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Chapter 1
INTRODUCTION

This book explains how an assembly language program | COMBINATORIAL
within a microcomputer system can replace combinatorial | LOGIC

logic — that is, the combined use of ‘‘off-the-shelf”’, non-
programmable logic devices such as standard 7400 series digital logic.

If you are a logic designer, this book will teach you how to do your old job in a new
way — by creating assembly language programs within a microcomputer system.
If you are a programmer, this book will show you how programming has found a
new purpose — in logic design.

This is a “"how to do it"’ book; as such, it has to become very specific, and so a
particular type of microcomputer, the 280, is referenced directly.

Companies manufacturing these microcomputers are

ZILOG, INCORPORATED
10460 Bubb Road
Cupertino, California 95014

MOSTEK, INCORPORATED
1216 West Crosby Road
Carrollton. Texas 75006

WHAT THIS BOOK ASSUMES YOU KNOW

This book is a sequel to An introduction to Microcomputers, which was a single
volume in its first edition but is two volumes in its second edition.

An_Introduction to Microcomputers describes microprocessors and microcom-
puters conceptually; it does not address itself to the practical matter of imple-
menting a concept. This book addresses the practical matter of implementation.

In that this book is a sequel, it makes a single assumption — that you have read,
or otherwise understand, the material covered in An Introduction to Microcom-
puters. However, before launching into a real design project, you will need vendor

literature that specifically describes the devices you have elected to use.

Note in particular that hardware and timing are not described in this book, either
for the Z80 CPU or any other microcomputer device: sufficient information may be
found in An Introduction to Microcomputers, Volume Il — Some Real Products.

The Z80 instruction set is described in Chapter 6, since programming is what this
book is all about.

UNDERSTANDING ASSEMBLY LANGUAGE

Assembly language instructions are the transfer functions of a microcomputer
system; taken together, they constitute an “instruction set’”’, which describes
the individual operations which the microcomputer can perform.

You define the events which must occur serially within the microcomputer
system — as a sequence of instructions which, taken together, constitute an as-
sembly language program.



In reality, understanding what individual instructions do within a microcomputer
system is very straightforward; it is one of the simplest aspects of working with
microcomputers. Yet, it unduly terrifies users who are new to programming. If that
includes you, a word of advice — forget about mnemonics and instruction sets;
take instructions one at a time as you encounter them in this book. When you do
not understand what an instruction is doing, look it up in Chapter 6.

The spectre of ‘‘programming’’ will haunt you only if you let it.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
boldface type until you reach a subject about which you want to know more, at which
point start reading the lightface type



Chapter 2
ASSEMBLY LANGUAGE AND
DIGITAL LOGIC

THE DESIGN CYCLE

Any product that is to be built out of discrete digital logic compo- § DIGITAL
nents will go through a well-defined design cycle. LOGIC

Let us assume that the product has been defined — from DESIGN
. , . X CYCLE
marketing management’s point of view.

You are presented with a product specification which identifies
necessary product performance and characteristics; your job is to deliver a viable
design to manufacturing. The design cycle will proceed as follows:

Begin Prepare an overall system L
9 A block diagram i

Draw a detailed logic
diagram for each lagic

block
Have technician build a Correct detailed logic
breadboard @ diagram

v

Test the logic on the
breadboard

Are

problems

severe
?

Build pre-production
prototypes

[

Sell limited quantities
of prototypes

Rigorously test pratotype

Daes it
still work
?

Lay out printed circuit
cards

1

Complete design of final
product
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There is an expensive and slow iterative loop in any digital logic design cycle; as
illustrated above, it consists of these steps

- Redraw logic

- Build a new breadboard

- Test the breadboard for logic errors, technician errors, or faulty components
. This iterative loop makes combinatorial logic design slow and expensive — not only

during the initial design phase, but even more so when you subsequently decide to
modify or enhance the product

What happens when you start using microcomputers? First } MICROCOMPUTER
of all, a portion of your logic vanishes into a “'black box" — } LOGIC DESIGN
which is the microcomputer system: : CYCLE

: External

Microcomputer
System

'Logic

Your first step:

Prepare an overall

system block diagram <
. must now-be broken out as follows:
E X Divide logic into For external logic
or microcomputer microcomputer prepare an
system, select e B overall logic -

system and
external logic block diagram

v v

Partitioning your application into a microcomputer system and external digital logic
may look like a difficult proposition — if you do not understand what the microcom-
puter system can do

device configuration

In fact, once you have a microcomputer in your product, economics over-
whelmingly favor making the ’black box’* assume as many tasks as possible; you
must justify the existence of every single external logic gate.

Remember, memory comes in finite increments. In order to expand the logic imple-
mented within the microcomputer system, you may simply have to write additional in-
struction sequences that will reside in memory which would otherwise be wasted;
adding program memory. for that matter, costs very little
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Also, compared to the cost of digital logic development, microcomputer logic develop-
ment is quick and inexpensive. A typical microcomputer system development cycle
may be illustrated as follows:

BEGIN
B AE—
For microcomputer Divide logic into
system, select device - ——] microcomputer system
configuration and external logic

y

Prepare a flow chart for
microcomputer program

Y

Write source program
using Editor

—

Assemble source
program using
Assembler

y

Debug source program

NO

Does it work?

Are problems severe?

For pre-production
prototypes, create
programs in PROM

Y

Integrate into external logic Mark corrections onto
development cycle. If product program flow chart
volume permits, PROM
programs will finally become ' -
ROM chips ;

Edit eorrections into
source program =

e |




There are still iterative loops in the microcomputer development cycle illustrated above,
but, compared to digital logic development, less time and expense are associated with
microcomputer development cycle iterative loops.

Every microcomputer is supported by a development system. Characteristics and
operation of these development systems vary markedly from one company to the next;
however, they all have these capabilities:

1) You can simulate the microcomputer system you have configured without
necessarily creating a breadboard

2) You can execute a resident editor program to create your | SOURCE
source program. Remember, a sequence of assembly § PROGRAM
language instructions is referred to as a “Source Program”.

3) You can assemble the source program right at the develop- [ OBJECT
ment system to create an object program. Remember, the § PROGRAM
source program becomes a sequence of binary digits (referred
to as an object program) before it can be executed.

4)  You can conditionally execute the object program to make sure that it works

Using a typical microcomputer development system, you can go through several
major development cycles in a single day, where each development cycle might
have taken one or two weeks in a total digital logic implementation. Within a
single development cycle you can make many program corrections, in less than a
minute you can make a simple correction, equivalent to adding or removing a gate (or
MSI function) from a digital logic breadboard.

SIMULATING DIGITAL LOGIC

OK, so logic must eventually be separated into that which is within a microcom-
puter system and that which is beyond the microcomputer system.

We are going to have to address two aspects of this logic separation:

1) Based on the ability of assembly language to simulate digital logic., we must
develop some simple criterion for estimating what a microcomputer system
can do-and what it cannot do.

2) We must create a program to implement the logic functions which have been
assigned to the microcomputer system. Unfortunately, there are innumerable
ways of writing a microcomputer program. Once you have mastered the concept of
using instructions to drive a microcomputer system, the next step is to learn how
to write efficient programs:

We will begin by describing simple digital logic simulation. This is a necessary
beginning because there are some fundamental conceptual differences between digital
logic and microcomputer programming logic.
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MICROCOMPUTER SIMULATION OF
A SIGNAL INVERTER

Suppose you want to invert a single signal:

1 A Y 0
or or
[¢] 1
Y=A
In the interests of developing good habits from the start, we will il- | FLOW
lustrate the signal inverter with the following logic flowchart: CHART
Input signal

to be inverted

]

Invert signal

¥

Output inverted
signal

Although you would never use a microcomputer simply to replace a signal inverter, it is
still worthwhile examining how it could be done
A MICROCOMPUTER EVENT SEQUENCE

Recall that Z80 microcomputers have the following CPU | CPU
registers: REGISTERS

Program Status Words

Primary Accumulators

al»|m

Secondary Accumulators/Data Counters B’

Secondary Accumulators/Data Counters D’

clmlols]n
~im

Secondary Accumulators/Data Counters H*
SP Stack Pointer

PC Program Counter

IX Index Register X

Y Index Register Y

\Y% Interrupt Vector

R Memory Refresh Counter

2-5



This single instruction:
CPL. ;COMPLEMENT ACCUMULATOR

when converted into object code and executed, inverts all
eight bits of the primary Accumulator. But that does not dupli- -

cate the inverter. First, one binary digit of the Accumulator must be selected to repre-
E sent the signal being inverted. But which one?

Having decided which binary digit. how does it reach the Ac- | DATA SOURCE
cumulator in the first place? And, once inverted, how does the | AND
inverted bit become a signal again? DESTINATION

If the CPL instruction object code must be executed in order to | PROGRAM
perform the actual inversion, how and when does the object § TIMING
code reach the CPU? Clearly, execution of this instruction
must be timed to occur after the binary digit to be inverted has
reached the Accumulator.

Steps needed to implement an inverter using a microcomputer may be illustrated
by expanding our flowchart as follows:

Input
Signal

¥

Convert to
binary digit

Data/Signal
* Source
Determination

Load into
Accumulator

________ v__._...._.___._.-

Load and execute Transfer
CPL instruction Function

Qutput from
Accumulator

Data/Signal
v Destination
Determination
Convert to
logic signal
Output
Signal
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In the illustration above, pay most attention to the division of the problem into
these three phases:

1) Data/signal source determination. We identify the data which is to be operated
on. This data is transferred to a location out of which it can be accessed by the
microcomputer Central Processing Unit ({CPU).

2} Transfer function execution. The actual operation which must be performed on
the source data will be referred to as a ““transfer function”.

3) Data/signal destination determination. The data or signals, having been subject
to the transfer function, must now be transferred to some destination.

We will now generate an instruction sequence to implement the three phases of
the inverter simulation illustrated above.

IMPLEMENTING THE TRANSFER FUNCTION

The CPL instruction inverts every bit of the Accumulator. BIT DATA

The CPL instruction, therefore, does not specify which bit of
the Accumulator represents the signal to be inverted. This specification is implied
by the way in which data is input to and output from the microcomputer system.

DETERMINING DATA SOURCES AND DESTINATIONS

How will Accumulator data be input to and output from the microcomputer
system? In answering this question, we touch on one of the fundamental
strengths (and complexities) of microcomputers — their flexibility.

The input signal and the inverted output signal are just what § EXTERNAL LOGIC
their names imply — they are signals. But. to the microcom- | AS THE SOURCE
puter system they are “external logic”. Information transfers | OR DESTINATION
between externgl logic and the microcomputer vsystem are. I INPUT/OUTPUT
referred to generically as Input/Output {or 1/0). During any pro-
grammed /0 operation, recall that the microcomputer is
master and external logic is slave. This means that the microcomputer must indicate
the direction of the /O operation (input or output), and must identify the external logic
being accessed.

External logic might decode a specific memory address as an ena- J1/0 IN

ble strobe, so that I/0 is handled as though it were a memory read | MEMORY
or write. Suppose the label INVD is being used in the assembly | ADDRESS
language source program to identify the signal being inverted. | SPACE
This is the instruction sequence which will reproduce the sig-

nal inverter:
LD AINVD)  ;LOAD ACCUMULATOR FROM INVD
CPL ;COMPLEMENT THE ACCUMULATOR
LD (INVD).A  ;STORE ACCUMULATOR CONTENTS TO INVD

In terms of microcomputer devices, Figure 2-1 shows the microcomputer con-
figuration implied.

When the LD A,(INVD) instruction is executed, Address Decode Logic” causes “"Select
Logic” to transmit the “Data In" signal to the Data Bus.

There are eight Data Bus lines; the number of the line to which the ‘'Data In’’ sig-
nal is connected becomes the significant bit number within the Accumulator.
When the LD A.(INVD) instruction has completed execution, the contents of the Data
Bus will be in the Accumulator.

Next, the CPL instruction is executed. This instruction causes every bit of the Ac-
cumulator to be complemented.



ROM
Z80 or
CPU RAM
Memory
DO - D7
Significant
Data Bus (8) ~afi— Data Bus

line

Controt Bus (6)

\/ I

Address Bus (16)

Address
Select
Logic e Deche
Logic

v 4

Inverted  Data
Data In
Out

Figure 2-1. Configuration for Memory-Mapped 1/0 Addressing

When the LD (INVD),A instruction is executed, the contents of the Accumulator
are output to the Data Bus. “Address Decode Logic” then causes “Select Logic” to
output the contents of a single Data Bus line — which becomes the inverted "Data
Out” signal.

Because the "‘Select Logic’’ has ‘‘Data In”’ and '‘Data Out’’ signals connected to
the same line of the Data Bus, "'Data OQut’’ is the complement of ‘‘Data In”’, and
the signal inverter has been simulated.

ROM or RAM memory must be present in the microcomputer system, because the
object codes for the three instructions must be stored in and fetched out of
memory.
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Consider object code in detail. The three source program in- § OBJECT CODE
structions become object code as follows: INTERPRETATION

PROGRAM
MEMORY

LD A(INVD) =i 3A > Control signals are output on Control Bus. Ad-
dress decode logic receives these signals and
triggers Data in to select logic.

XX

=

CPL e 2F o> COmMplement Accumulator

\

LD (INVD), A =iz 32 prmeme—mt———{> Control signals are output on Control Bus. Ad-
dress decode logic receives these signals and
XX } triggers Inverted Data out from select logic.

YY

16-bit address, represented by YYXX, output
on Address Bus. Address Decode logic
decodes just one 16-bit combination as a
“'select true”.

The program memory addresses of the bytes within which the object codes are stored”
are not important. However, no memory byte, ROM or RAM. can have the address repre-
sented by YYXX, since external logic is selected by this address.

Observe that the two bytes of the 16-bit address YYXX are reversed when stored in
memory. There is nothing very significant about this inversion, it is just the way Z80
devices were designed.

Now suppose that communication with external logic occurs 1 1/0 VIA
via an 1/0 peripheral interface device. I/G PORTS

In assembly language source program instructions, the label
INVD will now identify an 1/0 port. This is the instruction sequence which
reproduces the signal inverter:

IN A.INVD}  INPUT TO ACCUMULATOR FROM PORT INVD
CPL .COMPLEMENT THE ACCUMULATOR
ouT (INVDLA  OUTPUT ACCUMULATOR TO PORT INVD

in terms of hardware, Figure 2-2 shows the microcomputer configuration implied.

All we have done by adding the Z80 Parallel 1/ device is provide the "'Address
Decode’”” and ‘Select Logic’’ needed by the ‘‘Data In”’ and inverted “'Data Out’’
signals. Now the particular bit which is significant will be determined by the Z80 PIO
pin to which the “Data In” and inverted "Data Out” signals are connected. In turn,
these pins will be determined by the mode in which the Z80 PIO is used

The fact that quite a few options are available to you when using the Z80 PIO is of no
immediate consequence, in that it will confuse your early understanding of what as-
sembly language programming is all about We will therefore ignore Z80 PIO mode-
control instructions, and simply assume that the appropriate mode control has been
selected
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Z80
CPU

ROM
or
RAM

Memory

DO - D7

ININON

Data Bus (8)

Control Bus (6)

Address Bus {16)

V2V,

280
PIO

i '

Data in Inverted Data out

Figure 2-2. Configuration for I/0 Space /0 Addressing

In this case, the object code for the three instructions is in-

OBJECT CODE

terpreted as follows: INTERPRETATION
PROGRAM
MEMORY
IN A{INVD) =it} DB e 780-PIO decodes control signais from the CPU
AN and triggers Data in.
PP '\
CPL 2F _K_—_> Complement Accumulator
OUT (INVD)A —i D3 p—eemememeee > 780 PIO decodes control signals from the Cr
\ and triggers Inverted Data out.
PP
1/0 port number, output on lower 8 lines of
Address Bus.
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Once again, addresses of the program memory bytes within which the above object
codes are stored will not be important

Observe that we are complementing every bit of I/0 ‘port INVD, § I/O PORT
even though only one bit corresponds to the signal being inverted PIN SELECT

Suppose pin 4 alone must be inverted:

7 6 5 4 3 2 1 0 -a— Bit No.

LLI l l | l l ] 1/0 Port INVD

> signal
to be
inverted

We can use a technique known as “masking” in order to inverta f BIT
single 1/0 port pin, leaving all other pins alone In this instance, § MASKING
masking may be illustrated as follows:

Use mask to
Invert isolate bit 4

I’MQIYIYIYIYIYIYI*’I&JOI0|Y|o|010 o]
D efx [x [x] x]x] 44——>h<lxlxlil><|x!xm

={x[x[x]o [x[x[x]x]

Use mask to
isolate bits
7,653,210

In the illustration above, X represents any binary digit; X represents its complement

The following instruction sequence will invert pin 4, leaving all other pins as they
were:

IN A.INVD})  INPUT TO ACCUMULATOR FROM /0 PORT INVD
CPL .COMPLEMENT ACCUMULATOR

AND 10H ISOLATE BIT 4

LD B.A .SAVE IN REGISTER B

IN A.INVD)  .INPUT TO ACCUMULATOR FROM 1/0 PORT INVD
AND OEFH .CLEAR BIT 4

OR B .OR A WITH B

ouTt (INVDLA  .OUTPUT ACCUMULATOR TO I/O PORT INVD

H, as the last character in the operand field, specifies a hex- HIN
adecimal; immediate data value. Thus, OEFH represents the bin- | OPERAND
ary value FIELD

Hexadecimal numbers beginning with the characters A through F } LEADING
are preceded by a O to prevent the assembler from mistaking the § ZERO
numbers for variable names




In terms of registers’ contents, this is what happens when the above instruction se-
quence is executed {again X represents any binary digit)

1/0 Port Accumulator Register
B
3 XXX XXXXX ?
: IN A(INVD) XXX XXX XX == X X XXX XXX ?
: CPL XXX XXXXX XXXXXXXX ?
i A00010000
! AND  10H XXX XXX XX 000X0000 ?
LD BA XXXXXXXX 000X0000 —=000X0000
IN A,(INVD) XXXXXXXX —= XX XXX XXX 000X0000
A11101111
AND  OEFH XXXXXXXX XXX0XXXX 000X0000
vV 000OX0000 W\
OR B XXX XXXXX XX XXX XXX 000X0000
OUT  (INVD)A XX XXX XX X XXXXXXXX 000X0000
The procedure given above demonstrates a valuable technique — § BIT

namely, bit masking However, for the specified function it is ¢ INVERSION
much too complicated. Here is a simpler instruction sequence j USING XOR
which performs the same bit inversion:

IN AINVD)  INPUT TO ACCUMULATOR FROM 1/0 PORT INVD
XOR 10H .COMPLEMENT BIT 4, SAVING ALL OTHER BITS
ouT (INVD),A OUTPUT ACCUMULATOR TO I/0 PORT INVD

In this instruction sequence we use Exclusive-OR and the appropriate mask to invert the
desired bit while preserving the others. The truth table for Exclusive-OR shows that
XOR with 1 inverts the bit, while XOR with 0 saves the bit value:

\4 X X¥Y
0 0 0

X40 = X
0 1 1
! 0 1 X1 =X
1 1 0

In programming as in logic design with discrete components. there will often be more
than one way to implement the same function



EVENT TIMING
Within any digital logic implementation, events may be | SYNCHRONOUS

time synchronously, based on a clock signal: LOGIC
CLOCK f \_j \
SIGNAL A
SIGNAL B {

or asynchronously, based upon an output signal from one | ASYNCHRONOUS
device changing state and thus triggering another device's | LOGIC
state change:

SIGNAL A
SIGNAL B

SIGNAL C

Simple gates, however, are continuous devices. Consider the following simple logic

sequence:
A
A AND B
B ]
A NAND B

The signal inverter continuously inverts its input; a gate set- § GATE
tling time of perhaps 10 nanoseconds is the only lag between | SETTLING
input and output signal state changes. TIME

Within a microcomputer system, however, three instructions
must be executed before an output signal can reflect an input signal's state
change. .

In the unlikely event that the microcomputer system is emulating an inverter and
doing nothing else, the inverter instruction sequence could be continuously re-ex-
ecuted as follows:

LOOP: LD A.INVD)  ;LOAD ACCUMULATOR FROM INVD

CPL .COMPLEMENT THE ACCUMULATOR
LD (NVD)L,A STORE ACCUMULATOR CONTENTS AT INVD
JP LOOP -RE-EXECUTE THE SIGNAL INVERTER SEQUENCE

Depending on the microcomputer clock frequency. it will take approximately 20
microseconds to execute the signal inverter instruction loop once. Providing the period
between input signal state changes is never less than 20 microseconds, the microcom-
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puter implemented signal inverter will always work. But there may be a delay of up to
30 microseconds between an input signal changing state and the output signal
following suit. This may be illustrated as follows:

0 20 40 60 80 100 120 140
Time (usec) l l l l I
1} T T lv.‘,"li"f""rl !r|'!
' |III|'!’::|‘| ||:||:|
Signal In 5"g | \:il“j'l \:", ',l?
] i
i !
i

Signal Out

oYe)o)

e e e o e

@@

boobo

T_:_-

@

S

E

.-..___.— Y. P —"

@._---

@ @

@ = First LD instruction execution @ = Second LD instruction execution

@ = CPL instruction execution @ = JP instruction execution

In the illustration above, the four instructions have been shown dividing twenty
microseconds equally, so that each instruction is executed in five microseconds. In
reality, this is not the case. Chapter 6 gives instruction execution times; you will see
that the CPL instruction, for example, requires considerably less time to execute than
any of the other three instructions. We will overlook this detail for the moment in order
to concentrate on the concept at hand — which is that we must pay careful attention
to event sequences within the microcomputer system.

Irrespective of when and how “Signal In” changes state, it is the state of “"Signal In" at
time (when the LD A,(INVD) instruction is executed) which is transported, as a
binary digit. into the microcomputer system.

The actual binary digit inversion occurs at time @

The inverted binary digit is converted into "'Signal Out” at time @ when the LD
{INVD)}A instruction is executed.

Thus, “Signal Out” timing may differ considerably from “Signal In" timing.

More serious problems arise when the signal inverter instruction sequence is just
one small part of a larger microcomputer program. Under these circumstances, many
milliseconds may elapse between repeated executions of the inverter instruction se-
quence. If you leave it to chance, signal inversions may be completely missed. At very
best, there may be considerable delays between the input signal changing state and
the output signal following suit. This situation may be illustrated as follows:

Time interval between
execution of inverter instruction sequence

Signal Out

I—'—-——.
Delayed

)
]
response :

Time (usec) -~ ™~
LI R H HIR B
! missed v :
1oty
Signal In ’ :r E H ! !
I E o
I ' Delayed | H
| response 1
] v 1§
) — P
! :
H i
| i

@-Cbcb



Again, @ . @ , @ and @ identify LD, CPL, LD and JP instructions’ execution,
respectively.

Having stressed the importance of timing in a microcomputer system plus the conse-
quences of poor timing. we will drop the subject for the moment. This is because tim-
ing problems largely evaporate when you simulate entire logic sequences as op-
posed to individual devices. Therefore, solutions to timing problems should be looked
at in the context of an entire logic simulation; we have not yet progressed that far.

BUFFERS, AMPLIFIERS AND SIGNAL LOADS

Having looked at timing, we will now turn to some other fundamental digital logic con-
cepts.

A signal buffer increases the signal current level:

| AmPLIFIER

Ampilifier driver

Every device has a well defined fan out. Fan out defines the
number of parallel loads that may be connected to an output sig-
nal:

Y
Mk

Logic devices will also have specified fan in, which indicates the
number of paraliel loads which may be connected to a device in-
put:

m
Y

What happens to these concepts once your logic disappears into a microcomputer
program? The answer is simple: these concepts disappear — along with digital
logic.
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Now, at the actual pins of a physical microcomputer device, § FAN IN
fan in and fan out remain legitimate concepts; signals travelling FAN OUT
between pins of individual microcomputer devices may need to be
amplified and buffered. For example, a Z80 device's fan out may [ TTL LOADS
be as little as one or two Transistor-Transistor Logic (TTL) loads: ["g§iGNAL
that means that if more than one or two similar devices connect to BUFFERING
an output signal, the output signal will have insufficient power to
transmit usable signals to all connected devices. Therefore, for all
but the simplest microcomputer configurations, bus lines will have
to be buffered.

When determining whether your bus lines need to be | LEAKAGE
buffered, do not ignore leakage current. For example. if you § CURRENT
have sixteen ROM devices connected to the System Bus and only
one device can be selected (and therefore connected) at any time, do not assume that
the total signal load is due to the selected ROM. The fifteen unselected ROM devices
will each tap off some leakage current; that alone may require System Bus buffering.

Within a microcomputer program, however, when logic is totally represented by a
microcomputer instruction sequence, you are dealing exclusively with binary
digits — never with voltage or current levels. Fan in is infinite, since the status of
a binary digit may be the result of any number of logical computations. Fan out is
infinite since you can read the status of a binary digit as often as you want.
Buffers and amplifiers are meaningless, since a binary digit has no qualities
equivalent to voltage or current. A binary digit offers pure, finite resolution.

Take another look at the signal inverter, as simulated by a microcomputer.

We wiil take a giant conceptual step and assume that the signal inverter is buried
within a logic sequence, such that no input or output signal is generated at any
microcomputer device pin. In other words, the signal inverter becomes a small
part of a larger transfer function.

The input to the signal inverter is a binary digit created by some previous logic.

The output from the signal inverter is another binary digit which becomes input to sub-
sequent logic.

Logic external to the microcomputer system does not supply § COMPLEMENTING
the inverter input as a signal arriving at a microcomputer § A BYTE OF
device pin. nor does the inverted signal get transmitted to ex- § MEMORY

ternal logic via a microcomputer device pin. Rather, the inter-
face between external logic and the microcomputer system occurs at some point sig-
nificantly before and beyond the signal inverter. Our signal inverter may now be
represented by these same three instructions:

LD A.INVD) ;LOAD ACCUMULATOR FROM INVD
CPL ;COMPLEMENT
LD (INVD)L.A  ;STORE ACCUMULATOR CONTENTS AT INVD
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The source and destination become data memory bits; this may be illustrated as

follows:

Z80
CPU

DO - D7}

ROM
or
RAM
Memory

significant

<@- Data Bus
line

TG T
Vi

Control Bus (6)

Address Bus (16)

In terms of memory and CPU register contents, the signal inverter sequence proceeds

as follows:

A XXXXTIXXX |

PC 021A

3A

3D

2F

32

3D

14

XXXXIXXX

Arbitrary
memory
addresses

021A
0218
021C
021D
021E

021F
0220

143C
143D
143E




Arbitrary

@ memory

addresses

Al XXXX0XXX I 3A 021A

Q:c 021D ] 3D 0218
| %F 14 021C
2F 021D

32 021E

3D 021F

14 0220
. .
H

143C

XXXX1XXX | 143D

- 143k

Arbitrary
memory

@ addresses
AL XXXXOXXX l 3A 021A

pC 021E J D 0218
| 32 14 021C
N 2%F 021D

32 021€

3D 021F

14 0220
H

143C

XXXXOXXX | 143D
1436

With regard to the illustration above, the letter A identifies the primary Accumulator of
the Z80 CPU. PC represents the Program Counter. and | represents the Instruction
register.

The contents of data memory byte 143D1g and the Accumulator are represented in
binary format. X represents any binary digit. Note that we have arbitrarily selected bit 3
to be the significant bit.

In step @ , the LD A.(INVD) instruction is executed. This instruction causes the con-
tents of data memory byte 143D g to be loaded into the Accumulator.
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During step @ , the CPL instruction is executed. This causes the contents of the Ac-

cumulator to be complemented.

During step @ , the contents of the Accumulator are loaded back into memory byte

143D 1.

Signal inversion has been simulated by inverting the contents of bit 3 {along with

every other bit) of data memory byte 143Dq¢.

Where does the inverter's input come from? The -answer
is: from a data memory bit. Let us suppose, to illustrate a
point, that the inverter input is the OR of eight signals. We
could not wire-OR these eight signals to create an inverter in-
put as follows:

FAN IN IN
MICROCOMPUTER
PROGRAMS

E:{>c

But, presuming the eight signals are represéented by the eight binary digit contents
of the Accumulator, we would have no trouble generating the inverter input via

the following logic sequence:

Determine
contents of
Accumulator

Are
contents
zero
?

YES

Load binary
00001000 into
Accumulator

v v

The fan in logic is implemented by this instruction sequence:

:ASSUME THE EIGHT SIGNALS ARE IN THE ACCUMULATOR
:EACH REPRESENTED BY ONE ACCUMULATOR BIT

AND A :AND ACCUMULATOR WITH ITSELF TO SET STATUS
:FLAG
JR ZNEXT ;ACCUMULATOR HOLDS ZERO. SIGNAL IN
;MUST BE 0
LD A8 ;ACCUMULATOR HOLDS NONZERO SIGNAL IN
:MUST BE 1
NEXT LD (INVD),A  ;SAVE INVERTER INPUT
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The above instruction sequence is a direct microcomputer program implementa-
tion of the eight-signal wire-OR. Let us examine how the instruction logic works.

We are going to assume that the eight input signals are initially represented by the
status of the eight Accumulator binary digits:

Accumulator

O -~ NW OO

INNEEEEE

We are further going to assume that, in keeping with the prior illustration, bit 3 of the
data byte will ultimately be the significant inverter signal bit.

Since the inverter input is the wire-OR of eight signals, program logic must set bit 3 of
the Accumulator to 1 if any Accumulator bit is non-zero; bit 3 of the Accumulator must
be set to O if all Accumulator bits are zero. The contents of the Accumulator are then
stored in the data memory byte represented by label INVD. With regard to the previous
illustration, INVD would be a label representing memory byte 143D1¢.

This is how the four-instruction sequence illustrated above works:

We do not know what the Accumulator initially contains, so | STATUS

we must determine its contents by setting CPU status flags ap- | DETERMINATION
propriately. To do this, we AND the Accumulator contents with § BY ANDING A
itself. ANDing the contents of the Accumulator with itself does . | REGISTER WITH
not change the contents of the Accumulator, but status flags § ITSELF

are set. We are only interested in the Zero status, which will be
set to 1 if the AND of the Accumulator with itself generates a zero result; the Zero
status flag will be set to O otherwise.

But the AND of the Accumulator with itself will only be zero if the Accumulator con-
tains zero:

X Y XAY
0 0 0 —@» 0A0=0
0 1 0
not applicable
1 o) 0 } PP
1 1 1 -8 1 A1=1

Thus, after execution of the AND instruction, if the Zero status is 1 then bit 3 of the Ac-
cumulator must already be 0, which is what we want it to be. No operation is required,
and we jump to the LD (INVD),A instruction.
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If the Zero status bit was 0, then one or more bits of the Accumulator are non-zero. The
LD A.8 instruction loads a 1 into bit 3 of the Accumulator:

LD A8

76 54 32 1 0 <=—8itNo.
ElLlel [e ool o

Finally, the LD {INVD).A instruction is executed to load the inverter input signal into the
appropriate data memory byte.

Now suppose the inverter output is distributed to numerous subsequent devices.

The following logic represents fan out that is not feasible:

.
Dc _
[ 7

Within a microcomputer program, the whole concept of fan | FAN OUT IN
out disappears. The inverter output may be accessed an in- | MICROCOMPUTER
definite number of times by the simple re-execution of an | PROGRAMS

LD instruction:

|__D A(INVD)  ;LOAD INVERTER QUTPUT INTO ACCUMULATOR
fLD A.(INVD)  ;LOAD INVERTER QUTPUT INTO ACCUMULATOR
é_D A.INVD)  :LOAD INVERTER OUTPUT INTO ACCUMULATOR
SLD A.INVD)  :LOAD INVERTER OUTPUT INTO ACCUMULATOR
:LD A.INVD)  ;LOAD INVERTER OUTPUT INTO ACCUMULATOR

What about amplifiers and buffers? Clearly, within the context of binary data
stored in memory they have no meaning. |f amplifiers and buffers are present
because of the electrical characteristics of the memory and processor chips, that has
nothing to do with the logic function being implemented by a microcomputer program.
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MICROCOMPUTER SIMULATION OF
7404/05/06 HEX INVERTERS

These three hex inverters differ only in their electrical characteristics:

- The 7404 is a simple hex inverter.
- The 7405 is a hex inverter with open collector outputs.

- The 7406 is a hex inverter buffer/driver with open collector, high voltage out-
puts.

Since these three devices differ only in their electrical characteristics, within a
microcomputer assembly language simulation they are identical. Let us look at the
7404. It consists of six independent signal inverters, which may be illustrated as
follows:

Vee 6A 6Y 5A 5Y 4A 4y

A W 2A Y A v

Y =A
The instruction sequence to represent a hex inverter is identical to the three-in-
struction, single-signal inverter instruction sequence, because Z80 microcom-
puters are eight-bit parallel devices. Whether you like it or not, this inverter instruc-
tion sequence inverts eight independent binary digits. Hex inverters may therefore be
represented within a microcomputer instruction sequence as follows:

LD A.(INVD)  ;LOAD ACCUMULATOR FROM INVD
CPL ;COMPLEMENT
LD (INVD),A  ;STORE ACCUMULATOR CONTENTS TO INVD
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We will arbitrarily identify significant bits, as implied by the hex inverter, as follows:

7 6 5 4 3 2 1 0 < BitNo.

LLTTT T[]

Ag Ag Ag Az Ay Ay

Note that the above selection of significant bits is completely arbitrary. There is ab-
solutely no practical or philosophical argument favoring any one bit assignment as
compared to any other.

MICROCOMPUTER SIMULATION OF
7408/09 QUADRUPLE, TWO-INPUT POSITIVE
AND GATES

These two devices provide four independent two-input one-output AND gates,
which may be illustrated as follows:

Vee B 4A 4y 3B 3A 3y
14 13 12 1 10 9 8

[— [

1 2 3 4 5 6 7
1A 1B 1Y 2A 2B 2y GND
Y=AAB

The 7409 has open collector outputs, which differentiates it from the 7408. This
difference has no meaning in a microcomputer program simulation; therefore, the two
devices can be looked on as being identical.
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TWO-INPUT FUNCTIONS

From the microcomputer programmer’'s point of view, the most significant
difference between a 7408 AND gate and a 7404 inverter is not the logic func-
tion; rather, it is the fact that a 7408 is a two-input device. Conceptually, we might
imagine a 7404 being simulated in one of the two following ways:

1) The'eight input signals are loaded into the CPU Accumulator register. Each even-
numbered bit is ANDed with the bit to its right. The result is deposited in the even-
numbered bit for each bit pair:

7 6 5 4 3 2 1 0 <@ Bit No.

2) The two sets of four inputs are loaded into the CPU Accumulator and one other
register. The result is returned in the Accumulator:

7 6 5 4 3 2 1 0 <a— BitNo.

Accumulator

Another register

7 6 5 4 3 2 1 0 <a@— BitNo.

Upon examining the Z80 microcomputer instruction set, you will find that the sec-
ond method of simulating a 7408 is the natural one. This is the required instruction
sequence:

LD A,(SRCA) ;LOAD FIRST SET OF INPUTS FROM SRCA
LD B.A :SAVE IN THE B REGISTER

LD A,(SRCB) ;LOAD SECOND SET OF INPUTS FROM SRCB
AND B :AND B WITH A

LD (DST).A ;SAVE RESULT IN DST

If the use of labels SRCA, SRCB and DST still confuses § SOURCE

you, let us take a minute to clarify them. Eventually, you will § PROGRAM

have some amount of memory, which may vary from as little as § LABEL

256 bytes to as much as 65,536 bytes. Each of the labels } ASSIGNMENTS
SRCA, SRCB and DST identifies one memory byte. At the time
you are writing the source program, the exact memory byte identified by each label is
unimportant. When you eventually assemble your source program, the assembler list-
ing will print a memory map. The memory map will identify the exact memory byte as-
sociated with each label you have used. By examining the memory map, you will be
able to determine whether or not all label assignments are valid. If any label assign-
ments are invalid. you will have to take appropriate action. Appropriate action may in-
volve adding more memory to your microcomputer configuration, or you may have to
rewrite your source program so that it makes more effective use of the memory you
have.
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The problem of labels and memory allocations is irrelevant at the present level of dis-
cussion. Simply imagine every label as addressing one specific memory byte. Do not
worry about which memory byte will eventually be addressed. and your problem will

disappear

The 7408 simulation instruction sequence illustrated above by no means repre-
sents the only way in which a 7408 may be simulated.

First consider some minor variations. CPU Registers C, D, E, H or L could be used in-
stead of Register B to hold the second data input Here is one example:

LD A.(SRCA)
LD C.A

LD A.(SRCB)
AND C

LD (DST)LA

follows:
LD HL,SRCA
LD A (HL)
LD HL,SRCB
AND (H.L)
LD HL.DST
LD (HL). A

.LOAD FIRST SET OF INPUTS FROM SRCA
.SAVE IN THE C REGISTER

.LOAD SECOND SET OF INPUTS FROM SRCB
:AND C WITH A

.SAVE RESULT IN DST

Using Registers H or L to hold the second input is not en- | IMPLIED
couraged. The primary use for these two registers is to holda | MEMORY
data memory address. For example, the instructions LD { ADDRESSING
A.{SRCA). LD A.[SRCB); and LD (DST).A could be replaced as

.LOAD ADDRESS FOR FIRST SET OF INPUTS INTO H.L
:LOAD FIRST SET OF INPUTS INTO A

.LOAD ADDRESS OF SECOND SET OF INPUTS INTO
H.L

.AND SECOND SET OF INPUTS WITH A

;LOAD ADDRESS OF DESTINATION INTO H.L
.STORE RESULT IN DST

THE MICROCOMPUTER SIMULATION OF A
7411 TRIPLE, THREE-INPUT POSITIVE AND GATE

The principal difference between the 7411 AND gate and the 7408 AND gate is
the number of input signals. The 7411 generates three output signals, each of
which is the AND for three inputs:

Vee 1c
14 13

1Y 3C 3B 3A 3y
12 1" 10 9 8

]

24 2B 2¢ 2Y  GND
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THREE INPUT FUNCTIONS

Again we are faced with choices. We may load the three sets of inputs into three
CPU registers (the Accumulator and two other registers), then perform two ANDs
before restoring the result:

ONE LD A.{SRCA) .LOAD FIRST SET OF INPUTS FROM SRCA
TWO LD B.A ;SAVE IN B REGISTER

THREE LD A,(SRCB) .LOAD SECOND SET OF INPUTS FROM SRCB
FOUR LD CA :SAVE IN C REGISTER

FIVE LD A.(SRCC) ;LOAD THIRD SET OF INPUTS FROM SRCC
SIX AND B ;AND B WITH A

SEVEN AND C ;AND C WITH A

EIGHT LD (DST).A ;SAVE THE RESULT IN DST

The instructions in the above sequence have been given labels so as to make the
description which follows easier to understand. The instructions do not need labels in
order to satisfy the needs of an assembly language source program.

When instruction ONE executes, an 8-bit value is loaded into the Accumulator from the
memory byte addressed by label SRCA. We will assume that AND gate inputs are repre-
sented as follows:

7 6 5 43 2 1 0 <@ BitNo.

LiLLIT1]]

i 1t
AND gate 1
AND gate 2

AND gate 3
Ignored

Understand that the assignment of data bits illustrated above is completely arbitrary. It
is only necessary that all subsequent inputs be consistent.

After instruction ONE has executed, the first set of inputs is in the Accumulator. The
Accumulator is the only CPU register into which data may be loaded if you use direct
addressing. The first set of inputs must therefore be saved in another register. so that
the Accumulator is free for a second set of inputs to be loaded. Instruction TWO moves.
the contents of the Accumulator to the B register.

Instructions THREE and FOUR load the second set of inputs into the Accumulator, then
move it to the C register. We assume that bit assignments of this second set of inputs
are identical to the bit assignments illustrated above for the first input.

The third and last set of inputs is loaded into the Accumulator by instruction FIVE.
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The AND instruction ANDs the contents of the CPU register with the contents of the
Accumulator, leaving the result in the Accumulator. Instruction SIX performs the first
AND as follows:

76 5 4 352 1 0 la— BitNo.

I l l I l l Accumulator

o ames =

P -y

l l l I I l \ B Register

7 6 5 4 312 1 (Q <@ BitNo.
]

These bits 1 These bits
ignored significant

Instruction SEVEN performs the second AND operation. This time the AND occurs bet-
ween the Accumulator and Register C. The Accumulator initially holds the result of the
AND with B, illustrated above. After instruction SEVEN has executed, the AND of three
inputs is in the Accumulator.

Instruction EIGHT returns the final result to a memory byte addressed by the label DST.
The 7411 AND gate simulation is complete.

Now consider an alternative simulation of the 7411 AND gates. We may load the
first input into the Accumulator and the second input into another register. After AND-
ing these two inputs, we may load the third input into the same “"other” register, AND it
with the result of the first AND, then return the result:

ONE LD A.(SRCA) .LOAD FIRST SET OF INPUTS FROM SRCA
TWO LD B.A :SAVE IN B REGISTER

THREE LD A.(SRCB) :.LOAD SECOND SET OF INPUTS FROM SRCB
FOUR AND B :AND B WITH A, THE RESULT IS IN A

FIVE LD B.A ;SAVE THE RESULT IN B

SIX LD A.(SRCC) :LOAD THIRD SET OF INPUTS FROM SRCC
SEVEN AND B ;AND B WITH A

EIGHT LD (DST)LA SAVE THE RESULT IN DST

Let us compare this second simulation of the 7411 AND gate with the first simulation.
Instructions ONE, TWO and THREE are identical to the first simulation. After these three
instructions have executed, one set of inputs is in Register B and a second set of inputs
is in the Accumulator. This is the situation:

Inputs A are in Register B

Inputs B are in the Accumulator
Now, instead of bringing the third set of inputs immediately into a CPU register, we ex-
ecute instruction FOUR, which generates the AND of the first two inputs. Since this
AND is generated in the Accumulator, we save the result in Register B by executing in-
struction FIVE. This is the net effect:

A A B in Register B
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Instruction SIX now loads the third set of inputs into the Accumulator. Instruction
SEVEN ANDs the third set of inputs with the result of the first AND, as follows:

7 8 65 4 3 2 1 0 <a@— BitNo. Initial Final
. Contents Contents
Accumulator C AABAC
l ] [ [ l | | l ] Register B AAB AAB
7 6 5 4 3 2 1 0 <= BitNo.

Instruction EIGHT saves the result from the Accumulator in the memory byte addressed
by label DST

MINIMIZING CPU REGISTER ACCESSES

Which is the ‘‘better’” 7411 AND gates’ simulation? Clearly, the second option is
better. There is a non-obvious problem associated with the indiscriminate use of CPU
registers. We have arbitrarily decided that Register B will hold a second input. So long
as we are simulating 7411 AND gates without regard to what precedes or follows, the
selection of Register B is arbitrary; its selection carries no rewards or consequences.

Invariably, an instruction sequence such as the 7411 AND gates’ § CONFLICTS
simulation is just a small part of a larger whole. Now we must wor- | IN CPU

ry about whether using Register B to house the second input will | REGISTER
interfere with prior or subsequent use of Register B A very com- | UTILIZATION
mon programming error involves CPU register utilization conflicts.
For example, what if some prior logic step uses Register B to hold an intermediate data
value? Now the 7411 simulation will wipe out the data which was being temporarily
stored in this register.

in order to reduce CPU register conflicts, it is always preferable to choose an in-
struction sequence that uses as few CPU registers as possible, providing there is
no significant penalty. In this case, there is no significant penalty. It takes no more
instructions to simulate 7411 AND gates using CPU Register B only than it does
using CPU Registers B and C. Using CPU Register B only is therefore the better
method.

Now let us consider a 7411 AND gate’s simulation using im- § IMPLIED
plied addressing. Assume that the three inputs to the AND gates § ADDRESSING
are stored in sequential bytes of data memory and that the
destination follows the last source byte, as follows:

DATA
MEMORY
SRCA
SRCB
SRCC
DST
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Now, using implied addressing, we have the following instruction sequence:
ONE LD HL.SRCA  :LOAD THE FIRST SOURCE ADDRESS INTO ML

TWO LD AHL) :LOAD THE FIRST SOURCE INTO THE ACCUMULATOR
THREE INC HL JINCREMENT THE IMPLIED ADDRESS

FOUR AND  (HL) :AND ACCUMULATOR WITH SECOND SOURCE

FIVE INC  HL INCREMENT THE IMPLIED ADDRESS

SIX AND  (HL) /AND ACCUMULATOR WITH THIRD SOURCE

SEVEN INC HL JINCREMENT THE IMPLIED ADDRESS

EIGHT LD {HL)LA SAVE THE RESULT

This is how the instruction sequence will be executed:

Instruction ONE loads the address of the first source byte into the H and L registers.

Instruction TWO moves the contents of the memory byte addressed by H and L into the

Accumulator.

Instruction THREE increments the 16-bit address in the H and L registers, which now

addresses SRCB.

Instruction FOUR ANDs the contents of the Accumulator with the second source, as ad-
dressed by the H and L registers. The result is saved in the Accumulator. This may be il-

lustrated as follows:

DATA
Instruction MEMORY
TWO
Accumulator m A
B
C
AAB A B
[}
Instruction

FOUR

SRCA
SRCB
SRCC
DST

Instructions FIVE and SIX increment the implied address and repeat the AND operation,
this time ANDing the third input with the AND of the first two inputs. This may be il-

lustrated as follows:

DATA
MEMORY
Accumulator E A
B
C
AABAC AAB Cc
®
Instruction
SIX
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Instruction SEVEN increments the address in H and L again so that it now points to
DST. Instruction EIGHT saves the result in the destination, as follows:

DATA
MEMORY
Accumulator E A SRCA
B SRCB
Cc SRCC
AABAC DST
Instruction
EIGHT

We can use base relative addressing in the simulation of a | BASE

7411 AND gate. As in the previous example, we assume that the | RELATIVE
three inputs are stored in sequential bytes of data memory and the | ADDRESSING
destination follows the last source byte. We can think of each of
these locations in terms of its relative distance from SRCA:

DATA
MEMORY
SRCA SRCA +0
SRCB SRCA + 1
SRCC SRCA +2
DST SRCA +3

Here is the instruction sequence:

ONE LD IX,SRCA  ;L.OAD THE FIRST SOURCE ADDRESS INTO IX

TWO LD  A(X+0} :LOAD THE FIRST SOURCE INTO THE ACCUMULATOR
THREE AND A.(X+1) ;AND ACCUMULATOR WITH SECOND SOURCE

FOUR AND A (X+2) ;AND ACCUMULATOR WITH THIRD SOURCE

FIVE LD (IX+3),A  ;SAVE THE RESULT

As far as the Accumulator and data memory are concerned, this sequence operates ex-
actly as the previous one. The Address register, however, is used in a different
way: instead of incrementing the register before the next memory access. an index is
added to the base address, leaving the register contents unchanged. This is base rela-
tive addressing. as described in An Introduction to Microcomputers: Volume | — Basic
Concepts.

Here is the execution of the sequence, step-by-step:

Instruction ONE loads the address of the first source byte into Index Register X.
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When instruction TWO is executed, the index O is added to the contents of Index
Register X to obtain the address of the first source byte. That byte is then moved into
the Accumulator. This may be illustrated as follows:

Instruction Instruction
ONE TWO DATA

SRCA MEMORY
Index Register X SRCA 1——— SRCA + ) memmeeffiie A SRCA
Accumulator B SRCB

A
[ SRCC
'DST

Instruction THREE ANDs the Accumulator contents with the second source byte. which
is addressed by adding the index 1 to the contents of Index Register X. This may be il-
lustrated as follows:

Instruction DATA
THREE MEMORY
Index Register X SRCA A SRCA
1\SRCA +1
Accumulator [ il B SRCB
C SRCC
DST
AAB A B
®

Instruction FOUR ANDs the Accumulator contents with the third source byte., which is
addressed by adding the index 2 to the contents of Index Register X.

Instruction FIVE loads the Accumulator contents in the location addressed by adding 3
to the contents of Index Register X. Thus, the AND of the three source bytes is saved in
the destination byte. This may be illustrated as follows:

DATA
MEMORY

Index Register X SRCA ]\ A SRCA

A lator l B SRC
ccumu SRCA +3 B
Cc SRCC

AABAC DST

Instruction
FIVE




Although this instruction sequence has fewer lines of code than the preceding
ones, it is actually less efficient, as we will demonstrate below. This is not an ap-
propriate use for base relative addressing

COMPARING MEMORY UTBUZATION AND EXECUTION SPEED
We now have these four programs, all of which simulate 7411 AND gates:

Program 1 uses direct addressing and three CPU registers.
Program 2 uses direct addressing and two CPU registers.
Program 3 uses implied addressing.

Program 4 uses base relative addressing.

Let us compare the number of object program bytes required to store each pro-
gram with the number of CPU clock cycles required to execute each program. The
results are summarized in Table 2-1. Table 2-1 includes the instruction mnemonics
for each program, to help you follow how total object program bytes and execution cy-
cles have been computed. See Chapter 6 for the data you will need in order to verify Ta-
ble 2-1.

Programs 1 and 2 have identical memory utilization and execution § DIRECT
speeds — which is not surprising. since they vary the sequence in | VERSUS
which the same instructions are executed. Program 3 adopts a | IMPLIED
completely different philosophy towards the 7411 AND gates’ j ADDRESSING
simulation, by using implied memory addressing rather than
direct memory addressing. The result is dramatic. Six bytes of memory are saved,
and the program executes in 82% of the time. But Program 3 places an additional
restriction on the simulation; the three data sources and the destination must occupy
four contiguous bytes of data memory. Program 4 has fewer lines of code than the other
three programs, but it saves no bytes and has the longest execution time. In addition, it
restricts the location of the data sources and destination. Base relative addressing is a
sophisticated feature which can save time and program space. but it is not appropriate
for this particular program.

How are we going to rank the three simulation options? PROGRAM
VARIATIONS

The sophisticated addressing scheme of Program 4 is not RANKED

suited to this application. We have already concluded that Pro-
gram 2 beats Program 1, because Program 1 makes gratuitous
use of an extra CPU register. Program 3 is clearly better than Program 2, providing
the restriction on data source and destination locations is tolerable.

Regarding Program 3’s superiority over Program 2, it is worth noting again, as was
stressed in An Introduction to Microcomputers: Volume | — Basic Concepts, that
the indiscriminate use of direct addressing in microcomputer applications can be
costly. implied memory addressing may appear primitive to a programmer with
minicomputer or large computer background, but it is economical.
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THE MICROCOMPUTER SIMULATION OF A
7474 DUAL, D-TYPE POSITIVE EDGE TRIGGERED
FLIP-FLOP WITH PRESET AND CLEAR

.Before looking at the 7474 flip-flop in particular, let us consider flip-flops in
general. First, a few definitions.

., A DIGITAL LOGIC DESCRIPTION OF FLIP-FLOPS

A flip-flop is a bi-stable logic device, that is, a device which may exist in one of two
stable conditions. 7474-type flip-flops have two outputs, Q and Q; thus, the two bi-sta-
ble conditions may be represented as follows:

Q 1or0Q

ot

Oor 1

A clock signal causes the flip-flop to change from one bi-stable | POSITIVE
condition to the other. A positive-edge triggered flip-flop changes | EDGE

upon sensing a zero-to-one transition of the clock signal: - TRIGGER
Q
CLOCK
a
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A negative edge triggered flip-flop changes state upon sensing a
one-to-zero clock signal transition:

Q8 CLOCK

A JK flip-flop preconditions the Q and Q outputs which will be

NEGATIVE
EDGE
TRIGGER

JK
generated by the next clock edge trigger, as follows: FLIP-FLOP
Status of J and Outputs generated
K at clock signal at clock signal
—_— Q
J K Q a
1 0 1 0
0 1 0 1 e CLOCK
0 0 Remain in previous state
1 1 Change state —
regardless of K Q]
previous state
In the table above, “clock signal” will be a zero-to-one transition § CLOCK
for a positive edge triggered device; it will be a one-to-zero transi- | SIGNAL
tion for a negative edge triggered device. This definition of “clock
signal” also applies to the D-type flip-flop described next.
By inverting a J input in order to generate the K input, a D-type | D-TYPE
flip-flop is created. These are the D-type flip-flop characteristics | FLIP-FLOP
that result:

Status of J and Outputs generated D 4 J
K at clock signal at clock signal
J=D K=J a
e ¥ CLOCK
1 0 1 o]
0 1 0 1
K

o
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Here is a positive edge triggered, D-type flip-flop timing diagram:

ok \_ 9 L_H \

A D-type flip-flop, therefore, will always output the input conditions-that existed-at the
previous clock pulse

The presence of a Preset input means that the flip-flop may be | FLIP-FLOP
forced to output Q =1 and Q =0 Preset true forces this condi- | PRESET
tion FLIP-FLOP
A Clear input is the oppasite_of a Preset input When true. the } CLEAR
Clear input forces Q =0 and Q =1

Combining the definitions given above. this is what we get for a
7474 type flip-flop.

FUNCTION TABLE

INPUTS OUTPUTS
1PR or 1ICLRor  1CKor 1D or 1Qor 1Qor
2PR 2CLR 26K 2D 20 20
L H X X H L
H L X X L H
L L X X H* H*
H H } H H L
H H 4 L L H
H H L X Qq [N
Vec  2CLR 2D 26K 2PR 20 2G
14 13 12 1 10 9 8
l_ PR
ck a
D fo] ==
CLR

CLR
—JcK a
D Q
PR _]
1 2 3 4 5 6 7
1 CLR 1D 1CK 1PR 1Q 1q GND

2-36



In the function table above. | represents a clock zero-to-one transition. H*® signifies an
unstable state. Qq is the previous state for Q. X signifies “don’t care”

AN ASSEMBLY LANGUAGE SIMULATION OF FLIP-FLOPS

Now, our first problem, when trying to simulate a 7474 flip-flop. is the fact that
there is no clock signal within a microcomputer instruction set. instead, we must
assume that events are triggered by execution of an appropriate instruction rather
than a clock signal transition.

How will we represent outputs Q and Q? Two bits of memory could be used to
represent these two outputs:

76 54 3 2 1 0 <= BitNo.

HEEEEREN

L Represent Q

Represent Qo

Since we are dealing with data and not signals, Q is redundant. The single flip-flop
therefore reduces to one memory bit. A 7474 device. since it contains two flip-flops.
reduces to two memory bits, one for each flip-flop implemented on the chip.

There is nothing surprising about this conclusion. Each bit of a microcomputer’s
read/write memory is a simple. bi-stable element; it could. indeed. be a flip-flop.

The logic of a 7474 flip-flop may be represented by instructions that clear a
memory bit, set the memory bit to 1, or store an unknown binary digit in the
memory bit.

Suppose memory bits are assigned as follows:

76 54 32 1 0 <8 BitNo.

HEREERE

I L— First flip-flop

Second flip-flop
Unused

The 7474 function table now becomes these instructions:

Preset | Clear D First flip-flop Second flip-flop
LD A (FLP) LD A (FLP)
L H X SET  0A SET 1A
H H H
LD (FLP)LA LD (FLP)A
LD A,(FLP) LD A[FLP)
H L X RES  0A RES 1A
H H L ) )
LD (FLP),A LD (FLP)A
L L X Does not apply
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With regard to the table above, bits O and 1 of the memory word identified by FLP are
presumed equivalent to the two flip-flops of the 7474 device The LD instructions move
the word between memory and the Accumulator. In the Accumulator, the SET instruc-
tion sets the appropriate bit to 1; the RES instruction sets the specified bit to O

MICROCOMPUTER SIMULATION OF FLIP-FLOPS IN GENERAL

In conclusion, a flip-flop becomes a single bit of read/write memory within a
microcomputer system.

Within a microcomputer system, all flip-flops are the same. Flip-flop logic reduces to
these four questions:

1) When do | execute an instruction to set a memory bit to 1?

2) When do | execute an instruction to set a memory bit to 0?

3) When do | execute an instruction to store a binary digit in a memory bit?

4)  When do | execute an instruction to read the contents of a memory bit?

THE MICROCOMPUTER SIMULATION OF
REAL TIME DEVICES

There are two types of real time devices that we will look at: the one-shot (in-
cluding monostable multivibrators) and the master-slave flip-flop. Specifically,
these devices wiil be described:

- The Signetics 565 monostable multivibrator

- The 74121 monostable multivibrator

- The 74107 dual J-K master-slave flip-flop with Clear

A one-shot is a device which generates a signal pulse with a

[ oNE-sHOT |
specific time period: ——

'4-——-———- Period of signal pulse -—-——-——D'

A monostable multivibrator is a device with one stable, or | MONOSTABLE
passive, state. It produces one-shot output signals, as illustr- § MULTIVIBRATOR
ated above. where the pulse is in the unstable, or active. state

Active State ":[ \
Passive State B Period of

signal

pulse

The device is a "multivibrator’” because it can output a continuous stream of signals —
much like a clock signal. In other words. a multivibrator output consists of a continuous
stream of one-shot signals.

The time period of the signal pulse is a real time value — it is a finite number of
microseconds, or milliseconds, or even seconds.

A master-slave flip-fiop is a flip-flop which generates out- | MASTER-SLAVE
put signals based on the condition of input signals at some { FLIP-FLOP
earlier time. Again we encounter a real time value — the
delay between inputs and outputs.
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THE 555 MONOSTABLE MULTIVIBRATOR

The Signetics 555 monostable multivibrator may be illustrated as follows:

Ground Vee
1 8
Trigger Discharge
2 7 e
Q Output Threshold
3 6 Jrmeeee:
Reset Control
4 [ bt .

The negative edge of a clock signal at the Trigger input {pin 2} causes a negative-to-
positive transition at the Output Q. The duration of the high-level output at Q is con-
trolled by a resistor/capacitor circuit connected to the Discharge and Threshold pins (7
and 6, respectively).

Reset is a standard reset input; a low input will hold the Q output low

The Control pin is used to control voltage within the multivibrator; it is not significant to
an overall understanding of how the 555 device works.

The ground and power pins (1 and 8, respectively) are self-explanatory.
Here is one way in which the 555 monostable multivibrator may be configured:

1 5 +5V
2 3
€ R
Tri <
rigger :
\ ’ 2 6 Discharge
Output
3 7 Threshold
—
Reset
+ 5V 4 8 —-i
0.01uF =

As soon as a high-to-low signal level is sensed at the Trigger input, the capacitor bet-
ween pin 6 and ground charges. Signal levels at the Threshold and Discharge pins, as
controlled by the resistor R and the capacitor C. control the period for'which Q will out-
put high. This time period is given by the following equation:
T=1.1RC

Where:

T is time in seconds

R is resistance in megohms

C is capacitance in microfarads
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An output signal pulse is generated as follows:

Trigger

Output \

Period controlled by
values of resistor
R and capacitor C

THE 74121 MONOSTABLE MULTIVIBRATOR

The 74121 monostable multivibrator may be illustrated as follows:

FUNCTION TABLE

INPUTS OUTPUTS
Al A2 B Q Q
L X H L H
X L H L H Monostable
X X L L H outputs
H H X L H
H } H o W W o
¥ H H One-shot
¥ { H [ W W outputs
L X 4 J U
X L 4 W W W
RexT/

Vee NC NC  Cext  Cext RNt NC

51—
O -
2 3 4 5 6 7
Q NC Al A2 B Q GND



A constant low input at A1, A2 or B will hold the 74121 monostable multivibrator in its
stable condition — with a low Q output and a high Q output High inputs at A1 and A2
have the same effect

There are five input signal combinations that will generate one-shot outputs These in-
put signal combinations are identified in the function table above

With regard to the function table. symbols are used as follows
X represents a "don’t care”
| represents a one-to-zero logic transition
1 represents a zero-to-one transition
Ju represents a one-shot with a zero monostable logic level and a one pulse level
W is the NOT of _o
The duration of the one-shot output is determined by a resistor-capacitor network, just
as described for the Signetics 555 monostable multivibrator, but, there are some
differences The 74121 provides an internal resistor which may be accessed by con-

necting RiNT (pin 9) to Ve (pin 14) A variable external resistor may be connected bet-
ween RINT {pin 93 or RexT (pin 11) and Vg (pin 14)

An external timing capacitor. if present. will be connected between CexT {pin 10) and
RexT lpin 11)

Here is one way in which a 74121 monostable muitivibrator may be connected

+5V
Rext/ |
Vee NC NC CexT {Cext RiNT  NC
14 13 12 1 10 9 8
Qi —
Q ooy
7
GND

2-41




This use of the 74121 monostable multivibrator corresponds to the bottom two lines of
the function table.

An external resistor/capacitor network controls one-shot pulse duration. Each one-shot
pulse will be triggered by a low-to-high transition at pin 5 (B).

