

Department of Computer Science

A Description of the MATHILDA System*

by

Bruce D. Shriver

* This work is supported by the Danish Research Council"
Grant 511 -1 546.

April 1973

(i)

Abstract

A dynamically microprogrammable processor called MATHILDA

is described. MATHILDA has been designed to be used as a tool in

emulator and processor design research. It has a very general micro

instruction sequencing scheme, sophisticated masking and shifting

capabi I i ty, high speed local storage, a 64-bit wi de bus structure, a

horizontally encoded microinstruction, and other features which make

it reasonably well suited for this purpose. Also, hardware modifi

cation is relatively easily undertaken to enhance the experimental

nature of the machine.

1 .0

Abstract

Foreword

Introduction

Table of Contents

0)
(ij)

1.1 Historical Notes•..............•.......•.••. 1

1 .2 General Design Criteria and Constraints•..••.. 2

2.0 The MATHILDA System .•......•••...•....•.••..•..•. 4

2.1 TheRegisterGroup•• 4

2. 2 Counter A • • . • • . . • . . • • • . • . • • • • • • • . . 6

2.3

2.4

2.5

2.6

2.7

2.8

Bus Transport•.••••....•....•..•.

Working Registers •.....•...•..•..•..••...•••••.

2.4.1 Microinstruction Format and a Few Examples

The Bus Sh ifter •..•.........•....•...•.•.•.•.•..

Bus Masks•••...•...••...••

Postshift Masks•.•..•.......•.•.•••.•

The Arithmetical Logical Unit

8

9

1 1

1 5

1 9

23

28

2.9 Local Registers.• ..•. .• .•••.••..• 31

2.10 The Accumulator Shifter•....•.• 32

2.11 The Variable Width Shifter.••. 38

2.12 The Double Shifter •...•..................•.•.••• 40

2.12.1 Two Examples Using the Shifters ..•.....• 41

2.13 The Common Shifter Standard Group 45

2.14 Loading Masks•.............••. 46
/

2. 1 5 The Par i ty Genera tor•..•.......• 50

2. 16 The Bit Encoder • . . . •• 51

2.16.1 Bit Encoder Conditions 56

2.17 Input Ports•...........•..•• 58

2. 18 Output Ports•...........••....••• 61

2. 19 Bus Structure•....•••......•• 62

2. a> The Control Unit 65

2.20.1 Microinstruction Sequencing... .•••. 65

2.20.2 The CC>ntrol Unit Arithmetical Logical Unit. 67

2.20.3

2.20.4

Return Jump Stacks A and B

The Save Address Regi ster

70

73

2.20.5 The External Register •.•..••.•••••.•..• 73

2.20.6 The Force o Address Capability ••••..•••• 74

2.20.7 The Microinstruction Address Bus ••.•••••• 76

2.20.8 Control Store Loading .••••••••••••••••• 78

2.21 The Conditions, Condition Selector, and Condition
Registers .. __ • • 78

2.21 .1 Shor-t and Long Cycle .•••••••••••••••••• 83

2.22 The Real Time Clock........................... 84

2.23 Auxiliary Facilities............................ 85

2.23. 1 Counter B 85

2.23.2 The Snooper Store and Snooper Registers. 87

2.23.3 The Status Registers ••••••.•••••••••••• 89

2.24 An AI ternate Vi ew of the Working Regi sters •••••• 90

2.25 An Alternate View of the Postshift Masks ••••••••• 93

3.0 Microinstruction Specification and Execution 95

3.1 Microinstruction Format .••••.••••••..•••......• 95

3.2 Microinstruction Execution

3. 2. 1 Clock Pulse 1 and Clock Pulse 2
3.3 Comprehensive Tables of Microoperations for

102

103

Individual Functional Units.. .•.•.•••••••••••.••• 105

Tables of First Occurrance of Abbreviations and Symbols •.•• 115

List of Figures

List of Tables

References

120

122

124

(iv)

Foreword

It is the purpose of this document to give an introductory (yet

reasonably detailed) description of the MATHILDA System. The bus

structure, the registers and functional units attached to it, and the

control which can be exercised on these components are discussed.

The document is not a reference manual. Rather, it is written en

tirely from the pedagogical point of view, with the system described

in a modular fashion. Examples are introduced after each component

is added to the basic bus structure. The examples are written in an

imaginary (syntati call y sugared) mi croassembl y language. The ex

amples are deliberately kept simple so the reader will not spend time

learning a complicated or clever algorithm but will learn the control

mechanisms of the particular components involved. Thus, many of the

exampl es are "contI'" ived" and do not perform any parti cu tar "useful"

data transformations. It is hoped that this approach enhances the

reader's understanding and underscores the overall simplicity and

homogenei ty of the structure and its components.

* A Description of the MATHILDA System

by

B. D. Shriver

1.0 Introduction

MATHILDA is a dynamically microprogrammable processor

which has been designed to be used as a tool in emulation-oriented

and processor design research. For the sake of completeness we

will discuss briefly a short history of the unit and then some of the

criteria which served as a basis for its design.

1. 1 Historical Notes

In the spring of 1971 the Department of Computer Science of the

University of Aarhus was considering the purchase of a standard mini

computer to act as a controller for a variety of peripherals and to

simulate a medium speed batch terminal to the Computer Center's

large system. A group of people were, at this time, working on the

design of an integrated software and hardware description language called

BPL ill. To support this group and to make the use of such a mini

computer more flexible, it was decided to design and construct a

microprogrammable minicomputer within the department itself.

The design was started and completed during the summer of 1971.

The resul ting machine, RIKKE-O [2J , was constructed and began run

ning in early 1972. In the meantime a number of projects were pro

posed which were considered not to be compatible with that design.

Among these were various projects in numerical analysis [3, 4J in which

it was found that the word size and bus width of the RIKKE-O (16-bit)

was too short to obtain an efficient implementation of even standard

arithmetic operations on numbers. It was then suggested that a micro

programmed functional unit with a wide~ data path and special features

could be attached to RIKKE-O as an I/O device, or IIfunctional unit",

together with a wider memory, for use with these projects. A proposal

was made to the Danish Research Council to obtain a grant to design

and construct such a functional unit. A grant was made in June 1972

in which funds were awarded for hardware and a memory (32K, 64-bit

"* This work is supported by the Danish Research Council, Grant 511-1546

2

wide, 1.4 t..5 access time). The manpower for the construction of

the uni t was, in part, granted by the Research Counci I; two staff

engineers and one staff technician were provided by the Department.

The design was started in May 1972 and completed during the summer

of 1972. The construction of the resulting machine, MATHILDA, is

due to be completed in June 1973.

The motivation for bui Iding the MATHILDA instead of purchas

ing a commercially avai lable machine can be summarized as follows.

First, there were (to the author's knowledge) no commercially avai 1-

able dynamically microprogrammable processors at the time we started

our efforts which: (a) were in the price range we could afford, (b) were de

signed for or supported user written microcode or (c) offered a

reasonable experimental and growth oriented structure. We felt that

we had the in-house capabi I i ty to design and construct the machine.

The avai labi Ii ty of LSI circui ts and convenient mounting techni ques

and our experience with RIKKE-O supported this view.

1.2 General Design Criteria and Constraints

The MATHILDA machine is intended to be a research oriented

machine. Its main design criteria then, within the money and timing

constraints on the project, was to provide a machine on which a large

variety of experiments related to processor and emulator design and

evaluation could be performed. We attempted to use the "top-down" de

sign approach which quite frequently was tempered by the "forces from

below", see Ros in r 51. We, therefore, tr ied to have various appl i

cation-oriented and software ideas be reflected in the design.

Two general software concepts had a reasonable impact on de

sign. The one being the ability to multiprogram virtual machines and

the other being the concept that virtual machines woul d be defined

through several layers, (e. g., R. Dorin [6}). The effect of these

ideas is apparent in the design of the control unit, especially with

respect to the capabi I ities of addressing. Many addressing features

known on the virtual level are present here on the micro level.

Another criterion was to have a clean and consistent way of

dealing with timing problems. We decided not to force the speed;

3

rather we would have a slower machine than obtainable with the com

ponetry at hand, and thus one, hopefully, with a reduced set of timing

idiosyncrasies. It was also decided to be able to control all elements

of the system from an immediate control or a residual control capabi

I ity, or some combination of both. The residual control was made

homogeneous to the user by having a reasonably IIstandard control

register group" whereever such control was pr'ovided.

Another design criterion dealt with the actual construction of

the unit. It had been decided, prior to the obtaining of the grant from

the Danish Research Counci I, to construct addi tional RIKKE's by

other funding. It became apparent, during the design phase of

MATHILDA, that the machine would be reasonably complex and that

several features of MATHILDA included or extended similar features

on RIKKE-O. Because of the complexity of the design, the limited

funds and manpower available, and the fact that we wished to design,

construct, and test the machine within 1 year, it was decided that the

additional RIKKE's (now called RIKKE-l's) should be modeled after

the MATHILDA System. Thus, one design criterion was to ensure a

modularity in the hardware design. This would enable an economy in

print-layout and construction to be achieved. As an example, the

bus structure is laid out on one print board, 8-bits wide. Two of

these boards, interconnected, comprise one RIKKE-l bus structure

with all registers, shifters, etc. Four of these RIKKE-l boards,

interconnected, give the MATHILDA bus structure.

4

2.0 The MATHILDA System

MATHiLDA, as has been stated earlier, is a microprogrammed

controlled bus structure. The major elements of the system are shown

in Figure 2.1 and are the: 1) bus structure, 2) control unit, and 3)

auxi liary faci·1 i ties. In the following sections we wilt describe each

of these systems independently and give examples of their utilization.

Control Unit

Control Instruction

Store Sequencing ~.

r--H_ Functional unitJ--
Or" R~i$ter

I System Coun.ters I L • 2
u
w

1 Status Reg! sters I • ~H Bus Shifter I
III
~

• til

I I
Snooper Registers I y Functional uflltj--

or Regi ster ____

Bus Structure

MATHILDA System

F iqure 2. l

2.1 The Register Group

We begin by introducing a fundamental bui Iding block which is

used in the various control mechanisms of the system, viz, a Register

* Group, RG , as shown in Figoure 2.2. A RG is a set of 16 or 256 re-

giS terse The width of the registers and the number of registers in a

specific RG will be stated when it is introduced. The element of a par

ticular RG, which is to be used as a source or destination for the trans

fer of information, is pOinted to by the RG address register. This

register is called the Register Group POinter, RGP, as shown in

Figure 2.2.

*) After a particular system element is first introduced, an abbrevia
tion for its name is given which, for the sake of brevity, is then
used in the text; see the "Tables of First Occut"'rance of Abbrevia
tions and Symbol s", beginning on page t 1 5, for the page of fi·rst
occurrance.

Pointer
Sour('f~

L+I -I C

Information Source

Load

Register

Group

Typical Register Group

Figure 2.2

5

Destination

There are four microoperations associated with an RGP. They are

marked L, +1, -1, and C in Figure 2.2 and all subsequent figures and

are explained below in Table 2.1.

L

+1

-1

C

Symbol ic Notation Microoperation

RGP := Pointer Source Load the RGP from the Pointer

RGP + 1 Increment RGP by 1

RGP - 1 Decrement RGP by 1

RGPC Clear(i.e., set to zero} RGP

Table 2.1

Microoperations for the cohtrol of an RG

Source

The symbolic notation RGP+l, RGP-1, etc. is the notation which is used

with our microassembler, and all of our examples wi II be shown using

this notation. The abbreviation IRGI will often be rep~ilced by the abbre

viation of the name of the functional unit with which that particular RG

is associated. Not all of the RGPI s wi II have the microoperation

RGP :"" Pointer Source

associated wi th them. For those RGPls which do have this micro-

6

operation it wi" be seen that the Pointer Source da ta itself can usually

be selected to come from any of four different sources.

There is one additional microoperation required for the control

of an RG; namely the function labelled IILoad" in Figure 2.2. If the

loading of an RG can be ini tiated by a microoperation it wi II be indicated

by an "L" on such a diagram.

2.2 Counter A

We wi II, from time to time, give small segments of microcode to

illustrate the use of a device and its control. In order to make these

examples clearer and also to give a more realistic view of how such a

code is actually written we introduce the system counter, Counter A, CA.

CA is a 16-bit wide counter as shown in Figure 2.3.

+1 -I C

L

Sel

Counter A, CA

Figure 2.3

L +I-IC

CA has four microoperations associated with it as shown in the box

labelled ICAI in this Figure. These microoperations are given in

Table 2.2.

7

Symbol ic Notation Microoperation

Load CA from either CM, EX,
SB, or CAS. Note the use of

L CA:==CM I EX I SBI CAS "I" to mean "or" in the symbo-
lic notation for this microopera-
tion.

+1 CA + 1 Increment C A by 1

-1 CA - 1 Decrement CA by 1

C CAC Clear(i.e., set to zero) CA

Table 2.2

Microoperations for control of CA

Both the box labelled "Se l ec tor" in Figure 2.3 and the explanation of

the microoperation "L" in Table 2.2 state that CA can be loaded from

one of four possible sources:

1) immediate data wi th in the Current Microinstruction, CM,
2) a 16-bit External Register, EX (discussed in Section 2.20.5),
3) bits 0 through 15 of the Shifted BUS, SB (discussed in Section 2,5),

and 4) from an element of a 16-bit wide, 16 element RG called the
Counter A Save Registers, CAS.

Thus the microoperation

CA := 37

loads CA with the constant 37 from a data field within the CM. While the

microoperation

CA:= CAS

loads CA with the contents of the element of CAS which is pointed to by

the CAS POinter, CASP. Notice that the CAS can be loaded with the con

tents of CA thus allowing one to save the current value of CA. The four

microoperations associated wi th the CAS and CASP are in lable 2.3.

;

Symbol ic Notation Microoperation

L CAS := CA Load the element of CAS pointed to by
CASP with CA

+1 CASP + 1 Increment the CASP by 1

-1 CASP - 1 Decre,-nent the CASP by 1

C CASPC C lea r (i. e. , set to zero) CASP

Table 2.3
Microoperations for control of CAS and CASP

8

We can test to see if CA conta ins zero. We wi II demonstrate the use

of this condition and the microoperations in Tables 2.2 and 2.3 in sub

sequent examples.

2.3 Bus Transport

Having introduced some elementary notions we wi II now examine

in some detai I the bus structure, the regi sters and functional uni ts at

tached to it, and the control which can be exerciSed on these components.

We wi II construct the bus structure in a modu lar fash ion - hopefully to

enhance the reader's understanding and to underscore the overalfsim-

pi ici ty and homogeneity of the structure and its components.

Let us introduce the concept of a bus transport by considermg

a sub-system of the bus structure consisting of the Working Registers A,

WA ,Working Registers B, WB, and the Bus Shifter, BS, as shown

in Figure 2.4. The exact nature of WA, WB, and BSis not iliportant

to us here.

Shifted Bus

Working L

Registers A ·2
u
OJ

OJ
(J)

Working I.Il
::J

Registers B OJ

Sub-system of the Bus Structure
,~ '~, "

Figure 2.4

The BUS is a 64-bit wide data path. The input to the BUS (its

SOURCE) is obtained from a bus selector which has eight inputs, two

9

of which are shown here, i. e., WA and WB. The particular input which

is selected as the SOURCE for bus transport may be shifted a specified

amount in the BS. The output of the BS, called the Shifted Bus, SB, can

then be stored in at least one of seven possible 64-bit destinations

(called Bus Destinations, BD, or DESTINATION). Two such BD's are

shown in Figure 2.4, i. e., WA and WB. We will in this report l?pecify

bus transport information as we do in our microassembler, vi z,

DESTINATION := SOURCE, BS Specification.

If the BS Specification field is emp'ty, i. e., the BS is not to be used (no

sh ift occurs) then the bus transport is given by

DESTINATION := SOURCE.

As an example, the bus transport WB := WA has the obvious meaning of

a register to register transfer from WA to WB. If a SOURCE is chosen

to be transported but not stored in any of the BDI s, the bus transport in

formation is written

SOURCE, BS Specification

or

SOURCE

as is appropriate. The SOURCE may be stored in destinations other

than BOiS during a bus transport. We will learn what functional units

or registers can serve as these "other destinationsll as this report

develops. If the SOURCE is to be stored in more than one destina

tion, the DESTINATION portion of the bus transport specification is

written as a list of destinations separated by commas, i. e.,

LIST := SOURCE, BS Specification

or

LIST := SOURCE

where

LIST::= d1 , ••• , dn. The value of n and the units which can

serve as destinations, d1 , wi II be discussed later.

2.4 Working Regi sters

WA and WB, introduced in the previous section, are not single re

gisters but each is a 64-bit wide, 256 element RG. Figure 2.5 shows

WA; WB, not shown, is identical.

The first thing we wish to point out in this figure is that the WA Pointer,

WAP, is a rnpchanism identical to CA except that it is 8-bits wide and

1 0

not 16-bits wide. (Note the dashed- line box in Figure 2. 5.) Therefore,

WAP not only points to which element of WA can be used as a SOURCE

for bus transport (or used as a BO), but also can be stored in an RG

I -:--IC

5el.

CM EX 5B WAP5

Shifted Bus
5B(0:63)

L+t -I C

Work ins Registers. A, WA

Figure 2.5

BD Load

256
Working

Registers
WA

Bus
Selector

called the WAP Save registers, WAPS. This is identical to CA being

saved. Also, as indicated in the box labelled "Selector" in Figure 2.5

the WAP can be loaded from any of four sources: 1) immediate data from

the CM, 2) the least significant 8-bits from EX, 3) the least significant

8-bits of the SS, and 4) an element of WAPS. This is identical to the

loading of CA. Thus the microoperations WAP := 37 and WAP := WAPS

have well defined analogous meanings.

The WA (and WS) registers are not loaded by a microoperation but rather

as a result of being chosen as a BO in a bus transport specification; thus

the loading of these registers is shown by the function "SO Loadll on Fi

gure 2. S. This notation wi II be used in all subsequent drawings. There

are 8 microoperations shown in Figure 2.5 associated with the use of WA.

These are listed along with the corresponding microoperationsfor WS in

symbolic form in Table 2.4. The actual microoperation descriptions can be

extracted form the previous tables and are not repeated here.

11

WAP := GMI Exl SB I WAPS WBP:=CMIEXlsB!WBPS

WAP+ 1 WBP + 1

~~ ..
WAP -41 . WBP -1

WAPC WBPC

WAPS:= WAP WBPS := WBP

WAPSP + 1 WBPSP + 1

WAPSP -1 WBPSP - 1

WAPSPC WBPSPC

Table 2.4

Microoperations for control of WA and WB

2.4.1 Microinstruction Format and a Few Examples

In order to present a few examples we wi II introduce the micl"o

instruction format which we use in OUI" imaginary microassembler. The

format of a microinstruction is:

where

II
A: bus transport; microoperations and data; microinstruction

. 11 sequenc I ng. ,

a) IIAII is a symbol ic name for the address of the microinstruc

tion,

b) IIbus transport ll is a field giving the bus transport informa

tion as explained previously in Section 2.3,

c) "microoperations and data" is a field of up to 7 micro

operations and immediate data to be executed or used during

this microinstruction (the exact combination of microin

structions and data which can be included in this field and

precise details of the timing of microoperations are given

in Section 3.0),
III'

d) " m icroinstruction sequencing" information wi II be written in

the form

if c then At el se Af

which is to mean: if a parJicular selected condition is true then

choose address At as the address of the next microinstructi on

else choose At"

t 2

It is not necessary or appropriate at this pOint to list all of the con

ditions which are testable by the system nor how At and Af are func

tions of the address of the current microinstruction, n. These mat-

ters wi II be dealt with in Section 2.20.1 . However, conditions and address

functions will be introduced as needed for examples. If no condition

is to be considered, i. e., if At = A f , the sequencing information wi II

merely be written At (and not "if c then At else Atwhere c is an

arbitrary condition).

Thus, the microinstruction labelled n,

n: WA:=WB; WBP + 1; n+1..,

means: load the element of WA pOinted to by WAP from the element of

WB which is pointed to by WBP without shifting it during the bus

transport; then increment WBP by 1; then obtain the next microin

struction from n + 1. The action associated with every microopera

tion specified in a microinstruction is completed before the next

microinstruction is executed. For example, in the above microin

struction if WBP had been set to 9 before the beginning of the execu

tion of this instruction, then WB9 would be the SOURCE for the bus

transport. At the end of execution of the instruction, the WBP would

be set to 10. If, in the next microinstruction WB were again selected

as the SOURCE, then the contents of WBl 0 would be gated onto the

BUS.

