

The RIKKE BCPL System

by

Jens Kristian Kjcergaard

and

Flemming Wibroe

DAIMI MD-38

September 1980

Computer Science Department
AARHUS UNIVERSITY

Ny Munkegade - DK 8000 Aarhus C - DENMARK
Telephone: 06 - 128355

ISSN 0105-8525

This document is a users manuaL to the BCPL operating-system on
RIKKE.

The first 7 chapters of the manuaL are updated versions of

The RIKKE BCPL System,
A Programmer's ManuaL

DAIMI MD-22, Februar 1976

by Ejvind Lynning

The next 4 chapters describe the fiLe-system, and are totaLLy new.

The purpose of the document is to serve both as a users manuaL for
the ordinary user, and as a reference handbook for the system
programmer.
No attempt has been made to describe impLementation detaiLs;
however the source text of aLL system programs ar~ avaiLabLe - and
readabLe - and shouLd together with this paper provide enough in
formation for future system programmers to modify and extend the
system.

DAIMI MD-38, september 1980

Jens Kristian Kj~rgaard

FLemming Wibroe

Contents

1. Int roduct ion •••

2. Storage utiLization •••••••••••••••••••••••••••••••••• 2
2.1. The Free Store System •••••••••••••••••••••••••••• 3

3. Loading and UnLoading •••••••••••••••••••••••••••••••• 4
3.1. Information BLocks and OverLays •••••••••••••••••• 4
3.2. GLob-aLs •• 5

4. The Run-Mechanism •••••••••••••••••••••••••••••••••••• 6
4.1. The CLearUpChain ••••••••••••••••••••••••••••••••• 6

5. Traps •••••••••••••••••••••••••••••••••.••••••••••••••• 8
5.1. Trap Conditions •••••••••••••••••••••••••••••••••• 8
5.2. The Trap HandLer ••••••••••••••••••••••••••••••••• 9

6. Interacti on •• 10
6.1. The Trace FaciLity ••••••••••••••••••••••••••••••• 10
6.2. The User Interrupt Routine FaciLity •••••••••••••• 10
6.3. The Command Interpreter •••••••••••••••••••••••••• 10

7. Streams •• 12
7.1. Stream Primitives •••••••••••••••••••••••••••••••• 12
7.2. Lowest LeveL Streams ••••••••••••••••••••••••••••• 13
7.3. Higher LeveL Streams ••••••••••••••••••••••••••••• 13
7.4. Functions YieLding FiLe Streams •••••••••••••••••• 14
7.5. Higher LeveL Stream Functions •••••••••••••••••••• 15
7.6. Buffered Streams ••••••••••••••••••••••••••••••••• 16
7.7. Stream Vectors ••••••••••••••••••••••••••••••••••• 16
7.8. Formatted input/output ••••••••••••••••••••••••••• 19

8. Command interpreter •••••••••••••••••••••••••••••••••• 21

9. The RIKKE fiLe system •••••••••••••••••••••••••••••••• 23
9.1. Directories •••••••••••••••••••••••••••••••••••••• 23
9.2. Using directories •••••••••••••••••••••••••••••••• 24
9.3. Naming of files •••••••••••••••••••••••••••••••••• 25
9.4. Protection ••••••••••••••••••••••••••••••••••••••• 25
9.5. Link and copy •••••••••••••••••••••••••••••••••••• 28
9.6. Discs and directories •••••••••••••••••••••••••••• 29
9.7. A further note on fiLes •••••••••••••••••••••••••• 30

10. Using the fiLe system ••••••••••••••••••••••••••••••• 31
10.1. User mode ••••••••••••••••••••••••••••••••••••••• 31

10.1.1. Reading/writing files by name ••••••••••••••• 31
10.1.2. Reading/writing fiLes by fd ••••••••••••••••• 32

10.2. Command-interpreter mode •••••••••••••••••••••••• 32

Contents

11. Commands •• 33
11.1. Format of commands •••••••••••••••••••••••••••••• 33
11.2. List of Commands ••••••••••••• , •••••••••••••••••• 36

11.2.1. append •••••••••••••••••••••••••••••••••••••• 36
11.2.2. assdr ••••••••••••••••••••••••••••••••••••••• 36
11.2.3. bcpL •• 37
11.2.4. combine ••••••••••••••••••••••••••••••••••••• 38
11.2.5. commands •••••••••••••••••••••••••••••••••••• 38
11.2.6. copy •• 39
11.2.7. count ••••••••••••••••••••••••••••••••••••••• 39
11.2.8. deLete •••••••••••••••••••••••••••••••••••••• 40
11.2.9. di r ., ••••••••••••••••••••••••••••••••••••••• 40
11.2.10. disass ••••••••••••••••••••••••••••••••••••• 40
11.2.11. dismount ••••••••••••••••••••••••••••••••••• 41
11.2.12. do ••• 41
11.2.13. edit ••••••••••••••••••••••••••••••••••••••• 42
11 .2.14. f i L com ••••••••••••••••••••••••••••••••••••• 43
11 .2 .1 5. f i Led u m p ••••••••••••••••••••••••••••••••••• 43
11.2.16. fiLes •••••••••••••••••••••••••••••••••••••• 44
11.2.17. heLp ••••••••••••••••••••••••••••••••••••••• 44
11.2.18. ident •••••••••••••••••••••••••••••••••••••• 44
11.2.19. info ••••••••••••••••••••••••••••••••••••••• 45
11.2.20. Link ••••••••••••••••••••••••••••••••••••••• 45
11.2.21. Login ., •••••••••••••••••••••••••••••••••••• 45
11.2.22. Logout ••••••••••••••••••••••••••••••••••••• 46
11 .2 • 2 3. m aiL ••••••••••••••••••••••••••••••••••••••• 46
11.2.24. mount •••••••••••••••••••••••••••••••••••••• 47
11.2.25. move ••••••••••••••••••••••••••••••••••••••• 47
11.2.26. newdir ••••••••••••••••••••••••••••••••••••• 47
11.2.27. newuser •••••••••••••••••••••••••••••••••••• 48
11.2.28. ocList ••••••••••••••••••••••••••••••••••••• 48
11.2.29. print •••••••••••••••••••••••••••••••••••••• 48
11.2.30. protect •••••••••••••••••••••••••••••••••••• 49
11.2.31. ptdump ••••••••••••••••••••••••••••••••••••• 50
11.2.32. ptLoad ••••••••••••••••••••••••••••••••••••• 50
11.2.33. punch •••••••••••••••••••••••••••••••••••••• 50
11.2.34. readdec •••••••••••••••••••••••••••••••••••• 51
11.2.35. readptr •••••••••••••••••••••••••••••••••••• 51
11.2.-36. remwuid •••••••••••••••••••••••••••••••••••• 51
11.2.37. rename ••••••••••••••••••••••••••••••••••••• 52
11.2-.38. senddec •••••••••••••••••••••••••••••••••••• 52
11.2.39. sort ••••••••••••••••••••••••••••••••••••••• 52
11.2.40. time ••••••••••••••••••••••••••••••••••••••• 52
11.2.41. tty ...•...•.•........•......•.•..•..••..•.. 53
11.2.42. type ••••••••••••••••••••••••••••••••••••••• 53
11.2.43. unLink ••••••••••••••••••••••••••••••••••••• 53
11.2.44. users •••••••••••••••••••••••••••••••••••••• 54

12. Library routines •••••••••••••••••••••••••••••••••••• 55

13. The Character Set ••••••••••••••••••••••••••••••••••• 58
13.1. The ASCII character code •••••••••••••••••••••••• 59

14. DeadStart oi RIKKE/MathiLda ••••••••••••••••••••••••• 60

15. List of References •••••••••••••••••••••••••••••••••• 61

-1-

The RIKKE BCPL system is an interactive singLe-user operating
system which Loads and executes BCPL programs[1J in an environment
providing a range of faciLities for hierarchicaL process or
ganization, storage aLLocation, and input/output. It is a variant
of the Oxford OS system[2,3J.

(Througout this manuaL [iJ wiLL refer to reference i in the
reference List, whereas {i} or {j .k} wiLL be used for cross
references to other sections within the manuaL itseLf.)

Parts of the system are impLementations of OS concepts, though not
generaLLy verbatim copies from the Oxford code. It shouLd be easy
to modify programs that run under OS to r~n under the RIKKE BCPL
system.

The system has been designed to be highLy interactive; thus its
basic Loop is not a Load-go Loop, as in OS, but a command inter
preter Loop, and a significant part of the system has been devoted
to faciLities for interactive debugging and anaLysis of running
programs.

The system runs on the RIKKE OCODE machine, which is impLemented
by means of a micro-programmed emuLator[4J, and uses the micro
programmed i/o-nucLeus[SJ. RIKKE itseLf is described in [6J.

The first seven sections introduce various important concepts in
the system. For most of these a famiLiarity with [2,3J wouLd be
heLpfuL, aLthough not absoLuteLy necessary.

The next 3 sections describes the command interpreter, the fiLe
system, how to use it, and gives a List of aLL Library routines
avaiLabLe.

In chapter 11 aLL the system-programs avaiLabLe to the users are
described, and finaLLy the internaL ASCII-character and a
DeadStart guide set is given.

-2-

The Linear store of the OCODE machine, 64K 16-bit words, is
divided into the foLLowing areas: the gLobaL vector, the data
area, the stack, and the code area. Each separateLy compiLed seg
ment of BCPL program contains a code bLock, which is Loaded into
the code area, and a data bLock, containing statics and strings,
which is Loaded into the data area. The code area is treated as a
stack, whereas the data area is managed by the free store system,
described beLow. The overaLL organization of storage is iL
Lustrated in fig. 2.1

Organisation of storage

1--------------1
LIMIT --> 1 1

1 1
1 1
1 I
1 1
1 1
+--------------+

WLlMIT -->

T --> +- - - - - - - + <-- stack
Limit

S --> current
stack

P --> frame

PO --> +--------------+

+--------------+

BASE,G --> +--------------+

fig. 2.1.

code
area

stack
area

da t a
area

gLobaL
.vector

2

-3-

The space between the T and WLIMIT registers is to aLLow the
system to react niceLy to a stack overfLow situation. These two
registers are administered by the Loader and un Loader, and it is
seen that a trade-off exists between the amount of code that may
be Loaded at any given time and the avaiLabLe stack area. By the
phiLosophy of the system aLL major bLocks of storage required by a
program shouLd be cLaimed from the data area using the free store
system. Thus the stack size is ordinariLy a measure of the amount
of recursion used rather than of data storage requirements.

In order to aLLow optimaL use of the storage resources of the
system, a faciLity (the E~!eQ command) to change the stackbase (PO
register) has been incLuded. This can be used to accommodate
programs with heavy demands on either static data or dynamic data,
but not both. The defauLt vaLue of PO is 30000(decimaL).

The gLobaL vector has been pLaced so that gLobaL numbers equaL ab
soLute machine addresses; this is usefuL to know if one wishes to
dump the vaLue of a parti cuLar gLobaL interactiveLy.

The code area is write-protected to avoid accidentaL overwriting,
particuLarLy of system code. The registers can onLy be overwrit
ten by system kernaL routines. This enhances the robustness of
the system; however by overwriting essentiaL gLobaLs or system
stream vectors in the data area, it is easiLy possibLe to crash
the system totaL Ly.

The free store system is described in [2]. It provides a generaL
faciLity for cLaiming and returning vectors (bLocks, arrays) of
storage using the routines ~~~~~£ and 8~!~ra~~£.
The Lifetime of such a vector is independent of the stack
discipLine for procedure entry and exit, i.e. a vector cLaimed
using NewVec Lives untiL it is returned by ReturnVec, unLess a
tjajED occurs before this takes pLace {4}.

$(l~! v=NewVec[n]

ReturnVec[v,n]

yieLds in v a pointer to a vector of Length
n+1 (v!O through v!n).

returns this vector.

$(1~! n=MaxVecSize[] yieLds in n the Length of the Largest
vector availabLe.

It shouLd be noted, that the system does no sort of Garbage CoL
Lection, so a great deaL of fragmentation can arise.