From the programming point of view, there are only two significant features of the
74121 monostable multivibrator:

1) The monostable outputs are equivalent to binary digits of fixed value. Any Im-
mediate instruction which loads a zero or a one into any register bit simulates the
monostable output. Here is an example:

LD B.4 SET BIT 3 OF REGISTER B TO 1, RESET ALL OTHER BITS
Bit 3 of Register B is equivalent to a flip-flop; so is every other bit of Register B and
all other registers

2) A one-shot output becomes a time delay of fixed value. We will show how this
time delay may be computed within a microcomputer system, but first let us ex-
amine the 74107 master-slave flip-flop

THE 74107 DUAL J-K MASTER-SLAVE FLIP-FLOP WITH CLEAR

Consider the master-slave flip-flop. This flip-flop is illustrated as follows:

INPUTS QUTPUTS
1CLR or 1CK or 1Jor 1K or 1Q or 1Qor
2CLR 2CK 2J 2K 2Q 20
L X X X L H
H J\u L L Remain in previous state
H Ju H L H L
H Ju L H L H
H Ju H H Change state regardless
of previous state
S identifies a clock pulse; the way in which it is used is described below.
X means “‘don’t care’’.
Vcc  1CLR - 1CK 2K 2CLR  2CK 2
14 13 12 1 10 9 8
- = CLR
i PICEE 1z «
cK jo- cK
1 Q J -—1 1 Q J
1 2 3 4 5 7
1J 1a 1Q 1K 2Q 20 GND



Let us examine the function table illustrated above. Unless you are familiar with this
type of logic device, its features are not self-evident

The connotation “master-slave’” identifies a circuit which is, in | MASTER-SLAVE
fact, two flip-flops Therefore, there are four flip-flops in the § FLIP-FLOPS
74107 device illustrated above

The flip-flops in each master-slave pair respond to a clock signal, as follows.

Connect master and slave

Isolate the slave flip-flop flip-flops, thus creating
from the master output signals
° e
CLOCK \m $ e i
Master flip-flop accepts Isolate the master flip-flop
input signals from the input signals

The significance of this clock signal’s response is that the flip-flop inputs must be pre-
sent at the positive edge of the clock signal. these inputs must remain steady while the
clock signal is high. The flip-flop outputs, however, do not change state until the nega-
tive edge of the clock signal.

The clock signal may be used to create time delays. The 74107 flip-flop output is deter-

mined by input signal levels as they existed some time period earlier. This may be il-
lustrated as follows:

Condition of Determines condition
J and K here of Q and Q here

CLOCK j

Here is a specific example:

F

CLOCK

The following description of the timing diagram illustrated above is keyed to the circled
numbers above the clock signal.

At @ . the Q output goes low, because at @ J was low and K was high
At e , Q changes state. because at @ J and K were both high

At @ . Q remains unaltered, because at @ J and K were both low
MICROCOMPUTER SIMULATION OF REAL TIME

What is the significance of the 555 monostable multivibrator and the master-
slave flip-flops? When it comes to microcomputer simulation of these devices,
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there is only one feature that is important to our present discussion — and that is
the concept of real time.

The 55656 monostable multivibrator creates high logic level pulses at its output. where
the duration of the high logic level is a controllable real time function

The 74107 master-slave flip-flop allows an output signal to be generated based on in-
put conditions as they existed some real time earlier

MICROCOMPUTER TIMING INSTRUCTION LOOPS

It is simple enough to create a time delay using a microcom- | TIMING
puter system — providing the microcomputer system is not | SHORT TIME
being called upon to perform any simultaneous operations. | INTERVALS
Consider the following instruction sequence:

Cycles
LD ATIME LOAD TIME CONSTANT INTO
;ACCUMULATOR
4 LOOP DEC A .DECREMENT ACCUMULATOR
10 JP NZ.LOOP

:REDECREMENT IF NOT ZERO

The above instruction sequence loads a data value, represented by the label TIME, into
the Accumulator. The Accumulator is decremented until it reaches zero, at which time
program execution continues Let us assume that a 500 nanosecond clock is being
used by the microcomputer system The DEC and JP instructions, taken together. ex-
ecute in 14 cycles — which is equivalent to seven microseconds This means that the
program sequence illustrated above can cause a delay with a minimum value of seven
microseconds (when TIME equals 1), increasing in seven microsecond steps to a max-
imum of 1792 microseconds, which is equivalent to 7 x 266 This maximum time delay
will result when TIME has an initial value of zero, since TIME is decremented before
being tested to see if it is zero. therefore, the time out occurs when 1 decrements to 0.
not when O decrements to FF1g

Longer time delays may be generated by having a 16-bit | TIMING

counter. Here is the appropriate instruction sequence: LONG TIME
c INTERVALS
ycles
LD DET16 .LOAD TIME CONSTANT INTO D
LAND E

6 LOOP- DEC DE ,DECREMENT DE

4 LD A.D ,TEST FOR ZERO BY ORING D

4 OR E LAND E CONTENTS VIA ACCUMULATOR

12 JP NZ,LOOP

The first LD instruction loads a 16-bit value, represented by the label T18, into the DE
register pair The LD instruction. being an immediate instruction, creates three bytes of
object code When the LD instruction executes, this is what happens

PROGRAM
£ MEMORY

D
Register l ‘ | @\I\ 1 Object code for LD DE xxyy

Pair instruction
—
XX
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The DEC instruction decrements the 16-bit value in the DE § STATUS
registers as a single data entity However. a quirk of the Z80 in- § TESTING
struction set neglects to set status bits based on the result of the § USING DEC
16-bit decrement This means that we have no immediate way of INSTRUCTION
knowing whether the DE registers now contain a zero or non-zero

value To make this test. we load the contents of the D register into the Accumulator.
then OR with the contents of the E register If the result in the Accumulator is 0. then
both D and E registers must contain O If the result is not zero, we return and redecre-
ment the 16-bit value

Observe that 26 cycles are required to travel once through the long time interval in-
struction loop Again. assuming that the microcomputer is being driven by a 500-
nanosecond clock, it will take 13 microseconds to execute the instruction loop once
The minimum value that T16 may have is 1. The maximum value is again O because a
decrement occurs before the test for 0, should O initially be loaded into D and E, it will
be decremented to FFFF1g before the first test for zero is made Thus, the long time in-
terval instruction loop will generate delays that vary in 13-microsecond increments.
from a minimum of 13 microseconds to a maximum of 0.851968 seconds

FFFF1g = 65.53510
13%x65,636 = 851,968 microseconds

Now, the actual simulation of a one-shot is complicated by the fact | TIME DELAY
that we may compute time delays, but when does the time delay { INITIATION
begin? For digital logic devices. the answer is simple—the time
delay begins when an input signal changes state

I

Clock or
Enable

One-shot \

To parallel this concept within a microcomputer program, we must initiate a time delay
upon completing some other program sequence’s execution This concept may be il-
lustrated as follows®

JP DELAY .LAST INSTRUCTION OF SOME PRIOR SEQUENCE
DELAY: L_D ATIME .SHORT TIME INTERVAL INSTRUCTION
LOOP DEC A .SEQUENCE

JR Z.LOOP

There is another problem associated with creating time delays | EXECUTING
within a microcomputer system by executing instruction | PROGRAMS
loops, as we have described: the microcomputer is, in es- § WITHIN
sence, doing no useful work during the time delay. There may | TIME DELAYS
be a simple remedy to this problem, providing we can define a pro-
gram for the microcomputer to execute during the period of the time delay. This may be
illustrated as follows:

Start of desired time An instruction sequence The remaining time is
delay whose execution time is timed out using a time
known exactly executes delay instruction loop
during this time period. This is a fine tuning time
This is a coarse time interval
interval
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We must assume that we can calculate the exact time it will take for our program to ex-
ecute within the one-shot time delay. also. the computed time must be less than or
equal to the time delay Not many programs are going to fit this description If, for ex-
ample, more than one instruction sequence may get executed depending on current
conditions. then there may be many different times required for a program to execute
Still. so long as there is a fixed number of identifiable branches, the problem is tractable
and may be illustrated as follows:

— | g

Start of desired time
delay

o represents decision and branch logic
R represents program execution time
..... represents time delay instruction loop execution time

Now each “limb" of the program branches will end as follows:

LD ADLY1 .LOAD FIRST TIME DELAY
JP LOOP :START TIME DELAY LOOP
[D A.DLY2 ;LOAD SECOND TIME DELAY
JP LOOP .START TIME DELAY LOOP
LD ADLY3 .LOAD THIRD TIME DELAY
JP LOOP :START TIME DELAY LOOP
L_D A.DLY4 .LOAD FOURTH TIME DELAY
JP LOOP .START TIME DELAY LOOP
LD A.DLY5 .LOAD FIFTH TIME DELAY
JP LOOP .START TIME DELAY LOOP
LOOP: SEC A :SHORT TIME INTERVAL INSTRUCTION

JR NZLOOP  ,SEQUENCE

It is more common than not for a microcomputer program to contain numerous condi-
tional branches; there may be hundreds of different possible execution times. depend-
ing on various combinations of current conditions. Executing a program within the time
interval of the required delay now becomes impractical, because the logic needed to
compute remaining time for the innumerable program branches is just too complicated.

THE LIMITS OF DIGITAL LOGIC SIMULATION

A 280 microcomputer can compute time delays so long as no other program needs
to be executed during the time delay, or providing a very simple instruction se-
quence with very limited branching is executed during the time delay.
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You cannot simulate simultaneous time delays, nor can you | SIMULTANEOUS
simulate a time delay which must occur in parallel to un- | TIME DELAYS
definable parallel program executions. External logic must
handle all such time delays.

INTERFACING WITH EXTERNAL ONE-SHOTS

Note that, even though external logic may have to create time delays, it is very
easy for the microcomputer system to trigger the start of the time delay and for
the external logic to report the completion of the time delay.

We can identify the start of a time delay by simply outputting | ONE-SHOT
an appropriate binary digit. Look again at the way “Signal Out” § INITIATION
was output to external logic by the signal inverter simulation. Out-
putting a signal to external logic is indeed very easy. Consider the following four in-
structions:

LD A0 .LOAD O INTO THE ACCUMULATOR

OUT  (PORT B).A .OUTPUT VIA I/O PORT B

LD A2 :LOAD 1 INTO THE ACCUMULATOR BIT 1
OUT  (PORT B).A ;OUTPUT VIA 1/0 PORT B

A 1is output at pin 1 of [/O Port B. Assuming that the pin associated with this I/O port
is connected to the trigger of a multivibrator and that this connection was previously
high. then the simple execution of the above instructions will trigger a one-shot

This may be illustrated as follows:

7

6
280 PIO i L 8 —— 5V
Port B 3 = :: R

? Trigger ;

0 555

Q 3 6
p—
+5V 4 5 _.' E,I

D AQ LD A2

OUT (PORTB),A EXECUTED ouT (PbRTB),A EXECUTED

Lp— J N

It is equally easy for external logic to signal the end of a time delay.

2-47



If we are dealing with “"greater than or equal to” logic. all that is § ONE-SHOT
necessary is for.the one-shot output to be connected to another § TIME QUT

pin of a microcomputer 1/0 port USING
STATUS
7
6
5
Z80PIO 4 S oumman I 8 9 +6V
PortB -3 = :) R
2 Trigger <
1 2 7
0 555
Q
3 6
HJ_ C
ey 4 s }_I

Signals arriving at pins of I/O ports are buffered. The program being executed by the
microcomputer may. at any time, input the contents of the I/0 port and test the condi-
tion of bit 0. which has been wired to the Q output. When this bit is found to equal 0,
microcomputer program logic knows that the time interval has been surpassed

The following instruction sequence will test the 1/0 port and clear the ‘‘time inter-
val complete’” status being reported by 1/0 Port B, pin 0:

IN A.(PORT B) ANPUT CONTENTS OF 1/0 PORT B TO ACCUMULATOR
BIT  0A JTEST BIT O
JP NZ.NEXT ;CONTINUE IF BIT IS 1

.TIME OUT PROGRAM BEGINS HERE

NEXT: . TIME NOT OUT PROGRAM BEGINS HERE
The IN instruction moves the current contents of 1/0 Port B to the Accumulator

- The following BIT instruction tests bit O of the Accumulator and sets the Zero flag to
“.reflect the bit contents in the following way

Z BIT

If the binary digit input from pin O of the I/O Port Bis 1. then the Q output is still high
The JP NZNEXT instruction simply continues program execution

If bit 0 of I/0 Port B is 0. then the time delay is over, we branch to a program sequence
which only gets executed immediately following a time out

2-48



TIME OUT AND INTERRUPTS

The exact end of a time out can be signaled to the microcomputer using an inter-
rupt.

Now, as soon as the one-shot times out, it will force the microcomputer system to cease
executing whatever program was currently being executed. A branch will be forced to
some other program which has been specifically designed to respond to the time out

The programming considerations associated with interrupts are more complicated than
the level we have been dealing with in Chapter 2 We will therefore defer a detailed
description of interrupt processing until later in this book For the moment, it is suffi-
cient to understand that the exact instant of a time out may be signaled to the
microcomputer system using interrupt logic

INTERFACING WITH PROGRAMMABLE TIMERS

Another type of external logic that can be used to create time delays is a program-
mable timer circuit such as the Z80 CTC (Counter/Timer Circuit). The CTC is a pro-
grammable device which contains four separate counter/timer circuits with asso-
ciated controt logic. Each counter/timer can be accessed by the CPU as an 1/0 port or
a memory location

Each of the four counter/timers can be programmed to operate as a timer, where it
is decremented by the system clock, or as a counter, where it will be decre-
mented upon reception of a clock/trigger signal. There are several other operating
options that can be established under program control — that is, by simply writing a
control word to the appropriate counter/timer We will not attempt to describe all of
these options here. the Z80 CTC is described in detail in An Introduction to Microcom-
puters. Volume !l — Some Real Products. Let us just briefly look at a typical sequence
of events and at the flexibility and simplicity obtained by using a programmable timer

Let us assume that the CTC is being accessed as though it were an 1/O port — actually
four 170 ports, since each timer/counter within the CTC operates independently and is
selected individually In order to initiate a time delay. we would perform the following
steps’

1) Output a control word to the desired counter/timer, to specify that it is to operate in
the timer mode The same control word also specifies other mode information. such
as the rate at which the timer is to be decremented, when the timer is to be started,
and so on

2)  Qutput a constant representing the desired time delay to the timer/counter

As soon as the time delay constant has been output, the timer will begin to count down
When the count reaches zero, a time out signal is generated. This signal can be used to
inform the CPU that the time interval is complete. The information could be transmitted
using an interrupt input to the CPU or via some intermediate logic

The use of a programmable timer offers obvious advantages over the external
one-shot. The CTC can be programmed and reprogrammed to provide any desired
time delay, whereas the external one-shot can only provide a single, fixed time
delay. The CTC also provides four timer/counters so that simuitaneous or overlap-
ping time delays can be generated.

In the design example we develop in this book only a few time delays are required, and
there are no requirements for simultaneous delays Therefore, we will use simple CPU
instruction loops to generate the required delays. If your application requires more
than the most rudimentary timing sequences, however, you should investigate
the use of programmable timers.






Chapter 3
A DIRECT DIGITAL LOGIC
- SIMULATION

The discrete logic devices which we simulated in Chapter 2 were not selected at
random; correctly sequenced, they will simulate the logic illustrated in Figure 3-1.
This logic is a portion of the printer interface for. the Qume Q-Series and Sprint
Series printers. Figure 3-2 is the timing diagram that goes with Figure 3-1. We are
going to describe both figures at a very elementary level.

The purpose of this chapter is to provide a one-for-one correlation between
microcomputer assembly language programming and digital logic design. What
you must understand is that, while such a one-for-one correlation can be forced, it
is not natural — and that is where the problem in understanding lies. Microcom-
puter programs should be written to stress the nature of microcomputers, not the
characteristics of digital logic.

The correct way to program a microcomputer is described beginning with Chapter
4,

Nevertheless, the juxtaposition of digital logic design and microcomputer pro-
gramming is underscored in this chapter. This is the chapter that bridges two con-
cepts; for that reason it is the most important chapter in this book. If you are a
logic designer, this chapter is important because it will eliminate digital logic con-
cepts which are inapplicable to microcomputers. If you are a programmer, this
chapter is important because it will acquaint you with a new programming goal —
efficient logic implementation.

To achieve the goal of this chapter, we will describe the logic illustrated in Figures
3-1 and 3-2; the description will be careful and detailed so that you can follow this
chapter even if you are not a logic designer. As the logic description proceeds, we
will blend in assembly language — in easy stages.

If you understand digital logic, it is particularly important that you confine your
reading to the boldface type in this chapter. The logic of Figure 3-1 has been de-
scribed in sufficient detail to meet the needs of a programmer or a reader with no
logic background.
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HOW THE QUME PRINTER WORKS

3 The active Qume printing element is a 96-petal printwheel, with one character on
each petal:

COURTESY OF QUME CORPORATION
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A character is printed by moving the printwheel until the appropriate petal is in
front of a solenoid-driven printhammer. The printhammer is then fired; it strikes
the printwheel petal, which marks the paper:
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As part of the print cycle, the printer ribbon and paper carriage must be moved.

Every character is printed according to a definite sequence of events, collectively refer-
red to as a "‘print cycle”. The logic illustrated in Figure 3-1 controls the character print
cycle. These are the events which must occur within a print cycle:

1) First, the print cycle must be initiated. A signal (PW STROBE) | PW STROBE

is puised high to initiate the print cycle:

PW STROBE

Start of
orint
cycle

2) The print cycle will endure for a fixed time interval. Obviously, PRINTWHEEL
during this time interval another print cycle must not be initi- § READY
ated. Therefore, the external logic responsible for generating CH RDY
PW STROBE true must be given a signal identifying the L
duration of the print cycle. This signal is PRINTWHEEL READY, also called CH
RDY:

PW STROBE

CH RDY ]—

Start of End of
print i«———————— Print cycle time interval -—-—-——-——I print
cycle cycle

The sequence of events which actually cause a character to be printed can now pro-
ceed, with the assurance that external logic will not attempt to start printing the next
character before the current print cycle has gone to completion.

3) The printwheel is moved from its position of visibility until the appropriate
character petal is in front of the printhammer:

PW STROBE
CH RDY ) ’
! | !
| variable | |
Move to place |
petal in front
of hammer | |
| |
Start of End of

print !‘________. Print cycle time interval _____.____’! print
cycle cycle
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‘A variable tlme delay is needed by the printwheel positioning logic. Obviously it
will take longer to position a petal that is far from the position of visibility than to
posmon to an adyacent petal.

~4) Before the printhammer is fired, the printwheel must be given time to settle. A

_“fixed, two millisecond time delay is sufficient: -

'PW STROBE
 CHRDY I
L ER 1 1 1
| variable | Fixed ! |
' Move to placej Printwheel ' '
_ e petal in front settling
NE 1of hammer ¥ - time I !
Ll " | '
Start of : o End of
: print l-ﬂ——— Print cycle time interval *—-—-D{ print
~eycle” S cycle
Settling time delays are a very important aspect of the SETTLING
logic supporting any type of mechanical movement. It is DELAYS
~easy to draw a clean line showing movement velocity, as
follows

Move Decelerate

Accelerate
’ Stop ) Stop

But in ‘reality, movement occurs like this:

. Accelerate Move Decelerate
L Stop} ﬂ Stop

Bounce

The bounce that follows deceleration must be passed over by a settling time delay.

~+A blurred character will be printed if the printwheel is still vibrating when the
printhammer hits a petal against the paper.

5): At the end of the printwheel settling time delay. the printhammer can be fired.
- This is done by outputting an impulse to a solenoid. Six firing impulse intensities
‘are provided, since some characters have a more substantial surface area than
others. To strike a comparatively large surface area like a "W’ with the same inten-
_sity that you strike a small character. like a """, would produce unevenness in the



density of the printed text. The duration of the printhammer solenoid pulse is con-

trolled by the next time delay:

PW STROBE

CH RDY

HAMMER
PULSE ' L..___._.j

~

| f 1 i

| Variable I Fixed | Variable |

| Move to place| Printwheel ] Hammer pulse |
petal in front settling width

| of hammer ‘ time | :

Start of

cycle

I i
I |
i I
I |
| !

print I@——-—-————— Print cycle time interval ————-——»{

End of
print
cycle

The bar over HAMMER PULSE identifies the signal as one which is low when active.

At the completion of the printhammer pulse time delay, the hammer has struck a
petal and forced it onto the paper. Now the hammer must be given time to return
to its prefiring position. A three millisecond delay is generated for this purpose:

PW STROBE

CH RDY

HAMMER
PULSE L.,___J

7)

~

I Variable | Fixed | Variable | Fixed
| Move to place| Printwheel | Hammer pulse | Hammer return
and settling time

I petal in front | settling width
of hammer time I i

Start of

Now the printwheel can be moved to its position of
visibility and the paper carriage can be advanced to the next
character position. The printwheel's “‘position of visibility”" is
its normal inactive position. In this position, a short petal is in

!
print }Q—————————— Print cycle time interval ————————&I
cycle

End of
print
cycle

PRINTWHEEL
POSITION OF
VISIBILITY

front of the printhammer, so the most recently printed character is visible above the
short petal; hence the “position of visibility’”. Had we not given time for the
printhammer to settle back before moving the printwheel to its position of visibility,
a printwheel petal may have been broken striking the tip of the still protruding
hammer. Also, the paper may have smudged moving against a bent petal. Since
the printhammer has been given time to fully retract, none of these problems will

arise
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A final two millisecond time delay allows the printwheel and paper carriage to
reposition themselves:.

PW STROBE

CH RDY I
HAMMER
PULSE u

I | ! ' ! !
Variable ] Fixed Variable Fixed Fixed i
Move to place , Printwheel Hammer pulse , Hammer return® Final

|petal in front I settling width ‘and settling ’ movements '

Jof hammer | time | | time | delay ]

I | | | i |

Star_’t tOf lq———_____ Print cycle time interval _————-D{ End of
prin

print
cycle cycle

8} What about ribbon logic? in order to get a clean impression | START
on the paper, a fresh piece of ribbon must present itself | RIBBON
between the character petal and the paper. Shortly after | PULSE
the beginning of the print cycle. therefore, a signal (START FFA
RIBBON MOTION PULSE), which actually controls ribbon
movement, is output to external logic. This external logic (it is -
not part of Figure 3-1) sends back a ribbon movement completed signal (FFA), since
we cannot allow the printhammer to be fired while the ribbon is still moving. Thus,
the ribbon is advanced while the printwheel is initially being positioned and
settled:

PW STROBE

CH RDY ’
HAMMER
PULSE u

i ! I 1 1

!

{ variable | Fixed | variable I Fixed I Fixed |

Move to place | Printwheel | Hammer puise IHammer return} Final |
petal in front settling - width and settling movements

lof hammer l time time | delay :

! | I i

Start of . L End of
print lq-——-————‘ Print cycle time interval “—5{ print
cycle * f cycle

Start Ribbon
ribbon movement
movement complete
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In summary, a print cycle consists of five time delays; each time delay starts out with a
flurry of logical activity followed by a period of mechanical movement.

INPUT AND OUTPUT SIGNALS

Now that you have a general understanding of the functions which are controlled by
logic in Figure 3-1, the next step is to take a closer look at input and output signals.

In order to know what to do and when to do it. we must rely entirely upon input signals.
Similarly, output signals represent the only way in which we can transmit control infor-
mation to external logic.

Our limited goal. at this point, is to understand what function each input and output
signal performs, and how — physically — we are going to handle the signals. We will
discuss the “how’ first.

INPUT/OUTPUT DEVICES

The principal device used to ‘transmit signals and data bet- | PARALLEL
ween a Z80 microcomputer system and external logic is the | INPUT/OUTPUT
Z80 Parallel Input/Output interface (PIO). We are going to use { INTERFACE

two Z80 PIO devices.

Since this device has been described in An Introduction to Microcomputers, we are
going to assume that you superficially understand its capabilities and organization; if
you do not, see An Introduction to Microcomputers. Volume Il — Some Real Products
before continuing. Otherwise, you will not understand the discussion which follows.

THE Z80 PARALLEL 1/0 INTERFACE (PIO)

The Z80 Parallel I/O interface (PIO) provides 16 1/0 pins which may be grouped
into 1/0 ports as follows:

B RDY Eﬁ 76 5432 1076 543210 A RDY m
by OIOTTTTITTITITIITITI] 8 v
N\ — p— N\ e B e e
Controls Data Data Controls
= ~ - ~N =
Port B Port A

Each port has two associated control signals, RDY and STB, for use in parallel data
transfers with automatic handshaking.

RDY is output by the Z80 PIO to external logic: STB is input from external logic to the
780 PIO.

Each port may be programmed to operate in one of three /0 PORT
modes; in addition, Port A may operate in a fourth mode which MODES
is not available on Port B. Port A and Port B do not have to
operate in the same mode.

Let us now look at the Z80 PIO modes.
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Output mode (Mode 0) allows Port A and/or Port B to be used as a conduit for
transferring data to external logic. The handshaking works in the following way:

WR*

PORT OUTPUT
(8 bits)

RDY

sT8

INT

When the CPU executes an output instruction, it generates control signals which the
Z80 PIO combines into an internal write pulse. This is shown as the signal WR* in the
diagram above. ® is a system clock which Z80 PIO logic uses to synchronize its internal
signal transitions.

An output cycle is initiated when the CPU executes any output § 280 PIO
instruction accessing the 1/0 port. The write pulse (WR* above) § OUTPUT

is used to strobe data off the Data Bus and into the addressed § WITH

I/0 port's output register. After the write pulse. on the next | HANDSHAKING
high-to-low transition of the clock pulse ®, the RDY control
signal is output high to external logic. RDY remains high until external logic returns a
low pulse on the STB input. On the following high-to-low clock pulse ® transition, RDY
returns low. The low-to-high STB transition also generates an interrupt request — if in-
terrupts have been enabled

Timing for Input mode (Mode 1) is illustrated below:

PORT INPUT == = e eme
{8 bits) c= = = = o TW _—

-—-——-—-v/\

A
A~
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External logic initiates an input cycle by pulsing STB low. This | Z80 PIO

low pulse causes the Z80 PIO to load data from the 1/0 port | INPUT

pins into the port input register. On the rising edge of the STB | WITH

pulse an interrupt request will be triggered if interrupts have §| HANDSHAKING
been enabled.

On the falling edge of the ® clock pulse which follows STB input high, RDY will be out-
put low informing external logic that its data has been received but has not yet been
read. RDY will remain low until the CPU has read the data, at which time RDY will be
returned high.

Itis up to external logic to ensure that data is not input to the Z80 P10 while RDY
is low. If external logic does input data to the Z80 PIO while RDY is low, then the pre-
vious data will be overwritten and lost -- and no error status will be reported.

In bidirectional mode (Mode 2), the control lines sup- | 280 PIO

porting 1/0 Ports A and B are both applied to bidirec- | BIDIRECTIONAL
tional data being tranferred via Port A; Port B must be | DATA TRANSFERS
set to the bit control mode (Mode 3). WITH HANDSHAKING

Timing for bidirectional data transfers is simply a combina-
tion of input and output handshaking where A control lines apply to data output while
the B control lines apply to data input. This may be illustrated as follows:

A RDY k

A STB - On \
)

PORT A DATA OUT ‘DATA IN }

) W

WR*

DATA BUS S A

- )
i oy _?7_\__ #
o

The only unigue feature of the illustration above is that data being output via Port A is

stable only for the duration of the A STB low pulse. This is necessary in bidirectional

mode since the Port A pins must be ready to receive input data as soon as the output .
operation has been completed.

B RDY

Once again, it is up to external logic to make sure that it conforms with the timing re-
quirements of bidirectional mode operation. External logic must read output data while
A STB is low. If external logic does not read data at this time the data will not be read.
but the Z80 PIO will not report an error status to the CPU; there is no signal that exter-
nal logic sends back to the Z80 PIO following a successful read.

Also, it is up to external logic to make sure that it transmits data to Port A only while B
RDY is high and A RDY is low. If external logic tries to input data while the Z80 PIO is



outputting data, input data will not be accepted. If external logic tries to input data
before previously input data has been read, the previously input data will be lost and no
error status will be reported.

Control mode (Mode 3) does not use control signals. You must { BIT
define every pin of an 1/0 port in Mode 3 as an input or an out- § CONTROL
put pin. Input and output are controlled by the CPU; there is no SIMPLE
handshaking with external logic. If all the pins of a port are defined 1/0

in the same direction, then the port can be used for simple parallel
input or output.

You select port modes by writing an appropriate code into the | 1/0 PORT
port’s control buffer. A detailed discussion of control codes will | MODE

not help you understand the subject matter of this chapter, so we [ SELECTION
leave that discussion to An_Introduction to Microcom-
puters: Volume Il —Some Real Products.

Every Z80 PIO has four I/0 port addresses assigned to it. Three | I/0 PORT
Z80 PIO pins are used to select the device and a device port, as | ADDRESSING
follows:

65:_ Input O to select the device. Input 1 to disconnect it.
B/A SEL: Input O to select Port A. Input 1 to select Port B.
C/D SEL: Input O to select data buffer. Input 1 to select contral buffer.

Here is a summary of device select combinations:

SIGNAL

SELECTED LOCATION

al

B/ASEL | C/DSEL

Port A data buffer
Port A contro! buffer
Port B data buffer
Port B control buffer
Device not selected

- O O O O
X - - O O
X = O - O

Now, when an IN or OUT instruction is executed by the [1/0 PORT
280 CPU, the port number is output on the low-order eight § ADDRESS
Address Bus lines. We will use two 280 PIO devices, and } DETERMINATION
connect them to the Address Bus as follows:

A2
A1
A0
PIO O PIO 1
& M1 '\A — =
L) V" | —
— oy Pa— -
B/A SEL I | B/A SEL
C/D SEL I i C/D SEL




As a consequence of the connections shown above, the Z80 PIOs will respond to the

following 1/0 port addresses:

XX XX XY 2zZ2zZ
N, g O ——

Select location in Z80 PIO

Select Z

80 PIO

0-PIOO

1-PIO1

Don’t Care

For the sake of consistency. we will always assign Q's to “don’t care” bits. The Z80 PIO
locations will thus be addressed as follows:

ADDRESS

LOCATION

MNEMONIC

N O AE WN -

PIO O Port A data
PIO O Port A control
PIO 0 Port B data
PIO O Port B control
PIO 1 Port A data

" PIO 1 Port A control

PIO 1 Port B data
PIO 1 Port B control

AQ
ACO
BO
BCO
A1l
AC1
B1
BC1

Since the ""don’t care” bits could have any value, we have actually used all 256 1/0
port addresses to access only eight separate locations. Since we need only two Z80
PIOs for the program we are about to develop, this addressing scheme is satisfactory

for our limited purpose.

There are two ways to address more 1/0 ports:

1) Assign memory addresses to any further 1/0 ports, as we demonstrated in

Chapter 2.

2) Reserve just the required eight 1/0 port addresses for the two 280 PIOs. This
means that we must add more logic to decode a single.enable signal from Address

Bus lines A3 through A7.

Here is logic to reserve the addresses F81g through FFqg:

ot

A7

7430

[l

A3

A2

D&
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A 7430 is an 8-input positive NAND gate; a 7432 is a 2-input positive OR gate.
= : When the upper five I/0 port address lines are all 1's, the Z80 PIO selected by A2
T will receive a O at its CE input

Initially, to keep things simple, we are going to prdgram both Z80 PIOs to operate
¢ in Mode 3, with the following data direction assignments:

2 Z80 PIO PORT PINS DIRECTION
‘ ) A Al Input
0 B 7-4 Input
3-0 Qutput
4 A All Output
B All Input

In order to understand the discussion at hand, you do not need | 1/0 PORT

to know how the Z80 PIO is programmed to meet our require- | MODE SELECT
ments; nevertheless, here is an example of the appropriate in- § INSTRUCTION
struction sequence followed by an explanation of the control SEQUENCE

words:
JINITIALIZE 1/O PORTS
LD B,0OCFH :PUT MODE 3 CONTROL WORD IN REGISTER B
;P10 0, PORT B
LD C.3 ;PUT CONTROL ADDRESS IN REGISTER C
ouT (€).B :SET PORT IN MODE 3
L.D A,OFOH ,PUT PIN DIRECTION WORD IN ACCUMULATOR
ouT €).A ;SET DIRECTION: UPPER HALF INPUT, LOWER
;OUTPUT
;PIO 0, PORT A

The following control word causes the addressed port to operate in Mode 3:

76 54 32 1 0 =@ BitNo.

Uil ofofo] ] ] )] Control Code
- S e
L—- Mode Select
(Don't Care)
Mode 3

To verify the control word format, see the description of the Z80 PO in An Introduction
~ to Microcomputers: Volume |l — Some Real Products.

We have arbitrarily chosen Register B to hold this control word, which will be the same
for all I/0O ports; thus, we load the control word into Register B only once. at the begin-
ning of the sequence which initializes all the ports. The instruction LD B,OCFH does
this.

We then load the address of the control port into Register C with the instruction LD C.3,
and then output the control word via the instruction OUT (C),B.
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If a Mode Select control code is output specifying that an /0O port will operate in
Mode 3, then the next byte output is assumed to be a pin direction mask. We used
the following mask in the example above:

76 54 32 1 0 <& BitNo.

L11 1 I 1 I 1 lo[ 0 [ o[o] Pin Direction Mask

N = =e—
L———— Output pins

Input pins

A 1 identifies an input pin, whereas 0 identifies an output pin. The instruction LD
A.OFOH puts this pin direction mask in the Accumulator. The instruction OUT (C).A
sends the pin direction mask to the port

INPUT SIGNALS

Let us turn our attention to the input signals that appear on the left-hand side of
Figure 3-1. We wiil describe each signal, assign it to an appropriate input pin, and
include a rudimentary instruction sequence to access the signal at the most ele-
mentary level.

RETURN STROBE

If the operator is to see the most recently printed character, two things must hap-
pen:

1) The printwheel must be moved to its.position of visibility.
2) The ribbon must be dropped.

External logic can take care of dropping and raising the ribbon, but logic in Figure 3-1
creates the signals that allow the printwheel to move.

In order to move the printwheel to its position of visibility. therefore, the ribbon control
external logic inputs RETURN STROBE low while the ribbon is dropped

Logic within Figure 3-1 uses RETURN STROBE as an alternative | PRINTWHEEL
signal to start a print cycle; however, RETURN STROBE low is | REPOSITIONING
accompanied by HAMMER ENABLE FF low, which prevents the § PRINT CYCLE
printhammer from firing. Therefore, a print cycle initiated by
RETURN STROBE low is a ""dummy’’ print cycie which moves the printwheel back




to its position of visibility but does not fire the printhammer; we refer to this as a
printwheel repositioning print cycle:

I Printing Printwheel
I print cycle repositioning
print cycle

PW STROBE , \

|
RETURN STROBE |

| !
oo [ e

/|

— e ol ——— — —
SR S S ORI ————

HAMMER ENABLE

HAMMER PULSE

v/

Print cycle during
which hammer

Print cycle during

] ]
I |
I |
| |
| which hammer |
| |
1 |
| |
| |

is fired and is not fired, but
character is printwheel is
printed moved back to

its position of
visibility

I
T
|
I
|
|
|
|
!
I
|
I

In between print cycles

We will assign 1/0 Port BO; pin 4 toc RETURN STROBE.

In between print cycles, we can test this pin in order to trigger a new print cycle
via the following instruction sequence:

LOOP: IN A.(2) ;INPUT 1/0 PORT BO CONTENTS TO
;ACCUMULATOR
BIT 4.A ;TEST VALUE OF BIT 4
JR NZ,LOOP ;IF IT IS 1, RETURN AND RETEST
:NEW PRINT CYCLE INSTRUCTION SEQUENCE BEGINS HERE
PFL REL

The printhammer cannot be fired while the paper feed mechanism is moving,
therefore, at such times external logic inputs PFL REL low.

Logic within Figure 3-1 will delay firing the printhammer for as long as PFL REL is being
input low.

We will assign Pin 0 of 1/0 Port AO to PFL REL.

Before executing the instruction sequence which fires the printhammer, we will input
the contents of Port A0 and test bit 0; so long as this bit contains zero, we will not ex-
ecute the printhammer firing sequence.



The following instructions perform the required test:

LOOP: IN A,(0) INPUT CONTENTS OF 1/0 PORT A0 TO
-ACCUMULATOR
BIT 0.A .TEST VALUE OF BIT 0
JR ZLOOP IF VALUE IS 0, DO NOT FIRE PRINTHAMMER

‘PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
RIB LIFT RDY

This signal is similar to PFL REL: it is input low when ribbon lift logic is moving the
ribbon. Just as the printhammer cannot be fired while the paper feed mechanism is ac-
tive, so it cannot be fired while the ribbon is being moved By connecting RIB LFT RDY
to Pin 1 of I/O Port A, we may adjust the printhammer firing initiation instruction se-
quence as follows:

LOOP: IN A.(0) :INPUT CONTENTS OF 1/0 PORT A0 TO
-ACCUMULATOR
OR OFCH "MASK QUT ALL BITS EXCEPT O AND 1
CPL ;COMPLEMENT THE RESULT TO TEST FOR
;ANY 0 BIT PRESENT
JR NZ,LOOP ;ANY 0 BIT WILL NOW BE 1. IF ANY BIT

1S NOW 1, DO NOT FIRE PRINTHAMMER
:PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
PW STROBE

We have already encountered this signal; it is pulsed high by external logic to start a
normal print cycle, during which a character will be printed.

‘Remember, RETURN STROBE is input low to initiate a print cycle, during which the
printwheel will be moved to its position of visibility but no character will be printed.

Assuming that PW STROBE is connected to pin 5 of 1/0 Port BO, this is the instruc-
tion sequence that will be executed between print cycles:

LOOP: IN A2) ;INPUT 1/0 PORT BO CONTENTS TO
;ACCUMULATOR
AND 30H :ISOLATE BITS 5 (PW STROBE) AND 4 (RETURN
.STROBE
cp 10H JTEST FOR PW STROBE = 0, RETURN STROBE = 1
JR ZLOOP IF TEST IS TRUE STAY IN LOOP

:PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

Observe that either PW STROBE = 1 or RETURN STROBE = 0 can trigger the start of a
print cycle; that is why only PW STROBE = 0 and RETURN STROBE. = 1 keeps us in the
testing instruction loop.

Now, the four instructions shown above execute in a combined { INPUT SIGNAL
total of 36 clock cycles. With a 500-nanosecond clock, the four | PULSE WIDTH
instructions will execute in 18 microseconds — which
becomes the minimum pulse width allowed for PW STROBE. If PW STROBE is puised
high for less than 18 microseconds, our instruction cycle may miss it.

FFA

This is another printhammer warning signal. It is set to O while external logic is ad-
vancing the ribbon. By connecting this signal to pin 2 of 1/0 Port AO, we can




modify the instruction sequence which precedes printhammer firing as follows:

LOOP: IN A0 INPUT CONTENTS OF I/0 PORT A0 TO
;ACCUMULATOR
OR OF8H ISOLATE BITS 2,1, AND O
CPL ;COMPLEMENT THE RESULT TO TEST FOR
;ANY O BIT
JR NZ,LOOP ;ANY 0 BIT WILL NOW BE 1. IF ANY BIT IS

;1. DO NOT FILE PRINTHAMMER.
;PRINTHAMMER FIRING SEQUENCE BEGINS HERE

All we have done is add one more test condition which must be met before the
printhammer firing instruction sequence gets executed.

RESET

This is a signal which is commonly seen in the most diverse types of logic. It is an in-
itializing signal. Its purpose is to ensure that all logic is in a “beginning” state, which in
our case is the condition which exists between printwheel cycles.

The logic in Figure 3-1 connects the RESET signal to logic devices, such that
RESET going high forces all logic to a “'beginning’’ condition.

There are many ways in which a microcomputer system can | RESET
handle a RESET signal. The simplest scheme is to input this | THE CPU
signal to the RESET pin of the Z80 CPU.

Another method of handling RESET is to test the signal in between print cycles
and to prevent any print cycle from starting while RESET is high; this may be ac-
complished by connecting RESET to pin 6 of 1/0 Port BO and then medifying our
“in between print cycles’’ instruction sequence as follows:

LOOP: N A,(2) ;INPUT 1/0 PORT BO TO ACCUMULATOR
BIT 6.A ;TEST BIT 6 (RESET)
JR NZ,LOOP ;IF RESET IS HIGH, STAY IN LOOP
:RESET IS LOW. TEST PW STROBE AND RETURN STROBE
AND 30H ;ISOLATE BITS 5 (PW STROBE) AND
:4 (RETURN STROBE)
CP T0H ;TEST FOR PW STROBE = 0, RETURN STROBE = 1
JR ZLOOP :IF TEST IS TRUE STAY IN LOOP

;PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

This longer test loop will now require 51 cycles to execute. | SIGNAL
That means PW STROBE must pulse high for at least 25.56 | PULSE
microseconds, assuming a 500-nanosecond clock. WIDTH

PFR REL

This is yet another signal which must be tested before initiating printhammer firing. It
indicates when external logic is moving the paper feed. Under such circumstances,
we cannot fire the printhammer. By connecting this signat to pin 3 of Input Port A0,
we merely have to adjust the printhammer firing instruction initiation sequence as
follows:

LOOP: IN A0 JINPUT CONTENTS OF I/0 PORT A0 TO
;ACCUMULATOR
OR OFOH JISOLATE BITS 3,2, 1, and O
CPL .COMPLEMENT THE RESULT TO TEST FOR
JANY O BIT
JR NZ.LOOP .ANY O BIT WILL NOW BE 1. IF ANY BIT IS

.1, DO NOT FIRE PRINTHAMMER
:PRINTHAMMER FIRING SEQUENCE BEGINS HERE
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CA REL

This signal is almost identical to PFR REL. It comes from external logic that controls
carriage movement. We will connect this signal to pin 4 of Input Port A0 and
modify the hammer firing instruction initiation sequence as follows:

LOOP: N A0 INPUT CONTENTS OF {/O PORT AO TO
;ACCUMULATOR ’
OR OEOH ISOLATEBITS 4, 3,2, 1 AND O
CPL ;COMPLEMENT THE RESULT TO TEST FOR
JANY 0 BIT
JR NZLOOP ;ANY 0 BIT WILL NOW BE 1. IF ANY BIT IS

;1. DO NOT FIRE PRINTHAMMER
:PRINTHAMMER FIRING SEQUENCE BEGINS HERE
FFi

This is the signal which times the first delay in the print cycle -- the time during
which the printwheel moves from its position of visibility until the required petal
is in front of the printhammer.

FFi is generated by external logic; it is low while the printwheel is moving and high

while the printwheel is not moving.

TIME DELAY
We will tie FFI to pin 7 of 1/0 Port AO. The following instruction BASED ON
loop will create a delay which lasts until FFl goes high: INPUT SIGNAL
LOOP: IN A () INPUT PORT AO TO ACCUMULATO
RLA SHIFT BIT 7 INTO THE CARRY
JR NC.LOOP |IF CARRY =0 STAY IN THE LOOP

Do you see how this loop works? After I/0 Port AO contents have been input to the Ac-
cumulator, we are only interested in bit 7, since this is the bit that corresponds to FFI.

This is what the RLA instruction does:

1 0 <= Bit No.

If the Carry status equals 1, the printwheel move delay is over If Carry equals O, pro-
gram logic must continue the delay

Why did we use an RLA instruction to test this bit instead of a BIT instruction? The BIT
instruction uses two bytes of object code and eight clock cycles of execution time,
whereas the RLA instruction is just one byte and executes in four clock cycles.

EOR DET

This signal indicates that the end of the ribbon has been reached. Under these cir-
cumstances, character printing cannot continue

When this signal is generated, there will still be fresh ribbon in front of the printham-
mer, so the signal is not used to inhibit printhammer firing: rather, it is used to prevent
the end of the print cycle from ever being indicated. This effectively prevents a new
print cycle from ever starting.
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We will connect the EOR DET signal to bit 7 of 1/0 Port BO. Since EOR DET is a
negative logic signal, we will test it prior to going into the “in between print cycle”
loop. as follows:

;TEST FOR VALID END OF PRINT CYCLE
VALND: IN A(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
RLA ;SHIFT BIT 7 INTO CARRY
JR NC.VALND :IF ZERO IN CARRY, STAY IN PRINT CYCLE
;START OF IN BETWEEN PRINT CYCLES LOOP

LOOP: IN A.(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
BIT 6.A :TEST BIT 6 (RESET)
JR NZ,LOOP :IF RESET IS HIGH, STAY IN LOOP
;RESET IS LOW. TEST PW STROBE AND RETURN STROBE
AND  30H .ISOLATE BITS 5 (PW STROBE)} AND
:4 (RETURN STROBE)
cpP 10H TEST FOR PW STROBE = 0, RETURN STROBE = 1
JR Z,L00P .IF TEST IS TRUE STAY IN LOOP

;PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
Look at the instruction sequence above. There are some interesting aspects to it.

The first three instructions above will be the last three instructions in the print cy-
cle sequence. The instruction labeled LOOP is the first instructiori of a sequence which
gets executed continuously until the start of the next print cycle. Thus, if EOR DET is
low, program logic will hang up in the first three instructions listed above, constantly
looping within these three instructions until EOR DET goes high. At that time, the print
cycle ends and we go into the “in between print cycles” instruction loop. The program
now hangs up indefinitely in this instruction loop until bit 6 (which corresponds to
RESET) equals 0, while bit 5 (which corresponds to PW STROBE) equals 1, or bit 4
{which corresponds to RETURN STROBE) equals 0.

There is another interesting feature of the instruction sequence above. We could,
if we wished, eliminate the second IN instruction, as follows:

;TEST FOR VALID END OF PRINT CYCLE
VALND: IN A2) :INPUT 1/0 PORT BO TO ACCUMULATOR
RLA :SHIFT BIT 7 INTO CARRY
JR NC,VALND :IF ZERO IN CARRY, STAY IN PRINT CYCLE
;START OF IN BETWEEN PRINT CYCLES LOOP
BIT 7.A JTEST BIT 6 (RESET)
JR NZ VALND :IF RESET IS HIGH, STAY IN LOOP
;RESET IS LOW. TEST PW STROBE AND RETURN STROBE

AND  60H ;ISOLATE BITS 6 (PW STROBE) AND 4

/(RETURN STROBE)
Ccp 20H .TEST FOR PW STROBE = 0, RETURN STROBE = 1
JR ZVALND AF TEST IS TRUE STAY IN LOOP

;PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

By eliminating one instruction. we have saved two bytes of object code. The penalty is
that we have added 11 clock cycles to the entire instruction loop, which means that the
PW STROBE high pulse goes up from the 25.5 microseconds we calculated when dis-
cussing the RESET signal to 31 microseconds.

Why does the condensed instruction sequence illustrated above work? The reason
is because external logic is not supposed to be moving the ribbon in between print cy-
cles; therefore, EOR DET will always be high during the “in between print cycle” in-
struction execution loop. If this is so. the RLA instruction will always shift a 1 into the
Carry. which will always cause execution to continue with the BIT instruction. Thus, the
first three instructions become harmless. Notice that the BIT, AND, and CP instructions’
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operands have changed, since all the bits have been shifted one position to the left by
the RLA instruction.

HAMMER ENABLE FF

This is the signal which prevents the printhammer from being fired after the print-
wheel is moved to its position of visibility, as described in connection with the
RETURN STROBE signal.

We will connect HAMMER ENABLE FF to pin 6 of 1/0 Port A0, then modify the in-
struction sequence which precedes printhammer firing as follows:

LOOP: IN A0 :INPUT CONTENTS OF I/0 PORT A0 TO
;ACCUMULATOR
OR O0AOH ISOLATE BITS 6. 4.3, 2,1, AND O
CPL ;COMPLEMENT THE RESULT TO TEST FOR
:ANY 0 BIT
JR NZ.LOOP ;ANY O BIT WILL NOW BE 1. IF ANY BIT IS

:1. DO NOT FIRE PRINTHAMMER
:PRINTHAMMER FIRING SEQUENCE BEGINS HERE

CLK

This is the clock signal that synchronizes all logic in Figure 3-1. Try as we may, we
cannot include this signal in our simulation of Figure 3-1, since events within the
microcomputer program are going to be synchronized by the sequence in which in-
structions are executed -- not by a clock. Similarly, the next two signals, +5V and
RV1, are power supplies. They are meaningless within a microcomputer program.

H1-H6

These are the six signals which select one of six time durations for the printham-
mer firing pulse. We will assign these signals to 1/0 Port B1. Once the printhammer
firing instruction sequence gets executed, it simply loads these signals into the Ac-
cumulator as follows:

IN A.(6) INPUT FIRING PULSE TIME CODE TO
;ACCUMULATOR
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" INPUT SIGNAL SUMMARY

:‘ln summary, this is how input signals have been assigned:

7 FFt
6 HAMMER ENABLE
5
Z80.PIO 0O,
g c
Port A 4 A REL
(Port AO) 3 PFR REL
a§signed to input 2 FFA
1 RIB LIFT RDY
0 PFL REL
280 7 EOR DET
PIO 0,
Port B 6 RESET
(Port BO) 5 PW STROBE
assigned to input 4 RETURN STROBE
7
; 6
280 PIO 1, 5 He
Port B 4 H5
. (Port B1.) 3 H4
- assigned to input
2 H3
1 H2
0 H1

OUTPUT SIGNALS

“We will now turn our attention to the output signals listed on the right-hand side
of Figure 3-1. These signals are much easier to describe than the input signals. They
consist of six flip-flop outputs — which are simply timing indicators used by external
logic — plus.four control signals. We are going to output these signals to the B port
of one Z80 PIO and the A port of the second Z80 PlO, as follows:

7
6 FFF
5 FFE
Z80 PIO 1, 4 EFE
Port A
{Port A1) 3 FFD
assigned to output 2 FFC
" =
o | A
280 PIO 0, 3 START RIB MOTION
Port B 2. HAMMER PULSE
{Port BO) 1 CH RDY
assigned to output 0 PW RELEASE
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We assign a pin for FFC even though it is not output, because 1/0 Port A1 is going to
serve a double purpose — as a data storage location and as an output signals buffer.
Simple routines to generate output signals cannot be concocted:; that is the whole pur-
pose of the logic in Figure 3-1. We will therefore simply define the four output control
signals:

1) PW REL. This signal marks the end of the fixed printhammer return and set-
tling time delay, and the beginning of the fixed Final Movement's delay during
which external logic can move the paper feed and carriage

2) CHRDY. This is also referred to as the PRINTWHEEL READY signal. This is the
signal which defines the entire print-cycie time interval; it goes low at the start
of the print cycle and stays low until the end of the print cycle

3) HAMMER PULSE. This signal must be output low for the time interval during
which external logic is supposed to transmit a firing pulse to the printhammer
solenoid.

4) START RIBBON MOTION PULSE. This signal is pulsed high early in the print

cycle, telling external logic that it is safe to begin advancing the ribbon so
that fresh ribbon will be in front of the printhammer when it is fired.

A DIGITAL-LOGIC ORIENTED SIMULATION

We are now ready to start simulating the logic illustrated in Figure 3-1 — but first,
a brief overview of the logic.

A LOGIC OVERVIEW

At the center of the logic sequence are four 74107 flip-flops, labeled FFCyy,
FFDyy, FFEyy and FFFyy. You will find these flip-flops in the center and to the left of
Figure 3-1. These four flip-flops form what is known as a **Johnson Counter’’. Each
flip-flop is controlled by the output of the previous flip-flop, coupled with a test for ex-
ternal conditions:

Clock

Master J J Q J Q

74107 74107
(o} [
a

Master K =g K g K R a
External
Condition
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Thus. the four flip-flops may be visualized as initiating print cycle events in the follow-
. ing way:

FFC "“on” ‘ FFE "off"
FFD “'on” FFE “on” FFF “on” FFC “off” FFD “‘off” FFF ""off”

[ B A A

CH RDY r -
HAMMER
PULSE -/

i
| Variable | Fixed | variable | Fixed | Fixed |
|Move to place | Printwheel | Hammer pulse | Hammer returny - Final ’

petal in front settling width and settling movements
Iof hammer | time | time delay l
|

1 ] |
Start of End of

print lvd-————— Print cycle time interval ————————D-I print
cycle ‘ ? cycle

Start Ribbon
ribbon movement
movement complete

As illustrated above; the print-cycle time interval may be divided into five periods.

During the first time interval, the printwheel is moved from its position of
visibility until the required petal is in front of the printhammer. This time interval
is controlled by external logic, via the FFl input.

The remaining four time intervals are controlied by three 74121 one-shots and the
555 multivibrator.

What about the two 7474 flip-flops at the top left-hand corner of Figure 3-1?
These are simply cycle initiation logic. Flip-flop FFA is triggered by a combination of
signals necessary for a print cycle to begin. Flip-flop FFB acts as a switch for the four
74107 flip-flops, forcing them to turn “off” in between print cycles. Flip-flop FFB does
this by tying its Q output to the reset inputs of the 74107 flip-flops. This results in the
74107 flip-flops always being turned off if FFB is turned off; later on we will explain in
more detail how this happens.

We are now going to follow a print cycle through Figure 3-1. As we progress, we
will create a microcomputer assembly language program that simulates the logic,
device-by-device.
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FLIP-FLOP FFAWy

Our print cycle begins at the 7474 flip-flop designated FFAyy. | 7474
You will find this flip-flop at the top left-hand corner of Figure | FLIP-FLOP
3-1. Let us isolate FFAyy, and illustrate it as follows:

Aiways high, since
tied to + 5V

L

PR

CHRDY —2p S o

Ignored output

7474
FFA

Significant output

ol

3
PW STROBE -~ C
CLR

I

{(CH RDY) OR (PW STROBE)) AND (NOT RESET)

Refer back to the general function table for a 7474 flip-flop given in Chapter 2.

Since PRESET (PR) is always high, being tied to +5V, a low CLEAR (CLR) input will force
the flip-flop “off”, at which time Q is output low and Q is output high.

Look at Figure 3-1 and you will see that CLR is generated as follows:

26
CH RDY x
7432
PW STROBE 37
7408 CLR
27 I
Y
RESET Dc
7404
This is the truth table for CLR:
CH RDY [PW STROBE| X | RESET | Y [CLR
0 0 0 0 110
1 olo
0 1 1 0 1
1 oo
1 0 1 0 1 1
1 oo
1 1 1 0 1 1
1 0o

For flip-flop FFAW to turn “on”. CLR must be high; for CLR to be high. RESET must be’
low, and either CH RDY or PW STROBE must be high.
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Now CH RDY provides FFAyy with its data (D) input, and PW STROBE provides the
clock (C) input. Therefore the function table for flip-flop FFAy may be illustrated as
follows:

INPUTS OUTPUTS

CLOCK D _

PRESET | CLR | (PW STROBE} | (CH RDY) Q [}
0 1 Oor1 Oor1 - 1 0 PRESET=1

1 0 Oor1 Oor1 0 1
0 0 Oor1 -0.0r1 ‘Unstable 4 PRESET=1

1 1 0—1 1 1 0

1 1 0—1 0 (o] 1
1 1 0 Oor1 Pre\gous Pre\%ous No change

And this reduces to the following small function table:

CLR CHRDY | PWSTROBE| @

1
0 0—1 1
1 0—1

“'off”" condition

- O

} possible “on” conditions

o

't takes a zero-to-one transition of PW STROBE for flip-flop FFA\y to turn on. When
FFAWw turns on, however. if CH RDY is 0 then the Q output is still 1, representing the
“off” condition. Thus, to turn FFAyy “on”, PW STROBE must go from O to 1 while CH
RDY is 1.

Recall that CH RDY is a signal which is output high in between print cycles and is out-
put low for the duration of a print cycle. This means that flip-flop FFAw will only turn
on if PW STROBE pulses high in between print cycles, as characterized by CH RDY
being output high:

CLR CHRDY | PWSTROBE | @

0 1
1 0 0—1 1
1 @ 0

il
’0 \ PW STROBE

’\’ CH RDY

0
In between : Print cycles
print cycles ~ Start of
print cycle

For the moment do not worry about how CH RDY goes to O shortly after flip-flop FFAW
turns on; we will explain how this happens later. The only important thing to note is
that a PW STROBE high pulse wili be ignored if it occurs while CH RDY is low.

What about the RESET signal? What this signal does is over-
-ride all other logic associated with flip-flop FFAyy; whenever
RESET is input high, CLR is forced, low which turns flip-flop FFAyy off irrespective
of whatever else is going on.
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SIMULATING FLIP-FLOP FFAw

We concluded in Chapter 2 that a flip-flop is represented in a microcomputer system by
a single bit of read/write memory. A single bit of a read/write buffer will do just as well.

1/0 Port A1 has been assigned to output signals. This port has { FLIP-FLOP
an 8-bit buffer to which port pins are connected: thus. each bitof | SIMULATION
the port buffer will simulate the flip-flop whose output is | USING 1/0
transmitted via the port pin: PORTS
1/0 Port
Buffer bit g [ J<@@——— Pin transmits
simulates output signal
flip-flop

Recall that FFA has been assigned pin 0 of 1/0 Port A1.
O.K., we are ready to simulate flip-flop FFAy.

At the same time, how about simulating the three gates below and to the left of
FFAw? These three gates are numbered 26, 27 and 37, and together they create
the CLR input.

Simulating these three gates individually, the following instruction sequence ap-

plies:

.SIMULATE GATE 27

IN A.(2) .INPUT 1/0 PORT BO CONTENTS TO REG A
CPL :.COMPLEMENT ALL EIGHT BITS
LD B.A .SAVE COMPLEMENT IN REGISTER B

.SIMULATE GATE 26

CPL

AND

22H

:SIMULATE GATE 37

;RE-COMPLEMENT (RESTORE) REG A CONTENTS
ISOLATE BITS 5 AND 1; THEY REPRESENT
.PW STROBE AND CH RDY

JR Z,CLRO :AF NEITHER BIT 1 NOR 5=1, CLRIS 0
BIT 6.B . TEST COMPLEMENT OF RESET
JR Z,CLRO AF RESULT IS 0, CLR IS O
SCF :CLRIS 1 SO STORE 1 IN CARRY STATUS
JR FFAW+2
CLRO: AND A .CLR IS 0 SO STORE 0 IN CARRY STATUS

SIMULATE FLIP-FLOP FFAW

FFAW:  JR NC,FFAO IF CLR=0, SET PORT A1, BITOTO 1
BIT 5.A ;CLR IS NOT 0. TEST PW STROBE. IF
.PW STROBE IS 0, CLOCK HAS NOT PULSED
JR Z.FFAO .SET BIT 0 OF I/0 PORT A1 TO 1
BIT 1.A ;PW STROBE IS 1. TEST CH RDY
JR Z,FFAO .IF CH RDY=0, SET BIT 0 OF PORT A1 TO 1
IN A.(4) :LOAD 1/0 PORT A1 INTO REG A
RES 0.A :BIT O MUST BE RESET TO O, SINCE FFA IS
;"ON™
ouTt (4).A
JR FFB :JUMP TO FLIP-FLOP B SIMULATION
FFAO: IN A4) :LOAD 1/0 PORT A1 INTO THE ACCUMULATOR
SET 0.A ;BIT 0 MUST BE SET TO 1 SINCE FFA IS "OFF”
ouT (4).A

;FLIP-FLOP FFB S!MULAT!ON FOLLOWS



It is very important that you understand how instructions fit together to make a pro-
gram. Read no further until you understand completely how the instruction sequence
given above simulates the logic of FFAwy and its three associated gates.

Let us look-at the above simulations.

The RESET signal, you will recall, has been tied to bit 6 of Z80 PIO | INVERTER
I/0 Port BO; this port is addressed as Port 2 based on the way in | SIMULATION
which we have elected to wire the Z80 PIO into our microcom-
puter system. In order to invert this signal, we input the contents of 1/0 Port BO to the
Accumulator and complement the contents of the Accumulator:

from 1/0 Port BO
IN A(2) XXXXXXXX to Accumulator B

CPL XXXXXXXX Complement

Bit 6 ——————}

The complement of RESET, and of all the other bits of Port BO, is saved in Accumulator
B. The simulation of gate 27 is complete.

The simulation of gate 26 is not quite as straightforward. We | OR GATE
are seeking the OR of PW STROBE and CH RDY. These two signals | SIMULATION

are represented by bits 5 and 1, respectively, of {/O Port B. Now
what we do is restore the contents of 1/0 Port BO in the Accumula- 3;:;U.I§OFLAGS
tor by complementing its contents again: REPRESENT

XXXXXXXX ~ Accumulator contents LOGIC

CPL XXXXXXXX  Complement

We then execute an AND instruction which sets all bits to 0, ex-

cept bits 5 and 1. But we do not actually OR these two remaining

bits. Why? The reason is because when the AND instruction is executed, it sets the
Zero status to the complement of (PW STROBE) OR (CH RDY):

Accumulator A Contents

A5 OR HEX ZERO
Al A7 A6 A5 A4 A3 A2 A1l A0 |VALUE | STATUS
o 0 0 0 0 0 (o] 0 0 00 1
1 0 0 0 0 0 0 1 0 02 0
1 0 0 1 0 0 0 0 0 20 0
1 0 0 1 0 0 [ 1 0 22 -0

M STROBE '/ CH RDY JFollowing AND instruction

execution, Zero status is
complement of
(PW STROBE) OR (CH RDY).

We can therefore move on to gate 37.