In order to give an example of a microinstruction using condi

tiona I branching, we establ ish the following convention for the test-

ing of conditions which wi II be used in all of our examples (unless

stated explicitly otherwise): .£!..!.. conditions which arise as a result of

bus transport and microoperation execution specified by a particular

microinstruction, M, are testable in the ~ microinstruction to be

executed after M is executed. This means that all the conditions avail

able or changed during the execution of microinstruction Mare "savedll •

These "saved" conditions are those tested in the next instruction to

be executed. Therefore, our microinstruction can be thought of be-

ing executed in the following sequential way:

(a) save the conditions of the previous microinstruction

(b) execute bus transport

(c) execute microoperations

1 3

(d) execute microinstruction sequencing based on saved

conditions.

Let us introduce the notion that bit 63 of the WA input to the bus se

lector is testable, that is, bit 63 of the element of WA which is pointed

to by WAP. If we wish, for example, to test bit 63 of WA7, and if it

is set to 1, jump to the microihstruction labelled BITON, else continue

with the next microinstruction, we could write,

n-l ; WAP :=7

n ; if WA(63) = 1 then BITON else n+l .

n+l

We could not write

n ; WAP :=7; if WA(63) = 1 then BITON else n+l •

according to our current convention. It is possible to conditionally

.execute. the same fnstrl:Jction. Let us give an example of this. Assume

there is at least one register in WA which contains bit 63 set to 1,

the following four microinstructions will: search WA starting with

register 0 and transfer the first register of WA encountered with bit

63 set to 1 to register 0 of WB; then, store the address of the WA

register which was transferred in register 0 of WAPS; and then con

tinue with the next microinstruction.

LOOP:

SAVE:

WB := WA

WAPC, WAPSPC, WBPC.

; WAP +1 , if WA(63} = 1 then SAVE el se LOOP.

, WAP - 1.

WAPS := WAP. •

We have introduced some standard defaults in this example:

a) If the bus transport field is empty it means that an unspeci

fied source is selected for bus transport but is not stored anywhere.

b) If the microoperations field is empty it means that no mi

crooperations are to be executed during this particular microinstruc

tion.

c) An empty microinstruction sequencing field implies the next

microinstruction to be executed is that in n+l if the address of the

current microinstruction ,is n. If the microinstruction sequencing

field is empty the specification "; microinstruction sequencing." is

replaced by" "

14

d) The instruction sequence shown is assumed to be located sequen

tially in control store and the symbol ic address name is used ,only when n

needed in the microinstruction sequencing field.

e) The symbol. wi II be used to indicate the end of the group of mi

croinstructions in the example.

The symbol ic names HERE-l, HERE, and HERE+1 are used often

in the microinstruction sequencing field to mean A-1 , A, and A+l assuming

the address of the current miCroinstruction is A. As an example, the

instruction labelled LOOP above could have been written

; WAP+l ; if WA(63) =1 then HERE+l else HERE ••

Through the use of CA the assumption that at least one register

of WA contains bit 63 set to 1 is not required. CA can be used to con

trol the number of elements of WA we will search. If we establish a

routine labelled NONE which handles the situation when no element of WA

contains bit 63 set to 1, then the code to perform the same task as related

above is,

, WAPC, WAPSPC, WBPC.

; CA :=255 ; HERE+2.

, WAP+l, CA-l ;if CA = 0 t~e_rl NONE els~HERE+l •

, if WA(63) = 1 then HERE+l else HERE-l •

WB:=WA ; WAPS := WAP. •

The final exampie in this section uses the capability of loading

CA from the SB. In the previous example CA was loaded with N-l Where

N (Z:;N$256) is the number of registers of WA to be searched. Let us

suppose that this number is in register 0 of WB and furthermore that

you wish to save it in register 0 of CAS because it may be written over

if a transfer is made to WB. A possible code segment is,

, WAPC, WAPSPC, WBPC.

WB ; CASPC, CA := SB.

; CAS := CA ; HERE+2.

, WAP+l ; if CA = 0 then NONE else HERE+l •

, CA-1 ; if WA(63) =1 then HERE+l else HERE-l •

WB:=WA ,WAPS:= WAP. •

If the At address is HERE+l we will only write, from now on,

if c then At. Thus, the fourth instruction of the above example

would be written

; WAP+l; if CA = 0 then NONE. •

15

2.5 The Bus Shifter

The Bus Shifter, BS, introduced in Figure 2.4 and shown in

more detail in Figure 2.6 is a 64-bit wide right cyclic shifter which can

be set to shift n bits, O~63. There exists a dedicated bit in each

microinstruction to control theBS which indicates whether Or not the

SS should be used (enabled) during the current bus transport. If the

SS is not enabled, no shift will occur.

L

Sel.

5B(0:5)

Enable

Bus(0:63)

L

5el.

Bus Shifter

...
RighI Cyclic Shift

Fi9.Jre 2.6

o

Shifted Bus
5B(0:63)

If we wish to use the SS, the amount of shift can be selected from

one of four possible sources as shown in the box labelled "Shift Con

trol" in Figure 2.6, i. e., from 1) a data field in the CM, 2) the least

significant 6 bits of the EX register, 3) the output of the Bit Encoder,

BE (discussed in Section 2.16),and 4) an element of a 6-bit wide ~6

element RG called the BSSG. The" tills transport specification

WA:=WB

means: take the element of we pointed to by the wep and store it in

the element of WA pointed to by the WAP without shifting it. While

the bus transport specification

WA:=WB,'" 3

means: take the element of we pointed to by the WBP, shift it 3 bits

16

right cyclic and then store it in the element of WA pointed to by WAP.

A 64-bit left cyclic shifter and a 64-bit right cyclic shifter are

related by the exp~ession

Ics = 64 - rcs

where

Ics is the amount of left cyclic shift and

rcs is the amount of right cyc I ic sh ift.

We can therefore write as a notational convenience

WB := WA, +- 24

to mean the same thing as

WB := WA, -t 40

thus using +-(Ieft shift) or -t(right shift) whichever makes the understan

ding of the processing clearer. The microassembler wi II make the above

computation and insert the correct amount for left shifting.

The BS specification in the bus transport field of the microinstruc

tion is given by

1: I CMl Exl BEl BSSG

where the microassembler makes the above computation only if the first

alternative is selected as the source of BS control. The useof +- 11 -t

are dummy when used with the three other alternatives.

Having seen how the BS is controlled and how we specify this con

trol, let us turn our attention to the SS register group POinter, SSP.

We see in Figure 2.6 that the data which can be loaded into the BSP can

also be loaded into an additional register called the SS Savel register,

SSSl. If, for example, we know in advance the address of a particular

register fo the BSSG, which we will want to use as shift data (e.g., some

highly used shift constant), we can store this pointer in BSSl by loading

SSSl from the eM,
BSSl := CM.

Whenever we wish to use this stored pointer we can road it into the

SSP by executing

BSP:=BSS1.

17

Now notice in Figure 2.6 that the BSP not only points to the element

of the BSRG which can be chosen as data for the shift control unit,

but also can be stored in a register called the BS Save 2 register,

BSS2. Suppose we are pointing to a particular element of the BSg:;

for the current shift control data and in the next microinstruction we

wish to have register 9 of theBSSG to be used as shift data, ~

we do not wish to loose the pointer to our current control data. The

following microinstruction achieves this,

; BSS2:=BSP1 BSP:-=9. •

Thus at some later time if we execute

BSP:=BSS2

the pointer information which had been saved in BSS2 would be

restored.

A 16 element RG with the two Save registers and POinter as
" "

shown in Figure 2.7 is a fundamental control element in the system

and will be used with many devices in the subsequent sections. It will

be referred to as a Standard Group (SG) and wi II be noted on drawings

as such, i. e., it will not be explicitly be drawn out each time as It

was in Figure 2.6. Each SG will, however, be given a name closely

associated with the particular functional unit to which it is connected

as, for example, in the current discussion the SG associated with

the BS is called the BSSG.

L

Source

* The width of the registers
depends on the particular- selector involved.

Typical Standard Group

FiQure 2.7

Selector

Table 2.5, below, lists the seven microoperations associated with

the BS in their symbol ic form; their meanings should be obvious

from previous tables and the text. Note that the ass::; is loaded

with the least significant 6 bi ts of the SB i. e., SB(0:5).

BSP:=CM/EX JBSS 1 /BSS2

BSP+l

BSP-l

BSPC

BSS1:=CMIEXIBSS1IBSS2

I BSS2:=BSP

BSSG:=SB

Table 2.5

Microoperations for control of the BS

Example:

Let us assume the following information to be In the regis

ter of WB to which we are currently pointing:

~O
WA WB Lshft
Adr Adr Data 63 22 21 14 13 6 5 0

We wish to take a given WB register (WB Adr), shift it a given

amount Lshft Data), and store it in a given WA register (WA Adr .).

The following code will: load the BSSG with the Lshft Data, Save

18

the current WBP, load WBP with the WB Adr, load WAP with the

WA Adr , transfer the WB register' pointed to by WB Adr to the

register pointed to by WA Adr shifting it left cycl ic by the amount

Lshft Data during transport, restore the old WBP, and then continue.

WB, 14 WAP;=SB •
• 1

WB , BSSG:=SB, WBPS:::;WBP.

WB, 6 WBP:=SB.

WA:=WB, t-BSSG ; WBP:=WBPS. •

2.6 Bus Masks

Let us now expand the initial bus structure given in Figure

2.4 by adding the Bus Masks (BM) as shown in Figure 2.8.

Shifted Bus

Bus Masks

Working
Registers A

Working
Registers B

Expanded Bus Structure

Figure 2.8

The 8M al low one to specify which bits of the SOURCE (i. e., the

particular input to the bus selector which has been selected for bus

transport) are actually to be transported. A mask is a string of

64-bits. If bit i (OSi:S63) of a mask is a 1, then bit i of the SOURCE

is to be transmitted; if bit i of the mask is a 0, then the value 0 is

to be transmitted. Since the BM are not an input to the bus selec

tor but affect the transmission of the SOLACE, they are shown

connected to the bus selector with the symbol ~ (which we wi II

interpret to mean "mask") and not by the symbol ~ (which means

II input").

The SOURCE is masked during every bus transport by the

mask which is specified to be

MAv MB

1 9 .

where,

MA:;; an element of a 64-bit wide, 16 element RG called
the Mask A registers,

MB = an element of a 64-bit wide, 16 element RG called
the Mask B registers,

v. = logical "inclusive or".

20

MA and MS are shown in Figure 2.9. Upon dead start, the system is

Sel.

L+1 -1 C

SB(0:631--........ --I

BD Load

Mask Registers

MA

BD Load

Mask Registers

MB

o

Bus Masks, MA and MB

F iqure 2.9

Bus Selector

MB

such that the "no mask", i. e., 64 Jls, is in register 0 of MA and

the "bus clear mask", i. e. ,64 O's, is in register 1 of MA. We wi II

assume this to be the case throughout normal operation of the system.

One can then look upon the pointer MAP as a switch for the use of

the bus masks: if MAP = 0 then the BUS is not masked, if MAP = 1

then the SUS is masked by the mask specified by MS. This is, of

course, not the only interpretation o'f the use of the 8M but it is a

convenient one and one which we will normally employ unless other

wise stated.

As an example, assume we are representing floating point

numbers in the following sign magnitude format,

163\62 exponent 48147\46 coefficient 0/ .

L' 4 sign of coefficient

sign of exponent

Suppose the following 4 masks are available in the first 4 regis

ters of MB.

MBO

MBl

MB2

MB3

1 0""

o 1~ ?ol 0 f

0"" ~ 1 O~ ,

°l(--~ 0 1~

63162 48 47 46

0

~O

~O

~1

0

The following code wi II decompose a floating point number found in

the register of WA pointed to by WAP and store the information as

follows,

a) sign of the exponent in bit 63 of WBO

b) magnitude of the exponent shifted 1 in WB1

c) sign of coefficient in bit 63 of WB2

d) magnitude of the coefficient shifted 16 in WB3.

MApC.

MAP+l, MBpC, WBpC.

WB:=WA MBP+l, WBP+t.

WB:=WA, +- MBP+l, WBP+l.

WB:=WA, +- 1 5 . MBP+l, WBP+l. ,
WB:=WA, +- 1 6 , •

21

It is suggested by this example that when one is decomposil1J formatted

information (e.g., a virtual machine instruction) one may wish to co
ordinate the use of the BS wi th the 4se of the BM. Let us therefore

suppose the shift constants '0, 63, 49, and 48 to be stored in the first

4 registers of the BSSG. The above decomposition and storage could

be written as the following 3 microoperations.

CA:=3, MApC.

BSpC, WBPC, MBPC, MAP+l.

WB:=WA, +-BSSG; BSP+l, WBP+l, MBP+l ,CA-l; if CA 10 then HERE ••

The MA Pointer (MAP) and the MB Pointer (MBP) both of which were

used in the above examples are IQadable either separately or together;

thus we can execute the microoperations

MAP := CMt EXI SB I SG,

MBP := CMt EXj ssl SG, or

MAP, MBP := CMt Exl SB \ SG.

The name of the SG associated with the BM is the Bus Mask Pointer

(BMP) Standard Group. The following table lists the microoperations

associated with MA, MB, and BMP.

MAP+l MBP+l

MAP-l MBP-l

MAPC MBPC

MAP:=CMI EX\SB!SG MBP:=CM\ Exi SB\ SG

MAP, MBP:=CMI EXI SBI SG

BMP:=SB

BMPP: =CM I EX IBMPSl I BMPS2

BMPP+l

BMPP-l

BMPPC

BMPSl : =CM I EX I BMPSl I BMPS2

BMPS2: =BMPP

Table 2.6

Microoperations for control of the BM

22

2.7 Postshift Masks

The Bus Masks, as described in the previous section, are

applied to the SOURCE as it is gated onto the BUS and thus before

23

the SOURCE is shifted in the SS. There is also a possibility of masking

the SOURCE after it has been shifted by using the Postshift Masks

(PM) as shown in Figure 2. 1 O.

Shifted Bus

Bus Masks Postshift Masks 1---....

Working
Registers A

Working
Registers B

Expanded Bus Structure

FIgure 2.' 0

Bus

One of the purposes of the PM is to apply a mask to the output of the

BS which will mask off the unwanted "cyclic" bits and replace them with

OIS thereby simulating a logical shift. As an example, if the bus trans

port

WB:=WA, +- 2

is executed wi th the postsh ift mask

\ 1 ... ------100/
.63 a J o.

. \' .~'

applied to the output of the BS, then we have taken a WA register, shifted

it 2 bits left logical, and stored it in a WB register. Similarly, the bus

transport

eM

24

WB:=WA, -+ 6

with the mask

I 0000001 ""'I:~,.--"''''' 1 1
.6" 58 57 Q

applied to the output of the BS means a WA register is shifted 6 bits

right logical and then stored in a WS register. The output of the SS

is masked during every bus transport by the mask which is specified

to be

where,

PAV PG

PA = an element of a 64-bit wide, 16 element RG·called
the Postshift Mask A registers,

PG = a functional unit called the Postshift mask Generator,

V = logical II inclusive orll.

PA and PG are shown in Figure 2.11. This is quite simi lar to the BM

where PG now takes the place of MS.

CM
EX

SB
SG

L +1 -1 C

Sel.

Bus(O:63)

CM EX BE SG

Poslshifl
Mask Regi sIers

PA

Postshift Mask Generator, PG

Poslshift Masks, PA and PG

F igur'e Z. II

Bus Shifter

25

The PG is a functional unit which can generate a string of j

O's (0 S j S 64) starting from either the least significant bit (be) po

sition or the most significant bit (~3) position. The remaining k

bits, j+k = 64, are set to 1. The PG can generate the 1 28 masks re

quired to view the BS as both a logical and cyclic shifter. As is seen

from Figure 2.11 the postshift mask generation data can come from

one of four sources, CM I Exl BE I SG. Which particular source is to be

be used as data for the mask fgeneration is determined by the contents

of a 2-bit Postshift mask Generator Selection register (PGS) as shown

in this figure and in Table 2.7 below.

Contents of PGS Source of DATA

00 eM

01 EX

10 BE

1 1 SG

Table 2.7

Source of Data for Postshift Mask Generation

If, in some previous microinstruction, the PGS has been set to pOint to

the CM as the data source, then the PG data are specified in the "mi

crooperations and data" field of the microinstruction in the following sym

bolic way,

where,

PG "arrow" n

n = the number of O's to be generated and the "arrow" (.... I -+)
indicates from which direction they should be generated; ()Sn$64.

Thus, the previous two examples coulQ have been written (assuming PGS

points to the eM as the data source)

WB:=WA, +- 2; PG-2

and WB:=WA, -+ 6; PG-:+6

26

Upon dead start, the system is such that the mask of a II 1 I s is in re

gister 0 of PA, and the mask of all O's is in register 1 of PA. This is

identical to the situation in MA. We will assume this to be the case

throughout normal operation of the system. One can then look upon the

pointer PAP as a switch for the use of the Postshift mask Generator:

if PAP = 0 then the mask generator is not used, if PAP = 1 then the post

shift mask ,'which is to be applied will be that generated by the mask

generator. This is, of course, not the only interpretation of the use of

the postshift masks, but it is a convenient one and one which we shall

normally employ unless otherwi se stated.

Table 2.8 is a list of the microoperations associated with the PM.

The first half of this table deals with PA. The second half of this table

deals with the PG. The name of the SG associated with the PG control

is the Postshift rrask Generator SG (PGSG). Note, the name of the SG

associated with the PA pOinter is th~ Postshift AS Pointer (PABP). It

is not discussed here but in Section 2.25.

Operations associated with PA

PA:= SUS

PAP:=CMjEXjSSjSG

PAP +1

PAP -1

PAPC

Operations associated with PG and PGS'G

PGS := CM

PGS +1

PGS -1

PGSG := SS

PGP := CM \ EX \ PGS1 I PGS2

PGP +1

PGP -1

PGPC

,ill

PGS1 := CM \ EX\ PGS1 1 PGS2

PGS2 := PGP

Table 2.8

Microoperations for the control of the PM

27

Let us extend the example of Section 2.6 in which w.e emulated a virtual

machine instruction which performed a register to register transfer

combined with left/right cyclic shifting. As shown below, if we use the

PG we can execute an instruction which will take a given WB register

(WB Adr), shift it left/right logical'or cyclic (Shi'ft & Mask Data), and

then store it in a WA register (WA Adr). If the data for the instruction

is in the current WB register pOinted at by WBP in the form

0"""-"0 WA WB Mask Shift
Adr

120 Adr 1~ Data Data 0
63 29 28 21 112 6. 0

a possible code sequence would be,

WB, -+ 21 · WAP:=SB. ,
WB · BSSG:=SB, WBPS:=WBP. ,
WB, -+ 6 , PGSG:=SB,

WB, -+ 13 · WBP:=SB, PAP+1, PGS:='SGI. ,
WA:=WB, ... RG , WBP:=WBPS, PAPC. •

Note well, there are two important assumptions in this example. The

first is that MAP = 0 upon entry to this code, i. e., a bus mask is not

applied to the source, and the second is that PAP = 0 upon ,entry to

this code, i. e., no postshift masking occurs~ Indeed, We will make

these assumptions in all examples which follow (unless stated explicitly

otherwise). They can be summarized as follows: bus transport normal

ly occurs in an unmasked fashion; if a particular code segment requires

the use of a masking facility itis responsible for leaving the system in

this normal state after such masking occurs • ...

28

2.8 The A ... ithmetical and Logical Unit

We wi II now add additional comput?itional capability to the bus

st ... uctu ... e in addition to the shifting and masking al ... eady encounte ... ed

by int ... oducing the A ... ithmetical and Logical unit (AL). The AL, shown

in Figu ... e 2.12, is a functional unit wi th 2 inputs which, fo ... the moment

we will call A and B.

Sel.

CM EX SB SG

SET ·SET
L A+B .B

Arithmetical Logical Uriit,AL

Figure 2.12

A
o

AL BusSeiector

B
o

6 bits a ... e ... equi ... ed to cont ... ol the AL: 5 bits to select one of ihe 32

ope ... ations listed in Table 2.9 which this unit can execute on A and B

and 1 bit which specifies the ca y-in bit into the AL fo ... any a ... ithmetic

ope ... ations.

ARITHMETIC LOGICAL

-A A - -AVB AI\B - -AVB AI\B

minus 1 * all OIS

A + (MS) - -AVB

(AVB)+(MB') -B

A-B-l A==B

(MB)-l A 1\ B
A + (MB) AVB

A+B AfB

Ava + (MB) B

(MB)-l AI\B

A+A all 1 IS

-(Ava) + A AVB -
(AVB) +A AVB

A-l A

'* in 2 1s complement; the arithmetic operations
are shown with the carry-in set to O. If the
carry-in is 1, then the AL Function is F+l where
F is the specified arithmetic function. The logi
cal functions are not affected by the carry-in.

Table 2.9

AL Functions

29

30

The 6 control bits which specify the current operation for the AL are

the contents of the AL Function and Carry-in register (ALF) which

can be loaded, ALF := CMI EX I SB I SG, set to the arithmetic addition

operation A+B and set to the logical function B~ The SG associated with

the ALF is called the AL Standard Group (ALSG). The microoperations

associated with the AL are given in Table 2.10.

