b

T T 4

borne/McGraw-Hill

)

UL . N
 ASSEMBLY LANGUAGE
- SUBROUTINES

-

Lance A. Leventhal
Winthrop Saville

280°
Assembly Language
Subroutines

280
Assembly Language
Subroutines

Lance A. Leventhdl
Winthrop Sawille

Osborne/McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it,
including research, development, and testing to ascertain their effectiveness. The
authors and the publisher make no expressed or implied warranty of any kind with
regard to these programs or the supplementary documentation in this book. In no
event shall the authors or the publisher be liable for incidental or consequential
damages in connection with or arising out of the furnishing, performance, or use of
any of these programs.

7380 is a registered trademark of Zilog, Inc.

ZID and ZSID are trademarks of Digital Research Corp.
ED is a product of Digital Research Corp.

IBM is a registered trademark of IBM.

Teletype is a registered trademark of Teletype Corp.

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write to Osborne/
McGraw-Hill at the above address.

780° ASSEMBLY LANGUAGE SUBROUTINES

Copyright ©1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

234567890 DODO 8987654
ISBN 0-931988-91-8
Cover by Jean Lake
Text design by Paul Butzler

Contents

WON —

O 23T 0®0~w0o O

Preface vii

General Programming Methods 1

Implementing Additional Instructions and Addressing Modes
Common Programming Errors 139

Introduction to the Program Section 161

Code Conversion 167

Array Manipulation and Indexing 195

Arithmetic 217

Bit Manipulation and Shifts 267

String Manipulation 288

Array Operations 319

Input/Output 356

Interrupts 394

Z.80 Instruction Set Summary 433

Programming Reference for the Z80 PIO Device 457
ASCII Character Set 463

Glossary 465

Index 489

71

Preface

T his book is intended to serve as a source and a reference for the assembly language
programmer. It contains an overview of assembly language programming for a partic-
ular microprocessor and a collection of useful subroutines. In the subroutines, a
standard format, documentation package, and parameter passing techniques were
used. The rules of the most popular assemblers have been followed, and the purpose,
procedure, parameters, results, execution time, and memory usage of each routine
have been described.

The overview sections summarize assembly language programming for those who
do not have the time or need for a complete textbook; the Assembly Language
Programming series provides more extensive discussions. Chapter 1 introduces
assembly language programming for the particular processor and summarizes the
major features that make this processor different from other microprocessors and
minicomputers. Chapter 2 shows how to implement instructions and addressing
modes that are not explicitly available. Chapter 3 describes common programming
errors.

The collection of subroutines emphasizes common tasks that occur in many applica-
tions. These tasks include code conversion, array manipulation, arithmetic, bit
manipulation, shifting functions, string manipulation, sorting, and searching. We
have also provided examples of I/ O routines, interrupt service routines, and initializa-
tion routines for common family chips such as parallel interfaces, serial interfaces, and
timers. You should be able to use these programs as subroutines in actual applications
and as starting points for more complex programs.

This book is intended for the person who wants to use assembly language imme-
diately, rather than just learn about it. The reader could be

- An engineer, technician, or programmer who must write assembly language
programs for a design project.

- A microcomputer user who wants to write an I/ O driver, a diagnostic program, a
utility, or a systems program in assembly language.

vii

Vill 780 ASSEMBLY LANGUAGE SUBROUTINES

* An experienced assembly language programmer who needs a quick review of
techniques for a particular microprocessor.

* A systems designer who needs a specific routine or technique for immediate use.

* A high-level language programmer who must debug or optimize programs at the
assembly level or must link a program written in a high-level language to one
written in assembly language.

* A maintenance programmer who must understand quickly how specific assembly
language programs work.

* A microcomputer owner who wants to understand the operating system for a
particular computer or who wants to modify standard 1/O routines or systems
programs.

- A student, hobbyist, or teacher who wants to see examples of working assembly
language programs.

This book can also serve as a supplement for students of the Assembly Language
Programming series.

This book should save the reader time and effort. The reader should not have to
write, debug, test, or optimize standard routines or search through a textbook for
particular examples. The reader should instead be able to obtain easily the specific
information, technique, or routine that he or she needs. This book has been organized
and indexed for rapid use and reference.

Obviously, a book with such an aim demands feedback from its readers. Although
all the programs have been thoroughly tested and carefully documented, please inform.
the publisher if you find any errors. If you have suggestions for better methods or for
additional topics, routines, programming hints, or index entries, please tell us about
them. We have used our programming experience to develop this book, but your help
1s needed to improve it. We would greatly appreciate your comments, criticisms, and
suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the architecture of
the Z80 processor, to specify operands, and to represent general values of numbers and
addresses.

PREFACE X

280 Architecture

Byte-length registers include

A (accumulator) R (refresh)
B A’
C B’
D C
E D’
H E’
L H’
F (flags) L
I (interrupt vector) F

Of these, the primary user registers are the first seven: A, B, C, D, E, H, and L. The I
(interrupt vector) register contains the more significant byte (page number) of inter-
rupt service addresses in Interrupt Mode 2. The R (refresh) register contains a memory
refresh counter. The F (flag) register consists of a set of bits with independent functions
and meanings, organized as shown in the following diagram:

7 6 5 4 3 2 1| 0 -e——BitNumber
BEERRENE
b 4 44 [

Processor Status Register F

Carry
Add/Subtract
‘- Parity/ Overflow
Not Used (Logic 1)
Auxiliary Carry
Not Used (Logic 1)
Zero

Sign

Register pairs and word-length registers include

AF (Accumulator and flags, accumulator most significant)
AF" (Registers A’ and F’, A’ most significant)
BC (Registers B and C, B most significant)
BC" (Registers B’ and C’, B’ most significant)
DE (Registers D and E, D most significant)
DE" (Registers D’ and E’, D" most significant)
HL (Registers H and L, H most significant)
HL" (Registers H and L', H’ most significant)
IX (Index register X or 1X)

Y (Index register Y or 1Y)

PC (Program counter)

SP (Stack pointer)

Flags include

Add/Subtract (N)
Carry (C)
Auxiliary Carry (Ac)

X 780 ASSEMBLY LANGUAGE SUBROUTINES

Parity/ Overflow (P/O or P/ V)
Sign (S)
Zero (Z)

These flags are arranged in the F register as shown previously.

Miscellaneous facilities include

Interrupt Flip-flop 1 (IFF1)
Interrupt Flip-flop 2 (IFF2)

280 Assembiler

Delimiters include

: After a label, except for EQU, DEFL, and MACRO, which require a space
space After an operation code

s Between operands in the operand (address) field

H Before a comment

() Around memory references

All operands are treated as data unless they are enclosed in parentheses.

Pseudo-Operations include

DB or DEFB Define byte; place byte-length data in
memory.

DEFL Define label (may be redefined later).

DEFM Define string; place ASCII data in memory.

DS or DEFS Define storage; allocate bytes of memory.

DW or DEFW Define word; place word-length data in
memory.

END End of program.

EQU Equate; define the attached label.

ORG Set origin; place subsequent object code

starting at the specified address.

Designations include

Number systems:

B (suffix) Binary

D (suffix) Decimal

H (suffix) Hexadecimal
Q (suffix) Octal

The default mode is decimal; hexadecimal numbers must start with a digit (you must
add a leading zero if the number starts with a letter).

Others:

‘o

or “ "ASCII (characters surrounded by single or double quotation marks)
$ Current value of location (program) counter

PREFACE

General Nomenclature

ADDR
ADDRI1
ADDR2
BASE
BICON
CONST
DEST

HIGH
INDIR

LOW
MASK
n

NPARAM
NEXT
NRESLT
NTIMES
NTIML
NTIMM
NUM
NUMI
NUM2
OFF
OFFSET
oper

OPER
OPER1
OPER2
reg
regl
RETPT
p

rph

rpl

rpl
rplh
rpll
rp2
rp2h
rp2l
SPTR
STRNG
SUM
TEMP
VALI16
VALI6H
VALI6L
VALUE

Xy

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A constant 16-bit address in data memory

An 8-bit data item in binary format

A constant 8-bit data item

A 16-bit address in program memory, the
destination for a jump instruction

A 16-bit data item

A 16-bit address in data memory, the start-
ing address for an indirect address. The
indirect address is stored in memory
locations INDIR and INDIR+1.

A 16-bit data item

An 8-bit number used for masking

A bit position in a byte; possible values are
0 through 7

A 16-bit data item

A 16-bit address in program memory

A 16-bit data item

An 8-bit data item

An 8-bit data item

An 8-bit data item

A 16-bit data item

A 16-bit address in data memory

A 16-bit address in data memory

An 8-bit fixed offset

An 8-bit fixed offset

An 8-bit data item, a register, (HL), or an
indexed address

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A primary user register (A, B, C, D, E, H, or L)

A primary user register

A 16-bit address in program memory

A primary register pair (BC, DE, or HL)

The more significant byte of rp

The less significant byte of rp

A primary register pair

The more significant byte of rpl

The less significant byte of rpl

Another primary register pair, not the same as rp1

The more significant byte of rp2

The less significant byte of rp2

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit data item

The more significant byte of VAL16

The less significant byte of VALI16

An 8-bit data item

An index register, either I1X or IY

Xi

Chapter 1 General
Programming Methods

Some general methods for writing assembly language programs for the Z80 micro-
processor are presented in this chapter. In addition, techniques for performing the
following operations are explained:

- Loading and saving registers

+ Storing data in memory

+ Arithmetic and logical functions

- Bit manipulation and testing

+ Testing for specific values

* Numerical comparisons

- Looping (repeating sequences of operations)
+ Array processing and manipulation
- Table lookup

+ Character code manipulation

+ Code conversion

- Multiple-precision arithmetic

+ Multiplication and division

+ List processing

* Processing of data structures.

Also included in this chapter are special sections that describe passing parameters to
subroutines, general methods for writing 1/ O drivers and interrupt service routines,
and ways of making programs run faster or use less memory.

The operations described are required in such applications as instrumentation, test
equipment, computer peripherals, communications equipment, industrial control,
process control, business equipment, aerospace and military systems, and consumer
products. Microcomputer users will employ these operations in writing I/ O drivers,
utility programs, diagnostics, and systems software, and in understanding, debugging,
and improving programs written in high-level languages. This chapter provides a brief

1

2 780 ASSEMBLY LANGUAGE SUBROUTINES

guide to Z80 assembly language programming for those who have an immediate
application in mind.

SUMMARY FOR EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other comput-
ers, we provide here a brief review of the peculiarities of the Z80. Being aware of these
unusual features can save a lot of time and trouble.

1. Arithmetic and logical operations are allowed only between the accumulator and
a byte of immediate data, the contents of a general-purpose register, the contents of the
address in register pair HL, or the contents of an indexed address. Arithmetic and
logical instructions do not allow direct addressing.

For example, the alternatives for the OR instruction are OR CONST, where CONST
is a fixed data byte; OR reg, where reg is an 8-bit general-purpose register; OR (HL);
and OR (xy+OFF). The third alternative logically ORs the accumulator with the data
byte located at the address in HL. The fourth alternative logically ORs the accumula-
tor with the data byte located at an indexed address; the processor determines the
address by adding the 8-bit offset OFF to a 16-bit index register.

2. The accumulator and register pair HL are special. The accumulator is the only
byte-length register that can be loaded or stored directly. The accumulator is also the
only register that can be complemented, negated, shifted with a single-byte instruction,
loaded indirectly from the addresses in register pairs BC or DE, stored indirectly at the
addresses in register pairs BC or DE, or used in IN and OUT instructions with direct
addressing.

HL is the only register pair that can serve as an indirect address in arithmetic or logi-
calinstructions or in loading or storing registers other than the accumulator. HL is also
the only register pair that can be transferred to the program counter or stack pointer.
Furthermore, HL serves as a double-length accumulator in 16-bit addition and sub-
traction. Register pair DE is also special because the instruction EX DE,HL can
exchange it with HL. Thus, the Z80’s registers are highly asymmetric, and the pro-
grammer must carefully choose which data and addresses go in which registers.

3. There are often several names for the same physical register. The registers A, B,
C, D, E, H, and L are all available as 8-bit registers. The register pairs BC (B more
significant), DE (D more significant), and HL (H more significant) are also available
as 16-bit register pairs in many instructions. The terms “register pair B,” “registers B
and C,” and “register pair BC” all have the same meaning, and there are similar
variations for registers D and E and H and L. Note that the register pair and the two
single registers are physically identical and cannot be used for different purposes at the
same time.

CHAPTER 1 GENERAL PROGRAMMING METHODS 3

In fact, H and L are almost always used to hold an indirect address because of the
availability of instructions that access the data at that address as well as special
instructions like LD SP,HL; JP (HL); EX (SP),HL; and EX DE,HL. Register pair DE
is used for a second address when one is needed because of the EX DE,HL instruction.
Registers B and C are generally used as separate 8-bit registers for temporary data
storage and counters.

4. Theeffects of instructions on flags are extremely inconsistent. Some particularly
unusual effects are (a) logical instructions clear the Carry, (b) one-byte accumulator
rotate instructions affect no flags other than the Carry, (c) load, store, transfer,
increment register pair or index register, and decrement register pair or index register
instructions affect no flags at all, and (d) 16-bit addition (ADD HL or ADD xy) affects
only the Carry flag. Table A-1 in Appendix A can be used as an aid in determining how
an instruction affects the flags.

5. There is no indirect addressing through memory locations. The lack of indirect
addressing is overcome by loading the indirect address into register pair HL. Thus,
indirect addressing is a two-step process. The indirect address can also be loaded into
registers pair BC or DE, but it can then only be used to load or store the accumulator.

6. The Z80’s indexing allows only an 8-bit fixed offset in the instruction. Its main
purpose is to implement postindexing dand to allow offsets in data structures. A more
general form of indexed addressing requires an explicit 16-bit addition of register pairs
using HL as a 16-bit accumulator. Thus, indexing usually requires several steps: The
index must be loaded into one register pair, the base address must be loaded into
another register pair (one pair must be HL), the two must be added explicitly (using
ADD HL,rp), and the sum must be used as an indirect address (by referring to (HL)).
Generalized indexing on the Z80 is a long, awkward process.

7. There is a combined Parity/ Overflow indicator. This flag indicates even parity
after all instructions that affect it except addition and subtraction. Then it indicates the
occurrence of two’s complement overflow.

8. Many common instructions are missing but can easily be simulated with register
operations. Some examples are clearing the accumulator (use SUB A or XOR A),
clearing the Carry flag (use AND A or OR A), and logically shifting the accumulator
left (use ADD A,A). Either AND A or OR A clears the Carry flag and sets the other
flags according to the contents of the accumulator. But remember, loading a register
does not affect any flags.

9. There are both relative and absolute branches (using the operation codes JR and
JP, respectively). Both addressing methods are allowed for unconditional branches.
The sets of conditional branches differ; relative branches exist only for the Carry and
Zero flags, whereas absolute branches exist for the Carry, Sign, Parity/ Overflow, and
Zero flags. What is interesting here is that the relative branches occupy less memory

4 730 ASSEMBLY LANGUAGE SUBROUTINES

than the corresponding absolute branches (2 bytes rather than 3) but execute more
slowly if the branch is taken (12 cycles rather than 10).

10. Increment and decrement instructions behave differently, depending on whether
they are applied to 8-bit or 16-bit operands. Decrementing or incrementing an 8-bit
register affects all flags except the Carry. Decrementing or incrementing a 16-bit
register pair or index register does not affect any flags at all. A 16-bit register pair can
be used as a counter, but the only way to test the pair for zero is to logically OR the two
bytes together in the accumulator. The 16-bit instructions are intended primarily for
address calculations, not for data manipulation.

11. Instructions that are additions to the original 8080 instruction set occupy more
memory and execute more slowly than other instructions with similar functions and
addressing modes. Among them are bit manipulation, arithmetic shift, logical shift,
shifts of registers other than the accumulator, and some loads. These instructions
execute more slowly because they require a prefix byte that tells the processor the
instruction is not an original 8080 instruction and the next byte is the real operation
code. Weller makes it easier to recognize the secondary instructions by using mnemon-
ics derived from the 8080 instruction set.!

12. Certain registers and facilities are clearly secondary in importance. The pro-
grammer should employ them only when the primary registers and facilities are
already in use or too inconvenient to use. The secondary facilities, like the secondary
instructions, represent additions to the underlying 8080 microprocessor. The most
important additions are index registers IX and IY; many instructions use these
registers, but they take more memory and much more time than instructions that use
the other register pairs. Another addition is the primed register set. Only two instruc-
tions (EX 'AF,AF’ and EXX) allow access to the primed set, and for this reason
programmers generally reserve it for functions such as fast interrupt response.

13. Operations that can be done directly to a general-purpose register are shift it,
transfer it to or from another register, load it with a constant, increment it by 1, or
decrement it by 1. These operations can also be performed indirectly on the memory
address in HL or on a memory location addressed via indexing.

14. Only register pairs or index registers can be moved to or from the stack. One
pair is AF, which consists of the accumulator (more significant byte) and the flags (less
significant byte). The CALL and RET instructions transfer addresses to or from the
stack; there are conditional calls and returns but they are seldom used.

15. The Z80 has a readable interrupt enable flag. One can determine its value by
executing LD AT or LD A,R. Either instruction moves the Interrupt flip-flop to the
Parity/Overflow flag. That flag then reflects the state of the interrupt system at a
particular time, and thus can be used to restore the state after the processor executes
code that must run with interrupts disabled.

CHAPTER 1 GENERAL PROGRAMMING METHODS 5

16. The Z80 uses the following common conventions:

- The 16-bit addresses are stored with the less significant byte first (that is, at the
lower address). The order of the bytes in an address is the same as in the 8080, 8085, and
6502 microprocessors, but the opposite of that used in the 6800 and 6809.

- The stack pointer contains the lowest address actually occupied by the stack. This
convention is also used in the 8080, 8085, and 6809 microprocessors, but the obvious
alternative (next available address) is used in the 6502 and 6800. Z80 instructions store
data in the stack using predecrementing (they subtract 1 from the stack pointer before
storing a byte) and load data from the stack using postincrementing (they add 1 to the
stack pointer after loading a byte).

- The interrupt (enable) flag is | to allow interrupts and 0 to disallow them. This
convention is the same as in the 8080 and 8085, but the opposite of that used in the
6502, 6800, and 6809.

REGISTER SET

Z80 assembly language programming is complicated by the asymmetry of the
processor’s instruction set. Many instructions apply only to particular registers,
register pairs, or sets of registers. Almost every register has its own unique features,
and almost every instruction has its own peculiarities. Table 1-1 lists the 8-bit registers
and the instructions that use them. Table 1-2 lists the 16-bit registers and the instruc-
tions that use them (of course, all instructions change the program counter implicitly).
Table 1-3 lists the indirect addresses contained in on-board register pairs and the
instructions that use them. Table 1-4 lists the instructions that apply only to the
accumulator, and Table -5 lists the instructions that apply only to particular 16-bit
registers. Table 1-6 lists the instructions that apply to the stack.

The general uses of the registers are as follows:

- The accumulator, the center of data processing, is the source of one operand and
destination of the result for most arithmetic, logical, and other processing operations.

- Register pair HL is the primary memory address register. Instructions can often
refer to the data at the address in HL, that is, (HL).

- Register pair DE is the secondary memory address register because the pro-
grammer can exchange its contents with HL using EX DE,HL.

- Registers Band C (register pair BC) are general-purpose registers used mainly for
counters and temporary data storage. Register B is often used as a loop counter
because of its special usage in the DJNZ instruction.

- Index registers IX and IY are used when the programmer is referring to memory
addresses by means of fixed offsets from a variable base. These registers also serve as
backups to HL when that register pair is occupied.

6 750 AssEnBLY LANGUAGE SUBROUTINES

Table 1-1. Eight-Bit Registers and Applicable Instructions

8-Bit Register

Instructions

A only

A,B,.C,D,E.H,L

B only
C only

F (flags)
I (interrupt vector)
R (refresh)

CPL, DAA; IN A (port); LD (ADDR),LD (BC or DE), NEG;
OUT (port),A; RLA, RLCA, RLD, RRA, RRCA, RRD.

ADC A; ADD A; AND, CP, DEG; IN reg,(C); INC, LD, OR;
OUT (C),reg; RL, RLC, RR, RRC, SBC A; SLA, SRA,
SRL, SUB, XOR

DJNZ, IND, INDR, INI, INIR, OTDR, OTIR, OUTD, OUTI

IN reg,(C); OUT (C),reg; IND, INDR, INI, INIR, OTDR,
OTIR, OUTD, OUTI

CCF, SCF (see also AF register pair)
LD LA;LD Al
LD R,A; LD AR

Table 1-2. Sixteen-Bit Registers and Applicable Instructions

16-Bit Register

Instructions

AF
AF
BC

BC’
DE

DE’
HL

HL’

IX

1Y

Program Counter

Stack Pointer

POP; PUSH; EX AFAF’
EX AEAF

ADC HL, ADD xy, ADD HL, CPD, CPDR, CPI, CPIR,
DEC, EXX, INC, LD, LDD, LDDR, LDI, LDIR, POP,
PUSH, SBC HL

EXX

ADC HL, ADD xy, ADD HL, DEC; EX DE,HL; EXX, INC,
LD, LDD, LDDR, LDI, LDIR, POP, PUSH, SBC HL

EXX

ADC HL, ADD HL, CPD, CPDR, CPI, CPIR, DEC; EX
DE,HL; EX (SP),HL; EXX, INC, IND, INDR, INI, INIR,
LD, LDD, LDDR, LDI, LDIR, OTDR, OTIR, OUTD,
OUTI, POP, PUSH, SBC HL

EXX
ADD IX, LD, POP, PUSH; EX (SP),IX
ADD 1Y, LD, POP, PUSH; EX (SP),1Y
CALL instructions, JP, JR, RETURN instructions, RETI,
RETN, RST
CALL instructions, ADD HL, DEC, INC, LD, POP, PUSH,
RETURN instructions, RST

CHAPTER 1 GENERAL PROGRAMMING METHODS

Table 1-3. Indirect Addresses and Applicable Instructions

Location of Address

Instructions

Register pair BC
Register pair DE
Register pair HL*

Stack Pointer

Index register
XorY

LD A,(BC); LD (BC),A
LD A,(DE); LD (DE),A

ADC A; ADD A; AND, CP, DEC, INC, JP, LD, OR, SBC
A; SUB, XOR

CALL instructions, POP, PUSH, RETURN instructions,
RST

JP

* Index register X or Y can also be used as an indirect address for the same instructions as HL by
specifying indexed addressing with a fixed offset of zero.

Table 1-4. Instructions That Apply Only to the Accumulator

IN A,(port)
LD A,(ADDR)
LD A,(rp)
NEG

OR

OUT (port),A
RLA

RLCA

RRA

RRCA

SBC A

SUB

XOR

Instruction Function
ADC A Add with carry
ADD A Add
AND Logical AND immediate
CPL One’s complement
Ccp Compare
DAA Decimal adjust (decimal correction)

Input direct

Load direct

Load indirect

Two’s complement (negate)

Logical OR

Output direct

Rotate accumulator left through carry
Rotate accumulator left

Rotate accumulator right through carry
Rotate accumulator right

Subtract with borrow

Subtract

Logical EXCLUSIVE OR

8 780AssEMBLY LANGUAGE SUBROUTINES

Table 4-5. Instructions That Apply Only to One or Two 16-Bit Registers

Instruction 16-Bit Registers Function

EX AFAF’ AFEAF Exchange program status with alternate
program status

EX DE,HL DE,HL Exchange HL with DE

EX (SP),HL HL Exchange HL with top of stack

EX (SP),xy IXorlY Exchange index register with top of stack

LD SPHL HL,SP Load stack pointer from HL

LD SPxy IX or 1Y,SP Load stack pointer from index register

Table 4-6. Instructions That Use the Stack

Instruction Function

Call instructions Jump and save program counter in stack (including
conditionals)

EX (SP),HL Exchange HL with top of stack

EX (SP),xy Exchange index register with top of stack

POP Load register pair from stack

PUSH Store register pair in stack

RETURN instructions Looad program counter from stack (including
conditionals)

RST Jump to vector address and save program
counter in stack

We may describe the special features of particular registers as follows:

* Accumulator. Only single register that can be loaded or stored directly. Only 8-bit
register that can be shifted with a one-byte instruction. Only register that can be
complemented, decimal adjusted, or negated with a single instruction. Only register
that can be loaded or stored using the addresses in register pairs BC or DE. Only
register that can be stored in an output port or loaded from an input port using direct
addressing. Source and destination for all 8-bit arithmetic and logical instructions
except DEC and INC. Only register that can be transferred to or from the interrupt
vector (I) or refresh (R) register.

* Register pair HL. Only register pair that can be used indirectly in the instructions
ADC, ADD, AND, CMP, DEC, INC, OR, SBC, SUB, and XOR. Source and
destination for the instructions ADC HL, ADD HL, and SBC HL. Only register pair

CHAPTER 1 GENERAL PROGRAMMING METHODS 9

that can be exchanged with register pair DE or with the top of the stack. Only register
pair that can have its contents moved to the stack pointer (LD SP,HL) or the program
counter (JP (HL)). Only register pair that can be shifted with a single instruction
(ADD HL,HL). Automatically used as a source address register in block move, block
compare, and block output instructions. Automatically used as a destination address
register in block input instructions.

- Register pair DE. Only register pair that can exchanged with HL (EX DE,HL).
Automatically used as a destination address register in block move instructions.

- Register pair BC. Automatically used as a counter in block move and block
compare instructions.

- Register B. Automatically used as a counter in the DJNZ instruction and in block
input and output instructions.

- Register C. Only register that can be used as an indirect port address for input and
output. Automatically used as a port address in block input and output instructions.

- Index registers IX and IY. Only address registers that allow an indexed offset.
Used as source and destination in ADD xy instruction. Can be exchanged with the top
of the stack, moved to the stack pointer or program counter, or shifted with ADD
XY,XY.

- Stack pointer. Automatically postincremented by instructions that load data from
the stack and predecremented by instructions that store data in the stack. Only address
register that can be used to transfer other register pairs to or from memory (PUSH and

POP) or to transfer the program counter to or from memory (CALL instructions and
RETURN instructions).

Note the following:

- The A register is the only 8-bit register that can be loaded from memory or stored
in memory using direct addressing.

- Only the address in register pair HL or an address obtained via indexing can be
used in operations other than loading and storing the accumulator. That is, only the
data at the address in HL or at an indexed address can be moved to or from a user
register, decremented, incremented, or used in arithmetic and logical operations.

- Only DEC reg and INC reg perform 8-bit arithmetic operations without involving
the accumulator (of course, DEC and INC may be applied to the accumulator).

+ Only index registers IX and ['Y allow an offset from a base address. The data at the
indexed address can be used like the data at the address in HL.

- The index registers IX and IY make useful backups to HL because of the
availability of the 16-bit instructions ADD xy; EX (SP),xy; JP (xy); and LD SPxy.

40 750 ASSEMBLY LANGUAGE SUBROUTINES

Register Transfers

The LD instruction can transfer any 8-bit general-purpose register (A, B, C, D, E, H,
or L) to any other 8-bit general-purpose register. The flag (F) register can only be
transferred to or from the stack along with the accumulator (PUSH AF and POP AF).
Register pairs DE and HL can be exchanged using EX DE,HL.

The common transfer instructions are

+ LD A reg transfers the contents of reg to the accumulator

- LD reg,A transfers the contents of the accumulator to reg

- LDreg,(HL) loads reg with the contents of the memory address in register pair HL
* LD (HL),reg stores reg at the memory address in register pair HL

- EX DE,HL exchanges register pair DE with HL.

The destination always comes first in the operand field of LD. That is, LD regl,reg2
transfers the contents of reg2 to regl, the opposite of the convention proposed in IEEE
Standard 694 for assembly language instructions.? The LD changes the destination,
but leaves the source as it was. Note that EX DE, HL changes all four registers (D, E,
H, and L); it is thus equivalent to four L Ds plus some intermediate steps that save one
byte of data while transferring another.

LOADING REGISTERS FROM MEMORY

The Z80 microprocessor has five addressing modes that can be used to load registers
from memory. These addressing modes are: Direct (from a specific memory address),
Immediate (with a specific value), Indirect (from an address stored in a register pair),
Indexed (from an address obtained by adding a fixed offset to an index register), and
Stack (from the top of the stack).?

Direct Loading of Registers

The accumulator, a primary register pair (BC, DE, or HL), the stack pointer, or an
index register can be loaded from memory using direct addressing.

Examples
1. LD A,(2050H)

This instruction loads the accumulator (register A) from memory location 2050 6.

CHAPTER 1 GENERAL PROGRAMMING METHODS 44

2. LD HL,(0A000H)

This instruction loads register L from memory location A000 s and register H from
memory location. A001 ¢ Note the standard Z80 practice of storing 16-bit numbers
with the less significant byte at the lower address, followed by the more significant byte.

3. LD SP,(9AI2H)

This instruction loads the stack pointer from memory locations 9A12 6 (less signifi-
cant byte) and 9A13 | (more significant byte).

Immediate Loading of Registers

Immediate addressing can be used to load any register, register pair, or index register
with a specific value. The register pairs include the stack pointer.

Examples
1. LD C,6

This instruction loads register C with the number 6. The 6 is an 8-bit data item, nota
16-bit address. Do not confuse the number 6 with the address 0006 6.

2. LD DE,ISE3H
This instruction loads register D with 154 and register E with E3¢.

3. LD IY,0B7EEH
This instruction loads index register IY with B7TEE 6.

Indirect Loading of Registers

The instruction LD reg,(HL) can load any register from the address in register pair
HL. The instruction LD A ,(rp) can load the accumulator using the address in a register
pair (BC, DE, or HL). Note that there is no instruction that loads a register pair
indirectly.

Examples

1. LD D,(HL)

This instruction loads register D from the memory address in register pair HL. The
assembly language instruction takes the form “LD destination register, source regis-
ter”; the order of the operands is the opposite of that proposed for IEEE Standard
694.4

12 780 ASSEMBLY LANGUAGE SUBROUTINES

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair
BC. Note that you cannot load any register except A using BC or DE indirectly.

Indexed Loading of Registers

The instruction LD A,(xy+OFFSET) loads the accumulator from the indexed
address obtained by adding the 8-bit number OFFSET to the contents of an index
register. Note that OFFSET is a fixed 8-bit number (its value is part of the program),
while the index register contains a 16-bit address that can be changed.s If OFFSET =0,
indexing is equivalent to indirection, but it is slower since the processor still must
perform the address addition.

Stack Loading of Registers

The instruction POP rp or POP xy loads a register pair or an index register from the
top of the stack and adjusts the stack pointer appropriately. One register pair for POP
rp is AF, which consists of the accumulator (more significant byte) and the flags (less
significant byte). No instructions load 8-bit registers from the stack or use the stack
pointer indirectly without changing it (although EX (SP),HL and EX (SP),xy have no
net effect on the stack pointer since they transfer data both to and from the stack).

Examples

1. POP DE

This instruction loads register pair DE from the top of the stack and increments the
stack pointer by 2. Register E is loaded first.

2. POPIY

This instruction loads index register IY from the top of the stack and increments the
stack pointer by 2. The less significant byte of IY is loaded first.
The stack has the following special features:

+ The stack pointer contains the address of the most recently occupied location.
The stack can be anywhere in memory.

+ Datais stored in the stack using predecrementing—the instructions decrement
the stack pointer by 1 before storing each byte. Data is loaded from the stack using
postincrementing—the instructions increment the stack pointer by [after loading
each byte.

- As is typical with microprocessors, there are no overflow or underflow
indicators.

CHAPTER 1 GENERAL PROGRAMMING METHODS 13

STORING REGISTERS IN MEMORY

The Z80 has four addressing modes that can be used to store registers in memory.
These modes are: Direct (at a specific memory address), Indirect (at an address stored
in a register pair), Indexed (at an address calculated by adding an 8-bit offset to the
contents of an index register), and Stack (at the top of the stack).

Direct Storage of Registers

Direct addressing can be used to store the accumulator, a register pair (BC, DE, or
HL), the stack pointer, or an index register.

Examples

1. LD (35C8H),A

This instruction stores the accumulator in memory location 35C8 (6.

2. LD (203AH),HL

This instruction stores register L in memory location 203A ¢ and register H in
memory location 203B .

3. LD (0AS7BH),SP

This instruction stores the stack pointer in memory locations A57B ¢ (less signifi-
cant byte) and AS57C ¢ (more significant byte).

Indirect Storage of Registers

The instruction LD (HL),reg can store any register at the address in register pair
HL. The instruction LD (rp),A can store the accumulator at the address in a register
pair (BC, DE, or HL). Note that there is no instruction that stores a register pair
indirectly.

Examples

1. LD (HL),C

This instruction stores register C at the address in register pair HL. The form is
“move to address in HL from C.”

2. LD (DE),A

This instruction stores the accumulator at the memory address in register pair DE.
Note that you cannot store any register except A using BC or DE indirectly.

44 730 AssevBLY LANGUAGE SUBROUTINES

Indexed Storage of Registers

The instruction LD (xy+OFFSET), A stores the accumulator at the indexed address
obtained by adding the 8-bit number OFFSET to the contents of an index register. If
OFFSET = 0, the indexed address is simply the contents of the index register, and
indexing is reduced to a slow version of indirect addressing.

Stack Storage of Registers

The instruction PUSH rp or PUSH xy stores a register pair or an index register at
the top of the stack and adjusts the stack pointer appropriately. One register pair is AF,
consisting of the accumulator (more significant byte) and the flags (less significant
byte). There is no instruction that stores an 8-bit register in the stack.

Examples
1. PUSH BC

This instruction stores register pair BC at the top of the stack and decrements the
stack pointer by 2. Note that B is stored first, so C ends up at the top of the stack.

2. PUSH IX

This instruction stores index register IX at the top of the stack and decrements the
stack pointer by 2. Note that the less significant byte of IX is stored last, and thus it
ends up at the top of the stack.

OTHER LOADING AND STORING OPERATIONS

Other loading and storing operations require more than one instruction. Some
typical examples are

1. Direct loading of a register other than A.

Lo A, (ADDR)
LD reg, A

An alternative is

Ln HL, ALDR
LD reg, (HL)

The second approach leaves A unchanged, but makes HL an indirect addressing pair.
Of course, the address in HL would then be available for later use.

CHAPTER 1 GENERAL PROGRAMMING METHODS 48

2. Indirect loading of a register (from the address in memory locations INDIR and
INDIR+1).

Ln HL, (INDIR) sGET INDIRECT ADDREZS
Ln reg, (HL) s LOAD DATA INDIRECTLY
3. Direct storage of a register other than A.

LD A,reg
LD CADDR) , A

An alternative is
LD HL, ADDR
Ln (HL) ,reg

4. Indirect storage of a register (at the address in memory locations INDIR and
INDIR+1).

LD HL, CINDIR) GET THE INDIRECT ADDRESS
LD (HL),reg :STORE DATA THERE
STORING VALUES IN RAM

The usual ways to initialize RAM locations are (1) through the accumulator, (2)
using register pair HL directly or indirectly, and (3) using an index register with a fixed
offset.

Examples

1. Store an 8-bit item (VALUE) in address ADDR.

Ln A, VALLE
LD (ADDR) , A

or

LD HL, ADDR
LD (HL), VALLIE

If VALUE = 0, we could use SUB A or XOR A instead of LD A, 0. Note, however,
that SUB A or XOR A affects the flags, whereas LD A,0 does not.

2. Store a 16-bit item (VALI16) in addresses ADDR and ADDR+1 (MSB in
ADDR+1).

LD HL, VAL1&
LD (ADDR) , HL

46 750 ASSEMBLY LANGUAGE SUBROUTINES

3. Store an 8-bit item (VALUE) at the address in memory locations INDIR and
INDIR+1.

Lo HL, (INDIR) ;GET INDIRECT ADDRESS
LD (HL) , VALLE :STORE DATA INDIRECTLY

4. Store an 8-bititem (VALUE) nine bytes beyond the address in memory locations
INDIR and INDIR+I.

Lo A, VALLIE
Lo Xy, (INDIR) ; GET BASE ADDRESS
Lo (Xy+9), A ;STORE DATA @ BYTES BEYOND RAZE

Here the indirect address is the base address of an array or other data structure.

ARITHMETIC AND LOGICAL OPERATIONS

Most arithmetic and logical operations (addition, subtraction, AND, OR, EXCLU-
SIVE OR, and comparison) can be performed only between the accumulator and an
8-bit register, a byte of immediate data, or a byte of data in memory addressed through
register pair HL or via indexing. Note that arithmetic and logical instructions do not
allow direct addressing. If a result is produced (comparison does not produce any), it
replaces the operand in the accumulator.

Examples

1. Logically OR the accumulator with register C.
R C

OR C logically ORs register C with the accumulator and places the result in the
accumulator. The programmer only has to specify one operand; the other operand and
the destination of the result are always the accumulator.

2. Add register B to the accumulator,
ADD A,B

ADD A,B adds register B to the accumulator (register A) and places the result in the
accumulator. In the instructions ADC, ADD, and SBC, the programmer must specify
both operands. The reason is that the Z80 also has the instructions ADC HL (add
register pair to HL with carry), ADD HL (add register pair to HL), ADD xy (add
register pair or index register to index register), and SBC HL (subtract register pair
from HL with borrow). Note the inconsistency here: Both operands must be specified
in ADC, ADD, and SBC, but only one operand in SUB; furthermore, the Z80 has an
ADD xy instruction, but no ADC xy or SBC xy instruction. Since the 16-bit arithmetic
instructions are mainly intended for addressing, we will discuss them later.

CHAPTER 1 GENERAL PROGRAMMING METHODS 47

3. Logically AND the accumulator with the binary constant BICON.

AND

BICON

Immediate addressing is the default mode; no special operation code or designation is
necessary.

4. Logically OR the accumulator with the data at the address in register pair HL.

OR

(HL)

Parentheses indicate a reference to the contents of a memory address.
Other operations require more than one instruction. Some typical examples are:
- Add memory locations OPER I and OPER2, place sum in memory location SUM.

or

or

LD
LD
LD
ADD
LD
LD

A, (OPER1) ;GET FIRST OPERAND
ByA

A, (OPER2) ;GET SECOND OFERAND
A, B

(SUM), A 3 SAVE SUM

HL, OPER1

A, (HL) ;GET FIRST OFERAND
HL , OPER2

A, CHL) ;ADD SECOND OFERAND
HL, SLIM

(HL), A : SAVE SUM

We can shorten the second alternative considerably if the operands and the sum
occupy consecutive memory addresses. For example, if OPER2 = OPERI + 1 and
SUM = OPER2 + 1, we have

Lo
LI
INC
ADD
INC
LD

HL, OPER1

A, (HL) ;GET FIRST QOPERAND
HL

A, (HL) ; ADD SECOND QFERAND
HL

(HL)Y, A s SAVE SUM

- Add a constant (VALUE) to memory location OPER.

L0
ADD
LD

LD
LD
ADD
LD

A, (OPER)
A, VALLIE
(QFER), A

HL, QPER
A, (HL)
A, VALLIE
(HL) , A

48 730 ASSEMBLY LANGUAGE SUBROUTINES

If VALUE = 1, we can shorten the second alternative to

Lo HL., OPER
INC (HL)

You can use DEC (HL) similarly without changing the accumulator, but both DEC
(HL) and INC (HL) affect all the flags except Carry.

BIT MANIPULATION

The Z80 has specific instructions for setting, clearing, or testing a single bit in a
register or memory location. Other bit operations require a series of single-bit instruc-
tions or logical instructions with appropriate masks. Complementing (CPL) applies
only to the accumulator. Chapter 7 contains additional examples of bit manipulation.

The specific bit manipulation instructions are

SET n,reg
RES n,reg
BIT n,reg
- Sets bit n of register reg
+ Clears bit n of register reg
- Tests bit n of register reg, setting the Zero flag if that bit is 0 and clearing the Zero
flag if it is 1.

All three instructions can also be applied to (HL) or to an indexed address. Note that
the bit position is not a variable; it is part of the instruction.®

Other bit operations can be implemented by applying logical instructions to the
accumulator as follows:

- Set bits to 1 by logically ORing them with 1’s in the appropriate positions.

+ Clear bits by logically ANDing them with 0’s in the appropriate positions.

+ Invert (complement) bits by logically EXCLUSIVE ORing them with 1’s in the
appropriate positions.

+ Test bits (for all 0%) by logically ANDing them with 1’s in the appropriate
positions.

This approach is inconvenient since the logical instructions can only be applied to
the accumulator. It does, however, allow the programmer to invert bits and change
several bits at the same time.

Examples

1. Set bit 6 of the accumulator.
SET &,A

CHAPTER 1 GENERAL PROGRAMMING METHODS 19

or
OR 01000000R ;SET BRIT & BY ORING WITH 1t
Logically ORing a bit with 0 leaves it unchanged.

2. Clear bit 3 of the accumulator.
RES 2, A
or
AND 11110111E sCLEAR BRIT 3 BY ANDING WITH O
Logically ANDing a bit with 1 leaves it unchanged.

3. Invert (complement) bit 2 of the accumulator.
XOR QQ0Q0100R s INVERT BIT 2 BY XORING WITH 1

Logically EXCLUSIVE ORing a bit with 0 leaves it unchanged. Here there is no
special bit manipulation instruction. Fortunately, setting and clearing bits are much
more common operations than complementing bits.

4. Test bit 5 of the accumulator. In other words, clear the Zero flag if bit 51s 1, and
set it if bit 5 is 0.

RIT 35,A
or
AND Q010Q0Q0R s TEST RIT S BY ANDING WITH 1

Note the inversion here in either alternative: The Zero flagis set to 1 if the bitis 0, and
to 0 if the bit is 1.

5. Set bit 4 of register D.
SET 4,D

To use a logical function, we would have to load the data into the accumulator and
load the result back into register D.

6. Invert (complement) bit 7 of memory location ADDR.

Lo A, (ADDR) ;s GET DATA
XOR 10000000R ; COMPLEMENT BRIT 7
LD (ADDR), A sRETURN RESULT TO MEMORY

7. Set bit 0 of the memory location five bytes beyond the address in INDIR and
INDIR+1.

LD Xy, (ADDR) ;GET INDIRECT ADDRESS
SET 0, (xy+3) sSET BIT O QF BYTE S

20 700 ASSEMBLY LANGUAGE SUBROUTINES

You can change more than one bit at a time by using a series of bit manipulation
instructions or by using the logical functions with appropriate masks.

8. Set bits 4 and 5 of the accumulator.

QR 00110000k $SET BITS 4 AND 5 BY ORING WITH 1
or

SET 4,4 :SET BIT 4 FIRST

SET S.A ;AND THEN SET BIT S

9. Invert (complement) bits 0 and 7 of the accumulator.
AOR 100GOO01R s INVERT BITS O AND 7 BY XORING WITH 1

A handy shortcut to change bit 0 of a register or memory location is to use INC to set
it (if you know that it is G) and DEC to clear it (if you know that itis 1). You can also use
either INC or DEC to complement bit 0 if you are not using the other bits of a register
or memory location. These shortcuts are useful when you are storing a single 1-bit flag
in a register or memory location.

SHIFT OPERATIONS

The Z80 has shift instructions that operate on any register or memory location.
Special instructions apply only to the accumulator, register pair HL, or an index
register. Chapter 7 contains further examples of shift operations.

The instructions RL and RR rotate a register or memory location and the Carry flag
as if they formed a 9-bit register. Figures 1-1 and 1-2 show the effects of RL and RR.
The instructions RL.C and RRC rotate the register or memory location alone as shown
in Figures 1-3 and 1-4. The bit shifted off the end still appears in the Carry flag as well
as in the bit position at the other end. The instructions SLA and SRL perform logical
shifts (as shown in Figures 1-5 and 1-6) which fill the bit at the far right or left witha 0.
SRA performs an arithmetic shift (see Figure 1-7) which preserves the sign bit by
extending (copying) it to the right. Note that RL. and RR preserve the old Carry flag (in
either bit 0 or bit 7), whereas the other shift instructions destroy it.

Certain special instructions are shorter and faster than the regular shifts in specific
situations. One-byte circular shifts (RLA, RLCA, RRA, RRCA) apply only to the
accumulator. Adding a register to itself (ADD A,A; ADD HL,HL; ADD xy,xy) is
equivalent to a logical left shift, while adding a register to itself with Carry (ADC A, A
or ADC HL,HL) is equivalent to a left rotate through Carry.

Examples

1. Rotate accumulator right two positions without the Carry.
RRCA
RRCA

CHAPTER 1 GENERAL PROGRAMMING METHODS 21

Original contents of Carry flag and register or memory location
Carry Data

PR

After RL (rotate left through Carry)
Carry Data

(LB [P B [P [3 [[|

Figure 1-1. The RL (rotate left through Carry) instruction

Original contents of Carry flag and register or memory location
Carry Data

(B [P B[R [B [[

After RR (rotate right through Carry)
Carry Data

ERRARRREN

Figure 1-2. The RR (rotate right through Carry) instruction

Original contents of Carry flag and register or memory location
Carry Data

(BB B B[B[R

After RLC (rotate left)
Carry Data

(BB [2 [B B |3 [% [B

Figure 1-3. The RLC (rotate left) instruction

22 750 ASSEMBLY LANGUAGE SUBROUTINES

Original contents of Carry flag and register or memory location
Carry Data

([P B [P []2 B[R

After RRC (rotate right)
Carry Data

[B [B B [B [% [

Agure 1-4. The RRC (rotate right) instruction

Original contents of Carry flag and register or memory location

[[® [[B B B []3]
After SLA (shift left arithmetic)

(%% B2 [B [P % [0]

Figure 1-5. The SLA (shift left arithmetic) instruction

Original contents of Carry flag and register or memory location

[B7|BG|B5|B4IBSIBZIBIIBOI

After SRL (shift right logical)

DODDDDDN

Hgure 4-6. The SRL (shift right logical) instruction

CHAPTER 1 GENERAL PROGRAMMING METHODS 23

Original contents of Carry flag and register or memory location
(B[B [Bs[B]Bs [[B]m0

After SRA (shift right arithmetic)

[]% 2B [3 3 []3|

Fgure 4-7. The SRA (shift right arithmetic) instruction

Note the special form for the accumulator.

2. Shift accumulator left logically two positions.

SLA A
SLA A

A shorter, faster alternative is

ADD A, A
ADD AA

The instruction ADD A, A is equivalent to a logical left shift of A. Notethat ADD A,A
is a one-byte instruction, whereas SLA is always at least a two-byte instruction since it
is an addition to the 8080 instruction set.

3. Shift register C right logically one position.
SRL C©

4. Shift register pair HL left logically two positions.

ADD HL,HL
ADD HL, HL

ADD HL, HL is a one-byte logical left shift of HL.
Shift instructions can also be applied to memory locations addressed either through
register pair HL or through indexing from IX or IY.

5. Shift memory location ADDR right one position, preserving the sign bit (bit 7).

Lo HL., ADDR
SRA (HL)

Shifting while preserving the sign bit is called sign extension. A shift that operates in

24 750 ASSEMBLY LANGUAGE SUBROUTINES

this manner is called an arithmetic shift, since it preserves the sign of a two’s comple-
ment number. It can therefore be used to divide or normalize signed numbers.

6. Rotate right the memory location eight bytes beyond the address in INDIR and
INDIR-+1.

LD Xy, (LINDIR) $GET INDIRECT ADDRESS
RR (xy+8) sROTATE BYTE 8 RIGHT

MAKING DECISIONS

In this section procedures are presented for making the following three types of
decisions:

* Branching if a bit is set or cleared
* Branching if two values are equal or not equal
- Branching if one value is greater or less than another.

The first type of decision allows the processor to sense the value of a flag, switch,
status line, or other binary (ON/OFF) input. The second type of decision allows the
processor to determine whether an input or a result has a specific value (an input is a
specific command character or terminator, or a result is 0). The third type of decision
allows the processor to determine whether a value is above or below a numerical
threshold (a value is valid or invalid, or is above or below a warning level or setpoint).
Assuming that the primary value is in the accumulator and the secondary value (if
needed) is at address ADDR, the procedures are as follows.

CHAPTER 1 GENERAL PROGRAMMING METHODS 28

Branching Set or Cleared Bit

Determine if a bit is set or cleared with the BIT instruction. The operands are the bit
position and the register or memory address (either the one in HL or one accessed via
indexing). The Zero flag reflects the bit value and can be used for branching.

Examples
1. Branch to DEST if bit 5 of the accumulator is 1.

RIT G, A
JR NZ, DEST

JP (absolute addressing) can be used instead of JR (relative addressing). The Zero
flag is set to 1 if and only if bit 5 of A is 0.

2. Branch to DEST if bit 2 of register C is 0.
RIT 2,C
JR Z,DEST

3. Branch to DEST if bit 6 of memory location ADDR is 1.
Lo HL, ADDR

BIT &, (HL)
JR NZ, DEST

4. Branch to DEST if bit 3 of the memory location seven bytes beyond the address
in INDIR and INDIR+1 1s 0.

Lo ny, CINDIR)
BIT 3, (xy+7)
JR Z,0DEST

There are shortcuts for bits 0, 6, and 7 of the accumulator.

5. Branch to DEST if bit 7 of the accumulator is 1.

AND A sESTABLISH SIGN FLAG
JP M, DEST

There is no relative jump based on the Sign flag.

6. Branch to DEST if bit 6 of the accumulator is 0.

ADD A, A ;ESTABLISH SIGN FLAG FROM BIT &
JP P, DEST

7. Branch to DEST if bit 0 of the accumulator is 1.

26 730 ASSEMBLY LANGUAGE SUBROUTINES

RRA sMOVE RIT O TO CARRY
JR C, DEST

Here we have the choice of either a relative or an absolute jump.

Branching Based on Equality

Determine if the value in the accumulator is equal to another value by subtraction.
The Zero flag is set to 1 if the values are equal. Compare instructions (CP) are more
useful than subtract instructions (SBC or SUB) because compares preserve the value in
the accumulator for later operations. Note, however, that the Z80 has a 16-bit subtract
with borrow instruction (SBC HL), but no 16-bit compare or subtract instruction.

Examples

1. Branch to DEST if the accumulator contains the number VALUE.

CP VALUE ;DOES A CONTAIN VALUE?
JR Z,DEST : YES, BRANCH

2. Branchto DEST if the contents of the accumulator are not equal to the contents
of memory location ADDR,

Ln HL, ADDR
CP (HL) ;IS A THE SAME AS DATA IN MEMORY?
JR NZ, DEST ;NQO, BRANCH

There are shortcuts if VALUE is 0, 1, or FF .

3. Branch to DEST if the accumulator contains 0.

AND A ;ESTABLISH ZERQ FLAG
JR Z,DEST s BRANCH IF A CONTAINS ZERQ

4. Branch to DEST if the accumulator does not contain FF .

INC A $ESTABLISH ZERO FLAG
JR NZ, DEST +BRANCH IF A WAS NOT FF

This procedure can be applied to any 8-bit register or to a memory location addressed
through HL or via indexing.

5. Branch to DEST if the accumulator contains 1.

DEC A sESTABLISH ZERQ FLAG
JR Z,DEST ;s BRANCH IF A WAS 1

CHAPTER 1 GENERAL PROGRAMMING METHODS 27

6. Branch to DEST if memory location ADDR contains 0.
LI HL, ADDR

INCG (HL) sESTABLISH ZERO FLAG IN TWO STEFS
DEC (HL)
JR Z,DEST s BRANCH IF ADDR CONTAINS ZEROQ

This procedure will also work on data at an indexed address or inregisters B, C, D, E,
H, or L.

7. Branch to DEST if register pair HL contains VALI6.

AND A ;CLEAR CARRY, DON'T CHANGE A
LI rp,VAL1S

SEC HL,rp sDOES HL CONTAIN VAL1&?

JR Z,DEST : YES, BRANCH

The 16-bit subtraction instruction always includes the Carry and is available only for
HL and another register pair (BC, DE, or SP).

Branching Based on Magnitude Comparisons

Determine if the value in the accumulator is greater than or less than some other
value by subtraction. If, as is typical, the values are unsigned, the Carry flag indicates
which is larger. In general,

- Carry= 1 if the value subtracted is larger than the value inthe accumulator (that
is, if a borrow is required).

- Carry = 0 if the value in the accumulator is larger or if the two values are equal.

Since subtracting equal values makes the Carry 0, the alternatives (considering the
accumulator as the primary operand) are

- Primary operand less than secondary operand (Carry set)
- Primary operand greater than or equal to secondary operand (Carry cleared).

If the alternatives you need are “less than or equal to” and “greater than,” you can
simply exchange the primary and secondary operands (that is, from Y — X instead of
X —Y).

Examples

I. Branch to DEST if the contents of the accumulator are greater than or equal to
the number VALUE.

CF VALLE s IS A ABQVE VALUE?
JR NC, DEST s YES, BRANCH

28 7580 ASSEMBLY LANGUAGE SUBROUTINES

2. Branch to DEST if the contents of memory address OPERI are less than the
contents of memory address OPER2.

LD A, (OPER1) ;GET FIRST OFERAND

Ln HL., OPERZ2

CcP (HL) ;IS IT LESS THAN SECOND OFERAND?
JR C,DEST ; YES, BRANCH

3. Branchto DEST if the contents of memory address OPER1 are less than or equal
to the contents of memory address OPER2.

LD A, (QPERZ2) ;GET SECOND OFERAND

LD HL., OPER1

CP (HL) ;IS IT GREATER THAN OR EQUAL TOQ FIRST?
JR NC, DEST : YES, BRANCH

If we loaded the accumulator with OPER] and compared to OPER2, we could
branch only on the conditions

* OPERI greater than or equal to OPER2 (Carry cleared)
* OPERI less than OPER2 (Carry set).
Since neither is what we want, we must reverse the order in which the operands are

handled.

4. Branch to DEST if the contents of register pair HL are greater than or equal to
VALI16.

AND A ; CLEAR CARRY

LD rp,VAL1& IS HL ABOVE VAL 147
SBC HL,rp

JR NC, DEST ; YES, BRANCH

If the values are signed, we must allow for the possible occurrence of two’s comple-
ment overflow.” This is the situation in which the difference between the numbers
cannot be contained in seven bits and, therefore, the sign bit is changed. For example,
if one number is +7 and the other is —125, the difference is —132, which is beyond the
capacity of eight bits (it is less than —128, the most negative number that eight bits can
hold).

If overflow is a possibility, we can determine if it occurred by examining the
Parity/Overflow flag after the addition or subtraction instruction. If that flag is 1,
overflow did occur. The mnemonics here are confusing, since the Parity/ Overflow flag
normally indicates whether the result has even parity; the branches are therefore PE
(Parity Even or Overflow Set) and PO (Parity Odd or Overflow Clear). Weller clarifies
the situation by defining additional mnemonics JV and JNV.8

Thus, in the case of signed numbers, we must allow for the following possibilities:

- The result has the sign (positive or negative, as shown by the Sign flag) that we
want, and the Parity/ Overflow flag indicates that the sign is valid.

CHAPTER 1 GENERAL PROGRAMMING METHODS 29

- The result does not have the sign that we want, but the Parity/ Overflow flag
indicates that two’s complement overflow has changed the real sign.

We have to look for both a true positive (the sign we want, unaffected by overflow)
or a false negative (the opposite of the sign we want, but inverted by two’s complement
overflow).

Examples

1. Branch to DEST if the accumulator contains a signed number greater than or
equal to the number VALUE.
CP VALUE ; PERFORM THE COMPARISION

P PE, FNEG ;DID QVERFLOW OCCUR?
JP P, DEST #NQ, BRANCH IF RESULT POSITIVE

JR DONE
FNEG: JP M, DEST :YES, BRANCH IF RESULT NEGATIVE
DONE : NOP

There are no relative jumps based on the Parity/ Overflow flag.

2. Branch to DEST if the accumulator contains a signed number less than the
contents of memory address ADDR.

LD HL, ADDR

CpP CHL) s PERFORM THE COMFARISON

JP FE, FPOS ;OID OVERFLOW OCCUR?

JdP M, DEST FNO, BRANCH IF RESULT NEGATIVE

JR DIONE
FPQS: JF P,DEST ;s YES, BRANCH IF RESULT POSITIVE
DONE: NOP

Remember, JP PE means “jump on overflow,” while JP PO means “jump on no
overflow.”

The programmer should also note that this is one of the few cases in which the Z80 is
not fully upward-compatible with the 8080 microprocessor.® The 8080 has no overflow
indicator and the P flag always indicates even parity.

There are some cases in which overflow cannot occur and all we must do is use the
Sign flag instead of the Carry flag for branching. These cases are the following:

+ The two numbers have the same sign. When this occurs, the difference is smaller in
magnitude than the larger of the two numbers and overflow cannot occur. You can
easily determine if two numbers have the same sign by EXCLUSIVE ORing them
together and checking the Sign flag. Remember, the EXCLUSIVE OR of two bits s 1 if
and only if the two bits have different values.

XOR VALUE ;COULD OVERFLOW QCCLIR?
JP P, NQOQVF :NOT IF SIGNS ARE THE SAME

30 780 ASSEMBLY LANGUAGE SUBROUTINES

- A value is being compared with zero. In this case, the Sign flag must be set and
examined.

Examples

1. Jump to DEST if the accumulator contains a signed positive number.

AND A ;SET FLAGS FROM VALUE IN A
JP P, DEST

2. Jump to DEST if an 8-bit register contains a signed negative number.

INC reg s SET FLAGS FROM VALLIE IN REGISTER
DEC reg
JP M, DEST

This sequence does not affect the accumulator or the register.

3. Jump to DEST if memory location ADDR contains a signed positive number.

LD HL, ADDR ;POINT TO DATA IN MEMORY
INC (HL)

DEC (HL)

JP F,DEST ; BRANCH IF DATA IS POSITIVE

This sequence does not affect the accumulator or the memory location.

Tables 1-7 and 1-8 summarize the common instruction sequences for making
decisions with the Z80 microprocessor. Table 1-7 lists the sequences that depend only
on the value in the accumulator; Table 1-8 lists the sequences that depend on numerical
comparisons between the value in the accumulator and a specific number, the contents
of a register, or the contents of a memory location (addressed through HL or an index
register). Table 1-9 contains the sequences that depend only on the contents of a
memory location.

LOOPING

The simplest way to implement a loop (that is, to repeat a sequence of instructions)
with the Z80 microprocessor is to perform the following steps:

1. Load register B with the number of times the sequence is to be repeated.
2. Execute the sequence.

3. Use the DJNZ instruction to decrement register B and return to Step 2 if the
result is not 0.

The DJNZ instruction is useful for loop control since it combines a decrement and a
conditional relative branch. Note that DJNZ always operates on register B and

CHAPTER 1 GENERAL PROGRAMMING METHODS 34

Table 4-7. Decision Sequences Depending on the Accumulator Alone

Condition Flag Setting Instruction Conditional Jump
Any bit= 0 BIT n,A JRZorJPZ
Any bit= 1 BIT n,A JR NZ or JP NZ
Bit 7= 10 RLA, RLCA, or ADD A A JR NC or JP NC
Bit 7= 1 RLA, RLCA, or ADD A A JRCorJPC
Bit 6= 0 ADD A A JPP
Bit 6 = 1 ADD A A JPM
Bit0=0 RRA or RRCA JR NC or JP NC
Bit0=1 RRA or RRCA JRCorJPC
Equals zero AND A or OR A JRZorJPZ
Not equal to zero AND AorOR A JRNZ or JP NZ
Positive (MSB = 0) AND AorOR A JPP
Negative (MSB = 1) AND A or OR A JPM

Table 1-8. Decision Sequences Depending on Numerical Comparisons

with the Accumulator (Using CP)

Condition Conditional Jump

Equal JRZorJPZ

JRNZ or JP NZ

JR NC or JP NC
JRCorlJPC

JP P (assuming no overflow)

Not equal

Greater than or equal (unsigned)
Less than (unsigned)

Greater than or equal (signed)

Less than (signed) JP M (assuming no overflow)

Note: All conditions assume that the accumulator contains the primary operand; for example,
less than means “accumulator less than other operand.”

Table 1-9. Decision Sequences Depending on a
Memory Location Alone

Condition Flag Setting Instruction(s) Conditional Jump
Any bit = 0 BIT n, (HL) or (xy+OFFSET) JRZorJPZ
Any bit = | BIT n,(HL) or (xy+OFFSET) JRNZ or JP NZ
=0 INC,DEC JRZorJPZ
F0 INC,DEC JRNZ or JP NZ

32 730 ASSEMBLY LANGUAGE SUBROUTINES

branches if B is not decremented to 0 —the instruction set does not provide any other
combinations. However, DJNZ has limitations: It allows only an 8-bit counter and an
8-bit offset for the relative branch (the branch is thus limited to 129 bytes forward or
126 backward from the first byte of the instruction).

Typical programs look like the following:

LD B, NTIMES sNTIMES = NUMBER OF REPETITIONS
LOOP: .

. Instructions to be repeated

DUNZ LOOP

We could, of course, use other 8-bit registers or count up rather than counting down.
These alternative approaches would require a slightly different initialization, an
explicit DEC or INC instruction, and a conditional JR or JP instruction. In any case,
the instructions to be repeated must not interfere with the counting of the repetitions.
Note that register B is special, and most programmers reserve it as a loop counter.

The 8-bit length of register B limits this simple loop to 256 repetitions. The
programmer can provide larger numbers of repetitions by nesting single-register loops
or by using a register pair as illustrated in the following examples:

- Nested loops

Ln C, NTIMM : START OUTER COLUNTER
LQOPQ: Ln B, NTIML s START INNER COUNTER
LOOPI: .

. Instructions to be repeated

DJUNZ LOOPI ;s DECREMENT INNER COUNTER

DEC C s DECREMENT OQOUTER COLINTER

JR NZ, LOOFD

The outer loop restores the inner counter (register B) to its starting value (NTIML)
after each decrement of the outer counter (register C). The nesting produces a
multiplicative factor —the instructions starting at LOOPI are repeated NTIMM X
NTIML times. We use register B as the inner counter to take maximum advantage of
DJNZ. (Clearly, the inner loop is executed many more times than the outer loop.)

- A register pair as 16-bit counter

LD BC, NTIMES s INITIALIZE 16-BIT COUNTER
LOCP: .

. Instructions to be repeated

DEC BC

LD AR s TEST 146-BIT COUNTER FOR ZERO

R C

JR NZ, LOOP

CHAPTER 1 GENERAL PROGRAMMING METHODS 33

The extra steps are necessary because DEC rp (or DEC xy) does not affect the Zero
flag (so there is no way of telling if the count has reached 0). The simplest way to
determine if a 16-bit register pair contains 0 is to logically OR the two registers. The
result of the logical OR is 0 if and only if all bits in both registers are 0’s. Check this
procedure by hand if you are not sure why it works. A major drawback to this
approach is its use of the accumulator, which requires saving the previous contents if
they are needed in the next iteration.

ARRAY MANIPULATION

The simplest way to access a particular element of an array is to place the element’s
address in register pair HL. In this way, it is possible to

* Manipulate the element by referring to it indirectly, that is, as (HL).

- Access the succeeding element (at the next higher address) by using INC to incre-
ment register pair HL or access the preceding element (at the next lower address) by
using DEC to decrement HL.

* Access an arbitrary element by loading another register pair with the element’s
offset from the address in HL and using the ADD HL instruction. If the offset is fixed,
we can also use indexing from a base address in either index register.

Typical array manipulation procedures are easy to program if the array is one-
dimensional and the elements each occupy one byte. Some examples are

* Add an element of an array to the accumulator. Assume that the address of the
element is in register pair HL. Update HL so that it contains the address of the
succeeding 8-bit element.

ADD (HL) ; ADD CURRENT ELEMENT
INC HL s ADDRESS NEXT ELEMENT

* Check to see if an element of an array is 0 and add 1 to register C if it is. Assume
that the element’s address is in register pair HL. Update HL so that it contains the
address of the preceding 8-bit element.

Lo A, (HL) s GET CURRENT ELEMENT

AND A 3 IS IT ZEROQ?

JR NZ, UPDDT

ING C© ;YES, ADD 1 TO COUNT OF ZEROS
UPDDT: DEC HL ; ADDRESS PRECEDING ELEMENT

* Load the accumulator with the 35th element of an array. Assume that the base
address of the array is in register pair HL.
Ln DE, 35 :GET OFFSET FOR REQUIRED ELEMENT

ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD A, (HL) ;OBTAIN THE ELEMENT

34 750 ASSEMBLY LANGUAGE SUBROUTINES

ADD HL,DE performs a 16-bit addition, using register pair HL as a 16-bit accumu-
lator. Note that the 16-bit offset in register pair DE can be either positive or negative.

The following single instruction performs the same task if the offset is an 8-bit
unsigned number and the base address is in an index register:

LD A, (xy+35) ;0BTAIN THE ELEMENT IN ONE STEP

Manipulating array elements becomes more difficult if more than one element is
needed during each iteration (as in a sort that requires interchanging of elements), if
the elements are more than one byte long, or if the elements are themselves addresses
(as in a table of starting addresses). The basic problems are the lack of indexing with a
variable offset and the lack of instructions that access 16-bit items indirectly. Some
examples of more general array manipulation are

- Load register pair DE with a 16-bit element of an array (stored LSB first). The
starting address of the element is in register pair HL. Update HL so that it points to the
next 16-bit element.

LD E, (HL) :GET LSE OF ELEMENT
INZ HL

LD 0, (HLD sGET MSR OF ELEMENT
INC HL ;s ADDRESS NEXT ELEMENT

- Exchange an element of an array with its successor if the two are not already in
descending order. Assume that the elements are 8-bit unsigned numbers and that the
address of the current element is in register pair HL. Update HL so that it contains the
address of the successor element.

LD A, (HL) s GET CURRENT ELEMENT
INC (HL)
CF (HL) : I8 IT LESS THAN SUCCESSOR?
JR NC, DONE :NO, NO INTERCHANGE NECESSARY
LD B, (HL) s YES, START THE INTERCHANGE
LD (HL), A s CURRENT ELEMENT TQ NEW POSITION
DEC HL
Lo (HL) B ; SUCCESSOR ELEMENT TO NEW POSITION
INC HL
DONE : NCOP

This procedure is awkward because the processor can address only one element ata
time using HL. Clearly, the problem would be even more serious if the two elements
were more than one position apart.

An alternative approach is to use an index register; that is,

LD A, (xy+0) ;GET CURRENT ELEMENT

CP Oxy+1) ;18 IT LESS THAN SUCCESSOR?

JR NC, DONE sNO, NO INTERCHANGE NECEZSARY

LD B, {xy+0) ;YES, START THE INTERCHANGE

LD (xy+1),A 3;CURRENT ELEMENT TO NEW POSITION

LD (xy+0),B ;SUCCESSOR ELEMENT TO NEW POSITION
DONE: INC xy ;MOVE ON TO NEXT PAIR

CHAPTER 1 GENERAL PROGRAMMING METHODS 39

+ Load the accumulator from the 12th indirect address in a table. Assume that the
base address of the table is in register pair HL.

LD DE, 24 s GET DOUBLED OFFSET FOR ELEMENT

ADD HL,DE s CALCULATE STARTING ADDRESS OF ELEMENT
LD E, (HL) ;GET LSB OF INDIRECT ADDRESS

INC HL

LD D, (HL) ;GET MSE OF INDIRECT ADDRERS

LD A, (DE) ;OBTAIN DATA FROM INDIRECT ADDREZS

An alternative approach using an index register is

LD A, (xy+24) ;GET LSR OF INDIRECT ADDRESS

LD E,A

LD A, (xy+25) ;GET MSR OF INDIRECT ADDRESS

LD 0, A

LD A, (DE) ;OBTAIN DATA FROM INDIRECT ADDRESS

Note that in either approach you must double the index to handle tables containing
addresses, since each 16-bit address occupies two bytes of memory.

Some ways to simplify array processing are

- Keep the base address of the table or array in register pair DE (or BC), so ADD HL
or ADD xy does not destroy it.

+ Use ADD A,A to double an index in the accumulator. The doubled index can then
be used to handle arrays or tables consisting of 16-bit elements. ADD HL,HL or ADD
Xy,Xy may be used to double 16-bit indexes.

* Use EX DE,HL to move addresses to and from register pair HL.

Chapters 5 and 9 contain further examples of array manipulation.

Block Move and Biock Compatre Instructions

Another way to simplify array processing is to use the Z80’s block move and block
compare instructions. The block move instructions not only transfer data from one
memory location to another without using the accumulator, but they also update the
array pointers and decrement a 16-bit loop counter. Thus, a block move instruction
can replace a sequence of load, increment, and decrement instructions. Repeated
block move instructions continue transferring data, updating the pointers, and decre-
menting the counter until the counter is decremented to zero. Block compare instruc-
tions are similar to block moves, except that only a single pointer is involved (the other
operand is in the accumulator), and the repeated versions also terminate if the
operands being compared are equal (this is referred to as a true comparison).

A further convenience of block moves and block compares is that they solve the
problem of testing a 16-bit counter for 0. Both block moves and block compares clear

36 730 ASSEMBLY LANGUAGE SUBROUTINES

the Parity/Overflow flag if the 16-bit counter (always in register pair BC) is decre-
mented to zero, and set the Parity/ Overflow flag otherwise. Note that the indicator is
the Parity/ Overflow flag, not the Zero flag.

The block move and compare instructions are the following:

- LDI (LDD) moves a byte of data from the address in HL to the address in DE,
decrements BC, and increments (decrements) DE and HL.

+ LDIR (LDDR) repeats LDI (LDD) until BC is decremented to 0.

- CPI (CPD) compares the accumulator to the data at the address in HL, decre-
ments BC, and increments (decrements) HL. Both CPI and CPD set the Zero flag if
the operands being compared are equal, and clear the Zero flag otherwise.

+ CPIR (CPDR) repeats CPI (CPD) until BC is decremented to 0.

Note that block moves reserve BC, DE, and HL for special purposes, while block
compares reserve only BC and HL.

Examples

1. Move a byte of data from memory location ADDRI to memory location
ADDR2.

LD BC, 1 ; NUMBER OF BYTES TO MQVE = 1

LD DE,ADDR1 ; INITIALIZE SOURCE POINTER

LD HL,ADDR2 ; INITIALIZE DESTINATION POINTER
LDI or LDD :MOVE A BYTE OF DATA

Obviously, the overhead of loading all the register pairs makes it uneconomical to use
LDI or LDD to move a single byte of data.

2. Move two bytes of data from memory locations ADDR1 and ADDRI+1 to
memory locations ADDR2 and ADDR2+1.

LD BC, 2 s NUMBER OF BYTES TO MQVE = 2

LD DE, ADDR! ; INITIALIZE SOURCE POINTER

LD HL, ADDR2 ; INITIALIZE DESTINATION POINTER
LDIR ;MOVE TWO BYTES OF DATA

or

LD BC, 2 ; NUMBER OF BYTES TO MQVE = 2

LD DE,ADDR1+1 ; INITIALIZE SOURCE POINTER

LD HL, ADDR2+1 ; INITIALIZE DESTINATION POINTER
LDDBR sMOQVE TWO BYTES OF DATA

The block move instructions become more useful as the number of bytes to be moved
increases.

CHAPTER 1 GENERAL PROGRAMMING METHODS 37

3. Move ten bytes of data from memory locations starting at ADDR1 to memory
locations starting at ADDR2.

LD BC, 10 s NUMBER OF RYTES TQ MOVE = 10
LD DE, ADDR1 ; INITIALIZE SQURCE POINTER

LD HL, ADDR2 ; INITIALIZE DESTINATION PQINTER
LDIR ;MOVE TEN BYTES OF DATA

or

Lo BC, 10 s NUMBER QF RYTES TO MOVE = 10
LD DE, ADDR1+9 ; INITIALIZE SQURCE POINTER

Lo HL, ADDR2+? ; INITIALIZE DESTINATION POINTER
LDDR sMOVE TEN BYTES OF DATA

4. Examine memory locations starting at ADDR until one is encountered that
contains 0 or until 256 bytes have been examined.

LD BC, 100H s MAXIMUM LENGTH = 100 HEX = 256
Lo HL, ADDR ;POINT TO START OF SEARCH AREA
SUR A sGET ZERO FOR COMPARISON

CPIR

The final value of the Zero flag indicates why the program exited.

Zero flag = 1 if the program found a 0 in memory.
Zero flag = 0 if the program decremented BC to 0.

The block move and block compare instructions are convenient, but their forms are
restricted and their applications are limited. The programmer must remember the
following:

- BC always serves as the counter; it is decremented after each iteration. The
Parity/ Overflow flag (not the Zero flag) indicates whether BC has been decremented
to 0. Be careful —the P/ V flag is set to 0 if BC has been decremented to 0; the polarity
is opposite of that used with the Zero flag. Thus, after a block move or block compare,
the relevant conditional branches have the following meanings:

JP PE means “branch if BC has not been decremented to 0.”
JP PO means “branch if BC has been decremented to 0.”

- HL always serves as the source pointer in block moves and as the memory pointer
in block compares. HL is incremented or decremented after the data is transferred ora
comparison is performed.

- DE always serves as the destination pointer in block moves; it is not used in block
compares. Like HL, DE is incremented or decremented after the data is transferred.

Note also that LDI and LDIR increment both HL and DE, while LDD and LDDR
decrement both pairs.

38 750 ASSEMBLY LANGUAGE SUBROUTINES

- Repeated block comparisons exit if either a true comparison occurs or BC is
decremented to 0. Testing the Zero flag will determine which condition caused the exit.

TABLE LOOKUP

Although the Z80 processor has indexing, the calculations required for table lookup
must be performed explicitly using the ADD HL or ADD xy instruction. This is
because the Z80’s indexing assumes a variable 16-bit address in an index register and a
fixed 8-bit offset. As with array manipulation, table lookup is simple if the table
consists of 8-bit data items; it is more complicated if the table contains longer items or
addresses. The instructions EX DE,HL and JP (HL) or JP (xy) can be useful, but
require the programmer to place the results in specific 16-bit registers.

Examples

1. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the 16-bit index is in memory locations
INDEX and INDEX+1 (MSB in INDEX+1).

LD DE, RASE ; GET BASE ADDRESS

LD HL, (CINDEX) s GET INDEX

ADDY HL,DE ; CALCULATE ADDRESE OF ELEMENT
Lo A, (HL) s OBTAIN THE ELEMENT

Reversing the roles of DE and HL would slow down the program since LD
DE,(ADDR) executes more slowly and occupies more memory than does LD
HL,(ADDR). This asymmetry is caused by the fact that only LD HL,(ADDR) is an
original 8080 instruction; the direct loads of other register pairs (including the stack
pointer) are additions to the underlying 8080 instruction set.

2. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator,

LD L,A sEXTEND INDEX TO 14 BITS IN HL
LD H,0

LD DE, RASE ; GET BASE ADDRESRS

ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD A, (HL) s OBRTAIN THE ELEMENT

3. Load register pair DE with a 16-bit element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator.
ADD A, A ;DOUEBLE INDEX FOR 16-BIT ELEMENTS

LD L,A ;EXTEND INDEX TO 14 BITS
LD H, 0

LD
ADD
LD
INC
Lo

CHAPTER 1 GENERAL PROGRAMMING METHODS 39

BC, BASE : GET BASE ADDRESS

HL., RC s CALCULATE STARTING ADDRESZD
E, (HL) ;GET LSE OF ELEMENT

HL

0, (HL) s GET MSB OF ELEMENT

You can also use the instruction ADD HL,HL to double the index; it is slower than
ADD A,A but it automatically handles cases in which the doubled index is too large

for 8 bits.

4. Transfer control (jump) to a 16-bit address obtained from a table. Assume that
the base address of the table is BASE (a constant) and the index is in the accumulator.

ADD
LD
LD

A A ; DOUBLE INDEX FOR 16-BIT ELEMENTS
L,A ;EXTEND INDREX TO 1& BITS

H, 0

BC, BASE :GET BASE ADDRESS

HL, BC ; CALCULATE STARTING ADIORESS

E, (HL) ;GET LSE OF DESTINATION

HL

D, (HL) ;GET MSE OF DESTINATION

DE, HL

(HL) 3 JUMF TO DESTINATION

The common uses of jump tables are to implement CASE statements (multi-way
branches used in languages such as FORTRAN, Pascal, and PL/1), to decode com-
mands from a keyboard, and to respond to function keys on a terminal.