The purpose of gate 37 is to generate the FFAw CLR input. We are | ZERO
going to simulate CLR using the Carry status. Now we come right | STATUS
out of the gate 26 simulation into the gate 37 simulation; at this
time the Zero status will be O if the OR of PW STROBE and CH RDY is 1; Zero status will
be 1 otherwise. (Recall that Zero statuses always represent the inverse of the 0 condi-
tion. In other words, a O condition causes the Zero status to be set to 1; a non-zero con-
dition causes the Zero status to be set to 0.)
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The first instruction of the gate 37 simulation takes advantage of the fact that we have
the OR of PW STROBE and CH RDY recorded in the Zero status. If the Zero status is 1,
CLR must be 0, so the first JR Z instruction branches to logic that will set the Carry
status to 0. The next instruction in the gate 37 simulation tests the complement of
RESET as stored in Register B, using a BIT instruction. The BIT instruction will not
change the contents of Register B, but it will set the Zero status to reflect the contents
of bit 6. If the complement of RESET is 0. then the JR Z instruction which follows will
branch to program logic which sets the Carry status to 0. If the complement of RESET is
not 0, then all conditions have been met for gate 37 to output a non-zero result — and
this condition is simulated by the SCF instruction. which sets the Carry status to 1.

Flip-flop FFA is simulated next. The state of this flip-flop may be defined as follows:

If CLR is O then Q is 1.

If PW STROBE is O then Q is 1

If CLR is 1 and PW STROBE is 1 and CH RDY is O then Qis
If CLR is 1 and PW STROBE is 1 and CH RDY is 1 then Q is O

CLR is simulated by the Carry status. PW STROBE is simulated by bit 5 of the Ac-
cumulator. CH RDY is simulated by bit 1 of the Accumulator.

The simulation of flip-flop FFA begins with the instruction labeled FFAW.

First we test the status of CLR using the JR NC instruction. This in- | CARRY
struction causes a jump to FFAO if the Carry status is 0 — which | STATUS
means that CLR is 0. FFAQ is the'label for the first instruction in the
sequence which sets Q to 1.

Observe that we have some unnecessary steps at this point in the program. Here is
our logic:

Input 1/0 Port

N A
80 tq Accumulator

Isolato bits 5 and 1

f both
or6 0, beanch
10 CLAO

8oth ar0 0
R ZCLRO

8ath are not &

f RESET
is 0, branch
1o CLRO,

RESET=0
JA e €

SetCarry to ¥
signifying CLA=1

Jumnp 10 PW STROBE
tost

Sot Carry 0.0
signifying CLR=0

IR FEAW +2

CLRO: AND A

FFAW: R NC FFAQ

Carry is O
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Each rectangular box represents a data movement or manipulation operation.
Each diamond represents logic which tests the condition of a status flag.

The logic sequence illustrated above maintains an orderly instruction flow which con-
forms with the flip-flop FFAyy and its three preceding gates. But if you look at the in-
structions labeled CLRO and FFAW, you will see that they are redundant. The instruc-
tion labeled CLRO sets the Carry status to O. The instruction labeled FFAW tests the Ca-
rry status, and upon detecting O branches to the later instruction labeled FFAO. But
since we have just set the Carry status to 0, the instruction labeled FFAW must detect &
0 Carry status; therefore, the only allowed logic path following a branch to CLRO is
another branch to FFAO. We can therefore replace the two instructions which branch to
CLRO with instructions that branch directly to FFAQ; then we can eliminate instructions
labeled CLRO and FFAW. This also eliminates the instruction which jumps to FFAW+2,
since FFAW+2 addresses a BIT instruction which becomes the next sequential instruc-
tion. We can also remove the SCF instruction. Since Carry=0 conditions have been ac-

counted for by branches to FFAO, the default is Carry=1, which no longer needs to be

identified. Thus. our new instruction sequence may be illustrated as follows:

Old Sequence New Sequence
IN A2 IN A.(2)
AND  22H AND 22H
JR Z,CLRO JR Z,FFAQ
BIT 6.B BIT 6.B
JR Z,CLRO JR Z,FFAQ
SCF 1 unnecessary

CLRO: AND A instructions

FFAW:  JR NC.FFAQ
BIT 5A BIT 5A

JR FFAW+2 ;

Let us continue our program analysis with the BIT 5,A instruction.

Presuming that CLR has a value of 1. we next test PW STROBE. Again. we use a BIT in-
struction for this purpose. PW STROBE is represented by bit 5 of the Accumulator.

Assuming that PW STROBE is 1, all that remains is to check the condition of CH RDY.
To do this we again execute a BIT instruction; however, this time we test the contents
of bit 1. Since the BIT instruction affects only the Zero status flag, we can execute as
many BIT instructions as we need on the same byte without changing it

Assuming that all conditions have been met to turn flip-flop FFA on, we must set bit 0
of I/0 Port A1 to O. This is done by inputting the contents of 1/0 Port AD to the Ac-
cumulator, resetting the appropriate bit, then returning the result:

765432 10<=@- Bit No.

IN A4 XXXXXXXY Accumulator contents
RES 0.A XXXXXXX0 —8Result to Port A1
ouT (4),A
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The last three instructions of the flip-flop FFA simulation are the § SWITCHING
three instructions which set bit 0 to 1/0 Port A1 10 1 {reflecting the § A BIT ON
fact that flip-flop FFA is "off”). These three instructions load the
contents of 1/0 Port A1 into the Accumulator, set the appropriate bit, then return the
result:

76543210 -=g—Bit No.

IN Al4) XXXXXXXY Accumulator contents
SET 0.A XXXXXXX1 -~ Result to Port A1
ouT (4),A

Now in all honesty, the program sequence we have just described is a ridiculous
way of simulating flip-flop FFA and its three associated gates.

It is ridiculous because we simulated each gate as an independent transfer func-
tion. Instead, let us consider the flip-flop, with its three gates, as a single transfer
function. We can represent the transfer function with the following state defini-
tion:

Set Q to 0 if RESET=0, CH RDY=1 and PW STROBE goes from 0 to 1. Set Q to 1
otherwise.

How are we going to test for the transition of PW STROBE from O to-1?

Using interrupts, the test would be very simple; but we are not going to use interrupts
until Chapter 5

Without using interrupts, there is only one way to check fora | SIGNAL

PW STROBE O to 1 transition. We must input the contents of /O § LEVEL

Port BO to the Accumulator, test bit 5, save the result, input the | CHANGES
contents of I/0 Port BO to the Accumulator again, test bit 5 again, | SENSED
then compare the two bits for an old value of 0 and a new value of | WITHOUT

1. But this scheme is risky; it will only catch signal transitions j INTERRUPTS
which are lucky enough to occur in between the two instructions
which load /0 Port BO contents to the Accumulator:

PW STROBE ’ \

Hit!

@ represents execution of first IN A {2) instruction

represents execution of second IN A(2) instruction

Within the logic of a microcomputer program, however, we { EVENT TIMING IN
have no need to rely on signal transitions. Event sequences | MICROCOMPUTER
are determined by instruction execution sequence. The } SYSTEM

whole concept of timing on the leading or trailing edge of a -
signal pulse has no meaning. instead of using PW STROBE signal transitions,
therefore, we will use PW STROBE signal levels. Fiip-flop FFA can now be de-
scribed with the following state definition:

Set Q to O if RESET equals 0, CH RDY equals 1 and PW STROBE equals 1. Set Q to
1 otherwise. .
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If you are a logic designer, you may be deeply troubled by the | TIMING
blithe way in which we simply replace edge triggering with { AND LOGIC
level triggering. We can do this within a microcomputer | SEQUENCE
system because microcomputer programming gives us an ex-
tra degree of freedom, as compared with digital logic design: the order in which
you stuff logic components into a PC card has nothing to do with the sequence in
which logical events occur. Logic sequence is going to be controlled by edge and
level triggering. But the order in which you write assembly language instructions
is the order in which the instructions will be executed.

To drive this point home. look at the following flowchart which represents the state
definition for flip-flop FFA:

& Load J/O Port BO .
into Accumulator

!

. Isolate bit 1
(CH RDY), bit 5
(PW STROBE) and
bit 6 (RESET)
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Again each rectangular box represents a data movement or manipulation operation.
and each diamond represents logic which tests the condition of a status flag.

The order in which you write down instructions is the order in which instructions will be
exscuted. With regard to the flowchart above, this execution sequence is represented
by the continuous line of downward pointing arrows. Special Jump-On-Condition in-
structions allow the normal sequence to be modified, as represented by the horizontal
arrows emanating from the sides of the diamonds. You can follow the arrows to the
point where the Jump-On-Condition instruction takes you

We will now rewrite the flip-flop FFA simulation treating the flip- ﬂop and the
three CLR logic gates as a single transfer function.

Since RESET, CH RDY and PW STROBE are all connected to pins of 1/0 Port BO, we load
the contents of 1/0 Port BO into the Accumulator and isolate all three bits. Now there is
only one combination of values that these three bits can have if a new print cycle is to
begin. RESET must equal 0, while CH RDY and PW STROBE both equal 1. We will
therefore redraw our program flowchart as follows:

{

Set Q=1

1

Load 1/0 Port BO
into Accumulator

1

Isolate bits 1 {CH RDY)
bit 5 (PW STROBE)
and bit 6 (RESET)

Does
Accumulator
contain
00100010
?

Set Q=0
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Our instruction sequence condenses to the following few instructions:
.SIMULATION OF FFAW AND ASSOCIATED LOGIC

IN A.(4) JANITIALLY SET BIT 0 OF 1/0 PORT A1 TO 1
SET 0.A
ouT @).A

:LOAD 1/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
1.5 AND 6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

FFAW: IN A.(2) ANPUT 1/0 PORT BO TO ACCUMULATOR
AND 62H JISOLATE BITS 6. 5 AND 1. IF RESET=0
Ccp 22H .CH RDY=1 AND PW STROBE=1, NEW PRINT

.CYCLE STARTS

JR NZ FFAW :OTHERWISE RETURN TO FFAW
IN A, (4) .START NEW PRINT CYCLE BY SETTING 1/0
RES 0.A .PORT A1, BITOTOO
ouT (4).A

"NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

The first three instructions in the above sequences simply set bit 0 of I/O Port Al to 1
This is in anticipation of a new print cycle not beginning Four instructions. beginning
with the instruction labeled FFAW, are all that are needed to check for conditions
which trigger the start of a new print cycle. These four instructions execute in 36 clock
cycles which, assuming a 500 nanosecond clock. means that PW STROBE must pulse
high for at least 18 microseconds

Providing RESET equals O while CH RDY and PW STROBE equal 1, a new print cycle
must begin. so the last three instructions set bit O of 1/0 Port Al to 0.

Our simulation of flip-flop FFA is complete.

FLIP-FLOP FFBw

The next device in our logic sequence is another 7474 flip-flop, marked FFBwy in Figure
3-1: it is just to the right of FFAwy. This flip-flop may be illustrated as follows:

FFA (Q) AND RETURN STROBE

)

PR
{or S) 9

2
;— i
7474

FFB

FFE (Q) —d C o}
CLR

|

NOT RESET
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The following function table describes FFB. as wired above. with its D input tied to 0:

NOT -
_ RETURN RESET FFE (Q) _
FFA (Q) STROBE PRESET {CLR) =CLOCK Q Q
0 0 0 1 X 1
0 1 0 0 X unstable
1 0 0
1 1 1 0 X 0 1
1 1 0—1 0 1

Chapter 2 provides the standard 7474 fiip-flop function table: all we have done is
remove the D column, and the rows that show D=1. We can also remove the CLR col-
umn, and all rows that show CLR=0, since CLR is tied to NOT RESET. NOT RESET will
always be 1 within a print cycle, since FFA will not turn on if NOT RESET is O.

The following simplified function table can now be used for FFB, assuming that
CLR {NOT RESET) will always be 1 and D wili always be O:

FFA (@) AND _
RETURN STROBE | FFE (Q) _
=PRESET =CLOCK | a | a
0 Oor1 1]0
1 0—1 o 1

Let us take a look at the FFB PRESET input; it is FFA (Q) AND RETURN STROBE

RETURN STROBE, recall. is a signal input by external logic to | PRINTWHEEL
initiate a special print cycle which moves the printwheel back | REPOSITIONING
to its position of visibility. but does not fire the printhammer or | PRINT CYCLE
print a character. We call this a “Printwheel Repositioning”
print cycle. In between print cycles, therefore, RETURN STROBE must be input high.

Since RETURN STROBE is input low as an alternative method of initiating a print
cycle, when simulating FFB, we must consider RETURN STROBE in two ways:

1) As a contributor to the PRESET input.
2) As a signal which can initiate a print cycle, bypassing flip-flop FFA.

But first, let us define the condition of flip-flop FFB in between print cycles.

As we have just seen in our simulation of flip-flop FFA, the FFA (Q) output is high until
the beginning of a print cycle, when Q goes low. the FFA (Q) output is therefore high in
between print cycles. By definition, RETURN STROBE is high in between print cycles.
since RETURN STROBE low is uset! to initiate a printwheel repositioning print cycle
Therefore, the FFB PRESET input will be high in between print cycles:

P —— 1
RETURN STROBE \ 1
_ 1 7408
FFA (Q) ) 1

PRESET

7474
FFB
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Since PRESET is input high in between print cycles, we are going_to assume that at the
beginning of a print cycle FFB is off; thatis, Q is output low and Q is output high. This
also assumes that at some recent time PRESET was input high when the Q output of
flip-flop FFE went from O to 1. As you will see later on, this is indeed what happens at
the end of every print cycle.

Coming into a new print cycle, therefore, FFB has a high PRESET input, with a
high Q output and a low Q output. This flip-flop now acts as a switch: it is turned
on by PRESET being input low; it is subsequently turned off by a clock O to 1 tran-
sition occurring after PRESET has again gone high:

PRESET

it

CLOCK /( ;
a \l
Switch Switch
“on” “off”

The switch “on" illustrated above occurs under two circumstances:

1) Immediately after the onset of a new print cycle, when FFA outputs Q low, thus
forcing PRESET low.

2)  When RETURN STROBE is input low signalling a printwheel repositioning print cy-
cle.

The switch “off”" occurs when the FFE (Q) output makes a low-to-high transition while
PRESET is being input high: this occurs at the end of every print cycle.

SIMULATING FLIP-FLOP FFB

Bit 1 of 1/O Port A1 has been assigned to the a output of flip- | SWITCHING
flop FFB. The switch “‘on’’ illustrated above is therefore simul- | BITS ON
ated by the following three instructions:

IN A.4) ;LOAD FLIP-FLOP DATA BYTE
RES 1.A JRESETBIT 1 TO O
ouT (4),A ;RESTORE FLIP-FLOP DATA BYTE

Subsequently the switch “off” will be simulated as follows: SWITCHING
IN Al8)  :LOAD FLIP-FLOP DATA BYTE BITS OFF
SET 1.A ;SET BIT 1 TO 1
ouT (4).A ;RESTORE FLIP-FLOP DATA BYTE

We now encounter a situation where, with every best inten-
tion, we are not going to be able to directly simulate our
digital logic.

It is easy enough to draw one 7474 flip-flop in a logic diagram and connect its pins to
suitable signals. Having done that, you no longer need to worry about when a signal
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does or does not change state. Unfortunately, an assembly language instruction se-
quence has no pins or signals; assembly language will simulate events that are oc-
curring at one instant in time only. For flip-flop FFB, this may be illustrated as
follows:

)

PRUUDUIPIIQNE S p—

PRESET

4

o . el e . s

-‘1

CLOCK

F

[]]

e

‘ ’ Digital logic
Microcomputer

program
logic

Immediately after flip-flop FFA turns on to usher in a new print cycle, it outputs Q low,
which in turn switches flip-flop FFB on. FFB will not switch off until some point much
later in the print cycle, when FFE outputs Q high. We must therefore divide our
simulation of FFB into two parts:

1) At the beginning of our program we will simulate FFB switching on. since
chronologically it is the next event within the print cycle

2) Later on in the program, when we simulate FFE setting Q high, we must remember
to simulate FFB switching off.

But that is not all there is to the FFB simulation. We must also modify the instruction
sequence that executes in between print cycles, so that RETURN STROBE input
low can be simulated initiating a printwheel repositioning print cycle.

With modified or new instructions shaded, this is how our program now looks:

;IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
JINITIALLY SET I/0 PORT A1 BITS 1 AND 0 TO 1

IN A.4) JINPUT 1/0 PORT A1 TO ACCUMULATOR
OR 3 . ;SET BITS 1 AND O
ouT @).A ;RETURN RESULT

;TEST FOR RETURN STROBE LOW

STBHE:  IN ~ A(2) :INPUT /0 PORT BO TO ACCUMULATOR
BIT 4.A ' ;TEST RETURN STROBE BIT
JR ZFFB R IT IS 0, JUMP TO FFB SIMULATION

:SIMULATION OF FFAW AND ASSOCIATED LOGIC
:LOAD I/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
:1, 5 AND 6 FOR CH RDY, PW STROBE AND RESET. RESPECTIVELY
IN A.(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
AND  62H ISOLATE BITS 6, 5 AND 1. IF RESET=0,
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CcpP 22H ;CH RDY=1 AND PW STROBE=1, NEW
:PRINT CYCLE STARTS
JR NZ.STBHI ;OTHERWISE RETURN TO STBHI

IN A4 ;START NEW PRINT CYCLE BY SETTING {/0
RES 0.A .PORT A1.BITOTO O
ouT (@).A

;NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE ) ) -
SIMULATE FLIP-FLOP. FFB-SWITCHING ON S " o
FFB: N Al4) :LOAD.I/0 PORT A1 INTO ACCUMULATOR :

RES LA ;RESETBIT 1700
OuT . {4).A © ;RESTORE RESULT

We are not quite finished with our simulation of ﬂlp -flop FFB Observe that the Q
output from FFB goes to:

1) A 7411 AND gate, located approximately at coordinate B5.
2) A 7432 OR gate, located at C7.

The FFB (Q) output is not idle either, but we will look into it later.
First consider the 7411 AND gate located at B5.

If you refer back to the description of output signals, you will notice that CH RDY was
declared to be high in between print cycles but low during a print cycle.

In reality, CH RDY is output by the 7411 AND gate located at B5; therefore, in between
print cycles, all three inputs to this AND gate must be high. Our analysis of flip-flop FFB
shows that its Q output will indeed be high in between print cycles, but for the moment
you must take it on faith that the other two signals input to the AND gate will also be
high in between print cycles.

In any event, as soon as flip-flop FFB switches on, its Q output goes low, which
means that no matter what the other two inputs to the 7411 AND gate do, CH
RDY will also be driven low. This change in the status of CH RDY is sifnulated by
adding the following instructions to our program:

;TEST FOR RETURN STROBE LOW

STBHI: IN A.(2) :INPUT I/O PORT BO TO ACCUMULATOR
BIT 4,A .TEST RETURN STROBE BIT
JR ZFFB AFIT IS 0, JUMP TO FFB SIMULATION

SIMULATION OF FFAW AND ASSOCIATED LOGIC
:LOAD 1/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
;1.5 AND 6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

IN A.(2) :INPUT I/0 PORT BO TO ACCUMULATOR
AND  62H ISOLATE BITS 6. 5 AND 1. IF RESET=0,
CP 22H .CH RDY=1 AND PW STROBE=1, NEW

.PRINT CYCLE STARTS
JR NZ,STBHI ;OTHERWISE RETURN TO STBHI

IN A.(4) :START NEW PRINT CYCLE BY SETTING /0
RES 0.A .PORT A1,BITOTOO
ouT @).A

"NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
;SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN . A.l4) :.LOAD 1/0 PORT A1 INTO ACCUMULATOR
RES 1.A JRESETBIT 1 TO O
ouT {4).A -RESTORE RESULT

;SIMULATE 7411 AND GATE SWITCHING CH RDY LOW: i
IN A2) :INPUT 1/0 PORT BO TO ACCUMULATOR
RES 1A :RESET BIT 1.TO 0
OouT = (2)L.A ,RESTOHE RESULT
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We are now faced with an interesting problem. CH RDY becomes the D input to flip-
flop FFA and it contributes to the CLR input of FFA. What happens when CH RDY
goes low in response to FFB switching on?

Notice that PW STROBE only pulses high, therefore the OR gate located at coordinate
B2 relies on CH RDY being high in order to provide a high input to the following AND
gate

This AND gate, in turn, provides a high CLR input to flip-flop FFA. In other words, by the
time flip-flop FFB turns “on" and switches CH RDY low, PW STROBE will have already
gone low; thus inputs PW STROBE and CH RDY will both be low If you look back at
flip-flop FFA’s CLR truth table, you will find that when CH RDY and PW STROBE
are both 0, CLR will always be 0.

Therefore, flip-flop FFA will switch off:

PW STROBE

"\
CH RDY \ (v e ~
A B) — .
FFB (Q)

What does this mean? Our conclusion is that flip-flop FFA switches itself “‘on” at
the beginning of a print cycle, but only stays on long enough to switch flip-flop
FFB “‘on’’. When FFB turns '‘on”’ it sets CH RDY low, and that turns flip-flop FFA
“off".

But here is the rub: if you look again at Figure 3-1, you will | TIMING
find that flip-flop FFA helps generate the J input to flip-flop j AND LOGIC
FFC, in addition to switching to flip-flop FFB. SEQUENCE

Now that events are serialized in time, we can go ahead and

simulate flip-flop FFA being turned “‘off’, so long as we remember, when simulat-
ing flip-flop FFC, that it receives Q low from flip-flop FFA. Bearing this precaution
in mind, we will extend our program as follows:

;TEST FOR RETURN STROBE LOW

STBHI: IN A.(2) INPUT 1/0O PORT .BO TO ACCUMULATOR
BIT 4,A ,TEST RETURN STROBE BIT
JR Z.FFB JFIT IS 0, JUMP TO FFB SIMULATION

:SIMULATION OF FFAW AND ASSOCIATED LOGIC
:LOAD 1/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
1.5 AND 6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

IN A.(2) INPUT 1/O PORT BO TO ACCUMULATOR
AND  62H :ISOLATE BITS 6, 5 AND 1 IF RESET=0,
CcpP 22H :CH RDY=1 AND PW STROBE=1, NEW

. ;PRINT CYCLE STARTS
JR NZ.STBHI ;OTHERWISE RETURN TO STBHI

IN A.4) :START NEW PRINT CYCLE BY SETTING /O
RES 0.A :PORT A1,BITOTOO
ouTt {4).A

:NEW PRINT CYCLE I’NSTRUCTION SEQUENCE STARTS HERE
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-SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.(4) :LOAD 1/0 PORT A1 INTO ACCUMULATOR
RES 1A :RESET BIT 1 TO 0
ouUT @A :RESTORE RESULT

:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW
IN A(2) AINPUT 1/0 PORT BO TO ACCUMULATOR
RES 1.A :RESET BIT 1 TO 0
ouT (@A :RESTORE RESULT

-;CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0 PORT A1 TO 1

~ IN - A4) :LOAD I/0 PORT A1 TO -ACCUMULATOR

SET  0.A :SET BIT0.TO 1
OUT. 4).A :RESTORE RESULT

Now look at the OR gate located at coordinate C7. This gate receives the FFB Q out-
put as one of its inputs in order to generate PW REL. The other input to this OR gate is
the AND of the Q output from flip-flop FFF, plus the Q output of flip-flop FFD. You will
find out shortly that these flip-flops are also turned “off” in between print cycles; they
are turned on sequentially during the course of the print cycle. At the point where FFB
switches on, FFF will be switched off, which means that its Q output will be low: thus,
the AND gate located at C6 will output low, which means that OR gate 26 has been
relying on the high Q output frem FFB in order to output PW REL high:

FFB (Q)
PW REL

FFD (Q)

FFF (Q)

Now, when FFB switches ‘‘on’’ and outputs Q low, PW REL will also output low.
We must therefore modify our program to output bits 0 and 1 of 1/0 Port BO low,
since both PW REL and CH RDY are going to be driven low. This is how our pro-
gram now looks:

.TEST FOR RETURN STROBE LOW

STBHI: IN A(2) INPUT I/0 PORT BO TO ACCUMULATOR
BIT 4.A "TEST RETURN STROBE BIT
JR . ZFFB JFITIS 0, JUMP TO FFB SIMULATION

;SIMULATION OF FFAW AND ASSOCIATED LOGIC
:LOAD'I/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
;1.5 AND 6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

IN A.(2) ;INPUT 1/0 PORT BO TO ACCUMULATOR

AND  62H :ISOLATE BITS 6.5 AND' 1. IF RESET=0, CH RDY =1
cpP 22H /AND PW STROBE=1, NEW PRINT CYCLE STARTS
JR NZ.STBHI ;OTHERWISE RETURN TO STBHI

IN A, 4) :START NEW PRINT CYCLE BY SETTING I/0O PORT
RES 0.A A1 BITOTOO

ouTt (4).A

:NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
;SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.(4) ;LOAD 1/0 PORT A1 INTO ACCUMULATOR
RES 1.A RESET BIT 1 TO 0O
ouTt (@.A ;RESTORE RESULT
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:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO
7432 OR GATE SWITCHES PW REL LOW

IN A2) :INPUT 1/0 PORT BO TO ACCUMULATOR
AND - OFCH ;RESET BITS O AND 1 TO O
ouT  (2)L.A :RESTORE RESULT

:CH RDY LOW TURNS FFA OFF. SET BIT O OF /O PORT A1 TO 1
IN A.(4) :LOAD 1I/0 PORT A1 TO ACCUMULATOR
SET 0.A SETBITOTO 1
ouT {4),A ;RESTORE RESULT

Do we have to do anything about the Q output from flip-flop FFB? If you look at
this output you will see that it ties directly to the RESET inputs of flip-flops FFC,
FFD, and FFE. it also becomes one of the inputs to the 555 multivibrator.

In fact, the FFB Q output is a clamping signal; when low. it shuts the four connected
devices off, and when high, these four devices are switched on

The FFB Q output will be taken into account when we simulate the four devices
connected to this signal. Therefore, our simulation of flip-flop FFB is done.

FLIP-FLOP FFC

This is the 74107 flip-flop at coordinate C2 in Figure 3-1. Since we are going to simul-
ate four 74107 flip-flops, you should refer back to Chapter 2 if you cannot immediately
recall the characteristics of this device.

Let us isolate flip-flop FFC to see how it works:

FFF (Q)
RETURN STROB_E 7408 J (o) S—
AND FFA (Q) 24107
[
CLOCK Fre
FFF (Q) K g a
INPUTS FFB(Q)
R c J K Q a
L X X X L H
H g\ L L | stay the same
H I W H L H L
H W L H L H
H U\ H H invert
JK B~ hecome 0 O
inputs outputs here
here

In between print cycles, the Q output to FFB, being low, switches fiip-flop FFC
off. FFC, therefore, outputs Q low and Q high.

What happens when FFB is switched on depends on the J and K inputs arriving at FFC.
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In between print cycles flip-flop FFF is switched off, therefore its Q output will be low
FFC receives its K input from the FFF Q output, therefore when FFC switches on, its K in-
put will be O

The J input to FFC is generated as follows:

37
RETURN STROBE
7408

FFA (@) ————————— J l 12
_ 7408
FFF (Q)

FFF (Q) will be high, since FFF is switched off. The FFC J input will therefore be identical
to the FFB PR input, which we have already described.

FFB PR (or S) input

In summary, this is the signal sequence which turns FFC on:

wox [\ i a
PW STROBE F—’\

+2

FFA (@) ____“—'\___J ’Z /
L — [/
“ A
FFB(Q) /

When the FFB Q output goes high. unclamping FFC, FFC waits until the FFA Q output
goes high again; then FFC will receive a high input at J and a low input at K. On the
trailing edge of the clock pulse input to FFC, Q will be output high and Q will be output
low.

EFC waits for the FFA Q output to go high again, because while FFA is switched on. FFA
Q is output low. While FFA (Q) (or RETURN STROBE) is pulsed low. FFC receives a low J
input. So long as FFC is receiving low J and K inputs, its outputs will not change — that
is one of the properties of a 74107 flip-flop

Flip-flop FFC wiil remain in its "‘on’’ state until some later point in the print cycle
when flip-flop FFF switches on. At that time, flip-flop FFC will receive a high input
at K and a low input at J; and that will cause FFC to switch off.



SIMULATING FLIP-FLOP FFC

The simulation of flip-flop FFC is indeed straightforward; it involves these three
steps:

1) We must adjust our initialization instructions to ensure that flip-flop FFC is re-
ported as “‘off’’ in between print cycles.

2) The flip-flop FFB simulation must be followed immediately by instructions
which simulate flip-flop FFC turning on.

3) We mustremember to simulate FFC turning off — but that will not happen un-
til some later point in the program.

Now the following modifications to the beginning of our program ensure that flip-flop
FFC is simulated “off" in between print cycles:

:IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
ANITIALLY SET I/0 PORT A1 BITS 1 AND O TO 1, BIT.2T00

IN A4 .INPUT 1/0 PORT A1 TO ACCUMULATOR
OR 3 :SETBITS 1 AND O
RES 2.A ;RESET BIT 2 :

ouTt @).A .RETURN RESULT
;TEST FOR RETURN STROBE LOW

STBHI:  IN A.(2) :INPUT I/0 PORT BO TO ACCUMULATOR
BIT 4.A .TEST RETURN STROBE BIT
JR Z.FFB AFIT IS 0, JUMP TO FFB SIMULATION

All we have done is add the RES instruction to reset 1/0 Port A1 bit 2 to O-

Accumulator A
Contents

76543210 <@ Bit No.
IN Al4) AXXAXX XX
OR 3 00000011

XXXXXX11
RES 2,A XXXXX011

Recall that I/0 Port A1 bit 2 has been assigned to flip-flop FFC.

What about the time delay that separates flip-flops B and C § TIMING AND
switching on? Recall that flip-flop FFC will not switch on until | LOGIC

after flip-flop FFB has switched flip-flop FFA off. If this is a print- | SEQUENCE
wheel repositioning print cycle, then FFC will not switch on until
RETURN STROBE is input high again

The simplicity or complexity of our timing problem depends entirely on logic
beyond Figure 3-1. There is nothing within the logic of Figure 3-1 that demands a time
delay of fixed duration or, for that matter, any time delay separating FFB and FFC
switching on. We will therefore pay no attention to the timing considerations associ-
ated with FFC switching on; rather, we will simply add simulation to the end of our pro-
gram as follows:

:NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
;SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.(4) :LOAD 1/0 PORT A1 INTO ACCUMULATOR
RES 1A :RESET BIT 1 TO O
ouT (4).A .RESTORE RESULT

:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW ALSO
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:7432 OR GATE SWITCHES PW REL LOW

IN A2) ;INPUT 1/0 PORT B0 TO ACCUMULATOR
AND OFCH ;RESET BITSOAND 1 TO O
ouTt (2).A ;RESTORE RESULT

:CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0 PORT A1 TO 1
IN A 4) ;LOAD I/0 PORT A1 TO ACCUMULATOR
SET 0.A SSETBITOTO
ouT (@).A ;RESTORE RESULT

;SIMULATE 74107 FLIP-FLOP FFC SWITCHING ON SET BIT 2.0F

: I/O PORT A1 TO 1
N A4 :.LOAD 1/0 PORT A1 INTO ACCUMULATOR

SET =~ 2A SETBIT2T0 1
. ouT {4),A . ;RESTORE RESULT :
If you are beginning to think like a programmer. you will detect an | PROGRAMS
opportunity for economy in the simulation of flip-flop FFC switch- § MADE
ing on. _Observe that the three instructions directly | SHORTER
above @ are also setting a bit of 1/0 Port A1 to 1. This
generates the following sequence of events:

Input to Accumulator - input to Accumulator -—-—-—-—D
XXXXXXXD IN Al4) XXXXXXX1

IN Al4) X
SET 0A XXXXXXX1 SET 2,A (XXXXX‘I)U
ouT (A (Output to 1/0 Port A1 OUT  (4)A ¥ Output to 1/0 Port A1

We can combine the two operations as follows:

IN Af4) XXXXXXXX
OR 5 00000101
XXXXX1X1

The |nstruct|ons marked @ now disappear, and are replaced by these modifications,
marked

:NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
:SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.(4) ;LOAD 1/O PORT A1 INTO ACCUMULATOR
RES 1.A ;RESET BIT 1 TO O
ouT (a)A ;RESTORE RESULT

:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO

;7432 OR GATE SWITCHES PW REL LOW
IN A2) ;INPUT 1/0 PORT BO TO ACCUMULATOR

AND OFCH ;RESET BITSO AND 1 TO O

ouT {2).A ;RESTORE RESULT
:CH RDY LOW TURNS FFA OFF. SET BIT O OF I/0 PORT A1 TO 1.
:ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF I/0 PORT A1.TO 1
IN A4 :LOAD /O PORT A1 TO ACCUMULATOR
OR 5 ;SET BITS 2 AND O TO 1
ouT @).A ;RESTORE RESULT

&)
START RIBBON MOTION PULSE SIMULATION

Recall that early in a print cycle the START RIBBON MOTION output signal is
pulsed high to trigger external logic which advances the ribbon; thus, when the
printhammer fires, fresh ribbon is in front of the character being printed. The
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START RIBBON MOTION signal is generated by a 7411 AND gate (number 7) lo-
cated at coordinate D6 in Figure 3-1. This AND gate has three inputs:

1) HAMMER ENABLE FF. This is a signal input to identify a printwheel repositioning
print cycle.

2) The Q output from flip-flop FFC.

3) TheQ output from flip-flop FFD.

HAMMER ENABLE FF will be high unless a printwheel repositioning print cycle is in
progress, in which case the ribbon does not have to be moved. This signal, therefore,
suppresses the START RIBBON MOTION pulse.

In between print cycles, flip-flops FFC and FFD are both switched off: therefore, FFC Q)
is low and FFD (Q) is high. The FFC (Q) output holds the START RIBBON MOTION
signal low.

When FFC switches on during a normal print cycle all inputs to AND gate 7 will be
high, so START RIBBON MOTION will pulse high; it will stay high untit flip-flop
FFD switches on, at which time FFD will output Q low; that will drop START RIB-
BON MOTION pulse low. Timing may be illustrated as follows:

HAMMER ENABLE FF
U

\ﬂ

FFC (Q)

FFD (Q) V\)

START RIBBON MOTION

" If you look at the timing diagram illustrated in Figure 3-2, you will see that the START
RIBBON MOTION output pulse is extremely short. Therefore, instead of using flip-flop
FFD to time the end of the START RIBBON MOTION HIGH pulse. we will simply execute
instructions to turn bit 3 of 1/0 Port BO on, then immediately turn it off, as follows:

"NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

:SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.l4) :LOAD I/0 PORT A1 INTO ACCUMULATOR
RES 1.A RESET BIT 1 TO O
ouTt (4).A ;RESTORE RESULT

;SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO

7432 OR GATE SWITCHES PW REL LOW
IN A2 :INPUT 1/0 PORT BO TO ACCUMULATOR
AND OFCH :RESET BITS 0 AND 1 TO 0
ouTt 2).A :RESTORE RESULT o

;CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0 PORT A1 TO

ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF I/0 PORT A1 TO 1
IN A.4) :LOAD I/0 PORT A1 TO ACCUMULATOR
OR 5 :SETBITS2 AND O TO1
ouT (@).A :RESTORE RESULT

:PULSE START RIBBON MOTION HIGH

IN Af2) ;INPUT TO ACCUMULATOR FROM 1/0 PORT BO
SET 3.A SETBIT 3HIGH

ouTt (2).A :OUTPUT TO I/0 PORT BO

RES - 3A .SET BIT 3 LOW

ouT 21.A ;OUTPUT TO I/O PORT BO
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We can calculate the START RIB MOTION pulse width by | PULSE WIDTH
adding the instruction execution times between pin 3 of | CALCULATION
1/0 Port B being set high, then being reset low:

Cyéles instruction

Al QUT__RIA_ [OUTPUT TO /O PORT BO
8™ ""TTRES A 'SET BIT 3 LOW
11 OouT_____(@.A ;OUTPUT TO I/O PORT BO

Pulse width = 19 cycles, or 9.5 microseconds using a 500-nanosecond clock.

What happens next? Our logic sequence may take us to flip-flop FFD, to the right
of FFC, or we may drop down to the 74121 one-shot number 36, just below FFC.

One-shot 36 has its two A inputs tied to ground. which means that they will both input
low. f you look at the 74121 function table given in Chapter 2, you will find that. in this
configuration, a one-shot output is triggered by a low-to-high transition at B. FFC @
provides this trigger. Any other B input will keep this one-shot turned off — which
means that @ and Q will output low and high, respectively, until much later in the
print cycle, when FFC switches off; that is. when the FFC Q output makes a low-to-
high transition.

Flip-flop FFD becomes the next device to be simulated.

FLIP-FLOP FFD

Flip-flop FFD receives its J input directly from the FFC (Q) output; it receives its K input
from the FFC (Q) output. Remember, since one-shot 36 is still switched off, its Q output
will be high; that means AND gate 12 will simply allow the FFC (Q) output to propagate
straight through, to become the FFD (K) input

Now. flip-flop receives the same reset and clock signals as FFC; therefore, flip-flop FFD
will simply-switch on one clock cycle later than flip-flop FFC.

SIMULATING FLIP-FLOP FFD

The simulation of flip-flop FFD is aimost identical to the simulation of flip-flop FFC;
the principal difference is that bit 3 of I/O Port A1 has been assigned to flip-flop FFD.
Once again, we are going to limit ourselves to switching flip-flop FFD on and ensuring
that its setting in between print cycles is correct.

Flip-flop FFD is switched off later in the print cycle; we must therefore remember to
switch it off later in the program

Here are the necessary program modifications and additions:

:IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
INITIALLY SET 1/0 PORT A1 BITS 1. AND 0 TO 1,BITS 3 AND 2 TO O

IN A4 JINPUT 1/0 PORT A1 TO ACCUMULATOR
OR 3 ;SET BITS 1 AND O
AND OF3H ;RESET BITS 3 AND .2
ouTt (4)A RETURN RESULT

;TEST FOR RETURN STROBE LOW

STBHI: IN A2) :INPUT 1/0 PORT BO TO ACCUMULATOR
BIT 4.A ;TEST RETURN STROBE BIT
JR ZFFB JIFIT IS 0, JUMP TO FFB SIMULATION

:CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/O PORT A1 TO 1

3-46



:ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF I/0 PORT A1 TO 1

IN A.(4) :LOAD 1/0 PORT A1 TO ACCUMULATOR
OR 5 ;SET BITS2 AND O TO 1
ouT @).A ;RESTORE RESULT
:PULSE START RIBBON MOTION HIGH
IN A.(2) ;INPUT TO ACCUMULATOR FROM [/0 PORT BO
SET 3.A SET BIT 3 HIGH
ouT (2).A :OUTPUT TO I/0 PORT BO
RES 3.A .SET BIT 3 LOW
ouTt @.A :OUTPUT TO I/0 PORT BO
SIMULATE FFD TURNING ON SET BIT 3 OF I/O PORT A1 TO 1
IN A.4) INPUT PORT A1 TO ACCUMULATOR
SET 3.A ;SET BIT 3.TO 1

ouT {a).A ;RESTORE RESULT "

If the program modifications and additions illustrated above are not immediately ob-
vious, compare them to the flip-flop C simulation: Do not go on if you do not unders-
tand the flip-flop FFD program changes.

Just as the simulation of FFC switching on @ was absorbed | PROGRAMS
into the FFB simulation ( (B) |. so the simulation of FFD switch- | MADE
ing on ( @ ) can be absorbed as follows: SHORTER

:NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
;SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB: IN A.4) :LOAD 1/0 PORT A1 INTO ACCUMULATOR
RES 1.A JRESET BIT 1 TO O
ouT (4).A :RESTORE RESULT

:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW ALSO
;7432 OR GATE SWITCHES PW REL LOW

IN A.(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
AND OFCH :RESET BITSO AND 1 TO O
ouTt (2).A ;RESTORE RESULT

.CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0O PORT A1 TO 1

:ALSO SIMULATE FFC AND FFD TURNING ON. SET BITS 2 AND 3 OF I/0 PORT A1
IN A.@4) .LOAD [/0 PORT A1 TO ACCUMULATOR >
OR O0DH :SETBITS 3, 2 AND.0.TO 1
ouT @.A RESTORE RESULT

:PULSE START RIBBON MOTION HIGH

IN A.(2) :INPUT TO ACCUMULATOR FROM 1/0 PORT BO
SET 3.A .SET BIT 3 HIGH

ouT 2.A :OUTPUT TO {/0 PORT BO

RES 3.A ,SET BIT 3 LOW

ouT (2).A :OUTPUT TO I/0 PORT BO

If the simulations are combined ( @ ), flip-flops FFC and FFD will switch on at
exactly the same instant.

The logic in Figure 3-1 shows FFD switching on one clock pulse after FFC. If the
clock period is two microseconds, then there will be a two-microsecond delay
between flip-flops FFD and. FFC switching on. Both our simulations are wrong.

Does this matter? We honestly cannot tell with the informa- | TIMING AND
tion at hand..We do not know how external logic uses the FFC and | LIMITS OF
FFD outputs. If the switching time interval between these two | SIMULATION
flip-flops must be very close to two microseconds, then our -
simulation is not going to work. Either the two flip-flops must become part of “exter-
nal logic”, or some other means of simulating the eventual function must be found.
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If external logic demands some switching time delay but is not fussy about the
length of the time delay, then our simulation of flip-flop FFD ( ) is adequate.

It is quite possible that the logic in Figure 3-1 shows a switching time delay bet-
ween flip-flops FFC and FFD only to define the leading and trailing edges of the
START RIBBON MOTION pulse; but we have taken care of this high pulse by se-
quentially executing instructions that output 1, then 0 to bit 3 of 1/0 Port BO. So
far as logic internal to Figure 3-1 is concerned, therefore, the need for a switching time
delay between flip-flops FFC and FFD disappears. This being the case. we will assume
that external logic has no need for a switching time delay between flip-flops FFC
and FFD; and we will adopt the shorter, combined simulation identified by

FLIP-FLOP FFE

The next device in our logic sequence is flip-flop FFE. The circuitry surrounding this
flip-flop is almost identical to FFD.

The FFE (K) input is tied to the FFD (@) output, switched by another component of AND
-gate 12. The other input to this AND gate is the Q output of one-shot 49. One-shot 49 is
wired in the same way as one-shot 36, which we have just described

The transition of flip-flop FFD's Q output from 0 to 1 wilt occur when FFD is switched
off: this_is the transition which will trigger one- -shot 49. Therefore, one-shot 49 will
output a high until flip-flop FFD is switched off, which means that when FFD
switches on, its Q output will propagate straight through the AND gate connect-

ing it to the FFE (K) input:
—;D——— FFE (K)

That forces FFE (K)
to be low

FFD (@)

PW READY ENABLE (Q)

High level propagates 0 to 1 transition switches
FFD (Q) “as is” \ PW READY ENABLE (Q) low

/

FFD (Q) \ \

PW READY

ENABLE (@)

FFE (K) /

A

Output FFE (K)
low

Transmit FFD (Q)
unaltered

The unique feature of flip-flop FFE is the way in which its J input is generated. This
input is the AND of the FFD (Q) output and input signal FFl. Now, the Q output of FFD
will go high as soon as FFD switches on; but FFl is input low from the beginning of
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the print cycle until the printwheel has correctly positioned itself. (We described
the function of this input signal earlier in the chapter.) The timing associated with FFl
may be illustrated as follows:

FFI

PW STROBE

CH RDY / I
'HAMMER w r
- PULSE

} Variable | Fixed | Variable | Fixed | Fixed i
Move to place ] Printwheel | Hammer pulse I Hammer returny  Final
petal in front settling width and settling movements

| of hammer | time i time 1 delay |

Start of I‘————— Print cycle time interval —-———-————p-l End of

print print
cycle ‘ ? cycle

Start Ribbon
ribbon movement
movement complete

Solong as FFl is low, flip-flop FFE will receive a low J input; low J and K inputs, you will
recall, hold the Q outputs of a 74107 flip-flop in their prior condition. Thus, input signal
FFI has been used to create the first time delay of the print cycle: a variable time
delay needed to move the required printwheel petal in front of the printhammer.
Simulating this time delay is simple enough; it may be illustrated as follows:

:PULSE START RIBBON MOTION HIGH

IN A2 ;INPUT TO ACCUMULATOR FROM 1/0 PORT BO
SET 3.A :SET BIT 3 HIGH
ouT (2).A :OUTPUT TO I/O PORT BO
RES . 3A ;SET BIT 3 LOW
ouT 2).A :OUTPUT TO I/O PORT BO
;TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY
VIDC: N A _5INPUT 1/0 PORT A0 TO ACCUMULATOR
RLA - iSHIFT BIT 7 INTO CARRY :
JR NC.VLDC - ;STAY IN LOQP IF CARF{Y IS ZERO
'AT END OF DELAY SIMULATE FFE SWITCHING ON :
L N A @ . - - GINPUT TO ACCUMULATOR FROM I/O PORT A1
RES .. BA  RESETBITH
SET . 4A C SETBIT4 -
ouT @A o 0oUTPUT THE RESULT -

In order to generate the initial time delay, we simply execute a | TIME DELAY
continuous program loop which inputs the contents of I/0 Port AO | OF VARIABLE
to the Accumulator. Bit 7 of 1/0 Port AO has been assigned to in- | LENGTH
putsignal FFl. We test this bit by shifting it into the Carry status. If JUMP ON
the Carry status then has a O content, FFl must still be low; so we

T S ; NO CARRY
stay within the loop. As soon as a 1 is shifted into the Carry status,
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the JR NC instruction will create a "'false’”” result; the next sequen-
tial instruction executes and we are out of the time delay loop:

IN A.(0) Jump on No Carry means jump if
RLA Carry is 0. "Jump’” means ""do
JR NC,VLDC not go on to the next sequential
IN A.l4) instruction”, instead go to VLDC.

The last four instructions of the FFE simulation show both outputs of this flip-flop
becoming output signals. This meets requirements of Figure 3-1. We therefore reset
bit b (it represents the Q output) and we set bit 4 (it represents the Q output)

The instruction sequence executed in between print cycles will have to be

modified to ensure that bit 5 has initially been set to 1, while bit 4 has initially
been reset to 0. Here are the required modifications:

;IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
:INITIALLY SET I/0 PORT A1 BITS 5,1 ANDOTO 1, BITS 4, 3 AND 2TO 0

IN . A@) ;INPUT 1/0 PORT A1 TO ACCUMULATOR
OR 23H ;SET-BITS 5,1 AND O TO 1
AND OE3H- :RESET BiTS 4,3 AND 2TO 0O
ouT (@).A ;RETURN RESULT

;TEST FOR RETURN STROBE LOW :

STBHI:  IN A.(2) ;INPUT 1/0 PORT BO TO ACCUMULATOR
BIT 4.A ;TEST RETURN STROBE BIT
JR ZFFB JIFIT IS O, JUMP TO FFB SIMULATION

PW SETTLING ONE-SHOT

The PW SETTLING one-shot is the 74121 device at coordinate B6 in Figure 3-1.
We have described this device in Chapter 2. With its two A inputs tied to ground, this
one-shot is triggered by a low-to-high transition at its B input. Since the B input is
tied to the FFE Q output, this transition occurs as soon as flip-flop FFE switches
on.

The PW SETTLING one-shot has a two millisecond delay. This delay results from the
external capacitor/resistor combination marked C1_and R1. Therefore. as soon as FFE
switches on, the PW SETTLING one-shot outputs Q low for two milliseconds:

FFE {Q)

PW _
SETTLING (Q)

FFI
PW STROBE

CH RDY } g l__

HAMMER
PULSE 1Variable ! Fixed 2 ms | Variable I Fixed § Fixed |
1Move to place} Printwheel Hammer pulse I Hammer return!  Final i
Ipetal in front | settling | width |and setting | movements |
Start of |Of hammer | time 1 ytime | delay I End of
print I-:ﬂ Print cycle time interval print
cycle ' ‘ cycle
Start ribbon Ribbon movement
movement complete
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SIMULATING THE PW SETTLING ONE-SHOT

Simulating the one-shot time delay is simple enough, and may [ ONE-SHOT
be illustrated as follows: TIME DELAY
;PULSE START RIBBON MOTION HIGH SIMULATION
IN A, (2) JINPUT TO ACCUMULATOR
FROM I/0 PORT BO
SET 3.A ,SET BIT 3 HIGH
ouT (2),A ;OUTPUT TO 1/0 PORT BO
RES 3.A ;SET BIT 3 LOW
ouT 2.A ;OUTPUT TO I/O PORT BO
.TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY
VLDC: IN A0 JINPUT 1/0 PORT A0 TO AC-
CUMULATOR
RLA ;SHIFT BIT 7 INTO CARRY
JR NC.VLDC 'STAY IN LOOP IF CARRY IS
ZERO
;AT END OF DELAY SIMULATE FFE SWITCHING ON
IN A.4) JINPUT TO ACCUMULATOR
FROM 1/0 PORT A1
RES 5A JRESET BIT 5
SET 4.A .SET BIT 4
ouT (4).A ;OUTPUT THE RESULT
:SIMULATE 2 MS PW SETTLING TIME DELAY . .
LD A OFAH - ;LOAD:. INITIAL ' TIME DELAY
CONSTANT ..~ '
PWS: DEC A ;DECREMENT ACCUMULATOR
JR NZ,PWS = ;REDECREMENT IF RESULT IS
NOT ZERO

There are two instruction: -~ the time delay loop: DEC A and JR NZ: thus. the total
time delay can be computed as follows:
Instruction
sequence
AN

Time in microseconds
{500 nanosecond clock)

Initial - N
Accumulator 35 LD A, OFAH
contents B 50 ¢ 2 PWS:  DEC
A
249 x 6 +3.5 JR  NZPWS
fesigan

Total time executing ’
jumps to PWS J Total delay time=2001 microseconds
Time to execute JR NZ

instruction when no jump
is performed.

FLIP-FLOP FFF

Once the PW SETTLING one-shot has timed out, we are ready to fire the
printhammer. The 5655 multivibrator is actually going to generate the printhammer
firing pulse, but it is most important to ensure that the printhammer does not fire
while any part of the print or carriage mechanisms is moving. The 555 one-shot is
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therefore triggered by flip-flop FFF, which, in turn, is switched on by a J input that
is the AND of many safeguard signals. Let us isolate flip-flop FFF and examine its
inputs.
51
PFL REL et

PFR REL w7411
CA REL ==t - 51

RIB LFT RDY 7411
A 38

PW SETTLING (@) 7411 J afp—
FFE (Q)

FFF
c
K € 74107

af—

FFE (@) K R

+5V—‘M—]

With its Clear (R) input tied to +5V, flip-flop FFF has the following function table:

INPUTS OUTPUTS
J K| a | Q
L)

0 0 No change

1 0 1 0
0 1 0 1

1 1 Complement

Inputs at Control outputs
positive clock edge at negative clock
edge
CLOCK

In between print cycles, FFE is “off”, so the K input to FFF is high. The flip-flop J input
will be low since the FFE (Q) output will be low, and FFE (Q) is one contributor to FFF {J)

In between print cycles, therefore, flip-flop FFF is “'off"’, since a low J input and a
high K input generate steady outputs of Q=0, Q=1; this is characteristic of a flip-flop in
its ""off” condition.

Now when FFE switches on, it inputs a low K to FFF. So long as the J input is also
low, no change occurs. As soon as the seven signals contributing to FFF (J) are all
high, flip-flop FFF will receive a high J input; this will switch flip-flop FFF on —Q
is then output high and Q is output low.

SIMULATING FLIP-FLOP FFF

Coming out of the simulation of FFE, we know that FFE (Q) and FFE {@) have cor-
rect levels for FFF to switch on.
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Coming out of the simulation of the PW SETTLING one-shot, the one-shot @ out-
put must be high:

51

PFL REL —
PFRREL — 7411
CA REL ~— 51
?
RIB LFT RDY o a1
FFA - 38

PW SETTLING (Q) : 7411 FFF (J)
FFE (Q) > .
FFE (Q) FFF (K}

All that is needed is to test the five remaining interlock signals; as soon as they
are all high, we simulate flip-flop FFF switching on. This is the instruction se-
quence:

;TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY

VLDC: N A0) /INPUT 1/O PORT AO TO ACCUMULATOR
RLA :SHIFT BIT 7 INTO CARRY
JR NC.VLDC ;STAY IN LOOP IF CARRY IS ZERO
/AT END OF DELAY SIMULATE FFE SWITCHING ON
IN A.@) JINPUT TO ACCUMULATOR FROM 1/0 PORT A1
RES 5.A ‘RESET BIT 5
SET 4.A /SET BIT 4
ouT @A :OUTPUT THE RESULT
‘SIMULATE 2 MS PW SETTLING TIME DELAY
LD AOFAH  ;LOAD INITIAL TIME DELAY CONSTANT
PWS: DEC A ;DECREMENT ACCUMULATOR
JR NZPWS  :REDECREMENT IF RESULT IS NOT ZERO
:SIMULATE FLIP-FLOP FFF SWITCHING ON ~ ;
FFF. N A, (0) /INPUT 1/O PORT AO CONTENTS TO ACCUMULATOR
CPL ~ :COMPLEMENT TO TESTFOR 1 BITS
AND  1FH [ISOLATE BITS 0 THROUGH 4
JR  NZFFF  :IF ANY BITS ARE 1, STAY IN LOOP
IN  A@)  SETBIT6OFI/OPORTATTO1
SET 6B S ~
ouT - WA

By now, you should be able to understand instructions as they are added to the pro-
gram.

The first four instructions simply load the contents of 1/0 Port A0 into the Accumulator
and test for 1s in the low-order five bits. Until such time as all five bits are 1. the pro-
gram will remain in the four-instruction loop that begins with IN A,{0) and ends with JR
NZ,FFF.

When bits 0 through 4 all equal 1, the CPL instruction changes all these bits to O:

Accumulator contents

FFF: IN A0) XXX11111
CcPL XXX00000
AND 1FH 00011111
00000000 Zero Status =1
JR NZ,FFF Return to FFF only if Zero status =0
IN Al4) Continue here if Zero status is 1
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The JR NZ instruction no longer deflects program execution back to FFF; rather, it
allows the next sequential instruction to be executed.

We can make the final modification to the instruction sequence which correctly
sets flip-flop status in between print cycles. This is what we finish up with:

:IN BETWEEN PRINT CYCLES PROGRAM EXECUTION ; )
INITIALLY: SET 1/0 PORT A1 BITS 5, 1 AND-O TO 1, BITS 6,4, 3:AND 2 TO 0

IN A () JINPUT 1/O PORT A1 TO ACCUMULATOR
OR 23H ;SET BITS 5, 1 AND 0 TO 1

AND  OA3H ‘RESET BITS 6, 4, 3AND 2 TO 0

ouT WA :RETURN RESULT

What happens when flip-flop FFF switches on?

The FFF (Q) output goes up to pin 9 of AND gate 37 at coordinate C8. This is part of
the logic which contributes to the PW REL signal. However, the transition of the FFF
(Q) output from fow-te-high is not significant, since the other input to AND gate 37
is the FFD (Q) output which is currently low. The FFF (Q) output_is connected to AND
gate 37 to hold PW REL low early in the print cycle when FFD (Q) is high.

The FFF Q and Q outputs contribute to the FFC J and K inputs. FFF (@) is one con-
tributor to AND gate 12, the output of which becomes the FFC {J) input. The other con-
tributor to this AND gate is the output of AND gate 37 at coordinate A4, which is cons-
tantly high by this time in the print cycle; therefore, when the FFF (Q) output goes low.
the FFC (J) input also goes low. The K input to FFC is the FFF (Q) output. FFC will
therefore switch off when K goes high, and that will not happen until FFF
switches on.

In our simulation, however, we are going to postpone FFC switching off until the
end of HAMMER PULSE. This is because the purpose of FFC switching off is to
trigger the PW RELEASE ENABLE one-shot, which creates the time delay needed
by the printhammer to settle back. Thus, instead of using parallel delays:

PW RELEASE ENABLE ONE-SHOT

| i
! (Fixed Delay) !
12 L
L | |
| HAMMER ] EFFECTIVE PW RELEASE |
|  FRING I ENABLE DELAY

| PULSE 1 |

(Variable Delay)

we will implement serial delays, which more immediately meet logic needs:

1 |

I i

F ; 4

| HAMMER I PW RELEASE ENABLE |

| FIRING I ONE-SHOT (Fixed Delay) |
PULSE

| 1 |

(Variable Delay)
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The hammer firing pulse is generated by the 555 muitivibrator. Therefore, the 555
multivibrator provides the next event in our chronological sequence; it is triggered
by a high-to-low transition at pin 2. This pin's input is created as follows:
44 43
FFC (Q) —

7408 7404
FFF (Q) —

555

This is the sequence of events that must be simulated:

555 (@)

FFF {Q}

PW _
SETTLING (Q)

FFI

PW STROBE

CH RDY ’
HAMMER
PULSE me,, J

} variable | Fixed 2 ms | variable | Fixed } Fixed {

iMove to placel Printwheel ' Hammer pulse ' Hammer returng Final '

npeta! in front i settling ] width and settling i movements i
of hammer time time delay

! | | | ! |

Start of
print cycle I‘ﬁ———-——— Print cycle time interval _————»!
End of
' print cycle

Start ribbon Ribbon movement
movement complete

THE 555 MULTIVIBRATOR

Compare the way in which the 555 multivibrator has been wired in Figure 3-1 with the
description of the multivibrator as given in Chapter 2; you will see that flip-flop FFB
switches the multivibrator ‘‘off’” in between print cycles by inputting a low reset at
pin 4. The flip-flop FFF (Q) output triggers the multivibrator, as we have just de-
scribed.
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The duration of the one-shot output pulse is controlled by in- | ONE-SHOT
puts H1 through H6: One of these six inputs will be true while the ¥ VARIABLE
other five will be false; thus, the multivibrator, once triggered, will § PULSE
output a one-shot which can have a "high” pulse with one of six
possible durations

The 555 multivibrator one-shot output is eventually inverted to become a HAMMER
PULSE output; however, for the HAMMER PULSE output to occur, additional inputs to
AND gates 37 and 38, located at coordinate C7, must also be high. We may represent
the HAMMER PULSE logic as follows:

38
555 (Q) e
HAMMER ENABLE FF —{ 7411
HAMMER DISABLE ——i 37
. 7408 AAMMER PULSE
RESET

We will simply have to test the HAMMER ENABLE FF input before generating a HAM-
MER PULSE output.

The HAMMER DISABLE switch must be simulated

RESET we can ignore, since reset logic is being simulated in between print cycles.

SIMULATING MULTIVIBRATOR 555

The simulation of the 555 multivibrator consists of the following logic sequence:

1) Determine if conditions have been satisfied for a 555 one-shot output to be
transmitted as a HAMMER PULSE output.

2) Examine inputs H1 through H6. Based on these inputs, create one of six
possible time delays.

3) If conditions for a HAMMER PULSE output have been satisfied, translate the
555 one-shot output into a HAMMER PULSE output.

Let us first look at the HAMMER PULSE output enabling logic. Testing the condition of
HAMMER ENABLE FF is simple enough; it has been assigned pin 6 of 1/0 Port AO.

But there are no switches in assembly language programs; § LOGIC

how are we going to simulate the hammer disable? We could | EXCLUDED

assign the one remaining pin — pin 5 of I/0 Port A0 — to an | FROM

input signal generated by an external switch. It would be just | MICROCOMPUTER

as simple to place this switch in the path of HAMMER ENABLE
FF as follows:

Pin 6 of

l 1/0 Port AO

N,

A\
| HAMMER DISABLE

/
i,

HAMMER ENABLE FF
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We will therefore ignore the hammer disable switch and enable a HAMMER PULSE out-
put, providing the HAMMER ENABLE FF input is high.

What about the six possible durations for the 555 multivibrator output? We de-
scribed in Chapter 2 how a time delay can be created by loading a 16-bit value into a
register pair, then decrementing this register pair within a program loop. remaining in
the program loop until a decrement to zero occurs. Selecting one of six possible time
delays is as simple as selecting one of six possible initial time constants. We can
now simulate our 555 multivibrator as follows:

FFF: IN A0 :INPUT I/O PORT A0 CONTENTS TO ACCUMULATOR
CPL :COMPLEMENT TO TEST FOR 1 BITS
AND  1FH JISOLATE BITS 0 THROUGH 4
JR NZFFF  :IF ANY BITS ARE 1, STAY IN LOOP
IN Al SET BIT 6 OF I/0 PORT A1 TO 1
SET 6.8
ouT @A
:TEST HAMMER ENABLE FF
~IN A :INPUT 1/O PORT A0 TO ACCUMULATOR
BIT 6.A TESTBIT6
JR  ZHPO  :IF ZERO, BYPASS SETTING HAMMER PULSE LOW

:HAMMER ENABLE FF IS HIGH, SO HAMMER PULSE MUST BE OUTPUT LOW.
:THEREFORE SET BIT 2 OF 1/0 PORT BO TO 0 :
IN A(2) - :INPUT I/O PORT BO-TO ACCUMULATOR
RES - 2A  SETBIT2T00
OUT (LA :OUTPUT RESULT
:COMPUTE TIME DELAY - :

HPO: LD HLDELY ;LOAD DELAY BASE ADDRESS INTO HL PAIR
N Al6)  :INPUT SELECTOR (PORT B1) TO ACCUMULATOR
HP1:  RRA ~ :ROTATE ACCUMULATOR RIGHT THROUGH CARRY
NG HL JINCREMENT HL CONTENTS BY 2
INC  HL ; . ;
JR NCHP1 :IF NO CARRY. ROTATE AND INCREMENT AGAIN
LD EMHL  :LOAD 16-BIT TIME DELAY CONSTANT INTO DE
INC HL S
-
TDLY: DEC  DE  :EXECUTE TIME DELAY LOOP
LD AD ‘ ‘
OR E -
R NZTDLY
:OUTPUT HAMMER PULSE HIGH AGAIN ~
N A{@ INPUT I/O PORT BO TO ACCUMULATOR
SET  2A  SETBIT2T01

OuUT {2). A ;OUTPUT RESULT

Compared to the other dewces we have simulated thus far the 555 multivibrator re-
quires a lot of simulation instructions. While it may look as though there is a lot to un-
derstand, the logic is. in fact, quite simple; so let us take it one piece at a time.