ALF := CM EX SB SG

SET ALF +

SET ALF B

AL.SG := SB

ALP := CM I EXIALSll ALS2

ALP +1

ALP -1

ALPC

ALS1 := CM! EXI AL51 I ALs2

ALS2 := ALP

Table 2.10

Microoperations for control of the AL

If the ALF is to be loaded with an operation specification from the CM,

we will note this symbolically merely by writing the required function

in the symbolic form which appears In Table 2.9 in the ALF assignment

statement, i. e. ,

ALF := A+B,

ALF := A /\ B

etc.

The AL is always running. If the ALF is changed in 1 microinstruction,
'·.'f

then the result of the newly computed function is available for bus trans-

port in the very next microoperation. Thus the microinstructions

; ALF := all 1 I s, PAP +1, PGS := ICMI.

WA := AL ; PG -t 48, PAP -1 ••

wi 11 put a string of 16 1 IS in the WA register pointed to by WAP. The

. 1 IS wi II be least significant bit, be, justified.

31

There are many testable conditions concerning the operation of

the AL. A few of these are

Symbolic Notation

AL
AL(O)
AL(63)
ALOV

Condition

result of ALoperation all OIS

bit 0 of the result of the AL operation
bit 63 of the result of the AL operation
AL overflow (equivalent to a carry-out
during addition and a borrow-in during
subtraction)

Before giving examples of the control of the AL let us first discuss

the nature of its inputs, A and B.

2.9 The Local Registers

The Local Registers, LR, serve as the A input to the AL in the

context of the AL Functions shown in Table 2.9. The LR, shown in

Figure 2.13, are 4 64-bit wide registers which have independent input

and output pointers. The input pointer, LRIP, points to a LR which

can be used as a BO for the current bus transport. The output pointer,

LROP, points to a LR which can be used as either the A input to the

AL or as the SOURCE for the current bus transport.

L +1 -1 C L +1-1 C

OS(v:v+ 1)

LRO

SB(0:63) 1-----.-- Bus Selector
LRl

LR2
A Input of AL

LR3

Local Registers, LR

Figure 2.13

32

Both the LR input pointer, LRIP, and the LR output pointer,

LROP, are incrementable, decrementable, clearable, and loadable

with two bits from the Double Shifter, DS(V:V+1), see Section 2.12.

The utility of this last feature wi II be demonstrated with examples

when the Double Shifter is introduced. Table 2. 1 f gives the micro

operations associated with the control of tb~LR.

LRIPC

LRIP + 1

LRIP - 1

LRIP := DS(V:V+l)

LROPC

LROP + 1

LROP -·1

LROP := DS(V:V+l)

LRPC

LRP + 1

LRP - 1

LRP ::;:: DS(V:V+l)

Table 2. 11

Microoperations for control o'f the LR

The last four microoperations allow for the clearing, incrementing,

decrementing, and loading of both the IP and the OP simultaneously.

2. 10 The Accumulator Shifter

The Accumulator Shifter, AS, serves as the B input to the AL
., "

in the context of the AL functions shown in Table 2.9. The AS can

serve as a bus DESTINA TIONlbu1 to be read, i ts conte~ts must be

gated through the AL with the ALF set to AS. The AS, shown In Figure

2.14, is a l-bit shifter which cah shift left, shift right, be loaded, or

remain idle during the execution of any given 'microinstruction.

CM S9 EX SG

Sel.

Isource AS(63) AS(O)
no. Input Input

0 0 0
I I 1
2 AS(O) AS(63)
3 AS(63) BUS(63)
4 CR 59(63)
5 DS(V+l) OS(V+l)
6 AS(V) AS(V)
7 VS(V) VS(V)

Accumulalor Shifter. AS

Figure 2.14

There are 2 interesting features .of this shifter: a) its variable width

characteristic and b) its connection to .other elements of the system.

The features are discussed in the following:

a) Although the shifter is 64-bits 'wide it may, in conjunction

with either the BM or PM; be viewed as being m-bits wide (l:::.m :::.64).

This is accompl ished by having each of the 64 bits of the AS input to

a selector (labeled the bo -b63 selector in Figure 2.14). The output

of this selector (called the variable bit, V) can then be a possible in

put into either the left or right end of the shifter, depending upon

what particular type of shift one requires. When the AS is selected

as a source for bus transport by gating it through the AL, after the

desired shift has occurred, the bits not considered to be a part of

the shifter must be masked off. Thisc::anbe done either by using the

BM or the PM. The width of the shifter is then determined by the con

tents of the AS(V) Selection regi ster, AS(V)S, as shown in the above

figure and the use of an appropriate mask.

33

The AS(V)S can be loaded by the following microoperation

AS(V)S := CM IEX\ SB\SG.

Thus, for example, if we wish to consider the AS as a 48 bit left

cycl ie shifter, we would execute the microoperation

AS(V)S := 47

while making sure that AS(V} be used as the input to bit AS(O)

during the shift operation. Subsequent use of the AS as a source

could be accompanied by use of the PG masking off bits b 63 -b48 , e. g.

SET ALF AS.

WA := AL; PG'-'16 ••

b) In Figure 2. 14 it is seen that bits AS(O) and AS(63) can

be fi lied by 1 of a variety of sources during. a shift operation.

Which source is to be used to fi II the vacated bit position is deter

mined by the contents of the AS(O) and AS(63) Source selection re

gisters, AS(O)S and AS(63)S respectively. An examination of the

table in Figure 2.14 shows that the AS can be considered a logical

shifter, a 1 's fi II shifter,a cycl ic shifter, and a right arithmetic

shifter. It can also be connected to another 1 bit shifter, called

the variable width shifter, VS, to yield a long variable width shift

er. It can be connected to a 2 -bit shifter called the Double

Shifter, OS, so it can be used in the merging of 2. bit streams into

1 or the diverging of 1 bit stream intoZ. Hcan also be connected

to the BUS, S8, and an entry in a condition register, CR. These

latter inputs are of an experimental nature and uses will be demon

strated in later examples.

Thus to use the AS,one must load the AS(V)S to set the width

of the shifter and must load either the AS(O)S or AS(63)S to point

to the source to be used as the input into the vacated bit position,

i. e., one must set what the type of shift is, e. g" logical, 1's fill;

long, etc. That both of these operations need not be done each

time the shifter is used, but only when one is "changing" the width

34

35

or type of shifter is obvious. Table 2. 121 ists the microoperations

associated with the control of theA S. Note the AS can be set to a

logical left, ASLL, or logical right, ASLR, shift.

AS(O)S :::;: eM lEX ISB ISG

AS(63)S:= CM lEX ISB ISG

AS(V)S :== CM I EX I SB ISG

ASLL (:: AS(O)SC)

ASLR (:: AS(63)SC)

AS(V)SC

AS(V)S+l

AS(V)S-l

Table 2.12

Microoperations for control of the AS

There are 2 bits in each microinstruction which control the

operation of the AS: shift left, AS..-, shift right, AS , load, i. e.,

AS: = S8(0:63), or be idle. When the AS is to be shifted, the opera

tion is put in the "microoperation and data" field of the microinstruc

tion; when the AS is to be loaded, the operation is specified in the

"bus transport" field of the microinstruction. As an example, the

microinstruction

WA := AL; ASt-.

stores the output of the AL in a WA register and then shifts the AS

left, while the microinstruction
I . !III

LR , AS: = W B; W BP + 1.

stores a WB in both the AS and a LR and then increments the WB

pointer. If the AS is not employed during a given microinstruction,

it does not appear in the specification of that microinstruction.

.. 36

Having introduced the AL and its inputs, LR and AS, we now have

knowledge of the expanded bus structure as shown in Figure 2.15.

Bus Masks

Working
Registers B

.L. .

B
~
QI

~r-~~--------~-------------J
III
:l m

Expanded Bus Structyre

Figure 2.15.

Let us now give a few examples using these reSOurces to demon

strate the use of their associated microoperations.

Example 1) Let us consider WA as a stack as shown below.

stack pointer ~
(WAP)

83

WA

op
,

a

b

0

37

We wish to take two operands, a and b, and an arithmetical or logical

operator, op, from the stack and place a op b on the new top of stack.

The following microinstruction sequence does this.

WA

LR := WA

AS := WA

WA:= AL

; ALF := 58, WAP +1, LRPC.

WAP +1.

•
Example 2) Let us again consider WA as a stack.

WA

stack pOinter -
(WAP)

shiftspec

a

63 0

We wish to treat the AS as a left shifter whose characteristics are given

by shiftspec. We wish to shift a n-times and return the result to the new

top of stack after removing shiftspec and a. Let us assume shiftspec to

have the following format:

where

n ., pgmsk I· width. [type I
15).4 9.8 3 _ 0

type = encoding found in the table of Figure 2.14 for

logical, cyclic, etc. shift,

width = width of shifter -1, 1 ::; width of shifter::; 64

pgmsk = PG mask specification,

n = number of shifts -1 , 1 :S number of shifts::; 64

The following microinstructions execute the desired operation.

WA

WA,-+ 3

WA, -+ 9

WA,-+15

AS := WA

WA :=AL

, AS(O)S := 58.

, AS(V)S := $8."

, PGSG := 58.

; CA := S8, W"AP .+1.

, PGS := SG, PAP +1 , SET ALF AS.

CA -1 J A? '-:';if CA ., 0 then HERE.

, PAP -1 ••

2.11 The Variable WIdth Shifter

38

The Variable Width Shifter, VS, is a shifter functionally identical

to the AS. The reason one is called. the Accumulator Shifter is that not

only does it serve as an input to theAL, but also it will serve as the ac

cumulator required in the realization of the basic arithmetic operations

(e. g. multiplication). The VS can be a SOURCE or DESTINATION for

a bus transport. It is shown in Figure 2.16.

CM 58 EX 5G

5 .. 1.

Source V5(63) V5(O)
no. Input Input

0 0 0
1 1 1 .
2 V5(O) VJ(63)
3 V5(63) BU5(62)
4 CR 58(62)
5 D5(V) D5(V)
6 V5(V) V5(V)
7 A5(V) A5(V)

Variable Width Shifter, V5

Figure 2,t6

39

The microoperations associated with the VS are identical to those as

sociated with the AS and are listed below in Table 2".13.

IVS(O)S := CMI Exls8 I SG

VS(63)S := CMI Exl S81 SG

VS(V)S := CMI EXI 58 I SG

VSLL (== VS(O)SC)

IVSLR (:; VS(63)SC)

VS(V)SC

VS(V)S +1

VS(V)S -1

Table 2.13

Microoperationsfor control of the VS

One of the important features of the AS and VS, as seen from the

tables in Figures 2. 14 and 2.16," is that they can be connected together.

This allows, for example, the AS and VS to be viewed as a "long" shif

ter when coupled together. The microinstructions,

, AS(63)S := VS(V), VS(6;3)S := AS(V).

, AS(V)SC, VS(V)SC.

connect the AS and VS together so that they can be viewed as a right

cyclic 1 28-blt shifter as shown below.

Just as with the AS, there are 2 bits in each microinstruction which control"

the operation of the V5: shift left, VS ... , shift right, VS , load, i. e.,

V5 := 58(0:63), or remain idle.

40

Assuming the previous AS/VS connection has been made, subsequent

execution of the microoperations

AS ... , VS'"

shifts this 128-bit shifter 1 bit right cyclic. Other "long shiftersll , e.g.

left logical, right logical, right arithmetic, etc., result from appro

priate set up sequences.

2.12 Double Shifter

The Double Shifter, OS, isa shifter with functional characteristics

similar to those of the AS and VS, except that it shifts 2 bits at a time

and not 1. Bits OS(O) and OS(l) require input during a left shift and OS(62)

and OS(63) require input during a right shift. The OS is shown in Figure

2.17. The DS can be a SOURCE for or a DESTINATION of a bus trans-

port.

Inputs
Source 05(63) 05(62) 05(1)

Inputs
D5(0)

0 0 0 0 0
1 1 1 ' 1 1
2 05(1) 05(0)

,
05(63) 05(62)

3 05(63) 05(63) BU5(63) BU5(62)
4 CR CR 5B(63) 5B(62)
5 O5(V+l) O5(V) 05(V+l) 05(V)
6 A5(V) V5(V) AS(V) V5(V)
7 BU5(1) BU5(0) spare spare

Doublf'o Shifter. OS

F 19ure 2_.17

41

The microoperations which are associated with the OS are directly

comparable to those for the AS or VS and are shown in Table 2.14.

OS(O:I)S := CMI EXI 58 I SG

OS(62:63)S := CMI EXI s81 SG

OS(V)S := CMI EXI S81 SGI

OSLL (== OS(0:1)SC)

OSLR (:: OS(62:63)SC)

OS(V)SC

OS(V}S +1

OS(V)S -1

Table 2.14

Microoperations for control of the OS

There are 2 bits in each microinstruction which control the operation of

the OS: shift left, OS ... , shift right, OS "+, load, i. e., OS:= S8(0:63),

or remain idle.

2.12.1 Two examples using the shifters

The AS, VS, and OS are collectively referred to as the "Shifters"

whereas the Bus Shifters are not included in this term. The expanded bus

structure is shoWn in Figure 2.18.

Example 1)

Bus Masks

Working
Registers A

Working
Registers B

Variable
Shifter

Double
Shifter

Shifted Bus

Postshift Masks

L

!:!
u
~ Bus
~r-~--------~~------------~
III
IJI
::J
In

Expanded Bus Structure

Figure 2.18

Suppose we wish to count the number of bits which are set to 1

42

in the WA register pointed to by WAP and leave this number in the same

cell. The following algorithm will do this

a) Load the LR with the following constants

b)

c)

d)

e)

f)

LRO := 0
LR1 := 1
LR2 := 1
LR3 := 2

Clear the AS (considered here as an accumulator)

Set the AL to addition

Transfer the data to the OS

00 the following 32 times and then do (f)

i) if OS(O:l) == 00 then accumulate LRO + AS
if OS(O:l) - 01 then accumulate LRI + AS
if OS(O:1) == 10 then accumulate LR2 + AS
if OS(O:l) !f 11 then accumulate LR3 + AS

ii)shiftOS

Store the accumulated resul t which is in AS

, 43

The following microinstruction sequence accomplishes this. It is assumed

the PG data source is the CM.

OS := WA ALF := all O's, LRPC.

AS, LR : = AL; ALF : = a II 1 's, LRP + 1, PAP + 1 •

LR := AL PG -+63, LRIP +1, OS(V)SC, PAP -1 •

LR := LR , ALF := LR + AS, LRIP +1.

LR := LR, 4- 1 , CA := 31, LROP := OS.

AS:= AL

WA:= AL

; CA -1, OS -+ 1, LROP := OS; if CA =f 0 then
HERE,·

•
The subset of the bus which is ·used during the counting loop instruction

(AS := AL) is shown in Figure 2.19. This may help in understanding the

algorithm and code.

Double
Shifter

'-
£
~
~I--------"
1Il
IJI
:l
m

Counting Loop for Counting Number of Bits set to 1 in a Word

Figure 2.19

Example 2)

Consider the contents of the current WA register as a string of

64 bits. It is desired 10 pack all of the even numbered bits (bo , b.a, etc.)

44

in the left 32 bits of the current WB register and then odd numbered bits

(b1 , b:3, etc.) in the right 32 bits of this register so that the result ap

pears as

Because the OS, AS, and VS can be connected as shown below,

OS AS

OS(V)
VS

one can accomplish the stated requirement in the following way:

AS, VS := AL

OS := WA

LR := VS, 32

WB := AL

ALF := all O's, LRPC.

AS(63) := DS(V+l), VS(63) := OS(V), OS(V)SC.

;CA:=31.

CA-l, AS , VS , OS ; if cAio then HERE.

ALF := LR V AS.

•

45

2.13 The Common Sh ifter Standard Group

The Shifter Control Selector shown in Figures 2.14, 2.16, and

2.17 is the same selector. This is, perhaps, made a bit clearer in Fi

gure 2.20.

CM 5B EX 5G

5el.

AS. V5, and OS Conlrol

Figure 2.20

The SG which is associated with this selector is called the Common

Shifter SG. Various shifter control data can be stored in this SG for

various shifter interconnections and then used in environment prologues.

The microoperations associated with the CS SG are shown In Table 2.15.

CSP := CMI EXI 51 152

CSP +1

CSP -1

CSpC

CSS1 := eMI Exl 51152

CSS2 := CSP

CSSG := SB

Table 2.15

Microoperations for control of the CSSG

46

In addition there are several microoperations which allow control of the

AS, VS, and OS to be executed in parallel. These are shown in Table

2.16.

Notation

CSLL

CSLR

CS(O)S:=CMI Exl SB I SG

M i croopera t jon

Set AS, VS, OS to logical left shift

Set AS, VS, OS to logical right shift

Load AS(O), VS(O), and oS(O:l) Source
register from CMI Exl SBI SG

CS(63)S:=CMi Exl SB I SG Load AS(63), VS(63), and 05(62:63)
Source register from CM I Exl SB I SG

CS(V)S:=CM I EX I SB I SG Load AS(V), VS(V), and OS(V) Selection
register from CMIEXI SBI SG

CS(V)SC Clear AS(V), VS(V), and OS(V) Selector
register

Table 2.16

Parallel CS Microoperations

2.14 Loading Masks

Associated with WA there is a SG·of loading masks called Loading

Masks A, LA. Associated with WB there is a SG of loading masks called

Loading Masks B, LB. In what follows we wi II describe only LA; LB is

identical in function. The purpose of the loading masks, LA and LB, is

to be able to specify which bit positions in a working register WA can be

loaded as the result of WA being chosen as the DESTINATION of a bus

transport while leaving the nonspecified bits unchanged. As an example,

if the loading mask

00
6

47

were pointed at by the LA pointer, LAP, then, when the bus transport

WA:= AL

is executed, bits SS(0:5) would be gated into the WA register pointed

to by WAP in bit positions bo through bs respectively while bits bs

through b63 would not change their value. When WA is selected as a

SOURCE for bus transport the mask LA acts in the following fashion:

if bit (0 sis 63) of the mask is a 1, then bit i of WA is transmitted.

If bit of the mask is a 0, then bit i which is transmitted is indeterminate.

The relationship between the loading masks and the working registers is

represented by the symbol --® ~where the script 1. in the mask nota-

tion -® indicates the special nature of these masks. Figure 2.21 shows

the expanded bus structure with the loading masks added.

Loading Masks A

Bus Masks

Working
Registers A

Shifted Bus

Loading Masks B ~-+--{!..t-~w:-7"o-r-;-k:-in-g--'
Postshlft Masks 1---____ Registers B

Variable Width
Shifter

Double
Shifter'

L

E
u
Qj Bus
~t-~------~~------------~

V'I
VI
:J
II!

1',1 \

Expanded Bus Structure

Figure 2.21

48

Figure 2.22 shows a more detai led sketch of LA; LB, not shown, is

identical.

L

5el.

5S(0:63)

L

L

d3

Loading Mask

Registers A

Loading Mask Registers A, LA

Figure 2.22

Inhibit Lines of
Working Registers WA

There are 7 microoperations shown in Figure 2.22 associated with the

use of LA. These are listed along with the corresponding microopera

tions for LB in symbolic form in Table 2.17.

LA := 5B(0:63)

LAP := CMI Exl 51 152

LAP +1

LAP -1

LAPC

LA51 := CM\ Exl S1 152

LA52 := LAP

Table 2.17

LB := 5B(0:63)

LBP := CMI EXl 51 152

LBP +1

kBP -1

LBPC

LB5T := CM\ EXI 51 l52

LB52 := LBP

Microoperations for control of LA and LB

49

Upon the dead start, the system is such that the "full load" and

"full read out" mask, i.-e., 64 1 IS is in register 0 of LA and register

o of LB. We will assume this to be the case throughout normal operation

of the system. One can then look upon the pOinters LAP and LBP as se

lection switch for the use of the loading masks. If LAP = 0 then no load

ing mask is applied to WA, if LAP I- 0 then WA is masked by the mask

specified by LAP; a similar statement can be made for LBP. This is, of

course, not the only interpretation of the use of the loading masks, but

it is a convenient one and one which we will normally employ unless other

wi se stated.

As an example, suppose we wish to place the high order 48 bits of

the output of the OS into the least 48 bits of WBO leaving the high order

16 bi ts the same. If the mask

is in LB9, the following microinstruction sequence accomplishes this:

, LBP := 9, WBPC.

WB:=OS,~16; LBPC .•

This mask could have been generated by use of the PG and AL. The code,

, ALF := all 1 IS, LBP := 9.

PGS := eM, PAP +1 .
AL , PG -. 16, LB := 5B, PAP -1. -.

generates the mask and stores it in LB9. It should be reasonably obvious

now how the loading masks can be used to store the resul t of various da

ta transformations as they are determined, e. g. I in the implementation of

signed-magnitude arithmetic, the magnitude of the exponent, its sign, the

magnitude of the coefficient and its sign can be stored in a given word

as they are obtained.