CHARACTER MANIPULATION

The easiest way to manipulate characters on the Z80 processor is to treat them as
unsigned 8-bit numbers. The letters and digits form ordered subsequences of the
ASCII character set (for example, the ASCII version of the letter A is one less than the
ASCII version of B). Appendix C contains a complete ASCII character set.

Examples

1. Branch to address DEST if the accumulator contains ASCII E.

CF
JR

BT : IS DATA ASCII E?
Z,DEST ;s YES, BRANCH

2. Searcha string starting at address STRNG until a non-blank character is found.

EXAMC:

LD
LD
CP
JR

HL,STRNG ;POINT TO START OF STRING
A, (HL) ; GET NEXT CHARACTER

c ;IS IT A BLANE?

NZ, DONE 3 NO, DONE

40 750 ASSEMBLY LANGUAGE SUBROUTINES

INC HL s YES, PROCEED TO NEXT CHARACTER
JF EXAMC
DONE: NOP

or

LD HL,STRNG-1 ;POINT TO BYTE BEFORE STRING
EXAMC: INC HL
LD A, CHL) s GET NEXT CHARACTER
CP e ;IS IT A BLANK?
JR Z,EXAMC : YER, KEEFP LOOKING

We could make either version execute faster by placing the blank character in a
general-purpose register (for example, register C) and comparing each character with
that register (using CP C) rather than with an immediate data value.

We could also use the block compare instructions which combine the comparison
and the incrementing of the pointer in HL. The CPl instruction, for example, not only
compares the accumulator with the data at the address in HL, but also increments HL
and decrements BC. Thus, the program using CPI is

LD HL,STRNG ;POINT TO START OF STRING
LD A, T ;GET A BLANK FOR COMPARISON

EXAMC: CPI 3 IS NEXT CHARACTER A BLANE?
JR Z,EXAMC :YES, KEEF LOOKING

The CPlinstruction sets the Zero flag to 1 if the operands being compared are equal
and to 0 if they are not equal. It also sets the Parity/ Overflow flag to 0 if it decrements
BC to 0 and to I if it does not, thus allowing the programmer to check easily for the
termination of the string as well as for a true comparison. We cannot use CPIR here,
since it would terminate as soon as a blank character (rather than a non-blank
character) was found.

3. Branch to address DEST if the accumulator contains a letter between C and F,
inclusive.

CP i e ;IS DATA BELOW C7?

JR C, DONE 3 YES, DONE

CF G 3 IS DATA BELOW G?

JR C, DEST s YES, MUST BE BETWEEN C AND F
DIDONE & NOP

We have taken advantage of the fact that G follows F numerically in ASCII, just
as it does in the alphabet. Chapter 8 contains further examples of string manipulation.

CODE CONVERSION

You can convert data from one code to another using arithmetic or logical opera-
tions (if the relationship is simple) or lookup tables (if the relationship is complex).

CHAPTER 1 GENERAL PROGRAMMING METHODS 44

Examples
1. Convert an ASCII digit to its binary-coded decimal (BCD) equivalent.
SUR 07 ;s CONVERT ASCII TO EBCD

Since the ASCII digits form an ordered subsequence of the code, all that must be done
is subtract the offset (ASCII 0).
You can also clear bits 4 and 5 with the instruction

AND 11001111B ;CONVERT ASCIT TO ECD

Either the arithmetic instruction or the logical instruction will convert ASCII 0 (301¢)
to decimal 0 (004¢).

2. Convert a binary-coded-decimal (BCD) digit to its ASCII equivalent.
ADD A, 707 ;s CONVERT BCD TO ASCII
The inverse conversion is equally simple. Bits 4 and 5 can be set with the instruction
QR 00110000F ; CONVERT BCD TQ ASCII
Fither the arithmetic instruction or the logical instruction will convert decimal 6 (061¢)

to ASCII 6 (36,6).

3. Convert one 8-bit code to another using a lookup table. Assume that the lookup
table starts at address NEWCD and is indexed by the value in the original code (for
example, the 27th entry is the value in the new code corresponding to 27 in the original
code). Assume that the data is in memory location CODE.

Lo A, (CODE) GET THE QLD CODE

LD L.A ;EXTEND INDEX TO 16 BITS

LD H, 0

LD DE, NEWCD ;GET BASE ADDREZS

ADD HL,DE s CALCULATE ADDRESS OF ELEMENT
LD A, (HL) s GET THE ELEMENT

Indexed addressing cannot be used here, since memory location CODE contains a
variable value.

Chapter 4 contains further examples of code conversion.

MULTIPLE-PRECISION ARITHMETIC

Multiple-precision arithmetic requires a series of 8-bit operations. They are

+ Clear the Carry flag initially, since there is never a carry into or borrow from the
least significant byte.

42 750 ASSEMBLY LANGUAGE SUBROUTINES

+ Use the Add with Carry (ADC) or Subtract with Carry (SBC) instruction to
perform an 8-bit operation and include the carry or borrow from the previous
operation.

A typical 64-bit addition program is

Lo B, 8 s NUMBER OF BYTES = &

SUR A ;CLEAR CARRY INITIALLY

LD HL, NUM1 ;FOINT TQO START OF NUMBERSZ
LD DE, NUM2

ADNS: LD A, (DE) ;GET A BYTE OF ONE OFERAND
ADC A, (HL) ;ADD A BYTE OF THE QTHER OFERAND
LD (HL) , A s STORE THE &-BIT &UM
INC DE s UFDATE POINTERS
ING HL
DLUNZ ADDS ; COUNT BYTE OFPERATIONS

Chapter 6 contains further examples.

MULTIPLICATION AND DIVISION

There are many ways to implement multiplication. One approach is to convert
multiplication by a small integer into a specific short sequence of additions and left
shifts.

Examples

1. Multiply the contents of the accumulator by 2.
ADD A A s DOURLE A

2. Multiply the contents of the accumulator by 5.

LD E.,A

ADD A,A sA TIMES 2
ADD A, A :A TIMES 4
ADD AR A TIMES S

Both examples assume that no carries ever occur. ADD HL could be similarly used
to produce a 16-bit result.

This approach is often handy in accessing elements of two-dimensional arrays. For
example, assume a set of temperature readings taken at four different positions in each
of three different storage tanks. Organize the readings as a two-dimensional array
T(1,J), where Iis the tank number (1, 2, or 3) and J identifies the position in the tank (1,
2,3, or 4). Store the reading in the computer’s memory one after another as follows,
starting with the reading at position 1 of tank 1:

RASE T(1, 1) Reading at tank 1, position 1
BRASE+1 T(1,2) Reading at tank 1, position 2
RASE+2 TC1,3) Reading at tank 1, position 2

CHAPTER 1 GENERAL PROGRAMMING METHODS 43

BASE+3 T(1,4) Reading at tank 1, position 4
BRASE+4 T(2,1) Reading at tank 2, position 1
BASE+S T2, 2) Reading at tank 2, position 2
BASE+& T(2,3) Reading at tank 2, position 3
BASE+7 T(2,4) Reading at tanmk 2, position 4
BRASE+R T(R, 1) Reading at tank J, position 1
RASE+9 T(Z,2) Reading at tank 3, position 2
RASE+10 T(R,) Reading at tank 2, position 3
BASE+11 T(R,4) Reading at tank 3, position 4

Generally, the reading T(I,J) is located at address BASE + 4 * (I—1) + (J—1). If Iis in
the accumulator and J is in register B, the accumulator can be loaded with T(I,J) as
follows:

DEC A s QFFSET FOR TANE I

ADD A, A 32 % (I-1)

ADD A, A 34 = (I-1)

ADD AR sADD QFFSET FOR POSITION J
DEC A 34 = (I-1) + (J4-1)

LD L.,A sEXTEND INDEX TO 1& RITS

LD H, 0

LD DE, RASE ;GET BASE ADDRESS OF READINGS
ADD HL,DE ;s ACCESS DESIRED READING

Lo A, (HL) sFETCH T(I, D

Extending this approach to handle arrays with more dimensions is shown in
Chapter 5.
Division by a power of 2 can be implemented as a series of right logical shifts.

Example
Divide the contents of the accumulator by 4.
SRL A sDIVIDE A BY 2
SRL A :AND THEN BY 2 AGAIN
o1
222 sDIVIDE A BY 4 BY RUTATING IT TWICE

AND 00111111B ;MAKE SHIFTS LOGICAL BY CLEARING MSE-S

The second alternative uses the one-byte instruction RR A, rather than the two-byte
instruction SRL A. When multiplying or dividing signed numbers, be careful to
separate the signs from the magnitudes. Replace logical shifts with arithmetic shifts
that preserve the value of the sign bit.

Other approaches to multiplication and division include algorithms involving shifts
and additions (multiplication) or shifts and subtractions (division) as described in
Chapter 6, and lookup tables as discussed previously in this chapter.

44 750 ASSEMBLY LANGUAGE SUBROUTINES

LIST PROCESSING

Additional information on the following material can be found in an article by K.S.
Shankar published in IEEE Computer.'°

Lists can be processed like arrays if the elements are stored in consecutive addresses.
If the elements are queued or chained, however, the limitations of the instruction set
are evident because

- Indexed addressing allows only an 8-bit fixed offset.
+ Noindirect addressing is available, except through register pairs or index registers.
- Addresses in register pairs or index registers can be used only to retrieve or store
8-bit data.
Examples

1. Retrieve an address stored starting at the address in register pair HL. Place the
retrieved address in HL.

LD E, (HL) ;GET LSE OF LINK

INC HL

LD 0, (HL) sGET MSE OF LINK

EX DE, HL sREPLACE CURRENT POINTER WITH LINK

This procedure allows you to move from one element to another in a linked list.

2. Retrieve data from the address currently in memory locations INDIR and
INDIR+1 and increase that address by 1.
LD HL, ¢INDIR);GET PQINTER FROM MEMORY
LD A, (HL) ;GET DATA USING POINTER
INC HL s UPDATE POINTER RY 1
LD CINDIR) HL
This procedure allows the use of the address in memory as a pointer to the next
available location in a buffer.

3. Store an address from DE starting at the address currently in register pair HL.
Increment HL by 2.

LD (HL),E ; STORE LSE OF POINTER

INC HL

LD (HL), Dy ; STORE MSRB OF POINTER

INC HL s COMPLETE UFPDATING OF HL

This procedure allows building a list of addresses. Such a list could be used, for

example, to write threaded code in which each routine concludes by transferring
control to its successor. The list could also contain the starting addresses of a series of
test procedures or tasks or the addresses of memory locations or I/ O devices assigned
by the operator to particular functions.

CHAPTER 1 GENERAL PROGRAMMING METHODS 48

GENERAL DATA STRUCTURES

Additional information on the following material can be found in the book Data
Structures Using Pascal by A. Tenenbaum and M. Augenstein.!! There are several
versions of this book by the same authors for different languages and computers.

More general data structures can be handled using the procedures for array manipu-
lation, table lookup, and list processing that have been described earlier. The key
limitations in the instruction set are the same ones mentioned in the discussion of list
processing.

Examples

1. Queues or linked lists. Assume there is a queue header consisting of the base
address of the first element in memory locations HEAD and HEAD+1. If there are no
elements in the queue, HEAD and HEAD+ 1 both contain 0. The first two locations in
each element contain the base address of the next element or 0 if there is no next
element.

*+ Add anelement to the head of the queue. Assume that the element’s base address is
in DE.

LD HL., HEAD ; REFLACE HEAD, SAVING QLD VALLE
Lo Ay (HL) s MOVE LESS SIGNIFICANT BYTES

LD (HLY, E

INC HL

LD B, (HL) s MOVE MORE SIGNIFICANT BYTES

LD (HL), D

LD (DE), A s NEW HEAD POINTS TO OLD HEAD

Ln AR s INCLUDING MORE SIGNIFICANT BYTES
INC DE

Lo (DE), A

- Remove an element from the head of the queue and set the Zero flag if no element
is available. Place the base address of the element (or 0 if there is no element) in DE.

LD HL , HEAD ;OBTAIN HEAD 0OF QUELE
LD E, (HL) ;LESS SIGNIFICANT BYTE
INCG HL

Lo 0, (HL) ;MORE SIGNIFICANT BYTE
LD A, D

OR E ;s ANY ELEMENTS IN QUELE?
JR Z, DONE s NQ, DONE

INC DE s YES, MAKE NEXT ELEMENT NEW HEAD
LD A, (DE)

Lo (HL) , A ;MORE SIGNIFICANT BYTE
DEC DE

DEC HL

LD (DE), A ;LESS SIGNIFICANT BYTE

Lo (HL) . A
DONE: NOP

A6 750 ASSEVBLY LANGUAGE SUBROUTINES

Since no instruction after OR E affects any flags, the final value of the Zero flag
indicates whether the queue was empty.

2. Stacks. Assume there is a stack structure consisting of 8-bit elements. The
address of the next empty location is in addresses SPTR and SPTR+1. The lowest
address that the stack can occupy is LOW and the highest address is HIGH. Note that
this software stack grows up in memory (toward higher addresses), whereas the Z80’s
hardware stack grows down (toward lower addresses).

- If the stack overflows, set the Carry flag and exit. Otherwise, store the accumula-
tor in the stack and increase the stack pointer by 1. Overflow means that the stack has
expanded beyond its assigned area.

LD HL, (SPTR) s GET THE STACE POINTER
EX DE, HL
LD HL, —(HIGH+1) s CHECK FOR STACK QVERFLOW
ADD HL,DE ;s SET CARRY IF STACK OVERFLOWS
JR C, DONE sAND EXIT ON OVERFLOW
EX DE, HL ; GET STACK POINTER BACK
Lo (HL) A s STORE ACCUMULATOR IN STACK
INC HL :UPDATE STACE POINTER
LD (SPTR), HL

DONE: NOP

- If the stack underflows, set the Carry flag and exit. Otherwise, decrease the stack
pointer by 1 and load the accumulator from the stack. Underflow means that an
attempt has been made to remove data from an empty stack.

LD HL, (SPTR) :GET THE STACK POINTER
EX DE, HL
LD HL, —(LOW+1) s CHECK FOR STACK LUNDERFLOW
ADD HL,DE ; CLEAR CARRY IF STACK UNDERFLOWS
JR NC, DONE sANDD EXIT ON UNDERFLOW
EX DE, HL ;GET STACK POINTER BACK
DEC HL s UFDATE STACE PQINTER
LD A, (HL) ;LOAD ACCUMULATOR FROM STACK
LD (SPTR), HL ;RESTORE STACK POINTER
DONE: CCF 3 SET CARRY ON UNDERFLOW

Both example programs utilize the fact that ADD HL affects only the Carry flag.
Remember, ADD HL does not affect the Zero flag. Note also that DEC rp and INC rp
do not affect any flags.

PARAMETER PASSING TECHNIQUES

The most common ways to pass parameters on the Z80 microprocessor are

1. In registers. Seven 8-bit primary user registers (A, B, C, D, E, H, and L) are
available, and the three register pairs (BC, DE, and HL) and two index registers (IX

CHAPTER 1 GENERAL PROGRAMMING METHODS 47

and 1Y) may be used readily to pass addresses. This approach is adequate in simple
cases, but it lacks generality and can handle only a limited number of parameters. The
programmer must remember the normal uses of the registers in assigning parameters.
In other words,

+ The accumulator is the obvious place to put a single 8-bit parameter.

- Register pair HL is the obvious place to put a single address-length (16-bit)
parameter.

+ Register pair DE is a better place to put a second address-length parameter than
register pair BC, because of the EX DE,HL instruction.

+ Anindex register (IX or IY) is the obvious place to put the base address of a data
structure when elements are available at fixed offsets.

This approach is reentrant as long as the interrupt service routines save and restore
all the registers.

2. Inan assigned area of memory. There are two ways to implement this approach.
One is to place the base address of the assigned area in an index register. Then
particular parameters may be accessed with fixed offsets. The problem here is that the
Z80’s indexing is extremely time-consuming. An alternative is to place the base
address in HL. Then parameters must be retrieved in consecutive order, one byte at a
time.

In either alternative, the calling routine must store the parameters in memory and
load the starting address into the index register or HL before transferring control to
the subroutine. This approach is general and can handle any number of parameters,
but it requires a lot of management. If different areas of memory are assigned for each
call or each routine, a unique stack is essentially created. If a common area of memory
is used, reentrancy is lost. In this method, the programmer is responsible for assigning
areas of memory, avoiding interference between routines, and saving and restoring the
pointers required to resume routines after subroutine calls or interrupts.

3. In program memory immediately following the subroutine call. If this approach
is used, remember the following:

- The base address of the memory area is at the top of the stack; that is, the base
address is the normal return address, the location of the instruction immediately
following the call. The base address can be moved to an index register by popping the
stack with

POFP Xy sRETRIEVE BRASE ADDRESS OF PARAMETERS

Now access the parameters with fixed offsets from the index register. For example,
the accumulator can be loaded with the first parameter by using the instruction

LD A, (iy+0) sMOVE FIRST PARAMETER TO A

A8 730 ASSEVBLY LANGUAGE SUBROUTINES

- All parameters must be fixed for a given call, since the program memory is
typically read-only.

- The subroutine must calculate the actual return address (the address immediately
following the parameter area) and place it on top of the stack before executinga RET
instruction.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter.
Show a main program that calls SUBR and contains the required parameters. Also
show the initial part of the subroutine that retrieves the parameters, storing the 8-bit
item in the accumulator and the 16-bit item in register pair HL, and places the correct
return address at the top of the stack.

Subroutine call

CALL SUBR s EXECUTE SUBROUTINE
DEFR PARS s 8-RIT FARAMETER
DEFW PAR1& 3 16-RIT PARAMETER

»se next instruction ...

Subroutine
SUBR: PQF xy :POINT TO START OF FARAMETER AREA

Ln A, (xy+1) :GET LSB OF 14-EIT FARAMETER
LD E,A
LD A, (xy+2) :GET MSE OF 146-BIT FPARAMETER
LD D, A
LD A, (xy+0) GET S-BIT FPARAMETER
LD BC, 3 s UPDATE RETURN ADDRESS
ADD xy,BC
PUSH xy
. « o remainder of subroutine . . .
AET sRETURN TO NEXT INSTRUCTION

The initial POP xy instruction loads the index register with the return address that
CALL SUBR saved at the top of the stack. In fact, the return address does not contain
an instruction; instead, it contains the first parameter (PARS). The next instructions
move the parameters to their respective registers. Finally, adding 3 to the return
address and saving the sum in the stack makes the final RET instruction transfer
control back to the instruction following the parameters.

This approach allows parameter lists of any length. However, obtaining the parame-
ters from memory and adjusting the return address is awkward at best; it becomes a
longer and slower process as the number of parameters increases.

CHAPTER 1 GENERAL PROGRAMMING METHODS 49

4. In the stack. When using this approach, remember the following:

+ CALL stores the return address at the top of the stack. The parameters that the
calling routine placed in the stack begin at address ssss+ 2, where ssss is the contents of
the stack pointer. The 16-bit return address occupies the top two locations of the stack,
and the stack pointer itself always refers to the lowest occupied address, not the highest
empty one.

» The subroutine can determine the value of the stack pointer (the location of the
parameters) by (a) storing it in memory with LD (ADDR),SP or (b) using the sequence

LD HL., O s MOVE STACK FOINTER TO HL
ADD HL, 5P

This sequence places the stack pointer in register pair HL (the opposite of LD SP,HL).
We can use an index register instead of HL if HL is reserved for other purposes.

- The calling program must place the parameters in the stack and assign space for
the results before calling the subroutine. It must also remove the parameters from the
stack (often referred to as cleaning the stack) afterward. Cleaning the stack is simple if
the programmer always places the parameters above the empty area assigned to the
results. Then the parameters can be removed, leaving the results at the top. The next
example illustrates how this is done. An obvious alternative is for the results to replace
some or all of the parameters.

+ Stack locations can be allocated dynamically for results with the sequence

LD HL, -NRESLT sLEAVE ROOM FOR RESULTS
ADD HL,SP
Ln SP, HL

This sequence leaves NRESLT empty locations at the top of the stack as shown in
Figure 1-8. Of course, if NRESLT is small, simply executing DEC SP NRESLT times
will be faster and shorter. The same approaches can be used to provide stack locations
for temporary storage.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter,
and that it produces two 8-bit results. Show a call of SUBR, the placing of the
parameters in the accumulator and register pair HL, and the cleaning of the stack after
the return. Figure 1-9 shows the appearance of the stack initially, after the subroutine
call, and at the end. Using the stack for parameters and results will generally keep the
parameters at the top of the stack in the proper order. In this case, there is no need to
save the parameters or assign space in the stack for the results (they will replace some
or all of the original parameters). However, space must be assigned on the stack for
temporary storage to maintain generality and reentrancy.

B0 230 ASSEMBLY LANGUAGE SUBROUTINES

Calling program
LD HL, -2 s LEAVE ROOM ON STACK FOR RESULT
ADD HL,SP ;A GENERAL WAY TO ADJIST =P
LI SP, HL
LD HL, (PAR1&): ORTAIN 146-RIT FARAMETER
PUSH HL s MOVE 16-RIT PARAMETER TO STACK
LD A, (PARR) sOBRTAIN ©-RIT FARAMETER
PLUSH AF sMOVE 8-RIT PARAMETER TQ STACK
INC 8P s REMOVE EXTRANEQUS BYTE
CALL SURR s EXECUTE SURROUTINE
Ln HL., 3 : CLEAN PARAMETERS FROM STACK
ADD HL,SP
LD SP,HL sRESULT IS NQW AT TOP OF STACE
Subroutine
SLIBR: LD HL, 2 s FOINT TO START OF PARAMETER AREA
ADD HL, =P
LD A, (HL) s GET 8-RIT FARAMETER
INC HL
LD E, (HL? sGET 14-RIT FARAMETER
INC HL
LD 0, (HL)
INC HL
EX DE, HL
=« « remainder of subroutine . . .
RET

The first three instructions of the calling program could be replaced with two DEC
SP instructions, and the last three instructions with three INC SP instructions. Note
that only 16-bit register pairs can be moved to or from the stack. Remember, AF
consists of the accumulator (MSB) and the flags (LSB).

ssss - NRESLT

Empty space

for storing
results in the
stack
$8SS
Stack Stack
Pointer Pointer

No values are placed in the locations.
The initial contents of the stack pointer are ssss.

Flgure 4-8. The stack before and after assigning NRESLT empty locations for results

CHAPTER 1 GENERAL PROGRAMMING METHODS 54

Initial State of Stack After Execution Final State of
the Stack of CALL SUBR the Stack

5585-7

LSB of return
address
MSB of return
address
8-bit
parameter

LSB of 16-bit
parameter

MSB of 16-bit $858-2
para meter

Empty byte
for result #1

Empty byte
Ss8S
for result #2 Result #2

Result #1

Stack Stack Stack
Pointer Pointer Pointer

The initial contents of the stack pointer are ssss.

Figure 1-9. The effect of a subroutine on the stack

SIMPLE INPUT/OUTPUT

Simple input/output can be performed using either 8-bit device (port) addresses or
full 16-bit memory addresses. The advantages of device addresses are that they are
short and provide a separate address space for I/ O ports. The disadvantages are that
only a few instructions (IN, OUT, and block I/ O instructions) use device addresses. If,
on the other hand, I/O devices occupy memory addresses, any instruction that
references memory can also perform I/ O. The problems with this approach are that it
is non-standard, it makes it difficult for a reader to differentiate I/ O transfers from
memory transfers, and it requires that some memory address space be reserved for I/ O
devices.

Examples
1. Load the accumulator from input port 2.
IN A, (2) s READ FROM FORT 2

or

LD c,2 ;PUT PORT ADDRESS IN C
IN A, (D) ; READ FROM FPORT 2

B2 750 ASSEMBLY LANGUAGE SUBROUTINES

The second alternative is longer but more flexible. The IN reg,(C) instruction allows
the data to be obtained from any port and loaded into any register. On the other hand,
IN A (port) is limited to loading the accumulator from a fixed port address. The Sign
and Zero flags can be set by IN reg,(C) for later testing, whereas IN A (port) does not
affect the flags.

2. Load the accumulator from the input port addressed by the contents of memory
location IPORT.

LD A. (IPORT) ;GET DEVICE (PORT) ADDRESS
LD C,A
IN A, (T) : READ DATA FROM INPUT PORT
The port address can be readily changed (by changing RAM location [PORT) to
accommodate multiple input devices attached to a single CPU or to handle different
device addresses used in different models, configurations, or computers.

3. Load the accumulator from the input port assigned to the memory address in
HL.

LD A, (HL ;READ DATA FROM INPUT PORT

Here the same input routine can obtain data from any memory address. Of course,
that memory address is no longer available for normal use, thus reducing the actual
memory capacity of the computer.

4. Store the accumulator in output port 6.

auT (&), A sWRITE ‘DATA TO FORT &
or

LD c,é s ACCESS PORT &

aut (C), A sWRITE DATA TO FORT &

In the second alternative, the indirect port address can be changed easily to accom-
modate a different set of 1/ O ports or variable I/ O devices.

5. Store the accumulator in the output port addressed by the contents of memory
location OPORT.

Lo HL,OPORT ;0OBTAIN FORT ADDRESS
LD C, (HL)
auT (), A s SEND DATA TO OQUTPUT PORT

Here the port address is a variable.

6. Storethe accumulator in the output port assigned to the memory address in HL.

LD (HL), A s SEND DATA TG QUTFUT PORT

CHAPTER 1 GENERAL PROGRAMMING METHODS 53

Here the same output routine can send data to any memory address.

7. Set the Zero flag if bit 5 of port D4 is 0.

IN A, (OD4H) ;READ DATA FROM PORT D4
BIT 5,A s TEST BIT &

If the bit position to be tested is 0, 6, or 7, a shift or AND A instruction can be used to
test it.

8. Load the Carry flag from bit 7 of the input port assigned to memory address
33A5.

LD A, (RRASH) s OBTAIN DATA
RLA sMQVE SIGN RIT TO CARRY

or

LD HL, (33ASH)
RL (HL) sMOVE SIGN BRIT OF INPUT DATA TO CARRY
RL (HL) could have unpredictable side effects, since it will attempt to store its result
back in the input port. Although the port is addressed as a memory location, it may not
be writable (that is, it might act like a ROM location). For example, it could be
attached to a set of switches that the microprocessor obviously cannot change.

9. Set bit 5 of output port ASy.

LD A, 00100000R sSET BIT 5 7O 1
QUT (QASH), A sMOVE THE BIT TO PORT AS

To leave the other bits of port A5, unchanged, a copy of the data in RAM is needed.
Then the following sequence will set bit 5 to 1.

LD A, (CORY) sGET COPY QF DATA
SET S5,A s SET BIT S

QUT (QATH), A ;s UFDATE QUTRUT DATA
LD (COPY), A sUPDATE COPY OF DATA

Note that the CPU cannot generally read an output port, and the input port with the
same device address is not necessarily the same physical location.

10. Clear bit 3 of the output port assigned to memory address B0701.

LD HL, ORO7QH
RES 3, (HL) ;CLEAR BIT 3

Even though the output port is addressed as a memory location, it may not be
readable. If it is not, the overall effect of RES 3,(HL) will be uncertain; the instruction
will surely clear bit 3, but it will assign the other bits of the port the values supposedly
obtained by reading from them. These values are generally arbitrary unless the port is

54 750 ASSEMBLY LANGUAGE SUBROUTINES

latched and buffered. Saving a copy of the data in RAM location TEMP removes the
uncertainty. Now bit 3 can be cleared with the sequence

LD HL, TEMF

RES &, (HL) ;SET BIT 3 OF COFPY
LD DE, RO70H
LDI s3ET RIT 3 OF OUTPUT DATA ALSO

Block Input and Output Insiructions

The Z80 has special instructions that combine input or output with counting and
updating of a memory pointer. These so-called block I/ O instructions work much like
the block move and block compare instructions discussed earlier. All block 1/O
instructions move data either from memory to an output port or from an input port to
memory (without involving the accumulator), update (either increment or decrement)
the memory pointer in register pair HL, and decrement the counter in register B. Note
that block I/ O instructions use an 8-bit byte counter in register B, whereas block move
and block compare instructions use a 16-bit counter in BC. In block I/ O instructions,
register C always contains the device address. The only meaningful flag is the Zero
flag; it is set to 1 if the instruction decrements B to 0, and to 0 otherwise.

Repeated block I/O instructions continue transferring data, updating HL,, and
decrementing B until B is decremented to 0. The drawback here is that continuous data
transfers make sense only if the I/ O device operates at the same speed as the processor.
Obviously, most I/ O devices operate much more slowly than the processor, and the
programmer must introduce a delay between transfers. For example, the processor
cannot transfer a block of data to or from a keyboard, printer, video display, or
magnetic tape unit without waiting between characters. Thus, repeated block 1/O
instructions are useful only to transfer data to devices that operate at processor speed,
such as a buffer memory or a peripheral chip.

The Z80’s block 1/0O instructions are the following:

- INI(IND) moves a byte of data from the port address in C to the memory address
in HL, increments (decrements) HL, and decrements B.

+ INIR (INDR) repeats INI (IND) until B is decremented to 0.

- OUTI (OUTD) moves a byte of data from the memory address in HL to the port
address in C, increments (decrements) HL, and decrements B.

+ OTIR (OTDR) repeats OUTI (OUTD) until B is decremented to 0.

Note that block I/ O instructions reserve B, C, and HL, but not DE. These instruc-
tions also change all the flags except Carry, although only the Zero flag is meaningful.

CHAPTER 1 GENERAL PROGRAMMING METHODS B8

Examples

1. Move a byte of data from memory address ADDR to output port OPORT.

LD B, 1 s NUMBER OF BYTES = 1

LD C, QPORT s PORT ADDRESZ = OPORT

LD HL., ADDR s INITIALIZE MEMORY POINTER
QUTI sMOVE A RYTE OF DATA

Obviously, the overhead of loading the registers makes it uneconomical touse OUTI to
send a single byte of data.

2. Move two bytes of data from input port IPORT to memory addresses ADDR
and ADDR++1. Use subroutine DELAY to wait before each transfer; assume that
DELAY provides the proper time interval without affecting any registers.

LD E,2 sNUMEER OF BYTEZ = 2

LD C, IFORT ;s PORT ADDRESZ = IPORT

LD HL., ADDR s INITIALIZE MEMORY POINTER
INBYT: CALL DELAY sWAIT BEFORE EACH INFUT BYTE

INI ;READ A BYTE AND UFPDATE

JR NZ, INBYT

The Zero flag indicates whether the counter in B has been decremented to 0. Not only
does INI transfer the data directly into memory, but it also increments HL and
decrements B.

3. Move ten bytes of data from memory addresses starting with ADDR to output
port OPORT. Use subroutine DELAY to wait between bytes.

Ln B, 10 s NUMBER QF BYTES = 10

LD C, QFORT ; PORT ADDRESS = QOPORT

LD HL , ADDR s INITIALIZE MEMORY POQINTER
QUTRYT: QUTI sWRITE A BRYTE AND UFDATE

CALL DELAY sWAIT RETWEEN BYTES

JR NZ,QUTBYT

We cannot use the repeated block output instruction OTIR, since it does not allow a
delay between bytes.

4. Move 30 bytes of data from an input buffer addressed through input port IPORT
to memory addresses starting with ADDR. Assume that the processor can read
successive bytes of data from the buffer without waiting.

[B, 30 s NUMBER OF BYTES = 30
Lo C, IPORT ; PORT ADDRESES = IPORT
LD HL., ADDR s INITIALIZE MEMORY FOINTER
INIR yREAD A BLOCK OF DATA

This sequence does not allow any programmed delay between input operations, so it
makes sense only if the input device operates at the same speed as the processor.

56 750 ASSEMBLY LANGUAGE SUBROUTINES

LOGICAL AND PHYSICAL DEVICES

One way to allow references to I/ O devices by number is to use an I/ O device table.
An I/ O device table assigns the actual I/ O addresses (physical devices) to the device
numbers (logical devices) to which a program refers. A systems program then uses the
table to convert the device numbers into actual I/ O addresses.

The same applications program can be made to utilize different I/O devices by
making the appropriate changes in the I/O device table. A program written in a
high-level language may, for example, refer to input device #2 and output device #5.
For testing purposes, an operator may assign devices #2 and #5 to be the input and
output ports, respectively, of his or her console. For normal stand-alone operation, the
operator may assign device #2 to be an analog input unit and device #5 the system
printer. For operation by remote control, the operator may assign devices #2and #5 to
be communications units used for input and output. ”

This distinction between logical and physical devices can be implemented by using
the instructions IN reg,(C) and OUT (C),reg. If a device table starting in address
IOTBL and consisting of 8-bit device addresses is used, input and output are general-
ized as follows:

- Load the accumulator from a fixed device number DNUM.

LD A, (IQTBL+DNUM) ;GET DEVICE ADDRESS
LD C,A
IN A, (C) ;OBRTAIN DATA FROM DEVICE

- Load the accumulator from the device number in memory location DEVNO.

LD A, (DEVNG) :GET DEVICE NUMEER
Lo L,A s MAKE DEVICE NUMRER INTO INDEX
L H,0

LD DE, IOTRL : GET BASE ADDRESS OF DEVICE TAELE
ADD HL,DE s ACCESS ACTUAL DEVICE ADDRESS

LD G, (HL) :OBRTAIN DEVICE ADDREZS

IN A, (0 ;OBTAIN DATA FROM DEVICE

- Store the accumulator in a fixed device number DNUM.

LD HL, IOTBL+DNUM ;GET DEVICE ADDRESS
LD C, (HL)
auT (C), A s SENDD DATA TQ DEVICE

- Store the accumulator in the device number in memory location DEVNO.

LD B, A s SAVE QUTPUT DATA

Lo A, (DEVNQ) sGET DEVICE NUMBER

LD L.A s MAKE DEVICE NUMBER INTO INDEX

LD H, 0

LD DE, IQTEL ; GET BASE ADDRESS OF DEVICE TAELE
ADD HL,DE ;s ACCESS ACTUAL DEVICE ADDREZS

LD G, (HL) ; OBRTAIN DEVICE ADDRESS

aurT (), B ; SEND DATA TO DEVICE

CHAPTER 1 GENERAL PROGRAMMING METHODS 57

In real applications (see Chapter 10), the device table generally contains the starting
addresses of I/ O subroutines (drivers) rather than actual device addresses.

STATUS AND CONTROL

Status and control signals can be handled like any other data. The only special
problem is that the processor cannot ordinarily read output ports. To know the current
contents of an output port, retain a copy in RAM of the data stored there.

Examples

1. Branch to address DEST if bit 3 of input port 6 is 1.

IN A, (&) s READ STATUS FROM FORT &
RIT 3,A s TEST BIT 3
JR NZ, DEST ; BRANCH IF BIT 3 IS 1

2. Branchtoaddress DEST if bits 4, 5, and 6 of input port STAT are 5 (101 binary).

IN A, (STAT) s READ STATUS

AND 011100Q00R s MASE. OFF BITS 4,5,AND &
cpP 01010000k ;IS STATUS FIELD = 57

JR Z,DEST ; YES, BRANCH TO DEST

3. Set bit 5 of output port CNTL to 1. Assume that a copy of the data is in a table
starting at address OUTP.

LD HL, QUTF+CNTL ;GET COPY OF DATA

Lo A, (HL)

OR 00100000R s SET BIT & OF PORT

QUT (CNTL), A s SEND DATA TO QUTPUT PORT
LD (HL) , A s UPDATE COPY OF DATA

Update the copy every time the data is changed.

4. Setbits 2, 3, and 4 of output port CNTL to 6 (110 binary). Assume that a copy of
the data is in a table starting at address OUTP.

LD HL, OUTP+CNTL ;GET COFY QF DATA

LD A, (HL)

AND 11100011R ;CLEAR BITS 2,3, AND 4

OR 00011000B ;SET CONTROL FIELD TO &
QUT (CNTL), A : SEND DATA TQ QUTFUT PORT
LD (HL) , A s UPDATE COPY OF DATA

Retaining copies of the data in memory (or using the values stored in a latched,
buffered output port) allows changing part of the data without affecting other parts
that may have unrelated meanings. For example, changing the state of one indicator

58 7580 ASSEMBLY LANGUAGE SUBROUTINES

light (such as a light that indicated remote operation) will not affect other indicator
lights attached to the same port. Similarly, changing one control line (for example, a
line that determined whether an object was moving in the positive or negative
X-direction) would not affect other control lines attached to the same port.

5. Branch to address DEST if bit 7 of input port IPORT is 0.

LD C, IPORT sESTABLISH PORT ADDRESS
IN A, (C) sREAD DATA FROM PORT
JP Z,DEST s BRANCH IF INFUT RIT 7 IS O

The instruction IN reg,(C) affects the Sign and Zero flags, whereas IN A,(port) does
not.

PERIPHERAL CHIPS

The most common peripheral chips in Z80-based computers are the PIO (Parallel
Input/Output device), SIO (Serial Input/Output device), and CTC (Clock/ Timer
Circuit). All these devices can perform many functions, much as the microprocessor
itself can. Of course, peripheral chips perform fewer different functions than proces-
sors, and the range of functions is much more limited. The idea behind programmable
peripheral chips is that each chip contains many useful circuits; the designer selects the
one he or she wants to use by storing arbitrary codes in control registers, much like
selecting circuits from a designer’s casebook by specifying arbitrary page numbers or
other designations. The advantages of programmable chips are that a single board
containing such devices can handle many applications, and changes or corrections can
be made by changing selection codes rather than by redesigning circuit boards. The
disadvantages of programmable chips are the lack of standards and the difficulty of
learning and explaining how specific chips operate.

Chapter 10 contains typical initialization routines for the PIO, SIO, and CTC
devices. (The PIO and CTC are discussed in detail in the Osborne 4 & 8-Bit Micro-
processor Handbook.!?) We will provide only a brief overview of the PIO device here,
since it is the most widely used. Bas and Kaynak describe a typical industrial applica-
tion using a PIO.13

PIO (Parallel Input/Output Device)
General Description

The PIO contains two 8-bit ports, A and B. Each port contains

* An 8-bit output register.
+ An 8-bit input register.

CHAPTER 1 GENERAL PROGRAMMING METHODS 59

- A 2-bit mode control register, which indicates whether the port is in an output,
input, bidirectional, or control mode.

- An8-bit input/ output control register, which determines whether the correspond-
ing data pins are inputs (1) or outputs (0) in the control mode.

+ Two control lines (STB and RDY) that can be used for handshaking signals (the
contents of the mode control register determine how these lines operate).

- An interrupt enable bit.

- A 2-bit mask control register (used only in the control mode) that determines the
active polarity of the inputs and whether they will be logically ANDed or ORed to
form an interrupt signal.

- An 8-bit mask register (used only in the control mode) that determines which port
lines will be monitored to form the interrupt signal.

- An 8-bit vector address register used with the interrupt system.

Here, the important points are the input and output registers, the mode control
register, the input/ output control register, and the control lines. The interrupt-related
features of the PIO are discussed in Z80 Assembly Language Programming.'*

The meanings of the bits in the various control and mask registers are related to the
underlying hardware and are entirely arbitrary as far as the programmer is concerned.
Tables are provided here and in Appendix B for looking them up.

Each PIO occupies four input port addresses and four output port addresses. The
B/A SEL (Port B or A select) and C/ D SEL (Control or Data select) lines choose one
of the four ports as described in Table 1-10. Most often, designers attach address line
AgtoB/ASELand A; to C/D SEL. The PIO then occupies the four consecutive port
addresses given in the last column of Table 1-10.

Clearly, there are far more internal control registers than there are port addresses
available. In fact, all the control registers for each port occupy one address determined

Table 1-40. PIO Addresses

Control or Port B or A Register Port Address (Starting
Data select Select Addressed with PIOADD)
0 0 Data Register A PIOADD
0 I Data Register B PIOADD+1
1 0 Control A PIOADD+2
I 1 Control B PIOADD++3
The port addresses assume that C/D SEL is tied to A| and B/A SEL to A,.

60 750 AsseveLy LANGUAGE SUBROUTINES

Table 1-14. Addressing of PIO Control Registers

Register Addressing
Mode Control Dy;=D,=D;=Dy=1
Input/Output Control Next byte after port placed in mode 3
Mask Control Register D;=0,D,=D;=Dy=1
Interrupt Mask Register Next byte after mask control register accessed with D, = |
Interrupt Enable D;=D,=0,D,=Dy=1
Interrupt Vector Dy=1

by the C/D SEL connection. Thus, some of the data bits sent to a control register are
actually used for addressing. Note the following situations (see Table 1-11):

- If Dy = 0, the remaining data bits are loaded into the interrupt vector register.

+ If D3=0and D= D;= D¢= I, the remaining data bits are loaded into the mask
control register. If D4 = 1, the next control byte is loaded into the interrupt mask
register. Interrupts can be enabled (D7 = 1) or disabled (D7 = 0) with D3 = Dy =0,
D] = DO =1.

+ If D3, Dy, Dy, and Dy are all 1’s, the remaining data bits are loaded into the mode
control register. If Dy= Dg= I (that is, the port has been placed in the control mode),
the next control byte is loaded into the input/output control register.

This sharing of an external address means

+ The programmer must be careful to specify the proper addresses, data values, and
order of operations. The actual destination of an OUT instruction directed to a PIO
control address depends on the data value and may also depend on the OUT instruc-
tion that preceded it.

- The programmer should document the PIO initialization in detail. The device is
complex, and a reader cannot be expected to understand the initializing sequence.

The control registers of the PIO are usually initialized only in an overall startup
routine. Other routines typically refer only to the PIO input and output registers. Since
all of its control registers share a port address, a repeated block output instruction
(OTIR or OTDR) can be used to initialize a P10. No timing problem occurs, since the
PIO operates at the same speed as the CPU. Chapter 10 contains an example showing
the use of repeated block output instructions to initialize PIOs and other peripheral
chips.

CHAPTER 1 GENERAL PROGRAMMING METHODS 61

P1O Operating Modes

A startup program selects the operating mode of a PIO port by writing a control
byte to the PIO in the form shown in Figure 1-10. The lower table in Figure 1-10
describes the operating modes and their associated control bytes. Note that only bits 6
(Mp)and 7 (M) affect the operating mode; bits 4 and 5 are not used and bits 0 through
3 are used for addressing. When power is turned on, the PIO comes up in mode 1
(input). The modes may be summarized as follows:

+ Mode 0 — Output (bit 7= bit 6 = 0)

Writing data into the port’s output register latches the data and causes it to appear
on the port’s data bus. The Ready (RDY) line goes high to indicate Data Ready; it
remains high until the peripheral sends a rising edge (a 0-to-1 or low-to-high transition)
on the Strobe (STB) line to indicate Data Accepted or Device Ready. The rising edge
of STB causes an interrupt if the interrupt is enabled.

* Mode 1 —Input (bit 7= 0, bit 6 = 1)

The peripheral latches data into the port’s input register using the Strobe signal. The
rising edge of STB causes an interrupt (if enabled) and deactivates RDY (makes it 0).
When the CPU reads the data, RDY goes high to indicate Data Accepted or Input
Register Empty. Note that the peripheral can strobe data into the register regardless of
the state of RDY. The programmer is therefore responsible for guarding against
overrun (new data being placed in the register before the CPU has read the old data).

Set Mode
M1 Mo Mode
0 0 Output [Ml]MOleX]lllIllll
0 I Input
1 0 Bidirectional
1 1 Bit Control If a port is placed in mode 3. the
next byte sets the I/ O control
register:
Pio Meani Control Byte
eaning -
Mode (Binary) | (Hex) llf07|1/06|l/05|l/04]I/03ll/02|1,/01II/OOI
0 Output 00001111 OF
1 Input 01001111 4F I/O= 1 Sets bit to Input
2 Bidirectional 10001111 8F 1/0 = 0 Sets bit to Output
3 Control 11001111 CF
Note that bits 4 and 5 are not used and could have
any values.

HAgure 4-10. Mode control for the Z80 PIO

62 730 ASSEMBLY LANGUAGE SUBROUTINES

- Mode 2 — Bidirectional (bit 7= 1, bit 6 = 0)

Since this mode uses all four handshake lines, it is allowed only on port A. The port
A RDY and STB signals are used for output control and the port B RDY and STB
signals are used for input control. The only difference between this mode and a
combination of modes 0 and 1 is that data from the port A Output register is enabled
onto the port’s data bus only when A STB is active. This allows the port A bus to be
used bidirectionally under the control of A STB (Output Data Request) and B STB
(Input Data Available). Note that operations on input register A govern port B’s
control signals in this mode.

- Mode 3 — Control (bit 7= 1, bit 6 = 1)

This mode does not use the RDY and STB signals. It is intended for status and
control applications in which each bit has an individual meaning. When mode 3is
selected, the next control byte sent to the PIO defines the directions of the port’s bus
lines. A 1 in a bit position makes the corresponding bus line an input, whereas a 0
makes it an output.

Note the following features of the PIO’s operating modes:

- Inmodes0, |, and 2, the peripheral indicates Data Ready, Device Ready, or Data
Accepted with a rising edge on the STB line. This edge also causes an interrupt if the
interrupt is enabled.

- Inmodes0, 1, and 2, the PIO indicates Data Ready, Input Buffer Empty, or Data
Accepted by sending RDY high. This signal remains high until the next rising edge on
STB.

- The bidirectional mode (mode 2) applies only to port A, and port B must be placed
in mode 3 (control) since all the handshaking lines are already committed.

- The input/output control register is used only in the control mode (mode 3).
Otherwise, the entire 8-bit port is used for either input or output.

- There is no way for the processor to determine if a pulse has occurred on STB if
interrupts are not being used. The PIO is designed for use in interrupt-driven systems
rather than in programmed I/ O systems. STB should be tied low if it is not being used.

- The processor cannot control the RDY lines directly. The RDY line on a port goes
high when data is transferred to or from the port and goes low on the rising edge of
STB.

- The contents of the output register can be read if the port is in the output or
bidirectional mode. If the port is in the control mode, the output register data from the
lines assigned as outputs can be read. The contents of control registers cannot be read.
If a program needs to know their contents, it must save copies in RAM of the values
stored there.

- Ifthe RDY output is tied to the STB input on a port in the output mode, RDY will
go high for one clock period after each output operation. This brief pulse can be used
to multiplex displays.

CHAPTER 1 GENERAL PROGRAMMING METHODS 63

PIO Initialization

When power is turned on, the PIO comes up in the input mode with all interrupts
disabled and inhibited and control signals deactivated (low). The steps in initializing a
PIO port are

- Select the operating mode by writing the appropriate control byte into the mode
control register. Interrupt control as well as I/ O mode information may have to be
sent.

- Ifin mode 3, establish the directions of the I/ O pins by writing a control byte into
the input/ output control register. This byte must follow the control byte that selected
mode 3.

Examples
1. Make port B output.

LD A, 00001111B yMAKE PORT B OUTPUT
QuT (PIOCRB),A

Bits 0 through 3 of the control byte are all 1’s to address the mode control register. Bits
6 and 7 are both 0’s to put the port in the output mode. Bits 4 and 5 are not used.

2. Make port A input.
LD A, 01001111R sMAKE FORT A INFUT
auT (FIQCRA),A

Bit 7= 0 and bit 6 = 1 to put the port in the input mode.

3. Make port A bidirectional.

Lo A, 10001111R tMAKE PORT A BIDIRECTIONAL
QUT (FIQCRA), A

Bit 7= 1 and bit 6 = 0 to put the port in the bidirectional mode. Remember that only
port A can be operated in the bidirectional mode, and that port B must then be
operated in the control mode.

4. Make port A control with all lines inputs.

LD A, 110011 11R yMAKE PORT A CONTROL
ouUT (PIQCRA), A

LD A, 11111111R ;ALL BITS INPUTS
auT (PIOCRA), A

The first OUT instruction puts port A in the control mode, since bits 6 and 7 are both
1. The second OUT operation to the same address loads a different register (the

64 730 ASSEMBLY LANGUAGE SUBROUTINES

input/output control register). A 0 in a bit position of that register makes the
corresponding pin an output, while a 1 makes it an input. The polarity here is arbitrary,
and many bidirectional devices use the opposite convention.

5. Make port B control with all lines outputs.

LD A,11001111E s MAKE PORT B CONTROL
QuT (PIOCRB), A

SUR A sALL RITS QUTPUTS
auT (PIOCRB), A

The second byte is directed automatically to the input/output control register if the
first byte puts the port in the control mode.

6. Make port A control with lines 1, 5, and 6 inputs and lines 0, 2, 3, 4, and 7
outputs.
LD A, 11001111R sMAKE PORT A CONTROL

QuUT (PIOCRA), A
LD A, 01100010B $1,5,6 IN--0,2,3%,4,7 QUT

INTERRUPT SERVICE ROUTINES

More information on material in this section can be found in the book Practical
Microcomputer Programming: The Z80 by W.J. Weller, Chapter 16.

Z80 interrupt systems may operate in any of three modes.!5 In all three modes, the
processor responds to an interrupt by executing a CALL or RST instruction which
transfers control to a specific memory address and saves the current program counter
at the top of the stack. Table 1-12 lists the destination addresses for the RST instruc-
tions and the non-maskable interrupt. No other registers (besides the program coun-
ter) are saved automatically.

There are two common approaches to saving registers:

- If there is only a single level of interrupts, primary registers may be saved in the
alternate set. The service routine begins with

EX AF, AF - ; SAVE PRIMARY REGISTERS IN ALTERNATES
EXX

The EXX instruction exchanges registers B, C, D, E, H, and L with their primed
equivalents. The service routine must end by restoring the original primary registers
with
EXX sRESTORE ORIGINAL PRIMARY REGISTERS
EX AF , AF

This approach assumes that the alternate (primed) registers are reserved for use in
interrupt service routines.

CHAPTER 1 GENERAL PROGRAMMING METHODS 65

Table 1-12. Destination Addresses for RST (Restart) Instructions and
the Non-Maskable Interrupt

. . Destination Address

RST Instruction Operation Code

(Mnemonic) (Hex) .

(Hex) (Decimal)

RSTO C7 0000 0
RST 8 CF 0008 08
RST 10H D7 0010 16
RST I8H DF 0018 24
RST 20H E7 0020 32
RST 28H EF 0028 40
RST 30H F7 0030 48
RST 38H FF 0038 56
Non-maskable 0066 102

interrupt

- If there are several levels of interrupts, each service routine must save all registers
that it uses in the stack. Since the Z80 has so many registers, most programmers keep
their service routines simple so that they must save only a few registers. Otherwise, the
overhead involved in servicing interrupts (sometimes called the interrupt latency)
becomes excessive. A typical sequence for saving the primary registers in the stack is

PUSH AF 3 SAVE REGISTERS
PlUsH BC
FUSH DE
PUSH HL

The opposite sequence restores the primary registers.

FOF HL ;RESTORE REGISTERS
POF DE
POF BC
FOF AF

Interrupts must be reenabled explicitly with EI immediately before the RET instruc-
tion that terminates the service routine. The El instruction delays the actual enabling
of interrupts for one instruction cycle to avoid unnecessary stacking of return ad-
dresses (that is, an RET instruction can remove the return address from the stack
before a pending interrupt is recognized).

You must be careful to save any write-only registers that may have to be restored at
the end of the routine. For example, the PIO’s control registers are all write-only, and

66 730 ASSEMBLY LANGUAGE SUBROUTINES

many external priority registers are also write-only. Copies of such registers must be
saved in RAM and restored from the stack. A typical example is

PUSH AF s SAVE REGISTERS

PUSH BC

FUSH DE

PUSH HL

Lo A, (FRTY) ;SAVE OLD PRICRITY

PUSH AF

L0 A, NPRTY :GET NEW PRIORITY

auT PPORT :PLACE IT IN EXTERNAL PRIORITY REGISTER

LD (PRTY),A ;SAVE COPY OF NEW PRICRITY IN RAM

The restoration procedure must recover the previous priority as well as the original
contents of the registers.

FOP AF ;RESTORE OLD PRIDRITY

OUT FPORT ;PLACE IT IN EXTERNAL PRIORITY REGISTER
LD (PRTY),A 3;SAVE COPY OF PRIORITY IN RAM

PO HL s RESTORE REGISTERS

POF DE

POF EC

POF AF

To achieve general reentrancy, the stack must be used for all temporary storage
beyond that provided by the registers. As noted in the discussion of parameter passing,
space is assigned on the stack (NPARAM bytes) with the sequence

LD HL, -NPARAM ; ASSIGN NFARAM EMFTY BYTES
ADDY HL, =P
Lo SP,HL

Later, of course, the temporary storage area is discarded with the sequence

LD HL, NFARAM ;s REMOVE NFARAM BYTES FROM STACK
ADD HL,SP
Lo SP,HL

If NPARAM is small, save execution time and memory by replacing these sequences
with NPARAM DEC SP or INC SP instructions. Chapter 11 contains examples of
simple interrupt service routines.

Interrupt service routines that are based on signals from Z80 peripheral chips (P10s,
SIOs, or CTCs) or that utilize the non-maskable input require special terminating
instructions. These special instructions restore the program counter from the top of
the stack just like the normal RET. The RETI (return from interrupt) instruction also
signals the peripheral chips that the service routine has been completed, thus unblock-
ing lower priority interrupts. The RETN (return from non-maskable interrupt)
instruction also restores the interrupt enable logic, thus reenabling interrupts if (and
only if) they were enabled when the non-maskable interrupt occurred.

CHAPTER 1 CENERAL PROGRAMMING METHODS &7

MAKING PROGRAMS RUN FASTER

More information on material in this section can be found in an article by T. Doll-
hoff, “Microprocessor Software: How to Optimize Timing and Memory Usage. Part
Four: Techniques for the Zilog Z80,” Digital Design, February 1977, pp. 44-45.

In general, programs can be made to run substantially faster only by first determin-
ing where they spend their time. This requires determining which loops (other than
delay routines) the processor is executing most often. Reducing the execution time of a
frequently executed loop will have a major effect because of the multiplying factor. It is
thus critical to determine how often instructions are being executed and to work on
loops in the order of their frequency of execution.

Once it is determined which loops the processor executes most frequently, reduce
their execution time with the following techniques:

- Eliminate redundant operations. These may include a constant that is being added
during each iteration or a special case that is being tested repeatedly. Another example
is a constant value or a memory address that is being fetched from memory each time
rather than being stored in a register or register pair.

- Reorganize the loop to reduce the number of jump instructions. You can often
eliminate branches by changing the initial conditions, inverting the order of opera-
tions, or combining operations. In particular, you may find it helpful to initialize
everything one step back, thus making the first iteration the same as all the others.
Inverting the order of operations can be helpful if numerical comparisons are involved,
since the equality case may not have to be handled separately. Reorganization may
also combine condition checking inside the loop with the overall loop control.

- Usein-line code rather than subroutines. This will save at leasta CALL and RET.

- Use the stack rather than specific memory addresses for temporary storage.
Remember that EX HL,(SP) exchanges the top of the stack with register pair HL. and
thus can serve to both restore an-old value and save the current one.

- Assign registers to take maximum advantage of such specialized instructions as
LD HL,(ADDR); LD (ADDR),HL; EX DE, HL; EX HL,(SP); DJNZ; and the block
move, compare, and I/ O instructions. Thus it is preferable to always use B or BCfora
counter, HL for an indirect address, and DE for another indirect address if needed.

- Use the block move, block compare, and block 1/ O instructions to handle blocks
of data. These instructions can replace an entire program sequence, since they combine
counting and updating of pointers with the actual data manipulation or transfer
operations. Note, in particular, that the block move and block I/O instructions
transfer data to or from memory without using the accumulator.

- Use the 16-bit instructions whenever possible to manipulate 16-bit data. These
instructions are ADC, ADD, DEC, EX, INC, LD, POP, PUSH, and SBC.

68 730 ASSEMBLY LANGUAGE SUBROUTINES

- Use instructions that operate directly on data in user registers or in memory to
avoid having to save and restore the accumulator, HL, or an index register. These
instructions include DEC, EX, INC, LD, POP, PUSH, and the bit manipulation and
shift instructions.

+ Minimize the use of the index registers, since they always require extra execution
time and memory. The index registers are generally used only as backups to HL and in
handling data structures that involve many fixed offsets.

* Minimize the use of special Z80 instructions that require a 2-byte operation code.
These always require extra execution time and memory. Examples are BIT, RES, SET,
SLA,SRA,and SRL, as well as some load instructions such as LD DE,(ADDR), LD
(ADDR),BC, and LD SP(ADDR).

- Take advantage of specialized short instructions such as the accumulator shifts
(RLA, RLCA, RRA, and RRCA) and DINZ.

- Useabsolute jumps (JP) rather than relative jumps (JR). The absolute jumps take
less time if a branch actually occurs.

+ Organize sequences of conditional jumps to minimize average execution time.
Branches that are often taken should come before ones that are seldom taken, for
example, checking for a result being negative (true 50% of the time if the value is
random) before checking for it to be zero (true less than 1% of the time if the value is
random).

» Test for conditions under which a sequence has no effect and branch around it if
the conditions hold. This will be profitable if the sequence is long, and it frequently
does not change the result. A typical example is the propagation of carries through
higher order bytes. If a carry seldom occurs, it will be faster on the average to test for it
rather than simply propagate a 0.

A general way to reduce execution time is to replace long sequences of instructions
with tables. A single table lookup can perform the same operation as a sequence of
instructions if there are no special exits or program logic involved. The cost is extra
memory, but that may be justified if the memory is available. If enough memory is
available, a lookup table may be a reasonable approach even if many of its entries are
repetitive—that is, even if many inputs produce the same output. In addition to its
speed, table lookup is also general, easy to program, and easy to change.

MAKING PROGRAMS USE LESS MEMORY

Only by identifying common instruction sequences and replacing those sequences
with subroutine calls can a program be made to use significantly less memory. The
result is a single copy of each sequence; the cost is the extra execution time of the

CHAPTER 1 GENERAL PROGRAMMING METHODS 69

CALL and RET instructions. The more instructions placed in subroutines, the more
memory is saved. Of course, such subroutines are typically not general and may be
difficult to understand or use. Some sequences may even be available in a monitor or
other systems program. Then those sequences can be replaced with calls to the systems
program as long as the return is handled properly.

Some methods that reduce execution time also reduce memory usage. In particular,
eliminating redundant operations, reorganizing loops, using the stack, organizing the
use of registers, using the 16-bit registers, using block instructions and short forms,
operating directly on memory or registers, and minimizing the use of the index
registers and special Z80 instructions reduce both memory usage and execution time.
Of course, using in-line code rather than loops and subroutines reduces execution time
but increases memory usage. Absolute and relative jumps represent a minor tradeoff
between memory and execution time; absolute jumps are faster (if a branch occurs) but
use more memory.

Lookup tables generally use extra memory but save execution time. Some ways to
reduce their memory requirements are to eliminate intermediate values and interpo-
late the results, eliminate redundant values with special tests, and reduce the range of
input values.!617 Often a few prior tests or restrictions will greatly reduce the size of the
required table.

REFERENCES

1. Weller, W.J., Practical Microcomputer Programming: The Z80, Evanston, 1l1.:
Northern Technology Books, 1979.

2. Fisher, W.P.,, “Microprocessor Assembly Language Draft Standard,” IEEE
Computer, December 1979, pp. 96-109. Further discussions of the draft standard
appear on pp. 79-80 of IEEE Computer, April 1980 and on pp. 8-9 of IEEE Computer,
May 1981. See also Duncan, EG., “Level-Independent Notation for Microcomputer
Programs,” IEEE Micro, May 1981, pp. 47-56.

3. Osborne, A. An Introduction to Microcomputers: Volume 1 — Basic Concepts,
2nd ed., Berkeley, Calif.: Osborne/ McGraw-Hill, 1980.

Fisher, op.cit.
Osborne, op. cit.

. Weller, op.cit., p. 224.
Ibid., pp. 19-26.

. Ibid.

. Ibid., p. 69.

© o N o A

70 230 ASSEMBLY LANGUAGE SUBROUTINES

10. Shankar, K.S., “Data Structures and Abstractions,” IEEE Computer, April,
1980, pp. 67-77.

11. Tenenbaum, A. and M. Augenstein, Data Structures Using Pascal, Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

12. Osborne, A. and G. Kane, 4 & 8-Bit Microprocessor Handbook, Berkeley,
Calif.: Osborne/ McGraw-Hill, 1981, pp. 7-45 to 7-54 (PIO), pp. 7-54 to 7-62 (CTC).

13. Bas, S.and O. Kaynak, “Microprocessor Controlled Single Phase Cycloconver-
ter,” 1981 IECI Proceedings on Industrial Applications of Mini and Microcomputers,
pp. 39-44. Available from IEEE, 445 Hoes Lane, Piscataway, N.J. 08854 (catalog no.
81CH1714-5).

14. Leventhal, L., Z80 Assembly Language Programming, Berkeley, Calif:
Osborne/ McGraw-Hill, 1979, Chapter 12.

15. Ibid.

16. Seim, TA., “Numerical Interpolation for Microprocessor-Based Systems,”
Computer Design, February 1978, pp. 111-116.

17. Abramovich, A. and TR. Crawford, “An Interpolating Algorithm for Control
Applications on Microprocessors,” 1978 IECI Proceedings on Industrial Applications
of Microprocessors, pp. 195-201. This Proceedings is available from IEEE, 445 Hoes
Lane, Piscataway, N.J. 08854,

Chapter 2 Implementing
Additional Instructions and
Addressing Modes

This chapter shows how to implement instructions and addressing modes that are
not included in the Z80 instruction set. Of course, no instruction set can ever include all
possible combinations. Designers must choose a set based on how many operation
codes are available, how easily an additional combination could be implemented, and
how often it would be used. A description of additional instructions and addressing
modes does not imply that the basic instruction set is incomplete or poorly designed.

The chapter will concentrate on additional instructions and addressing modes that
are

- Obvious parallels to those included in the instruction set.
- Described in Fischer’s “Microprocessor Assembly Language Standard™!
- Discussed in Volume 1 of An Introduction to Microcomputers.?

- Implemented on other microprocessors, especially ones that are closely related or
partly compatible. 3

This chapter should be of particular interest to those who are familiar with the
assembly languages of other computers.

INSTRUCTION SET EXTENSIONS

In describing extensions to the instruction set, we follow the organization sug-
gested in the draft standard for IEEE Task P694.4 Instructions are divided into the
following groups (listed in the order in which they are discussed): arithmetic, logical,
data transfer, branch, skip, subroutine call, subroutine return, and miscellaneous.
For each type of instruction, types of operands are discussed in the following order:
byte (8-bit), word (16-bit), decimal, bit, nibble or digit, and multiple. In describing
addressing modes, we use the following order: direct, indirect, immediate, indexed,

74

72 780 ASSEMBLY LANGUAGE SUBROUTINES

register, autopreincrement, autopostincrement, autopredecrement, autopostdecre-
ment, indirect preindexed (also called preindexed or indexed indirect), and indirect
postindexed (also called postindexed or indirect indexed).

ARITHMETIC INSTRUCTIONS

This group includes addition, addition with Carry, subtraction, subtraction in
reverse, subtraction with Carry (borrow), increment, decrement, multiplication, divi-
sion, comparison, two’s complement (negate), and extension. Instructions that do not
clearly fall into a particular category are repeated for convenience.

Addition Instructions (Without Cairy)

1. Add memory location ADDR to accumulator.

Lo HL, ADDR s POINT TO DATA
ADD A, (HL) s THEN ADD IT

2. Add Carry to accumulator.
ADC A, 0 sACC = ACC + CARRY + O

3. Decimal add Carry to accumulator.

ADC A, 0 $ACC = ACC + CARRY + 0O
DAA 7 IN DECIMAL

4. Decimal add VALUE to accumulator.

ADD A, VALUE s ACC = ACC + VALLE
DAA 3 IN DECIMAL

5. Decimal add register to accumulator.

ADD A,reg sACC = ACC + REG
DAA : IN DECIMAL

6. Add 16-bit number VALI16 to HL.

LD rp,VAL1s
ADD HL,rp sHL = HL + VAL1S

rp can be either BC or DE.

7. Add 16-bit number VALI16 to an index register.

LD rp,VAL1S
ADD xy,rp s XY = XY + VAL1S

rp can be either BC or DE.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 73

8. Add memory locations ADDR and ADDR+1 (MSB in ADDR+1) to HL.

LD rp, (ADDR)
ADD HL,rp

The 16-bit data is stored in the usual Z80 format with the less significant byte first (at
the lower address).

9. Add memory locations ADDR and ADDR+1 (MSB in ADDR+1) to an index
register.
LD rp, (ADDR)
ADD xy,rp

10. Add memory locations ADDR and ADDR+1(MSBin ADDR+1) to memory
locations SUM and SUM+1 (MSB in SUM+1).

LD HL, (SUM) s GET CURRENT SUM
LD DE, (ADDR) sADD ELEMENT

ADD HL,DE

LD (SUM) , HL ; SAVE UFDATED SUM

II. Add the 16-bit number VAL16 to memory locations ADDR and ADDR+1
(MSB in ADDR-1).

LD HL, (SUM) s GET CURRENT SLIM
Lo DE, VAL L& s ALDD ELEMENT

ADD HL,DE

LD (SUM) , HL ; SAVE UFDATED SLIM

Addition Instructions (with Carry)

1. Add memory location ADDR to accumulator with Carry.
LD HL., ADDR sPOINT TO DATA
ADC A, (HL) s THEN ADD IN DATA

2. Add Carry to accumulator.
ADC A, 0 ;ACC = ACC + CARRY + O

3. Decimal add VALUE to accumulator with Carry.
ADC A, VALUE s ACC = ACC + VALUE + CARRY
DAA ; IN DECIMAL

4. Decimal add register to accumulator with Carry.

ADC A,reg ;ACC = ACC + REG + CARRY
DAA 3 IN DECIMAL

74 750 ASSEMBLY LANGUAGE SUBROUTINES

5. Add 16-bit number VALI16 to HL with Carry.

LD rp,VAL1S
ADC HL,rp sHL = HL + VAL14 + CARRY

6. Add memory locations ADDR and ADDR+1 (MSB in ADDR+1) to HL with
Carry.

LD rp, (ADDR)
ADC HL,rp sHL = HL + (ADDR) + CARRY

Subtraction Instructions (Without Borrow)

1. Subtract memory location ADDR from accumulator.

LD HL, ADDR ;FPOINT TO DATA

SUR (HL) s THEN SUBRTRACT IT
2. Subtract borrow (Carry) from accumulator.

SBC A0 s ACC = ACC - CARRY

3. Decimal subtract VALUE from accumulator.
SUR VALLE JACC = ACC - VALUE
DAA : IN DECIMAL

4. Decimal subtract register from accumulator.
SUR reg sACC = ACC - REG
DAA : IN DECIMAL

Since the Z80 has an Add/Subtract flag, it can perform decimal subtraction directly.
On the 8080 and 8085 processors, the programmer must implement decimal subtrac-
tion as the addition of a negative number.

5. Subtract register pair from HL.
AND A ; CLEAR CARRY
SBRC HL,rp ; SUBRTRACT REGISTER FAIR WITH CARRY

The Z80 has a subtract register pair with Carry instruction, but no plain subtract
register pair (without Carry).

6. Subtract 16-bit number VALI16 from HL.
LD rp,-VAL1&
ADD HL,rp
or

ANDY A ; CLEAR CARRY

LD rp,VAL1A
SBC HL,rp 3 SUBTRACT 14-RIT NUMBER FROM HL

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

rp can be either BC or DE. Carry is an inverted borrow in the first alternative and 4 true
borrow in the second. The first alternative is obviously much shorter, particularly since
SBC HL requires a 2-byte operation code.

7. Subtract memory locations ADDR and ADDR+1 (MSB in ADDR+1) from
HL.

AND A ; CLEAR CARRY
LD rp, (ADDR) ; THEN SUBTRACT WITH CARRY
SRC HL. s P

There is no subtract register pair (without Carry) instruction.

Subtraction in Reverse Instructions

1. Subtract accumulator from VALUE and place difference in accumulator.

NEG s NEGATE A
ADD A, VALUE sFORM - A + VALUE
or
LD reg, A s CALCULATE VALLE — ACC
Ln A, VALLIE
SUE reg

The Carry is an inverted borrow in the first method and a true borrow in the second.

2. Subtract accumulator from register and place difference in accumulator.
NEG s NEGATE A
ADD' A,reg ;FORM - A + REG

The Carry is an inverted borrow; that is, it is 1 if the subtraction does not require a
borrow.

3. Decimal subtract accumulator from VALUE and place difference in accumu-
lator,

LD reg, A s CALCULATE VALUE - ACC
LD A, VALLE

SUE reg

LAA

4. Decimal subtract accumulator from register and place difference in accumulator.

LD regl, A ;s CALCUILATE REG —~ ACC
Lo A,reg
SUR regl

DAA ; IN DECIMAL

76 750 ASSEMBLY LANGUAGE SUBROUTINES

Subtraction with Borrow (Carry) Instructions

1. Subtract memory location ADDR from accumulator with borrow.

LD HL., ADDR ;POQINT TO DATA
SEC A, {HL) 3 THEN SUBRTRACT WITH BORROW

2. Subtract borrow (Carry) from accumulator.
SBEC A,0 ;FORM A — BORROW

3. Decimal subtract inverted borrow from accumulator (Carry = 1 if no borrow

was generated, 0 if a borrow was generated).
ADC A, 99H sADD 9% PLUS CARRY
DAA

The final Carry is 1 if the subtraction generates a borrow and 0 if it does not.

4. Decimal subtract VALUE from accumulator with borrow.

A, VALUE A = A~ VALUE - BORROW

SBC
3 IN DECIMAL

DAA

5. Decimal subtract register from accumulator with borrow.
;A = A - REG - BORROW

SBC A,reg
IN DECIMAL

DAA
6. Subtract 16-bit number VAL 16 from HL with borrow.

LD rp, VAL14
SBC HL,rp sHL = HL - VAL14 —~ BORROW

Increment Instructions

I. Increment memory location ADDR.

LD HL., ADOIR
INC (HL)

2. Increment accumulator, setting the Carry flag if the result is 0.

ADD A, L
Remember that INC does not affect Carry, but it does affect the Zero flag.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 77

3. Decimal increment accumulator (add 1 to A in decimal).

ADD A, 1
DAA

You cannot use INC, since it does not affect Carry.

4. Decimal increment register (add 1 to reg in decimal).

Lo A, reg
ADD A, 1
DAA

LD reg, A

DAA applies only to the accumulator.

5. Increment memory locations ADDR and ADDR+1 (MSB in ADDR + 1).

LD HL, (ADDR)
INC HL 3 14-BIT INCREMENT
LD (ADDR) , HL

or
LD HL, ADOIR
INC (HL) 7 INCREMENT LSE
JR NZ , DONE
INC HL s ADD CARRY TO MSER
INC (HL)
DEC HL

DONE: NOP

The second alternative leaves ADDR in HL for later use.

6. Increment register pair, setting the Zero flag if the result is 0.

INC rp s 145-RIT INCREMENT
LD A,rpl : TEST RESULT FOR ZEROQ
R reph

This sequence destroys the old contents of the accumulator and the flags. OR clears
Carry.

Decrement Instructions

1. Decrement memory location ADDR.

LD HL., ADDR
DEC (HL)

78 750 ASSEMBLY LANGUAGE SUBROUTINES

2. Decrement accumulator, setting Carry flag if a borrow is generated.

Sup 1

3. Decrement accumulator, setting Carry flag if no borrow is generated.

ADD A, OFFH

4. Decimal decrement accumulator (subtract 1 from A in decimal).

SUE 1
DAA

DEC cannot be used here, since it does not affect Carry.

5. Decimal decrement register (subtract 1 from reg in decimal).

LD A, reg
SUuE 1

DAA

Lo reg, A

DAA applies only to the accumulator.

6. Decrement memory locations ADDR and ADDR+1 (MSB in ADDR+1).
LD HL., (ADDR)

DEC HL ; 14~-BIT DECREMENT
Lo CADDR) , HL

7. Decrement register pair, setting the Zero flag if the result is 0.

DEC rp :16-BIT DECREMENT
LD A, rpl ; TEST 16-BIT RESULT FOR ZERO
OR rph

This sequence destroys the old contents of the accumulator and changes the other
flags. OR clears the Carry flag.

Multiplication Instructions

1. Multiply accumulator by 2.
ADD A, A

2. Multiply accumulator by 3 (using reg for temporary storage).

Lo reg, A ;s SAVE A
ADD A, A 32 X A
ADD A,reg 13X A

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

3. Multiply accumulator by 4.

ADD A, A 32 X A
ADD A, A 34 X A

We can easily extend cases 1, 2, and 3 to multiplication by other small integers.

4. Multiply register by 2.

SLA reg

5. Multiply register by 4.

SLA reg sMULTIPLY RBRY 2
SLA reg ;AND THEN BY 2 AGAIN

Since SLA is a 2-byte instruction, it eventually becomes faster to move the data to the
accumulator and use the 1-byte instruction ADD A, A.

6. Multiply register pair HL by 2.
ADD HL,HL

7. Multiply register pair HL by 3 (using rp for temporary storage).

LI reph, H
LD rpl,L
ADD HL,HL 32 X HU
ADD HL,rp 33 X HL

Note that you cannot use EX DE,HL here, since it changes HL.

8. Multiply an index register by 2.
ADD xy,xy

9. Multiply memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2.
LD HL, ADDR

SLA (HL) sSHIFT LSE LEFT LOGICALLY
INC HL
RL (HL) s THEN ROTATE MR TQ FPICK UP CARRY

or

LD Xy, ADDR
SLA (xy+Q) 3SHIFT LSE LEFT LOGICALLY
RL (xy+1) 3 THEN ROTATE MSB TQ PICK UP CARRY

Note that you must rotate the more significant byte to pick up the Carry produced by
shifting the less significant byte.

80 730 ASSEMBLY LANGUAGE SUBROUTINES

Division Instructions

1. Divide accumulator by 2 unsigned.
SRL A sDIVIDE BY 2, CLEARING SIGN

2. Divide accumulator by 4 unsigned.

SRL A ;DIVIDE BY 2, CLEARING SIGN
SRL A s THEN BY 2 AGAIN
or
RRA ;ROTATE A RIGHT TWICE
RRA
AND ©QO0111111R ; THEN CLEAR 2 MSR’S

Since SRL is a 2-byte instruction, it eventually becomes faster to use the 1-byte
instruction RRA and clear the more significant bits explicitly at the end.

3. Divide accumulator by 2 signed.
SRA A ;DIVIDE BY 2, EXTENDING SIGN

4. Divide memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2
unsigned.

LD XY, ADR
SRL (XY+1) ; SHIFT MSB RIGHT LOGICALLY
RR (XY+0) s THEN ROTATE LSB RIGHT

Rotating the less significant byte picks up the Carry from the more significant byte.

5. Divide memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2
signed.

Ln XY, ADR
SRA (XY+1) s SHIFT MSB RIGHT ARITHMETICALLY
RR (XY+0) ;s THEN ROTATE LSEB RIGHT

6. Divide register pair by 2 unsigned.

SRL rph ;SHIFT MSB RIGHT LOGICALLY
RR rpl s THEN ROTATE LSB RIGHT

7. Divide register pair by 2 signed.

SRA rph s SHIFT MSE RIGHT ARITHMETICALLY
RR rpl ; THEN ROTATE LSB RIGHT

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 84

Comparison Instructions

1. Compare VALUE with accumulator bit by bit, setting each bit position that is
different.

XOR VALUE
Remember, the EXCLUSIVE OR of two bits is 1 if and only if the two bits are different.

2. Compare register with accumulator bit by bit, setting each bit position that is
different.
XOR reg

3. Compare register pairs (rp and HL). Set Carry if rp is larger (unsigned) than HL.
and clear Carry otherwise.

AND A ;s CLEAR CARRY
SBC HL,rp

This sequence changes HL.

4. Compare register pair HL with 16-bit number VAL16.

LD rp, —VAL1é& sFORM HL — VAL1& BY ADDING
ADDY HL,rp
or
AND A ;s CLEAR CARRY
LD rp,VALLS
SRC HL,rp

Carry is an inverted borrow after the first alternative and a true borrow after the
second. Both sequences change HL and rp.

5. Compare index register with 16-bit number VAL16. Clear Carry if VALI6 is
greater than index register and set Carry otherwise.

LD rp, -VAL1& sFORM INDEX REGISTER - VAL1A
ADD xy,rp

Carry is an inverted borrow here, since we are subtracting by adding the two’s
complement.

