

Contents (Continued)

The Z80 Assembly Language Instruction Set

CPU Registers and Status Flags
Z80 Memory Addressing Modes
Implied

Implied Block Transfer with Auto-Increment/Decrement

Implied Stack

Indexed

Direct

Program Relative

Base Page

Register Direct

Immediate
Abbreviations
Instruction Mnemonics
Instruction Object Codes
Instruction Execution Times
Status
Instruction Descriptions
8080A/Z80 Compatibility

Zilog 280 Assembler Conventions

Assembler Field Structure
Labels
Reserved Names
Pseudo-operations

Examples
Labels with Pseudo-operations
Addresses
Conditional Assembly
Macros

In this PDF: Chapter 3 page 1-42

3-4

-;a_.a(')gwm

W= = =2 200D WN O

W LWL WWWwWw
= RPN N = -

Chapter 3
THE Z80 ASSEMBLY LANGUAGE
INSTRUCTION SET

Woe are now ready to start writing assembly {anguage programs. We begin in this
chapter by defining the individuat instructions of the Z80 assembly language in-
struction set, plus the syntax rules of the Zilog assembler.

We do not discuss any aspects of microcomputer hardware, signals, interfaces, or
CPU architecture in this book. This information is described in detail in An Introduction
to Microcomputers: Volume 2 — Some Real Microprocessors and Volume 3 — Some
Real Support Devices. while Z80 Programming for Logic Design discusses assembly
language as an extension of digital logic. In this book. we look at programming tech-
nigues from the assembly language programmer’s viewpoint, where pins and sig-
nals are irrelevant and there are no important differences between a minicom-
puter and a microcomputer.

Interrupts. direct memory access. and the Stack architecture for the Z80 will ba de-
scribed in later chapters of this book. in conjunction with assembly language program-
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.
These definitions are identical to those found in Chapter 6 of 280 Programming for
Logic Design.

The detailed description of individual instructions is preceded by a general discussion
of the Z8Q instruction set that divides instructions into those which are commonly
used. infrequently used. and rarely used. If you are an experienced assembly language
programmer, this categorization is not particularly important — and. depending on your
own programming prejudices, it may not even be accurate. If you are a novice assembly
language programmer. we recommend that you begin by writing programs using only
instructions in the “commonly used” category. Once you have mastered the concepts
of assembly language programming, you may examine other instructions and use them
where appropriate.

CPU REGISTERS AND STATUS FLAGS
The CPU registers and status flags for the Z80 may be illustrated as follows:

Sign
Zaro

Auxiliary Carry
Parity /Overflow
Subtract

Carry

S I z [IACI IP/O] N IC Flags

Accumulator

c
d
Secondary 5 = } Secondary Data Countars
Accumulators
L Primary Data Counter
s|z] lAc-[Pod N | ¢ | Atternate Fiags
A Alternate Accumulator
Alternate B C Alternate Secondary
Secondary D E Data Counters
Accumulators § |, L Alternate Primary Data Counter
SP Stack Pointer
PC Program Counter
X index Register
Y Index Register

| Interrupt Vector Register

R Refresh Register

The Accumulator is the primary source and destination for one-operand and two-
operand instructions. For example, the shortest and fastest data transfers between the
CPU and I/0 devices are performed through the Accumulator. In addition, more Memo-
ry Reference instructions move data between the Accumulator and memory than bet-
ween any other register and memory. All 8-bit arithmetic and Boolean instructions take
one of the operands from the Accumulator and return the result to the Accumulator. An
instruction must therefore load the Accumulator before the Z80 can perform any 8-
bit arithmetic or Boolean operations.

The B, C. D. E. H. and L registers are all secondary registers. Data stored in any of
these six registers may be accessed with equal ease; such data can be moved to any
other register or can be used as the second operand in two-operand instructions.

There are, however, some important differences in the functions of Registers B. C. D. E,
H. and L.

Registers H and L are the primary Data Pointer for the Z80. That is to say. you will
normally use these two registers to hold the 16-bit memory address of data being ac-
cessed. Data may be transferred between any registers and the memory location ad-
dressed by H and L. Since HL is the primary Data Pointer, it often takes fewer bytes of
object code and less instruction cycles to perform operations with it The Z80 program-
mer should try to address data memory via Registers H and L whenever possible.

Within your program logic, always reserve Registers H and L to hold a data memo-
ry address.

Registers B. C. D, and E provide secondary data storage; frequently. the second
operand for two-operand instructions is stored in one of these four registers. (The first
operand is stored in the Accumulator. which is also the destination for the result)

There are a limited number of instructions that treat Registers B and C. or D and E,
as 16-bit Data Pointers. But these instructions move data between memory and the
Accumulator only.

In your program logic you should normally use Registers B, C, D, and E as tempor-
ary storage for data or addresses.

Registers IX and IY are index registers. They provide a limited indexing capability of
the type described in An Introduction to Microcomputers: Volume 1 for short instruc-
tions.

The alternate registers F’, A’, B', C', D', E', H’, and L' provide a duplicate set of
general purpose registers. Just two single-byte Exchange instructions select and
deselect all alternate registers; one instruction exchanges AF and the alternate AF'
as a register pair, and one instruction exchanges BC, DE, and HL with the alternate BC',
DE', and HL'". Once selected. all subseguent register operations are performed on the ac-
tive set until the next exchange selects the inactive set. The alternate registers can be
reserved for use when a fast interrupt response is required. Or. they may be used in
any desired way by the programmer.

There are a numbaer of instructions that handle 16 bits of data at a time. These in-
structions refer to pairs of CPU registers as follows:

F and A
B and C
D and E
H and L
F and A’
B’ and o
D’ and E’'
H’ and L
e \—\,-./
High- Low-
order order
byte byte

The combination of the Accumulator and flags, treated as a 16-bit unit. is used only for
Stack operations and alternate register switches. Arithmetic operations access B and C.
D and E, or H and L as 16-bit data units.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included in Shift instructions; it is reset by Boolean in-
structions.

The Subtract flag is designed for internal use during decimal adjust operations. This
flag is set to 1 for all Subtract instructions and reset to O for all Add instructions.

The Parity/Overflow flag is a multiple use flag, depending on the operation being
performed. For arithmetic operations, it is an overflow flag. For input, rotate, and
Boolean operations, it is a parity flag, with 1 = even parity and 0 = odd parity. Dur-
ing block transfer and search operations, it remains set until the byte counter decre-
ments to zero: then it is reset to zero. It is also set to the current state of the interrupt
enable flip-flop IFF2) when a LD A\l or LD AR instruction is executed.

The Zero flag is set to 1 when any arithmetic or Boolean operation generates a
zero result. The Zero status is set to 0 when such an operation generates a non-
zero result.

3-3

The Sign status flag acquires the value of the most significant bit of the result
following the execution of any arithmetic or Boolean instruction.

The Auxiliary Carry status flag holds any carry from bit 3 to 4 resulting from the
execution of an arithmetic instruction. The purpose of this status flag is to simplify
Binary-Coded-Decimal (BCD) operations; this is the standard use of an Auxiliary Carry
status flag as described in An Introduction to Microcomputers: Volume 1, Chapter 3.

All of the above status flags keep their current value untit an instruction that modifies
them is executed. Merely changing the value of the Accumulator will not necessarily
change the value of the status flags. For example, if the Zero flag is set, and a load im-
mediate to the Accumulator is executed. that causes the Accumulator to acquire a non-
zero value; the value of the Zero flag remains unchanged.

The 16-bit Stack Pointer allows you to implement a Stack anywhere in addressa-
ble memory. The size of the Stack is limited only by the amount of addressable memory
present. In reality you will rarely use more than 256 bytes of memory for your Stack.
You should use the Stack for accessing subroutines and processing interrupts. Do not
use the Stack to pass parameters to subroutines. This is not very efficient within the
limitations of the 280 instruction set. The Z80 Stack is started at its highest address. A
Push decrements the Stack Pointer contents; a Pop increments the Stack Pointer con-
tents.

The Interrupt Vector register and the Refresh register are special-purpose
registers not normally used by the programmer.

The Interrupt Vector register is used to store the page address of an interrupt response
routine; the location on the page is provided by the interrupting device. This scheme
allows the address of the interrupt response routine 10 be changed while still providing
a very fast response time for the interrupting device.

The Refresh register contains a memory refresh counter in the low-order seven bits.
This counter is incremented automatically after each instruction fetch and provides the
next refresh address for dynamic memories. The high-order bit of the Refresh register
will remain set or reset, depending on how it was loaded at the last LD R A instruction.

280 MEMORY ADDRESSING MODES

The Z80 provides extensive addressing modes. These include:
+ Implied

- Implied Block Transfer with Auto-Increment/Decrement
» implied Stack

» Indexed

+ Direct

- Program Relative

- Base Page

+ Register Indirect

« Immediate

3-4

Implied

In implied memory addressing, the H and L registers hold the address of the
memory location being accessed. Data may be moved between the identified memo-
ry location and any cne of the seven CPU registers A. B. C. D. E. H. or L. For example. the

instruction

LD C.(HU

loads the C register with the contents of the memory location currently pointed to by

HL. This is illustrated as follows:

S ZACP/ON C

pPPaq

Data
JHBREEN Memory
A f--i vy

BC —
D,E
HL pp qq
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
] 4E
R
LD C {HL)
/\‘y— !"‘v"-'
7 6 56 4 3 2 1 0

|0|10011I

Tyt

Load Implied via HL
C Register

3-5

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

A limited number of instructions use Registers B and C or D and E as the Data
Pointer. These instructions move data between the Accumulator and the memory loca-
tion addressed by Registers B and C or Registers D and E. The instruction

LD {BC)LA

stores the contents of A into the memory location currently addressed by Register Pair
BC. This is illustrated as follows:

F

A
BC
DE
H.L
SP
PC
IX
Y

)

R

S ZAcPONGC

|

Data
Memory

pp

ad|

mmmim

LD (BCLA
————— A

~\’\

7 6 5 4 3 2 1 0

{ofofoJofofofrjof

mmmm + 1§

Store Implied from A via BC

3-8

Program
Memory

02

pPaq

mmmm + 1
mmmm + 2
mmmm + 3

Implied Block Transfer With Auto-Increment/Decrement

Block Transfer and Search instructions operate on a block of data whose size is
set by the programmer as the contents of the BC register pair. In this form of ad-
dressing. a byte of data is moved from the memory location addressed by HL to
the memory location addressed by DE; then HL and DE are incremented and BC is
decremented. Data transfer continues until BC reaches zero, at which point the in-
struction is terminated. Variations include allowing other instructions to follow
each data transfer, with the programmer supplying the loopback; auto-decrement-
ing HL and DE instead of auto-incrementing; and a complementary set of Block
Search instructions that compare the memory byts addressed by HL with the con-
tents of the A register, setting a flag if a match is found.

The Load, Increment. and Repeat instruction
LDIR

is illustrated as follows:

[Set if BC-1.# 0 reset otherwise

S ZACP,ON c Data
FCLexTeT] @ Mermory

Yy PPqq
A ppag + 1
B.C 1t uu rss + 1
DE m 58 i Yy rss
bt L pp qq rss + 1
sp ppaq + 1
PC mmmm Program
IX Memory
Y mmmm + 2
| when ttuu =0 ED mmmm
R BO mmmm + 1
mmmm + 2
mmmm + 3
LDIR
7 6 5 4 3 2 1 0
1§11 011 11011
Load, Increment, and Repeat instruction
11011 11§00} 0{o0

A similar group of Input/Output instructions is provided, allowing a block of data
to be input or output between memory and an I/0 device. The I/0 port number is
taken as the contents of the C register. with the single B register used as the byte
counter. Memory is addressed by HL.