2.1

-4-

There are two ways to Load code, either via the command inter
preter or under program controL.
Code Loaded under program controL may be expLicitLy unLoaded, or
wiLL be automaticaLLy unLoaded when the Run{4}, in which it was
Loaded, terminates.
Using the command interpreter to execute a program the users code
moduLe wiLL be Loaded and unLoaded automaticaLLy. The name of the
code-moduLe wiLL by the command interpreter be interpreted as a
directive to Load and execute the code{8}.

For each segment of code Loaded, an information bLock is kept in
the data area. It describes the code and data bLocks and is used
for unLoading. Information bLocks are chained together to refLect
the Last-in-first-out discipLine enforced on Loaded code. GLobaL
425, !§1Q£k, aLways points to the most recentLy created, stiLL ex
isting information bLock. An IBLock vaLue is used as a parameter
to ~D1Q2Q to determine where to stop unLoading.

OverLaying may be necessary for Large programs due to the Limited
size of storage. It may be accompLished as foLLows:

$(Let SaveIB=IBLock
Lo~d["overLay"]
Proc[pvec]
UnLoad[SaveIB]

$)

. II caLL of routine "Proc" in "overLay"

However, it may be more naturaL t~ use the Run-mechanism, thereby
avoiding expLicit unLoading. A smaLL steering routine, which Loads
and caLLs the overLay, shouLd then be used as the argument of Run:

Run[Steer,pvec]

Let Steer(pvec) ~~
$'(-

$)

Load["overL ay"]
Proc[pvec]

/I ca LL of' Run

II caLL of routine "Proc" in "overLay"

3 .1

-5-

The discipline used for globals with respect to loading and un
loading is as described in [2].
During the loading of a code segment, its global
calculated and assigned to the proper globals. At
the oLd values of these globals are remembered,
be restored when the segment is unloaded.

entry points are
the same time

so that they may

Immediately after system setup, all globals are saved in the
protected code area. The saved values are written back by the
!~§~! command{8}, which also restores the code and data areas to
their initial states. It may be called via the command inter
preter.

3.2

-6-

For a phiLosophicaL discussion of the Run-mechanism, consuLt [2].
In short, Running a routine (program) means: saving the state of
the system, and then caLLing the routine so that when a IjDi~u oc
curs, its effect wiLL be to restore the system in the saved state
and continue execution from the point where Run was caLLed.

In the hierarchicaL structure of a process Run may be used to mark
and save generaL return points; it estabLishes Run-LeveLs.

The notion
expLained in

of a state of the system to be saved and restored is
the foLLowing.

The Free Store System{2.1}:
When a Run is terminated (either by fjDi~n or mereLy returning)
aLL storage cLaimed in that Run is forcibLy returned. This is
accompLished by initiating for each Run its own free store
within the Largest avaiLabLe vector and simpLy abandoning it
whoLesaLe when Run terminates. Thus after Run returns, the free
store wiLL be exactLy as it was when Run was caLLed. It is not
possibLe inside a Run to return storage that was cLaimed at an
outer Run-LeveL.

PutBack{7.1}:
Items put back to streams do not survive across Run-boundaries,
either into or out of a Run.

Loaded Code{3}:
ALL code Loaded inside a Run is unLoaded when the Run ter
minates.

Certain activities in the system or in a user program may require
a terminating action, e.g. the writing of a fiLe via a stream must
be terminated by cLosing the stream. Such terminating actions may
be forgotten in an error situation, or the user may even faiL to
incLude them in his program. To avoid possibLe nasty consequences,
they may be pLaced in the fl~2r~Qfb2jD, in which case the system
wiLL see to, that they are carried out when the Run terminates.
Notice that faiLing programs which give up cause termination of a
Run.

The CLearUpChain is a List of two word bLocks, each containing a

4.1

-7-

pointer to the next block, and a routine entry point:

ClearUp Chain

ClearUpChain --------------
1 ---+-->1 ---+-->1 1

-----> 1------------1 1------------1 1------------1
1 CURoutine1 1 1 CURoutine2 1 1 CURoutine3 1

fig. 4.1.

The clearup blocks, ini~ialized to contain routine £YBQWlin~, is
entered in the £!~~r~e£h~in by the call sn!~r£~£[C], where C is
the address of the clearup block, and when the corresponding ac
tivity terminates normally, it should be removed by B~mQ~~Q~Q[C].
However, if this is not done before the Run terminates, the
general clearup routine will call £YBQylio£[Q].

Notice that the two word block must be allocated by the program
which uses the clearup facility, not by sn!~r£~£, and in fact it
should be placed so that its address <C) informs CURoutine of ex
actly what it is to do.

The exact relationship of the ClearUpChain to the Run-mechanism is
the f 0 II ow i n g :
When a new Run is started, the handle of the ClearUpChain is
stored, and a new, empty, ClearUpChain is initiated. When a Run
terminates, all orders in the current ClearUpChain are obeyed, and
the saved handle is used to reestablish the old situation.

4.1

-8-

A generaL faciLity exists in the system for handLing traps, i.e.
situations when the normaL fLow of execution must be interrupted
for some reason.

The foLLowing situations cause traps to occur:

1. The OCODE emuLator detects
a) an error, e.g. stack overfLow, or
b) a routine or function entry whiLe the trace faciLity
{6.1}

is switched on.

2. A system or user program detects a software failure. Upon
detection of irreparabLe failure or mereLy a situation which
might interest the operator sufficientLy to engage him in con
versation, any program may caLL §!Qe[F,p1,p2, •••• J, which
generates a trap. Stop dispLays its parameters on the consoLe
with the same parameter convention as Q~!E {7.8}

A failing program may also
§i~£~e[F,p1,p2,p3, ••• J, which
parameters as OutF, and !iQi~u.

merely give
displays the

up, i.e.
message F

call
with

3. An i/o-interrupt. This is used for the consoLe keyboard to al
low the operator free interference with program execution.
Other devices do not interrupt the system.

4. Actual operator interruption. The routine which is invoked by
the general trap handler in case 3 usually just appends the in
coming character to a buffer, but two characters have special
effects:

a) CTRL C causes a call of Stop, cf. case 2. The same ef
-fect may be obtained by switching KA off and on again.

b) CTRL E causes a calL of global 8, Interrupt {6.2}.
c) CRTL R displays the keyboard buffer contents on the con

sole
d) CTRL S, CTRL Q and CTRL 0 are used to controL the Console

output {7.3}.

Other i/o-streams may be set up to include- the interrupt
facilities. When a transfer of a block of information is com
pleted by the IOnucleous, the devicedependent interrupt handLer,
which is inserted in the Interrupt vector, will be executed.

The system function ~112£iQ!5Q!r~(Int-handler) inserts the routine

5.1

-9-

Int-handLer in an interrupt vector an returns a vaLue, which must
be pLaced in an i/o-controLbLock{S}.

The task of the generaL trap handLer is to distinguish among these
cases and take proper action. In cases 1.b, 3, and 4.b it suffices
to caLL a further routine to handLe the situation; in aLL other
cases the operator is consuLted, i.e. a message is dispLayed on
the consoLe, and a command interpreter Loop entered. When used in
this manner, in a trapped context, the command interpreter accepts
a set of commands which differs somewhat from that accepted in an
ordinary, not-trapped context{S}.

that to· carry out its task, the
vaLues of the oeODE machine

at the time of trap. When the
pLaces the register vaLues on the
up for the Ir~~ routine, and then

For the curious reader we add,
trap handLer needs to know the
registers, the context bLock,
emuLator encounters an error, it
stack, inside a frame it sets
generates a caLL to it.

Stop, not knowing the register contents, guesses them as best it
can, pLaces them appropriateLy, and transfers controL to Trap by a
goto, so that its own stack frame becomes that of Trap. For aLL
this to work, both the emuLator and Stop must know the way in
which Trap references its LocaL variabLes. The scheme then works
in compLete harmony with the stack architecture of the oeODE
machine; in particuLar nested interrupts are mereLy recursive
caLLs of Trap[9].

5.2

-10-

A major design aim of the system has been to facilitate user in
-teraction with running programs. The tools supplied for this pur
pose are the following.

All routine and function entries (with parameters), that are com
piled with trace-option [1J, may be traced on the line printer.
This facility is controlled by the 1rg£~ command, which takes a
boolean parameter to switch the trace on (1r~~) or off (f2~~~)

Along with any program a routine may be included which can be cal
led asynchronously by typing CTRL E on the keyboard. The routine
may for example be used to monitor the program by displaying im
portant information or to control program behaviour according to
further interactive commands. It must be declared as global S (In
terrupt){S.1 }.

If the system is trapped by an emulator or system error, a user
program call of Stop, or CRTL C typed on the keyboard, a special
command interpreter loop is entered{S}. In the case of emulator or
system errors it is not recommended to use the cont command;
rather [~~~1 or ;D~ should be siven after debuggi~~-information
has been obtained.

In exploring the state of a program the ~12£~ and ~~mg commands
are particularly useful. In such a situation it is often useful to
be familiar with the anatomy of a stack frame, which is therefore
shown in fig. 6.1

6.3

-11 -

A stack frame

---------------- <---- S register

+--------------+

+--------------+

+--------------+
I This Routine I
+--------------+
I Return addr. I
+--------------+

anonymous variabLes

LocaL variabLes in order
of decLaration; vee-dec
Laration may confuse

parameters

I Return Link <---- P register

fig. 6.1.

The P register corresponds to the vaLue of LeveL dispLayed by the
stack command.

6.3

-12 -

The apparatus for ilo in the system consists of streams C2J. A
stream is either an input stream or an output stream. There
exists a set of primitives appLicabLe to aLL streams; these
primitives are impLemented as gLobaL routines.

For input streams:

Next.
-$(- 1~1 x=NextCSJ yieLds in x the next item from stream S.

Endof.
--E~dofCSJ has vaLue lrY~ if the end of stream S has been reached,

i.e. if no more items can be obtained from S using Next; other
wise EndoftSJ is 1~1§~.
For some
sibLy. In
the vaLue
tained.

input streams, Endof is difficuLt to impLement sen
such cases Endof aLways returns faLse and Next yieLds
EtlQQE§IBE6~£~, when no more ordinary-items can be ob-

PutBack.
--p~tBackCS,xJ returns the item x to stream S so that

caL L of Next wil L produce exact Ly x. SeveraL items,
not even have come from S, may be put back;
reproduced in a Last-in-first-out fashion. See aLso

For output streams:

Out.

a subsequent
which need

they wilL be
{4}.

--OutCS,xJ resuLts in the item x being output aLong stream S.

For both input and output streams:

Reset.
--R~setCSJ resuLts in stream S being restored to an initiaL state,

which depends on the particuLar stream in question.

CLose.
--CLoseCSJ does any sort of terminating action, and reLinquishes

any storage associated with S. No other primitive may be appLied
to S after CLose.

The items which are transported aLong a stream are typicaLLy
characters (bytes) or words. But it is possibLe to buiLd streams
which yieLd or accept any sort of data structure, e.g. vectors or
strings.

The system contains a number of standard streams, and some stan-

7.1

-13-

dard stream functions which produce new streams, using either an
argument which may be an existing stream or fiLe, or system infor
mation; the Latter case incLudes stream functions for non-standard
devices.

Streams may be cLassified into Lowest LeveL streams - those which
communicate directLy with the i/o-nucLeus, and higher LeveL
streams - those which are buiLt on top of Lower LeveL streams. A
simiLar distinction appLies to stream functions, since it appLies
to the streams they create.