6. Compare register pair with memory locations ADDR and ADDR-+1 (MSB in
ADDR+1).
ANDY A ; CLEAR CARRY
LD rp, (ARDR) ;s SURTRACT REGISTER PAIR
SEC HL,rp

Carry is a true borrow.

82 780 ASSEMBLY LANGUAGE SUBROUTINES

7. Compare index register with memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

PUSH xy s MOVE INDEX REGISTER TO HL

POP HL

AND A ;: CLEAR CARRY

LD rp, (ADDR) ;FORM INDEX REGISTER ~ QOTHER OFERAND

SBEC HL,rp

The Z80 has no SBC xy instruction.

8. Compare stack pointer with the 16-bit number VAL16.

LD HL, 0O s MOVE STACK POINTER TO HL
ADD HL,EP

LD rp,-VAL1A

ADD HL,rp

Carry is an inverted borrow.

9. Compare stack pointer with memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

LD HL, O s MOQVE STACK FOINTER TO HL
ADD HL,SP

LD rp, (ADDR)

AND A s CLEAR CARRY

SRC HL,rp :FORM SP — MEMORY

Carry is a true borrow.

Two’s Complement (Negate) instructions

1. Negate register.

SUB A sFORM 0 - REG
SUB reg
LD reg, A
or
LD A, reg
NEG
LD reg, A

2. Negate memory location ADDR.

SUE A
Lo HL., ADDR

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 83

SUR
LD

or

LD
Lo
NEG
LD

(HL) sFORM O - (MEMORY)
(HL) , A

HL, ADDR

A, (HL) sFORM - (ADDR)
(HL) , A

3. Negate register pair.

LD
CPL
LD
LD
CPL
LD
INC

or
LD

AND
SBC

A, rph 3 15-BIT ONE“S COMPLEMENT
reph, A

A,rpl

rpl, A

re sADD 1 FOR TWOS COMPLEMENT
HL, O sFORM O - (RP)

A s CLEAR CARRY

HL,rp

The second sequence leaves the negative in HL; it can then be moved easily to another

register pair.

4. Negate memory locations ADDR and ADDR+1 (MSB in ADDR+1).

LD
LD
AND
SBC
LD

HL, O sFORM O - (MEMORY)
rp, (ADDR)

A

HL,rp

(ADDR) , HL

5. Nine’s complement accumulator (that is, replace (A) with 99—(A)).

LD
LD
SUR

reg, A
A, 99H
reg

No DAA is necessary, since 99 — (A) is always a valid BCD number if the accumulator
originally contained a valid BCD number.

6. Ten’s complement accumulator (that is, replace (A) with 100—(A)).

NEG
DAA

sFORM O — ACCUMULATOR
s THEN DECIMAL ADJUST

84 750 AssenBLY LANGUAGE SUBROUTINES

Extend Instructions
1. Extend accumulator to a 16-bit unsigned number in a register pair.
LD rpl, A s 8-RIT MOVE

Lo rph, 0 fEXTEND 8 BRITS TO 1& RITS

This procedure allows you to use the value in the accumulator as an index. ADD HL
or ADD xy will then add the index to the base.

2. Extend accumulator to a 16-bit signed number in a register pair.

LD rpl, A 3 8~-RIT MOVE

ADDY A, A sMOVE SIGN RIT TQ CARRY

SBC A.A ; SUBTRACT SIGN BIT FROM ZERO

LD rph, A ;EXTEND 8 RITS TO 14 BRITS SIGNED

SBC A,A produces 00 if Carry is 0 and FF, if Carry is 1. It thus extends Carry
across the entire accumulator.

3. Extend memory location ADDR to a 16-bit signed number in memory locations
ADDR (LSB) and ADDR-+1 (MSB).

LD HL, ADDR s FETCH NUMEER

LD A, (HL)

ADD A, A sMOVE SIGN TO CARRY

SBC A.A sFORM SIGN BYTE (00 OR FF)
INC HL s STORE SIGN BYTE

LD (HL) , A

4. Extend bit 0 of accumulator across entire accumulator; that is, (A)= 00 if bit 0=
0 and FFgif bit 0 = 1.

RRA ;MQVE RIT O TO CARRY
SEC A.A ;FORM O - BRIT O

5. Sign function. Replace the value in the accumulator by 00 if it is positive and by
FFie if it is negative.

(=

A sMOVE SIGN BIT TQ CARRY
A +FORM O — SIGN RIT

0 >

U A,
B A.

[w]

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 85

LOGICAL INSTRUCTIONS

This group includes logical AND, logical OR, logical EXCLUSIVE OR, logical
NOT (complement), shift, rotate, and test instructions. Also included are arithmetic
instructions (such as adding the accumulator to itself) that perform logical functions.

Logical AND Instructions

1. Clear bits of accumulator.

AND MASK ;CLEAR BITS BY MASKING
MASK has 0’s in the bit positions to be cleared and 1’s in the positions to be left
unchanged. For example:

AND 11011011B ;CLEAR BITS 2 AND S
Remember, logically ANDing a bit with 1 does not affect its value. Since RES can clear

only one bit at a time, the following sequence would be needed to produce an
equivalent result:

2,A ;CLEAR BIT 2
RES 5,A ;AND THEN CLEAR BIT 35

2. Bit test—set the flags as if accumulator had been logically ANDed with a register
or memory location, but do not change the accumulator.

LD reg,A 3 SAVE ACCUMULATOR

LD HL, ADDR

AND (HL) ; PERFORM LOGICAL AND
LD A, reg s RESTORE ACCUMULATOR

LD does not affect any flags.

3. Test bits of accumulator. Set the Zero flag to 1 if all the tested bits are 0 and to 0
otherwise.

AND MASK ; TEST BITS BY MASKING

MASK has 1’s in the positions to be tested and 0’s elsewhere. The Zero flag is set to 1
if all the tested bit positions are 0, and to 0 otherwise. Since the BIT instruction can test
only one bit position at a time, AND MASK is equivalent to a sequence of BIT
instructions and conditional jumps. For example:

AND 010000010B s TEST BITS 1 AND é FOR ZERO

86 750 ASSEMBLY LANGUAGE SUBROUTINES

is equivalent to the sequence

BIT &,A s TEST BIT & FOR ZERO

JR NZ, DONE sBRANCH IF IT IS NOT ZERO

RIT 1,A s THEN TEST BIT 1 FOR ZERO
DONE: NOP

4. Logical AND immediate with flags (condition codes). Logically AND a byte of
immediate data with the Flag register, clearing those flags that are logically ANDed
with 0’s.

PUSH AF ;MOVE AF TO A REGISTER PAIR
POF rp

LD A, MASK ;s CLEAR FLAGS

AND rpl

LD rpl, A

PUSH rp ;RESTORE AF WITH FLAGS CLEARED
FOF AF

This sequence changes a register pair (BC, DE, or HL).

Logical OR Instructions

1. Set bits of accumulator.
OR MASK ;SET RITS BY MASKING
MASK has I’s in the bit positions to be set and 0’s elsewhere. For example:
QR 00010010R ;SET BITS 1 AND 4

Remempber, logically ORing a bit with 0 does not affect its value. Since SET can set
only one bit at a time, we would need the following sequence to produce the same
result:

SET 1,A ;SET BIT 1
SET 4,A ;AND THEN SET BIT 4

2. Test a register pair for 0. Set the Zero flag if both halves of a register pair are 0.

LD A,rph ; TEST REGISTER PAIR FOR ZERO

OR repl
The Zero flag is set if and only if both halves of register pair rp are 0. The accumulator
and the other flags are also changed.

3. Logical OR immediate with flags (condition codes). Logically OR a byte of
immediate data with the flag register, setting those flags that are logically ORed with
I’s.

PUSH AF ;MOVE AF TO A REGISTER PAIR
POFP rp

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 87

LD A, MASK ; SET FLAGS

OR rpl

Lo rpl, A

PUSH rp s RESTORE AF WITH FLAGS SET
POFP AF

This sequence changes a register pair (BC, DE, or HL).

Logical EXCLUSIVE OR Instructions

1. Complement bits of accumulator.
XOR MASK ; COMPLEMENT BITS BY MASKING
MASK has 1’s in the bit positions to be complemented and 0’s in the positions that are
to be left unchanged. For example:
XOR 11000000R s COMPLEMENT BITES & AND 7

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

2. Complement accumulator, setting flags.
XOR 11111111R ; INVERT AND SET FLAGS

Logically EXCLUSIVE ORing with all 1’s inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.

3. Compare register with accumulator bit by bit, setting each bit position that is
different.
XOR reg sBIT BY BIT COMPARISON

The EXCLUSIVE OR function is the same as a “not equal” function. Note that the
Sign flag is | if the two operands have different values in bit 7.

4. Add register to accumulator logically (that is, without any carries between bit
positions).
XOR reg sLOGICAL ADDITION
The EXCLUSIVE OR function is also the same as a bit-by-bit sum with no carries.

Logical sums are often used to form checksums and error-detecting or error-correcting
codes.

Logical NOT Instructions

1. Complement accumulator, setting flags.

88 750 ASSEMBLY LANGUAGE SUBROUTINES

XOR 11111111R ;s INVERT AND SET FLAGS
Logically EXCLUSIVE ORing with all 1’s inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.
2. Complement bits of accumulator.
XOR MASK ;s COMPLEMENT BIT BY MASKING

MASK has 1’s in the bit positions to be complemented and 0s in the positions that are
to be left unchanged. For example:

XQR 01010001B ; COMPLEMENT BRITS 0O, 4, AND &
Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

3. Complement memory location ADDR.
LD HL, ADDR

LD A, (HL) s OBRTAIN DATA
CPL ; COMPLEMENT
LD (HL) ; A ;RESTORE RESLULT

CPL applies only to the accumulator.

4. Complement bit 0 of a register.
INC reg

or
DEC reg

Either instruction may, of course, affect the other bits in the register. The final value of
bit 0 will surely be 0 if it was originally 1 and if it was originally 0.

5. Complement bit 0 of a memory location.

LD HL , ADDR
INC (HL)

or

LD HL, ADDR -
DEC (HL)

6. Complement digit of accumulator.
- Less significant digit

XOR O00001111R ; COMPLEMENT LESS SIGNIFICANT DIGIT

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 89

+ More significant digit
XOR 11110Q000R s COMPLEMENT MORE SIGNIFICANT DIGIT

These procedures are useful if the accumulator contains a decimal digit in negative
logic, such as the input from a typical ten-position rotary or thumbwheel switch.

7. Complement a register pair.

LD HL., OFFFFH $SET HL TO ALL QNES
AND A ; CLEAR CARRY
SBC HL,rp s SUBTRACT REGISTER PAIR FROM ALL ONES3

The result ends up in HL.

Shift Instructions

1. Shift accumulator left logically.
ADD A,A sSHIFT A LEFT LOGICALLY

Adding the accumulator to itself is equivalent to a logical left shift.

2. Shift register pair HL left logically.
ADD HL,HL ;SHIFT HL LEFT LOGICALLY

3. Shift index register left logically.
ADD xy, %y sSHIFT IX OR 1Y LEFT LOGICALLY

4. Shift register pair right logically.

SRL. rph sSHIFT MSE RIGHT LOGICALLY
RR rpl ;AND THEN ROTATE LSE RIGHT

The key point here is that the less significant byte must be rotated to pick up the Carry
from the logical shifting of the more significant byte.

S. Shift register pair right arithmetically.

SRA rph SHIFT MSBE RIGHT ARITHMETICALLY
RR rpl sAND THEN ROTATE LSR RIGHT

The rotation of the less significant byte is the same as in the logical shift.

6. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) left
logically.

90 780 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,ADDR

SLA (HL) SHIFT LSE LEFT LOGICALLY
INC HL
RL (HL) :AND THEN ROTATE MSE LEFT

or

LD xy, ADDR
SLa (xy+0) sBSHIFT LSE LEFT LOGICALLY
RL (xy+1) s ANDD THEN RQTATE MSE LEFT

To produce a 16-bit left shift, you must shift the less significant byte first and then
rotate the more significant byte.

7. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) right
logically.

LD HL , ADDR+1

SRL (HL) s SHIFT MSR RIGHT LOGICALLY
DEC HL
RR (HL) s ANDD THEN ROTATE LSB RIGHT

or

LD xy, ADDR
SRL (xy+1) s SHIFT MSB RIGHT LOGICALLY
RR (xy+0) $ AND THEN ROTATE LSB RIGHT

8. Digit swap accumulator. That is, exchange the four least significant bits with the
four most significant bits.

RLCA sDIGIT SHIFT
RLCA
RLCA
RLCA

4 LEFT ROTATES

or

#

RRCA sDIGIT SHIFT
RRCA
RRCA
RRCA

4 RIGHT ROTATES

9. Normalize accumulator. That is, shift the accumulator left until its most signif-
icant bit is 1. Do not shift at all if the accumulator contains 0.

AND A s TEST ACCUMULATOR
JdP M, DONE sEXIT IF ALREADY NORMALIZED
JR Z, DONE EXIT IF ZERQ
SHIFT: ADD A, A ;OTHERWISE, SHIFT A LEFT 1 BIT
JP P, SHIFT sKEEP SHIFTING UNTIL NORMALIZED

DONE: NOP

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 91

10. Normalize register pair HL. That is, shift the 16-bit number left until its most
significant bit is 1. Do not shift the number at all if it is 0.

Lo A,H ; IS ENTIRE NUMBER 07
OR L
JR Z, DONE s YES, DONE
SHIFT: ADD HL,HL s SHIFT NUMBER LEFT 1 BIT
JR NC, SHIFT sKEEP SHIFTING UNTIL CARRY IS 1
RR H s THEN SHIFT BACK ONCE
RR L
DONE: NOP

ADD HL affects the Carry but not the Sign or Zero flag.

Rotate Instructions

1. Rotate register pair right.

RRC rpl ;COPY BIT O FOR ROTATION
RL rpl ;CARRY = BRIT 0O

RR rph ;ROTATE MSBE WITH BIT O
RR rpl ; THEN ROTATE LSB RIGHT

The RRC rplinstruction places bit 0 both in bit 7 and in the Carry flag; RL rpl then
restores the register but leaves the original bit 0 in the Carry.

2. Rotate register pair left.

RLC rph ;COPY RIT 15 FOR ROTATION
RR rph ;CARRY = BIT 15

RL rpl ;ROTATE LSER WITH RIT 1S
RL rph s THEN ROTATE MSR LEFT

RLC rph places bit 7 of the more significant byte both in bit 0 and in the Carry. RR rph
then restores the register but leaves the original bit 7 (bit 15 of the 16-bit register pair) in
the Carry.

3. Rotate accumulator left through Carry, setting flags.
ADC A,A sROTATE LEFT AND SET FLAGS
This instruction is the same as RLA, except that it affects all the flags whereas RLA
affects only the Carry.

4. Rotate register pair right through Carry.

RR rph ;ROTATE MSBR RIGHT WITH CARRY
RR rpl s THEN ROTATE LSR RIGHT WITH CARRY

92 750 ASSEMBLY LANGUAGE SUBROUTINES

5. Rotate register pair left through Carry.
RL rpl ;ROTATE LSB LEFT WITH CARRY
RL rph s ROTATE MSB LEFT WITH CARRY

6. Rotate memory locations ADDR and ADDR+1(MSBin ADDR+1) right 1 bit
position through Carry.

Ln HL., ADDR+1

RR (HL) ;ROTATE MSB RIGHT WITH CARRY
DEC HL
RR (HL) ; THEN ROTATE LSB RIGHT WITH CARRY

or

LD xy, ADDR
RR {(xy+1) s ROTATE MSE RIGHT WITH CARRY
RR (xy+0) s THEN ROTATE LSEB RIGHT WITH CARRY

7. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR+1) left one bit
position through Carry.

LD HL, ADDR

RL (HL) sROTATE LSB LEFT WITH CARRY
INC HL
RL (HL) s THEN ROTATE MSE LEFT WITH CARRY

or

LD xy, ADDR

RL (xy+Q) sROTATE LSR LEFT WITH CARRY
RL {xy+1) s THEN ROTATE MSB LEFT WITH CARRY
Test Instructions

1. Test accumulator. Set flags according to the value in the accumulator without
changing that value.

AND A s TEST ACCUMULATOR
or
OR A 3 TEST ACCUMULATOR

Both alternatives clear the Carry.

2. Test register. Set flags according to the value in a register without changing that
value.

INC reg s TEST REGISTER
DEC reg

This sequence does not affect the Carry or the accumulator.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 93

3. Test memory location. Set flags according to the value in memory location
ADDR without changing that value.

LD HL, ADDR s TEST MEMORY LOCATION ADDR
INC (HL)
DEC (HL)

This sequence does not affect the Carry or the accumulator.

4. Test register pair. Set the Zero flag according to the value in a register pair
without changing that value.

LD A, rph ; TEST REGISTER PAIR
OR rpl

This sequence changes the accumulator and the other flags.

3. Test index register. Set the Zero flag according to the value in an index register
without changing that value.

PUSH xy #MOVE INDEX REG TO REGISTER PAIR
POF rp

LD A,rph s TEST REGISTER PAIR

OR rpl

This sequence changes a register pair, the accumulator, and the other flags.

6. Test a pair of memory locations. Set the Zero flag according to the contents of
memory locations ADDR and ADDR+1.

LD HL, (ADDR) : TEST A MEMORY WORD
LD AH
OR L

This sequence changes HL, the accumulator, and the other flags.

7. Test bits of accumulator. Set the Zero flag if all the tested bits are 0’s and clear the
Zero flag otherwise.

AND MASK s TEST BITS BY MASKING
MASK has 1I’s in the bit positions to be tested and 0s elsewhere. The Zero flagis set
to 1 if all the tested bits are 0’s and to 0 otherwise. For example:
AND 10000001R s TEST BRITS O AND 7

The Zero flag is set to 1 if bits 0 and 7 of the accumulator are both zero, and to 0
otherwise. The BIT instruction, on the other hand, can only handle one bit at a time;
for example:

RIT 7.,A s TEST BIT 7

Q4 730 ASSEVBLY LANGUAGE SUBROUTINES

To duplicate the AND instruction, we would need the sequence

RIT 7,A s TEST BIT 7

JR NZ, DONE EXIT IF IT IS 1

RIT O,A ;s TEST BIT O
DONE: NOP

8. Compare register with accumulator bit by bit. Set each bit position that is
different to 1.

XOR reg s RIT-RBY-RIT COMPARISON
The EXCLUSIVE OR function is the same as a “not equal” function.

9. Bit test. Set flags as if the accumulator had been logically ANDed with a memory
location, but do not change the accumulator.

LD reg, A s SAVE ACCUMULATOR

Lo HL, ADDR

AND (HL)? s PERFORM LOGICAL AND
LD A,reg s RESTORE ACCUMULATOR

DATA TRANSFER INSTRUCTIONS

In this group, we consider load, store, move, exchange, input, output, clear, and set
instructions. We also include arithmetic instructions (such as subtracting the accumu-
lator from itself) that move a specific value or the contents of another register to the
accumulator or other destination without changing any data.

Load Instructions

1. Load register direct.

LD A, (ADDR)
Lo reg, A

or

LD HL , ADOIR
LD reg, (HL)

The first alternative uses the accumulator, while the second alternative uses register
pair HL.
2. Load register indirect.

+ From address in HL

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 98

LD reg, (HL)

* From address in BC or DE

LD A, (rp)
LD reg, A

Note that only the accumulator can be loaded indirectly via BC or DE.
- From address in an index register

LD reg, (xy+0)

3. Load flag register with the 8-bit number VALUE.

LD rpl,VALUE sPUT VALUE IN LSR OF REGISTER PAIR
PUSH rp sMOVE TO FLAGS THROUGH STACK
POP AF

The limitation of pushing and popping register pairs causes some unnecessary
operations.

4. Load interrupt vector register with the 8-bit number VALUE.

LD A, VALLIE
LD I,A

5. Load refresh register with the 8-bit number VALUE.

LD A, VALLE
LD R, A

6. Load flag register direct from memory location ADDR.

LD HL, (ADDR) ;LOAD L FROM ADDR
PUSH HL sHL TO STACK, L ON TOP
POP AF sHL TO AF WITH L TO FLAGS

This procedure allows a user to initialize the flag register for debugging or testing
purposes. Note that it changes the accumulator and the less significant byte of a
register pair.

7. Load interrupt vector register direct from memory location ADDR.

LD A, (ADDR)
LD I.A

8. Load refresh register direct from memory location ADDR.

LD A, (ADDR)
Lo R, A

96 730 ASSEMBLY LANGUAGE SUBROUTINES

9. Load register pair HL indirect from address in HL.

LD A, (HL) ;LOAD LSB
INC HL

LD H, (HL) s LOAD MZE
LD L,A

10. Load register pair (BC or DE) indirect from address in HL.

LD rpl, (HL) ;LOAD LSB

INC HL

LD rph, (HL) ; LOAD MSB

DEC HL s RESTORE HL TO ORIGINAL VALLUE

1. Load alternate processor status (AF’) from stack.
POF AF

EX AF, AF -

12. Load memory locations PTR and PTR+1 (MSB in PTR+1) with ADDR.

LD HL., ADDR s GET INDIRECT ADDRESS
LD (PTR), HL ;STORE INDIRECT ADDRESS IN MEMCRY

Store Instructions

1. Store register direct.

Lo A,reg
LD (ADDR) , A

or

LD HL, ADDR
Ln (HL) ,reg

The first alternative uses the accumulator, whereas the second uses register pair HL.

2. Store register indirect.

+ At address in HL
LD (HL) ,reg

- At address in DE or BC

Lo A,reg
LD (rp),A

Only the accumulator can be stored at the address in BC or DE.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 97

- At address in an index register
Lo (xy+0),reg

3. Store flag register direct.

PUSH AF F TO TOP OF STACK

POP HL ;F TO L

Ln (ADDR) , HL :F TO ADDR, DESTROY ALDDR+1
or

PUSH AF ;F TO TOP OF STACK

POF HL ;F TO L

LD AL ;F TO A

STA ADDR ;F TO ADDR

4. Store interrupt vector register direct.

LD A 1
LD (ADDR), A

5. Store refresh register direct.
LD AR
Lo (ADDR) , A

6. Store register pair (BC or DE) indirect at address in HL.

LD (HL) , rpl ; STORE LSP

INC HL

LD (HL), rph ; STORE MZR

DEC HL sRETURN HL TO ORIGINAL VALLE

The register pair is stored in memory in the usual upside-down fashion.

7. Store alternate processor status (AF’) in stack.

EX AF, AF -
PUSH AF

Move Instructions

1. Transfer accumulator to flag register.

Lo rpl,A

PUSH rp

POF AF
The flag register is the less significant byte of register pair AF. This sequence also
changes the accumulator and the less significant byte of a register pair (i.e., C, E, or L).

98 750 ASSEMBLY LANGUAGE SUBROUTINES

2. Transfer flag register to accumulator.

PUSH AF
POFP rp
MOV A,rpl

This sequence changes register pair rp.

3. Move register pair 1 to register pair 2.

LD rp2l,rpil
LD rpzh,rpih

This sequence transfers the contents of register pair rpl to rp2 without changing rp1.
Remember, EX DE,HL exchanges register pairs DE and HL specifically.

4. Move stack pointer to HL.

LD HL, O
ADD HL,SP

5. Move stack pointer to an index register.

LD Hy,0
ADD xvy,SP

6. Move index register to register pair.

PUSH xy
FOP rp

7. Move register pair to index register.

PUSH rp
POP xy

8. Move index register IX to index register I'Y.

PUSH IX
POP 1Y

9. Move index register IY to index register IX.

PUSH 1Y
POP IX

10. Move HL to program counter.
JP (HL)

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 99

11. Move index register to program counter.

JP (xy)

12. Move memory locations ADDR and ADDR+1 (MSB in ADDR+1) to the
program counter (an indirect jump).

LD HL, (ADDR)
JP (HL)

13. Move multiple (fill). Place the accumulator in successive memory locations
starting at the address in register pair HL. The number of bytes to be filled (one or
more) is in register B.

FILBYT: Lo (HL) , A sFILL A MEMORY LOCATION
INC HL s POINT TO NEXT LOCATION
DUNZ FILBYT ; COLINT BYTES

This routine car initialize an array or buffer. If more than 256 bytes are to be filled,
the repeated block move instructions become handy. The approach is to fill the first
byte from the accumulator and then use a repeated block move to fill the succeeding
bytes. The destination pointer is always one byte ahead of the source pointer, so the
data being moved is always the same.

LD (HL) , A ;FILL THE FIRST BYTE MANUALLY

LD DH ;DESTINATION POINTER IS 1 BYTE UP
LD E,L

INC DE

DEC BC ;COUNT DOWN 1 BYTE

LDIR ;FILL THE REST AUTOMATICALLY

Exchange Instructions

1. Exchange registers using the accumulator.

LoD A, regl
LD regl,reg2
LD reg2, A

2. Exchange register pairs.

- DE with HL
EX DE, HL
+ BC with HL
PUSH BRC ;BC TO TOP OF STACK
EX HL, (SP) ;BC TO HL, HL TQ TOF OF STACK

POP BC sHL TO BC

400 750 ASSEMVBLY LANGUAGE SUBROUTINES

EX HL,(SP) exchanges HL with the top of the stack.
- general, rpl with rp2

PUSH rpl sPUT RP1, RP2 IN STACK

PUSH rp2

POP rpl s EXCHANGE BY POPPING IN WRONG ORDER
POP rp2

3. Exchange stack pointer with HL.

EX DE,HL sHL TO DE

LD HL,0 ;SP TO HL

ADD HL,SP

EX DE,HL ;9P TO DE, RESTORE HL
LD SP,HL :HL TO 5P

EX DE,HL ;5P TO HL

This procedure can be used to differentiate between the user stack and the operating
system or monitor stack.

4. Exchange index register with register pair.

PUSH xy ; SAVE INDEX REG, REG PAIR IN STACK
PUSH rp
POP xy ; EXCHANGE BY POPPING IN WRONG ORDER
POF rp

5. Exchange index registers.

PUSH IX ;SAVE BOTH INDEX REGISTERS IN STACK
PUSH 1Y
POP IX s EXCHANGE BRY POPPING IN WRONG ORDER
POP 1Y

Clear Instructions
1. Clear the accumulator.
SUB A

or
XOR A
or

LD A0

The third alternative executes more slowly and occupies more memory than the
other two, but does not affect the flags.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 101

2. Clear a register.

LD reg, 0

3. Clear memory location ADDR.

SUB A
LD (ADDR) ,; A

or

LD HL, ADDR
LD (HL), 0

The second alternative executes more slowly than the first, but does not affect the
accumulator or the flags. Of course, it does use register pair HL.

4. Clear a register pair.

LD rp, 0

5. Clear memory locations ADDR and ADDR-+1.

LD HL, O
LD (ADDR) , HL

HL is faster to use here than DE or BC.

6. Clear Carry flag.
ANDI A

or
OR A
Any other logical instruction (except CPL) will also clear the Carry, but these two
are particularly useful because they do not change the accumulator. Remember,

ANDing or ORing a bit with itself does not affect its value. To clear Carry without
affecting any other flags, use the sequence

SCF ;FIRST SET CARRY FLAG
CCF ; THEN CLEAR CARRY BY COMPLEMENTING

7. Clear bits of accumulator.
AND MASK s CLEAR BITS BY MASKING

MASK has 0 in the bit positions to be cleared and 1’s in the positions that are to be
left unchanged. For example:

AND 10111110B sCLEAR BITS O AND &

RES can clear only one bit at a time.

402 7580 ASSEMBLY LANGUAGE SUBROUTINES

Set instructions

1. Set the accumulator to FFy4 (all I’s in binary).
LD A, OFFH

or

SUB A
DEC A

2. Set register to FF .
LD reg, OFFH

3. Set memory location ADDR to FFg.

Lo A, OFFH
LD (ADDR) , A

or

LD HL, ADDR
LD (HL) , OFFH

4. Set bits of accumulator.
OR MASK sSET RITS BY MASKING

MASK has 1’s in the bit positions to be set and 0’s elsewhere. For example:
R 10110000R sSET BITS 4, S, AND 7

The SET instruction can set only one bit at a time.

BRANCH (JUMP) INSTRUCTIONS

Unconditional Branch Insiructions

1. Jump indirect.

+ To address in HL,
JP (HL)

* To address at the top of the stack
RET

Note that RET is just an ordinary indirect jump that obtains its destination from the

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 4 03

top of the stack. RET can be used for purposes other than returning from a subroutine.

- To address in DE

EX DE, HL

JP (HL)
+ To address in BC

LD H, B

LD L,C

JP (HL)

or
PUSH BC
RET

The second alternative is much slower than the first (21 cycles as compared to 12
cycles), but does not change HL.

- To address in an index register

JP (xy)

+ To address in memory locations ADDR and ADDR+1
LD HL, ADDR sFETCH INDIRECT ADDRESS
JP (HL) s AND BRANCH TO IT

2. Jump indexed, assuming that the base of the address table is in register pair HL
and the index is in the accumulator.

ADD A, A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
LD E,A ;EXTEND INDEX TO 1é BITS

LD n,o

ADD HL,DE ;s CALCULATE ADDRESS QF ELEMENT
LD E, (HL) s FETCH ELEMENT FROM ADDRESS TAELE
INC HL

LD 0, (HL)

EX DE, HL sAND JUMP TO IT

JP (HL)

We have assumed that the address table (jump table) consists of as many as 128 2-byte
entries, stored in the usual Z80 format with the less significant byte at the lowel
address. A typical table would be

JTAB: oW RQUTO s ADDRESS ENTRY O
W ROUT1 ; ADDRESE ENTRY 1
oW ROUTZ2 ;s ADDRESS ENTRY 2

3. Jump and link; that is, transfer control to address DEST, saving the current
program counter in register pair HL.

404 730 ASSEMBLY LANGUAGE SUBROUTINES

LD HL, HERE ;LOAD H AND L WITH LINK
HERE:: JP DEST : TRANSFER CONTROL

This procedure can provide a subroutine capability that does not use the stack. The
subroutine can return contro! by adjusting the link and executing JP (HL). For
example, to return control to the instruction immediately following JP DEST, the
subroutine would have to add 3 to HL (since JP DEST occupies 3 bytes). Of course,
the link could also be changed to HERE+3.

Conditional Branch Instructions

1. Branch if 0.
+ Branch if accumulator contains 0
AND A s TEST ACCUMULATOR
JR Z,DEST

+ Branch if a register contains 0
INC vreg 3 TEST REGISTER
DEC vreg
JR Z,DEST

* Branch if memory location ADDR contains 0

Lo HL, ADDR s TEST MEMORY LOCATION
INC (HL)
DEC (HL)
JR Z,DEST
or
LD A, (ADDR) s TEST MEMORY LOCATION
AND A
JR Z,DEEST

+ Branch if a register pair contains 0
LD A,rph s TEST REGISTER PAIR

OR rpl
JR Z,DEST

+ Branch if an index register contains 0

PUSH xy s MOVE INDEX REGISTER TO REGISTER PAIR
POP rp

LD A,rph s TEST REGISTER PAIR

OR rpl

JR Z,DEST

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 4 05

- Branch if memory locations ADDR and ADDR-1 both contain 0

LD HL, CARDR) s TEST A 14-BIT NUMBRER IN MEMORY
LD A H
R L

JR Z,DEST
- Branch if a bit of a register is 0

BIT N,reg s TEST RIT N OF REGISTER
JR Z,DEST

Special cases are

- Branch if bit 7 of the accumulator is 0

AND A s TEST BIT 7 OF ACCUMULATOR
JP P, DEET

or
RLA yMOQVE BIT 7 TO CARRY

JR NC, DEST
The second alternative allows relative jumps, but it also changes the accumulator.

» Branch if bit 6 of the accumulator is 0
ADD A,A s SET SIGN FROM BIT &
JP P, DEST s THEN TEST SIGN FLAG
- Branch if bit 0 of the accumulator is 0

RRA ;MOVE RIT O TO CARRY
JdR NC, DEST s AND TEST CARRY

- Branch if a bit of a memory location is 0

LD HL , ADDR
BIT N, (HL) s TEST BRIT N OF MEMORY LOCATION ADOR
JR Z,DEST

- Branch if interrupts are disabled (that is, if interrupt flip-flop IFF2 is Q)

LD Al sMOVE IFF2 TO P/V FLAG
JP PO, DEST

The instruction LD A,1and LD A,R both move interrupt enable flip-flop IFF2 to
the Parity/Overflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can then be restored afterward.

2. Branch if not 0.

- Branch if accumulator does not contain 0

AND A s TEST ACCUMULATOR
JR NZ, DEST

406 7:0 assemeLy LancuacE SUBROUTINES

+ Branch if a register does not contain 0

INC vreg ; TEST REGISTER
DEC r=eg
JR NZ, DEST

+ Branch if memory location ADDR does not contain 0

Lo HL, ADDR ; TEST MEMORY LOCATION
INC (HL)

DEC {(HL)

JR NZ, DEST

or

Ln A, (ADDR) s TEST MEMORY LOCATION
AND A
JR NZ,DEST

- Branch if register pair does nnt contain 0

LD A, rph ; TEST REGIZTER PAIR
OR rpl
JR NZ,DE3T

* Branch if index register does not contain 0

PUSH xy s TRANSFER INDEX REGISTER TO REG PAIR
POP rp

LD A,rph ; TEST REGISTER PAIR

GR rpl

JR NZ,DEST
* Branch if memory locations ADDR and ADDR+1 do not both contain 0

LD HL., (ADT) ;TEST 16-RIT NUMBER IN MEMORY
LD AH
OR L

JR NZ, DEST

* Branch if a bit of a register is 1

BRIT N,reg s TERT BRIT N QOF REGISTER
JR NZ,DEST

Special cases are
- Branch if bit 7 of the accumulator is 1

AND A s TEST BIT 7 OF ACCUMULATOR
JP M, DEST
or
RLA sMOVE RIT 7 TO CARRY
JR C, DEST

The second alternative allows relative jumps, but it also changes the accumulator.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 107

+ Branch if bit 6 of the accumulator is 1

ADD A,A s S3ET SIGN FROM BIT &
JP M, DEST s THEN TEST SIGN FLAG

- Branch if bit 0 of the accumulator is 1

RRA s MQVE BIT O TO CARRY
JR C,DEST ; THEN TEST CARRY

- Branch if a bit of a memory location is 1

Lo HL, ADDIR
BIT N, (HL) s TEST RIT N OF MEMORY LOCATION ADDR
JR NZ, DEST

- Branch if interrupts are enabled (that is, if interrupt flip-flop IFF2 is 1)

LD Al sMQVE IFF2 TO P/V FLAG
JF PE, DEST

The instructions LD A,I and LD A,R both move interrupt enable flip-flop IFF2 to
the Parity/Overflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can be restored afterward.

3. Branch if Equal.
+ Branch if (A) = VALUE

CP VALUE s COMPARE BY SUBTRACTING
JR Z,DEST

The following special cases apply to any register or to a memory location addressed
using HL or through indexing.
- Branch if (reg) = 1

DEC reg ; CHECK BY DECREMENTING
JR Z,DEST s AND TESTING RESULT FOR ZERO

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

- Branch if (reg) = FF g

INC reg 3 CHECK RY INCREMENTING
JR Z,DEST s ANDN TESTING RESULT FOR ZERD

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

- Branch if (A) = (reg)

CFP reg ; COMFARE RY SUBRTRACTING
JR Z,DEST

108 750 ASSEMBLY LANGUAGE SUBROUTINES

* Branch if (A) = (ADDR)

LD HL , ADDR ; COMPARE BY SUBTRACTING
CP (HL)
JR Z,DEST

* Branch if (rp) = VALI16

LD HL,VAL1&

AND A ;s CLEAR CARRY

SRC HL,rp

JR Z,DEST
Carry must be cleared, since the Z80 lacks a 16-bit subtract instruction without Carry.
Note that the two’s complement of VAL16 cannot be added using ADD HL, since that
instruction does not affect the Zero flag.

* Branch if (HL) = (rp)

AND A ; CLEAR CARRY
SRC HL,rp
JR Z,DEST

Note: Do not use either of the next two sequences to test for stack overflow or under-
flow, since intervening operations could change the stack pointer by more than 1.

+ Branch if (SP) = VALI6

Lo HL, VAL1s

AND A ; CLEAR CARRY
SEC HL,SP

JR Z,DEST

* Branch if (SP) = (HL)

AND A ;s CLEAR CARRY
SBC HL,SP
JR Z,DEST

* Branch if (xy) = VALI6

PUSH xy sMOVE INDEX REGISTER TO REGISTER PAIR
POF rp

LD HL, VAL1& ;s THEN COMPARE REGISTER PAIR, VAL1&
AND A ;s CLEAR CARRY

SRBC HL, =P

JR Z,DEST

ADD xy cannot be used to add the two’s complement of VALI16, since ADD Xy does
not affect the Zero flag.
4. Branch if Not Equal.
* Branch if (A) # VALUE

cpP VALUE s COMFARE BY SUBTRACTING
JR NZ,DEST

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 4109

The following special cases apply to any register or to a memory location addressed
using HL or through indexing.

+ Branch if (reg) # 1

DEC reg ; CHECK BY DECREMENTING

JR NZ, DEST ; AND TESTING RESULT FOR ZERD
+ Branch if (reg) # FF ¢

INC reg s CHECK BY INCREMENTING

JR NZ, DEST ; AND' TESTING RESULT FOR ZERQ
+ Branch if (A) # (reg)

cP reg : COMFARE BY SUBTRACTING

JR NZ, DEST
- Branch if (A) # (ADDR)

LD HL, ADDR ; COMPARE BY SURTRACTING
CF (HL)
JR NZ,DEST

» Branch if (rp) # VALI6

LD HL,VAL1&
AND A

SBC HL,rp

JR NZ, DEST

- Branch if (HL) # (rp)

AND A ;s CLEAR CARRY
SBC HL,rp
JR NZ, DEST

CLEAR CARRY

-

Note: You should not use either of the next two sequences to test for stack overflow
or underflow, since intervening operations could change the stack pointer by more
than 1.

- Branch if (SP)# VALI6

LD HL, VAL1&

AND A ; CLEAR CARRY
SBC HL, 5P

JR NZ, DEST

+ Branch if (SP) # (HL)

AND A ; CLEAR CARRY
SRC HL,SP
JR NZ,DEST

+ Branch if (xy) # VALI16

PUSH xy sMOVE INDEX REGISTER TO REGISTER PAIR
POP rp

440 250 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,VAL1& ;s THEN COMPARE REGISTER PAIR AND VAL1&
AND A s CLEAR CARRY
SRC HL,rp

JR NZ,DEST

ADD xy cannot be used to add the two’s complement of VAL16, since ADD xy does
not affect the Zero flag.

5. Branch if Positive.
» Branch if contents of accumulator are positive

AND A ; TEST ACCLUMULATOR
JdP F, DEST

- Branch if contents of a register are positive

INC reg s TEST REGISTER
DEC reg
JP F, DEST

- Branch if contents of memory location ADDR are positive

LD HL, ADDR s TEST MEMORY LOCATIGN
INC (HL)
DEC (HL)
JP P, DEST
or
Lo A, (ADDR) ;s TEST MEMORY LOCATION
AND A
JP P,DEST

- Branch if contents of a register pair are positive
INC rph s TEST MORE SIGNIFICANT BYTE ONLY

DEC rph
JP P, DEST

- Branch if contents of index register are positive

PUSH xy ; TRANSFER INDEX REGISTER TO AF
POF AF

AND A s TEST MORE SIGNIFICANT BYTE ONLY
JP P,DEST

- Branch if 16-bit number in memory locations ADDR and ADDR-+1 (MSB in
ADDR-1) is positive

LD A, (ADDR+1) ; TEST MORE SIGNIFICANT RBYTE ONLY
AND A
JP P, DEST

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 144

or
LD HL, ADDR+1 s TEST SIGN RIT OF MSRE

BIT 7, (HL)
JR Z,DEST

6. Branch if Negative.

- Branch if contents of accumulator are negative

ANDY A s TEST ACCUMULATOR
JP M, DEZT

- Branch if contents of a register are negative

INC reg s TEST PRIMARY REGISTER
DEC reg
JP M, DEST

+ Branch if contents of memory location ADDR are negative

LD HL, ADDR s TEST MEMORY LOQCATION
INC (HL)
DEC (HL)
JP M, BEST
or

LD A, (ADDR) s TEST MEMORY LOQCATION
ANDY A
JP M, DEST

- Branch if contents of a register pair are negative
INC rph s TEST MORE SIGNIFICANT BYTE ONLY
DEC rph
JP M, DEST

* Branch if contents of an index register are negative
PUSH xy +MOQVE INDEX REGISTER TO AF
POF AF
AND A s TEST MORE SIGNIFICANT BYTE ONLY
JP M, DEST

- Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB in

ADDR1) is negative
LD A, (ADDR+1) : TEST MORE SIGNIFICANT BYTE ONLY
AND A
JRP M, DEST
or

LD HL, ADDR+1 s TEST SIGN RIT OF MSR
BRIT 7, (HL)

JR NZ, DEST

442 730 ASSEVBLY LANGUAGE SUBROUTINES

7. Signed Branches.

These sequences must allow for two’s complement overflow. After a comparison, the
setting of the Parity/ Overflow flag indicates that overflow occurred. The branches are
JP PE (Branch on Overflow) and JP PO (Branch on No Overflow). The idea then s to
force a branch if the specified condition holds and overflow did not occur (a true
positive), or if the condition does not hold but overflow did occur (a false negative).
The operand in the initial comparison (indicated as oper) could be a data byte, a
register, (HL), or an indexed address.

- Branch if accumulator is greater than other operand (signed)

cP
JP
JP
JR
JR
CHRVS: JF

DONE : NOP

oper
PE, CHRVS
M, DONE
NZ, DEST
DONE

M, DONE

;s PERFORM COMPARISON

s BRANCH IF OVERFLOW QCCURRED

s NO OVERFLOW — NO BRANCH ON NEGATIVE
s BRANCH IF RESULT NON-ZERO POSITIVE

; BRANCH IF NEGATIVE BUT QVERFLOW

This sequence forces a branch if the result is greater than 0 and overflow did not
occur, or if the result is less than 0 but overflow did occur.

- Branch if accumulator is greater than or equal to other operand (signed)

CP
IR
JFP
JR
CHRVS: JP

DIONE 2 NCGP

oper

PE, CHRVS
P, DEST
DONE

M, DEST

: PERFORM COMPARISZON
s BRANCH IF QVERFLOW QCCLRRED
s BRANCH IF NO OVERFLOW, POSITIVE

s BRANCH IF QVERFLOW, NEGATIVE

This sequence forces a branch if the result is greater than or equal to 0 and overflow
did not occur, or if the result is less than 0 but overflow did occur.

« Branch if accumulator is less than other operand (signed)

CFP
JP
JP
JR
CHRVS: JP

DONE: NOP

opeyr

PE, CHRVS
M, DEST
DONE

P, DEST

; PERFORM COMPARISON
;s BRANCH IF OQOVERFLOW QCCURRED
s BRANCH IF NO OVERFLOW, NEGATIVE

s BRANCH IF QVERFLOW, POSITIVE

This sequence forces a branch if the result is less than 0 and overflow did not occur,
or if the result is greater than or equal to 0 and overflow did occur.

- Branch if accumulator is less than or equal to other operand (signed)

CP
JP
JP
JR
JR
CHRVS: JP

oper

PE, CHRVS
M, DEST
Z,DEST
DONE

M, DONE

; PERFORM COMPARISION

s BRANCH IF QVERFLOW QCCURRED

; BRANCH IF NO QVERFLOW, NEGATIVE
sBRANCH IF NO QVERFLOW, ZERO

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 44 3

JR NZ, DEST s BRANCH IF OVERFLOW, POSITIVE
DONE: NOP
This sequence forces a branch if the result is less than or equal to 0 and overflow did
not occur, or if the result is greater than (0 and overflow did occur.

8. Branch if Higher (Unsigned).

Branch if the operands being compared are not equal and the comparison does not
require a borrow. The special problem here is avoiding a branch when the operands are
equal.

- Branch if (A) > VALUE (unsigned)

CP VALLUE s COMPARE BY SUBTRACTING

JR C, DONE s NO BRANCH IF BORROW NEEDED

JR NZ, DEST ;s BRANCH IF NO BORROW, NOT EQUAL
DONE : NOP

Comparing equal numbers clears Carry. An alternative approach is

cp VALUE+1 s COMPARE BY SUBRTRACTING VALLE+1
JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (A) > (reg) (unsigned)

CcP reg ;s COMPARE BY SUBTRACTING

JR C, DONE s NO RBRANCH IF RBORROW NEELDED

JR NZ, DEST ;s RRANCH IF NO BORROW, NOT EQUAL
DONE NOP

or

Lo regl, A s FORM REG - A

LD A,reg

(e regl

JR NG, DEST s BRANCH IF BORROW NEEDED
or

INC reg sFORM A — REG - 1

CP reg

JR NC, DEST ; BRANCH IF NO BORROW NEEDED

In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

+ Branch if (A) > (ADDR) (unsigned)

LD HL., ADDIR

CF (HL) s COMPARE BY SURTRACTING

JR C, DONE s NO BRANCH IF BORROW NEEDED

JR NZ, DEST ; BRANCH IF NO RORROW, NOT EQUAL
NONE: NOP

or

444 750 ASSEVBLY LANGUAGE SUBROUTINES

LD reg, A s FORM (ADDR) - A

LD A, (ADDR)

CP reg

JR C,DEST s BRANCH IF RORROW NEELDED
+ Branch if (HL) > (rp) (unsigned)

SCF s SET CARRY FLAG

SR HL,rp

JR NC, DEST s BRANCH IF NO BORROW NEEDED
+ Branch if (HL) > VALI6 (unsigned)

LD rp,-VAL1&-1 ;FORM HL - VAL1S - 1

AN HL,rp

JR C, DEST s BRANCH IF NQ RORROW NEEDED

Carry is an inverted borrow here, since we are subtracting by adding the two’s
complement.

- Branch if (SP) > (HL) (unsigned)

AND A ; CLEAR CARRY FLAG
SBC HL,SP
JR C, DERT
- Branch if (SP) > VALI16 (unsigned)
Lo HL, -VAL16-1 sFORM 5P - VALl1as - 1
ADD HL, 5P
JR C, DEST s BRANCH IF NO EORROW GENERATED

- Branch if (xy) > VALI16 (unsigned)
LD rp,-VaL1&-1 sFORM XY — VAL1A - 1

ADD xy,rp
JR C, DEST s BRANCH IF NO EORROW GENERATED
+ Branch if (xy) > (HL) (unsigned)
PUSH xy sMOVE INDEX REGISTER TO REGISTER PAIR
POF rp
AND A ;s CLEAR CARRY FLAG
SEC HL,rp
JR C,DEST

9. Branch if Not Higher (Unsigned).

Branch if the operands being compared are equal or the comparison requires a
borrow. The special problem here is forcing a branch if the operands are equal.

+ Branch if (A) =< VALUE (unsigned)

CP VALUE ; COMFARE BY SUEBTRACTING
JR C,DEST : BRANCH IF BRORROW NEEDED
JR Z,DEST 3 OR IF EQUAL

or

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 44 5

CcP VALLE+1 ; COMFARE BY SUBTRACTING VALUE+1
JR C,DEST ;s BRANCH IF BORROW NEEDED

* Branch if (A) < (reg) (unsigned)

CP reg ; COMFARE BY SUBTRACTING
JR C, DEST s BRANCH IF RORROW NEEDED
JR Z,DEST y OR IF EQUAL
or
Lo regl, A ;FORM REG - A
LD A,reg
CP regl
JR NC, DEST s BRANCH IF NGO BORROW NEEDED
or
INC reg sFORM A — REG - 1
CcP reg
JR C, DEST s BRANCH IF BORROW NEEDED

In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

- Branch if (A) < (ADDR) (unsigned)
LD HL, ADDR

CF (HL) : COMFARE BY SURBTRACTING
JR C, DEST : BRANCH IF BORROW NEEDED
JR Z,DEST s OR IF EQUAL
or
LD reg, A s FORM {(ADDR) - A
LD (ADDR) , A
CP reg
JR NC, DEST s BRANCH IF NO BORROW NEEDED
- Branch if (HL) < (rp) (unsigned)
SCF s SET CARRY FLAG
SBC HL,rp sFORM HL - RF - 1
JR C,DEST s BRANCH IF BORROW NEEDRED

- Branch if (HL) < VALI16 (unsigned)

LD rp,~VAL16~-1
ADD HL,rp sFORM HL - VAL1: - 1
JR NC, DEST s BRANCH IF RORROW NEEDED

+ Branch if (SP) < (HL) (unsigned)
AND A s CLEAR CARRY

SBC HL,SP ;FORM HL - 3P
JR NC, DEST s BRANCH IF NO BORROW NEEDED

4146 750 ASSEVBLY LANGUAGE SUBROUTINES

» Branch if (SP) < VALI6 (unsigned)

LD HL, -VAL1&~1 ;FORM SP - VAL1& - 1

ADD HL,SP

JR NC, DEST s BRANCH IF BORROW NEEDED
+ Branch if (xy) < VALI16 (unsigned)

Ln rp,-VAL14&~1 sFORM XY - VaAL1a - 1

ALDD xy,rp

JR NC, DEST s BRANCH IF BRORROW NEEDED

+ Branch if (xy) < (HL) (unsigned)

PUSH xvy sMOVE INDEX REGISTER TO REGIZTER PAIR
POF rvp

ANDY A ; CLEAR CARRY

SRC HL,rp sFORM HL - XY

JR NC, DEST s BRANCH IF NO BORRCOW NEEDED

10. Branch if Lower (Unsigned). Branch if the unsigned comparison requires a
borrow.

- Branch if (A) < VALUE (unsigned)

CP VALUE : COMFARE RY SUBRTRACTING

JR G, DEST s BRANCH IF BORROW NEEDED
+ Branch if (A) < (reg) (unsigned)

CP reg s COMPARE BY SUBTRACTING

JR C,DEST s BRANCH IF BORROW NEEDED

+ Branch if (A) < (ADDR) (unsigned)
LD HL, ADDR

CP (HL) ; COMPARE BY SUBTRACTING

JR C, DEST
+ Branch if (HL) < (rp) (unsigned)

AND A sFORM HL - RP

SBC HL,rp

JR C, DEST s BRANCH IF BORROW NEEDED
+ Branch if (HL) < VAL16 (unsigned)

LD rp,-VAL1& sFORM HL - VAL1S

ADD HL,rp

JR NC, DEST s BRANCH IF BORROW NEEDED
+ Branch if (SP) < (HL) (unsigned)

SCF ;FORM HL - SP-1

SBC HL,SP

JR NC, DEST ; BRANCH IF NO BORROW NEEDED

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 447

+ Branch if (SP) << VAL16 (unsigned)

Lo HL, ~-VAL1& ;FORM 8P - VAL14
ADD HL,SP
JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (xy) < VALI16 (unsigned)

Lo rp,-VAL1& ;FORM XY - VAL1S
ADD xy,rp
JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (xy) < (HL) (unsigned)

PUSH xy ;MOVE INDEX REGISTER TO REGISTER PAIR
POF rp

SCF ;FORM HL - XY-1

SEC HL,rp

JR NC,DEST ;BRANCH IF NO BORROW NEEDED

11. Branch if Not Lower (Unsigned). Branch if the unsigned comparison does not
require a borrow.

* Branch if (A) = VALUE (unsigned)

CP VALUE s COMFARE RBY SURTRACTING

JR NC, DEST ;s BRANCH IF NO BORROW NEEDED
+ Branch if (A) = (reg) (unsigned)

CP reg s COMPARE BY SUBRTRACTING

JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (A) = (ADDR) (unsigned)
Ln HL, ADDR

cP (HL) s COMPARE RY SUBTRACTING

JR NC, DEST s BRANCH IF NO BORROW NEEDED
+ Branch if (HL) = (rp) (unsigned)

AND A ;FORM HL - RP

SEC HL,vp

JR NC, DEST s BRANCH IF NO BORROW NEEDED
+ Branch if (HL) = VALI6 (unsigned)

LD re,-VAL1& ;FORM HL - VAL14

ADD HL,rp

JR C,DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (SP) = (HL) (unsigned)

SCF ;FORM HL - SP-1
SBC HL, 5P
JR C,DEST ; BRANCH IF BORROW NEEDED

448 750 ASSEMBLY LANGUAGE SUBROUTINES

- Branch if (SP) = VAL16 (unsigned)

LI HL,-VAL1& ;FORM SF - VALLA
ADD HL,rp
JR C, DEST s BRANCH IF NO EORROW NEEDED

+ Branch if (xy) = VALI16 (unsigned)

LD rp,-VAL14& ;FORM XY - VALLA
ADD xy,SP
JR C,DEST s BRANCH IF NO EBORROW NEEDED

+ Branch if (xy) = (HL) (unsigned)

PUSH xvy ; TRANSFER INDEX REG TO REGISTER PAIR
POF rp
SCF sFORM HL — XY - 1
SEC HL,rp
JR C, DEST ; BRANCH IF BORROW NEEDED
SKIP INSTRUCTIONS

Skip instructions can be implemented on the Z80 microprocessor by using jump
instructions with the proper destination. That destination should be one instruction
beyond the one that follows the jump sequentially. The actual number of bytes skipped
will vary, since Z80 instructions vary from one to four bytes in length.

SUBROUTINE CALL INSTRUCTIONS

Unconditional Call instructions

Anindirect call on the Z80 microprocessor can be implemented by calling a routine
that performs an indirect jump. An RET instruction at the end of the subroutine will
then transfer control back to the original calling point. The main program performs

CALL TRANS

where subroutine TRANS transfers control to the ultimate destination. Note that
TRANS ends with a jump, not with a return. Typical TRANS routines are

- To address in HL
TRANS: JP (HL) sENTRY POINT IN HL
- To address in an index register

TRANS: JP (xy) sENTRY POINT IN AN INDEX REGISTER

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 149

+ To address in DE

TRANS: EX DE, HL sENTRY POINT IN DE

JF {HL.)
- To address in BC

TRANS: LD H,R sENTRY POINT IN EC
LD L,C
JP CHL)

or

TRANS: FPUSH RC +ENTRY FPOINT IN EC

RET

The second alternative is longer, but leaves HL unchanged.

- To address in memory locations ADDR and ADDR+1

TRANS: Lo HL, {ADDR) ;ENTRY FOINT AT ADDR
JF (HL)
- To address at the top of the stack. Here we must exchange the return address
with the top of the stack. This can be done in the main program as follows:
LD HL,RETPT ;GET RETURN POINT ADDREZS
EX HL, (SF) :PUT RETURN ADDRESS ON STACK
JF (HL) s ANDU JUMP TQ OLD TOP OF STACK

The exchange can allow later resumption of a suspended program or provide a
special exit to an error-handling routine.

You can implement indexed calls in the same way as indirect calls. The CALL
instruction transfers control to a routine that performs an indexed jump as shown
earlier. That routine ends with an ordinary jump instruction (typically JP (HL)) that
does not affect the stack. An RET instruction at the end of the actual subroutine will
therefore transfer control back to the original calling point.

If the main program executes CALL JMPIND with the index in the accumulator
and the starting address of the jump table in register pair HL, the indexed jump routine
is

JMPIND: ADD AL A ;s DOURLE INDEX FOR 2-BYTE ENTRIES
LD E,A ;EXTEND INDEX TO 14 BITS
LD n,o
ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD E, (HL) ; FETCH ELEMENT FROM ADDRESS TAEBLE
INC HL
Lo 0, (HL)
EX DE, HL ;AND JLIMFP TO IT
JP (HL)

One problem with indexed and indirect calls is that the transfer routines may
interfere with the subroutines. For example, the indexed jump routine JMPIND
changes the accumulator, register pair DE, register pair HL, and the flags. Thus, none

420 7530 ASSEMBLY LANGUAGE SUBROUTINES

of these registers can be used to pass parameters to the subroutine. The programmer
must always remember that the intermediate transfer routines are interposed between
the main program and the actual subroutine. A similar interposition occurs when
operating system routines transfer control from one task to another or from a main
program to an 1/ O driver or an interrupt service routine.

Conditional Call Insiructions

Conditional calls can be implemented on the Z80 by using the sequences shown for
conditional branches. The only change is that jumps to the actual destination must be
replaced with calls (for example, replace JR NZ,DEST with CALL NZ,DEST or JP
PDEST with CALL P,DEST).

SUBROUTINE RETURN INSTRUCTIONS

Unconditional Return Instructions

The RET instruction returns control automatically to the address saved at the top of
the stack. If the return address is saved elsewhere (for example, in a register pair or in
two fixed memory locations) you can transfer control to it by performing an indirect
jump.

Conditional Return Instructions

Conditional returns can be implemented on the Z80 microprocessor by using the
sequences shown earlier for conditional branches. The only change is that you must
replace jumps to the actual destination with RETs (for example, replace JR NC, DEST
with RET NC or JP M,DEST with RET M).

Return with Skip Instructions

+ Return control to the address at the top of the stack after it has been
incremented by an offset NEXT. This sequence lets you transfer control past
parameters, data, and other non-executable items.

FOP DE ;s GET RETURN ADDRESZS
Lo HL., NEXT sOFFSET TO NEXT EXECUTABLE INSTRUCTION
ADD HL,DE

JF (HL) s AND' RETURN

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 124

+ Change the return address to RETPT. Assume that the return address is
currently stored at the top of the stack.
Lo HL, RETPT s CHANGE RETURN ADDRESS TO RETPT
EX HL, {(SF)
EX HL,(SP) exchanges HL with the top of the stack. This procedure allows you to

force a special exit to an error routine or other exception-handling program without
changing the logic of the subroutine or losing track of the original return address.

Return from Interrupt Instructions

If the initial portion of the interrupt service routine saves all the primary registers
and the index registers with the sequence

PUSH AF ; SAVE PRIMARY REGISTERS
PUSH BC

PUEH DE

PUSH HL ,

PUSH IX ; SAVE INDEX REGISTERS
PUZH 1Y

a standard return sequence is

FOF 1Y sRESTORE INDEX REGISTERS
POF IX

FQF HL RESTORE PRIMARY REGISTERS
POF DE

POF B

POF AF

EI s REENABLE INTERRUFTS

RETI

The order of restoration is the opposite of the order in which the registers were
saved. The instruction EI must come immediately before RETI to avoid unnecessary
stacking of return addresses.

MISCELLANEOUS INSTRUCTIONS

In this category, we include no operations, push, pop, halt, wait, trap (break or
software interrupt), decimal adjust, enabling and disabling of interrupts, translation
(table lookup), and other instructions that do not fall into any of the earlier categories.

1. No Operation Instructions.

Like NOP itself, any LD instruction with the same source and destination register
does nothing except advance the program counter. These additional no-ops are

422 /50 ASSEVBLY LANGUAGE SUBROUTINES

2. Push Instructions.

- Push a single register (A, B, D, or H)

FUZH rp sPUSH THE REGISTER PAIR
INC SF sBUT DROF THE LESS SIGNIFICANT HALF

The register pair could be AE Programmers generally prefer to combine byte-length
operands or simply waste a byte of the stack rather than attempt to push a single byte.
+ Push memory location ADDR

LD A, (ARDR) ;OBTAIN, DATA FROM MEMORY
PUSH AF ;PUSH DATA, FLAGS
INC SP " 3 THEN DROF THE FLAGS

ADDR could be an external priority or control register (or a copy of an external
register).

* Push memory locations ADDR and ADDR+1

LD HL, (ADDR) sPUSH A PAIR OF MEMORY LOCATICONS
FUSH HL

+ Push the interrupt flip-flop IFF2
Lo Al sMOVE IFFZ TO FARITY/OVERFLOW FLAG
PUSH AF

This sequence allows you to save the interrupt status in the Parity/ Overflow flag (bit
2 of register F) for later restoration.

3. Pop (Pull) Instructions.

+ Pop a single register (A, B, D, or H), assuming that it has been saved as shown
previously

DEC SP s BACK. UFP THE STACE POINTER
FOP rp s POF THE REGISTER PAIR
This sequence changes the less significant half of the register pair unpredictably.

* Pop memory location ADDR, assuming that it has been saved at the top of the
stack

DEC SF ; BACK. UF THE STACE POINTER

FOF AF ;s POP ACCUMULATOR AND FLAGS
Lo (ADDR), A s RESTORE DATA TO MEMORY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 4 23

This sequence changes the flags unpredictably. ADDR could be an external priority
or control register (or a copy of an external register).
+ Pop memory locations ADDR and ADDR-+1, assuming that they were saved as
shown previously

FOF HL ;RESTORE A PAIR OF MEMORY LOCATIONS
Lo (ADDR) , HL

Sometimes you must push and pop key memory locations and other values beside the
registers.

- Restore interrupt status, assuming that it has been saved at the top of the stack.

FOF AF sORTAIN PREVIOUS INTERRUFPT STATUS
JF FE, ENAELE
Dl ;DISABLE INTERRUPTS IF PREVIQUSLY Z0
JR DONE
ENABLE: EI sENARLE INTERRUPTS IF PREVIQUILY S0
DIONE NOP

The interrupt flip-flop IFF2 is saved in the Parity/Overflow flag; interrupts were
previously enabled if that flag is 1 and disabled if it is 0.

Wait instructions

The simplest way to implement a wait on the Z80 microprocessor is to use an endless
loop such as

HERE: JR HERE

The processor will execute JP until it is interrupted and will resume executing it after
the interrupt service routine returns control. Of course, regular interrupts must have
been enabled (with EI) or the processor will execute the endless loop indefinitely. The
non-maskable interrupt can interrupt at any time without being enabled.

Trap Instructions

The common Z80 traps (also called breaks or software interrupts) are the RST
instructions (see the list in Table 1-9). RST n calls the subroutine starting at address n.
Thus, for example, RST 0 transfers control to memory address 0000 after saving the
current program counter in the stack. Similarly, RST 30H transfers control to memory
address 00304 after saving the current program counter in the stack. The interrupt
system generally uses the RST instructions, but the programmer can dedicate unused
ones to common subroutines, error traps, or supervisor entry points. RST then serves
as a 1-byte call.

424 750 ASSEMBLY LANGUAGE SURBROUTINES

Adjust Instructions

1. Branch if accumulator does not contain a valid decimal (BCD) number.

LD reg,A ; SAVE COPY OF ACCUMULATOR

ADD A, 0 ; THEN DECIMAL ADRDJUST ACCUMULATOR
DAA

CMP reg ;DID DECIMAL ADJUST CHANGE A7

JR NZ, DEST s YES, A WAS NOT DECIMAL

2. Decimal increment accumulator (add 1 to A in decimal).

ADD A, 1L ;ADD 1IN DECIMAL
DAA

3. Decimal decrement accumulator (subtract 1 from A in decimal).

SUR 1 ;SUBRTRACT 1 IN DECIMAL
DAA

or
ADD A, 99H ; SUBTRACT 1 BY ADDING 9%
DAA

The second alternative is compatible with the 8080 and 8085 processors, where DAA
works properly only after addition instructions.

Enable and Disable Interrupt Instructions

1. Enable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD Al s MOVE INTERRUPT FLIP-FLOF TO F/V FLAG
PUSH AF 3 SAVE OLD IFF2 IN STACK
EI ; THEN ENABLE INTERRUFTS

2. Disable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD Al MOVE INTERRUPT FLIF~FLOF TO F/V FLAG
PUSH AF ;SAVE QLD IFF2 IN STACK
DI s THEN DISABLE INTERRUPTS

3. Restore interrupt status, assuming that it is currently saved in the Parity/
Overflow flag at the top of the stack.

FOF AF ;OBTAIN PREVIOQUS INTERRUFT STATUS
JP PE, ENARLE s WERE INTERRUFTS ENABLED ORIGINALLY?

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 429

DI iNQ, THEN DISABLE THEM NOW
JR DONE
ENABLE: EI :YES, THEN ENAELE THEM NOW
DONE: NOP

After LD A,Tor LD A,R, JP PE means “branch if interrupts are enabled,” while JP
PO means “branch if interrupts are disabled.”

Translate Instructions

1. Translate the accumulator into the corresponding entry in a table starting at the
address in register pair HL.

LD E,A sEXTEND OPERAND TO 1&4-EIT INDEX
LD 0,0

ADD HL,DE ; USE OPERAND TOQ ACCESS TAELE

LD A, (HL) ; REPLACE QFERAND WITH TABLE ENTRY

This procedure can be used to convert data from one code to another.

2. Translate the accumulator into the corresponding 16-bit entry in a table starting
at the address in register pair HL. Place the entry in HL.

EX DE, HL MOVE STARTING ADDRESS TQ DE

LD L,A {EXTEND OPERAND TO 14-BIT INDEX
LD H,0

ADD HL,HL s DOUBLE INDEX FOR 2-BYTE ENTRIES
ADD HL,DE ; CALCULATE INDEXED ADDRESS

LD E, (HL) ;OBTAIN ENTRY

INC HL

LD L, (HL)

EX DE, HL. sMOQVE ENTRY TO HL

Using ADD HL,HL to double the operand allows it to take on any 8-bit value (using
ADD A,A would limit us to values below 128).

Miscellaneous Instructions

1. Allocate space on the stack; decrease the stack pointer to provide NUM empty
locations at the top.

LD HL., —=NUM ADD NUM EMPTY BYTES TO TOF OF STACK
ADD HL,SP
LD 8P, HL SP = SP - NUM

An alternative is a series of DEC SP instructions.

2. Deallocate space from the stack; increase the stack pointer to remove NUM
temporary locations from the top.

426 750 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,NUM ;DELETE NUM BYTES FROM STACK
ADD HL,SP
LD SP,HL 36F = SP + NUM

An alternative is a series of INC SP instructions.

ADDITIONAL ADDRESSING MODES

- Indirect Addressing. Indirect addressing can be provided on the Z80 processor by
loading the indirect address into register pair HL. Then addressing through HL
provides the equivalent of true indirect addressing. This is a two-step process that
generally requires HL, although BC or DE can be employed to load and store the
accumulator. The index registers may also be used, although at the cost of extra
execution time and memory. Note that indexed addressing with a 0 offset is simply a
slow version of indirect addressing.

Examples

1. Load the accumulator indirectly from the address in memory locations ADDR
and ADDR+1.

LD HL, (ADDR) ;FETCH INDIRECT ADDREZD

LD A, (HL) ;FETCH DATA INDIRECTLY
or

LD xy, (ADDR) ;FETCH INDIRECT ADDRESS

LD A, Ly +0) s FETCH DATA INDIRECTLY

2. Storethe accumulator indirectly at the address in memory locations ADDR and
ADDRA1.

Lo HL., (ADDR) ;FETCH INDIRECT ADDRESS

LD (HLY, A ; STORE DATA INDIRECTLY
or

Ln xy, (ADDR) ;FETCH INDIRECT ADDRESRS

LD (xy+0), A : STORE DATA INDIRECTLY

3. Load the accumulator indirectly from the address in register pair HL (that is,
from the address stored starting at the address in HL).

LD E, (HL) ;FETCH INDIRECT ADDREZS
INC HL
LD D, (HL)

Ln A, (DE) ;FETCH DATA INDIRECTLY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 427

4. Load the accumulator indirectly from the address in an index register (that is,
from the address stored starting at the address in an index register).

LD L, (xy+0) sFETCH INDIRECT ADDRESS
LD H, (xy+1)
LD A, (HL) ;FETCH DATA INDIRECTLY

5. Store the accumulator indirectly at the address in register pair HL (that is, at the
address stored starting at the address in HL).

LD E, (HL) ;FETCH INDIRECT ADDRESS
INC HL

LD 0, (HL)

LD (DE), A s STORE DATA INDIRECTLY

6. Storethe accumulator indirectly at the address in an index register (that is, at the
address stored starting at the address in an index register).

LD L, (xy+0Q) sFETCH INDIRECT ADDRESS
LD H, {(xy+1)
LD (HL) , A ; STORE DATA INDIRECTLY

7. Jump indirectly to the address in memory locations ADDR and ADDR+1.

LD HL., (ADDR) ;FETCH INDIRECT ADDRESS

JP (HL) s AND TRANSFER CONTROL TO IT
or

LD »xy, CADDR) ;FETCH INDIRECT ADDRESS

JP (xy) AND TRANSFER CONTROL TOQ IT

Indirection can be repeated indefinitely to provide multi-level indirect addressing. For
example, the following routine uses the indirect address indirectly to load the
accumulator:

LD E, (HL) fFETCH FIRZT INDIRECT ADDRESS
INC HL

Lo 0, (HL)

EX [E, HL

LD E, (HL) ;USE INDIRECT ADDRESS INDIRECTLY
INC HL

LD L, (HL)

LD A, (DE) sFETCH DATA INDIRECTLY

Indirect addresses should be stored in memory in the usual Z80 format—that is, with
the less significant byte first (at the lower address).

* Indexed Addressing. Indexed addressing can be provided by using ADD HL to
add the base and the index. Obviously, the explicit addition requires extra execution
time. The index registers are useful when the index is fixed (as in a data structure) or
when HL is already occupied.

428 750 ASSEVBLY LANGUAGE SUBROUTINES

Examples

1. Load the accumulator from an indexed address obtained by adding the accumu-
lator to a fixed base address.

LD DE, BASE s GET BASE ADDRESS

Ln L,A sEXTEND INDEX TO 14 RITS

LD H, 0

AODD HL,DE ; CALCULATE INDEXED ADDREZSD

LD A, (HL) :FETCH DATA FROM INDEXED ADDRESS

2. Load the accumulator from an indexed address obtained by adding the accumu-
lator to memory locations BASE and BASE+1.

LD HL, (BASE) s GET BASE ADDRESS

LD E,A sEXTEND INDEX TO 14 RITS

LD n,o

ADD HL,DE ; CALCULATE INDEXED ADDRESS

LD A, (HL) ;FETCH DATA FROM INDEXED ADDRESS

3. Load the accumulator from an indexed address obtained by adding memory
locations INDEX and INDEX+1 to register pair HL.

LD DE, (INDEX) ;s GET INDEX FROM MEMORY
ADD HL,DE ; CALCULATE INDEXED ADDRESS
LD A, (HL) sFETCH DATA FROM INDEXED ADDRESS

4. Jump indexed to a jump instruction ina list. The index is in the accumulator and
the base address of the list is in register pair HL.

LD B, A sMULTIPLY INDEX TIMES 3
ADD A A
ADD E,A
LD C,A sEXTEND INDEX TO 16 BITS
Lo E, O
ADn HL,BC ; CALCULATE INDEXED ADDRESS
JP (HL) s AND TRANSFER CONTROL THERE
The following is a typical list starting at address BASE:

RASE: JP SURQ ; JUMP TQ SUBROUTINE O
JP SUR1 s JJUMP TO SUBROUTINE 1
JP SuRa s JUMP TO SURROUTINE 2

Since each JP instruction occupies three bytes, we must multiply the index by 3 before
adding it to the base address. If the list is more than 256 bytes long, we can use the
following procedure to multiply the index by 3:

EX DE, HL ; SAVE BASE ADDRESS IN DE
LD L,A sEXTEND INDEX TO 14 BITS
LD H, 0

Ln E,L ;COPY INDEX INTOQ BC

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 429

LD C, H

ADD HL,HL ; DOLRBLE INDEX

ADD HL,BC s TRIPLE INDEX

ADD HL,DE ;CALCULATE INDEXED ANDRESS
JP (HL) ;s AND TRANSFER CONTROL THERE

* Autopreincrementing. In autopreincrementing, the address register is incre-
mented automatically before it is used. Autopreincrementing can be provided on the
Z80 by incrementing a register pair before using it as an address.

Examples

» Load the accumulator using autopreincrementing on register pair HL.

INC HL 3 AUTOPREINCREMENT HL
Ln A, (HL) ;FETCH DATA

- Store the accumulator using autopreincrementing on register pair DE.

INC DE s AUTOPREINCREMENT DE
LD (DE), A ; STORE DATA

- Load register pair DE starting at the address two larger than the contents of HL.

INC HL ;s AUTOPREINCREMENT HL RY 2
INC HL

LD E, (HL) ;FETCH LSB

INC HL

LD D, (HL) :FETCH MSR

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items.

* Store the accumulator using autopreincrementing on memory locations ADDR
and ADDR+1.

Ln HL, (ADDR) + AUTOPREINCREMENT INDIRECT ADDRESS
INC HL

LD (HL) , A :STORE DATA

Lo (ADDR) , HL s UFDATE INDIRECT ADDRESS

Autopreincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the last occupied location in a buffer.

* Transfer control to the address stored starting at an address two larger than the
contents of memory locations NXTPGM and NXTPGM+1.

LD HL, {(NXTPGM) ; GET POINTER

INC HL s AUTOFREINCREMENT POINTER
INC HL

LD (NXTPGM) , HL ; UFDATE POINTER

LD E, (HL) ;FETCH STARTING ADDRESS

INC HL

430 750 ASSEMBLY LANGUAGE SUBROUTINES

LD 0, (HL)
EX DE, HL s ANDY TRANSFER CONTROL TO IT
JP (HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the routine that
the processor has just executed. Initially, NXTPGM and NXTPGM+1 would contain
BASE-2, where BASE is the starting address of a table of routines. A typical table
would be

BASE: W ROUTO s ZTARTING ADDRESS FOR RQUTINE O
oW ROUT1 ; STARTING ADDRESS FOR ROUTINE 1
W RQUTZ s STARTING ADDRESS FOR ROUTINE 2
W ROUT3 s STARTING ADDRESS FOR ROUTINE 3

anaa

- Autopostincrementing. In autopostincrementing, the address register is incre-
mented after it is used. Autopostincrementing can be provided on the Z80 by
incrementing a register pair after using it as an address. Note that the Z80 autopostin-
crements the stack pointer when it executes POP and RET.

Examples
- Load the accumulator using autopostincrementing on register pair HL.

LD A, (HL) sFETCH DATA
INC HL 3 AUTOPOST INCREMENT HL

+ Store the accumulator using autopostincrementing on register pair DE.

LD (DE), A ; STORE DATA
INC DE s AUTOPOST INCREMENT DE

- Load register pair DE starting at the address in HL. Then increment HL by 2.

LD E, (HL) ;FETCH LSB
INC HL
LD 0, (HL) :FETCH MZR
INC HL

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that postincrementing is generally simpler and more natural than
preincrementing.

- Store the accumulator using autopostincrementing on memory locations ADDR
and ADDR+1.

Lo HL, (ADDR) ;FETCH INDIRECT ADDRESS
LD (HLY , A ;STORE DATA
INC HL 3 AUTOPQSTINCREMENT INDIRECT ADDRESS

LD (ADDR), HL

- Autopostincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the next empty location in a buffer.

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 434

- Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM++1. Then increment those locations by 2.

Lo HL, (NXTPGM)

LD E, (HL) sFETCH STARTING ADDRESS

INC HL

LD 0, (HL)

INC HL s COMPLETE AUTOPOST INCREMENT

LD (NXTPGM) , HL

EX DE, HL 3 TRANSFER CONTROL TOQ START ADDREZS
JP (HL)

Here NXTPGM and NXTPGM-1 point to the starting address of the next routine
the processor is to execute. Initially, NXTPGM and NXTPGM+1 would contain
BASE, the starting address of a table of routines. A typical table would be

RASE:] ROUTO ; STARTING ADDRESS FOR ROUTINE O
W ROUT1 ;STARTING ADDRESS FOR ROUTINE 1
W RQUT2 ; STARTING ADDRESE FOR ROUTINE 2
W ROUT2 ;s STARTING ADDRESS FOR ROUTINE 23

+ Autopredecrementing. In autopredecrementing, the address register is decre-
mented automatically before it is used. Autopredecrementing can be provided on the
Z80 processor by decrementing a register pair before using it as an address. Note that
the processor autopredecrements the stack pointer when it executes PUSH and
CALL.

Examples
- Load the accumulator using autopredecrementing on register pair HL.

DEC HL : AUTOPREDECREMENT HL
LD A, (HL) sFETCH DATA

+ Store the accumulator using autopredecrementing on register pair DE.

DEC DE ; AUTOPREDECREMENT DE
LD (DE), A s STORE DATA

- Load register pair DE starting at the address two smaller than the contents of HL.

DEC HL ;FETCH MSB
LD 0, (HL)
DEC HL ;FETCH LEB
Lo E, {(HL)

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that predecrementing is generally simpler and more natural than
postdecrementing.