3-7

Implied Stack

Since the Stack is part of Read/Write memory. we must consider Stack instructions as
Memory Reference instructions. Push and Pop instructions move two bytes of data
between a register pair and the addressed Stack Pointer location, i.e.. current top-
of-stack. The Z80 Stack address is decremented with each Push and incremented with

each Pop. The instruction
PUSH DE

is illustrated as follows:

S ZAcP/ON C
L L 1 1 1]

A
BC f
DE PP aq sss8-2
HL
SP 9588
PC mmmm “mmmm + 1
X
A4
|
R
PUSH DE
——
—AQ\/»-/AW
7 6 5 4 3 2 1 0

PUSH instruction

Register Pair DE

Data
Memory
qq | 8555 - 2
pp | 8385 - 1
8888
Program
Memory
D5 T m
mmmm + 1
mmmm + 2
mmmm + 3

The Z80 aiso has instructions that exchange the two top-of-stack bytes with a
16-bit register — HL or one of the two index registers. The instruction

EX (SP).HL

is illustrated as follows:

S Z ACP/ION C
L L1 1 J

A

Data
Memory

B.C

DE

H.L XX

SP SSSS

PC mmmm

X

Y

R

3-9

mmmm + 1

1)

pp

Program
Memory

E3

$8SS

ssss + 1
$588 + 2

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Indexed

The Z80 has two 16-bit index registers, called IX and Y. They may be used in-
terchangeably. All memory reference operations for which {HL} can be specified can
alternatively be specified as an indexed operation. The difference between implied ad-
dressing using HL and indexed addressing using IX and 1Y is that the index operand
includes a displacement value that is added to the index address. In the instruction

ADD A.(IX+40H)

the memory address is the sum of the contents of the IX register and 4016‘ This may be
illustrated as follows:

S ZAcP/ON C Data
FIXTXIXIX]01X] Memory
ppaq
A XX xx +yy
H ’

8.C
0. w ppag + 40
H.L
SP
PC mmmm @ Program

IX ppaq Memory

Y)

| DD mmmm

R 86 mmmm + 1

40 mmmm + 2
~— N mmmm + 3
—h—
ADD A(IX + 40)
“——

[=3 f=3 Fi,]

} Add to A Indexed by IX instruction

r-
ol -
olol=l=
-
[N =N BN F-9
—-fol] -
[= N B
ol -
-3 K=1 B [=)

Displacement

3-10

Direct

Direct addressing can be used to load the Accumulator with any 8-bit value from
memory, load BC, DE, HL, SP, IX, or 1Y with any 16-bit memory value, and jump or
call subroutines direct at any memory location. The 16-bit direct address is stored in
the last two bytes of the instruction, in low-byte high-byte order (this is the reverse of
the standard high-low scheme}.

The instruction
LD A.INETX)

loads the A register with the contents of the memory location addressed by the label
NETX. The instruction

LD "HL.(FFH)

loads the L register with the contents of memory location 01FF, . and the H register
with the contents of memory location 020016' This may be illustrated as follows:

S ZAcP/ON C Data
L L 1 1 1] Memory
A vy OIFF
8.C P < XX 0200
D.E £ f
H.L XX YY
sP
PC mmmm] mmmm + 3 Program
X Memory
Iy
| 2A mmmm
R { FF mmmm + 1
[5]] mmmm + 2
mmmm + 3
LD HLJ{1FFH)
7 6 5 4 3 1 0
olof{tr]|0o]1]0]| 1 }0] Load HL Direct instruction
1 {11 {1+]1]1{11]1] Direct address - low byte
0l0o[0]|0|[0O[0]0 |1 }Direct address - High byte

The direct Jump instructions provide jumps and jumps-to-subroutines, both un-
conditional and conditional. These are all 3-byte instructions, with the direct address
stored in the second and third bytes of the instruction. as shown above for Load Direct.

There are three additional addressing modes used by Z80 Branch instruc-
tions: program relative. base page. and register indirect. In general, they are shorter
and/or faster than direct jumps but may have more limited addressing capabilities.

Program Relative

Jump Relative instructions provide pragram relative addressing in the range -126,
+129 bytes from the first byte of the Program Relative instruction. These instructions
are all 2-byte instructions, with tke signed displacement value stored in the second
byte of the instruction. There are uncanditional and conditional relative jumps, as
well as a Decrement and Jump i Not Zero instruction (DJNZ) that facilitates loop
control.

Given the instruction
JR SRCH

assume that SRCH is a label addressing a location BA 6 bytes up in memory from the
JR op-code byte. The gperation may be illustrated as follows:

S ZAcP/ON C

Data
Rl d 1 11 Memory
A
B.C
D.E
H.L
sP mmmm +
PC mmmm SA Pragram
X - Memory
Y
| 18 mmmm
R i S5A mmmm + 1
mmmm + 2
mmmm + 3
.
JR SRCH
7 6 5 4 3 2 1 0
olo[1]1{0] 0| 0§ Jump Relative instruction
D110 f1r]1]69] 1[0] 0bisplacement

Base Page

The Z80 has a modified base page addressing mode for the Restart instruction. This is
a special Call instruction that allows a single-byte instruction to jump to one of
eight subroutines located at specific points in lower core. The effective address is
calculated from a 3-bit code stored in the instruction, as follows:

Lower Core Address 3-Bit Code

OOH 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

The decoded address value is loaded into the low-order byte of the Program Counter;
the high-order byte of the Program Counter is set to zero. For example. the instruction

RST OO0H
is illustrated as follows:
S ZAcP/ON C Data
fCLT LTI 1] Memory
mm+ 1 5888 - 2

A mm [ssss - 1
B.C 5858
D.E s885 - 2
H.L

SP $885

PC Py @ Program

IX Memory

Y

| 000 Cc7 mmm

R mmmm + 1

mmmm + 2
mmmm + 3
RST 00M
‘/
7 6 5 4 3 2 1.0

Lo

I :I Restart instruction

Address code

Register Indirect

In standard indirect addressing, a memory location contains the effective address, and
the instruction specifies the address of the memory location containing the effective
address. In register indirect addressing. a register contains the effective address, and
the instruction specifies which of the registers contains the effective address. Note that
for a Load, for instance, this is just another way of describing implied addressing.
However. the Z80 has Jump instructions that allow a jump to the memory location
whose address is contained in the specified register. This is a form of indirect ad-
dressing. and is described separately because. while most microcomputers have im-
plied addressing. very few have register indirect jJumps.

The instruction
JP(HL)

directs that a jump is to be taken to the memory location whose address is contained in
HL. This may be illustrated as follows:

S Z AcP/ON C

Data
JEEEERN Memory
A
B8.C
D.E
HL pp qq
x »
PC mmmm Program
X Memory
Y
; E9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

JP KU

/-NDC—-—\

7 6 5 4 3 2 1 0

[[Jofr[ofo[1]sumevian

3-14

Immediate
Some texts identify immediate instructions as Memory Reference instructions. An Im-
mediate instruction is a 2-, 3-, or 4-byte instructicn in which the last one or two bytes
hold fixed data that is loaded into a register or memeory location. The Z80 provides Im-
mediate instructions to:
» load 8-bit data into any of the 8-bit registers,
+ load 16-bit data into any of the register pairs or 16-bit registers,
« store B-bit data into any memory location using implied or indexed addressing,
« perform arithmetic and logical operations using the Accumulator and 8-bit im-

mediate data.
The instruction

LD BC.OBCH

loads the immediate data value BC1g into Register Pair BC. This may be illustrated as
follows:

S Z AcP/ON C

Data
F 1 111 Memory
A
B.C — -
DE N)
H.L
SP
PC mmmm mmmm + 3 Program
I1X Memory
Y
| 01 mmmm
R - BC mmmm + 1
— 00 mmmm + 2
mmmm + 3
LD 8C, 0BCH
7 6 58 4 3 2 1 0
Lofojofofafofo]1]

I £ Load Immediate to Register Pair

Register Pair BC

1

6 5 4 3 2
15011]1[1]1}{0 |0] Immediate data - low-order byte
0i0]JOoj0 |0 0 | immediate data - high-order byte

3-15

Table 3-1. Frequently Used instructions of the Z80

Instruction Code

Meaning

ADC
ADD
AND
CALL
CALL
cpP
DEC
DJINZ
IN
INC
JR
JR

LD
LD
LD
LD
LD
LD
ouT
POP
PUSH
RET
RET
RLA
RRA
SLA
SRL
SuB

A

addr

cond, addr’

cond,addr
reg.(HL)
A, (addr)
data
{HL).req
{addr), A
dst,src

cond

Add with Carry to Accumulator
Add

Logical AND

Call Subroutine

Call Conditional

Compare

Decrement

Decrement and Jump If Not Zero
fnput

Increment

Jump Relative

Jump Relative Conditional
Load Register

Load Accumulator Direct
Load Immediate

Store Register

Store Accumulator Direct
Move Register-to-Register
Qutput

Pop from Stack

Push to Stack

Return from Subroutine
Return Conditiona!

Rotate Accumulator Left Through Carry
Rotate Accumulator Right Through Carry

Shift Left Arithmetic
Shift Right Logical
Subtract

3-18

Table 3-2. QOccasionally Used Instructions of the 280

Instruction- Code

Meaning

BIT

CPD. CPDR

CPI, CPIR

CPL

DAA

DI

El

EX

HALT

IND, INDR

INI, INIR

JP addr

JP cond.addr
LD A.[BC) or (DE)
LD HL.{addr)

LD reg. (xy+disp)
LD rp.{addr)

LD xy.{addr)

LD (BC) or (DELA
LD (addr),HL

LD {xy+displ.reg
LD {addr).rp

LD {addr),xy

LD {HL),data

LD {xy+disp).data
LDD. LDDR

LDI, LDIR

NEG

NOP

OR

OouTD, OTDR

OuUTI, OTIR

RES

RETI

RL

RLC

RLCA

RR

RRC

RRCA

SET

SRA

XOR

Test Bit

Compare, Decrement, (Repeat)
Compare. Increment. {Repeat)
Complement Accumulator
Decimal Adjust Accumulator
Disabée Interrupts

Enable lmterrupts

Exchange

Halt

Input, Decrement, (Repeat)
Input, Increment. (Repeat)
Jump

Jump Conditional

Load Accumulator Secondary
Load HL Direct

Load Register Indexed

Load Register Pair Direct

L oad Index Register Direct
Store Accumulator Secondary
Store HL Direct

Store Regtster Indexed

Store Register Pair Direct
Store Index Register Direct
Store Immediate to Memory

Store Immediate to Memory Indexed

Load, Decrement. (Repeat)
Load. Increment. (Repeat)

Negate {Twos Complement) Accumulator

No Operation

Logical OR

Qutput, Decrement. Repeat)
Output. Increment, (Repeat)
Reset Bit

Return from Interrupt

Rotate Left Through Carry
Rotate Left Circutar

Rotate Accumutator Left Circular
Rotate Right Through Carry
Rotate Right Circular

Rotate Accumulbator Right Circular
Set Bit

Shift Right Arithmetic

Logicat Exclusive OR

Table 3-3. Seldom Used Instructions of the Z80

Instruction Code Meaning
ADC HL.rp Add Register Pair with Carry to HL
CCF Complement Carry Flag
EXX Exchange Register Pairs and Alternatives
IM n Set Interrupt Mode
RETN Return from Non-Maskable Interrupt
RLD Rotate Accumulator and Memory Left Decimal
RRD Rotate Accumulator and Memory Right Decimal
RST Restart
SBC Subtract with Carry (Borrow)
SCF Set Carry Flag
b Al Load Accumulator from Interrupt Vector Register
LD AR Load Accumulator from Refresh Register
LD ILA Store Accumulator to Interrupt Vector Register
LD RA Store Accumulator to Refresh Register
LD SP,HL Move HL to Stack Pointer
LD SP.xy Move Index Register to Stack Pointer
ABBREVIATIONS

These are the abbreviations used in this chapter:
AF.BCDEHL The 8-bit registers. A is the Accumulator and F is the Flag Word.