Initially we test HAMMER ENABLE FF. HAMMER PULSE will be | SIGNAL
output low only if HAMMER ENABLE FF is high. The three instruc- § ENABLE
tions which test the status of HAMMER ENABLE FF are:

IN A0 ;INPUT 1/0 PORT A0 TO ACCUMULATOR
BIT 6.A ;TEST BIT 6
JR Z,HPO :IF ZERO, BYPASS SETTING HAMMER

:PULSE LOW
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There are two aspects of these three instructions which need to be explained. First,
there is the logic being implemented. We are determining if conditions have been met
for HAMMER PULSE to be output low. If conditions have been met. the JR Z.HPO in-
struction branches around the instruction sequence that outputs HAMMER PULSE low

IN A.(0)

T 6.A } Test hammer pulse output conditions
ZHPO

:?IJES A.(2) } If conditions have been met, output

2.A
: HAMMER PULSE |
dur @A ow

HPO: {2 HL.DELY

We output HAMMER PULSE low before starting to compute | EVENT
the duration of the time pulse; why is this? The reason is to save | SEQUENCE
time. Instructions which compute the length of the time delay can

be executed at the beginning of the time delay.
i
Duration of computed
time delay
Execute instructions

HAMMER which compute time
PULSE delay length
low

OUT instruction execution

T

We could just as easily have computed the time delay. then set HAMMER PULSE low,
and then executed the time delay; events would have occurred chronologically as
follows:

OUT instruction execution

&-—m—-____ Total time de!ay“————-——m!

Duration of computed
time delay

Compute
length of HAMMER
time delay PULSE

low
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Overlapping events in time makes a lot more sense.

The actual method used to compute the time delay needs a little explanation. At the
end of our program, there will be 12 bytes of memory in which six 16-bit cons-
tants are stored. This is how the source program will look:

;OUTPUT HAMMER PULSE HIGH AGAIN

IN A2 INPUT t[O PORT BO TO ACCUMULATOR
SET 2.A ;SET BIT 2TO 1
ouTt (2).A ;OUTPUT RESULT

ORG DELY+2 :
DEFW ©  PPQQH ;H1 TIME DELAY

DEFW. - RRSSH ;H2 TIME DELAY
DEFW  ~TTUUH H3 TIME DELAY
DEFW. - VVWWH :H4 TIME DELAY
DEFW - XXYYH ;H5 TIME DELAY
DEFW. .. ZZOOH ;H6 TIME DELAY

The letters O through Z have been used to represent hexadecimal values. The six time
delays can be represented by any numeric values, ranging from 00001g through
FFFF1 6.

The address of the first memory byte in which the first time delay is stored is
given by the expression DELY+2. Suppose this memory location happened to be
2138:

Arbitrary
Data Memory
Memory Address

QQ 2138
PP 2138
SS 213A
RR 2138
uu 213C
T 213D
ww 213E
Vv 213F
YY 2140
XX 2141
00 2142
o4 2143

Each 16-bit value will occupy two memory locations. The Z80 assembler will place the
least significant byte in the location with the lower address. This is consistent with the
object code representation of addresses and 16-bit immediate data values, as we men-
tioned in Chapter 2.

DELY is a label to which the value 2136 must be assigned. This assignment is made
using an Equate directive, which would appear at the beginning of the program, as
follows:

DELY EQU 2136H
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Now we begin our computation of the time delay by loading the address DELY
: into the HL register pair. Assume that the label DELY has the value 2136, as illustr-
’ ated above. After the LD HL.DELY instruction has been executed, this is the situation:

Arbitrary
‘ CPU Carry Data Memory
- Registers Status Memory Address
S O aa | 2138
7; B,C PP 2139
DE SS 213A
H.L 21 36 RR 213B
uu 213C
TT 213D
S I, ww 213E
LD HL,DELY vV 213F
YY 2140
XX 2141

etc.

The next instruction, IN A,(6), loads the contents of 1/0 Port B1 into the Accumulator
From our discussion of input signals, recall that, of the six inputs H1 through H6, one
signal will be high while the other five signals are low.

Therefore, after the IN instruction has executed, the Accumulator will contain a 1
in one of the six low-order bits:

Arbitrary
CPU Carry Data Memory
Registers Status Memory _ Address

A [TTTTTIT a aa | 2138

, PP 2139

SS 213A

21 36 RR 2138

uu 213C

o
IN A, (6) TT 213D
——

‘ ww 213€

AL VA2 213F

e ————— Yy 2140

I l I I I l ] /0 Port B1 XX 2141

? etc.
H

We can compute the address of the required time delay by | DATA

adding 2 to the contents of the HL register pair a number of | MEMORY

times given by the position of the Accumulator 1 bit. This may | ADDRESS

be illustrated as follows: COMPUTATION
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@ Rotate Accumulator contents right one bit, through Carry:

" Arbitrary
CPU Carry Data Memory
& Registers Status Memory Address
At l——0 aa | 2138
PP 2139
SS 213A
RR 2138
uu 213C
TT 213D
ww 213E
HP1: ARA v 213F
YY 2140
XX 2141
etc.
@ Add 2 to the register pair HL:
Arbitrary
CPU Carry Data Memory
Registers Status Memory Address
[T O Ga_| 2ne
B.C PP 2139
DE SS 213A
HL 21 38 RR 2138
uu 213C
TT 213D
ww 213E
{ mg :t W 213F
Yy 2140
XX 2141

etc.

@ If Carry status is not 1. go back to @ . otherwise, HL contains the correct ad-
dress.

The logic to make the required address addition is provided by these four instructions:

HP1: RRA ;ROTATE ACCUMULATOR RIGHT THROUGH CARRY
INC HL ;INCREMENT HL CONTENTS BY 2
INC HL
JR NC.HP1 ;IF NO CARRY, ROTATE AND INCREMENT AGAIN

When the JR NC instruction causes program execution to continue with the next se-
quential instruction rather than branching back to HP1, HL will contain the address of
the initial time delay constant's first byte. Now that the correct time delay is ad-
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dressed by the H and L registers, we load the appropriate 16-bit delay constant
into D and E. Suppose H2 was the high input signal; this is the result;

Arbitrary
CPU Carry Data Memory
Registers Status Memory Address
[T O aa_| 2
B.C PP 2139
D,E RR Ss [E T T T~ sS 213A
HL 21 3A { RR 2138
\——/ uu 213C
TT 213D
ww 213E
Vv 213F
YY 2140
XX 2141

etc.

The selected delay constant RRSS is moved to the D and E registers by these three in-
structions:

LD E.(HL) ;MOVE CONTENTS OF BYTE 213A TO REGISTER E
INC HL ;ADDRESS BYTE 213B
LD D.{HL) :MOVE CONTENTS OF BYTE 213B TO REGISTER D

Note that we load the low-order register, Register E, first. since the low-order byte is at
the lower address.

The actual time delay is created by this instruction loop, which was described in
Chapter 2:

TDLY: DEC DE ;DECREMENT DELAY COUNTER
LD AD ;TEST FOR O IN DE BY ORING D WITH
OR E ;EIN THE ACCUMULATOR
JR NZ. TDLY :RETURN IF RESULT IS NOT ZERO

The last three instructions output HAMMER PULSE high, without making any test
for whether HAMMER PULSE was low. This logic will work since outputting HAMMER
PULSE high, if it was already high, will have no discernible effect. Under these circums-
tances, the time required to execute the last three instructions is simply wasted. Since
it would take three instructions to test if HAMMER PULSE had been set low, the waste
is justified.
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Let us now give a little thought to the time it will take to § TIME DELAY
compute the time delay. Execution times for relevant instruc- | COMPUTATION
tions are listed as follows:

Cycles Instruction
IN A.(2)
RES 2.A

ouT (2).A  <e@———HAMMER PULSE low starts here

10 HPO: LD HL.DELY
10 IN A.(6)

g HP1: &Rg\ HL These four instructions will be
6 INC HL e_xecuted beiween one and six
7/12 JR NC.HP1 times. 28 cycles are in the loop

7 LD E,(HL)
6 INC HL
7 LD D.(HL)
6 TOLY: DEC DE These four instructions
4 LD AD : .
4 OR £ ggnsmute the}:me' d!elay,
7/12 IR NZ.TDLY cycles are in this loop
10 IN A2)
8 SET 2.A
11 oUT  (2JA <@——HAMMER PULSE low ends here

113

Assuming a 500-nanosecond clock, the time taken to initiate and terminate the HAM-
MER PULSE signal is given by:

56.5-13-14 + 14N microseconds

where N is a number between 1 and 6, representing the bit position of the Accumulator
that is set to 1. Thus, initiation and termination time will vary between 43.5
microseconds and 113.5 microseconds. The shortest time applies to N =1 (H1),
whereas the longest time applies to N = 6 (H6).

These times must be subtracted from the delays subsequently generated. For ex-
ample, suppose H1 high requires the 555 to output a one-shot signal which is high-for
1.65 milliseconds (approximately); then a delay of 1.6 milliseconds added to a set-up
time of 43.5 microseconds will suffice.

THE PW RELEASE ENABLE FLIP-FLOP

As soon as the 555 one-shot output becomes high again, flip-flop FFC is simulated
switching off. When FFC switches off, its Q output makes a low-to-high transition
and this triggers the PW RELEASE ENABLE one-shot. Thisis a 74121 one-shot iden-
tified by the 36 at coordinate E2. The purpose of this one-shot is to allow the printham-
mer time to settle back before any attempt is made to reposition the printwheel. This
was illustrated as the fixed hammer return and settling time delay.

SIMULATING THE PW RELEASE ENABLE FLIP-FLOP

This is really a two-part simulation; first we must simulate | TIME

flip-flop FFC switching off, then we must execute an appropri- § DELAY
ate time delay. A three-millisecond time delay is sufficient. In-
structions which turn flip-flop FFC off will execute within the three-millisecond time
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delay. The computed time delay will therefore be a little less than three-milliseconds.
Here is the appropriate instruction sequence:

;OUTPUT HAMMER PULSE HIGH AGAIN
IN A.2)  :INPUT I/O PORT BO TO ACCUMULATOR
SET 2.A 'SETBIT 270 1
our (LA OUTPUTRESULT

:SWITCH FLIP-FLOP FFC OFF '~

N Al ':~SET BIT 2 OF I/O PORT Al TO 0
BES = 2A ; . ,
ouT @A - .
EXECUTE A3 MILLISECOND TIME DELAY

LD DE230 :LOAD TIME CONSTANT INTO D E

ﬁPWRL, DEC  DE  :DECREMENT REGISTER PAIR

. b AD TESTFORZERO -
OR E ~ L
JR NZ, PWRL REDECREMENT IF NOT ZERO

Notice that the initial time constant has been ldentmed asa decnmal number, 230 The
time constant could be specified as a hexadecimal number thus:

LD DE.OE6H

Assuming a 500-nanosecond clock. the three instructions which precede the time
delay loop (RES, OUT and LD) execute in 14.5 microseconds. and the four instructions
in the delay loop execute in 13 microseconds. Therefore. the total delay time is given by
the equation:

229X 13+ 105 + 14.5 = 3002 microseconds

To be honest. the three-millisecond time delay is not a critical number; 2.5 or 3.5
milliseconds would probably do just as well, so our worrying about 10 microseconds is
not meaningful in this instance. Nevertheless, in your next application the duration of a
time delay may be very critical; then the timing considerations discussed above will be
very meaningful.

In order to determine what happens at the conclusion of the PW RELEASE time
delay, we must look at the FFC Q and Q outputs. The Q output connects to the
START RIBBON MOTION PULSE AND gate and to the 555 one-shot trigger logic; in
neither case does the Q high-to-low transition have any effect. The START RIBBON MO-
TION pulse signal. is already low. and the 56565 one-shot is triggered by a high-to-low Q
transition. The low-to-high transition simply raises the trigger signal to a high level

which requires no simulation:
FFC (Q) ) 43
7404 555 Trigger

FFC (Q) ; 2

FFF (Q)

555 Trigger

This is the | This is simply a reset
trigger slope I ]

FFF (Q)




The FFC (3) output is ANDed with the PW RELEASE ENABLE Q one-shot in order to
generate the FFD {K) input. The FFD {J) input comes directly from FFC (Q), therefore as
soon as the PW RELEASE ENABLE one-shot goes high again, FFD will receive a
low J input and a high K input:

FFC FFD
Q J
74107
12 74107
a
7408 13
PW RELEASE I
ENABLE (Q)
FFC (Q)
Y
FFC (@) ' “\
PW RELEASE
ENABLE (Q) K
FFD (J) \-b\
i :
' :
FFD (K) ! /
FFD i FFD ' FFD
“on” H ’no change” i “off”

A low J and high K input to flip-flop FFD switches this flip-flop off, and that trig-
gers the PW READY ENABLE one-shot.

SIMULATING THE PW READY ENABLE ONE-SHOT

Logic associated with this one-shot is almost identical to the PW RELEASE ENABLE
one-shot. FFD switching off causes a low-to-high Q output. which triggers the PW
READY ENABLE one-shot.

We must now simulate a two-millisecond time delay; otherwise the next instruction
sequence is almost identical to the PW RELEASE ENABLE one-shot simulation and may
be illustrated as follows:

JEXECUTE A 3 MILLISECOND TIME DELAY

LD DE.230 .LOAD TIME CONSTANT INTO D.E
PWRL: DEC DE :DECREMENT REGISTER PAIR
LD AD TEST FOR ZERO
OR E
JR NZPWRL REDECREMENT IF NOT ZERO
SWITCH FLIP-FLOP FED OFF
. IN Al SETBIT30F vo PORT A1 TO o
RES  3A ~
. oour @A ;
EXECUTE A 2 MILLISECOND TIME DELAY - -
. 1D A0 LOAD INITIAL TIME CONSTANT n\no
o . :ACCUMULATOR
PWRD: ‘DEC A .DECREMENT ACCUMULATOR

JR  NZPWRD  :REDECREMENT IF NOT ZERO
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When FFD switches off, the PW REL output goes high again. Here is the PW REL
creation logic:

37
FFD (@)
7408 2
FFF (Q)
7432 PW REL
FFB (D)

FFB (Q) is still low at this time. But FFD (Q) and FFF (Q) are both high, so AND gate 37
outputs a high level which passes through OR gate 26 to set PW REL high

These instructions set PW REL high:
(EXECUTE A 2 MILLISECOND TIME DELAY

LD A.250 .LOAD INITIAL TIME CONSTANT INTO
.ACCUMULATOR
PWRD: DEC A .DECREMENT ACCUMULATOR
JR NZPWRD  :REDECREMENT IF NOT ZERO
;SET PW REL HIGH
IN A2 :INPUT .1/O PORT BO TO ACCUMULATOR
SET 0.A o LSETBITOTO 1. :
(ouT 2).A ;RETURN RESULT:

Now the whole print cycle ends in a hurry. The flip-flop FFD Q and Q outputs become
the FFE J and K inputs. Q is first ANDed with FFl, which, at this time, is constantly high;
therefore, the moment FFD switches off, FFE receives a low J input.

The FFE (K) input does not go high until the end of the PW READY ENABLE one-shot,
since the PW READY ENABLE Q output is ANDed with Q from FFD in order to generate
FFE (K).

FFE switching off is our next chronological event.

FFE switching off, in turn, causes FFB and FFF to switch off. FFB is switched off by
the low-to-high transition of FFE (Q), which becomes the FFB clock input. FFF switches
off because its J and K inputs are tied directly to the Q and Q outputs of FFE.

Once FFB and FFF have switched off, all conditions have been met for CH RDY to
go high again, providing EOR DET is not signaling the end of ribbon:

EOR DET N
FFB (Q) ’ CH RDY

FFF (@)
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;EXECUTE A 2 MILLISECOND TIME DELAY

LD A.250 ;:LOAD INITIAL TIME CONSTANT INTO ACCUMULATOR
PWRD: DEC A ;DECREMENT ACCUMULATOR

JR NZ,PWRD ;REDECREMENT IF NOT ZERO
;SET PW REL HIGH

IN A.(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
SET  0.A ‘SETBIT O TO 1
outT  .A ;RETURN RESULT
:TURN OFF FLIP-FLOPS FFB, FFE AND FFF
IN A1) ;INPUT PORT A1 TO ACCUMULATOR
AND  OAFH  :RESET BITS 4 AND 6 T0 0
OR . 22 - SETBITSBAND1TO1
| o ouT . @A :OUTPUT RESULT
':SET CH RDY HIGH ; .
IN A :INPUT I/O PORT BO 10 ACCUMULATOR
SET 1 A GSETBIT1TO1 ‘
; . 0uUT. (2) A :OUTPUT RESULT
:BRANCH TO TEST FOR VALID END OF PRINT CYCLE
JP . VALND

SIMULATION SUMMARY

The complete simulation program developed in this chapter is given in Figure 3-3. The
circled numbers correspond to the numbers on Figure 3-2.

We can conclude that an absolutely exact, one-for-one simulation of digital logic
using assembly language instructions within a microcomputer system is not feasi-
ble; but then, it is not particularly desirable.

if you are not a digital logic designer, you will probably be very confused by the various
signal combinations required within the logic of Figure 3-1. A great deal of what is
going on has nothing to do with the ultimate requirements of the Qume printer. rather,
it reflects one logic designer's internal logic implementation, aimed at ensuring ap-
propriate external signal sequences under all conceivable circumstances.

If you are a logic designer. chances are you would have implemented the specific re-
quirements of the Qume printer interface in a totally different way: you may even be
grumbling at this implementation.

The important point to bear in mind is that digital logic contains innumerable
subtleties which are specific to discrete logic devices. These subtleties are not
tied to the requirements of the overall implementation.

Now, assembly language has its own set of subtleties, which also have nothing to
do with the ultimate implementation; rather. they are aimed at making most effective
use of individual instructions or instruction sequences.

It should therefore come as no surprise that an exact duplication of digital logic, using
assembly language. is neither feasible nor desirable. So, we will move away from digital
logic and start treating a problem from a programming viewpoint.

The principal difference between digital logic and assembly § ASSEMBLY
language is that assembly language treats events | LANGUAGE
chronolegically, while digital logic segregates logic into func- | VERSUS
tional nodes. Thus, one logic device may be responsible for a § DIGITAL
number of events occurring at different times during any logic cy- | LOGIC

cle; when translated into an assembly language program, each

event becomes an isolated instruction sequence.
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In Figure 3-1, for example. the print cycle began with a cascade of flip-flops switching
on and ended with the same flip-flops switching off In many cases a flip-flop switching
on triggered one event, while the same flip-flop switching off triggered an entirely
different event Within an assembly language program, the two events will have
nothing in common. Each event will be represented by a completely independent in-
struction sequence occurring at substantially different parts of the program

The major difference between digital logic and assembly language is the concept
of timing. Within synchronous digital logic. as illustrated in Figure 3-1, timing is bound
to clock signals and the need for clean signal interactions Within an assembly
language program, timing results strictly from the sequence in which instructions are
executed. Moreover. whereas components in a digital logic circuit may switch and
operate in parallel, within an assembly language program everything must occur
serially

The key concept to grasp from this chapter is that there is nothing innately correct
about digital logic as a means of implementing anything. The fact that we have been
unable to exactly duplicate digital logic using assembly language instructions does not
mean that assembly language is in any way inferior, it simply means that assembly
language is going to do the job in a different way

Having spent our time in Chapter 3 drawing direct parallels between assembly
language and digital logic. we will now abandon any attempt to favor digital logic
Moving on to Chapter 4, the logic illustrated in Figure 3-1 will be resimulated — but
from the programmer’s point of view

.ASSIGN LOCATION TO BEGINNING OF DELAY COUNT TABLE
DELY EQU NNNNH
.TEST FOR VALID END OF PRINT CYCLE
VALND
IN A.(2) INPUT 1/0 PORT BO TO ACCUMULATOR
RLA .SHIFT BIT 7 INTO CARRY
JR NC,VALND :IF ZERO IN CARRY, STAY IN PRINT CYCLE
IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
INITIALLY SET I/O PORT A1 BITS 5, 1 ANDOTO 1, BITS 6, 4, 3 AND 2 TO 0

IN Al4) INPUT I/0 PORT A1 TO ACCUMULATOR
OR 23H SETBITS 5. 1 ANDOTO 1
AND  0AS3H .RESET BITS 6,4, 3AND 2TO 0
ouTt (4).A ;RETURN RESULT

;TEST FOR RETURN STROBE LOW

STBHI:IN A (2) .INPUT 1/0 PORT BO TO ACCUMULATOR
BIT 4.A .TEST RETURN STROBE BIT
JR Z.FFB AFAT IS 0, JUMP TO FFB SIMULATION

;SIMULATION OF FFAW AND ASSOCIATED LOGIC
;LOAD 1/0 PORT BO CONTENTS INTO ACCUMULATOR AND ISOLATE BITS
.1. 5 AND 6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

IN A.(2) INPUT 1/0 PORT BO TO ACCUMULATOR
AND  62H ISOLATE BITS 6, 5 AND 1 IF RESET=0,
cp 22H .CH RDY=1 AND PW STROBE=1, NEW PRINT

.CYCLE STARTS
JR NZ,STBHI ,OTHERWISE RETURN TO STBH!

@ N aA@ /START NEW PRINT CYCLE BY SETTING 1/O PORT
RES  0.A ALBITOTOO
ouT (@A

:NEW PRINT CYC!'_E INSTRUCTION SEQUENCE STARTS HERE
,SIMULATE FLIP-FLOP FFB SWITCHING ON

Figure 3-3 The Complete Simulation Program
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FFB: IN A.4) .LOAD [/0 PORT A1 INTO ACCUMULATOR
RES 1, RESET BIT 1 TO O
out (4).A ;RESTORE RESULT

:SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO

;7432 OR GATE SWITCHES PW REL LOW

IN A2) :INPUT 1/0 PORT BO TO ACCUMULATOR
AND  OFCH LRESET BITSOAND 1 TO O
ouTt (2).A ;RESTORE RESULT

:CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/O PORT A1 TO 1
;ALSO SIMULATE FFC AND FFD TURNING ON. SET BITS 2 AND 3
- ,OF I/O PORT A1

IN A.(4) :LOAD 1/0 PORT A1 TO ACCUMULATOR
(8) OR ODH ‘SETBITS 3,2 AND 0 TO 1
ouT  @LA ;RESTORE RESULT
PULSE START RIBBON MOTION HIGH .
@ IN A.(2) JINPUT TO ACCUMULATOR FROM [/0 PORT BO
SET  3.A 'SET BIT 3 HIGH
ouT  (21A .OUTPUT TO I/0 PORT BO
RES  3.A :SET BIT 3 LOW
outT  (2,A :OUTPUT TO I/0 PORT BO
;TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY
VLDC:IN A.(0) AINPUT 1/0 PORT AQ TO ACCUMULATOR
RLA :SHIFT BIT 7 INTO CARRY

JR NC,VLDC ;STAY IN LOOP IF CARRY IS ZERO
;AT END OF DELAY SIMULATE FFE SWITCHING ON

IN A.(4) JINPUT TO ACCUMULATOR FROM 1/0 PORT A1
RES 5.A ,RESET BIT 6

SET 4.A JSET BIT 4

ouTt @4).A ;OUTPUT THE RESULT

.SIMULATE 2 MS PW SETTLING TIME DELAY

LD A OFAH .LOAD INITIAL TIME DELAY CONSTANT
PWS: DEC A .DECREMENT ACCUMULATOR

JR NZ.PWS  .REDECREMENT IF RESULT IS NOT ZERO
SIMULATE FLIP-FLOP FFF SWITCHING ON

FFF. N A0 JINPUT 1/0 PORT AO CONTENTS TO ACCUMULATOR
cPL .COMPLEMENT TO TEST FOR 1 BITS
AND  1FH ISOLATE BITS O THROUGH 4
JR NZFFF  .IF ANY BITS ARE 1, STAY IN LOOP
N AW /SET BIT 6 OF I/O PORT A1 TO 1
SET  6.A
ouT @A
.TEST HAMMER ENABLE FF
N A0 INPUT 1/O PORT AO TO ACCUMULATOR
BIT  6A TEST BIT 6
JR ZHPO  .IF ZERO, BYPASS SETTING HAMMER PULSE LOW

:HAMMER ENABLE FF IS HIGH. SO HAMMER PULSE MUST BE OUTPUT LOW

. THEREFORE SET BIT 2 OF I/O PORT BOTO 0

IN A2) INPUT 1/0 PORT BO TO ACCUMULATOR
RES 2.A ;SET BIT2TO 0O
ouTt {2).A ;OUTPUT RESULT

;COMPUTE TIME DELAY
HPO: LD HL,DELY .LOAD DELAY BASE ADDRESS INTO HL PAIR

IN A.(6) :INPUT SELECTOR (PORT B1) TO ACCUMULATOR
HP1: RRA :ROTATE ACCUMULATOR RIGHT THROUGH CARRY
INC HL JINCREMENT HL CONTENTS BY 2

Figure 3-3. The Complete Simulation Program {Continued)
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INC HL

JR NC.HP1 :IF NO CARRY, ROTATE AND INCREMENT AGAIN
LD E.{(HL) ;LOAD 16-BIT TIME DELAY CONSTANT INTO DE
INC HL :
LD D.(HL)

TDLY: DEC DE :EXECUTE TIME DELAY LOOP
LD AD
OR E

JR NZTDLY
;OUTPUT HAMMER PULSE HIGH AGAIN

IN A.2) :INPUT 1/0 PORT BO TO ACCUMULATOR
SET 2.A SETBIT2TO 1
ouT 2).A ;OUTPUT RESULT
;SWITCH FLIP-FLOP FFC OFF
IN A4 :SET BIT 2 OF I/0 PORT A1-TO O
RES 2.A
ouT (@).A

JEXECUTE A 3 MILLISECOND TIME DELAY
LD DE,230 :LOAD TIME CONSTANT INTO D.E

PWRL:DEC DE :DECREMENT REGISTER PAIR
LD AD TEST FOR ZERO
OR E

JR NZ,PWRL :REDECREMENT IF NOT ZERO
'SWITCH FLIP-FLOP FFD OFF

IN A.(4) .SET BIT 3 OF I/0 PORT A1 TO 0

RES 3.A

ouT (4).A
\EXECUTE A 2 MILLISECOND TIME DELAY

LD A.250 ;LOAD INITIAL TIME CONSTANT INTO ACCUMULATOR
PWRD:

DEC A ;DECREMENT ACCUMULATOR

JR NZ,PWRD :REDECREMENT IF NOT ZERO
.SET PW REL HIGH

IN A2) ;INPUT 1/0 PORT BO TO ACCUMULATOR
SET 0.A SSETBITOTO1
ouT {2).A :RETURN RESULT
,TURN OFF FLIP-FLOPS FFB, FFE AND FFF
IN A.4) :INPUT PORT A1 TO ACCUMULATOR
AND  OAFH ;RESET BITS4 AND 6 TO O
OR 22 :SETBITS5 AND 1 TO 1
ouT {4).A ;OUTPUT RESULT
SET CH RDY HIGH
@ IN A(2) :INPUT 1/0 PORT BO TO ACCUMULATOR
SET 1.A SSETBIT 1 TO1
ouT 2).A :OUTPUT RESULT
'BRANCH TO TEST FOR VALID END OF PRINT CYCLE
JP VALND

.DELAY COUNT TABLE
ORG DELY+2
DEFW PPQQH :H1 TIME DELAY
DEFW RRSSH ;H2 TIME DELAY
DEFW  TTUUH :H3 TIME DELAY
DEFW  VVWWH ;H4 TIME DELAY
DEFW  XXYYH ;H5 TIME DELAY
DEFW ZZOOH ;H6 TIME DELAY

Figure 3-3. The Complete Simulation Program {Continued)
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Chapter 4
A SIMPLE PROGRAM

The problems associated with simulating digital logic, as we did in Chapter 3, can
be attributed to one fact: we tried to divide logic into a number of isolated
transfer functions, each of which corresponded to a digital logic device. We are
now going to abandon digital and combinatorial logic. pretend it does not exist. and
take another took at Figures 3-1 and 3-2.

ASSEMBLY LANGUAGE TIMING VERSUS DIGITAL LOGIC
TIMING

Returning to Figure 3-1, simply ignore everything that exists | TRANSFER
between the left and right-hand margins of the figure. What | FUNCTION
remains is a set of input signals and a set of output signals.
The output signals are related to the input signals by a set of transfer functions
which have nothing to do with digital logic devices.

The transfer functions for Figure 3-1 are loosely represented by the timing
diagram in Figure 3-2. What does “‘loosely represented’” mean? It means that tim-
ing which relates to system requirements is mixed indiscriminately with timing
that simply reflects the needs of digital logic. We can abandon timing considera-
tions that simply reflect the needs of digital logic. To be specific, the printhammer
must still be fired by outputting one of six solenoid pulses; the various movement
and settling delays must also be maintained. But we can abandon time delays that
separate one signal’s change of state from another simply to keep the digital logic
clean.

From the programmer’s point of view, therefore, the timing diagram illustrated in
Figure 4-1 is a perfectly valid substitution for the logic designer’s timing diagram
illustrated in Figure 3-2.

INPUT AND OUTPUT SIGNALS

Looking at Figure 4-1 you will see that we have abandoned a lot more than minor
timing delays; we have also abandoned most of our signals. But there is a simple
criterion for determining whether a signal is really necessary within a microcom-
puter system. This is the criterion: if the signal is uniquely associated with real
time events in logic external to the microcomputer system, then the signal must
remain. If the source and destination of the signal are within the microcomputer
system “‘black box’’, then the signal may be abandoned. Based on this criterion,
let us take another look at our input and output signals.

First consider the input signals.

RETURN STROBE and PW STROBE are meaningless signals. j INPUT
As digital logic. these two signals are print cycle sequence initia- | SIGNALS
tors. Within an assembly language program, jumping to the first
instruction of a sequence is all the initiation you need. The fact that RETURN STROBE
represents a print cycle during which the printhammer_is _not fired is unimportant,
because HAMMER ENABLE is used to actually suppress HAMMER PULSE.

We will combine the various hammer firing inhibit signals into one hammer status
input. There are five such signals: PFL REL, RIB LIFT RDY, RIBBON ADVANCE, PFR REL
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and CA REL. Each of these signals owes its origin to different logic external to Figure
3-1: in the digital logic implementation, these signals are ANDed in order to create a
master HAMMER INTERLOCK signal. In our assembly language implementation we will
wire-OR all of these external signals to a single pin which becomes a HAMMER IN-
TERLOCK status.

RESET will remain as a master Reset signal tied to the CPU RESET pin. RESET can
therefore be ignored by the assembly language program; however, recall that once
RESET is activated, program execution is going to resume with the instruction stored at
memory location 0.

EOR DET will be retained. This is the signal which detects end of ribbon and prevents
a print cycle from ever ending. thus inhibiting further character printing after the ribbon
is exhausted :

HAMMER ENABLE FF must be retained; it suppresses the printhammer firing pulse
during printwheel repositioning print cycles

The function performed by the six hammer pulse length signals, H1 through H6,
must remain, but the signals themselves will disappear. Instead of using six pins of
an /0 port to identify hammer pulse width, we are going to create time delays directly
from ASCHl character codes.

Let us now turn our attention to the output signals.

To begin with, we can eliminate all of the flip-flop outputs. The boundary of each
time interval within the print cycle is already identified by an existing signal changing
state. If more than one external logic event must be triggered by a transition from one
time interval to the next, there is nothing to stop the appropriate signal from being
buffered externally, then used to trigger numerous external logic events. Within the
microcomputer program, there is no reason why duplicate signals should be output
simply to identify the transition from one print cycle time interval to the next.

The remaining output signals are maintained. It is possible that some of these signals
would disappear if additional external logic were replaced by more assembly language
programs within the microcomputer system; but given the bounds of the problem, as
stated, the remaining signals are needed in order to define the print cycle time inter-
vals.

| PRINTWHEEL {PRINTWHEEL | CHARACTER | PRINTWHEEL ! PRINTWHEEL |
POSITIONING | SETTLING | PRINTING | RELEASE JREADY DELAYj

1
DELAY : DELAY E : DELAY : :

VELOCITY DECODE \ ,
(FFI)
START ’ \

RIBBON PULSE

HAMMER
INTERLOCK

HAMMER PULSE \ ,
PRINTWHEEL r—‘———-
RELEASE —\ .

PRINTWHEEL '1 I"
READY (CH RDY)

Figure 4-1. Timing for Figure 3-1, from the Programmer’s Viewpoint
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Given our new, simplified set of signals, we can eliminate one | PIN
Z80 PIO: for the single remaining Z80 PIO, 1/0 ports and pins | ASSIGNMENTS
are assigned as follows:

7 g C7
6 i
5 i
280 PIO Port A ) : Eight-bit ASCII
assigned to input 3 i character code
2 :
1
! i
0 < CO
7 HAMMER ENABLE
Z80 PIO Port B 6 EOR DET
assigned to input 5 VELOCITY DECODE (FFI)
4 HAMMER INTERLOCK
. 3 START RIB MOTION PULSE
Z80 PIO Port B 2 HAMMER PULSE
assigned to output 1 PW READY
0 PW REL

MICROCOMPUTER DEVICE CONFIGURATION

We are now in a position to select the devices needed for program implementa-
tion. The selection is really quite straightforward: in addition to the CPU, we will
need one Z80 Parallel Input/Output device, some read-only memory for program
storage, and some read/write memory for general data storage. Figure 4-2 illustr-
ates the microcomputer system which resuits when we combine these devices.
Now, if you don't immediately understand Figure 4-2 do not despair; there are only a
few aspects of this figure which are consequential to our immediate discussion.

GENERAL DESIGN CONCEPTS

This is the most important concept to derive from Figure 4-2: when designing
logic by writing assembly language programs within a microcomputer system, the
program you write is going to be highly dependent upon the device configuration.
There is nothing unique about the way in which devices have been combined as illustr-
ated in Figure 4-2; alternative configurations would be equally feasible The assembly
language programs created, however, might differ markedly from one microcomputer
configuration to the next, and this is a factor you should not lose sight of when writing
microcomputer programs. Also, do not be afraid of modifying the selected hardware
configuration. Microcomputer device configuration and assembly language pro-
gramming interact strongly and should not be separated. These two steps should be
within one iterative loop. During the early stages of writing a microcomputer program,
you should assume that in the course of writing the assembly language program you
will discover features of the hardware that can be improved; that in turn means the pro-
gram will have to be rewritten
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Figure 4-2. Z80 Microcomputer Configuration
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This is a good point at which to bring up one of the reasons | HIGHER

why higher-level languages are not desirable when you are | LEVEL
programming a microcomputer to replace digital logic. | LANGUAGES
Higher-level languages are problem-oriented. For example, it is
hard to look at a PL/M program statement and visualize the exact way in which data
will be moved around a microcomputer system in response to the statement's execu-
tion. It is even harder to relate PL/M programs to exact device configurations. Assembly
language, on the other hand, has a one-for-one relationship with your hardware

Z80 PARALLEL INPUT/OUTPUT INTERFACE (PIO)

Now let us turn to the specific way in which devices have been incorporated into Figure
4-2.

The Z80 PIO will respond to 1/0 addresses as follows:

76 54 32 10 <a@BitNo.
hlxlx[x[xlx Y|y Address lines A7-AQ

L=

Don’t Care
CE

We will assume that all of the don't care address bits are 0, as a | CHIP SELECT
result we will use the four 1/0 port addresses O through 3 to § IN SHVIPLE
address the single Z80 PIO in Figure 4-2. The four addresses | SYSTEMS
will access Z80 PIO locations as follows:

0: Port A data

1: Port A control

2: Port B data

3: Port B control

If a microcomputer configuration contains a large number of 1/0 ports, the chip select
logic may become a little more complex. If a Z80 PIO is to respond to exactly four 1/0
port addresses, excluding all others, then the chip select input must be created by com-
bining eight low-order address lines in some unique way.

Suppose the Z80 PIO in Figure 4-2 must respond to 1/0 port | CHIP SELECT
addresses O through 3 only. Now all of the don't care signal lines | IN LARGER
must input to logic which is true only when these signal lines are | SYSTEMS

all low. This is one way of creating chip select logic:

A7 ()
A6 ————Cf 7427
A5

7400 CE

Ad ——
A3 7427

A2

Al B/A SEL
AD C/D SEL




The CE input can be created using two of the three gates of a 7427 Triple 3-input Posi-
tive-NOR gate and one of the four gates in a 7400 Quadruple 2-Input NAND gate

Given the select logic above, the Z80 PIO will consider itself selected if and only if one
of the four specified |/O port addresses is output on the Address Bus.

The data direction and port utilization illustrated for the Z80 PIO in Figure 4-2 is
not a hardware feature. At any time port utilization may be modified by writing
the appropriate control words into the Control registers of the Z80 PIO.

The Reset logic needs comment. Instead of testing for a Reset con- | RESET
dition in between print cycles, as we did in Chapter 3, we are | LOGIC
going to use a hardware Reset signal, but in a microcomputer
environment.

The signal RESET is connected to the ™M _input of the Z80 PIO. | Z80 PIO
When the Z80 PIO receives M1 low while RD and TORQ are both | RESET
high, it is reset; at Reset. both ports are in Mode 1 -- input with § LOGIC
handshaking. At some point following a hardware Reset, the CPU
program must set the Z80 PIO for our particular purpose by executing instructions
which write the appropriate control words.

Activating the RESET input to the Z80 CPU will clear the Program Counter; this means
that program execution will restart with the instruction stored in the memory byte
whose address is 0. We must therefore have post-reset and system initialization pro-
gram steps beginning at this memory location.

Memory select logic illustrated in Figure 4-2 will satisfy Reset logic requirements.

ROM AND RAM MEMORY

A Signetics 2608 provides our microcomputer system with | ROM
1024 bytes of read-only memory. Two of the four select lines, § ADDRESSES
plus ten address lines, create ROM addresses as follows:

1514 1312 1110 9 8 7 6 5 4 3 2 1 (O <& BitNo.

CODPTL L TTTTTTTTT] oo

N, g’
L______ AO-AS

cs3
cs2
Don’t Care
st
FiD e €S0

The other two select lines are connected to the control signals MREQ and RD.

If the don't care address bits are assumed equal to O, then the ROM device will be
selected by addresses O through 03FF14. This provides the memory byte that we must
have at address O when the Z80 CPU begins executing instructions after a Reset.

Notice that under no circumstance will the ROM address space conflict with Z80 PIO
addresses: MREQ must be active for the 2608 ROM to be selected, while IORQ must be
active for the Z80 PIO to be selected. The Z80 CPU never activates both MREQ and
I0RQ at the same time.
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Once again we are using a primitive ROM chip select on ac- | ROM SELECT
count of the microcomputer system’s simplicity. We define the [ IN SIMPLE
address range O through 03FF1g for the 1024 bytes of ROM | SYSTEMS
memory; but in fact, a wide variety of other addresses would also
access ROM memory -- the address lines A12 through A15 can have any value. Provid-
ing A10 and A11 are both 0, ROM memory will be accessed. There is nothing to prevent
you from selecting memory in this primitive way, providing yours is a small microcom-
puter system. There is no reason why you should incur additional expense creating
complex chip select codes using all of the high-order six address bus lines. Even from
the programming point of view, you will not have to rewrite programs should you
expand your system and include more memory at a later date. Providing you do
not now use any of the aiternative addresses that would also select the ROM,
then at some future time you could take one of these alternative sets of ad-
dresses, use it to select another ROM, and in no way affect programs already writ-
ten.

By specifying ROM for program storage, we are assuming that the product will be
developed in sufficient volume to justify the expense of creating a ROM mask. If
your volume does not justify the expense of creating ROM, then you can use Program-
mable Read Only Memory (PROM)

The two Signetics 2606 RAM devices each provide 1024 bits | RAM

of read/write memory, organized into 256 4-bit units. Each MEMORY
RAM therefore provides half of a read/write memory byte. The 256 ADDRESSES
bytes of RAM will have addresses 04001g through 04FF1g This
may be illustrated as follows:

1514 1312 1110 9 8 7 6 5 4 1 0 <=&—Bit No.
Lo [x e [ I L] l L[] peaesemo
W‘

A =
L——— AO-A7

Must be 1 to select RAM
Don’t Care

Even though memory addresses 04001 ¢ through 04FF1g have been specified as
providing the RAM address space, once again a large number of other addresses
wouid also select RAM. Note, however, that in no case will a RAM address coin-
cide with a ROM address; Address Bus line A10 must always be 0 to select ROM,
while it must always be 1 to select RAM.' Address contentions will therefore never arise.

In summary, addresses for the microcomputer system illustrated in Figure 4-2 will be
interpreted as follows:

ADDRESSES
1/0 PORTS 0016- 0314 280 PIO
MEMORY 000014 - 03FF1 g Read-only memory
MEMORY 040016 - 04FF1g Read/Write memory

SYSTEM INITIALIZATION
Let us now turn our attention to system operations.

When the system is initialized, "‘in between print cycles’” conditions must be re-
established immediately. These are the necessary steps:

1) If the printhammer has been fired, discontinue the firing pulse and atlow the
printhammer time to retract.
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Input 1/Q Port B
to Accumulator

!

Test bit 5
{FFY)

Qutput O ta.bito 0 and 1
of /0 Port B, and 1 to
bit 3 of 1/0 Port B

!

Output 0 to pin 3.
/O Port B

= ——

input 1/O Port B
to Accumulator

1

Test bit §
{FFI)

Execute 3 2 ms
delay

—— — —

Input 1/O Port B
to Accumulator

!

Test bit 7
{Hammer Enable}

In between
print cycles

Output high
pulsa for
start ribbon
motion. set
Printwhes!
Release and
Printwheel
Ready low

mﬁL____L~_h____

Printwheel
positioning
delay

Printwhes!
settling
delay

Test if
canditions are
ready for
hammer to
fire

YES

!
|
I

— ==

J

Test bit 4
{Hammer Interlock)

Output 0 to bit 2 of
1/0 Port B
(Hammer Pulse)

1

Input I/O Port A to
Accumulator

1

Compute hammer
pulse time delay

i

Output 1 to bit 2 of
1/O Port B
{Hammer Pulse}

===

Execute a 3
ms delay

!

Output 1 to bit 0 of
1/0 Port B
(PW REL}

Execute a 2 ms

delay

Tost if
conditions are
ready for
hammer to
fire
(Continued)

Fire hammar

Character
printing time
dalay

Printwheel
Release
Delay

Printwhael
Ready
Delay

- — —-

Input 1/0 Port B to
Accurulator

!

Test bit 6
(EOR DET}

Output 1 to bit 1 of
1/0 Port B

"___“"““"JT-%”““*“

Jest for
EOR DET

If not end

of ribbon.

end print

cycle by
setting CH RDY
101

Figure 4-3. First Attempt at Program Flowchart




2] Move the printwheel back to its position of visibility.
3} Ensure that output signals have their “in between print cycles” status.

We now arrive at another fundamental programming con- | PROGRAM

cept: there is a ‘most efficient’’ sequence in which you | IMPLEMENTATION
should write assembly language source programs. We | SEQUENCE

could go ahead and write an initialization program to imple-
ment a Reset, but that would require a lot of guessing. How do we know that the
printhammer has been fired? How do we move the printwheel back to its position of
visibility? Reset is going to abort a print cycle -- therefore the print cycle program must
be created before we can know how to abort it

Generally stated, you should start writing a program by implementing the most
important event in your logic, then you should work away from this beginning, im-
plementing dependent events.

Specifically. we are going to postpone creating a program to implement the Reset logic
until the print cycle program has been created.

PROGRAM FLOWCHART

Let us now turn our attention to the functions which must be performed by the
microcomputer system. These functions are identified by the flowchart illustrated
in Figure 4-3. We will analyze this flowchart, step-by-step.

We are going to use the velocity decode input signal (FF) to identify the start of a
new print cycle. In between print cycles, therefore, the program continuously inputs
170 Port B contents to the Accumulator, testing bit 5. So long as this bit equals 1, a new
print cycle has not begun. As soon as this bit equals 0, a new print cycle is identified:

] Input I/O'Port B .

to Accumulator

{

Test bit 6 In between
(FF1} print cycles

Output O to bits 0 and
10f 1/O Port B and 1 to
bit 3 of 1/0 Port B Output high pulse

for start ribbon
é motion, set Printwheel
Rel and Printwheel
Ready low

Output 0 to pin 3,
1/0 Port B

———— e __._; _______




The first thing that happens within the new print cycle is that a high START RIBBON
MOTION pulse is output by sequentially writing a 1, then a O to bit 3 of I/O Port B.
Also, Os are output to bits 0 and 1 of I/O Port B, since PRINTWHEEL RELEASE and
PRINTWHEEL READY must both be output low at the start of the cycle:

b Input 1/0 Port B
& to Accumulator
Test bit 5 In between
(FF1) print cycles

Output 0 to bits 0 and
*1.0f 1/0 Port B,:and 1. to
bit 3 of 1/0 Port b

Output high pulse
& "~ for start ribbon motion

‘ ; . set Printwheel Release
~and Printwheel Ready low.

Output 0 1o pin 3,
 1/OPortB

e __f_.__~___*__‘_._;_~ _______

. Input 1/0 Port B
to Accumulator

Y

. Printwheel
Tes"t:Fk;;t 5 positioning
delay




The printwheel positioning delay is computed by the velocity decode signal FFI.
So long as this signal is low, the printwheel is still being positioned. We therefore go
into a variable delay loop. which in terms of program logic is the inverse of the “in bet-
ween print cycles” delay loop. Once again, 1/0 Port B contents are input to the Ac-
cumulator and bit b.is tested; however, we stay'in the delay loop until bit 5 is 1. At that
time the printwheel positioning delay is over

Output 0 to bits 0 and
1 0f I/O Port B, and 1 to

bit 3 of /0 Port B Output high pulse for
* start ribbon motion, set

Printwheel Release and
Printwheel Ready low

Output O to pin 3,
1/0 Port B

e -

- » Input 1/0 Port B

to Accumulator
: Lo Printwﬁéel
Test bit 5 positioning -
(FFI) . delay
e : ) “NO
Printwheel
Execute a 2 ms settling
delay delay

______ ———— *.._._.___...___.__




The printwheel positioning delay must be followed by a two-millisecond print-
wheel settling delay. The usual delay loop will be executed here:

Input 1/0 Port B
to Accumulator

Y

Test bit 5
(FFI)

Execute a 2 ms
delay

Input 1/0 Port B
to Accumulator

Y

Test bit 7
(Hammer Enable)

Printwheel
positioning
delay

Printwheel
settling =

Test if conditions
are ready for
hammer to-fire

At the end of the printwheel settling delay. the printhammer is fired, providing the

HAMMER INTERLOCK signal is low and HAMMER ENABLE is high. Recall that
HAMMER INTERLOCK is a signal status bit, used by all external conditions that can pre-
vent the hammer from being fired. Any signal inputting a high level to this status pin

will suppress printhammer firing



A printwheel repositioning print cycle is identified by HAMMER ENABLE being in-
put low. This condition is detected by testing bit 7 of 1/0 Port B before testing the con-
dition of HAMMER INTERLOCK. If bit 7 of I/O Port B equals 0. then the entire printham-
mer firing sequence is skipped and we jump directly to the printwheel ready delay,
which is the last time delay of the print cycle:

— — s oot

4

Input 1/0 Port B
to ‘Accumulator -

v

Test bit 7

(Hammer Enable) ‘

Test bit 4

A\ 4

(Hammer Interlock)

Output O to bit 2 of
1/0 Port B
{Hammer Pulse)

Test if:cbnditions ;
are ready for
hammer o fire

Fire hammer
Input 1/0 Port A to
Accumulator
Compute hammer
pulse time delay Character
v printing time
Output 1 to bit 2 of delay
1/0 Port B
(Harmmer Pulse)
— e e e e e L e e e e —
Execute a 3
ms delay Printwheel
v Release
Output 1to bit 0 of | Delay
1/0 Port B
(PW REL)
N Execute a 2 ms Printwheel
bt delay Ready Delay




If HAMMER ENABLE is high, this is a character printing cycle, so the printhammer
will be fired, but only when HAMMER INTERLOCK is 0. So long as any signal wire-ORed
to pin 4 of I/0 Port B is high, the program will stay in an endless loop, continuously test-
ing the status of this I/O port pin. When finally the 1/0 port pin equals O, the program
will advance to the printhammer firing instruction sequence:

1

. Testbitd
_ (Hammer Interlock)

Test if conditions
are ready for
hammer to fire

Output 0 to bit 2 of
1/0 Port B
{Hammer Pulse)

‘ Fire hammer

Input 1/0 Port A to
Accumulator

:




In order to fire the printhammer, a variable length firing pulse must be output. To
do this a 0 is output to pin 2 of 1/0 Port B, since this is the pin via which the hammer
pulse is output. Next the hammer pulse time delay is computed. We will describe how
the hammer pulse width is computed after completing a description of the flowchart.
At the end of the printhammer firing time delay, a 1 is output to bit 2 of I/0 Port B This
terminates the printhammer firing pulse:

Isolate bit 4
(Hammer Interlock)

1

Test if conditions
are ready for
hammer to fire

. e o o avutn m— o o | e " o w— voon o, oo — oo

Output 0 tobit20f
= 1/OPort B i
(Hammer Pulse)

‘ . Fire hammer

| Input 1/0 Port A to
- Accumulator

1

Compute hammer
pulse time delay

Character
‘ : : printing time
- - delay -
Output 1 to bit 2 of
- 1/OPort B
(Hammer Pulse)
Execute a 3
ms delay
Printwheel
* Release
Delay
Output 1 to bit 0 of
1/0 Port B
{PW REL)

'
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Now two settling delays follow. First there is a three-millisecond printwheel
release delay, the termination of which is marked by a 1 being output to bit O of 1/0
Port B. This causes PW REL to output high:

¢

Output 1 to bit 2 of Character
1/0 Port B printing time
(Hammer Pulse) delay
Execute a 3
" 'ms delay. :
- - : Printwhee! :
o ; . Release -
SHES S Delay
. Output 1 to bit 0 of :
. l/oPortB
- (PWREL)
5 Execute a 2 ms Printwheel
delay Ready Delay

Next, a two-millisecond printwheel ready delay is executed. The end of this delay
and the end of the print cycle are marked by a 1 output to bit 1 of 1/O Port B; this
sets CH RDY high. We do not want to do this, however, if there is an end-of-ribbon
status. This status is identified by EOR DET being low.



The program therefore inputs 1/O Port B-and tests bit 6, via which EOR DET is input to
the microcomputer system. If EOR DET equals O, then the program stays in an endless
loop continuously retesting bit 6 of I/0 Port B, thus another print cycle cannot begin.

1

3-1. the appropriate printhammer firing delay was signaled by

Only if EOR DET is detected equal to 1 will the print cycle terminate with CH RDY set to

! '———?
|
Execute a 3 ‘ input 1/0 Port B to
ms delay | Accumulator
Printwheet l
Test for
Release %
é Delay : EOR DET
Output 1 to bit 0 of .
1/0 Port B | (E‘E’)Sé—g‘;)
(PW REL) |
______ % o —— o
5 Execute a 2 ms Printwheel l
delay Ready Delay :
I
Output 1 to bit 1 of
I 1/0 Port B
If not end of
ribbon, end
print cycle by
setting CH RDY to 1
Now let us turn our attention to the method via which the | PRINTHAMMER
appropriate printhammer firing delay is computed. In Figure § FIRING DELAY

one of six lines (H1 through H6) being input true. Some external logic had to generate
the true line, based on the nature of the character being printed; this kind of operation

is easier to do within a microcomputer program.

This is the method we will use to compute the appropriate printhammer firing
pulse time delay: every character to be printed is represented by one ASCH code data
byte, as illustrated in Appendix A

If we ignore the high-order parity bit, then 128 possible bit combinations remain. If you
look at the ASCII codes given in Appendix A, you will see that only character codes bet-
ween 2016 and 7A1g are significant. Therefore, only 5A1g (or 9010) code combina-
tions need to be accounted for. Each of these code combinations will have assigned to
it one byte in a 90-byte table; in this byte will be stored a number between 1 and 6



- This number will identify the time delay required by the character. A 12-byte table will
contain the six actual time delays associated with the six digits. This scheme may be il-
lustrated as follows:

ASCII Code Character DATA
20 blank . MEMORY n Index Table
21 ! n+1
22 v 1 = n+2
23 # n+3
24 $ n+4
etc etc S :
]
L]
77 w 6 = n+57
78 X n+58
79 y n+59
7A z n+5A
pp m+2 <f
op Delay Table
qq m+4
qq
3 m+6
r
ss m+8
ss
1t m+ A
tt
uu M+ C g
uu

In the above illustration the letters “‘n’" and “m”, to the right of the data memory, repre-
sent any valid base memory addresses. For example, “n” might represent 03901g while
“m’" represents 03F01g.

Consider two examples.

ASCIi code 2214 signifies the double quotes character (), which requires the shortest
time delay. The data memory byte with address n + 2 corresponds to this ASCIl code. 1
is stored in this data memory byte. Therefore, the first time delay, represented by pppp.
is the value which must be loaded into the index register before executing the long time
delay loop which creates the printhammer firing pulse for the ” character

ASCll code 7716 represents “w’. The data memory byte with address n + 5716 corres-
ponds to this ASCII code. Within this data memory byte the value 6 is stored. which
means that the longest printhammer firing delay is required for a “w" Therefore, a
value represented by uuuu will be loaded into the Index register before executing the
long time delay loop which creates the printhammer firing pulse for the w character.
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Figure 4-4 identifies the program steps via which the printhammer firing delay will
be computed.

Input ASCH character
code from Port A

¥ | ¥

Multiply by 2

{

Add to Delay Table
base address

!

Input delay to
DE registers

{

Execute printhammer
firing delay

'

Figure 4-4. Program Flowchart to Compute Printhammer Firing Pulse Length

® &

Reset bit 7 to 0

Y

Subtract 201¢

{

Add result to Index
Table base address

{

Input index

© & e O

@ ©© ®

In order to better understand Figure 4-4, we will go down steps @ through @ for
the case of "w"

@ The ASCH representation of lower-case w is input to the Accumulator:

A [ X1110111 § <a@——— From |/O Port A
B,C
DE
HL

We then set the parity bit to O:

0\

A § X1110111
B,.C
D,E
H,L




The index table entry corresponding to lower-case w is computed by adding
the ASCII code less 2016 to the index table base address We must subtract
2016 because the first 1F 15 codes have no ASCII equivalent:

A Jo1110111 §< & 01110111

B.C 11100000 Twos complement of 201g
' 01010111

DE

H,L

@ The index table base address is loaded into the H and L registers. We will
assume this address is 03901g. Then the Accumulator contents are added to
this 16-bit address:

A 61010111

B.C g1
b . 0000001110010000
H,L § 00000011 [ 10010000 fmg— 0000001111100111

0 3 E 7

@ The appropriate index is loaded from the index table into the Accumulator:

03E5

A fooo00110 \ 03E6
B.C 00000110 | 03E7
DE / 03E8
H,L 00000071 11100111 03E9

® Since the actual delay is two bytes long, we are going to calculate the address
of the appropriate delay by adding twice the index to the delay table base ad-
dress. First we multiply the index by 2:

A 00001100
B,C
DE
H,L f 00000011 | 11100111

@ Next we add the index multiplied by 2 to the delay table base address Assume

* this base address to be 03F01g This base address is again loaded into the H

and L registers, after which the Accumulator contents are added to the H and L
registers’ contents:

A | 00001100 ~E 00001100

B.C 0000001111110000
DE /OOOOOOHHHHOO

, e e
/ 0 3 E C

H,L § 00000011} 11110000




@ The two bytes addressed by H and L are loaded into the D and F registers:

o 03FA

tt 03FB

a foooot100 /‘" w | o3Fc
B.C w1 03FD
DE uu uu 03FE
H,L §00000011 § 11111100 03FF

@ The D and E registers now contain the correct initial value for a long delay to
be executed as described in Chapter 2.

:PRINT CYCLE PROGRAM
:IN BETWEEN PRINT CYCLES TEST FF1 (BIT 5 OF 1/0 PORT B)
:FOR A ZERO VALUE

START: IN A.2) :INPUT 1/0 PORT B TO ACCUMULATOR
BIT 5A ;TESTBIT 5
JR NZ START  IF NOT ZERO, RETURN TO START

ANITIALIZE PRINT CYCLE. OUTPUT O TO BITS O AND 1 OF I/0 PORT B
:OUTPUT 1 TO BITS 2 AND 3 OF I/O PORT B
LD A, 0CH ;LOAD MASK INTO ACCUMULATOR
ouT 2).A ;OUTPUT TO 1/0 PORT B
:OUTPUT 0 TO BIT 3 OF I/O PORT B, COMPLETING START RIBBON
:MOTION PULSE
RES 3.A .RESET BIT 3 OF MASK IN ACCUMULATOR
ouTt 2.A ;OUTPUT TO 1/0 PORT B
;TEST FOR END OF PRINTWHEEL POSITIONING
:BIT 5 OF 1/0 PORT B {FFI) WILL BE 1

PWPOS: IN A2) INPUT 1/0 PORT B TO ACCUMULATOR
BIT 5,A TEST BIT 6
JR Z.PWPOS :IF 0 RETURN TO CHECK AGAIN
;EXECUTE PRINTWHEEL SETTLING 2 MILLISECOND DELAY
LD A.OFAH :LOAD INITIAL TIME DELAY CONSTANT
PWSET: DEC A :DECREMENT ACCUMULATOR
JR NZPWSET ;RE-DECREMENT IF NOT ZERO
:TEST PRINTHAMMER FIRING CONDITIONS
PHFIR: N A.(2) :INPUT 1/0 PORT B TO ACCUMULATOR
BIT 7.A ;TEST BIT 7 (HAMMER ENABLE)
JP ZPWRDY  :IFIT IS 0. BYPASS PRINTHAMMER FIRING
BIT 4.A :TEST HAMMER INTERLOCK
JR Z.PHFIR :WAIT FOR NONZERO VALUE BEFORE FIRING
:FIRE PRINTHAMMER
RES 2.A ;SET HAMMER PULSE LOW:
ouT @).A ;OUTPUT O TO BIT 2 OF I/0 PORT B
IN A.(0) JINPUT ASCHt CHARACTER TO ACCUMULATOR
RES 7A ;RESET HIGH ORDER BIT
SuB 20H .SUBTRACT 20H
LD HL.INDX ;LOAD INDEX TABLE BASE ADDRESS TO HL
ADD L .ADD ACCUMULATOR CONTENTS TO HL
LD LA
LD A (HL) ;LOAD INDEX INTO ACCUMULATOR

Figure 4-5. A Simple Print Cycle Instruction Sequence
without Initialization or Reset
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ADD A 'MULTIPLY BY 2

LD HL.DELY .LOAD DELAY TABLE BASE ADDRESS INTO HL
ADD L ;ADD ACCUMULATOR CONTENTS TO HL
LD LA
LD E.(HL) .LOAD DELAY CONSTANT INTO D.E
INC HL .
LD D.(HL)
PRDLY: DEC DE JEXECUTE PRINTING DELAY
LD AD
OR E
JR NZ.PRDLY
IN A.(2) AT END OF DELAY OUTPUT 1 TO BIT 2 OF I/0
SET 2.A :PORT B. THIS SETS HAMMER PULSE HIGH
ouT 2).A
EXECUTE A 3 MILLISECOND PRINTWHEEL RELEASE TIME DELAY
LD DE.231 :LOAD INITIAL TIME DELAY CONSTANT
PWREL: DEC DE ;EXECUTE LONG TIME DELAY
LD AD
OR E
JR NZ PWREL
:OUTPUT 1 TO BIT O OF I/0 PORT B. THIS SETS PW REL HIGH
IN A.(2) :INPUT 1/0 PORT B TO ACCUMULATOR
SET 0.A SETBITOTO 1
ouT 2).A ;OUTPUT RESULT
JEXECUTE A 2 MILLISECOND PRINTWHEEL READY DELAY
PWRDY: LD A, OFAH :LOAD TIME DELAY CONSTANT
RDYDLY: DEC A :DECREMENT ACCUMULATOR
JR NZ,RDYDLY RE-DECREMENT IF NOT ZERO

:TEST FOR EOR DET (BIT 6 OF I/0 PORT B) EQUAL TO 1 AS A PREREQUISITE
:FOR ENDING THE PRINT CYCLE

EORCHK- IN A.(2) :INPUT I/0 PORT B TO ACCUMULATOR
BIT 6.A ;TESTBIT 6
JR Z,EORCHK  ;RETURN AND RETEST IF O

;AT END OF PRINT CYCLE SET BIT 1 OF I/0 PORT B TO 1
;THIS SETS CH READY HIGH

SET 1A :SET BIT 1 OF PORT B (IN ACCUMULATOR)
ouTt {2).A ;OUTPUT RESULT
JP START ;JUMP TO NEW PRINT CYCLE TEST

Figure 4-56. A Simple Print Cycle Instruction Sequence
without Initialization or Reset (Continued)

Putting together the program flowcharts illustrated in Figures 4-3 and 4-4, we
generate the entire required program, as illustrated in Figure 4-5. This program is
now described, section-by-section.
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In between print cycles, the following three-instruction loop continuously tests
the status of 1/0 Port B, bit 5. The FFl signal is input to this pin. So long as this signal
is input high, a new print cycle cannot start. As soon as this signal is input low, the
printwheel is identified as being in motion -- which means that a new print cycle is un-
derway:

:PRINT CYCLE PROGRAM
;IN BETWEEN PRINT CYCLES TEST FFI (BIT 5 OF I/O PORT B) FOR A ZERO VALUE
Enter START: == <@~ ~Az(2)~~ =~ [INPUT I/O PORT B TO ACCUMULATOR
Program BIT 5.A { ;TESTBITH

JR=—===N2Z,SFARH ;IF NOT ZERO, RETURN TO START
JINITIALIZE PRINT CYELE OUTPUT 0 TO BITS 0 AND 1 OF 1/O PORT B
;OUTPUT 1 TO BITS 2 AND 3 OF I/O PORT B

L A,0CH ;LOAD MASK INTO ACCUMULATOR

As soon as a new print cycle starts, the PRINTWHEEL RELEASE and PRINT-
WHEEL READY signals must be output low. Also, a high START RIBBON MOTION
pulse must be output so that when the printhammer fires. fresh ribbon is in front of
the character which is to be printed. These initial signal changes may be illustrated as
follows:

JINITIALIZE PRINT CYCLE OUTPUT O TO BITS O AND 1 OF I/0 PORT B
;OUTPUT 1 TO BITS 2 AND 3 OF I/0 PORT B
LD A 0CH  ;LOAD MASK INTO ACCUMULATOR
—— QUT 2).A :OUTPUT TO I/0 PORT B
;OUTPUT 0 TO BIT 3 OF I/O PORT B, COMPLETING START RIBBON
:MOTION PULSE
RES 3.A RESET BIT 3 OF MASK IN ACCUMULATOR
ouTt (21L.A -—l ;OUTPUT TO I/0 PORT B

3 | START RIBBON MOTION

2 | HAMMER PULSE
280 PIO
Port 8
1 | PRINTWHEEL READY

0 § PRINTWHEEL RELEASE
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In the above illustration, notice that I/0 Port B, pin 2 has been | PROGRAMMED
forced to output 1. This is the HAMMER PULSE pin, which goes | SIGNAL PULSE
low only for the duration of the printhammer firing pulse. At
this point in the print cycle. this signal is high, so outputting 1 is harmiess.