50

We will henceforth assume in all examples (unless explicitly

stated otherwise) that LAP = 0 and LBP = 0, i. e., that no loading masks

are applied to either set of working registers. If a particular code seg

ment uses the loading mask facility it is responsible for leaving the sy~

stem operating in this fashion. The treatment of the loading masks then

becomes quite identical with that of the bus masks and postshift masks as

stated in Section 2.7.

2.15 The Pari ty Generator

The parity generator is a circuit which determines the parity of the

64 bits which compose the bus transport. It posts the result of this eva

luation as a testable condition, the bus parity, BP, condition. If BP = 1 ,

the BUS is odd parity; if BP =0, the BUS is of even parity. This condi

tion can be used, obviously, in any processing wherein parity information

is viable, e. g., in communicating with devices which transmit words of a

particular parity. The parity generator functions during each bus trans

port and has no microoperat ions associ ated with it. Since its input is the

BUS, we show it attached to the bus structure as shown in Figure 2. 23.

Note, however, no output is shown as its only output is the BP condition.

Loading Masks A

Loading Masks B

Shifted Bus

Bus Masks

Working
Registers A

Working
Registers B

yariable Width
Shifter

Double
Shifter

Postshift Masks t-------..

'-
2
u

" v Bus
mr-~------------------~
Vl
~

m

Parity
Generator

Expanded Bus Structure

F iqure 2.23

51

2.16 The Bit Encoder

Let us label the bits of the BUS in the following way:

b63 b62
•

Let us scan this string of bits from the right to the left, i. e., starting

with bit bo and finishing with bit b63 • LSB will denote the value of

the subscript of the first, nonzero bit encountered while MSB will de

note the value of the subscript of the last nonzero bit encountered in this

string. This can be shown as

t l
MSB=k LSB=j

where k 2': j. If k = j there are, of course, no bits between ~ and jbj;

if k> j, the k-j-l bits between ~ and bJ may be any arbitrary string

of (k-j-l) 0'5 and 1'5. If the BUS == 0, then a condition is set true and

LSB and MSB are set to 0.

There is, on the MATHILDA System, a functional unit called the

Bit Encoder, BE, which, during every bus transport, encodes the MSB

and LSB associated with the BUS. The BE, shown in Figure 2.24, can

al so manipulate these quanti ties.

BUS(O:63) --..,--------,

CM
EX
SB
SG

Sel.

LI

Bit Encoder, BE

Figure 2.24

52

Control Ports
and

Condition Selector

During each bus transport an "LSB encoder II and an "MSB encoder"

determines the LSB and MSB associated with the current BUS. The resul t

of these encodings can be loaded into the LSBl and MSBl registers

shown in Figure 2.24. A load of the LSBl register causes the old con

tents of the LSB 1 register to be moved to the LSB2 register. Similarly,

a load of the MSBl register causes the old contents of the MSBl register

to be moved to the MSB2 register. The contents of the LSBl and LSB2 re

gisters can be interchanged and the contents of the MSBl and MSB2 regi

sters can be interchanged.

The BE can compute 16 different functions with the variables LSB1, LSB2,

MSBlt and MSB2• These functions are given in Table 2. 18 where Li =
MSB 1 -LSB 1, i = 1, 2.

53

Function

LSB 1

LSB 1 -l
r-' --

MSB 1

MSB 1 +1
F

Ll

AL=Ll-L:a

l LSBz-LSB 1

MSBz-MSB 1

[~ 1 +1

[] ::= integer
part of

Table 2.18

Bit Encoder F unc t ions

Which particular function is to be the output of the BE is determined

by the contents of the BE Function Selection register

SEF := CM/ EX/ SB I SG.

When the BEF is loaded from the CM we will note this symbolically

merely by writing the required function in the symbolic form in Table

2.18, e.g.,

BEF := LSB1 •

The output of the BE can be used to control many devices in the system.

I t may, for example, be used to control the BS (see Section 2.5), it may

be loaded into Counter B to control a process (see Section 2.23.1), or it

may be used to generate a Postshift mask using the PG (see Section 2.7).

There are only 6 bits of output from the BE. When it is used to generate

a postshift mask using the PG, the dir'ection from which the mask is to be

generated must be specified in advance by use of either of the microopera

tions
BEPGL or BEPGM.

54

The first microoperation wi I i cause a mask to be generated from bo

(the Least significant end of the SB) whereas th~ second microopera

tion will cause a mask to be generated from b63 (the Most significant

end of the S8).

The microoperations which control the BE are given in Table 2.19.

Note the SG associated with the BEF is called the BESG.

Notation

BEL Load

BEM Load

BELM Load

BELl

BEMI

Microoperation

LSB2 :=LS~ and then LSB1 :=LSB encoding

MSB2 :==MSB1 and then MSB1 :=MSB encoding

BEL Load and BEM Load

Interchange LSB1 and LSB,a

! nterchange MSB1 and MSB,a

BELMI

BEF:=CMIEXISBISG

BELl and BEMI

Load BE Function register from
CMIEXISBISG

SET BEF LSB 1

BEPGL

BEPGM

Set BEF to LSB 1

Set PG to generate from bo if BE is
control input

Set PG to generate from b63 if BE is
control input

BES3 := SB

BEP ;= CM 1 EXI Sll S2

BEP +1

BEP -1

BEPC

BESt := CMI EXI sll S2

BES2 ;= BEP

Table 2.19

Microoperations for control of BE

Example 1

We wish to take the contents of the WA regi ster pointed to by WAF>

and shift it left so that its MSB before the shift is shifted to bit position

bs3 • The result of this operatiol'"! is to be placed back in WA. The contents

of WA is shown below.

WA before sh ift o 4:4""---~~ 0 1 ~ 1 O·~ 0

t
MSB

WA after shift 1 ~ 1 0 <<-----!,..1Io>0

t
MSB

The following microinstructions acc.omplish this.

OS := WA; BEM Load, BEF:= MSB 1 +1.

WA := OS, BE. •

55

Note in,this example that the DS is merely used as temporary storage.

Example 2

Consider the example of Section 2.1 2.1 in which we counted the

number of bits which were set to 1 in a given 64-bit WA register. In

stead of doing the counting 2-bits at a time in a loop which is exercised

32 times, we could sti II count 2-bits at a time, but only count

[(MSSl ZLSB,)] + 1.

times, provided we shift the data LSB1 places to the right before coun

ting. The following microoperations accomplish this,

OS := WA , BELM Load, BEF := LSB1 •

OS := OS, -+BE ; BEF := [(MSB1 -LSB1 }j2] +1.-'
, CB := BE •

AS, LR := AL

LR := AL

LR := LR

LR := LR, 1

AS := AL

WA := AL

; ALF := all O's, LRPC.

; ALF := all l's, LRP +1, PAP +1.

PG-+ 63, LRIP +1, OS(V)SC, PAP -1 .

, ALF:= LR + AS, LRIP +1 •

; Cs -1, LROP := OS.

CB =1, OS -+ 1, LROP := OS; if CB f- 0 then HERE

•
Note that this code is only 2 instructions longer than the code on page 43.

Counter B, CB, used in this example can be loaded from the BE (see

Section 2.23.1).

2. 16. 1 Bit Encoder Condi tions

There are conditions associated with each of the BE functions.

These are listed below along side the entries of Table 2. 18 as a mat

ter of conveni ence.

Function Condi tions

LSB 1 LSB 1 = all O's

LSB 1-l LSB 1-l = all O's

MSB 1 MSB 1 = all l' s

MSB 1+1 MSB 1+1 = all 1's
F

Ll MSB 1 =LSB 1 (i. e., L1=0)

AL=L2-Ll L2 = LIt sign (L2-L 1), ~ =0

LSB2-LSB 1 LSB2 = LSB 1, sign (LSB2-LSB 1)

MSB2-MSB 1 MSB2 = MSB 1, sign (MSB2 -MSB 1)

[:] +1

[] ::= integer
same as above

part of

Table 2.20

Bit Encoder Functions and Conditions

The important thing to understand about the conditions is that ~ of

them are avialable for testing irrespective of which particular BE

function is specified. The LSB and MSB encoding process yields a

testable condition which indicates whether bits bo through b63 are

all zero; this condition is noted 'BUS =0'. Thus we can write, for

example,

if BUS == 0 then At else Ar.

And, as a last condition on BE, we can test BE(O), i. e., bit 0 of the

BE output.

56

57

Example

?uppose we wish to test if there is only one bit set to 1 in a par

ticular piece of data, say the contents of the VS, we could write

VS BELM Load.

, if Ll =0 then ONEBIT.

where ONEBIT is the address of the next microinstruction to execute

if exactly one bit is set to 1 •

Since the BE has as its inputs encodings from information on the

BUS, we show it attached to the bus structure as shown in Figure 2.25.

Note that the output of the BE is shown going to various "control ports"

in accordance with the prior discussion.

Loading Masks A

Loading Masks B

Shifted Bus

Bus Masks

Working
Re isters A

Working
Registers B

Variable Width
Shifter

Double
Shifter

L
o

~

Postshift Masks ~--.....

-; Bus
Ult--+-----:=::..---------I
'" :J
m

Parity
Generator'

Bii Encoder Control Ports

Expanded Bus Stru.cture

Figure 2.25

58

2.17 Input Ports

There are two input ports through which external devices may

be connected to the bus selector. They are called Input Port A, lA,

and Input Port S, rB. Up to 16 devices can be connected to each of

these input ports. IA is shown in Figure 2.26; 18, not shown, is iden

tical.

eM
58

EXO
EXI

Sel.

Activate
Device • u

;;
• o

1-_--:R.:.::e~se4t Set

Data
from

Data

Lr----'

Oevi<:eo

Device 15

from Device lS Buffer
Device15 ____ -.lU

InpUI Port At fA

Figure 2.26

L
o

~ ..
U1
• u
;;
c'l

tnput Port A
of Sus $etectOf'

The particular device which is selected to be read is pOinted to by a

Device Register. There are two conditions associated with a selected

device: a) data available, IADA, and b) data condition, IADC. All de

vices must be able to set the first condition. The second condition can

be set by devices which can transmi t two different sorts of information,

for example control information and data. When a device is read, both

the IADA and IAOC conditions are reset. The microoperatlons associated

with the control of IA and IS are given in Table 2.21.

Notation

IAA

IAD:=CMj EXOj SBj EX1

IADC

lAD +1

IsA

IBD:=CMj EXOj SBj EX1

IBDC

IBD +1

Microoperation

Activate Port, i. e., read IA

Load IA Device Register from
CMj EXOI SB I EX1"*

Clear IA Device Register

Increment IA Device Register

Activate Port, i. e., read 18

Load iB Device Register from
CMI EXOI SBI EX1"*

Clear IB Device Register

Increment IB Device Register

Table 2.21

Microoperations for control of IA and IB

As an example, if we Wish to read a piece of data from device 9 on IA

and store it in AS, we can write the following classical wait loop:

lAD := 9.

, IAA; if IADA then HERE + 1 else HERE.

AS:=IA .•

The expanded bus structure can now be shown as Figure 2. 27.

"* See Section 2.20.5 for a description of EXO and EXt.

59

Shifted Bus

Bus Masks

Loadi ng Ma sks A ~-+--(l!1---------,

Loading Masks B t--+--{

L

~
U
Ql

Ql
If)

Postshift Masks

~ ~_~ __________ =B~u~s~ _________________ ~

Device

Device

Variable Width
Sh ifter

Double
Shifter

In ut Port If...

Irput Port B

aJ

Expanded Bys Structure

Figure 2.27

Parity
Generator

Bit Encoder Control Ports

61

2.1 8 Output Ports

There are four output ports through which output to external de

vices may occur. They are called Output Ports A, S, C, and OJ OAt

OS. OC, and 00 respectively. They are identical in operation with the

exception that oA and OS are loaded from the $9 and can be selected

as bus DESTINATIONS whereas OC and 00 are loaded from the BUS

and cannot be selected as bus DESTINATIONS, but- must be loadEtd by

a microoperation. OA is shown in FIgure 2.28; OS, OC, and 00, not

shown, are identical.

eM
59

EXO
EX!

Set.

Output Port A
Register

Output Port A, OA

Figure 2. 28

Devrceo

Oevfceo- Buffer

,.;.==:..- Device lS

Device 15 Buffer 0

Data to
Oevlceo

The particular device which is selected for output is pointed to by a

Device register. There is a condition associated with a selected de

vice: space available, OASA. The microoperations aSSOCiated with the

control of OA and OC are shown in Table 2.22. The microoperations

for 08 are identical to those for OA and the microoperations for 00

are identical to those for ac.

Notation

OAA

OAD:=CMI EXOj SB I EXl

OADC

OCA

OCD=CMj EXOI SBI EXl

OCDC

OC:=BUS

Mi croopera t i on

Activate Port, I. e., write OA

Load OA Device Register from
CMj EXOj SBj EXl

Clear OA Device Register

Activate Port, i. e., write OC

Load OC Device Register from
CM I EXOj SB I EXl

Clear OC Device Register

Load OC from BUS(0: 63)

Table 2.22

Microoperations for control of OA and OC

62

As an example, suppose we wish to write out the output of the AL. onto

device 13 of output port C. We could then write,

AL OC:= BUS~ OCD := 13.

if OCSA then HERE+ 1 else HERE.

OCA .•

There is one additional feature associated with the "activatell micro

operation. Recall that on the input ports it is possible to test a data

condition which is set by a device. Analogous with this, it is possible

on output to write out an extra bit in addition to the data. The device

can, for example, treat this extra bit as a data condition. The micro

operations for output port activate are now given by

OAAl activate with additional bit set to 1

OAAO

OAA

activate with additional bit set to °
activate with additional bit undefined.

2. 19 The Bus Structure

With the introduction of the output ports in the previous section

we have completed a description of (with only very minor modifications)

the MATHILDA Bus Structure, the registers and functional units attached

to it, and the control which can be exercised on these components. Th:::

Bus Structure is now shown in Figure 2.29.

Shifted Bus

Bus Masks

Loading Masks A t--i"""'[O---::W-:-o-r-:-k-:-in-g--'

Registers A

Loading Masks B t--i-~--::W-:-o-r-:-k-:-ln-g--I

Various Standard
Regi ster Group s

Registers B

L
o

Postshlft Masks

u Bus
~ t--1~------------------------~

Device

Device

Variable Width
Shifter

Double
Shifter

In ut PortA

Output Port A

Output Port B

iii
U)

",'
:l
III Parity

Generator

Bit Encoder

Output Po!"t C

Output PO!"I D

t-------- Device

t-------~ Device

MATHILDA Bus Structure

Figure 2.29

Control Ports

Device

Device

. 63

Let us summari ze some of the information with respect to bus SOURCEs

and DESTINATIO'-ls. We have the following SOURCEs and DESTINA

TIO'-lS for a bus transport:

a) SOURCEs for Bus Transport

WA
WB
LR
AL
VS
OS
fA
18

b) DESTINATIONS for 64-bit Load of SB with BD Load

MA
MB
WA
WB
LR
OA
OB

c) Shifters which can load 64-bit 5B via dedicated bits in
every microinstruction

AS
VS
DS

Thus in the bus transport specification

LIST := SOURCE,

64

the LIST can consist of 1 destination from (b) above and any or all of

the sh ifters, i. e. ,

BDbf, AS] [, VSJ r, DS] := SOURCE,

where the ~ ~ indicates the option of inclusion in the LIST.

Recall that the SB can be loaded into LA and LB by execution of

appropriate microoperations and the BUS can be loaded into PA,PB,

OC, and OD by execution of appropriate microoperations. AI so, a sub

field of the SB (always a contiguous string startihg with bit be) can

be loat:led into various SG' s and control ports throughout the system by

executing the appropriate microoperation. Thus, many parallel loads

of both the BUS and the SB may occur in any given microinstrLiction.

There are three Important restrictions on the above bus transport spe

cifications:

a) the specifications WA := WA or WB := WB are not allowed,

b) the specification LR := LR is only meaningful when LRIP f LROP,

c) one cannot use a mask (MA, MB, PA, LA, LB) and load the regi

ster containing that mask in the same microinstruction.

65

2.20 The Control Unit

The control unit of the MATH1LDA system, shown In Figure 2.1

on page 4, consists of (1) a control store and (2) a micrOinstruction se

quencing capability. The random access control store consists of up

to 4,096 words of 64-bit wide, 80 nanosecond monOlithic storage. The

mtcrcHnstrucliOl1 swqlJencfng is described belOW.

2.20. 1 Microinstruction Seguenclng

The microinstruction sequencing hardware is a physical embodi

ment of the" if c then A t else At" clause we have been using in our

microprogramming examples. This is accomplished In the following

way. The addresses At and At· are selected from 8 possible ao

dress sources. Lei A be the address of the current microinstruc

tion and let a be data which is specified in the current microinstruc

tion. The 8 possible address sources, which are explained in more

detail shortly, are I isted in Tabfe2. 23.

Notation Interpretation

A-"l I Current address - t I

A Current address

A+l Current address + 1

AL(A, a) I A funct i on of A and a as computed by an
, arithmetical logical unit
i

RA+ a ! The contents of the top of a return jump
stack, RA, added to B

RB+ B The contents of the top of a return jump
stack, Ra, added to B.

SA The contents of the Save Address register,
SA

EX The contents of the External register, EX

Table 2.23

Microinstruction Address Sources

These address sources are real i zed by provi ding a microinstruction

address bus which is shown ina limited form in Figure 2.30.

B

~I

Adder

+1
Adder

Force 0
Addl"ess

carry _~c::===~==r-'
;n

5B10:ll)

External
Source

Microinstruction Address Bus {Preliminary}

Figure 2.30

Status
Register$

66

One can see from this figure how the "if, then, else"-clause is rea-

I i zed. There are 3-bits in each microinstruction which specify one of

the 8 address sources of Table 2.23 to be used as the true branch ad

dress, denoted At. There are 3-bits in each microinstruction which

specify one of the 8 address sources of Table 2.23 to be used as the

false branch address, denoted At. There are 7 bits in each microin

struction used to specify 1 of 1 28 conditions which are testable in the

system; the selected condition is denoted c. The state of the selected

condition c determines which source, At or At, wi II be used to se

lect the next microinstruction address source. If c=l then At will be

used to select the address of the next microinstruction; if c=O, then Ar

wi II be used for thi s purpose. When a microinstruction address is selec

ted, it is loaded into the Control Store Address Buffer so it can be used

to fetch the microinstruction, and it is also loaded into the Current Ad

dress register so that it can be used in the next address computation,

if required. The contents of the Current Address register has been used

•

57

in previous examples urider the symbol ic name HERE. The "Force 0

Address" capability, the Interrupt Recovery Address register, and

the Status Registers shown in Figure 2.30 will be discussed in later

sections. Let us now discuss the address sources in detai I.

The address sources A-l, A, and A+l are straight forward and

need not be dealt with. It should be mentioned; however, that Control

Store addresses are interpreted modulo the si ze of the Control Store.

2.20.2 The Control Unit Arithmetical Logical Unit

The Control Unit Arithmetical Logical Unit, CUAL, is function

ally identical to the arithmetical logical unit which is connected to the

MATHILDA bus structure except that it is 12-bits wide and not 54-bits

wide. The CUAL functions are identical to those of the AL and are

given in Table 2.9. The IIA input ll to these computations is the the ad

dress of the current microinstruction and the "8 input" is data speci

fied in the current microinstruction. The CUAL is shown as in Figure

2.31 •

CM __ "" CUAL
Function o

~urrent Microinstruction Addres:; -A

CUAL
Microinstruction
Address Selector

carry-in (c or c)

B r ~-----______ ~
Data from Microinstructiori

Figure 2.31

Control Unit Arithmetical Logical Unit

68

First, note that the CUAL Function register can only be loaded from the

CM, i. e., CUALF := CM. One can set the CUALF to add A and B, i. e.,

SET CUALF + and also to the logical function B, i. e., SET CUALF B.

These are the only three microoperations associated with the CUAL. On

ly 5 bits are used to specify the function; the carry-in, when required, is

specified in another way. Let c denote the selected condition used to con

trol the address selection and let c be its negation. There is a bit in each

microinstruction, called the Carry-Input Selection Bit, CISB, which is

used to determine the carry-in as shown in Table 2.24.

CISB Carry-in

° C

1 c

fable 2.24

Carry-,in Selection

Example 1) Suppose the CUALF is set to A+B; this is a relative

jump. If CISB = 0, the specification

if c then CUAL else HERE

can be interpreted to mean:

if c then HERE + B else HERE.

Whereas, if CISB = 1, the specification can be interpreted to mean:

if c then HERE + B + 1 else HERE.

Example 2) SLippose the CUALF is set to B; this is an absolute jump.