AF'.BC'.DE" HL' The alternate register pairs

addr A 16-bit memory address

x(b) Bit b of B-bit register or memory location x

cond Condition for program branching. Conditions are:

NZ - Non-Zero {2 = Q)

Z -ZerolZ=1)

NC - Non-carry (C =0)

C -Carry({C=1)

PO - Parity Odd (P =0}

PE - Parity Even (P = 1)

P - Positive Sign (S =0)
M - Negative Sign (S =1

data An 8-bit binary data unit

datal6 A 16-bit binary data unit

disp An B-bit signed binary address displacement
xx(HI) The high-order 8 bits of a 16-bit quantity xx
[Interrupt Vector register (8 bits)

X 1Y The Index registers {16 bits each)

label A 16-bit instruction memory address

xx({LO) The low-order 8 bits of a 16-bit quantity xx
LSB Least Significant Bit (Bit 0)

MSB Most Significant Bit (Bit 7)

PC Program Counter

port An 8-bit I/O port address

3-18

pr Any of the following register péirs:

8C
DE
HL
AF
R The Refresh register 8 bits)
reg Any of the following registers:
A
B
C
D
E
H
L
m Any of the following register pairs:
BC
DE
HL
SP
SP Stack Pointer (16 bits)
Xy Either one of the Index registers {IX or 1Y)
Object Code bbb Bit number 000 [LSB) to 111 (MSB)
ccc Condition code 000 = non-zero
001 = zero
010 = no carry
011 = carry

100 = parity odd

101 = parity even

110 = positive sign

111 = negative sign
ddd Destination register — same coding as rrr

ppaq A 16-bit memory address

rer Register 1M1 =A
000 =8

001 =C

010=D

011 =E

100 =H

101 =L

sss Source register — same coding as rrr

X Index register 0=1IX
1=y
XX Register pair 00 =BC
01 =DE
10 =HL

11 = SP {rp) or AF (pr)
xxx Restart code (000 to 111)

vy An 8-bit binary data unit
yyyy A 16-bit binary data unit

3-19

Statuses

(n

P g <>

The Z80 has the following status flags:

C - Carry status

Zz - Zero status

S - Sign status

P/O - Parity/Overflow status
Ac - Auxiliary Carry status
N - Subtract status

The following symbols are used in the status columns:
X - flag is affected by operation

{blank) - flag is not affected by operation

- flag is set by operation

- flag is reset by operation

- flag is unknown after operation

- flag shows parity status

- flag shows overflow status

- flag shows interrupt enabled/disabled status

—QOvCco-

Memory addressing: 1} the contents of the memory location
whose address is contained in the designated register, 2) an
I/0 port whose address is contained in the designated register.

The contents of a register or memory location.
For example:
([HL]) — [[HL]] + 1

indicates that the contents of the memory location addressed by
the contents of HL are incremented, whereas:

(HL] —[HL] + 1

indicates that the contents of the HL register itself are incre-
mented.

Logical AND

Logical OR

Logicai Exclusive-OR

Data is transferred in the direction’ of the arrow

Data is exchanged between the two locations designated on either
side of the arrows.

3-20

INSTRUCTION MNEMONICS

Table 3-4 summarizes the Z80 instruction set. The MNEMONIC column shows the
instruction mnemonic {IN, QUT, LD). The OPERAND column shows the operands,
if any, used with the instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part {immediate data, 1/0 device number, register name, label or address)
is shown in lower case.

For closely related operands. each type is listed separately without repeating the
mnemonic. For instance, examples of the format entry

LD rp.{addr)
xy.(addr)

are: LD BC.(DAT2)
LD IX.(MEM)

INSTRUCTION OBJECT CODES

The object code afd instruction length in bytes are shown in Table 3-4 for each
instruction variation. Table 3-5 lists the object codes in numerical order.

For instruction bytes without variations, object codes are represented as two
hexadecimal digits {(e.g., 3F).

For instruction bytes with variations in one of the two digits, the object code is
shown as one 4-bit binary digit and one hexadecimal digit (e.g., 11 x 1 D) in Table
3-5. For other instruction bytes with variations, the object code is shown as eight
binary digits (e.g., 01sss001).

INSTRUCTION EXECUTION TIMES

Table 3-4 lists the instruction execution times in clock periods. Real time can be
obtained by dividing the given number of clock pericds by the clock frequency. For
example, for an instruction that requires 7 clock periods, a 4 MHz clock will result in a
1.756 microsecond execution time.

When two possible execution times are shown li.e., 5/11), it indicates that the
number of clock periods depends on condition flags. The first time is for *condi-
tion not met,” whereas the second is for '‘condition met.”’

STATUS

The six status flags are stored in the Flag register (F) as follows:

S P/OI N] C

‘;f:i‘“

These bits are not used

Carry status (carry out of bit 7)
Subtract status

(1 after subtract operation, 0 otherwisa)
Parity /Qvarflow

{for logical operations, 1 for even, 0 for odd parity.
For arithmetic, 1 for overflow)

Auxiliary Carry status {carry out of bit 3)
Zero status (1 for zero, 0 for nonzero)
Sign status {value of bit 7)

3-21

In the individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

S 2z AcPO N C

? 1 X

Pt

X

i Modified to refiect results of execution

Unconditionally reset to 0
Unconditionally set to 1
Unchanged

Unknown

] o

An X identifies a status that is set or reset. A O identifies a status STATUS

that is always cleared. A 1 identifies a status that is always set. A CHANGES
blank means the status does not change. A question mark {?} WITH

means the status is not known. INSTRUCTION
EXECUTION

3-22

.. 'SS24PPE UOHEUNSAP JUBWAIIU PUE JUNOD
9JAG JuawaoeQ H 4O SIUBUOD AQ PBSSAIPPE UCHEDO| AIOWIW
01 J JO Siudlu0d AqQ passaippe Lod /] Wolj BIEp JO alAq € JaysuBd]
L+ [HI—[H]
L-[8]—1g]
[ORl—tmHN] 1 4 é é X Si [4 v a3 INI
«« PBLBYSURY Bq 0)
Buiuiewa) s31Aq 40 JUNOD B SE-BAIIS g JO SIUBILIOY “MO| O} S8SSBIPPE
YBiy wiosy BuioB 4 30 $1UBIUCD Ag PASSAIPPE UOIIEDO| AIOLIBLI O}
2 40 S1uBlU0D AQ passaippe Lod /] Wi} BIEP JO ¥20|q € J345ues)
L-[MH]I—[H]
L-{a]l—1a]
{ON—IH] -
‘0 =[(g] 1Mun jeaday | | 4 é é 3 «wS§1/02 4 ve Q3 HAN! 5]
«« POLIASURBY] BQ O} m:_
-Ufewas $81AQ JO JUNOD € se aAIss g Jo sjuajuc) 'yBiy o3 sessaippe
Mmo| woyy BuioB H Jo SILUBIUDD AQ Passalppe uo1ed0| Alowel 0y
D 40 SUIUOD Aq bomwo._u_u.m wod (/] wWoly Blep JO Y90G B Jaysues]
L+ [MH]—H)
L-fal—18l
{2 —IMH1
al 0=[g]twunjesdsy | 4 [4 é 1 «91/02 z a4 Qa3 HINI
‘pejoayse aq pm sbejy syl Ajuo T g/ St 93AQ puooas j|
«e D 40 SIUBLUOD 3y AQ passalppe wod Q) woly JaisiBas 0] hdy)
oN—ida]{ o | X d X | X Ll z 0Q00PPPLO Q3 {0)'Bay NI
[v] ‘Giv-8Y
wod zy-Qy 'sng sseuppy
‘Jed /) passeippe AJ19a4Ip WoJ) I01B|NLUNJ3Y 0} yndu
[Hed] — [v] ot z At gQ {Hod)'y NI
N[O ord| s |z o[g0,
‘peWIoIB4 uaneiedQ selig epo) 198iq0 puesedQ sluocweuy edAj
‘ smmg w201
185 UCIONIISU| 087 &Y} jO AMBWWNS v p-§ Blce | (8] istv-ev

[D] tv-Ov :shg ssaippy ,.

3-23

(PBNUIIUCY) 18S UOIIONIISU| O8Z BY] JO AIBLILING W "p-£ d|qe]

{2] iv-OV :sng ssauppy.,.

.. PauBSURY BQ O}
Buluiswes $81AQ 40 JUNOD € SB BAIAS g JO SJUSIUOY) "MO) 0} AIOLLIBLY
uBiy woJj Buios *) jo s1uBUCI AqQ Passeippe 1od ()/) 03 TH O SJUB)
-UDD Aq PessSaIppe UsEDO| AJOWBWS LI} BIBP 40 HOO(G € Jejsuel)
L-[MH]—[TH]
L-(@)l—1ga]
fH]I—121
‘0= (8] Inun jeeday 4 3 I3 «5L/0T 4 88 33 Ha10
+o'POIIBYSURY Bq O}
Buiuiewas s814Q 40 JUNOS B S8 8A8S g 40 51URIUDT YBiy 0y Auowew M.
Mol woyy BuioB '] o sjueNeD Aq pessesppe Lod (/] 03 H 40 Slusy 5
-U0d AqQ passeippe uOYEIC| AIOWSW WOLH BIEP JO %I0|q B Jaysues | -]
L+ [MH]1—[H] ,m.
L-M@l—(a) 3
UTHN— D)) =
‘0 =[d] (nun j1eedey 1 2 3 «§1/02 T £8 Q3 HILQ
oD §0 SJUBIUOD By} AQ passesppe Lod Oy 0} saystbes woy indinQ
[Bas]— (121 48 4 LODSssLO O3 Bau(2) 1no
[v]:SLv-8v
Hod [/y-Qy :SNg sseippy
‘uod Q/| pessaippe Ajoanp o} 10)8INWINY0Y WO INGING
[v]—luod) 1L z A EQ v'[1100) 1no
.« '$S8IPPE UOIIBUIISEP PUE JUNODD 81AQ
4i1oq juewsssa 4 40 SJUBIUGD AQ PBSSEIPPE UOILEJO| AJowew
D} D JO S3UBJUOD AQ PassaIppe Lod (/] WO B1Ep §0 G3AQ B Jajsues]
L-[MH]—1[H])
l-[8]1—18)
ol — (I il el ¢ sl z Vv a3 anl
v Jord| s o145
powioped LoD sajAg 8po) J0eiqp pugiedo ssoweuy | ediy
smes 1201
) Sly-gv

3-24

-aed Jasi6au payloads syl Jo Sjudy

-u0d Ayl AQ passeIPPR UCIIEI0| AJOWIBW WO I01BNWINDDY PRO
(3l —(v]le (28]l —([v]

‘AIOWBW passap

-pe Agoenp o3 seisibas xepu| 10 Jied 13151631 JO SIUBILOD BI0IG
({OWAX] — [1ppe] “[(H)AX] — [L + 1ppe]
40 [{(O)ds] — [ppe | [{IM)da] — [L + Jppe)

‘U0NEJ0| Alowaw passaIppe A[2a.Ip 0} TH 0 SIUBIUOD BI0IS
(11— [4PPe] ‘[H} — [L + 1ppe]

'UONEIO| AIOWBLW PESSBIPPE A[J2R4IP Ul SIUBJUOD J0JBINWINIDY BI01S
iv]— [+ppe |

A

-OwWaw passalppe A|1oauip woJy JastBal xapu) Jo ned 13151681 peoq
(PP] — [(ONAX] ‘[+ 4PPB] — [{IH}AX]
40 [4ppe | — [(ONG!] ‘[1 + 1pPe | — [{IH)d1]

"AJOWIBW PeSSBIPPE A0BJIP W04 H Peon
#PPE] — [1]°[L + 1pPE] — [H]

"UCI}BI0| AJOWAW PRSSeIPPe AjIDaAP WOl JOJEINWNDIY PROT
[4ppe] — [v]

oz
oz

9l

el

oz

oz

gl

£l

vi
Yo

bbdd zz 1OLLLX]L

bbdd 100XX10 Q3

bbdd zz

bbdd z¢

bbdd vz LOLLLXLL

bbdd | LoLxxL0 a3

bbdd yz

bbdd yg

(30°'v
o8’y

AX'(Ippe)
drpppe)
K (1pPE)
Y'{4ppe)
(4ppe) Ax
(appe)‘ds
(4PPE}TH

{(4PPE)'Y

al

an

an

al

9ouaIajey Alowe Asewiig

al

an

a1

.. SS@JPPE 22UNOS PUB JUNOD 8}AQ
41oq JueLuasteq) JO SJU3jU0D Aq passasppe Lod (/] 01 TH 4O sius}
-u02 AQ passelppe uoIle20| AIOLBW WO} Blep JO 81AQ B J8ySuel|

1-[H]—[WH]
lL-[@]l—I(8]
{H] =121
«+ SSBIPPE AVINOS JUBWIAIIUI PUE JUNODD
81AQ JuawaIoeQ "D 4O SUBU0D Aq pessesppe Jod /] 0} TH 4O sjusl
-u02 AQ pessesppe UONE30| AJOWBW WOy BIBP JO 81AQ B Jeysusl)
L+ [HI—[H]
L -8l —[9]
(OHN =10

Si

Sl

gv a3

Ev a3

armno

(penuyuog) 0/|

1LNO

pew.Jojied uonelado

0/d] s

snjelg

£812A)
b o]

se)Ag

8po) 108lqo

pusiedg

Jluoweu edA)

(PaNUNIUOD) 18 UOIIDNIISU| O8Z 8Y1 JO AlBWWNS ¥ ‘H-g 8|qe)

(a]
(2]

Slv-8v
1Ly-QY shg ssalppy..