A commented List of system streams and stream functions foLLows.
The first six streams, Keyboard, Ptr, Ptp, ConsoLe, Printer, and
LineBuffer are aLways avaiLabLe; they cannot be cLosed. Other
streams must be created by the user program and shouLd be cLosed
when they are no Longer needed.

~~~EQ2rg· 
The basic character input stream from the consoLe keyboard. En
dof is aLways f2~§~' Keyboard is unique among input streams in 
that PutBack is not aLLowed. Keyboard is intimateLy connected 
with the trap mechanism{S.1}. Characters spontaneousLy typed by 
the operator are stored in a circuLar buffer from which Next 
removes them. 
Reset discards any buffer contents. 
Striking CTRL R dispLays the buffer contents on consoLe. 

E!c· 
The basic byte stream from the RC2000 paper 
uses a doubLe buffer arrangement, as do Ptp 
aLways returns f2~§~ , and ENDOFSTREAMCH are 
when a tape has run out. Reset discards any 

E!~· 

tape reader. Ptr 
and Printer. Endof 

returned by Next 
buffer contents. 

The basic byte stream to the paper tape punch. 
buffer contents. 

Reset outputs 

The foLLowing two streams, ConsoLe and Printer, use nameLess 
Lowest LeveL streams, which are invisibLe to the user. For aLL 
practicaL purposes they may be considered Lowest LeveL streams. 

ConsoLe. 
--The--basic character output stream for the consoLe. It converts 

the internaL ASCII character set{13} to consoLe representation, 
and outputs one character at a time. Reset empties the ConsoLe 
buffer. 
Striking CTRL S stops the ConsoLe output, untiL CTRL Q is 

7.3 



-14-

striked. 
CTRL 0 inhibits Console output, until another CTRL 0 is striked. 

Printer. 
--rhe--basic character stream to the printer. It converts internal 

ASCII {13} to D200 line printer representation, and empties its 
buffers, not only when they are full, but also when a line feed 
is output, in order to speed up printing. Reset outputs buffer 
contents. 

!::iQ2§!dff~r • 
This is the commonly used stream for character input from the 
keyboard. It allows the operator to type and edit a whole Line 
before its contents are taken seriously. By using Keyboard, 
LineBuffer reads characters up to a car return and treats them 
as follows: 

1. ordinary characters (none of the following) are inserted in a 
buffer. 

2. rub out causes the last character read to be deleted from the 
b u f fe r and echoed to the console. 

3. backspace causes the las t character to be deleted from the 
buffer and from the line image on the console. 

4. cancel, CTRL X ca use the b u f fe r to be discarded and a car 
return to be out p ut on the console. 

S • car return ma r ks end of lin e • 

The result of the call of Next, which caused the buffer filling, 
will be the first character in the buffer. Subsequent caLls of 
Next will return the remaining characters in the buffer, until 
it is empty. Then Next will start a new buffer filling etc. 

Reset for LineBuffer discard,s the buffer and resets Keyboard. 
Endof is aLways f~1~2. 

These functions may also be considered lowest-level. They all take 
a file-description (fd) {9} as an argument, and return a stream to 
read or write to the file. 

InFromFileCfdJ yields a word stream to read file fd sequentially. 
Reset-on-such a stream causes reading to continue from the begin
ning of the file. 

§~!2~£rQill£i12CfdJ is similar to InFromFile, but it creates a byte 
stream, i.e. two subsequent calls of Next yield the two bytes of 
each word of the file. For compatibility Endof works the same way 
as for Ptr. 

Q~!IQ£i12CfdJ returns a word output stream to write to file fd. 

7.4 



-15-

In order that the fiLe description and the internaL housekeeping 
information of the fiLe body may be updated, it is criticaLLy im
portant that the streams created by OutToFiLe or one of the three 
functions, which foLLow, are cLosed, when writing is compLete. 

In order to save at Least some of the fiLe output from disastrous
Ly faiLing programs, a FaiL-CLose routine for a fiLe output stream 
[8], is inserted in the CLearUpChain{4.1}, and this FaiL-CLose 
routine wiLL cLose it at the point where the Last Reset took 
pLace. 
The function of Reset is to save enough information about the fiLe 
for FaiL-CLose to do this job properLy. However, if neither Reset 
nor CLose is ever caLLed, the fiLe description wiLL not be changed 
at aLL, and for aLL practicaL purposes the stream might as weLL 
not have existed. 

§~!~~IQ£il~[fd] returns a byte output stream to write to fiLe f. 
FiLes written using streams produced by BytesToFiLe may be read 
using streams produced by BytesFromFiLe. 

OutToFiLe and BytesToFiLe create streams which overwrite a fiLe; 
if, instead, it is desired to add information to an existing fiLe, 
simiLar streams are produced by: 

ALL th.se functions are combined to 2 parameterised functions, 
which can be used when reading and writing fiLes in connection 
with directories {10.1.D: R~iHl~i!!!!!1:g£H~ and !!r:H!1:~i!!!!!1:g£i1.~. 

WordsFromBS[S] yieLds a stream that reads words composed of two 
bytes-from-stream S. InitiaLLy and after Reset this stream wiLL 
skip zero bytes (bLank tape); Reset aLso resets S. Endof works for 
streams constructed by WordsFromBS, but it is inefficient. 

WordsToBS[S] takes a byte output stream as a parameter and yieLds 
a--word--output stream, i.e. each word output to this stream wiLL 
become two bytes to be consumed by the argument stream. Reset 
resets the argument stream. CLose aLso cLoses the argument stream. 

IntcodeFromRaw[S] takes a byte input stream as a parameter and 
retur~s-a-stream of internaL ASCII characters{13}. It works as a 
fiLter for streams containing "strange" characters. Reset resets 
the argument stream, which is aLso cLosed by CLose. 

7.5 



-16-

The Next and Out primitive routines usuaLLy work by invoking a 
further stream-dependent routine, but for efficiency some streams 
use buffer arrangements. For these streams, the primitive Next and 
Out routines mereLy consume/insert an item from/in the buffer, and 
onLy when the buffer is empty/fuLL, a further stream-dependent 
routine, the HandLeBuffer routine, is caLLed. 

In order to speed up bLock-transfers on buffered streams, which in 
BCPL wouLd be written as 

$( for i=O to n-1 do v! i :=NextCISJ $) 
$( for i=O to n-1 do Out[OS,v!iJ $) 

two funttions ~GK1~lQ£k[IS,v,nJ and QY1~lQ£k[OS,v,nJ have been 
written. 
IS,OS are the input/output stream, v is the address of the bLock 
containing the eLements in v!O through v!(n-1). 

The resuLt of NextBLock is DONE if the stream couLd deLiver n 
eLements, otherwise the resuLt is the number of eLements missing. 
The resuLt of OutBLock is aLways DONE. 

The routines are impLemented by a micro-programmed copying between 
the stream-buffer and v, incLuding caLLs of HandLeBuffer, so when 
used on non-buffered streams nothing is gained in speed, since 
this is simiLar to the for-Loops above. 

NOTE: NextBLock and 
streams, but can 
bLock-stream. 

OutBLock works onLy for byte- and word
of course be used as Next/Out functions for a 

This subsection is intended mostLy for the programmer who wishes 
to write his own stream functions. 

Streams are impLemented by means of stream vectors, whose entries 
~ontain the routines and other items of information which are 
necessary for the stream primitives to work. 

7.7 



-17-

The generaL format of a stream vector is as shown: 

A stream vector 

------------------------1 
0: * TY PE 

1: AUXIIOBUFFER/CHCOUNT 

2: * CLOSE 

3: * RESET 

4: * STR/EXECBLOCK/FD 

5: * OUT/BUFPTR 

6: * NEXT/BUFEND 

7: * HANDLEBUFFER 

8: * ENDOF/OFPAGE 

9: * PBSTORE/NEWBODY 

10: used by fiLe-streams 

11 : _"-

12: CLEARUPCHAIN 

13: FAILCLOSE 

fig. 7.1. 

It is possibLe to use stream vectors with more entries than shown, 
in fact onLy those entries marked * are used by the primitive 
functions. The entries CLose, Reset, Out, Next, Endof must hoLd 
the routines, which impLement the respective primitives for the 
stream in question. Where a primitive is not appLicabLe, the 
gLobaL routine §!r~2IDErrQr shouLd be used. 

The STR entry is ordinariLy used to hoLd the vaLue of a Lower 
LeveL stream on top of which the stream in question is buiLt. 

PBStore is used by PutBack, and the AUX entry has no standard in
terpretation. 

HandLeBuffer onLy has meaning for buffered streams, it contains 
the HandLeBuffer routine. For buffered streams, Next/Out routines 

7.7 



-18-

are unnecessary, and their Locations are used for buffer pointers. 

In order to cooperate with the primitive Next, an input HandLeBuf
fer routine shouLd, after fiLLing the buffer, adjust the pointers 
so that the BUFPTR entry points to the first item in the buffer, 
and the BUFEND entry points just after the Last one, which does 
not necessariLy have to be at the physicaL end of the buffer. 
SimiLarLy, an output HandLeBuffer routine, after outputting the 
buffer contents, shouLd set the BUFPTR entry to point to the first 
word of the buffer, and the BUFEND entry to point just beyond the 
Last word of the buffer. Notice that the pointers are absoLute, 
not reLative to the buffer. 

The Reset routine for a buffered output stream may perform any 
desired action and shouLd then set the buffer pointers exactLy as 
described for HandLeBuffer to enabLe a new buffer fiLLing. For 
buffered input streams, Reset may sensibLy set the two buffer 
pointers to be equaL, thereby causing a subsequent caLL of Next to 
provoke a caLL of the buffer fiLting routine. 

The TYPE entry of a stream vector contains the stream type, a word 
in which the bits are interpreted as foLLows. 

Bit Meaning 
o input stream 
1 output stream 
2 buffered stream 
4 byte stream 
5 word stream 

10 PutBack aLLowed 
11 Lowest LeveL stream 

OnLy those bits which are reLevant shouLd be set in a stream type 
word. When resetting a buffered stream, aLso reset the type. 

Apart from these bits, the system uses 4 more when operating on a 
stream: 

Bit Meaning 
7 byte-stream: indicates Left/rigth byte next 
8 PB1MASK 
9 PB2MASK, both used for PutBack 

13 CTRL off/on: output mode for controL characters 

7.7 



-19-

Upon the Next/Out functions, there is buiLd a set of input/output 
routines to heLp reading/writing integer, strings and characters. 
The parameters IS and OS are input- and output-streams respec
tiviLy: 

I np ut : 

Output: 

skips bytes that are aLL zeroes or aLL ones, and 
return the first byte which is neither, possibLy 
ENDOFSTREAMCH. 

reads a possibLy signed integer from IS. any 
characters before the integer, but none after. 

reads a string up to a string-deLimiter: 
'*n','*s',',' or '.'. The deLimiter is skipped. 

equivaLent to NextN[LineBufferJ and skip the 
deLimiter. 

equivaLent to NextS[LineBufferJ. 

QYif[OS,FORMAT,p1,p2, ••••• p12J 
FORMAT is a BCPL-string, which is written character by 
character, untiL the escape character '%' is found. If 
the character foLLowing '%' is one of the foLLowing,the 
next parameter is written out as: 

%% % 