This is a logical function and not affected by the carry-in.

if c then CUAL else CUAL

can be interpreted to mean:

if c then B else B.

In our microassembler, the specification of the CISB will be given

impl icitly. If one chooses the CUAL output as microinstruction ad

dress source, we write

CUAL + Carry-in .•

Choice of thi s specification as ei ther an At or Af wi" dictate the

setting of the CISB.

69

For the first interpretation of Example 1 to be valid the speCification

would have to be written

if c then CUAL el se HERE

whereas if we meant the second interpretation we would have to write

if c then CUAL + 1 else HE:RE.

I t should be obvious that the specification

if c then CUAL + 1 el se CUAL + 1

is an example of a microinstruction sequencing specification which is

imcompatible with the specification capability described above. Indeed

if one wished to choose the address specification CUAL + 1 irrespective

of condition, one merely need write

CUAL + 1

in the microinstruction sequencing fiel d of the microinstruction. This

would have the same effect as writing, for example,

if TRUE then CUAL+l else CUAL ~ .,

where TRUE is a manifest system constant set to 1. The ... e is also

a manifest system constant ,FALSE, which always has the vah..le O.

In order to complete the discussion of the CUAL we must discuss

the specification of the data B. There are 2 6-bit fields in the micro

instruction which we shall call T and t. T and t are input into a func

tion box which makes the computations shown in Table 2.25. There

are 2 bits in every microinstruction, called the B-Input Selection

Bits, BISB, which determine which of these computations will be used

as the B data, if required, in the current address computation.

BISB B data
!

00 0

01 Tt

10 tsign t

11 TO

Table 2. 25

B data Selection

70

The notation t. t means the 12 address bits are given by sign

i. e., in "sign extended" form. With the CUALF set to A+B and BISB=l 0

we then have a relative addressing capabi IBy of ±32. The notations Tt

and TO denote concatenation.

In our micro assembler, the specification of the SISS wi II be given

implicitly.o,e specifies the B value explicitly as a decimal number in the

address specification and this will dictate the setting of the BISB.

We will hence forth write the CUAL specifications as

CLIAL (A, S) + Carry-in.

80th CU and A are redundant information since this is written in the

microinstruction sequencing field of the microinstruction and we will

use the shorter form

AL(B) + Carry-in

where 8 is a signed integer, -2048:::;S::;Z048, when combined in an

arithmetic fUnction with A, but may obviously I ie in the interval

O::;B ::s;4095 when used for absolute jumps.

Example 1)

Example 2)

If the CUALF is set toA+B and BI5B=10, then the

spec ifi ca 1i on

if c then AL(-l 8).

can be interpreted to mean

if c then HERE-l 8 else HERE+1.

If the CUALF is set to A+B and BISB=l 0, then the

specification

if c then AL(l 2) else AL(l 2)+1

can be interpreted to mean

if c then HERE+l 2 el se HERE+1 3

thus givil1:J a condi tional branch to one of two sequen-
1

tially located microinstructions.

2. 20. 3 Return Jump Stacks A and B

There are two return jump stacks associated with the microin

struction addressing facility. They are called RA and RB. Each is a

1 2-bit wide, 16 element RG. RA is shown in Figure 2.32; RB, not

shown, is identical.

C -1 +t-1 ____ -,

Microinstruction Address Selector

B

Data from Microinstruction

Return Jump Stack A, RA

Figure 2.32

The microoperations associated with RA are shown In Tab~e 2.26.

The instructions for RS are identical.

Notation Microoperation

+1 A(L) RA ~ Increment RAP and then LOad RA wi th

71

the address at the current microinstruct.ion

-1

c

RA t Decrement RAP

RAPC Clear the RAP

Table 2.26

Microoperations for control of RA

Whenever the top of the RA stack is used in the computation of the ad

dress A the next microoperation, the microoperation RA t is executed,

i. e., the stack pointer is automatically maintained any time something

is added to the stack or whenever the stack is used in an address com

putation. The use of RA is specified by writing

RA + 8 + carry-in.

72

This is seen immediately from Figure 2.·'32.·' The B data and the carry-in

selection are exactly t~e same as those specified for the CUAL.' The soe

cification RA+l or RB+l wi II be interpreted to mean 8=0 and the carry-in:::l ~

Example 1) Suppose we are in a routine at step n and wish to jump

to a routine at step n+m. At step j of the second routine we

wish to return to n+l. Assuming the CUALF := A+B we could write

n ;RA l ;AL(m).

m:

j: ;RA+l.

Example 2) It should be noted that the availability of 2 return jump

stacks may facilitate the implementation of coroutines. For example,

the microinstruction

n: ;RA ~ ;RB+l.

stores the current address in one stack whi Ie simul taneously using

the other stack asa source in the computation of the address of the

next microinstruction.

Example 3) A conditional return entry point; can be obtained by

using the specification

if c then RA+B+l el se RA+B.

An important point must be raised here. It was stated on

page 12: liThe action associated with every microoperation speci

fied in a microinstruction is completed before the next microin

struction is executed. II There is only ~ exception to this rule

and it is the action associated with the microoperation RAl (and

RBl obviously). It was not important at the time the rule was in

troduced, but it is important now. The action associated with

RAl andRB l require 2 microinstruction cycles to be completed

and not 1 microinstruction cycle. Thus, if one loads RA in a given

microinstruction, RA cannot be used as an address source in the

very next microinstruction executed. The same is, of course, true

for RB. (This is discussed further in Section 3.2.1 .)

73

2.120.14 The Save Address Regi ster

The Save Address register, SA, is shown in Figure 2. 33.

L+1-1C

ss(O: 11)111 SA

~ J l !
~ Microinstruction

o Address Selector

The Save Address Regi ster. SA

Figure 2.33

The microoperations associated with this register are shown in Table

2.27.

SA:= S8

SA +1

SA -1

SAC

Table 2.27

Microoperations for control of SA'

SA provides a data path between the bus structure of MATHILDA and the

control unit which controls the transactions on this structure. It can be

used, for example, during the loading of control store. and recovering from

an interrupt (see Sections 2.20.8 and 2.20.6 respectively).

2.20. 5 The External Register

The External Register, EX, is a 16-bit wide right cyclic shifter

which shifts 4 bits at a time. EX is loaded from an external device. If, for

example, MATHILDA is to be connected as an input/output device to another

processor, then the EX register provides one form of communications area

for data sent to MATHILDA. The 16- bits of the EX register can be thought

as consisting of four 4-bit bytes as shown in Figure 2.34.

L -+4

t : External 1 I I I ~ Microinstruction
Devl'ce ---:'-'15 EX3 11 EX2 87 EX 1 EXO Address S I cto ~_~ __ ~_~._~_~ __ ~_~._~ __ ~_4~3~ ____ ~O~ e e r

The External Register, EX

Figure 2.34

The microoperations associated with EX are shown in Table 2.28.

Notation Mi croopera tions

EX Load Load the Externa I register

EX 4 Shift the External register 4 bits

Table 2.28

Microoperations for control of EX

right cye! ic

.

EX can not only be used as a possible source for the address of the

74

next microinstruction, but it can also be used as data for many of the

control registers in the system, e. g., CAr When EX is to be used as

the source of a microinstruction address, the right most 12-bits are

used, i, e. , bytes EX2, EX 1, and EXO, In fact, in all circumstances

(except in conjunction with the Device Registers of the input/output

ports) the datumfrom the EXis always considered to be a contiguous

string of bits of the required width starting with b o ,. I For example if

EX is designated as the control source for theBS, the bits EX(O:5) are

used to specify the shift amount. When EX is used as a data source for

the loading of input/output port Device Registers (lAD, lBO, OAD, OBD,

OCD, and ODD) both bytes EXl and EXO are considered data; not conti~

guous data, but 2 separate 4-bi t data items.

2.20.6 The Force 0 Addr,ess Capabill!Y..

There are 4 conditions which if they occur during the execution of

any microinstruction will disregard the address computation specified in

the microinstruction sequencing portion of the microinstruction and fetch

the next microinstruction from Control Store address O. These conditions

are listed in Table 2,29.

Force 0 Address Conditions

External Signal

Real Time Clock Overflow

RA Overflow

RB Overflow
--.----------------------------'

Table 2,29

Force.O Address Conditions

75

An external device may be connected to the External Signal condition

to interrupt the operation of MATHILDA. A Real Time Clock, RTC,

(Section 2.22), is available in the system which can count up to 60 sec.

The overflow of the RTC causes the next microinstruction address to O.

If either RAorR8 overflow, I. e., we have staCked MOre than 16 ad
dresses, we will also force the address to O. This capability is shown

in the following way:

External
Real Time Clo

RA Overflow
RB Overflow

Selected
Address

ck

INTON INTOFF

t ,
- 0 IJl

IJl
-." Q) Q)

(,) '-- '- "0
0 "0

___��� u.. «
(C)

f

Current Address

(C)

f
Control Store
Address Buffer

(L)
t
Interrupt Recov-

ery. Address

The Force 0 Address Capability

Figure 2.35

f--
Status
Registers

Whenever a Force 0 Address Condition arises the following occurs:

both the Control Store Address Buffer and the Current Address re

gister are cleared, i. e., set to zero; the selected address is loaded

into the Interrupt Recovery Address register, IRA; and the interrupt

facility is turned off. The IRA contains the address of the microinstruc-

76

tion which would have been executed had the interrupt not occurred •.

The contents of the IRA can be gated onto the BUS through the Status

Registers explained in Section 2.23.3. The IRA can then be used tn

conjunction with the SA faci lily previously described to restore the·

continuation address, 'the inter;..,. c •• btlh)" can be lUftf1.d Offend
on by executing the micf"ooperations tNTtJF="F and 'NTON respedive

lye

2.20.7 The Microinstruction Address Bus

Having gained insight into the nature of the various address sources

which can be used during microinstruction sequencing, we can now pre

sent a more detai led picture of the microinstruction address bus and it .

is shown as Figure 2.36. Because the number of control elements is

small, they are also shown on this figure.

The microoperations associated with the control unit are brought to

gether, for convenience, in Table 2 .• 30. All but the 1ast microoperations

have been explained in previous sections. The CS Load operation is dis

cussed next.

SA:= SB

SA+l

SA -1

SAC

CUALF.:= eM

SET CUALF B

SET CUALF +
RA

RA ~

RAPC

RB t

RB ~

RBPC

EX Load

EX -+ 4

INTON

INTCFF

CS Load

Table 2,30.

Microoperations associated with theContro·J Unit

iNT

ON <FF

f--....
o ~

lock -

External

Real Time C
RA OverflOW

AS Overflow

" " U L L"O
0"0 - lL«

T

-. i
0

II
e!ISe!

e!

lsign l

TO

r-¢ , . +1

• RA
Pointer-

r4. +1

• RS
Pointer

CSB

.-
L

'"- 0

3- u

" -::::- "
~-

IJ1
c

S- O

m,- '6
~- §
- U

'--

H -I Adder t--'"-

H +1 Adder f-
SET SET

• A,S r t
F ' 1 ,

Arithmetical
L

CM I-- 0
unctJOn i I Logical Unit U

" t 1 1;
I~) IJ1

t '" m

H Return Jump I " L

Stack A I I "0
'0

I
«

Adder ~ c
0

f 1 U
I~)

~
L

t Ui
C

Y Return Jump I '0
Stack S I t L

U

I Adder ~
i

• 1
CISS

Carry-in I
Selector I

~ 58(0""

L+l _1 C

I I I \

+-Save Address

• --: External t-L-External
Device

RB ,-
RA '1

r
Selector

i ,
Micrtinstruction Address Bus (Detailed)

Figure 2.36

.. the address selector bits are decoded to determine if RA or RS are selected.

-:1
I'"""" --{ Cu ent Address I

rl11
I Control Store I --I Add .. ess Buffer

L)LJ
Interrupt Recov-

ery Address

l

77

Status
Reg_isters

79

2.20. 8 Control Store Loading

Control Store has, of course, both an address buffer and a data

buffer, as shown below.

CS CS

,i~ddress Buffer 0 Data Buffer
63 0

Control Store, CS

(4096 words)

The CS Address Buffer is loaded from the Microinstruction Address Se

lector as shown in Figure 2.30. The CS Data Buffer is actually Device

number 15 associ ated wi th Output Port A, OA. Let A be the address of the

current microinstruction. The microoperation CS Load, if executed in the

current mi croinstruction, can be interpreted as follows:

CS Load

Example

.. -.. - Load the contents of the CS Data Buffer into

the CS storage location pointed to by the CS

Address Buffer.~ then choose A+ 1 as the

address of the next mi croinstruction.

Load the contents of WA 1 into the CS storage loci:ltion specified

by the rightmost 12 bits of WAO.

WA

OA:= WA

; WAPC, OAD := 15.

: SA := SB, WAF +1.

; if OASA then HERE +1 else HERE.

; OAA.

; CS Load; SA.

; continue •

2.21 The Conditions, Condition Set ector, and ~ndition Registers

There is the possibility of testing 128 conditions in the system. At

this writing there have been 100 specified, leaving a reasonable amount

of expandabil ity in the system. The conditions and their symbolic nota-

ti on are given in Table 2. 31.

The conditions in this table are grouped according to the functional

unit with which they are associated. For convenience, the units are

listed in alphabetical order.

Unit

AL

AS

BE

BP

BUS

CA

CB

Symbol ic
Notation

AL
ALOV
AL(O)
AL(63)
ONEOV
TWOOV

AS(O)
AS(V)
AS(63)

LSBl
MSBl
Ll
L2
LSB 1 -1
MSB 1 +1
LSBD
SGNLSBD
MSBD
SGNMSBD
LD
SGNLD
BEPGD

BE(O)

BP

BUS

CA
CA(3)
CA(4)
CA(S)
CA(6)
CASPOV

CB
CB(3)
CB(4)
CB(S)
CB(6)
CBSPOV

Condition

are bits AL(0:63) :: 0
AL carry-out and borrow-in bit
bit 0 of AL input to bus selector
bit 63 of AL input to bus selector
1 IS complement overflow
2 1s complement overflow

bit 0 of the AS
the variable bit of the AS
bit 63 of the AS

is LSBl :: 000000
is MSB 1 Ell 1 1 1 1
is L 1 = 0 (i. e. , MSB 1 =L SB 1)

is ~ ='0 (i. e., MS~ =LS~)
is LSB1-l = 000000
is MS8 1 + 1 = i 11 1 1 1
is (LSB 1 -LSB 2) = 0
sign of LSBD (SGNLSBD=0=LSBD:2:0)
is (MSB 1 -MSB2) = 0
sign of MSBD (SGNMSBD=0~SBD:2:0)
is Ll-L2 = 0
sign of LD (SGNLD=O=L 1 :2:L2)
BE postshift mask generator director
BEPGD=O~, BEPGD=l~

bi t 0 of the output of the BE

BUS parity, BP=l => odd parity

BUS(0:63) :: 0

is CA zero
bit 3 of CA
bit 4 of CA
bit 5 of CA
bit 6 of CA
CASP == 1111 (CASP overflow)

is CB zero
bit 3 of CB
bit 4 of CB
bit 5 of CB
bit 6 of CB
CBSP :: 1111 (CBSP overflow)

(cont.)

79

Unit

CR

CU

OS

I/O

LR

RTC

SB

System

VS

WA

WB

Symbolic
Notation Conditi.Qn

CR output of condition save registers

EXDA data available on EX
RAPOV RAP == 1111 (RAP overflow)
RAPUN RAP == 0000 ~AP underflow}
RBPOV .. RSP == 1111 (RBP overflow)
RSPUN RSP ;: 0000 (RAP underflow)
INT fNT= l~NTCN, INT==O~NTa=F
CUALOV CUAL overflow

DS(i), i=O,. •• t 15 the indicated bit of the OS
DS(j),j=V,V+l the variable bits of the OS

IADA data available on fA
IADC data condition on IA
IBOA data available on IS
IBDC data condition on IB
OASA space available on OA
OBSA space available on OS
OCSA space avai lable on OC
ODSA space avai lable on OD

LR(O) bit 0 of LR input to bus selector
LR(63) bit 63 of LR input to bus selector

RTCOV Real Time Clock overflow toggle

SB(O) bit 0 of the shifted bus
SB(1) bit 1 of the shifted bus
SB(62) bit 62 of the shifted bus
SB(63) bit 63 of the shifted bus

TRUE a binary ohe
FALSE a binary zero

VS(O) bit 0 of the VS
VS(V) the variable bit of the VS
VS(63) bit 63 of the VS

WA(O) bit 0 of WA input to bus selector
WA(15) bit 15 of WA input to bus selector
WA(63) bi t 63 of WA input to bus sel ector
WAPOV WAP == 1 1 1 1 111 1 (WAP overflow)
WAPSPOV WAPSP == 11111111 (WAPSP overflow)

WB(O) bit 0 of WB input to bus selector
WB(15) bi t 15 of WB input to bus selector
WB(63) bit 63 of WB input to bus selector
WBPOV WBP ;: 1111111 1 (WBP overflow)
WBPSPOV W BP SP == 1 1 1 1 1 111 (WBPSP overflow)

Table 2.31

* Partial Listing of System Conditions

* See also Table 2.38

80

81

All 128 conditions are input into a condition selector. There are 7

bits in each microinstruction, called the Condition Selection Bits,

CSB, which select a particular condition. The selected condition is

input into

a) the At -At address selector (Section 2.20.1),

b) the carry-in selector (Section 2.20.2), and

c) a SG called the Condition Save Registers, CR.

This is shown in Figure 2.37.

Condition:

Condition 1

Condition ..

C B

c
.~

~
u

Conditionl.Ol'? 1,;27

A t -A t Selector

Carry-in Selection

Condition Selector and Condition Registers

Figure 2.37

It can be seen from this figure that we can save the state of any condition

as it arises and use it later when required. The microoperations associa

ted with CR are given below in iable 2.32.

CR := SC

CRP := CM lEX IS11s2

CRP +1

CRP -1

CRPC

CRS1 := CM lEX 1511s2

CRS2 := CRP

Table 2. 32

Microoperations for control of CR.

82

In the loading microoperation CR := SC (Selected Condition), we can,

instead of using the notation SC,use the symbolic notation given In Table

2.31. Thus, for example, if we wish to save the state of the ALOVcon

dition in an instruction we would write:

CR := ALOV

It should be obvious that since the SC goes to both the CR and the

A t -A f selector that one cannot specify a condition in the microin

struction sequencing fiel d different from the SC in the CR := SC

microoperation within the same microinstruction. Thus

WA := WB; WAP +1, CR := BUS; if CA=O then RA +1.

is .!J2l allowed. It would have to be written as 2 microinstructions:

WA:= WB ; WAP +1, CR := BUS.

; if CA = 0 then RA + 1.

Statements of the following type are obviously allowed:

WB := DS; PG-'3, AS ~, CR := BP; if BP then HERE -1.

83

2. 21. 1 Short and Long Cycle

It is obviously important to know when one can test a condition. The

system can execute microinstructions in two different cycle times: a

"shortll cycle time and a tllongll cycle time. The difference in these two

cycles as it relates to the testing of conditions can be easily stated:

long cycle

short cycle

When the machine is operating in long cycle mode .§lL

conditions which arise as a result of bus transport and

microoperation execution are testable in the ~ mi

croinstruction in which they arise,

When the machine is operating in short cycle model!.L!.

conditions which arise as a result of bus transport and

microoperation execution are testable in the ~ mi

croinstruction to be executed.

Thus if we are in long cycle and we write

WA := we; WAP +1; if BUS == 0 then RA +1.

we are testing whether or not if the current bus transport (WA := we)
is such that BUS == O. Whereas, in short cycle, this microinstruction

would mean we are testing the previous bus transport's condition. In

order to test WA := WB we would have to write 2 microinstructions,

WA:= WB ; WAP +1.

; if BUS == 0 then RA+1.

Thus, a nii croinstruct ion can be thought of being executed in the fol

lowing sequential way:

Long cycle: a) execute bus transport

b) execute microoperations

c) execute microinstruction sequencing based on the

current conditions

84

Short cycle: a) delay the condi tions of the previous mic oinst uction

b) execute bus transpo t

c) execute microoperations

d) execute microinstruction sequencing based on the

delayed conditions from the previous microinstruction

It is obvious that all of the examples given previously have been execu

ted in the "short cyclet! mode (see the discussion in Section 2.4.1).

This is, of course, the more difficutf of two concepts; however, a rea

der who has started the document from the beginning should now be in

tui tively famit iar wi ththis concept.

2.22 The Real Time Clock

The Real Time Clock, RTC of the MATHILDA system is shown in

Figure 2.38.

CM~

~se of EX as address source

Clock Clear Conditions

Time Clock

Real Time Clock

Figure 2.38

The clock can count up to 60 seconds. Whenever 60 seconds is reached

two things occur, provided the INTON microoperation has been executed:

1) a RealTime Clod< overflow Toggle, RTCT, 'is turned on and the

clock is res~t to 0,

2) the next mic oinstructlon to be executed is obtained from

control store location O.