+ Store the accumulator using autopredecrementing on memory locations ADDR
and ADDR+1.

432 750 ASSEMBLY LANGUAGE SUBROUTINES

LD HL., (ADDR) $ AUTOPREINCREMENT INDIRECT ADDRESS
DEC HL

LD (HL) , A s STORE DATA

LD (ADDR), HL s UPDATE INDIRECT ADDRESS

Autodecrementing can be combined with indirection. Here memory locations ADDR
and ADDR-1 could point to the last occupied location in a stack.

- Transfer control to the address stored at an address two smaller than the contents
of memory locations NXTPGM and NXTPGM+1.

LD HL, {(NXTPGM) sFETCH STARTING ADDRESS

DEC HL

LD D, (HL)

DEC HL

LD E, (HL)

LD (NXTPGM) , HL 3 STORE AUTOPREDECREMENTED FPOINTER
EX DE, HL ; TRANSFER CONTROL TO START ADDREZS
JP (HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the most recently
executed routine in a list. Initially, NXTPGM and NXTPGM+1 would contain
FINAL+2, where FINAL is the address of the last entry in a table of routines. A
typical table would be

oW ROUTO s STARTING ADDRESS FOR ROUTINE O
DW ROUT1 ; STARTING ADDRESS FOR ROUTINE 1
FINAL: ju ROUTL ; STARTING ADDRESS FOR LAST ROUTINE

Here we work through the table backward. This approach is useful in evaluating
mathematical formulas entered from a keyboard. If, for example, the computer must
evaluate the expression

Z = LN (A x SIN (B x EXP(C x Y)))

it must work backward. That is, the order of operations is

» Calculate Cx Y

- Calculate EXP (C xY)

- Calculate Bx EXP(Cx Y)

+ Calculate SIN (B x EXP(C x Y))

- Calculate A x SIN (B x EXP(C xY))

- Calculate LN(A x SIN(B x EXP(C x Y))) .

Working backward is convenient when the computer cannot start a task until it has
received an entire line or command. It must then work back to the beginning.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 133

- Autopostdecrementing. In autopostdecrementing, the address register is decre-
mented automatically after it is used. Autopostdecrementing can be implemented on
the Z80 by decrementing a register pair after using it as an address.

Examples

- Load the accumulator using autopostdecrementing on register pair HL.

LD
DEC

A, (HLD) ;FETCH DATA
HL s AUTOFOSTDECREMENT HL

- Store the accumulator using autopostdecrementing on register pair DE.

LD
DEC

(DE), A ; STORE DATA
DE s AUTOFDSTDECREMENT DE

- Load register pair DE starting at the address in HL. Afterward, decrement HL

by 2.

INC
Lo
DEC
LD
DEC
DEC

HL sFETCH MSR

0, (HL)

HL ;FETCH LSB

E, (HL)

HL ; AUTOPOSTDECREMENT HL BY 2
HL

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data items.

- Store the accumulator using autopostdecrementing on memory locations ADDR

and ADDR+1.

LD
LD
DEC
LD

HL, (ADDR) sFETCH INDIRECT ADDRESS

(HL), A ; STORE DATA

HL s AUTOPOSTDECREMENT INDIRECT ADDRESS
(ADDR) , HL

Autopostdecrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the next empty location in a buffer.

- Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM -+ 1. Then decrement those locations by 2.

LD
INC
LD
DEC
LD
DEC
DEC
LD
EX
JP

HL, (NXTPGM) sFETCH POINTER
HL sFETCH STARTING ADDRESS

HL ;s AUTOPOSTDECREMENT POINTER
HL

(NXTPGM) , HL

DE, HL s JUMP TO STARTING ADDRESS
(HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the next routine

434 750 ASSEMBRLY LANGUAGE SUBROUTINES

the processor is to execute. Initially, NXTPGM and NXTPGM+1 contain FINAL,
the address of the last entry in a table of routines. A typical table would be

DwW RQUTO 3 STARTING ADDRESS OF ROUTINE ©
oW ROUT1 s STARTING ADDRESS OF ROUTINE 1
FINAL: ﬁw ROUTL s STARTING ADDRESS OF LAST ROUTINE

Here the computer works through the table backward. This approach is useful in
interpreting commands entered in the normal left-to-right manner from a keyboard.
For example, assume that the operator of a process controller enters the command
SETTEMP(POSITION 2)= MEAN(TEMP(POSITION 1), TEMP(POSITION 3)).
The controller program must execute the command working right-to-left and starting
from inside the inner parentheses as follows:

I. Determine the index corresponding to POSITION 1.
2. Obtain TEMP(POSITION 1) from a table of temperature readings.
3. Determine the index corresponding to POSITION 3.
4. Obtain TEMP(POSITION 3) from a table of temperature readings.

5. Evaluate MEAN(TEMP(POSITION 1), TEMP(POSITION 3)) by executing
the MEAN program with the two entries as data.

6. Determine the index corresponding to POSITION 2.

7. Execute the SET function, which presumably involves setting controls and
parameters to achieve the desired value of TEMP (POSITION 2).

The operator enters the command working left to right and from outer parentheses
to inner parentheses. The computer, on the other hand, must execute it inside out
(starting from the inner parentheses) and right to left. Autodecrementing is obviously
a handy way to implement this reversal.

- Indirect preindexed addressing (preindexing). In preindexing, the processor
must first calculate an indexed address and then use that address indirectly. Since the
indexed table must consist of 2-byte indirect addresses, the indexing must involve a
multiplication by 2.

Examples

* Load the accumulator using preindexing. The base address is in an index register
and the index is a constant INDEX.
LD L, Oiy+2=INDEX) ;OBRTAIN LSE OF ALDREZS

LD H, (xy+2=INDEX+1) ;ORTAIN MSBR OF ADDRESS
LD A, (HLD ;OBTAIN DATA INDIRECTLY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 135

Because of the limitations of Z80 indexing, this approach works only when INDEX isa
constant.

- Load the accumulator using preindexing. The base address is in register pair HL
and the index is in the accumulator.

ADD AA s DOUBLE INDEX FOR 2-BYTE ENTRIES
LD E,A sEXTEND INDEX Td 14 RITS

LD L, 0

ADD HL,DE s CALCULATE INDEXED ADDRESS

LD E, (HL) ;OBETAIN INDIRECT ADDRESS

INC HL

LD 0, {HL)

LD A, (DE) ;OBTAIN DATA INDIRECTLY

- Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR++1 and the index is a constant INDEX.

LD Xy, (ADDR) s OBTAIN RBASE ADDRESS

LD L, {xy+2=INDEX) s OBTAIN INDIRECT ADDRESS
LD H, (xy+2=2INDEX+1)

LD (HL), A s STORE DATA INDIRECTLY

- Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR+1 and the index is in memory location INDEX.

LD HL, (ADDR) s FETCH BASE ADDRESS

LD R, A ; SAVE DATA

LD A, LCINDEX) ;FETCH INDEX

ADD A,A sDOUBLE INDEX FOR 2-BYTE ENTRIES
LD E,A sEXTEND INDEX T 14 BITS
LD n,o

ADD HL,DE ; CALCULATE INDEXED ADDRESS
LD E, (HL) ;OBRTAIN INDIRECT ADDRESS
INC HL

LD 0, ¢HL)

EX DE, HL ;s STORE DATA INDIRECTLY

LD (HL), B

- Transfer control (jump) to the address obtained indirectly from the table starting
at address JTAB. The index is in the accumulator.

ADD A,A ; DOURLE INDEX FOR 2-BYTE ENTRIES
LD E,A ;EXTEND INDEX TO 14 BITS

L D,o0

LD HL,JTAE ; GET BASE ADDRESS

ADD HL,DE ; CALCIILATE INDEXED ALDDRESS

LD E, (HL) ;ORTAIN INDIRECT ADDRESS

INC HL

LD I, (HL)

EX DE, HL ; JUMP TO INDIRECT ADDREZS

JP (HL)

436 750 ASSEMBLY LANGUAGE SUBROUTINES

The table starting at address JTAB would appear as follows:

JTAR: W ROUTO ;STARTING ADDRESS OF ROUTINE ©
DW ROUT1 s STARTING ADDRESS OF ROUTINE 1
W RQUT2 3 STARTING ADDRESS OF ROUTINE 2

* Indirect postindexed addressing (postindexing). In postindexing, the processor
must first obtain an indirect address and then apply indexing with that address as the
base. Thus the indirect address tells the processor where the table or array starts.

Examples

* Load a register using postindexing. The base address is in memory locations
ADDR and ADDR+1 and the index is a constant OFFSET.
Lo Xy, (ADDR) ;OBTAIN RBASE ADDRESS INDIRECTLY
LD reg, (xy+QFFSET) ; ORTAIN DATA

This approach is useful when ADDR and ADDR+1 contain the base address of a
data structure and OFFSET is the fixed distance from the base address to a particular
data item.

* Load the accumulator using postindexing. The base address is in memory loca-
tions ADDR and ADDR++1 and the index is in the accumulator,

LD HL, (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD E.A sEXTEND INDEX TO 16 BITS

Ln Lo

ADD HL,DE ; CALCULATE INDEXED' ADDRESS

LD A, (HL) ;OBTAIN DATA

- Store a register using postindexing. The base address is in memory locations
ADDR and ADDR+1 and the index is a constant OFFSET,

LD xy, (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD (xy+QFFSET), reg; STORE DATA POSTINDEXED

* Store the accumulator using postindexing. The base address is in memory loca-
tions ADDR and ADDR+1 and the index is in memory location INDEX.

LD HL., (ADDR) ;s OBTAIN BASE ADDRESS INDIRECTLY
LD E,A 3 SAVE DATA

LD A, (INDEX) ;OBRTAIN INDEX

LD E,A sEXTEND INDEX TO 1& RITS

LD 0, o

ADD HL,DE s CALCULATE INDEXED ADDRESS

LD (HL),B s STORE DATA

By changing the contents of memory locations ADDR and ADDR+1, we can make
this routine operate on many different arrays.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 4 37

- Transfer control (jump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR-1. The index is a constant OFFSET.

LD xy, (ADDR) s ORTAIN BASE ADDRESS INDIRECTLY
LD L, {(xy+0FFSET) ;OBTAIN LSE OF DESTINATION

LD H, (xy+QFFSET+1); ORTAIN MSE OF DESTINATION

JP (HL) s JUMP TQ DESTINATION

This procedure is useful when a data structure contains the starting address of a
routine at a fixed offset. The routine could, for example, be a driver foran 1/ O control

block, an error routine for a mathematical function, or a control equation for a process
loop.

- Transfer control (jump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR-1. The index is in the accumulator.

LD B, A ; TRIPLE INDEX FOR 3-BYTE ENTRIES
ADDN A A

ADDN A, B

LD E.A sEXTEND INDEX TO 1é BITS

LD n,o

Ln HL, (ADDR) ; OBTAIN BASE ADDRESS INDIRECTLY
ADD HL,DE ; CALCULATE INDEXED ADDRESS

JP (HLD) ; AND TRANSFER CONTROL TO IT

The table contains 3-byte JP instructions; a typical example is

RASE: JP ROUTO s JJUMP TQ ROUTINE O
JP ROUT1 s JUMP TO ROUTINE 1
JP ROUTZ ;JUMP TO ROUTINE 2

The address BASE must be placed in memory locations ADDR and ADDR—+1.

REFERENCES

1. Fisher, W.P., “Microprocessor Assembly Language Draft Standard,” IEEE
Computer, December 1979, pp. 96-109. (See also Distler, R.J. and M.A. Shaver, “Trial
Implementation Reveals Errors in IEEE Standard,” IEEE Computer, July 1982,
pp. 76-77.)

2. Osborne, A., An Introduction to Microcomputers. Volume 1: Basic Concepts.
2nd ed. Berkeley, Calif.: Osborne/ McGraw-Hill, 1980.

3. Leventhal, L.A., 8080A4/8085 Assembly Language Programming. Berkeley,
Calif.: Osborne/ McGraw-Hill, 1978.

4. Fischer, op. cit.

Chapter3 Common Programming
Errors

This chapter describes common errors in Z80 assembly language programs. The
final section describes common errors in input/output drivers and interrupt service
routines. Our aims here are the following:

- To warn programmers of potential trouble spots and sources of confusion.
- To describe likely causes of programming errors.
- To emphasize the techniques and warnings presented in Chapters 1 and 2.

- To inform maintenance programmers of likely places to look for errors and
misinterpretations.

- To provide the beginner with a starting point in the difficult process of locating
and correcting errors.

Of course, no list of errors can be complete. Only the most common errors are
emphasized —not the infrequent or subtle errors that frustrate even the experienced
programmer. However, most errors are remarkably obvious once uncovered, and this
discussion should help in debugging most programs.

CATEGORIZATION OF PROGRAMMING ERRORS

Common Z80 programming errors can be divided into the following categories:

- Reversing the order of operands or parts of operands. Typical errors include
reversing source and destination in load instructions, inverting the format in which
16-bit quantities are stored, and inverting the direction of subtractions or comparisons.

139

440 750 ASSEMBLY LANGUAGE SUBROUTINES

- Using the flags improperly. Typical errors include using the wrong flag (such as
Sign instead of Carry), branching after instructions that do not affect a particular flag,
inverting branch conditions (particularly those involving the Zero flag), branching
incorrectly in equality cases, and changing a flag accidentally before branching.

- Confusing registers and register pairs. A typical error is operating on a register
instead of on a register pair.

- Confusing addresses and data. The most common error is omitting the paren-
theses around an address and hence accidentally using immediate addressing instead
of direct addressing. Another error is confusing registers or register pairs with the
memory locations addressed via register pairs.

- Using the wrong formats. Typical errors include using BCD (decimal) instead of
binary, or vice versa, and using binary or hexadecimal instead of ASCII.

- Handling arrays incorrectly. The usual problem is going outside the array’s
boundaries.

+ Ignoring implicit effects. Typical errors include using the accumulator, a register
pair, the stack pointer, flags, or memory locations without considering the effects of
intervening instructions. Most errors arise from instructions that have unexpected,
implicit, or indirect effects.

- Failing to provide proper initial conditions for routines or for the microcomputer
as a whole. Most routines require the initialization of counters, indirect addresses, base
addresses, registers, flags, and temporary storage locations. The microcomputer as a
whole requires the initialization of the interrupt system and all global RAM addresses.
(Note particularly indirect addresses and counters.)

» Organizing the program incorrectly. Typical errors include skipping or repeating
initialization routines, failing to update counters or address registers, and forgetting to
save intermediate or final results.

A common source of errors that is beyond the scope of this discussion is conflict
between user programs and systems programs. A simple example of conflict is for a
user program to save data in memory locations that a systems program also uses. The
user program’s data thus changes mysteriously whenever the systems program is
executed.

More complex sources of conflict include the interrupt system, input/ output ports,
the stack, and the flags. After all, systems programs must employ the same resources as
user programs. Systems programs generally attempt to save and restore the user’s
environment, but they often have subtle or unexpected effects. Making an operating
system transparent to the user is a problem comparable to devising a set of regulations,
laws, or tax codes that have no loopholes or side effects.

CHAPTER 3 COMMON PROGRAMMING ERRORS 141

REVERSING THE ORDER OF OPERANDS

The following instructions and conventions are the most common sources of errors:

+ The LD D,S instruction moves the contents of S to D. Reversing the source and
the destination in LD instructions is probably the single most common error in Z80
assembly language programs. The best way to avoid this problem is to use the operator
notation described by Duncan.!

- 16-bit addresses and data items are assumed to be stored with their less significant
bytes first (that is, at the lower address). This convention becomes particularly confus-
ing in instructions that load or store register pairs or use the stack.

- The CP instruction subtracts its operand from the accumulator, not the other way
around. Thus, CP sets the flags as if the processor had calculated (A) — OPER, where
OPER is the operand specified in the instruction.

Examples

1. LD A,B

This instruction loads the accumulator from register B. Since it does not change B,
the instruction acts like “copy B into A.”

2. LD (HL),A

This instruction stores the accumulator at the memory address in register pair HL.
Since it does not change the accumulator, the instruction acts like “copy A into
memory addressed by HL.”

3. LD (2040H),A

The address 2040 ¢ occupies the two bytes of program memory immediately follow-
ing the operation code; 404 comes first and 204 last. This order is particularly
important to remember when entering or changing an address at the object code level
during debugging.

4. PUSH HL

This instruction stores register pair HL in memory at the addresses immediately
below the initial contents of the stack pointer (that is, at addresses S-1 and S-2 if S is the
initial contents of the stack pointer). Register H is stored at address S-1 and L at S-2in
the usual upside-down format.

5. LD HL,(2050H)
This instruction loads register L from memory address 20506 and H from 2051 j¢.

442 750 ASSEMBLY LANGUAGE SUBROUTINES

6. LD (3600H),HL
This instruction stores register L at memory address 36005 and H at address 3601 5.

7 CPB

This instruction sets the flags as if register B had been subtracted from the
accumulator.

8. CP25H

This instruction sets the flags as if the number 2514 had been subtracted from the
accumulator.

USING THE FLAGS INCORRECTLY

Z380 instructions have widely varying effects on the flags. There are few general rules,
and even instructions with similar meanings may work differently. Cases that require
special caution are

* Data transfer instructions such as LD and EX (except EX AF, AF’) do not affect
any flags. You may need an otherwise superfluous arithmetic or logical instruction
(such as AND A, DEC, INC, or OR A) to set the flags.

- The Carry flag acts as a borrow after CP, SBC, or SUB instructions; that is, the
Carry is set if the 8-bit unsigned subtraction requires a borrow. If, however, you
implement subtraction by adding the two’s or ten’s complement of the subtrahend, the
Carry is an inverted borrow; that is, the Carry is cleared if the 8-bit unsigned
subtraction requires a borrow and set if it does not.

* After a comparison (CP), the Zero flag indicates whether the operands are equal; it
is set if they are equal and cleared if they are not. There is an obvious source of
confusion here —JZ means “jump if the result is 0,” that is, “jump if the Zero flagis 1.”
JNZ, of course, has the opposite meaning.

* When comparing unsigned numbers, the Carry flag indicates which number is
larger. CP sets Carry if the accumulator is less than the other operand and clears it if the
accumulator is greater than or equal to the other operand. Note that the Carry is
cleared if the operands are equal. If this division of cases (“greater than or equal” and
“less than”) is not what you want (that is, you want the division to be “greater than” and
“less than or equal™), you can reverse the subtraction, subtract I from the accumulator,
or add 1 to the other operand.

- In comparing signed numbers, the Sign flag indicates which operand is larger
unless two’s complement overflow occurs (see Chapter 1). CP sets the Sign flag if the
accumulator is less than the other operand and clears it if the accumulator is greater

CHAPTER 3 COMMON PROGRAMMING ERROIRS 143

than or equal to the other operand. Note that comparing equal operands clears the
Sign flag. As with the unsigned numbers, you can handle the equality case in the
opposite way by adjusting either operand or by reversing the subtraction. If overflow
occurs (signified by the setting of the Parity/ Overflow flag), the sense of the Sign flag is
inverted.

- All logical instructions except CPL clear the Carry flag. AND A or OR A is, in
fact, a quick, simple way to clear Carry without affecting any registers. CPL affects no
flags at all (XOR OFFH is an equivalent instruction that affects the flags).

- The common way to execute code only if a condition is truc is to branch around it
if the condition is false. For example, to increment register B if Carry is 1, use the
sequence

JR NC, NEXT
INC B
NEXT: NOP

The branch occurs if Carry is 0.

- Many 16-bit arithmetic instructions have little effect on the flags. INC and DEC do
not affect any flags when applied to register pairs or index registers; ADD HL and
ADD xy affect only the Carry flag. The limited effects on the flags show that these
instructions are intended for address arithmetic, not for the processing of 16-bit data.
Note, however, that ADC HL and SBC HL affect all the flags and can be used for
ordinary processing of 16-bit data.

- INC and DEC do not affect the Carry flag. This allows them to be used for
counting in loops that perform multiple byte arithmetic. (The Carry is needed to
transfer carries or borrows between bytes.) The 8-bit versions of INC and DEC do,
however, affect the Zero and Sign flags, and you can use those effects to determine
whether a carry or borrow occurred.

- The special instructions RLCA, RLA, RRCA, and RRA affect only the Carry
flag.

- Special-purpose arithmetic and logical instructions such as ADD A,A (logical left

shift accumulator), ADC A, A (rotate left accumulator), SUB A (clear accumulator),
and AND A or OR A (test accumulator) affect all the flags.

- PUSH and POP instructions do not affect the flags, except for POP AF which
changes all the flags. Remember, AF consists of the accumulator (MSB) and the flags
(LSB).

Examples

1. The sequence

Lo A, (2040H)
JR Z, DONE

444 750 ~ASSEMBLY LANGUAGE SUBROUTINES

has unpredictable results, since LD does not affect the flags. To produce a jump if
memory location 20404 contains 0, use

LD A, (2040H)
AND A ; TEST ACCUMULATOR
JR Z, DONE

OR A may be used instead of AND A.

2. The sequence

LD A E
JP P, DEST

has unpredictable results, since LD does not affect the flags. Either of the following
sequences forces a jump if register E is positive:

LD AE

AND A

JP P, DEST
or

SUB A

OR E

JP P, DEST

3. The instruction CP 25H sets the Carry flag as follows:
+ Carry = 1 if the contents of A are between 00 and 24 .
+ Carry = 0 if the contents of A are between 256 and FF .

The Carry flag is set if A contains an unsigned number less than the other operand
and is cleared if A contains an unsigned number greater than or equal to the other
operand.

If you want to set Carry if the accumulator contains 254, use CP 26H instead of CP
25H. That is, we have

CP 20H

JR C,LESS ; BRANCH IF (A) LESS THAN 25
or

CP 26H

JR C, LESSER s BRANCH IF (A) 25 OR LESS

4. The sequence

RLA
JP F, DONE

has unpredictable results, since RLA does not affect the Sign flag. The correct
sequence (producing a circular shift that affects the flags) is

ADC A, A :SHIFT CIRCULAR, SETTING FLAGS
JP F, DONE

CHAPTER 3 COMMON PROGRAMMING ERRORS 4145

Of course, you can also use the somewhat slower

RLA
RLA
JR C, DONE

This approach allows a relative branch.
5. The sequence

INC B
JR C,QVRFLW

has unpredictable results, since INC does not affect the Carry flag. The correct
sequence is

INC B
JR Z,QVRFLW

since INC does affect the Zero flag when it is applied to an 8-bit operand.

6. The sequence
DEC B
JR C, QVRFLW
has unpredictable results, since DEC does not affect the Carry flag. If B cannot contain
a number larger than 80¢ (unsigned), you can use
DEC B
JP M, OVRFLW
since DEC does affect the Sign flag (when applied to an 8-bit operand). Note, however,
that you will get an erroneous branch if B initially contains 81 ¢.
A longer but more general sequence is

INC B s TEST REGISTER B
DEC B
JR Z,0VRFLMW ;BRANCH IF B CONTAINS ZERD
DEC B

Note that register B will contain 0 (not FFyg) if the program branches to address
OVRFLW.

7. The sequence

DEC EC
JR NZ, LoOP
has unpredictable results, since DEC does not affect any flags when it is applied to a
16-bit operand. The correct sequence for decrementing and testing a 16-bit counter in
register pair BC is

DEC BC
LD A,C ; CHECK IF BC HAS ANY 1 BITS
OR B

JR NZ,LOOF ;BC CANNOT BE ZERQ IF ANY ERITS ARE 1

446 750 ASSEVBLY LANGUAGE SUBROUTINES

This sequence affects the accumulator and all the flags, including Carry (which OR
clears).

8. AND A or OR A clears Carry without affecting any registers. To clear Carry
without affecting the other flags, use the sequence

SCF ;FIRST SET THE CARRY FLAG
CCF s THEN CLEAR IT EY COMPLEMENTING

9. SUB A or XOR A clears the accumulator, the Carry flag, and the Sign flag (and
sets the Zero flag). To clear the accumulator without affecting the flags, use LD A,0.

10. The sequence

ADD HL,DE
JR Z, BNDRY

has unpredictable results, since ADD HL does not affect the Zero flag. To force a
branch if the sum is 0, you must test HL explicitly as follows:

ADD HL,DE
LD A H ;TEST H AND L FOR ZEROD
R L

JR Z, BENDRY
An alternative is
AND A s CLEAR CARRY
ADC HL,DE
JR Z, BNDRY

Unlike ADD HL, ADC HL affects the Zero flag.

CONFUSING REGISTERS AND REGISTER PAIRS

The rules to remember are

- ADC, ADD, DEC, INC, LD, and SBC can be applied to either 8-bit operands or
16-bit register pairs. ADD, DEC, INC, and LD can also be applied to index registers.

+ AND, OR, SUB, and XOR can only be applied to 8-bit operands.
- EX, POP, and PUSH can only be applied to register pairs or index registers.

+ (rp) refers to the byte of memory located at the address in the register pair. It does
not refer to either half of the register pair itself.

One common error is that of referring to H or L instead of (HL). The use of register
pairs to hold addresses means that certain transfers are uncommon. For example, LD

CHAPTER 3 COMMON PROGRAMMING ERRORS 447

L,(HL) would load register L from the address in HL; HL would then contain one byte
of an address (in H) and one byte of data (in L). While this is legal, it is seldom useful.

Examples

1. LD A,H

This instruction moves register H to the accumulator. It does not change register H
or any memory location.

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair BC.
It does not affect either register B or register C.

3. LD H,0

This instruction places 0 in register H. It does not affect memory.

4. LD (HL),A

This instruction stores the accumulator in the memory location addressed by
register pair HL. It does not affect either H or L. A sequence that loads HL with an
address indirectly is

LD E, (HL) sGET LSRR OF INDIRECT ADDREZSD
INC HL

LD 0, (HL) s GET MSE OF INDIRECT ADDRESS
EX DE, HL s PUT INDIRECT ADDRESS IN HL

We may limit ourselves to a single temporary register (the accumulator) by loading the
more significant byte directly into H as follows:

LD A, (HL) sGET LSE OF INDIRECT ADDRESS
INC HL

Lo H, (HL) sGET MSR OF INDIRECT ADDRESS
LD L,A s MOVE LSRR OF ADDRESZZ TO L

This takes the same number of clock cycles as the previous sequence, but uses A instead
of DE for temporary storage.

5. LD HL,2050H
This instruction loads 20501¢ into register pair HL (20¢ into H and 504 into L).

6. ADD A,(HL)

This instruction adds the memory byte addressed via register pair HL to the
accumulator. It does not affect either H or L.

448 750 ASSEMBLY LANGUAGE SUBROUTINES

7. ADD HL,HL

This instruction adds register pair HL to itself, thus shifting HL left 1 bit logically.
This instruction does not affect the accumulator or access data from memory.

CONFUSING ADDRESSES AND DATA

The rules to remember are

+ LD requires an address when you want to move data to or from memory. That
address must be placed in parentheses.

- The standard assembler treats all operands as data unless they are enclosed in
parentheses. Thus, if you omit the parentheses around an address, the assembler will
treat it as a data item.

- DIJNZ, JP, JR, and CALL always require addresses.

There is some confusion with addressing terminology in jump instructions. These
instructions essentially treat their operands as if one level of indirection had been
removed. For example, we say that JP 2040H uses direct addressing, yet we do not
place the address in parentheses. Furthermore, JP 2040H loads 2040¢ into the
program counter, much as LD HL.,2040H loads 2040,¢ into register pair HL. LD
HL,(2040H) loads the contents of memory locations 2040¢ and 2041 ¢ into register
pair HL. Note also that JP (HL) loads HL into the program counter; it does not use
HL indirectly or access the memory at all.

Examples
1. LD A,40H loads the number 404 into the accumulator. LD A,(40H) loads the
contents of memory location 0040, into the accumulator.

2. LD HL,0C00H loads 0C001¢ into register pair HL (0C;g into Hand 006 into L).
LD HL,(0C0O0H) loads the contents of memory locations 0C00;¢ and 0CO1¢ into
register pair HL (the contents of 0C00;¢ into L and the contents of 0C014 into H).

3. JP (xy) transfers control to the address in an index register. No indexing is
performed, nor is the address used to access memory.

Confusing addresses and their contents is a common error in handling data struc-
tures. For example, the queue of tasks to be executed by a piece of test equipment
might consist of a block of information for each task. That block might contain

- Starting address of the test routine

+ Number of seconds for which the test is to run

CHAPTER 3 COMMON PROGRAMMING ERRORS 149

- Address in which the result is to be saved
- Upper and lower thresholds against which the result is to be compared

- Base address of the next block in the queue.

Thus, the block contains data, direct addresses, and indirect addresses. Typical
errors that a programmer could make are

- Transferring control to the memory locations containing the starting address of
the test routine, rather than to the actual starting address.

- Storing the result in the block rather than in the address specified in the block.

- Using a threshold as an address rather than as data.

- Assuming that the next block starts in the current block, rather than at the base
address given in the current block.

Jump tables are another common source of errors. The following are alternative
implementations:

- Form a table of jump instructions and transfer control to the correct element (for
example, to the third jump instruction).

- Form a table of destination addresses and transfer control to the contents of the
correct element (for example, to the address in the third element).

You will surely have problems if the processor uses jump instructions as addresses or
vice versa.

FORMAT ERRORS

The rules you should remember for the standard Z80 assembler are

- An H at the end of a number indicates hexadecimal and a B indicates binary.

+ The default mode for numbers is decimal; that is, the assembler assumes all
numbers to be decimal unless they are specifically marked otherwise.

- All operands are treated as data unless they are enclosed in parentheses. Operands
enclosed in parentheses are assumed to be memory addresses.

- A hexadecimal number that starts with a letter digit (A, B, C, D, E, or F) must be
preceded by 0 (for example, 0OCFH instead of CFH) for the assembler to interpret it
correctly. Of course, the leading 0 does not affect the value of the number.

- All arithmetic and logical operations are binary, except DAA, which corrects the
result of an 8-bit binary addition or subtraction to the proper BCD value.

450 780 ASSEMBLY LANGUAGE SUBROUTINES

You should beware of the following common errors:

+ Omitting the H from a hexadecimal operand. The assembler will assume it to be
decimal if it contains no letter digits and to be a name if it starts with a letter. The
assembler will indicate an error only if it cannot interpret the operand as either a
decimal number or a name.

- Omitting the B from a binary operand. The assembler will assume it to be decimal.

- Confusing decimal (BCD) representations with binary representations. Remem-
ber, ten is not an integral power of two, so the binary and BCD representations are not
the same beyond nine. BCD constants must be designated as hexadecimal numbers,
not as decimal numbers.

- Confusing binary or decimal representations with ASCII representations. An
ASCIlI input device produces ASCII characters and an ASCII output device responds
to ASCII characters.

Examples

1. LD A,(2000)

This instruction loads the accumulator from memory address 20009 (07D0¢), not
address 20006. The assembler will not produce an error message, since 2000 is a valid
decimal number.

2. AND 00000011

This instruction logically ANDs the accumulator with the decimal number 11
(1011,), not with the binary number 11 (3g). The assembler will not produce an error
message, since 00000011 is a valid decimal number despite its unusual form.

3. ADD A,40

This instruction adds the number 40, to the accumulator. Note that 40 is not the
same as BCD 40, which is 40;¢; 4019 = 284. The assembler will not produce an error
message, since 40 is a valid decimal number.

4. LD A3

This instruction loads the accumulator with the number 3. If this value is now sent to
an ASCII output device, the device will respond as if it had received the character ETX
(03¢), not the character 3 (33;¢). The correct version is

LD A, 137 ;GET AN ASCII 3

CHAPTER 3 COMMON PROGRAMMING ERRORS 1541

If memory location 20406 contains a single digit, the sequence
LD A, (2040H)
QuT (DEVCE), A
will not print that digit on an ASCII output device. The correct sequence is

LD A, (2040H) sGET DECIMAL DIGIT
ADD A, 707 s ADLUST TO ASCIIT
auT (DEVCE), A

If input port INDEV contains a single ASCII decimal digit, the sequence

IN A, CINDEV)
Lo (2040H) , A

will not store the actual digit in memory location 2040;¢. Instead, it will store the
ASCII version, which is the actual digit plus 30,4. The correct sequence is

IN A, CINDEV) " ;GET ASCII DIGIT
sup 07 s ADJUST TO DECIMAL

LD (2040H) , A

Performing decimal arithmetic on the Z80 is awkward, since a DAA instruction is
required after each 8-bit addition or subtraction. Chapter 6 contains programs for
decimal arithmetic operations. Since DAA does not work properly after DEC or INC,
the following sequences are necessary to perform decimal increment and decrement
by 1:

- Add 1 to the accumulator in decimal.

ADD A1
DAA

- Subtract 1 from the accumulator in decimal.

SUB 1
DAA
or
AN A, 99H
DAA

in the second alternative, Carry is an inverted borrow.

HANDLING ARRAYS INCORRECTLY

The most common problems here are executing an extra iteration or stopping one
short. Remember, memory locations BASE through BASE-+N contain N+1 bytes, not
N bytes. It is easy to forget the last entry or drop the first one. On the other hand, if you
have N entries, they will occupy memory locations BASE through BASE+N—1; now it
is easy to find yourself working beyond the end of the array.

452 750 ASSEMBLY LANGUAGE SUBROUTINES

IMPLICIT EFFECTS

Some implicit effects you should remember are

- The clearing of Carry by all logical operations except CPL.

* The moving of the interrupt flip-flop IFF2 to the Parity/ Overflow flag by LD A1
and LD A,R.

* The use of the data at the address in HL by the digit rotations RRD and RLD.

- The use of the memory address one larger than the specified one by LD
p,(ADDR), LD (ADDR),rp, LD xy,(ADDR), and LD (ADDR),xy.

* The changing of the stack pointer by POP, PUSH, CALL, RET, RETI, RETN,
and RST.

* The saving of the return address in the stack by CALL and RST.
+ The decrementing of register B by DIJNZ.

* The implicit effects on BC, DE, and HL of the block compare, input, move, and
output instructions.

» The use of the Parity/ Overflow flagby LDD, LDI, CPD, CPDR, CPI, and CPIR
to indicate whether the counter in BC has been decremented to 0.

Examples

1. AND 00001111B

This instruction clears the Carry, as well as performing a logical operation.

2. LD A,I

This instruction not only loads the accumulator, but also moves the interrupt
flip-flop IFF2 to the Parity/Overflow flag. The interrupt status can then be saved
before the computer executes a routine that must run with interrupts disabled.

3. RRD

This instruction performs a 4-bit (digit) circular shift right involving the accumula-
tor and the memory location addressed by HL. The results are

* The 4 least significant bits of A go into the 4 most significant bits of the memory
location.

» The 4 most significant bits of the memory location go into its 4 least significant
bits.

CHAPTER 3 COMMON PROGRAMMING ERRORS 153

- The 4 least significant bits of the memory location go into the 4 least significant
bits of A.

The result is thus a 4-bit right rotation of the 12-bit number made up of the 4 LSBs of
the accumulator and the memory byte.

4. LD HL,(16EFH)

This instruction loads register L from memory location 16EF g and H from memory
location 16F01¢. Note the implicit use of address 16F01.

5. POP HL

This instruction not only loads register pair HL from memory, but also increments
the stack pointer by 2.

6. CALL SUBR

This instruction not only transfers control to address SUBR, but it also saves the
address of the next sequential instruction in the stack. Furthermore, CALL decre-
ments the stack pointer by 2.

7. DINZ LOOP

This instruction decrements register B and branches to address LOOP if the result is
not 0. Note that register B is implied as the counter.

8. LDD

This instruction moves data from the address in HL to the address in DE. It also
decrements BC, DE, and HL by 1. The Parity/ Overflow flag (not the Zero flag) is
cleared (not set) if BC is decremented to 0; the Parity/ Overflow flag is set otherwise.

9. CPIR

This instruction compares the accumulator with the memory byte at the address in
HL. After the comparison, it increments HL by 1 and decrements BC by 1. It repeats
these operations until it decrements BC to 0 (indicated by the Parity/Overflow flag
being cleared) or until the comparison sets the Zero flag. Note that CPIR updates BC
and HL before it tests for an exit condition.

10. OUTI

This instruction transfers data from the memory address in HL to the output port in
C. It then decrements B (not BC) by 1 and increments HL by 1. OUTI sets the Zero flag
to 1 if it decrements BC to 0; it clears the Zero flag otherwise.

454 750 ASSEMBLY LANGUAGE SUBROUTINES

INITIALIZATION ERRORS

Initialization routines must perform the following tasks, either for the microcoms-
puter system as a whole or for particular routines:

- Load all RAM locations with initial values. This includes indirect addresses and
other temporary storage. You cannot assume that a memory location contains 0 just
because you have not used it.

- Load all registers and flags with initial values. Reset initializes the interrupt system
by disabling regular interrupts and selecting Mode 0. The startup program for an
interrupt-driven system must set the interrupt mode (if it is not 0), initialize the stack
pointer, and load the interrupt vector register (in Mode 2).

* Initialize all counters and indirect addresses. Pay particular attention to register
pairs that are used as address registers; you must initialize them before using instruc-
tions that refer to them indirectly.

ORGANIZING THE PROGRAM
INCORRECTLY

The following problems are the most common:

* Accidentally reinitializing a register, register pair, flag, memory location, counter,
or indirect address. Be sure that your branches do not result in the repetition of
initialization instructions.

* Failing to update a counter, index register, address register, or indirect address. A
problem here may be a path that branches around the updating instructions or changes
values before executing those instructions.

- Forgetting to save results. It is remarkably easy to calculate a result and then load
something else into the accumulator. Identifying this kind of error is frustrating and
time-consuming, since all the instructions that calculate the result work properly and
yet the result itself is being lost. For example, a branch may transfer control to an
instruction that writes over the result.

- Forgetting to branch around instructions that should not be executed in a particu-
lar path. Remember, the computer will execute instructions consecutively unless told
to do otherwise. Thus, the computer may fall through to a section of the program that
you expect it to reach only via a branch. An unconditional jump instruction will force a
branch around the section that should not be executed.

CHAPTER 3 COMMON PROGRAMMING ERRORS 155

ERROR RECOGNITION BY ASSEMBLERS

Most assemblers will recognize some common errors immediately, such as

- Undefined operation code (usually a misspelling or the omission of a colon after a
label).

- Undefined name (often a misspelling or an omitted definition).

- lllegal character (for example, a 2 in a binary number or a B in a decimal number).
- Illegal format (for example, an incorrect delimiter or the wrong operands).

- Illegal value (usually a number too large for 8 or 16 bits).

-+ Missing operand.

- Double definition (two different values assigned to one name).

- Illegal label (for example, a label attached to a pseudo-operation that does not
allow a label).

- Missing label (for example, on an EQU pseudo-operation that requires one).

These errors are annoying but easy to correct. The only problem comes when an
error (such as omitting the semicolon from a comment line) confuses the assembler
completely and results in a series of meaningless error messages.

There are, however, many simple errors that assemblers will not recognize. The
programmer should be aware that his or her program may contain such errors even if
the assembler does not report them. Typical examples are

- Omitted lines. Obviously, the assembler cannot tell that you have omitted a line
completely unless it contains a label or definition that is used elsewhere. The easiest
lines to omit are ones that are repetitious or seem unnecessary. Typical repetitions are
series of shifts, branches, increments, or decrements. Instructions that often appear
unnecessary include AND A, DEC HL, INC HL, OR A, and SUB A.

+ Omitted designations. The assembler cannot tell if you meant an operand to be
hexadecimal or binary unless the omission results in anillegal character (suchas Cina
decimal number). Otherwise, the assembler will assume all numbers to be decimal.
Problems occur with hexadecimal numbers that contain no letter digits (such as 44 or
2050) and with binary numbers (such as 00000110).

+ Omitted parentheses. The assembler cannot tell if you meant to refer to a memory
address unless omitting the parentheses results in an error. Many instructions, such as
LD A,(40H), INC (HL), DEC (HL), and LD HL,(2050H), are also valid without
parentheses.

- Misspellings that are still valid. Typical examples are typing AND or ADC instead
of ADD, DI instead of El, or D instead of E. Unless the misspelling is invalid, the

156 0 ASSEMBLY LANGUAGE SUBROUTINES

assembler has no way of sensing an error. Valid misspellings are often a problem if you
use names that look alike, such as XXX and XXXX, L121 and L112, or VARII and
VARIL

- Designating instructions as comments. If you place a semicolon at the start of an
instruction line, the assembler will treat the line as a comment. This can be a perplexing
error, since the line appears in the listing but is not assembled into code.

Sometimes you can confuse an assembler by entering completely invalid instruc-
tions. An assembler may accept them simply because its developer never anticipated
such mistakes. The results can be unpredictable, much like the result of accidentally
entering your weight instead of your age or your telephone number instead of your
credit card number on a form. Some cases in which a Z80 assembler can g0 wrong are

- If you specify a single register instead of a register pair. Some assemblers will
accept instructions like LD A,(L), ADD HL,D, or LD E,2040H. They will produce
meaningless object code without any indication of error.

* Ifyou enter an invalid digit, such as X in a decimal or hexadecimal number or 7 in
a binary number. Some assemblers will assign arbitrary values to such invalid digits.

* If youenteraninvalid operand such as 40H in RST, AF in LD, or SPin PUSH or
POP. Some assemblers will accept these and generate meaningless code.

The assembler will only recognize errors that its developer anticipated. Pro-
grammers are often able to make mistakes the developer never imagined, much as
automobile drivers are often capable of getting into predicaments that no highway
engineer or traffic policeman ever thought possible. Note that only a line-by-line hand
checking of the program will find errors that the assembler does not recognize.

COMMON ERRORS IN I/O DRIVERS

Since most errors in I/O drivers involve both hardware and software, they are
difficult to categorize. Some things you should watch for are

* Confusing input ports and output ports. Input port 20;¢ and output port 20 are
different in most systems. Even when the two ports are the same physically, it may still
be impossible to read back output data unless the port is latched and buffered.

* Attempting to perform operations that are physically impossible. Reading data
from an output device (such as a display) or sending data to an input device (suchasa
keyboard) makes no physical sense. However, accidentally using the wrong port
number will cause no assembly errors; the port, after all, exists and the assembler has
no way of knowing that certain operations cannot be performed on it. Similarly, a
program may attempt to save data in an unassigned address or in a ROM.

CHAPTER 3 COMMON PROGRAMMING ERRORS 457

- Forgetting implicit hardware effects. At times, transferring data to or from a port
will change the status lines automatically (as in most PIO modes). Even reading or
writing the port while debugging a program will change status lines. When using
memory-mapped I/ O, be particularly careful of instructions like comparisons and BIT
that read a memory address even though they do not change any registers. Similarly,
instructions like BIT, RES, SET, DEC, INC, and shifts can both read and write a
memory address. Automatic port operations can save parts and simplify programs, but
you must remember how they work and when they occur.

* Reading or writing without checking status. Many devices can only accept or
provide data when a status line indicates they are ready. Transferring data to or from
them at other times will have unpredictable results.

* Ignoring the differences between input and output. Remember that an input device
normally starts out not ready — it has no data available although the computer is ready
to accept data. On the other hand, an output device normally starts out ready —that is,
it could accept data but the computer usually has none to send it. In many situations
(particularly when using PIOs), you may have to send a null character (something that
has no effect) to each output port just to change its state from ready to not ready
initially.

* Failing to keep a copy of output data. Generally, you will not be able to read data
back from an output port. You must save a copy in memory if it could be needed later to
repeat a transmission, change some bits, or restore interrupt status (the data could, for
example, be the current priority level).

- Reading data before it is stable or while it is changing. Be sure that you understand
exactly when the data from the input device is guaranteed to be stable. In the case of
switches that may bounce, you may want to sample them twice (more than a debounc-
ing time apart) before taking any action. In the case of keys that may bounce, you may
want to take action only when they are released rather than when they are pressed.
Acting on release also forces the operator to release the key rather than holding it
down. In the case of persistent data (such as in serial 1/0), you should center the
reception (that is, read the data near the centers of the pulses rather than at the edges
where the values may be changing).

- Forgetting to reverse the polarity of data being transferred to or from devices that
operate in negative logic. Many simple I/ O devices, such as switches and displays, use
negative logic; a logic 0 means that a switch is closed or a display is lit. Common
ten-position switches or dials also often produce data in negative logic, as do many
encoders. The solution is simple —complement the data using CPL after reading it or
before sending it.

- Confusing actual I/ O ports with registers that are inside I/ O chips. Programmable
I/O devices, such as the CTC, PIO, and SIO, typically have control or command
registers that determine how the device operates and status registers that reflect the

158 730 ASSEMBLY LANGUAGE SUBROUTINES

current state of the device or the transfer. These registers are inside the chips; they are
not connected to peripherals. Transferring data to or from these registers is not the
same as transferring data to or from actual 1/ O ports.

- Using bidirectional ports improperly. Many devices, such as the PIO, have bidirec-
tional I/ O ports that can be used either for input or output. Normally, resetting the
computer makes these ports inputs in order to avoid initial transients, so the program
must explicitly change them to outputs if necessary. Be particularly careful of instruc-
tions that read bits or ports that are designated as outputs or that write into bits or
ports designated as inputs. The only way to determine what will happen is to read the
documentation for the specific device.

- Forgetting to clear status after performing an I/ O operation. Once the processor
has read data from a port or written data into a port, that port should revert to the not
ready state. Some 1/ O devices change the status of their ports automatically after input
or output operations, but others either do not or they change status automatically only
after input. Leaving the status set can result in an endless loop or erratic operation.

COMMON ERRORS IN INTERRUPT
SERVICE ROUTINES

Many errors that are related to interrupts involve both hardware and software. The
following are some of the more common mistakes:

- Failing to reenable interrupts. The Z80 disables interrupts automatically after
accepting one, but does not reenable interrupts unless it executes EI.

- Failing to save registers. The Z80 does not automatically save any registers except
the program counter, so any registers that the service routine uses must be saved
explicitly in the stack.

- Saving or restoring registers in the wrong order. Registers must be restored in the
opposite order from that in which they were saved.

- Enabling interrupts before initializing modes, priorities, the interrupt vector
register, or other parameters of the interrupt system.

- Forgetting that the response to an interrupt includes saving the program counter
at the top of the stack. The return address will thus be on top of whatever else is in the
stack.

- Not disabling the interrupt during multi-byte transfers or instruction sequences
that cannot be interrupted. In particular, watch for possible partial updating of data
(such as time) that a service routine may use.

CHAPTER 3 COMMON PROGRAMMING ERRORS 4159

* Failing to reenable interrupts after a sequence that must be run with interrupts
disabled. One problem here is that interrupts should not be enabled afterward if they
were not enabled originally. This requirement is difficult to meet on the Z80 since its
interrupt enable is not directly readable. The only way to access the interrupt flip-flop
is by executing LD A,I or LD A,R; either instruction moves the interrupt flip-flop to
the Parity/ Overflow flag.

- Failing to clear the signal that caused the interrupt. The service routine must clear
the interrupt even if no I/O operations are necessary. For example, even when the
processor has no data to send to an interrupting output device, it must nonetheless
either clear or disable the interrupt. Otherwise, the processor will get caught in an
endless loop. Similarly, a real-time clock will typically require no servicing other than
an updating of time, but the service routine still must clear the clock interrupt. This
clearing may involve reading a timer register.

* Failing to communicate with the main program. The main program will not know
that the interrupt has been serviced unless it is informed explicitly. The usual way to
inform the main program is to have the service routine change a flag. The main
program can tell from the flag’s value whether the service routine has been executed.
This procedure works like a postal patron raising a flag to indicate that there is mail to
be picked up. The letter carrier lowers the flag after picking up the mail. Note that this
simple procedure means that the main program must examine the flag often enough to
avoid missing changes in its value. Of course, the programmer can always provide a
buffer that can hold many data items.

- Failing to save and restore priority. The priority of an interrupt is often held in a
write-only register or in a memory location. That priority must be saved just like a
CPU register and restored properly at the end of the service routine. If the priority
register is write-only, a copy of its contents must be saved in memory.

REFERENCES

1. Duncan, F.G., “Level-Independent Notation for Microcomputer Programs,”
IEEFE Micro, May 1981, pp. 47-52.

Infroduction to the
Program Section

The program section contains sets of assembly language subroutines for the Z80
microprocessor. Each subroutine is documented with an introductory section and
comments and is followed by at least one example of its use. The introductory material
contains the following information about the purpose of the routine: its procedure and
the registers that are used; the execution time, program size, and data memory
required for the routine; as well as special cases, entry conditions, and exit conditions.

We have made each routine as general as possible. This is particularly difficult for
the input/output (I/ O) and interrupt service routines described in Chapters 10 and 11,
since these routines are always computer-dependent in practice. In such cases, we have
limited the computer-dependence to generalized input and output handlers and inter-
rupt managers. We have drawn specific examples from computers based on the CP/M
operating system, but the general principles are applicable to other Z80-based com-
puters as well.

In all routines, we have used the following parameter passing techniques:

1. Asingle 8-bit parameter is passed in the accumulator. A second 8-bit parameter is
passed in register B, and a third in register C.

2. Asingle 16-bit parameter is passed in register pair HL with the more significant
byte in H. A second 16-bit parameter is passed in register pair DE with the more
significant byte in D.

3. Large numbers of parameters are passed in the stack, either directly or indirectly.
We assume that subroutines are entered via a CALL instruction that places the return
address at the top of the stack, and hence on top of the parameters.

Where there has been a choice between execution time and memory usage, we have
generally chosen to minimize execution time. We have therefore avoided slowly
executing instructions such as stack transfers and instructions that use the index
registers, even when they would make programs shorter. However, we have used

161

462 750 ASSEMBLY LANGUAGE SUBROUTINES

relative jumps whenever possible rather than the slightly faster but longer absolute
jumps to make programs easier to relocate.

We have also chosen the approach that minimizes the number of repetitive calcula-
tions. For example, in the case of array indexing, the number of bytes between the
starting addresses of elements differing only by one in a particular subscript (known as
the size of that subscript) depends only on the number of bytes per element and the
bounds of the array. Thus, the sizes of the various subscripts can be calculated as soon
as the bounds of the array are known; the sizes are therefore used as parameters for the
indexing routines, so that they need not be calculated each time a particular array is
indexed.

As for execution time, we have specified it for most short routines. For longer
routines we have given an approximate execution time. The execution time of pro-
grams involving many branches will obviously depend on which path the computer
follows in a particular case. This is further complicated for the Z80 because condi-
tional jump instructions themselves require different numbers of clock cycles depend-
ing on whether the branch is taken. Thus, a precise execution time is often impossible
to define. The documentation always contains at least one typical example showing an
approximate or maximum execution time.

Although we have drawn examples from CP/M-based systems, we have not made
our routines compatible with the 8080 or 8085 processors. Readers who need routines
that can run on any of these processors should refer to the 8080/8085 version of this
book. We have considered the Z80 as an independent processor and have taken
advantage of such features as block moves, block compares, loop control instructions,
and relative jumps.

Our philosophy on error indicators and special cases has been the following:

1. Routines should provide an easily tested indicator (such as the Carry flag) of
whether any errors or exceptions have occurred.

2. Trivial cases, such as no elements in an array or strings of zero length, should
result in immediate exits with minimal effect on the underlying data.

3. Incorrectly specified data (such as a maximum string length of zero or an index
beyond the end of an array) should result in immediate exits with minimal effect on the
underlying data.

4. The documentation should include a summary of errors and exceptions (under
the heading of “Special Cases”).

5. Exceptions that may actually be convenient for the user (such as deleting more
characters than could possibly be left in a string rather than counting the precise
number) should be handled in a reasonable way, but should still be indicated as errors.

Obviously, no method of handling errors or exceptions can ever be completely
consistent or well-suited to all applications. And rather than assume that the user will

INTRODUCTION TO THE PROGRAM SECTON 463

always provide data in the proper form, we believe a reasonable set of subroutines
must deal with this issue.
The subroutines are listed as follows:

Code Conversion

4A Binary to BCD Conversion 167

4B BCD to Binary Conversion 170

4C Binary to Hexadecimal ASCII Conversion 172

4D Hexadecimal ASCII to Binary Conversion 175

4E Conversion of a Binary Number to Decimal ASCIT 178
4F Conversion of ASCII Decimal to Binary 183

4G Lower-Case to Upper-Case Translation 187

4H ASCII to EBCDIC Conversion 189

41 EBCDIC to ASCII Conversion 192

Array Manipulation and Indexing

5A Memory Fill 195

5B Block Move 198

5C Two-Dimensional Byte Array Indexing 201
5D Two-Dimensional Word Array Indexing 205
5E N-Dimensional Array Indexing 209

Arithmetic

6A 16-Bit Multiplication 217

6B 16-Bit Division 220

6C 16-Bit Comparison 225

6D Multiple-Precision Binary Addition 228

6E Multiple-Precision Binary Subtraction 231
6F Multiple-Precision Binary Multiplication 234
6G Multiple-Precision Binary Division 239

164

6H
61
6J
6K
6L
6M

780 ASSEMBLY LANGUAGE SUBROUTINES

Multiple-Precision Binary Comparison 245
Multiple-Precision Decimal Addition 248
Multiple-Precision Decimal Subtraction 251
Muitiple-Precision Decimal Multiplication 254
Multiple-Precision Decimal Division 260

Multiple-Precision Decimal Comparison 266

Bit Manipulations and Shifts

TA Bit Field Extraction 267

7B Bit Field Insertion 270

7C Multiple-Precision Arithmetic Shift Right 273
7D Multiple-Precision Logical Shift Left 276
7E Multiple-Precision Logical Shift Right 279
7F Multiple-Precision Rotate Right 282

7G Multiple-Precision Rotate Left 285
String Manipulation

8A String Compare 288

&B String Concatenation 292

8C Find the Position of a Substring 297

8D Copy a Substring from a String 302

8E Delete a Substring from a String 308

8F Insert a Substring into a String 313
Array Operations

9A 8-Bit Array Summation 319

9B 16-Bit Array Summation 322

9C Find Maximum Byte-Length Element 325
9D Find Minimum Byte-Length Element 328
9E Binary Search 331

INTRODUCTION TO THE PROGRAM SECTION 4165

9F Quicksort 336
9G RAM Test 347
9H Jump Table 352

Input/Output

10A Read a Line from a Terminal 356

10B Write a Line to an Output Device 365
10C CRC-16 Checking and Generation 368
10D I/O Device Table Handler 373

10E Initialize I/ O Ports 385

10F Delay Milliseconds 391

Interrupts

11A Unbuffered Input/Output Using an SIO 394
I1B Unbuffered Input/Output Using a PIO 404
11C Buffered Input/Output Using an SIO 413
11D Real-Time Clock and Calendar 425

Binary to BCD Conversion (BN2BCD)

AA

Converts one byte of binary data to two bytes
of BCD data.

Procedure: The program subtracts 100 repeat-
edly from the original data to determine the
hundreds digit, then subtracts 10 repeatedly
from the remainder to determine the tens digit,
and finally shifts the tens digit left four positions
and combines it with the ones digit.

Registers Used: AF, C, HL

Execution Time: 497 cycles maximum; depends on
the number of subtractions required to determine the
tens and hundreds digits

Program Size: 27 bytes
Data Memory Required: None

Entry Conditions

Binary data in A

Exit Conditions

Hundreds digit in H
Tens and ones digits in L

Examples

1. Data:
Result:

(A) = 6E4 (110 decimal)

(H) = 01 ;4 (hundreds digit)
(L) = 10 (tens and ones digits)

2. Data:

Result;

(A) = B7 (183 decimal)

(H) = 014 (hundreds digit)
(L) = 83,4 (tens and ones digits)

Title
Name:

EBinary to
BN2RBCD

5w ws uE we ws wm NS

Purpose:

: bytes of RCD
; Entry: Register A =
; Exit: Register H =
i Register L =
; Registers used: AF,C,HL

BCDD conversion

Convert one byte of binary data to

~E e wE e B wE wa s

twi
data

binary data

High byte of BCZD data
Low byte of BCD data

ME NE ME NI B wE s NE NE s

167

468 oo convERsION

B uE N uE ws NS

ENZBCI:

D100LF:

O10LF:

~8 w uE ws wE

SC4A:

Time: 497 cycles maximum
Size: Frogram 27 bytes

s CALCIWLATE 100°% DIGIT - DIVIDE EY 100
7 H = QUOTIENT

P A REMAINDER

Ln H, OFFH s START QUOTIENT AT -1

INC H sADD 1 TO QUOTIENT

SUBR 100 s SUBRTRACT 100

JIR NC, D100LP s JUMP IF DIFFERENCE STILL POSITIVE
ADD A, 100 sADD THE LAST 100 BACK

;s CALCULATE 1075 AND 175 DIGITS
DIVIDE REMAINDER OF THE 100°% DIGIT EY 10

~E w NE

L = 10°% DIGIT
A = 1S DIGIT
Lo L, OFFH ;START QUOTIENT AT -1
INC L sADD 1 TO QUOTIENT
SR 10 s SUBTRACT 10
JR NC, D1OLP +JUMP IF DIFFERENCE STILL POSITIVE
ADD A, 10 ;ADD THE LAST 10 BACK
;s COMBINE 178 AND 1073 DIGITS
Lo C,A ;SAVE 175 DIGIT IN ©
Lo AL
RLCA sMOVE 10°% TO HIGH NIEBLE OF A
RLCA
RLCA
RLCA
QR C ;OR IN THE 175 DIGIT
RETURN WITH L = LOW BYTE, H = HIGH RYTE
LD L,A
RET

SAMPLE EXECUTION:

; CONVERT 0A HEXADECIMAL TO 10 ECD
LD A, OAH
CALL BN2ECD tH =0, L = 10H

; CONVERT FF HEXADECIMAL TO 255 ECD

w5 wu wm wp Nm wB

w w4 NE s ws

4A BINARY TO BCD CONVERSION (BN28CD) 469

LD A, OFFH

CALL BN2ZRBCD sH = 02H, L = S55H
3 CONVERT O HEXADECIMAL TQ © RCD

Ln A0

CALL BNZECD sH=0, L =20

JR SCa4A

END

BCD to Binary Conversion (BCD2BN) 4B

Converts one byte of BCD data to one byte
of binary data.

Procedure: The program masks off the more
significant digit, multiplies it by 10 using shifts
(10=8+2, and multiplying by 8 or by 2 is equiv-

Registers Used: AF, BC
Execution Time: 60 cycles
Program Size: 14 bytes

Data Memory Required: None

alent to three or one left shifts, respectively).
Then the program adds the product to the less
significant digit.

Entry Conditions Exit Conditions

BCD data in A Binary data in A
Examples
1. Data: (A) =99 2. Data: (A) =23

Result: (A)=0631=99 Result: (A) =174 = 23
3 H
H Title BCD to binary canversion H
H Name: RCD2EBN s
5 H
; Purpose: Convert one byte of BCD data to one H

byte of binary data
Entry: Register A = BCLI data
Exit: Register A = Rinary data
Registers used: A,RB,C,F

Time: &0 cycles

NE NS NE ME NE NE NE NS s
NE ME NS e B NE NE s W

170

4B BCD TO BINARY CONVERSION (BCD28N) 474

Frogram 14 bytes

o
o
i
i
s

. e w ue
w8 wE NE e

ECD2EN:
sMULTIPLY UPPER NIRELE RY 10 AND SAVE IT
;7 UPPER NIBREBLE ® 10 = UFPER NIBELE = (& + 2)
Lo B, A ;s SAVE ORIGINAL BCLDC VALUE IN E
AND OFQH 1 MASE OFF UPFER NIBELE
RRCA SHIFT RIGHT 1 RIT
LD C,A ;C = UFPER NIRELE = 3
RRCA s SHIFT RIGHT 2 MORE TIMES
RRCA ;A = UFPER NIRELE = 2
ADD A,
LD C.A ;C = UFPER NIRELE ® (8+2)
;GET LOWER NIBBLE AND ADD IT TO THE
; BINARY EQUIVALENT OF THE UFPER NIRELE
LD A B sGET ORIGINAL VALUE BACKE
AND QFH s MASE. OFF UFPFER NIBELE
ADD A, C ;ADD TO EINARY UPFER NIBELE
RET
; SAMPLE EXECUTION: ;
SCAR:
»CONVERT O ECD 7O O HEXADECIMAL
LD A0
CALL BCDZ2EN A = OH
; CONVERT 9% BCD TO &3 HEXADECIMAL
Lo A, 09%H
CALL BCO2EN 3 A=ETH
; CONVERT 23 BCD TO 17 HEXADECIMAL
LD A, 23H
CALL BCD2EBN rA=17H
JR SC4R

END

Binary to Hexadecimal ASCII

Conversion (BN2HEX)

4C

Converts one byte of binary data to two
ASCII characters corresponding to the two
hexadecimal digits.

Procedure: The program masks off each hexa-
decimal digit separately and converts it to its
ASCII equivalent. This involves a simple addi-
tion of 30¢ if the digit is decimal. If the digit is
non-decimal, an additional 7 must be added to

Registers Used: AF, B, HI.

Execution Time: 162 cycles plus two extra cycles for
each non-decimal digit

Program Size: 28 bytes
Data Memory Required: None

account for the break between ASCII 9 (39;6)
and ASCII A (41).

Entry Conditions

Binary data in A

Exit Conditions

ASCII version of more significant hexadecimal
digit in H

ASCII version of less significant hexadecimal
digit in L

Examples
1. Data: (A)=FBy
Result: (H) = 46,4 (ASCII F)

(L) = 42,4 (ASCII B)

2. Data:
Result:

(A) = 59
(H) = 35,4 (ASCII 5)
(L) = 396 (ASCI1 9)

NE e uE B N N wE us

Title Binary to hex ASCII
Name: BNZHEX
H Furpose:
: two ASCII characters
H Entry: Register A =

172

Convert one byte of binary data to

Binary data

WE B N NE NE wa ws e

5 NE NE wE W s

4C BINARY TO HEXADECIMAL ASCI CONVERSION (BN2HEX) 473

Exit: Register H = ASCII more significant digit
Register L = ASCII less significant digit

~ e

Registers used: AF,RB,HL

B NS N uE um ws ws

Time: Appraximately 142 cycles
Size: Frogram 28 bytes

e NS ME A NE wE s s

- w8 s

EN2HEX =

;s CONVERT HIGH NIBELE

LO B, A ; SAVE ORIGINAL BINARY VALLIE

ANLD OFQH ; GET HIGH NIBELE

RRCA s MOVE HIGH NIBRBLE TO LOW NIBELE

RRCA

RRCA

RRCA

CALL NASCII ; CONVERT HIGH NIRBRLE TQ ASCII

LD H, A sRETURN HIGH NIEBGBLE IN H

s CONVERT LOW NIRELE

LD AR

AND OFH s GET LOW NIBELE

CALL NASCIT ;s CONVERT LOW NIEBBLE TO ASCII

LD L,A sRETURN LOW NIEBLE IN L

RET

s SUBROUTINE ASCII

; FURFOSE: CONVERT A HEXADECIMAL DIGIT TQ ASCII

sENTRY: A = BINARY DATA IN LOWER NIBELE

;EXIT: A = ASCII CHARACTER

sREGISTERS USED: A,F
NASCII:

CF 10

JR C,NAS1 s JUMP IF HIGH NIBBLE < 10

ADD A7 ;ELSE ADD 7 S0 AFTER ADDING <07 THE

3 CHARACTER WILL BE IN “A“.. F~

NAZ1:

ADD A, 70" ;ADD ASCII O TO MAKE A CHARACTER

RET
; SAMPLE EXECUTICN: ;
H H
SCAC:

; CONVERT O Ta “00¢
LD 4/, 0

474 o CONVERSION

CALL BN2HEX s H="0"=30H, L="0"=Z0H
s CONVERT FF HEX TOQ “FF~

Lo A, OFFH

CALL BNZHEX sH="F " =44H, L="F =4£&H
;s CONVERT 23 HEX TO 237

LD A, 23H

CALL BNZHEX sH="2"=32H, L="3"=X3H
R SC4C

END

Hexadecimal ASCIi o Binary

Conversion (H-X2BN)

4D

Converts two ASCII characters (represent-
ing two hexadecimal digits) to one byte of
binary data.

Procedure: The program converts each ASCII
character separately to a hexadecimal digit. This
involves a simple subtraction of 304 (ASCII 0)
if the digit is decimal. If the digit is non-decimal,
another 7 must be subtracted to account for the
break between ASCII 9 (39,4) and ASCII A
(416). The program then shifts the more signif-
icant digit left four bits and combines it with the

Registers Used: AF, B

Execution Time: 148 cycles plus two extra cycles for
each non-decimal digit

Program Size: 24 bytes
Data Memory Required: None

less significant digit. The program does not
check the validity of the ASCII characters (that
is, whether they are indeed the ASCII represen-
tations of hexadecimal digits).

Entry Conditions

More significant ASCII digit in H, less signifi-
cant ASCII digit in L

Exit Conditions

Binary data in A

Examples
1. Data: (H) = 44,4 (ASCII D) 2. Data: (H)= 31,4 (ASCII)
(L)= 37,4 (ASCII 7) (L) = 42,4, (ASCII B)
Result: (A)= D7 Result: (A)= 1B
H Title Hex ASCII to binary :
; Name: HEX2BN 5

Purpose: Convert two

P T

Entry: Register H =

ASCII characters to one
byte of binary data

ASCII more significant digit

“E wE wE wE e

175

476 CoDE CONVERSION

ASCII less significant digit

Register L

it

Exit: Register A RBinary data

Registers used: AF,R

NE ME NS WE M WE NS S NS NS~

Time: Approximately 148 cycles
Size: Frogram 24 bytes
HEX2EN:
LD AL s GET LOW CHARACTER
CALL AZHEX sCONVERT IT T HEXADECIMAL
LD B, A s TAVE HEX VALUE IN R
LD AH s GET HIGH CHARACTER
CaLL AZHEX s CONVERT IT TGO HEXADECIMAL
RRCA s SHIFT HEX VALUE TO UFPER 4 BITS
RRZA
RRCA
RRCA
OR B ;OR IN LOW HEX VALLE
RET
s SUBROUTINE: AZ2HEX
s PURPOSE: CONVERT ASCII DIGIT TO A HEX DIGIT
:ENTRY: A = ASCII HEXADECIMAL DIGIT
tEXIT: A = BINARY VALUE OF ASCII DIGIT
sREGISTERS USED: A,F
AZHEX:
SUR 0 s SUETRACT ASCII OFFSET
CF 10
JR C,AZHEX1 sBRANCH IF A I3 A DECIMAL DIGIT
sSup 7 sELSE SURTRACT QFFSET FOR LETTERS
AZHEX1:
RET
4 SAMFLE EXECUTION:
SC40:
s CONVERT “C7° TO €7 HEXADECIMAL
Lo H, “C~
LD L,“77
CALL HEXZ2EN y A=C7H

; CONVERT “2F° TO 2F HEXADECIMAL
LD H, "2~
Lo L, F~

NE ME NE NE ME NB NI NB NE NS us

s NE MD um s

4D HEXADECIMAL ASCII TO BINARY CONVERSION (HEx2sN) 477

CAaLL HEXZEN ; A=ZFH
;s CONVERT “2A° TO 2A HEXADECIMAL
LD H, "2~

LD L, A"

CALL HEX2EN ; A=ZAH
JR SCan

END

Conversion of a Binary Number fo

Decimal ASCII (BN2DFC)

Ak

Converts a 16-bit signed binary number into
an ASCIH string. The string consists of the
length of the number in bytes, an ASCII minus
sign (if needed), and the ASCII digits. Note that
the length is a binary number, not an ASCII
number.

Procedure: The program takes the absolute
value of the number if it is negative. The program
then keeps dividing the absolute value by 10
until the quotient becomes 0. It converts each
digit of the quotient to ASCII by adding ASCII 0
and concatenates the digits along with an ASCII

Registers Used: AF, BC, DE, HL.
Execution Time: Approximately 7200 cycles
Program Size: 107 bytes

Data Memory Required: Four bytes anywhere in
memory for the buffer pointer (two bytes starting at
address BUFPTR), the length of the buffer (one byie
at address CURLEN), and the sign of the original
value (one byte at address NGFLAG). This data
memory does not include the output buffer which
should be seven bytes long.

minus sign (in front) if the original number was
negative.

Entry Conditions

Base address of output buffer in HL
Value to convert in DE

Exit Conditions

Order in buffer:

Length of the string in bytes (a binary number)
ASCII — (if original number was negative)
ASCII digits (most significant digit first)

Examples

I. Data: Value to convert = 3EB7 ¢

Result (in output buffer):

05 (number of bytes in buffer)
31 (ASCII 1)

36 (ASCII 6)

30 (ASCII 0)

35 (ASCII 5)

35 (ASCII 5)

That is, 3EB7,¢ = 16055,

2. Data:
Result (in output buffer):

03 (number of bytes in buffer)

2D (ASCIl —)

35 (ASCIIL 5)

36 (ASCII 6)

Thatis, FFC8,,=—56,,, when considered as a
signed two’s complement number

Value to convert = FFC8;4

178

4E CONVERSION OF A BINARY NUMBER TO DECIMAL ASCII (BN2DEC) 179

w8 Ma wm B w8 NB wE W
LT T ST

Title Binary to decimal ASCII

Name: BN2DEC
H Furpose: Convert a 14~-bit signed binary number H
H to ASCIT data H
H Entry: Register H = High byte of cutput buffer address ;
H Register L = Low byte of cutput buffer address
H Register D' = High byte of value to convert H
H Register E = Low byte of value to convert H
H Exit: The first byte of the buffer is the length, H
H fallowed by the characters. H
H Registers used: AF, RBC,DE, HL ;
r I
H Time: Approximately 7,200 cycles ;
H Size: Frogram 107 bytes H
H Data 4 bytes H
EN2DEC:

: SAVE PARAMETERS

LD (BUFPTR) , HL s STORE THE EBUFFER POINTER

EX DE, HL

Lo A0

LD (CURLEN) , A s CURRENT BUFFER LENGTH IS O

Lo AH

LD {NGFLAG), A 3 SAVE SIGN OF VALLE

OoR A s SET FLAGS FROM VALLE

JP P, CNVERT s JUMP O IF VALLE IS POSITIVE

EX DE, HL rELSE TAKE ARICLUTE VALLE (O — VALLE)

Ln HL, O

OR A s CLEAR CARRY

SBC HL, DE s SUBTRACT VALLUE FROM O

;s CONVERT VALWLE TO A STRING
CNVERT =

sHL = HL DIV 10 (DIVIDEND, GUOTIENT)

sDE := HL MOD 10 (REMAINDER)

Lo E,O sREMAINDER = O

LD B, 14 :14 RBITS IN DIVIDEND

aRr A s CLEAR CARRY TO START
oVLOOF =

HIFT THE NEXT BIT OF THE @UOTIENT INTQ RIT O OF THE DIVIDEND
HIFT NEXT MOST SIGNIFICANT RIT OF DIVIDEND INTO

4180 CoDE CONVERSION

LEAST SIGNIFICANT RIT OF REMAINDER

HL HOLDS BOTH DIVIDEND AND QUOTIENT. QUOTIENT IZ SHIFTED
IN AS THE DIVIDEND IS SHIFTED QUT.

;E IS THE REMAINDER.

~s wm ws

;DO A 24-RIT SHIFT LEFT, SHIFTING
;7 CARRY TO L, L TOH, HTOE

RL L s CARRY (NEXT BRIT OF QUOTIENT) TO RIT O
RL H ; SHIFT HIGH RYTE
RL E s SHIFT NEXT EBIT OF DIVIDEND

; IF REMAINDER IS 10 OR MORE, NEXT EBIT OF
7 QUATIENT IS 1 (THIS EBIT IS FLACED IN CARRY)

LD AE
SUR 10 s SUBTRACT 10 FROM REMAINDER
CCF ;s COMFLEMENT CARRY
3 (THIS IS NEXT BIT OF GUOTIENT)
JR NC, DECCNT s JUMP IF REMAINDER IS LESZ THAN 10
LD E,A s OTHERWISE REMAINDER = DIFFERENCE
3 BETWEEN PREVIOUS REMAINDER AND 10
DECCNT &
0.INZ DVLOOR sCONTINUE UNTIL ALL BRITS ARE DONE
s BHIFT LAST CARRY INTO QUOTIENT
RL L ;LAST RIT OF QUOTIENT TGO EBIT ©
RL H
;s INSERT THE NEXT CHARACTER IN ASCII
CHINZ:
Lo AE
ADD A, 07 s CONVERT 0...9 TO ASCIT “07...7%9"
CALL INSERT
s IF QUOTIENT IS NOT O THEN KEEP DIVIDING
LD A H
OR L
JR NZ, CNVERT
EXIT:
Ln A, (NGFLAG)
OR A
JFP F,POS s BRANCH IF ORIGINAL VALLIE WAS POSITIVE
LD A, -7 sELSE
CAaLL INSERT 3 PUT A MINUS SIGN IN FRONT
PO

RET ; RETLRN

INZERT:

EXITMR:

BUFPTR:
CURLEN:
NGFLAG:

- ws wm B s

SCAE:

4E CONVERSION OF A BINARY NUMBER TO DECIMAL ASCIH(BN2DEC)

IBROUTINE: INSERT
IRPOSE: INSERT THE CHARACTER IN REGISTER A AT THE

FRONT OF THE ERLUFFER
ENTRY: CURLEN = LENGTH OF BUFFER

BUFPTR = CURRENT ADDRESS OF LAST CHARACTER IN BLUFFER
EXIT: REGISTER A INSERTED IMMEDIATELY AFTER LENGTH EYTE
REGISTERS USED: AF,RB,C,0ILE

=
P

[aadl s

NE NB NS NB MB NS N s wE

PUSH HL ; SAVE HL
PUSH AF s SAVE CHARACTER TO INSERT
:MOVE ENTIRE BUFFER UP 1 BYTE IN MEMORY
LD HL, (BUFPTR) ; GET BUFFER POINTER
LD n,H sHL = SOURCE (CURRENT END OF BLUFFER)
Lo E,L
INC DE ;DE = DESTINATION (CURRENT END + 1)
LD (BUFPTR), DE s STORE NEW BUFFER PQOINTER
Lo A, (CURLEN)
OR A s TEST FOR CURLEN = 0
JR Z,EXITMR ;JUMP IF ZERD (NQTHING TO MQVE,
3 JUST STORE THE CHARACTER)
LD C,A sBC = LOOF COUNTER
Lo E, O
LDDR sMOVE ENTIRE BUFFER UP 1 BYTE
LD A, (CURLEN) 7 INCREMENT CURRENT LENGTH EY 1
INC A
LD (CURLEN) , A
LD (HL) , A ;s UPDATE LENGTH BYTE OF BUFFER
EX DE, HL sHL POINTS TO FIRST CHARACTER IN BUFFER
POP AF $+ GET CHARACTER TO INSERT
LD (HL) , A ; INSERT CHARACTER AT FRONT OF BUFFER
POP HL s RESTORE HL
RET
; DATA
ns 2 ; ADDRESS OF LAST CHARACTER IN BUFFER
ns 1 s CURRENT LENGTH OF BUFFER
ns 1 ;SIGN OF ORIGINAL VALLE

SAMPLE EXECUTION:

s CONVERT O TO <0~

LD HL, BUFFER ;HL. = BASE ADDRESS 0OF EBEUFFER
Lo DE, 0 ;DE = O
CAaLL BN2DEC s CONVERT

; BUFFER SHOULD = “07

181

PTETECTRET BET

482 CODE CONVERSION

; CONVERT 32767 TQ 32747~

LD HL, BUFFER sHL = BRASE ADDRESS OF BUFFER
LD DE, 32747 ;DE = 32747
CALL BN2DEC ; CONVERT

; BUFFER SHOULD = <352

s CONVERT —-327688 TO “—-327&87

LD HL, BLIFFER sHL = BASE ADDRESS OF BUFFER

LD DE, -32748 ;DE = -32748

CALL BN2DEC ; CONVERT

JR SC4E + BUFFER SHOULD = ~-327&87
BUFFER: DS 7 ;s 7-BYTE BUFFER

ENDY

Conversion of ASCII Decimal fo

Binary (DEC2BN)

AF

Converts an ASCII string consisting of the
length of the number (in bytes), a possible
ASCII — or + sign, and a series of ASCII digits
to two bytes of binary data. Note that the length
is an ordinary binary number, not an ASCII
number.

Procedure: The program sets a flag if the first .