%S a BCPL-string 
%C a character 
%N a decimaL number, written in minimum width 
%Dd a decimaL number, written in d pLaces with 

zero filL 
%Id a decimaL integer, right justified in d 

pLaces 
%U an unsigned integer in 6 pLaces 
%Od an octaL number in d pLaces with zero fiLL. 

ExampLe: p1="Jens", p2='P ' , p3="Hansen", p4=23 

OutF[ConsoLe,"*"%S %C. %S, age: %N*"",p1,p2,p3,p4J' 
wiLL output as 

"Jens P. Hansen, age: 23" 

QYiQ[OS,n,dJ write n on OS as signed decimaL in d pLaces. 

7.8 



-20-

QY1~COS,nJ 

QY1QCOS,nJ 

write n on OS as signed decimaL in minimum width. 

equivaLent to OutOctCOS,n,6J. 

QY1Q~!COS,n,dJ: write n as octaL number on OS in d pLaces. 

Q~!§COS,sJ write the BCPL-string s on stream OS. 

7.8 



-21-

Commands are given to the system by typing them on the consoLe, 
when the system is ready, i.e dispLays" " 

Commands can be di vi ded into 2 pa rts: 

1. commands executed by routines permanentLy in core, and 
thereby independent of the fiLe-system. 

2. commands executed by Loading and running a system-program. 

In this chapter we wiLL only deaL with type-1 commands, the type-2 
commands wiLL be described in chapter {11}~ 
W hen a com man dis type d, it i s fir s t Look e d for a sat y pe -1 com
mand, and if not found, controL is given to the fiLe-system com
mand-interpreter, which wiLL interpret the command as the name of 
a fiLe to Load and execute{10.2}. 

For each type-1 command we now give its name, an indication of the 
kind(s) of its parameter(s), if any, its context{S.2}, and a brief 
description. 
Parameter kinds are given by n for integer, fn for fiLename, and 
sw for a switch(on/off). Some commands may onLy be used, when the 
system ;s not trapped, they have context NT, others are onLy ac
cepted in a trap situation, this is indicated by T. NR means no 
restriction. 

'Qmm~o~~ fQ! lQ~~iD9 ~o~ !YDDiOg g!Qg!~m~, and some speciaL 
facilities: 

Load fn NT unLoads aLL code, except system, and Loads fiLe 
fn. REL. 
fn=ptr Loads from RC2000. 

add Load fn NT Loads binary code from fn.REL in addition to code 
aLready Loaded ( for seperatLy compiLed segments). 

go 

set PO n 

set L n 

map n 

NR equivaLent to Run[StartJ, where Start is gLobaL 1. 

NT sets stackbase register PO=n{2} 

NR set store Location L to vaLue n 

NR controLs Load-map option: 
n=O no Load map 
n=1 a simpLe map of code and data segments 

Loaded are dispLayed on the consoLe. 
n=2 a fuLL map, incL. routine entrypoints, 

is given on the printer. 

8 



DS sw 

trace sw 

-22-

NT turns the FiLe-system on or off. The 
"DS on" is executed automaticaLLy as part 
normaL deadstart procedure{14}. 

NR controLs trace faciLity{6.1} 

command 
of the 

dump n1,n2 NR contents of memory Location n1 through n2 are 
dispLayed as unsigned decimaL, signed decimaL, 
decimaL by haLfwords, octaL and as characters. 

cont 

s t a c k 

cb 

end 

reset 

T resume trapped program{S.1} 

T dispLay the stack of the current (trapped) run on 
the consoLe. 

T dispLay contents of context-bLock (registers). 

NR equivaLent to !joi§h 

NR exits from aLL runs, unLoads aLL code except the 
system, resets aLL gLobaLs to their vaLues at 
system setup. The exit from Runs is a disorderLy 
one, in particiLar fl~~r~Qfh~iQ§ are not obeyed. 
reset is intended to be used as a Last resort to 
save the system, when important gLobaL vaLues have 
been corrupted. 

Apart from these commands, which can be used by aLL users, there 
exists a set of fiLe- and directory managing commands, which nor
maLLy onLy are used when bootstrapping the fiLe-system. 
They are onLy avaiLbLe to the Master-user in a non-trapped con
text, and they have equivaLent user-commands as described in sec
t i on {11. 2} : 

Dir name NT 
Newdir name NT 
Ty pe f n • ext NT 
Print fn.ext NT 
Punch fn.ext NT 
DeLete fn.ext NT 
FiLes NT 
Readptr fn.ext NT 
Rename f1 .e1 ,f2 .e2 

waLk one-step up or down the directory tree 
create a new directory 'name' 
type the fiLe on consoLe 
print the fiLe 
punch the fiLe 
deLete the fiLe 
give a List of fiLes in the directory 
readin a fiLe from RC2000, and name it fn.ext 
NT rename f1.e1 to f2.e2 

8 



-23 -

This chapter is intended to serve as an users guide to the fiLe
system. A comprehensive description of the design and impLemen
tation of the fiLe-system can be found in [8]. 

The on Ly way 
file des c rip t ion 
pointer into a 
stored. 

the system-routines can access a fiLe is by a 
(fd), a bLock of words, which contains a sort of a 
MasterFiLe on the physicaL disc, where the fiLe is 

A directory is a List of entries, each consisting of a filename 
and a fd, so the purpose of directories is to enabLe the users to 
reference the fiLes by names, instead of by fd's. 
A fiLename on RIKKE consists of a name and an extension{9.3}. ALL 
fiLenames in a directory must be unique. 

A speciaL sort of entries in a directory is a directory itseLf, so 
the directories form a tree-structure. This eLiminates the use of 
Long and compLicated fiLenames, as the number of directories and 
LeveLs in the directory-tree are (aLmost) unLimited. 
The fiLes, whose entries are in a directory, are said to be or 
exist in that directory. 

A directory has one more purpose, than being a coLLection of 
fiLes. It can aLso be regarded as a possibLe environment for the 
user. At any time the user is in such an environment (directory), 
caLLed CurrentDirectory, and wiLL view the directory- and fiLe
structure as seen from CurrentDirectory. 

In the foLLowing figures we use rectangLes for directories and 
circLes for fiLes: 

9.1 



-24-

Directory-structure: 

user 
cl 

Master Directory 

J 

/ 

/ 

disk 
2 

"-
Login- " 

c2 Directory' 

~d}dates \ " D~nfor - \ 
Current

Directory 

fig. 9.1. 

CurrentDirectory pLays a speciaL roLe, when typing a name to the 
command-interpreter{10.2}. 

At any time the user can "waLk" up and down the directory-tree, 
i.e changing environment, by using the command 'dir'{11.2.9}. 

The overaL L root of the di rectory-tree is caL Led f4asterDirectory. 

To enter the system, a user must have a username and a password, 
assigned by the "Master-User". Each user-name is assigned a 
LoginDirectory, the users CurrentDirectory after Login. 

From this directory the user can create a new directory-structure 
with LoginDirectory as root, and move freeLy around this struc
ture, onLy Limited by LoginDirectory at the top. It is never pos
sibLe to go beyound the LoginDirectory. 

CurrentDirectory aLso serves as a defauLt Lookup-directory, when 
accessing fiLes, but it is aLways possibLe to access fiLes in 
other directories, provided they are not protected. 

9.2 



-25-

A fiLe name in a directory consists of two parts, the name and an 
extension. Both name and extension can in principLe be arbitrary 
ASCII-strings, but because the system routines interpret the 
characters '*s', '*n', ',' and'.' as string-deLimiters, it is 
recommended to restrict the names to aLphanumeric strings. 
Note: smaLL and capitaL Letters are different characters. 

The name is normaLLy used to identify the fiLe, whereas the exten
sion is intended to teLL something about the type of a fiLe. 

DefauLt extensions are: 

BCPL - a BCPL source fiLe. 
BAK - a back-up fiLe made by the editor. 
REL - a reLocatabLe binary OCODE fiLi. 
5MB - a symboLic OCODE fiLe. 

These extensions are maintained by the system as in the folLowing 
exampLe: 

1 A.BCPL exist in CurrentDirectory 
2 After editing the new version is stiLL caLLed A.BCPL, and 

A.BAK is the oLd version. 
3 The compiLer compiLes A.BCPL either into symboLic OCODE on 

A.SMB, or to reLocatabLe binary OCODE on A.REL. 
4 The assembLer assembLes A.SMB into A.REL. 
5 Typing A on the consoLe, the fiLe A.REL wiLL be Loaded and 

executed{10.2}. 

From the systems point of view directories are aLso fiLes, and 
therefore subject to the same naming conventions. They have the 
speciaL extension DIR, and it is adviced to keep this extension 
for directories onLy, and not use it for ordinary fiLes. 

To protect fiLes against misuse from any of the users the system 
provides a protection mechanism. 

ALLthough the users are personaLLy identified by Login, the system 
uses the directory-structure to divide users into protection 
groups. 
Therefore the access rigths doesn't depend on who the user per
sonaLLy is, but onLy in which directory he is (CurrentDirectory), 
so in the rest of this chapter, a user aLways means a directory, 
which of course normaLLy can be identified with the person using 
that directory. 

When a fiLe is created, it is brought into the directory-structure 
as a son of the present CurrentDirectory. This directory wiLL now 

9.4 



-26-

be regarded as the 2~D~r of that fiLe, and wiLL have aLL rights to 
the file. ALL other di rectories wi L L be caL Led users of that file, 
and they get the rights as decided by the owner. 

ALLthough directories aLso are created as sons of other direc
tories, directories are users themseLves, and therefore they can 
be made their own owners[8J. 

Therefore: The owner of a directory is the directory itseLf, the 
owner of any other fiLe is the father of that fiLe. 

This user/owner division of users couLd be used to divide them in
to protection groups, but because the directory structure is 
static and hierarchicaL, it can be used to subdivide further. 

In reLation to each fiLe the users are divided into five groups: 

o the ow n e r 
1 the ancestors of the owner 
2 the descendants of the owner 
3 those descendants of the owner's father, which are not in 

group 0 or 2. 
4 aLL other directories. 

ExampLe: 

~aster Directory 

P~ot8ction groups iG reliltion to file A 

fig. 9.2. 

9.4 



-27-

Group 3 may not seem so reLevant as the others. Its purpose 
provide the possibiLity to give fiLes, common to a project 

is to 
group, 

a speciaL access-rigth for the members of the project. 

Thus the protection groups are from the system's point of view 
pairwise disjoint. But it wiLL be normaL to regard the protection 
groups hierarchicaL by giving group 0 at Least the same rights as 
group 1, group 1 at Least the same rights as group 2 and so on 

Each of these groups is given an access-right. 

There are 8 categories of access-rights: 

O=CHANGE PROTECTION ACCESS: 
The right to change, protection of the file. (The 
aLways the right to change protection" regardLess of 
cess rights). 

1=DELETE ACCESS: 

owner has 
his ac-

The right to deLete the physicaL fiLe on the disc. This ac
cess-right does not impLy the right to deLete the entry in the 
di rectory. 

2=WRITE ACCESS: 
The right to change the contents of the fiLe. The user can 
thus empty the fiLe compLeteLy, but there remains an empty 
fiLe. For directories this access right is equivaLent to the 
right to remove entries. 

3=UPDATE ACCESS: 
This has onLy meaning for directories, where this access right 
wiLL give the right to rename aLL fiLes in that directory. 

4=APPEND ACCESS: 
The right to append information to the end of the fiLe. For 