3-25

‘pauasuel} aq o} S8lAq JO JUN0D B Se dAI8S
1@ J0 suejuoy ‘Mo| 0} sesseippe ybiy woyy Butob '3g 4o sue)
-uoa ay) AQ pessaIppe UoHESD] AJOWeW Ay} O} TH 4O SBIL0D B}
Ag POSSBJPPE UOIIED0} AJOWEW Syl WOJy BIEP 4O XJ0(q 2 J3jsuel]
+- (o8]~ (o8] @
L-OHI—[H] g
| - [3a1— 3a] -
[H) —[{30]] m
:0 = [08] 1nun jesdsy 0 0 «»91/0C [4 88 Q3 Haan £y
‘peilejsuel) 8q 0} S8JAG 4O JUNOD B S BAIBS 2
28 40 Sweuo) ‘ubiy 0y sessaippe mo| woiy Buob ‘3g jo siue} m.
-U0D 8y} AQ pESSAIPPE LOILEDO0| AJOWAW BY) 01 H JO SIU8lucO By} ©
AQ pesseippe uoueao| AJOWSLW 8y} WOl BIeP JO YO0|q © Jojsues] o
1 - 1081 —(08] 5
L+ [HI—[H]
L +{3a]—13Q]
(M —I[[Ean
'0 = (28] I1un Jeaday ol o ..91/0T T 08 03 Higl
says1Baa xapuy
}JO §}UBJUODD 0] BAIIR|S) PASSEIPPE UOED0| AIOWSW 0} 151681 01015 dsip
[Boa) — [dsip + [Ax]} 6l € 58501110 LOLLEXLL [Ber(dsip+Ax) al 2
‘Buissesppe eanees aseq Guisn uonedo| Asowews woyy JaisiBes peo dsip m
[dsip + {Ax]} — [B81) 6L € OLLPPPLO LOLLLXLL kdsip+Ax)‘Bas an =
“IH 40 sjua) m. ow
-u02 By} AQ PASSBIPPE UDHEID| AJOWBW O} Sjueluod J9isiBel a101g m ..mu.
(6o}l —[[H]) L 1 sssOLLLO Ba1{TH) al £ <
‘ned JeisiBes peyioeds ay) jo = M
$1UBJU0T BY} AQ PasSEIPPE UOIIRIO| AICLUBLU O} JOIRINWNIDY 31015 L l 4% v'(3a) m
[w1—L3Q]) 0 [v]—[iD8]] L l z0 v'{08) al z
“IH #0 $1UBJUOD AQ PBSSAIPPE UOIIEIC| AJOWBW WY 151602 peo o
[[MH]] — [Bes] L L OLLPPPLO {H) Bas al
v |od] s eapady
pawliopsegd uonesedp sajAg opo) 190iqQ puesedg Suoweu odA)
smeis ¥201)

(PENUNUOD) 183G UOHONIISU| O8Z BU} JO Alewiwing v ‘- 3lqe]

3-26

‘048Z SBWO08] JUNO0D BlAQ Yl UBYM IO PUNOD} SI YDjeWw B usym
dolg ‘Mo 0] sassaippe yBiy wo.y Buob Y Jo susuod Aq passalp
-pe 3}20|q AJOWSW JO BSOY} YIIM 101RINWNIVY JO SIU8IU0D siedwo)
1 -[08]— (28]
L-H]1—[H]
(peloa)e ase sBeyy Ajuo) [[TH]] - (V)
‘0=(08] 10 [[MH]] = [v] 1nun jeedey X | xX]|Xx »91/02 [4 649 a3 Hado
‘0182 SHWO08Q JUNOI BJAQ Yl UBYM 10 PUND} SI YIIEW € uBym o
doyg "ybBiy o} sassaippe mo| wo.j BuioB ‘14 Jo susueo Aq passalp w
-pe ¥20|q AJOWeW JO BSOY} YIIMm JOIBINWNIDY JO S3UdlU02 sledwio) H
L- 28— [08] 2
L+ [H1—[H] 2
(pe108ye 8.k sBeyy Ajuo) [[TH]] - [V] m
0=[28]4e[[MH]] = [¥] 1nun 1eadey X X X -.91/02 Z g a3l HIidD 3
Junog P
8)AQ PuE SESSBIPPE UOLBUNSEP PUB BIINOS JUSWEI08Q “3Q O S1ue)} m
-U0D By} AQ PESSaIppE LUONEIO| AIOWSL ay) 0} TH JO SIUBJUOD 3y} g
AqQ pessaippe uonelo| AJoWwew ayl Woli e1ep JO 91AQ FU0 s34suR)) M.w
1-[38]—1[29] 2
L-[H]I—[H] m
I -[3d1—(3q] m.
OH]] —{[3a]] 0| X 91 A 8v Q3 aal
N3 81AQ Jusu
-8408p PUE SBSSEIPPE UOIIBUIISBP PUE B2INOS JUAWBJIoU| "3 JO SuUa}
-u09 BY) AQ pessesppe uoneIo| AIoWew 3yl 0} TH O SIUSIUOD By)
AQ pesseippe ucied0| AJOWaW BY) WOoJ) elep JO 81AQ BUO J8ySUBL]
L-[o8]—1[08]
L+ [H]—[H]
I +(3a]1—[30]
[H]—[30] o] X 91 [4 ov Q3 1al
o< O\l S nO_D>U
peunoyied uonesedQ %5019 se1Ag epoy 198iqQ0 puesedQ Juowsuy edA)
smels

(PaNUUOY) 185 UOIONIISU| 08Z Y} JO AlRWWNS & ‘H-€ Blqe]

3-27

‘Buisseup
-pe 8anejas eseq 1o Buisseippe paydus Buisn Jojenwnooy yum yo 61 € dsipgg (OLLIXLL {(dsip + Ax)
[dsIp + [AX)JAIVI—I¥] O [[THN A [v]—iv) L]e]x I3 I 98 (H) 4o »
‘Buisselppe 2
8AnBI9. aseq 10 Buisseuppe pedun Buisn sojeinwnioy yum aNy 6t [9sip 9y LOLLIXLL | {9sip + Ax) M.
(@810 + [AX)] V[V = [V]OHTHNV IV]I—~(v] Lfd]x ¢ t av ™ anv 3
‘Buissep 2
-pe sAyeles aseq Jo Buissesppe peidwi Buisn Auesy yum wengng 6l £ dsip 36 LOLLIXLL [{dsip+Ax)'y m
D-[dsP + [AX)] - [¥]—[¥]0D-[[H]]-[v]—~{v] x|ojix L 1 36 {H'Y 08s]
‘Buisse.ppe oA
-eje1 eseq 10 Buissaippe paiduwi Buisn 10}gnwnsoy woy 1se4IQng 61 € dsip 96 LOLLEXLL (dsip + Ax) M
[dstp + (AX]] - (¥] — [V]40 [[THI] - [Vi—~[v] x| ofx ¢ ; 96 (H) ans H
‘B a
-SseJppe eanees aseq 10 Buissaippe paydus Buisn Aue) yum ppy 6l € dsip 38 LOLLIXLL [(dsip+Ax)y °
SH+Msp+ (A + [W]—[¥]0D+[[TH] + [V]—[v) X] 0| X L 3 38 (H)'VY Jaqv
‘Buissasp
-pe 8A38/9) 9sEG 4O Buisseippe peljdun Buisn 101eInWNsOY 0) PPy &l £ dsip 98 L0 LIXLL J(dsip+ Ax)'y
[ds1p + [AX]] + [V] — [V] 20 [[TH]] + [V] — V] x| o]x L L : 98 (H'v Qaav
‘JUNOD B1AQ PUB $SBJPPE JUBWBIDE(Q JH 4O SIUAUOD Aq pessaippe
UONEB30| AJOWIBU JO BSOYY YItA JOJZINWNODY JO SUBIOD aJediuo))
L -108]—[08) sz
L-H]—[H] ss
(patdayye aue sBey Awo) [[TH]] - [V] X | x}x 9l z 6v a3 Qd2 T
Juno9g a3iAq M..]
JUBLLBJOSD PUB SSOJPPE JUBLLBIOU) M JO SIUBUOD AQ passaippe Ed m.
UOKED0| AJOWEL O SS0YL YJIM JOIBINWNIDY JO SJUBJUOD s1edWor) m w
L- (o8] — (28] £a
L+ [OH]—[H]
{payoaye ase sbeyy Ajuo) [(H]] - [v] X | x| x 91 z Lv Q3 1dD
v o] s —
pewioyiag uonesedp saiig 8po) 198lq0 puesedp Juoweu adA)
smmg #0010

(PANUIIUOY) 185 UONONASU| 07 BUL JO AIBWWING v 4-€ 3|qB L

3-28

‘Ae) youelq yum 1yBu uopeso] AJouwauwl JO SJUBIUOD B1RI0Y 0
fdsip + [Ax]] 20 [[MH]] £2 v dsp g0 LOLLLXLL | (dsip + Ax)
' 2
2 0 P—— ! 0 |d] X (18 A 30 92 MH o121 m
-]
<
-Aued YBnosyl Ye| uoied0| AOWaLW JO SJUBIUOD 31E10Y 91 m..
[dsip + [Ax]) 10 {[WH]) €T v dsp gD LOLLIXLL | (dsip + AX) »
0 —= ¢ 2 o falx s 4 91 80 (H) " =
@
AseD) yosuesq yum 1ye) (Bul
-ssaippe eAle|a) 9seq 1o peljdwi) uoile20] AJOWaW JO $IUBU0I B1ej0Y 90
(dsp + [Ax] 0 j[IH]] 44 ¥ dsip gD LOLLLXLL | (dsip + Ax)
0 — 2 0ld}X 5L z 90 82 (H) o4
‘Buissalppe aanejel aseq 6 Buissaippe pajdun Buisn Juawaidsq £T € dsip GE LOLLIXLL {dsip + Ax)
| - [dsip + [Ax)] — [dsip + [Ax]] 40 | - [[MH] — [[TH]] X 10 fX Ll L SE (H) 230 2o
‘Buisseippr aane|es aseq 10 Buissesppe pendun Buisn juswesou) £z € dsip ¢ 1OLLLXLL (dsip + Ax) H 2
L+ [dsip + [Ax]j — [dsip + [Ax]} 40 | + [[MH]I—[[TH]] X{0]|Xx L L ve (H) ONI H m
‘pajoayje sue sbejy eyy AluQ "Buissaippe aan] 5]
-ejas aseq 4o Buissaippe peiduwit Buisn J018INWNIoY Yum Biedwo)) 6l € dsip3g LoLLLx1y (dsip + Ax) m M
{dsip + (Ax]] - {¥] 20 [[IH]] - [V]) X |lo|x L L EL: | (H) d2 2]
‘Buisseppe sAne(el 22
aseq 4o Buissesppe paijduwn Buisn 101BINWNIDY YIIM HO-8AISN|OX] 6l £ dsip 3y LOLLLXLL {dsip + Ax) m.. <
[dsip + [AX] A (W] — (VIO [[HIX (V] — (V] L] d]X L 1 av (H) HOX
Ov loid| s sopoA
D
pewio}ied uoneiedp selAg epa) 100iq0 puwiedQ OIUOUBUIA edAp
smus #0012