The program now executes a variable length delay, during § TIME DELAY
which time the printwheel either moves until the appropri- | OF VARIABLE
ate character petal is in front of the printhammer, or the | LENGTH
printwheel moves back to its position of visibility. In either
case, external logic inputs signal FFI low for the duration of the printwheel positioning
delay. As soon as the printwheel has been positioned, FFl is detected high -- and pro-
gram logic advances to the two-millisecond printwheel settling delay. We have
seen this three-instruction delay loop frequently before:

;TEST FOR END OF PRINTWHEEL POSITIONING.
:BIT 5 OF 1/O PORT B (FFl) WILL BE 1

PWPOS: pIN= ===~ A {2 ====~ :INPUT I/O PORT B TO ACCUMULATOR
r { P BIT 5.A i, .-TESTBIT 5
M dRe - = e = ZRWRES-L IF 0 RETURN TO CHECK AGAIN

EXECUTE PRINTWHEEL SETTLING 2 MILLISECOND DELAY

LD AOFAH | LOAD INITIAL TIME DELAY CONSTANT
PWSET: ¥ DEG A .DECREMENT ACCUMULATOR

JR S\ NZPWSET ¢ (RE-DECREMENT IF NOT ZERO
JTEST PRINTHAMMER FIRING COINDITIONS

~ T
{ N ! ]
\\ :1
/-n?—/\-\ P
: Prin*/vbeel : Printwheel : Character :
i Posiiion’mg\: Settling |  Printing |
: D('alay “ Delay : :
i

N,
R I

VELOCITY DECODE ,

(FF1)

START n

RIBBON PULSE

HAMMER "‘"""’—"

INTERLOCK

HAMMER PULSE \ ,

PRINTWHEEL
RELEASE _\

PRINTWHEEL ‘
READY (CH RDY)

Now the printhammer is ready to be fired. First we test the condition of HAMMER ENA-
BLE. which has been connected to pin 7 of I/0 Port B. If this signal is low, then we are in
a printwheel repositioning print cycle and the entire hammer firing instruction se-
quence is bypassed. if HAMMER ENABLE is high, we pass this test. But HAMMER
INTERLOCK must still be tested: this signal is input to /0 Port B, pin 4. Since the BIT
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instruction which tests bit 7 leaves the Accumulator’'s contents intact, we simply ex-
ecute another BIT instruction to test HAMMER INTERLOCK.

If HAMMER ENABLE is detected low, execution branches to the instruction
labeled PWRDY. You will find this instruction close to the end of the program. at the
beginning of the instruction sequence which executes a two-millisecond PRINT-
WHEEL READY delay.

Note that the five-instruction sequence illustrated in Figure 4-5 tests for HAMMER ENA-
BLE low within the loop that tests for HAMMER INTERLOCK high. HAMMER ENABLE
will be either high or low for the duration of the print cycle: it will not change levels dur-
ing the print cycle. Therefore, the fact that it is continuously being tested is redundant
-- it serves no purpose, but it does no harm

Next, the printhammer is fired. The instruction sequence which causes the printham-
mer to fire implements steps through ., which we have already described. In
order to make the instruction sequence easier to understand, it is reproduced below

with labels @ through

;FIRE PRINTHAMMER

() added:

RES 2.A :SET HAMMER PULSE LOW:
ouT (2).A :OUTPUT O TO BIT 2 OF I/O PORT B
(A) IN A.(0) .INPUT ASCII CHARACTER TO ACCUMULATOR
(B) RES 7.A :RESET HIGH ORDER BIT
(C) SUB 20H ,SUBTRACT 20H
LD HL,INDX .LOAD INDEX TABLE BASE ADDRESS TO HL.
@ {ADD L .ADD ACCUMULATOR CONTENTS TO HL
LD LA
8 LD A {HL) :LOAD INDEX INTO ACCUMULATOR
ADD A :MULTIPLY BY 2
LD HL.DELY :LOAD DELAY TABLE BASE ADDRESS INTO HL
@ {ADD L :ADD ACCUMULATOR CONTENTS TO HL
LD LA
, LD E.(HL) :LOAD DELAY CONSTANT INTO D.E
® {INC HL
LD D.{HL)
PRDLY: ( DEC DE :EXECUTE PRINTING DELAY
@ LD AD
OR E
JR NZ.PRDLY
IN A{2) :AT END OF DELAY OUTPUT 1 TO BIT 2 OF I/0
SET 2,A :PORT B. THIS SETS HAMMER PULSE HIGH.
ouT (2).A

;EXECUTE A 3 MILLISECOND PRINTWHEEL RELEASE TIME DELAY

Notice that the bit tests of HAMMER ENABLE and HAMMER INTERLOCK left the con-
tents of Port B intact in the Accumulator. We need not input from Port B, therefore,
before setting HAMMER PULSE low; we simply reset bit 2 of the Accumulator to 0 and
then output the result to I/0 Port B
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A three-millisecond PRINTWHEEL RELEASE time delay is now executed, and the
end of this time delay is marked by the PRINTWHEEL RELEASE signal being out-
put high. Next, the two-millisecond PRINTWHEEL READY delay is executed:

;EXECUTE A 3 MILLISECOND PRINTWHEEL RELEASE TIME DELAY

LD DE.231 :LOAD INITIAL TIME DELAY CONSTANT
PWREL: DEC DE ;EXECUTE LONG TIME DELAY
o LD AD
) OR E
JR NZ,PWREL .
;OUTPUT 1 TO BIT 0 OF I/O PORT B. THIS SETS PW REL HIGH.
. IN A.(2) :INPUT 1/O PORT B TO ACCUMULATOR
~ SET 0.A SETBITOTO1
ouTt (2).A ;OUTPUT RESULT
JEXECUTE A 2 MILLISECOND PRINTWHEEL READY DELAY
PWRDY: LD A OFAH ;LOAD TIME DELAY CONSTANT
{RDYDLYi DEC A :DECREMENT ACCUMULATOR
[ JR NZ.RDYDLY ;RE-DECREMENT IF NOT ZERO
| ! ! '
| Character | Printwheel 1 Printwheel |
I Printing | Release : Ready !
: : Delay 1 Delay :

VELOCITY DECODE
(FFI)

START
RIBBON PULSE

HAMMER \
INTERLOCK

HAMMER PULSE \ ’

PRINTWHEEL
RELEASE

PRINTWHEEL ’
READY (CH RDY)

Before terminating the print cycle by outputting PRINTWHEEL READY (CH R_Q_Y_)
high, the program must ensure that the end of ribbon has not been reached. If EOR
DET is detected low, the program stays in an endless loop until the ribbon has been
changed; then EOR DET will be input high by external logic. When EOR DET is detected
high, the final instructions of the program set PRINTWHEEL READY high. then return to
the beginning of the program and wait for the next print cycle.
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PROGRAM LOGIC ERRORS

The program we have developed in this chapter contains a logic error which could
not occur in a digital logic implementation. The error is in the hammer pulse time
delay. computation.

In a digital logic implementation, the ASCIl code for any character would be pro-
cessed as seven individual signals. These signals would be combined in some way to
generate one of the time delay signals H1 through H6. It does not matter what ASCII
code combination is input, one of the time delay signals H1 through H6 will be
output high; if the signal generation logic is unsound. a time delay signal will still be
created, although it may be the wrong signal.

Now look at the assembly language program implementation. | LIMIT

It is simple enough for us to look up the table in Appendix A | CHECKING
and see that valid ASCIl codes only cover the range 201g
through 7A1g. That does not prevent a logic designer from using the microcom-
puter system we create in a special system that includes unusual characters,
represented by codes outside the normal ASCIl range. Our program could output
some very strange results under these circumstances. Suppose the ASCIl code 1016
had been adopted to represent a special character. Then, our attempt to look up the In-
dex Table would load into the Accumulator whatever happened to be in memory byte
n-1016.

There is no telling what could be in this memory byte: in all probability this byte will be
used to store an instruction code, perhaps a two-hexadecimal-digit value. Suppose it
contained 2A1g; the hext program step will double 2A16. add it to the base address of
the Delay Table, and access the initial delay code from memory location m + 5414,

Given the microcomputer configuration illustrated in Figure 4-2, this memory location
could easily be one of the duplicate addresses which spuriously access some memory
byte. because we have used disarmingly simple chip select logic. Had we used more
complex chip select logic, then chances are we would now be attempting to access a
memory byte that did not exist. In the former case, there is no telling what length of
hammer pulse would be generated; in the latter case. an extremely long hammer puise
would be generated, since we would retrieve O from a non-existent memory location,
and this value would be interpreted as the initial delay constant for the long delay pro-
gram loop. The hammer pulse would be 852 milliseconds long:

65 536 x 13 = 851,968 microseconds
——

T

Now, in order to avoid this problem we have two options:

Time in microseconds to execute long delay loop
once (assuming a 500 nanosecond clock).

Since initial 00001¢ value will be decremented-and
then tested; a maximum delay loop results.

1) Program logié can simply ignore any invalid ASCII code.

2) Program logic can generate a default hammer pulse width for invalid ASCIi
codes.

If we ignore special characters, the conclusion is obvious: the microcomputer system
cannot be used in any application that requires special characters to be printed. Since
the special character is ignored. nothing will happen when such a character code is
detected on input -- there will be no hammer pulse, no carriage movement, and no posi-
tioning



Providing a default hammer pulse for special characters means that such characters
will be printed, but they may create unevenness in the density of the typed text.

You, as the logic designer, would have to specify your preference.

Either instruction sequence may be inserted into the existing program, as follows:

IN A0 JINPUT ASCII CHARACTER TO ACCUMULATOR
RES 7.A :RESET HIGH ORDER BIT

Chect Tor SUB 20H :SUBTRACT 20H

vals LD HLINDX  ;LOAD INDEX TABLE BASE ADDRESS TO HL
ADD L ;ADD ACCUMULATOR CONTENTS TO HL

ASCH 5 LA

fnzcéffe 4 LD A HL) :LOAD INDEX INTO ACCUMULATOR

e ADD A MULTIPLY BY 2

Here is the instruction sequence which ignores non-standard ASClHI codes:

®
IN A.0) JINPUT ASCII CHARACTER TO ACCUMULATOR
RES 7.A ;RESET HIGH ORDER BIT
:COMPARE ASCHl CODE WITH LOWEST LEGAL VALUE
CP 20H
JP M,PWRDY  :IF CODE IS 1FH OR LESS. BYPASS

;HAMMER FIRING
;COMPARE ASCIlI CODE WITH HIGHEST LEGAL VALUE
cp 7BH
JP P.PWRDY  :IF CODE IS 7BH OR GREATER, BYPASS
;HAMMER FIRING
;ASCI CODE IS VALID
SUB 20H ;SUBTRACT 20H
®

The second option, illustrated below, prints unknown characters with a median
density, using density code 3:
[

®
IN A0} INPUT ASCIl CHARACTER TO ACCUMULATOR
RES 7.A RESET HIGH ORDER BIT
;COMPARE ASCIl CODE WITH LOWEST LEGAL VALUE
cp 20H
JP P.OK :IF CODE IS 20H OR HIGHER, TEST FOR HIGH
LIMIT
.CODE IS ILLEGAL. ASSUME A DENSITY OF 3
NOK: LD A6 :LOAD TWICE THE DENSITY
JP NEXT
.COMPARE ASCIl CODE WITH LARGEST LEGAL VALUE
OK: Ccp 7BH .IF CODE IS 7BH OR GREATER, ASSUME
JP P.NOK ;A DENSITY OF 3
;ASCII CODE IS VALID
SUB 20H :SUBTRACT 20H
LD HL,INDX .LOAD INDEX TABLE BASE ADDRESS TO HL
ADD L ;ADD ACCUMULATOR CONTENTS TO HL
LD LA .
LD A (HL) .LOAD INDEX INTO ACCUMULATOR
ADD A ;MULTIPLY BY 2
NEXT: L.D HL.DELY ;LOAD DELAY TABLE BASE ADDRESS INTO HL

o
[
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Both of the invalid ASCIl code instruction sequences are simplistic in their solu-
tion to the problem.

The only new feature introduced is the use of the Compare Im- § COMPARE
mediate {CP) instruction. This instruction subtracts the im- § IMMEDIATE
mediate data in the operand from the c}ontgnts of the Ac- BRANCH ON
cumulator. The result of the subtraction is discarded, which

CONDITION
means that the Accumulator contents are not altered;
however, status flags are set to reflect the results of the subtraction. We use a JP
M{Jump on Minus) instruction to identify a negative result, which means that the im-
mediate data in the operand was larger than the value in the Accumulator. Similarly, a
JP P {Jump on Plus) instruction identifies a value in the immediate operand which is
equal to or less than the contents of the Accumulator.

In the second instruction sequence, if the value in the im- | CONDITIONAL
mediate operand is less than or equal to the contents of the § INSTRUCTION
Accumulator, the JP P instruction causes a branch to a later in- | EXECUTION
struction labeled OK. The actual program execution paths for § PATHS

the second instruction sequence may appear a trifie confusing
to you if you are new to programming; we therefore illustrate execution paths as
follows:

Ill\l A0 ;INPUT ASCII CHARACTER TO ACCUMULATOR

FéES 7.A ;RESET HIGH ORDER BIT
@APAREC!ASCH CODE WITH LOWEST LEGAL VALUE
P 20H
i P.OK .IF CODE IS 20H OR HIGHER, TEST FOR HIGH LIMIT

1:CODE IS IILEGAL. ASSUME A DENSITY OF 3
iNnok: (B)UD<# — &6 — —~ ;LOAD TWICE THE DENSITY
A —<— P NEXT | @
| [,COMPARE ASCI! CODE WITHILARGEST LEGAL VALUE
| Ok g-—GP 7BH | :IF CODE IS 7BH OR GREATER, ASSUME
—@=—PNOK—~/ A DENSITY OF 3.
.ASCII COGE IS VALID

|
|
| UB 20H :SUBTRACT 20H
I ® HL.INDX :LOAD INDEX TABLE BASE ADDRESS TO HL
: DD L :ADD ACCUMULATOR CONTENTS TO HL
U LA

| AHL) :LOAD INDEX INTO ACCUMULATOR
lL bD A :MULTIPLY BY 2

NEXF -8 HL.DELY :LOAD DELAY TABLE BASE ADDRESS INTO HL

Execution paths, illustrated by circled letters above, can be interpreted as follows:

@ An ASCIl code passes the “lowest legal value” test, but now must be tested for
the "highest legal value™.

The ASCII code failed the “lowest legal value™ test. The program loads twice the
default density into the Accumulator and branches to the instruction sequence
which accesses the delay constant appropriate to this default density. This Jump
is illustrated by

@ A character which has passed the “lowest legal ASCll value” test is next checked
for “highest legal ASCIl value: if it fails this test then program execution
branghes, as shown by @ , to instructions which assume a default density of
3. , in fact, meets
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@ An ASCIl character that passes both the "lowest legal value" test and the “high-
est legal value” test is processed via instruction path Instructions in this
path load the appropriate density index into the Accumulator.

RESET AND INITIALIZATION

In order to complete our program, we must create the necessary Reset and In-
itialization instructions.

Reset instructions will be executed whenever RESET is input true to the microcomputer
system.

Initialization instructions will be executed whenever the system is started up.

There is no reason why Reset and Initialization instruction sequences should coin-
cide; in many applications two separate and distinct instruction sequences may be
needed. On the other hand, it is quite common to use Reset in lieu of system in-
itialization. This means that when you first power up the system, RESET is pulsed true;
this starts the entire microcomputer-based logic system.

In our case, the Reset program is indeed simple. All we have to do is output Control

codes to the Z80 Parallel Input/Qutput/interface, then set output signals to the "in bet-
ween print cycles” condition. Here is the necessary Initialization instruction se-

quence:

ORG 0
:FIRST OUTPUT CONTROL CODES TO I/0 PORT A CONTROL REGISTER
LD A OFFH ;SET MODE 3
ouT (1.A
ouTt (1).A ;ALL LINES INPUT
:NEXT OUTPUT CONTROL CODES TO I/0 PORT B CONTROL REGISTER
ouT (CIN ;SET MODE 3 .
LD A,OFCH :SET PINS 0 THROUGH 3 TO OUTPUT AND
ouT (3LA ;PINS 4 THROUGH 7 TO INPUT

:SET HAMMER PULSE, PW READY AND PW REL HIGH
;SET START RIBBON MOTION LOW

LD A7

ouT 2).A

This is how Control codes for each port of the Z80 PIO are constructed:

6 5 4 3 2 1 0 - BitNo.

7
h‘1]1l1l1l1l1]1—l Control Code

N, o, e g s
L—— These bits all 1 to signify **Set Mode™* control code.

Don't Care bits (need not be 1s)
These bits both 1 set Mode 3

After Mode 3 is set. another byte must be written to the port’s Control register; this sec-
ond byte specifies the direction of each of the port's pins. A bit set to 1 in the direction
byte specifies an input line, and a 0 bit specifies an output line.
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A PROGRAM SUMMARY

First of all, it would be a good idea to put together the entire program, as
developed in this chapter. We will include the necessary Assembler directives.
This final program is illustrated in Figure 4-6.

Now that the program is finished, notice that RAM memory has not been used.
The CPU registers have provided sufficient read/write memory to handle all variable
data

The 1K bytes of ROM program memory are sufficient to contain the entire program. plus
the two data tables.

Were you implementing a microcomputer system within the limited confines of the
logic included in this chapter, you could now eliminate the two RAM memory chips. In
all probability, there would be numerous other logic functions more economically in-
cluded within the microcomputer system: these would almost certainly require the pre-
sence of some RAM memory. There are nine bytes of read/write memory provided by
the seven CPU registers and the CPU Stack Pointer: these are usually insufficient for
any real application

Here is the final program memory map identifying the way in which the programiil-
lustrated in Figure 4-6 uses ROM memory:

Program

Memory
0000

Coject

Program

Storage
037F
Index 0390
Table 03EF
Delays 03F0

bl

Table O3FF
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INDX EQU 390H .INDEX TABLE BASE ADDRESS

DELY  EQU 3F2H {FIRST LOCATION IN DELAY TABLE
ORG 0
:FIRST OUTPUT CONTROL CODES TO I/0 PORT A CONTROL REGISTER
LD A.OFFH ;SET MODE 3
ouT (1).A
ouT (1.A (ALL LINES INPUT
:NEXT OUTPUT CONTROL CODES TO 1/0 PORT B CONTROL REGISTER
ouT (3).A :SET MODE 3
LD A OFOH ;SET PINS 0 THROUGH 3 TO OUTPUT AND
ouT (3).A :PINS 4 THROUGH 7 TO INPUT

:SET HAMMER PULSE, PW READY AND PW REL HIGH
:SET START RIBBON MOTION LOW
L.D A7
ouT (2).A
:PRINT CYCLE PROGRAM
:IN BETWEEN PRINT CYCLES TEST FFI (BIT 5 OF I/0 PORT B)
,FOR A ZERO VALUE

START: IN A.(2) :INPUT 1/0 PORT B TO ACCUMULATOR
BIT 5.A .TESTBIT 5
JR NZSTART  :IF NOT ZERO. RETURN TO START

INITIALIZE PRINT CYCLE. OUTPUT 0 TO BITS O AND 1 OF I/O PORT B
;OUTPUT 1 TO BITS 2 AND 3 OF I/0 PORT B
LD A.0CH ;LOAD MASK INTO ACCUMULATOR
ouT (2).A :OUTPUT TO 1/0 PORT B
:OUTPUT 0 TO BIT 3 OF I/0 PORT B, COMPLETING START RIBBON
;MOTION PULSE
RES 3.A 'RESET BIT 3 OF MASK IN ACCUMULATOR
ouT 2.A :OUTPUT TO I/O PORT B
TEST FOR END OF PRINTWHEEL POSITIONING
:BIT 5 OF I/O PORT B (FFI) WILL BE 1

PWPOS: IN A.(2) INPUT 1/0 PORT B TO ACCUMULATOR
BIT 5.A TESTBIT 5
JR ZPWPOS :IF 0 RETURN TO CHECK AGAIN
JEXECUTE PRINTWHEEL SETTLING 2 MILLISECOND DELAY
LD A, OFAH .LOAD INITIAL TIME DELAY CONSTANT
PWSET: DEC A :DECREMENT ACCUMULATOR
JR NZPWSET ;RE-DECREMENT IF NOT ZERO
.TEST PRINTHAMMER FIRING CONDITIONS
PHFIR: IN A.2) :INPUT 1/0 PORT B TO ACCUMULATOR
BIT 7.A ;TEST BIT 7 (HAMMER ENABLE)
JP Z.PWRDY JAFIT IS 0. BYPASS PRINTHAMMER FIRING
BIT 4.A :TEST HAMMER INTERLOCK
JR Z.PHFIR "WAIT FOR NONZERO VALUE BEFORE FIRING
:FIRE PRINTHAMMER
RES 2,A .SET HAMMER PULSE LOW:
ouT 2).A .OUTPUT 0 TO BIT 2 OF 1/0 PORT B
IN A0 ;INPUT ASCIl CHARACTER TO ACCUMULATOR
RES 7.A -RESET HIGH ORDER BIT
.COMPARE ASCII CODE WITH LOWEST LEGAL VALUE
CP 20H
JP M.,PWRDY  :IF CODE IS 1FH OR LESS, BYPASS HAMMER
FIRING

Figure 4-6. A Simple Print Cycle Program
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.COMPARE ASCIl CODE WITH HIGHEST LEGAL VALUE

Ccp 78BH
JP P.PWRDY  IF CODE IS 7BH OR GREATER, BYPASS HAMMER
FIRING
;ASCII CODE IS VALID
SuB 20H ;SUBTRACT 20H
LD HL.INDX ;LOAD INDEX TABLE BASE ADDRESS TO HL
ADD L ;ADD ACCUMULATOR CONTENTS TO HL
LD LA
LD A (HL) ;LOAD INDEX INTO ACCUMULATOR
ADD A ;MULTIPLY BY 2
LD HL.DELY ;LOAD DELAY TABLE BASE ADDRESS INTO HL
ADD L ;ADD ACCUMULATOR CONTENTS TO HL
LD LA
LD E.{HL) .LOAD DELAY CONSTANT INTO D.E
INC HL
LD D.(HL)
PRDLY: DEC DE \EXECUTE PRINTING DELAY
LD AD
OR E
JR NZ,PRDLY
IN A.(2) AT END OF DELAY QUTPUT 1 TO BIT 2 OF I/O
SET 2,A ;PORT B. THIS SETS HAMMER PULSE HIGH
ouT 2).A
;EXECUTE A 3 MILLISECOND PRINTWHEEL RELEASE TIME DELAY
LD DE.231 ,LOAD INITIAL TIME DELAY CONSTANT
PWREL: DEC DE JEXECUTE LONG TIME DELAY
LD AD
OR E
JR NZ.PWREL
;OUTPUT 1 TO BIT O OF I/O PORT B THIS SETS PW REL HIGH
IN A(2) INPUT 1/0 PORT B TO ACCUMULATOR
SET 0.A SETBITOTO1
ouTt 2).A ;OUTPUT RESULT
JEXECUTE A 2 MILLISECOND PRINTWHEEL READY DELAY
PWRDY: LD A.OFAH ;LOAD TIME DELAY CONSTANT
RDYDLY: DEC A ;DECREMENT ACCUMULATOR
JR NZ RDYDLY ;RE-DECREMENT IF NOT ZERO

;TEST FOR EOR DET (BIT 6 OF /0 PORT B) EQUAL TO 1 AS A PREREQUISITE
;FOR ENDING THE PRINT CYCLE

EORCHK IN
BIT
JR

A.(2) ;INPUT 1/0 PORT B TO ACCUMULATOR
6.A ;TEST BIT 6
ZEORCHK  :RETURN AND RETEST IF O

AT END OF PRINT CYCLE SET BIT 1 OF I/O PORT B TO 1

;THIS SETS CH
SET
ouT
JP

JINDEX TABLE
ORG
Data

READY HIGH
1.A :SET BIT 1 OF PORT B {IN ACCUMULATOR)
(2).A SOUTPUT RESULT
START ;JUMP TO NEW PRINT CYCLE TEST
FOLLOWS HERE
INDX
representing 90 index entries follows here

:DELAY TABLE FOLLOWS HERE

ORG
Data

DELY
representing 6 delays follows here

Figure 4-6. A Simple Print Cycle Program (Continued)
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Chapter 5
A PROGRAMMER'S PERSPECTIVE

The program we developed in Chapter 4 is considerably shorter and easier to
follow than the digital simulation of Chapter 3. While we came a long way in
Chapter 4, we still have a way to go. The program in Figure 4-6 treats the logic to
be implemented as a single transfer function, but it is not a well-written program.

To the digital logic designer, one of the most confusing things about programming
is the trivial ease with which you can do the same thing in ten different ways.
Does this imply that some implementations are more efficient than others? Indeed
yes. To a great extent writing efficient programs is a talent, just as creating effi-
cient digital logic is a talent; but there are certain rules which, if followed, will at
least help you avoid obvious mistakes. In this chapter we are going to take the
program created in Chapter 4 and look at it a little more carefully.

SIMPLE PROGRAMMING EFFICIENCY

The first thing you should do, after writing a source program, is to go back over it,
looking for elementary ways in which you can cut out instructions.

EFFICIENT TABLE LOOKUPS

On average, you will find that it is possible to reduce a program to two-thirds of its
original length, simply by writing more efficient instruction sequences. In Figure
4-6, the most obvious example of sloppy programming involves the Index Table.
The program loads a value between 1 and 6 from an Index Table byte. then multiplies
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this value by two before adding it to the base address of the Delay Table. Why not
directly store twice the index in the Index Table? That cuts out one instruction, as

follows:

ASCH DATA
Code Character MEMORY
20 blank 0330 Index Table
21 ! 0391
22— e 00 =g 0392
23 # 0393
24 $ 0394
etc etc
. H
TT s W — 0A 03E7
78 x 038
79 Y 03E9
7A z 03EA
® .
P
pp O3F0 -
P Delay Table
qq 03F2
aq
4 03F4
"
ss 03F6
ss
tt 03F8
tt
uu O03FA <
uu

:ASCIlI CODE IS VALID

SuB
LD
ADD

ADD
instruction
dropped

20H
HL.INDX
L

LA
A.(HL)

HL,DELY

L
LA

;SUBTRACT 20H
:LOAD INDEX TABLE BASE ADDRESS TO HL
;ADD ACCUMULATOR CONTENTS TO HL

,LOAD INDEX X2 INTO ACCUMULATOR

;LOAD DELAY. TABLE BASE ADDRESS INTO HL
,ADD ACCUMULATOR CONTENTS TO HL
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In the instruction sequence above, notice that one instruction has been removed

following the shaded LD instruction.

There are still a number of additional ways in which we can make the Delay Table
lookup more efficient. Why subtract 201¢ from the ASCIl code, for example? If we
are going to add the ASCIl code to a base address, there is nothing to stop us Equating
this base address, represented by the symbol INDEX, to a value 2016 less than the first
real Index Table byte. Our instruction sequence now collapses further, as follows:

ASCHt
Code

20
21

23
24

78
79

INDEX EQU

Character

blank

DATA
- MEMORY

0371

0390

0333

0394

N < x

0370H

.ASCIl CODE IS VALID

LD
ADD

SuB ADD
instruction | p

dropped

- HLINDX

L

LA
AlHL)
HL.DELY
L

LA

0A

PS4 ] oy J—

03E8

03E9

03EA

0370 <@ Index

0391 index Table
-4~ 0392

03F0 -«

03F2

03F4

03F6

03F8

O3FA Q—J

5-3

Delay Table

.EQUATE INDEX TABLE BASE ADDRESS - 20H

:LOAD INDEX TABLE BASE ADDRESS - 20H -
:ADD ACCUMULATOR CONTENTS TO HL

.LOAD INDEX X2 INTO ACCUMULATOR
.LOAD DELAY TABLE BASE ADDRESS INTO HL
.ADD ACCUMULATOR CONTENTS TO HL



Okay. so INDEX is now being equated to 03701 — which means that we no longer
need to subtract 2015 from the ASCll code. We have eliminated the SUB instruction
which was above the shaded LD instruction. Now, instead of storing twice the
character density index in the Index Table, why not store the second half of the
Delay Table address? Our program will now contract further, as follows:

DATA
MEMORY
0370 <~ INDEX
0371
ASCH E E
Code Character
20 blank 0330
21 ! 0391 Index Table
—_— 22 e - —t  FO == 0392
23 & 0393
24 $ 0394
etc etc
. .
— 7T — W ——t FA 4= O3E7
8 X 03E8
79 Y 039
7A z O3EA
. .
. .
pp 03F0 st
pp Delay Table
aq 03F2
aq
" 03F4
"
SS 03F6
ss
t 03F8
t
uy 03FA
uu
INDEX EQU 0370H :EQUATE INDEX TO TABLE BASE

;ADDRESS - 20H

;ASCIl CODE IS VALID

LD HLINDX :LOAD INDEX TABLE BASE ADDRESS - 20H
ADD L :ADD ACCUMULATOR CONTENTS TO HL
LD LA
LD LMD LOAD LOW ORDER BYTE OF DELAY TABLE
e  ,ADDRESS ;
LD H3 - :LOAD HIGH ORDER BYTE OF DELAY TABLE{ ;
.~ ADDRESS ‘

Two more instructions have disappeared.



We have now taken out four instructions from the sequence which loads the printham-
mer firing initial delay constant — and we are still not done.

Why not move the whole Index Table, so that instead of oc- | TABLES
cupying memory locations 03901 through 03EA1g, it oc- | POSITIONED
cupies memory locations 03201 through 037A1g? The ASCIl | TO SIMPLIFY
code, stripped of the parity bit. now becomes the low-order byte of | ACCESS

the Index Table address; our instruction sequence contracts | INSTRUCTION

further as follows: SEQUENCE
ASCHl DATA
Code Character MEMORY
20 blank 0320 Index Table
21 ! 0321
—_— 22— B m—te FQ = 0322 ey
23 # 0323
24 $ 0324
etc etc
. :
— 77 m——— W  ——i FA {0377
78 x 0378
79 Y 0379
7A z 037A
. .
. .
pp 03F0 et
op Delay Table
aq 03F2
qq
r 03F4
"
SS 03F8
ss
tt 03F8
1t
uu O3FA gt
uy

:ASCIl CODE IS VALID

LD H.3 ;LOAD INDEX TABLE ADDRESS HIGH ORDER BYTE

LD LA :MOVE LOW ORDER BYTE OF ADDRESS TO L

LD L.(HL) ;LOAD LOW ORDER BYTE OF DELAY TABLE
.ADDRESS

Suppose a “w" character is to be printed. Before the first of the above three instructions
is executed, the Accumulator contains 771g, as a result of the previous:

IN A.(0)
RES 7.A

instructions’ execution. Following execution of the:
LD H.3



instruction, the H register will contain 031g; this is the upper half of the implied memo-
ry address. Next the instruction:

LD LA

moves 771g from the Accumuiator to the L register. H and L now contain 03771¢: this
is the effective implied address. The next instruction:

LD L. (HL)
moves, to the L register, the contents of the memory byte addressed by HL.

HL contains 037715 Memory byte 03771 contains FA1g, therefore FA1g is moved to
the L register. The new implied address is 03FA1g; and that is the required Delay Table
address.

Nine instructions have been reduced to three, and the only price paid is that we
have had to move the Index Table to a new area of data memory.

To ensure that you understand how the program will now look, the old and new instruc-
tion sequences are shown side-by-side below, without comment fields

Old Program New Program

:ASCll CODE IS VALID

SuB 20H LD H.3

LD HL.INDX LD LA

ADD L LD L.(HL)

LD LA

LD A, (HL)

ADD A

LD HL.DELY

ADD L

LD LA

Unfortunately there are no golden rules which, if followed, will ensure that you always
write the shortest program possible. Once 'you have written a few programs, you will
understand how individual instructions work, and that, in turn, generates efficiency
The purpose of the preceding pages has been to demonstrate the enormous difference
between a compact program and a straightforward program. If your product is going to
be produced in high volume. it behooves you to spend the time and money cutting
down program size — then you may be able to eliminate some of your ROM chips.
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SUBROUTINES

If you look again at the program in Figure 4-6, you will notice that at two points
within this pregram we execute identical instruction sequences to create a two-
millisecond delay. Now, it only takes three instructions to execute a two-millise-
cond delay, so the fact that these three instructions have been repeated is no big
tragedy. If you think about it, however, the potential exists for some very
uneconomical memory utilization in longer programs.

We have kept our program simple in Chapter 4 because it must remain small
enough to handle in a book; but project, if you will, a more complex routine where
a 30-instruction sequence needs to be repeated, rather than a three-instruction
sequence. We must now find some way of including the instruction sequence just
once, then branching to this single sequence from a number of different locations
within a program, as needed. That is what a subroutine will do for you.

Let us take the three instructions which execute a two-millisecond delay and con-
vert them into a subroutine. This is what happens to relevant portions of the pro-
gram:

ORG 0
LD SP,O8FFH :INITIALIZE STACK POINTER TO END OF DATA AREA

;EXECUTE PRINTWHEEL SETTLING 2 MILLISECOND DELAY
CALL D2MS

;EXECUTE A 2 MILLISECOND PRINTWHEEL READY DELAY
PWRDY CALL D2MS

:AT END OF PRINT CYCLE SET BIT 1 OF 1/0 PORT B TO 1
:THIS SETS CH RDY HIGH

SET 1.A
out (2).A
JP START
;SUBROUTINE TO EXECUTE A 2 MILLISECOND DELAY
D2MS LD A.OFAH .LOAD ACCUMULATOR WITH 0
LOPD DEC A :DECREMENT A
JR NZLOPD :IF A DOES NOT DECREMENT TO 0, RE-DECREMENT
RET -RETURN FROM SUBROUTINE
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In order to understand how a subroutine works, we will assign some arbitrary memory
addresses for our source program’s object code; we will show, step-by-step, what hap-
pens when a subroutine is called and what happens upon returning from the
subroutine. First of all, here is the assumed memory map:

PROGRAM
MEMORY
LD ' SP0BFFH 31 0000
- FF 0001
08 0002
. H
PWPOS N Al2) DB 001C
02 001D
BIT 5A c8 001E
{ eF 001F
JR NZ,PWPOS 20 - ) o020
FA 0021
CALL  D2MS cD 0022
F7 0023
00 0024
PHFIR N Al2) DB 0025
02 ] 0028
A SET 1A CB 00F0
B,C CF 00F1
DE out  (2A D3 00F2
HL 02 00F3
sP JP START c3 00F4
pC oC 00F5
[ J 00 00F6
D2MS LD AOFAH 3E 00F7
FA 00F8
LOPD DEC A ' 3D 00F3
JR NZ,LOPD 20 OOFA
FD 00F8
RET C9 00FC
: DATA
MEMORY
0800
0801
0802
0803
08FD
08FE
O8FF
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SUBROUTINE CALL

Suppose we are about to execute the first CALL D2MS instruction. At this point
registers will contain the following data:

PROGRAM
MEMORY

Lo SP 0BFFH 31 0000
FF 0001
08 0002
PWPOS N A2} 08 001C
02 0010
BIT 5.A cB 001€
6F 001F
JR NZ,PWPOS 20 0020
FA 0021
CALL  D2MS cD 0022
F7 0023
00 0024
PHFIR N Af2) 08 0025
02 0026
A 00 SET 1A c8 00FQ
B.C CF 00F1
DE out  (2A D3 00F2
HL 02 00F3
sp 08FF » START 3 00F4
PC 0022 oc 00FS
) N | 00 | oore
D2MS LD A.OFAH 3E 00F7
FA 00F8
LOPD DEC A 30 00F9
JR NZ.LOPD 20 OOFA
FD 00FB
RET ] 00FC

. DATA .

MEMORY

0800
0801
0802
0803
1 ' 08FD
O8FE
O08FF




The Program Counter (PC) addresses the first byte of the Call instruction’s object code;
this address is 00221g. The Instruction register holds the object code for the most re-
cently executed instruction; this is a JR instruction located at byte 00201g. The Stack
Pointer, you will notice, was initialized at the beginning of the program; it contains
08FF16. According to Figure 4-2, this is the address of the first byte of read/write
memory. Since the stack has not been used, the Stack Pointer will still contain 08FF1g

The Accumulator contains 00 because this was the condition which caused execution
to break out of the holding loop starting at PWPOS.

i Now when the Call instruction is executed, steps occur as follows:

The Call instruction object code is loaded into the Instruction register and the Program
Counter is incremented:

PROGRAM
MEMORY
LD SP.0BFFH 3 0000
FF 0001
08 0002
PWPOS N A2) DB 001C
02 001D
BIT 5A cB 001E
6F 001F
JR NZ,PWPOS 20 0020
FA 0021
CALL  D2MS CD 0022
. Lo F7 0023
00 0024
PHFIR IN Al2) DB . | 0025
02 0026
A 00 ) SET LA cB 00F0
BC CF 00F 1
DE out 2A D3 00F2
HL 02 00F3
SP O08FF JP START c3 00F4
PC 0023 - oc 00F5
1 cD 00 00F6
D2MS 1] A.OFAH 3 00F7
FA 00F8
LOPD DEC A 30 00F9
JR NZ LOPD 20 OOFA
FD 00FB
RET c9 00FC
. DATA .
MEMORY
0800
0801
0802
0803
08FD
OBFE
08FF
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The Program Counter is incremented by 2 to bypass the CALL address. This incre-
mented value is saved in the first two stack bytes. The CALL address is then loaded into
the Program Counter. The Stack Pointer is decremented by 2 so that it addresses the
first free stack byte:

PROGRAM
MEMORY
Lo SP.0BFFH 31 0000
FF 0001
08 0002
PWPOS N Al2) DB 001C
02 001D
BIT 5.A c8 001E
6F 001F
JR NZ,PWPOS 20 0020
FA 0021
CALL  D2MS [ 0022
F7 0023
{ 00 0024
PHFIR N Af2) ] 0025
02 0026
A oc SET 1A cB 00FO
BC CF 00F1
DE ; T (2A D3 00F2
02 00F3
P START c3 00F4
oC 00F5
00 00F6
Lo A.OFAH 3E 00F7
FA 00F8
DEC A 3D 00F9
NZ.LOPD 20 00FA
FD 00FB
cs 00FC
. DATA .
MEMORY
0800
0801
0802
0803
\_», : 08FD
25 O8FE
{ 00 O8FF




) The next instruction executed has its object code stored in memory byte O0F71g; this is
the memory byte now addressed by the Program Counter:

PROGRAM
MEMORY
LD SP 08FFH 3t 0000
FF 0001
08 0002
PWPOS IN AL2) D8 001C
02 001D
BIT 5.A CB 001E
6F 001F
JR NZ,PWPOS 20 0020
FA 0021
CALL  D2MS cD 0022
F7 0023
00 0024
PHFIR IN AL2) DB 0025
02 0026
A 00 SET 1A c8 00F0
BC CF 00F1
DE ouT  (21A D3 00F2
HL 02 00F3
Sp 08FD J»P START c3 00F4
PC 00F7 oC 00FS
1 3E | \ 00 00F§
4 D2MS LD A.OFAH 3E O0F7 o
FA 00F8
LOPD DEC A 30 00F9
JR NZ.LOPD 20 00FA
FD 00FB
RET C9 00FC
. DATA .
MEMORY
0800
0801
0802
0803
. ; 08FD
25 O8FE
00 OBFF
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Instructions within the two-millisecond delay loop are now executed repetitively until
the Accumulator contents decrement from 01 to 00.

SUBROUTINE RETURN

When the Accumulator finally decrements from 01 to 00, execution passes to the
Return (RET) instruction. This instruction increments the contents of the Stack
Pointer by 2, then moves the contents of the two top stack bytes into the Pro-
gram Counter. Thus, program execution returns to the instruction that follows the
Cali:

PROGRAM
MEMORY
o SP.0BFFH 31 0000
FF 0001
08 0002
PWPOS IN Al2) DB 001C
02 001D
BIT 5A CB 001E
6F 001F
JR NZ,PWPOS 20 0020
FA 0021
CALL  D2MS CD 0022
F7 0023
00 0024
PHFIR IN Al2) 08 0025
02 0026
A 00 SET 1A cB 00F0
B.C CF 00F1
DE out 2,A D3 00F2
HL 02 00F3
sp O8FF JP START C3 00F4
oc 00F5
00 0OF6
D2MS LD A OFAH 3 00F7
FA 00F8
LOPD DEC A 30 00F9
NZ LOPD 20 00FA
FD 00FB
C9 00FC
. DATA .
MEMORY
0800
0801
0802 :
0803 ;
. ; 08FD E
25 O8FE
{ 00 O8FF
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In summary, this is what happened:

When the Call instruction was executed, the address of the next instruction was saved
in the stack. The Call instruction provided the address of the next instruction to be ex-
ecuted.

The next instruction to be executed was the first instruction of the subroutine.

The last instruction of the subroutine merely caused the address saved at the top of the
stack to be returned to the Program Counter. and this, in turn, caused execution to
branch back to the instruction following the Call

WHEN TO USE SUBROUTINES
There is a price associated with using subroutines:

1) Each Call instruction represents three additional bytes of object code.

2) The instruction sequence which has been moved to the subroutine must have
an appended Return instruction which costs one byte of object code.

Let us first look at our specific case. The three instructions which constitute the two-
millisecond delay occupy five bytes of object code. These three instructions occur
twice. therefore. combined. they occupy ten bytes of object code. When moved to a
subroutine, adding the Return instruction increases the object code bytes from five to
six. In addition. there are two Call instructions, and each requires three bytes of object
code —which means that the two Call instructions, plus the subroutine. generate 12
bytes of object code. This may be illustrated as follows:

Old Program New Program
LD AOFAH 3E CALL D2MS )
FA F7
PWSET DEC A 3D 00
JR  NZPWSET 20 )
D E .
: : CALL D2MS cD
F7
PWRDY LD  AOFAH 3E 00
FA
RDYDLY DEC A 3D . .
JR  NZRDYDLY 20 ) . .
FD D2MS LD  AOFAH 3E
FA
10 bytes LOPD DEC A 3D
JR  NzitopDf 20 )
D
RET Co
12 bytes

In our specific case, therefore, moving the two-millisecond delay instruction se-
quence into a subroutine has cost us two bytes of object code. It has cost us three
additional bytes of object code — those required to initialize the Stack Pointer;
and our microcomputer system is now going to require RAM memory.
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A stack can only exist if read/write memory is present

Now, these comments do not imply that subroutines are a dubious programming
feature to be used sparingly. on the contrary. it is hard to conceive of any program
which, when well-written, will not include some subroutines But bear in mind that
there is a minimum subroutine size below which subroutines in general become
uneconomical.

Suppose there are n bytes of object code in an instruction sequence which you are
planning to convert into a subroutine

Suppose the n bytes of object code occur m times: that means when the n bytes of
object code become a subroutine, it will be called by m CALL instructions

Without subroutines, m x n bytes will be consumed repeating n bytes m times.

With subroutines, the number of bytes consumed is:
3m + n+1) + 3+ 2
% A__
2 bytes on stack for address storage
Bytes for stack initialization instruction object codes

Subroutine, including RET instruction
m subroutine calls

For the subroutine to be worthwhile, 3m + n + 6 must be less than m x n.

Table 5-1 shows the minimum economic subroutine length as a function of the
number of subroutine calls.

Table 5-1. The Shortest Economic Subroutine Length as a Function
of the Number of Times the Subroutine Is Called

Number of Subroutine Minimum Economic
Calls {m) Subroutine Length (n)

2 12 Bytes

3 8 Bytes

4 6 Bytes

b 6 Bytes

10 4 Bytes

20 4 Bytes

CONDITIONAL SUBROUTINE RETURNS

Even though none of the repeated instruction sequences within the program in Figure
4-6 are long enough to justify being turned into a subroutine, we will nonetheless ex-
plore the potential of subroutines further

Just as there are conditional Jump instructions, which we use frequently within a
time delay loop, so there are conditional subroutine Call instructions and condi-
tional Return from Subroutine instructions.

Conditional subroutine Call and Return instructions are particularly useful in longer
subroutines within which there are variable execution paths.

Consider the printhammer firing instruction sequence in Figure 4-6. Given the pro-
gram as illustrated. this instruction sequence occurs just once. which means that con-
verting it into a subroutine would make no sense. It is possible to imagine a more ex-
tensive program which performs a wide variety of printer interface operations,
such that printhammer firing logic might be triggered for a number of different
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reasons. Since the printhammer firing logic consists of a fairly long set of instruc-
tions, putting these instructions in a subroutine would be absolutely mandatory.
Consider the following subroutine implementation:

;PRINTHAMMER FIRING SUBROUTINE s,
PHFIR: IN A.(2) :INPUT I/0 PORT B TO'ACCUMULATOR

BIT  7.A “TEST BIT 7 (HAMMER ENABLE)
RET. . Z SIEAT IS 0, RETURN
BIT  4A “TEST HAMMER INTERLOCK
: RET  Z GIEITIS 0, RETURN
:FIRE PRINTHAMMER
RES  2.A :SET HAMMER PULSE LOW
ouT  2.A :OUTPUT 0 TO BIT 2 OF 1/0 PORT B
IN A, (0) JINPUT ASCIl CHARACTER TO ACCUMULATOR
RES  7.A :RESET HIGH ORDER BIT
:COMPARE ASCIi CODE WITH LOWEST LEGAL VALUE
cp 20H
RET M JIF CODE IS 1FH OR LESS. BYPASS HAMMER FIRING
:COMPARE ASCIl CODE WITH HIGHEST LEGAL VALUE
cP 7BH
RET . P JIF CODE IS 7BH OR GREATER BYPASS HAMMER
FIRING :
:ASCII CODE IS VALID
LD H.03H :LOAD INDEX TABLE ADDRESS HIGH ORDER BYTE
LD LA :MOVE LOW ORDER BYTE OF ADDRESS TO L
LD L.(HL) .LOAD LOW ORDER BYTE OF DELAY TABLE
.ADDRESS
CALL  LDLY
IN A(2) ;AT END OF DELAY OUTPUT 1 TO BIT 2 OF I/0
SET  2A :PORT B. THIS SETS HAMMER PULSE HIGH
oUT  (21.A
:EXECUTE A 3 MILLISECOND PRINTWHEEL RELEASE TIME DELAY
LD HL.MS3
CALL LDLY
:OUTPUT 1 TO BIT O OF I/O PORT B. THIS SETS PW REL HIGH
IN A{2) JINPUT 1/O PORT B TO ACCUMULATOR
SET  0.A :SET BIT O TO 1
ouUT  [2.A :OUTPUT RESULT
RET :RETURN FROM SUBROUTINE

;LONG DELAY SUBROUTINE. ASSUME H AND L
;ADDRESS THE FIRST OF TWO DATA BYTES WHICH
;HOLD THE INITIAL DELAY CONSTANT

LDLY LD E.(HL) ;LOAD DELAY CONSTANT INTO D.E
INC HL
LD D.(HL)
LDLP: DEC DE ;EXECUTE PRINTING DELAY
LD AD
OR E
JR NZ,LDLP
RET ;RETURN AT END OF LONG DELAY
MS3 DEFW 231 ;PRINTWHEEL RELEASE TIME DELAY CONSTANT

The subroutine illustrated above only fires the printhammer if | CONDITIONAL
all necessary conditions have been met; a quick exit is ex- | RETURN
ecuted if any firing condition has not been met. The condi-
tional Return instructions are shaded.




Note that we have added a subroutine within the subroutine, | NESTED

The long delay instruction sequence has been moved to a | SUBROUTINES
subroutine, the first instruction of which is labeled LDLY. This
is referred to as a ‘'nested subroutine’’.

One novel feature of subroutine LDLY is that it requires the initial | SUBROUTINE
delay constant to be stored in two bytes of memory, the first of | PARAMETER
which is addressed by the H and L registers when LDLY is called
Instructions within subroutine LDLY will actually load the initial delay constant
into the D and E registers. The initial delay constant becomes a parameter, which
allows one subroutine to implement a complete spectrum of time delays. Subroutine
parameters are a very important feature of subroutine use.

The second time subroutine LDLY is called, instead of loading the required initial cons-
tant {231) into the D and E registers, we load an address represented by the symbol
MS3 into the H and L registers. The symbol MS3 will become the address of two data
bytes, somewhere in memory; within these two data bytes the value 231 must be
stored.

MULTIPLE SUBROUTINE RETURNS

Subroutine PHFIR is not as useful as it could be. There are four conditional returns
from this subroutine, each of which is triggered by a different invalid condition.
There is also a subroutine return following valid printhammer firing.

How is the calling program to know whether the printhammer was or was not
fired after PHFIR was called? Testing statuses is not very safe, since we cannot be
certain what happens to status conditions during execution of the printhammer firing
instructions themselves.

Subroutines which contain a large number of conditional error exits, in addition to
a standard return, will often centain logic which returns to a number of different
instructions in the calling program. Take the case of subroutine PHFIR. The in-
struction sequence which calls this subroutine may appear as follows:

RTO CALL PHFIR :CALL PRINTHAMMER FIRING SUBROUTINE

JR RT1 :RETURN HERE FOR PRINTWHEEL REPOSITIONING

JR RTO ;RETURN HERE FOR HAMMER INTERLOCK LOW

JR RT2 :RETURN HERE FOR ASCIl CODE LESS THAN 20H

JR RT3 ;RETURN HERE FOR ASCHl CODE GREATER THAN 7AH

INSTRUCTIONS WHICH FOLLOW ARE EXECUTED AFTER VALID
:PRINTHAMMER FIRING

JINSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR PRINTWHEEL
:REPOSITIONING
RT1

JINSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR ASCII CODE
;LESS THAN 20H :
RT2 -



JINSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR ASCII CODE
;GREATER THAN 7AH
RT3 -

Now, for this scheme to work, subroutine PHFIR must increment the return ad-
dress, which is stored in the top two bytes of the stack every time a conditional
Return is executed. Subroutine PHFIR is therefore modified as follows:

;PRINTHAMMER FIRING SUBROUTINE

PHFIR: IN A.(2) :INPUT 1/0-PORT B TO ACCUMULATOR
BIT 7.A :TEST BIT 7 (HAMMER ENABLE)
RET Z JFIT IS 0, RETURN
CALL “+INCR ;INCREMENT RETURN ADDRESS
BIT 4.A "TEST HAMMER INTERLOCK
RET Z :F IT 1S 0, RETURN
CALL ~INCR /INCREMENT RETURN ADDRESS:
;FIRE PRINTHAMMER
RES 2,A :SET HAMMER PULSE LOW:!
ouT (2).A ;OUTPUT O TO BIT 2 OF I/0 PORT B
IN A.(0) JINPUT ASCII CHARACTER TO ACCUMULATOR
RES 7.A RESET HIGH ORDER BIT
,COMPARE ASCIl CODE WITH LOWEST LEGAL VALUE
cp 20H
RET M .IF CODE IS 1FH OR LESS BYPASS HAMMER FIRING
CALL INCR SINCREMENT RETURN ADDRESS
;COMPARE ASCIl CODE WITH HIGHEST LEGAL VALUE
cp 7BH
RET P :IF CODE IS 7BH OR GREATER BYPASS HAMMER
FIRING
CALL " INCR {INCREMENT RETURN ADDRESS
;ASCII CODE IS VALID
LD H.03H :LOAD INDEX TABLE ADDRESS, HIGH ORDER BYTE
LD LA :MOVE LOW ORDER BYTE OF ADDRESS TO L
LD L.{HL) ;LOAD LOW ORDER BYTE OF DELAY TABLE
;ADDRESS
CALL LDLY
IN A.(2) ;AT END OF DELAY OUTPUT 1 TO BIT 2 OF 1/0
SET 2.A ;PORT B THIS SETS HAMMER PULSE HIGH
ouTt (2).A

:EXECUTE A 3 MILLISE’COND PRINTWHEEL RELEASE TIME DELAY
LD HL,MS3

CALL  LDLY
;OUTPUT 1 TO BIT O OF I/O PORT B. THIS SETS PW REL HIGH
IN A.(2) :INPUT 1/0 PORT B TO ACCUMULATOR
SET 0.A SETBITOTO 1
ouT 2).A ,OUTPUT RESULT
RET :RETURN FROM SUBROUTINE

;LONG DELAY SUBROUTINE. ASSUME H AND L
;ADDRESS THE FIRST OF TWO DATA BYTES WHICH HOLD THE
JINITIAL DELAY CONSTANT

LDLY LD E.(HU) :LOAD DELAY CONSTANT INTO D.E
INC HL
LD D.(HL)



LDLP: DEC DE ;EXECUTE PRINTING DELAY
LD AD
OR E
JR NZ,LDLP
RET :RETURN AT END OF LONG DELAY
MS3 DEFW 231 ;PRINTWHEEL RELEASE TIME DELAY CONSTANT

:SUBROUTINE TO INCREMENT THE RETURN ADDRESS
;OF THE CALLING SUBROUTINE

INCR INC
INC
EX
INC
INC
EX
DEC
DEC
RET

Subroutine INCR is interesting; it shows how the stack § STACK
may be manipulated. Let us take a iook at what happens. MANIPULATION

SP

[INCREMENT STACK POINTER TWICE

;TO ACCESS PHFIR RETURN ADDRESS
JEXCHANGE HL WITH PHFIR RETURN ADDRESS
;ADD 2 TO RETURN ADDRESS

.RESTORE RETURN ADDRESS
:DECREMENT STACK POINTER TWICE

.RETURN

As soon ag subroutine INCR is entered, the Stack Pointer con-
tents are increased by two. This has the effect of addressing the PHFIR return address
rather than the INCR return address:

STACK
Stack —g= Address of instruction
following Call to INCR
Pointer. ——g- Address of instruction
following Call to PHFIR

The EX (SP),HL instruction simply saves the contents of the H and L registers at what is
now the top of the stack, while moving what was at the top of the stack to the H and L

registers:

STACK

Address of instruction
following Call to INCR

SP

Address of instruction

HL.

following Call to PHFIR

S

=1
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The next two instructions add 2 to the contents of the H and L registers, which now
hold the PHFIR return address. We add 2 to the return address because, if you look at
the calling sequence, a series of Jump (JR) instructions follow. Each JR instruction oc-
cupies two bytes, which means that each time we bypass a Conditional Return we must
increment the return address by 2:

CALL PHFIR CD
XX

XX

JR RT1 18
vy

JR RTO 18
zz

JR RT2 18
° XX

° pp

The next EX {SP),HL simply restores the incremented PHFIR return address to the top of
the stack.

Finally we must restore the Stack Pointer to its original contents, so that the INCR
Return instruction will fetch the correct return address.

CONDITIONAL SUBROUTINE CALLS

We are now going to create another subroutine which fires the printhammer but
makes no tests to ensure that the printhammer should be fired. This subroutine
simply assumes that a valid ASCIl character is in the Accumulator and that the
printhammer must be fired. All logic to determine whether printhammer firing is
valid is external to the printhammer firing subroutine; therefore, this subroutine is
called conditionally — so long as all printhammer firing conditions have been met.
This is how our program now looks:

;TEST PRINTHAMMER FIRING CONDITIONS

PHFIR: IN A(2) JINPUT 1/0 PORT B TO ACCUMULATOR
BIT 7.A ;TEST BIT 7 (HAMMER ENABLE)
JP Z,PWRDY IFIT IS 0, BYPASS PRINTHAMMER FIRING
BIT 4,A JTEST HAMMER INTERLOCK
JR Z,PHFIR ;WAIT FOR NONZERO VALUE BEFORE FIRING
JINPUT CHARACTER TO BE PRINTED
IN A.(0) JINPUT ASCH CHARACTER TO ACCUMULATOR
RES 7.A ;RESET HIGH ORDER BIT
;COMPARE ASCH CODE WITH LOWEST LEGAL VALUE
cP 20H
JP M,PWRDY ;IF CODE IS 1FH OR LESS BYPASS HAMMER
JFIRING
;COMPARE ASCIl CODE WITH HIGHEST LEGAL VALUE
P 7BH -
CALL = MFIRE :IF CODE VALID, CALL FIRING SUBROUTINE
JEXECUTE A 2 MILLISECOND PRINTWHEEL READY DELAY
PWRDY LD A,OFAH ;LOAD TIME DELAY CONSTANT
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Notice that the Conditional Return instruction reflects OR programming logic,
whereas the Conditional Call instruction reflects AND logic. Thus, subroutine PHFIR
includes a number of Conditional Return instructions, each of which will execute pro-
viding any one invalid condition is encountered. Subroutine FIRE, on the other hand, is
called conditionally only when the last of the necessary valid conditions has been
tested.

Subroutine FIRE is not shown in detail, since writing it out would add little to the under-
standing of the Conditional Call instruction. With reference to Figure 4-6, subroutine
FIRE would consist of instructions to:

Set the hammer pulse signal low

Execute the hammer firing pulse delay

Set the printhammer firing pulse high

Execute the 3 millisecond printwheel release time delay
Output PW REL high

MACROS

When talking about subroutines, we glossed over one consideration — you, the pro-
grammer. Subroutines have an additional value, in that if they can reduce the number
of source program instructions then they will also reduce the amount of time you spend
writing the source program, since program writing time will be directly proportional to
program length.

Let us take another look at the two-millisecond time delay subroutine. Although in
subroutine form the program required more object code bytes, it did not require more
instructions:

Old Program

LD A,OFAH
PWSET DEC A

JR NZ,PWSET

PWRDY LD

A,OFAH D2MS
RDYDLY DEC A LOPD
JR NZ.RDYDLY

6 instructions
(10 bytes)

New Program

CALL D2MS
CALL D2MsS
LD A.OFAH
DEC A

JR NZ.LOPD
RET

6 instructions

(12 bytes, excluding

stack and initialization
instructions)

Subroutines can decrease the length of your source program, while increasing the
length of your object program and the program’s execution time.

Macros decrease the length of your source program, but have absolutely no effect
on your object program.

WHAT IS A MACRO?

A macro is a form of programming ‘‘short hand’’; it allows you
to define an instruction sequence with a single mnemonic.

MACRO
DEFINITION
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Consider the two-millisecond time delay instruction se-
quence: we can define it as a macro, labeled D2MS, as follows:
~ D2MS  MACRO L
LD A OFAH

LOPD DEC A
JR NZ.LOPD
ENDM Ea

The two shaded instructions above are, in reality, assembler direc- | MACRO

tives: they bracket a sequence of instructions which henceforth § ASSEMBLER
can be identified as a group, using the label of the MACRO assem- | DIRECTIVES
bler directive.