directories this is the right to insert new entries into the 
directory. 

5=COPY ACCESS: 
The right to copy the fiLe to another fiLe via the system
programs. Is not vaLid for directories, as these must not be 
copied. 

6=READ ACCESS: 
The right to read a fiLe, but not to modify any of the con
tents of that fiLe. For directories this is the right to Look 
up in the directory. 

7=NO ACCESS: 
No rights to the fiLe at aLL, except that the user may know 
the existence of the fiLe, if he has READ-ACCESS to the father 
of the fiLe. 

9.4 



-28-

The access rights are hierarchicaL, e.g. a user having access 
right 4, aLso has access right& 5 and 6 too. 

There is one speciaL case of protection: The owner-entry of a fiLe 
cannot be deLeted, without deLeting the fiLe too. This is to as
sure, that each fiLe aLways has an owner. 

As each protection group is assigned an access right, the protec
tion key for a fiLe is a 5 digit number. 

For exampLe defauLt protection for a fiLe is 00557, which means 

group 0 aLL rights to the f i L e • 
group 1 aLL rights to the file. 
group 2 the right to copy and read the f i L e • 
group 3 the right to copy and read the file. 
group 4 no rights at aLL to that f i L e • 

When a user want to access a fiLe, the system finds out which 
protection group he (CurrentDirectory) beLongs to. It wiLL then 
Look up the access right for this protection group. If the access 
is done in accordance to this access right, the access wiLL be 
granted, otherwise an error wiLL be the resuLt. 

The defauLt protection for directories is 22446. 

If a user frequentLy want to access fiLes in other directories, it 
can be more convenient to make an entry for those fi Les in "his 
own" di rectory too. Thi s can be done in 2 ways: 

1. Make a '£Q[!l of the fi Le. This copy is the users your own fi Le, 
and he is the one to decide anything about the fiLe. If the 
originaL fiLe is updated, that update wiLL be missed. 

2. Make a Link to the fiLe. OnLy an entry for the file is inser
ted in--the directory, the fiLe is stiLL the property of the 
originaL owner, and the user can onLy handLe the fiLe ac
cording to the access-rigths. The owner can deLete the fiLe 
any time he wants, but the users are sure aLways to have a 
Link to the most recent version of the fiLe. 

9.5 



~ 
I oj L:. 

original 
structure 

-29-

Link or Copy 

structure 
after link 

fig. 9.3. 

structure 
after copy 

In this sense directories are not fiLes, and they can neither be 
copied nor Linked. 

The RIKKE disc-system consists of 2 DIABLO-drives, each consisting 
of 1 fixed disc and 1 exchangeabLe disc, giving a configuration af 
2 fixed discs, and an unLimited number of exchangabLe discs. 

Each disc consists of 408 tracks of 24 sectors of 260 bit words, 
2S6 data-words and 4 for system-information. This gives a totaL 
d a t a - are a 0 f 97 92 p age s (b L 0 c k s ) 0 f 2 S6 w 0 r d son e a c h dis c • 

The fiLes in the fiLe-system can be stored on arbitrary discs, of 
which up to 4 can be mounted simuLtaneousLy. These 4 discs couLd 
be identified to the system by their physicaL Location 0-3, which 
is caLLed the disc-unit. 
The disc mounted on disc-unit i is caLLed physicaL disc no. i. 

Because of the unLimited number of discs, that can be mounted, 
each disc has to be identified by its LogicaL disc.no, aLso caLLed 
the LogicaL device no., to the system. Each disc is therefore 
given a LogicaL device name and number, and we then have LogicaL 
disc no j equaL physicaL disc no for 0<=i<=3 and 
0<=j<=MAXDEV(20) • 

The fiLes on each disc are hierarchicaLLy ordered, and the root is 
caLLed the DiscDirectory. When a disc is mounted, the Disc
Directory on that disc wiLL become a son of the MasterDirectory, 
and it wiLL get the name "Logdev".DIR in MasterDirectory, where 
Logdev is the LogicaL device name for the disc. 

Thus mount means two things. One is to physicaLLy pLace a disc on 

9.6 



-30-

the disc-drive, and the other is to connect the directory struc
ture on that disc with the MasterDirectory (and the rest of the 
fiLe system). 
Using the Latter meaning, aLL discs (incl. physicaL discs 0 and 2) 
can be mounted and dismounted. 

The normaL disc configuration after deadstart wiLL be 
Logi caL disc no 0 = physi caL disc no 0 = di sc "SysAdmin" 
LogicaL disc no 1 = physicaL disc no 2 = disc "UserDisk1" 

and the other two discs are to the disposaL of the users. 

In case of any doubt about where CurrentDirectory is situated in 
the directory-structure, the command "ident" {11.2.18} can be used 
to List the path from MasterDirectory to Current Directory on the 
consoLe. 

The first description of fiLes was somewhat simpLified, and maybe 
a LittLe misLeading. We wiLL now expLain some important concepts 
in the fiLe-system, but for detaiLs, the reader is stiLL referred 
to [8J. 

On each disc is a MasterFiLe, which contains a heading for each 
fiLe. This heading hoLds information such as the address of the 
first and Last page of the fiLe, protection information, and 
creation- and update-time. Furthermore it contains for each fiLe 
an identifier (UID), which is guaranteed to be unique among aLL 
fiLes ever created in the system. This UID is used for controL 
purposes. 
The index of the heading in the MasterFiLe is caLLed the fiLe 
vaLue (fv) of that fiLe. 

To identify a fiLe on the disc, the LogicaL disc no. and the fv 
for the fiLe must be known. Then the heading can be found in the 
MasterFiLe, and from there the fiLe itseLf. To be sure to access 
the right fiLe, the UID must aLso be suppLied. This is checked 
against the UID in the heading, and onLy if those two UID's are 
identicaL 1 the fiLe can be accessed. 

This set (LogicaL disc no,fv,UID) together with 
information is caLLed the fiLe description 
preciseLy what is neccessary to access a fiLe. 

some protection 
(fd), and this is 

The normaL way to find the fd for a fiLe, is Looking up in a 
directory for a name assigned to that fiLe. The reaL contents of a 
directory is therefore a set of tupLes (name,ext,fd). 

9.7 



-31-

The user wilL 
two LeveLs, 
mode, and the 
programs. 

normaLLy be interested in using the fiLe system at 
of which the upper LeveL is the command interpreter 
Lower LeveL is the user mode, i.e executing user-

The system-Library contains routines avaiLabLe to aLL users to 
Lookup a fiLe, access a fiLe for reading or writing. 

The users are advised onLy to access fiLes through streams, 
created by these Library routines, as thi~ is the onLy fiLe-access 
supported by the system. 

The normaL way for users to read/write fiLes is to identify them 
to the system by their names in CurrentDirectory: 

g~~g~~m~gfil~[in,~~!,!~g~J: 
Returns an input-streams S to read the fiLe, identified by 
fn.ext in CurrentDirectory. The vaLue of type must be BYTES or 
WORDS, giving a byte- or word-stream. 
If the fiLe is not found, or if the entry in the directory con
tains a wrong UID, a message is dispLayed by GiveUp{5.1}. 
After reading the fiLe it shouLd be cLosed by CLose[SJ. 

Wcil~H~m~dfil~[fn,~~!,l~g~,~Qg~J: 
Return an output-stream S to write the fiLe, identified by 
fn.ext in CurrentDirectory. The vaLue of type must be BYTES or 
WORDS, giving a byte- or word-stream. 
If a wrong UID entry is found, the routine caLLs GiveUp. 

The precise action of the routine depends of the vaLue of mode: 

OVW CR : if the file exists overwrite it, eLse create the fiLe. 
ADDCR: if the file exists append to it, eLse create the file. 
OVWGU: if the file exists overwrite it, eLse GiveUp. 
AD DGU: if the file exists append to it, eLse G iveUp. 
CREGU: if the file exists GiveUp, eLse create it. 

For a discussion of Reset and CLose to output-streams, the 
reader is referred to {7.4}. 

10.1.1 



-32-

As the reader may have guessed, the names CurrentDirectory, 
MasterDirectory, LoginDirectory and SystemDirectory actually holds 
fd's, pointing to the directories. So in the following when we 
write 'd~r', we mean an fd pointing to a directory. 

bgg~~Q~ir[fD,~~!,girJ: 
Returns a fd for the fiLe identified by fn.ext in directory dir 
(e.g CurrentDirectory) if it is found, otherwise the value 
NOTINDIRECTORY is returned. 

~~!!:!t::Dn(fg): 
returns the fd-block to the free-store{2.1}. 

The fd found by LookUpDir can now be used as argument to the func
tions in section {7.4} to create input- or output-streams S. 

Whenever a stream is created this way, the possibility of 
violating the access-rigths or accessing a wrong-UID file, exist, 
so before using the stream S , the routine 
fh~£~tl~ID~gEi~~[fn,ext,S,msgJ should be called, which in any of the 
two cases displays an error-message and gives-up. 

The (system-)programmer, who wants to go beneath this level for 
accessing files, are referred to [8J 

In the command interpreter mode the system will accept commands 
from the users, which will then be interpreted and executed if 
possible. 
When the system is ready to accept a command it will write two 
periods on the console. 

When a command "com" is typed, the command-interpreter will do 
the following: 

Loo~ up in a set of commands, executed by programs always in 
core. If there is such a command, it will be executed{8}. 

2 Else CurrentDirectory is searched for a file called com.REL. 
If there is such a file it will be loaded and executed. 

3 Else a special dire~tory with system programs, System
Directory, wiLL be searched for com.REL. If there is such a 
file, it will be loaded and executed. 

4 Else the system gives up with the message "File com.REL' does 
not exiSt". 

The way to pass parameters to user-programs is described in [1J. 

The exact format of the commands supplied by the system is given 
in {11.D. 

10.2 



-33-

This section describes aLL the system-programs, the users can 
caLL, via the command-interpreter. 
We start by giving some generaL ruLes for the format of commands, 
and then we describe each of the commands in detaiL. 

The format of a command is 

com p1 p2 p3 ••• pn 

where 
com is the name of the command. 
p1 ••• pn are the parameters for the command. 

com and p1, as weLL as each pair of parameters, are separated by 
or .. , .. or 

The parameter List is terminated by carriage return. 

The parameters are often fiLe names or directory names. There are 
some speciaL ruLes for these. 

If the parameter is a fiLe name or an extension, it can normaLLy 
be written with "wiLd characters", where 

"*" means any string with Length >=0 
II? II mea n san y c h a rae t e r 

Thus for exampLe 

"*" matches any name 
"?a*" matches aLL names with "a" as second character. 
"abc" matches onLy the name "abc" 

The directory given wiLL then be searched for aLL fiLes, where 
both name and extension match those patterns specified in the 
parameters, and the command wiLL be executed for aLL such fiLes. 

If the parameter is a directory, the directory must be specified 
by writing the directory path. 

This is specified with the foLLowing syntax: 

11 .1 



-34-

syntax for dirpath: 