(PaNUNUOY) 185 UONONIISU| OFZ Y} JO AleWWING ¥ "p-€ 3jqel

3-29

(S j1earBoT) gSW Jee;o pue 16U UOYERIO| AJCLIBL JO STUBIUOT LIYS 3¢
[dstp + [Ax]} 10 ([TH]]
£z 14 osip g2 1oLLixLL] (dsip + Ax)
i} 0 ——— 0 o |d (X St z 3 82 (H) S
2
[
“Ius auswyLIY) 32
GSW ansesaid pue jyBid UOIIEDO| AIOWBW 4O SIUBIUOD YIS <
g
az -
dsip 4+ [Ax]} 10 [[TH ®
_ gxnolml £2 4 dsip g2 LOLELXLL | (OStp + Ax) 2
bl & & 0 - L 0fd]| x Gl [4 37 82 {1H) wys 4
&
[]
s 8
MBWIYILY) @S 18810 pue 38 UORRID| AJOWBW JO SILAOD :_cm_ 9z W
dsip + [Ax]] O [[IH 2
_ Sl Bl (a) €2 ¥ dsip gl LOLLLXLL | (dsIp + Ax) 4
o 0 ——f /| 2 0o]|d]|x Sl [4 9z 82 (H V1S =
Auiey ybnoayy 16 uoneso| Alowew jO SJUeIU0D aie1oy It
dsip 4+ jAx}] 10 [[TH]
ﬁ (el £2 ¥ dsip g2 LOLLLXLL | {dsip + Ax)
o] 0 - [0]4d]| x Sl 4 3L 80 (H) HY
v |od] s s9943
powioed uaneledo se1Ag epo) 1eiqQ puriedo UcWe U adA g
smeis »¥oo1)

(PENUIIUOD) 185 UONDNIISU| 08Z Y} JO AleWwuINS ¢ “p-¢ 3|Ge)

3-30

‘sougnbas uy 4
BNUIUOD '8SIMIBYIO 'PBYSIES $1 UOKIPUGD J1 BUIINOIGNS WO} WINay L1/S i 0002291 | puod 13 w.,
‘BUNOIGNS WOl WMey s
Z+1dS]—[ds] 8
(L + [dS 11— [(IH1Dd] £
[[dS] - [10N2d] ol 1 62 134 o
-gouanbas 2
Ul BNUIIUOD "ISIMIBYLO0 (PBYSIIES SI UOIJIPUOD §1I dUIINOIgNS 0} dwinp L1/04 € bbdd poioooy) [eqe|’'puod 1vD m-u
‘|eqe| Aq pajuesaidas ssaippe e Buipels aunnoigns o3 dwing m
18qe| — [2d] 3
Z2-1dS]1—1dS)
[tON2d) — [Z - [ds 1)
HH)Od]} —[L - [dS]] Ll £ bbdd g3 leqe| 7vd
“19151681 xapu) 10 TH Ui paueuod ssAIppe o) dwnp 8 Z 63 LOLLIXLL {Ax}
[AX]—[2d]40 [TH] -~ [Dd] 14 L 63 (H) dr
Runoeg Emhmo._n_ 30 sjuaquod ycwmw.._a 0} aaneas n_E-.._ﬂ qnl
(Z-9s1p) + Z + [2d] — [Dd] A4 z {z-dsip) 81 dsip ur 2
‘leqe; Ag pejuassids) ssauppe je uonangsul 0y dwnp
ege; — [Jd] [+]9 £ bbdd €9 1eqge| dr
‘Buisseippe elep
aAne|al aseq o peijduw Buisn uc1}e00| AJOWBW OUI B)BipaWIW} PEOT 6l t AAdsip 9 LOLLLXLL | (dSip +AX) _
ejep — [dsip + [Ax]} 0 e18p — [[TH]] ot [4 Ak gg €1ep’{H) al w
1935164 xopu(Jo sed 101st6a1 011 BlEP 1BIPBULILI 4O S31G 9| peo vl v AAAA L2 LOLLLXLL gleiep'Ax -4
glelep — [Ax]Jo glelep — [d1] ol £ AAMA LOOO*XO0 gieepds al g
@s1B8) oju) sjeIpalUW pEOT *
eep — [Gau | L 4 AA OLLPPPOO elep’Bas m
Iv |ord] s so12AD
pawIolIed uoneiedg #9019 salig epo) 3oelqp pueiedQ SIMOWIBUA odA)
smeg

{(PanuUNUOY) 185 UCIIONIISU| 087 Bl JO AlBLUIWING v 'p-€ dlqe]

3-31

‘0 10U SI JNSal J1 19UN0]
weibold 40 SJUBIUOD O} BANER|8 dWIN[PUB g JO SIUBUOD JUBLIBIIBQ

{T-9dsip) +Z + [Dd]veyr'0+[8] H

L-[@]l—1I(8) £L/8 z {z-dsip) O dsip ZNra
'18881 st Beyy o1az 41 183uno) weiboiy Jo SIUBIWOI 0] aAlejes dwnp [N
(Z-0sIP} + 2 + (Dd]l—[Dd]uaqt '0=2 r4%73 z (z-dsip) 0 dsip'ZN HC 3
‘yas s 6e)) 0187 1 8N0Y weiBoid J0 SW8U0D 0} BAle|es dwnp .M
(z—dsip) +Z + [2d]—[Dd]uap’i =274 ThL 4 (z-dsip) 87 dsip'z ur py
1956 s1 Beyy Aue) i se3uno) weiboig 4O S1UAUOD 0] dAle(as dwinp]
(Z— dsIP) + Z + [2d] — [Dd] U84 ‘O =D H AV} z (z-dsip) OE dsip'ON ur <
‘195 51 Beyy Aue) 3 18uno) weiboid 0 sHUB3U0D 0} Baneds dwnp w.
{(Z-0SP} + 2 + [Dd]— (Ddlvawi 'L =D} ZL/L < (Z-ds\p) BE dsip’D Hr
‘anu} si
UOnRIpuoD ayy §i [9ge| Aq pajuesaidsal ssalppe je uolansul 0} dung
18qe| — [Dd] uey) ‘puod oL € bbdd 01029211 |aqej’puo2 dr
‘peroayse aue sbeyy
2yl AlUOC SIUBIUOD LOIBINWNSDY YUMm elep sleipawl asedwor)
e1ep - (v | X |0 |x L T AA 34 elep do
"JOJRIMUNDDY UM BleIpallW) H(O-3AISN|0X]
Rep A (V] — vl L Jd]Xx L z AA 33 elep HOX
01RNWINIJY YHM slRIpawuw HO -
e1ep A [V] — [V} L]ld | X L z Ak 93 eep HO w
JOIEINWINODY UM 8lBIPBWWI ONY 2
eep vV [vi—[v] [T ¢ L z AA 93 elep aNy 3
“Alie]) yum ajeipaww joengng o
D-mEp- (V}—[v] x|o|x L z Ak 30 elep'y o8s H
“JOIBINWINIDY WOJ) BjeIpawwl Joesqng m
eep - [v]—[v] X 10| X L z AA 9q elep ans
"AlIBD UM B1BIP3WIWLI PPY
J2+eep+[y]—Iv} x|o|x L z AA 30 elep'y Jav
JIOJRINWINDOY O} 9lRIpaWW ppY
21ep + [V} — [V x|o|x L z AA g2 elep'y aav
v |od s s0(0An
pauwiojiad uohwiedg se1Ag epo) 108iqQ puesedQ Slucweu odA)
smeg »¥201)

{(PeNUIUOY) 185 UOHONIISU ORZ BYI JO AlBWIWING v p-€ 8lqeL

3-32

‘saed 19351604 ajewsaye pue sied isysiBas sbusyoxy
LH] [H]
{t3a})——{ [3al
(28] (o8] v L 6a Xx3 3
Q
‘snye}s wesbosd ajeussye pue snieys weiboud aueyoxy &
[ad
[¥]——[dv] v L 80 Av'av X3 2
“JH pue 3Q JO sjuau0d abueyox3y 2
[H]——[3a] ¥ L 83 H'3I0 X3 %
“18IUI0g N2BIS O} 48)51681 X8pU| JO SIUBIUOD BAOK m
[Ax]—[dS) oL z 64 LOLLLXLL Ax'dg al 2
“JIBJUIOg Y0€1G O} TH JO SIUSUOD BAOK m
MH]—[dS) 9 l 64 THdS al
-103eINWINDOY wWody JaysiBal ysesjey peo
v]—[u] 6 Z i¥ 43 v'H a1
*10Je|MUNJ2Y woly 18151684 10308 1dnuBlu) peoT)
[v]—1[] 6 4 Ly a3 vl al
"10318|NWN20Y 0 Je)siBal yselysy 4O SUAU0D SA0K
El<1 oJo oo x]x 8 z 1S a3 H'vY al
'10}8|AWN22Y 0) 18)siBas Jojoep 1dNLIBLU| O SIUBIUOD BAOK
M—ivi] O 0 | X | X 6 4 L5 Q3 'Y a
340 H°3°'Q’D ‘8 'V @9 yoes Aew jsp pue s suoneubisep
18)5188y "1815168) uoneusap o} s8)sifal 80INO0S JO SIUBIUCD BAOWN
[248] — (8P 14 l SSSPPPLO s Isp al
N{Pvjordfs | 2 | 9| se0u0
powIo)Ied uonsiedQ sojAg epo) 108lqQ pusied(oluoweuly adA |
s 32010

(PeNUIIUON) 185 UOIIINIISU| O8Z BYl 4O Alewwng v p-€ 3198

3-33

(dS Al 3008 = 1)
Al 19151601 X0pU| JO SIUUOD O} SJUBILOI Jied 19351681 ppe 11G-9|
[H4] + [A1]—[Al] ¢ St z L00LXXQ0 a4 Al aay
dS "X '3 "0g = dd)
x| Ja151684 xopu| 40 S1UBIUOD O} SJUALLED Jied saysiBes ppe 1g-9|
[dd]+ [x1]—[x1] { Sl z LOOLXXD0 aQ dd'x| aavy
“H
JO SJUBUOD WOy SUBL02 ped JaysiBal Aue) yiim joenqgns 1q-g1|
J-[di}-[WH]—[H] il O} X Sl z 0L00Xx10 Q3 dry 288
IH O SIUBUOI 0} spUUAD .__m.u ..w«m_mw._ ?_.EU Ylim ppe 1q-9(w
I+]+ [H]I—[H] ¢ lo] X 51 z 0LOLX*10 a3 diH aav <
“JH 40 Slualuod 0} susjuod Jied Jeysibas ppe 1q-g | m
[d1] + [H]—[H] l Lt L LOOLXX00 driy oav »
‘payooyse aue sbeyy ayl .m.
AJUQ 1031B{MWNIDY JO SIUBIUOD LM 1315168 JO SjUBluU0d d1edwo) m
[Bas] - [v] x ol x v l JuLLLoL Bas dd o
"1012|NWINJDY JO SIUBJUGD Ym 18351604 30 SIUBUOD HO-BAISN(IXT .m
(Bes A [v]— (V) 1L 4] x v I w010l Bau HOX S
“10J8|NWINDDY 4O SIUBU00 yim iaisibal o sjusjuod Yo
(Baa] AlV]I—Iv] L | 4| x ¥ 1 pL1LOoL Bas HO
10)RNWND0Y J0 SIUAIU0D yUm 43151681 1O 51UBUaD ONY
6ei] vV iv]—[v] L | d | x 14 1 0000 | Bas GONY
J0JRINWINOOY WOoJy Aued pue JasiBes jo sjualuos oengng
J-(fa)-Vi—1(V] X |o|x v L 1111001 basy o8s
“101e)nWINddYy EO.; ._Oum__nwv._ mO Sjuaju0d “_.UM._«D_._W
fBoa] - (W] — V] x |0o§x v L WQLOOL Bai ans
J01RINWINGDY 03 Ae]) pue 18)siBas o s1uauod ppy
J+[Bes] + [v]—|[v] Xx|lo | x v l 410001 Bary Jav
-10}e|NWINJYy 03 4a)sifal 40 slueuod ppy
Bas] + [v]— V1 x|o] x v L 1100001 Bau'y aav
v Jo/d] s so
1949
poewiojiad uoneisdQ s@1Ag 8po) 108iq0 pueiedQ SIUOWaU edA)
smeig ool