ASCII character is a minus sign and skips over a
leading plus sign. It then converts each subse-
quent digit to decimal by subtracting ASCII 0,
multiplies the previous digits by 10 (using the
fact that 10 =8+ 2, so a multiplication by 10 can
be reduced to left shifts and additions), and adds
the new digit to the product. Finally, the pro-
gram subtracts the result from 0 if the original
number was negative. The program exits imme-
diately, setting the Carry flag, if it finds some-

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 152 cycles per byte
plus a maximum of 186 cycles overhead

Program Size: 79 bytes

Data Memory Required: One byte anywhere in
RAM (address NGFLAG) for a flag indicating the
sign of the number

Special Cases:
[. If the string contains something other than a
leading sign or a decimal digit, the program returns

with the Carry flag set to 1. The result in HL is
invalid.

2. If the string contains only a leading sign
(ASCII + or ASCII —), the program returns with
the Carry flag set to | and a result of 0.

thing other than a leading sign or a decimal digit
in the string.

Entry Conditions

Base address of string in HL

Exit Conditions

Binary value in HL

Carry flag is 0 if the string was valid; Carry flag
is 1 if the string contained an invalid charac-
ter.

Note that the result is a signed two’s complement
16-bit number.

Examples

1. Data: String consists of

04 (number of bytes in string)
31 (ASCII 1)
32 (ASCH1 2)
33 (ASCII 3)
34 (ASCII 4)

That is, the number is +1,234,

Result: (H) = 04, (more significant byte of binary
data)
(L) = D24 (less significant byte of binary
data)
That is, the number +1,234,, = 04D2¢

183

484 CoDE CONVERSION

2. Data: String consists of Result: (H) = 80,4 (more significant byte of binary
. . data)
g%(?:rsng;r f’_g bytes in string) (L) = 12, (less significant byte of binary
data)
;g gﬁggg gg That is, the number —32,750,, = 80124

37 (ASCII 7)
35 (ASCII 5)
30 (ASCII 0)

That is, the number is —32,750,,

NE NS ws ws ws wE wn s
N N NE wE ws D ws e

Title Decimal ASCII to binary
Name: DECZRN
Purpose: Convert ASCII characters to two bytes of binary
data :
Entry: HL = Base address of input buffer H
Exit: HL = Rinary value H
if no errors then H
Carry = 0
else
Carry = 1

Registers used: AF,BC,DE,HL

Time: Approximately 152 cycles per byte plus
a maximum of 1868 cycles overhead

Size: Program 79 bytes
Data 1 byte

WO NA NF B NB ME NE NI WS w8 NB NE S WE ME B B M E NE e

NE NE ME w8 NE M NE NS wE NE wE wE wn

DEC2EN:
i INITIALIZE ~ SAVE LENGTH, CLEAR SIGN AND VALLUE
LD A, (HL) ; SAVE LENGTH IN B
LD E, A
INC HL sPOINT TO BYTE AFTER LENGTH
SUB A
Lo (NGFLAG), A ; ASSLIME NUMBER IS POSITIVE
LD DE, QO sETART WITH VALUE = O

s CHECE. FOR EMPTY BUFFER
OR B ;IS BUFFER LENGTH ZERO?

INIT1:

PLLIZ:

SKIP:

CNVERT =

CHKDIG:

4F CONVERSION OF ASCII DECIMAL TO BINARY (DEC28N) 185

JR Z,EREXIT ;YES, EXIT WITH VALLE = 0

s CHECK FOR MINUS OR PLUS SIGN IN FRONT

LD A, (HL) s GET FIRST CHARACTER

CP - IS IT A MINUZ SIGN?

JR NZ,PLUS 3 NQ, BRANCH

LD A, OFFH

LD (NGFLAG) , A ; YES, MAKE SIGN OF NUMBER NEGATIVE
JR SKIP ; SKIP OVER MINUZ SIGN

CF T+ ; IS FIRST CHARACTER A PLUS SIGN?
JR NZ,CHKDIG ;NQ, START CONVERSION

INC HL ; SKIP QVER THE SIGN RYTE

DEC B s DECREMENT COQUNT

JR Z,EREXIT ;ERROR EXIT IF ONLY A SIGN IN BUFFER

s CONVERSION LOQOF
CONTINUE UNTIL THE BUFFER IS EMFTY
OR A NON-NUMERIC CHARACTER IS FOLND

~ ur

LD A, (HL) s GET NEXT CHARACTER

SLI B K c’ Ed

JR C,EREXIT sERROR IF < <07 (NQT A DIGIT)
CF o+1

JR NC, EREXIT ;ERROR IF » 797 (NQT A DIGIT)
LD C,A ;CHARACTER IS DIGIT, SAVE IT

;VALID DECIMAL DIGIT =0

7 VALUE := VALUE = 10

; = VALUE = (& + 2)

; = (VALUE = &) + (VALUE = 2)

FUSH HL ; SAVE BUFFER POINTER
EX DE, HL sHL = VALLE

ADD HL, HL 7 R 2

LD E,L ;SAVE TIMES 2 IN DE
Lo n,H

ADD HL, HL 3 ® 4

ADD HL., HL ;o2 8

ADD HL, DE ; VALUE = VALUE = (8+2)

sADD IN THE NEXT DIGIT
3 VALUE := VALUE + DIGIT

LD E,C s MOVE NEXT DIGIT TQ E

Lo n,o ; HIGH BYTE IS Q

ADD HL, DE s ADD DIGIT TO VALLE

EX DE, HL sDE = VALLE

FOP HL s POINT TO NEXT CHARACTER
INC HL

DUNZ CNVERT ; CONTINUE CONVERSION

; CONVERSION IS COMPLETE, CHECK SIGN

EX DE, HL sHL = VALLE

LD A, (NGFLAG)

OR A

186 copF convERSION

JR Z,0KEXIT s JUMP IF THE VALUE WAS POSITIVE
EX DE, HL ;ELSE REPLACE VALUE WITH -VALUE
LD HL, O
OR A s CLEAR CARRY
SBC HL, DE ; SUETRACT VALLIE FROM O
sNO ERRORS, EXIT WITH CARRY CLEAR
OKEXIT:
OR A s CLEAR CARRY
RET
;AN ERROR. EXIT WITH CARRY SET
EREXIT:
EX DE, HL tHL = VALUE
SCF $SET CARRY TO INDICATE ERROR
RET
; DATA
NGFLAG: DS 1 ;SIGN OF NUMEER
H
: SAMPLE EXECUTION:
SC4F:

; CONVERT ‘1234~
Lo HL, 51 sHL = BASE ADDRESE OF =1
CALL DEC2EN

tH = 04, L = D2 HEX

s CONVERT “+32767¢
LD HL, 52 sHL = RASE ADDRES®S OF =2
CALL DECZEN

tH = 7F, L = FF HEX

s CONVERT “~-32768~7
LD HL, &3
CALL DECZEN

sHL = BASE ADDRERS OF 52
sH = 80 HEX, L = 00 HEX

JR SC4F
S1: DB 4, 12347
S2: DR &, "+327677
83: DR &, =32748"

END

e NE B wE s

Lower-Case to Upper-Case

Translation (LC2UC)

4G

Converts an ASCII lower-case letter to its
upper-case equivalent.

Procedure: The program uses comparisons to
determine whether the data is an ASCII lower-
case letter. If it is, the program subtracts 20y
from it, thus converting it to its upper-case equiv-
alent. If it is not, the program leaves it unchanged.

Registers Used: AF

Execution Time: 45 cycles if the original character is
a lower-case letter, fewer cycles otherwise

Program Size: 11 bytes
Data Memory Required: None

Entry Conditions

Character in A

Exit Conditions

If an ASCII lower-case letter is present in A,
then its upper-case equivalent is returned in A.
In all other cases, A is unchanged.

Examples

I. Data: (A)= 62,4 (ASCII b)
Result: (A)= 42, (ASCIL B)

2. Data: (A)= 54,4 (ASCII T)
Result: (A) =54, (ASCII T)

B N N NE WS N es s

lower case if
Entry: Register A =

Exit: Register A =

NE ME NS N NE we we we wE w8

Registers used: AF

Title Lower—-cas2 to upper-case translaticon
Name: Lc2uc
Furpose: Convert one ASCII character to upper case from

w8 NS B NE NE B wE wE

necessary
Lower—-case ASCII character

Upper—-case ASCII character if A
is lower case, 21s2 A is unchanged

NE OME NE NE MR NE wE MBS wE

187

488 CopE CoONVERSION

H Time: 435 cycles if A is lower case, less otherwise
H Size: Pragram 11 bytes
H Data none
LC2uc:
cpP “ar
JR C,EXIT ;BRANCH IF < “a” (NOT LOWER CASE)
CF TET+]
JR NC,EXIT sBRANCH IF > “z< (NOT LOWER CASE)
) SUR ‘a"-"A" CHANGE “a”..“z” into “A".."Z~
EXIT:
RET

SAMFLE EXECUTION:

B B NE wE s

SCAG:

; CONVERT LOWER CASE E TO UPPER CASE
LD A, e

CALL Lcauc A="E"=45H
; CONVERT LOWER CASE Z TO UFPER CASE
LD A, "z~

CALL Lca2uc FA="Z " =0AH
s CONVERT UPFER CASE A TO UPPER CASE A
LD A, A7

CALL Lcauc PA=TAY=41H
JR SCAG

N8 N NE B K ME s

8w wE e we

ASCII to EBCDIC Conversion (ASC2EB)

4H

Converts an ASCII character to its EBCDIC
equivalent.

Procedure: The program uses a simple table
lookup with the data as the index and address
EBCDIC as the base. A printable ASCII charac-
ter with no EBCDIC equivalent is translated to
an EBCDIC space (401¢); a non-printable ASCII
character with no EBCDIC equivalent is trans-
lated to an EBCDIC NUL (004¢).

Registers Used: AF, DE, HL
Execution Time: 55 cycles

Program Size: 11 bytes, plus 128 bytes for the con-
version table

Data Memory Required: None

Entry Conditions

ASCII character in A

Exit Conditions

EBCDIC equivalent in A

Examples
. Data: (A)= 354 (ASCII 5)
Result: (A) = F5,4 (EBCDIC 5)

2. Data: (A) = 77,6 (ASCII w)
Result: (A) = A6, (EBCDIC w)

3. Data: (A) = 2A ¢ (ASCII %)
Result: (A) = 5C 4 (EBCDIC *)

s

;
H Title ASCII to EBCDIC conversion
H Name: ASC2ER
}
Purpose: Convert an ASCII character to its

Entry: Register A =

N8 NE NE we NE ws we

Exit: Register A =

corresponding ERCDIC character

S MR ME NE NE wE NE we

ASCII character

NE B NE NS wE wE s

EECDIC character

189

190 CODE CONVERSION

Registers used: AF, DE, HL

H Time: S cyeles
H Size: Program 11 bytes
H Data 128 bytes for the table
ASC2ER:
LD HL, ERCDIC s GET BASE ADDRESS OF ERCDIC TAELE
AND O1111111R sBE SURE BIT 7 = 0O
LD E,A sUSE ASCII AS INDEX INTQ ERCDIC TABLE
LD 0,0
ADD HL, DE
LD A, (HL) s GET ERCDIC
RET

sASCII TO EBCDIC TABLE

3 A PRINTABRLE ASCII CHARACTER WITH NO ERBCDIC ERQUIVALENT IS

;7 TRANSLATED TO AN EBCRIC SPACE (040H), A NONFRINTARBLE ASCII CHARACTER
3 WITH NO EQUIVALENT IS TRANSLATED TO A ERCDIC NUL (OQOH)

EBCDIC:

H NUL S0H STX ETX EOT ENR ACK BEL tASCII
jajcd QOQH, 001H, 002H, 00O3H, 037H, O2DH, 0ZEH, 02FH sERCOIC
: BS HT LF VT FF CR a0 SI sASCTI
OR 01&8H, 005H, 025H, QORH, O0OCH, O0DH, OOEH, 00OFH sERCDIC
; DLE DC1 DC2 DC3 DC4 NAK SYN ETR sASCIT
DB QO10H,011H, 012H, 013H, O3CH, O30H, 032H, 02&H sERCDIC
; CAN EM SUBR ERC IFS IGS IRS IUS sASCIT
DR 018H, 019H, O3FH, 027H, 01CH, 01DH, 01EH, OIFH s ERCDIC
H SPACE ! " # % % & sASCII
DR Q40H, 0SAH, 07FH, 07BH, 0SBH, 04CH, 0S0H, 0ODH sERBCDIC
H () # + / PASCIT
DR 04DH, 0SDH, OQCH Q4EH, OGBH 0&0H, 04BH 0&1H sERCDIC
H (o] 1 2] 4] & 7 sASCIT
DR QFOH, OF 1H, OF 2H, OF?H 0F4H OFWH OF&H, 0F7H sEBCOIC
H =] Q? : ¥ sASCIT
DR OF8H, OF?H, 07AH, OQEH 04CH O7EH QO&EH, OmFH sERBCDIC
H <] A B C D E F G sASCIIT
DB Q7CH, OC1H, OC2H, OC3H, OC4H, OCSH, OC&H, OC7H sERCDIC
3 H 1 N K L M N u] sASCIIT
jajcd QC8H, OC9H, ODNIH, OL2H, OD3H, OD4H, ODSH, ODAH sERCOIC
3 F Q R s T u v W PASCIIT
DR ON7H, ODGH, OD9H, OE2H, OE2H, OE4H, OEqH OEhH ;ERCIIC
H X Y Z L \ 1 PASCIT
DR 0E7H,0E3H,0E9H,040H,OEOH,04QH,04UH,OGDH sERCONIC
H N a b fu d e f g sASCII
DB Q09H, 081H, 082H, 083H, 084H, 085H, 08sH, 087H sEBCOIC
; h i J k 1 m n o sASCII
DR Q83H, 08%H, 021H, 022H, 0¥3H, 0?4H, 095H, 094H sERCDIC
H P q v 3 t u v W sASCII
DR 097H, 098H, 0%?H, 0AZH, OA”H OA4H, OASH, OASH sERCDIC
; b % = i H ¥ ~ DEL sASCIT

DB OA7H, 0ABH, OAPH, OCOH, 0&4AH, OLIOH, 0ALH, 007H sERCDIC

A NE NE B N NS ME wE

4H ASCII TO EBCDIC CONVERSION (ASC2ER) 194

SAMPLE EXECUTION:

s B B N8 wE
e NE wE wE ws

SC4H:
; CONVERT ASCII “A° TO ERCRIC
LD A, A7 JASCITI A7
CALL ASC2ER JEBCDIC ‘A7 = OCIH
s CONVERT ASCII “1- TQ ERCIIC
LD A, 717 ;ASCII 71~
CALL ASC2ER sEBCDIC "1 = OF1H
;s CONVERT ASCII “a” TO ERCLDIC
LD A, "a’ yASCII “a~”
CALL ASC2ER sERBCDIC “a” = 021H
JR SC4H

END

EBCDIC to ASCII Conversion (FB2?ASC) l

Converts an EBCDIC character to its AS CII

equivalent. Registers Used: AF, DE, HL
Procedure: The program uses a simple table Execution Time: 48 cycles
lookup with the data as the index and address Program Size: 9 bytes, plus 256 bytes for the con-

version table

ASCII as the base. A printable EBCDIC charac- Data Memory Required: None

ter with no ASCII equivalent is translated to an

ASCII space (204¢); a non-printable EBCDIC
character with no ASCII equivalent is trans-
lated to an ASCII NUL (004).

Entry Conditions Exit Conditions
EBCDIC character in A ASCII equivalent in A
Examples
I. Data: (A)= 85, (EBCDICe¢) 2. Data: (A)=4E; (EBCDIC +)
Result: (A) =655 (ASClIl e) Result: (A) = 2B4 (ASCII +)
; Title ERCDIC to ASCII conversion ;
H Name: EBZAST '
Purpose: Convert an ERCOIC character to its

corresponding ASCII character
Entry: Register A = ERCDIC character

ASCII character

1]

Exit: Register A

Registers used: AF,DE,HL

NE NE NB NE MB N8 NS NE NE o
WE ME R NE uE M NE NS we we

192

41 EBCDIC TO ASCI CONVERSION (ER2ASC) 493

Time: 43 cycles

Size: Program 9 bytes

NB NE wE wE we s

Lo
Lo
LD

ADD

LD

RET

Data 254 bytes for the table

HL, ASCII s GET RBASE ADDRESS OF ASCII TARLE
E,A s USE ERBCDIC AS INDEX

n,o

HL, DE

A, (HL) ;GET ASCII CHARACTER

ERCDIC TQ ASCII TABLE

; A FRINTABLE ERCDIC CHARACTER WITH NO ASCII ERQUIVALENT IS
;7 TRANSLATED TQ AN ASCII SFACE (020H),

7 WITH NO EQUIVALENT IS TRANSLATED TO AN ASCII NUL (QOOH)
A

SCII:

DR

[E

NUL SOH STX ETX HT DEL

QO0H, 001H, 002H, QO3H, 000H, 00PH, OOOH, 07FH
vT FF CR |0 S1

QO0H, O00H, 000H, 00BH, 0OCH, OODH, O0EH, OOFH

DLE DC1 DC2 DeR BS
010H, 011H, 012H, 013H, 000H, O00H, 008H, 0O0H
CAN EM IFs IGS IRS IuUs

Q18H, 019H, 0Q0H, 000H, 01CH, 01DH, O1EH, O1FH
LF ETE ESC

QOQH, QOOH, 000H, 000H, 000H, 00AH, 017H, O1RH
ENR@ ACK BEL

Q0O0H, 0O0H, 000H, QOOH, OO0H, 00SH, 004H, 007H

SYN EQT
000H, 000H, 01&H, 000H, 000H, QOOH, 0O0H, 004H
DC4 NAK SUR

QQO0H, QOOH, 000H, 000H, 014H, 015H, OO0H, 01AH

SFACE

77, 000H, 000H, 000H, 0OOH, OOOH, 0O0H, 00OH

. < (+

QOOH, QOQH, © = , 7.7 "< 90 %7 7

&

“&7, Q00H, 000H, OO0H, 0OOH, OO0H, O00H, 00OH
\ -

% #) H
O0QH, QO0OH, "1, 7% , <@’ /)< 1y ¢
- /
T a7/, 000H, Q00H, 000H, 000H, 000H, GO0H
. A - * ?

]
1 - -
QOOH, QOQH, <1~ , 7,7 %" =7 e e

QOOH, OO0H, OOOH, O0O0H, QOOH, O0O0OH, QOOH, OOOH
~ : # @ « = n
QOOH, * * , 73" ,“# , <@ ,<cce sz
a b c d e f g
000H, “a” ,“b" ,"¢” ,7d" ,“e" , f
h i

B T

A NONFRINTABLE EBCDIC CHARACTER

sEBCRIC
sASCIIT
sERBCDIC
sASCIT
sERBCDIC
sASCII
sERCOIC
sASCIT
sERCDIC
JASCIT
sERCOIC
sASCIT
sERCIOIC
sASCIT
sERCLIIC
sASCII
;ERCDIC
sASCIT
sERCOIC
sASCIT
sERCODIC
sASCIT
sERCDIC
sASCIT
sERCINIC
sASCIT
sEBCLIC
PASCII
sERCOIC
sASCIIT
sERCDIC
sASCIT
sERCDIC
sASCII
sERCDIC

“ eE wE wE wE

494 CODE CONVERSION

~8 w3 ME ws us

SCAI1:

DE

"
4

DE

.
r

DR
DB

.
’

DB

SAMFLE EXECUTION:

T T T e e

.

.

“
“

kY

ks

MO

, QO0H, 000H, 0Q0H, 00O0OH, OO0H, 0OOH
k 1] n o =}
r"k" y"l" y"M" y"n! yn’c" ,"P"
, QOOH, 00O0H, 0Q0H, O00OH, OOOH, OOOH
s t u v w %
B YT VN

» O00H, O0O0H, 000H, 000H, 000H, OO0OH

000H, 000H, 000H, 0O0H, 0O0H, OO0H, 000H, 000H

Q0Q0QH, QOQOH, 00OH, QOOH, 0O0H, OOOH, 0Q00H, OOOH
{

{
H
H
3
3
o
z'@
\
A\
Y
Y
0
0
b4
Q@

-
-
”
”

o
K
-

-

-

r

r

14

A

A

I

<1

o

N L

R

r "R"

R C D E F G
LCBY ,°Ce ,°D° ,°E* ,’F¢ ,*G*

» O00H, 000H, 00O0H, OO0H, O00OH, OOOH
K L M N a P
y .’K - ’ Ed L o~ , 4 M - R s N/ Y - 0 - R .IP -

» O00H, 000H, O00H, 0O0H, O00H, 0OOH
S T u v W X

LO000H, 287 , T ,“U" ,*V" , W, ‘X~

r

» 0QQH, 000H, 000H, O00H, O00H, OOOH
2 3 4 S é 7
2

RS T TS S-S £

I
y

, OOOH, 000H, O0OH, OO0H, 0O0H, 000H, 0OOH

;s CONVERT ERCDIC “A“ TO ASCII

LD A, 0CIH
CALL ER2ASC
s CONVERT ERCDIC
LD A, OF1H
CALL EB2ASC
; CONVERT ERCDIC
LD A, 081H
CALL ER2ASC
JR SC41

END

sERCDIC A7
sASCII “A° = 041H

717 TO ASCII

sEBCDIC 717
sASCIT ‘17 = OZ1H

“a® TOQ ASCII

sEBCDIC “a”
$ASCII “a” = 0&1H

sASCIT
sEBCODIC
sASCIT
sERCDIC
sASCII
sERCDIC
JASCII
sERCDIC
JASCII
sERCDIC
sASCII
sERCDIC
;ASCII
s ERCOHIC
sASCIT
s ERCDIC
s ASCIT
sERCOIC
sASCTII
;ERCDIC
sASCII
sERCDIC
s ASCII
sERCODIC
sASCIT
sERCDIC
P ASCIT
sERCDIC
sASCIT

“s wE wE Nm s

Memory Fill (MFILL)

OA

Placesa specified value in each byte of a mem-
ory area of known size, starting at a given ad-
dress.

Procedure: The program stores the specified
value in the first byte and then uses a block move
to fill the remaining bytes. The block move
simply transfers the value a byte ahead during
each iteration.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 cycles per byte
plus 50 cycles overhead

Program Size: 11 bytes
Data Memory Required: None
Special Cases:

1. Asize of 00004 is interpreted as 10000, It there-
fore causes the program to fill 65,536 bytes with
the specified value.

2. Filling areas occupied or used by the program
itself will cause unpredictable results. Obviously,
filling the stack area requires special caution,
since the return address is saved there.

Entry Conditions

Starting address of memory area in HL
Area size (number of bytes) in BC

Value to be placed in memory in A

Exit Conditions

The area from the base address through the
number of bytes given by the area size is filled
with the specified value. The area thus filled
starts at BASE and continues through BASE +
SIZE— 1 (BASE is the base address and SIZE is
the area size).

Examples

1. Data: Value= FF¢
Area size (in bytes) = 03804

Base address = 1AEQ

FF ¢ placed in addresses 1 AEQ 4 through
1ESF ¢

Result:

2. Data: Value = 004 (Z80 operation code for NOP)
Area size (in bytes) = 1C65¢
Base address = E34Cg¢
Result: 00 placed in addresses E34Cq through

FFBO

195

496 ~rRAY MANIPULATION

8 NE NE NE NE NS N ws

VB NE NS NE NS NS NE NE NE ND NS ME WE NS MO NE NE NE WS WS ws w8

MFILL:

. ws N8 ws we

SC5A:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

LD
LD
LD
INC
DEC
LD
OR
RET
LDIR

RET

Memory f
MFILL

ill

Fill an area of memory with a value

Register
Register
Register
Register
Register

Note: A

Area fil

H = High byte of base address

L = Low byte of base address

B = High byte of area size

C = Low byte of area size

A = Value to be placed in memory
size of 0 is interpreted as &553&

led with value

AF,BRC,DE, HL

Approximately 21 cycles per byte plus

S0 cycle

Program
Data

(HL) , A
D,H
E,L

DE

RC

A,B

c

z

SAMPLE EXECUTION:

s overhead

11 bytes

None

;FILL FIRST BYTE WITH VALUE
s DESTINATION PTR = SQURCE PTR + 1

sELIMINATE FIRST BYTE FROM COUNT
;ARE THERE MORE BYTES TO FILL?

;NO, RETURN - SIZE WAS 1
: YES, USE BLQCK MOVE TO FILL REST
; BY MOVING VALUE AHEAD 1 BYTE

;FILL BF1 THROUGH BF1+15 WITH 00

LD
LD

HL, BF1
BC, SIZE1

; STARTING ADDRESS
; NUMBER OF BYTES

NE NS B wg NS we s wE

NE NS NS NS NE NS WS WG NE ME ME ¥S NE NS ME ND NE NE MR w8 w8 we

8 wm NS ws we

SIZE1L
SIZEZ2
BF1:
BF2:

LD A, 0
CALL MFILL

5A MEMORY FILL (AL 4 97

sVALUE TO FILL
sFILL MEMORY

sFILL BF2 THROUGH BF2+1999 WITH FF

LD HL, BF2
LD BC,SIZE2
LD A, OFFH
CALL MFILL

JR SC5A

EQU 16

EQU 2000

DS SIZEL

ns SIZEZ

END

s STARTING ADDRESS
s NUMBER OF BYTES
s VALUE TO FILL
sFILL MEMORY

$sSIZE OF BUFFER 1 (10 HEX)
$SIZE OF BUFFER 2 (07D0O HEX)

Block Move (BLKMOV)

oB

Moves a block of data from a source area to
a destination area.

Procedure: The program determines if the
base address of the destination area is within the
source area. If it is, then working up from the
base address would overwrite some source data.
To avoid overwriting, the program works down
from the highest address (this is sometimes called
amoveright). If the base address of the destina-
tion area is not within the source area, the
program simply moves the data starting from
the lowest address (this is sometimes called a
move left). An area size (number of bytes to
move) of 00004 causes an exit with no memory
changed. The program provides automatic ad-
dress wraparound mod 64K.

Registers Used: AF, BC, DE, HL.

Execution Time: 21 cycles per byte plus 97 cycles
overhead if data can be moved starting from the
lowest address (i.e., left) or 134 cycles overhead if
data must be moved starting from the highest
address (i.e., right) because of overlap.

Program Size: 27 bytes
Data Memory Required: None

Special Cases:
1. Asize (number of bytes to move) of 0 causes an
immediate exit with no memory changed.

2. Movingdatato or from areas occupied or used
by the program itself or by the stack will have
unpredictable results.

Eniry Conditions

Base address of source area in HL,
Base address of destination area in DE

Number of bytes to move in register BC

Exit Conditions

The block of memory is moved from the source
area to the destination area. If the number of
bytes to be moved is NBYTES, the base address
of the destination area is DEST, and the base
address of the source area is SOURCE, then the
data in addresses SOURCE through SOURCE
-+ NBYTES — 1 is moved to addresses DEST
through DEST + NBYTES — 1[.

Examples

1. Data: Number of bytes to move = 02004
Base address of destination area = 05D1

Base address of source area = 035E 4

Result: The contents of locations 035E¢ through
055Ds are moved to 05DI1;, through

07D0,4

198

2. Data: Number of bytes to move = [B7A ¢
Base address of destination area = C946,,
Base address of source area = C300,4
Result: The contents of locations C300,, through

DE79,; are moved to C946,, through
E4BF

58 BLOCK MOVE (BLkMOV) 499

Note that Example 2 is a more difficult prob- This would destroy the old contents of C946,
lem than Example 1 because the source and des- which are needed later in the move. The solution
tination areas overlap. If, for instance, the pro- to this problem is to move the data starting from
gram were simply to move data to the destination the highest address if the destination area is
area starting from the lowest address, it would above the source area but overlaps it.
initially move the contents of C3001¢ to C946.

B N us wR ws wEF wm wn
e wR NS ME uw ¥E wn we

Title Block Move
Name: BLKMOV
H Purpose: Move data from source to destination
H
H Entry: Register+H = High byte of source address
H Register L = Low byte of source address
H Register D = High byte of destination address
Register E = Low byte of destination address
Register B = High byte of number of bytes to move
Register C = Low byte of number of bytes to moave
Exit: Data moved from scurce to destination

Registers used:AF,BC,DE, HL

Time: 21 cycles per byte plus 97 cycles overhead
if no overlap exists, 134 cycles overhead
if overlap occurs

ME NMB B NE ME ME ME WE NE MA WS MR WE WD WE N3 NG N8 N3 wE Ne

B NP WA WE NS WE WE WA B NS MR N NS ME A

Size: Program 27 bytes
BLKMOV:
LD A B ;1S SIZE OF AREA 07
OR [
RET z s YES, RETURN WITH NOTHING MOVED

sDETERMINE IF DESTINATION AREA IS AROVE SOURCE AREA AND QVERLAPS
IT (OVERLAP CAN BE MOD &64K). OVERLAP OCCURS IF

STARTING DESTINATION ADDRESS MINUS STARTING SOURCE ADDRESS

; (MOD &64K) IS LESS THAN NUMBER OF BYTES TO MOVE

EX DE, HL ; CALCULATE DESTINATIQN - SQURCE

PUSH HL ; SAVE DESTINATION

AND A ; CLEAR CARRY

» ws ws

200 ArRAY MANIPULATION

DOLEFT:

N6 NE w8 ws w8

SOURCE
DEST
LEN

SCS5R:

SBC
AND
SBC
PQOP
EX
JR

HL, DE

A s THEN SUBTRACT AREA SIZE

HL, BC

HL s RESTORE DESTINATION

DE, HL

NC, DOLEFT ;s JUMP IF NO PROBLEM WITH QVERLAP

s DESTINATION AREA IS ABQVE SQURCE AREA AND OVERLAPS IT
s MOGVE FROM HIGHEST ADDRESS TO AVOID DESTROYING DATA

ADD
DEC
EX
ADD
DEC
EX
LDDR
RET

HL, BC ; SOURCE = SOURCE + LENGTH - 1
HL
DE, HL ;DEST = DEST + LENGTH - 1
HL, BC
HL
DE, HL
s BLOCK MOVE HIGH TO LOW

s ORDINARY MOVE STARTING AT LOWEST ADDRESS

LDIR
RET

s BLOCK MOVE LOW TQ HIGH

SAMFLE EXECUTION:

EQU
EQu
EQU

2000H 7 BASE ADDRESS OF SOURCE AREA
2010H ; BASE ADDRESS OF DESTINATION AREA
1iH s NUMBER OF BYTES TO MOVE

yMOVE 11 HEX BYTES FROM 2000-2010 HEX TO 2010-2020 HEX

LD
LD
LD
CALL

JR
END

HL, SOURCE

DE, DEST

RC, LEN

BLKMQV 3 MOVE DATA FROM SQURCE TO DESTINATION

SC3B

~a w8 wE w8 wp

Two-Dimensional Byte Array

Indexing (D2BYTE)

oC

Calculates the address of an element of a
two-dimensional byte-length array, given the
base address of the array, the two subscripts of
the element, and the size of a row (that is, the
number of columns). The array is assumed to be
stored in row major order (that is, by rows) and
both subscripts are assumed to begin at 0.

Procedure: The program multiplies the row
size (number of columns in a row) times the row
subscript (since the elements are stored by rows)
and adds the product to the column subscript. It
then adds the sum to the base address. The
program performs the multiplication using a

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1100 cycles, de-
pending mainly on the amount of time required to
perform the multiplication.

Program Size: 44 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR) and the column subscript
(two bytes starting at address SS2).

standard shift-and-add algorithm (see Subrou-
tine 6A).

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of the size of a row (in bytes)
More significant byte of the size of a row (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Exit Conditions

Address of element in HL

Examples

1. Data: Base address = 3C00y,
Column subscript = 0004 ¢
Size of row (number of columns) = 0018,

Row subscript = 00034

Result:

Element address = 3C00,¢ + 0003, * 0018, +
0004, = 3C00,4 + 00484 + 0004,, =
3C4C4

That s, the address of ARRAY(3,4)is 3C4Cy4

201

202 ArRAY MANIPULATION

Note that all subscripts are hexadecimal Result: Elementaddress= 6A4A;,+0002,¢ * 0050, +
. 16
The general formula is That is, the address of ARRAY(2,35) is
ELEMENT ADDRESS = ARRAY BASE 6BIF 4
ADDRESS + ROW SUBSCRIPT * ROW SIZE
+ COLUMN SUBSCRIPT Note that we refer to the size of the row sub-
script; the size is the number of consecutive
memory addresses for which the subscript has
the same value. This is also the number of bytes
2. Data: Baseaddress = 6A4Aq from the starting address of an element to the
Column subscript = 00354 . dd f the el ith th
Size of row (number of columns) = 0050, mmmga.rgsoteeemmnwn the same
Row subscript = 0002, column subscript but a row subscript one larger.
. ;
H Title Two—dimensional byte array indexing B
H Name: D2BYTE H
B Purpose: Given the base address of a byte array, two

subscripts “I17,7J”, and the size of the first
subscyipt in bytes, calculate the address of
ALI, 1. The array is assumed to be stored in
row major order (ALO,03, ALO,11,..., ALK,LD1),
and both dimensions are assumed to begin at
zevo as in the following Pascal declaration:
A:ARRAY[O0..2,0..7] OF BYTE;

B wE wm B ws

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element),
High byte of second subscript (column element),
Low byte of first subscript size, in bytes,
High byte of first subscript size, in bytes,
Low byte of first subscript (row element),
High byte of first subscript (row element),
Low byte of array base address,
High byte of array base address,
NOTE:
The first subscript size is length of a row
in bytes

NE NE NB MR NE NS MR NR N NE WF NE Nl NS WS B WA R

NE NS NE NE WB ME NF NE NS WS ME B SO B NF SR ME w8 wE WG We M W
.

~e

5C TWO-DIMENSIONAL BYTE ARRAY INDEXING (D28vTE) 203

Exit: Register H = High byte of element address
Register L = Low byte of element address

Registers used: AF,BC,DE, HL

NE NE ME NE 9B NE ND N8 WE NS wR
NE M N NB wE NS NE wE ND e ws

Time: Approximately 1100 cycles
Size: Program 44 bytes
Data 4 bytes
D2BYTE:
s SAVE RETURN ADDRESS
POP HL
LD (RETADR), HL
s GET SECOND SUBSCRIPT
POP HL
LD (882),HL
;GET SIZE OF FIRST SUBSCRIFT (ROW LENGTH), FIRST SUBSCRIPT
POP DE s GET LENGTH OF ROW
POP BC s GET FIRST SUBSCRIPT

sMULTIPLY FIRST SUBSCRIPT # ROW LENGTH USING SHIFT AND ADD
;3 ALGORITHM. PRODUCT IS IN HL

LD HL, 0 ;PRODUCT = O
LD A, 15 ;COUNT = BIT LENGTH - 1
MLP:
SLA E ;SHIFT LOW BYTE OF MULTIPLIER
RL D s ROTATE HIGH BYTE OF MULTIPLIER
JR NC, MLP1 s JUMP IF MSB OF MULTIPLIER = O
ADD HL, BC ;ADD MULTIPLICAND TO PARTIAL PRODUCT
MLP1: ADD HL, HL ;SHIFT PARTIAL PRODUCT
DEC A
JR NZ,MLP s CONTINUE THROUGH 1S BITS
;D0 LAST ADD IF MSB OF MULTIPLIER IS 1
OR D ;SIGN FLAG = MSB OF MULTIPLIER
JP P, MLPZ
ADD HL, BC ;ADD IN MULTIPLICAND IF SIGN = 1
;ADD IN SECOND SUBSCRIPT
MLP2: LD DE, (552)
ADD HL., DE
3 ADD BASE ADDRESS TO FORM FINAL ADDRESS
POP DE ;GET BASE ADDRESS OF ARRAY
ADD HL, DE ;ADD BASE TO INDEX
sRETURN TO CALLER
LD DE, (RETADR) s RESTORE RETURN ADDRESS TO STACK
PUSH DE
RET

; DATA

204 ~rRAY MANIPULATION

RETADR: DS
882: Ds

. w8 ws o ws

SCSC:
LD
PUSH
LD
PUSH
LD
PUSH
LD
PUSH
CALL

JR

; DATA
SUBRS1: DW
SSUBS1: DW
SuBsz2: DW

; THE ARRAY (2 ROWS OF 8 COLUMNS)
1 12 73 '4 15

ARY: DB
DR
DB

END

SAMPLE EXECUTION:

HL., ARY

HL

HL, (SUBS1)

HL

HL, (SSURS1)
HL

HL., (SUBS2)

HL

D2BYTE

SC5C

0N

; TEMPORARY FOR RETURN ADDRESS
s TEMPORARY FOR SECOND SUBSCRIPT

; PUSH BASE ADDRESS OF ARRAY

7 PUSH FIRST SUBSCRIPT

sFUSH SIZE OF FIRST SUBSCRIPT
s PUSH SECOND SUBSCRIPT

; CALCULATE ADDRESS

sFOR THE INITIAL TEST DATA

sHL = ADDRESS OF ARY(2,4)

= ARY + (2=8) + 4

ARY + 20 (CONTENTS ARE 21)
NOTE BOTH SUBSCRIPTS START AT O

-
r
o
’
.
’

; SURSCRIPT 1
;SIZE OF SUBSCRIPT 1
: SUBSCRIPT 2

6,7 ,8

? ,10,11,12,13,14,15,14
17,18,19,20,21,22,23,24

w8 NE wE e~

Two-Dimensional Word Array

Indexing (D2WORD)

oD

Calculates the starting address of an element
of a two-dimensional word-length (16-bit) array,
given the base address of the array, the two
subscripts of the element, and the size of a row in
bytes. The array is assumed to be stored in row
major order (that is, by rows) and both sub-
scripts are assumed to begin at 0.

Procedure: The program multiplies the row
size (in bytes) times the row subscript (since the
elements are stored by row), adds the product to
the doubled column subscript (doubled because
each element occupies two bytes), and adds the
sum to the base address. The program uses a

Registers Used: AF, BC, DE, HL
Execution Time: Approximately 1100 cycles, de-

pending mainly on how long it takes to multiply row
size times row subscript

Program Size: 45 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR) and the column subscript
(two bytes starting at address SS2)

standard shift-and-add algorithm (see Subrou-
tine 6A) to multiply.

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of size of rows (in bytes)
More significant byte of size of rows (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Exit Conditions

Starting address of element in HL
The element occupies the address in HL and the
next higher address

Examples

1. Data: Base address = 5E144

Column subscript = 0008

Size of a row (in bytes) = 001C,4 (i.e., each
row has 0014, or 000E 4 word-length ele-
ments)

Row subscript = 00054

Result:

Element starting address = SE14,, -+ 0005,5*
001C;4 + 0008, * 2 = SE14,¢ + 008C ¢+
0010, = SEBO,¢

That is, the starting address of ARRAY(5,8)
is SEBO4 and the element occupies SEB0 ¢
and SEBI 4

205

206 ~rRRAY MANIPULATION

2. Data: Base address = BI004

Column subscript = 00024

Size of a row (in bytes) = 0008 ¢ (i.e., each
row has four word-length elements)

Row subscript = 0006,

Result: Element starting address = B100;¢ + 00064 *
00085 + 00025 * 2= B100,5 + 0030,, +

0004, = B134,,

That is, the starting address of ARRAY (6,2)
is B134¢ and the element occupies B134,,
and B1354

The general formula is

ELEMENT STARTING ADDRESS = ARRAY
BASE ADDRESS + ROW SUBSCRIPT *
SIZE OF ROW + COLUMN SUBSCRIPT * 2

Note that one parameter of this routine is the
size of a row in bytes. The size for word-length
elements is the number of columns per row
times 2 (the size of an element in bytes). The
reason we chose this parameter rather than the
number of columns or the maximum column
index is that this parameter can be calculated
once (when the array bounds are determined)
and used whenever the array is accessed. The
alternative parameters (number of columns or
maximum column index) would require extra
calculations during each indexing operation.

“ s

Title

Name: D2WORD

NE w8 N8 ws wE W

Given the base
subscripts

Purpose:

ALI,J].

zero as in the

Entry: TOP OF STACK

NE ME NE ME ME NE NE UB NS WA NE NS B wB NE

High byte of
High byte of
High byte of

High byte of
NOTE:

NB NB N NS WS ws N wE we

in words ® 2

Two-dimensional word array indexing

II/'
subscript in bytes,
The array is assumed to be stared in
row major order (AL0,01],
and both dimensions are assumed to begin at

A: ARRAY[O..2,
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element)
Low byte of first subscript size,
Low byte of firs; subscript (row element),

Low byte of array base address,

The first subscript size is length of a row

s

B ww uE wE w8 o

e

address of a word array, two

“J”, and the size of the first
calculate the address of
ALO,13,..., ALK,L1),

following Pascal declaration:
0..71 OF WORD;

second subscript (column element)
in bytes,

first subscript size, in bytes,
first subscript (row element),

array base address,

NE NE ME NS NS NE NS NS A WS N8 W NE NE NS NE WE WO ME M8 M8 N 48w

NP WE NB NE NI NE R wE W NS B s

D2WORD:

MLP:

MLP1:

MLP2:

5D TWO-DIMENSIONAL WORD ARRAY INDEXING (D2WORD)

Exit: Register H = High byte of element address
Register L = High byte of element address

Registers used: AF,BC,DE, HL

Time: Approximately 1100 cycles
Size: Program 45 bytes
Data 4 bytes

s SAVE RETURN ADDRESS
FOP HL
LD (RETADR) , HL

s GET SECOND SUBSCRIPT, MULTIPLY BY 2 FOR WORD-LENGTH ELEMENTS
FOP HL

ADD HL., HL 3R 2

LD (882),HL

;GET SIZE OF FIRST SUBSCRIPT (ROW LENGTH), FIRST SUBSCRIPT
FOP DE ;GET LENGTH OF ROW

PQP BC ;GET FIRST SUBRSCRIPT

sMULTIPLY FIRST SUBSCRIPT # ROW LENGTH USING SHIFT AND ADD
;+ ALGORITHM. PRODUCT IS IN HL

LD HL, 0O s PRODUCT = O

LD A, 15 ;COUNT = BIT LENGTH -~ 1

SLA E ;s SHIFT LOW BYTE OF MULTIPLIER
RL D ;s ROTATE HIGH BYTE OF MULTIPLIER
JR NC, MLP1 ;JUMP IF MSBR OF MULTIPLIER = 0
ADD HL, BC s ADD MULTIPLICAND TQ PARTIAL PRODUCT
ADD HL, HL s SHIFT PARTIAL PRODUCT

DEC A

JR NZ,MLP s CONTINUE THROUGH 15 BITS

;ADD MULTIPLICAND IN LAST TIME IF MSB OF MULTIFPLIER IS 1
OR D ;SIGN FLAG = MSB OF MULTIPLIER
JP P, MLP2

ADD HL, BC ;ADD IN MULTIPLICAND IF SIGN = 1
sADD IN SECOND SUBSCRIPT

LD DE, (882)

ADD HL, DE

; ADD BRASE ADDRESS TQ FORM FINAL ADDRESS

POF DE ; GET BASE ADDRESS QF ARRAY

ADD HL,DE ;ADD BASE TO INDEX

sRETURN TQ CALLER

LD DE, (RETADR) s RESTORE RETURN ADDRESS TO STACK
PUSH DE

RET

207

MR NE ME B %8 R MR N wE NE NB NS

208 ~rRAY MANIPULATION

; DATA

RETADR: DS
882: DS

“r ws wE ws w8

SC50:
LD
PUSH
LD
PUSH
LD
PUSH
LD
PUSH
CALL

JR

; DATA

SUBRS1: DW
SSUBS1: DW
SUBSZ2: DW

s THE ARRAY (23 ROWS OF

ARY: DW
W
W

END

SAMPLE EXECUTION:

HL., ARY

HL

HL, (SURS1)
HL

HL, (SSUBS1)
HL

HL, (SUBS2)
HL

D2WORD

SC5D

2
14
4

8 COLLUMNEZ)

; TEMPORARY FOR RETURN ADDRESS
s TEMPORARY FOR SECOND SURSCRIPT

;PUSH BASE ADDRESS OF ARRAY
;PUSH FIRST SUBSCRIPT

sPUSH SIZE OF FIRST SUBSCRIPT
s PUSH SECOND SURSRIPT

s CALCULATE ADDRESS

sFOR THE INITIAL TEST DATA

sHL ADDRESS OF ARY(2,4)

ARY + (2Z%18) + 4 = 2

ARY + 40 (CONTENTS ARE 2100H)
NOTE BOTH SUBSCRIPTS START AT O

»
y
®
7
-
r

; SUBSCRIPT 1
s SIZE OF SUBRSCRIPT 1
; SURSCRIPT 2

0100H, 0200H, 0200H, 0400H, 0S00H, 0&00H, 0700H, 0800H
0%Q0H, 1000H, 1100H, 1200H, 1300H, 1400H, 1500H, 1&600H
1700H, 1800H, 1900H, 2000H, 2100H, 2200H, 2300H, 2400H

~8 wE NE s ws

N-Dimensional Array
indexing (NDIM)

OF

Calculates the starting address of an element
of an N-dimensional array given the base address
and N pairs of sizes and subscripts. The size of a
dimension is the number of bytes from the start-
ing address of an element to the starting address
of the element with an index one larger in the
dimension but the same in all other dimensions.
The array is assumed to be stored in row major
order (that is, organized so that subscripts to the
right change before subscripts to the left).

Note that the size of the rightmost subscript is
simply the size of the elements (in bytes); the size
of the next subscript is the size of the elements
times the maximum value of the rightmost sub-
script plus 1, and so forth. All subscripts are
assumed to begin at 0. Otherwise, the user must
normalize the subscripts. (See the second exam-
ple at the end of the listing.)

Procedure: The program loops on each dimen-
sion, calculating the offset in that dimension as
the subscript times the size. If the size is an easy

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1300 cycles per
dimension plus 165 cycles overhead (depending
mainly on how much time is required to perform the
multiplications)

Program Size: 120 bytes

Data Memory Required: Five bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR), the accumulated offset
(two bytes starting at address OFFSET), and the
number of dimensions (one byte at address
NUMDIM)

Special Case: If the number of dimensions is 0, the
program returns with the base address in HL.

case (an integral power of 2), the program reduc-
es the multiplication to left shifts. Otherwise, it
performs each multiplication using the shift-
and-add algorithm of Subroutine 6A. Once the
program has calculated the overall offset, it adds
that offset to the base address to obtain the
starting address of the element.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of number of dimensions
More significant byte of number of dimensions
(not used)

Less significant byte of size of rightmost dimen-
sion

More significant byte of size of rightmost dimen-
sion

Less significant byte of rightmost subscript

More significant byte of rightmost subscript

Exit Conditions

Starting address of element in HL

The element occupies memory addresses START
through START + SIZE — I, where START
is the calculated address and SIZE is the size
of an element in bytes.

209

240 ArRAY MANIPULATION

Less significant byte of size of leftmost dimen-
sion

More significant byte of size of leftmost dimen-
sion

Less significant byte of leftmost subscript

More significant byte of leftmost subscript

Less significant byte of base address of array
More significant byte of base address of array

Example

1. Data: Base address = 3C00,4

Number of dimensions = 0003,

Rightmost subscript = 0005,

Rightmost size = 0003,4 (3-byte entries)

Middle subscript = 00034

Middle size = 00124 (six 3-byte entries)

Leftmost subscript = 0004,

Leftmost size = 007E ¢ (seven sets of six 3-
byte entries)

Element starting address = 3C00,4 + 0005 4 *
0003, + 00035 * 0012, + 0004,, *
007E;s = 3C00,, + 000F,4 + 0036,5 +
01F8,, = 3E3D¢

That is, the element is ARRAY (4,3,5); it
occupies addresses 3E3D, through 3E3F ¢
(the maximum values of the various sub-
scripts are 6 (leftmost) and 5 (middle) with
each element occupying three bytes)

Result:

The general formula is

STARTING ADDRESS = BASE ADDRESS +

N-1

D SUBSCRIPT, * SIZE,

i=0
where

N is the number of dimensions

SUBSCRIPT; is the ith subscript

SIZE; is the size of the ith dimension

Note that we use the size of each dimension as
a parameter to reduce the number of repetitive
multiplications and to generalize the procedure.
The sizes can be calculated and saved as soon as
the bounds of the array are known. Those sizes
can then be used whenever indexing is per-
formed on that array. Obviously, the sizes do not
change if the bounds are fixed, and they should
not be recalculated as part of each indexing
operation. The sizes are also general, since the
elements can themselves consist of any number
of bytes.

NB NB NE wE wn e

NB NS ND B NE N wB B ~e wo

“

NS NE ND ME ME WE B N NE NE NE ME ND W M8 WE NE N0 NS NG WO WG ME W8 WO WE WO NE NE N0 WO N6 W@ ws ws N

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 244

N—-dimensional array indexing
NDIM

Calculate the address of an element in an
N-dimensional array given the base address,
N pairs of size in bytes and subscript, and the
number of dimensions of the array. The array is
assumed to be stored in row major order
(AL[0,0,01,A0,0,13,...,A00,1,03,A[0,1,13,...).
Also, it is assumed that all dimensions begin
at 0 as in the fallowing Pascal declaration:

A: ARRAY[0..10,0..3,0..51 OF SOMETHING
For arvrays that do not begin at O boundaries,
normalization must be performed before calling
this routine. An example is given at the end.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of number dimensions,
High byte of number dimensions (not used),
Low byte of dim N-1 size
High byte of dim N-1 size
Low byte of dim N-1 subscript
High byte of dim N-1 subscript
Low byte of dim N-2 size
High byte of dim N-2 size
Low byte of dim N-2 subscript
High byte of dim N-2 subscript
Low byte of dim O size
High byte of dim O size
Low byte of dim O subscript
High byte of dim O subscript
Low byte of array base address
High byte of array base address
NOTE:
All sizes are in bytes

High byte of address
Low byte of address

Register H
Register L

AF,BC,DE, HL

Approximately 1300 cycles per dimension
plus 165 cycles overhead

NB N0 NE N8 NE NE wB @ Mz s MB N N wB ND @ s w®

M8 NE MDD WD MB MB 9B M@ w8 w3 w©

NE NE MO ME MO ME ME NME NE NP ND NE NE ME MB MO NE WE WB M8 WD wp «n 9@

212 ARRAY MANIPULATION

Size: Program 120 bytes
Data S bytes

u M8 w2 wn ws

NDIM:
;s POP PARAMETERS
POP HL
LD (RETADR) , HL
sQFFSET := O
LD HL, O
LD (OFFSET), HL
sGET NUMBER OF DIMENSIONS AND TEST FOR O
POP HL
LD AL
LD (NUMDIM), A s GET NUMBER OF DIMENSIONS
R A ; TEST FOR 0O
JR Z, ADBASE sRETURN WITH RASE ADDRESS IN HL
s IF THERE ARE NO DIMENSIONS
; LOOP ON EACH DIMENSION
; DOING OFFSET := OFFSET + (SUBSCRIPT ® SIZE)
LOOP:
POP DE ;GET SIZE
POP HL ; GET SUBSCRIPT
CALL NXTOFF ;OFFSET := OFFSET + (SUBSCRIPT ® SIZE)
LD HL, NUMDIM
DEC (HL) ;s DECREMENT NUMBER OF DIMENSIONS
JR NZ, LOOP s CONTINUE THROUGH ALL DIMENSIONS
ADBASE :

s CALCULATE STARTING ADDRESS OF ELEMENT
;OFFSET = BASE + OFFSET

LD HL, (OFFSET)

POP DE s GET BASE ADDRESS
ADD HL, DE s SUM WITH OFFSET
yRESTORE RETURN ADDRESS AND EXIT

LD DE, (RETADR)

PUSH DE

RET

?

3 SUBRROUTINE NXTOFF
s PURPOSE: OFFSET := OFFSET + (SUBSCRIPT = SIZE);
sENTRY: OFFSET = CURRENT OFFSET

DE = CURRENT SIZE OF THIS DIMEMSION

HL = CURRENT SUBSCRIPT

sEXIT: OFFSET = OFFSET + (SUBSCRIPT + SIZE);
sREGISTERS USED: AF, BC, DE, HL

.
7

.. o

8 N e NE e

NXTOFFz

EASYLP:

ISEASY:

SHIFT:

BIGSZ:

MLP:

MLP1:

213

5E N-DIMENSIONAL ARRAY INDEXING (NDIM)

PUSH HL : SAVE CURRENT SUBSCRIPT IN STACK
;CHECK IF SIZE IS POWER OF 2 LESS THAN 2358

LD A, D

OR A ;HIGH BYTE = 0 7

JR NZ,BIGSZ s JUMP IF SIZE IS LARGE

LD AE ;A = LOW BYTE OF SIZE

LD HL, EASYAY ;HL = BASE ADDRESS OF EASYAY

LD B, SZEASY ;B = SIZE OF EASY ARRAY

LD c,0 ;C = SHIFT COUNTER

CP (HL)

JR Z, ISEASY s JUMP IF SIZE IS A POWER OF 2
INC HL : INCREMENT TO NEXT BYTE OF EASYAY
INC C s INCREMENT SHIFT COUNTER

DJNZ EASYLP s DECREMENT COUNT

JR BIGSZ ;JUMP IF SIZE IS NOT EASY

POP HL ;GET SUBSCRIPT

LD A,C s GET NUMBER OF SHIFTS

OR A s TEST FOR O

JR Z, ADDOFF sJUMP IF SHIFT FACTOR = 0O

;ELEMENT SIZE % SUBSCRIPT REDUCES TO LEFT SHIFTS

LD B,A +B = SHIFT COUNT

ADD HL, HL sMULTIPLY SUBSCRIPT BY 2

DJNZ SHIFT s CONTINUE UNTIL DONE

JR ADDOFF s DONE S0 ADD QFFSET + SUBSCRIPT

3SIZE IS NOT POWER OF 2,

MULTIPLY

;3 ELEMENT SIZE TIMES SUBSCRIPT THE HARD WAY

POP

BC

$GET SUBSCRIPT

sMULTIPLY FIRST SUBSCRIPT ® ROW LENGTH USING SHIFT AND ADD
:+ ALGORITHM. RESULT IS IN HL

; BC = SUBSCRIPT (MULTIPLICAND)

s DE = SIZE (MULTIPLIER)

LD HL, 0 ;s PRODUCT = O

LD A 15 ; COUNT = BIT LENGTH - 1

SLA E sSHIFT LOW BYTE OF MULTIPLIER

RL D ; ROTATE HIGH BYTE OF MULTIPLIER

JR NC, MLP1 ; JUMP IF MSB OF MULTIPLIER = O

ADD HL, BC s ADD MULTIPLICAND TOQ PARTIAL PRODUCT
ADD HL, HL ; SHIFT PARTIAL PRODUCT

DEC A

JR NZ,MLP ; CONTINUE THROUGH 15 BITS

sADD IN MULTIPLICAND LAST TIME IF MSB OF MULTIPLIER IS 1
aR D s SIGN FLAG = MSB OF MULTIPLIER
JP P, ADDOFF

214 rrRAY MANIPULATION

ADDOFF &

EASYAY:

SZEASY

RETADR:
OFFSET:
NUMDIM:

s ws B ws ws

SCSE:

ADD HL, BC +ADD IN MULTIPLICAND IF SIGN = 1
;ADD SUBSCRIPT = SIZE TO QFFSET

EX DE, HL
LD HL, (OFFSET) sGET OFFSET
ADD HL, DE ADD PRODUCT OF SUBSCRIPT % SIZE
LD (OFFSET) , HL : SAVE OFFSET
RET
s SHIFT FACTOR
DB 1 ;0
DB 2 7l
DB 4 12
DB 8 13
DB 186 14
DR 32 73
DB &4 HE)
DB 128 37
EQU $~EASYAY
; DATA
ns 2 7 TEMPORARY FOR RETURN ADDRESS
s 2 s TEMPORARY FOR PARTIAL OFFSET
DS 1 s NUMBER OF DIMENSIONS

SAMPLE EXECUTION:

+FIND ADDRESS OF AY1[1,3,01]
7 SINCE LOWER BOUNDS OF ARRAY 1 ARE ALL ZERO IT IS NOT
7 NECESSARY TO NORMALIZE THEM

3 PUSH BASE ADDRESS OF ARRAY 1

LD HL,AY1

PUSH HL

s PUSH SUBSCRIPT/SIZE FOR DIMENSION 1
LD HL, 1

PUSH HL y SUBSCRIPT
LD HL,Al1SZ1

PUSH HL s SIZE

s PUSH SUBSCRIPT/SIZE FOR DIMENSION 2
LD HL,3

PUSH HL ; SUBSCRIPT
LD HL,A15Z2

PUSH HL :SIZE

3 PUSH SUBSCRIPT/SIZE FOR DIMENSION 3
LD HL, O

N8 Nm B wm wn

5E N-DIMENSIONAL ARRAY INDEXING (NDIM)

PUSH HL s SUBSCRIPT

LD HL,A1SZ3

PUSH HL s SIZE

3 PUSH NUMBRER OF DIMENSIONS

LD HL, A1DIM

PUSH HL

CALL NDIM : CALCULATE ADDRESS

STARTING ADDRESS OF ARY1(1,3,0)
ARY + (1%128) + (3x21) + (Ox3)
ARY + 189

3 AY

-

s CALCULATE ADDRESS OF AY2[-1,6]
: SINCE LOWER BOUNDS OF AY2 DO NOT START AT 0, SUBSCRIPTS
; MUST BE NORMALIZED

;s PUSH BASE ADDRESS OF ARRAY 2

LD HL, AY2
PUSH HL
:PUSH (SURSCRIPT -~ LOWER BOUND)/SIZE FOR DIMENSION 1
LD HL, -1
LD DE, -A2D1L s NEGATIVE OF LOWER BOUND
ADD HL, DE ;ADD NEGATIVE TO NORMALIZE TOQ ©
PUSH HL s SUBRSCRIPT
LD HL, A2SZ1
PUSH HL 3 SIZE
s PUSH (SUBSCRIPT - LOWER BOUND)/SIZE FOR DIMENSION 2
LD HL, é
LD DE, —A2D2L s NEGATIVE OF LOWER BOUND
ADD HL, DE ; ADD NEGATIVE TO NORMALIZE TO ©
PUSH HL 3 SUBSCRIFT
LD HL, A2SZ2
PUSH HL ;SIZE
s PUSH NUMBER OF DIMENSIONS
LD HL, AZDIM
PUSH HL
CALL NDIM ; CALCULATE ADDRESS
; AY=STARTING ADDRESS OF ARY1(-1,8&)
: =ARY+({((~1)—(-5))=18)+{(&-2)=2)
3 =ARY + 80
JR SCSE
s DATA
:AY1 : ARRAYLAIDIL..A1D1H,A1D2L..A1D2H,A1D3L..A1D3H] 3-BYTE ELEMENTS
H r o .. 3, 0 .. 5 , 0 .. & 1
A1DIM EQU 3 s NUMBER OF DIMENSIONS
ALIDLIL EQU o] ;LOW ROUND OF DIMENSION 1
A1D1H EQU 3 ;HIGH BOUND OF DIMENSION 1
AlD2L EQU 0 ;LOW BOUND OF DIMENSION 2
A1D2H EQqU = :HIGH BOUND OF DIMENSION 2

215

246 rRAY MANIPULATION

A1D3L
A1D3H
A1823
Al1522
A1SZ1
AY1:

sAY2

A2DIM
A2DIL
A2D1H
AZD2L
AZD2H
A28Z2
A2SZ1
AY2:

EQU
EQU
EQU
EQU
EQU
DS

EQU
EQU
EQU
EQU

L

W oo

((A1D3H-A1D3L)+1)=A1SZ3
((AID2H-A1D2L) +1)%A18Z2
((A1DIH-A1D1L)+1)%A18Z1

ARRAYLAL1D1L..A1D1H, A1D2L. .A1D2H]
-5 .. -1 , 2 .. 101

2

-3

-1

2

10

EQL
EQU
EQU
Ds

END

2

((AZD2H-AZD2L)+1) %A2SZ2
C(AZD1IH-A2D1L) +1) #A2SZ1

;LOW BOUND OF DIMENSION 2
sHIGH BOUND OF DIMENSION 3
ySIZE OF ELEMENT IN DIMENSION'
+SIZE OF ELEMENT IN DIMENSION
+SIZE OF ELEMENT IN DIMENSION
1 ARRAY

OF WORD

s NUMBER OF DIMENSICONS

;LOW BOUND OF DIMENSION 1
sHIGH BOUND OF DIMENSION 1
+LOW BOUND OF DIMENSION 2
yHIGH BOUND OF DIMENSION 2
;8IZE OF ELEMENT IN DIMENSICN
$SIZE OF ELEMENT IN DIMENSION
; ARRAY

[l (V7Y

16-Bit Multiplication (\MUL10)

OA

Multiplies two 16-bit operands and returns
the less significant (16-bit) word of the product.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multipli-
cand to the partial product each time it findsa 1
bit in the multiplier. The partial product and the
multiplier are shifted left 15 times (the number
of bits in the multiplier minus 1) to produce
proper alignment. The more significant 16 bits
of the product are lost.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 865 to 965 cycles,
depending largely on the number of 1 bits in the
multiplier

Program Size: 22 bytes
Data Memory Required: None

Entry Conditions

Multiplicand in HL
Multiplier in DE

Exit Conditions

Less significant word of product in HL

Examples

1. Data: Multiplier = 00124

Multiplicand = 03Dl ¢
Product = 44B2,4

The more significant word is 0.

Result:

Note that MUL16 returns only the less signif-
icant word of the product to maintain compati-

2. Data: Multiplier = 37D1,4
Multiplicand = A0454
Result: Product = AB55¢

Thisis actually the less significant 16-bit word
of the 32-bit product 22F1ABS55 4.

bility with other 16-bit arithmetic operations.
The more significant word of the product is lost.

Title

Name: MUL 1S

N w8 mE w8 w8 w8 s

Purpose:

16-bit Multiplication

Multiply 2 signed or unsigned 16-bit words and
return a 16-bit signed or unsigned product

B mp s s me w wE ws

PR I

247

2148 rrHvETIC

VE NE N MBS ME NS B M NP N6 8 w6 wE NS NE wE NS w0 =

MUL14:

HMLP:

MLP1:z

M8 g wa ws wa

Answers needing more than 14 bits: bits higher
than bit 15 are lost

Entry: Register L = Low byte of multiplicand
Register H = High byte of multiplicand
Register E = Low byte of multiplier
Register D = High byte of multiplier

Exit: Praoduct = multiplicand # multiplier

Register L = Low byte of product
Register H = High byte of product

Registers used: AF,RC,DE,HL
Time: Approximately 885 to 945 cycles

Size: Program 22 bytes

+ INITIALIZE PARTIAL PRODUCT, EIT COUNT

LD G, L sBC = MULTIPLIER

LD B, H

LD HL, 0 PRODUCT = O

LD A, 15 ;COUNT = RIT LENGTH - 1

; SHIFT~-AND-ADD ALGORITHM

3 IF MSB OF MULTIPLIER IS 1, ADD MULTIPLICAND TQ PARTIAL
H PRODUCT

¢ SHIFT PARTIAL PRODUCT, MULTIPLIER LEFT ! BIT

SLaA E FSHIFT MULTIPLIER LEFT 1 BIT

RL D

JR NC, MLP1 s JUMP IF MSB OF MULTIPLIER = O
ADRD HL, BC sADD MULTIPLICAND TO PARTIAL PRODUCT
ADD HL, HL ;SHIFT PARTIAL PRODUCT LEFT

DEC A

JR NZ, MLP ;CONTINUE UNTIL COUNT = O

;ADD MULTIPLICAND ONE LAST TIME IF MSR OF MULTIPLIER IS 1
OR D 7SIGN FLAG = MSB OF MULTIFLIER
RET P fEXIT IF MSB OF MULTIPLIER IS O
ADD HL, BC +ADD MULTIPLICAND TO PRODUCT

RET

SAMPLE EXECUTION:

NE ME NE NS mB NE WS N6 K %E WA WE NP NE NB s NE wE WS wp

“ ws we o~ =

6A 16-BIT MULTIPLICATION (MUL16) 249

SCéA:
LD HL, -2 sHL = MULTIPLICAND
LD DE, 1023 sDE = MULTIPLIER
CALL MUL.1& 1 16-BIT MULTIPLY

sRESULT OF 1023 ® -2 = -2045 = OF802H
s REGISTER L = 02H
} H = F&H

JR SCEA

END

16-Bit Division (SDI\/16, UDIV16)

6B

Divides two 16-bit operands and returns the
quotient and the remainder. There are two entry
points: SDIV16 divides two 16-bit signed oper-
ands, whereas UDIV16 divides two 16-bit un-
signed operands. If the divisor is 0, the Carry
flagis set to 1 and both quotient and remainder
are set to 0; otherwise, the Carry flag is cleared.

Procedure: If the operands are signed, the
program determines the sign of the quotient and
takes the absolute values of any negative oper-
ands. It must also retain the sign of the dividend,
since that determines the sign of the remainder.
The program then performs an unsigned division
using a shift-and-subtract algorithm. It shifts
the quotient and dividend left, placing a 1 bit in
the quotient each time a trial subtraction is
successful. If the operands are signed, the program
must negate (that is, subtract from 0) the
quotient or remainder if either is negative. The

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1770 to 2340 cycles,
depending largely on how many trial subtractions are
successful and thus require the replacement of the
previous dividend by the remainder

Program Size: 104 bytes

Data Memory Required: 3 bytes anywhere in
RAM for the sign of the quotient (address SQUOT),
the sign of the remainder (address SREM), and a
divide loop counter (address COUNT)

Special Case: If the divisor is 0, the program
returns with the Carry set to 1, and both the quotient
and the remainder set to 0.

Carry flag is cleared if the division is proper and
set if the divisor is 0. A 0 divisor also causes a
return with the quotient and remainder both set
to 0.

Entry Conditions

Dividend in HL
Divisor in DE

Exit Conditions

Quotient in HL

Remainder in DE

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1 and both quotient
and remainder are 0000.

Examples

1. Data: Dividend = 03E0,,

Divisor = 00B6,

Quotient (from UDIV16) = 0005,
Remainder (from UDIV16) = 00524
Carry = 0 (no divide-by-0 error)

Result:

220

2. Data: Dividend = D73A4
Divisor = 02F1 ¢
Result: Quotient (from SDIV16) = FFF3,,

Remainder (from SDIV16) = FD77¢
Carry = 0 (no divide-by-0 error)

6B 16-BIT DIVISION (SDV16, UDIV16) 224

The remainder of a signed division may be 1 from the quotient and add the divisor to the
either positive or negative. In this procedure,the remainder. The result of Example 2 is then
remamd.er alway§ takes the sign of the dividend. Quotient = FFF2,, = — 14,

A negative remainder can easily be converted Remainder (always positive) = 0068
into one that is always positive. Simply subtract

B NS NE N s NE wE
N NS NE N2 MR e s wa

Title 146~-bit Division
Name: 5DIV1&, UDIVIS
Purpose: SDIV1é

Divide 2 signed 16-bit words and return a
16-bit signed quotient and remainder

UDIvVié
Divide 2 unsigned 1é-bit words and return a
14-bit unsigned quotient and remainder

Entry: Register L = Low byte of dividend
Register H = High byte of dividend
Register E = Low byte of divisor
Register D = High byte of divisor

Exit: Register L = Low byte of gquotient
Register H = High byte of quotient
Register E = Low byte of remainder
Register D = High byte of remainder

If no ervors then
carry = 0

else
divide-by-zero error
carry := 1
quotient := 0
remainder := 0

Registers used: AF,BC,DE,HL
Time: Approximately 1770 to 2340 cycles

Size: Program 10& bytes
Data 3 bytes

NE NE NE NE ME NT wE NE S B NE W NS ME NE NE WE NE NE ME W SE B N VR ME NE WE W8 N8 A N8 w8 e~

B B NE MR ME NME WB NE NS NE WE NS NE N wE B wE B W0 NE WE B NE wE MO NE ME WG WR w8 B B ws B B

222 /RTHVETIC

SDIV1é:

CHKDE:

DonIv:

DOREM:

;SIGNED DIVISION

sDETERMINE SIGN OF QUOTIENT BY EXCLUSIVE ORING HIGH BYTES
QF DIVIDEND AND DIVISOR. QUOTIENT IS POSITIVE IF SIGNS
ARE THE SAME, NEGATIVE IF SIGNS ARE DIFFERENT

. v o~

s REMAINDER HAS SAME SIGN AS DIVIDEND

Lo A H ;GET HIGH BYTE OF DIVIDEND

LD (SREM) , A ; SAVE AS SIGN OF REMAINDER

XOR D sEXCLUSIVE OR WITH HIGH BRYTE OF DIVISOR
LD (SQUOT) , A ;SAVE SIGN OF QUOTIENT

s TAKE ABSOLUTE VALUE OF DIVISOR

LD A,D -
OR A

JP P, CHKDE ;JUMP IF DIVISOR IS POSITIVE

SUB A ; SUBTRACT DIVISOR FROM ZERQ

SUB E

LD E,A

SBC A, A s PROPAGATE BORROW (A=FF IF BORROW)
SUB D

LD D,A

: TAKE ARSOLUTE VALUE OF DIVIDEND

LD AH

OR A

JP P, DODIV ; JUMP IF DIVIDEND IS POSITIVE

SUB A : SUBTRACT DIVIDEND FROM ZERQ

SUB L

LD LA

SBC A, A : PROPAGATE BORROW (A=FF IF BORROW)
SUE H

LD H, A

;DIVIDE ABSOLUTE VALUES

CALL UDIV1&

RET C ;EXIT IF DIVIDE BY ZERQ

:NEGATE QUOTIENT IF IT IS NEGATIVE

LD A, (SQUOT)

OR A ‘

JP P, DOREM ;JUMP IF QUOTIENT IS POSITIVE

SUR A ; SUBTRACT QUOTIENT FROM ZERO

SUB L

LD L, A

SBC A, A ;s PROPAGATE BORROW (A=FF IF BORRCW)
SUR H

LD H, A

s NEGATE REMAINDER IF IT IS NEGATIVE
LD A, (SREM)
OR A

68 16-BIT DIVISION (SDIV16, IDIV16) 223

RET
SUE
SUB
LD

SRC
SUB
LD

RET

sRETURN IF REMAINDER IS POSITIVE
7 SUBTRACT REMAINDER FROM ZERO

; PROPAGATE BORROW (A=FF IF RORROW)

ooy >mm> v

-

> >

s UNSIGNED DIVISION

UnIvia:
; CHECK FOR DIVISION BY ZERQ
LD AE
OR 0]
JR NZ,DIVIDE s ERANCH IF DIVIZOR IZ NON-ZERCO
LD HL, 0 ;DIVIDE BY O ERROR
LD D, H
LD E.L
SCF :SET CARRY, INVALID RESULT
RET
DIVIDE:
LD G, L ;C = LOW BYTE OF DIVIDEND/QUOTIENT
LD AH ;A = HIGH BYTE OF DIVIDEND/QUOTIENT
LD HL, 0 sHL = REMAINDER
LD R, 16 ;16 RITS IN DIVIDEND
OR A ; CLEAR CARRY TO START
DVLOOR:
SHIFT NEXT BIT OF QUOTIENT INTO BIT O OF DIVIDEND
SHIFT NEXT MOST SIGNIFICANT BRIT OF DIVIDEND INTO

LEAST SIGNIFICANT BIT OF REMAINDER
BC HOLDS BOTH DIVIDEND AND QUOTIENT. WHILE WE SHIFT A
BIT FROM MSR OF DIVIDENDR, WE SHIFT NEXT BIT OF QUOTIENT
IN FROM CARRY
HL HOLDS REMAINDER

NE B wE NS NE s Ns ws

;D0 A 32-BIT LEFT SHIFT, SHIFTING
s CARRY TOC, CTOA, ATOL, L TOH

RL c ;CARRY (NEXT BIT OF QUOTIENT) TO RBIT 0,
RLA ; SHIFT REMAINING BYTES

RL L

RL H ; CLEARS CARRY SINCE HL WAS 0

: IF REMAINDER IS GREATER THAN OR EQUAL TO DIVISOR, NEXT
 BIT OF QUOTIENT IS 1. THIS BIT GOES TO CARRY

PUSH HL 3 SAVE CURRENT REMAINDER
SRC HL, DE ; SUBTRACT DIVISOR FROM REMAINDER
CCF ; COMPLEMENT BORROW SO0 1 INDICATES

7 A SUCCESSFUL SUBTRACTION

3 (THIS IS NEXT RIT OF QUOTIENT)
JR C, DROP 3 JUMP IF REMAINDER IS >= DIVIDEND
EX (SP), HL s OTHERWISE RESTORE REMAINDER

224 rTHvETIC

DROP =
INC SP ;y DROP REMAINDER FROM TOP OF STACK
INC SP
DJNZ DVLOOFP s CONTINUE UNTIL ALL BITS DONE
3 SHIFT LAST CARRY BIT INTO QUOTIENT
EX DE, HL s DE = REMAINDER
RL c sCARRY TOQ C
LD L,C ;L = LOW BYTE OF QUOTIENT
RLA
LD H, A :H = HIGH BYTE OF QUOTIENT
OR A ; CLEAR CARRY, VALID RESULT
RET
; DATA

SQUOT: DS 1 ;SIGN OF QUOTIENT

SREM: ns 1 ; SIGN OF REMAINDER

COUNT: DS 1 ;DIVIDE LOOP COUNTER

SAMPLE EXECUTION:

“F wE B W e

w0
(e
o
x

[£2]

IGNED DIVISION

HL = DIVIDEND

DE = DIVISOR

QUOTIENT OF -1023 / 123 = -8
L = F&H

H = FFH

REMAINDER OF -1023 / 123 = -39
E = D?H

D = FFH

LD HL, -1023
LD DE, 123
CALL SDIVis

NE MBS B NS WE wE R NS

UNSIGNED DIVISION

HL = DIVIDEND

DE = DIVISOR
QUOTIENT OF £4513 /7 123 = 524
L = OCH

H = 02H

REMAINDER OF &4513 / 123 = &1
E = 3DH

D = 00H

LD HL., 64513
LD DE, 123
CALL univia

B NE N NE we NE R NS wm

JR SCeB

END

~ e e ww e

16-Bit Comparison (CNVP16)

oC

Compares two 16-bit operands and sets the
flags accordingly. The Zero flag always indicates
whether the numbers are equal. If the operands
are unsigned, the Carry flag indicates which is
larger (Carry = 1 if subtrahend is larger and 0
otherwise). If the operands are signed, the Sign
flag indicates which is larger (Sign=1 if subtra-
hend is larger and 0 otherwise); two’s comple-
ment overflow is considered and the Sign flag is
inverted if it occurs.

Procedure: The program subtracts the subtra-
hend from the minuend. If two’s complement
overflow occurs (Parity/ Overflow flag= 1), the
program inverts the Sign flag by EXCLUSIVE
ORing the sign bit with 1. This requires an extra
right shift to retain the Carry in bit 7 initially,
since XOR always clears Carry. The program
then sets Carry to ensure a non-zero result and
shifts the data back to the left. The extra left

Registers Used: AF, HL

Execution Time: 30 cycles if no overflow, 57 cycles
if overflow

Program Size: 11 bytes
Data Memory Required: None

shift uses ADC A,A rather than RLA to set the
Sign and Zero flags (RLA would affect only
Carry). Bit 0 of the accumulator must be 1 after
the shift (because the Carry was set), thus
ensuring that the Zero flag is cleared. Obviously,
the result cannot be 0 if the subtraction causes
two’s complement overflow. Note that after an
addition or subtraction, PE (Parity/ Overflow
flag = 1) means “overflow set” while PO
(Parity/Overflow flag = 0) means “overflow
clear.”

Entry Conditions

Minuend in HL
Subtrahend in DE

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend, with a correction if two’s comple-
ment overflow occurred.

Zero flag= 1 if the subtrahend and minuend are
equal; 0 if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense; 0 if it is less than
or equal to the minuend.

Sign flag = 1 if subtrahend is larger than
minuend in the signed sense; 0 if it is less than or
equal to the minuend. This flag is corrected
(inverted) if two’s complement overflow occurs.