The clock is cleared whenever the microoperation RTCC is executed·

or whenever the EX input is selected as the address source for the

address of the next microinstruction capability (see Section 2.20.6).

One does not need to have the RTC count up from 0 bef<;>re it over

flows. A base value can be loaded by execution of the inst uction

RTC := CM.

85

In the microassembler the data will be specified in seconds. Thus, 4

seconds wi II elapse between the execution of the microoperation

RTC := 56

and the turning on of the RTC overflow toggle. The RTC overflow

toggle can be turned off by executing the microoperation RTCT OFF.

2.23 Auxiliary Facilities

The auxiliary facilities associated with the MATHILDA system as

shown in Figure 2. 1, i. e., the system counters, status regi sters, and

snooper registers, will now be discussed.

2.23. 1 Counter S

The system has 2 counters associated with it: Counter A, CA,

has been introduced in Section 2.2, Counter S, CS, introduced here

is shown in Figure 2.39.

+1 -1 C

Sel.

Counter B, CB

Figure 2.39

86

A comparison of this figure with Figure 2.3 which shows CA shows that

CB is identical with CA except that CA can be loaded from the EX regis

ter whereas CB can be loaded from the output of the BE, i. e., we have

CA := CMI SBI Exi CAS

and CB := CMI SBI BEl CBS.

Note, the output of the BE is 6 bits, whereas CB is 16 bits wide. When

ever BE is selected as input to CB the high order 10 bits of CB are set

to O. The microoperations associated with CB, CBS, and CBSP are

given in Table 2.33. These are, of course, apart from the above dif

ferenceJidentical to those associated with CA and merely shown here

for convenience.

CB := CM ISB I BE ICBS

I C B+

CB - 1

CBC

CBS := CB

CBSP + 1

CBSP - 1

CBSPC

Table 2.33

Microoperations for control of CB, CBS, and CBSP

An example of the use of CB has been given as Example 2 in Section 2. 16.

It should be quite obvious that CA and CB are not connected in any way

whatsoever and may be used independent of one another. One may count

up in CA whi Ie counting down in CB, for example,

; CA + 1, CB - 1. .

87

2. 32.2 The Snooper Store and Snooper Regi sters

The Snooper unit provides a facility for the gathering of data con

cerning the operation of the system. The faci I ity consists of (a) a

Snooper Store and (b) 16 Snooper Registers. The Snooper Store con ...

sists of up to 4,096 words of 4-bit wide, 80 nanosecond monolithic stor

age. It has the same number of words as the Control Store and is ad

dressed in a cyclic fashion consistent with its size. The Snooper Regis

ters are 32-bit wide registers which can be cleared and counted uP. The

Snooper unit works in the following way: when the address of the next

microinstruction to be executed is sent to the Control Store Address

Buffer, it is also sent to the Snooper Store Address Buffer; at the same

time the microinstruction is fetched so that it can be executed, the con

tents of its associated Snooper Store location is fetched; the contents

of the associated Snooper Store location identifies which of the 16

Snooper Registers is to be incremented during the execution of that par

ticular microinstruction. Thus, during the execution of every microin

struction, a specified Snooper Register is incremented.

The Snooper Store can be written and the Snooper Registers

read through the norma I input/output faci I i ti es of the system. Snooper

Store is writeable so that different data gathering routines can be

associated wi th the same segment of mi crocode without changing the

microcode. Snooper Store is loaded via OS, Device 1. If we load OS

with the following information

OB O~O Contents Address
·63 16 15 12 11 0

then the execution of OBA when OSD is set to 1 wi II store OB(12: 15) into

the Snooper Store location specified by OB(0:11 L
The contents of any particular Snooper Register, SRi, i=O, •• ., 15,

can be read through lB. Devices 1 through 8 of IS are associated with

the Snooper Registers as shown in Table 2.34.

88

Device IB(32:63) IB(0:31)

1 SR 0 I SR 1

2 SR 2 SR 3

3 I SR 4 SR 5

4 SR 6 SR 7
I

5 SR 8 SR 9

6 SR 10 SR 11

7 SR 12 SR 13

8 SR 14 SR 15

Table 2,34

IB Devices and the Snooper Registers

ThuS, for example, if we wish to place the contents of SRB in bits 0

through 31 of LRO, we could wri te

IBD := 5, LRlpC, PAP+1.

LR := IB, BS -+ 32 PG -+ 32, PAP-l. •

A few points should be stated about this example. The ISA microopera

tion was not used, nor were either of the conditions IBDA or IBOC

tested before input was made. This is explained as follows. The Snoo

per Registers are "dedicated" input devices, always avai lable to be

read. The IBA microoperation when used with Devices 1-8 is used to

clear both of the Snooper Registers associated with the particular De

vice number.

There is also a tally of the total number of microinstructions

which have been executed in the system. Device 9 on 18 is a 64-bit Wide

Micro Instruction count register, MI, which is incremented every time a

microinstruction is executed. It can be cleared by executing IBA when

IBD is set to 9. Thus the MI appears functionally identical to a Snooper

and is included in this section.

89

2.23.3 The Status Registers

The Status facility establishes a data path between various con

trol regi sters, address regi sters, and counters of the system and the

BUS. Just as with the Snooper facility, this is done through the normal

input facility of the system and, again,18is used. Let us consider IB

to be made of ei ght 8-bi t bytes labell ed ISj where IBJ = 18(0+j8:7+ J8),

j =0, ••• ,7. For example, IS Byte 2,IS2. = IB(16:23). Table 2.35

shows which system elements are associated with Devices 10 and 11 on

lB.

Device IB7

10 CUF

1 1 CUALF

12

IB6 IB5 IB4

BEF WBP WAP

BE EX

Spare

"fable 2. 35

Status Information

IS311B2 181 11BO

C8 CA

IRA SA

Devi ces 10, 11, and 12 on IB are the IIStatus Regi sters" of the

system. Just as with the Snooper Regi sters, they are "dedicatedll

input devices. The IBA microoperation and the IBDA and IBDC con

ditions have no meaning when used with these devices. Suppose, for

example we wish to store the output of the BE in the AS recall the

output of the BE had previously only been input to various control ports

in the system. The following instructions connect it to the BUS and

store it in the AS

;IBD:= 11, PAP+1.

AS := IB, BS 48 ;PG 56, PAP-l. •

90

2.24 An Alternate View of the Working Registers

The description of WA which was given in Section 2.4 introduced

WA as a 256 element RG. In Fi gure 2.5 the address pOinter, WAP, was

shown to be 8-bits wide so that the WA registers could be addressed as

256 conti guous regi sters. In fact, the address pointer actual I y consists

of two 4-bit pointers which had been "coupled" together to give the 8-

bit wide pointer described in Section 2.4. Figure 2.40 shows WA with

its two 4-bit pOinters called the Group and Unit pointer; WB, not shown,

is i denti ca I.

Sel.

+1 _1 C

Sr:fted Bus
5BIO:631

+1 -1 C

256

Work Ing Regi siers,

WA

Bus
Sele(:tor

When the microoperation COUPLE A is executed, the Group and Unit

pointers are connected together to give the 8-bit wide pOinter, WAP.
'.

After the microoperation UNCOUPLE A is executed, the Group and

Uni t pointers function as independent pointers. The low order 4-bits

of the 8-bit address required to specify a particular register are given

by the WA Unit pOinter, WAU; the high order 4-bits of the address are

given by the WA Group pointer, WAG. Thus, WA can be considered

to be 16 RGf s, each RG having 16 registers.

The microoperations associated with the WAU and WAG pointers

are given in Table 2.36. (The similar microoperations for WB are not

shown.)

91

WAU := CM[EX!SBjWAUS

WAU+ 1

WAU - 1

I WAUC

WAG := CMIEXISBIWAGS

WAG + 1

WAG - 1

WAGC

Table 2,36

Microoperations for control of the WAU and WAG pointers

If we wanted to point to the 9th unit of group 3 and then transfer its

contents to the DS, we could write, assuming the pointers are uncoupled,

; WAG := 3, WAU:= 9,

DS :=WA. •

The microoperations associated with W.AP in Table 2,4 can now be given

their appropriate meaning in terms of the microoperations in Table 2,36,

Assuming WAU and WAG are coupled, we have

WAF + ::= WAU + 1

WAF - 1 ::= WAU - 1

WAFC ::= WAUC and WAGC

WAF := CM IExl s81 WAPS ::= WAU := CMI Exi 581 WAUS

and WAG:= CM\ EXI SBI WAGS,

Let us now turn our attent ion to the pointer save capabi I i ty shown in

Figure 2.40, When WA is considered'as 16 groups of 16 registers,

the WAU and WAG pointers may be saved independent of one another,

The microoperations associated with this facility are given in Table 2.37.

92

WAUS:= WAU

WAUSP + 1

WAUSP - 1

WAUSPC

WAGS:= WAG

WAGSP + 1

WAGSP - 1

WAGSPC

Table 2. 37

Microoperations for control of WAUS and WAGS

As an exampl e, suppose we are in group 3 and wi sh to work in group 8.

Before working in gr-oup 8 we want to save the unit which we

are pointing to in group 3. This is done by executing

; WAUS:= WAU, WAG:= 8 ••

The microoperations associated with WAPS in Table 2.4 can now be

given their appropriate meaning in terms of the microoperations in

Table 2.37. Thus we have,

WAPS:= WAP ::= WAUS:= WAU and WAGS := WAG

WAPSP + .. = WAUSP + and WAGSP + 1

WAPSP

WAPSPC

•• = WAUSP - and WAGSP -1

.. = WAUSPC and WAGSPC.

There are a few additional conditions which can now be added to

Table 2.31, t he partial I isting of system conditions. These are given

below in Table 2. 38.

93

Unit Symbolic Condition
notation

WAUOV WAU == 1111 (WAU overtlow)

WAGOV WAG == J 11 1 (WAG overflow)

WA WAUSPOV WAUSP == J 111 (WAUSP overflow)

WAGSPOV WAGSP == 1111 (WAGSP overflow)

WACS WACS = 1 ~WAU and WAG are coupled -
WBUOV WBU == 1111 (WBU overflow)

WBGOV WBG == 1111 (WBG overflow)

WB WBUSPOV WBUSP == 1111 (WBUSP overflow)

WBGSPOV WBGSP :: 1111 (WBGSP overflow)

WBCS WBCS = 1 ~ WBU and WBG are coupled

Table 2.38

Additional WA and WB Conditions

Thus we can deal with WA or V\B as either 256 contiguous registers or

16 groups of 16 registers. We can switch back and forth between either

interpretation in a relatively straightforward way.

2.25 An AI ternate Vi ew of the Postshift Masks

The description of the Postshift Masks which was given in Sec

tion 2.7 was structured to make the Postshift Masks look as much like

the Bus Masks as possible, to enhance the understanding of this unit.

In fact, the output of the BS is masked during every bus transport by

the mask which is specified to be

where

PA VPB VPG

PA = an element of a 64-bit wide, 16 element RG called
.,

the Postshift Mask A registers

PB = an element of a 64-bit wide, 16 element RG called

the Postshift Mask B registers

PG = the Postshift Mask Generator

V = logical "inclusive or".

94

In Section 2.7 we had introduced the mask to be PAVPG; here we had

merely assumed all elements of PB to contain all O's. The actual situa

tion is shown more clearly in Figure 2.41.

eM

eM
EX
SB

SG

L +1 -1 C

BUSiO:631 _.6.--1

eM EX BE SG

Postshift

Mask Registers,

pA

Postshift

Mask Registers

PB

Postshifl Mask Generator, PG

Postshift Masks. PA, pa, and PG

Figure 2.41

PA

PG

Bus
Shifter"

The most important thing to note from this diagram is that the PA/pS

structure is indeed the same as the MAIMS structure (see Figure 2.9).

The microoperations associated with PS are then

PB := SUS

PBP := eM/EX IsslSG
PBP + 1

PBP - 1

PBPC

Table 2.39

Microoperations for control of PS

95

The name of the SG associated with the PA pointer and the PB pointer

is the Postshift AB POinter, PABP. The microoperations associated

with this SG are given in Table 2.40.

PABP := SB

PABPP := CM 1 EX 1sT 152
PABPP + 1

PABPP - 1

PABPPC

PABPSl := CMIEXI Sl[S2

PABPS2 := PABPP
--

Table 2.40

Microoperations for control of PABP

We will assume that all elements of PB contain all O's so that the effective

mask is PAVPG and all of our previous standardizatIons for the use of

this facility are still valid.

3.0 Microinstruction Specification and Execution

We will in this section discuss the microinstruction format, the man

ner in which the instruction is executed, an then give a comprehensive

table of all microoperations.

3. 1 Microinstruction Format

Mi croinstructi ons are 64-bi ts wi de. There are 4 major fi el ds in a

microinstruction. These fields specify

(a) bus transport

(b) microoperations and data

(c) mi croinstructi on sequencing

(d) control of AS, VS, 'and OS

These fields are shown below with their sub-fields named and their

actual bit location in the microinstruction.

96

(a) bus transport (7 bits)

BS BO SOURCE
22 21 19 18 16

1 3 3

Lsus Shifter Enable Bit

(b) microoperations and data (35 bits)

mops
63 57 56

mops/data
47 46

mops/data
39 3$

mops/data
29

7 10 8 10

mops = microoperations

(c) mi croinstructi on sequencing (16 bi ts)

BISB CISB Condition Ar At
Selection

15 14 13 12 6 5 3 2 0 ,

I I I 2 1 7 3 3
I I

I
~Carry-in selection bi ts L--7 B-input selection bits

(d) AS, VS, and OS control (6 bi ts)

AS VS DS
28 Z7 26 25 24, 23

2 2 2

~~----------~---------~)

Sh ift/Load Control for the Shifters

Let us di scuss each of these in more detai I.

(A) The Bus Transport Field

Table 3. 1 shows tf:\e correspondence between the symbolic nota

tion for SOURCE's and BD's and their binary representations •.

SOURCE BO

I Symbolic Binary Symbolic Binary
I

Notation Notation Notation
, Notation

! ·LR 000 no 000
, destination

j

AL 001 MA 001

f

i
VS 010 M8 010

I OS 011 LR 011 ,

; WA 100 WA 100 i ,

WB 101 WB 101

IA 110 OA 110

IB 111 08 111

Table 3. 1

Symbol ic and Binary Notation for SOURCE:'s andBD1s

If the BS Enable bit = 0, no 8S occurs; if the BS Enable bit = 1

a BS Shift occurs. The control" source for 8S control is given in

the microoperations and data field as is seen in (B) below. Thus the

specifi cation

BS BD SOURCE

0 101 011

is the binary representation of our bus transport specifi cation

WB:= OS • We will show this symboHcally as

BD

WB

as we have no need of binary """epresentations in this report~

97

I

·98

(B) The Micr60perations and Data Field

The microoperations and data field can be considered to be made

up of the following fields: F 1 , Sl, ~, Fa, ~, F 3 , Ss, ~4' F4 as

shown in Figure 3.1 •

7 2 11 I 7 It! 7 2 111 7

F1 1 Sl 16:1 F2 16:1 F3 I.S31~J F4

63 57 56 55 54 63 47 46 45 39 3.8 37 36 35

mop Isel M mop M mop Sel. M mop

D data D datass D data

Microoperation and Data Field

29

The following comments should assist in understanding this diagram.

B.1) Field F1

Of M 1- =
D.a

·M
If- =

Os

of M 1-=
D4

always specifies a microoperation (1 of 128 mops).

then Fa specifies amicrooperation (1 of 128 mops).

then F3 specifies a rrticrooperation (1 of 128 mops).

then F4 specifies a microoperation (1 of 128 mops).

Therefore up to 4 microoperations may be specified in this field; for

example,

; BSP +1, WSP +1, MBP +1 , CA -1 ;

B.2) We have seen that many microoperations concern the loading of a

register from various sources, e. g.

MAP := eMI Exl sal SG.

Such a microoperationmust be placed either in field F1 or Fs. If It

is placed in F11 then the 2 selection bits 51 specify which source will

be used. If the source specified is the CM then ~ is set to 0 and F2

is used as data (similarly ~ ... and F4, are used with F 3). For example

MAP := 7

could be symbol ically represented

Fl Sl ~ ICb F2

MAP := eM 0 7

Thus one sees that there can be at most 2 microoperations of this type

in a microinstruction.

B. 3) Figure 3.1 also shows that if the BS control data is to be taken

from the eM then F3 is used as data. If the SS has been enabled, the

control source is selected via field 5:3. Thus the specification

WA := AL, BS 3

could be symbol ically represented

so I SOUR::I~I
WA

B.4) All of the possible microoperations are not available in each field

F 1 , F2 , F 3 , and F 4 • The microoperations which can be specified in each

field are given in Section 3.3, the Comprehensive Tables of Microopera

tions for Individual Functional Units.

e) The Microinstruction Sequencing Field

Table 3.2 shows the correspondence between the symbol ic notation

for At and Af and their binary representations.

100

At and At

Symbolic Binary
Notation Notation

EX 000

AL 001

RB 010

RA 011

SA 100

A-I 101

A+l 110

A 111

Table 3.2

Symbol ic and Binary Notations for At and At

A similar table can be given for the symbolic and binary notations for'

the conditions but is not given here because of its length. Tables 2.24

and 2.25 present this information for the CISB (Carry-in selection bit)

and BISB (B-input selection bi ts) respectively. We wi II give all of oUr'

examples symbolically.

Example 1) If BUS == 0 then HERE. could be represented

BISB CISB
Condition

At At Selection

0 BUS A+l A

Example 2) If ALOV then RA +.1 2. could be represented

BISB CISB
Condition At At Selection

tSignt ALOV A+l RA+B

101

However, this is incomplete and immediately raises the question where

do T and t come from 1 Tha tis eas i I y answered. Tis a Iways the leasts

significant 6 bits of F3 and t is always the least significant 6 bits of F 4 •

BISB tells us, of course, how we will combine T and t (i. e., 0, Tt,

t. t, or TO, see Section 2.20.2). Thus, the complete specification would
sign

be

M
F4 BISB CISB

Condition
At At - Selection 0 4

~ ~

0 1 2 t . t ALOV A+1 RA+B sign

D} AS, VS. And OS Control Field

The dedicated bits for shifter control are interpreted as shown in

Table 3.3.

Binary
Shift/Load Control

Notation

00 Do Nothing

01 Shift Right

1 0 Shift Left

1 1 Load

Table 3.3

Shift/Load Control Bits

Thus, the specification

AS ... , VS , OS

could be represented symbolically as

AS vs OS

...

1'02

The binary representation,

AS VS OS

01 to 10.

does not interest us here. The specification

AS, LR := AL , OS 4-.

would be given by

AS VS OS as SD SOURCE BIsa elsa Condition At A.

I~;
.. Selection

L +- LR AL 0 TRUE A+l A+1

3.2 Microinstruction Execution

As introduced in Section 2.4.1 and then explained in more detail in

Section 2.21 .1, the machine has both a long cycle and a short cycle. The

result of that discussion, which is repeated here for convenience is that

microinstructions can be thought of being executed in the foHowing se

quential way:

long cycle:

short cycle:

a) execute bus transport

b) execute n:'Iicrooperation

c) execute microinstruction based on the cu rent
conditions

a) delay the conditions of the previous microin-
struction

b) execute bus transport

c) execute microoperations

d) execute microinstructions sequencing based
on the delayed conditions from the previous
microinstruction.

103

Let us now examine each of the sequential steps in more detai I.

A) Bus Transport

The following actions occur durihg thi s step:

0) if short cycle, delay' the conditions of the previous microinstruc-
tions (this has been combined with Bus transport for convenience)

1) the SOURCE is selected

2) the SOURCE is masked by the SUS masks and gated onto the BUS

3) the BUS is shifted as required by the BUS Shifter

4) the output of the BS is masked by the Postshift masks to
yield the Shifted Bus, SB.

S} at this point, both the BUS and the SB are stable and can be
loaded into various destinations: call this time 1.

B) Microoperation Execution

The following actions occur during this step:

0) the microoperations are decoded and divided into two types,
those which can be executed at time 1 and those which can be
executed at time 2; this decoding is completed by time 1.

1) all SB, and BUS loads are executed together with AS, VS,
and DS operations and time 1 microoperations.

2) when time 1 microoperations are completed, time 2 microope
rations are executed.

C) Microinstruction Seguencing

0) the condition specified by the condition selection bits is selec
ted. In short cycle this can happen immediately upon the com
pletion of B, above, as one is testing delayed conditions. In
long cycle this cannot happen immediately upon the completion
of B, above, but must wai t unti I all condi tions are stable and
can be tested. Thus, one sees that in long cycle the microin
struction sequencing is delayed and hence its name,

1) select the carry-in and B-input into the CUAL and the RA and
RB adders,

2) select the next address using At if c=l or At if c=O unless a
force 0 address condition has arisen;

3) fetch microinstruction go to A, above.