(PENUILUOY) 185 UONONAISU| OGZ BY) JO AlBWWING ¥ “p-€ BIge]

3-34

‘Aues) youesq Ypa aybu so1eInwnody s1eloy
v]

o} O -p—— | 0 14 I 40 YOud -
T al i
2
-Aen ybBnouy) 343) J0ieINWIND0Y Ajel0Y @
v] Z
-~
0 i [| o) 0 v L Ll v m.
g
‘Allesy youelq yum 148 101e[nNuNdoy 8jeloy m
vl
0 —— o] 0 v L Lo VO
49381681 x@pu| 10 Jied seysibes Jo sludlu0OD Juawaldeq (o2 4 8z 1OLLLXLI Ax
L - [Ax]— [Ax] a0 | - [di] — [ds] 9 ! LLOLXX00 di 23a
‘sjuajuod saysibes Juewaideg
L - [Bea) — [Bauj] X |0o1]x v 1 LO L4400 BoJ 530
-18ysibey xepuy Jo 183si6as 4O SIUBUOT JUBWBIOU| o]} 4 €2 10LLIXLL Ax =
L+ [AX] = [AX] JO | + [d1]— [dJ] 9 L L LOOXXQ0 di NI 8,
‘Sjueluo 1eysibel uaWwa1ou| m.
L+ {Bos] — [Ba)) X [ofx v 1 0014100 Ba. ONI °
‘(Juewe|dwod SOMI) JoieNwnady ajebapy H
L+ ¥]—I[v] x|lo|x 8 z vv a3 93N]
{luewa|dw o2 SAUO) JOIEINWINIDY JUBWdWO) @
¥]—Iv] L 14 I E14 142
‘spuelado Dg JO PIUBIDHIP 40 WINS Ay
81 $1ULJU0D 101RNWINIDY Jey) Bunwnsse Joje|nwnooy 1snipe |euioag X d X v 3 Lz vva
v Jod] s 01940
pewsoped uoneIedo - #9012 saAg epo9 100iq0 pugiedQ uoweuw odA)
1815

(PONUNUOD)} 18 UONONIISU| 0BZ BU} JO AleWWNS ¥ -

s|qel

3-35

MIYS onewyluy) gs7 4ee0 pue Yo seisibes Jo sjueluod yiys
[6as |
0O iy 0 —8 2 d | x 8 [4 1u00L00 82 Beu vis
‘Aue) ybBnoay 1yBu ie1siBai o sJUeIL0 elel0Y
[B6)]
O p—aq 0 Wp— { _‘._ d | X 8 z 1411000 8D Bau HY
‘Aled youesq yum yyBu seysiBas 4o s)uBluOD 81830y .W
[Baa) W
-4
bo) ‘HII 0 --p———oro ¢ ‘._ 4] X 8 [4 4410000 80 Beu o1 @
=
s
‘AueD ybBnouyy 38y Je3siBeal jo sUBLOCD BIRIOY o
861 g
8
0 =———_ o) 4 1x 8 z 14101000 8D 6o, H ol
[}
2
‘AUBD Yourlq yuam 18| salsiBas Jo suejuod Sﬂom_ H
[Bes] | mr-
_.! Q ——— 2 d | X 8 z 1400000 82 Bas Jw
Aue) ybnoayy 1yBu 101eInWwnooy 81e10Y.
iv)
E‘ 0 - L 14 l 41 YHd
OE_ s [TET Y]
poulIOLIed UoIBIRdD - soAg opo3 13e{qo puniedo JUOWSUWN odA)
smuig »on

{PENUNUOD) 195 UCNIONIISU| 08Z BY} JO Alewwing v “H-£ 81qe

3-36

‘PeIDe3jR 10U 8JB JOJB|IWND
-0y 8y} JO jey Jeddn ey} Jo suejuol (Buisseippe peiidwi) uoyeso|
Alowew pue J0IR|NWNIDY ayi usemieq 1ybu nBip qog auo eleioy
K1 ' vl
0o el L 0 ¢e|¢r L d | X 8l z {9 a3 quy
m
‘PeIP8}R 10U 8u8 10}]
-BINWINIY 8y} }O jey seddn sy} 0 sjusiuol (Buissesppe paidw) uon M
-890| AJOWBW pue JOIBNWNIJY By} ussmiaq 4o NBip gOg SuC 8)ejoH 2
:
(1M _i w Iv) m..
o elv ¢ o elv ¢ é | x gL | ¢ 19 3 am 8
g
[} :
2
(BIYyS jea1BoT) S see|> pue ybu Je1siBay jo sluel02 HYyg m..
(Ba1)
3 0 -g— ! 0 4 | X 8 [4 L1100 82 Be. S
"(1US onewyiLy) gSW easesesd pue 3ybu 415181 JO SIIBIU0D Hiys
(Bas)
2 0 -~ L d | x 8 4 1410100 82 Bas VvHS
0/d] § 201049
powisojied uoneiedQ selAg epo 30eiqQ pumiedg BT AT) edAj
sy 01D

(PENUIIUOD) 195 UOILONIISU| ORZ 9Y1 JO ABWWNS ¢ “H-£ 8|qel

3-37

"yoerg jo doy pue 48)siBas xapuy JO H JO SIUBLOD abueyox]

ldS 1l —— 111 €2 I4 €3 LOLLIXLL AX'(dS)
(I +[dS]] ——[H] 61 i €3 IH'(dS) X3
“19JUI0d ¥OBLS JUSWIIIOW
pue iaisiBas xapu| 10 Jed seysibal u yoeyg O 4O} JO SIUBILOD Ing »
Z +[dS1—[dS) g
(L + [dS]]— [(IH)d] 14 4 L3 LOLLLXLL Ax =
[[dS 11— [(0d] ol t LOOOXx1 1L d d0Od
BIUIO HOR1S JUBWaIOep
pue %835 jo doy uo seysibes xepu| 1o Jed teisiBas jo sjusluoD Ing
Z[dS]1—~1dS]
(O] — [2-[dS) gl z S3 LOLLLXLL Ax
fHMd) — [L-[dS]} L I LOLOXXLL i HSNd
"(Buissaippe aanejel 01199901
eseq 40 Buissaippe poi|dwi) uoieoo} AIoWBW Ul 1G PAIRIIPYI 1950y €z v dsipad LoLLLxil fdsip + Ax)'q
0 — (Q)[dsip + [Ax]] 10 0 — (Q)[[IH]] St z 01199901 82 (AHY'9 S3y
‘1q 18151664 peledIpul 18s8Y
0 — {q)Be: 8 z iqqq01 €2 Ba.'q S3y @
‘tBuissesppe aaneRl aseq olL1qqqil =
10 Buisseippe peidwn u0NEV0| AIOWEW JO UG PeIEdpUl Jeg £T v dsip g LOLLLXLL [{dsip +Ax)'q m
L — (Q)[dsIp + [AX]] 10 | — (qQ}([TH)] Sl z olLlqqqil @2 (HY'q 13s S
‘g 40151661 peresipul 18g s
| — (q)Beu 8 [4 dqqq() 82 berq 438]
‘(Buisseappe eanelas eseq 10 Buissasppe peyydun) uoy oLtQaqlLo 3
-800] AJOWBW 8y} JO Mg Pajoaes J0 Juaweldwod suieuod Bey olez oz b dsipgs 1oLLLXLL (dsip + Ax)'q
(a[dsip + [Ax]] — 2 10 (Q)[[IH]] — Z é ¢ i z 0L199910 82 (H'q lia
‘Hq 10151601 pejosjes oy 4o Juswedwod suielucd Beyy oiez
{a)6e0) — 2 ' 8 z 1uqqqLo 82 Bes'q 118
o/d] s se1942
pauloed uoiigsedQ s01Ag opo) 100190 puriedQ JUOWRUN edA)
smas 01D

(P3NUNUOY) 185 UOINIISU| 08Z @Yl JO AlBWWING ¢ “p-€ 3|qe]

3-38

‘UOI}EI8Y] BUOD 1O} SI UMOYUS 9WI) LONJexX],,

‘SALIOWIBL O|IRIOA Y5643l O SJON $81nJ9X8 'S} BY NdD 14 l aL 17vH
'POVYSaLIBI BIE SBUOWOW 3|1je|oA — uoiesado ON] i 0c dON
‘Bey Aue) juawejdwo) ®»
2—2 14 l 4€ 430 s
‘Beyy >tno|~ww m
1—2 14 i LE 428
8 4 35 Q3 4
8 4 9§ 43 I
"Z 10 ‘| "0 @pow J4nuBIUI 185 8 z 9t Q3 0 Wi
dnusslug SigeRSBLILOU WOl winjey i 4 S 03 N13H
Jdnusjul Woly uIniey L Z ar a3 1134 5
‘uoneso| pejeubisep e Jeisey M
Stu-g) —~[0d] $
Z-(dS]—[dS]
[ON2d] — [2-[dS]]
[H2d] — [1-[ds 1] L J LLExxx] u 18y
‘sidnuieiu) 8|qeu3 v L a4 13
‘sydnisgiug 3jqesiq v L €4 1a
0/d] S $919A9
pewioued uoneiedQ HOID solAg epo) 1eiqo puesedQ Juoweuy edAy
smes

(PANUIIUOY) 18G UOHONIISL| 08Z @Y} JO AleWWwNSg v 't-g @iqel

3-39

Table 3-5. Instruction Object Codes in Numerical Order

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
00 NOP 39 ADD HL.SP
01 yyyy LD BC.datal6 3A ppaqg LD A {addr)
02 LD (BCLA 3B DEC sP
03 INC BC 3C INC A
04 INC B 3D DEC A
08 DEC 8 3E yy Lo A data
06 vy LD B.data 3F CCF
07 RLCA 4 QOsss LD B.reg
08 EX AF AF' 46 LD B.(HL)
09 ADD HL,BC 4 1sss LD C.reg
QA LD A(8C) 4E Lo C.(HL)
B DEC BC 5 Osss LD D.reg
oc INC c 56 Lo D.(HL)
oD DEC c 5 1sss LD Ereg
O vy LD C.data 6E LD E[HL)
OF RRCA 6 Osss LD H.reg
10 disp-2 DJNZ disp 66 LD H.(HL}
11 yyyy Lo DE datal6 6 1sss Lo Lreg
12 LD (DE)LA 6E LD L{HL}
13 INC DE 7 Osss LD (HL),reg
14 INC] 76 HALT
15 DEC D 7 1sss LD A,reg
16 vy LD D.data 7E LD A(HL)
17 RLA 8 Orrr ADD A reg
18 disp-2 JR disp 86 ADD A(HL}
19 ADD HL,DE 8 trrr ADC A.reg
1A LD A.(DE) 8E ADC A [HL}
18 DEC DE S Orrr sus reg
1c INC |3 96 suB (HL}
iD DEC E 9 trer SBC A reg
1E yy LD E.data 9E SBC A{HL)
1F RRA A Orrr AND reg
20 disp-2 JR NZ disp AB AND (HL}
29 yyyy LD HL datal€ A 1rrr XOR reg
22 ppqq LD (adidr),HL AE XOR (HL}
23 INC HL B Orrr OR reg
24 INC H 86 OR (HL)
25 DEC H B irrr CcP reg
26 yy LD H.data BE cP (HL}
27 DAA co RET NZ
28 disp-2 JR Z disp C1 POP BC
29 ADD HLHL C2 ppaa JP NZ addr
2A ppaq LD HL {addr) C3 ppaq JP addr
bi:3 DEC HL C4 ppaq CALL NZ,addr
2C INC L c5 PUSH BC
2D DEC L C6 yy ADD A data
2E LD L data c7 AST 00H
2F CPL Cc8 RET z
30 disp-2 JR NC,disp [e:] RET
31 yyyy LD SP.data16 CA ppyqg JP 2 addr
32 ppaq LD {addrl,A CB 0 Orrr RLC reg
33 INC SP CB 06 RLC (HL)
34 INC (HL) CBO 1nr RRC reg
35 DEC HL) ca o RRC {HL)
36 yy LD {HL).data CB 1 Orrr RL reg
37 SCF CB 16 RL {HL}
38 JR C.disp CB 1 1nr RR reg