This is how we would use the two-millisecond time delay in our print cycle program

New Equivalent

Old Program Program, With Macro
PWPOS  IN A(2) PWPOS IN A2
BIT 5A BIT 5.A
JR Z.PWPOS JR Z.PWPOS
LD A,OFAH D2MS g
PWSET DEC A }41 PHFIR IN A2
JR NZPWSET BIT 7.A
PHFIR IN A2 -
BIT 7.A -
- ouT (2).A
ouT  (2.A PWRDY —— D2MS e
PWRDY LD A.OFAH JEORCHK IN A.(2)
RDYDLY DEC A } -
JR NZ RDYDLY -
EORCHK IN, A,(2) ouT (2).A
- JpP START
- D2MS MACRO
- LD A,OFAH
ouT  (2.A LOPD DEC A }—-4
Jp START JR NZLOPD
ENDM

When the Assembler encounters the symbol D2MS in the mnemonic field, what it does
is replace this symbol with the instructions bracketed by directives MACRO and ENDM
The Assembler knows which macro to use in the event that your program has more
than one macro, since the symbol in the mnemonic field must be identical to the label
of a MACRO directive

Notice that the Assembler can also do a certain amount of housekeeping associated
with the use of macros. The “Old Program” illustrated above has labels PWSET and
RDYDLY for the two DEC instructions. The “"New Program’ has a single label, LOPD,
within the macro. The Assembler is smart enough to know that a label appearing within
a macro definition must become a series of separate labels when the macro subse-
quently is inserted a number of times into the source program.
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To summarize, you simply take a sequence of repeated in- | MACRO
structions, bracket them with MACRO and ENDM directives, | DEFINITION
then give the macro directive a unique label. Now use the | LOCATION
MACRO's label as though it were an instruction mnemonic. | IN A SOURCE
The macro definition must appear once and only once, some- | PROGRAM
where in the source program. It is a good idea to collect all of
your macros and insert them at the beginning or at the end of the entire source pro-
gram.

MACROS WITH PARAMETERS

Instructions within a macro can have variable operands; for example, we can create
a variable time delay macro as follows:

DVMS  MACRO TIME

LD ATIME
LOPD DEC A

JR NZ.LOPD

ENDM

Symbols appearing in the MACRO directive’s operand field are assumed by the Assem-
bler to be "dummy” symbols; the macro reference in the body of the source program
must include an equivalent operand field The Assembler will equate the macro
reference’s operand field to the MACRO directive’s operand field. and make substitu-
tions accordingly.

This is how the substitution works:

Source Program Equivalent Source Program
With Macros Without Macros
LD A0
{LopD DEC A

JR NZ.LOPD

DVMS MACRO TIME -
LD A.TIME
LOPD DEC A
JR NZ.LOPD
ENDM
Here is another example; the macro reference:
DVMS 80H
is equivalent to:
LD A.80H
LOPD DEC A
JR NZ,LOPD

Depending on whose Assembler you are using, you can play interesting games with'the
macro parameter list; in theory (but not always in practice). there are no restrictions-on
the length or nature of the macro parameter list. Suppose you want to vary the register

5-23



used in the time delay instruction sequence; some assemblers will let you do so as
follows:

DVMS  MACRO X.TIME

LD X.TIME
LOPD DEC X

JR NZ,LOPD

ENDM
The Assembler will substitute:

DVMS C.3CH
with-

LD C.3CH
LOPD DEC C

JR NZ,LOPD

You will have to read the Assembler manual that accompanies your development
system in order to know the exact macro features available to you.

INTERRUPTS

It would be hard to justify including interrupts within the microcomputer system
developed in Chapter 4. In fact, interrupts should be used quite sparingly in
* microcomputer applications.

We will not enter into a long discussion on the strengths and | WHEN TO USE
weaknesses of interrupts within microcomputer systems: that §| INTERRUPTS

subject has been adequately covered in An Introduction to
Microcomputers: Volume |. To summarize, however, recall that interrupts are a valid
tool within microcomputer systems only when dealing with fast, asynchronous events

Now, having issued a warning against the indiscriminate use of interrupts, we will
proceed to incorporate simple interrupt processing into our microcomputer pro-
gram in the interests of demonstrating how it is done.

INTERRUPT HARDWARE CONSIDERATIONS

For an interrupt to be processed within a Z80 microcomputer system, an interrupt
request signal must be input low to the CPU at a time when interrupts have been
enabled.

Interrupts are enabled and disabled by executing El and Dt in- | INTERRUPT
structions, respectively. Any interrupt request will simply be ig- § ENABLE
nored by the CPU while interrupts have been disabled '

Note that there is an exception to our last statement: the Z80 has a non-maskable in-
terrupt input that is always enabled. This interrupt request line is typically used for
special situations such as power-fail conditions, and is not relevant to our discussion
here.
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If an interrupt request is received while interrupts have {| INTERRUPT
been enabled, then upon completing execution of the cur- | ACKNOWLEDGE
rent instruction, the CPU will output an interrupt
acknowledge signal (IORQ during M1 time).

The response of the external logic to this interrupt acknowledge is dependent on
the mode in which the Z80 CPU is being operated. There are three possible
modes: 0, 1 and 2.

If the CPU is operating in Mode 0, external logic is expected | Z80 CPU
to input an 8-bit interrupt vector which is going to be in- | INTERRUPT
terpreted as the instruction code to be executed next. Usually §{ MODE O
one of the eight possible Restart instruction codes will be
fetched. These instructions are equivalent to single byte subroutine calls; they cause
the contents of the Program Counter to be pushed onto the stack, after which program
execution continues at a low memory address which may be computed as follows:

RST ninstruction code: 11 1xxx 11
e

000 n=0
001 n=1
010 n=2
011 n=3
100 n=4
101 n=5
110 n=6
T11 n=7
o——

New Program
Counter Contents: 0000000000 xxx000

280 interrupt response logic in Mode 1 automatically assumes | 280 CPU
that. the first instruction executed following the interrupt | INTERRUPT
response will be a Restart, branching to memory location | MODE 1
00561¢. If the Z80 is in Mode 1, no interrupt vector is needed. 780 CPU

When you operate the Z80 in Mode 2, you must create a table | INTERRUPT
of 16-bit interrupt address vectors, which can reside anywhere | MODE 2

in addressable memory. These 16-bit addresses identify the first
executable instruction of interrupt service routines. When an in-
terrupt is acknowledged by the CPU in Mode 2, the acknowledged external logic
must place an interrupt response vector on the Data Bus. The Z80 CPU will com-
bine the | register contents with.the interrupt acknowledge vector to form a 16-
bit address, which accesses the interrupt address vector table. Since 16-bit ad-
dresses must lie at even memory address boundaries, only seven of the eight bits pro-
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vided by the acknowledged external logic will be used to create the table address; the
low order bit will be set to 0. Thus, the table of 16-bit interrupt address vectors will be
accessed as follows:

INTERRUPT"
Interrupt response ngsoegg
| Register vector from external logic
i N—— i
kk
: kk
e o, I

mm

nn
16-bit address points to first nn
of two bytes in Interrupt Address Vector

etc.

The 280 CPU will execute a Call to the memory location obtained from the inter-
rupt address vector table.

Let us clarify this logic with a simple example. Suppose that you have 64 possible
external interrupts; each interrupt has its own interrupt service routine, therefore 64
starting addresses will be stored in 128 bytes of memory. Let us arbitrarily assume that
these 128 bytes are stored in a table with memory addresses OF001g through OF7F16.
Now, in order to use Mode 2, you must initially load the value of OF16 into the Z80 |
register. Subsequently, an external interrupt request is acknowledged and the
acknowledged external logic returns the vector 2E16 on the Data Bus; this is what will

happen:
Memory
. Interrupt MEMORY  Address
| Register response
e?e(nal ii OF29
ogic
00101110 ke ] OF2A
N Kk OF2B
* I OF2C
S
b - 80 OF2E
20 OF2F
nn OF30
nn OF31
pp 0F32
pp OF33
Program H H
Counter
D/ 207F
20801 to  ——> 2080
Program 2081
Counter.
Push previous First post- 2082
contents onto interrupt 2083
Stack instruction .
object code :

fetched from
here
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From our descriptions of the Z80 CPU interrupt modes, it is obvious that Mode 1 is
the most straightforward: it merely requires that the first instruction of our interrupt
program begin at memory location 00561g. No external logic is required to generate a
vector in response to the CPU's interrupt acknowledgment. However, some external
logic must still be provided to sense the conditions required to generate an inter-
rupt, to actually generate the interrupt request signal, and to reset the interrupt
request signal once the interrupt has been acknowiedged. All of these functions
can be performed by the PIO that is already included in our system shown in
Figure 4-2. The only hardware change needed is to connect the INT signal from the PIO
to the CPU, as shown in Figure 5-1.

Now, having pointed out the simplicity of the CPU’s Mode 1 operation — we will
proceed to disregard that and operate the CPU in interrupt Mode 2: we do this
because the PIO has been specifically designed to operate with the CPU using the
Mode 2 interrupt response. As we shall see, this mode of operation turns out to be
more straightforward than it would first appear — this is so because of the logic pro-
vided by the PIO.

Let us now examine how the PIO responds to the Mode 2 interrupt acknowledge
from the CPU.

Each port (A and B) of the PIO has an independent interrupt § Z80-PIO

vector that can be loaded with the desired vector value. The | INTERRUPT
vector is loaded by writing a control word to the control § ACKNOWLEDGE
register of the port in the following format: RESPONSE

D7 D6 D5 D4 D3 D2 D1 DO

[Twlwlw e ] ]

signifies this control word
is an interrupt vector

DO is used as a flag bit which, when low, causes V7 through V1 to be Idaded into the
Vector register. At interrupt acknowledge time, the vector of the interrupting port will
be input to the CPU exactly in the format shown above. For example, if you refer back to
our discussion of the Z80-CPU Mode 2 interrupt operation, we had external logic pro-
vide an interrupt vector of 2E1g. The binary format for this vector which would be
loaded into the PIO register is:

D7 Do
Lelofrfofifi]rfo]
2 E

In summary, this is what happens when external logic (the P10) requests an interrupt:

External logic
generates INT

CPU eventually
responds via IORQ -M1

External logic
(P10} places vector
on Data Bus
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Figure 5-1 Z80 Microcomputer Configuration Using a PIO to
Generate an Interrupt
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You, as a logic designer or programmer. do not need to concern yourself with Data Bus
timing. The IORQ « M1 combination is an interrupt acknowledgment signal and will
also correctly strobe the interrupt vector into the CPU. As a programmer, of course, you
must concern yourself with the steps required to place the CPU and PIO in the proper
interrupt and operating modes and to load the PIO with the desired vector for the inter-
rupt service routine. As the system designer, you must also concern yourself with the
logic required to initiate the interrupt request. We will now examine this point — after
this has been defined. we will summarize all of the programming considerations result-
ing from this use of interrupts.

In order to determine what will initiate the interrupt, we must decide first of all. how
we are going to use the interrupt.

We could assume that the microcomputer system is being used to do more than imple-
ment print cycle logic. Suppose there is a great deal of routine housekeeping logic
required by the printer interface, with the result that the entire print cycle can be
looked upon as an intermittent asynchronous event. Now, instead of having our
program execute an ‘‘in between print cycles’’ instruction loop, we will assume
that some other program is being continuously executed in between print cycles.
Execution of the print cycle program is triggered by the VELOCITY DECODE sig-
nal. This is the instruction execution pattern which results:

“In between print cycles”

VELOCITY
DECODE =0

&, S

Print cycle program

Referring back to pin assignments in Chapter 4, you will see that the VELOCITY
DECODE signal is an input to bit 5 of Port B in the Z80-PI0. Because of the design of
the PIO, we can use the VELOCITY DECODE signal directly, without any addi-
tional logic beyond the PIO, to initiate an interrupt request and thus trigger the
print cycle program.

The PIO has an interrupt control word for each port (A and B} that | INITIATING
determines the conditions under which an interrupt request will | INTERRUPTS
be sent to the CPU. In our system, we would specify the desired in- | VIA THE PIO
terrupt conditions by writing a word to the control register of PIO PIO

Port B. The interrupt control word has the following format: INTERRUPT
CONTROL
WORD
D7 D6 D5 D4 D3 D2 D1 DO
Enable | AND/ | High/ | Mask
Interrupt] OR Low | follows 0 1 1 1
e
signifies
interrupt
control
word
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Bit D7 is used to enable the port to generate an interrupt: if bit 7 = 1, interrupts can be
generated. Bit D6 defines the logical operation to be performed in determining whether
or not an interrupt request should be generated. If D6 =1, an AND function is
specified: all selected bits of the port must go high (or low, depending on bit D5) before
an interrupt request will be generated. If D6 = 0, then an OR function is specified and
an interrupt will be generated if any specified bit goes to the active (high or low) state.

Bit Db defines the active polarity of the port Data Bus line to be monitored. If bit D5 = 1,
the port data lines are monitored for a high state; if bit D5 = 0, the data lines are
monitored for a low state.

If bit D4 = 0, then all bits will be monitored according to the rules defined by bits D6
and D5 of the interrupt control word.

If D4 = 1, then the next control word sent to the PIO must define a mask as follows:
D7 D6 D5 D4 D3 D2 D1 DO
[Mml Maslmesl MB4! MB3 l MBZI MB1 l MBOI

Only those port lines whose mask bit is zero will be monitored for generating an inter-
rupt.

Now, having described all of the possible situations and combinations where the
PIO could generate an interrupt request, let us relate these capabilities to our par-
ticular example.

Recall that we are only concerned with bit 5, which is input to Port B of the PIO as
VELOCITY DECODE. Now, when the signal goes low, we want to generate an interrupt
request to trigger the print cycle program. Therefore, our interrupt control word to
the PIO (Port B) would look like this:

D7 D6 D5 D4 D3 D2 D1 DO

U0 ]

of ]}
A N~

L__ signifies interrupt control word’

indicates that mask word will follow

indicates that a low state {VELOCITY DECODE==0) will
be used to generate the interrupt

since only one signal (VELOCITY DECODE) is going to
be monitored, it doesn’t matter whether AND or OR
function is specified

Enable Interrupts

And the mask word that follows specifies that only bit D5 (VELOCITY DECODE)
be monitored. The format of the mask word would be:

D7 D6 D5 D4 D3 D2 D1 DO
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Now, the only step remaining is to set up our interrupt vector. If you refer back to
our discussion of the CPU Mode 2 interrupt operations, you will see this simply re-
quires that the CPU | register and PIO Interrupt Vector register each be loaded
with values that will be combined to produce a 16-bit address. We must also load
the location specified by that address and the adjacent memory location with the
address of the first instruction of the print program. Once again let us illustrate the
Mode 2 interrupt operation using arbitrary addresses.

Z80 CPU Z80 PIO
| Register Interrupt Vector MEMORY

or |

16-bit [
memory address

Program Counter

Previous contentsq-—ﬂ 1
pushed onto 018D
Stack 019E
019F
020016 10 e 0200
Program Counter, 0201

Print cycle program
will begin here

Note that the actual beginning location (or origin) specified for | INTERRUPT
the print cycle program is unimportant. We do not know what { PROGRAM
other programs are being executed within the microcomputer § ORIGIN
system, or where these other programs may reside in program
memory. therefore we cannot assign memory space to the print cycle program at this
time. When you actually implement the entire microcomputer system you must
carefully map out exactly where in memory every program resides, but for the purposes
of our current illustration this is a completely unimportant consideration.

Let us now summarize the changes we must make to our program if we are to use
an interrupt to initiate our print cycle program. As we shall see, the changes are
rather minimal and mostly consist of adding instructions to the initialization portion of
our program.
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ORG O
:FIRST OUTPUT CONTROL CODES TO I/0 PORT A CONTROL REGISTER

LD AOFFH :SET MODE 3
out  (1).A
out  (1).A :ALL LINES INPUT
:NEXT OUTPUT CONTROL CODES TO I/0 PORT B CONTROL REGISTER
ouT  (3)A :SET MODE 3
LD AOFOH :SET PINS 0 THROUGH 3 TO OUTPUT AND
ouT  (31A :PINS 4 THROUGH 7 TO INPUT
LD A097H ;LOAD INTERRUPT CONTROL WORD
ouUT  (3)A : :
LD  AODFH :SET INTERRUPT MASK WORD
oUT  (31A :
LD AO20H :LOAD INTERRUPT VECTOR (20)
ouT  (31A ;INTO PORT B VECTOR REGISTER
:THEN SET UP Z80-CPU FOR INTERRUPT MODE 2
‘ M2 :SET INTERRUPT MODE 2
LD ADI0H ;LOAD THE CPU | REGISTER
‘D 1A :WITH INTERRUPT VECTOR (01)

LD HL.0002H :LOAD INTERRUPT- VECTOR LOCATION {0120) WITH
LD {0120H),HL - = :STARTING ADDRESS (0200) OF PRINT.CYCLE
' :PROGRAM
:SET HAMMER PULSE, PW READY AND PW REL HIGH
:SET START RIBBON MOTION LOW
LD A7
OuUT  (2.A
;ALL INITIAL CONDITIONS HAVE NOW BEEN ESTABLISHED.
AINTERRUPTS CAN NOW BE ENABLED.
El

. “ORG  0200H :
:ORIGIN PRINT CYCLE PROGRAM INTERRUPT SERVICE ROUTINE
AT 0200H, SINCE THIS IS THE EXECUTION ADDRESS STORED.
;AT INTERRUPT VECTOR LOCATION 0120.
;PRINT CYCLE PROGRAM
sINITIALIZE PRINT CYCLE. OUTPUT 0 TO BITS 0 AND 1 OF I/O PORT B
;OUTPUT 1 TO BITS 2 AND 3 OF I/O PORT B
START LD A.0CH :LOAD MASK INTO ACCUMULATOR
ouT 2).A :QUTPUT TO I/O PORT B

AT END OF PRINT CYCLE SET BIT 1 OF I/O PORT B TO 1
:THIS SETS CH READY HIGH

SET 1.A ;SET BIT 1 OF PORT B (IN ACCUMULATOR)
ouT 2.A :QUTPUT RESULT
RET

The instructions that we have added to the program illustrated in Figure 4-6 are
shaded, and consist primarily of steps necessary to set up the CPU and PIO to
operate in the desired interrupt mode. Once all of the required initial conditions have
been established, the El instruction is executed. enabling the CPU to respond to inter-
rupt requests.
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The print cycle program now begins at memory location 020016 and will be initiated as
a result of an interrupt triggered by VELOCITY DECODE = 0. Notice that the “in bet-
ween print cycles” instructions from the beginning of Figure 4-6 have been removed:;
START now identifies the first instruction of the print cycle itself. The final JP START in-
struction is replaced by a simple RETURN instruction, since the entire print cycle pro-
gram was, in effect, called as a subroutine.

The method we have just described for processing an inter- | SAVING

rupt is fairly simple: there is only one problem with it — the | REGISTERS
program will not work. We have shown a background program | AND STATUS
being interrupted in order to execute the print cycle routine;
but when does the background program get interrupted? Remember, the program
which is interrupted is sharing the same CPU and the same registers with the print cy-
cle program. We have to assume that the interrupted program has useful information
stored in the registers, and perhaps the status flags have meaning which must be
preserved. Given the interrupt service program illustrated thus far, when we return from
the print cycle program to the interrupted program, we are giving the interrupted pro-
gram whatever arbitrary register contents the print cycle program finishes up with.
That will never do. We must therefore bracket the print cycle execution program
with instructions that save the contents of registers and status — before modify-
ing a single register or status; at the end of the program, original registers and
status contents must be restored. Typically, the contents of registers and status are
saved by pushing them onto the stack, and restored at the end of the program by pop-
ping them off the stack. The sequence of instructions would be as follows:

ORG 0200H
:ORIGIN PRINT CYGLE PROGRAM INTERRUPT SERVICE ROUTINE
AT 0200H, SINCE THIS IS THE EXECUTION ADDRESS STORED
AT INTERRUPT VECTOR LOCATION 0120.

START PUSH - AF :SAVE ACCUMULATOR AND FLAGS
PUSH  BC :SAVE B AND C REGISTERS
PUSH  DE ~:SAVE D AND E REGISTERS
PUSH HL :SAVE H AND L REGISTERS

JINITIALIZE PRINT CYCLE OUTPUT 0 TO BITS 0 AND 1 OF 1/0 PORT B
;OUTPUT 1 TO BITS 2 AND 3 OF I/0 PORT B
LD A.0CH ;LOAD MASK INTO ACCUMULATOR
ouT 2.A :OUTPUT TO I/0 PORT B

AT END OF PRINT CYCLE SET BIT 1 OF I/0 PORT B TO 1
;THIS SETS CH READY HIGH

SET 1.A .SET BIT 1 OF PORT B (IN ACCUMULATOR)
ouT (2).A ;OUTPUT RESULT

POP HL :RESTORE H AND L REGISTERS

POP DE ;RESTORE D AND E REGISTERS

POP BC : :RESTORE B-AND C REGISTERS S
POP AF . :RESTORE ACCUMULATOR AND FLAGS .
RET

The entire save/restore sequence adds a total of eight instructions to our print program.
So long as you remember to pop registers and status contents in the reverse order from
which you pushed them, you will have no problems.
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As we stated at the beginning of this discussion, the push/pop ]| USING
sequence is the typical method used to save/restore status | Z80 CPU
and register contents. The Z80-CPU, however, provides one | AUXILIARY
quite atypical architectural feature that can be used to | REGISTERS
simplify this save/restore process. You will recall that the
Z80-CPU provides two matched sets of general purpose registers as shown
below.

Program Status Words

Primary Accumulators

Secondary Accumulators/Data Counters B’

Q

Secondary Accumulators/Data Counters

~|mjal»|n

[s2]
mimlol»|n

Secondary Accumulators/Data Counters H
SP Stack Pointer
PC Program Counter

1X Index Register X

Y - Index Register Y

v Interrupt Vector

R Memory Refresh Counter

Now, the Z80 instruction set includes two instructions that allow the contents of
these duplicate sets of registers to be exchanged. The instruction EX AFAF" ex-
changes the contents of the registers A and F with the contents of A" and F'. The in-
struction EXX exchanges the contents of register pairs BC, DE, and HL with the con-
tents of register pairs B'C’, D'E’", and H'L’ respectively. Therefore, our sequence of four
PUSH instructions to save registers and four POP instructions to restore registers
can be replaced by using the EX AF,AF’ and EXX instructions as follows:

Old Program New Program

START PUSH AF START EX AFAF

PUSH BC EXX

PUSH DE -

PUSH HL -

- EX AFAF

- EXX

- RET

POP HL

POP DE

POP BC

POP AF

RET

Using the Exchange instructions instead of the PUSH/POP instructions has saved
us a total of four instructions, and also results in a much faster response to an in-
terrupt since execution of the two Exchange instructions requires only one fifth of the
time that is needed to execute the four PUSH instructions. Another advantage of the
Exchange instructions is that no read/write memory has been used by this se-
quence, while the PUSH/POP sequence uses eight bytes of stack memory.

Of course, the Exchange instructions can only be used for one level of interrupts; if
multiple, nested interrupts must be serviced, then the stack must be used to save
register contents. Now let us see what other demands multiple interrupts would make
upon our system
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MULTIPLE INTERRUPTS

What if your microcomputer system is connected to more than one external logic
device that is capable of requesting interrupts? For example, a single 280
microcomputer system might be driving a number of printers. Without going into
the economics of microcomputer multiple interrupt configurations, let us examine the
ways in which multiple interrupts can be handled.

The one thing that changes when we go from single interrupts to multiple inter- )
rupts is the fact that the interrupt service routine is no longer unique. There must be
a different interrupt service routine for every external device capable of request-
ing an interrupt. In turn that means that, following an interrupt acknowledge. we must
have some means of knowing which interrupt service routine is to execute. Also, if
more than one device simuitaneously requests interrupt service, which are we
going to acknowledge — and in what order? These are problems of interrupt vector-
ing and priority arbitration, subjects which have been covered in some detail in An In-
troduction to Microcomputers: Volume | — Basic Concepts. We will not repeat discus-
sion of these basic concepts in this book, rather, we will look at practical ways in which
multiple interrupts can be serviced within a Z80 microcomputer system. We will see
that the design of the Z80-CPU and Z80-PIO makes servicing of multiple interrupts
quite straightforward.

There are innumerable ways in which multiple interrupts could be implemented in
a Z80-type microcomputer system, and it is certainly beyond the scope of this book
to explore them all. Therefore we will limit our discussion to the most obvious and
straightforward method — the method that is supported by the design of the 280-
CPU and 280-PIO (as well as other Z80 parts that we have not needed to describe in
this book).

As we have just stated, the two main problems that must be solved in systems
utilizing muitiple interrupts are: 1) interrupt vectoring and 2) priority arbitra-
tion.

Interrupt vectoring has already been described earlier in this chapter when we dis-
cussed the Z80-CPU Mode 2 interrupt operation. This mode of operation allows
vectoring for a nearly unlimited number of interrupting devices. The only require-
ment placed on the interrupting device is that it respond to the CPU's interrupt
acknowledgment by placing a 7-bit vector on the system Data Bus. This is performed
automatically by the Z80-PIO. but could also be performed quite easily by logic of your
own design.

Interrupt priority arbitration is aiso provided by the Z280- | INTERRUPT
PIO, and a discussion of how this device performs the ar- | PRIORITY
bitration will also serve as an example of the general theo- | ARBITRATION
ry involved. The Z80-PIO uses a typical daisy chain scheme
to set interrupt priorities. Interrupt Enable In (IEI) and Interrupt Enable Out (IEO)
are standard daisy chain interrupt priority signals. When more than one PIO is pre-
sent in a system. the highest priority PIO (i.e.. the one electrically closest to the CPU)
will have IEl tied to +5V and will connect its IEO to the IEI for the next highest priority
P10 in the daisy chain:

IEl IEO 1] IEO IEl IEO
PIO PIO PIO
1 2 3
Highest (first) priority Second priority Third priority
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Daisy chaining has been described in good detail in Volume 1. If you are unsure of
daisy chain priority networks after reading this paragraph, refer back to Volume |
for clarification. When more than one device is requesting an interrupt, an
acknowledge ripples down the daisy chain until trapped by the interrupt requesting
device electrically closest to the CPU. As soon as the interrupt acknowledge process
has ceased, an interrupt service routine is executed for the acknowledged interrupt;
acknowledged external logic will now remove its interrupt request. In most microcom-
puter systems, unless the CPU disables further interrupts, a lower priority device can
immediately interrupt the service routine of a higher priority device. With the Z80
system, that is not the case. A device which has its interrupt request acknowledged
continues to suppress interrupt requests from all lower priority devices in a daisy chain,
until the second object code byte for an RET!.or RETN instruction is detected on the
Data Bus. The acknowledged device responds to an RETI or RETN instruction’s object
code by re-enabling interrupts for devices with lower priority in the daisy chain

Providing a Z80 microcomputer system has been designed to make correct use of the
RETI or RETN instruction, interrupt priority arbitration logic will allow an interrupt ser-
vice routine to be interrupted only by a higher priority interrupt request.

Here is an illustration of the Z80 interrupt priority arbitration scheme:

Lower priority

interrupts
*Active * suppressed *Active
! IREQ1 ! IREQ2 0 IREQ3 0 IREQ4
IEI IEQ IEl IEO IEI IEO IEl IEO
DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4
Device 2 Interrupt Request
Main Main
Program Program

Device 2 interrupt
service routine

Only IREQ1 can be
acknowledged while Device 2

interrupt service routine is
executing.

RETI instruction executed
here enables interrupts at
Devices 3 and 4. IREQ

can now be acknowledged.
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JUSTIFYING INTERRUPTS

Minicomputer programmers and large computer programmers make indiscriminate use
of interrupts simply to share the cost of the Central Processing Unit among a number of
different applications

You, as a microcomputer user, are going to have to justify sharing | INTERRUPT
a cost which may range between $5 and $20. Against this cost | ECONOMICS
you must charge the cost of external logic needed to create inter-
rupt request signals — as well as the extra cost of programming The economic tra-
deoff makes it far from obvious that interrupts are viable within microcomputer
systems. You must examine your application with care before assuming out of hand
that interrupts represent the way to go. A second CPU, or an entire second microcom-
puter system, will frequently be cheaper than using interrupts to share a single
microcomputer system between a number of different applications

Assuming that interrupts look economical for your applica- | INTERRUPT
tion, timing considerations are also important. TIMING
CONSIDERATIONS

Certainly. interrupts look very attractive when your application

is handling asynchronous events. In our case, suppose the

average print cycle lasts approximately 10 milliseconds; also, suppose it is im-
possible to say whether the time interval between print cycles will be 1 millise-
cond or 100 milliseconds. Under these circumstances, in order to execute some
other program in the time in between print cycles, we must use interrupts to initi-
ate the print cycle — since we have no idea when the next print cycle is to begin.

In reality, the time which elapses between print cycles will be very accurately known.
A printer will have some advertised character printing rate. If this rate is 45 charac-
ters per second. then 22.2 milliseconds will be required per printed character. If 10 of
the 22 milliseconds are needed to execute the actual print cycle routine, then 12
milliseconds will remain in between print cycles. We no longer need interrupts. So
long as the program which executes in between print cycles is broken into segments,
each of which executes in 12 milliseconds or less, then each segment can terminate
with an instruction loop which tests the status of the velocity decode input in order to
initiate the next print cycle:

START: IN A.(2) INPUT 1/0 PORT B TO ACCUMULATOR
BIT 5A :TEST BIT 5
JR NZ,START  :IF NOT ZERO RETURN TO START
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Chapter 6
THE 280 INSTRUCTION SET

Instructions falsely frighten microcomputer users who are new to programming.
Taken as an isolated event, operations associated with the execution of a single
instruction are easy enoujh to follow — and that is the purpose of this chapter.

Why are the instructions of a microcomputer referred to as an instruction “set”? The
answer is that the instructions selected by the designers of any microcomputer are
selected with great care; it must be easy to execute complex operations as a sequence
of simple events — each of which is represented by one instruction from a well-
designed instruction “'set".

Remaining consistent with An Introduction to Microcomputers, Volume Il, Table
6-1 summarizes the Z80 microcomputer instruction set, with similar instructions
grouped together.

Individual instructions are described next in alphabetical order of instruction
mnemonic.

In addition to simply stating what each instruction does, the purpose of the instruction
within normal programming logic is identified.

6-1



ABBREVIATIONS

These are the abbreviations used in this chapter:

AFB,.C.DEHL The 8-bit registers. A is the Accumulator and F is the Program
Status Word. )

AF'.BC'.DEHL"  The alternative register pairs

addr A 16-bit memory address
x(b) Bit b of 8-bit register or memory location x
cond Condition for program branching. Conditions are:
NZ - Non-Zero (Z=0)
Z - Zero(z=1)
NC - Non-carry (C=0)
C - Carry [C=1)

PO - Parity Odd (P=0)
PE - Parity Even (P=1)

P - Sign Positive (S=0)
M - Sign Negative (S=1)

data An 8-bit binary data unit
datal6 A 16-bit binary data unit
disp An 8-bit signed binary address displacement
xx(HI) The high-order 8 bits of a 16-bit quantity xx
v Interrupt vector register (8 bits)
XY The Index registers (16 bits each)
Xy Either one of the Index registers (IX or 1Y)
LSB - Least Significant Bit (Bit 0)
label A 16-bit instruction memory address
xx(LO) The low-order 8 bits of a 16-bit quantity xx
MSB Most Significant Bit (Bit 7)
PC Program Counter
port An 8-bit 1/0 port address
pr Any of the following register pairs:

BC

DE

HL

AF
R The Refresh register (8 bits)
reg Any of the following registers:

A

B

C

D

E

H

L
rp Any of the following register pairs:

BC

DE

HL

SP



SP
Statuses

[1]

[rn

1 € <>

STATUS

Stack Pointer (16 bits)
The Z80 has the following status flags:

C - Carry status

Z - Zero status

S - Sign status

P/O - Parity/Overflow status

Ac - Auxiliary Carry status

N - Subtract status

The following symbols are used in the status columns:
X - flag is affected by operation
blank) - flag is not affected by operation
1 - flag is set by operation

0 - flag is reset by operation

? - flag is unknown after operation
P - flag shows parity status

0 - flag shows overflow status

|

- flag shows interrupt enabled/disabled status

Contents of location enclosed within brackets. If a register designa-
tion is enclosed within the brackets, then the designated register’s
contents are specified. If an I/O port number is enclosed within the
brackets, then the I/O port contents are specified. If a memory ad-
dress is enclosed within the brackets, then the contents of the ad-
dressed memory location are specified.

Implied memory addressing; the contents of the memory location
designated by the contents of a register.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow

Data is exchanged between the two locations designated on either
side of the arrow.

The six status flags are stored in a Flag register (F) as follows:

[slz] [Ac[ frofnfc] :
NN NNEY!

@ These bits are not used

!——- Carry status (carry out of bit 7)
Subtract status
(1 after subtract operation, 0 otherwise)

Parity/Overflow
(for lagical operations, 1 for even, 0 for odd parity.
For arithmetic, 1 for overfiow)

Auxiliary Carry status (carry out of bit 3)

Zero status {1 for zero, O for nonzero)

Sign status {value of bit 7)
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F and A are sometimes treated as a register pair
The effect of instruction execution on status is illustrated as follows:
S Z AcP/ON ¢

Ll [ [xfolx]

L%A—: Modified to reflect results of execution
Unconditionally reset to 0

Unconditionally set to 1
Unchanged
Unknown

Within instruction execution illustrations, an X identifies a status STATUS

that is set or reset. A O identifies a status that is always cleared. A CHANGES

1 identifies a status that is always set. A blank means the status WITH

does not change. A question mark (?) means the status is not INSTRUCTION
known. EXECUTION

INSTRUCTION MNEMONICS
The fixed part of an assembly language instruction is shown in UPPER CASE.

The variable part (immediate data, 1/0 device number, register name, label or ad-
dress) is shown in lower case.

INSTRUCTION OBJECT CODES

Instruction object codes are represented as two hexadecimal digits for instruc-
tions without variations.

Instruction-object codes are represented as eight binary digits for instructions
with variations; the binary digit representation of variations is then identifiable.

INSTRUCTION EXECUTION TIMES AND CODES

Table 6-2 lists instructions in alphabetical order, showing object codes and execu-
tion times expressed as machine cycles.

Where two instruction cycles are shown the first is for ‘‘condition not met’’,
whereas the second is for ‘“condition met’’.
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Table 6-2. A Summary of Instruction Object Codes and Execution Cycles

CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS
ADC data CE yy 2 7
ADC (HL) 8E 1 7
ADC HL,rp ED 01xx1010 2 15
ADC {IX + disp) DD 8E yy 3 19
ADC {IY + disp) FD 8E yy 3 19
ADC reg 1000 1xxx 1 4
ADD data C6 yy 2 7
ADD (HL) 86 1 7
ADD HLrp 00xx 1001 1 11
ADD (IX + disp) DD 86 yy 3 19
ADD IX.pp DD 00xx1001 2 15
ADD (Y +disp) FD 86 yy 3 19
ADD Y.rr FD 00xx1001 2 15
ADD reg 10000xxx 1 4
AND data E6 yy 2 7
AND (HL) A6 1 7
AND (IX + disp) DD A6 vy 3 19
AND (IY + disp) FD A6 vy 3 19
AND reg 10100xxx 1 4
BIT b,(HL) cB 2 12
01bbb110
BIT b,{IX + disp) DD CB yy 4 20
01bbb110
BIT b(IY + disp) FD CB yy 4 20
_ 01bbb110
BIT b.reg cs 2 8
01bbbxxx
CALL  label CD ppaq 3 17
CALL C.label DC ppaqg 3 10/17
CALL  Mlabel FC ppaq 3 10/17
CALL  NC,label D4 ppaq 3 10/17
CALL  NZlabel C4 ppaq 3 10/17
CALL P label F4 ppag 3 10/17
CALL PE label EC ppag 3 10/17
CALL PO label E4 ppaq 3 10/17
CALL Z label CC ppaq 3 10/17
CCF 3F 1 4
cpP data FE yy 2 7
cP (HL) BE 1 7
CcP (IX + disp) DD BE yy 3 19
ce {IY + disp) FD BE vy 3 19
CcpP reg 1011 1xxx 1 4
CcPD ED A8 2 16
CPDR ED B9 2 21/16*
CPI ED A1 2 16
CPIR £D B1 2 21/16*
CPL 2F 1 4
DAA 27 1 4
DEC (HL) 35 1 1
DEC IX DD 2B 2 10
DEC {IX + disp) DD 35.yy 3 23
DEC Y FD 2B 2 10
DEC (IY + disp) FD 35 yy 3 23
DEC ™ 00xx1011 1 8

6-20




Table 6-2. A Summary of Instruction Object Codes and Execution Cycles (Continued)

CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS
DEC reg 00xxx 101 1 4
Dl F3 1 4
DJNZ  disp 10 yy 2 8/13
El FB 1 4
EX AF AF 08 1 4
EX DEHL EB 1 4
EX (SP)HL E3 1 19
EX (SP)LIX DD E3 2 23
EX (SPLIY FD E3 2 23
EXX D9 1 4
HALT 76 1 4
M 0 ED 46 2 8
M 1 ED 56 2 8
M 2 ED SE 2 8
IN A port DB yy 2 10
IN reg,(C} ED 2 1
01ddd000
INC (HL) 34 1 "
INC X DD 23 2 10
INC (IX + disp} DD 34 yy 3 23
INC Y FD 23 2 10
INC (Y + disp} FD 34 yy 3 23
INC m 00xx0011 1 6
INC reg 00xxx 100 1 4
IND ED AA 2 15
INDR ED BA 2 20/15
INI ED A2 2 15
INIR ED B2 2 20/15
JP label C3 ppagq 3 10
JP C label DA ppaq 3 10
JP {HL) E9 1 4
JP ) DD E9 2 8
Jp ty) FD €9 2 8
Jp M,label FA ppaq 3 10
JP NC label D2 ppag 3 10
JP NZ label C2 ppaqg 3 10
Jp P label F2 ppaq 3 10
JP PE.label EA ppaq 3 10
JP PO label E2 ppaq 3 10
JP Z label CA ppaq 3 10
JR C.disp 38 yy 2 7/12
JR disp 18 yy 2 12
JR NC.disp 30 yy 2 7/12
JR NZ.disp 20 yy 2 7712
JR Zdisp 28 yy 2 7/12
LD A (addr) 3A ppaq 3 13
LD A(BC) 0A 1 7
LD A (DE) 1A 1 7
Lo Al ED 57 2 9
LD AR ED 5F 2 9
LD {addr),A 32 ppag 3 13
LD (addr),BC ED 43 ppag 4 20
LD {addr),DE ED 53 ppaq 4 20
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Table 6-2. A Summary of Instruction Object Codes and Execution Cycles {Continued)

CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS
LD {addr),HL 22 ppaq 3 16
LD (addr),iX DD 22 ppqq 4 20
LD (addr),lY FD 22 ppqq 4 20
LD {addr),SP ED 73 ppag 4 20
Lb (BC)LA 02 1 7
LD (DE)A 12 1 7
LD HL,(addr) 2A ppaq 3 16
LD (HL).data 36 yy 2 10
LD (HL)reg 01110sss 1 7
LD LA ED 47 2 9
LD 1X (addr) DD 2A ppaq 4 20
LD 1X,data16 DD 21 yyyy 4 14
LD {IX + disp),data DD 36 yy yy 4 19
LD (X + disp)reg DD 01110sss 3 19
Yy
LD 1Y (addr) FD 2A ppaq 4 20
LD IY.data16 FD 21 yyyy 4 14
LD (IY + disp).data FD 36 yyyy 4 19
LD (IY + disp),reg FD 01110sss 3 19
vy
LD R.A ED 4F 2 9
LD reg,data 00ddd110 2 7
Yy
LD reg (HL) 01ddd 110 1 7
LD reg,(IX + disp) DD 3 19
01ddd110
Yy
LD reg(lY + disp) FD 3 19
01dddd 110
Yy
LD reg.reg 01dddsss 1 4
LD rp,(addr) ED 01xx1011 4 20
ppaq
LD rp,datal6 00xx0001 3 10
Yyyy
LD SP,HL F9 1 6
LD SP.IX DD F8 2 10
LD SPlY FD F9 2 10
LDD ED A8 2 16
LDDR ED B8 2 21/16*
LDI ED A0 2 16
LDIR ED BO 2 21/16*
NEG ED 44 2 8
NOP 00 1 4
OR data F6 yy 2 7
OR (HL) B6 1 7
OR {IX + disp) DD B6 yy 3 19
OR {IY +disp) FD 86 yy 3 19
OR reg 10110xxx 1 4
OTDR ED BB 2 20/15*
OTIR ED B3 2 20/15*
ouT (Chreg ED 01sss001 2 12
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Table 6-2. A Summary of Instruction Object Codes and Execution Cycles (Continued)

CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS
OUT  portA D3 yy 2 1
ouTD ED AB 2 15
ouTl ED A3 2 15
POP 1X DD E1 2 14
POP Y FD E1 2 14
POP  pr 11xx0001 1 10
PUSH X DD E5 2 15
PUSH 1Y FD E5 2 15
PUSH pr 11xx0101 1 1
RES b,(HL) cB 2 15
10bbb 110
RES b.{IX + disp) DD CB yy 4 23
10bbb110
RES b(lY + disp) FD CB yy 4 23
10bbb110
RES b.reg cB 2 8
10bbbxxx
RET c9 1 10
RET c D8 1 5/11
RET M F8 1 5/1
RET NC DO 1 5/11
RET NZ co 1 5/11
RET P FO 1 5/1
RET PE E8 1 5/11
RET PO EO 1 5/11
RET z c8 1 5/11
RETI ED 4D 2 14
RETN ED 45 2 14
RL (HL} CB 16 2 15
AL (IX + disp) DD CB yy 16 4 23
RL (1Y + disp) FD CB yy 16 4 23
RL reg CcB 2 8
00010xxx
RLA 17 1 4
RLC (HL) CB 06 2 15
RLC (X + disp} DD CB yy 06 4 23
RLC {lY + disp) FD CB yy 06 4 23
RLC reg cB 2 8
00000xxx
RLCA 07 1 4
RLD ED 6F 2 18
RR (HL) CB 1E 2 15
RR (IX + disp) DD CB yy 1E 4 23
RR (1Y + disp) FD CB yy 1E 4 23
RR reg cB 2 8
0001 1xxx
RRA 1F 1 4
RRC (HL) CB OE 2 15
RRC (IX + disp) DD CB yy OE 4 23
RRC (IY + disp) FD CB yy OE 4 23
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Table 6-2. A Summary of Instruction Object Codes and Execution Cycles {Continued)

CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS
ARC reg cs 2 8
0000 1xxx
RRCA OF 1 4
RRD ED 67 2 18
RST n Txxx111 1 11
SBC - data DE yy 2 7
SBC (HL) 9E 1 7
SBC HLmp ED 01xx0010 2 15
SBC (IX + disp) DD SE yy 3 19
SBC {IY + disp) FD 9E yy 3 19
SBC reg 1001 1xxx 1 4
SCF 37 1 4
SET b,(HL) cB 2 15
11bbb 110
SET b,(IX + disp} DD CB yy 4 23
11bbb110
SET b,{1Y + disp) FD CB yy 4 23
11bbb110
SET b.reg cB 2 8
11bbbxxx
SLA (HL) CB 26 2 15
SLA {IX + disp) DD CB yy 26 4 23
SLA (Y +disp) FD CB yy 26 4 23
SLA reg CB 00100xxx 2 8
SRA (HL) CB 2E 2 15
SRA {IX + disp) DD CB yy 2 4 23
SRA {IY + disp} FD CB yy 2E 4 23
SRA reg €8 00101xxx 2 8
SRL (HL) CB 3E 2 15
SRL (IX + disp) DD CB yy 3E 4 23
SRL (IY + disp) FD CB yy 3E 4 23
SRL reg CB 0011 1xxx 2 8
SUB  data D6 yy 2 7
suB {HL) 96 1 7
suB {IX + disp) DD 96 yy 3 19
suB {IY + disp) FD 96 yy 3 19
suB reg 10010xxx 1 4
XOR data EE yy 2 7
XOR (HL) AE 1 7
XOR {IX + disp) DD AE yy 3 19
XOR {IY + disp) FD AE yy 3 19
XOR reg 10101xxx 1 4

represents an optional binary digit.
represents optional binary digits identifying a bit location in a register or memory byte.
represents optional binary digits identifying a destination register.

represents optional binary digits identifying a source register.
q represents a four hexadecimal digit memory address.

represents two hexadecimal data digits.

*Execution time shown is for one iteration.

represents four hexadecimal data digits.

When two possible execution times are shown (i.e., 5/11), it indicates that
the number of clock periods depends on condition flags.
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ADC A.data— ADD IMMEDIATE WITH CARRY TO

ACCUMULATOR

r
S ZAcP/ON C

A XX

PC mmmm

" ——

ADC A

N o
CE

Add the contents of the next program memory byte and the Carry

cumulator

data

——

Yy

Data
Memory

Program
Memory

CE

Yy

Suppose xx=3A1g, yy=7C16. and Carry=0. After the instruction
ADC A,7CH

has executed, the Accumulator will contain B614:

3A = 0011
7C = 0111
Carry =
1011
1setsStol

No carry, set C to O

& &
0¥ 1=1, set P/O to 1

1010
1100
0

7011 0110

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

status to the Ac-

Non-zero result, set Z 10 0

Carry, setAc to 1

Addition instruction, set N to O

The ADC instruction is frequently used in multibyte addition for the second and subse-

quent bytes
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ADC A,reg — ADD REGISTER WITH CARRY TO

ACCUMULATOR
S ZAcP/ON C Data
FXIXTXTXTOTX] Memory
A XX
BC contents of
DE ——A,B,C,D,E,H
HL orLisyy
sp .
PC mmmm — iy Program
1X Memory
Y i
v 10001xxx_{mmmm
R mmmm + 1’
mmmm + 2
mmmm + 3

ADC A, reg

S ——

10001 XXX
~——
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100  for reg=H
101 for reg=L
111 for reg=A

Add the contents of Register A, B, C, D, E. H or L and the Carry status to the Accumula-
tor.

Suppose xx=E316; Register E contains AO1g, and Carry=1. After the instruction |

ADC AE
has executed. the Accumulator will contain 841¢:
E3 = 1110 0011
A0 = 1010 0000
Carry = 1

1000 0100

1setsStol TU LNon—zero result, set Z to 0
Carry, set C t0o 1 No carry, set Ac to 0

A &
1% 1=0, set P/O t0 0 Addition instruction, set N to 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.
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ADC A,(HL) — ADD MEMORY AND CARRY TO
ADC A, (iX+disp) ACCUMULATOR
ADC A, (1Y +disp)

S Z AcP/ON C

Data
FXIXIXIXTOTX] £ Memory
A XX xx+yy+C Yy ppaq
B.C
D.E
H.L pp qq
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
v 8E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADC A, (HL):
ADC A.{HL)
8E

Add the contents of memory location (specified by the contents of the HL register pair)
and the Carry status to the Accumulator.

Suppose xx=E31g, yy=A01g. and Carry=1. After the instruction

ADC A, (HL)
has executed, the Accumulator will contain 8416:
E3 = 1110 0011 ®
A0 = 1010 0000
Carry = 1

1Tsets Sto1 T ] Non-zero result, set Z to 0
Carry. set C to 1
P

P o
1% 1=0, set P/O to 0

No carry. set Ac to 0

Addition instruction, set N to 0
ADC A, (IX+disp)

DD 8E d
Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) and the Carry to the Accumulator.

ADC A, (IY+disp)
Nt o

——

FD 8E d

This instruction is identical to ADC A, (X+disp), except that it uses the IY register in-
stead of the IX register

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes



ADC HL,rp — ADD REGISTER PAIR WITH CARRY TOH AND L
S Z AcP/ON C

Data
LXIXIXIX] 01X Memory

A BC, DE, HL or SP

B.C contain yyyy

DE ,(

H.L XX XX xxxx:a/yyy

SP

PC mmmm S Program
X TR Ty Memory
Y

v

ED mmmm
R I 01xx1010 fmmmm + 1
' mmmm + 2
mmmm + 3

ADC HL.rp

5

EDO0O1xx1010
—

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE, HL register pair or the Stack Pointer, and
the Carry status, to the HL register pair

Suppose HL contains A53614, BC contains 10441g. and Carry=1 After execution of
ADC HL.BC
the HL register pair will contain

AB36 = 1010010100110110
1044 = 00010000 01000100
Carry = 1

101101010111 1011

1 sets S to 14—-—"

tNon—zero result, set Z to O
No carry, set C to O-ag— t—————

No carry, set Ac to O

0% 0=0, set P/O to O Addition instruction, set N to 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.
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ADD A,data — ADD IMMEDIATE TO ACCUMULATOR

S ZAcP/ON C

CEERI)

A
8.C
DE
HL
SP
PC
X
Y
[\
R

XX

mmmm

| —

XX +yy

mmmm + 2

ADD A, data
N,

cé

e~

Yy

Data
Memory

Program
Memory

C6

Yy

Add the contents of the next program memory byte to the Accumulator

Suppose xx=3A16, yy=7C16. and Carry=0. After the instruction

has executed, the Accumulator will contain B61g:

3A
7C

1setsStol

No carry, set C to O

ADD A.7CH
= 0011 1010
= 0111 1100
1011 0110

e

F
0% 1=1, set P/O to 1

This is a routine data manipulation instruction.
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L

Carry, set Ac to 1

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Non-zero result, set Z to 0

Addition instruction, set N to 0

-



ADD A,reg — ADD CONTENTS OF REGISTER TO
ACCUMULATOR

S ZAcP/ON C

Qata
KA EIEIEAES Cootw ) | Memor
A XX
BC contents of
D',E —-A B,C,D,E,
HL Hor Lis yy
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
\Y] 10000xxx_§ mmmm
: e A
mmmm + 2
mmmm + 3

ADD  reg

N ——

10000 Xxx
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E

100 for reg=H
101 for reg=L
111 for reg=A

Add the contents of Register A, B, C, D, E, H or L to the Accumulator.
Suppose xx=E31g, Register E contains AO16. After execution of

ADD AE
the Accumulator will contain 831¢:
E3 = 1110 0011
A0 = 1010 0000
1,000 0011

1setsStol tu LNon-zero result, set Z to 0
Carry, set C to 1

No carry. set Ac to O

A
1% 1=0, set P/O to 0 Addition instruction, set N to 0
This is a routine data manipulation instruction.
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ADD A, (HL) — ADD MEMORY TO ACCUMULATOR
ADD A, (IX+disp)
ADD A, (IY+disp)

S ZAcP/ON C Data
F n Memory
A xx XX +yy vy ppag +d
B.C
D.E
H.L
SP
PC mmmm mmmm + 3 Program
X pPpaq Memory
Y
v 1 DD mmmm
R l " 86 mmmm + 1
. d mmmm + 2
mmmm + 3

The illustration shows execution of ADD A, (IX+disp).

ADD A, (IX+disp)
A e T g

DD 86 d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) to the contents of the Accumulator.

Suppose ppgg=400014, xx=1A16. and memory location 400F1g contains 501¢. After o
the instruction )

ADD A, (IX+0FH)
has executed, the Accumulator will contain 6A1g.

1A 0001 1010
50 0101 0000

0110 1010

O setsSto0 UT LNon—zero result, set Z to 0
No carry, set C to O No carry. set Ac to O
r‘ -

0¥ 0=0; set P/O to O Addition instruction, set N to 0
ADD A, (IY+disp)
e e g

g

FD 86 d

This instruction is identical to ADD A, (IX+disp), except that it uses the IY register in-
stead of the IX register -

ADD A, (HL)
Nomam— -’
86

This version of the instruction adds the contents of memory location, specified by the
contents of the HL register pair, to the Accumulator.

The ADD instruction is a routine data manipulation instruction
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ADD HL,rp — ADD REGISTER PAIR TO H AND L
S Z AcP/ON C

Data
rL Ix] JOJX] Memory
A BC, DE, HL or SP
contain yyyy
BC
DE 4
HL XX XX XXXX + YYYY
SP
PC mmmm Program
IX Memory
mmmm + 1
Y
v ' 00xx 1001 _§ mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

ADD HL.rp
A e Van s s

00 xx 1001

S——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE, HL register pair or the Stack Pointer to the
HL register pair.

Suppose HL contains 034A1g and BC contains 214C1g. After the instruction
ADD HL.BC
has executed, the HL register pair will contain 2496 1.

034A = 0000001101001010
214C = 00100001 0100 1100

00100100 1001 0110

No carry, set C to O “g—————No carry, set Ac to 0

Addition instruction, set N to 0

The ADD HL,HL instruction is equivalent to a 16-bit left shift.
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ADD xy,rp — ADD REGISTER PAIR TO INDEX REGISTER

S ZAcP/ON C

LT IXTT0TX]

A
BC
DE
H.L
SP
PC
IX
Y
v
R

11

SS

Data
Memory

mmmm

ppPaq

| —

ppaq +rrss

The illustration shows execution of ADD IX.DE.

ADD

K

Hy1 1101 OOxx 1001

Program
Memory

11y11101

00xx 1001

O for Index register=1X OO for rp is register pair BC
01 for rp is register pair DE

1 for Index register=1Y

11 for rp is Stack Pointer

Add the contents of the specified register pair to the contents of the specified. Index.
register.

Suppose 1Y contains 4FF01g and BC contains 000F g After the instruction

ADD 1Y.BC

has executed, Index Register IY will contain 4FFF1g
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mmmm
mmmm + 1
mmmm + 2
mmmm + 3

10 for rp is specified Index register



AND data — AND IMMEDIATE WITH ACCUMULATOR
S Z AgP/ON C

Data
F XXX 0] Memory
A XX : XX *yY
B.C
D.E
HL
SP
PC mmmm mmmm + 2 Program
IX ) ) ; Memory
Y )
v ) E6 . |} mmmm
R ~ Yy mmmm + 1
mmmm + 2
mmmm + 3
AND data
—— ——
E6 Yy

AND the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g. After the instruction

AND 7CH
has executed, the Accumulator will contain 381g.

3A = 0011 1010
7C = 0111 1100
0011 1000
0 sets S to O

Three 1 bits, set P/O to O

Non-zeroresult, set Z to O

This is a routine logical instruction; it is often used to turn bits “off”". For example, the
instruction

AND 7FH
will unconditionally set the high order Accumulator bit to 0.
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AND reg — AND REGISTER WITH ACCUMULATOR

S ZAcP/ON C @ Data
PO dxfofo] _ Memory

A XX

contents of
' = A,B,C,D,E,

D.E .

HL Hor Lisyy

PC mmmm mmmm + 1- Program
) Memory

[\ 10100xxx fmmmm

mmmm + 1
mmmm + 2
mmmm + 3

AND reg .
N e’ ey
10100 xxx

S——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

AND the Accumulator with the contents of Register A, B, C. D. E, H or L Save the result
in the Accumulator.

Suppose xx=E31@, and Register E contains AO1g. After the instruction

AND E
has executed. the Accumulator will contain AO1g.
E3 = 1110 0011
A0 = 1010 0000
1010 0000

1setsSto1 Two 1 bits, set P/O to 1

Non-zero result, set Z to O
AND is a frequently used logical instruction.
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AND (HL) — AND MEMORY WITH ACCUMULATOR
AND (IX+disp)

AND (1Y+disp)

S ZAcP/ON C

Data
Memory
A XX XX *yy Yy ppaq +d
B.C
D.E
H.L
SP
PC mmmm Program
IX ppaq Memory
Y - v
v ‘ FD mmmm
R I AB mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of AND (IY+disp).
AND {(IY+disp)
N o
FD A6 d

AND the contents of memory location (specified by the sum of the contents of the 1Y
register and the displacement digit d) with the Accumulator

Suppose xx=E316, ppaq=40001g. and memory location 400F 15 contains AO1g. After
the instruction

AND {IY+O0FH)
has executed, the Accumulator will contain AO1g
E3 = 1110 0111
A0 = 1010 0000

7010 0000

1 sets S to 1<—J Two 1 bits, set P/O to 1

Non-zero result, set Z to 0
AND (IX+disp)
eV e a0 d

DD A6 d

This instruction is identical to.AND {IY+disp), except that it uses the IX register instead
of the IY register.

AND (HL)
e aVa
AB

AND the contents of the memory location (specified by the contents of the HL register
pair) with the Accumulator.

AND is a frequently used logical instruction
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BIT b,reg — TEST BIT b IN REGISTER reg

S ZAcP/ON C

IR T ]

YYyDyyyy

PC mmmm

f —

BIT b,
—— e and
CBO1 999
Bit Tested

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

reg
———

XXX
N~

000
001
010
01
100
101
111

mmmm + 2

Register
B

>Pr-Imoo

Data
Memory

Program
Memory

CcB

0 1bbbxxx

Place complement of indicated register’s specified bit in Z flag of F register.

Suppose Register C contains 1110 1111. The instruction BIT 4.C will then set the Z flag
to 1. while bit 4 in Register C remains O. Bit O is the least significant bit.
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mmmm + 1
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BIT b,(HL) — TEST BIT b OF INDICATED MEMORY POSITION
BIT b, {IX+disp)
BIT b, {IY +disp)

S Z AGP/ON C Data

3 BN KA R Mermory

. C o~
B.C yvybyyyy_I ppag
DE
HL PP aq
SP
PC mmmm mmmm + 2 Program
X Memory
Y
v CB mmmm
R 01bbb110 frommm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of BIT 4,(HL). Bit O is the least significant bit.
BIT b (HL)
N

CBO1 bbb 110
———

Bit Tested bbb
000
001
010
011
100
101
110
T

Test indicated bit within memory position specified by the contents of Register HL, and
place bit's complement in Z flag of the F register.

NOoOODMWN-—-O

Suppose HL contains 4000H and bit 3 in memory location 4000H contains 1. The in-
struction

BIT 3,(HL)
will then set the Z flag to O, while bit 3 in memory location 4000H remains 1.
BIT b.(X+disp)

N

s, i,
DD CB d 01 bbb 110

bbb is the same as in BIT b,(HL)

Examine specified bit within memory location indicated by the sum of Index Register IX
and disp. Place the complement in the Z flag of the F register
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Suppose Index Register IX contains 4000H and bit 4 of memory location 4004H is 0
The instruction

BIT 4.(X+4H)
will then set the Z flag to 1, while bit 4 of memory location 4004H remains 0.
BIT b,{IY+disp)
S
/ P,
FD CB 4 01 bbb 110
bbb is the same as in BIT b, {HL)
This instruction is identical to BIT b, {IX+disp), except that it uses the IY register instead
of the IX register

CALL label —CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND

S ZAcP/ON C Data

FCIITTT 1) Memory
A mm+3  Jxxxx-2
BC mm xxxx-1
D.E @ XXXX
H.L
SP XXXX
PC mmmm . @ Program
IX Memory
Y
v CcD mmmm
R I I pp §mmmm +1
4 aq mmmm + 2
mmmm + 3

CALL label
S N

CcD ppag

Store the address of the instruction following the CALL on the top of the stack: the top
of the stack is a data memory byte addressed by the Stack Pointer. Then subtract 2
from the Stack Pointer in order to address the new top of stack. Move the 16-bit address
contained in the second and third CALL instruction object program bytes to the Pro-
gram Counter. The second byte of the CALL instruction is the low-order half of the ad-
dress, and the third byte is the high-order byte.

Consider the instruction sequence:

CALL SUBR
AND 7CH

SUBR

After the instruction has executed. the address of the AND instruction is saved at the
top of the stack. The Stack Pointer is decremented by 2. The instruction labeled SUBR
will be executed next
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CALL condition,iabel — CALL THE SUBROUTINE IDENTIFIED IN
THE OPERAND IF CONDITION IS

SATISFIED
CALL condition, label
S—— N S o
11 xxx 100 pp aq

T Condition Relevant Flag
— S— —————————
000 NZ Non-Zero Z
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
111 M Sign Negative S

This instruction is identical to the CALL instruction. except that the identified
subroutine will be called only if the condition is satisfied. otherwise, the instruction se-
quentially following the CALL condition instruction will be executed.