3.2.1 C lock Put se 1 and Clock Pul se 2

Recall that the RG is a basic bui (ding element used in the system.

A very common operation is to load an RG and then change its pOinter

(e. g. this was done quite frequently in our examples). Often, one also

wished to save the address of the current element pointed to-before

10.4

the pointer is changed. It was decided that this capability should be

allowed in one microinstruction and, furthermore, every RG in the

system should be treated in the same uniform way.

Example

The microinstruction

AS. WA, WAPS := WAP, WAP +1.

means: take the element of WA pOinted to by WAP and store it in the

AS ; then store the WAP in the WAPS registers and then increment

WAP by 1. I t means this because the BO load and the microoperation

both occur at time 1 and the microoperation WAP +1 occurs at time 2.

-I-hus, every RG in the system can be looked at in the following way:

a) it can be loaded or used as a source

b) its current pOinter can be saved, if it has a save capabi I ity

c) its pointer can be changed after a) and b);

all wi th one microoperation. The only exception to this rule, as noted in

Section 2.20.3, is RA and RB because they are driven as hardware

stacks and not RG1s; i. e., their address space is changed first and then

loaded (the inverse of the above) when RA l or RB l is executed.

Those microoperations which are exectlted at time 1 are said to have

begun at Clock Pulse 1, C = 1, while those which are executed at time 2
p

are said to have begun at Clock Pulse 2, C = 2, This notation is used in p
Section 3.3 which follows. This notation, along with the description of mi-

croinstruction execution given in 3.2 above, completely define what a

given microinstruction means. As an example

WB := AL, BS ~ BE SET ALF +, WBU := 9

means: store the output of AL in WB register pOinted to by WBP after

shifting it the amount specified by the BE; then change the ALF to AS + LR

and change the WBU to 9; then go to the next microinstruction.

105

3.3 Comprehensive Tables of Microoperations for Individual Func

tional Units

The following tables (presented in alphabetical order based on the

abbreviations associated with the functional unit) show which microope

rations can appear in which fields and at which dock putse these rrlicf"o

operations are inftiated. In these tables we use the following notation:

xx = Exi SB) SG,

ZZ = EX) sll S2

WU = Exl sBl ws
WG = Exl sBI WS .•

Some particular points perhaps should be recalled and emphasized here:

a) use of these ta.bles will show what· space and time conflicts

arise in the construction of a microinstruction. The reader

is encouraged to review some of the examples of the earlier

sections by constructing symbol ic microinstructions simi lar

to those presented in Section 3.1 .

b) t comes from field F 4 , so if it is being used, for example in

relative addressing, a microoperation should not be specified

in F 4 •

c) T comes from field F 3 , so if Tis being used, for example in

absolute addressing, a microinstruction should not be specified

in F3 .

d) Selection bits which determine the BS control source al

ways come from ~ .

e) data for the BS, if the CM'is the control source, comes from F3 •

f) data for the PG, if the eM is the control source,comes from F z ·

106

MICROOPERA 1 toNS F Of""",

-
i~ 53 ~ C FI

M
F2 F4 I 51 ~ F3 MIC~OOPERATIOt-,

p

ZZ
2 VI. ALP:= CM D d d d dlLoad the AL 93 Pointer from CM! EX! 51! 52

2 A ALP +1 I Increment AL 5G Pointer -----
I 2 VI ALP -I 1 Decrement AL 5 G Pointer

r
_ ...

2

""
ALPC Clear AL SG Pointer

- - - -,,-,. --- ~a<ithe'ACSG5avei registerfrom------ZZ
2 M ALSI :=

'"
ALSI := CM D dddd CM,EX iS1 ,S2

I AL52:= ALP
Load the AL 5G Sa'Je2 register fr'om

I the AL G Pointer

I M ALSG :~ 5B Load the AL SG with SB(0:5)

xx Load the AL. FunctiOf'l register from
2 ALF := CM D dddddd CM ' EX!5a'SG

~
M SET ALF + Set AL Function to LR + AS

-----"-"- >---1-- ---------- ~ .. _-'-- -----,,- f--- -- --0-- -,-~. .-
M SET ALF PIE Set AL Function to AS

MICROOPERA 1 IONS VCR Accumulator Shifter, AS

C Fl 51
M

F2 I~ 53 ~ I
p R F3 F4 V,IC,,"OOPERATION

XX Load the AS(O) Source register from
2 AC;IQIS := CM 0 d d d M AS/O)S := CM, EX! SB, SG

XX Load the AS~63} Source re£ist~r from
Ac;163)S := 2 CM D d d d M AS/63)S :- eM: EX(SB ISG

XX Load the A$(V) Selection r-egister from --
2 AS(V)S := eM D dddddd M AS(V)S :- CM'EX'Sa:SG

2 M ASLL I Sel Ihe AS ,to a logical left shift

2 M ASLR Set the AS to a logical right shift

2 M AS(V)SC C lear the AS{V) Selection register

2 M AS/V)S +1 Increment the AS(V) Sel-ection register

I 2 -- M AS{V)S -I Decrement the A5(V) Selection reg-istet" - ""

MICROOPERA T ICt-S FOR!B;!.!.!it...!E=-n~c~o~d~e"'r:.,....EB!fE'-__________ _

7 ____ ~Jt~IL-__ ~7 ____ ~~IL'~I ____ ~7 __ ~

e- M
F2 I~ F3 S3 ~ F4 Fl SI ~

MIC~OOPERAT ION
p

2 R"'Iv nAn Load results of MSB encoding into MSB

I M BEMI MS8, and M.SB;, are interchanged

> M BEL LOAD Load results of LSe encoding into LSa,

1 M BELl --. LSB, and LSB;, are interchanged

Load results of MSB encoding into MSBt. AND

2 a"'LM LOAD M BELM LOAD load results of LSB encoding into -LSB

MSB1 and MSBc! are interchenged .b.NO LSB1

BEL M RELMI and LS~ are_l~~rchanaed

xx 1. Lload BE Function register from CM\EXtSSISG 2 BEF .. CM D d d d d

SET BEF " Set the BEF to LSBl

> M LSB1 I (clear the BEF Function register)

Sets PG to geT)erate from LSe If BE Is

M i BEPGL control input

Sets PG to generate from MSB if BE is

1 M 8EPGM control input

zz
2 M BEP:~ CMD d d d d Load BE pointer from CMI EX lSI IS2

2 M BEP +1 Increment BE oointer-

2 M BEP _I Decrement BE pointer

2 M BEPC Clear BE pointer

ZZ
l~egi5ter from eMl EXI.St rS2

2 M BESI M BESI CM D dddd Load BE Savel

I nt -52:"'1\(- f:-' Lo()d BE Save2 ~"'egi ste-r from BE Pof"nte~
_.- -.- --- -- ~ .

---~--- ----,-+-----~---~.--,,-

_U . ___ t:J:!!_.~~..:.:.:~=!2 -- _____ . ___ . __ L_ -_.- -.---.. -- Load BE SG 103m SB(O: 3)
-~ - ---"

_"e __ ~

107
MICROOPERA liONS FOR _EB~u!:5:..S~h.:.:i'~·te:,:rC.L.t ..!:B",S~ __________ _

-,---- _._.-

1:5 S3~ I M F2 F3 F4 M1C"lOOPERATION C FI 51 ~ P
. yy I THIS SELECTIO~ IS REQUIRED WHENEVER

0 D dddddd CM· THE BUS SHIFTER IS ENABLED * 1 --
zz

.oad RS ceQjst~r:: gCQI.iD QQinlec: fCQm CMIE~lsllc: 2 BSP:~ CM D d d d d

2 asp +1 Increment BS 5G Pointer

2 SSP -1 -----.-- Decrement BS SG Pointer

l---~ SPC . Clpar DC "'~ .~. - --
LL

2 BSSI CM D d d d d Load as Save' reS'51er Irom CMIExl~i ls~

I M BSS2:=BSP -- Load BS Save2 ('eO; ster from es pointer

I M ~~G:"'S~ Load BS SG from SB(0:5)
1--

•) YY "" EX) BE, BS: SG

MICROOPERA nONS FOR Counter A, .::C:;:A::-____________ _

-
I~ 53 ~ M

F2 F3 F4 MIC"lOOPERAT ION C FI 51 ~ p Q --
XX

ddddddd ~M
Load CA from eM (16 bits), SB 116 bits), EX

2 CA := CM D ddddddd D CA := (16 bits), or CAS P 6 bi~s)
-

2 CA+I M CA+I M CA +1 Increment CA _._------
2 CA -I I M CA -I MI CA-l Decrement CA

2 CAC M CAC M CAC Clear CA --------.. ---
2 M CASP +1 .lncrement CAS Pointer

2 M CASP -, Decrement CAS Pointer

2 M CASPC Clear'CAS Pointer

1M CAS:- CA Load CA Save RG from CA

MtCROOPFRA r tONS FOR _.::C~o::::u~n::.te:;:r_.::B::..!,'_. :::C~B::..... ___________ _

7 7 Itl Itl

C FI SI
M

p ~ F2 1:5 F3 S3~ F4 MIC"<GOPERATION

VV Load CB from eM {16 blts) SB (t 6 bits), BE
2 CB := CM D ddddddd ddddddd dd M CB :- (6 bits) or CBS (16 bils)

2 CB +1 M CB +1 M CB +1 Increment CB

.z CB -I M CB -I M CB -I I Oecrement CB

2 CBC M CBC M CBC Clear CB

2
I

M CBSP +1 t Increment CBS Pointer

2 M CBSP -I Decrement CBS Pointer

I
; : M CBSPC Clear CBS Pointer

,
L~_ M CBS := CB Load CB Save RG from C8

L I VV-=SBBE;CB6
+) hen BE is selected as the source, the high

---'--'--- order' 0 bl ts of CB are set to 0 --- ._----- -_. ----

to'

MICROOF"ERArIONS FOR: Condition Save Register, CR

c== ____ ~7 ____ ~1~2_Ll~I~I __ ~7 __ _Lp~Li __ ~7 __ ~1~2~'IL'~I ___ ~ ___ -J

C FI 51
M

p ~ F2 16 F3 S3~ F4 MIC~OOPERAT!ON

---------zz
2 M CRP := CM D d d d d Load CR RG Pointer from eM! EX! Sf' S2

2 CRP +1 r:", R" On;n' __

Z tv CRP -I I
Decr"'m"'''''' rR RCl Pointer --

2 1M CRPC Clear CR RG Pointer

ZZ
d d d d-j Load CR RG Savel : M CRSf .- ~ eRST :'" CM D buffer from eM I EX i Sf 152

I CRS2 := CRP ! --' Load CR R~ Save2 buffer from CR Rr- POf h~ ...

9' CR:= SC M CR:- SC 1M CR:- SC Load CR ~G with the curren! Selected C~

S· x sDccia! ocr bi n on short or ! q cycl~ -

C
p

2

2

2

2

~
1

I

2

2

2

2

2

2

108

MtCROOPERA TtCNS FOR Common Shifters (AS, VS, OS) Standard Group and Darallel
options, CS

7 7 2 111 ?

I~ ~

M
F2 53 F4 FI 51 ~ F3 MIC~OOPERATION 0.

zz
--~ CSP := JCM 0 dddd Load the CS Pointer from CM! EX I Slj sa

-

M CSP +1 lncrem'ent the CS POinter" .
M CSP -1 Decrement the CS Pointer

M CSPC Clear the C5 Pointer

ZZ
M CSSI M CSSI JCM 10 dddd Load the CS Savel register from eM! EX.: 511 52

CSS2 :=C5P M CSS2:=CSP Load the CS Save:! register from the C5 Pointer

M CSSG := SB Load the CS SG from SB(0:5)

I IN CSLL Set AS,VS, e.nd DS to logical left shift

M CSLR Set AS,V5, and OS to. logical right shifl

Clear AS, VS, and OS Variable 8it Selection
M cs(vlSC register

XX Load AS(O)':jS(O) and 05(0:1) Source "egisler
CS(O)S := CM 0 ddd fromCMIEX SSiSG -

XX
CS(63)S := CMO d d d

Load AS(63), VS(63) and 05(62:63) Source re-
9ister from CMi EX! S8! SiG

XX Load AS(V). VS(V) and DS(V) Selection register

CS(V)S :- CM P dddddd from CMfEX' sa!SG

MICROOF'ERA noNS FOR ____ .::C:.:o::.n.:.:t::.r.::o:.:I...:U~n:.:i.!Jt,e_..::C::.;Uo:.. ________ ~_

L 7 I 2 I'JI ____ ~7 ____ LP~I~ __ ~7 ____ ~2~I_l~! __ ~7 ____ J]

C
M

F2 I~ F3 S3 ~" F4 FI 51 ~ MICgOOPERA T tON
p

I M SA := SB Load Save Address register from Sa(0:11)

I M SA+I Increment Save Address

I M SA -I Decrement Save Address

I ~ SAC Clear Save· Address

1 1M CUALF := 0 ddddd Load CU AL Function register with d d d d d

SET CU
I f...I ALF + Set CU AL Function register to A+S

I M RA' Decrement RA Pointer

1* IRA I M RA; M RA ; Increment RA Pointer and then Load RA

I M RApc Clear RA Pointer

1 RB Decrement R8 Pointer

.
I RB M RB; M RB I Increment RS Pointer and then Load RS

I RBPC , Cle"ar RS Pointer
-

I M EX Load Load the External register

I IN EX .4 Shift the External register 4 bits rIght cyclic

Load contf"'of store and then choose A+l as the
I M CS Load address of the next microinstruction

I INTON M ~NTON M INTON Ebable interrupt conditions to force 0 address

I INTOFF M INTOFF M INTOFF Disable interrupt conditions from forcingOaddrElss
.~.- L-~

1 SEl CUALfC B Set CUAL Function register to B

I M RTCT OFF Turn Real Time Clock overflow toggle off

*) requires two microinstruction
cycles to complete this action

MICROOPERA liONS FOR Double Shifter, OS

--
M 5 53 ~ C Fl 51 ~ F2 F3 F4

p

xx
2 05(0:')5 := CMO d d d --

xx
2 05(62:63)5 := CM 0 d d d

XX
2 05(V)5 := CM 0 dddddd

2 M 05LL

I
i 2 M 05LR

r-2- - M 05(VJSC

2 M 05(\/)5 +.
2 M OS(V)S -.

MICROOPERA l' ICl"6 For~ Input Port A, dnd Input Port B, IA arri 18

1L-_-=--=--7'-. -__ 1,--,,-2-<1 ~ __ -,-P-,I_---' __ ..J.1-,2=---,-1-,' LI _ C=:J

C
p

IAA

Fl
M

51 B.

M IAA

F2 F3 53 ~ F4

r-------

MICQOOPERAT10N

~~i~~1~~~ ~~our'ce register from

Load DS(62:63} Source r-egister fr_om
CM' EX' 5S,SG
Load OS(V) Selec~ion register from --
CMiEX:5BSG

Set the OS to logical left shift

Set the DS 10 logical right shift

Clear DS~V) Selection register

Incrernent DS(V} Selection register

Decrement DS(V) Selection register

MICqOOPERATIOf'-<

M IAA ActIvate Port, i. e. read
---------+-- +-+- -----f----------------------------

M IAOC ~'~--------____ +-~~1~CO=C~ __ _ f----- Clear IA Device register

M lAD +1
EE

IBO := CM 0 de d d

ISA := M ISA -------- ~- "
M r--L -----~_-+ __ I"" l~ ___

M ISO +,

109

110

MICROOPERATIONS FOR Loading Mask Registers A. LA

C== __ ~7 ____ -L1~2_-LIIJI ____ 7~ __ ~IL1~1 __ ~7 ____ ~2~1_1~I ___ ~

M
F2 15 F3 53 ~ F4 MIC~OOPERATION C FI 51 [i P

ZZ
2 LAP :~ C/Ii 0 d d d d Load LA Painlel' from CM[EXisl 152

2 AP+! M LAP +1 M LAP +1 Increment LA Pointer t----- r- ---

2 LAP -I M LAP -I M LAP -I Decrement LA Pointer

2 LAPC /Ii LAPC Clear LA Pointer
-~'- --~-.

ZZ
reg; ster fromCMi EX i 511 52 2 LAS! := CM D dddd /Ii LA51 ;= Load LA Savel

1 M LA52:~LAP Load LA Save2 regi sterfrom LA Pointer

1 Iv LA:= 58 Load LA from 5B(0:63)

MICROOPERA TlONS FOR Loading Mask Regi<;!ecs S, ..1--12 ______ _

L __ 7'--___ -L--=2C-LPJI_ _ 7~ __ ~ILlr====t ____ ~2~I_l~I __ ~7~ __ ~

C
M

F2 5 F3 53 ~ F4 FI 51 ~ i=i MICROOPERAT ION
p

ZZ
2 ",p '- CM d d d d Load LSPointer fromCMIEX[SI!S2

2 M LSP +1 ~ LSP +1 ~ LSP +1 Increment LB Pointer

2 M LSP-I M LSP -I ~ LSP -I Decrement LB Pointer

2 M LSPC '~ LSPC Clear LB Pointer

ZZ
2 M LSSI M LSSI :~ [CM p dddd Load LEI Savel regl sler from CMj EXLS1!.S2

1 LSS2:~LSP Load LS Save2 register fro ... LB Pointer

1 M LS := 58 Load LB from SS(0:63)

M LPC Clear both LA Pointer and LB Pointer

MICROOPERA nONS FOR Local AL Registers, LR

~ ____ 7~ __ .~~2~1~!LI ____ 7~ __ -LP_.1L-__ ~7 ____ -L~2,~I~!LI ___ ~

C
M j5 53 ~' F4 FI 51 [i F2 F3 MICROOPERATION P

LRIP :=
: DSl \:\ +1) Load LR Input Pointer with DS(V:V+I)

: LRIP +! Increment LR Input Pointer

2 LR!P -! Decrement LR Input Pointer

2 LR!PC Clear LR Input Pointer

LROP:
2 M DS(V:V+I) Load LR Output Pointer with DS(V:V+l'

2 M LROP +! Increment LR Output Pointer - - --H---

2 M LROP -1 Decrement LR Output Pointer

2 M LROPC Clear LR Output POinter

LRP := LRP :-
_2 M DS(V:V+l) M DS(V:V+I) -f--- - Load both LRIP and LROP with DS(V:V+l)

.....) M LRPC M LRPC Clear both LRIP and LROP

2 M LRP +! M LRP +1 Increment both LRtP and LROP -. ~, ~- --~ r-r--------~ - - ~- -~-----~- ..

2 M LRP -! M 'LRP-l Decrement both LR'IP and LROP

111

MICAOOPERA 1 IONS FOR Bus Mask Regj stees MA and MB

r---- -- ---~ - r---- -- --------

C 51
M ~ F3 53 ~ F4 MICqOOPERATION Fl ~ F2

p

XX
2 MAP ;: eM D d d d d

""
MAP :*' Load MA Pointer from eMj EX! 5s1 SG --

7 lAP +1 M MAP +1 -- ""
M.6.'='_~_ .!...~crement MA P_ointer

2 MAP -1 M MAP -1 ~ MAP -1 Oecrement MA Pointer

2 MAPC M MAPC M MAPC Clear MA Pointer

XX
? "''''P '= eM add d -~ Mt;lP :: L<>ad MS Pointer from eM! Exi sal 5G

2 MBP +1 M MBP +1 M MBP +1 Increment MB Pointer

2 MSP -1 M MaP _1 M MaP -1 Decrement M8 Pointer

7 ''''Dr M MSPC M MSPC Clear Me Pointer

LZ
2 M SMPP ;- eM Df--_ dd d d Load 8M Pointer SG Pointer from eMl EX] Sl j 52

2 M SMPP +1 Increment BMP 5 G Pointer

2 M SMPP _1 Decrement BMP s:; Pointer-

2 M SMPPC Clear BMP SG Pointer

ZZ
2 SMP51 M SMP51 := eM 0 d d d d Load BMP SG Savel register from eMI Exl 511 S2

BMP52 ;=
1 BMPP Load BMP SG Save2 register from the SMPP

1 M BMP;= 5B Load aMP 53 with 5S(0:3)

MleROOPERA TlONS FOR Output Ports A, B, C and 0. GA, OS, ex:: and 00

C====~7 __ -L1~2~1~11L-_~_-Lj1JI __ 7~ __ 1~2-L1t~1 __ 7~_~

M I~ 5J~_
"T

C Fl 51 n F2 F3 F4 MIC''lOOPERAT ION
p

EE
1 M OAD ;. eM D d d d d Load OA Device register from eMjExo\5s1EXl

2 OAA d M OAA M OAA Activate Port, i.e" write OA(O:63)d

1 M OADC Clear OA Device register -- 1----
EE

I M OBD ,. eM D d d d d Load OS Device register frorn eMI Exolse\ EXf

2 OBA d I" OBA M OSA Activate Port, i. e., write 08(O:63)d

1 I" OBDC Clear 08 Device register

EE
LoadOC Device reaister from CMIEXO!saIEXl 1 ---- c-- .~--- - -- IV oeD ,- ._<;:M 9 d d d d --------

2 OCA d IV DCA I" OCA Activate Port, i. e. J write OC(O:63)d

I IV DC DC Clear Ie Device r eaister

1 M Oe:-BU5 Load OC from BU5(O:63)
EE

I M_ 000;= eM 0 d d d d Load 00 Device register from CMjEXOj Se{Ext

2 ODA d M ODA ----- ""
ODA Activate Port, i. e., write OD(O:63)d

M ODDC Clear 00 Device recister

I M OD:oSUS Load 00 from BU5(O:63)

112

MICROOPERATICNS FOR Postshift Masks, PA, PS, and PG

~ ____ ~7 ____ ~~~I_'~! ____ ~7 ____ ~f_'~I __ ~ 7 P pi 7 ::::J
! M

~ Sj ~
I -----,

C Fl 51 R F2 F3 F4 MIC'<OOPERATION
P

Mask Generator Controt Source Selection re-
2 PGS ;= dd gister is set to dd; dd c CM!ExlBE1SG

2 A [PGS +1 M PGS +1 Increment PG Selection register

IpGS -
\

M PGS ·-1 Decrement PG Selection reQlster 2

2 M PGSC M PGSC Clear PG Selection register

0 D ddddddd
THIS DATA IS REQUIRED II.I-1ENEVER THE M_AS<
GENERATOR CONTROL IS USING CM AS DATA

ZZ
2 M PGP;= CM D dodd Load PG SG Pointer korn eM 1 EX I 51 j 52

I
Nt 2 PGP +1 Increment RG 5G Pointer

2 M PGP -I Decrement PG 93 Pointer

2 M PGPC Clear PG SG Pointer
-

ZZ
2 M PG51 -= M PG51 CM dddd Load PG Savel register fromCMiEXlsl1S2

1 PG52:=PGP Load PG Save2 r"e.9.l,:iter from PGP

1 M PGSG ;= 5B Load PG SG from 5B(0;6) ~ XX
Load PA Pointer from CMfEXlsaJRG 2 PAP;= CM D d d d d

2 PAP +1 PAP +1 Increment PA Pointer

2 PAP _I M PAP -I Decrement PA Pointer

2 PAPC M PAPC Clear PA Pointer-

1 PA:=BUS Load PA RG from BU5(0:63)

XX
Load PB Pointer from eM! EX! set SG PBP ;= CM D,-_ d d d d -

Z psp +1 M "£:..~.~- _Increment PB PoInter

2 PBP _ M PBp -1 Decrement PB Pointer

2 PBPC M PBPC Clear PB Pointer
I

I
1 M PB:=BUS Load PB RG from BU5(0:631 - 1---

j

2 ~~B+I IncremE'nt PA and PB Pointer ------

M PAB -I Decrement PA and PB Pointer
I

~ ---~.