3-40

Table 3-5. Instruction Object Codes in Numerical Order (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
CB 1E RA {HL) DD CB disp 10bbb110 RES b {IX + disp}
CB 2 Orrr SLA reg DD CB disp 11bbb110 SET b.{IX + disp)
CB 26 SLA (HL) DO E1 POP 1X
CB 2 1nr SRA reg DD E3 EX {SP}LIX
| CB 2E SRA (HL) DO ES PUSH X

CB 3 1nr SRL reg DD E9 JP 1X)

CB 3t SRL (HL) DD F3 LD SPIX

CB O1bbbrrr BIT b,reg DE yy SBC A data

CB 01bbb 110 BIT b,(HL) DF RST 18H

CB tObbbrr RES b,reg EO RET PO

CB 10bbb110 RES b,(HL) E1 POP HL

C8 11bbbrr SET b,reg E2 ppaq JP PO, addr

CB 11bbb110 SET b,(HL) E3 EX {SPLHL

CC ppaq CALL Z.addr E4 ppaq CALL PO,addr
| CO ppag CALL addr ES PUSH HL

CE yy ADC A.data ES yy AND data
i CF RST 08H E7 RST 204
DO RET NC ES RET PE

D1 POP DE E9 JP (HL)

D2 ppqq JP NC,addr EA ppaq JP PE.addr
D3vyy ouTt {porthA EB EX DE.HL

D4 ppqq CALL NC,addr EC ppag CALL PE,addr
. D5 PUSH DE ED 01ddd000 IN reg,(C)

D6 yy sSuB data ED Q1858001 ouTt {Clreg

D7 RST 10H ED G1xx 2 SBC HL,rp

D8 RET C ED Q1xx 3 ppaq LD {addr),rp
D9 EXX ED 44 NEG

DA ppag Je C.addr ED 45 RETN

DB yy IN A (port) ED 010nn110 IM m

OC ppaq CALL C.addr ED 47 LD LA

DD 00xx 9 ADD 1X.,pp ED O1xx A ADC HL,rp

DD 21 yyyy LD IX.data 16 ED O1xx B ppqq LD . (addr)

DC 22 ppqaq LD {addr},IX ED 4D RETI

DD 23 INC [} 4 ED 4F LD RA

DD 2A ppqq LD 1X {addr) ED 57 LD Al

DD 2B DEC X ED 5F LD AR

DD 34 disp INC (1X + disp} ED 87 RRD

DD 35 disp DEC {IX + disp} ED 6F RLD

DD 36 disp vy LD {IX + disp}.data ED AD LDI

DD Mddd 110 diso LD reg,(IX + disp) ED A1 CP

DD s Osss disn LD (X + disp}.reg ED A2 NI

DD 86 disp ADD A (IX + disp) ED A3 ouT

DD 8E disp ADC A (X + disp) ED A8 LDD

DD 96 disp suB {IX + disp) ED A9 CcPD

DD 9E disp SBC A(IX + disp) ED AA iND

DD A8 disp AND (IX + disp) ED AB ouTD

DD AE disp XOR {IX + disp} ED BO LDIR

DD B6 disp OR {1X + disp) ED B1 CPIR

DD BE disp CcP (1X + disp) ED B2 INIR

DD CB disp 06 RLC (I1X + disp) ED 83 OTIR

DD CB disp OE RRC {IX + disp) ED B8 LDDR

DD CB disp 16 RL (1X + disp) ED B9 CPDR

DD CB disp 1E RR (1X + disp) ‘ED BA INDR

DD CB disp 26 SLA (1X + disp) ED BB OTDR

DD CB disp 2E SRA (IX + disp) EE vy XOR data

DD CB disp 3E SRL {1X + disp) EF RST 28H

DD CB disp 01bbb110 § BIT b.iIX + disp)

3-41

Table 3-5. Instruction Object Codes in Numerical Order (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
FO RET P FD 8E disp ADC ALY + disp)
F1 POP AF FD 96 disp suB (1Y + disp)
F2 ppqa JP P,addr FD 9E disp SBC ALY + disp)
F3 Dl FD A6 disp AND (1Y + disp)
F4 ppqga CALL P.addr FD AE disp XOR Y + disp}
FS PUSH AF FD B6 disp OR {tY + disp)
F6 yy OR data FD BE disp cP {FY + disp)
F7 RST 30H FD CB disp 06 RLC {IY + disp}
F8 RET M FD CB disp OE RRC (1Y + disp)
F9 LD SPHL FD CB disp 16 RL (1Y + disp)
FA ppaq JP M,addr FD CB disp 1E RR (IY + disp)
F8 El FD CB disp 26 SLA 1Y + disp)
FC ppaq CALL M,addr FD CB disp 2E SRA 1Y + disp}
FD 00xx 9 ADD IY,re FD CB disp 3E SAL {tY + disp}
FD 21 yyyy LD 1Y, data16 FD CB disp 01bbb110 BIT b,(iY + disp)
FD 22 ppaq LD {addr),IY FD CB disp 10bbb110 RES b{IY + disp}
FD 23 INC Y FD CB disp 11bbb110 SET b.(IY + disp}
FD 2A ppaq LD 1Y (addr} FD E1 POP \'4
FD 2B DEC Y FD E3 EX {SP}AY
FD 34 disp INC (IY + disp) FD E5 PUSH Y
FD 35 disp DEC (1Y + disp) FD E9 JP {Y)
FD 36 disp vy LD {IY + disp),data FD F9 LD SPIY
FD 01ddd 110 disp LD reg,(IY + disp) FE yy cP data
FD 7 Osss disp LD {IY + disp),reg FF RST 3I8H
FD 86 disp ADD A Y + disp)

3-42

ADC A.data — ADD IMMEDIATE WITH CARRY TO

ACCUMULATOR
I
S ZAcP/ON C Data
FEX DX XEX]O]X] Memory
A XX CH+xx+vyy
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
X Memary
Y
! CE mmmm
R — Yy mmmm + 1
mmmm + 2
mmmm + 3
ADC A, data
e oy
CE vy

Add the contents of the next program memory byte and the Carry status to the Ac-
cumulator.

Suppose xx=3A1g, yy=7C16. and Carry=0. After the instruction
ADC A,7CH

has executed, the Accumulator will contain B616:

3A = 0011 1010
7C = 0111 1100
Carry = 0

1,017 0110
1setsSto1 1U LNon-zero result, set Z to 0
No carry. setC to 0 Carry, set Ac to !
~
0¥ 1=1,set P/O to 1 Addition instruction, set N to O

The ADC instruction is frequently used in multibyte addition for the second and subse-
quent bytes.

3-43

ADC A,reg — ADD REGISTER WITH CARRY TO
ACCUMULATOR

S ZAcP/ON C Data
F CIXTOTX] @ Mermory
A XX
ac contents of
' ABCDEH
DE .
H.L orLis yy
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
[1000 1xxx Jmmmm
R mmmm + 1
mmmm + 2
mmmm + 3
ADC A, reg
— ——
10001 XXX

S

000 for reg=8B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101" for reg=L
111 for reg=A

Add the contents of Register A, B. C. D, E, H or L and the Carry status to the Accumula-
tor.

Suppose xx=E31g. Register E contains A01g. and Carry=1. After the instruction

ADC AE
has executed, the Accumulator will contain 844g:
E3 = 1110 0011
A0 = 1010 0000
Carry = 1
1000 0100
1setsStol tU LNon-zero rasult, set Z to 0
Carry, setC to 1 No carry, set Ac to 0
>
1% 1=0, set P/O to 0 Addition instruction, set N to 0

The ADC instruction is mast frequently used in multibyte addition for the second and
subsequent bytes.

3-44

ADC A,{(HL) — ADD MEMORY AND CARRY TO
ADC A, {IX+disp) ACCUMULATOR
ADC A, {(IY+disp)

S ZAcP/ON C Data
FExIXIx[x]o§x] — Mermory
A XX xx+vyy+C Yy ppaq
B.C
D.E
HL pp qaq
SP
PC mmmm mmmm + 1 Program
X Memory
Y
y 8E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADC A (HL):
ADC A, (HL)
8E

Add the contents of memory location (specified by the contents of the HL register pair)
and the Carry status to the Accumulator.

Suppose xx=E31g, yy=A016. and Carry=1. After the instruction

ADC A, HL)

has executed, the Accumulator will contain 8414:
E3 = 1110 0011
A0 = 1010 Q000
Carry = 1

1000 0100
TsetsStol tU LNon~zero result, set Z 10 0
Carry, set C to 1 No carry. set Ac to O
ol
1%1=0.5etP/Oto0 Addition instruction, set N to 0
ADC A {(IX+disp}
Nemm—, g

———

DD 8E d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d} and the Carry to the Accumulator.

ADC A (Y-+disp)
Nt

——

FD 8E d

This instruction is identical to ADC A.{IX+disp), except that it uses the IY register in-
stead of the IX register.

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

3-45

ADC HL,rp — ADD REGISTER PAIR WITH CARRY TOH AND L

S Z AcP/ON C Data
FEXEXEX]X]OIX] Memary
A BC, DE, HL cr SP
B.C contain yyyy
DE ’ "
H.L xx XX XXXX + YYYY
sp +C
PC mmmm Program
I1X Memory
Iy mmmm + 2
| ED mmmm
R 01xx1010 |mmmm + 1
mmmm + 2
mmmm + 3
ADC HL.rp

ED 01xx1010
g

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE, HL register pair or the Stack Pointer, and
the Carry status. to the HL register pair.

Suppose HL contains A5361g. BC contains 10441g. and Carry=1. After execution of
ADC HL.BC

the HL register pair will contain:

A536 = 1010010100110110
1044 = 0001 0000CG100 0100
Carry = 1

101101010111 1017

1 sets S to 1 %} *—Non—zero result, set Z to O
No carry. set C to O No carry, set Ac to 0

y L .
0¥ 0=0, set P/O 10 0 Addition instruction, set N t0 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

3-46

ADD A,data — ADD IMMEDIATE TO ACCUMULATOR

S ZAgP/ON C Cata
FEXIXIX]X]{0]X] Memory
A %X XX +yy
8.C
D.E
H.L
SP
PC mmmm @ Program
1% Memory
Y
: C6 mmmm
R — YY mmmm + 1
mmmm + 2
mmmm + 3
ADD A, data
S—p———
Cé vy

Add the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g. yy=7C16. and Carry=0. After the instruction

ADD A7CH
has executed, the Accumulator will contain B614:

3A 0011 1010
7C 01117 1100

1,011 0110
1setsS tol 1U LNon—zero result. set Z to 0
No carry. set C 1o 0 Carry, set Ag to 1

Y & _ .
O 1=1; set P/O to 1 Addition instruction, set N to O

This is a routine data manipulation instruction.