225

226 ~riHvETC

Examples
1. Data: Minuend (HL)= 03El ¢
Subtrahend (DE) = 07E4,,
Result: Carry = 1, indicating subtrahend is larger in
unsigned sense.
Zero= 0, indicating operands are not equal.
Sign = 1, indicating subtrahend is larger in
signed sense.
2. Data: Minuend (HL) = C51A
Subtrahend (DE) = C51A ¢
Result: Carry= 0, indicating subtrahend is not larger

N3 we ME ME wE wm wE we

WE NE NE NE NE ME WS NS NE NE NE wS ME w8 W8 NE MR wE R NS en N8 NE WD

in unsigned sense.
Zero = 1, indicating operands are equal.
Sign = 0, indicating subtrahend is not larger
in signed sense.

3. Data: Minuend (HL) = A45D
Subtrahend (DE) = 77E1 ¢
Result: Carry= 0, indicating subtrahend is not larger

in unsigned sense.
Zero = 0, indicating operands are not equal.
Sign = 1, indicating subtrahend is larger in
signed sense.

In Example 3, the minuend is a negative two’s
complement number, whereas the subtrahend is
a positive two’s complement number. Subtract-
ing produces a positive result (3C7C1g) with
two’s complement overflow.

Title 16~-bit Compare
Name : CMP14&
Purpose:
return the C,
Entry: Register L =
Register H =
Register E =
Register D =
Exit:
complement
flagss

Else use the
IF minuend =

Z=1,5=0,C=
IF minuend > subtrahend THEN
7=0,5=0,C=0
IF minuend < subtrahend THEN
1=0,5=1,C=

Registers used: AF,HL

Time: 30 cycles if

Compare 2 146-bit signed or unsigned words and

Flags returned based on minuend -~ subtrahend
If both the minuend and subtrahend are 2°s

NS NE wE e wn MR W s

Z,5 flags s=2t or cleared

Low byte of minuend
High byte of minuend
Low byte of subtrahend
High byte of subtrahend

numbers, then use the Z and &

Z and C flags
subtrahend THEN
O

1

NE NE NG NE N NE NE NE NS WA WA WS W8 NE WE NS WE W@ WA NS w8 NE wa we

no overflow, else 57 cycles

6C 16-BIT COMPARISON (CMP16) @27

; Size: Program 11 bytes ;
H H
CMP1&:

0OR A ; CLEAR CARRY

SBC HL, DE ;s SURTRACT SUBTRAHEND FROM MINUEND

RET PO sRETURN IF NO QVERFLOW

LD AH s QVERFLOW ~ INVERT SIGN FLAG

RRA s SAVE CARRY IN RIT 7

XOR 01000000R s COMPLEMENT BIT & (SIGN BIT)

SCF ;s ENSURE A NON-ZERO RESULT

ADC AA s RESTORE CARRY, COMPLEMENTED SIGN

s ZERQ FLAG = O FOR SURE

RET
: ;
: H
H SAMPLE EXECUTION: :
H H
SCéC:

; COMPARE -32748 (8000 HEX) AND 1
;SINCE —-32768 1S THE MOST NEGATIVE 16-BIT NUMBER,
; THIS COMPARISON WILL SURELY CAUSE QVERFLOW

LD HL, -32762

LD DE, 1

CALL CMP1& ;Cy =0, Z =0, 8 =1
;COMPARE -4 (FFFC HEX) AND -1 (FFFF HEX)

LD HL, -4

LD DE, -1

CALL CMP16 ;Cy =1, 2 =0, §=1
;s COMPARE -1234 AND -1234

LD HL,~1234

LD DE, 1234

CALL CMP16 s;CYy =0, Z =1, § =0
JR SCéC

END

Multiple-Precision Binary Addition
(MPBADD) | 6D

Adds two multi-byte unsigned' binary num- Regisfers Used: AF. B, DE, HL
b.ers.. Both numbers are stored with their least Execution Time: 46 cycles per byte plus I8 cycles
significant bytes at the lowest address. The sum overhead
replaces the addend. The length of the numbers Program Size: 11 bytes
(in bytes) is 255 or less. Data Memory Required: None
Procedure: The program clears the Carry flag Special Case: A length of 0 causes an immediate
initially and adds the operands one byte at a exit with the addend unchanged. The Carry flag is
time, starting with the least significant bytes. cleared.
The final Carry flag reflects the addition of the
most significant bytes. A length of 00 causes an
immediate exit with no addition.
Entry Conditions Exit Conditions
Base address of addend in HL Addend replaced by addend plus adder
Base address of adder in DE
Length of the operands in bytes in B
Example
1. Data: Length of operands (in bytes) = 6
Addend = 19D028AI193EA ¢
Adder = 293EABF059C7 ¢
Result: Addend = 430ED491EDBI ¢
Carry =0
; Title Multiple—-Precision Binary Addition H
; Name: MPBADD H
; Purpose: Add 2 arrays of binary bytes
H

e v Nw

Arrayl = Arrayl + Array?2

228

6D MULTIPLE-PRECISION BINARY ADDITION (MPBADD) 229

Entry: Register pair HL = Base address of arvray 1
Register pair DE = Base address of array 2
Register B = Length of the arrays
The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.
Exit: Arrayl := Arrayl + Array2
Registers used: AF,B,DE, HL
Time: 46 cycles per byte plus 18 cycles overhead

Size: Program 11 bytes

NE ME B NE ME NE ME NS NE NE M8 NE NN WE B NR WA s ee
N8 ME NE NS NE VA ME NG wE wF NE NS wE N0 W8 R 98 w8 we

MPBADD:
:CLEAR CARRY, EXIT IF ARRAY LENGTH IS 0O
LD AB
AND A : CLEAR CARRY, TEST ACCUMULATOR
RET y4 sRETURN IF LENGTH = ZERO
LOOP:
LD A, (DE) sGET NEXT BYTE
ADC A, (HL) sADD BYTES
LD (HL) , A 3 STORE SUM
INC HL : INCREMENT ARRAY1 POINTER
INC DE : INCREMENT ARRAY2 POINTER
DJNZ (Walalyy s CONTINUE UNTIL COUNTER = O
RET
H SAMPLE EXECUTION: H
2 r
SCéD:
LD HL.,AY1 :HL = BASE ADDRESS OF ARRAY 1
LD DE, AY2 :DE = BASE ADDRESS OF ARRAY 2
LD R, SZAYS ;B = LENGTH OF ARRAYS IN BYTES
CALL MPBADD ;s ADD THE ARRAYS
; AY1+0 = S6H
; AY1+1 = 13H
H AY1+2 = CFH
; AY1+3 = 8AH
H AY1+4 = &7H
i AY1+5 = 4G5H
H AY1+6 = 23H
H AY1+7 = O1H

230

SZAYS
AY1l:

AYZ2:

ARITHMETIC

JR
EQU

DB
DB
DB

DB
DB
DB
DB

DB
DE
DB
DB
DB
DE
DB
DE

END

OEFH
ocoH
OAEH
08%H
067H
045H
023H
Q01H

067H
045H
022H
001H

COQOo

fLENGTH OF ARRAYS IN BYTES

Multiple-Precision Binary Subtraction

(MPBSUB)

o=

Subtracts two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant bytes at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program clears the Carry flag
initially and subtracts the operands one byte ata
time, starting with the least significant bytes.
The final Carry flag reflects the subtraction of
the most significant bytes. A length of 0 causes
an immediate exit with no subtraction.

Registers Used: AF, B, DE, HL

Execution Time: 46 cycles per byte plus 22 cycles
overhead

Program Size: 12 bytes
Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the
difference is equal to the minuend). The Carry flagis
cleared.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Minuend replaced by minuend minus subtrahend

Example

1. Data: Length of operands (in bytes) = 4
Minuend = 2F5SBA7C3
Subtrahend = 14DF35B8¢
Result: Minuend = IA7TC720B
The Carry flag is set to 0 since no borrow is

necessary.
H Title Multiple—-Precision Binary Subtraction H
H Name: MPBSUR H

231

232 ~RTHMETIC

Purpose: Subtract 2 arrays of binary bytes
Minuend = minuend — subtrahend

Entry: Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of the arrays
The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.
Exit: Minuend := minuend - subtrahend
Registers used: AF,B,DE, HL
Time: 46 cycles per byte plus 22 cycles overhead

Size: Program 12 bytes

NE ONB MR NE NS B N NE MH NE NB M ME NN NS ND MR w2 w8 wE wa e

MPBSUR:
3CLEAR CARRY, EXIT IF ARRAY LENGTH IS 0O
LD A B
AND A s CLEAR CARRY, TEST ACCUMULATOR
RET z sRETURN IF LENGTH = ZERO
EX DE, HL ;SWITCH ARRAY PQINTERS
; S0 HL POINTS TQ SURTRAHEND
LOOR:
LD A, (DE) ;GET NEXT BYTE OF MINUEND
SRC A, (HL) ; SUBTRACT EYTES
Lo (DE), A s STORE DIFFERENCE
INC DE 7 INCREMENT MINUEND POINTER
INC HL ; INCREMENT SURTRAHEND POINTER
DuUNZ LQOrP s CONTINUE UNTIL COUNTER = O
RET
; SAMFLE EXECUTION:
SC4E:
LD HL., AY1 ;HL = BASE ADDRESS OF MINUEND
LD DE,AYZ2 :DE = BASE ALDDRESS OF SUBTRAHEND
LD B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES
CALL MPRSUR ; SURTRACT THE ARRAYS
’ AY1+0 = 88H
; AY1+1 g8aH

AY1+2 = g&H

|EONE NE Ge N NE ND NE ME NS MO M ME B NE WD B MR ws M@ wE s

-n wE wp ws wm

6E MULTIPLE-PRECISION BINARY SUBTRACTION (MPBSUB) 233

3 AY1+3 = 8&H
H AY1+4 = é7H
: AY1+5 = 45H
H AY1+&6 = 22H
H AY1+7 = O1H
JR SCAE
SZAYS EQU g s LENGTH OF ARRAYS IN BYTES
AYl:
DB OEFH
DB OCIDH
DB OAEBH
DB 08%H
DB 067H
DB 045H
DB 023H
DB 001H
AYZ:
DB 067H
DB 045H
DB 023H
DB Q01H
DB a]
DB 0
DB 0
DB 0

Multiple-Precision Binary Multiplication

(MPBMUL)

OF

Multiplies two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
less significant bytes of the product are returned
to retain compatibility with other multiple-
precision binary operations.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multiplier to
the partial product each time it finds a I bit in the
multiplicand. The partial product and the multi-
plicand are shifted through the bit length plus I;
the extra loop moves the final Carry into the
product. The program maintains a full double-
length unsigned partial product in memory
locations starting at HIPROD (more significant
bytes) and in the multiplicand (less significant
bytes). The less significant bytes of the product
replace the multiplicand as it is shifted and

Registers Used: AF, BC, DE, HL.

Execution Time: Depends on the length of the
operands and on the number of | bits in the
multiplicand (requiring actual additions). If the
average number of | bits in the multiplicand is four
per byte, the execution time is approximately 728 *
LENGTH? + 883 * LENGTH + 300 cycles where
LENGTH is the number of bytes in the operands.

Program Size: 104 bytes

Data Memory Required: 261 bytes anywhere in
RAM. This is temporary storage for the more
significant bytes of the product (255 bytes starting at
address HIPROD), the loop counter (2 bytes starting
ataddress COUNT), the address immediately follow-
ing the most significant byte of the high product (2
bytes starting at address ENDHP), and the base
address of the multiplier (2 bytes starting at address
MLIER).

Special Case: A length of 0 causes an immediate
exit with the product equal to the multiplicand. The
Carry flag is cleared.

examined for I bits. A 0 length causes an exit
with no multiplication.

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

Example

1. Data: Length of operands (in bytes) = 04

Multiplicand = 0005D1F7 ¢
Multiplier = 00000AB1

Multiplicand = 3E39DIC7 ¢

Note that MPBMUL returns only the less
significant bytes (that is, the number of bytes in
the multiplicand and multiplier) of the product

234

Result:

to maintain compatibility with other multiple-
precision arithmetic operations. The more signif-
icant bits of the product are available starting
with their least significant byte at address
HIPROD. The user may need to check those
bytes for a possible overflow or extend the
operands with additional zeros.

6F MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL) 238

-8 wE wE wE w8 wE wE w

w0 ‘ua WS ws w8 % wE ws

Title Multiple-Precision Binary Multiplication
Name: MPBMUL
Purpose: Multiply 2 arrays of binary bytes

Multiplicand = multiplicand ® multiplier

Entry: Register pair HL = Base address of multiplicand
Register pair DE = Base address of multiplier
Register B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-1]
the most significant byte.

NE NE NE NG NP NS B NS B wE wE NS ws

Exit: Multiplicand := multiplicand % multiplier
Registers used: AF,BC,DE,HL

Time: Assuming the average number of 1 bi{s in multi-

plicand is 4 ¥ length, then the time is approxi-
mately

(728 #* length*2) + (883 % length) + 300 cycles

Size: Program 104 bytes
Data 261 bytes

NE B ME WE ME NE NE NE B NE NE NE WE WE NG NE R NP wE N WE N6 NE NE N8 w8

NE ME NE NS NE NE WE WE NS wE N ws ws

MPBMUL :
;EXIT IF LENGTH IS ZERO
LD AB
AND A 3 IS LENGTH OF ARRAYS = 0 7
RET z ; YES, EXIT
;MAKE POINTERS POINT TQ END OF QOPERANDS
LD C,B ;BC = LENGTH
LD B, 0O
ADD HL, BC sEND = BASE + LENGTH
EX DE, HL ;DE PQINTS TQ END OF MULTIPLICAND
Ln (MLIER),HL s SAVE ADDRESS OF MULTIPLIER
LD HL, HIPROD
ADD HL., BC
LD (ENDHP), HL ; SAVE ADDRESS AT END OF HIPROD

$SET COUNT TO NUMBER OF BITS IN ARRAY PLUS 1
3 COUNT := (LENGTH % 8) + 1

236 rmiveETc

ZEROPD:

ZEROLP:

LOGRF:

SRPLF:

SRALLF:

ADDLP:

LD L,C MOVE LENGTH TO HL

LD H, B

ADD HL, HL sLENGTH ® 8, SHIFT LEFT 3 TIMES
ADD HL, HL

ADD HL, HL

INC HL ;ADD 1

LD (COUNT) , HL : SAVE NUMBER OF EITS TO DO

7 ZERO HIGH PRODUCT ARRAY

LD B,C 3B = LENGTH IN BYTES

LD HL, HIPROD ; GET ADDRESS OF HIPROD

LD (HL), 0 ;STORE O

INC HL

DUNZ ZERQLP s CONTINUE UNTIL HIPROD ARRAY IS ZEROQ
sMULTIPLY USING SHIFT AND ADD ALGORITHM

AND A ;CLEAR CARRY FIRST TIME THROUGH
$SHIFT CARRY INTQ HIPROD ARRAY AND LEAST SIGNIFICANT

7 BIT OF HIPROD ARRAY TQ CARRY

LD R, C fGET LENGTH IN EYTES

LD HL, (ENDHFP) GET LAST BYTE OF HIPROD + 1
DEC HL sBACK UP TO NEXT BYTE

RR (HL)

DUNZ SRPLP sCONTINUE UNTIL INDEX = O
$SHIFT CARRY (NEXT BIT OF LOWER PRODUCT) INTO MOST

¢ SIGNIFICANT BIT OF MULTIPLICAND.

7 THIS ALSO SHIFTS NEXT BIT OF MULTIPLICAND TO CARRY

LD L,E sHL = ADDRESS OF END OF MULTIPLICAND
LD H.D

LD R,C ;B = LENGTH IN BYTES

DEC HL s BACK UP TO NEXT BYTE

RR (HL)

DuUNZ SRALILP ; CONTINUE UNTIL DONE

3 IF NEXT BIT QF MULTIPLICAND IS 1 THEN
¢t ADD MULTIPLIER TO HIPROD ARRAY

JP NC, DECCNT s JUMP IF NEXT BIT IS ZERO
sADD MULTIPLIER TQ HIPROD

FUSH DE : SAVE ADDRESS OF MULTIPLICAND
LD DE, (MLIER) ;DE = ADDRESS OF MULTIPLIER
LD HL, HIPRQOD HL = ADDRESS OF HIPROD

LD B,C 3B = LENGTH IN RYTES

AND A ; CLEAR CARRY

LD A, (DE) ;GET NEXT MULTIPLIER BYTE
ADC A, (HL) sADD TO HIPROQD

LD (HL) , A 3 STORE NEW HIPROD

INC DE

INC
DJUNZ
POP

s DECREMENT RIT COUNTER,
; DOES NOT CHANGE CARRY!

DECCNT:

EXIT:

CQUNT: DS
ENDHP: DS
MLIER: DS
HIFRQD: DS

“ s wE w8 w0

1]
[
[339
T
s

LD
LD
Ln
CALL

JR

SZAYS EQU

6F MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL)

HL
ADDLP
DE

A, (COUNT)

A

(COUNT) . A
NZ, LODP

AF

A, (COUNT+1)
A

Z,EXIT

A
(COUNT+1), A
AF

LOOP

AF

[N VIR V]

]
]

SAMFLE EXECUTION:

HL, AY1
DE, AYZ2
B, SZAYS
MPBMUL

SCa&F

7 s LENGTH

s CONTINUE UNTIL DONE
s RESTORE ADDRESS OF MULTIPLICAND

EXIT IF DONE

s BRANCH IF LSRR OF COUNT NOT ZERQ
s SAVE CARRY

sGET HIGH BYTE QF COUNT

s IS IT ZERO?

; EXIT IF SO

s DECREMENT HIGH BYTE OF COUNT

; RESTORE CARRY
;s CONTINUE

s DROF PSW FROM STACK
s RETURN

;s TEMPORARY FOR LOQOF COUNTER

; ADDRESS OF LAST BYTE OF HIPROD + 1
;s ADDRESS OF MULTIPLIER

sHIGH PRODUCT BUFFER

HL = ADDRESS OF MULTIPLICAND
DE = ADDRESS OF MULTIPLIER
B = LENGTH QF QPERANDS IN RBYTES

MULTIPLE-PRECISION RINARY MULTIPLY
RESULT OF 12345H = 1234H = 14B4A0404H

NE MB NE NE NE ek NE NE NE WD ws w8

IN MEMORY AY1 = 04H
AY1+1 = Q4H
AY1+2 = B&H
AY1+3 = 14H
AY1+4 = Q0H
AY1+5 = QOH
AY1+& = 00OH

OF OPERANDS IN BYTES

237

~ w8 B we e

238 ,rmvETC

AY1:
DR 045H
DB 023H
DB QO1H
DR 0
falc 0
DB 0
jnjcd 0
AYZ2:
DR 034H
DB 012H
DB 0
DB 0
DB 0
DB 0
DB 0

END

Multiple-Precision Binary Division

(MPBDIV)

6G

Divides two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address. The
quotient replaces the dividend; the address of
the least significant byte of the remainder is in
HL. The length of the numbers (in bytes) is 255
or less. The Carry flag is cleared if no errors
occur; if a divide by 0 is attempted, the Carry
flag is set to 1, the dividend is left unchanged,
and the remainder is set to 0.

Procedure: The program divides with the

usual shift-and-subtract algorithm, shifting quo-
tient and dividend and placing a 1 bit in the
quotient each time a trial subtraction is success-
ful. An extra buffer holds the result of the trial
subtraction; that buffer is simply switched with
the buffer holding the dividend if the trial
subtraction is successful. The program exits
immediately, setting the Carry flag, if it finds the
divisor to be 0. The Carry flag is cleared
otherwise.

' Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and onihenumber of 1 bits in the quotient
(requiring a buffer switch). If the average number of
1 bits in the quotient is 4 per byte, the execution time
isapproximately 1176 * LENGTH2+ 2038 * LENGTH
+ 515 cycles where LENGTH is the number of bytes
in the operands.

Program Size: 161 bytes

Data Memory Required: 522 bytes anywhere in
RAM. This is temporary storage for the high divi-
dend (255 bytes starting at address HIDE1), the result
of the trial subtraction (255 bytes starting at address
HIDE2), the base address of the dividend (2 bytes

starting at address DVEND), the base address of the
divisor (2 bytes starting at address DVSOR), pointers
to the two temporary buffers for the high dividend (2
bytes starting at addresses HDEPTR and ODEPTR,
respectively), a loop counter (2 bytes starting at
address COUNT), and a subtraction loop counter (I
byte at address SUBCNT).

Special Cases:

1. Alength of 0 causes an immediate exit with the
Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. Adivisor of 0 causes an exit with the Carry flag

set to I, the quotient equal to the original dividend,
and the remainder equal to 0.

Entry Conditions

Base address of dividend in HL
Base address of divisor in DE
Length of the operands in bytes in B

Exit Conditions

Dividend replaced by dividend divided by divisor

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1, the dividend is
unchanged, and the remainder is 0.

The remainder is stored starting with its least
significant byte at the address in HL.

239

240 rHvETC

Example

1. Data: Length of operands (in bytes) = 03
Divisor = 000F45,¢
Dividend = 35A2F7,4

Result: Dividend = 000383
Remainder (starting at address in HL) =
0003A8 ¢
Carry flagis 0 to indicate no divide-by-0 error.

D N A L

Title Multiple-Precision
Name: MPBDIV
Purpose: Divide 2 arrays of

Dividend = dividen

Entry: Register pair HL =
Register pair DE =
Register B = Lengt

The arrays are u
maximum length o
least significan
the most signifi

Exit: Dividend := divide

Register pair HL =

If no errors then
carry = QO

ELSE
divide-by—-0 erro
carry = 1
dividend unchang
remainder 1= 0

Registers used: AF,BC,DE,HL

Time: Assuming there are
quotient then the
(1176 # length*2)

Size: Program 1&1 bytes
Data 522 bytes

MEB NE NE NE NS NS ME WS ME NS ME NE O NE VE NZ B SE el ME w8 WP NB ME wE NE % wE wm B ws wg

Einary Divisicon

binary bytes
d / divisor

Base address of dividend
Base address of diviscr
h of operands in bytes

nsigned binary numbers with a
f 255 bytes, ARRAYIL[O] is the
t byte, and ARRAYLLENGTH-11]
cant byte.

nd / divisor
Base address of remainder

Y

ed

length/2 1 bits in the
time is approximately
+ (2038 # length) + 515 cycles

N8 wE B R w8 tn owa we

NE O ME NE NE NE ME NE WS NE MO ME NE NB MB A NS ME SO NE WE M8 ME NG WS ME N0 N8 we w8 NE ws

6G MULTIPLE-PRECISION BINARY DIVISION (MPBDIY) 244

~
~ o~

s TEST LENGTH OF OPERANDS, INITIALIZE POINTERS

MPBDIV:
LD A, B
OR A ;1S LENGTH OF ARRAYS = 07
JP Z,0KEXIT sEXIT IF S0
LD (DVEND) , HL : SAVE BASE ADDRESS OF DIVIDEND
LD (DVSOR) , DE ; SAVE BASE ADDRESS OF DIVISOR
LD c,B ;T = LENGTH OF OPERANDS
$SET COUNT TO NUMBER OF BITS IN THE ARRAYS
; COUNT := (LENGTH = &) + 1
LD L,C sHL = LENGTH IN EYTES
LD H, 0
ADD HL, HL sLENGTH = 2
ADD HL, HL sLENGTH = 4
ADD HL, HL sLENGTH = &
INC HL SLENGTH = & + 1
LD (COUNT) , HL $SAVE BIT COUNT
; ZERO BOTH HIGH DIVIDEND ARRAYE
LD HL, HIDE1 tHL = ADDRESS OF HIDEL
LD DE, HIDE2 ;DE = ADDRESS OF HIDE2
LD E,C sB = LENGTH IN BYTES
SUR A ;GET 0 FOR FILL
ZEROLP:
LD CHL), A ; ZERO HIDE1
LD (DE), A : AND HIDE2
INC HL
INC DE
DINZ ZEROLP
;SET HIGH DIVIDEND POINTER TO HIDE1
LD HL, HIDE 1
LD (HDEPTR) , HL
;SET OQTHER HIGH DIVIDEND POINTER TO HIDE2
LD HL, HIDE2
LD CODEPTR) , HL
sCHECK IF DIVISOR IS ZERQ BY LOGICALLY ORING ALL BYTES
LD HL, (DVSOR) sHL = ADDRESS OF DIVISOR
LD B,C +B = LENGTH IN BYTES
SUB A ;START LOGICAL OR AT O
CHKOLP:
OR CHL) ;0OR NEXT BYTE
INC HL ; INCREMENT TO NEXT BYTE
DJINZ CHKOLP ;CONTINUE UNTIL ALL BYTES ORED
OR A :SET FLAGS FROM LOGICAL OR
JR Z,EREXIT ;ERROR EXIT IF DIVISOR IS O

;DIVIDE USING TRIAL SURTRACTION ALGORITHM
OR A ; CLEAR CARRY FIRST TIME THROUGH

242 ,rmaveTc

LOOP2

SLLPL:

DECCNT =

CONT:

SLLF2:

SUBLP:

C = LENGTH

DE = ADDRESS OF DIVISOR

CARRY = NEXT RIT OF QUOTIENT

SHIFT CARRY INTO LOWER DIVIDEND ARRAY AS NEXT RIT OF QUOTIENT
;7 AND MOST SIGNIFICANT BIT OF LOWER DIVIDEND TO CARRY

LD B,C ;B = NUMBER OF BYTES TQ ROTATE

LD HL., (DVEND) ;HL = ADDRESS OF DIVIDEND

RL (HL) :ROTATE BYTE OF DIVIDEND LEFT

INC HL s NEXT BYTE

DINZ SLLP1 s CONTINUE UNTIL ALL BYTES SHIFTED

s DECREMENT RIT COUNTER AND EXIT IF DONE

1 CARRY IS NOT CHANGED !

LD A, (COUNT)

DEC A

LD (COUNT), A

JR NZ, CONT ;CONTINUE IF LOWER RYTE NOT ZERO
LD A, (COUNT+1)

DEC A

LD (COUNT+1), A

JP M, QKEXIT FEXIT WHEN COUNT BECOMES NEGATIVE

s SHIFT CARRY INTO LSB OF UPPER DIVIDEND

LD HL, (HDEPTR) sHL = CURRENT HIGH DIVIDEND POINTER
LD B,C ;B = LENGTH IN BYTES

RL (HL) ;ROTATE BYTE OF UPPER DIVIDEND

INC HL ; INCREMENT TOQ NEXT BYTE

DuUNZ SLLP2 s CONTINUE UNTIL ALL BYTES SHIFTED

s SURTRACT DIVISOR FROM HIGH DIVIDEND, PLACE DIFFERENCE IN
¢+ OTHER HIGH DIVIDEND ARRAY

PUSH BC : SAVE LENGTH

LD A C

LD (SUBCNT) , A $ SUBCNT = LENGTH IN BYTES

LD BC, (ODEPTR) ;BRC = QTHER DIVIDEND

LD DE, (HDEPTR) sDE = HIGH DIVIDEND

LD HL., (DVSOR) sHL = DIVISOR

OR A s CLEAR CARRY

LD A, (DE) sNEXT BYTE OF HIGH DIVIDEND
SBC A, (HL) s SUBTRACT DIVISOR

LD (BC), A $SAVE IN OTHER HIGH DIVIDEND
INC HL 3 INCREMENT POINTERS

INC DE

INC BC

LD A, (SUBCNT) s DECREMENT COUNT

DEC A

LD (SUBCNT) , A

JR NZ, SUBLP s CONTINUE UNTIL DIFFERENCE COMFLETE
PQP BC s RESTORE LENGTH

EREXIT:

OKEXIT:

EXIT:

DVEND:
DVSOR:
HDEPTR:
QDEPTR:
COUNT:
SUBCNT:
HIDE1:
HIDEZ:

w8 w3 wB ws ws

SC&G:

6G MULTIPLE-PRECISION BINARY DIVISION (MPEDIV) 243

s+ IF CARRY IS 1, HIGH DIVIDEND IS LESS THAN DIVISOR
s S0 NEXT RIT OF QUOTIENT IS O. IF CARRY IS O

s+ NEXT BIT OF QUOTIENT IS 1 AND WE REPLACE DIVIDEND
3 WITH REMAINDER BY SWITCHING PQINTERS.

CCF ; COMPLEMENT BORROW SO IT EQUALS
; NEXT RIT OF QUQTIENT
JR NC, LOOP ; JUMP IF NEXT BRIT OF QUOTIENT O
Lo HL, (HRDEPTR) s OTHERWISE EXCHANGE HDEPTR AND ODEPTR
LD DE, (ODEPTR)
LD (QDEPTR), HL
LD (HDEPTR), DE

s CONTINUE WITH NEXT BIT OF QUOTIENT 1 (CARRY = 1)
JP LOQP

: SET CARRY TO INDICATE DIVIDE-RY-ZERO ERROR

SCF s SET CARRY, INVALID RESULT
JP EXIT

:CLEAR CARRY TO INDICATE NO ERRORS
OR A : CLEAR CARRY, VALID RESULT

;ARRAY 1 IS QUOTIENT
:HDEPTR CONTAINS ADDRESS OF REMAINDER

LD HL, {HDEPTR) ;HL = BASE ADDRESS OF REMAINDER

RET

; DATA

ng 2 s ADDRESS OF DIVIDEND

ns 2 s ADDRESS OF DIVISOR

ns 2 s ADDRESS OF CURRENT HIGH DIVIDEND ARRAY
DS 2 s ADDRESS OF OTHER HIGH DIVIDEND ARRAY
ns 2 ;s TEMPORARY FOR LOOP COUNTER

DS 1 3 SUBTRACT LOOP COUNT

ns 238 ;HIGH DIVIDEND BUFFER 1

ns 255 sHIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

w5 ws we w8 w8

LD HL, AY1 $HL = BASE ADDRESS OF DIVIDEND

Lo DE, AY2 ;:DE = BASE ADDRESS OF DIVISOR

LD B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES

CALL MFEDIV s+ MULTIPLE-PRECISION BINARY DIVIDE
sRESULT OF 14B&0404H / 1234H = 1234TH
; IN MEMORY AY1 = 4GH
; AY1+1 = 23H
H AY1+2 = OiH

244 /rrHvETC

H AY1+3 = 00H
H AY1+4 = 00H
H AY1+3 = O00H
H AY1+6 = 00H
JR SCAG6
SZAYS EQU 7 s LENGTH OF ARRAYS IN BYTES
AYl:
DB Q04H
DB Q04H
DB OB&H
DB 014H
DB Q
DB (o]
DB (o]
AYZ2:
DB 034H
DB o12H
DR (o]
DB 0
DB Q
DB Q
DB (o]

END

Multiple-Precision Binary Comparison

(MPBCMP)

OH

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags
appropriately. The Zero flag is set to 1 if the
operands are equal and to 0 if they are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus, the flags are set as if the
subtrahend had been subtracted from the
minuend.

Procedure: The program compares the oper-
ands one byte at a time, starting with the most
significant bytes and continuing until it finds
corresponding bytes that are not equal. If all the
bytes are equal, it exits with the Zero flag set to
1. Note that the comparison works through the
operands starting with the most significant
bytes, whereas the subtraction (Subroutine 6E)
starts with the least significant bytes.

Registers Used: AF, BC, DE, HL

Execution Time: 44 cycles per byte that must be
examined plus approximately 60 cycles overhead.
That is, the program continues until it finds cor-
responding bytes that are not the same; each pair of
bytes it must examine requires 44 cycles.

Examples:

1. Comparing two 6-byte numbers that are equal:
44 * 6 + 60 = 324 cycles
2. Comparing two 8-byte numbers that differ in
the next to most significant bytes:
44 * 2+ 60 = 148 cycles

Program Size: 19 bytes
Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the Carry flag cleared and the Zero flag set
to 1.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend.

Zero flag = 1 if subtrahend and minuend are
equal, 0 if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense, 0 if it is less
than or equal to the minuend.

Examples

1. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA 4

Minuend = 4E67BCI15A266,

Zero flag = 0 (operands are not equal)
Carry flag = 0 (subtrahend is not larger than
minuend)

Result:

3. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA 4
Minuend = 0F37E5991D7C ¢
Result: Zero flag = 0 (operands are not equal)

Carry flag = 1 (subtrahend is larger than
minuend)

245

246 ~rHvETC

2. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA
Minuend = 19D028A193EA ¢

Result: Zero flag= 1 (operands are equal)
Carry flag = 0 (subtrahend is not larger than

Registers used: AF,RC,DE,HL

Time: 44 cycles per byte that must be examined plus
&0 cycles overhead

Size: Praogram 19 bytes

minuend)
H Title Multiple-Precision Binary Comparison
H Name: MPRCMP
H
H Purpose: Compare 2 arrays of binary bytes and return
H the Carry and Zero flags set or cleared
H Entry: Register pair HL = Base address of minuend
H Register pair DE = Base address of subtrahend
H Register B = Length of operands in bytes
H The arrays are unsigned binary numbers with a
H maximum length of 255 bytes, ARRAYLOQ) is the
H least significant byte, and ARRAYLLENGTH-11
H the most significant byte.
H
H Exit: IF minuend = subtrahend THEN
H C=0,Z=1
? IF minuend > subtrahend THEN
; C=0, 2=0
H IF minuend < subtrahend THEN
H C=1,2=0
H
H
H

MPBCMFz
$ TEST LENGTH OF QPERANDS, SET POINTERS TO MSB- S
LD AR
OR A ;IS LENGTH OF ARRAYS = 07
RET z $YES, EXIT WITH C=0, Z=1
LD C,B sBC = LENGTH

VB wE N NS wE wB we w

VE ME NS NS NE NE NS NS WS ND ME WD NE NA NS NE WO WD NE M8 WO WA NS WA wE w8 we ws

6H MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 247

LD B,0

ADD HL., BC

EX DE, HL sDE POINTS TO END OF MINUEND
ADD HL., BC $HL POINTS TO END OF SUBTRAHEND
LD B,C ;B = LENGTH

OR A ;CLEAR CARRY INITIALLY

: SUBRTRACT BYTES, STARTING WITH MOST SIGNIFICANT
:EXIT WITH FLAGS SET IF CORRESPONDING RYTES NOT EQUAL

L.O0P:
DEC HL s BACK UP TO LESS SIGNIFICANT BYTE
DEC DE
LD A, (DE) s GET NEXT BYTE OF MINUEND
SBC A, (HL) ; SUBTRACT BYTE OF SUBTRAHENL
RET NZ sRETURN IF NOT E@UAL WITH FLAGS
; SET
DJNZ LOOP s CONTINUE UNTIL ALL BYTES COMPARED
RET sEQUAL, RETURN WITH C=0, ZI=1
: H
3 H
H SAMPLE EXECUTION: H
7 H
SC6H:
LD HL, AY1 sHL = BASE ADDRESS OF MINUEND
LD DE, AY2 ;:DE = BASE ADDRESS OF SUBTRAHEND
LD R, SZAYS sBR = LENGTH OF OPERANDS IN BYTES
CALL MPRCMP sMULTIPLE-PRECISION BINARY COMPARISON
sRESULT OF COMPARE(7654321H, 1234567H) 1S
s C=0,7=0
JR SC&H
SZAYS EQU 7 s LENGTH OF OPERANDS IN BYTES
AY1i:
DB 021H
DB 043H
DB Q65H
DB Q07H
DB Q
DB Q
DB o]
AY2:
DB Q67H
DB 045H
DB 023H
DB Q01H
DB (o]
DB (o]
DB o]

END

Multiple-Precision Decimal Addition

(MPDADD)

Ol

Adds two multi-byte unsigned decimal num-
bers. Both numbers are stored with their least
significant digits at the lowest address. The sum
replaces the addend. The length of the numbers
(in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then adds the operands one byte (two
digits) at a time, starting with the least significant
digits. The sum replaces the addend. A length of
00 causes an immediate exit with no addition.
The final Carry flag reflects the addition of the
most significant digits.

Registers Used: AF, B, DE, HL

Execution Time: 50 cycles per byte plus 18 cycles

overhead
Program Size: 12 bytes
Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the addend unchanged and the Carry flag

cleared.

Entry Conditions

Base address of addend in HL
Base address of adder in DE
Length of the operands in bytes in register B

Exit Conditions

Addend replaced by addend plus adder

Example

1. Data: Length of operands (in bytes) = 6
Addend = 1960288193154
Adder = 293471605987,

Result: Addend = 489500425302,

Carry=0
H Title Multiple—Precision Decimal Additicn
H Name: MPDADD

248

NE NE NE NN NG NS wa s

B ME ME ND ME ME N ME 9B W8 ME WE ME M8 WS NE W N um R wE

MPDADD:

LOOP:

-8 w8 we ws B

SC61z

Purpose: Add 2 arrays of BCD bytes

Entry:

Exit:

Registers used: A,B,DE,F,HL

Time:

Size:

s TEST
LD
OR
RET

o1 MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 249

Arrayl = Arrayl + Array2
Register pair HL = Base address of array 1
Register pair DE = Base address of array 2
Register B = Length of arrays in bytes
The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO1 is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Arrayl 2= Arrayl + Array2

50 cycles per byte plus 18 cycles overhead

Program 12 bytes

NS NE NE NS ME N ME MR ME MG NE NE WE WR NP B S8 W8 e wE wE

ARRAY LENGTH FOR ZERQ, CLEAR CARRY

A, B
A s TEST LENGTH AND CLEAR CARRY
Z EXIT IF LENGTH IS O

s ADD OPERANDS 2 DIGITS AT A TIME
; NOTE CARRY IS O INITIALLY

LD
ARC
DAA
LD
INC
INC
DJNZ
RET

SAMPLE EXECUTION:

LD
LD
LD
CALL

A, (DE)
A, (HL) s ADD NEXT BYTES
s CHANGE TO DECIMAL
(HL), A s STORE SUM
HL s INCREMENT TO NEXT BYTE
DE
LOOP s CONTINUE UNTIL ALL BYTES SUMMED

8 g s s uE

HL, AY1 sHL = BASE ADDRESS OF ARRAY 1

DE, AY2 ;DE = BASE ADDRESS OF ARRAY Z

B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES

MPDADD sMULTIPLE-PRECISION ECD ADDITION
sRESULT OF 1234567 + 12345467 = 2469134
; IN MEMORY AY! = 34H
; AY1+1 = 91iH
; AY1+2 = 4&H

250 ArHvETC

H AY1+32 = 02H
H AY1+4 = 00H
; AY1+5 = Q0H
7 AY1+4 = Q00H
JR SC61
SZAYS EQU 7 s LENGTH OF ARRAYS IN BYTES
AY1:
DB 067H
DB 04%H
DB 022H
DB 001H
DB 0
DB 0
DB 0
AYZ2:
DB 067H
DB 045H
DB 023H
DB 001H
B 0
DB o]
DB 0

END

Multiple-Precision Decimal Subtraction

(MPDSUB)

6J

Subtracts two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then subtracts the subtrahend from the
minuend one byte (two digits) at a time, starting
with the least significant digits. A length of 0
causes an immediate exit with no subtraction.
The final Carry flag reflects the subtraction of
the most significant digits.

Registers Used: A, B, DE, F, HL

Execution Time: 50 cycles per byte plus 22 cycles
overhead

Program Size: 13 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the
difference is equal to the minuend). The Carry flagis
cleared.

Eniry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Minuend replaced by minuend minus subtrahend

Example

I Data: Length of operands (in bytes) = 6
Minuend = 293471605987 ¢
Subtrahend = 1960288193151 ¢

Result: Minuend = 097442786672 ¢
Carry = 0, since no borrow is necessary

Mame: MPDSUR

N8 NMD NE N8 NS NE ND D

-

Title Multiple—-Precision Decimal Subtraction

w8 wE NE NB wE N NE we

251

252 ~RTHVETIC

NE NS VB ME NB MR NE wR NS ue

DL R T

.- oen wn ws

MPDSUB:

LOOP:

i us ws ws w3

SC&J:

Purpose: Subtract 2 arrays of BCD bytes

Entry:

Exits

Minuend = minuend - subtrahend

Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of arrays in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Minuend := minuend - subtrahend

Registers used: A,B,DE,F,HL

Time:

Size:

; TEST
LD
R
RET
EX

50 cycles per byte plus 22 cycles overhead

Program 13 bytes

ARRAY LENGTH FOR ZERQ, CLEAR CARRY
AR
A s TEST ARRAY LENGTH, CLEAR CARRY
Z EXIT IF LENGTH IS O
DE, HL tHL = SUBTRAHEND

;DE = MINUEND

s SUBTRACT OPERANDS 2 DIGITS AT A TIME
+ NOTE CARRY IS INITIALLY ©

LD
SBC
DAA
LD
INC
INC
DUNZ
RET

A, (DE) ;GET BYTE OF MINUEND
A, (HL) s SUBTRACT BYTE OF SUBTRAHEND
:CHANGE TO DECIMAL
(DE), A :STORE RBRYTE OF DIFFERENCE
HL : INCREMENT TO NEXT BYTE
DE
LOooP ;CONTINUE UNTIL ALL BYTES SURTRACTED

SAMPLE EXECUTION:

LD
LD
LD
CALL

HL, AY1 sHL = BASE ADDRESS OF MINUEND

DE, AY2 sDE = BASE ADDRESS OF SURTRAHEND

B, SZAYS B = LENGTH OF ARRAYS IN BYTES
MPDSUR tMULTIPLE-PRECISION BCD SUBTRACTION

RESULT OF 2469134 - 12234567 = 1234547
7 IN MEMORY AY1 = &67H
; AY1+1 = 435H

NE ME NS NE NB ME NE ME NE N WE B WE NN w8 ME 9@ M0 wA wn ws

B uS ws wE wg

6J MULTIPLE-PRECISION DECIMAL SUBTRACTION (MPDSUB) 253

H AY1+2 = 23H
3 AY1+3 = O1H
; AY1+4 = Q00OH
; AY1+5 = O0H
H AY1+6 = QOH
JR SCaU
8ZAYS EQU 7 sLENGTH OF ARRAYS IN BYTES
AY1l:
DB 034H
OB 091H
DB 044H
DR 002H
DB o
DB 0
DB o
AY2:
DB 067H
DB 045H
DB 023H
DB 001H
DB (o)
DB (o]
DB 0

END

Multiple-Precision Decimal Multiplication

(MPDMUL)

OK

Multiplies two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
least significant bytes of the product are returned
to retain compatibility with other multiple-
precision decimal operations.

Procedure: The program handles each digit of
the multiplicand separately. It masks the digit
off, shifts it (if it is the upper nibble of a byte),
and then uses it as a counter to determine how
many times to add the multiplier to the partial
product. The least significant digit of the partial
product is saved as the next digit of the full
product and the partial product is shifted right
four bits. The program uses a flag to determine
whether it is currently working with the upper or
lower digit of a byte. A length of 00 causes an
exit with no multiplication.

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the size of the digits in the
multiplicand (since those digits determine how many
times the multiplier must be added to the partial
product). If the average digit in the multiplicand has
avalue of 5, then the execution time is approximately
694 * LENGTH2 + 1555 * LENGTH + 272 cycles
where LENGTH is the number of bytes in the
operands.

Program Size: 167 bytes

Data Memory Required: 520 bytes anywhere in
RAM. This is temporary storage for the high bytes of
the partial product (255 bytes starting at address
PROD), the multiplicand (255 bytes starting at
address MCAND), the length of the arrays (1 byte at
address LEN), a digit counter indicating upper or
lower digit (1 byte at address DCNT), a loop counter
(1 byte at address LPCNT), an overflow byte (1 byte
at address OVRFLW), pointers to the multiplicand
and multiplier (2 bytes each starting at addresses
MCADR and MPADR, respectively), and the next
byte of the multiplicand (1 byte at address NBYTE).
Special Case: A length of 0 causes an immediate
exit with the multiplicand unchanged. The more
significant bytes of the product (starting at address
PROD) are undefined.

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

Example

1. Data: Length of operands (in bytes) = 04
Multiplier = 00003518,

Multiplicand = 000062944

Result: Multiplicand = 22142292,

254

Note that MPDM UL returns only the less sig-
nificant bytes of the product (that is, the number
of bytes in the multiplicand and multiplier) to

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 258

maintain compatibility with other multiple- address PROD. The user may need to check
precision decimal arithmetic operations. The those bytes fora possible overflow or extend the
more significant bytes of the product are avail- operands with zeros.

able starting with their least significant digits at

B M NE wE us B wE wp

MO NS WD WE ME wE e s

Title Multiple—-Precision Decimal Multiplication
Name: MPDMUL. ’
H Purpose: Multiply 2 arrays of BCD bytes

Multiplicand = multiplicand #*# multiplier

-

Entry: Register pair HL = Multiplicand base address
Register pair DE = Multiplier base address
Register B = Length of arrays in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYL[O] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Exit: Multiplicand := multiplicand # multiplier
Registers used: AF,BC,DE,HL
Time: Assuming the average digit value of multiplicand
is 5, the time is approximately
(694 #* length*2) + (1555 * length) + 272 cycles

Size: Program 167 bytes
Data 520 bytes

ME NG ME NB NE MR ME WE N8 NG NS NS NE N8 N ME ME w6 WE % NE wd R E e

NE NE NE NE ME MG ME WE MB ME NE WE WR NS WB ME WE NS WA B wE wE

MPDMUL 2
3 INITIALIZE CQUNTERS AND POINTERS
LD AB ; TEST LENGTH OF OPERANDS
OR A
RET z EXIT IF LENGTH IS O
LD (LEN), A $ SAVE LENGTH
LD (LPCNT), A s LOOP COQUNTER = LENGTH IN BYTES
LD (MCADR) , HL. s SAVE MULTIPLICAND ADDRESS

LD {MPADR), DE ; SAVE MULTIPLIER ADDRESS

256 AriTHVETIC

LOOF:

DLOOF:

DLOOP1:

ADDLP:

INNER:

s SAVE MULTIPLICAND IN TEMPORARY BUFFER (MCAND)

LD DE, MCAND sDE POINTS TO TEMPORARY MULTIPLICAND
LD (NRYTE), DE
sHL POINTS TO MULTIPLICAND
LD C, B s BC = LENGTH
LD B,0
LDIR ; MOVE MULTIPLICAND TO BUFFER

;s CLEAR PARTIAL PRODUCT, CONSISTING OF UPPER BYTES
3 STARTING AT PROD AND LOWER BYTES REPLACING

+ MULTIPLICAND

LD HL, (MCADR)

LD A, (LEN)

CALL ZERQRUF ; ZERO MULTIPLICAND
; ZERD PRODUCT

LD HL, PROD

CALL ZEROBUF 3 ZERD PRODUCT ARRAY

;LOOP THROUGH ALL BYTES OF MULTIPLICAND

LD Al
LD (DONT) , A s START WITH LOWER DIGIT

;LOOP THRQUGH 2 DIGITS PER BYTE

y DURING LOWER DIGIT DCONT = 1

3 DURING UPPER DIGIT DCNT = O

SUR A sA = 0

LD (QVRFLW) , A s CLEAR QVERFLOW BYTE

LD A, (DCNT)

OR A s TEST FOR LOWER DIGIT (Z=0)
LD HL, (NBYTE) sGET NEXT BYTE

Lo A, (HL)

JR NZ, DLOOP1 s JUMP IF LOWER DIGIT

RRCA s SHIFT UPPER DIGIT RIGHT 4 BITS
RRCA

RRCA

RRCA

AND OFH s KEEP ONLY CURRENT DIGIT
JR Z,SDIGIT sBRANCH IF DIGIT IS ZERD
LD C,A sC = DIGIT

s ADD MULTIPLIER TQ PRODUCT NDIGIT TIMES

LD HL, (MPADR) sHL = MULTIPLIER ADDREZS
LD DE, PRQD ;DE = PRODUCT ADDRESS

LD A, (LEN)

LD R, A ;B = LENGTH

OR A ;CLEAR CARRY INITIALLY
LD A, (DE) ;GET NEXT BYTE OF PRODUCT

ADC A, (HL) ;ADD NEXT BYTE OF MULTIPLIER

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 257

DAA ; DECIMAL ADJUST
LD (DE), A s 8STORE SUM IN PRODUCT
INC HL
INC DE
DJUNZ INNER ;s CONTINUE UNTIL ALL BYTES ADDED
JR NC, DECND s JUMP IF NQ QVERFLOW FROM ADDITICON
LD HL, QVRFLW s ELSE INCREMENT OVERFLOW BYTE
INC (HL)
DECND =
DEC C
JR NZ, ADDLP s CONTINUE UNTIL DIGIT = Q
s STORE LEAST SIGNIFICANT DIGIT OF PRODUCT
;3 AS NEXT DIGIT OF MULTIPLICAND
SDIGIT:
LD A, (PROD) s GET LOW BYTE OF PRODUCT
AND OFH
LD B, A sSAVE IN B
LD A, (DCNT)
OR A s TEST FOR LOWER DIGIT (Z=0)
LD AE sA = NEXT DIGIT
JR NZ,SD1 s JUMP IF WORKING ON LOWER.DIGIT
RRCA sELSE MOVE DIGIT TO HIGH BITS
RRCA
RRCA
RRCA
sDh1:
LD HL, (MCADR) s PLACE NEXT DIGIT IN MULTIPLICAND
oRrR {HL)
LDh (HL), A
s SHIFT PRODUCT RIGHT 1 DIGIT (4 BITS)
LD A, (LEN)
Ln B, A sB = LENGTH
LD E,A
LD 0,0
LD HL, PROD
ADD HL, DE sHL POINTS RBREYOND END OF PROD
LD A, (QVRFLW) ;A = QVERFLOW BYTE
SHFTLF:
DEC HL s DECREMENT, POINT TQ NEXT BYTE
RRD sROTATE BYTE OF PRODUCT RIGHT 1 DIGIT
DUNZ SHFTLP ; CONTINUE UNTIL DONE
sCHECK IF DONE WITH RBROTH DIGITS OF THIS BYTE
LD HL, DCNT sARE WE ON LOWER DIGIT?
DEC CHL)
JR Z,DLOOP s YES, DO UPPER DIGIT QF SAME BYTE
s INCREMENT TO NEXT BYTE AND SEE IF DONE
LD HL, (NBYTE) 3 INCREMENT TO NEXT MULTIPLICAND BYTE
INC HL

LD {(NBYTE) , HL.

258 /rTHVETIC

EXIT:

ZEROBUF =

LEN:
DCNT:
LPCNT:
OVRFLW:
MCADR:
MFPADR:
NBYTE:
PROD:
MCAND:

- ws we ws s

SC6K s

LD HL, (MCADR)
INC HL

LD {MCADR) , HL.
LD HL, LPCNT
DEC C(HL)

JR NZ, LooP
RET

3 INCREMENT TO NEXT RESULT BYTE

s DECREMENT LOOP COUNTER

-
r

; ROUTINE: ZEROBUF

; PURPOSE: ZERQO A BUFFER

;ENTRY: HL POINTS TO FIRST BYTE OF BUFFER
; LEN = LENGTH OF BRUFFER

yEXIT: BUFFER ZERQED

;REGISTERS USED: AF,BC,DE,HL

-
T

LD (HL), 0
LD A, (LEN)
DEC
RET
LD
LD
INC
LD
LD
LDIR
RET

-

CUO%E"DN)
o» I

-

; DATA
Ds
DS
DS
DS
DS
Ds
DS
DS
DS

P DI RS PRI D) = bt et e

oo
w0

SAMPLE EXECUTION:

LD HL, AY1
LD DE, AY2
LD B, SZAYS

CALL MPDMUL

s ZERO FIRST BYTE

sRETURN IF QNLY ONE BYTE

; DE
s BC

SECOND BYTE
LENGTH OF ARRAY

s CLEAR REST OF BUFFER RY
; PROPAGATING ZERQS FROM ONE
y BYTE TO THE NEXT

sLENGTH OF ARRAYS

;DIGIT COUNTER FOR BYTES

; LOOP COUNTER

; OVERFLOW BYTE

sNEXT BYTE TO STORE INTO

; ADDRESS OF MULTIPLIER

s NEXT DIGIT OF MULTIPLICAND
s PRODUCT BUFFER

s MULTIPLICAND BUFFER

: BASE ADDRESS OF MULTIPLICAND

; BASE ADDRESS OF MULTIPLIER

sLENGTH OF ARRAYS IN BYTES
sMULTIPLE~PRECISION BCD MULTIPLICATION
sRESULT OF 1234 = 1234 = 1522758

N8 us N8 NE s

OK MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 259

IN MEMORY AY1 S6H

H AY1+1 = 27H
; AY1+2 = S52H
3 AY1+3 = O1H
3 AY1+4 = 00OH
H AY1+5 = 00H
; AY1+é = QOH
JR SCeK
SZAYS ERU 7 ;LENGTH OQF ARRAYS IN BYTES
AY1:
DR 034H
DB 012H
0B (o]
OB 0
DB (¢}
DR (o)
DR O
AY2:
DR Q34H
OB 012H
DB 0
DB 0
oB s]
DB (o]
jujs] o]

END

Multiple-Precision Decimal Division

(MPDDIV)

oL

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
quotient replaces the dividend; the remainder is
not returned, but its base address is in memory
locations HDEPTR and HDEPTR+1. The
length of the numbers (in bytes) is 255 or less.
The Carry flag is cleared if no errors occur; if a
divide by 0 is attempted, the Carry flag is set to
1, the dividend is unchanged, and the remainder
is set to 0.

Procedure: The program divides by determin-
ing how many times the divisor can be subtracted
from the dividend. It saves that number in the
quotient, makes the remainder into the new
dividend, and rotates the dividend and the
quotient left one digit. The program exits
immediately, setting the Carry flag, if it finds
the divisor to be 0. The Carry flag is cleared
otherwise.

Registers Used: AF, BC, DE, HL

Execution .Time: Depends on the length of the
operands and on the size of the digits in the
quotient (determining how many times the divisor
must be subtracted from the dividend). If the
average digit in the quotient has a value of 5, the
execution time is approximately 1054 * LENGTH2+
2297 * LENGTH + 390 cycles where LENGTH is the
number of bytes in the operands.

Program Size: 168 bytes

Data Memory Required: 523 bytes anywhere in
RAM. This is storage for the high dividend (255
bytes starting at address HIDE1), the result of the
subtraction (255 bytes starting at address HIDE?2),
the length of the operands (I byte at address

LENGTH), the next digit in the array (1 byte at
address NDIGIT), the counter for the subtraction
loop (1 byte at address CNT), pointers to the
dividend, divisor, current high dividend and remain-
der, and other high dividend (2 bytes each starting at
addresses DVADR, DSADR, HDEPTR, and
ODEPTR, respectively), and the divide loop counter
(2 bytes starting at address COUNT).

Special Cases:
1. Alength of 0 causes an immediate exit with the

Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. Adivisor of 0 causes an exit with the Carry flag
set to 1, the quotient equal to the original dividend,
and the remainder equal to 0.

Entry Conditions
Base address of dividend in HL

Base address of divisor in DE
Length of the operands in bytes in B

260

Exit Conditions

Dividend replaced by dividend divided by divisor

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1, the dividend is
unchanged, and the remainder is 0.

The base address of the remainder (i.e., the
address of its least significant digits) is in
HDEPTR and HDEPTR+1.

Example

1. Data:

Result:

N8 w8 wE w5 s N8 B NE NB NP wD wE wE

NE N NB B 8B w8 w0 wE wE

B NE WE NE NE MO NE ME w0 WE ME WD ME NB WE R NB w0

AL MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV)

Length of operands (in bytes) = 04

Dividend = 22142298

Divisor = 00006294 4

Dividend = 00003518

Remainder (base address in HDEPTR and
HDEPTR + 1) = 00000006,
Carry flagis 0 to indicate no divide-by-0 error.

Title
Name

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Multiple-Precision Decimal Division
MPDDIV

Divide 2 arvays of BCD bytes
Quotient := dividend / divisor

Register pair HL = Base address of dividend
= Base address of divisor
Register B = Length of operands in bytes

Register pair DE

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11

the most significant byte.

Dividend := dividend / divisor
Remainder := base address in HDEPTR
If no errors then

carry = 0
ELSE

divide-by—-0 error

carry = 1

dividend unchangad

remainder = 0

AF, BC, DE, HL

Assuming the average digit value in the
quotient is 5 then the time is approximately
(1054 % length*2) + (2297 # length) + 390 cycles

Program 168 bytes
Data 523 bytes

261

wE wE N8 w8 =@ wE wd we

wo wB wE G N

WB B MO wa ND WD MR WE M8 N0 NB NG MO w8 w8 e

NB Md W S wa w8 w8 wE %@ w@ WO

262 nrovenc

MPDDIV:
; SAVE PARAMETERS AND CHECK FOR ZERO LENGTH
Lo (DVADR) , HL $ SAVE DIVIDEND ADDRESS
LD (DSADR), DE ; SAVE DIVISOR ADDRESRS
LD A B
LD (LENGTH) , A s SAVE LENGTH
OR A s TEST LENGTH
JP Z,QKEXIT JEXIT IF LENGTH = 0

ZERO ROTH DIVIDEND BUFFERS
7 AND SET UP THE DIVIDEND POINTERS

LD HL, HIDEL sHL = ADDRESS OF HIGH DIVIDEND 1
Lo {(HDEPTR) , HL $HIGH DIVIDEND PTR = HIDE1

LD DE, HIDE2 sDE = ADDRESS OF HIGH DIVIDEND 2
LD (ODEPTR) , DE $OTHER DIVIDEND PTR = HIDE2

SUR A ;GET O TQ USE IN FILLING BUFFERS

B = LENGTH IN BYTES
sFILL BOTH DIVIDEND BUFFERS WITH ZEROS

INITLP:
LD (HL) , A s ZERQ BRYTE OF HIDE1
LD (DE) , A 3 ZERQ BYTE OF HIDE2
INC HL
INC DE

DUNZ INITLP

s SET COUNT TO NUMBER OF DIGITS PLUS i
COUNT == (LENGTH = 2) + 1;

LD A, (LENGTH) sEXTEND LENGTH TO 1& RITS
LD L,A

LD H, 0

ADD HL, HL sLENGTH = 2

INC HL JLENGTH = 2 + 1

LD (COUNT) , HL sCOUNT = LENGTH = 2 + 1

7 CHECK FOR DIVIDE RY ZERD
; LOGICALLY OR ENTIRE DIVISOR TO SEE IF ALL BYTES ARE 0O

LD HL, (DSADR) sHL = ADDRESS OF DIVISOR

LD A, (LENGTH)

LD R, A B = LENGTH IN RYTES

SUB A $ START LOGICAL OR WITH O
DVO1s

OR (HL) ;OR NEXT BYTE OF DIVISOR

INC HL

DJNZ Vo1

R A s TEST FOR ZERO DIVISOR

JR Z,EREXIT $ERROR EXIT IF DIVISOR IS O

SUR A

LD (NDIGIT), A s START NEXT DIGIT AT O

sDIVIDE BY DETERMINING HOW MANY TIMES DIVISOR CAN
3 BE SUBTRACTED FROM DIVIDEND FOR EACH DIGIT
7 POSITION

DVLOOP:

INNER:

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV)

sROTATE LEFT LOWER DIVIDEND AND QUOTIENT:

HIGH DIGIT OF NDIGIT BECOMES LEAST SIGNIFICANT DIGIT
OF QUOTIENT (DIVIDEND ARRAY) AND MOST SIGNIFICANT DIGIT
OF DIVIDEND ARRAY GOES TO HIGH DIGIT OF NDIGIT

LD HL., (DVADR)

~e s wn

CALL RLARY sROTATE LOW DIVIDEND

s IF DIGIT COUNT = O THEN WE ARE DONE

LD HL, (COUNT) s DECREMENT COUNT BY 1
DEC HL

LD (COUNT) , HL

LD A H s TEST 16-RIT COUNT FOR ©
OR L

JR Z,0KEXIT sEXIT WHEN COUNT = O
;ROTATE LEFT HIGH DIVIDEND, LEAST SIGNIFICANT DIGIT
; OF HIGH DIVIDEND BECOMES HIGH DIGIT OF NDIGIT
LD HL, (HDEPTR)

cAaLL RLARY s ROTATE HIGH DIVIDEND

SEE HOW MANY TIMES DIVISOR GOES INTO HIGH DIVIDEND
ON EXIT FROM THIS LOOP, HIGH DIGIT OF NDIGIT IS NEXT
s QUOTIENT DIGIT AND HIGH DIVIDEND IS REMAINDER

8 w8 ws B

SUR A ;CLEAR NUMBER OF TIMES INITIALLY

LD (NDIGIT),A

LD HL, (DSADR) sHL POINTS TO DIVISOR

LD DE, (HDEPTR) sDE POINTS TO CURRENT HIGH DIVIDEND
LD BC, (ODEPTR) +BC POINTS TO OTHER HIGH DIVIDEND
LD A, (LENGTH)

LD (CNT), A :LOOP COUNTER = LENGTH

OR A ;CLEAR CARRY INITIALLY

LD A, (DE) ;GET NEXT BYTE OF DIVIDEND

SBC A, (HL) : SUBTRACT DIVISOR

DAA ; CHANGE TO DECIMAL

LD (RC), A ; STORE DIFFERENCE IN OTHER DIVIDEND
INC HL ; INCREMENT TO NEXT BYTE

INC DE

INC BC

LD A, (CNT) ; DECREMENT COUNTER

DEC A

LD (CNT), A

JR NZ, INNER s CONTINUE THROUGH ALL BYTES

JR C, DVLOOP ; JUMP WHEN BORROW OCCURS

s NDIGIT IS NUMBER OF TIMES DIVISOR
: GOES INTO ORIGINAL HIGH DIVIDEND
s HIGH DIVIDEND CONTAINS REMAINDER

263

264 ,noveTc

s DIFFERENCE IS NOT NEGATIVE, S0 ADD 1 TO
; NUMBER OF SUCCESSFUL SUBTRACTIONS
3 (LOW DIGIT OF NDIGIT)

LD HL,NDIGIT sNDIGIT = NDIGIT + 1
INC C(HL.)
s EXCHANGE POINTERS, THUS MAKING DIFFERENCE NEW DIVIDEND
LD HL., (HDEPTR)
LD DE, (ODEPTR)
LD (HDEPTR), DE
LD (ODEPTR), HL
JR SUBLP ; CONTINUE UNTIL DIFFERENCE NEGATIVE
;NO ERRQORS, CLEAR CARRY
OKEXIT:
OR A ;CLEAR CARRY, VALID RESULT
RET
; DIVIDE-BY-ZERO ERROR, SET CARRY
EREXIT:
SCF 7 SET CARRY, INVALID RESULT
RET
RS it 2 T ey T T
7 SUBROUTINE: RLARY
: PURPOSE: ROTATE LEFT AN ARRAY ONE DIGIT (4 RITS)
sENTRY: HL = BASE ADDRESZ OF ARRAY
H LOW DIGIT OF NDIGIT IS DIGIT TO ROTATE THROUGH
EXIT: ARRAY ROTATED LEFT THROUGH LOW DIGIT OF NDIGIT
sREGISTERS USED: AF, BC, DE, HL
PREREEFHERERRRRRB SRR R AR R R ERRE TN
RLARY:
;s SHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND
7 SHIFT ARRAY LEFT
LD A, (LENGTH)
LD B, A ;B = LENGTH OF ARRAY IN BYTES
LD A, (NDIGIT) A = NDIGIT
SHIFT:
RLD SHIFT BYTE LEFT 1 DIGIT (4 BRITS)
INC HL
DUNZ SHIFT s CONTINUE UNTIL ALL BYTES SHIFTED
LD (NDIGIT), A s SAVE NEW NEXT DIGIT
RET
s DATA
LENGTH: DS 1 LENGTH OF ARRAYS IN BYTES
NDIGIT: DS 1 sNEXT DIGIT IN ARRAY
CNT: DS 1 s COUNTER FOR SUBTRACT LOOP
DVADR: DS 2 ; DIVIDEND ADDRESS
DSADR: DS 2 s DIVISOR ADDRESS
HDEPTR: DS 2 sHIGH DIVIDEND POINTER
QDEPTR: DS 2 sOTHER DIVIDEND POINTER

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPODI) 265

COUNT: DS 2 ;DIVIDE LOOP COUNTER
HIDE1: DS 233 yHIGH DIVIDEND BUFFER 1
HIDE2: DS 235 ;HIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

“B N8 w8 wB us
we N@ NB wm Nm

[CaAL:
LD HL,AY1 s BASE ADDRESS OF DIVIDEND
LD DE, AY2 s BASE ADDRESS OF DIVISOR
LD R, SZAYS sLENGTH OF ARRAYS IN BYTES
CALL MPDDIYV sMULTIPLE-PRECISION RCD DIVISION
sRESULT OF 1522758 /7 1234 = 1224
s IN MEMORY AY1 = 344
; AY1+1 = 12K
H AY1+2 = O0H
H AY1+3 = OOH
. AY1+4 = 00M
3 AY1+5 = 00H
H AY1+é = OOH
JR SC4L
SZAYS EQuU 7 s LENGTH OF ARRAYS IN RYTES
AY1l:
DB 056H
DB 0274
DB 0524
DB OiH
a)c] 0
LB]
B 0
AY2:
DB 034H
oB 012H
0B o
DB [¢]
DB 0O
DB 0
B o]

Multiple-Precision Decimal Comparison

oM

Compares two multi-byte unsigned decimal
(BCD) numbers and sets the Carry and Zero
flags appropriately. The Zero flagisset to 1 if the
operands are equal and to 0 if they are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus the flags are set as if the

subtrahend had been subtracted from the
minuend.

Note: This program is exactly the same as
Subroutine 6H, the multiple-precision binary
comparison, since the form of the operands does
not matter if they are only being compared. See
Subroutine 6H for a listing and other details.

Examples

1. Data: Length of operands (in bytes) = 6
Subtrahend = 196528719340 ¢

Minuend = 456780153266,

Result: Zero flag = 0 (operands are not equal)
Carry flag= 0 (subtrahend is not larger than
minuend)
2. Data: Length of operands (in bytes) = 6
Subtrahend = 196528719340,
Minuend = 196528719340,
Result: Zero flag = | (operands are equal)
Carry flag= 0 (subtrahend is not larger than
minuend)

266

3. Data: Length of operands (in bytes) = 6
Subtrahend = 1965287193404
Minuend = 073785991074,
Result: Zero flag = 0 (operands are not equal)

Carry flag= I (subtrahend is larger than
minuend)

Bit Field Exiraction (BFE)

/A

Extracts a field of bits from a byte and
returns the field in the least significant bit posi-
tions. The width of the field and its lowest bit
position are parameters.

Procedure: The program obtains a mask with
the specified number of 1 bits from a table, shifts

the mask left to align it with the specified lowest
bit position, and obtains the field by logically
ANDing the mask with the data. It then normal-
izes the bit field by shifting it right so that it
starts in bit 0.

Registers Used: AF, BC, DE, HL

Execution Time: 21 * LOWEST BIT POSITION
plus 86 cycles overhead. (The lowest bit position
determines the number of times the mask must be
shifted left and the bit field right.)

Program Size: 32 bytes
Data Memory Required: None
Special Cases:

1. Requesting a field that would extend beyond
the end of the byte causes the program to return with
only the bits through bit 7. That is, no wraparound is
provided. If, for example, the user asks for a 6-bit

field starting at bit 5, the program will return only 3
bits (bits 5 through 7).

2. Both the lowest bit position and the number of
bits in the field are interpreted mod 8. That is, for
example, bit position 11 is equivalent to bit position 3
and a field of 10 bits is equivalent to a field of 2 bits.
Note, however, that the number of bits in the field is
interpreted in the range | to 8. That is, a field of 16
bits is equivalent to a field of 8 bits, not to a field of 0
bits.

3. Requesting a field of width 0 causes a return
with a result of 0.

Eniry Conditions

Starting (lowest) bit position in the field
0to7)in A

Number of bits in the field (1 to 8) in D

Data byte in E

Exit Conditions

Bit field in A (normaiized to bit 0)

Examples

1. Data: Data value = F6;, = 11110110,

Lowest bit position = 4

Number of bits in the field = 3

Bit field = 07,5 = 00000111,

Three bits, starting at bit 4, have been ex-
tracted (that is, bits 4 through 6).

Result:

2. Data: Data value= A2, = 10100010,
Lowest bit position = 6
Number of bits in the field =5
Result: Bit field = 02,4 = 00000010,

Two bits, starting at bit 6, have been ex-
tracted (that is, bits 6 and 7); that was all
that was available, although five bits were
requested.

267

268 7 \MANIPULATIONS AND SHIFTS

WS NE NS N8 NS w ws we

NE WS NE N NE NO N S8 WS WS WS WE 46 %S w8 99 WO WS WO N6 NG N& NB W

o
4
m

SHFT:

EXTR:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

BRit Field Extraction

BFE

Extract a field of bits from a byte and
return the field normalized to bit 0

NOTE:

Register D
Register E
Register A

Register A

IF THE REQUESTED FIELD IS TOQ LONG, THEN
ONLY THE BITS THROUGH BIT 7 WILL BE
RETURNED. FOR EXAMPLE, IF A 4-BIT FIELD I
REQUESTED STARTING AT BIT 7, ONLY 1

BIT (BIT 7) WILL BE RETURNED.

o

Number of bits in field (1 to 8)
Data byte

Starting (lowest) bit position in
the field (0 to 7)

Huwn

Field

AF, BC, DE, HL

84 cycles overhead plus

(21 # lowest bit position) cycles

Program 32 bytes

SHIFT DATA TO NORMALIZE TO RBIT O

00000111k
Z,EXTR
B,A

E
SHFT

NO SHIFTING NEEDED IF LOWEST POSITION IS O

;ONLY ALLOW POSITIONS © TO 7
s JUMP IF NO SHIFTING NEEDED
s MQVE SHIFT COUNT TO B

s SHIFT DATA RIGHT
; CONTINUE UNTIL NORMALIZED

sEXTRACT FIELD BY MASKING WITH 1-8

LD
OR
RET

DEC
AND
LD
LD
LD
ADD

A,D
A
z

>

00000111R
B, 0

HL , MSKARY
HL., BC

; TEST NUMBER OF BITS FOR ZERO

+EXIT IF NUMBER OF BITS = O

y FIELD IS O ON EXIT

; DECREMENT A TO NORMALIZE TO O
sONLY ALLOW O THROUGH 7

sBC = INDEX INTO MASK ARRAY

sHL = BASE OF MASK ARRAY

w8 MB NB NN =8 wE w3 =

ME WS N8 NS NP MB O NP B NE N NB NS WE WE N8 wE WA N® N WO B w8 =g

B v ws ws wE

SC7A:

7A BIT FIELD EXTRACTION (BFE)

LD AE ;GET DATA
AND (HL) ; MASK OFF UNWANTED BITS
RET

s MASK ARRAY WITH 1 TO & ONE RITS

DB 00000Q01R
DB Q0000011B
DB 000001118
DB Q0001111B
DR 00011111E
DR 00111111B
DR 01111111B
DB 11111111B

SAMPLE EXECUTION:

LD E,00011000B :REGISTER E = DATA

LD D, ;REGISTER D = NUMBER OF BITS

LD A2 s ACCUMULATOR = LOWEST BIT POQSITION
CALL RFE ;EXTRACT 3 BITS STARTING WITH #2
JR sSC74 3 RESULT = 00000110B

END

269

~8 B B wB s

Bit Field Insertion (BF)

/B

Insertsa field of bitsinto a byte. The width of
the field and its starting (lowest) bit position are
parameters.

Procedure: The program obtains a mask with
the specified number of 0 bits from a table. It
then shifts the mask and the bit field left to align

them with the specified lowest bit position. It
logically ANDs the mask with the original data
byte, thus clearing the required bit positions,
and then logically ORs the result with the shifted
bit field.

Registers Used: AF, BC, DE, HL

Execution Time: 25 * LOWEST BIT POSITION
plus 133 cycles overhead. (The lowest bit position of
the field determines how many times the mask and
the field must be shifted left.)

Program Size: 40 bytes
Data Memory Required: None
Special Cases:

1. Attempting to insert a field that would extend
beyond the end of the byte causes the program to
insert only the bits through bit 7. That is, no wrap-

around is provided. If, for example, the user attempts
to insert a 6-bit field starting at bit 4, only 4 bits (bits 4
through 7) are actually replaced.

2. Both the starting bit position and the width of
the bit field (number of bits) are interpreted mod 8.
That is, for example, bit position 11 is the same as bit
position 3 and a 12-bit field is the same as a 4-bit field.
Note, however, that the width of the field is mapped
into the range | to 8. That is, for example, a 16-bit
field is the same as an 8-bit field.

3. Attempting to insert a field of width 0 causes a
return with a result of 0.

Entry Conditions

Data in A

Number of bits in the field (1 to 8) in B
Starting (lowest) bit position of field in C
Field to insert in E

Exit Conditions

Result in A
The result is the original data with the bit field
inserted, starting at the specified bit position.

Examples

1. Data: Value = F6,, = 11110110,
Lowest bit position = 4
Number of bits in the field = 2

Bit field = 01,, = 00000001,

Value with bit field inserted =
D6 = 11010110,

The 2-bit field has been inserted into the origi-
nal value starting at bit 4 (into bits 4 and 5).

Result:

270

2. Data: Value = B8;s = 10111000,
Lowest bit position = 1
Number of bits in the field =5
Bit field = 15,5 = 00010101,
Result: Value with bit field inserted = A A |, =10101010,

The 5-bit field has been inserted into the origi-
nal value starting at bit I (into bits 1 through
5), changing 11100, (1C¢) to 10101, (15,¢).

7B BIT FIELD INSERTION (BF)) 271

NE M WR ME NE N s es
N8 B NB wE wE wE wR we

Title Bit Field Insertion

Name: BFI

Purpose: Insert a field of bits into a byte and return
the byte

NOTE: IF THE REGUESTED FIELD IS TOO LONG,
ONLY THE BITS THROUGH BIT 7 WILL BE
INSERTED. FOR EXAMPLE, IF A 4-BIT FIELD IS
TO BE INSERTED STARTING AT BIT 7 THEN
ONLY 1 BIT (BIT 7) WILL BE INSERTED.

Byte of data

Number of bits in the field (1

to 8)

Starting (lowest) bit position in
which the data will be inserted
(0 to 7)

Register E = Field to insert

Entry: Register A
Register B

Register C

Exit: Register A = Data
Registers used: AF,BC,DE,HL

Time: 133 cycles overhead plus
(25 * starting bit position) cycles

B NE ME NB NE ME WS WS ME B w8 WE wE NE w# w8 ME NE NE NS WE wE wE W N

ME ME NE NE NE NE B NS B ME W NE WE ME YR NE NE YR W NS WA w2 %8 W5 WB %0 w8

Size: Program 40 bytes
BFI:
PUSH AF ;s SAVE DATA BYTE
s GET MASK WITH REQUIRED NUMBER OF O BRITS
PUSH BC s SAVE STARTING BIT POSITION
LD HL, MSKARY
LD A,B s GET NUMBER OF BITS
AND A s TEST NUMBER OF BRITS FOR O
RET z sRETURN WITH O RESULT IF NUMBER
; OF BRITS IS O
DEC A s NORMALIZE TO 0...7
AND Q0Q00111R sONLY ALLOW 0Q...7
LD C,A
LD E,0
ADD HL, BC ; INDEX INTQ MASK ARRAY
LD D, (HL) sD = MASK WITH ZEROS FOR CLEARING
POP RC s RESTORE STARTING RIT

; TEST IF STARTING BIT IS O

272 BT MANIPULATIONS AND SHIFTS

SFIELD:

INSRT:

s w8 w8 s wp

SCT7E:

LD A,C
AND Q0000111B sRESTRICT STARTING BIT TO 0...7
JR Z, INSRT ;JUMP IF STARTING BIT 15 O

 NO ALIGNMENT IS NECESSARY

sALIGN FIELD TCO INSERT AND MASK IF STARTING BIT NON-ZERO

LD R,C ;B = STARTING BIT NUMBER
LD A, D 1A = MASE

SLA E sSHIFT FIELD LEFT TO INSERT
RLCA s ROTATE MASK

DUNZ SFIELD ;CONTINUE UNTIL ALIGNED
LD 0, A

; INSERT FIELD

POP AF s GET DATA BACE

AND D s AND OFF MASK AREA

OR E sOR IN FIELD

RET

s MASK ARRAY - 1 TO & ZERQ BITS

DB 11111110B

DR 11111100RB

DB 11111000B

DB 11110000BR

DB 111000008

] 11000000B

DR 10000000R

DB Q0000000B

SAMPLE EXECUTION:

LD A,11111111R sREGISTER A = DATA

LD R, 3 sREGISTER B = NUMBER OF BITS

LD c,2 yREGISTER C = LOWEST RIT POSITION
LD E, 00Q00101R ;REGISTER E = FIELD TO INSERT
caLl BFI ; INSERT 3-BIT FIELD STARTING AT
JR SC7B ; BIT 2, RESULT = 11110111E

END

g WS w3 ws we

Multiple-Precision Arithmetic Shift Right

(MPASR)

/C

Shifts a multi-byte operand right arithmeti-
cally by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set from the last bit shifted out
of the rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program obtains the sign bit
from the most significant byte, saves that bit in
the Carry, and then rotates the entire operand
right one bit, starting with the most significant
byte. It repeats the operation for the specified
number of shifts.