dirpath -> ,., (CurrentDirectory) 
-> startdir {dir-id}* enddir 

startdi r -> 
-> 
-> 
-> 

d i r- i d - > 
enddi r -> 

-> 
di rname -> 

,>, 
, ) , 
{'<'}+ 
em pt y 
di rname ,>, 
d i r- i d 
dirname 
any bcpL-string 

start-search 
MasterDirectory 
LoginDirectory 
An Ancestor 
Current Directory , 

Directory-path exampLe 

~ MasterDirectory 

y--
[-~lr ~E I ~ ... --~-~~g I ~inFDlirectory 

~ CurrentDirectory 

~ 
fig. 11.1. 

To reach each of the directories on fig. 11.1 from Current
Directory the users must type: 
(the number in brackets shows which protection group Current
Directory wiL L be assumed to beLong to) 

A: > (4) or «< (2) 
8: >8 ( 4) or « (2) 
C : >8>C (4) or «C (3) 

D : >8>D ( 4) or ) ( 4) or < (2) 
E: <E (3 ) or )E (4) 
F: (0) 
G: G (1) 

H: G>H (1) 

I: >8>C>1 (4) or «C>1 ( 4) 

11 .1 



-.35-

Before Login, the onLy commands, that can be executed, are 
DS on 
DS of f 
mount 
dismount 
heLp 
Login 

The expLanation of the commands and their formats, as given in 
next section, are aLso avaiLabLe at RIKKE. The user can ·at any 
time issue the command "heLp" to get the wanted information writ
ten on the consoLe. 

In the foLLowing commands the symboLs "{" and "}" mean that the 
parameters between the .brackets are optionaL, and a "*" after a 
pair of brackets means that these parameters can be repeated zero 
or more times. 

11 .1 



format: 

action: 

defaults: 

-36 -

append fn.ext dir {fn-n.ext-n dir-n}* 

If fn.ext is in dir, all files matching the 
fn-n.ext-n's in dir-n's are appended to file fn.ext. 
If fn.ext is not in directory dir, it is created 
before the other file(s) are appended to it. 

If the last directory is omitted, CurrentDirectory 
is assumed. 

restrictions: fn.ext in air cannot be appended to itself. 
Directories cannot be appended. 
fn, ext must be simple names (no *'s or ?'s) 

protection: APPEND-access is necessary to fn.ext in dir. 

format: 

action: 

protection: 

If fn.ext has to be created, APPEND-access is neces
sary to dir. 
COPY-access is necessary to the fn-n.ext-n's. 

assdr fn-1 {fn-2 •••• fn-n}. 

All action is perfor.med in CurrentDirectory. 
One or more symbolic OCODE-files are assembled 
together on the file named ocode.REL, the program 
will ask for the name 'ocode'. 
If the file ocode.REL does not exist, it will be 
created, else overwritten. 
The files to assemble must have extension .SMB, 
generated by option n/N in the BCPL-compiler[1J. 
If {fn-2 ••• fn-n} are omitted, fn-1 can be a 
'wild'-name, else all fn's must be simple names. 

READ-access is neccessary to the .SMB files. 
If the file ocode.REL already exist, WRITE-access is 
necessary, else APPEND-access is necessasy to 
CurrentDirectory. 

11 .2.2 



format: 

action: 

defaults: 

-37-

bcpl fn-1 {fn-2 •••• fn-n}. 

The files to be compiled must be in Current
Directory. 
The action depends on the options given when promp
ted: 

if option n/N is specified, each file is compiled 
into symbolic (not readable) OCODE on a file named 
fn-i.SMB, else each file is compiled into a 
relocatable binary file named fn-i.REL. 

Options: 
t,T generate trace information. 
x,X system words are in CAPITAL-letters. 
r,R : repeat-option, each file can consist of one 

or more segments, s~perated by'.', and they 
are compiled into one file named fn.REL or 

d,D 
fn.SMB. 
If the compiler 
DECLARED" occur, 
of the internal 
e.g. d 2500. 

error "TOO MANY NAMES 
you may increase the size 

name-tabel by specifying 

For further options see [1]. 
If {fn-2 ••• fn-n} are omitted, fn-1 can be a 
'wild'-name, otherwise all fn-i's must be simple 
names. 

Default options: d 2000. 
Generate .REL file without trace information. 
If a get-file isn't found in CurrentDirectory, the 
compiler will look for it in the system-get direc
tory, named >SysUser>Header. 

restrictions: The files to be compiled must have extension .BCPL 

protection: READ-access is necessary to all .BCPL and .GET files 
used. 
WRITE-access is necessary to .SMB and .REL files, if 
they exists. 
If a new file is created, APPEND-access to Current
Directory is neccessary. 

11.2.3 



-38-

format: combine ToFile file-1 file-2 ••• fiLe-j 

action: The fiLe ToFiLe.REL may contain severaL segments of 
reLocatabLe binary code, or it may not exist. 

protection: 

format: 

action: 

protection: 

Each segment is identified by the '$ident "iden
ti fier'" construction in the source-text[1] The com
mand wiLL substitute those segments on ToFiLe.REL, 
which are present in the fiLes fiLe-1.REL 
fiLe-j.REL, with these Latter versions. 
exampLe: 

f i L e-1 

f1. R EL 
f3 • R EL 

f i L e- j : ToFiLe.REL: 

f1 • R EL 
f 2. R EL 
13 • R EL 
f 4. R EL 

The s e g men t s f 1 • R EL and 13. R EL 0 n To F i L e • R EL are ex
changed with the new versions. 
If a fiLe-i is not found, it can be appended. 

COPY-access is necessary to fiLe-1 •• file-j. 
WRITE-access is necessary to ToFiLe.REL. 
If TofiLe.REL has to be created, APPEND-access is 
neccessary to CurrentDirectory. 

commands {fn} 

Gives a List of aLL commands avaiLabLe to the users 
as system-programs in SystemDirectory, either on the 
consoLe or on the fiLe fn.COMM. 

WRITE-access is neccessary to fn.COMM, if it exists. 

11.2.5 



format: 

action: 

defauLts: 

-39-

copy fn1.ext1 di r1 {fn2{.ext2 {di r2}}} 

fn1.ext1 in dir1 wilL be copied to dir2 and given 
the name fn2.ext2. 
If fn2.ext2 aLready exists in dir2, you wiLL be 
asked whether to unLink,deLete or rename the oLd 
fn2.ext2, or give up the copying; if it does not 
exist, it wiLL be created. 

If fn2, ext2 or di r2 is omitted, fn1, ext1 or 
CurrentDirectory is assumed. 

restrictions: Directories cannot be copied. 

protection: COPY-access is necessary to fn1 .ext1. 
If fn2.ext2 has to be created, APPEND-access is 
necessary to dir2. 
Access-rigths needed to unLink,deLete or rename 
fn2,ext2 pLease Look under the commands un
Link,deLete, or rename. 

format: count {device} 

action: 

defauLts: 

Counts the number of free pages on the specified 
device, e.g "UserDisk1". 

If device is omitted, aLL mounted devices wiLL be 
counted. 

11.2.7 



-40-

format: deLete fn.ext {dir} 

action: fn.ext wilL be deLeted (that is: the physicaL file 
wiLL be destroyed, and the entry in dir wiLL be 
removed), or unLinked (that is the entry in dir wiLL 
be removed), depending on the protection. 

defauLts: If dir is omitted, CurrentDirectory is assumed. 

restrictions: Directories can onLy be deLeted, if they are empty. 
A fiLe cannot be unLinked from the OWNER-directory. 

protection: The precise action that wiLL be performed depends 
strongLy of whether dir is user or owner of the 
fiLe, and which access-right dir has: 

format: 

action: 

protection: 

I dir is owner I dir is user 
I of fn.ext I of fn.ext 

I at Least I deLete 
I DELETE-access I the fiLe 
I I 

I not DELETE
I access 

dir path 

I NOTHING 
I 

give a war- I 
I ning before I 
I deLete/unLinkl 

I unLink 
I the file 

The directory found by 'path' becomes Current
Directory. 
The syntax for' path' can be found in {11.1}' 

'path' must be a directory path, and in that path 
LoginDirectory must not be exceeded 

11.2.9 



format: 

action: 

protection: 

format: 

action: 

- 41-

disass fn 

Makes an OCODE disassembLing of the fiLe fn.REL in 
Current Directory on the fiLe fn.DISASS. 

READ-access is neccessary to fn.REL. 
WRITE-access is neccessary to fn.DISASS, if it 
exists. 

di smount {name} 

The discpack named 'name' is 
fiLes on this device are 
system. 

dismounted, i.e. the 
removed from the fiLe-

restrictions: The device hoLding the MasterDisk cannot be dismoun
ted •. 

format: 

action: 

defauLt: 

The device hoLding CurrentDirectory cannot be 
dismounted. 

do fn p1,p2, •••• ,pn 

The fiLe fn.CMD is taken to be a command fiLe with a 
simpLe parameter substitution. 
In fn.CMD each occurence of· IIi is repLaced by pi, if 
i<=n. 

ExampLe: 
The fiLe modify.CMD is: 

e d i t 111 
b c p L 111 

The command 'do modify prog' wiLL edit and compiLe the 
fi Le prog.BCPL. 

If fn.CMD isn't found in CurrentDirectory, it wiLL 
be Looked for in SystemDirectory. 

11.2.12 



format: 

action: 

defauLts: 

-42 -

edit {fn{.ext}} 

The basic function of the editor is described in 
[7], so for a tutoriaL description of the editor, 
and a List of commands, see that description. 

The editor can be run in two modes: 

1. if no parameters are specified, no input-output 
fiLes exists, and they must be specified by com
mands Like: 
'gr','gf' for input and 'gt','gw' for output 

2. the normaL way: 
if the editor is caLLed Like 'edit fn.ext', the 
editor wiLL create a fiLe named fn.BAK,which is a 
copy of the fiLe fn.ext, when editing is over, 
and the fiLe fn.ext wiLL be the edited fiLe. 
If the fiLe fn.ext does not exist, it wiLL be 
created and a notice is given. 
When working in mode 2, aLL the g-commands from 1 
are iLLegaL. 

If you type 'CTRL C, end' when editing, you wiLL 
return to the command interpreter, and nothing has 
happened to your fiLes, except when an output fiLe 
has been cLosed by a new 'gw'. 

defauLt extension for mode 2 is BCPL 

res t ric t ion s: the caL L 'e d i t f n • B fK' i silL ega L • 

protection: To enter a fiLe into the editor, COPY-access is re
quired. 
When working in mode 2, the oLd BAK-fiLe wiLL be 
deLeted regardLess of its protection upon compLetion 
of editing. 
The output-fiLe for the editor must be APPEND/WRITE 
- permitted, depending of how it is specified: 

APPEND-permitted when specified by 'gt', 
WRITE-permitted eLse: in mode 2 and by 'gw'. 

11.2.13 



format: 

action: 

protection: 

format: 

action: 

defauLt: 

-43-

fiLcom 

The program asks for the 2 fiLes to compare. 
In case of a difference, the next 60 characters of 
each fiLe wiLL be Listed on consoLe. 

at Least READ-access is needed to the fiLes to com
pa re. 

fiLedump fn.ext {dir {from {~o}}}{$L} 

The fiLe fn.ext in dir wiLL be dumped: 
Each word from word no. "from" to word no. "to" wi L L 
be Listed as unsigned decimaL, as signed decimaL, as 
two decimaL bytes, octaL, and as two characters. 
If '$L' is specified, the dump of each fiLe wiLL be 
made on the fiLe fn.FILDMP, otherwise on the con
soL e • 

if dir is omitted, CurrentDirectory wiLL be assumed. 
If from or to is omitted start-of-fiLe or end-of
fiLe wiLL be assumed. 

restrictions: directories cannot be dumped. 

protection: at Least READ-access is needed to fn.ext. 
WRITE-access is necessary to the fiLe fn.FILDMP if 
it exists. 

11.2.15 



format: 

action: 

defauLts: 

protection: 

format: 

action: 

-44-

fiLes {fn{.ext{dir{searchdir}}}}{opt1}{opt2}{opt3}. 
The options can be: 

$a/$aLL/$A/$ALL/$ALL 
$L/$List/$L/$LIST/$List 
$s/$sort/$S/$SORT/$Sort 

Makes a List of information on aLL fiLes, whose 
names matches the pattern fn.ext. 
If searchdir is specified, the directory-subtree, 
which has dir as ~oot, wiLL be traversed, and for 
aLL directories, whose name matches searchdir, a 
List wiLL be given too. 
