in such a way that a structured (I ayered) development of any 
particular arithmetic will follow. 

This approach will be combined with the "top-down" analysis from the 
appl ication and I anguage point of vi ew. The idea being to move step-wi se 
the border between the implemented virtual machine towards the higher 
level machine. The projects within the systems area will fit those in 
the numerical analysis part, and provide fundamental software needed 
for these projects. 

As one of the major problems in the application of digital computers in 
numerical analysis, is representation of numbers, and the operations 
upon them, the most immediate project will be to conduct theoretical 
and experimental studies in machine arithmetic. 



26 

Appendix B: 

Physical summary of MATHILDA. 

MATHILDA is mounted on 7 frames 8 X 45 X 60 cm, each of which is 
turnable around a vertical axis like pages in a book. Each frame is 
closed from both sides with removable boards of plexiglas, thusfor
ming a closed box. Each "box" is equipped with three small ventila
tors blowing a stream of air up through the frame. Signal-interconnec
tions between the frames are through standard cabl es containing 20 si g
nal-ground wound pairs of )!Vires. Plugs are mounted along the vertical 
sides of the frames. 
The printboards are two-sided and are either special prints or standard 
prints only containing power and ground where signal-interconnections 
are in the wiring. Special purpose prints exists only in three variants: 
a) 8-bit wide of the whole MOP, 25 X 40 cm, 
b) 4X (4 bit of a standard register group), 15 X 40 cm, 
c) 256 words of control-store, 64-bit wi de, 15 X 40 cm. 
All of the speci al purpose printboards furthermore contain some room 
for additional circuitry. 

No attempt has been made to carry si gnal s to the edges of the boards for 
board-to-board and board-to-plug interconnections, all such connections 
are made with wi res from the proper pi aces on the prints. 

All circuits are from the TI 74 series or equivalent. A large amount of 
signal s (data buffers) have been made vi sibl e on the boards by Ii ght
emitting diodes (for diagnosis and step-mode). 

A survey of the content on the frames are given below: 
Frame 0: (Sequencing and Control Store) 

1 pc 30 X 40 standard print containing sequencing, clock
generators and deadstart. Masterclock (40 nS steps) and 
its input into a shift register which pulses various clocks. 
At present there are 9 steps in one (short) cycle, but 7 steps 
should be the ultimate (short) cycle. 
2 pc type c (above) prints control store, 128 pc TI 74200 + 
amplifiers. 

Frame 1: (CA, CB, WAP, WBP, LA, LB) 
4pc type b prints (standard-groups). 

Frame 2: (Standard groups for shifters, PG, BS, BM, PM, AL, etc.) 
3pc type b prints + 1 pc 15 X 40 standard print. 

Frame 3: (End-connection for bus modul es, BE + various). 
1 pc type b print + standard print. 

Frame 4-7:(Each contains 16 bits of MOP with all registers and ALU) 
2 pc type a prints + 1 pc lOX 40 standard print on each frame. 

Power supply: 8 pc, 5V, max 15 amp. 

Consol e: (prel iminary) 
Buttons: Deadstart, Run, Stop after deadstart, Step-Stop 
(two pushes pre cycle, first instruction fetch, second exe
cution) . 
Switches: KA, KB conditions, 2 stop-switches ( stop on exe
cution of specific mops, i. e. not as testable condition). 

Deadstart: 16 words of battery-driven CMOS-PROM is copied into con
trol store repeatedly. Execution is forced to location zero. 



[ 1 J 

[ 2J 

[ 3J 

[ 4J 

[ 5J 

[ 6J 

[ 7J 

[ 8J 

[ 9J 

[10 J 

[ 11 J 

[12J 

27 

References. 

Madsen, 01 e B., "BPL-A hardware and software description 
language", RECAU Report, University of Aarhus, Aarhus, 
Denmark, 1972. 

Shriver, B. D., "A description of the MATHILDA System", De
partment of Computer Science Report PB-13, University of Aar
hus, Aarhus, Denmark, Apri I 1973. 

Flynn, M., and Rosin, R. F. ,"Microprogramming an introduction 
and viewpoint", IEEE TC, C-20, No.7, 727-731, July, 1971. 

~rensen, I. H. , "The extended simul ator for RIKKE", Depart
ment of Computer Science Internal Document, University of Aar
hus, Aarhus, Denmark, June, 1974. 

Lynning, E., Kressel, E., Anderson, H. O. S., and S¢rensen, 
I. H. , "A users manual for the simulated RIKKE-MATHILDA 
system on the CDC-6400", Department of Computer Science Report, 
University of Aarhus, Aarhus, Denmark, 1974. 

Cai Iiouet, P. and Landry, S., "A MATHILDA simul ator wri tten 
in SNOBOL", Department of Computer Science, University of 
Southwestern Louisiana, Lafayette, Louisiana, Jan. 1974. 

Bu"ard, S., Caillouet, P., Landry, S., and Pye, J, "A users 
manual for the simulated MATHILDA machine on the Univac 70/46 
G", Department of Computer Science, University of Southwestern 
Louisiana, Lafayette, Louisiana, May, 1974. 

S¢rensen, 0., "The emul ated O-code machine for the support of 
BCPL", Department of Computer Science Document, University 
of Aarhus, Aarhus, Denmark, to appear. 

Kri stensen, B. B., Madsen, O. L., and Jensen, B. B., "A 
PASCAL environment machine (P-code)", Department of Computer 
Science, Report PB-28, University of Aarhus, Aarhus, Denmark, 
April, 1974. 

Rosin, R. F., Frieder, G., and Eckhouse, R., "An environment 
for research in microprogramming and emul ation", CACM, 15, 
No.8, 197-212, August, 1972. 

Strachey, C., and Stoy, J, "The text of OSPub", Oxford Univer
sity Computing Laboratory, Programming Research Group, Ox
ford, Engl and, 1972. 

Rosin, R. F., "Proposal for a nucleus I/O system", Department 
of Computer Science Report PB-23, University of Aarhus, Aar
hus, Denmark, January, 1974. 

Wirth, N., "The programming language PASCAL", Acta Inform
atica, 1, No.1, 35-63, 1971. 



[15 ] 

28 

Jensen, B. B., Madsen, O. L., Chri stensen, B. B., and 
Eriksen, S. H., "A short description of a translator writing 
system (BOBS-system) ", Department of Computer Sci ence 
Report PB-11, University of Aarhus, Aarhus, Denmark, Fe
bruary, 1973. 

Podlaska-Lando, S. "A proposed implementation scheme for the 
parti al real i zation of integer floating-point arithmetics on MA
THILDA", Department of Computer Science Internal Document, 
University of Aarhus, Aarhus, Denmark, October, 1973. 

Shriver, B. D. , " A small group of research projects in machine 
design for scientific computation", Department of Computer Sci
ence Report PB-14, -l!.lniversityof Aarhus, Aarhus, Denmark, 
Apri I, 1973. 



Micro 
Archives 
5-78 

Kornerup, Peter. 
An overview of the MATHILDA system / by 

Peter Kornerup and Bruce D. Shriver.-
Aarhus, Denmark: Department of Computer 
Science, Institute of Mathematics, Univer
sity of Aarhus, 1974. 

(DAIMI; PB-34) 

I. Joint auth or. II. Title. 