Registers Used: AF, BC, DE, HL
ExecutionTime: NUMBER OF SHIFTS * (46+
34 * LENGTH OF OPERANDS IN BYTES) +
59 cycles
Program Size: 28 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. 1f the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of the operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted right arithmetically by the spec-
ified number of bit positions. The original sign
bit is extended to the right. The Carry flag is set
from the last bit shifted out of the rightmost bit
position. Carry is cleared if either the number
of shifts or the length of the operand is 0.

Examples

I. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E ¢

Number of shifts = 04

Shifted operand = F85A4C719FE06741 4

This is the original operand shifted right four
bits arithmetically; the four most signifi-
cant bits all take the value of the original
sign bit (1).

Carry = 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3
Number of shifts = 03
Result: Shifted operand = 07ED485A ¢

This is the original operand shifted right three
bits arithmetically; the three most signifi-
cant bits all take the value of the original
sign bit (0).

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

273

274 BT MANPULATIONS AND SHIFTS

w5 ME NE NS NE wE wE s

Title Multiple—Precision Arithmetic Shift Right
Name ¢ MPASR
H Purpose: Arithmetic shift right a multi-byte operand
H N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11]
its most significant byte, where ARRAY

is its base address.

Exit: Operand shifted right with the most significant
bit propagated.
CARRY := Last bit shifted from least
significant position.

R NE NC NE MR M3 ME M8 MR SE wE 9B g e

Registers used: AF,BC,DE,HL

Time: 59 cycles overhead plus
((34 # length) + 44) cycles per shift

Size: Program 28 bytes

B B NE W N3 MO NN uE wd

MPASR:
sEXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS O
;OR CLEARS CARRY IN EITHER CASE

LD A, C
OR A
RET y4 sRETURN IF NUMBER OF SHIFTS IS O
LD A B
OR A
RET Z sRETURN IF LENGTH OF OPERAND IS O
; CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
LD E,B » ADDRESS OF MSB = BASE + LENGTH~-1
LD D,o0
ADD HL, DE
DEC HL sHL = ADDRESS OF MSB
;C

= NUMBER OF SHIFTS
A = LENGTH OF OPERAND
;LOOP ON NUMBER OF SHIFTS TO PERFORM
s INITIAL CARRY = MOST SIGNIFICANT BIT OF ENTIRE OPERAND

NE MR N M NE WS NP Ne

NE N NE ME NI NE G B NS NE MR NE ME N ME NE NS %8 @ MR NF NE NA w8 W us

7C MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT (MPASR) 275

LLOOFP:
L.n B, (HL) sGET MOST SIGNIFICANT BYTE
RL B s CARRY = MOST SIGNIFICANT BIT
LD B,A
LD E.L s SAVE ADDRESS OF MSB
(1] D, H
s ROTATE BYTES RIGHT STARTING WITH MIST SIGNIFICANT
ASRLF:
RR (HL.) sROTATE A BYTE RIGHT
DEC HL s DECREMENT TO LESS SIGNIFICANT BYTE
DUNZ ASRLP
CONT:
LD L,E s RESTORE ADDRESS OF MSB
LD H,D
DEC C s DECREMENT NUMBER QF SHIFTS
JR NZ, LOOP
RET
H SAMPLE EXECUTION: H
SC7C:
LD HL, AY s BASE ADDRESS OF OPERAND
LD B, SZAY sLENGTH OF QOPERAND IN BYTES
LD C,SHIFTS s NUMBER OF SHIFTS
CALL MPASR s SHIFT
sRESULT OF SHIFTING EDCRA®87854321iH, 4 RITS IS
H FEDCRA98765432H, C=0
H IN MEMQORY AY = 032H
H AY+1 = QS4H
H AY+2 = 076H
H AY+3 = 098H
H AY+4 = OBAH
H AY+S = QDCH
3 AY+4 = QFEH
JR SC7C
sDATA SECTION
SZAY EQU 7 s LENGTH OF OPERAND IN BYTES
SHIFTS EQU 4 s NUMBER OF SHIFTS
AY: DR 21H, 43H, 85H, 87H, 0A9H, OCBH, OEDH

END

Multiple-Precision Logical Shift Left

(MPLSL)

/D

Shifts a multi-byte operand left logically by a
specified number of bit positions. The length of
the operand (in bytes) is 255 or less. The Carry
flag is set from the last bit shifted out of the
leftmost bit position. The operand is stored with
its least significant byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand left one bit, starting with the least
significant byte. It repeats the operation for the
specified number of shifts.

Registers Used: AF, BC, DE

Execution Time: NUMBER OF SHIFTS * (27+ 34
LENGTH OF OPERAND IN BYTES) + 31 cycles

Program Size: 21 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits

immediately with the operand unchanged and the
Carry flag cleared.

Eniry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted left logically by the specified
number of bit positions (the least significant bit
positions are filled with 0’s). The Carry flag is set
from the last bit shifted out of the leftmost bit
position. Carry is cleared if either the number of
shifts or the length of the operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E,,

Number of shifts = 04

Shifted operand = 5A4C719FE06741 EQ

This is the original operand shifted left four
bits logically; the four least significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
leftmost bit position was 0.

Result:

276

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3,,
Number of shifts = 03
Result: Shifted operand = FB521698,,

This is the original operand shifted left three
bits logically; the three least significant bits
are all cleared.

Carry = 1, since the last bit shifted from the
leftmost bit position was 1.

NP MB NB NE NB NE NB B

B NE w8 NS v wa wR B

ME NE NE NE NE N WE B NE WE NE WE MBS WS A B N@

MPLSL:

LOOF:

7D MULTIPLE-PRECISION LOGICAL SHIFT LEFT (MPLSL)

Title Multiple-Precision Logical Shift Left
Name MPLSL
Purpose: Logical shift left a multi-byte operand
N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11]
its most significant byte, where ARRAY

is its base address.

Exit: Operand shifted left filling the least
significant bits with zeros

CARRY := Last bit shifted from
most significant position

Registers used: AF,BC,DE

Time: 31 cycles overhead plus
((34 % length) + 27) cycles per shift

Size: Program 21 bytes

;EXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS O
;s OR CLEARS CARRY IN EITHER CASE

LD A, C

OoR A

RET z ;RETURN IF NUMBER OF SHIFTS IS O
LD AB

OR A

RET Z :RETURN IF LENGTH OF OPERAND IS ©

;:LOOP ON NUMBER OF SHIFTS TO PERFORM

A = LENGTH OF OPERAND

3C = NUMBER OF SHIFTS

sHL = ADDRESS OF LEAST SIGNIFICANT (FIRST) BYTE OF OPERAND
sCARRY = O INITIALLY FOR LOGICAL SHIFT

LD E,L ; SAVE ADDRESS OF LSB

LD D, H

LD B,A ;B = LENGTH OF OPERAND
A

OR ;:CLEAR CARRY FOR LOGICAL SHIFT

277

N NE B NB NB wm B ws

ME wE ME U ME NE WA wE N8 & NE N3 NE N NE A NB NS WE NS MO YE e N8 wE wa

278 T MANIPULATIONS AND SHIFTS

:ROTATE BYTES STARTING WITH LEAST SIGNIFICANT

LSLLP:
RL (HL) sROTATE NEXT BYTE LEFT
INC HL 7 INCREMENT TO MORE SIGNIFICANT EYTE
DuINZ LSLLP
LD L,E s RESTORE ADDRESE OF LSEB
LD H.D
DEC C s DECREMENT NLIMRER OF SHIFTS
JR NZ, LooP
RET
7
H SAMPLE EXECUTION:
r
i
SC70:
LD HL, AY sHL = RASE ADDRESS OF OPERAND
Lo B, SZAY ;B = LENGTH OF OPERAND IN BYTES
LD C,SHIFTS ;C = NUMBER OF SHIFTS
CALL MPLSL s SHIFT
;RESULT OF SHIFTING EDCRA®87454321H, 4 BITS IS
; DCRAPR76543210H, C=0
; IN MEMORY AY = 010H
? AY+1 = 032H
; AY+2 = 054H
H AY+3 = 07&H
; AY+4 = Q98H
H AY+3 = OBAH
; AY+&6 = ODCH
JR SC7D
s DATA SECTION
SZAY EQU 7 LENGTH OF OPERAND IN EBYTES
SHIFTS EQU 4 s NUMBER OF SHIFTS
AY: DB 21H, 43H, &5H, 87H, 0A9H, OCRBH, OEDH

END

8w wE w8 ws

Multiple-Precision Logical Shift Right

(MPLSR)

A=

Shifts a multi-byte operand right logically by
a specified number of bit positions. The length
of the operand (in bytes) is 255 or less. The
Carry flag is set from the last bit shifted out of
the rightmost bit position. The operand is stored
with its least significant byte at the lowest
address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand right one bit, starting with the
most significant byte. It repeats the operation
for the specified number of shifts.

Registers Used: AF, BC, DE, HL

Execution Time: NUMBER OF SHIFTS *(35+34 «
LENGTH OF OPERAND IN BYTES)+ 59 cycles

Program Size: 26 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted right logically by the specified
number of bit positions. (The most significant
bit positions are filled with 0’s.)

The Carry flag is set from the last bit shifted out
of the rightmost bit position. Carry is cleared
if either the number of shifts or the length of
the operand is 0.

Examples

1. Data: Length of the operand (in bytes) = 08

Operand = 85A4C719FEQ6741E ¢

Number of shifts = 04

Shifted operand = 085A4C719FE06741 ¢

This is the original operand shifted right
four bits logically; the four most significant
bits are all cleared.

Carry= 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3
Number of shifts = 03
Result: Shifted operand = 07ED485A ¢

This is the original operand shifted right three
bits logically; the three most significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

279

280 BT MANIPULATIONS AND SHIFTS

NE ME N3 NE wm NE wE e

Title Multiple—Precision Logical Shift Right

Name : MPLSR

Purpose: Logical shift right a multi~byte operand N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C Number of bits to shift

[

The operand is stored with ARRAYLO1 as its
least significant byte and ARRAYLLENGTH-13]
its most significant byte, where ARRAY

is its base address.

Exite Operand shifted right filling the most
significant bits with zeros

CARRY := Last bit shifted from least
significant position

Registers used: AF,BC,DE,HL

Time: 29 cycles overhead plus
((34 # length) + 3%) cycles per shift

M ME NE NS ME NE NI ME M8 NE MG ME NS NB M8 N5 ME NE ME wE w8 s W

Size: Program 24 bytes

- wn

MPLSR:
EXIT IF NUMBER OF SHIFTS OR LENGTH OF QPERAND IS O
;OR CLEARS CARRY IN EITHER CASE

LD A, C

OR A

RET z sRETURN IF NUMBER OF SHIFTS IS O
LD AR

OR A

RET z sRETURN IF LENGTH OF OPERANLD I%Z O
s CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE

LD E,B ;s ADDRESS OF MSR = BRASE + LENGTH-1
LD D,o

ADD HL,DE

DEC HL L. = ADDREZS OF MSR

i H

;C = NUMBER OF SHIFTS
A = LENGTH OF OFERAND
s LOOP ON NUMBER OF SHIFTS TO PERFORM

;START WITH CARRY = O FOR LOGICAL SHIFT

NB N ME MR« w8 wE e

NE ME NMD M3 ME NF NE NE NE NE WE N8 YR ME W8 el N B wE N M8 B w8 wE s wn

LOOF =

LSRLF:

-8 wE %S ws w8

SC7E:

SZAY
SHIFTS
AY:

OR
LD
Lo
Lo
;ROTATE

RR
DEC
DLINZ
LD
Lo
DEC
JR
RET

7E MULTIPLE-PRECISION LOGICAL SHIFT RIGHT (MPLSR)

A ;s CLEAR CARRY FOR LOGICAL SHIFT
B, A 3B = LENGTH OF QFERAND

E,L s SAVE ADDREZSZ OF MSER

O, H

BRYTES STARTING WITH MOST SIGNIFICANT

(HL) ;ROTATE A BYTE RIGHT

HL ; DECREMENT TO LESS SIGNIFICANT BYTE
LSRLP

L,E s RESTORE ADDREZR OF MIB

H, D

c s DECREMENT NUMBER OF SHIFTS
NZ, LQoF

SAMPLE EXECUTION:

281

N8~ w8 ws e

LD HL, AY ;HL = BASE ADDRESS OF OFERAND
Lo B, SZAY ;B = LENGTH OF OPERAND IN RYTES
LD C,SHIFTS ;C = NUMBER 0OF SHIFTS
CALL MFLSR 3 SHIFT
sRESULT OF SHIFTING EDCBA®87854321H, 4 BITS IS
H OENCRAY8785432H, (=0
+ IN MEMORY AY = 0%Z2H
H AY+1 = 054H
; AY+2 = Q76H
; AY+3 = O0%8H
; AY+4 = QEAH
H AY+S = ODCH
; AY+é& = 0OEH
JR SC7E
s DATA SECTION
EQU 7 ; LENGTH OF OPERAND IN BYTES
EQU 4 s NUMBER OF SHIFTS
DR 21H, 43H, 65H, 87H, 0A?H, OCBH, OEDH

END

Multiple-Precision Rotate Right (\MPR[R)

/F

Rotatesa multi-byte operand right by a spec-
ified number of bit positions as if the most signif-
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flagis set from the last bit shifted
out of the rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 0 of the
least significant byte of the operand to the Carry
flag and then rotates the entire operand right
one bit, starting with the most significant byte. It
repeats the operation for the specified number
of rotates.

Registers Used: AF, BC, DE, HL, IX
Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 83
cycles
Program Size: 33 bytes
Data Memory Required: None
Special Cases:
1. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Exit Conditions

Operand rotated right logically by the specified
number of bit positions (the most significant bit
positions are filled from the least significant bit
positions). The Carry flag is set from the last bit
shifted out of the rightmost bit position. Carry is
cleared if either the number of rotates or the
length of the operand is 0.

Examples

I. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E,4

Number of rotates = 04

Rotated operand = E85A4C7I9FE06741 ¢

This is the original operand rotated right four
bits; the four most significant bits are equiv-
alent to the original four least significant
bits.

Carry = 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

282

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3 ¢
Number of rotates = 03
Result: Rotated operand = 67ED485A 4

This is the original operand rotated right
three bits; the three most significant bits are
equivalent to the original three least signif-
icant bits.

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

7F MULTIPLE-PRECISION ROTATE RIGHT (MPRR) 283

NB N8 N v B wE w@ wE
NE NE N N8 R N8 s ws

Title Multiple-Precision Rotate Right

Name : MPRR

Purpose: Rotate right a multi-byte operand N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C = Number of bits to rotate

The cperand is stored with ARRAYLOD as its
least significant byte and ARRAYLLENGTH-11
its most significant byte, where ARRAY

is its base address.

Exite Operand rotated right
CARRY := Last bit shifted from least
significant position
Registers used: AF,BC,DE,HL,IX

Time: 83 cycles overhead plus
({34 = length) + 58) cycles per rotate

Size: Program 32 bytes

NB NB N8 WP NB NG NB NP M@ MB NE NG NB 9B M0 N8 M3 WD N8 @ N0 N5 s N8
N M wE w8 B B ME NE B ME SNE wE ME B ME NE NE wD NS WE MR 9B s Nw

MPRR:
sEXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS Q
s OR CLEARS CARRY IN EITHER CASE

Lo A, C
OR A
RET r4 s RETURN IF NUMRER OF ROTATES IS O
LD A B
OR A
RET z sRETURN IF LENGTH OF OPERANLD IS O
: CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
PLISH HL
PQOP IX s IX POINTS TO LSRR (FIRST RYTE)
LD E,B s ADDRESS OF MSR = BASE + LENGTH-1
Lo n,o
ADD HL., DE
DEC HL sHL POINTS TQ MSB (LAST BYTE)
;¢ = NUMBER OF ROTATES

sA = LENGTH OF OPERAND
:LOOP ON NUMBER OF ROTATES TQ PERFORM
;CARRY = LEAST SIGNIFICANT BIT OF ENTIRE OFERAND

284 7T \VANIPULATIONS AND SHIFTS

LOCP:
LD B, (IX+0) ;GET LSB
RR B ;CARRY = RIT O OF LSR
LD E, A ;B = LENGTH OF OPERAND IN BYTES
LD E,L : SAVE ADDRESS OF MSR
Lo D,H
ROTATE BYTES RIGHT STARTING WITH MOST SIGNIFICANT
RRLF:
RR (HL) ;ROTATE A BYTE RIGHT
DEC HL s DECREMENT TO LESS SIGNIFICANT BYTE
DNZ RRLP
LD L,E sRESTORE ADDRESS OF MSB
LD H, D
DEC C ; DECREMENT NUMBER OF ROTATES
JR NZ, LoOP
RET
H SAMPLE EXECUTION:
¥
SC7F:
Lo HL, AY ; BASE ADDRESS OF OFERAND
LD B, SZAY s LENGTH OF OPERAND IN RYTES
LD C,ROTATS s NUMBER OF ROTATES
CALL MPRR s ROTATE
sRESULT OF ROTATING EDCBA9R27654321H, 4 BITS IS
H 1EDCBAPR7485432H, C=0
;7 IN MEMORY AY = QZ2H
; AY+1l = 054H
; AY+2 = 074H
; AY+32 = Q92H
; AY+4 = OEAH
; AY+S = ODCH
; AY+46 = O1EH
JR SC7F
; DATA SECTION
SZAY EQU 7 s LENGTH OF OPERAND IN BYTES
ROTATS EQU 4 s NUMBER OF ROTATES
AY: DR 21H, 43H, 65H, 87H, 0A?H, OCBH, OEDH

END

uE we ws ws ws

Multiple-Precision Rotate Left (\P[:L)

/G

Rotates a multi-byte operand left by a speci-
fied number of bit positions as if the most signif-
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flag is set from the last bit shifted
out of the leftmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 7 of the
most significant byte of the operand to the
Carry flag. It then rotates the entire operand left
one bit, starting with the least significant byte. It
repeats the operation for the specified number
of rotates.

Registers Used: AF, BC, DE, HL, IX
Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 104
cycles
Program Size: 35 bytes
Data Memory Required: None
Special Cases:
1. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Exit Conditions

Operand rotated left the specified number of bit
positions (the least significant bit positions are
filled from the most significant bit positions).
The Carry flag is set from the last bit shifted out
of the leftmost bit position. Carry is cleared if
either the number of rotates or the length of the
operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E ¢

Number of rotates = 04

Rotated operand = 5A4C719FEQ6741 E8 ¢

This is the original operand rotated left four
bits; the four least significant bits are equiv-
alent to the original four most significant
bits.

Carry = 0, since the last bit shifted from the
leftmost bit position was 0.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3 ¢
Number of rotates = 03
Result: Rotated operand = FB521699,4

This is the original operand rotated left three
bits; the three least significant bits are equiv-
alent to the original three most significant
bits.

Carry = 1, since the last bit shifted from the
leftmost bit position was 1.

285

286 &1 MANIPUATIONS AND SHIFTS

NE NE NE NS NE N8 NE B

NE B M ME NS ME M ME ME MR ME M8 N8 ME ME N B WE NE ME N s s N

MPRL:

Title Multiple-Precision Rotate Left

Name: MPRL

Purpose: Rotate left a multi-byte operand N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register £ = Number of bits to rotate

The operand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11
its most significant byte, where ARRAY

is its base address.

Exit: Operand rotated left
CARRY := Last bit shifted from most
significant position

Registers used: AF,EBC,DE,HL, IX

Time: 104 cycles overhead plus
((34 = length) + 58) cycles per rotate

Size: Program 35 bytes

sEXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS O
;OR CLEARS CARRY IN EITHER CAZE

LD A, C

oR A

RET)4 :RETURN IF NUMBER OF ROTATES IS O
LD A, B

OR A

RET z sRETURN IF LENGTH OF OPERAND IS O

; CALCLILATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE

PUSH HL ;s SAVE ADDRESS OF FIRST BYTE

LD E,B s ADDRESS OF M5B = BASE +LENGTH-1

LD n,o

ADD HL, DE

DEC HL

PUSH HL.

POF IX s IX POINTS TO MOST SIGNIFICANT BYTE
POFP HL sHL POINTS TO LEAST SIGNIFICANT BYTE

3C = NUMBER OF ROTATES
A = LENGTH OF OFERAND
;LOOP ON NUMBER OF ROTATES TO PERFORM

-

.

NS wE MD eE wa @

NE NE ME B NE ME WO N0 w8 w8 M8 M8 w8 W@ w8 WO M@ N4 M3 P B wn ww @

7G MULTIPLE-PRECISION ROTATE LEFT (MPRL) 287

7 CARRY = MOST SIGNIFICANT BIT OF ENTIRE OPERAND

LQCP:
Lo B, (IX+0) s GET MOST SIGNIFICANT BYTE
RL B ;CARRY = BIT 7 OF MSE
Lo E,A ;B = LENGTH OF OPERAND IN BYTES
LD E,L s SAVE ADDREZS OF LSRE
LD o, H
;ROTATE BYTES LEFT STARTING WITH LEAST SIGNIFICANT
RLLF:
RL (HL) ;ROTATE A EBYTE LEFT
INC HL 3 INCREMENT TO MORE SIGNIFICANT RYTE
DUNZ RLLP
Ln L,E s RESTORE ADDRESS QF LSB
LD H, D
DEC c ;s DECREMENT NUMBRER OF ROTATES
JR NZ, LOaP
RET
H SAMFLE EXECUTION: H
SC7G:
LD HL, AY ;HL = BASE ADDRESS OF OQFERAND
LD B, SZAY ;B = LENGTH OF OFERAND IN RBYTES
LD C,ROTATS ;C = NUMBER OF ROTATES
CALL MFRL s ROTATE
sRESULT OF ROTATING EDCBA9274854321H, 4 BITS IS
H DCRAYS74854321EH, C=0
; IN MEMORY AY = Q1EH
; AY+1 = Q3zH
? AY+2 = Q54H
; AY+32 = 074H
3 AY+4 = 098H
; AY+S = OEAH
; AY+4 = ODCH
JR SC76
s DATA SECTION
SZAY EQU 7 sLENGTH OF QOPERAND IN RYTES
ROTATS EQU 4 s NUMBER OF ROTATES
AY: R 21H, 43H, &45H, 87H, 0A9H, OCRH, OEDH

END

String Compare (STRCMP)

8A

Compares two strings and sets the Carry and
Zero flags appropriately. The Zeroflagissetto 1
if the strings are identical and to 0 otherwise.
The Carry flag is set to 1 if the string with the
base address in DE (string 2) is larger than the
string with the base address in HL (string 1); the
Carry flagis set to 0 otherwise. The stringsarea
maximum of 255 bytes long and the actual
characters are preceded by a byte containing the
length. If the two strings are identical through
the length of the shorter, the longer string is
considered to be larger.

Procedure: The program first determines which
string is shorter from the lengths that precede
the actual characters. It then compares the
strings one byte at a time through the length of
the shorter. The program exits with the flags set
if it finds corresponding bytes that differ. If the
strings are the same through the length of the

Registers Used: AF, BC, DE, HL
Execution Time:

I. If the strings are not identical through the
length of the shorter, the time is 91+ 60 * NUMBER
OF CHARACTERS COMPARED. If, for example,
the routine compares five characters before finding a
disparity, the execution time is

91+ 60 * 5= 91 + 300 = 391 cycles

2. If the strings are identical through the length of
the shorter, the time is 131 + 60 * LENGTH OF
SHORTER STRING. If, for example, the shorter
string is eight bytes long, the execution time is

131 + 60 * 8 = 131 + 480 = 611 cycles

Program Size: 32 bytes

Data Memory Required: Two bytes anywhere in
RAM for the lengths of the strings (addresses
LENSI and LENS2).

shorter, the program sets the flags by comparing
the lengths.

Entry Conditions

Base address of string 2 in DE
Base address of string I in HL

288

Exit Conditions

Flags set as if string 2 had been subtracted from
string 1. If the strings are the same through
the length of the shorter, the flags are set as if
the length of string 2 had been subtracted
from the length of string 1.

Zero flag= 1if strings are identical, 0 if they are
not.

Carry flag= 1 if string 2 is larger than string 1, 0
if they are identical or string [is larger. If the
strings are the same through the length of the
shorter, the longer one is considered to be
larger.

Examples
1. Data: String | = 05°PRINT’ (05 is the length of the
string)
String 2 = 03‘END” (03 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)
Carry flag = 0 (string 2 is not larger than
string 1)
2. Data: String 1 =05'PRINT’ (05 is the length of the
string)
String 2 = 02‘PR’ (02 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 0 (string 2 is not larger than
string 1)

The longer string (string 1) is considered to be
larger. If you want to determine whether string 2
is an abbreviation of string 1, you could use
Subroutine 8C (Find the Position of a Substring)
and determine whether string 2 was part of
string 1 and started at the first character.

We are assuming here that the strings consist

8A STRING COMPARE (STRCMP) 289

3. Data: String I = 05'PRINT’ (05 is the length of the
string)
String 2= 06‘SYSTEM?’ (06 is the length of
the string)
Result: Zero flag = 0 (strings are not identical)

Carry flag= 1 (string 2 is larger than string 1)

of ASCII characters. Note that the byte preceding
the actual characters contains a hexadecimal
number (the length of the string), not a character.
We have represented this byte as two hexadecimal
digits in front of the string. The string itself is
shown surrounded by single quotation marks.
These serve only to delimit strings in the examples;
they are not actually part of the data. This
format is used to display string data in the
examples throughout this chapter.

This routine treats spaces like other charac-
ters. If, for example, the strings are ASCII, the
routine will find that SPRINGMALID is larger
than SPRING MAID, sincean ASCII M (4D)
is larger than an ASCII space (204).

B ME NE NS M@ w8 NE g

B NE NS N NE NE WD e B wg

Compare 2 strings and return C and Z flags set

Title String compare
Name: STRCMP
Purpose:

or cleared
Entry: Register pair HL

Register pair DE =

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

B N wE wE NS wE B e

Ease address of string 1
Base address of string 2

NE B NE NE NF NE NE B wE g

290 SIRING MANIPULATION

NP NB NE NE NS NME N8 MR NB ME NE NI A NE NS we wE

STRCMP:

BEGCMF:

CMPLP:

CMPLEN:

LENS1:
LENS2:

Exit:

Registers used:

Time:

Size:

IF string 1 string 2 THEN
I=1,C=0

IF string 1 > string 2 THEN
7=0,C=0

IF string 1 < string 2 THEN
=0,C=1

AF, BC, DE, HL
91 cycles overhead plus &0 cycles per byte plus
40 cycles if strings are identical

through length of shorter

Program 32 bytes
Data 2 bytes

s+ DETERMINE WHICH STRING IS SHORTER
;LENGTH OF SHORTER = NUMBER OF BYTES TO COMPARE

LD
LD
LD
LD
CP
JR
LD

A, (HL)
(LENS1),
A, (DE)
(LENS2),
(HL)

C, BEGCMP
A, (HL)

s SAVE LENGTH OF STRING 1

A
;s SAVE LENGTH OF STRING 2

A
s COMPARE TO LENGTH OF STRING 1
s JUMP IF STRING 2 IS SHORTER
sELSE STRING 1 IS SHORTER

s COMPARE STRINGS THROUGH LENGTH OF SHORTER

OR
JR

LD
EX

INC
INC
LD
CP
RET

DJUNZ

A
Z, CMPLEN

B,A
DE, HL

HL

DE

A, (DE)
(HL)
NZ

CMPLP

s TEST LENGTH OF SHORTER STRING
; COMPARE LENGTHS

; IF LENGTH IS ZEROQ
B = NUMBRER OF BYTE3S TO COMPARE

; DE STRING 1
s HL STRING 2

s INCREMENT TOQ NEXT BYTES

;GET A BYTE OF STRING 1

s COMPARE TO RYTE QF STRING 2
sRETURN WITH FLAGS SET IF BYTES
3 NOT EQUAL

s CONTINUE THROUGH ALL BYTES

; STRINGS SAME THROUGH LENGTH OF SHORTER
;S0 USE LENGTHS TO SET FLAGS

LD
LD
CP
RET

; DATA
ns
DS

A, (LENS1
HL, LENS2
{(HL)

) s COMPARE LENGTHS

sRETURN WITH FLAGS SET OR CLEARED

sLENGTH OF STRING 1
sLENGTH OF STRING 2

NE N ME NE NS NE NS NE W8 WE MB NS NE wE WA wR ws

- N wE ws s

8A STRING COMPARE (STRCMP) 291

SAMPLE EXECUTION:

LD
LD
CALL

JR

DR
DB

END

HL,S1 s BASE ADDRESS OF STRING
DE, 52 ; BASE ADDRESS OF STRING 2
STRCMP ; COMPARE STRINGS

; COMPARING "STRING 1"
STRING 2, S0 ZI=0,C=1
SC8A ;LOOP FOR ANQTHER TEST

20H, "STRING 1 ‘
20H, “STRING 2 -

"STRING 2"
3 RESULTS IN STRING 1 LESS THAN

N wE wE uE e

String Concatenation (CONCAT)

8B

Combines (concatenates) two strings, placing
the second immediately after the first in memory.
If the concatenation produces a string longer
than a specified maximum, the program con-
catenates only enough of string 2 to give the
combined string its maximum length. The Carry
flagis cleared if all of string 2 can be concatenated
or set to 1 if part of string 2 must be dropped.
Both strings are a maximum of 255 bytes long
and the actual characters are preceded by a byte
containing the length.

Procedure: The program uses the length of

string 1 to determine where to start adding char-
acters and the length of string 2 to determine how
many characters to add. If the sum of the lengths
exceeds the maximum, the program indicates an
overflow and reduces the number of characters it
must add (the number is the maximum length
minus the length of string 1). It then moves the
appropriate number of characters from string 2
totheend of string 1, updates the length of string
1, and sets the Carry flag to indicate whether any
characters were discarded.

Registers Used: AE, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF CHARACTERS CONCATENATED plus 288
cycles overhead. NUMBER OF CHARACTERS
CONCATENATED is normally the length of string
2, but it will be the maximum length of string | minus
its current length if the combined string would be too
long. If, for example, NUMBER OF CHARACTERS
CONCATENATED is 144 (20), the execution time
is
21 * 20 -+ 288 = 420 + 288 = 708 cycles

Program Size: 83 bytes

Data Memory Required: Five bytes anywhere in
RAM for the base address of string | (2 bytes starting
at address SIADR), the lengths of the strings
(addresses SILEN and S2LEN), and a flag that

indicates whether the combined strings overflowed
(address STRGOV).

Special Cases:

1. If concatenating would make the string longer
than its specified maximum length, the program
concatenates only enough of string 2 to reach the
maximum. If any of string 2 must be truncated, the
Carry flag is set to 1.

2. If string 2 has a length of 0, the program exits
with the Carry flag cleared (no errors) and string 1
unchanged. That is, a length of 0 for either string is
interpreted as 0, not as 256.

3. If the original length of string 1 exceeds the
specified maximum, the program exits with the
Carry flag set to | (indicating an error) and string 1
unchanged.

Entry Conditions

Base address of string 2 in DE
Base address of string 1 in HL
Maximum length of string 1 in B

292

Exit Conditions

String 2 concatenated at the end of string 1 and
the length of string 1 increased appropriately. If
the resulting string would exceed the maximum
length, only the part of string 2 that would give
string 1 its maximum length is concatenated. If
any part of string 2 must be dropped, the Carry
flag is set to 1. Otherwise, the Carry flag is
cleared.

Examples

1. Data:

Result:

Maximum length of string | = 0E, = 14/,

String [= 07* JOHNSON’ (07 is the length of
the string)

String 2 = 05‘,DON’ (05 is the length of the
string)

String 1 = 0C*JOHNSON, DON’(0C = 12,
is the length of the combined string with
string 2 placed after string 1)

Carry = 0, since the concatenation did not
produce a string exceeding the maximum
length.

Note that we are representing the initial byte
(containing the length of the string) as two
hexadecimal digits in both examples.

~E WB NE WS N8 NB wp ws

WO ME NE NS B N8 N8 ME NE NS WS NS WE WS NS N6 NE WS NT WO NS B w8

8B STRING CONCATENATION (CONCAT) 293

2. Data: String 1 = 07* JOHNSON’ (07 is the length of
the string)

String 2= 09, RICHARD’ (09 is the length of
the string)

Result: String | = 0E'JOHNSON, RICHA' (0E ;=
14, is the maximum length allowed, so the
last two characters of string 2 have been
dropped)

Carry = I, since the concatenation produced
a string longer than the maximum length.

Title String Concatenation
Name: CONCAT
Purpose: Concatenate 2 strings into one string

Entry: Register pair HL = Base address of string 1
Register pair DE = Rase address of string 2
Register B = Maximum length of string 1

A string is a maximum of 235 bytes long plus
a length byte which precedes it.

Exit: String 1 := string 1 concatenated with string 2
If no errars then

CARRY := 0
else
begin
CARRY :=

if the concatenation makes string 1 too

long, concatenate only enough of string 2

to give string 1 its maximum lenagth.

if lengthi(stringl) > maximum length then
no concatenation is done

end;

1

w8 w8 N8 ME WD ME s w8

B N ME w8 w8 NG NS w8 wE s

NB NE WE NE N8 NE NS B NB wB w§ W5 ND

294 sRING MANPULATION

N8 MZ WS N8 MG 9B ~NB MG w8

CONCAT =

TOOLNG:

Registers used: AF,RC,DE,HL

Time: Approximately 21 % (length of string 2) cycles
Plus 288 cycles overhead

Size: Program 832 bytes
Data S bytes

s DETERMINE WHERE TO START CONCATENATING

; CONCATENATION STARTS AT THE END OF STRING 1
$END OF STRING 1 = BASE1 + LENGTH1 + 1, WHERE

+ THE EXTRA 1 MAKES UP FOR THE LENGTH BYTE

s NEW CHARACTERS COME FROM STRING 2, STARTING AT
¢ BASE2 + 1 (SKIPPING QVER LENGTH RYTE)

LD (S1ADR) , HL s SAVE ADDRESS OF STRING 1

PUSH RC s SAVE MAXIMUM LENGTH OF STRING 1
LD A, (HL) $ SAVE LENGTH OF STRING 1

LD (SILEN), A

LD C,A sEND1 = BASE1l + LENGTH1 + 1

LD B, 0

ADD HL., BC

INC HL sHL = START OF CONCATENATION

LD A, (DE) :SAVE LENGTH OF STRING 2

LD (SZLEN), A

INC DE ;DE = FIRST CHARACTER OF STRING 2
POP BC s RESTORE MAXIMUM LENGTH

s DETERMINE HOW MANY CHARACTERS TO CONCATENATE

LD C,A 3ADD LENGTHS OF STRINGS

LD A, {S1LEN)

ADD A, C

JR C, TOOLNG s JUMP IF SUM EXCEEDS 255

CP B ;s COMPARE TGO MAXIMUM LENGTH

JR Z, LENQK s JUMP IF NEW STRING IS MAX LENGTH
JR C, LENQK ; OR LESS

s COMRINED STRING IS TOQ LONG

s+ INDICATE A STRING QOVERFLOW, STRGOV := OFFH

; NUMBER OF CHARACTERS TOQ CONCATENATE = MAXLEN — S1LEN
7 LENGTH OF STRING 1 = MAXIMUM LENGTH

LD A, OFFH s INDICATE STRING OVERFLOW

Lo (STRGQV) , A

LD A, (S1LEN) s CALCULATE MAXLEN - S1LEN

LD C,A

Lo AR

SUR C

RET c $EXIT IF ORIGINAL STRING TOO LONG
LD (S2LEN) , A s CHANGE S2LEN TO MAXLEN ~ S1LEN
LD A B sLENGTH OF STRING 1 = MAXIMUM

LD (S1LEN), A

JR DOCAT ; PERFORM CONCATENATION

NE w8 wE NB N WS D wA s

LENCK =

DOCAT =

EXIT:

S1ADR:
S1LEN:
S2LEN:
STRGOQV:

“E w8 we s ws

SC8B:

S1:

8B STRING CONCATENATION (CONCAT) 295

s RESULTING LENGTH DOES NOT EXCEED MAXIMUM

y LENGTH OF STRING 1 = SILEN + S2LEN

3 INDICATE NO OVERFLOW, STRGOV := 0

3 NUMBRER OF CHARACTERS TO CONCATENATE = LENGTH OF STRING 2

LD (SILEN), A s SAVE SUM OF LENGTHS
SUB A : INDICATE NO OVERFLOW
LD (STRGQV) , A

; CONCATENATE STRINGS BY MOVING CHARACTERS FROM STRING 2
3 TQ END OF STRING 1

LD A, (S2LEN) s GET NUMBER OF CHARACTERS
OR A
JR Z,EXIT sEXIT IF NOTHING TO CONCATENATE
LD C,A s BC = NUMBRER OF CHARACTERS
LD B, 0
EX DE, HL sDE = DESTINATION
sHL = SOURCE
LDIR s MOVE CHARACTERS
LD A, (SILEN) sESTABLISH NEW LENGTH OF STRING 1
LD HL, (S1ADR)
LD (HL) , A
kgA A, (STRGOV) sCARRY = 1 IF OVERFLQW, O IF NOT
RET
; DATA
ns s BASE ADDRESS OF STRING 1
ns sLENGTH QF STRING 1

ns
Ds

sLENGTH OF STRING 2
s STRING OVERFLOW FLAG

el]

. e

SAMPLE EXECUTION:

8 wm s

LD HL, S1 sHL = BASE ADDRESS OF S1

LD DE, S2 sDE = BASE ADDREZSS OF S2

LD R, 20H sB = MAXIMUM LENGTH OF STRING 1
CALL CONCAT ;s CONCATENATE STRINGS

JR SC8R s RESULT OF CONCATENATING

s TEST DATA,

DB
DB

8H
“LASTNAME

7 "LASTNAME"

; FIRSTNAME"
3 Is 81 =

FIRSTNAME"

AND " r
13H, "LASTNAME,

CHANGE FOR OTHER VALUES

sLENGTH OF S1
7 332 BYTE MAX LENGTH

296 sRING MANIPULATION

S2: DB OBH s LENGTH OF =2
DB “» FIRSTNAME “ 332 BYTE MAX LENGTH

END

Find the Position of a Substring (POS)

8C

Searches for the first occurrence of a substring
within a string. Returns the index at which the
substring starts if it is found and 0 if it is not
found. The string and the substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. Thus, if the substring is found, its starting
index cannot be less than 1 or more than 255.

Procedure: The program searches the string
for the substring until either it finds the substring
or the remaining part of the string is shorter
than the substring and hence cannot possibly
contain it. If the substring is not in the string, the
program clears the accumulator; otherwise, the
program places the starting index of the substring
in the accumulator.

Registers Used: AF, BC, DE, HL

Execution Time: Data-dependent, but the overhead
is 157 cycles, each successful match of | character
takes 56 cycles, and each unsuccessful match of |
character takes 148 cycles. The worst case is when the
string and substring always match except for the last
character in the substring, such as
String = ‘AAAAAAAAB’
Substring = ‘AAB’
The execution time in that case is
(STRING LENGTH — SUBSTRING LENGTH
+ 1) * (56 * (SUBSTRING LENGTH— 1)+
148) + 154
If, for example, STRING LENGTH = 9 and SUB-
STRING LENGTH = 3 (as in the case shown), the
execution time is
(9—3+ 1) *(56*(3— 1)+ 148)+ 154= 7% 260+
154 = 1820 + 154 = 1974 cycles
Program Size: 69 bytes

Data Memory Required: Seven bytes anywhere in
RAM for the base address of the string (2 bytes

starting at address STRING), the base address of the
substring (2 bytes starting at address SUBSTG), the
length of the string (address SLEN), the length of the
substring (address SUBLEN), and the current starting
index in the string (address INDEX).

Special Cases:

[. If either the string or the substring has a length
of 0, the program exits with 0 in the accumulator,
indicating that it did not find the substring.

2. 1f the substring is longer than the string, the
program exits with 0 in the accumulator, indicating
that it did not find the substring.

3. If the program returns an index of 1, the
substring may be regarded as an abbreviation of the
string. That is, the substring occurs in the string,
starting at the first character. A typical example
would be a string PRINT and a substring PR.

4. If the substring occurs more than once in the
string, the program will return only the index to the
first occurrence (the occurrence with the lowest
starting index).

Entry Conditions

Base address of substring in DE
Base address of string in HLL

Exit Conditions

A contains index at which first occurrence of
substring starts if it is found and contains 0 if
substring is not found.

297

298 STRING MANIPULATION

Examples

I. Data:

Result:

2. Data:

Result:

B NE N8 uE w8 w8 wB us

W NE NE NE NE NE ME NS N WE NS NE NB NB NS SE B NE wE ws

String = ID‘ENTER SPEED IN MILES
PER HOUR’ (1D¢ = 29y, is the length of
the string)

Substring = 05‘MILES’ (05 is the length of
the substring)

A contains 104 (16,5), the index at which the
substring ‘MILES’ starts.

String = 1B‘SALES FIGURES FOR JUNE

1981' (1B = 27,y is the length of the string)

Substring= 04'JUNE’ (04 is the length of the
substring)

A contains 13 ¢ (19,9), the index at which the
substring ‘JUNE’ starts.

3. Data:
Result:
4. Data:
Result:

String= 10'LET Y1= X1+ R7'(10,4= 16,o is
the length of the string)

Substring = 02‘R4’ (02 is the length of the
substring)

A contains 0, since the substring ‘R4’ does not
appear in the string LET Y1 = X1 + R7.

String = 07'RESTORE’ (07 is the length of
the string)

Substring = 03‘RES’ (03 is the length of the
substring)

A contains I, the index at which the substring
‘RES’ starts. An index of | indicates that
the substring could be an abbreviation of
the string. Interactive programs, such as
BASIC intepreters and word processors,
often use such abbreviations to save on
typing and storage.

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Title
Name : FQ&
Purpose:
within
If the
Entry: Register pair HL =
Register pair DE =
Exit:

Register A
else
Register A

Registers used: AF,RC,DE,HL

Time:

Find the position of a substring in a string

Search for the first occurrence of a substring
a string and return its starting index.
substring is not found a 0 is returned.

If the substring is found then
its starting index

0

Since the algorithm is so data-dependent,

Base address of string
Rase address of substring

-

NE B s N B B wE

NS NE wE B NE wE ws

ME B NE N8 B NE NS NE S e e N5 wa

NB MO MO NG M NS NS NG ME MO WE MO NE NE %I NI MG B W

POZ:

SLP1

8C FIND THE POSITION OF A SUBSTRING (POS)

a simple formula is impossible; but the
following statements are true, and a
worst case is given.

154 cycles overhead
Each match of 1 character takes 5é cycles
A mismatch takes 148 cycles

Worst case timing will be when the
string and substring always match
except for the last character of the
substring, such as

string = “AAAAAAAAAR”

substring = “AAB“

Size: Praogram &9 bytes
Data 7 bytes

; SET UP TEMPORARIES
;EXIT IF STRING OR SUBSTRING HAS ZERQ LENGTH

Ln (STRING), HL : SAVE STRING ADDRESS

EX DE, HL

LD A, (HL) : TEST LENGTH OF SUBSTRING

oR A

JR Z,NOTFND sEXIT IF LENGTH OF SUBSTRING = O
INC HL s MOVE PAST LENGTH BYTE OF SUBSTRING
LD (SURSTG) , HL ; SAVE SUBSTRING ADDRESS

LD (SLUBLEN) , A

LD C,A ;C = SUBSTRING LENGTH

LD A, (DE) s TEST LENGTH OF STRING

OR A

JR Z,NOTFND sEXIT IF LENGTH QF STRING = O

s NUMBER OF SEARCHES = STRING LENGTH - SUBRSTRING LENGTH
+ 1. AFTER THAT, NO USE SEARCHING SINCE THERE AREN-T
ENQUGH CHARACTERS LEFT TO HOLD SUBRSTRING

u8 w8 o

3 IF SURSTRING IS LONGER THAN STRING, EXIT IMMEDRIATELY AND
;s INDICATE SUBSTRING NOT FOLUND

SUR Cc A = STRING LENGTH - SUBRSTRING LENGTH
JR C, NOTFND EXIT IF STRING SHORTER THAN SUBSTRING
INC A ;COUNT = DIFFERENCE IN LENGTHS + 1

Ln B, A

SUR A s INITIAL STARTING INDEX = O

LD CINDEX), A

s SEARCH UNTIL REMAINING STRING SHORTER THAN SUBSTRING

LD HL., INDEX s INCREMENT STARTING INDEX
INC (HL)
LD HL., SURLEN sC = LENGTH OF SUBRSTRING

LD C, (HL)

299

MO N NE NB wE NE N0 NG NB w0 NS N0 MO WS ME & w0 w8 %8

300 srinG MANIPULATION

CMPLP:

SLP2:

FOUND:

NOTFND:

STRING:
SURSTG:
SLEN:
SUBLEN:
INDEX:

N8 8 wm ws ws

SCaC:

LD HL, (STRING) 7 INCREMENT TO NEXT BYTE OF STRING
INC HL
LD (STRING) ,HL s HL NEXT ADDRESS IN STRING

LD DE, (SURSTG) ; DE STARTING ADDRESS OF SUBSTRING
;C = CURRENT VALLE 0OF COUNT

s TRY TO MATCH SUBRSTRING STARTING AT INDEX
s MATCH INVOLVES COMPARING CORRESPONDING CHARACTERS
; ONE AT A TIME

LD A, (DE) s GET A CHARACTER OF SUBSTRING
CP (HL) ; COMPARE TO CHARACTER OF STRING
JR NZ,SLP2 yJUMP IF NOT SAME

DEC C

JR Z,FOUND ;JUMP IF SUBSTRING FOQUND

INC HL ; PROCEED TO NEXT CHARACTERS

INC DE

JR CMPLP

s ARRIVE HERE IF MATCH FAILS, SUBSTRING NOT YET FOUND

DUNZ SLP1 s TRY NEXT HIGHER INDEX IF
;3 ENOUGH STRING LEFT
JR NQTFND ;ELSE EXIT NOT FOUND

s FOUND SUBSTRING, RETURN ITS STARTING INDEX

LD A, (INDEX) 7 SURSTRING FOUND, A = STARTING INDEX
RET

;COULD NOT FIND SUBSTRING, RETURN O AS INDEX

SuB A ; SUBSTRING NOT FOUND, A = O
RET

; DATA

ns 2 ;s BASE ADDRESS OF STRING

DS 2 ; BASE ADDRESS OF SUBSTRING
ns i s LENGTH OF 3TRING

DS 1 s LENGTH OF SUBSTRING

Ds 1 ;s CURRENT INDEX INTO STRING

SAMPLE EXECUTION:

LD HL, STG tHL = BASE ADDRESS OF STRING
LD DE, S8TG ;DE = BASE ADDRESS OF SUBSTRING
CALL PQOS ;FIND POSITION OF SUBSTRING

;3 SEARCHING "AAAAAAAAAB" FOR "AAB"
;7 RESULTS IN REGISTER A = 8

LT R

8C FIND THE POSITION OF A SUBSTRING (POS) 304

JR scac ;LOOP FOR ANQTHER TEST

; TEST DATA, CHANGE FOR OTHER VALUES

DB 0AH s LENGTH OF STRING

DB “AAAAAAAAAR “ 132 BYTE MAX LENGTH
DB 3H sLENGTH OF SUBSTRING

DB “AAB < 332 BYTE MAX LENGTH

END

Copy a Substring from a String (COPY)

8D

Copies a substring from a string, given a
starting index and the number of bytes to copy.
The strings are a maximum of 255 bytes long,
and the actual characters are preceded by a byte
containing the length. If the starting index of the
substring is 0 (that is, the substring would start
in the length byte) or is beyond the end of the
string, the substring is given a length of 0 and
the Carry flag is set to 1. If the substring would
exceed its maximum length or would extend
beyond the end of the string, then only the
maximum number or the available number of
characters (up to the end of the string) is placed
in the substring, and the Carry flag is set to 1. If
the substring can be formed as specified, the
Carry flag is cleared.

Procedure: The program exits immediately if
the number of bytes to copy, the maximum
length of the substring, or the starting index is 0.
It also exits immediately if the starting index
exceeds the length of the string. If none of these
conditions holds, the program checks if the
number of bytes to copy exceeds either the
maximum length of the substring or the number
of characters available in the string. If either is
exceeded, the program reduces the number of
bytes to copy appropriately. It then copies the
proper number of bytes from the string to the
substring. The program clears the Carry flag if
the substring can be formed as specified and sets
the Carry flag if it cannot.

Registers Used: AF, BC, DE, HL.

ExecutionTime: Approximately 21 * NUMBER OF
BYTES COPIED plus 237 cycles overhead. NUMBER
OF BYTES COPIED is the number specified if no
problems occur, or the number available, or the maxi-
mum length of the substring if copying would extend
beyond either the string or the substring. If, for
example, NUMBER OF BYTES COPIED = 12,
(0C\y), the execution time is
21 % 12+ 237 = 252 + 237 = 489 cycles

Program Size: 73 bytes

Data Memory Required: Two bytes anywhere in
RAM for the maximum length of the substring
(address MAXLEN) and an error flag (address
CPYERR)

Special Cases:

1. If the number of bytes to copy is 0, the program
assigns the substring a length of 0 and clears the Carry
flag, indicating no errors.

2. If the maximum length of the substringis 0, the
program assigns the substring a length of 0 and sets
the Carry flag to I, indicating an error.

3. If the starting index of the substring is 0, the
program assigns the substring a length of 0 and sets
the Carry flag to 1, indicating an error.

4. If the source string does not even reach the speci-
fied starting index, the program assigns the substring
alength of 0 and sets the Carry flagto 1, indicating an
error.

5. If the substring would extend beyond the end of
the source string, the program places all the available
characters in the substring and sets the Carry flag to
I, indicating an error. The available characters are
the ones from the starting index to the end of the
string.

6. If the substring would exceed its specified maxi-
mum length, the program places only the specified
maximum number of characters in the substring. It
sets the Carry flag to 1, indicating an error.

Entry Conditions

Base address of substring in DE
Base address of string in HL
Number of bytes to copy in B

302

Starting index to copy from in C
Maximum length of substring in A

8D COPY A SUBSTRING FROM A STRING (COPY) 303

Exit Conditions

Substring contains characters copied from string.
If the starting index is 0, the maximum length of
the substring is 0, or the starting index is beyond
the length of the string, the substring will have a
length of 0 and the Carry flag will be set to 1. If

the substring would extend beyond the end of
the string or would exceed its specified maximum
length, only the available characters from the
string (up to the maximum length of the substring)
are copied into the substring; the Carry flag is set
in this case also. If no problems occur in forming
the substring, the Carry flag is cleared.

Examples

I. Data: String= I0'LET Y1 = R7+ X4’

(10,4 = 16y is the length of the string)
Maximum length of substring = 2
Number of bytes to copy = 2

Starting index = 5§

Substring = 02°Y1’ (2 is the length of the
substring)

Two bytes from the string were copied,
starting at character #5 (that is, characters
5 and 6)

Carry = 0, since no problems occurred in
forming the substring .

Result:

2. Data: String = 0E‘8657 POWELL ST’

(0E ¢ = 14y is the length of the string)
Maximum length of substring= 10,, = 16,
Number of bytes to copy = 0D = 13},
Starting index = 6
Substring = 09°POWELL ST’ (09 is the

length of the substring)

Carry = 1, since there were not enough
characters available in the string to provide
the specified number of bytes to copy.

Result:

3. Data: String= 16'9414 HEGENBERGER DRIVE’
(16,5 = 22, is the length of the string)

Maximum length of substring = 10,s = 16,

Number of bytes to copy = 11,4 = 17,

Starting index = 6

Substring = 100HEGENBERGER DRIV’
(10,4 = 16y is the length of the substring)

Carry= [, since the number of bytes to copy
exceeded the maximum length of the sub-
string.

Result:

Title

Name: Copy

NB N ME uS MBS NG wR we

Copy a substring from a string

~e ue

NE NE wE wn wE NR

304 siinG MANIPULATION

Purpose: Copy a substring from a string given a starting
index and the number of bytes

Entry: Register pair HL = Address of source string
Register pair DE = Address of destination string
Register A = Maximum length of destinaticon

string

Number of bytes to copy

Starting index into source string

Index of 1 is first character of

string

Register B
Register C

nu

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Destination string := The substring from the
string.
if no errors then
CARRY := 0
else
begin
the following conditions cause an
error and the CARRY flag = 1.
if (index = 0) or (maxlen = 0) or
Cindex > length(socurce)) then
the destination string will have a zero
length.
if (index + count - 1) » length{(scurce)
then
the destination string becomes everything
from index to the end of scurce string.
END;

Registers used: AF,BEC,DE,HL
Time: Approximately (21 # count) cycles plus 237
cycles overhead.

Size: Program 72 bytes
Data 2 bytes

NE NE O NE N N0 NE WS N8 ND NE MDD N3 NE W@ W8 NS NE NS ME MO NE MO NE NS MO B NE NE NE WE NE N8 NE B B MO N8 wE w3 wE ~E w@ =

COPY:
s SAVE MAXIMUM LENGTH OF DESTINATION STRING
LD (MAXLEN) , A ;s SAVE MAXIMUM LENGTH
s INITIALIZE LENGTH OF DESTINATION STRING AND ERROR FLAG
SUR A
LD (DE), A sLENGTH OF DESTINATION STRING = ZERO
LD (CPYERR) , A 7 ASSUME NO ERRORS

3 IF NUMBER OF RBYTES TO COPY IS O, EXIT WITH NO ERRORS
OR B ; TEST NUMBER OF BYTES TO COFY

NE NE NG ND B WB ME ME ME NE NE ME ME 9B NE MO N8 NE ME NE B NE N B W0 MR M8 ME ME MO M8 ME w8 w8 wE w4 e D wm NE M w3 s @

8D COPY A SUBSTRING FROM A STRING (COPY) 305

RET z sEXIT WITH NO ERRORS
; CARRY = 0
3 IF MAXIMUM LENGTH IS 0, TAKE ERROR EXIT
Lo A, (MAXLEN) ; TEST MAXIMUM LENGTH
OR A
JR Z,EREXIT ;ERROR EXIT IF MAX LENGTH IS O
3 IF STARTING INDEX IS ZERQ, TAKE ERROR EXIT
LD A, C ;s TEST STARTING INDEX
OR A
JR Z,EREXIT sERROR EXIT IF INDEX IS O

3 IF STARTING INDEX IS GREATER THAN LENGTH OF SOQURCE
; STRING, TAKE ERROR EXIT

LD A, (HL) 3 GET LENGTH OF SOQURCE STRING

cpP C ; COMPARE TO STARTING INDEX

RET C sERROR EXIT IF LENGTH LESS THAN INDEX
; CARRY = 1

;CHECK IF COPY AREA FITS IN SOURCE STRING

;OTHERWISE, COPY ONLY TO END OF STRING

;COPY AREA FITS IF STARTING INDEX + NUMBER OF

; CHARACTERS TO COPY - 1 IS LESS THAN OR EQUAL TO

; LENGTH OF SOURCE STRING

s NOTE THAT STRINGS ARE NEVER MORE THAN 255 BYTES LONG

Ln A,C ;FORM STARTING INDEX + COPY LENGTH
ADD A, B

JR C,RECALC ;JUMP IF SUM > 2355

DEC A

cP CHL.)

JR C, CNT1QK ;JUMP IF MORE THAN ENOUGH TO COPY
JR Z,CNT10K s JUMP IF EXACTLY ENOUGH

; CALLER ASKED FOR TOO MANY CHARACTERS. RETURN EVERYTHING
; BETWEEN INDEX AND END OF SQURCE STRING.
;7 SET COUNT := LENGTH(SOURCE) - INDEX + 13

RECALC::
LD A, OFFH : INDICATE TRUNCATION OF COUNT
LD (CPYERR) , A
LD A, (HL) $COUNT = LENGTH - INDEX + 1
SUR c
INC A
LD B, A ; CHANGE NUMBER 0OF BYTES
;CHECK IF COUNT LESS THAN OR EQUAL TO MAXIMUM LENGTH OF
; DESTINATION STRING. IF NOT, SET COUNT TO MAXIMUM LENGTH
; IF COUNT > MAXLEN THEN
; COUNT := MAXLEN
CNT10K:
LD A, (MAXLEN) ; IS MAX LENGTH LARGE ENOUGH?
CP B
JR NC, CNT20K sJUMP IF IT 15
LD B, A $ELSE LIMIT COPY TO MAXLEN

LD A, OFFH ;s INDICATE STRING QVERFLOW

306 siRiNG MANIPULATION

LD (CPYERR) , A
tMOVE SUBSTRING TO DESTINATION STRING
CNT20K:
Lo AR : TEST NUMBER OF BYTES TO COPY
OR A
JR Z,EREXIT sERROR EXIT IF NO BYTES TO COPY
LD B, 0 ; START COPYING AT STARTING INDEX
ADD HL, BC
LD (DE), A s SET LENGTH OF DESTINATION STRING
LD C,A ; RESTORE NUMBER OF BYTES
INC DE sMQVE DESTINATION ADDRESS PAST
; LENGTH BYTE
LDIR : COPY SURSTRING
s CHECK FOR COPY ERROR
LD A, (CPYERR) ; TEST FOR ERRORS
OKEXIT:
OR A
RET z sRETURN WITH € = O IF NO ERRORS
sERROR EXIT
EREXIT:
SCF s SET CARRY TQ INDICATE AN ERROR
RET
s DATA SECTION
MAXLEN: DS 1 $MAXIMUM LENGTH OF DESTINATION STRING
CPYERR: DS 1 ; COFY ERROR FLAG

“s ws

SAMPLE EXECUTION:

“ ws s

sSCsn:
LD HL, SSTG s SOURCE STRING
LD DE, DSTG s DESTINATION STRING
LD A, (IDX)
LD C,A s STARTING INDEX FOR COPYING
LD A, (CNT)
LD B, A sNUMRER OF BYTES TOQ CORY
LD A, (MXLEN) s MAXIMUM LENGTH OF SUBSTRING
CALL COoPY ; COPY SUBSTRING

s COPYING 23 CHARACTERS STARTING AT
7y INDEX 4 FROM “12,.34SE+10° GIVES - 345~

JR SC&D ;LOOP FOR MORE TESTING
s DATA SECTION

IDX: DR 4 s STARTING INDEX FOR COPYING
CNT: DB 2 $NUMBER OF CHARACTERS TO COPY

DY TR PR

8D COPY A SUBSTRING FROM A STRING (COPY) 307

MXLEN: DB 20H sMAXIMUM LENGTH OF DESTINATION STRING
SSTG: OE QAH s LENGTH OF STRING

DB “12.345E+10 7 332 BYTE MAX LENGTH
DSTG: DB 0 s LENGTH OF SUBSTRING

DR ‘ 332 BYTE MAX LENGTH

END

Delete a Substring from a String (DELETE)

8E

Deletesa substring from a string, given a start-
ing index and a length. The string is a maximum
of 255 bytes long, and the actual characters are
preceded by a byte containing the length. The
Carry flag is cleared if the deletion can be per-
formed as specified. The Carry flag is set if the
starting index is 0 or beyond the length of the
string; the string is left unchanged in either case.
If the deletion extends beyond the end of the
string, the Carry flag is set to 1 and only the
characters from the starting index to the end of
the string are deleted.

Procedure: The program exits immediately if
either the starting index or the number of bytes

to delete is 0. It also exits if the starting index is
beyond the length of the string. If none of these
conditions holds, the program checks to see if the
string extends beyond the area to be deleted. If it
does not, the program simply truncates the string
by setting the new length to the starting index
minus 1. If it does, the program compacts the
resulting string by moving the bytes above the
deleted area down. The program then determines
the new string’s length and exits with the Carry
cleared if the specified number of bytes were
deleted or with the Carry set to 1 if any errors
occurred.

Registers Used: AF, BC, DE, HL.

Execution Time: Approximately 21 * NUMBER OF
BYTES MOVED DOWN + 224 cycles, where NUM-
BER OF BYTES MOVED DOWN is zero if the string
can be truncated and is STRING LENGTH —
STARTING INDEX — NUMBER OF BYTES TO
DELETE + 1 if the string must be compacted. That
is, it takes extra time when the deletion creates a
“hole”in the string that must be filled by compaction.

Examples

1. STRING LENGTH = 20,4 (32,)
STARTING INDEX = 19¢ (259)
NUMBER OF BYTES TO DELETE = 08
Since there are exactly eight bytes left in the string
starting at index 19,4, all the routine must do is trun-
cate (that is, cut off the end of the string). This takes
21 * 0+ 224 = 224 cycles
2. STRING LENGTH = 40 (64,)

STARTING INDEX = 19,4 (25,,)
NUMBER OF BYTES TO DELETE = 08

Since there are 20,4 (32) bytes above the truncated
area, the routine must move them down eight posi-
tions to fill the “hole.” Thus NUMBER OF BYTES
MOVED DOWN = 32, and the execution time is

21 * 32+ 224 = 672 + 224 = 896 cycles

Program Size: 58 bytes

Data Memory Required: One byte anywhere in
RAM for an error flag (address DELERR)

Special Cases:

I. If the number of bytes to delete is 0, the
program exits with the Carry flag cleared (no errors)
and the string unchanged.

2. Ifthe string does not even extend to the specified
starting index, the program exits with the Carry flag
setto I (indicatingan error) and the string unchanged.

3. If the number of bytes to delete exceeds the
number available, the program deletes all bytes from
the starting index to the end of the string and exits
with the Carry flag set to | (indicating an error).

Entry Conditions

Base address of string in HL.
Number of bytes to delete in B
Starting index to delete from in C

308

Exit Conditions

Substring deleted from string. If no errors occur,
the Carry flagis cleared. If the starting index is 0
or beyond the length of the string, the Carry flag

8E DELETE A SUBSTRING FROM A STRING (DELETE) 309

is set and the string is unchanged. If the number
of bytes to delete would go beyond the end of the
string, the Carry flag is set and the characters
from the starting index to the end of the string

are deleted.

Examples

1.

NB NS NE MDD NB NR 8w

NB NE NB ME NE ME NB M NE NE NF 6B NB wm N8

s

Data:

Result:

String = 26'SALES FOR MARCH AND

APRIL OF THIS YEAR’

(26,6 = 38 is the length of the string)
Number of bytes to delete = 0A ;g = 10,y
Starting index to delete from = 10,4 = 16,4
String= 1C ‘SALES FOR MARCH OF THIS

YEAR’ (1C;¢ = 284 is the length of the

string with ten bytes deleted starting with

the 16th character—the deleted material is

2. Data:

Result:

String = 28°'THE PRICE IS $3.00 ($2.00
BEFORE JUNE 1)’ (285 = 40y is the
length of the string)

Number of bytes to delete = 30, = 48,4

Starting index to delete from = 13,4 = 19

String = 12°THE PRICE IS $3.00° (124 =
18, is the length of the string with all
remaining bytes deleted)

Carry= 1, since there were not as many bytes
left in the string as were supposed to be

B NB NN ws wm w3 wm ws

first character

‘AND APRIL)
Carry= 0, since no problems occurred in the deleted.
deletion.
Title: Delete a substring from a string
Name: Delete
Purpose: Delete a substring from a string given a
starting index and a length
Entry: Register pair HL = Base address of string
Register B = Number of bytes to delete
Register C = Starting index into the string.
An index of 1 is the
A string is a maximum of 255 bytes long plus
a length byte which precedes it.
Exit: Substring deleted.

if no errors then

CARRY := O
else

NE ME ME NS NE NE NS M B NE NE NB eR w0

CTRCTY

310 sRING MANIPULATION

begin
the following conditions cause an
error with CARRY = 1.
if (index = 0) or (index > length(string))
then do not change string
if count is too large then
delete only the characters from
index to end of string
end;

8 um we

NE ME N NB B N wn ws

Registers used: AF,BC,DE,HL

H Time: Approximately 21 = (LENGTH(STRG)-INDEX-COUNT+1)
H plus 224 cycles overhead

H Size: Program 58 bytes

H Data 1 bytes

DELETE:
s INITIALIZE ERROR INDICATOR (DELERR) TO O
SUR A
Ln (DELERR) , A 3 ASSUME NO ERBORS

s CHECK IF COUNT AND INDEX ARE ROTH NON-ZERO
OR B ; TEST NUMBER OF RBYTES TO DELETE

RET Z sRETURN WITH CARRY = 0 (NQ ERRORS) IF
; O BYTES TO DELETE

LD A, C ; TEST STARTING INDEX

oR A

SCF ;CARRY = 1

RET y4 sERROR EXIT (CARRY = 1) IF

5 STARTING INDEX = 0O

;CHECK IF STARTING INDEX WITHIN STRING
7 ERROR EXIT IF NOT

Lo A, (HL) ;GET LENGTH
CF c ;IS INDEX WITHIN STRING?
RET [;NO, TAKE ERROR EXIT

; BE SURE ENOUGH CHARACTERS ARE AVAILABLE
; IF NOT, DELETE ONLY TO END OF STRING
7 IF INDEX + NUMBER OF CHARACTERS ~ 1 > LENGTH(STRING) THEN

; NUMEER OF CHARACTERS := LENGTH(STRING) - INDEX + 1

LD A, C ; GET INDEX

ADD A B ;ADD NUMBER 0OF CHARACTERS TO DELETE

R C, TRUNC s TRUNCATE IF SUM > 255

LD E.A SAVE SUIM AS STARTING INDEX FOR MOVE

DEC A :

cP (HL) s COMPARE TOQ LENGTH

JR C, CNTOK JUMP IF ENOUGH CHARACTERS AVAILAEBLE

JR Z, TRUNC s TRUNCATE BUT NQ ERRORS (EXACTLY ENQUGH
; CHARACTERS)

Lo A, OFFH ;s INDICATE ERROR — NOT ENOUGH CHARACTERS

LD (DELERR) , A ; AVAILABLE FOR DELETION

NE WA ME NE ME NE MR ME NE NE MR M NE NE N3 NE NP wE wa

TRUNC:

CNTOK :

OKEXIT:

DELERR:

“ w8 Nm wE s

SC8E:

8E DELETE A SUBSTRING FROM A STRING (DELETE)

; TRUNCATE STRING — NO COMPACTING NECEZSARY
3 STRING LENGTH = INDEX - 1

Ln A,C ; STRING LENGTH = INDEX - 1
DEC A

LD (HL) , A

LD A, (DELERR)

RRA ;CARRY = O IF NO ERRORS
RET sEXIT

; DELETE SUBSTRING RY COMPACTING
:+ MOVE ALL CHARACTERS ABQVE DELETED AREA DOWN
s NEW LENGTH = QLD LENGTH - NUMBRER OF BYTES TO DELETE

Lo A, (HL)
Lo n,A ;SAVE OLD LENGTH
SUR B ;SET NEW LENGTH
LD (HL) , A

s CALCULATE NUMBER OF CHARACTERS TO MOVE
3+ NUMBER = STRING LENGTH - (INDEX + NUMBER OF BYTES) + 1

LD A, D ; GET OLD LENGTH
SUR E : SUBTRACT INDEX + NUMBER OF BYTES
INC A 1A = NUMBER OF CHARACTERS TO MOVE

; CALCULATE SQURCE AND DESTINATION ADDRESSES FOR MOVE
; SOURCE = BASE + INDEX + NUMBER OF BYTES TO DELETE
; DESTINATION = BASE + INDEX

PUSH HL s SAVE STRING ADDRESS

LD R, 0 s DESTINATION = BRASE + INDEX

ADD HL, EC

EX (SP), HL 3 SOURCE = BASE + INDEX + NUMEBER

Lo 0,0 ; OF BYTES TO DELETE

ADD HL, DE tHL = SOQURCE (ABOVE DELETED AREA)
FOF [E sDE = DESTINATION

LD C,A ; BC = NUMBER OF CHARACTERS TO MOVE
LDIR s COMPACT STRING BY MOVING DOWN
;GOODy EXIT

oR A ; CLEAR CARRY, NO ERRORZ

RET

: DATA

DS 1 s DELETE ERROR FLAG

SAMPLE EXECUTION:

LD HL,8STG ;HL = BASE ADDRESS OF STRING

311

ETRCTRET I T

312 SIRING MANIPULATION

LD A, (IDX)

LD c,A :C = STARTING INDEX FOR DELETICN

L.D A, (CNT)

LD B,A = NUMRER OF CHARACTERS TQ DELETE

B
CALL DELETE DELETE CHARACTERS
DELETING 4 CHARACTERS STARTING AT INDEX 1

FROM "J0E HANDOVER" LEAVES "HANDOQVER"

~s ws we s

JR SC8E ;LOOP FOR ANOTHER TEST

3 DATA SECTION
IDX: DR 1 ; STARTING INDEX FOR DELETION
CNT: DB 4 7 NUMBER OF CHARACTERS TO DELETE
S8TG: DB 12 s LENGTH OF STRING

DB “JOE HANDOVER”

END

Insert a Substring info a String (INSERT)

8F

Insertsa substring into a string, given a start-
ing index. The string and substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. The Carry flag is cleared if the insertion
can be accomplished with no problems. The
Carry flagis set if the starting index is 0 or beyond
the length of the string. In the second case, the
substring is concatenated to the end of the string.
The Carry flag is also set if the string with the
insertion will exceed a specified maximum length.
Inthat case, the program inserts only enough of
the substring to give the string its maximum
length.

Procedure: The program exits immediately if
the starting index or the length of the substring
is 0. If neither is 0, the program checks to see if
the insertion will produce a string longer than

the specified maximum length. If this is the case,
the program truncates the substring. The program
then checks to see if the starting index is within
the string. If it is not, the program simply con-
catenates the substring by moving it to the
memory locations immediately after the end of
the string. If the starting index is within the
string, the program must first make room for
the insertion by moving the remaining characters
up in memory. This move must start at the high-
est address to avoid writing over any data. Final-
ly, the program can move the substring into the
openarea. The program then determines the new
string length and exits with the Carry flag set
appropriately (to 0 if no problems occurred and
to I if the starting index was 0, if the substring
had to be truncated, or if the starting index was
beyond the length of the string).

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF BYTES MOVED + 21 * NUMBER OF BYTES
INSERTED+ 290. NUMBER OF BYTES MOVED
is the number of bytes that must be moved to
create space for the insertion. If the starting index is
beyond the end of the string, NUMBER OF BYTES
MOVED is 0 since the substring is simply concatenated
to the string. Otherwise, it is STRING LENGTH —
STARTING INDEX + 1, since the bytes at or above
the starting index must be moved. NUMBER OF

no truncation occurs. It is the maximum length of the
string minus its current length if inserting the substring
produces a string longer than the maximum.
Examples
I. STRING LENGTH = 2044 (32/)
STARTING INDEX = 194 (25,9)
MAXIMUM LENGTH = 304 (48,0)
SUBSTRING LENGTH = 06
We want to insert a substring six bytes long, start-
ing at the 25th character. Since eight bytes must be

BYTES INSERTED is the length of the substring if

moved up (NUMBER OF BYTES MOVED = 32—
25+ 1) and six bytes must be inserted, the execution
time is approximately

21* 8+ 21% 6+ 290= 168+ 126+ 290= 584 cycles

2. STRING LENGTH = 204 (32/9)
STARTING INDEX = 1944 (25,0)
MAXIMUM LENGTH = 24/, (36)
SUBSTRING LENGTH = 06
Unlike Example 1, here we can insert only four
bytes of the substring without exceeding the maximum
length of the string. Thus, NUMBER OF BYTES
MOVED= 8 and NUMBER OF BYTES INSERTED
= 4. The execution time is approximately
21 # 8+ 21 %4+ 290= 168+ 84+ 290= 542 cycles

Program Size: 90 bytes

Data Memory Required: One byte anywhere in
RAM for an error flag (address INSERR).
Special Cases:

1. Ifthe length of the substring (the insertion) is 0,
the program exits with the Carry flag cleared (no
errors) and the string unchanged.

313

314 sING MANIPUATION

2. If the starting index for the insertion is 0 (that
is, the insertion would start in the length byte), the
program exits with the Carry flag set to I (indicating
an error) and the string unchanged.

3. If the string with the substring inserted exceeds
the specified maximum length, the program inserts
only enough characters to reach the maximum length.
The Carry flag is set to I to indicate that the insertion
has been truncated.

4. 1f the starting index of the insertion is beyond
the end of the string, the program concatenates the
insertion at the end of the string and indicates an
error by setting the Carry flag to 1.

5. If the original length of the string exceeds its
specified maximum length, the program exits with
the Carry flag set to 1 (indicating an error) and the
string unchanged.

Entry Conditions

Base address of substring in DE

Base address of string in HL

Maximum length of string in B

Starting index at which to insert the
substring in C

Exit Conditions

Substring inserted into string. If no errors occur,
the Carry flag is cleared. If the starting index or
the length of the substring is 0, the Carry flag is
set and the string is not changed. If the starting
index is beyond the length of the string, the Carry
flag is set and the substring is concatenated to the
end of the string. If the string with the substring
inserted would exceed the specified maximum
length, the Carry flag is set and only those char-
acters from the substring which bring the string
to maximum length are inserted.

Examples
1. Data: String= 0A'JOHN SMITH’ (0A 4= 10, is
the length of the string)
Substring = 08WILLIAM’ (08 is the length
of the substring)
Maximum length of string = 14,5 = 20,,
Starting index = 06
Result: String= 122JOHN WILLIAM SMITH’

(12,4 = 18,4 is the length of the string
with the substring inserted)

Carry = 0, since no problems occurred in the
insertion.

2. Data: String= 0A'JOHN SMITH’ (0A 4= 10, is
the length of the string)
Substring = 0C'ROCKEFELLER’ (0C 4 =
124 is the length of the substring)
Maximum length of string = 14,, = 20,,
Starting index = 06
Result: String= 14 JOHN ROCKEFELLESMITH’

(14,6 = 20y, is the length of the string with
as much of the substring inserted as the
maximum length would allow)

Carry = 1, since some of the substring could
not be inserted without exceeding the maxi-
mum length of the string.

NB s wE w2 wm N

~ e

NE ME NP NS NI N NME M@ NB NE NO WD wn wn N

N MR ME MB 9B wE w8 w8 NE NB

NB MO NB MB MG ME ME MB ND NG NEB MO ME NB w8 N® NS ND

INSERT:

Title:
Name :

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

8F INSERT A SUBSTRING INTO A STRING (INSERT) 315

Insert a substring into a string
Insert

Insert a substring into a string given a
starting index

Address of string

Address of substring to
insert

Maximum length of string

Starting index to insert the

substring

Register pair HL
Register pair DE

Register B
Register C

]

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Substring inserted into string.
if no errars then
CARRY = 0
else
begin
the following conditions cause the
CARRY flag to be set.
if index = O then
do not insert the substring
if lengthi{strg) > maximum length then
do not insert the substring
if index > length(strg) then
concatenate substg onto the end of the
source string
if length(strg)+length(substring) > maxlen
then insert only enough of the substring
to reach maximum length
end;

AF, BC, DE, HL

Approximately

21 # (LENGTH(STRG) - INDEX + 1) +
21 # (LENGTH(SUBSTG)) +

290 cycles overhead

Program 90 bytes
Data 1 byte

s INITIALIZE ERROR FLAG

NB B NE WS NG D @ s

N0 NB MB ME B NE ND ME wE ME W8 NE ME NS MBS N8 M0 NE NI NS MR MR NS MD NG W WH wE MR NE M NB NE NE WO W@ WE Nd MR M8 NS NE

316 sRING MANIPULATION

IDXO:

CHKLEN:

TRUNC::

IDXLEN:

SuUB A ;ERROR FLAG = O (NO ERRORS)
LD (INSERR), A

s GET SUBSTRING AND STRING LENGTHS
s IF LENGTH(SUBSTG) = O THEN EXIT RUT NO ERROR

LD A, (DE) s TEST LENGTH OF SUBETRING
OR A
RET Z EXIT IF SUBSTRING EMPTY

;7 CARRY = O (NO ERRORZ)

i IF STARTING INDEX IS ZERQ, TAKE ERROR EXIT

LD A C ; TEST STARTING INDEX

OR A

SCF ; ASSUME AN ERROR

RET z sRETURN WITH ERROR IF INDEX = O

s CHECK WHETHER INSERTION WILL MAKE STRING TOO LONG

IF IT WILL, TRUNCATE SUBRSTRING AND SET

TRUNCATION FLAG.