If option aLL is set, the List wiLL contain aLL 
information of that fiLe, eLse a shorter List wiLL 
be given. 
If option List is set, the List wiLL be Listed on 
the file "fiLes.LPT" in CurrentDirectory, eLse it 

• wiLL be Listed on the consoLe. 
If option sort is set, the fiLes wiLL be sorted aL
fabeticaLLy before Listing. 

If fn, ext, di r or searchdi rare 
CurrentDirectory or NONE wiLL be 
NB! in the Last three parameters 
tions wiLL override fn, ext, dir 

omitted, 11*","*11, 
assumed. 
written, the op

or searchdir. 

READ-access is necessary to 'dir'. 
WRITE-access is necessary to 'fiLes.LPT', if it 
exists. 

heLp {item} {$L} 

If 'item' is spe c'i f ied, . aLL he L p- text s for items, 
matching 'item' (wiLd-characters '*' and '? I aL-
Lowed) are Listed, eLse a Lis t of aLL item s, on 
which heLp is ava iLab Le, is given. 

The List is given on the consoLe, or if '$L' is 
specified, on the fiLe 'heLp.LPT' 

11.2.17 



-45-

11·~·1§· iQ~D!.· 

format: 

action: 

11·~·12· iaig· 

format: 

action: 

format: 

action: 

defauLts: 

ide nt 

the path from MasterDirectory to CurrentDirectory 
and from MasterDirectory to LoginDirectory are 
Listed on the consoLe. 

info {aLL} {$L} 

The Latest 'message of the day' is typed. 
If 'aLL' is specified aLL the accumuLated messages 
wiLL be typed too. 
It '$L' is specified the information wiLL be typed 
on the fiLe named 'info.LPT', eLse on the ConsoLe. 

Link fn1.ext1 di r1 {fnZ{.extZ{di rZ}}} 

A Link wilL be made in dirZ to fn1.ext1 in dir1, 
giving the entry in dirZ the new name fnZ.extZ. 
If fnZ.extZ aLready is in dirZ, you are asked 
whether to unLink, deLete, or rename the oLd 
fnZ.extZ, or to give up the Linking. 
If fnZ.extZ is not in dirZ, it wiLL be created. 

If fnZ, extZ, or di rZ is omitted, fn1, ext1, or 
CurrentDirectory wiLL be assumed. 

restrictions: Directories cannot be Linked. 
dir1 and dirZ must not be the same directory. 

protection: READ-access is necessary to fn1.ext1. 
If fn2.ext2 must be created, APPEND-access is neces
sary to dir2. 
Access-rights needed to unLink,deLete, or rename -
pLease Look under the commands unLink, deLete, or 
rename. 

11.2.20 



format: 

action: 

format: 

action: 

-46 -

Login username,password 

The pair username,password is checked 
user, and if so, CurrentDirectory is 
users LoginDirectory. 
If there is any maiL to you, you are 
'heLp mail'. 

Logout 

to be a vaLid 
set to the 

advised, see 

The user is Logged out, and the command interpreter 
enters a speciaL mode, where the onLy LegaL commands 
are: 
Login,heLp,mount and dismount. 

11.2.22 



format: 

action: 

comment: 

-47-

mail 'command' 

The mail-system allows users to send messages to 
each other, i.e. to thei r di rectories. 
The following 6 commands are legal: 

accept 

ty pe 

send us 

reject 

archive 

empty 

accept mail to CurrentDirectory, e.g. 
create a file named MAIL.BOX, and allow 
all users to send mail to you. 
the mailboxes in the directories from 
MasterDirectory to CurrentDirectory are 
typed on Console. 
send a message to the user named 'us'. 
The message is sent to that users 
LoginDirectory if he has a mailbox, else 
nothing will be done. 
leave the mail-system, i.e. delete the 
file MAIL.BOX. 
the current mailbox is appended to the 
file MAIL. ARC, and then emptied. Hence 
MAIL.ARC contains all messages sent to 
you, and it can be deleted at any time 
you want. 
the mailbox is emptied without archiving. 

When a user log's in, he will be advised whether 
there is any mail to him or his fathers. This mail 
can then be read by 'mail type' 

you have to type 'mail accept' to join the mail
system. 

format: mount {unit {name}} 

action: A named device is mounted on a disk-unit, i.e. the 
files on that device are entered into the file
system. 
The program will ask for the missing parameters. 

comment: After normal system-setup, the only devices mounted 
are the System-Disk and the UserDisk1. 
The System-Disk is mounted on unit 0 and the 
UserDi sk1 on unit 2. 

11.2.24 



format: 

action: 

defauLts: 

-48-

move fn1.ext1 di r1 {di r2{'fn2 {ext2}}} 

fn1.ext1 wilL be copied to dir2 with the new name 
fn2.ext2, and then de Leted in di r1 • 
If fn2.ext2 is aLready in dir2, you wiLL be asked 
whether to unLink, deLete, or rename the fiLe, or to 
give up moving. 
If fn2.ext2 is not in dir2, it wiLL be created. 

If dir2, fn2 or ext2 is omitted, CurrentDirectory, 
fn1 or ext1 is assumed. 

restrictions: Directories cannot be moved. 

protection: 

format: 

action: 

di r1 and di r2 must not be the same di rectory (then 
move wouLd be meaningLess). 
Link-fiLes cannot be moved. 

WRITE-access is necessary to dir1 and APPEND-access 
to dir2, and you must have DELETE-access to the 
fiLe, eLse it cannot be deLeted in dir1, and nothing 
wi L L happen. 
Access-right needed to unLink/deLete/rename the oLd 
fn2.ext2 pLease Look under the commands un
Link/deLete/rename. 

newdi r di rname 

a new directory ca~Led dirname wiLL be created as a 
son of CurrentDirectory. This new directory wiLL 
become the new CurrentDirectory. 

restrictions: There must not exist a fiLe (directory) in Current
Directory caLLed 'dirname.DIR'. 

11.2.26 



format: 

action: 

defaults: 

-49-

newuser {di r} 

A new pair of username/password is accepted as login 
to directory 'dir'. 

dir =CurrentDirectory 

restrictions: dir must identify a directory in the tree, having 
current LoginDirectory as root. 

format: 

action: 

protection: 

format: 

action: 

defaults: 

Usernames must be unique. 

oclist fn 

The symboLic OCODE on fiLe fn.SMB (not readable) in 
CurrentDirectory is listed on file fn.OCLIST. 

READ-access is neccessary to fn.SMB. 
WRITE-access is neccessary to fn.OCLIST, if it 
exists. 

print {fn{.ext {dir}}} {op1. •• opt3}. 
The options can be: 

$s/$sort/$S/$SORT/$Sort 
$nh 
$ni 

The files in dir, whose filenames matches fn.ext, 
wiLL be printed on the lineprinter. 
If the option sort is set, the files wilL be sorted 
by name before printing. 
If option ni is set, no index of the printed files 
wiL l be given. 
If option nh is set, no header will be printed. 

If fn, ext, or dir is omitted, "*", BCPL, or 
CurrentDirectory is assumed. 

restrictions: Directories cannot be printed 
files) • 

use the command 

Files with extension REL cannot be printed. 

protection: READ-access is necessary to fn.ext. 

11.2.29 



format: 

action: 

access-rigths: 

-50-

protect fn.ext {prot {dir}} 

the protection of the fiLe fn.ext in dir wiLL be set 
to prot. 
prot must be a 5-digit number, with each digit 
between 0 and 7 (incl.). 
The first digit means the access rights for group 0 
(the owner), the second for protection group 1 and 
so on. 

O=CHANGE-PROTECTION ACCESS. 
1 =DELETEACCESS. 
2=WRITEACCESS. 
3=UPDATEACCESS. 
4=APPENDACCESS. 
5=COPYAC CESS. 
6=READACCESS. 
7=NO ACCESS. 

protection-groups: 

defauLt: 

protection: 

O=the owner-directory. 
1=the ancestors of the owner directory. 
2=the descendants of the owner directory. 
3=those desc. of the owner's father, which are not 

in group 2. 
4=other directories. 

If directory is omitted, CurrentDirectory is as
sumed. 
If protection is omitted, the fiLes wiLL be protec
ted to OO???, where, '?' means unchanged. 

CHANGE-PROTECTION access is neccessary to fn.ext, or 
directory must be owner of fn.ext. 

11.2.30 



format: 

action: 

defaults: 

- S1 -

ptdump {fn{.ext {dir {dumpfile}}}} 

The files matching fn.ext in di r are dumped on 
file dumpfile.MAS in a s pe cia l format, which can 
read by 'ptload'. 
If dumpfile = "pt P II, the files will be dumped 
papertape. 

If fn, ext, di r, or dumpfile are omitted, "*", 
CurrentDirectory or the name of the directory 
assumed. 

the 
be 

on 

"*" , 
are 

restrictions: Directories cannot be dumped. 

protection: Only files of which dir are the owner are dumped, 
and COPY-access is neccessary to these. 

format: 

action: 

defaults: 

ptload {file {device}} 

The directory, specified by 'device' and the direc
tory path from 'ptdump', will be loaded with the 
files on the file 'file.MAS'. 
If the files aLready exists, they wiLL not be 
overwritten, but the file wiLL be read to the fiLe 
'file.NEW'. 
If file = "ptr", the files wilL be Loaded from 
papertape reader. 

file = "ptr". 
device = device for CurrentDirectory. 

11.2.32 



format: 

action: 

-52-

punch fn.ext {dir} 

aLL fiLes matching fn.ext in 'dir' are punched on 
the paper-tape. 

restrictions: directories are not punched 

defauLts: 

protection: 

format: 

action: 

defauLt: 

protection: 

format: 

action: 

defauLts: 

If ext is omitted, '*' is assumed, if di r is omitted 
Current Directory is assumed 

onLy fiLe~ with COPY-access are dumped. 

readde c fn.ext 

Transfers a fiLe from DEC-10 to Rikke, and gives it 
the name fn.ext in CurrentDirectory. 
The transport must be initiated on DEC-10 by 
'copy RIKOUT: = fn.ext ( II if not an ASCII-fiLe)'. 
If the fiLe exists on Rikke, it is overwritten. 

ext = "BCPL" 

WRITE-access is neccessary to fn.ext if it exists. 

readptr fn.ext {dirf 

A fiLe is read from papertape-reader, 
name 'fn.ext' in directory 'dir'. 
If fn.ext aLready exists in dir, you 
whether to unLink,deLete or rename the 
or give up the reading; if it does 
wiL L be created. 

d i r CurrentDirectory. 

and gi ven the 

wiLL be asked 
oLd fn.ext, 

not exist, it 

restrictions: ext 'DIR' ilLegaL. 

protect fon: If you want .to create fn.ext, APPEND-access is 
necessary to di r. 
Access needed to unLink,deLete or. rename fn.ext
pLease Look under the commands unLink, deLete, or 
rename. 

11.2.35 



format: 

action: 

defaults: 

protection: 

format: 

action: 

default: 

restrictions: 

protection: 

format: 

action: 

default: 

protection: 

-53-

remwuid {fn{.ext {dir}}} 

the entry fn.ext is removed from dir, if the entry 
is Wrong-UID. 

Remove *.* in CurrentDirectory with wrong UID. 

W R I T E - a c c e s sis n e c e s sa r y to' di r' • 

rename fn1.ext1 fn2{.ext2 {dir}} 

the entries matching fn1.ext1 in di r are renamed to 
fn2.ext2. 

if ext2 or dir is omitted, ext1 or CurrentDirectory 
will be assumed. 

either f n1 or ext1 must be a simple name (no *'s or 
? ' s) • 
If f n1 is extended, fn2 has to be "*" (meaning the 
same name). 
If ext1 is ext ended, ext2 has to be "* II. 

UPDATE-access is necessary to 'dir' to rename en
tries. 

senddec fn{.ext} 

The file fn.ext in CurrentDirectory is send from 
Rikke to DEC-1D. 
The transport must be initiated on DEC-1D by 
'copy fn.ext = RIKIN: ( II if not an ASCII-file)'. 
If the file exists on DEC-1D, it is overwritten. 

ext = "BCPL" 

READ-access is neccessary to tn.ext 

11.2.38 



-54-

format: sort {dir} 

action: 

defauLts: 

protection: 

The entries in the directory wiLL be sorted aL
phabeti caL Ly. 

dir = CurrentDirectory 

UPDATE-access is necessary to 'dir' 

format: time 

action: current date and time is typed on ConsoLe 

format: 

action: 

comment: 

tty command 

the commands specifies working-mode for the consoLe. 