Consider the instruction sequence:

CALL | COND.SUBR

condition not satisfied

AND 7CH
condition
satisfied -
SUBR
N

If the condition is not satisfied, the AND instruction will be executed after the CALL
COND,SUBR instruction has executed. If the condition is satisfied, the address of the
AND instruction is saved at the top of the stack, and the Stack Pointer is decremented
by 2. The instruction labeled SUBR will be executed next
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CCF — COMPLEMENT CARRY FLAG
S Z ACP/ON C

Fl

I

[ K=

A

Data
@ Memory

B.C

D.E

HL

SP

PC

IX

mmmm + 1 Program
Memory

Y

v
R

3F

CCF
———~

3F

Complement the Carry flag No other status or register contents are affected
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CP data — COMPARE IMMEDIATE DATA WITH
ACCUMULATOR CONTENTS

/--i——-\

S Z AcP/ON C

Data
F RN Memory
A XX XX-YYy
B.C
D.E
HL
SP
PC mmmm mmmm + 2 . Program
1X Memory
Y
v FE mmmm
R — Yy mmmm + 1
mmmm + 2
mmmm + 3
cp data
S—— Rt
FE vy

Subtract the contents of the second object code byte from the contents of the Ac-
cumulator, treating both numbers as simple binary data. Discard the result. i.e , leave

the Accumulator alone, but modify the status flags to reflect the result of the subtrac-
tion \

Suppose xx=E31g and the second byte of the CP instruction object code contains
AO1g. After the instruction

CP OAOH

has executed. the Accumulator will still contain E31g, but statuses will be modified as
follows:

E3 = 1110 0011
A0 = 1010 0000

0100 0017

Osets Sto0 UT LNon~zero result. set Z to O
No borrow, set C to O

No borrow, set Ac to 0
£ &
1% 1=0, set P/O 10 0

Subtract instruction, set N to 1
Notice that the resulting carry is complemented.
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CP reg — COMPARE REGISTER WITH ACCUMULATOR

S ZAcP/ON C

F XXX X

A XX
BC Contents of
D’,E —’A,B,(;,D,E,H
HL or Lisyy
SP
PC mmmm ‘mmmm + 1
IX
Y
[\ |
R
CP reg
—— ——
10111 xxx
e~
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E-
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

1011 1xxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of Register A, B, C, D, E, H or L from the contents of the Ac-

cumulator, treating both numbers as simple binary data. Discard the result; i.e.,

leave

the Accumulator alone, but modify status flags to reflect the result of the subtraction.

Suppose xx=E31g and Register B contains AO1g. After the instruction

has executed, the Accumulator will still contain E31g, but statuses will be modified as

CP B
follows:
E3 = 1110 0011
A0 = 1010 0000

0100 0011
Osets Sto O
No borrow, set C to O
P

y
1% 1=0, set P/O to 0

Notice that the resulting carry is complemented.
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CP {HL) — COMPARE MEMORY WITH ACCUMULATOR
CP (IX+disp)
CP (IY+disp)

/-ﬂ-iv—-\

S Z AcP/ON C

Data
F XXX X Mermory
A XX Yy ppaq
BC
DE
HL pp qq
SP
PC mmmm . mmmm + 1 Program
IX Memory
Y
v BE mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of CP (HL)
CP (HL)
N
BE

Subtract the contents of memory location (specified by the contents of the HL register
pair) from the contents of the Accumulator, treating both numbers as simple binary

data. Discard the result, i.e.. leave the Accumulator alone, but modify status flags to
reflect the result of the subtraction

Suppose xx=E31g and yy=A01g. After execution of

CP {HL)
the Accumulator will still contain £31g. but statuses will be modified as follows
E3 = 1110 0011
A0 = 0110 0000
0100 0017
OsetsSto0 TU LNon»zero result. set Z to 0
No borrow, set C to 0 No borrow, set Ac to 0

& &
1% 1=0, set P/O to O
Notice that the resulting carry is complemented.

CP (IX+disp)
S

——

Subtract instruction, set N to 1

DD BE d
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Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) from the contents of the Accumulator, treat-
ing both numbers as simple binary data. Discard the result; i.e., leave the Accumulator
alone, but modify status flags to reflect the result of the subtraction.

CP (IY+disp)
e

FD BE d

This instruction is identical to CP {IX+disp). except that it uses the IY register instead of
the IX register.

CPD — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER

s S

S Z AcP/ON C Data
= Set if BC-1 #0,
F -. reset otherwise Memory
A XX
B.C tt uu Yy ppaq
D.E
HL PP qq
SP
PC mmmm Program
IX Memory
Y
v I — ED mmmm
R A9 mmmm + 1
mmmm + 2
mmmm + 3

CPD
S -
ED A9

Compare the contents of the Accumulator with the contents of memory location
{specified by the HL register pair). If A is equal to memory, set Z flag. Decrement the HL
and BC register pairs. (BC is used as the Byte Counter)
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Suppose xx=E316. ppaa=400016. BC contains 000116, and yy=A01g. After the in-
struction

CPD
has executed, the Accumulator will still contain E31g, but statuses will be modified as
follows: )

E3
AQ

11710 0011
1010 0000

0100 0011
0 sets S to O<—J 1U LNon-zero result, set Z 10 0
No borrow, set Ac t0 0
The P/O flag will be reset
because BC-1=0

Subtract instruction involved,
set N to 1

Carry not affected.
The HL register pair will contain 3FFFqg, and BC=0

CPDR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER.
CONTINUE UNTIL MATCH IS FOUND OR BYTE
COUNTER IS ZERO

CPDR
o~ -
ED B9

This instruction is identical to CPD, except that it is repeated until a match is found or
the byte counter is zero. After each data transfer, interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 560001g. the BC register pair contains 00FF 14,
the Accumulator contains F91g. and memory has contents as follows:

Location  Contents
50001¢ AA1g
4FFF 16 BC1s
4FFE16 1916
4FFD1g 7A16
4FFC1g F918
4FFB116 DD16

After execution of
CPDR

the P/O fiag will be 1, the Z flag will be 1. the HL register pair will contain 4FFB1g, and
the BC register pair will contain 00FA 1.
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CPI — COMPARE ACCUMULATOR WITH MEMORY.

DECREMENT BYTE COUNTER.
INCREMENT ADDRESS

. S

S Z AcP/ON C Data
epme Set if BC-1 #0, Memory
F -n- reset otherwise
A XX s ,
BC - — v vy ppaq
D.E PA_ ppag+1
HL pp aq .
SpP
ok — Program
x Memory
Y mmmm + 2
v ED mmmm
. AT mmmm + 1
mmmm + 2
mmmm + 3

CPI
W—/
ED A1

Compare the contents of the Accumulator with the contents of memory location
(specified by the HL register pair). If A is equal to memory, set the Z flag. Increment the
HL register pair and decrement the BC register pair (BC is used as Byte Counter)

Suppose xx=E31g, ppaq=40001g, BC contains 003214, and yy=E316 After the in-

struction
CPI
has executed, the Accumulator will still contain E31g, but statuses will be modified as
follows:
E3 = 1111 0011
-E3 = 0000 1101

O sets S to O<J U L
I

Result is 0, set Z to 1

No borrow. set Ac to O

The P/0O flag will be set

because BC-1 #0

Subtract instruction involved,

setNto 1

Carry not affected.

The HL register pair will contain 400114, and BC will contain 003116

6-47



CPIR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS.
CONTINUE UNTIL MATCH IS FOUND
OR BYTE COUNTER IS ZERO

CPIR
N

ED B1

This instruction is identical to CPl, except that it is repeated until a match is found or
the byte counter is zero. After each data transfer, interrupts will be recognized and two
refresh cycles will be executed

Suppose the HL register pair contains 450016, the BC register pair contains O0FFqg,
the Accumulator contains F915. and memory has contents as follows:

Location Contents
450018 AA1s
450116 1516
450216 F916
After execution of
CPIR

the P/O flag will be 1. and the Z flag will be 1. The HL register pair will contain 45031¢,
and the BC register pair will contain 00FCqg
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CPL — COMPLEMENT THE ACCUMULATOR

S ZAcP/ON C

g o Data
.. Memory
A XX TRR
B.C
DE
H,L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
v 2F mmmm
R I mmmm + 1
mmmm + 2
mmmm + 3
CPL
——
2F

Complement the contents of the Accumulator. No other register's contents are
affected.

Suppose the Accumulator contains 3A16. After the instruction

CPL
has executed, the Accumulator will contain C51¢.

3A = 0011 1010
Complement = 1100 0101

This is a routine logical instruction You need not use it for binary subtraction, there are
special subtract instructions (SUB. SBC).
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DAA -— DECIMAL ADJUST ACCUMULATOR
S ZAcP/ON C

Data
FAXIXIXT 1] Mermory
Convert to
A XX : decimal
B.C
DE
H.L
SP
PC mmmm —{ mmmm + 1 Program
IX Memory
N4
v 27 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
DAA
e
27

Convert the contents of the Accumulator to binary-coded decimal form. This instruc-
tion should only be used after adding or subtracting:two BCD numbers; i.e.. look upon
ADD DAA or ADC DAA or INC DAA or SUB DAA or SBC DAA or DEC DAA or NEG DAA

as compound, decimal arithmetic instructions which operate on BCD sources to gener-
ate BCD answers.

Suppose the Accumulator contains 3914 and the B register contains 474 g After the in-
structions

ADD B
DAA

have executed, the Accumulator will contain 861, not 801.

Z80 CPU logic uses the values in the Carry and Auxiliary Carry, as well as the Ac-
cumulator contents, in the Decimal Adjust operation.
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DEC reg — DECREMENT REGISTER CONTENTS

S ZAcP/ON C

Data
FOXDIXTX L] Memory
A Contents of A,
gg B, C, D, E H,
HL or Lis yy
sP
PC mmmm mmmm + 1 Program
X Memory
Y
\% 00xxx101 |mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

DEC reg

00 xxx 101

000 for reg=B

001 for reg=C

010 for reg=D

011 for reg=E

100 forreg=H

101 . for reg=L

111 for reg=A
Subtract 1 from the contents of the specified register.
Suppose Register A contains 501g. After execution of

DEC A

Register A will contain 4F1g
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DEC rp — DECREMENT CONTENTS OF SPECIFIED REGISTER
DEC IX PAIR
DEC IY

S Z AcP/ON C

Data
A
B8.C Contents of BC,
D.E DE, HL or SP
HL is yyyy
sP
PC mmmm mmmm + 1 Program
1X Memory
Y
v | 00xx 1011 g mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC rp:
DEC rp

——

00 xx 1011
S
00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair. No status flags
are affected.

Suppose the H and L registers contain 2F001g After the instruction
DEC HL
has executed, the H and L registers will contain 2EFF g

DEC IX
N
DD 2B

Subtract 1 from the 16-bit value contained in the IX register

DEC 1Y
N
FD 2B

Subtract 1 from the 16-bit value contained in the IY register.

Neither DEC rp, DEC IX nor DEC IY affects any of the status flags. This is a defect in the
280 instruction set, inherited from the 8080. Whereas the DEC reg instruction is used in
iterative instruction loops that use a counter with a value of 256 or less, the DEC o]
{DEC 1X or DEC 1Y) instruction must be used if the counter value is more than 256. Since
the DEC rp instruction sets no status flags, other instructions must be added to simply
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test for a zero result. This is a typical loop form:

LD DE.DATA ;LOAD INITIAL 16-BIT COUNTER VALUE
LOOP - :FIRST INSTRUCTION OF LOOP

DEC DE ;DECREMENT COUNTER

LD AD .TO TEST FOR ZERO, MOVE D TO A

OR E ;THEN OR A WITH E

JP NZ,LOOP ;RETURN IF NOT ZERO

DEC (HL) — DECREMENT MEMORY CONTENTS
DEC (IX+disp)
DEC (1Y +disp)

S ZAcP/ON C Data
XXX T ] Memory
B.C .
DE
HL pp aq
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
v 35 mmmm
R I ‘ ‘ mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC (HL):
DEC (HL)
N i
35

Subtract 1 from the contents of memory location (specified by the contents of the HL
register pair).

Suppose ppaq=45001g, yy=5F1g. After execution of
DEC {HL)
memory location 45001 will contain 6E16.

5F 0101 111
-01 1111 111
111

1
1
onot 0 )
- 0 sets S to Od—b U{ LNor1~zero result, setZ to 0
3 1=0, set P/0 to0 0 No borrow. set Ac to O

Subtract instruction, set N to 1

[
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DEC (IX-+disp)
N’

——

DD 35 d

Subtract 1 from the contents of memory location (specified by the sum of the contents
of the IX register and the displacement value d)

DEC (IY+disp)
N~

FD 35 d

This instruction is identical to DEC (IX-+disp), except that it uses the 1Y register instead
of the IX register.

DI — DISABLE INTERRUPTS

S ZACP/ON C Data

PC mmmm mmmm + 1 Program
1X Memory

v F3 mmmm

;  — -
mmmm + 2
mmmm + 3

DI
o~

F3

When this instruction is executed, the maskable interrupt request is disabled and the
INT input to the CPU will be ignored. Remember that when an interrupt is
acknowledged, the maskable interrupt is automatically disabled

The maskable interrupt request remains disabled until it is subsequently enabled by an
El instruction.

No registers or flags are affected by this instruction
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DJNZ disp — JUMP RELATIVE TO PRESENT
CONTENTS OF PROGRAM COUNTER IF
REG B IS NOT ZERO

S Z AcP/ON C o1

. d——
B.C XX

]

PC mmmm

mmmm +

(dd-2) +2

DJINZ  disp
S - ——
10 dd-2

Data
Memory

Program
Memory

10

dd-2

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Decrement Register B. If remaining contents are not zero, add the contents of the DJNZ
instruction object code second byte and 2 to the Program Counter. The jump is
measured from the address of the instruction operation code, and has a range of -126 to
+129 bytes. The Assembler automatically adjusts for the twice-incremented PC

If the contents of B are zero after decrementing. the next sequential instruction is ex-

ecuted.

The DJNZ instruction is extremely useful for any program loop operation. since the one
instruction replaces the typical "decrement-then-branch on condition” instruction se-

quence.

El — ENABLE INTERRUPTS
S Z AcP/ON C

PC mmmm
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Memory

FB

mmmm
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El
——

FB

Execution of this instruction causes interrupts to be enabled. but not until one more in-
struction executes.

Most interrupt service routines end with the two instructions:

El .ENABLE INTERRUPTS
RET ;RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially. then for the entire duration of the interrupt service
routine all maskable interrupts are disabled — which means that in a multi-interrupt
application there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the
Return instruction would not be executed. Under these circumstances, returns would
stack up one on top of the other — and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

interrupt

Interrupt service routine
Interrupt

Interrupt service routine

Interrupt service routine

By inhibiting interrupts for one more instruction following execution of El, the Z80 CPU
ensures that the RET instruction gets executed in the sequence:

El :ENABLE INTERRUPTS
RET :RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

Interrupt Interrupt

i

Interrupt service routine Interrupt service routine
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EX AF,AF — EXCHANGE PROGRAM STATUS AND ALTERNATE
PROGRAM STATUS

mma

Alternate
S Z AcP'ON C Register Set
I LTI I = .
’ .
BC D’
DE :
HL H
SP
pC mmmm Program
IX Memory
Iy
v 08 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

EX AF.AF’
S
08
The two-byte contents of register pairs AF and A'F" are exchanged
Suppose AF contains 4F991g and A'F’ contains 10AA1g After execution

EX AFAF
AF will contain T0AA1g and AF' will contain 4F994¢4

of
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EX DE,HL — EXCHANGE DE AND HL CONTENTS
S ZAGP/ON C

Data
A
B.C
D.E pp ag
H.L XX YY
SP .
PC mmmm mmmm’+ 1 Program
1X Memory
Y

v EB mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

EX DE.HL
e

EB
The D and E registers’ contents are swapped with the H and L registers’ contents.
Suppose pp=0316. qa=2A16. xx=411g and yy=FC1g. After the instruction
EX DE,HL

has executed, H will contain 0316, L will contain 2A16, D will contain 4115 and E will
contain FC1g.

The two instructions:

EX DE,HL
LD A.(HL)

are equivalent to:
LD A.(DE)
but if you want to load data addressed by the D and E register into the B register,

EX DEHL
LD B.(HL)

has no single instruction equivalent.
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EX (SP),HL — EXCHANGE CONTENTS OF REGISTER AND
EX (SP),IX  TOP OF STACK
EX (SP)IY

S Z AcP/ON C

Data
FCITTTT] Memory
A o o aq SSSS
B.C 7 Bt pp ssss + 1
D.E & [ 2 ss55 + 2
H.L XX vy
SP SSSS
PC mmmm mmmm + 1 Program
1X Memory
Y
v E3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of EX (SP),HL
EX (SP).HL
a2

E3

Exchange the contents of the L register with the top stack byte Exchange the contents
of the H register with the byte below the stack top.

Suppose xx=211g, yy=FA16. pp=3A16. qa=E21g After the instruction
EX (SP).HL

has executed, H will contain 3A1g, L will contain E21g and the two top stack bytes will
contain FA1g and 211¢ respectively

The EX (SP)HL instruction is used to access and manipulate data at the top of the stack.
EX (SP).IX
N ot
DD E3

Exchange the contents of the IX register's low-order byte with the top stack byte. Ex-
change the IX register's high-order byte with the byte below the stack top

EX {SP).IY
A Y
FD E3

This instruction is identical to EX (SP)LIX, but uses the IY register instead of the IX
register.



EXX — EXCHANGE REGISTER.PAIRS AND ALTERNATE
REGISTER PAIRS

S Z AcP/ON C

Alternate

F
A A
B.C B
DE }< "’{ D
HL H
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
v I | D9 mmmm
R ] mmmm + 1
mmmm + 2
mmmm + 3

EXX

oy

D9
The contents of register pairs BC, DE and HL are swapped with the contents of register
pairs B'C', D'E’, and H'L".

Suppose register pairs BC, DE and HL contain 49011g, 5F0015 and 726114 respec-

tively, and register pairs B'C", D'E’, H'L" contain 00001, 10FF1g and 333314 respec-
tively. After the execution of

EXX
the registers will have the following contents:

BC: 00001g; DE: 10FF1g; HL: 333316,
B'C’: 490116: D'E" BF001g; H'L" 72611¢

This instruction can be used to exchange register banks to provide very fast interrupt
response times
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HALT
S Z ACP/ON C

PC mmmm

" —

HALT

76

Data
Memory

Program
Memory

76

mmmm

mmmm + 1
mmmm+2 .
mmmm + 3

When the HALT instruction is executed, program execution ceases. The CPU requires

an interrupt or a reset to restart execution. No registers or statuses are affected:
however, memory refresh logic continues to operate.
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IM 0 — INTERRUPT MODE 0

S Z AcP/ON C

Data
A
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
v ED mmmm
R 46 mmmm + 1
mmmm + 2
mmmm + 3

IM O
——

ED 46

This instruction places the CPU in interrupt mode O. In this mode. the interrupting
device will place an instruction on the Data Bus and the CPU will then execute that in-
struction. No registers or statuses are affected

IM 1 — INTERRUPT MODE 1

M1
e

ED b6

This instruction places the CPU in interrupt mode 1. In this mode, the CPU responds to
an interrupt by executing a restart (RST) to location 003816

IM 2 — INTERRUPT MODE 2

M2
o
ED 5E

This instruction places the CPU in interrupt mode 2. In this mode. the CPU performs an
indirect call to any specified location in memory. A 16-bit address is formed using the
contents of the Interrupt Vector (IV) register for the upper eight bits, while the lower
eight bits are supplied by the interrupting device. Refer to Chapter 5 for a full descrip-
tion of interrupt modes. No registers or statuses are affected by this instruction.
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IN A,(port) — INPUT TO ACCUMULATOR

S Z AcP/ON C Data
A
B.C
D.E
HL
SP
PC mmmm mmmm + 2 Program
X Memory
Y
v DB
IN A, (port)
DB

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Load a byte of data into the Accurnulator from the /O port (identified by the second IN

instruction object code byte).

Suppose 361¢ is held in the buffer of I/0 port 1A1e. After the instruction

IN A, (1AH)
has executed, the Accumulator will contain 361¢.

The IN instruction does not affect any statuses

Use of the IN instruction is very hardware dependent Valid 1/O port addresses are
determined by the way in which 1/0 logic has been implemented It is also possible to
design a microcomputer system that accesses external logic using memory reference
instructions with specific memory addresses.
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INC reg — INCREMENT REGISTER CONTENTS

S Z AcP/ON C
FRAUXIX]IX]0] ]

Bé Contents of A,
DE B,'C, D, E Hor
HL Lisyy

SP coca,

PC mmmm Program
IX, n > Memory
Y
v
R

Data
Memory

00xxx 100 _§ mmmm

mmmm + 1
mmmm + 2
mmmm + 3

INC reg
S S

00 xxx 100

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add 1 to the contents of the specified register
Suppose Register E contains AB1g. After execution of

INC E
Register E will contain A91g

6-64



INC rp — INCREMENT CONTENTS OF SPECIFIED REGISTER PAIR

INC IX
INC 1Y

S ZAcP/ON C

PC mmmm

The illustration shows execution of INC rp:

INC rp

00 xx 0011

——

Contents of BC,
. DE, HL or SP
—Bis yyyy

mmmm + 1

Data
Memory

Program
Memory

00xx0011

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL

11 for rp is Stack Pointer

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Add 1 to the 16-bit value contained in the specified register pair. No status flags are

affected.

Suppose the D and E registers contain 2F7A1g. After the instruction

INC DE

has executed, the D and E registers will contain 2F7B1g.

INC IX
\P/

DD 23

Add 1 to the 16-bit value contained in the IX register.

INC 1Y
N’
FD 23

Add 1 to the 16-bit value contained in the 1Y register

Just like the DEC rp, DEC IX and DEC 1Y, neither INC rp, INC IX nor INC 1Y affects any

status flags. This is a defect in the Z80 instruction set inherited from the 8080.
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INC (HL) — INCREMENT MEMORY CONTENTS
INC (IX+disp)
INC (IY+disp)

S Z AcP/ON C Data

FOxIXIXIxIo] J Memory

A W |eraa+d
B.C b .
D.E ’
H.L

SP

PC mmmm mmmm + 3 Program

IX ppag Memory

1Y

v DD mmmm

R l ) 34 mmmm + 1

d mmmm + 2

mmmm + 3

The illustration shows execution of INC {IX+d):

INC (IX+disp)
N e~

DD 34 d

Add 1 to the contents of memory location (specified by the sum of the contents of
Register IX and the displacement value d).

Suppose ppaq=40001g and memory location 400F1g contains 361g. After execution
of the instruction

INC (IX+0FH)
memory location 400F1g will contain 3716.

36 = 0011 0110
1
0011 0111

OsetsSto0 : Ut ‘ LNon—zero result, set Z to 0
Carry status not affecteds
k

No carry.-set Ac to O

0% 0=0, set P/O t0o 0 Addition instruction, set N to O
INC (IY+disp)
S oy~
FD 34 d

This instruction is identical to INC {IX+disp). except that it uses the'lY register instead
of the IX register.

INC (HL)
e N
34

Add 1 to the contents of memory location (specified by the contents of the HL register
pair).
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IND — INPUT TO MEMORY AND DECREMENT POINTER

S ZACP/ON C X Data
rlzIxP 2] 1/0 port yy Mermory
A I ppag
B.C XX y, Yy =
hi
H.L pp qq . 3
sp
PC mmmm Program
X mmmm + 2 Memory
\'4 ‘
v | ED mmmm
R i AA mmmm + 1
mmmm + 2
mmmm + 3

IND
e,
ED AA

Input from 1/0 port (addressed by Register C) to memory location (specified by HL).
Decrement Registers B and HL.

Suppose xx=051¢. yy=151¢. ppag=24001g. and 191 is held in the buffer of I/O port
151g. After the instruction

IND
has executed. memory location 24001g will contain 191g. The B register will contain
041¢ and the HL register pair 23FF1g.

INDR — INPUT TO MEMORY AND DECREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INDR
N
ED BA

INDR is identical to IND. but is repeated until Register B=0

Suppose Register B contains 0316, Register C contains 1516, and HL contains 24001 6.
The following sequence of bytes is avaitable at 1/Q port 1516:

1716. 5916 and AE1g
After the execution of
' INDR

the HL register pair will contain 23FD1g and Register B will contain zero, and memory
locations will have contents as follows:

Location  Contents

2400 1716
23FF 5916
23FE AE1g

This instruction is extremely useful for loading blocks of data from an input device into
memory.
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INI — INPUT TO MEMORY AND INCREMENT POINTER

S ZAcP/ON C ol Data
FCTTTTT] 770 port vy Memory
A l l—-—b ppaq
B.C XX ) vy
DEE ppaq + 1
H.L] pp aq
SpP
PC mmmm Program
IX mmmm + 2 Memory
Y
v | ED mmmm
R i A2 mmmm + 1
mmmm + 2
mmmm + 3

INI
S
ED A2
Input from 1/0 port (addressed by Register C) to memory location (specified by HL)
Decrement Register B, increment register pair HL.

Suppose xx=0616, yy=1616. ppag=24001g, and 1914 is held in the buffer of I/0 port
1516
After the instruction

INI

has executed. memory location 24001g will contain 191g. The B register will contain
0415 and the HL register pair 240115

INIR — INPUT TO MEMORY AND INCREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INIR
V/
ED B2

INIR is identical to INI, but is repeated until Register B=0

Suppose Register B contains 0316, Register C contains 1514, and HL contains 240016
The foliowing sequence of bytes is available at I/0 port 1514:

1716. 5916 and AE1g
After the execution of
INIR

the HL register pair will contain 240316 and Register B will contain zero, and memory
locations will have contents as follows:

Location  Contents

2400 1716
2401 591g
2402 AE1g

This instruction is extremely useful for loading blocks of data from a device into memo-
ry.
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IN reg.(C) — INPUT TO REGISTER

S ZACP/ON C

’——PITODOL!TW—I

Data
FRxIxfo[XToT] Memory
A
Register
B.C A B.C.D,E
DE HorL
H.L
SP .
PC mmmm @ Program
X ) _ Memory
Y
v ED
" | — 0

reg. (C)

IN
RS- SN

1%

ED 01 xxx 000

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

110 for setting of status flags without

changing registers

Load a byte of data into the specified register (reg) from the /0 port (identified by the

contents of the C register)

Suppose 421 is held in the buffer of 1/0 port 3616, and Register C contains 3616.

After the instruction

IN D.C)

has executed. the D register will contain 421¢

During the execution of the instruction, the contents of Register B are placed on the top
half of the Address Bus. making it possible to extend the number of addressable 1/O

ports.
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JP label — JUMP TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

S ZACP/ON C

Data

A
" B.C
: DE
H.L
SP
PC mmmm Program
IX Memory
Y
v l Cc3 mmmm
R { qq mmmm + 1
{ pp mmmm + 2
mmmm + 3

JP Jabel
\-\/'V

e

C3 ppaq

Load the contents of the Jump instruction object code second and third bytes into the
Program Counter; this becomes the memory address for the next instruction to be ex-
ecuted. The previous Program Counter contents are lost

In the following sequence:

JP NEXT
AND 7FH
NEXT CPL

The CPL instruction will be executed after the JP instruction. The AND instruction will
never be executed, unless a Jump instruction somewhere else in the instruction se-
quence jumps to this instruction
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JP condition,label — JUMP TO ADDRESS IDENTIFIED IN THE
OPERAND IF CONDITION IS
SATISIFED

JP cond, label

11 cc 010 ppaq

Condition Relevant Flag
000 NZ Non-Zero Z
001 Z Zero Z
010 NC No Carry C
01 C Carry C
100 PO Parity Odd P/0
101 PE  Parity Even P/O
110 P Sign Positive S
111 M Sign Negative S

This instruction is identical to the JP instruction, except that the jump will be per-
formed only if the condition is satisfied; otherwise, the instruction sequentially follow-
ing the JP condition instruction will be executed

Consider the instruction sequence

[
[}

JP, COND,LABEL
[}

condition not satisfied

" AND * 7CH
condition
satisfied -
LABEL OR B

After the JP cond.label instruction has executed. if the condition is satisfied then the
OR instruction will be executed. If the condition is not satisfied, the AND instruction,
being the next sequential instruction. is executed



JP (HL) — JUMP TO ADDRESS SPECIFIED BY CONTENTS
JP (IX)  OF 16-BIT REGISTER
JP (1Y)

S Z AcP/ON C Data

A
B.C
DE

HL pp qq
o4 »
PC mmmm Program

1% Memory
Y
v
R

E9 mmmm

mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of JP (HL):

JP (HL)
N

E9

The contents of the HL register pair are moved to the Program Counter, therefore, an
implied addressing jump is performed

The instruction sequence

LD H.ADDR
JP {HL)

has exactly the same net effect as the single instruction
JP ADDR

Both specify that the instruction with label ADDR is to be executed next

The JP (HL) instruction is useful when you want to increment a return address for a
subroutine that has multiple returns

Consider the following call to subroutine SUB:

CALL SuB ;CALL SUBROUTINE
JP ERR ;ERROR RETURN
.GOOD RETURN

Using RET to return from SUB would return execution of JP ERR, therefore, if SUB ex-
ecutes without detecting error conditions, return as follows:

POP HL .POP RETURN ADDRESS TO HL
INC HL ;ADD 3 TO RETURN ADDRESS
INC HL
INC HL
JP (HL) .RETURN

JP (X}

o’

DD E9

This instruction is identical to the JP (HL) instruction, except that it uses the IX register
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instead of the HL register pair
JP (1Y)
Nz,
FD E9

This instruction is identical to the JP {HL) instruction, except that it uses the IY register
instead of the HL register pair

JR C.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY IS SET

JR C. disp
S
38  dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Carry status equals 1. otherwise. the next instruction is executed

In the following instruction sequence

]

]
4000 JR | C.$+8
4C=0
4002 AND % 7FH

c=1 .

4008 OR B

After the JR C.$+8 instruction, the OR instruction is executed if the Carry status equals
1. The AND instruction is executed if the Carry status equals O
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JR disp — JUMP RELATIVE TO PRESENT CONTENTS OF
PROGRAM COUNTER

S Z AcP/ON C

FCIITTTT]

A

B.C

DE

HL

SP

PC mmmm

X

Y

[\

peged

R

JR disp
S—— S——

18 dd-2

mmmm +
(dd-2)+ 2

Data
Memory
Program
Memory
18 mmmm
dd-2 mmmm + 1
mmmm + 2
mmmm + 3

Add the contents of the JR instruction object code second byte, the contents of the Pro-
gram Counter, and 2. Load the sum into the Program Counter. The jump is measured
from the address of the instruction operation code, and has a range of -126 to +129
bytes. The Assembler automatically adjusts for the twice-incremented PC.

The following assembly language statement is used to jump four steps forward from ad-

dress 40001 6.

Result of this instruction is shown below:
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Location  Instruction
4000 18
4001 02
4002 -
4003 -
4004

- <«g———new PC value



JR NC,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER.IF CARRY FLAG IS RESET
JR NC.disp
S
30 dd-2

This instruction is identical to the JR disp instruction, except that ti jurip is only ex-
ecuted if the Carry status equals O: otherwise, the next instruction is executed.
In the fo!low‘ing instruction sequence:

4000  ADD | A7FH
4001

¢=0 4002 C=
4003 NC.$-3

]
1
i
JR_ 4
4005  OR &B

-

After the JR NC,$-3 instruction. the OR instruction is executed if the Carry status equals
1. The ADD instruction is executed if the Carry status equals O.

JR NZ,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS RESET
JR NZ.disp
N, Syt
20 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Zero status equals O; otherwise, the next instruction is executed

In the following instruction sequence:

I
4000 JR 1} NZ$+6
4002  AND 6 7FH
Z=0 4004 - z=1
4005 -
4006  OR B

After the JR NZ,$+6 instruction, the OR instruction is executed if the Zero status equals
0. The AND instruction is executed if the Zero status equals 1.
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JR Z,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS SET

JR Z.disp
N, o
28 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex
ecuted if the Zero status equals 1; otherwise, the next instruction is executed

In the following instruction sequence
i

4000 JR } 7.3+6

4002 AND | 7FH
z=1 4004 . ?z=0

4005 -

4006 OR

After the JR Z,$+6 instruction. the OR instruction is executed if the Zero status equals
1. The AND instruction is executed if the Zero status equals O

LD A,IV — MOVE CONTENTS OF INTERRUPT VECTOR OR

LD AR REFRESH REGISTER TO ACCUMULATOR
S ZAgP/ON C Data
Memory
A XX
B.C
D.E
H.L
Sl
PC mmmm mmmm + 2 Program
IX Memory
Y
v XX ED mmmm
R | — T+
mmmm + 2
mmmm + 3

The illustration shows execution of LD AlV:
LD AV
e aVa
ED 57

Move the contents of the Interrupt Vector register to the Accumulator. and reflect inter-
rupt enable status in Parity/Overflow flag

Suppose the Interrupt Vector register contains 7F1g. and interrupts are disabled After
execution of

LD AV

Register A will contain 7F1g. and P/O will be O
LD AR

N
ED 5F

Move the contents of the Refresh register to the Accumulator. The value of the interrupt
flip-flop will appear in the Parity/Overfiow flag
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LD A, (addr) — LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

S ZAcP/ON C Data

A vy Yy ppaq
B.C
D.E
H.L
sP
PC mmmm mmmm + 3 Program
1X Memory
Y
v I 3A mmmm
R aq mmmm + 1
IT mmmm + 2

mmmm + 3

LD A, (addr)
S N

3A  ppaq

Load the contents of the memory byte (addressed directly by the second and third
bytes of the LD A.{addr) instruction object codel into the Accumulator. Suppose memo-
ry byte 084A1g contains 201g. After the instruction

label EQU 084AH

LD A.llabel)
has executed, the Accumulator will contain 201

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084A g wherever the label appears

The instruction

LD A.{label)

is equivalent to the two instructions
LD HL, label
LD A (HL)

When you are loading a single value from memory. the LD A {label) instruction is prefer-
red. it uses one instruction and three object program bytes to do what the LD HL.label,
LD A.{HL) combination does in two instructions and four object program bytes. Also.
the LD HL.label, LD A,{HL) combination uses the H and L registers, which LD A.{label)
does not
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LD A,(rp) — LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

BC
DE
HL

PC
X
Y

S Z AcP/ON C

Yy

A

Data
Memory

——

~»-BC or DE contain ppqq

mmmm

LD A,(rp)

000 x 1010
—~

0 if register pair=BC
1 if register pair=DE

Yy

Program
Memory

000x1010

ppag

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Load the contents of the memory byte (addressed by the BC or DE register pair) into the
Accumulator

Suppose the B register contains 0814, the C register contains 4A16. and memory byte
084A16 contains 3A1g After the instruction

LD A.{BC)

has executed. the Accumulator will contain 3A1g

Normally, the LD A.{rp) and LD rp.data will be used together. since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH

LD A.(BC)
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LD dst,src — MOVE CONTENTS OF SOURCE REGISTER TO
DESTINATION REGISTER

S ZAcP/ON C

Data
D, E HorL
A o,
B.C Register A, B, C,
DE < D, EH L
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
1Y
v 01dddsss |mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
LD dst, src
o
01 ddd sss
N o’

000 for dst or src=B
001 for dst or src=C
010 for dst or src=D
011 for dst or sre=E
100 for dst or src=H
101 for dst or sre=L
111 for dst or src=A

The contents of any designated register are loaded into any other register
For example:
LD AB
loads the contents of Register B into Register A
LD LD
loads the contents of Register D into Register L
LD CC

does nothing. since the C register has been specified as both the source and the
destination
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LD HL,(addr) — LOAD REGISTER PAIR OR INDEX REGISTER
LD rp,(addr) FROM MEMORY USING DIRECT ADDRESSING
LD IX,(addr)

LD 1Y, (addr)

S Z AcP/ON C

Data
A ) XX pPpaq
B.C Yy ppaq + 1
DE ) 4 i/
HL vy XX
SpP
PC mmmm mmmm + 3 Program
1X Memory
1Y
v 2A mmmm
R qq mmmm + 1
pp mmmm + 2
mmmm + 3

The illustration shows execution of LD HL{ppqqg):

L.D HL,addr
N, i,

2A  ppaq
Load the HL register pair from directly addressed memory location

‘Suppose memory location 400416 contains AD1g and memory location 40051 con-
tains 121g. After the instruction

LD HL,(4004H)

has executed, the HL register pair will contain 12AD1g.
LD rp. (addr)
—— e,

P S o
ED 01 dd 1011 ppag

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load register pair from directly addressed memory

Suppose memory location 49FF16 contains BE1g and memory location 4A001g con-
tains 331g. After the instruction

LD DE,{49FFH)
has executed. the DE register pair will contain 33BE 4.

LD IX.(addr)
S
DD 2A ppag

Load IX register from directly addressed memory.
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Suppose memory location D1111g contains FF1g and memory location D1121g con-
tains 5616 After the instruction

LD IX,(D111H)
has executed, the IX register will contain 56FFqg.

LD IY.laddr)
N, e e,
FD 2A ppaq

Load 1Y register from directly addressed memory.
Affects IY register instead of IX. Otherwise identical to LD IX(addr).

LD iVA — LOAD INTERRUPT VECTOR OR REFRESH
LD RLA REGISTER FROM ACCUMULATOR

S ZAcP/ON C

Data
A XX
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
v | ED mmmm
R [ 4F mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD RA:
LD RA
N
ED 4F
Load Refresh register from Accumulator.
Suppose the Accumulator contains 7F1g. After the instruction
LD RA
has executed, the Refresh register will contain 7F1¢.
LD IV.A
Nt
ED 47

Load Interrupt Vector register from Accumulator
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LD reg.data — LOAD IMMEDIATE INTO REGISTER
S ZAcP/ON C Data

Be Destination is
i : D'E Register A, B, C,
: H'L D.E HorlL

PC mmmm j mmmm + 2 Program
Memory

v 00xxx110 | mmmm
R YY mmmm + 1

mmmm + 2
mmmm + 3

.LD reg.data
S——

00 xxx 110 yy
——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Load the contents of the second object code byte into one of the registers.

When.the instruction

LD A2AH
has executed, 2A1g is loaded into the Accumulator.
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LD rp.data — LOAD 16 BITS OF DATA IMMEDIATE INTO
LD IX,data REGISTER

LD IY.data
S ZAcP/ON C Data
A
. Select BC, DE, HL or
B.C . .
DE SP. Load ppqq into
. lected destination
HL )
SP
PC mmmm mmmm + 3 Program
1X h Memory
Y
\Y, § 00xx0001 } mmmm
R qq mmmm + 1

T PR mmmm + 2
’ I -] mmmm +3
The illustration shows execution of LD rp.data:

LD rp. data
———" S——

00 xx 0001 ppaq

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load the contents of the second and third object code bytes into the selected register
pair. After the instruction

LD SP.217AH
has executed, the Stack Pointer will contain 217A1¢
DD 21 ppag
Load the contents of the second and third object code bytes into the Index register IX.
FD 21 ppaqg
Load the contents of the second and third object code bytes into the Index Register 1Y.

Notice that the LD rp.data instruetion is equivalent to two LD reg.data instructions.

For example:

LD HL,032AH
is equivalent to

LD H,03H

LD L.2AH
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LD reg,(HL) — LOAD REGISTER FROM MEMORY
LD reg, (IX+disp)
LD reg, (1Y +disp)

S ZAcP/ON ¢ Data

A
8,C Register A, B, C, <~ Yy ppaq +d
DEJ D, E,HorL :
H,L
SP
pPC mmmm Program
IX ppqq Memory
Y X
v DD mmmm
d mmmm + 2
mmmm + 3

The illustration shows execution of LD reg,{IX+disp):
LD reg, (IX + disp)

Ny g s st

DD 01 xxx 110 d

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load specified register from memory location (specified by the sum of the contents of
the iX register and the displacement digit d)

Suppose ppqq=4004 16 and memory location 401014 contains FF1g After the instruc-
tion

LD B{X+0CH)
has executed. Register B will contain FFqg

LD reg. (IY + disp)
N e e

FD 01 xxx 110 d

L---——»sarne as for LD reg.{X+disp)

This instruction is identical to LD reg.(IX+disp), except that it uses the 1Y register in-
stead of the IX register
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LD reg.(HL)

A iy eyt

01 xxx 110

 msame as for LD reg.(IX+disp)

Load specified register from memory location (specified by the contents of the HL

register pair).

LD SP,HL — MOVE CONTENTS OF HL OR INDEX REGISTER

LD SP.IX TO STACK POINTER
LD SP.lY

S Z AcP/ON C
I T

A
B.C
DE
HL pPp qaq

s P

PC mmmm mmmm + 1
IX

Y
\%
R

The illustration shows execution of LD SP,HL:

LD SPHL
Nt
F9

Load contents of HL into Stack Pointer.
Suppose pp=081g and qq=3F1g. After the instruction
LD SP.HL
has executed, the Stack Pointer will contain 083F1g.
LD SP.IX
N
DD F9
Load contents of Index Register IX into Stack Pointer.
LD SP.IY
A
FD F9
Load contents of index Register IY into Stack Pointer.
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LD (addr),A — STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING

S Z AcP/ON C Data

A vy - Y] PPaq
B.C
D.E
HL
SP
PC mmmm mmmm + 3 Program
X Memory
Y
v 32 mmmm
R qq mmmm + 1
pp mmmm + 2
mmmm + 3

LD (addr),A

A,
32 ppaq

Store the Accumulator contents in the memory byte addressed directly by the second
and third bytes of the LD (addr),A instruction object code.

Suppose the Accumulator contains 3A1g. After the instruction
label EQU 084AH

LD (label). A
has executed, memory byte 084A1g will contain 3A1g.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084AH whenever the word “label” appears.

The instruction
LD {addr).A
is equivalent to the two instructions

LD H.label
LD (HL)LA

When you are storing a single data value in memory. the LD ({label),A instruction is
preferred because it uses one instruction and three object program bytes to do what the
LD Hlabel), LD (HL).A combination does in two instructions and four object program
bytes. Also, the LD H(label), LD (HL).A combination uses the H and L registers, while the
LD (iabel).A instruction does not.
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LD (addr),HL — STORE REGISTER PAIR OR INDEX

LD (addr),rp REGISTER IN MEMORY USING DIRECT

LD (addr),xy = ADDRESSING

S ZAcP/ON C

Data
A L Yy ppaq
B.C ya B~ ppaq + 1
DE y 7
HL XX Yy
SP p
PC mmmm Program
IX Memory
Y
v }_— ED mmmm
R 01010011 § mmmm + 1
qaq mmmm + 2
pp mmmm + 3

The illustration shows execution of LD (ppqq).DE:
LD (addr), rp
S_— o

ED 01 xx 0011 ppaqg
L ad

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Store the contents of the specified register pair in memory. The third and fourth object
code bytes give the address of the memory location where the low-order byte is to be
written. The high-order byte is written into the next sequential memory location.

Suppose the BC register pair contains 3C2A1g. After the instruction
label EQU 084AH

LD (label).BC

has executed. memory byte 084A1g will contain 2A16. Memory byte 084B 16 will con-
tain 3C16.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084A1g whenever the word “label” appears.

LD f{addr),HL
Rt aadi Ve d

22 'ppaq

This is a three-byte version of LD (addr).rp which directly specifies HL as the source
register pair.

6-87



LD (addr),IX
R et

DD 22 ppag

Store the contents of Index register IX in memory. The third and fourth object code
= bytes give the address of the memory location where the low-order byte is to be writ-
ten. The high-order byte is written into the next sequential memory location.

LD (addr),lY
Y i,

FD 22 ppqq

This instruction is identical to the LD {addr).IX instruction, except that it uses the 1Y
register instead of the IX register.
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LD (HL),data — LOAD IMMEDIATE INTO MEMORY
LD {iIX+disp).data
LD (1Y +disp),data

S Z AcP/ON C Data
- B Memory
A B XX ppaq +d
B.C
DE
H.L
SP
PC mmmm mmmm + 4 Program
IX pPaq Memory
Iy
v l DD mmmm
R ’ R N 36 mmmm + 1
> E— d mmmm + 2
s ] XX mmmm + 3

The illustration shows execution of LD (IX+d),xx:

LD (IX+disp).data
N S~
DD 36 d xx

Load Immediate into the Memory location designated by base relative addressing
Suppose ppag=54001g. After the instruction
LD (IX+9).FAH
has executed, memory location 540914 will contain FA1g
FD 36 d xx

This instruction is identical to LD (IX+disp).data, but uses the Y register instead of the
IX register

LD (HL).data
R s
36 XX

Load Immediate into the Memory location {specified by the contents of the HL register
pair)

The Load Immediate into Memory instructions are used much less than the Load Im-
mediate into Register instructions
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LD (HL),reg — LOAD MEMORY FROM REGISTER
LD (IX+disp),reg
LD (1Y +disp),reg

S ZAcP/ON C Data
A Contents of A, B~ vy ppaq
BC .C,D,E,Hor!.
DE 1s vy
HL pp a9 4
SP
PC mmmm Program
X . Memory
I ‘
v 01110xxx | mmmm
;  — 11
mmmm + 2
mmmm + 3

The illustration shows execution of LD (HL).reg:
LD {HL),reg
———

01110 xxx

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load memory location (specified by the contents of the HL register pair) from specified
register

Suppose ppag=45001g and Register C contains F91g. After the instruction
LD (HL).C
has executed, memory location 460016 will contain F91g.
w+disp)i§g

DD 01110 %0x 8
same as for LD (HL).reg

Load memory location (specified by the sum of the contents of the IX register and the
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displacement value d) from specified register
LD (IY+disp).reg
el el

FDO1110%xx d
same as for LD (HL).reg

This instruction is identical to LD (IX+disp).reg, except that it uses the 1Y register in-
stead of the IX register.

LD (rp),A— LOAD ACCUMULATOR INTO THE MEMORY
LOCATION ADDRESSED BY REGISTER PAIR

S Z AcP/ON C Data

A vy L= vy ppaq
BC 1 BC or DE
DE § contain ppgq
HL
SP
PC mmmm mmmm + 1 . Program
1X ’ Memory
Y ’
v 4 000x0010 § mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD (rp).A
B

000 x 0010
[0

0 if register pair=BC
1 if register pair=DE
Store the Accumulator in the memory byte addressed by the BC or DE register pair

Suppose the BC register pair contains 084A1g and the Accumulator contains 3A1g.
After the instruction

LD (BCLA
has executed. memory byte 084A1¢ will contain 3A1g

The LD (rp).A and LD rp.data will normally be used together, since the LD rp,ydata in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD (BC)LA
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LDD — TRANSFER DATA BETWEEN MEMORY LOCATIONS,
DECREMENT DESTINATION AND SOURCE ADDRESSES

-
Set if BC-1 # 0, reset otherwise

S Z AcP/ON C Data
Memory
A e vy
B8.C tt uu & 78 ‘
DE r sS e ——
. —{i-

L pp aq W e | Yy
PC mmmm e Program
X Memory
Y
v mmmm + 2 ED

R I A8

.LDD
N

ED A8

ppaqg-1
ppaq

rrss-1
Irss

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair Decrement contents of register

pairs BC, DE, and HL.

Suppose register pair BC contains 004F1g, DE contains 45451g, HL contains 201216,
and memory location 201216 contains 181g. After the instruction

LDD

has executed., memory location 45451 will contain 181g. register pair BC will contain
004E16. DE will contain 454416, and HL will contain 201114
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LDDR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.DECREMENT DESTINATION AND
SOURCE ADDRESSES

LDDR
N
ED B8
This instruction is identical to LDD, except that it is repeated until the BC register pair

contains zero. After each data transfer, interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents®
HL 201216 201216 1818 -
DE 4564544 201116 AA1s
BC 000315 201016 2516
After execution of
LDDR
register pairs and memory locations will have the following contents:
Register/Contents Location/Contents Location/Contents
HL  20091g 201216 1818 4546516 1815
DE 45424¢ 201116 AA1s 454415 AA1g
BC 00001g 201016 2514 454316 251g

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.
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LDl — TRANSFER DATA BETWEEN MEMORY
LOCATIONS.INCREMENT DESTINATION AND
SOURCE ADDRESSES

(" Set if BC-1 # 0, reset otherwise

s z AcP/ON ¢

Data
Memory

Fg 1 Jof Jol | .
Yy ppag
A ppaq + 1
B.C m ! rrss + 1
DE 11 SS Yy rss
-
s > = W ) £
SP ppaq+ 1
PC mmmm Program
IX Memory
Y
v ED mmmm
R A0 mmmm + 1
mmmm + 2
mmmm + 3
LDI
N -
ED AO

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Increment contents of register pairs
HL and DE. Decrement contents of the BC register pair.

Suppose register pair BC contains 004F g, DE contains 4545 1g, HL contains 201216,
and memory location 20121g contains 181¢g. After the instruction

LDI

has executed, memory location 45451¢ will contain 181g. register pair BC will contain
004E16. DE will contain 454614, and HL will contain 201316
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LDIR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.INCREMENT DESTINATION AND
SOURCE ADDRESSES

LDIR
N
ED BO

This instruction is identical to LDI, except that it is repeated until the BC register pair
contains zero. After each data transfer, interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 20121 201216 1816
DE 454515 201316 CD1g
BC 000314 201416 FO16
After execution of
’ LDIR
register pairs and memory will have the following contents:
Register/Contents Location/Contents Location/Contents
HL 20151g 201216 181p 454515 181g
DE 454845 201316 CD1g 454615 CD1g
BC 00001g 201416 FO1g 454716 FO1g

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

NEG‘——- NEGATE CONTENTS OF ACCUMULATOR
S ZAcP/ON C Data

F n Memory

A XX

PC mmmm mmmm + 2 Program
1X Memory

v ED mmmm

: | — 2] -+
mmmm + 2
mmmm + 3

Negate contents of Accumulator. This is the same as subtracting contents of the Ac-
cumulator from zero. The result is the two's complement. 80H will be left unchanged.

Suppose xx=5A1g. After the instruction
NEG
has executed. the Accumulator will contain A61g.

BA 0101 1010
Two's complement 1010 0110

([l
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NOP — NO OPERATION

S ZAcP/ON C Data

PC mmmm mmmm + 1 Program

Memory

00
R

NOP
N

00

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

This is a one-byte instruction which performs no operation, except that the Program
Counter is incremented and memory refresh continues. This instruction is present for

several reasons:
1

2)
HERE NOP

A program error that fetches an object code from non-existent memory will fetch
00. Itis a good idea to ensure that the most common program error will do nothing.

The NOP instruction allows you to give a label to an object program byte:

3} To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay

NOP is not a very useful or frequently used instruction.
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OR data — OR IMMEDIATE WITH ACCUMULATOR

S ZAcP/ON C

Data
F nn Memory
A XX xx OR yy
B.C
DE
HL
SP
PC mmmm - Program
IX e Memory .
[\ )
v l | F6 mmmm
R 1 Yy mmmm + 1
mmmm + 2
mmmm + 3
OR data
—— ——
F6 vy

OR the Accumulator with the contents of the second instruction object code byte.
Suppose xx=3A1g. After the instruction

OR 7CH
has executed, the Accumulator will contain 7E1g.

3A = 0011 1010
7C = 0111 1100

0111 1110

il

O sets S to 0 Six 1 bits, set P/O to 1

Non-zero result, set Z to O

This is a routine logical instruction; it is often used to turn bits “‘on"". For example, the’
instruction

OR 80H
will unconditionally set the high-order Accumulator bit to 1.
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OR reg — OR REGISTER WITH ACCUMULATOR

S Z AcP/ON C

- FXTXTTIXT0T0]

A XX )
BC Contents of A, B,
DlE ~3C D, E HorlL
HL Is vy
SP
PC mmmm mmmm + 1

IX

Y

OR

reg

B

10110

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

10110xxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Logically OR the contents of the Accumulator with the contents of Register A, B, C, D,
E. H or L. Store the result in the Accumulator.

Suppose xx=E31g and Register E contains A81g. After the instruction
OR E
has executed, the Accumulator will contain EB16.

E3
A8

1sets Stol

(i}

1110
1010

1110

0011
1000

1011

Six 1 bits, set P/O to 1

Non-zero result, set Z to O
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OR (HL) — OR MEMORY WITH ACCUMULATOR
OR:(IX+disp)
OR (1Y +disp)

S Z AcP/ON C

Data
F X IXTo]0] Memory
A XX ' xx OR yy Yy . Jppaq
B.C )
D.E
HL pp qq
SP
PC mmmm ~§ mmmm + 1 Program
IX . Memory
N4
v B6 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of OR (HL):

OR {HL)
D e g
B6

OR contents of memory location (specified by the contents of the HL register pair) with
the Accumulator.

Suppose xx=E31g, ppqq=400016, and memory location 40001 contains A81g. After
the instruction

OR (HL)
has executed, the Accumulator will contain EB1g.
E3 = 1110 0011
A8 = 1010 1000
1110 1011
1 sets S to 1 Six 1 bits, set P/O to 1
Non-zero result, set Z to 0
OR (IX+disp)
S~
DD B6 d

OR contents of memory location (specified by the sum of the contents of the IX register
and the displacement value d) with the Accumulator.

OR (IY+disp)
N e~
FD B6 d

This instruction is identical to OR (IX+disp), except that it uses the |Y register instead of
the IX register.
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OUT (C),reg — OUTPUT FROM REGISTER

S Z AcP/ON C

,_»FTTEE?W'I

Data
A
B.C ; Register A, B, C,
D.E D, E Horl
H.L
SP T
PC mmmm - @ Program
X — Memory
Y
v ED
R 01xxx0071

OUT (C).reg
Ny

ED 01 xxx 001
——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Suppose yy=1F1g and the contents of H are AA1g. After the execution of

OuUT (C)LH

AA16 will be in the buffer of I/0 port 1F1g6..
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OUTD — OUTPUT FROM MEMORY. DECREMENT ADDRESS

S Z AcP/ON C xx-1 Data
FEEC ] 170 port vy Memory
A [ L— p;x}q

B,C XX Yy

ppaq-1

HL pp qq

PCH - mmmm Program
1X mmmm + 2 Memory

v ED mmmm

g | — 75| -+ 1
mmmm + 2
mmmm + 3

ouTD
S
ED AB

Output from memory location specified by HL to 1/0 port addressed by Register C.
Registers B and HL are decremented

Suppose xx=0A1g, yy=FF1g. ppag=500016. and memory iocation 50001g contains
7716. After the instruction

ouTD

has executed, 771g will be held in the buffer of 1/0 port FF1g. The B register will con-
-tain 0916, and the HL register pair 4FFFqg

OTDR — OUTPUT FROM MEMORY. DECREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTDR
N,
ED BB

OTDR is identical to OUTD, but is repeated until Register B contains O.

Suppose Register B contains 031, Register C contains FF1g. and HL contains 50001 ¢.
Memory locations 4FFE{g through 500014 contain:

Location/Contents

4FFE1g CA1p
4FFF1g 1B1g
50001 Fl1g

After execution of
OTDR

register pair HL will contain 4FFD1g, Register B will contain zero, and the sequence
F116. 1B1s. CA16 will have been written to I/0 port FFyg.

This instruction is very useful for transferring blocks of data from memory to output
devices.

6-101



OUT! — OUTPUT FROM MEMORY. INCREMENT ADDRESS

S ZAcP/ON C -t Data

e IxX2TT] 170 port yy Memory
A J' t——— ppaa

B8.C XX ] Yy
DE
H.L pp qq
SP
PC mmmm Program

IX mmmm + 2 Memory
Y

v ED mmmm

R I A3 mmmm + 1
mmmm + 2
mmmm + 3

ppaq + 1

ouT!
——
ED A3

Output from memory location specified by HL to I/0 port addressed by Register C
Register B is decremented and the HL register pair is incremented

Suppose xx=0A16, yy=FF16. ppaq=50001g, and memory location 500014 contains
7716 After the instruction

OouT!

has executed, 7716 will be held in the buffer of I/0 port FF1g. The B register will con-
tain 0916 and the HL register pair will contain 50011

OTIR — OUTPUT FROM MEMORY. INCREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTIR
S
ED B3

OTIR is identical to OUTI, except that it is repeated until Register B contains 0.

Suppose Register B contains 0416, Register C contains FF1g, and HL contains 50001¢
Memory locations 500016 through 500316 contain:

Location/Contents
50001 CA1p

500116 1B1s
500216 Bl1g
500316 AD1g
After execution of
OTIR

register pair HL will contain 500416, Régister B will contain zero and the sequence
CA1g. 1B16. B116 and AD g will have been written to 1/0 port FF g

This instruction is very useful for transferring blocks of data from memory to an output
device
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OUT (port),A— OUTPUT FROM ACCUMULATOR

S Z AcP/ON C Data

A __J

HL '
e o G | rowen
IX Memory
v D3 mmmm

R -1 vy mmmm + 1

mmmm + 2
mmmm + 3

ouT (port).A
3

D 3%
Output the contents of the Accumulator to the /0 port identified by the second OUT in-
struction object code byte
Suppose 3614 is held in the Accumulator After the instruction
OUT (1AH).A
has executed, 3616 will be in the buffer of I/O port 1A1g

The OUT instruction does not affect any statuses. Use of the OUT instruction is very
hardware-dependent. Valid 1/0 port addresses are determined by the way in which 1/0
logic has been implemented. It is also possible to design a microcomputer system that
accesses external logic using memory reference instructions with specific memory ad-

dresses. OUT instructions are frequently used in special ways to control microcomputer
logic external to the CPU
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POP rp — READ FROM THE TOP OF THE STACK
POP iX
POP iY

S Z AcP/ON C Data

1 qaq SS8S
A l 1 pp ssss + 1
B.C ssss + 2
DE SSSS + 2 .-
HL
SP SSSS
PC mmmm mmmm + 1 Program
IX Memory
Y
v 11000001 fmmmm
R mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of POP BC:
POP rp
——— ———
11 xx 0001
S——
00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F
POP the two top stack bytes into the designated register pair.
Suppose qq=011¢ and pp=2A1g. Execution of
POP HL
loads 0114 into the L register and 2A1g into the H register. Execution of the instruction
POP AF

loads 01 into the status flags and 2A1g into the Accumulator. Thus, the Carry status
will be set to 1 and other statuses will be cleared

POP IX
St
DD E1
POP the two top stack bytes into the IX register
POP Y
N
FD E1
POP the two top stack bytes into the 1Y register.

The POP instruction is most frequently used to restore register and status contents
which have been saved on the stack; for example, while servicing an interrupt.
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S iEp

5

PUSH rp — WRITE TO THE TOP OF THE STACK

PUSH IX
PUSH IY

S ZAcP/ON C

Data
Memory

aq

pp

SP SSSS

PC mmmm

mmmm + 2

Y ppaq

Program
Memory

f E——

FD

E5

The illustration shows execution of PUSH IY

PUSH 1Y
RO
FD E5

PUSH the contents of the IY register onto the top of the stack

Suppose the IY register contains 45FF1g. Execution of the instruction

loads 461g. then FF1g onto the top o

PUSH 1Y
f the stack
PUSH IX

A Ve
DD Eb

PUSH the contents of the IX register onto the top of the stack

PUSH rp

— ~
11 xx 0101
Bl

PUSH contents of designated register

Execution of the instruction

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL

11 for rp is register pair A and F

pair onto the top of the stack

PUSH AF

loads the Accumulator and then the status flags onto the top of the stack

$855-2
ssss-1
sSSS

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

The PUSH instruction is most frequently used to save register and status contents, for

example, before servicing an interrupt

6-105



RES b,reg — RESET INDICATED REGISTER BIT
S ZAcP/ON C Data

A YYYYYYYY ) @
B.C
DE A ;
H.L
SP .
PC mmmm o mmmm + 2 Program
I1X Memory
%
v CB mmmm
;  — e [
mmmm + 2
mmmm + 3
RES jg
CB 10 bbb xxx
ey~
Bit bbb xxx  Register
0 000 000 B
1 001 001 C
2 010 010 D
3 011 011 E
4 100 100 H
5 101 101 L
6 110 111 A
7 111
Reset indicated bit within specified register.
After the instruction
RES 6,H

has executed, bit 6 in Register H will be reset. (Bit O is the least significant bit.)
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RES b, (HL) — RESET BIT b OF INDICATED MEMORY POSITION
RES b, (IX+disp)
RES b, (1Y +disp)

S ZAcP/ON C Data

A o Vyvyvyyy Jppaa +d
B.C - 5
DE ::5———
HL
SP
PC mmmm mmmm + 4 Program
IX ppag Mernory
Y
v DD mmmm
d —— o
1 d mmmm + 2
) 10bbb110 | mmmm + 3

mmmm + 4

The illustration shows execution of SET b.(X+disp) Bit O is execution of SET
b.(IX+disp). Bit O is the least significant bit

RES b.(IX+disp!}

DDCB d 10 bbb 110

S——
bbb Bit Reset
000
001
010
011
100
101
110
11

Reset indicated bit within memory location indicated by the sum of Index Register IX
and d.

~NoOobhwN-—-O

Suppose IX contains 41101g. After the instruction
RES 0.{X+7)
has executed, bit O in memory location 41171¢ will be O
RES b.{IY+disp)
—

FDCB d 10 bbb 110
——
bbb is the same as in RES b,{IX+disp)

This instruction is identical to RES b, (IX+4-disp), except that it uses the |Y register instead
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of the IX register
RES b.(HL)

~——

CB 10 bbb 110

e

bbb is the same as in RES b, {IX+disp)
Reset indicated bit within memory location indicated by HL
Suppose HL contains 44441¢ After execution of
RES 7.(HL)
bit 7 in memory location 444414 will be 0.

RET — RETURN FROM SUBROUTINE
S ZAcP/ON C

Data
E Memory
qq XXXX
A pp XXXX + 1
B.C XXXX + 2
D.E
H.L
SP XXXX XXXX + 2
PC mmmm Program
1X Memory
Y
\% I C9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RET

——

C9

Move the contents of the top two stack bytes to the Program Counter; these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost Increment the Stack Pointer by 2, to address the new top of stack.