INSERTION TOO LONG IF STRING LENGTH + SUBSTRING LENGTH
EXCEEDS MAXIMUM LENGTH. REMEMBER, STRINGS CANNOT BE
MORE THAN 255 BYTES LONG

B uE N w3 ws

LD A, (DE) ; TOTAL = STRING + SUBSTRING

ADD A, (HL)

JR C, TRUNC ; TRUNCATE SUBSTRING IF NEW LENGTH > 255
cP B ;s COMPARE TO MAXIMUM LENGTH OF STRING

LD A, (DE) A = LENGTH OF SUBSTRING

JR G, IDXLEN s JUMP IF TOTAL < MAX LENGTH

JR Z, IDXLEN 3 OR EQUAL

s SUBSTRING DOES NOT FIT, SO TRUNCATE IT
3 SET ERROR FLAG TO INDICATE TRUNCATION
7 LENGTH THAT FITS = MAXIMUM LENGTH - STRING LENGTH

LD A, OFFH ; INDICATE SUBSTRING TRUNCATED

L.D (INSERR), A

LD A,B tLENGTH = MAX - STRING LENGTH
SUR (HL)

RET c sRETURN WITH ERROR IF STRING TOOQ
SCF 7 LONG INITIALLY OR ALREADY MAX
RET Z 3 LENGTH S0 NO ROOM FOR SUBSTRING

$CHECK IF INDEX WITHIN STRING. IF NOT, CONCATENATE
7 SUBSTRING ONTQ END OF STRING

LD B,A B = LENGTH OF SUBRSTRING

LD A, (HL) ;GET STRING LENGTH

cP Cc s COMPARE TO INDEX

JR NC, LENOK JUMP IF STARTING INDEX WITHIN STRING

7 INDEX NOT WITHIN STRING, SO CONCATENATE

+ NEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
Lo C, A s SAVE CURRENT STRING LENGTH
ADD A B sADD LENGTH QF SUBSTRING

8F INSERT A SUBSTRING INTO A STRING (INSERT) 347

LD (HL) , A $SET NEW LENGTH OF STRING

;SET ADDRESSES FOR CONCATENATION
7 DE = STRING ADDRESS + LENGTH(STRING) + 1

7 HL = SUBSTRING ADDRESS

EX DE, HL sHL = SUBSTRING ADDRESS
LD A, C ;DE = END OF STRING
INC A
ADD AE
LD E.A
JR NC, IDXL1
INC D
IDXL1:
LD A, OFFH 7 INDICATE INSERTION ERROR
LD (INSERR), A
JR MVESUR 7 JUST MQVE, NOTHING TO OFEN UP
;OPEN UP SPACE IN SOURCE STRING FOR SUBSTRING RY MOVING
3 CHARACTERS FROM END OF SOURCE STRING DOWN TO INDEX, UP BY
7 SIZE OF SUBSTRING.
7 A = LENGTH{STRING)
LENOK:
PUSH RC ;s SAVE LENGTH OF SUBSTRING
PUSH DE : SAVE ADDRESS OF SUBSTRING
sNEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
LD E,A ;DE = STRING LENGTH
LD D,o
ADD A, B
LD (HL) , A ;STORE NEW LENGTH OF STRING

; CALCULATE NUMBER 0OF CHARACTERS TO MOVE
s+ = STRING LENGTH - STARTING INDEX + 1

LD AE sGET ORIGINAL LENGTH OF STRING
SuUB c
INC A A = NUMBER OF CHARACTERS TO MOVE

; CALCULATE ADDRESS OF LAST CHARACTER IN STRING. THIS IS
7 SOURCE ADDRESS = STRING ADDRESS + LENGTH(STRING)

ADD HL, DE +HL POINTS TO LAST CHARACTER IN STRING
LD E,L ;DE ALSO
LD o, H

; CALCULATE DESTINATION ADDRESS

7 = STRING ADDRESS + LENGTH(STRING) + LENGTH OF SUBSTRING
s THIS MOVE MUST START AT HIGHEST ADDRESS AND WORK DOWN

5 TO AVOID QVERWRITING PART OF THE STRING

LD C,B ;BC = LENGTH OF SUBSTRING
LD B,0

ADD HL, BC

EX DE, HL s HL SOURCE ADDRESS

DESTINATION ADDRESS
NUMBER OF CHARACTERS TO MOVE

=]
m
Howu

LD C,A ; BC

348 sTRING MANIPULATION

LDDR ;OPEN UP FOR SURSTRING

s RESTORE REGISTERS

EX DE, HL

INC DE ;DE = ADDRESS TO MQVE STRING TOQ
POF HL sHL = ADDRESS OF SUBSTRING

POP BC ;B = LENGTH OF SUBSTRING

sMOVE SUBSTRING INTO OFPEN AREA

HL = ADDRESS OF SUBSTRING

DE = ADDRESS TO MOVE SUBSTRING TO
C = LENGTH OF SUBSTRING

MVESUB:
INC HL s INCREMENT PAST LENGTH BYTE OF SUBSTRING
LD c,B s BC = LENGTH OF SUBSTRING TQ MOVE
LD B,0O
LDIR +MOVE SUBRSTRING INTQ OPEN AREA
LD A, (INSERR) sGET ERROR FLAG
RRA 3 IF INSERR <> O THEN CARRY = 1
: TO INDICATE AN ERROR
RET
: DATA SECTION
INSERR: DS i s FLAG USED TGO INDICATE ERROR
i SAMPLE EXECUTION:
SCaF
LD HL,STG :;HL = BASE ADDRESS OF STRING
Lo DE,SSTG ;DE = BASE ADDRESS OF SUBSTRING
LD A, (1IDX)
LD C,A ;C = STARTING INDEX FOR INSERTION
LD A, (MXLEN)
LD B, A :B = MAXIMUM LENGTH OF STRING
CALL INSERT 3 INSERT SUBSTRING
sRESULT OF INSERTING “—< INTO “122345&8° AT
3 INDEX 1 IS “-12324547
JR SC8F :LOOP FOR ANOTHER TEST
1 DATA SECTION
IDX: DR 1 + STARTING INDEX FOR INSERTION
MXLEN: DR 20H : MAXIMUM LENGTH OF DESTINATION
STG: DB 0&H :LENGTH OF STRING
DR 123456 “ 332 BYTE MAX LENGTH
S8TG: jal] 1 sLENGTH OF SUBSTRING
DR - * 332 BYTE MAX LENGTH

~8 wn w8 ws ws

8-Bit Array Summation (ASUM8) QA

Adds the elements of an array, producing a
16-bit sum. The array consists of up to 255 byte-
length elements.

Procedure: The program clears the sum initial-
ly. It then adds elements one at a time to the less
significant byte of the sum, starting at the base
address. Whenever an addition produces a carry,
the program increments the more significant
byte of the sum.

Registers Used: AF, B, DE, HL

Execution Time: Approximately 38 cycles per byte-
length element plus 49 cycles overhead

Program Size: 19 bytes
Data Memory Required: None

Special Case: An array size of 0 causes an imme-
diate exit with the sum equal to 0.

Entry Conditions Exit Conditions
Base address of array in HL Sum in HL
Size of array in bytes in B
Example
1. Data: Array consists of
F¢ 5A
234 16,4
3Ly CByg
7016 El
Result: Sum= (HL)= 03D7
H Title 8-bit array summation H
H Name : ASUME H
; Furpose: Sum the elements of an array, yielding a {&6-bit ;

result. Maximum size is 255

W
=h
0

320 ~rRAY OPERATIONS

WE NS ME B WE NS NE NE NS NS NS NS w8 <

ASUMB:

SUMLP:

DECCNT =

EXIT:

. 4B w8 N8 ws

SC9A:

Entry: Register pair HL = Base address of array
Register B = Size of array in bytes

Exits Register pair HL = Sum
Registers used: AF,B,DE,HL

Time: Approximately 38 cycles per element plus
49 cycles overhead

o
[
2]
m
.-

Program 19 bytes

s TEST ARRAY LENGTH
sEXIT WITH SUM = O IF NOTHING IN ARRAY
EX DE, HL s SAVE BASE ADDRESS OF ARRAY
LD HL, O s INITIALIZE SUM TQ O
;CHECK FOR LENGTH OF ZERO
LD A,B s TEST ARRAY LENGTH
OR A
RET z ;EXIT WITH SUM = O IF LENGTH = 0
s INITIALIZE ARRAY POINTER, SUM
EX DE, HL s RESTORE BASE ADDRESS OF ARRAY
s HIGH BYTE OF SUM = O
SUR A ;A = LOW BYTE OF SUM = O
;D = HIGH BYTE OF SLIM
sADD BYTE-LENGTH ELEMENTS TO SUM ONE AT A TIME
; INCREMENT HIGH BYTE OF SUM WHENEVER A CARRY OCCURS
ADD A, (HL) ;ADD NEXT BYTE
JR NC, DECCNT :JUMP IF NO CARRY
INC D ; ELSE INCREMENT HIGH BYTE OF SUM
INC HL
DUNZ SUMLP
LD L.A , sHL = SUM
LD H, D
RET

SAMPLE EXECUTION

LD HL, BUF sHL = BASE ADDRESS OF BUFFER
LD A, (BUFSZ)

NE NS NS NB NP WS NE NE WD WD NE NE w8 w8

8 w8 ND wE we

QA 8-BIT ARRAY SUMMATION (ASUME) 321

LD B,A ;B = SIZE OF RUFFER IN BYTES
CALL ASUME
;SUM OF TEST DATA IS O7F8 HEX,
7 HL = O7F&H
JR SCoA
; TEST DATA, CHANGE FOR OTHER VALUES
SIZE EQU 010H +SIZE OF BUFFER IN BYTES
BUFSZ: DR SIZE +SIZE OF BUFFER IN BYTES
BUF: DR 00H s BUFFER
DR 11iH s DECIMAL ELEMENTS ARE 0,17,34,51,48
DR 22H ¢ 85,102,119, 135, 153,170, 187,204
DR 33H 7 221,238,255
DB 44H
DR S5H
DB &4H
DB 77H
DB 88H
DB 97H
DB 0AAH
DB OBREH
DB QOCCH
DB ODDH
DR OEEH
DR OFFH PSUM = O7F8 (2040 DECIMAL)

END

16-Bit Array Summation (ASUM16) 9B

Adds the elements of an array, producing a
24-bit sum. The array consists of up to 255 word- Registers Used: AF, BC, DE, HL
length (16-bit) elements. The elements are ar-
ranged in the usual Z80 format with the less
significant bytes first.

Procedure: The program clears the sum initial- Program Size: 25 bytes
ly. It then adds elements to the less significant
bytes of the sum one at a time, starting at the
base address. Whenever an addition produces a Special Case: An array size of 0 causes an imme-
carry, the program increments the most signifi- diate exit with the sum equal to 0.
cant byte of the sum.

Execution Time: Approximately 68 cycles per 16-
bit element plus 49 cycles overhead

Data Memory Required: None

Entry Conditions Exit Conditions

Base address of array in HL Most significant byte of sum in E
Size of array in 16-bit words in B Middle and least significant bytes of sum in HL

Example

1. Data: Array (in 16-bit words) consists of
F7Al, 5A36,4
239B¢ 166C,¢
31D5¢ CBF5,¢
70F2,4 E107,

Result: Sum = 03DBAI4
(E)= 034
(HL) = DBAI 4

Title 16-bit array summaticon
Name: ASUM14

NB B B NS NE B wE N
N8 NE WR WF WE WA e we

322

OB 16-BIT ARRAY SUMMATION (ASUM16) 323

Purpose: Sum the elements of an array, yielding a 24-bit
result. Maximum size is 255 14-bit elements

CURET R VR

Entry: Register pair HL = Base address of array
Register B = Size of array in words

High byte of sum
Middle byte of sum
Low byte of sum

Exits: Register A
Register H
Register L

nonn

NB N3 ME MO NS ME N WD w3 R we

Registers used: AF,BC,DE, HL

ur e
NE B NB B NE MR MR N wE uE

Time: Approximately 68 cycles per element plus
49 cycles averhead

Size: Program 235 bytes

4B NB NS uE MR NP
ETRE TR Y

ASUM16:
; TEST ARRAY LENGTH
sEXIT WITH SUM = O IF NOTHING IN ARRAY
EX DE, HL ;s SAVE BASE ADDRESS OF ARRAY
LD HL, 0 s INITIALIZE €M TO O
s CHECK FOR ARRAY LENGTH OF ZERO
LD A, B ; TEST ARRAY LENGTH
OR A
RET z $sEXIT WITH SUM = O IF LENGTH = O

s INITIALIZE ARRAY FQINTER, SUM
EX DE, HL ;s BASE ADDRESS BACK TO HL
; LOW, MIDDLE BYTES OF SUM = O

LD C,E ;C = HIGH BYTE OF SUM = 0O
;0 = MIDDLE BYTE OF SLIM
sE = LOW BYTE OQF SLIM

;ADD WORD-LENGTH ELEMENTS TQ SUM ONE AT A TIME
; INCREMENT HIGH BYTE OF SUM WHENEVER A CARRY QCCURS

SUMLP:

LD AE ;ADD LOW BYTES OF ELEMENT AND SUM

ADD A, (HL)

LD E,A

INC HL ;ADD HIGH BYTE OF ELEMENT TO

LD A, D ; MIDDLE BYTE OF SUM

ADC A, (HL)

LD 0, A

JR NC, DECCNT ;JUMP IF NQ CARRY

INC C ; ELSE INCREMENT HIGH BYTE OF SLIM
DECCNT:

INC HL

DuJNZ SUMLP
EXIT:
EX DE, HL ;HL = MIDDLE AND LOW BYTES OF SUIM

324 /rrAY OPERATIONS

LD
RET

“5 S wE wE ws

SCYE:
LD
LD
LD
CAaLL

JR

A, C

SAMPLE EXECUTION

HL., BUF

A, (BUFSZ)

R, A
ASUM16

SCoB

>

= HIGH BYTE OF SLIM

w0 wE wE e wE

HL = BASE ADDRE3S OF BLUFFER
3B = SIZE OF BUFFER IN WORDS
SUM OF TEST DATA IS 31FF8 HEX,

; REGISTER PAIR HL = 1FFgH
; REGISTER A = 3

: TEST DATA, CHANGE FOR OTHER VALLES

SIZE EQU
BUFSZ: DB

BUF: W
DW
W
DW

O10H
SIZE

000H
111H
222H
333H
444H
S55H
&H66H
777H
883H
F99H
O0AAAH
OBEBEH
OCCCH
OnnpoH
OEEEEH
OFFFFH

;SIZE OF BUFFER IN WORDS
;SIZE OF BUFFER IN WORDS

; BUFFER

; DECIMAL. ELEMENTS ARE 0,273,546,819, 1072
7 1365,1638, 1911, 2184, 2457, 2730, 3003, 3276
3 DE797,61166, 65535

sSUM = 31FF8 (204792 DECIMAL)

Find Maximum Byte-Length

Element (MAXELM)

oC

Finds the maximum element in an array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediately
(setting Carry to 1) if the array has no elements.
Otherwise, the program assumes that the ele-
ment at the base address is the maximum. It then
proceeds through the array, comparing the sup-
posed maximum with each element and retaining
the larger value and its address. Finally, the
program clears Carry to indicate a valid result.

Registers Used: AF, B, DE, HL
Execution Time: Approximately 36 to 58 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the maximum in half of
the iterations, the execution time is approximately
94 * ARRAY SIZE/2 + 35 cycles.
Program Size: 19 bytes
Data Memory Required: None
Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to | to indicate an invalid
result.

2. 1f the largest unsigned value occurs more than
once, the program returns with the lowest possible
address. That is, it returns with the address closest to
the base address that contains the maximum value.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Exit Conditions

Largest unsigned element in A

Address of largest unsigned element in HL

Carry = 0 if result is valid; 1 if size of array is 0
and result is meaningless.

Example

1. Data: Array (in bytes) consists of
356 44,6
Abyg 5916
D24 TAg
1By CFy
Result: The largest unsigned element is element #2

(D2,)

(A) = largest element (D24)

(HL)= BASE + 2 (lowest address contain-
ing D2y6)

Carry flag = 0, indicating that array size is
non-zero and the result is valid.

325

326 ArrRAY OPERATIONS

NE wF Nm owm we

Title Find maximum byte-length element
: Name: MAXELM
Purpose: Given the base address and size of an array,

find the largest element

Entry: Register pair HL = Base address of array
Register B = Size of array in bytes

Exite If size of array not zerc then

Carvy flag = O

Register A = Largest element

Register pair HL = Address of that element
if there are duplicate values of the largest
element, register pair HL has the address
nearest to the base address

else
Carry flag = 1

Registers used: AF,B,DE,HL

Time: Approximately 36 to S2 cycles per element
plus 35 cycles overhead

NB NE MO NE ME M3 NE N8 NE NME B NB wB NE M3 NE MB N8 Nn WA <

Sizes Program 19 bytes

“8 w8 wm wa

MAXELM:
sEXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
LD AR s TEST ARRAY SIZE
QR A
SCF s SET CARRY TO INDICATE ERROR EXIT
RET J4 sRETURN IF NO ELEMENTS
s REPLACE PREVIQUS GUESS AT LARGEST ELEMENT WITH
¢ CURRENT ELEMENT. FIRST TIME THROUGH, TAKE FIRST
; ELEMENT AS GUESS AT LARGEST
MAXLP: LD A, (HL) s LARGEST = CURRENT ELEMENT
LD E,L s SAVE ADDRESS OF LARGEST
LD D, H
; COMPARE CURRENT ELEMENT TO LARGEST
s KEEP LOOKING UNLESS CURRENT ELEMENT IS LARGER
MAXLP1z
DEC B
JdR Z,EXIT

INC HL.

NE NE NG N M ME Ms en we

ME O NE NB MR ME D MNP ME ME MD ME N2 NE ME B N8 ME N8 MB R 8 s w@ D NE

9C FIND MAXIMUM BYTE-LENGTH ELEMENT (MAXELM) 327

CP (HL) ;s COMPARE CURRENT ELEMENT, LARGEST
JR NC, MAXLP1 ;s CONTINUE UNLESS CURRENT ELEMENT LARGER
JR MAXLF ;ELSE CHANGE LARGEST
EXIT:
OR A ; CLEAR CARRY TOQ INDICATE NO ERRORS
EX DE, HL sHL. = ADDRESS OF LARGEST ELEMENT
RET
i H
H SAMPLE EXECUTION: ;
t4 r
SC9C:
Lo HL, ARY sHL = RASE ADDRESS QF ARRAY
LD B, SZARY ;B = SIZE OF ARRAY IN RYTES
CaLL MAXELM
;RESULT FOR TEST DATA IS
3 A = FF HEX (MAXIMUM), HL = ADDRESS OF
3 FF IN ARY
JR SC9C ;LOCOP FOR MORE TESTING
SIARY EQLl 10H ;SIZE OF ARRAY IN BYTES
ARY: DR g
DR 7
DR &
jals S
jujcy 4
ey 3
DB 2
DB 1
DB QFFH
DR OFEH
DB OFDH
DR OFCH
DB OFBH
DR OFAH
ne OF 7H
DR OF3H

Find Minimum Byte-Length

Element (MINELM)

oD

Finds the minimum element in an array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediately
(setting Carry to 1) if the array has no elements.
Otherwise, the program assumes that the ele-
ment at the base address is the minimum. It then
proceeds through the array, comparing the sup-
posed minimum to each element and retaining
the smaller value and its address. Finally, the
program clears Carry to indicate a valid result.

Registers Used: AF, B, DE, HL

Execution Time: Approximately 36 to 65 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the minimum in half of
the iterations, the execution time is approximately
101 * ARRAY SIZE/2 +35 cycles.

Program Size: 21 bytes
Data Memory Required: None

Special Cases:

I. An array size of 0 causes an immediate exit
with the Carry flag set to I to indicate an invalid
result.

2. If the smallest unsigned value occurs more
than once, the program returns with the lowest pos-
sible address. That is, it returns with the address
closest to the base address that contains the min-
imum value.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Exit Conditions

Smallest unsigned element in A

Address of smallest unsigned element in HL

Carry = 0 if result is valid; 1 if size of array is 0
and result is meaningless.

Example

1. Data: Array (in bytes) consists of
356 44,4
Abyg 5916
D2y TAs6
1By CFy
Result: The smallest unsigned element is element #3

(1Byg)
(A) = smallest element (1B,4)
(HL) = BASE + 3 (lowest address contain-
ing 1B4)
Carry flag = 0, indicating that array size is
non-zero and the result is valid.

328

9D FIND MINIMUM BYTE-LENGTH ELEMENT (MINELM)

NB MB NE NB NB WE NS

Title Find minimum byte—-length element
Name: MINELM
Purpose: Given the base address and size of an array,

Carry flag = O

ME NE ME MZ NS vE NE NB N3 NE NG B

“o e

else
Carry flag = 1

Registers used: AF,B,DE,HL

NB NG MB NB uE ND W NS

Size: Program 21 bytes

e

<8 we

MINELM:
;EXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
LD A, B s TEST ARRAY SIZE
OR A ,
SCF ;SET CARRY TQ INDICATE AN ERROR EXIT
RET z sRETURN IF NO ELEMENTS
s REPLACE PREVIOUS GUESS AT SMALLEST ELEMENT WITH
; CURRENT ELEMENT. FIRST TIME THROUGH, TAKE FIR:ST
s ELEMENT AS GUESS AT SMALLEST
MINLP: LD A, (HL) ; SMALLEST = CURRENT ELEMENT
LD E,L ; SAVE ADDRESS OF SMALLEST
LD D, H
; COMPARE CURRENT ELEMENT TO SMALLEST
$KEEP LOOKING UNLESS CURRENT ELEMENT IS SMALLER
MINLP1:

DEC B
JR Z,EXIT

find the smallest element

Entry: Register pair HL = Base address of arvray
Register B = Size of array in bytes

Exit: If size of array not zero then

Register A = Smallest element
Register pair HL = Address of that element

if there are duplicate values of the smallest
element, HL will have the address

nearest to the base address

Time: Approximately 36 to &5 cycles per element
plus 33 cycles overhead

329

N2 u3 N3 wm

“n wE NB wm v

PTERTITY

NB NB MO ME ME M8 MB ME M8 MO M8 9B N8 NME N0 M3 N8 M8 MO w0 wE 4@

330 ARRAY OPERATIONS

EXIT:

“ v wB ws s

o0
34
9
o

SZARY
ARY:

INC
cpP
JR
JR
JR

OR
EX
RET

SAMPLE EXECUTION:

LD
LD
CALL

JR

EQU
DR
DR
DB
DR
DB
DR
DR
DR
DR
DB
DR
DB
DR
DR

DB

END

HL

C(HL)
C,MINLP1
Z,MINLP1
MINLP

A
DE, HL

HL, ARY
R, SZARY
MINELM

; COMPARE CURRENT ELEMENT, SMALLEST
sCONTINUE IF CURRENT ELEMENT LARGER
7 OR SAME

;ELSE CHANGE SMALLEST

;CLEAR CARRY TO INDICATE NOQ ERRORS
sHL = ADDRESS OF SMALLEST ELEMENT

sHL = BASE ADDRESS OF ARRAY
1B = SIZE QF ARRAY IN BYTES
R

ESULT FOR TEST DATA IS
A = 1 HEX (MINIMUM), HL = ADDRESS OF
1 IN ARY

. e we

;LOOP FOR MORE TESTING
;SIZE OF ARRAY IN BYTES

N R s wm we

Binary Search (BINSCH)

=

Searches an array of unsigned byte-length
elements for a particular value. The elements are
assumed to be arranged in increasing order.
Clears Carry if it finds the value and sets Carry
to 1 if it does not. Returns the address of the
value if found. The size of the array is specified
and is a maximum of 255 bytes.

Procedure: The program performs a binary
search, repeatedly comparing the value with the
middle remaining element. After each compari-
son, the program discards the part of the array
that cannot contain the value (because of the
ordering). The program retains upper and lower
bounds for the remaining part. If the value is
larger than the middle element, the program
discards the middle and everything below it. The
new lower bound is the address of the middle
element plus 1. If the value is smaller than the
middle element, the program discards the mid-
dle and everything above it. The new upper
bound is the address of the middle element
minus 1. The program exits if it finds a match or
if there is nothing left to search.

For example, assume that the array is

01y, 0214, 0514, 0714, 0914, 094, 0D 4, 104,

2E 4, 3716, 5Dy, TE 6, Alyg, Bdg, D71, EOyg

and the value to be found is 0D 4. The proce-
dure works as follows.

In the first iteration, the lower bound is the
base address and the upper bound is the address
of the last element. So the result is

LOWER BOUND = BASE

UPPER BOUND = BASE+ SIZE— 1= BASE+ 0F ¢

GUESS = (UPPER BOUND + LOWER BOUND)/2
(the result is truncated) = BASE + 7

(GUESS) = ARRAY(7) = 10,4 = 16,

Since the value (0D) is less than ARR AY(7),
the elements beyond #6 can be discarded. So the
result is

Registers Used: AF, BC, DE, HL

Executlon Time: Approximately 114 cycles per
iteration plus 53 cycles overhead. A binary search
requires on the order of log, N iterations, where N is
the number of elements in the array.

Program Size: 37 bytes
Data Memory Required: None

Special Case: A size of 0 causes an immediate exit
with the Carry flag set to 1. That is, the array con-
tains no elements and the value surely cannot be
found.

LOWER BOUND = BASE

UPPER BOUND = GUESS — | = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2
= BASE+3

(GUESS) = ARRAY(3) = 07

Since the value (0D) is greater than ARRAY(3),
the elements below #4 can be discarded. So the
result is

LOWER BOUND = GUESS + | = BASE + 4

UPPER BOUND = BASE + 6

GUESS = (UPPER BOUND + LOWER BOUND)/2
= BASE+ 5

(GUESS) = ARRAY(5)= 09

Since the value (0D) is greater than ARRAY(5),
the elements below #6 can be discarded. So the
result is

LOWER BOUND = GUESS+ 1 = BASE+ 6

UPPER BOUND = BASE + 6

GUESS = (UPPER BOUND + LOWER BOUND)/2

=06

(GUESS) = ARRAY(6) = 0D4

Since the value (0D ¢) is equal to ARRAY(6),
the element has been found. If, on the other
hand, the value were OE ¢, the new lower bound

would be BASE+ 7 and there would be nothing
left to search.

331

332 ~rrAY OPERATIONS

Entry Conditions

Value to find in A

Size of the array in bytes in C

Base address of array (address of smallest
unsigned element) in HL

Exit Conditions

Carry = 0 if the value is found; 1 if it is not
found.
If the value is found, (HL) = its address.

Examples

Length of array = 10,4
Elements of array are 014, 024, 05,4, 074, 09,4.09,4,0D4,
1016, 216, 3716, 5D16, TE (6, Alyg, B4y, D76, EO)

1. Data: Value to find = 0D,4

Result: Carry = 0, indicating value found

(HL)= BASE + 6 (address containing 0D,¢)

2. Data: Value to find = 9B,

Result: Carry = 1, indicating value not found

NE B wE W NS NS NS N

Title Binary search
Name: BINSCH
H Purpose:
H Entry:
Register C =
Register A = Byte to find
Exit: If the value is found then

Carry flag

ELSE
Carry flag

MB ME NE NE wp wE wE s e wa

Registers used: AF,BC,DE,HL

Search an ordered array of unsigned bytes
with a maximum size of 255 elements

Register pair HL = Base address of array
Size of array

Register pair HL = Address of value

NE NE NS w0 s e ue

o

1

ME NE NE NE ME WE NE N R NE MR ME 4R R

-

O BINARY SEARCH (BINSCH) 333

Time: Approximately 114 cycles for each iteration of
the search loop plus 53 cycles overhead

A binary search takes on the order of lag
base 2 of N searches, where N is the number of
elements in the array.

B NE ME N NE NS B W

Size: Proaram 37 bytes

NB ME NE MB ME NE WB NS B e ws

~e wr we

BINSCH:
sEXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
INC c : TEST ARRAY SIZE
DEC C
SCF : SET CARRY IN CASE SIZE IS O
RET z sRETURN INDICATING VALUE NOT FOUND
s IF SIZE IS O
: INITIALIZE LOWER BOUND, UPPER BOUND OF SEARCH AREA
:LOWER BOUND (DE) = BASE ADDRESS
:UPPER BOUND (HL) = ADDRESS OF LAST ELEMENT
: = BASE ADDRESS + SIZE - 1
LD E,L : LOWER BOUND = BASE ADDRESS
LD D, H
LD B, 0 sEXTEND SIZE TO 16 BITS
ADD HL, BC : UPPER BOUND = BASE + SIZE - 1
DEC HL
s SAVE VALUE BEING SOUGHT
LD C,A : SAVE VALUE
: ITERATION OF BINARY SEARCH
:1) COMPARE VALUE TOQ MIDDLE ELEMENT
:2) IF THEY ARE NOT EQUAL, DISCARD HALF THAT
H CANNOT POSSIBLY CONTAIN VALUE (BECAUSE OF ORDERING)
:3) CONTINUE IF THERE IS ANYTHING LEFT TO SEARCH
LOOP:
:HL = UPPER BOUND
;DE = LOWER BOUND

:+C = VALUE TQ FIND
sFIND MIDDLE ELEMENT
sMIDDLE = (UPPER BOUND + LOWER BOUND) / 2

PUSH HL s SAVE UPPER BOUND ON STACK

ADD HL, DE s ADD UPPER ROUND AND LOWER BOUND
RR H sDIVIDE 17-BIT SUM BY 2

RR L

LD A, (HL) ;GET MIDDLE ELEMENT

: COMPARE MIDDLE ELEMENT AND VALUE
cP c s COMPARE MIDDLE ELEMENT AND VALUE
JR NG, TOOLRG ; JUMP IF VALUE SAME OR LARGER

s+ MIDDLE ELEMENT LESS THAN VALLE

334 ,rnay OPERATIONS

3 S0 CHANGE LOWER BOUND TO MIDDLE + 1
; SINCE EVERYTHING BRELOW MIDDLE IS EVEN SMALLER

EX DE, HL s LOWER BOUND = MIDDLE + 1
INC DE

POP HL ; RESTORE UPPER BOUND

JR CONT

sMIDDLE ELEMENT GREATER THAN OR EQUAL TO VALLUE
; SO CHANGE UPPER BOUND TO MIDDLE - 1
; SINCE EVERYTHING ABQVE MIDDLE IS EVEN LARGER
$EXIT WITH CARRY CLEAR IF VALUE FOUND

TOOLRG:
INC 8P s DISCARD OLD UPPER BROUND FROM STACK
INC SP
RET z s IF MIDDLE ELEMENT SAME AS VALUE
3 RETURN WITH CARRY CLEAR
5 AND HL = ADDRESS CONTAINING VALUE
DEC HL s UPPER BOUND = MIDDLE - 1
s CONTINUE IF THERE IS ANYTHING LEFT TO BE SEARCHED
s NOTHING LEFT WHEN LOWER BOUND ABOVE UPPER BOUND
CONT:
LD AL 3y FORM UPPER ROUND - LQWER BOQUND
cP E 3 MUST SAVE BOTH, S0 USE 8-BIT SUBTRACT
LD AH
SBC A, D
JR NC, LOGP sCONTINUE IF ANYTHING LEFT TO SEARCH
sNOTHING LEFT TO SEARCH SO COULD NOT FIND VALLE
sRETURN WITH CARRY SET (MUST RE OR JR NC WOULD HAVE BRANCHED)
RET
H SAMPLE EXECUTION
SCPE:
s SEARCH FOR A VALUE THAT IS IN THE ARRAY
LD HL, BF sHL = BASE ADDRESS OF ARRAY
LD A, (BFSZ)
LD C,A sC = ARRAY SIZE IN BYTES
LD A7 sA = VALUE TO FIND
CALL BINSCH s SEARCH

sHL = BF + 4 (ADDRESS OF 7 IN ARRAY)

$+ SEARCH FOR A VALUE THAT IS NOT IN THE ARRAY

Lo HL, BF sHL = BASE ADDRESS OF ARRAY
LD A, (BFSZ)
LD C,A C = ARRAY SIZE IN BYTES

CALL BINSCH SEARCH

LD A, 0 ;A = VALUE TO FIND
;CARRY FLAG = 1 (VALUE NOT FOUND)

s uE w8 w8 wo

OF BINARY SEARCH (BINSCH) 335

JR SCE ;LOOP FOR MORE TESTS

; DATA
SIZE EQU Q10H $SIZE OF ARRAY IN BYTES
BFSZ: DR SIZE 3 SIZE OF ARRAY IN BYTES
BF: DR 1 s BUFFER

DR 2

DB 4

DR S

LB 7

DB @

DB 10

DR 11

DB 23

DB S0

DB 81

DB 123

DB 191

DB 199

DB 250

DB 255

END

Quicksort (QLSORT)

QF

Arranges an array of unsigned word-length
elements into ascending order using a quicksort
algorithm. Each iteration selects an element and
divides the array into two parts, one consisting
of elements larger than the selected element and
the other consisting of elements smaller than the
selected element. Elements equal to the selected
element may end up in either part. The parts are
then sorted recursively in the same way. The
algorithm continues until all parts contain either
no elements or only one element. An alternative
is to stop recursion when a part contains few
enough elements (say, less than 20) to make a
bubble sort practical.

The parameters are the array’s base address,
the address of its last element, and the lowest
available stack address. The array can thus
occupy all available memory, as long as there is
room for the stack. Since the procedures that
obtain the selected element, compare elements,
move forward and backward in the array, and
swap elements are all subroutines, they could be
changed readily to handle other types of elements.

Ideally, quicksort should divide the array in
half during each iteration. How closely the
procedure approaches this ideal depends on
how well the selected element is chosen. Since
this element serves as a midpoint or pivot, the
best choice would be the central value (or
median). Of course, the true median is unknown.
A simple but reasonable approximation is to
select the median of the first, middle, and last
elements.

Procedure: The program first deals with the
entire array. It selects the median of the current
first, last, and middle elements to use in dividing
the array. It moves that element to the first
position and divides the array into two parts or
partitions. It then operates recursively on the

336

Registers Used: AF, BC, DE, HL

Execution Time: Approximately N * log,N loops
through PARTLP plus 2 * N + | overhead calls
to SORT. Each iteration of PARTLP takes approx-
imately 200 cycles and each overhead call to SORT
takes approximately 300 cycles. Thus, the total
execution time is on the order of 200 * N * log, N+ 300
¥ (2 N+ 1).

Program Size: 206 bytes

Data Memory Required: 8 bytes anywhere in
RAM for pointers to the first and last elements of a
partition (2 bytes starting at addresses FIRST and
LAST, respectively), a pointer to the bottom of the
stack (2 bytes starting at address STK BTM), and the
original value of the stack pointer (2 bytes starting at
address OLDSP).

Special Case: If the stack overflows (i.e., comes
too close to its boundary), the program exits with
the Carry flag set to 1.

parts, dividing them further into parts and stop-
ping when a part contains no elements or only
one element. Since each recursion places six
bytes on the stack, the program must guard
against stack overflow by checking whether the
stack has grown to within a small buffer of its
lowest available address.

Note that the selected element always ends up
in the correct position after an iteration. There-
fore, it need not be included in either partition.

The rules for choosing the middle element are
as follows, assuming that the first element is #1:

I. If the array has an odd number of ele-
ments, take the one in the center. For example,
if the array has 11 elements, take #6.

2. If the array has an even number of ele-
ments and its base address is even, take the
element on the lower (base address) side of the
center. For example, if the array starts in 03004
and has 12 elements, take #6.

3. If the array has an even number of ele-
ments and its base address is odd, take the
element on the upper side of the center. For
example, if the array starts in 03014 and has 12

OF QUICKSORT (QSORT) 337

elements, take #7.

Entry Conditions

Base address of array in HL
Address of last word of array in DE
Lowest available stack address in BC

Exit Conditions

Array sorted into ascending order, considering
the elements as unsigned words. Thus, the
smallest unsigned word ends up stored starting
at the base address. Carry = 0 if the stack did
not overflow and the result is proper. Carry = 1
if the stack overflowed and the final array is
not sorted.

Example

I. Data: Length (size) of array = 0C,¢
Elements = 2By¢, 574, 1Dy, 264,
2216, 2E 4, 0C 4, 444,
17,4, 4Byg, 3716, 2714

Result: The result of the first iteration is:

Selected element = median of the first
(#1 = 2By¢), middle (#6 = 2E4), and last
(#12 = 27¢) elements. The selected ele-
ment is therefore #1 (2B4). and no swap-
ping is necessary since it is already in the
first position.

At the end of the iteration, the array is

2716, 1716, 1Dy, 264,
2216, 0Cyg, 2By4, 44 ¢,
2E g, 4Byg, 3716, 5716

The first partition, consisting of elements
less than 2B, is 274, 174, I D14, 2614, 2244,
and 0C\.

The second partition, consisting of ele-
ments greater than 2B, is 44,¢, 2E ¢, 4B,
376> and 57¢.

Note that the selected element (2B4) is

now in the correct position and need not be
included in either partition.

The first partition may now be sorted recur-
sively in the same way:

Selected element = median of the first
(#1 = 27,¢), middle (#3 = 1D,¢), and last
(#7 = 0C;q) elements. Here, #4 is the
median and must be exchanged initially
with #1.

The final order of the elements in the first
partition is

0C ¢, 1716, 1Dyg, 2616, 2244, 27 6.

The first partition of the first partition
(consisting of elements less than 1Dg) is
0C\g, 17)¢. This will be referred to as the (1,1)
partition.

The second partition of the first partition
(consisting of elements greater than 1D) is
266, 2214, and 27 .

As in the first iteration, the selected ele-
ment (IDy¢) is in the correct position and
need not be considered further.

338 ~rrAY OPERATIONS

The (1,1) partition may now be sorted
recursively as follows:

Selected element = median of the first
(#1 = 0C\¢), middle (#1 = 0C), and last
(#2 = 17,4) elements. Thus the selected ele-
ment is the first element (#1 = 0C,4) and no
initial swap is necessary.

The final order is obviously the same as the
initial order, and the two resulting partitions
contain 0 and | elements, respectively. Thus
the next iteration concludes the recursion,
and the other partitions are sorted by the

same method. Obviously, quicksort’s over-
head is large when the number of elements is
small. This is why one might use a bubble
sort once quicksort has created small enough
partitions.

Note that the example array does not con-
tain any identical elements. During an itera-
tion, elements that are the same as the
selected element are never moved. Thus they
may end up in either partition. Strictly speak-
ing, then, the two partitions consist of ele-
ments “less than or possibly equal to the
selected element”and elements “greater than
or possibly equal to the selected element.”

REFERENCES

Augenstein, M.J., and Tenenbaum, A.M. Data Structures and PL|I Programming.

Englewood Cliffs, N.J.: Prentice-Hall, 1979, pp. 460-71. There is also a Pascal version
of this book entitled Data Structures Using Pascal (Englewood Cliffs, N.J.: Prentice-
Hall, 1982).

1977, Chapter 15.

NS NE NP wE wo ws w0 w8

N8 90 ws ws ws ws w8

Bowles, K.L. Microcomputer Problem Solving Using Pascal. New York: Springer-Verlag,

Knuth, D.E. The Art of Computer Programming, Volume 3: Searching and Sort-
ing. Reading, Mass.: Addison-Wesley, 1973, pp. 114-23.

Title Ruicksort
Name : QSORT
Purpose: Arrange an array of unsigned words into

ascending order using quicksort, with a
maximum size of 32,747 words

Entry: Register pair HL = Address of first word in the
array

NE NS ME NE ME B N s

NB B wB ws Nm wE wE

OF QUICKSORT (QSORT) 339

Register pair DE = Address of last ward in the

array
Register pair BC = Lowest available stack
address
Exit: If the stack did not overflow then

array is sorted into ascending order.
Carry flag = 0O

Else
Carry flag = 1

Registers used: AF,RC,DE,HL

Time: The timing is highly data—dependent but the
quicksort algorithm takes approximately
N # log (N) loops through PARTLP. There will be
2 # N+1 calls to Sort. The number of recursions
will probably be a fraction of N but if all
data is the same, the recursion could be up to
N. Therefore the amount of stack space should
be maximized. NOTE: Each recursion level takes
& bytes of stack space.

ME NP N0 NE WD NE 0 WO N8 WA WS W WE N8 NB M@ W wE 6o

MO NG N6 N0 MO NS NP NP N6 M5 ND %G WO N5 NG %8 NG YO N0 W8 w5 N5

In the above discussion N is the number of
array elements.

For example, sorting a 16,384-word array took
about 27 seconds and 1200 bytes of stack space
on a 6 MHz Z80.

Size: Program 204 bytes
Data 8 bytes

NE NS ME NG NE MR NE W N0 N M0 NP M0 wp W8

NE N ND W8 NE MO 9B N0 N8 MO WS 9B

QSORT:
sWATCH FOR STACK OVERFLOW
;s CALCULATE A THRESHOLD TO WARN OF QVERFLOW
3 (10 BYTES FROM THE END OF THE STACK)
+ SAVE THIS THRESHOLD FOR LATER COMPARISONS
$ALSO SAVE THE POSITION OF THIS ROUTINE‘S RETURN ADDRESS
;7 IN THE EVENT WE MUST ARORT BECAUSE OF STACK OVERFLOW

PUSH HL s SAVE BASE ADDRESS OF ARRAY
LD HL, 10 ;ADD SMALL BUFFER (10 BYTES) TO
ADD HL, BC ; LOWEST STACK ADDRESS
LD (STKBTM) , HL s SAVE SUM AS BOTTOM OF STACK
3 FOR FIGURING WHEN TO ABORT
LD HL, 2 s SAVE POINTER TO RETURN ADDRESS
ADD HL, &P ; IN CASE OF ABORT
LD (OLDSP) , HL
POP HL s RESTORE BASE ADDRESS

s WORK RECURSIVELY THROUGH THE QUICKSORT ALGORITHM AS
+ FOLLOWS:

340 rrAY OPERATIONS

1. CHECK IF THE PARTITION CONTAINS O OR 1 ELEMENT.
MOVE UP A RECURSION LEVEL IF IT DOES.

2. USE MEDIAN TO OBTAIN A REASONABLE CENTRAL VALLE
FOR DIVIDING THE CURRENT PARTITION INTO TWO
PARTS.

3. MOVE THROUGH ARRAY SWAPPING ELEMENTS THAT
ARE OUT OF ORDER UNTIL ALL ELEMENTS BELOW THE
CENTRAL VALUE ARE AHEAD OF ALL ELEMENTS ABOVE
THE CENTRAL VALUE. SUBROUTINE COMPARE
COMPARES ELEMENTS, SWAP EXCHANGES ELEMENTS,

PREV MOVES UPPER BOUNDARY DOWN ONE ELEMENT,
AND NEXT MOVES LOWER BOUNDARY UP ONE ELEMENT.

4. CHECK IF THE STACK IS ABOUT TO OVERFLOW. IF IT
IS, ABORT AND EXIT.

5. ESTABLISH THE BOUNDARIES FOR THE FIRST PARTITION
(CONSISTING OF ELEMENTS LESS THAN THE CENTRAL VALUE)
AND SORT IT RECURSIVELY.

6. ESTABLISH THE BOUNDARIES FOR THE SECOND PARTITION
(CONSISTING OF ELEMENTS GREATER THAN THE CENTRAL
VALUE) AND SORT IT RECURSIVELY.

WS NE NE WG WS WS B NS NE NS WO N N3 NP NE NS NS W WP us

SORT:
3 SAVE BASE ADDRESS AND FINAL ADDRESS IN LOCAL STORAGE
LD (FIRST),HL 3 SAVE FIRST IN LOCAL AREA
EX DE, HL
LD (LAST) , HL s SAVE LAST IN LOCAL AREA

sCHECK IF PARTITION CONTAINS O OR 1 ELEMENTS
3+ IT DOES IF FIRST IS EITHER LARGER THAN (0)
3 OR EQUAL TO (1) LAST.

PARTION:
$+ STOP WHEN FIRST >= LAST
3sDE = ADDRESS OF FIRST
sHL = ADDRESS OF LAST

LD AE ; CALCULATE FIRST - LAST

SuUB L 3 MUST KEEP BOTH, SO USE 8-BIT SUBTRACT
LD A, D

SBC A H

RET NC + IF DIFFERENCE POSITIVE, RETURN

;7 THIS PART IS SORTED

31 USE MEDIAN TO FIND A REASONABLE CENTRAL (PIVOT) ELEMENT
s MOVE CENTRAL ELEMENT TO FIRST POSITION

CALL MEDIAN 3 SELECT CENTRAL ELEMENT, MOVE IT
: TO FIRST POSITION
LD c,0 +BIT O OF REGISTER C = DIRECTICN

+ IF IT“S O THEN DIRECTION IS UP
; ELSE DIRECTION IS DOWN

s REORDER ARRAY BY COMPARING OTHER ELEMENTS WITH

¢ CENTRAL ELEMENT. START BY COMPARING THAT ELEMENT WITH
7 LAST ELEMENT. EACH TIME WE FIND AN ELEMENT THAT

7 BELONGS IN THE FIRST PART (THAT IS, IT IS LESS THAN

7 THE CENTRAL ELEMENT), SWAP IT INTO THE FIRST PART IF IT

PARTLP:

upP:

9OF QUICKSORT (QSORT) 344

IS NOT ALREADY THERE AND MOVE THE BOUNDARY OF THE

FIRST PART DOWN ONE ELEMENT. SIMILARLY, EACH TIME WE
FIND AN ELEMENT THAT BELONGS IN THE SECOND PART (THAT
IS, IT IS GREATER THAN THE CENTRAL ELEMENT), SWAP IT INTO
THE SECOND PART IF IT IS NOT ALREADY THERE AND MOQOVE

THE BOUNDARY OF THE SECOND PART UP ONE ELEMENT.
ULTIMATELY, THE BOUNDARIES COME TOGETHER

AND THE DIVISION OF THE ARRAY IS THEN COMFLETE
NOTE THAT ELEMENTS EQUAL TO THE CENTRAL ELEMENT ARE NEVER
SWAPPED AND SO MAY END UP IN EITHER PART

NB D NE NS B wE B s

- s

;LOOP SORTING UNEXAMINED PART OF THE PARTITION
3 UNTIL THERE IS NOTHING LEFT IN IT
LD AE ; LOWER BOUNDARY - UPPER BOUNDARY
SUR L 7 MUST KEEP BOTH, SO USE 8-BIT SUBRTRACT
LD A, D
SBRC A H
JR NC, DONE FEXIT WHEN EVERYTHING EXAMINED
; COMPARE NEXT 2 ELEMENTS. IF OUT OF ORDER, SWAP THEM
3 AND CHANGE DIRECTION OF SEARCH
3 IF FIRST > LAST THEN SWAP
CALL COMPARE ; COMPARE ELEMENTS
JR C,0K ;JUMP IF ALREADY IN ORDER
JR Z,0K + OF IF ELEMENTS EQUAL
s ELEMENTS OUT OF ORDER. SWAP THEM
CALL SWAP ; SWAP ELEMENTS
INC c s CHANGE DIRECTION
;REDUCE SIZE OF UNEXAMINED AREA
+IF NEW ELEMENT LESS THAN CENTRAL ELEMENT, MOVE
3 TOP BOUNDARY DOWN
3 IF NEW ELEMENT GREATER THAN CENTRAL ELEMENT, MOVE
3 BOTTOM BOUNDARY UP
+ IF ELEMENTS EQUAL, CONTINUE IN LATEST DIRECTION
BIT 0,C $BIT O OF C TELLS WHICH WAY TO GO
JR Z,UP s JUMP IF MOVING UP
EX DE, HL
CALL NEXT ;ELSE MOVE TOP BOUNDARY DOWN BY
EX DE, HL ; ONE ELEMENT
JR PARTLP
CALL PREV #MOQVE BOTTOM BOUNDARY UP BY
7 ONE ELEMENT
JR PARTLP

$ THIS PARTITION HAS NOW BEEN SUBDIVIDED INTO TWO
PARTITIONS. ONE STARTS AT THE TOP AND ENDS JUST
ABOVE THE CENTRAL ELEMENT. THE OTHER STARTS
JUST BELOW THE CENTRAL ELEMENT AND CONTINUES
TO THE BOTTOM. THE CENTRAL ELEMENT IS NOW IN
ITS PROPER SORTED POSITION AND NEED NOT BE
INCLUDED IN EITHER PARTITION

R)

342 RRAY OPERATIONS

DONE =

ABORT:

MEDIAN:

; FIRST CHECK WHETHER STACK MIGHT QVERFLOW
sIF IT IS GETTING TOO CLOSE TO THE BOTTOM, ABORT
; THE PROGRAM AND EXIT

LD HL, (STKBTM) ;s CALCULATE STKBTM - &P
OR A : CLEAR CARRY

SBC HL, SP

JR NC, ARORT sEXIT IF STACK TOO LARGE

s ESTARLISH BOUNDARIES FOR FIRST (LOWER) PARTITION

; LOWER BOUNDARY IS SAME AS BREFORE

s UPPER BOUNDARY IS ELEMENT JUST BELOW CENTRAL ELEMENT
3 THEN RECURSIVELY QUICKSORT FIRST PARTITION

PUSH DE : SAVE ADDRESS OF CENTRAL ELEMENT
LD HL., (LAST)

PUSH HL s SAVE ADDRESS OF LAST

EX DE, HL

CALL PREV ; CALCULATE LAST FOR FIRST PART
EX DE, HL

LD HL, (FIRST) ;FIRST IS SAME AS REFORE

CALL SORT ; QUICKSORT FIRST PART

;ESTABLISH BROUNDARIES FOR SECOND (UPPER) PARTITION

; UPPER BOUNDARY IS SAME AS BEFORE

s LOWER BOUNDARY IS ELEMENT JUST AROVE CENTRAL ELEMENT
» THEN RECURSIVELY QUICKSORT SECOND PARTITION

POP DE sLAST IS SAME AS BEFORE

POP HL 3 CALCULATE FIRST FOR SECOND PART

CALL NEXT

CALL SORT 3 QUICKSORT SECOND PART

OR A ;CARRY = 0 FOR NO ERRORS

RET

sERROR EXIT - SET CARRY

LD SP, (OLDSP) s TOP OF STACK IS ORIGINAL
s RETURN ADDRESS

SCF s INDICATE ERROR IN SORT

RET sRETURN TO ORIGINAL CALLER

R s S
s ROUTINE: MEDIAN

s PURPOSE: DETERMINE WHICH VALUE IN A PARTITION

} SHOULD BE USED AS THE CENTRAL ELEMENT OR PIVOT
sENTRY: DE = ADDRESS OF FIRST VALUE

; HL = ADDRESS OF LAST VALLE

sEXIT: DE IS ADDRESS OF CENTRAL ELEMENT

s REGISTERS USED: AF,BC,DE

R 2 3 S s T

s DETERMINE ADDRESS OF MIDDLE ELEMENT

3 MIDDLE := ALIGNED (FIRST + LAST) DIV 2

LD AL ;ADD ADDRESSES OF FIRST, LAST
ADD AE ;MUST KEEP BOTH, SO USE 8-BIT
LD C.A ; ADD INSTEAD OF 146-RBIT

MED1:

MIDD1:

LD
ADC
LD
RR
RR
RES
RIT
JR
INC

>0X

~

Mo

~ w

ED1

ONDODOOmImWD> D>

9F QUICKSORT (QSORT) 343

s DIVIDE SUM BY 2, BYTE AT A TIME

;CLEAR BIT O FOR ALIGNMENT

;ALIGN MIDDLE TO ROUNDARY OF FIRST
; JUMP IF BIT O OF FIRST IS O

; ELSE MAKE BIT O OF MIDDLE 1

s DETERMINE WHICH OF FIRST, MIDDLE, LAST IS

3 MEDIAN (CENTRAL VALUE)

3 COMPARE FIRST AND MIDDLE

PUSH
LD
LD
CALL
POP
JR

HL

L,C

H, B
COMPARE
HL

NC, MIDD1

3 SAVE LAST

s COMPARE FIRST AND MIDDLE
;RESTORE LAST
s JUMP IF FIRST >= MIDDLE

sWE KNOW (MIDDLE > FIRST)
3 SO COMPARE MIDDLE AND LAST

PUSH
LD
LD
CALL
POP
JR
JR

DE

E,C

D’B
COMPARE
DE

C, SWAPMF
Z, SWAPMF

3 SAVE FIRST

; COMPARE MIDDLE AND LAST
;RESTORE LAST

3 JUMP IF LAST >= MIDDLE
3 MIDDLE IS MEDIAN

sWE KNOW (MIDDLE > FIRST) AND (MIDDLE > LAST)
; SO COMPARE FIRST AND LAST

CALL
RET

JR

sWE KNOW (FIRST >=
3+ SO COMPARE FIRST

CALL
RET
RET

COMPARE
NC

SWAPLF

COMPARE
C
z

s COMPARE FIRST AND LAST
;RETURN IF LAST >= FIRST
3 FIRST IS MEDIAN

sELSE LAST IS MEDIAN

MIDDLE)
AND LAST

; COMPARE LAST AND FIRST
sRETURN IF LAST >= FIRST
3 FIRST IS MEDIAN

sWE KNOW (FIRST >= MIDDLE) AND (FIRST > LAST)

;3 S0 COMPARE MIDDLE AND

PUSH
LD
LD
CALL
FQP
JR

DE

E,C

D, B
COMPARE
DE

C, SWAPLF

LAST
3 SAVE FIRST
;DE = MIDDLE

; COMPARE MIDDLE AND LAST
;RESTORE FIRST

;JUMP IF LAST > MIDDLE

; LAST IS MEDIAN

344 rRrAY OPERATIONS

SWAPMF :

SWAPLF =

NEXT:

PREV:

$MIDDLE IS MEDIAN, SWAP IT WITH FIRST

PUSH HL s SAVE LAST

LD L,.C yHL = ADDRESS OF MIDDLE
LD H, B

CALL SWAP s SWAP MIDDLE, FIRST
POP HL tRESTORE LAST

RET

LAST IS MEDIAN, SWAP IT WITH FIRST

CALL SWAP ; SWAP FIRST AND LAST
RET

PRNERENERER AR R KRR AR R AR R BB R R R

sROUTINE: NEXT

s PURPOSE: MAKE HL POINT TQ NEXT ELEMENT
fENTRY: HL = ADDRESS OF CURRENT ELEMENT
JEXIT: HL = ADDRESS OF NEXT ELEMENT
sREGISTERS USED: HL
R i e Y)

INC HL 3 INCREMENT TO NEXT ELEMENT
INC HL

RET

RSttt 2 E S P Y Y 11

s ROUTINE: PREV

7 PURPOSE: MAKE HL POINT TO PREVIOUS ELEMENT
ENTRY: HL = ADDRESS OF CURRENT ELEMENT
$EXIT: HL = ADDRESS OF PREVIOUS ELEMENT

s REGISTERS USED: HL

PRENREM MR AR A RN LR R R A RS E RN

DEC HL s DECREMENT TO PREVIQUS ELEMENT
DEC HL
RET

3 ORI R I I MM RIS RN

s ROUTINE: COMPARE

+PURPOSE: COMPARE DATA ITEMS POINTED TO BY DE AND HL
+ENTRY: DE = ADDRESS OF DATA ELEMENT 1

; HL = ADDRESS OF DATA ELEMENT 2

JEXIT: IF ELEMENT 1 > ELEMENT 2 THEN

v C=20
H Z =0
H IF ELEMENT 1 < ELEMENT 2 THEN
H cC=1
H Z =0
H IF ELEMENT 1 = ELEMENT 2 THEN
H c=0
H Z =1

+REGISTERS USED: AF
R L 3

COMPARE :

SWAF:=

FIRST:
LAST:
STKBTM:
QLDSP:

~8 NB w8 % ws

9F QUICKSORT (QSORT)
INC HL s POINT TQ HIGH BYTES

INC DE

LD A, (DE)

CP (HL) s COMPARE HIGH BYTES

DEC DE s POINT TO LOW RYTES

DEC HL

RET NZ sRETURN IF HIGH BYTES NQT EQUAL
LD A, (DE) : QTHERWISE, COMFARE LOW BYTES
CcP CHL)

RET

P EEEEEERERRABRRRRERBERR BB RE SRR RS

;ROUTINE: SWAP

; PURPQSE:: SWAP ELEMENTS POINTED TO BY DE,HL
:ENTRY: DE = ADDRESS OF ELEMENT 1

? HL = ADDRESS OF ELEMENT 2

EXIT: ELEMENTS SWAPPED

tREGISTERS USED: AF, B
PEERERREEERRERRERER BB R RR AR RR R AR

s SWAP LOW BRYTES

LD R, (HL) s GET ELEMENT 2

LD A, (DE) s GET ELEMENT 1

Lo (HL) , A ; STORE NEW ELEMENT 2
LD A B

LD (DE), A ;s STORE NEW ELEMENT 1
INC HL.

INC DE

: SWAP HIGH RYTES

LD B, (HL) ; GET ELEMENT 2

LD A, (DE) ;GET ELEMENT 1

LD (HL) ;A ; STORE NEW ELEMENT 2
LD A, B

LD (DE) , A s STORE NEW ELEMENT 1
DEC HL

DEC DE

RET

;s DATA SECTION
ns
s
DS
ns

s POINTER TO FIRST ELEMENT OF PART

s POINTER TO LAST ELEMENT OF PART

: THRESHOLD FOR STACK OQVERFLOW

+ POINTER TO ORIGINAL RETURN ADDRESS

PR

SAMPLE EXECUTION:

345

“8 %8 wE uE B

346 ~rrAY OPERATIONS

SCoF:

BEGBUF :

ENDBUF @

ORT AN ARRAY BETWEEN BEGRUF (FIRST ELEMENT)

AND ENDBUF (LAST ELEMENT)

START STACK AT 5000 HEX AND ALLOW IT TO EXPAND
A

D

W

S FAR AS 4F00 HEX
SP, S000H sSET UP A STACK AREA

[~ v v v

LD BC, 4FOOH s BC = LOWEST AVAILABLE STACK ADDRESS
LD HL, BEGRUF sHL = ADDRESS OF FIRST ELEMENT OF ARRAY
LD DE, ENDBUF ;DE = ADDRESS OF LAST ELEMENT OF ARRAY
CALL QSORT s SORT
sRESULT FOR TEST DATA IS
7 0,1,2,3, ... ,14,15
JR SCoF ;LOOP FOR MORE TESTS
;: DATA SECTION
oW 15
DW 14
DW 13
DW 12
DW 11
DW 10
DW &4
W 2
DW 7
DW é
DW S
DW 4
W 3
DW 2
oW 1
oW [¢]

END

RAM Test (RAMTST)

9G

TestsaRAM area specified by a base address
and a length in bytes. Writes the values 0, FF g,
AA6(101010107), and 5514 (01010101,) into each
byte and checks whether they can be read back
correctly. Places 1 in each bit position of each
byte and checks whether it can be read back
correctly with all other bits cleared. Clears the
Carry flag if all tests run properly. If it finds an
error, it exits immediately, setting the Carry flag
and returning the test value and the address at
which the error occurred.

Procedure: The program performs the single
value checks (with 0, FF g, AAjg, and 55;¢) by
first filling the memory area and then comparing
each byte with the specified value. Filling the
entire area first should provide enough delay
between writing and reading to detect a failure
to retain data (perhaps caused by improperly
designed refresh circuitry). The program then
performs the walking bit test, starting with bit 7;

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 633 cycles per
byte tested plus 663 cycles overhead

Program Size: 82 bytes
Data Memory Required: None

Special Cases:

l. An area size of 00004 causes an immediate
exit with no memory tested. The Carry flag is
cleared to indicate no errors.

2. Since the routine changes all bytes in the
tested area, using it to test an area that includes
itself will have unpredictable results.

Note that Case | means this routine cannot be
asked to test the entire memory. Such a request
would be meaningless anyway since it would re-
quire the routine to test itself.

3. Testing a ROM causes a return with an error
indication after the first occasion on which the test
value differs from the memory’s contents.

here it writes the data into memory and attempts
to read it back immediately for a comparison.

Entry Conditions

Base address of test area in HL
Size of test area in bytes in DE

Exit Conditions

If an error is found:
Carry =1
Address containing error in HL
Test value in A
If no error is found:
Carry =0
All bytes in test area contain 0

Example

1. Data: Base address = 03804

Length (size) of area = 02004

Result: Area tested is the 0200,, bytes starting at
address 03804, that is, addresses 03804

through 057F¢. The order of the tests is

347

348 /rrAY OPERATIONS

~

NE NS ME NE NE wE s

MB NF MR NS ME NB ME NS ME NE WA NE B ME N ME NG ME NE NI WE ME NE ME ME ME B NB w8 ME B N NE

. Write and read 0

S R S

. Write and read FFq

. Write and read AA 4 (10101010,)

. Write and read 554 (01010101,)

. Walking bit test, starting with I in

bit 7. That is, start with 10000000,
(80,¢) and move the | one position
right for each subsequent test of a

byte.

Title
Name :

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

RAM test
RAMTST

Test a RAM (read/write memory) area
1) Write all O and test
2) Write all FF hex and test
3) Write all AA hex and test
4) Write all 55 hex and test
S5) Shift a single 1 through each bit,
while clearing all other bits

If the program finds an error, it exits
immediately with the Carry flag set and
indicates where the error occurred and
what value it used in the test.
]
Register pair HL
Register pair DE

= Base address of test area
= Size of area in bytes
If there are no errcors then
Carry flag = 0O
test area contains O in all bytes
else
Carry flag = 1
Register pair HL = Address of error
Register A = Expected value

AF, BC, DE. HL

Approximately 633 cycles per byte plus
663 cycles overhead

Program 82 bytes

NE NB MR ME N NR B s

NE ND WS wB W N

NB ME NE MR WS wE ve wm

B B ME ME MR ME MU ME NE YR NE ME NS NE MR R N NP N

9G RAM TEST (RAMTST) 349

RAMTST:
+EXIT WITH NO ERRORS IF AREA SIZE IS O
LD A, D s TEST AREA SIZE
QR E
RET Z EXIT WITH NO ERRORS IF SIZE IS ZERO
LD B,D $:BC = AREA SIZE
LD ¢, E
+FILL MEMORY WITH O AND TEST
SuUB A
CALL FILCMP
RET C EXIT IF ERROR FOUND
;FILL MEMORY WITH FF HEX (ALL 1°S) AND TEST
LD A, OFFH
CALL FILCMP
RET c ;EXIT IF ERROR FOUND
;FILL MEMORY WITH AA HEX (ALTERNATING 1S AND 0°S) AND TEST
LD A, OAAH
CALL FILCMP
RET c sEXIT IF ERROR FOUND
sFILL MEMORY WITH S5 HEX (ALTERNATING O“S AND 1°S) AND TEST
LD A, S5H
CALL FILCMP
RET c EXIT IF ERROR FOUND
s PERFORM WALKING BIT TEST. PLACE A 1 IN BIT 7 AND
;7 SEE IF IT CAN BE READ BACK. THEN MOVE THE 1 TO
; BITS &4, 5, 4, 3, 2, 1, AND O AND SEE IF IT CAN
; BE READ BACK
WLKLP:
LD A, 10000000B sMAKE BIT 7 1, ALL OTHER BITS O
WLKLFP1:
LD (HL) , A ; STORE TEST PATTERN IN MEMORY
CP (HL) ; TRY TO READ IT BACK
SCF ; SET CARRY IN CASE OF ERROR
RET NZ +RETURN IF ERROR
RRCA s ROTATE PATTERN TO MOVE 1 RIGHT
CcpP 10000000B
JR NZ, WLKLP1 ;CONTINUE UNTIL 1 IS BACK IN BIT 7
LD (HL), 0 ;CLEAR BYTE JUST CHECKED
INC HL
DEC BC s DECREMENT AND TEST 16-BIT COUNTER
LD A B
R c
JR NZ, WLKLP s CONTINUE UNTIL MEMORY TESTED
RET +NO ERRORS (NOTE OR C CLEARS CARRY)

P ORRE R R R R B R B B B3 3 NI
sROUTINE: FILCMP

s PURPOSE: FILL MEMORY WITH A VALUE AND TEST
; © THAT IT CAN BE READ BACK

350 ARRAY OPERATIONS

ENTRY: A = TEST VALLE

H HL = BASE ADDRESS
H BC = SIZE OF AREA IN BYTES
sEXIT: IF NO ERRORS THEN
} CARRY FLAG IS O
; ELSE
; CARRY FLAG IS 1
; HL = ADDRESS OF ERROR
3 DE = BASE ADDRESS
H RC = SIZE OF AREA IN BYTES
: A = TEST VALLE
;REGISTERS USED: AF, BC, DE, HL
L LT TR 2 L 2 S 2 S5
FILCMP:
PUSH HL ; SAVE BASE ADDRESS
PUSH RC ;s SAVE SIZE OF AREA
LD E,A s SAVE TEST VALUE
LD (HL), A s+ STORE TEST VALUE IN FIRST BYTE
DEC BC ;REMAINING AREA = SIZE - 1
LD A B :CHECK IF ANYTHING IN REMAINING AREA
oR C
LD AE :RESTORE TEST VALUE
JR Z, COMPARE : BRANCH IF AREA WAS ONLY 1 BYTE
sFILL REST OF AREA USING BLOCK MQOVE
; EACH ITERATION MQVES TEST VALUE TO NEXT HIGHER ADDRESS
LD D,H s DESTINATION IS ALWAYS SOURCE + 1
LD E,L
INC DE
LDIR ; FILL MEMORY
s NOW THAT MEMORY HAS BEEN FILLED, TEST TO SEE IF
: EACH BYTE CAN BE READ BACK CORRECTLY
COMPARE:
POP RC s RESTORE SIZE OF AREA
POP HL s+ RESTORE BASE ADDRESS
PUSH HL s SAVE BASE ADDRESS
PUSH BC 7 SAVE SIZE QF VALUE
; COMPARE MEMORY AND TEST VALUE
CMPLF:
CPI
JR NZ, CMPER s JUMP IF NOT EQUAL
JP PE, CMPLP s CONTINUE THROUGH ENTIRE AREA

: NOTE CPI CLEARS P/V FLAG IF IT
; DECREMENTS BC TO O

s NO ERRORS FOUND, SO CLEAR CARRY

FQOP BC sBC = SIZE OF AREA

POP HL sHL = BASE ADDRESS

OR A ; CLEAR CARRY, INDICATING NO ERRORS
RET

sERROR EXIT, SET CARRY
sHL = ADDRESS OF ERROR
yA = TEST VALLE

CMPER:

LT BT

SC9G:

QG RAM TEST (RAMTST)
POP RC sDE = SIZE OF AREA
PQP DE ;s BC = BASE ADDRESS
SCF $SET CARRY, INDICATING AN ERROR
RET
SAMPLE EXECUTION
3 TEST RAM FROM 2000 HEX THROUGH 300F HEX
t SIZE QF AREA = 1010 HEX RYTES
LD HL , 2000H sHL = BASE ADDRESS
LD DE, 1010H ;DE = NUMBER OF BYTES
CALL RAMTST s TEST MEMORY

; CARRY FLAG SHOULD BE ©

JR SCP6 ;LOOP FOR MORE TESTING

END

351

.8 B ME N we

Jump Table (JTAB)

OH

Transfers control to an address selected from
atableaccordingto anindex. The addresses are
stored in the usual Z80 format (less significant
byte first), starting at address JMPTAB. The
size of the table (number of addresses) is a
constant, LENSUB, which must be less than or
equal to 128. If the index is greater than or equal
to LENSUB, the program returns control imme-
diately with the Carry flag set to 1.

Procedure: The program first checks if the
index is greater than or equal to the size of the
table (LENSUB). If it is, the program returns
control with the Carry flag set. If it is not, the
program obtains the starting address of the
appropriate subroutine from the table and jumps
to it.

Registers Used: AF

Execution Time: 117 cycles overhead, besides the
time required to execute the actual subroutine

Program Size: 21 bytes plus 2 * LENSUB bytes for
the table of starting addresses, where LENSUB is the
number of subroutines

Data Memory Required: None
Special Case: Entry with an index greater than or

equal to LENSUB causes an immediate exit with
the Carry flag set to 1.

Entry Conditions

Index in A

Exit Conditions

If (A) is greater than LENSUB, an immediate
return with Carry = 1. Otherwise, control is
transferred to the appropriate subroutine as if
an indexed call had been performed. The return
address remains at the top of the stack.

Example

l. Data: LENSUB (size of subroutine table) = 03
Table consists of addresses SUBO, SUBI,
and SUB2.
Index = (A) = 02
Result: Control transferred to address SUB2

(PC= SUB2)

352

OH JUMP TABLE (JTAR) 353

NE B NE w0 4B R ws w8
SB wp ws M3 NR e wE e

Title Jump table
Name: JTAR
Purpose: Given an index, jump to the subrcoutine with

that index in a table.

Entry: Register A is the subroutine number (O to
LENSUB-1, the number of subroutines)
LENSUE must be less than or equal to
128,

Exit: If the routine number is valid then
execute the routine
else
Carry flag = 1

NE NB NI NE NB NE N NE %8 NE N3 ws w8

Registers used: AF
Time: 117 cycles plus execution time of subroutine

Sizes Program 21 bytes plus size of table (2¥LENSUR)

NE NB M NE ME NE NE MR B R NE NE 4B W8 NE NE W NE NE N N

NB N3 wB wB w3 NB we we

sEXIT WITH CARRY SET IF RQUTINE NUMBER IS INVALID
s THAT IS, IF IT IS TOO LARGE FOR TABLE (>LENSUE - 1)

JTAB:
cpP LENSUR ; COMFARE ROUTINE NUMBER, TABLE SIZE
CCF ; COMPLEMENT CARRY FOR ERROR INDICATOR
RET Cc sRETURN IF ROUTINE NUMBER TOO LARGE

; WITH CARRY SET

 INDEX INTQ TABLE OF WORD-LENGTH ADDRESSES
; LEAVE REGISTER PAIRS UNCHANGED SQ THEY CAN BE USED
1 FOR PASSING PARAMETERS

FUSH HL 3 SAVE HL

ADD A A DOURLE INDEX FOR WORD-LENGTH ENTRIES
LD HL, JMPTAR ;s INDEX INTQ TABLE USING 8-BIT

ADD AL 3 ADDITION TQ AVOID DISTURBING

LD L,A s+ ANOTHER REGISTER PAIR

LD A0

ADC AH

LD H,A ;s ACCESS ROUTINE ADDRESS

;OBTAIN ROUTINE ADDRESS FROM TABLE AND TRANSFER
7 CONTROL TO IT, LEAVING ALL REGISTER PAIRS UNCHANGED

354 rrav OPERATIONS

LD A, (HL)
INC HL
LD H, (HL)
LD L,A
EX (SP), HL
RET
LENSUR EQU 2
JMPTAE:
W SUEO
oW SUB1L
DW SUR2
s THREE TEST SUBROUTINES
SURO:
LD Al
RET
SUB1L:
LD A2
RET
SUB2:
LD A, 2
RET
H SAMPLE EXECUTION:
H
SC%H:

SuB A
CALL JTAR

*MOQVE ROUTINE ADDRESS TO HL

RESTORE OLD HL, PUSH ROUTINE ADDRESS
s JUMP TO ROUTINE

s NUMBER OF SUBROUTINES IN TABLE

; JUMP TABLE

sROUTINE O

;ROUTINE 1

sROUTINE 2

FOR JUMP TAELE

; TEST ROUTINE O SETS (A)

[}
[

s TEST RQUTINE 1 SETS (A)

H
n

s TEST ROUTINE 2 SETS (A)

[}
W

;EXECUTE ROUTINE O
3 AFTER EXECUTION, (A) = 1

e ~n us N N

LD
CAaLL
LD
CALL
CALL
JR

END

Al
JTAR
A2
JTAR
A3
JTAB

SC9H

OH JUMP TABLE (JTAR) 355

s EXECUTE ROUTINE 1

;3 AFTER EXECUTION, (A)
; EXECUTE RQUTINE 2

s AFTER EXECUTION, (A) =
;EXECUTE ROUTINE 3

;y AFTER EXECUTION, CARRY

]
w N

i
-

;LOOP FOR MORE TESTS

Read a Line from a Terminal (RDLINE)

10A

Readsaline of ASCII characters ending with
a carriage return and saves them in a buffer.
Defines the control characters Control H (08
hex), which deletes the latest character, and
Control X (18 hex), which deletes the entire line.
Sends a bell character (07 hex) to the terminal if
the buffer overflows. Echoes each character
placed in the buffer. Echoes non-printable char-
actersas an up arrow or caret (*) followed by the
printable equivalent (see Table 10-1). Sends a
new line sequence (typically carriage return, line
feed) to the terminal before exiting.

RDLINE assumes the following system-depen-
dent subroutines:

I. RDCHAR reads a character from the
terminal and puts it in the accumulator.

2. WRCHAR sends the character in the
accumulator to the terminal.

3. WRNEWL sends a new line sequence to
the terminal.

These subroutines are assumed to change all
user registers.

RDLINE is an example of a terminal input
handler. The control characters and I/ O subrou-
tines in a real system will, of course, be computer-
dependent. A specific example in the listing is
for a computer running the CP/M operating
system with a standard Basic Disk Operating
System (BDOS) accessed by calling memory
address 0005,,. Table 10-2 lists commonly used
CP/M BDOS functions. For more information
on CP/M, see Osborne CP/M User Guide,
Second Edition by Thom Hogan (Berkeley:
Osborne/ McGraw-Hill, 1982).

Procedure: The program starts the loop by
reading a character. If the character is a carriage

356

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 162 cycles to place
dn ordinary character in the buffer, not including the
execution time of RDCHAR or WRCHAR

Program Size: 148 bytes
Daia Memory Required: None

Special Cases:

1. Typing Control H (delete one character) or
Control X (delete the entire line) when the buffer is
empty has no effect.

2. The program discards an ordinary character
received when the buffer is full, and sends a bell
character to the terminal (ringing the bell).

return, the program sends a new line sequence to
the terminal and exits. Otherwise, it checks for
the special characters Control H and Control X.
If the buffer is not empty, Control H makes the
program decrement the buffer pointer and char-
acter count by 1 and send a backspace string
(cursor left, space, cursor left) to the terminal.
Control X makes the program delete characters
until it empties the buffer.

If the character is not special, the program
determines whether the buffer is full. If it is, the
program sends a bell character to the terminal.
If not, the program stores the character in the
buffer, echoes it to the terminal, and increments
the character count and buffer pointer.

Before echoing a character or deleting one
from the display, the program must determine
whether the character is printable. If it is not
(that is, it is a non-printable ASCII control
character), the program must display or delete
two characters, the control indicator (up arrow
or caret) and the printable equivalent (see Table
10-1). Note, however, that the character is stored
in its non-printable form.

10A READ A LINE FROM A TERMINAL (RDUNE) 397

Table 10-4: ASCII Control Characters and Printable Equivalents

Name Hex Value Printable Name Hex Value Printable
Equivalent Equivalent
NUL 00 Control @ DLE 10 Control P
SOH 01 Control A DCl1 11 Control Q
STX 02 Control B DC2 12 Control R
ETX 03 Control C DC3 13 Control S
EOT 04 Control D DC4 14 Control T
ENQ 05 Control E NAK 15 Control U
ACK 06 Control F SYN 16 Control V
BEL 07 Control G ETB 17 Control W
BS 08 Control H CAN 18 Control X
HT 09 Control 1 EM 19 Control Y
LF 0A Control J SUB 1A Control Z
VT 0B Control K ESC 1B Control [
FF 0C Control L FS 1C Control «e
CR 0D Control M GS 1D Control]
SO 0E Control N RS 1E Control *
SI OF Control O \S IF Control __
Table 10-2: BDOS Functions for CP/M