LegaL command are: 

ctrLon : controL-characters are output as controL
characters. 

ctrLoff: controL-characters are typed as ACH, where 
CH=the character+64. 

the normaL working-~ode is ctrLon 

11.2.41 



format: 

action: 

defauLt: 

-55-

type {fn{.ext {dir}}} 

The fiLes matching fn.ext in dir wiLL be typed on 
the consoLe. 
Striking CTRL E whiLe Listing, wiLL skip to next 
file. 

if fn is omitted, you wiLL be asked to prompt the 
filename. 
if ext or dir is omitted, BCPL or CurrentDirectory 
wilL be assumed. 

restrictions: Directories cannot be typed. FiLes with extension 
REL cannot be typed. 

protection: 

format: 

action: 

defauLts: 

At Least READ-access is needed to fn.ext 

unLink fn.ext {dir} 

The entries matching fn.ext is removed from dir, but 
the fiLe itseLf wiLL not be deLeted. 

If dir is omitted, CurrentDirectory is assumed 

restrictions: directories cannot be unLinked. 
OWNER-fiLes cannot be unLinked. 

protection: WRITE-access is necessary to 'di r'. 

format: users 

action: List aLL usernames on the consoLe. 

11.2.44 

• 



-56-

This chapter contains an aLphabeticaL List of aLL gLobaL 
and variabLes, which may be neccessary or just usefuLL 
programs. Each item is briefLy described, or an reference 
to a description eLsewhere in this or other manuaLs. 

routines 
for user
is given 

The Library routines are incLuded in user-programs by using the 
directive get "SysHdr" in the program. 

GLobaLs 100-399 are for user-programs. 

505 AddBytesToFiLeCfdJ {7.4} 
435 AddToFiLeCfdJ {7.4} 
480 ALL 0 c In tEn try C J { 5 .1 } 
418 BytesFromFiLeCfdJ {7.4} 
419 BytesToFiLeCfdJ {7.4} 
511 CheckNamedFiLe[f,e,fd,textJ {10.1.2} 
497 CLockCSJ Outputs current date and time to 

character stream S as a text. 
20 CLoseCSJ {7.1} 
524 ConcatenateCs1,s2J Returns the concatenation of string s1 

to s2, neither s1 or s2 is returned. 
44 ConsoLe {7.3} 
529 CopyFSCIS,OSJ EquivaLent to 

50 

500 

69 
53 
21 
72 

441 
75 
416 
71 

445 
432 
8 
41 
31 

43 
39 

CopyStringCs1,s2J 

CopyVec[v1,v2,nJ 

CurrentDirectory 
DiscardCfdJ 
Endof[SJ 
EqS[s1,s2J 

FindHeading[ •••• J 
G i v e.U pC F, p 1 , •• p 1 2 J 
In From F i L e [f d J 
In i tV e c C n, aO , ••• an J 

InsertCUCCCJ 
IntCodeFromRaw[SJ 
InterruptCJ 
Keyboard 
LeveL[J 

LineBuffer 
LoadCfn,di rJ 

$( whiLe not Endof[SJ 
do OutCOS,NextCISJJ 

$) 
Copies string s1 to s2. s2 must be aL
Located before the caLL. 
Equi va Lent to 

$( f9r i=O to n-1 do v2!i:=v1!i $) 
{9.D 
[8J 
G .1} 
Compares BCPL-strings s1 and s2 and 
returns true/faLse 
C8J 
{5.1 } 
G.O 
CaLLs NewVec(n), and initiaLises the 
vector to the foLLowing n+1 parameters, 
n< =30. 
H.D 
G.D 
{6 .2} 
G .2} 
YieLds current stack-frame pointer 
(P register), used by LongJump e.g 
G.D 
The file f n • R EL i n d ire c tor y d i r i s 
Loaded, dir=fd of a directory. 

12 



32 

59 
58 
27 
438 
36 
17 
499 
80 
87 
525 
450 

451 

18 
520 
84 
83 
81 
82 
85 
86 
80 
417 
530 

66 

46 
92 

95 

LongJ ump[p, iJ 

- 57-

Jumps to LabeL i at LeveL p. In con
junction with LeveL, LongJump may be 
used to return from nests of routine 
caLLs, without invoking the Run
mechanisme. 

LookUpDir[fn,ext,dir] {10.1.2} 
MakeNewFiLe[ ••••• ] [8] 
Map[n] Same effect as the map command{8} 
MaxVecSize[] {2.1} 
NewVec[n] {2.1} 
Next[S] {7.1} 
NextBLock[S,v,n] {7.6} 
NextCh[S] {7.8} 
NextN[S] {7.8} 
NextS[S] {7.8} 
OpenReadFiLe[fn,ext,type,dir] . 

ReadNamedFi Le[fn,ext, type]{1 0.1.1} 
OpenReadFiLe[fn,ext,type,CurrentDirectory] 

OpenWriteFiLe[fn,ext,type,mode,dir] 

Out [S,x] 
OutBLock[S,v,n] 
OutD[S,n,d] 
OutF[S,F,p1 ••• p12] 
OutLine[S] 
OutN[S,n] 
OutO [S, n] 
OutOct[S,n,d] 
OutS[S,s] 
OutToFiLe[fd] 
Pac k [ From, To, n] 

PackString[v,s] 

Printer 
Prompt[S] 

PromptN[S] 

WriteNamedFiLe[fn,ext,type,mode] = 
OpenWriteFiLe[fn,ext,type,mode,CurrentDirector 
{7 .1 } 
{7.6} 
{7.8} 
{7 .8} 
EquivaLent 
{7.8} 
{l.8} 
{7.8} 

{7.8} 
{l.U 

to Out[S,'*n'] 

The vector From contains one byte in 
each rigth-haLfword of From!O to 
From!(2*n-1). These bytes are packed in 
vector To!O to To! (n-1) with first byte 
in the Left byte, second byte in the 
rigth byte, and so on. 
Pack does not aLLocate vector To. 
The vector v contains characters in v!1 
through v!(v!O)). These characters are 
packed as a BCPL-string in vector s. 
Notice that PackString does not aL-
Locate vector s. 
{7.3} 

EquivaLent to 
$( 

$) 

Out S[ConsoLe, S] 
Reset[LineBuffer] 
resuLtis ReadS[] 

EquivaLent to 
$( 

Out S[ConsoLe, S] 

12 



45 
42 
405 
94 
431 
433 
444 
19 
473 
447 
454 

35 
24 
1 
30 
25 

74 
498 

33 
531 

67 
410 
437 
429 

Ptp 
P tr 
PutBack[S,x] 
ReadN[] 

-58-

Reset[LineBuffer] 
resuLtis ReadN[] 

$) 

<7.2} 
G.V 
<7.1 } 
<7.8} 

ReadNamedFiLe[fn,ext,type] {10.1.D 
ReadS[] G .8} 
RemoveCUC[C] {4.1} 
ReseHS] G.1} 
ReturnFD[fd] {10.1.V 
ReturnHeading[h] [8] 
ReturnString[s] EquivaLent to 

ReturnVec[v,n] 
Run[routine,pvec] 
Start[ ••• ] 
S top [ F, p1 , ••• p1 2] 
StopGiveUp[F,p1 •• p12] 

ReturnVec[s,«s!O) rshift 8)/2] 
\2.1 } 
{3.1 } 
[1] 

{5.D 
EquivaLent to 
$( 

$) 

Stop[F,p1, •• p12] 
GiveUp["cannot continue"] 

G.n StreamError[] 
Time[d,m,y,h,m,s,t] 

UnLoad[ibLock] 
Unpack[From,To,n] 

Return day, month, year, hour, second 
and tenth-seconds in the Lv-parameters. 
{3.1 } 

UnpackString[s,v] 
WordsFromBS[S] 
WordsToBS[S] 

Reverse of Pack: The n words in vector 
From!O to From!(n-1) is unpacked with 
one byte rigth justified in each word 
of To!D to To!(2*n-1). 
Unpack ,does not aLLocate vector To. 
Reverse of PackString 
G .3} 
<7.3} 

WriteNamedFiLe[fn,ext,type,mode] {1 0.1 .D 

12 



-59-

The onLy devices attached to the system which provide information 
in LegibLe characters are the consoLe and the Line printer. Both 
of these have an ASCII character set (the printer with some minor 
oddities). The internaL character code used in the system is 
ASCII, in the foLLowing sense: 

1. The codes 32-127 have standard ASCII interpretations as given 
in {13 .D. 

2. The codes 9-13 are format codes which are output as foLLows (by 
ConsoLe and Printer{7.3}): 
9 : ('*t') tabuLator, so many spaces that the number of charac-

ters on current Line ,is divisibLe by 10. 
10: ('*n') car return foLLowed by Line feed. 
11: empty 
12 :('*p') car return foLLowed by form feed, on the consoLe 

this is ten Line feeds. 
13: car return onLy. It is not possibLe to input this character 

from the keyboard, since car return is immediateLy conver
ted to '*n'. In this fashion the return key receives its 
most naturaL interpretation, and texts in internaL ASCII 
onLy contain one character per newLine. 

3. Other codes have no meaning (are iLLegaL). 

Texts created in the editor[7] wiLL be in internaL ASCII. Existing 
ASCII text, e.g. on imported paper tape, read into the editor, may 
be converted to internaL ASCII by using the gf command to seLect 
in p ut • 

The Keyboard stream can deLiver any vaLue in the range 0-127 (ex
cept 13 as described above, and the controL characters described 
in {5.1}). This is utiLized by LineBuffer, and user programs may 
aLso use the controL characters (refer to DeLta Data manuaLs). 

The ConsoLe and Printer streams both mask off parity bits, treats 
codes 32-127 as ordinary characters, and treat codes 9-13 ac
cording to the above description. Printer ignores any other codes, 
whereas ConsoLe passes them on. Thus the controL characters for 
the DeLta Data screen may aLso be used on output, but a switch can 
cause the them to be output as LegibLe characters on the screen. 

The stream function IntcodeFromRaw{7.3} is used to convert ASCII 
texts which contain parity bits or characters unknown in the in
ternaL code to internaL ASCII. It creates streams which mask off 
parity bits and then fiLters iLLegaL characters. 

13 



-60-

1~·1· !.b~ ~Hn £b~r:~f!~r: fQ9~· 

The foLLowing tabLe give s the de c i ma L vaL ue s and graphics of the 
characters avaiLabLe on the R1KKE impLementation of B CPL. 

0: 32 : SPACE 64 : @ 96 : 
1 : 33: 65: A 97 : a 
2 : 34: 66 : B 98: b 
3 : 35: # 67 : C 99: c 
4: 36 : $ 68: D 100 : d 
5 : 37 : % 69: E 1 01 : e 
6 : 38: & 70 : F 102 : f 
7 : BELL 39: 71 : G 103 : g 
8 : BACKSPACE 40: 72 : H 104: h 
9: TAB 41 : 73: I 105 : 

10: NEWLINE 42: * 74: J 106 : j 
11 : 43 : + 75: K 107 : k 
1 2: NEWPAGE 44: 76: L 108: L 
13 : CR 45 : 77 : M 109: m 
14: SO 46 : 78: N 110: n 
1 5: S1 47 : / 79: 0 111 : 0 

16 : 48 : 0 80 : P 112: p 
17 : 49: 1 81 : Q 113 : q 
18: 50 : 2 82 : R 114: r 
19: 51 : 3 83 : S 11 5 : s 
20: 52 : 4 84: T 11 6 : t 
21 : 53 : 5 85: U 117 : u 
22 : 54 : 6 86 : V 118: v 
23 : 55: 7 87 : W 11 9: w 
24: 56 : 8 88: X 120 : x 
25: 57 : 9 89: y 1 21 : y 
26 : 58 : 90 : Z 122 : z 
27: ESC 59: ; 91 : [ 1 23: { 

28: 60 : < 92: \ 124 : I 
29: 61 : 93 : ] 125 : } 

30 : 62 : > 94: A 126: 
31 : 63: ? 95: 127 : DEL 

13 .1 



-61-

The procedure to Deadstart both RIKKE and MathiLda is given here. 
It is assumed, that power is on, on both RIKKE, WideStore, MathiL
da and the Disc-drives. 

1) press STEP on RIKKE controL paneL. 

2) insert the smaLL deadstart tape (usuaLLy bLue) in 
Re2000, and press RESET. 

3) press DEADSTART button on RIKKE controL paneL. 
Now the tape wiLL be read in. 

4) if you want to use defauLt deadstart, type anything but 
'no' when promted on TTY, eLse contact system-program
mers. 

5) Login 

1) press STEP on MathiLda controL paneL. 

2) press DEADSTART-button. 

If the machines won't deadstart, it may heLp to power them down 
and up again. 
NOTE: This must onLy be done to MathiLda, WideStore and RIKKE. 
P~~~ring the disks down and up must be Left to system-programmers 
or technicians. 

MathiLda must not be powered up after RIKKE is deadstarted, as 
this wiLL cause WideStore to start strange bLock-tranfers. 

14 



-62-

[1]: Jens Kristian Kj~rgaard and Ib HoLm S~rensen: 

The RIKKE-BCPl compiLer 
DAIMI MD-36, Augu st 1980 

[2]: J.E.Stoy and C.Strachey: 
An experimentaL Operati ng System for a SmaL L Computer. 
part 1: GeneraL PrincipLes and Structure. 
Computer JournaL, VoL 15 (1972), Number 2, pp.117-124 

[3J: Part 2 of [2J: Input/Output and FiLe System. 
Computer JournaL, VoL 15 (1972), Number 3, pp.195-203 

[4J: OLe S~rensen: 
The emuLated OCODE Machine for support of BCPl. 
DAIMI PB-45, Apr i L 1975 

[5J: Eric KresseL and Ejvind lynning: 
The lIO-nucLeus on RIKKE-1. 
DAIMI MD-21, October 1975 

[6J: J~rgen Staunstrup: 
A description of the RIKKE-1 system. 
DAIMI PB-29, May 1974 

[7J: Jens Kristian Kj~rgaard and Ib HoLm S~rensen: 

The RIKKE editor 
DAIMI MD-37, August 1980 

[8J: FLemming Wibroe og Peter S~hou: 
Design og impLementation af et fiLsystem for RIKKE. 
DAIMI internaL paper, May 1979 

[9J: E.I.Organi ck: 
Computer System Organisation. 
Academic Press, New York, 1973 

15 



Micro 
Archives 
4-55 

Wibroe, Flemming. 
The RIKKE BCPL system / by Jens Kristian 

Kjoergard and Flemming Wibroe.-- Aarhus, 
Denmark: Computer Science Department, 
Aarhus University, 1980. 

(DAIMI; MD-38) 

I. Joint author. II. Title. 