I

2 M PABC Clear PA and PB Pointer
ZZ Load PAS Pointers RG Pointer from

2 M PABPP := CM D dddd CMi EX' 511 52

2 M PABPP+l Increment PABP Pointer

2 M PABPP -1 Decrement PABP Pointer

2 M PABPPC C1ear PABP Pointer

ZZ
2 PABP51 . M PABPSI CM D dddd Load PABP Savel register from CMi EX I SI; 52

PABP52 :~

-~ p~pp----- - - -- - -- f- ------- f---- --- - --- Load PA8P Silve2 register from PABP Pointer ----- ------~ ------------- --------
I M f '/\Il. ': -~,;"Il 1 Lond PARr from 58(0;3)

11 3

MICROOF'FHA liONS' OH V"rln!,!" Width Shit!t"', VS" ___ ~ ___ _

r== ~ ____ ~7 ____ ~1~2~1~'IL-. __ 7~ __ ~I~ILI __ ~7 __ ~~2~TD:L'~ __ ~
--

53~ M
F2 I~ F3 F4 MIC~OOPERATION C Fl 51 R p Q

XX Load the VS(Ol Source register from

2 VS(O)5 := CM D d d d ~ VS(O)5 := eM! Ex!se: SG

IXX Load the VS(63) Source register from
2 VS(63)S := CM 0 d d d ~ VS(63)S := CM! EXISSISG

XX Load the Vs(vl Selection register from

2 VS(V)S := CM D dddddd M VS(V)S := CM!Exl SS! SG

2 1M VSL.L Sei Ih'" VIS to II lOgical lef! "hlh
~-

2 M VSLR Set the VIS to a 10gic031 right shih

2 VS(V)SC Clear the VS(V) Selection register

2 vsiv)S +1 Increment the VS(V) Selection register

=1 2 VS(V)S -1 !Decrement the VS(V) Selection register

MICROOPERATIONS FOR Working Registers, WA

7

C SI
M

F2 ~ F3 53 ~ F4 Fl ~ MICqOOPERATiON
P

WU
2 WAU := ~M D d d d d Load WA Unit poinler from eMi EXI seJus

2 WAU +1 M WAU+I increment WA Unit pointer

2 WAU -1 M WAU -1 Decrement WA Unit pointer

2 WAUC M WAUC Clear WA Unit painter

WG

2 M WAG:= CM D dddd Load WA Group pointer from CMt EX! ssl GS

2 MWAG +1 Increment WA Group pointer

2 M WAG-I DecrementWA GI"'OUO ooinle.-

2 M WAGC Clear WA Group pointer

WU WG Load WA Unit pointer from CMt Exj sallIs AND
2 WAP := CM 0 dddd eM dddd load WA Group painter from GMt EXI sel GS

2 WAPC Clear WA Unit Dointer and WA Group pointer

Couple WA Unit and Group pointei""'s to form an
1 M COUPLE A 8 bit counter

Uncouple WA Unit and Group pointers to form two
1 M UNCOUFLE~ independent 4 bit couhters

"----

MICROOPERA nONS FOR WA Unit and Group Save Registers, WAUS and WAGS

7 7 PI 7 2 "I 7

C FI 51
M

F2 I~ S3 ~ F4 ! 1
p ~ F3 MICqOOPERATION

1 M WAUS;=WAU Load WA Unit Save RG with WAU

2 M WAUSP +1 tncrement WA Unit Save RG pointer ----l',~'

~- ~----- _._- t- --.------ t-- -" M WAUSP-l Decrement WA Unit Save RG pointer

2 M WAUSPC Clear WA Unit Save RG pointer
f-+------

t 1 WAGS;=WAG Load WA Group Save RG with WAG

2 ! WAGSP +T Increment WA Group Save RG pointer

2 WAGSP -1 Decrement WA Group Save RG pointer

2 WAGSPC Clear WA Group Save RG pointer

1 IN WAPS:=WAP
Load WA Unit and WA Group Save registers
with WAU and WAG respectively

2 IN WAPSP +1 Incremenl WA Unit and WA Group Save pointers

2 IN WAPSP -1 Decrement WA Unit andWA Group Save painters
---c r--"-- "-r- _._--_.- t-- f------" ----

2 IN WAPSPC Clear WA Unit and WA Group Save pointers

114

MICROOPERATIONS FOR Working Registers, B; We

L __ ~.~7 ____ .·~I~z~I~ILI __ ~7 ____ ~II~I~~7~ __ ~~z_l~'~1 __ ~7~ __ ~

e 51
M

FI [i" p
FZ ~ F3 53 ~ F4 MIC"«X>PERATION·

'M.J
2 M WBU := CM D dddd Load we Unit pointer from CMf EX 1581 US

2 ~ weu +l M WeU+l Increment WB Unit pointer

:'. M weu-I 1iiI. _au ... 1 ~ret.ll..m{ We Un:IJ l:!l!trtlQr

2 ~ WBUC M weuc Clear we Unit pointer

WG
2 VlSG :=. M dddd Load we Group pointer from CMIEXlse[os

2 M WBG +1 Increment we Group pointer

2 M WeG -1 Decrement we Group pointer

Z M WBGC Clear WBGroup poinler

WG 'M.J Load WB Unil pointer from CMI,ilset~IS AND
~ WBP :~ M dddd CM D dddd load we Group polnler from CM EXI sa 05.

2. M wepc Clear we. UnH pointer and We GroUP o'O/nler

1 MCOUPLE e
Couple we lJ.nlt PQinler ·end Group pointers ·\0
form an S bill' counter
Uncouple We Unit pointer and Group pointer 16··

f M I.JNCOUFLE 8 form Iwo rndependent 4 ·bll COlJnt&r$

MICROO""ERATlCNS FOR WB Uni.t and Group Save Registers, WBUS and WBGS

7 Z "I 7 1 Z "I 7

-
C 51

M
F2 FI ~ p l~ F3 53 ~ F4 MIC~OCPERAT ION

1 M WBU5:=W8L Load WB Unit Save RG from Well
.

1 M weU5 +1 Increment we Unit Save FtG pointer

2 1M weus -1 Decrement we Unit Save RG·oointer

I-~ 1M WBUSPC +--- 1--- -_.----- Clear We Unit Save FIG polnler

1 M WBGS:=WBG I Load WB Groue Save RG from WaG

2 M WBGSP +1 Increment we Group Save RG polnler

2 M WeGSP -1 Decrement We Group Save RG pOinter
2 M WeGsPC Clear WB Group Save FIG point"r

Load WB Unit and we Group Save reglsler with
1 M WBPS:=WeF weu and WBG respectively

2 M WBPSP +1 Increment WB Unit arid we Group Save POinters

2 M wepsp -1 Decrement WB Unit and we Gro,!!> Save POinters

2 M WBPSPC Clear WB Unit and WB Group Save pOinters

MICROOPERA1IONS FOR. Common WA and WB Operations, we,·"

e
M

F2 l~ F3 53 ~ F4
T-· _._.

Mle~OOPERATION Fl· 51 ~ P

2 M WCU+I increment WA and WB Unit pointers ------r- _ .. __ ._ .. - -.- f- ----, .. _- ."- . - ",

2 M WCU -1 Oecc~,!,ent WA ~nd WB Unit pointers

I /vi wcus . .J,. Load WAunit Save RG and we Unit Save RG
---1------ -- - --------i~ -......

1 ~ WCG5 Load WA GrOup Save RG' and we Group Save FtG

Table of First Occurrance of Abbreviations and Symbols

(not including conditions or microoperations)

Abbreviation

At , Ar

AL

ALF

ALP

ALSG

ALSl

ALS2

AS

BD

BE

BEF

BEP

BESG

BES1

BES2

BISB

BM

BMP

BMPP

BMPSl

BMPS2

BS

BSP

BSSG

SSSl

BSS2

BUS

CA

CAS

CASP

CB

CBS

CBSP

Interpretation

Address Specifications

Arithmetical Logical Unit

AL Function and Carry-in Register

ALRG Pointer

AL Standard Group

ALSG Savel Pointer

ALSG Save2 Pointer

Accumulator Shifter

Sus Destination

Bit Encoder

Bit Encoder Function Selection Register

BESG Pointer

BEF Standard Group

BESG Savel Register

BESG Save2 Register

B-Input Selection Bits

Bus Masks

Bus Mask Pointer Standard Group

BMP Pointer

BMP Savel Regi ster

BMP Save2 Register

Bus Shifter

BS Standard Group Pointer

Bus Shifter Standard Group

S5 Savel Register

BS Save2 Register

the BUS

Counter A

Counter A Save Registers

Counter A Save Register Pointer

Counter B

Counter B Save Registers

Counter B Save Register Pointer

Page

11

28

30

29

30

30

30

32

9

15

53

54

54

54

54

69

19

22

22

22

22

8

16

15

16

1 7

8

6

7

7

55

86

86

115

Abbreviation

CISB

CR

CRP

CRSl

CRS2

CS

CSB

CSP

CSSG

CSSl

CSS2

CU

CUAL

CUALF

DESTINATION

DS

EX

EXO

EXl

EX2

EX3

IA

lAD

IB

IBD

IRA

LA

LAP

LASl

LAS2

LB

LBP

LBSl

LBS2

LR

Interpretation

Carry-in Selection Bit'

Condition Save Registers

CR Pointer

CR Savel Regi ster

CR Save2 Register

Common Sh ifter

Condi tion Selection Bits

CSSG Pointer

Common Sh ifter Standard Group

CSSG 'Savel Register

CSSG Save2 Register

Control Unit

Control Unit Arithmetical. Logical Unit

CUAL Function Register

Bus Destination, BD

Double Shifter

External Regi ster

External Register Byte 0

External Register Byte 1

External Register Byte 2

External Register Byte 3

Input Port A

IA Device Regi ster

Input Port B

IB Device Register

Interrupt Recovery Address

Loading Masks A

LA Pointer

LA Savel Register

LA Save2 Register

Loading Masks B

LB Pointer

LB Savel Register

LB Save2 Register

Local Registers

Paqe

68

En
82

82

82

46

81

46

45

46

46

64

67

66

9

40

7

5

59

73

73

58

59

58

74

75

46

48

48

48

46

48

48

48

31

116

117

Abbreviation Interpretation Page

LRIP Local Registers Input Pointer 31

LROP Local Registers Output Pointer 31

LRP LRtP and LROP 32

LSB A Bit Pointer (available through BE) 51

MA Mask A Registers 20

MAP MA Pointer 20

MB Mask B Registers 20 I
MBP MB Pointer 22

MSB A Bi t Pointer (avai lable through BE) 51

OA Output Port A 61

OAD OA Device Register 62

OB Output Port B 61

OBO 08 Device Register 74

oc Output Port C 61

oeD OC Device Register 62

00 Output Port 0 62

ODD 00 Device Register 74

PA Postshift Mask A Registers 23

PABP Postshift AB Pointer 26

PAP PA Pointer 26

PB Postshift Mask B Registers 93

PBP PB Pointer 93

PG Postshift Mask Generator 24

PGP PGSG Pointer 26

PGSG Postshift Mask Generator Standard Group 26

PGS Postshift Mask Generation Selection Reg. 25

PGSl PGSG Savel Regi ster 26

PGS2 PGSG Save2 Registet' 26

PM Postsh ift Masks 23

RA Return Jump Stack A 65

RAP Return Jump Stack A Pointer 71

RB Return Jump Stack B 65

RBP Return Jump Stack B Pointer 72

RG Register Group 4

RGP Register Group Pointer 4

11 8

Abbrevi ation Interpretation Page

RTC Real Time Clock 75

RTCT Real Time C lock Overflow Toggle 84

SA Save Address Regi ster 65

SB Shifted Bus 7

SC Selected Condition 82
I

SG Standard Group 1 7

IlSh ifters" AS, VS, and OS 41

SOURCE the input to the BUS ! 8

SR Snooper Regi sters 87

V The Variable Bit 33

VS Variable Shifter 58

WA Working Regi sters A 8

WAG Working Registers A Group Pointer 90

WAGS WAG Save Registers 92

WAP WA Pointer 9

WAPS WA Pointer Save registers 10

WAPSP WAPS Pointer 11

WAU Working Registers A Unit Pointer 90

WAUS WAU Save Registers 92 I
WB Working Registers B 8

WBP WB Pointer 11

WBPS WB Pointer Save registers 11

WBPSP WBPS Pointer 11

119

Symbol Interp_retation Page

1\ Logical lIandll 28

V Logical II inclusive orll 19

- Logical IInegationll 28

- Logical lIequivalencell 28

~ Logical "nonequ i va I ence" 28
.... Right Shift 15
.... Postshift Mask Generation Direction 25
4- Left Shift 16

.4- Postshift Mask Generation Direction 25

[] Option of Inclusion 64

I Possible AI ternate Sources 7

--. Input 1 9

-0 Mask 19

-{J) Loading Mask 47

List of Figures

Figure No. Title

2.1 MATHILDA System

2.2 Typical Register Group

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2. 11

2.1 2

2.13

2.14

2.15

2.16

2.17

2.18

2.1 9

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

Counter A, CA

Subsystem of the Bus Structure

Working Registers A, WA

Bus Shifter, BS

Typical Standard Group

Expanded Bus Structure

Bus Masks MA and MB

Expanded Bus Structure

Postshift Masks, PA and PG

Arithmetical Logical Unit, AL

Local Registers, LR

Accumulator Shifter, AS

Expanded Bus Structure

Variable Width Shifter, VS

Double Shifter, DS

Expanded Bus Structure

Counting Loop for Counting Number of Bits set
to 1 in a Word

AS, VS, and DS Control

Expanded Bus Structure

Loading Mask Registers A, LA

Expanded Bus Structure

Bit Encoder, BE

Expanded Bus Structure

Input Port A, IA

Expanded Bus Structure

Output Port A, OA

MATHILDA Bus Structur-e

Microinstruction Address Bus (Prel iminary)

Control Unit Arithmetical Logical Unit

Return Jump Stack A, RA

The Save Address Register, SA

Page

4

5

6

8

1 0

15

17

1 9

20

23

24

28

31

33

36

38

40

42

43

45

47

48

50

52

57

58

60

61

63

66

67

71

73

120

Figure No. Title

2.34 The External Register, EX

2.35 The Force 0 Address Capability

2.36

2.37

2.38

2.39

2.40

2.41

3. 1

Microinstruction Address Bus (Detailed)

Condition Selector and Condition Registers

Rea I Time Clock

Counter B, CB

Working Registers A, WA (Detailed)

Postshift Masks, PA, PB, and PG

Microoperation and Data Field

Page

73

75

77

81

84

85

90

94

98

1 21

Table No;

2. 1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2. 11

2.1 2

2.13

2. 1 4

2.15

2.16

2.17

_ 2. 1 8

2. 1 9

2.20

2. 21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2. 31

2.32

2.33

List of Tables

Title

Microoperations for the control of an RG

Microoperations for control of CA

Microoperations for cOhtrol of CAS and CASP

Microoperations for control of WA and WB

Microoperations for control of the BS

Microoperations for control of the BM

Source of Data for Postshift Mask Generation

Microoperations for control of the PM

AL Functions

Microoperations for control of the AL

Microoperations for control of the LR

Microoperations for control of the AS

Microoperations for control of the VS

Microoperations for control of the OS

Microoperations for control of the CSSG

Parallel CS Microoperations

Microoperations for control of LA and LB

Bit Encoder Functions

Microoperations for control of BE

Bit Encoder Functions and Conditions

Microoperations for control of IA and IB

Microoperations for control of OA and OC

Microinstruct ion Address Sources

Carry-in Selection

B data Selection

Microoperations for control of RA

Microoperations for control of SA

Microoperations for control of EX

Force 0 Address Conditions

Microoperations associated with the Control Unit

Partial Listing of System Conditions

Microoperations for control of CR

Microoperations for control of CB, CBS,

and CBSP

Page

5

7

7

11

1 8

22

2S

26

29

30

32

3S

39

41

46

46

48

S3

54

56

S9

62
65

68

69

71

73

74

74

76

80

82

86

122

Table No.

2.34

2.35

2.36

2.37

2.38

2.39

2.40

3.1

3.2

3.3

Title

IB Devices and the Snooper Registers

Status Information

Microoperations fOr control of the WAU and
WAG pointers

Microoperations for control of WAUS and WAGS

Additional WA and WB Conditions

Microoperations for control of PB

Microoperations for control of PABP

Symbol ic and Binary Notation for SOURCEI S
and BOIS

Symbolic and Binary Notation for" At and At

Shift/Load Control Bits

Page

88

89

91

92

93

94

95

97

100

101

123

/km

References

[ll "BPL - a hardware and software description language",

byOle Brun Madsen, RECAU, University of Aarhus,

Aarhus, Denmark, 1 972.

r 2J "KAROLINE, a network computer project",

by Ole Brun Madsen, RECAU, University of Aarhus,

Aarhus, Denmark, 1 972.

r 3J "Microprogramming and Numerical Analysisll ,

124

by Bruce D. Shriver, IEEE Transactions on Electronic

Computers, Special Issue on Microprogramming, July 1971 .

[4J "A Small Group of Research Projects in Machine Design for

Scientific Computation", by Bruce D. Shriver, Depart

ment of Computer Science Report No. 1"4, University

of Aarhus, Aarhus, Denmark, April 1973.

r 5J "The Significance of Microprogramming",

by R. F. Rosin, to be presented at the International

Computing Symposium 1973 in Davos, Switzerland.

[6J "A Viable Host Machine for Research in Emulation",

by Robert Dorin, Department of Computer Science Re

port 39-72-mu, State University of New York at Buffalo

Amherst, New York, 1972.

Micro
Archives
7-45

A description of the MATHILDA system

Shriver, Bruce D.
A description of the MATHILDA system / by

Bruce D. Shriver.-- Aarhus, Denmark: Depart
ment of Computer Science, Matematisk Insti
tut, Aarhus University, 1973.

(DAIMI PB-13)

1. Title.