Every subroutine must contain at least one Return (or conditional Return) instruction:
this is the last instruction executed within the subroutine, and causes execution to
return to the calling program.
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RET cond — RETURN FROM SUBROUTINE {F CONDITION

IS SATISFIED

RET cond

—— ot —

11 xxx 000
000 NZ
001 Z
010 NC
011 C
100 PO
101 PE
110 P
T M

Condition Relevant Flag
Non-Zero z
Zero z
Non-Carry C
Carry C
Parity Odd P/O
Parity Even P/O
Sign Positive S
Sign Negative S

This instruction is identical to the RET instruction, except that the return is not ex-
ecuted unless the condition is satisfied; otherwise, the instruction sequentially follow-

ing the RET cond instruction will be executed

Consider the instruction sequence:

CALL SUBR
AND 7CH<-]
- i
- 1
S : ;First subroutine instruction
- |
R :condition satisfied
RET cond
D o - —— rd

condition not
satisfied

OR 80H

After the RET cond is executed, if the condition is satisfied then execution returns to the
AND instruction which follows the CALL. If the condition is not satisfied, the OR in-
struction, being the next sequential instruction, is executed.
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RETI — RETURN FROM INTERRUPT

S Z AcP/ON C

i ‘ XXXX

PC mmmm

RETI

-
ED 4D

XXXX + 2

Data
Memory

qq

XXXX

pp

Program
Memory

ED

4D

XXXX + 1
XXXX + 2

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Move the contents of the top two stack bytes to the Program Counter; these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2, and address the new top of stack.

This instruction is used at the end of an interrupt service routine, and, in addition to
returning control to the interrupted program, it is used to signal an I/O device that the
interrupt routine has been completed. The 1/0 device must provide the logic necessary
to sense the instruction operation code: refer to Chapter 7 of An_Introduction to

Microcomputers: Volume Il for a description of how the RET!I instruction operates with

the Z80 family of devices
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RETN — RETURN FROM NON-MASKABLE INTERRUPT
S ZACP/ON C

Data
aq mmmm
A pp mmmm + 1
B.C mmmm + 2
DE
H.L
SP XXXX
PC mmmm Program
IX Memory
Y {
v ED mmmm
R I 45 mmmm + 1
mmmm + 2
mmmm + 3

RETN
\W.‘
ED 45

Move the contents of the top two stack bytes to the Program Counter; these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2 to address the new top of stack.

Restore the interrupt enable logic to the state it had prior to the occurrence of the non-
maskable interrupt.

This instruction is used at the end of a service routine for a non-maskable interrupt, and
causes execution to return to the program that was interrupted.
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RL reg — ROTATE CONTENTS OF REGISTER LEFT

THROUGH CARRY

S ZAcP/ON

PC mmmm

The illustration shows execution of RL C:

RL reg
—— ——

CB 00010 xxx

e

mmmm + 2

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit through Carry

Suppose D contains A91g and Carry=0. After the instruction

RL D

has executed, D will contain 521g and Carry will be 1:

Before
Register D Carry

0 sets S to O=@—
3 ones, set P/O to 0
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After

Register D

10101001 (6] [07070010]

Data
Memory

Program
Memory

CB

00010001

Carry

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Non-zero result, set Z to 0



RL (HL) — ROTATE CONTENTS OF MEMORY LOCATION
RL (IX+disp) LEFT THROUGH CARRY
RL (IY +disp)

S Z AcP/ON ( Data
s IO IX oIy ermary
‘ = P praa + d
A )
8C
DE
HL
sP —
PC mmmm Program
% PPaq - ™ Memory
Y
\ DD mmmm
R E CcB mmmm + 1
.- . d mmmm + 2
- g 16 -mmmm + 3
mmmm + 4

The illustration shows execution of RL (IX-+disp):
RL {(IX+disp)
S, Sy

DD CB 16

Rotate contents of memory location (specified by the sum of the contents of Index
Register IX and displacement integer d) left one bit through Carry.

Suppose the IX register contains 40001, memory location 40071 contains 2F1g, and
Carry is set to 1. After execution of the instruction

RL (IX+7)
memory location 40071g will contain 5F1g, and Carry is O

Before After
Memory Carry Memory Carry

00101111 o111 [@
N

0 sets S to O =a— Non-zero result, set Z to O
6 ones, set P/O to 1

RL (IY-+disp)
\W-/

FD CB d 16

This instruction is identical to RL (IX+disp), but uses the 1Y register instead of the IX
register.
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RL (HL)
PO
CB 16

Rotate contents of memory location {specified by the contents of the HL register pair)
left one bit through Carry.

RLA — ROTATE ACCUMULATOR LEFT THROUGH CARRY

S Z AcP/ON Data
\ j Memory
PC mmmm > mmm + 1 Program
IX Memory
Iy
v 17, fmmmm
R +1
mmmm + 2
mmmm + 3

RLA

——

17
Rotate Accumulator contents-left one bit through Carry status.

Suppose: the Accumulator contains 2A1g and the Carry status is set to 1. After the in-
struction

RLA
has executed, the Accumulator will contain F51g and the Carry status will be reset to 0:
Before After
Accumulator Carry Accumulator Carry

01111010 11110101 [0]
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RLC reg — ROTATE CONTENTS OF REGISTER LEFT CIRCULAR )

> o
S ZAcP/ON C Data
F ﬂl!l‘ * Memory
A
B.C ' -

H.L ]
SpP
PC mmmm mmmm + 2 Program
IX - Memory
Iy
v CB mmmm
R | 00000011 § mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of RLC E:
RLC reg
CB 000 00 xxx
——
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register left one bit, copying bit 7 into Carry.
Suppose Register D contains A91g and Carry is 1. After execution of
RLC D
Register D will contain 631g and Carry will be 1:
) Before After
. Register D Carry Register.D Carry
10101001 -[01o700711]
N
0 sets S to 0 <—/ =-Non-zero result, set Z to 0

4.ones, set P/O to 1
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RLC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RLC (IX+disp) LEFT CIRCULAR
RLC (IY+disp)

S Z ACP/ON C Data
a T0] - Memory

jppqq

A
BC T
DE
HL pp qq
SP y
PC mmmm mmmm + 2 Program
IX Memory
Y
v l CcB mmmm
R 06 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RLC {HL):
RLC (HL)
N et

CB 06

Rotate contents of memory location (specified by the contents of the HL register pair)
left one bit, copying bit 7 into Carry.

Suppose register pair HL contains 54FF15 Memory location 54FF16 contains A51g.
and Carry is 0. After execution of

RLC (HL)
memory location 54FF1g will contain 4B1g, and Carry will be 1:
Before After
Memory Carry Memory Carry

B [prooiory
~

0 sets S to o‘_..J =Non-zero result, set Z to 0
4 ones, set P/O to 1

RLC (IX+disp)
N

—

AN

DD CB d 06

Rotate memory location (specified by the sum of the contents of Index register IX and
displacement integer d) left one bit, copying bit 7 into Carry.

Suppose the IX register contains 40001g. Carry is 1, and memory location 400716 con-
tains 2F1g. After the instruction

RLC {(IX+7)
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has executed, memory location 40071g will contain 5E1g, and Carry will be O:

Before After
Memory Carry Memory Carry

0010 1111 [ppo1i110] [9]
N

0 sets S to 0 <a—/ Non-zero result, set Z to 0
5 ones, set P/O to O

RLC (IY+disp)
INA
FD CB d 06

This instruction is identical to RLC (IX+disp). but uses the IY register instead of the IX
register.

RLCA — ROTATE ACCUMULATOR LEFT CIRCULAR

-
S ZAcP/ON C : Data
FCI T o1 3 Memary
A
B.C
D.E
H.L
sP
PC mmmm mmmm + 1 Program
IX Memory
Y
[\ 07 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RLCA
“v-y

07
Rotate Accumulator contents left one bit. copying bit 7 into Carry.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RLCA
has executed, the Accumulator will contain F41g and the Carry status will be reset to 0:
Before : After
Accumulator Carry Accumulator Carry

[o1111010] [] [airo0100] [o]

RLCA should be used as a logical instruction.

6-117



RLD — ROTATE ONE BCD DIGIT LEFT BETWEEN
THE ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C Data

H.L . pp qaq

PC mmmm mmmm + 2 Program
IX Memory

ED mmmm
R 6F mmmm + 1
mmmm + 2
mmmm + 3

RLD
N, i’
ED 6F

The four low-order bits of a memory location (specified by the contents of register pair
HL) are copied into the four high-order bits of the same memory location. The previous
contents of the four high-order bits of that memory location are copied into the four
low-order bits of the Accumulator. The previous four low-order bits of the Accumulator
are copied into the four low-order bits of the specified memory location.

Suppose the Accumulator contains 7F16. HL register pair contains 40001, and memo-
ry location 40001 contains 121g. After execution of the instruction

RLD
the Accumulator will contain 7116 and memory location 400016 will contain 2F1g:

Before After
Accumulator Memory Accumulator Memory

7 F 112 7_ 1T 1 1 [ETF]

\ ! ’ h
\ -

S~

- -
-

high-order bit=0, set S to 0 «-———J Non-zero result, set Z to 0
4 ones, set P/0 to 1
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RR reg — ROTATE CONTENTS OF REGISTER RIGHT THROUGH

CARRY
~a
S ZAcP/ON C Data
Memory
PC mmmm mmmm + 2 Program
1X Memory
Iy
v CB mmmm
R }:: 00011001 fmmmm + 1
mmmm + 2
mmmm + 3
The iflustration shows execution of RR C:
RR reg
S
CB 00011 xxx
S——
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register right one bit through Carry.
Suppose Register H contains OF1g and Carry is set to 1. After the instruction
RR H
has executed, Register H will contain 871, and Carry will be 1:
Before After
Register H Carry Register H Carry
0000 1111 [foooo7111]
N
1 sets S to 1 <— Non-zero result, set Z to 0

4 ones, set P/0 to 1
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RR (HL) — ROTATE CONTENTS OF MEMORY LOCATION
RIGHT THROUGH CARRY
RR (IX+disp)

RR (1Y +disp)

—~<—
S Z AcP/ON { Data
F ﬂﬂﬂ Memory

& B0+ o
A
B.C
DE
HL
SP
PC mmmm Program
X Memory
N4 ppaq
v FD mmmm
R CB mmmm + 1
d mmmm + 2
1€ mmmm + 3
mmmm + 4

The illustration shows execution of RR (IY-+disp):

RR IY-+disp)

InN

FD CB d: 1E

Rotate contents of memory location (specified by the sum of the contents of the IY
register and the displacement value d) right one bit through Carry.

Suppose the Y register contains 4560016, memory location 450F 16 contains 1D16, and
Carry is set to 0. After execution of the instruction

RR {IY+OFH)
memory location 460F 16 will contain OE1g, and Carry will be 1:
Before After

Memory Carry Memory Carry

00011101] [o] [0ooo01110]
N

OsetsSto0 G—J Non-zero result, set Z to 0
3 ones, set P/0 to 0

RR (X+disp)
S, ——
55{;{\?5

This instruction is identical to RR (IY+disp), but uses the IX register instead of the IY
register.

6-120



RR {(HL)
RN i
CB 1E

Rotate contents of memory location (specified by the contents of the HL register pair)
right one bit through Carry

RRA — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

S Z AcP/ON Data
F 0 ) Memory

—t—t—-tﬂ»-t—r-f—-]

PC mmmm mmmm + 1 Program

Memory

1F mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RRA
S~
1F
Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRA

has executed, the Accumulator will contain BD1g and the Carry status will be reset to
0:

Before After
Accumulator Carry Accumulator Carry

[oTri101] [9]
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RRC reg — ROTATE CONTENTS OF REGISTER RIGHT CIRCULAR

=
S Z ACP/ON C

Data
Memory
E!
PC mmmm mmmm + 2 Program
X Memory
Y
v CB mmmm
R 00001101 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC L:

RRC reg

CB 00007 %%x

N——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register right one bit circularly. copying bit 0 into the Carry
status.

Suppose Register D contains A91g and Carry is 0. After execution of
RRC D
Register D will contain D41g, and Carry will be 1:
Register D Carry Register D Carry

i0101001] [0 [71oio100] [O]
N,

1 sets S to 1<~J l-->Non~zero result, setZ to O

4 ones, set P/O to 1

6-122



RRC (HL) — ROTATE CONTENTS OF MEMORY LOCATION
RRC (IX+disp) RIGHT CIRCULAR
RRC (Y +disp)

S ZAcP/ON C

Data
Memory
A t—-H—H—I—H— PpAq
B.C
DE %
HLJ pp qq
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
v CB mmmm
: | — & -+
mmmm + 2
mmmm + 3

The illustration shows execution of RRC (HL):
RRC (HL)
Nz

CB OF

Rotate contents of memory location (specified by the contents of the HL register pair)
right one bit circularly, copying bit O into the Carry status.

Suppose the HL register pair contains 4560015, memory location 450014 contains
3416, and Carry is set to 1. After execution of

RRC {HL)
memory location 450016 will contain 1A1g, and Carry will be 0:
Before After
Memory Carry Memory Carry

00110100 [0ooi110i0] [0]
N

0 sets S to O =a— L>Non-zero result, set Z to 0
3 ones, set P/0 to 0

RRC (IX+disp)

OD CB d OF

Rotate contents of memory location (specified by the sum of the contents of the IX
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register and the displacement value d) right one bit circularly, copying bit 0 into the Ca-
rry status.

RRC {IY+disp)

FD CB d OE

This instruction is identical to the RRC (IX+disp) instruction, but uses the |Y register in-
stead of the IX register.

RRCA — ROTATE ACCUMULATOR RIGHT CIRCULAR

-
S ZAcP/ON C A Data
s pg—— =y Memory
PC mmmm ) mmmm + 1 Program
IX Memory
IY
v OF mmmm
R I mmmm + 1
mmmm + 2
mmmm + 3

RRCA
N,

OF
Rotate Accumulator contents right one bit circularly, copying bit O into the Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRCA

has executed, the Accumulator will contain 3D1g and the Carry status will be reset to
0:

Before After
Accumulator Carry Accumulator Carry

01111010 00111101] [0]

RRCA should be used as a logical instruction.
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RRD — ROTATE ONE BCD DIGIT RIGHT BETWEEN THE
ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C

Data
Memory
A X r ] s lopaq
B¢ T
DE J
HL pp
SP
PC pepp—— Program
IX Memory
Yy
v ED mmmm
R 67 mmmm + 1
mmmm + 2
mmmm + 3

RRD
e
ED 67
The four high-order bits of a memory location {specified by the contents of register pair
HL) are copied into the four iow-order bits of the same memory location. The previous

contents of the four low-order bits are copied into the four low-order bits of the Ac-

cumulator. The previous four low-order bits of the Accumulator are copied into the four
high-order bits of the specified memory location

Suppose the Accumulator contains 7F16. HL register pair contains 40001, and memo-
1y location 400016 contains 121g. After execution of the instruction

RRD
the Accumulator will contain 7216 and memory location 400016 will contain F11g:
Before After
Accumulator Memory Accumulator Memory
7 F el L7 1T 2 1 [FI1]
\ . VA, \r——-\~
\\\ :‘< /I

-~ -

High-order bit=0, set S to 0 -«a— Non-zero result,
4 ones, set P/O to 1 setZto0
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RST n— RESTART
S ZAcP/ON C

Data
£ Memory
mm+ 1§ ppaa-2
A mm ppaqg-1
BC ppag
DE ppaqg-2
H.L
spP pPaq
PC mmmm @ Program
iX Memory
Y
=
v 0000000000xxx000 15111} mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RST n

11 xxx 111
Call the subroutine origined at the low memory address specified by n.
When the instruction
RST 18H

has executed, the subroutine origined at memory location 00184g is called. The pre-
vious Program Counter contents are pushed to the top of the stack.

Usually, the RST instruction is used in conjunction with interrupt processing. as de-
scribed in Chapter 5.

If your application does not use all RST instruction codes to service SUBROUTINE
interrupts, do not overlook the possibility of calling subroutines CALL USING
using RST instructions. Origin frequently used subroutines at ap- RST

propriate RST addresses, and these subroutines can be called with
a single-byte RST instruction instead of a three-byte CALL instruction.
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SBC A,data — SUBTRACT IMMEDIATE DATA FROM

ACCUMULATOR WITH BORROW

S Z AcP/ON C

F

X IXIXTXTT]

XX

mmimm

| —

mmmm + 2

SBC A, data
e

DE

Data
Memory

Program
Memory

DE

Yy

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of the second object code byte and the Carry status from the Ac-

cumulator

Suppose xx=3A1g and Carry=1. After the instruction

SBC A,7CH

has executed, the Accumulator will contain BD1g

0011 1010
1000 0100
1111 1111

Twos comp of 7C
Twos comp of Carry

1 sets S to 1

Borrow, set C to 1

o u

-
1% 1=0, set P/O to O

Notice that the resulting carry

is complemented.
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SBC A.reg — SUBTRACT REGISTER WITH BORROW
FROM ACCUMULATOR

BC
DE
HL
SP
PC
X
Y
v

S Z AcP/ON C

r CRXXOIE

XX

is yy

mmmm

SBC A, reg
e S——
10011 Xxx
000
001
010
011
100
101
111

Contents of A, B,
C.D, E HorL

for reg=B
for reg=C
for reg=D
for reg=E
for reg=H
for reg=L
for reg=A

Data
Memory

Program
Memory

1001 1xxx

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of the specified register and the Carry status from the Accumula-

tor

Suppose xx=E31g, Register E contains AO1g, and Carry=1. After the instruction

SBC AE

has executed, the Accumulator will contain 421

Notice that the resulting carry

E3
Two's comp of AO
Two's comp of 1

O sets Sto0

No borrow, set C to 0

1110 0011
0110 0000
1111 1111

0100 0010

o

U

£ g
1% 1=0, set P/O to 0

is complemented
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SBC A,(HL) — SUBTRACT MEMORY AND CARRY FROM
SBC A, (IX+disp) ACCUMULATOR
SBC A, (IY +disp)

S Z AcP/ON C Data
F I - Mermory
A XX xx-yy-C Yy PPqaq
8.C
DE
HL pp qaq
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
v 9E mmmm
R mmmm-+ 1
mmmm + 2
mmmm + 3

The illustration shows execution of SBC A, (HL):

SBC A, (HL)
m——.
9E

Subtract the contents of memory location (specified by the contents of the HL register
pair) and the Carry from the Accumulator

Suppose Carry=0. ppaq=40001g, xx=3A16, and memory location 400014 contains
7C76‘ After execution of the instruction

SBC A.(HL)
the Accumulator will contain BEqg
3A = 0011 1010
Two's comp of 7C = 1000 0100
Two's comp of Carry = 0
1,011 1110

1setsSto 1 U LNon—zer‘o result, set Z to 0
Borrow, set C to 1 L—Borrow, set Ag to 1
P

0%0=0, set P/O 10 0 Subtract instruction, set N to 1
Notice that. the resuiting carry is complemented.
SBC A.{IX+disp)
N i -

DD 9t d

Subtract the contents of memory location {specified by the sum of the contents of the
IX register and the displacement value d) and the Carry from the Accumulator.

SBC A.{IY-+disp)
N ot —p—

FD 9E d

This instruction is identical to the SBC A, (IX+disp) instruction, except that it uses the lY
register instead of the IX register.
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SBC HL,rp — SUBTRACT REGISTER PAIR WITH CARRY
- , FROM H AND L

S Z AcP/ON C

Data
| F XXX Memory
" A q
K B.C BC, DE, HL or SP
DE contains yyyy
El H.L XX XX
SP
PC mmmm mmmm + 2 Program
X Memory
Iy
v ED mmmm
R 01xx0010 fmmmm + 1
mmmm + 2
mmmm + 3

SBC HL, rp

01 xx 0010

——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Subtract the contents of the designated register pair and the Carry status from the HL
register pair.

Suppose HL contains F4A216, BC contains A03416. and Carry=0. After the instruction
SBC HL.BC
has executed, the HL register pair will contain 546E14:

Two's comp of F4AA2

Two's comp of A034
Two's comp of Carry

1111 0100 1010 0010
0101 1111 1100 1100

0
001 0100 0110 1110

[

OsetsSto0 Q Non-zero result, set Z 1o 0

No borrow, set C to 0

No borrow,

ath—
1% 1=0, set P/O to 0

Subtract instruction, set N to 1
. Notice that the resulting carry is complemented.
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SCF — SET CARRY FLAG
S Z AcP/ON C

Data
A
B.C
D.E
H.L
SP
pPC mmmm mmmm + 1 Program
X Memory
Y
v 37 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

SCF

——

37

When the SCF instruction is executed, the Carry status is set to 1 regardless of its pre-
vious value. No other statuses or register contents are affected
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SET b,reg — SET INDICATED REGISTER BIT

S ZAcP/ON C Data

1 A
B.C -—-———-( ,
B DE f i
: H.L YYYY YYYY
Sp
PC mmmm _mmmm + 2 Program
IX Memory
Iy
v CB mmmm
R 11bbbxxx fmmmm + 1
mmmm + 2
mmmm + 3
SET b.reg
| ——

TNy

CB 11pbb XXX

~——

Bit bbb xxx  Register
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111

SET indicated bit within specified register. After the instruction
SET 2.L
has executed. bit 2 in Register L will be set. (Bit O is the least significant bit)

NOT A WN—=O
PC-IMUO®@
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SET b,(HL) — SET BIT b OF INDICATED MEMORY POSITION
SET b, (IX+disp)
SET b, (1Y+disp)

S ZAcP/ON C

Data
A YYYY yyyy | ppaa
B.C
DE
H.L] pp aq
SP
PC mmmm mmmm + 2 Program
I1X Memory
Y
v CB mmmm
R I 11bbb110_fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SET b,(HL). Bit O is the least significant bit.
SET b,{HL)
N

a——

CB 11 bbb 110

Bit Set bbb
000
001
010
on
100
101
110
111

Set indicated bit within memory location indicated by HL.

NOOAADWN =C

Suppose HL contains 40001g. After the instruction
SET 5.(HL)
has executed. bit 5 in memory position 40001 will be 1.
SET b, (IX+disp}

¢ e
DD CB d 11 bbb 110

P

bbb is the same as in SET b.{HL)

Set indicated bit within memory location indicated by the sum of Index Register IX and
displacement
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Suppose Index Register IX contains 40001g. After execution of
SET 6.(IX+5H)

bit 6 in memory location 40051g will be 1.
SET b.{IY+disp)

i, i,

FOD CB d 11 bbb 110

bbb is the same as in SET b,{HL)

This instruction is identical to SET b.{IX+disp), except that it uses the |Y register instead
of the IX register.

SLA reg — SHIFT CONTENTS OF REGISTER LEFT ARITHMETIC

S ZAcP/ON

Data
FlxIxjolx]o] V] Memory
A || %
e <b++-l—l—l—i—-!—
D,E . g
HL
sSP
PC mmmm mmmm + 2 Program
1X Memory
Y
vV 1 CB mmmm
R { 00100001 § mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA C:

Sl

CB 00100 xxx

e~

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register left one bit. resetting the least significant bit to 0.
Suppose Register B contains 1F1g. and Carry=1. After execution of

SLA B
Register B will contain 3E1g and Carry will be zero.
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Before After
Register B Carry Register B Carry

0007 171717 [0oi1 1110l @
R

0 sets S to O ~ag— L—-b Non-zero result, set Z to 0
5 ones, set P/O to O

SLA (HL) —  SHIFT CONTENTS OF MEMORY LOCATION

SLA (IX+disp) LEFT ARITHMETIC
SLA (IY+disp)

( 0 )
S Z AcP/ON € Data

FOAxJofxJof ] 1 Memory
A T
B’C Ll 11 ppqq
D.E 4
H.L pp qq
SP
PC mmmm mmmm + 2 Program
X Memory
Y
v CB mmmm
R 26 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA (HL):
SLA (HL)
Neugsan, e’

CB 26

Shift contents of memory location (specified by the contents of the HL register pair) left
one bit, resetting the least significant bit to 0.

Suppose the HL register pair contains 450016, memory location 450014 contains
8416, and Carry=0. After execution of

SLA (HL)
memory location 450016 will contain 0816, and Carry will be 1.
Before After
Memory Carry Memory Carry

10000100 [00001000]
[ A ——

0 sets S to 0 <@— LbNon«zero result, set Z to O
1 one, set P/O to O
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SLA (IX+disp)

ey

DB CB d 26

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d} left one bit arithmetically, resetting least signifi-

cant bit to 0.
SLA {IY+disp)
——
FD CB d 26

This instruction is identical to SLA (IX+disp), but uses the IY register instead of the IX

register

SRA reg — ARITHMETIC SHIFT RIGHT CONTENTS OF

REGISTER
S Z AcP/ON C

FIXIXToTxTo] |

A T
3
4

|
B.C {
D.E N
H.L
PC mmmm
X
Y

B  —

The illustration shows execution of SRA A:
SRA reg

————

CB 00101 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

CcB

00101111

Shift specified register right one bit. Most significant bit is unchanged

Suppose Register H contains 591g. and Carry=0. After the instruction

SRA H

has executed. Register H will contain 2C1g and Carry will be 1
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Before After
Register H C Register H C

[0] [007071700]
N T

0 sets S to 0 <g—— LDNon—zero result, set Z to 0
3 ones, set P/O to 0

SRA (HL) — ARITHMETIC SHIFT RIGHT CONTENTS OF
SRA (IX+disp) MEMORY POSITION
SRA (1Y +disp)

4

S Z AcP'ON {

Data
F XIXToJXToTV] Memory
A
e ppaq +d
DE
HL
SP
PC mmmm Program
IX ppaq Memory
Y
v DD mmmm
R CcB mmmm + 1
d mmmm + 2
2E mmmm + 3
mmmm + 4

The illustration shows execution of SRA (IX+disp):
SRA (IX+disp)

N R’ S

DD CB d 2E

Shift contents of memory location (specified by the sum of the contents of Register IX
and the displacement value d) right. Most significant bit is unchanged

Suppose Register [X contains 340016 memory location 34AA1g contains 271g. and
Carry=1_After execution of

SRA (IX+0AAH)
memory location 34AA 16 will contain 1316, and Carry will be 1
Before After
Memory Carry Memory Carry

001007111 [000T0011]
e A

0 sets S to 0 <g— L»Non—zero result, setZ to O
3 ones, set P/0 to O
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SRA (Y +disp)
A

EN'N

4 FD CB d 2E
This instruction is identical to SRA (IX+disp), but uses the IY register instead of the IX
E register.
SRA (HL)
A e
CB 2E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is unchanged

SRL reg — SHIFT CONTENTS OF REGISTER RIGHT
LOGICAL

- 0
S Z AcP/ON C C >

Data
Memory
mrimm + 2 Program
Memory
CB mmmm

00111011 Fmmmm + 1

mmmm + 2

mmmm + 3

The illustration shows execution of SRL E:

SRL reg
——

——

CB 00111 xxx
So——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register right one bit. Most significant bit is reset to 0.
Suppose Register D contains 1F1g. and Carry=0. After execution of

SRL. D
Register D will contain OF1g, and Carry will be 1.
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Before After
Register D Carry Register D Carry

00011111 [0] [0000 1111

N v
4 ones, set P/O to 1 l--n»Non—zero result, set Z to O

SRL (HL) — SHIFT CONTENTS OF MEMORY LOCATION
SRL (IX+disp) RIGHT LOGICAL
SRL (IY +disp)

S ZAcP/ON C Data
Memory

ppaq
—}
PC mmmm mmmm + 2 Program
1X Memory
Y
v cB mmmm
R 3E mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL (HL):
SRL (HL)
e

CB 3E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is reset to 0.

Suppose the HL register pair contains 200016, memory location 20001 contains 8F1g,
and Carry=0. After execution of ’

SRL (HL)
memory location 200016 will contain 471¢, and Carry will be 1.
Before After
Memory Carry Memory Carry

1T0001111] [O] 01000111
R —

4 ones, set P/O to 1 l—b Non-zero result, set Z to 0
SRL {(IX+disp)
——

DD CB d 3E

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) right one bit. Most significant bit is reset to 0.
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SRL (IY+disp)
T N

o~

FD DB d 3E
! This instruction is identical to SRL (IX+disp), but uses the IY register instead of the IX
E register.

SUB data — SUBTRACT IMMEDIATE FROM ACCUMULATOR
S ZAcP/ON C

Data
‘F. m: Memory

A XX

XX-Yyy

PC mmmm mmmm + 2 Program

Memory

v D6 mmmm

R i — vy mmmm + 1
mmmm + 2
mmmm + 3

SUB data
- ——
D6 vy

Subtract the contents of the second object code byte from the Accumulator
Suppose xx=3A1g. After the instruction

SUB 7CH
has executed. the Accumulator will contain BE1g.

3A = 0011 1010
Twoscompof 7C = 1000 0100

1011 1110

1 sets S to 1 U1 LNonazero result, set Z to 0
Borrow, set C to 1
&

Borrow, set Ac to 1

Y

P
0¥ 0=0, setP/O to O

Notice that the resulting carry is complemented

Subtract instruction, set N to 1
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SUB reg — SUBTRACT REGISTER FROM ACCUMULATOR

S ZAcP/ON C Data
: <> Memory
A . XX

BC Contents of A, B, C,
DE D, E HorlLisyy

Program

PC mmmm mmmm + 1
Memory

v 10010xxx_§mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

SUB reg
et ——
10010 XXX
——

000 for reg=B

001 for reg=C

010 for reg=D

011 for reg=E

100 for reg=H

101 for reg=L

111 for reg=A

Subtract the contents of the specified register from the Accumulator.

Suppose xx=E3 and Register H contains AO1g. After execution of

SUB H
the Accumulator will contain 431¢.
E3 = 1110 0011
Two's compof AO = 0110 0000

01100 0011

Osets Sto0 U‘ LNon~zero result, setZ to 0
No borrow, set C to O No borrow, set Ac to 0
Vo -
1% 1=0, set P/O to O Subtract instruction, set N to 1

Notice that the resulting carry is complemented.
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SUB (HL) — SUBTRACT MEMORY FROM ACCUMULATOR
SUB (iX+disp)
SUB (Y +disp)

S Z AcP/ON C

Data
F Memory
A XX XX-yy vY__|ppag+d
B.C
D.E
H,L
SP
PC mmmm mmmm + 3 Program
X pPpqq Memory
Y
v DD mmmm
R 96 mmmm + 1
d mmmm + 2
> mmmm + 3

The illustration shows execution of SUB (IX+d):
SUB (IX+disp)
R s and

DD 96 d

Subtract contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) from the Accumulator.

Suppose ppag=40001g. xx=FF16. and memory location 40FF1g contains 5016. After
execution of .

SUB (IX+OFFH)
the Accumulator will contain AFqg.

FF
Twao's comp of 50

(I}
-
-
-

1setsStol Non-zero result, set Z to 0

E

No borrow, set C to 0
A

No borrow. set A¢ to 0

1% 1=0, set P/O to O Subtract instruction, set N to 1
Notice that the resulting carry is complemented.
SUB (IY+disp)
N— i~

FD 96 d

This instruction is identical to SUB (IX+disp), except that it uses the IY register instead
of the IX register.
SUB (HL)
D Ve
96

Subtract contents of fnemory location (specified by the contents of the HL register pair)
from the Accumulator
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XOR data — EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR
S ZAcP/ON C Data
F ﬂm Memory
A
B.C
D.E
H.L
SP

PC mmmm
1X
Y

v EE mmmm

R I — vy mmmm + 1
mmmm + 2
mmmm + 3

XX XX yy

mmmm + 2 Program
Memory

XOR data
S—— S——
EE vy
Exclusive-OR the contents of the second object code byte with the Accumulator.
Suppose xx=3A1g. After the instruction
XOR 7CH
has executed, the Accumulator will contain 4616

3A = 0011 1010
7C = 0111 1100
0100 0110
OsetsSto0

Non-zero result, set Z to 0

Three 1 bits, set P/O to 0
The Exclusive-OR instruction is used to test for changes in bit status.
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XOR reg — EXCLUSIVE-OR REGISTER WITH ACCUMULATOR
S Z AcP/ON C

] Data
F XX IXT0T0] @ Memory

A
Contents of A, B
B.C t
DE '(; D,EHorlL
HL v
sP
PC mmmm mmmm + 1 Program
IX Memory
Y
v 10101xxx §mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
XOR reg
S - S
10101 XXX
ol
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Exclusive-OR the contents of the specified register with the Accumulator
Suppose xx=E31g and Register E contains AO1g. After the instruction
' XOR E
has executed, the Accumulator will contain 431
E3 = 1110 0011
A0 = 1010 0000
0100 0011
O sets S to O<—J Non-zero result, set Z to 0

Three 1 bits, set P/O to 0
The Exclusive-OR instruction is used to test for changes in bit status.

6-144



XOR (HL) — EXCLUSIVE-OR MEMORY WITH ACCUMULATOR
XOR (IX+disp)
XOR (IY +disp)

S Z AcP/ON C Data

F XX IXToI0] Memory

A XX XXMy Yy ppaq +d
B.C
DE
H.L
SP
PC mmmm mmmm + 3 Program
1X ppaq Memory
Y
v DD mmmm
R AE mmmm + 1
d mmmm + 2

mmmm + 3

The illustration shows execution of XOR {IX+disp)
XOR (IX+disp)
N . N~

DD AE d

Exclusive-OR contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) with the Accumulator

Suppose xx=E316. ppag=45001g. and memory location 45FF{g contains A016. After
the instruction

XOR (IX+OFFH)
has executed, the Accumulator will contain 4314.

E3 = 1110 0011
A0 = 1010 0000
0100 0011
OsetsSto0 Non-zero result, set Z to 0

Three 1 bits, set P/O to 0
XOR (IY+disp)
e e

FD AE d

This instruction is identical to XOR (IX-+disp), except that it uses the |Y register instead
of the IX register
XOR (HL)
—

AE

Exclusive-OR contents of memory location (specified by the contents of the HL register
pair) with the Accumulator.
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Chapter 7
SOME COMMONLY
USED SUBROUTINES

There are several operations which occur in many microcomputer programs ir-
respective of the:application. This chapter will provide a number of frequently
used instruction sequences.

To make the most effective use of this chapter. you should study each subroutine until
you know it well enough to modify it. As a simple exercise. you should attempt to
rewrite the subroutine so that it does the same job using fewer execution cycles, or
fewer instructions. or both. Next, rewrite the programs to implement variations. For ex-
ample, binary multiplication of 16-bit numbers is illustrated; how about a routine to
multiply 32-bit numbers? Look upon each example as a typical illustrative instruction
sequence which you will likely modify to meet your immediate needs.

Sirriple programs at the level covered in this chapter fall into one of four catego-
ries: .

1) Memory addressing

2) Data movement

3) Arithmetic

4) Program execution sequence logic

We will describe programs in 'the above category sequence.

MEMORY ADDRESSING

The Z80 has an unusually large variety of memory referencing instructions: direct, in-
dexed. implied. and auto-increment/decrement addressing are all available on the Z80.
We are going to show how two other addressing modes — indirect addressing and in-
direct addressing with post-indexing — may be implemented through simple instruc-
tion sequences. Both of these modes are described and illustrated in An Introduction to
Microcomputers: Volume | — Basic Concepts.
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INDIRECT ADDRESSING

The Z80 CPU provides register indirect addressing where a register pair (such as HL)
serves as a pointer to a location in memory. However, the true indirect memory address-
ing specifies that the memory address you require be stored in two memory bytes:

Arbitrary
Memory
Addresses

0800

0801
{ 22 0802 <a@— INDA

0A 0803
0804

oo

0A20
0A21
0A22
0A23

[n the illustration above, memory bytes 0802 1g and 08031 hold the required memory
address: 0A221g. In keeping with the way the Z80 itself handles 16-bit addresses; the
low-order address byte is shown preceding the high-order address byte

All that is required to simulate indirect addressing as shown above is the follow-
ing instruction sequence:

LD HL,INDA .LOAD ADDRESS INTO HL

LD A, (HL) .LOAD DATA INTO A

The first instruction moves the address 0A221g into HL. The second instruction demon-
strates how to access memory location 0A2216.

INDIRECT, POST-INDEXED ADDRESSING

In some applications, it is necessary or certainly preferable to perform indirect post-in-
dexed addressing. Using Z80 indexed addressing. post-indexed addressing can be
performed.in the following manner:

LD BC.(NDA)  .LOAD INDIRECT ADDRESS INTO BC
ADD  IX.BC .ADD INDIRECT ADDRESS TO INDEX

At the beginning of this instruction sequence, we assume that the index is in the Index
Register IX

The index is then added to the indirect address, and the result is placed in the Index
register; any memory operation can now be performed using the Index register as the
address.
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DATA MOVEMENT

We will now examine some instruction sequences that locate and move con-
tiguous blocks of data bytes — data buffers of any length.

MOVING SIMPLE DATA BLOCKS

Beginning with a very simple program, consider moving the contents of a con-
tiguous block of data memory bytes from one area of memory to another. This
operation is made extremely simple by the unigue block transfer instruction provided
by the Z80 CPU. The block transfer instructions operate with three register pairs:

HL addresses the source location
DE addresses the destination location
BC is a byte counter

The following memory map illustrates the data movement operation:
Arbitrary
Data Memory
Memory  Addresses

0800 SRCE
0801
0802
Count down buffer
length in B,C 0803
. .
A . N
° . CNT
B,C - . M
Destination
DE and
H,L Source
sp Addresses
0A80 DST
0A81
0A82
0A83

‘This.-is the data move program:
LD HL.SRCE :LOAD SOURCE ADDRESS INTO HL

LD DE.DST :LOAD DESTINATION ADDRESS INTO DE
LD BC.CNT .LOAD BYTE COUNT INTO BC
LDIR . TRANSFER DATA
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The single LDIR instruction does all the work for us — it transfers the byte of data
pointed to by HL to the location pointed to by DE, then increments HL and DE to
point to the next byte, decrements the count in BC, and repeats the process until
the count = 0.

MULTIPLE TABLE LOOKUPS

Next, consider a multiple table lookup. This is a more complex variation of the data
move which we just described

The starting addresses of an indefinite number of data tables are stored in an index ta-
ble The index table’s starting address is given by the label TABX

Memory
TABX Base address of Table 1
TABX +2 Base address of Table 2
TABX + 4 Base address of Table 3
TABX + 6 Base address of Table 4
etc etc etc

Several data bytes are in temporary storage. starting at a memory location identified by
the label CBASE The actual number of data bytes can be found in a memory location
identified by the label CNT This source buffer is equivalent to the source buffer in the
data move program we have just described

The destination for the block of data is one of the data tables The table number is iden-
tified by the symbol TBNO. which is loaded as immediate data The first two bytes of
every table identify the displacement to the first free byte of the table; in other words.
we assume that every table is partially filled and that the block of data is to be moved
into the unoccupied end of the selected table The required data movement may be il-
lustrated as follows:

Memory
Address

CBASE

E CNT bytes, CNT/2 words

: Memory Table TBNO
- Address

XXXX BYNO

BYNO

CNT bytes
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Here is the appropriate instruction sequence:

LD HL.{TABX+TABNO) ;LOAD TARGET TABLE ADDRESS INTO HL
LD E.(HL) .LOAD DISPLACEMENT (BYNO) TO FIRST
;FREE BYTE INTO DE

INC  HL

LD D.(HU)

ADD HL.DE ;ADD TO HL, GIVING ADDRESS OF FIRST
:FREE BYTE

EX DE.HL ;MOVE ADDRESS TO DE

LD HL.CBASE :LOAD INPUT BUFFER BASE ADDRESS
(CBASE) INTO HL

LD BC.(CNT) ;LOAD BYTE COUNTER INTO BC

LDIR ;TRANSFER DATA

SORTING DATA

Both of the programming examples we have described thus far simply move a block of
data from one location to another. Reorganizing data is also very important; therefore,
we will illustrate a sort routine.

The sort, as illustrated, takes a sequence of signed binary numbers stored in contiguous
memory locations. and reorganizes them in ascending order so that the smallest num-
ber comes first and the largest number comes last.

The sort routine we are going to program uses a bubble-up algorithm. Consider a
sequence of numbers where the label LIST identifies the address of the first number's
storage location in memory. These are the necessary sort routine program steps:

1) Start a pass at the beginning of the LIST, and initialize a flag to | SORTING
indicate a "'no swap” condition. DATA

2) Compare a consecutive pair of numbers. If the first number is
smaller than the second number do nothing: otherwise, exchange the two numbers
and set the flag to indicate “swap made’.

3) Compare the address of the second number to the end of list address. identified by
the label ENDL If not at the end. increment so that the second number of the cur-
rent pair becomes the first number of the next pair, and return to step 2.

4) At the end of the list, check the “swap” flag. If any swap was made during the
pass, return to step 1 to make another pass.

5) If a pass is made with no swaps. all numbers are in order. Exit

As an example, consider the case where the numbers 1 through 10 are in reverse order.
Nine exchanges will be made during the first pass. at the end of which the largest num-
ber will have been “bubbled up” to the top:

START AFTER 1 PASS

LIST 10 9
9 8
8 7
7 6
6 5
5 4
4 3
3 2
2 1
ENDL 1 10

Another eight passes will be needed to get all numbers in order. and then a tenth pass
is needed to get a 'no swap’’ exit condition.
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SORT is implemented as a subroutine, prior to the subroutine call. HL is loaded with the
beginning address (LIST) of the data to be sorted. and B is loaded with the length of the
list.

LD HL.LIST
CALL  SORT
SORT: LD (SVAD).HL :SAVE LIST ADDRESS

LOOPt: LD HL.{SVAD)
LD B,ENDL-LIST

RES 0.D INITIALIZE SWAP INDICATOR
LOOP2: LD A (HL) ;LOAD 1ST BYTE INTO AC

INC HL .POINT AT NEXT BYTE

CpP A.(HL) .COMPARE THE TWO BYTES

JR NC.SORT1

LD E.{HL) :NEXT 5 INSTRUCTIONS DO SWAP

LD (HL).A

DEC HL

LD (HL).E

INC HL

SET 0.D .SET SWAP FLAG
SORT1 DJNZ LOOP2 ;REPEAT LOOP IF LIST NOT TRAVERSED

BIT 0.D :CHECK FOR SWAPS

JR NZ.LOOP1 :RETURN IF NO SWAPS

RET

ARITHMETIC

Addition, subtraction, multiplication and division will be described under this
group. Transcendental functions are complex enough to require entire textbooks
devoted to the subject, so we will not even broach the subject.

Even within the simple bounds of addition, subtraction, multiplication and division.
there is a degree of latitude that exceeds the scope of material we can cover. Signifi-
cantly different algorithms are required. depending upon the magnitude of the number.
Binary and decimal arithmetic also require different algorithms Therefore, for addition
and subtraction we will consider large or small binary or decimal numbers. For
multiplication and division we will consider small binary numbers only.
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BINARY ADDITION
First consider muitibyte binary addition.

Two positive integer numbers, each CNT bytes long. are to be added. The number
buffer starting addresses are given by BUF1 and BUF2 The answer is to be stored in a
buffer starting at BUF3

The multibyte addition may be illustrated as follows:

Data
Memory

BUFA - «a@— Low-order digit
BUFA + 1
BUFA +2

BUFB <g—— Low-order digit
BUFB + 1

BUFB +2
= .

co oo
XXX}

BUFC <@~ Low-order digit
BUFC + 1
BUFC + 2

°

°

scos
coee

CNT Buffer length stored here
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This instruction sequence performs the illustrated addition:

LD AJ[CNT)
LD BA
LD HLBUFC
PUSH HL
LD. DEBUFA
LD~ HL.BUFB
AND A
LOOP LD  A.DE
ADC  (HL)
EX  (SPLHL
LD (HL.A
INC  HL
EX  (SPLHL
INC  DE
INC  HL
DJNZ LOOP

.LOAD BUFFER LENGTH AND SAVE IN B

,LOAD ANSWER BUFFER ADDRESS INTO HL
:SAVE ON THE STACK

.LOAD FIRST BUFFER ADDRESS INTO DE
.LOAD SECOND BUFFER ADDRESS INTO HL
.CLEAR CARRY

.LOAD NEXT BUFA BYTE

;ADD NEXT BUFB BYTE

.SAVE IN NEXT ANSWER BUFFER BYTE

\INCREMENT BUFC ADDRESS

INCREMENT BUFA ADDRESS

JINCREMENT BUFB ADDRESS

;DECREMENT COUNTER AND RETURN FOR MORE
.BYTES IF NOT ZERO

Multibyte addition is simpler if you can store the sum in one of the source buffers:

i
—_—

Data
Memory

BUFA «af— Low-order digit

BUFA + 1

BUFA +2

BUFB <@— Low-order digit

BUFB + 1

BUFB + 2

camo

CNT Buffer length stored here
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Here is the shorter instruction sequence:

LD A(CNT) .LOAD BUFFER LENGTH AND SAVE IN B
LD B.A
LD DE.BUFA :LOAD FIRST BUFFER ADDRESS INTO DE
LD HL.BUFB .LOAD SECOND BUFFER ADDRESS INTO HL
‘AND A .CLEAR CARRY
LOOP LD A.(DE) .LOAD NEXT BUFA BYTE
ADC (HL) ;ADD NEXT BUFB BYTE
LD (HL). A .STORE ANSWER
INC  DE INCREMENT BUFA ADDRESS
INC  HL .INCREMENT BUFB ADDRESS
DJINZ .DECREMENT COUNTER AND RETURN IF NOT ZERO

BINARY SUBTRACTION

Because the Z80 has special subtraction instructions, binary subtraction is almost
identical to binary addition. [n either subroutine, simply replace the ADC instruction
with the SBC instruction and accurate binary subtraction will result.

DECIMAL ADDITION

Decimal addition is also very easy using a Z80 microcomputer. Simply insert a DAA
instruction to follow the ADC in either of the binary addition programs, and you have
decimal addition.

LOOP LD  A(DE) :LOAD NEXT BUFA BYTE

-ADC  (HL) .ADD NEXT BUFB BYTE
DAA .DECIMAL ADJUST RESULT
LD (HL)LA .SAVE ANSWER

One caution, however: the decimal addition routine you create assumes that
valid binary-coded decimal data is stored in your source buffers. If, in error, you -
have invalid data in either of your source buffers, you will generate a meaningless
answer — and not know it

If your program is one which cannot guarantee that data in source buffers is valid bin-
ary-coded decimal, then you must write a routine to check buffer contents and ensure
that no high or low 4-bit unit within any byte contains a binary code of A through F.

DECIMAL SUBTRACTION

Because the Z80 has a special Subtract flag {N). the Decimal Adjust Accumulator
(DAA) instruction can also be used for decimal subtraction. Simply insert a DAA
instruction following the $BC instruction, and you have decimal subtraction. The -
same caution mentioned for decimal addition applies here: you must ensure that valid
binary-coded decimal data is stored in your source buffers.

MULTIPLICATION AND DIVISION

Multiplication and division must be approached with an element of caution within
microcomputer systems. These are operations which are unsuited to the organization
of a microcomputer; any nontrivial multiplication or division can take so long to execute
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that it will severely degrade overall performance. i your microcomputer application is
going to make extensive use of multiplication, division, or transcendental func-
tions, you should seriously consider using one of the many calculator/arithmetic
chips that are now commercially available. Transferring complex arithmetic to such a
chip can make the difference between a microcomputer system being viable or non-via-
ble in your application

You can implement simple multiplication and division in microcomputer systems that
do not make extensive or time-consuming use of these routines: therefore. we will de-
scribe some simple program sequences

8-BIT BINARY MULTIPLICATION

Consider the multiplication of two unsigned 8-bit data values to generate a 16-bit
product. The simplest way to perform this multiplication is to add the multiplier to O the
number of times given by the multiplicand. For example, you can multiply 4 by 3 if
you-add 4 to O three times.

Suppose that Register B contains the multiplicand and Register E contains the
multiplier. The following routine performs the multiplication operation, returning the
16-bit result in Accumulator A (low order) and.Register C (high order):

LD A0 ;CLEAR A AND C TO
L.D C.A ANITIALIZE ANSWER BUFFER
cpP B ;TEST FOR 0 IN B {(MULTIPLICAND)
RET Z JIF 0, ANSWER IS 0 SO END
LOOP ADD E ,ADD MULTIPLIER TO LOW-ORDER ANSWER BYTE
JR NC,NEXT IF CARRY IS SET.
INC C INCREMENT C (HIGH-ORDER BYTE)
NEXT DJNZ LOOP .DECREMENT MULTIPLICAND, IF NOT ZERO
JUMP TO ADD AGAIN
RET ;RETURN WHEN MULTIPLICATION COMPLETE

This routine could be a very fast one (if the multiplicand is 0, then only four instructions
will execute) or a very slow one (if the multiplicand is 255, then this routine could take
up to 1025 instruction executions).

In general, there is a faster way of executing multiplications. Using common
decimal notation, consider the following multiplication:

142 Multiplicand
x 317 Multiplier

994 partial
142 roducts
426 P

45014 Product

This is the way we learned to-do multiplication using a pencil and paper. Each par-
tial product equals the multiplicand being multiplied by one digit of the-multiplier.
_“We began by multiplying the multiplicand (142) by the rightmost digit (7) of the

- multiplier. Next we multiplied 142 by the second digit (1) of the multiplier. The partial
result from-this operation is shifted left one position The leftmost digit of the multiplier
was then used to multiply 142, and the.partial result was shifted left one more position.
After all multiplication operations have been performed. the partial products are then
added together to obtain the final product. This method is well-suited to pencil and
paper operations; however, it is not the most efficient method for a computer to
.perform multiplication. Let us take a look at another method.

7-10



First, there is no need to wait until all multiplications have been completed before
adding the partial products together; we can generate a "'running total” or intermedi-
ate result by immediately adding each partial product to the previous partial product.

For example:

142 Multiplicand
317 Multiplier
000 intermediate result (initial condition)
+ 994  partial product (7 x 142)
994 intermediate result
+ 142 partial product (1 x 142)
2414 intermediate result
+ 426 partial product (3 x 142)
45014 Product

Although this method is more time-consuming when using pencil and paper. itis a
much more efficient multiplication method for a computer

Now, we also must cause each partial product to be shifted to the left one digit
before it is added to the intermediate result. There are two ways of accomplishing
this: we can actually shift the partial product to the left, or we can shift the intermedi-
ate result to the right — the effect will be the same. Let us defer our decision on this
point for a moment, while we consider one more option

Although we have learned to perform multiplication by beginning with the least
significant (rightmost) digit of the multiplier, there is nothing to prevent us from
starting at the other end so long as we keep track of the significance of the
multiplying digit being used. For example,

142 Multiplicand

317 Multiplier

000 intermediate result (initial condition)
+426 partial product (3 x 142)

426 intermediate result
+ 142 partial product {1 x 142)

4402 intermediate result

+ 994  Dpartial product (7 x 142)

45014 Product

Notice in this example that, when we begin with the most significant digit of the
multiplier, subsequent partial products must then be shifted to the right {instead of to
the left) before being added. Once again, the shifting of the partial product could also
be accomplished by shifting the intermediate result in the opposite direction.

In summary, we can begin a multiplication operation using either the most signifi-
cant digit or the least significant digit of the multiplier, and we can shift either par-
tial products or intermediate results to obtain the proper alignment of significant
digits.

Which method should we use? Before deciding. let us look at what happens when
multiplying binary numbers. Since a binary digit is limited to having values of O or 1,
this means that at the single-digit level multiplication degenerates to addition or
no addition. That is:

Multiplicand: 1011 1011

Multiplier digit: x_1 x 0

Intermediate result: 0000 0000

Partial product: +1011 +0000_ (nho add needed)
New intermediate result: 1011 0000 )
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With this fact in mind. let us take another look at the multiplication methods we have
discussed. First. we can see that we no longer need separate steps for the
multiplication operation and subsequent addition of the partial product to the in-
termediate result; multiplying the multiplicand by 1 is the same as simply adding the
multiplicand to the intermediate result.

Next, we see that, since we are merely performing add operations instead of

multiply-and-add operations, we do not need to handle a partial product — we can

simply add the multiplicand directly to the intermediate result. If we eliminate the par-

tial product, then we will want to perform the shift operation on the intermediate resuit

Let us now write two sets of multiplication rules for binary numbers.

Method #1:

a)  Shift intermediate result one place to the right

b) If least significant digit of multiplier is zero, skip step ¢ and go to step d

¢l Add multiplicand to intermediate result.

d) Repeat steps a, b and ¢ for next digit (more significant) of multiplier until all digits
have been used.

Method #2:

a) Shift intermediate result one place to the left.

b) If most significant digit of multiplier is zero. skip step ¢ and go to step d

c) Add multiplicand to intermediate result

d) Repeat steps a. b and ¢ for next digit {less significant) of the multiplier until all
digits have been used.

Now that we have examined the mechanisms used in multiplying binary numbers and
developed a few sets of rules, let us see how we can implement these algorithms using
the Z80 CPU.

AN 8-BiT BINARY MULTIPLICATION PROGRAM

We will now write a program which will multiply two unsigned 8-bit values to
generate a 16-bit product.

Let us first consider register assignments: we need an 8-bit register for the multiplier,
an 8-bit register for the multiplicand, a 16-bit register for the product, and a register to
use as a bit counter during the multiplication operation.

We will assign the registers as follows:

Bit Counter B
E g Multiplicand
Multiplier s———ge] H L
N, <z’

Product
{and intermediate result)

Now. some of the register assignments may seem a little strange, especially placing the
multiplier in the H register while also assigning the H register as the most significant
byte of the product. However, let us proceed to write our program, and then the reasons
for assigning registers as shown above will make more sense.
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Here is our program:

MULT: LD B.8 . .LOAD B WITH COUNT
LD D.0 ;CLEAR D REGISTER
LD L.D :CLEAR L REGISTER
LOOP:  ADD HL.HL ;SHIFT HL ONE PLACE LEFT
JR NC.DECB ;IF NO CARRY, MULTIPLIER BIT=0, SKIP ADD
ADD HL.DE ;ADD MULTIPLICAND TO INTERMEDIATE RESULT
DECB:  DJNZ LOOP .DECREMENT COUNT IN B. IF NOT ZERO, REPEAT
:LOOP
RET :RETURN

We have used ‘Method #2'* from our preceding discussion for this program. The
program is written as a subroutine, and assumes that, upon entry, the E register will
hold the 8-bit multiplicand and the H register will hold the 8-bit multiplier. If you com-
pare the program to “‘Method #2’’ it should seem quite straightforward, with the
possible exception of the first ADD instruction. Why add HL to itself? The non-ob-
vious answer is that we are actually using the ADD instruction to shift the H and L
registers one bit to the left. (Adding a binary number to itself results in the number
being shifted one bit position to the left) Now, it would seem to be more straightfor-
ward to simply use a shift instruction instead of the ADD instruction. However, the Z80
instruction set does not provide instructions for performing shift operations on a 16-bit
register pair. Therefore, we would have to use two shift instructions to accomplish
the same thing as the single ADD instruction.

Notice that when we shift the HL register pair to the left we are accomplishing two
things. We perform the left shift of the intermediate result as required by our multiplica-
tion algorithm, and we also shift the most significant bit of the multiplier out into the
Carry flag. The Jump instruction that follows the ADD then tests to see whether the
multiplier bit that was shifted out wasa 1 ora 0

As we shift HL to the left we also shift the multiplier out of the way, so that the register
pair can be used for the intermediate result. After we have gone through the loop the
required eight times, the muitiplier will have been shifted completely out of the H
register, and HL will now contain the 16-bit product

16-BIT BINARY MULTIPLICATION

Now consider the muitiplication of two 16-bit numbers, yielding a 32-bit resuit.
The algorithm we will use is the same as that used for the 8-bit multiply; however, a
few additional instructions will be required to manipulate registers. Here are the
register assignments:

Bit Counter amjm A
B [ |~ Multiplicand (16 bits)
D E [<—— Muitiplier (16 bits)
H L Product and intermediate

result (32 bits)
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The DE register pair will contain the 16-bit multiplier at the beginning of the program,
and will contain the most significant 16 bits of the 32-bit product when the muitiplica-
tion has been completed.

MPY: LD HL.0000H  INITIALIZE PARTIAL PRODUCT IN

;HL TO ZERO
LD A 16 JINITIALIZE COUNT
LOOP:  ADD  HLHL JSHIFT INTERMEDIATE RESULT
.LEFT INTO CARRY
EX DE.HL JEXCHANGE DE AND HL
ADC  HLHL JSHIFT MULTIPLIER LEFT INTO CARRY
EX DE,HL :RETURN SHIFTED MULTIPLIER TO DE

JR NC.DECA  ;JUMP IF NO ADD (MULTIPLIER
:BIT IN CARRY =0)

ADD  HL.BC :ADD MULTIPLICAND IN BC TO
:PARTIAL PRODUCT IN HL

JR NC.DECA  ;JUMP IF NO CARRY OUT OF ADDITION

INC DE INCREMENT DE TO PROPAGATE
;CARRY FROM ADD
DECA: DEC A ;DECREMENT COUNT
JP NZ,LOOP ;LOOP BACK IF NOT ZERO
RET ;RETURN

BINARY DIVISION

The procedure used to perform binary division is quite similar to that used for
multiplication. Here the process involves subtraction rather than addition.

Consider simple 8-bit division. B31g divided by 151g may be illustrated as follows:

1000 Quotient

Divisor 10101)10110011 Dividend
10101

1011 Remainder
The result is 815 with a remainder of B1g

The division algorithm works by shifting the dividend into a register that is initially
cleared. Whenever the dividend shift buffer contents equal or exceed the divisor. the
divisor is subtracted from the shift buffer contents and a binary 1 digit is inserted into
the appropriate quotient bit position

Consider the following register assignments:

Divisor ———gz1 A
Bit Counter =—{ B <tgff——= Quotient
(00001000 initially) D E on completion
Dividend shift e H e Dividend
buffer .
Remainder on completion



Initially, assume that the divisor is in Register A and the dividend is in Register L. The
quotient will be generated in Register C. Here is the division program which results:

DIV: LD BC,0800H :LOAD BIT COUNTER AND CLEAR QUOTIENT
REGISTER
LD H.C .CLEAR DIVIDEND SHIFT BUFFER (H)
LD EH :LOAD ZERO IN REGISTER E
LD D.A :COPY DIVISOR INTO REGISTER D
LOOP ADD  HLHL :SHIFT DIVIDEND LEFT INTO REG H
LD AH .COPY DIVIDEND SHIFT BUFFER INTO REG A
Ccp D .COMPARE DIVIDEND SHIFT BUFFER TO DIVISOR
JR C.NEXT .IF DIVIDEND SMALLER THAN DIVISOR DO NOT
;SUBTRACT
SBC HL.DE ;SUBTRACT DIVISOR FROM DIVIDEND SHIFT
:BUFFER
NEXT CCF :COMPLEMENT CARRY FLAG
RL C ;SHIFT 1 OR 0 (FROM CARRY) INTO QUOTIENT
DJNZ LOOP DECREMENT COUNTER AND REPEAT LOOP TILL
.DONE
RET ;RETURN TO CALLING PROGRAM

At the end, the quotient is in Register C and the remainder is in Register H.

Notice that we have once again used the ADD instruction to perform a left shift of the
16-bit register pair HL. We have also used the 16-bit subtract instruction (SBC):
however, since we initially set the contents of Register E to zero, we are actually using.
the SBC instruction simply to subtract the contents of Register D from the contents of
Register H — an 8-bit subtract operation. We used the 16-bit version of the subtract in-
struction here to reduce the number of register move instructions that would otherwise
be required. since the 8-bit subtract instructions require the use of Register A, which is
already in use.

PROGRAM EXECUTION SEQUENCE LOGIC

THE JUMP TABLE

There is really only one program sequence that needs to be described under this
heading; it is the jump table.

Remember that the Z80 instruction set is rich in conditional instructions; Jump.
Call and Return instructions all have eight conditional variations, which means that
special routines are not required when your logic can only go one of two ways.

7-15



When you have three or more options, the jump table becomes an effective pro-

-gramming tool.

At the heart of a jump table there will be a sequence of 16-bit addresses:

Data
Memory

JTBL iy

Address 0

Address 1

Address 2 These are execution
addresses for different

Address 3 programs which the
microcomputer may execute

Address 4

Address 5

etc. )

We will pfesume that these contiguous memory addresses represent the starting ad-
dresses for a number of different programs. Assuming that the required program is
identified by a program number in the Accumulator, the following instruction se-
quence causes execution to branch to the program whose number is stored in the

Accumulator:
;:JUMP TABLE PROGRAM

LD HL.JTBL
ADD A

LD EA

LD D.0
ADD  HLDE
LD E.(HU)
INC HL

LD D.(HU)
EX DE HL
JP (HL)

,LOAD JUMP TABLE BASE ADDRESS INTO HL
'MULTIPLY PROGRAM # BY TWO AND

;MOVE RESULT TO REGISTER E

;SET REGISTER D TO ZERO

;ADD PROGRAM # TIMES 2 TO JTBL

;LOAD E WITH LOW-ORDER ADDRESS BYTE
JINCREMENT THE POINTER IN HL

:LOAD D WITH HIGH-ORDER ADDRESS BYTE
;PUT ADDRESS FOR START OF PROGRAM IN HL
;JUMP TO START OF PROGRAM
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