3-47

ADD A,reg — ADD CONTENTS OF REGISTER TO

ACCUMULATOR
S ZAcP/ON C Data
FlXIXlXIXIOIX'I XX+ yy Memory
A XX
BC contents of
D‘ £ —=AB.CDE,
H',L HorLis yy
sP
PC mmmm mmmm + 1 Program
1X Memory
1y
| 10000xxx | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
ADD reg
——
10000 xxx
000 for reg=B
001 for reg=C
010 for reg=D
011 forreg=E
100 for reg=H
101 for reg=L
111 for reg=A
Add the contents of Register A, B, C, D, E, H or L to the Accumulator.
Suppose xx=E31g. Register E contains AQ1p. After execution of
ADD AE
the Accumulator will contain 8316
E3 = 1110 0011
A0 = 1010 0000
1,000 0011
1sets S tol UT L—Non—zero result. set Z to O
Carry. set C to 1 No carry. set Ag to O
ik
1%1=0,set P/Ot0 0 Addition instruction, set N to 0

This is a routine data manipulation instruction

3-48

ADD A,(HL) — ADD MEMORY TO ACCUMULATOR
ADD A, (IX+disp}
ADD A,(lY +disp)

S ZAcCP/ON C

Data
FIXIX]X]Ix]o]x] Memory
A xx XX +yy vy ppaq +d
B.C

DE T
H.L

SP

PC mmmm Program
IX ppaq Memory

Y
| DD mmmm
R 86 mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of ADD A, {IX+disp).
ADD A, {IX+disp}
m—

N

DD 856 d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) to the contents of the Accumulator.

Suppose ppag=400016, xx=1A16. and memory location 400F 15 contains 501g. After
the instruction

ADD A (IX+0FH)
has executed. the Accumuliator will contain 6A1g.

1A = 0001 1010
50 = 0101 0000

0110 1010

OsetsStg O Ut LNon—zero result, setZ to 0
No carry, set C to O
»

No carry. set Ac to O

0%0=0; setP/Oto 0O Addition instruction, set N to O
ADD A (IY+disp)
e,

e
FD 86 d

This instruction is identical to ADD A, {IX+disp). except that it uses the !Y register in-
stead of the IX register.

ADD A.(HL)

Nnp— e

86

This version of the instruction adds the contents of memory location, specified by the
contents of the HL register pair. to the Accumulator.

The ADD instruction is a routine data manipulation instruction.

3-49

ADD HL,rp — ADD REGISTER PAIR TOH AND L

S Z AcP/ONC Data
(mmpamon) Momory
A BC, DE, HL or SP
8C contain yyyy
DE
HL XX XX @
SP
PC mmmm Program
1% Memory
mmmm + 1
Y
' 00xx 1001 | mmmm
R mmmm + 1
mmmm + 2
mmmm +3

ADD HL.rp

00 xx 1001

S~

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE. HL register pair or the Stack Pointer to the
HL register pair.

Suppose HL contains 034A16 and BC contains 214C1g. After the instruction
ADD HL.BC
has executed, the HL register pair will contain 249616

034A = 000000110100 1010
214C = 00100001 01001100

00100100 1001 0110

No carry, set C to O g—————No carry. set AC to 0

Addition instruction, set N 10 0

The ADD HL.HL instruction is equivalent to a 16-bit left shift.

3-50

ADD xy.rp — ADD REGISTER PAIR TO INDEX REGISTER
S ZACP/ON C

Data
Ll _Ix] Jo]X] Memory
A
B.C
D.E re $S
HL
SP
PC mmmm @ Program
IX ppaq. “ Memory
Y
o Tiy 11101 | mmmm
00xx 1001 Fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADD IX,DE.

ADD Xy r

s

11y‘i 1101 OOxx 1007

0 for Index register=I1X 00 for rp is register pair BC

1 for Index register=lY 01 for rp is register pair DE
10 for rp is specified Index register
11 for rp is Stack Pointer

Add the contents of the specified register pair to the contents of the specified Index
register.

Suppose 1Y contains 4FFO1g and BC contains 000F 1 5. After the instruction
ADD 1IY,BC

has executed. Index Register 1Y will contain 4FFFqg.

3-51

AND data — AND IMMEDIATE WITH ACCUMULATOR

S Z AcP/ON C

FIXIXI1|X|0|0I

A

XX

B8.C

C.E

HL

SP

PC

mmmm

IX

Y

|
R

data

——

Yy

XX Yy

mmmm + 2

Data
Memory

Program
Memaory

E6

YY

AND the contents of the next program memory byte to the Accumulator.

Suppose xx=3Aqg. After the instruction

has executed, the Accumulator will contain 3816.

OsetsSto0

AND 7CH
= 0011 1010
= 0111 1100
1000

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Three 1 bits, set P/O to O

Non-zero result, set Z t0 0

This is a routine Jogical instruction; it is often used to turn bits “off”. For example, the

instruction

AND 7FH

will unconditionally set the high order Accumulator bit to 0.

3-52

AND reg — AND REGISTER WITH ACCUMULATOR

S ZAcP/ON C Data
f XTxT T IxTo]0 Memory
A XX contents of
g“é AB.C.DE,
HL HorLis yy
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
| 10100xxx Jmmmm
R mmmm + 1
mmmm + 2
mmmm +3
AND reg
S, ——
10100 xxx

666 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

AND the Accumulator with the contents of Register A, B, C, D, E, H or L. Save the result
in the Accumulator.

Suppose xx=E316. and Register E contains AQ1g. After the instruction
AND E

has executed. the Accumulator will contain AQ16.

E3 = 1110 0011
A0 = 1010 0000
1010 0000
1sets S tol Two 1 bits, set P/O to 1

Non-zero result, set Z to 0

AND is a frequently used logical instruction.

3-53

AND (HL) — AND MEMORY WITH ACCUMULATOR
AND (IX+disp)
AND (IY +disp)

S ZAcP/ON C Data
{ AL D Memory
A XX XX Yy yv. |ppaa+d.
B.C
DE
H.L
SP
PC mmmm mmmm + 3 Program
X pPaq Memory
Y
1 FD mmmm
R AB mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of AND {IY+disp).
AND {lY+disp)
S <emg’

~————

FD At d

AND the contents of memory location {specified by the sum of the contents of the IY
register and the displacement digit d} with the Accumulator.

Suppose xx=E31g. ppgq=40001g. and memory location 400F1¢ contains AQ1g. After
the instruction

AND (IY+O0FH)
has executed, the Accumulator will contain AC1g.

E3 = 1110 0111
A0 = 1010 000O0
1010 0000
1 sets Sto Two 1 bits, set P/O to 1

Non-zero result, set Z to 0
AND (IX+disp)
A W s e
DD A6 d

This instruction is identical to AND (IY+disp), except that it uses the IX register instead
of the IY register.

AND (HU)
e 4
AB

AND the contents of the memory location {specified by the contents of the HL register
pair) with the Accumulator.

AND is a frequently used logical instruction.

3-54

BIT b,reg — TEST BIT b IN REGISTER reg

S ZAcP/ON C

Flulb]ijulof]

A
B.C YYybyyyy,
D.E
H.L
sP
PC mmmm
1X
Iy
1
R
BIT b,
b o S’
CB 01 ggg
Bit Tested
0 000
1 001
2 010
3 011
4 100
5 101
3] 110
7 111

reg

XXX

000
001
010
o
100
101
111

2

Register

FPr-ImooOw®

Data
Memory

Program
Memory

CB

01bbbxxx

Place complement of indicated register’s specified bit in Z flag of F register.

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Suppose Register C contains 1110 1111. The instruction BIT 4,C will then set the Z flag
to 1. while bit 4 in Register C remains 0. Bit O is the least significant bit.

3-55

BIT b,(HL) — TEST BIT b OF INDICATED MEMORY POSITION
BIT b, {IX+disp)
BIT b, {lY+disp)

S Z ACP/GN C Data
- CELLEED) Memory
B.C yyybyyyy | ppag
DE
H.L pp qq
i
PC mmmm Program
1X Memory
Y
| CcB mmmm
R Otbbb110 Jmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of BIT 4,{HL). Bit O is the least significant bit.
BIT b, (HU
e

R dR

CBO1 bbb 110
e

Bit Tested bbb
000
001
010
011
100
101
110
111

Test indicated bit within memory position specified by the contents of Register HL, and
place bit's complement in Z flag of the F register.

~NoObhkWN 2O

Suppose HL contains 4000H and bit 3 in memory location 4000H contains 1. The in-
struction

BIT 3.(HL)
will then set the Z flag to 0. while bit 3 in memory location 4000H remains 1.
BIT b.{X+disp)

DD CB d 01 bbb 110

bbb is the same as in BIT b.(HL)

Examine specified bit within memory location indicated by the sum of Index Register IX
and disp. Place the complement in the Z flag of the F register.

3-66

Suppose Index Register IX contains 4000H and bit 4 of memory location 4004H is C.
The instruction

BIT 4,(X+4H)
will then set the Z flag to 1, while bit 4 of memory location 4004H remains 0.
BIT b,{IY+disp}

—
FD CB 4 01 bbb 110
bbb is the same as in BIT b,{HL)

This instruction is identical to BIT b, IX+disp). except that it uses the |Y register instead
of the IX register.

CALL label —CALL THE SUBROUTINE IDENTIFIED IN THE

OPERAND
S ZAcP/ON C Data
FLL 1T T 1L 1] Memory
A mm+3 fxxxx-2
BC mm xxxx-1
D.E @ XXXX
HL]j
SP XXXX |
PC mmmm mmmm + 3 Program
1% Memory
Iy
L] CD mmmm
R f pp mmmm + 1
1 aq mmmm + 2
mmmm + 3
CALL label
S e

Cco pPaq

Store the address of the instruction following the CALL on the top of the stack: the top
of the stack is a data memory byte addressed by the Stack Pointer. Then subtract 2
from the Stack Pointer in order to address the new top of stack. Move the 16-bit address
contained in the second and third CALL instruction object program bytes to the Pro-
gram Counter. The second byte of the CALL instruction is the low-order half of the ad-
dress, and the third byte is the high-order byte.

Consider the instruction sequence:

CALL SUBR
AND 7CH

SUBR

After the instruction has executed. the address of the AND instruction is saved at the
top of the stack. The Stack Pointer is decremented by 2. The instruction labeled SUBR
will be executed next.

3-57

CALL condition,label — CALL THE SUBROUTINE IDENTIFIED IN
THE OPERAND IF CONDITION IS
SATISFIED

CALL condition, label
N~

e

11 xxx 100 pp qq
T Condition Relevant Flag
Pt e —
000 NZ Non-Zero z
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
111 M Sign Negative S

This instruction is identical to the CALL instruction, except that the identified
subroutine will be called only if the condition is satisfied: otherwise, the instruction se-
quentially following the CALL condition instruction will be executed.

Consider the instruction seguence:
[}
CALL : COND.SUBR

{ condition not satisfied

AND v 7CH

condition
satisfied

SUBR

If the condition is not satisfied, the AND instruction will be executed after the CALL
COND.SUBR instruction has executed. If the condition is satisfied, the address of the
AND instruction is saved at the top of the stack. and the Stack Pointer is decremented
by 2. The instruction labeled SUBR will be executed next.

3-58

CCF — COMPLEMENT CARRY FLAG

S Z AcP/ON C

FLL L L] IX)e

A

B.C

DE

H.L

SP

PC mmmm

IX

Y

R

Complement the Carry flag. No other status or register contents are

mmmm + 1

CCF

B

3F

3-59

Data

Memory

Program

Memory

3F mimmm

mmmm + 1
mmmm + 2
mmmm + 3

affected.

CP data — COMPARE IMMEDIATE DATA WITH

ACCUMULATOR

o

S Z AGP/ON C Data
FIXIX X x] 1 ix] Memory
A XX —D@
B.C
D.E
HL
5P
PC mmmm mmmm + 2 Program
IX Memory
Y
! FE mmmm
R - yy mmmm + 1
mmmm + 2
mmmm + 3

CP data
FE vy

Subtract the contents of the second object code byte from the contents of the Ac-
cumulator. treating both numbers as simple binary data. Discard the result; i.e., leave
the Accumulator alone, but modify the status flags to reflect the result of the subtrac-

tion.

Suppose xx=FE31g and the second byte of the CP instruction object code contains

AO1g. After the instruction

CP OAOQH

has executed. the Accumulator will still contain E31g, but statuses will be modified as

follows:

OsetsSto0

No borrow. set C to 0

o

0011

110
010 0000
100

0011

UT LNon-zero result. set Z to 0
No borrow. set Ac to 0

111
101
0 0

P
1% 1=0,set P/Oto 0
Notice that the resulting carry

Subtract instruction, set N to 1

is complemented.

3-60

CP reg — COMPARE REGISTER WITH ACCUMULATOR

e

Z AcP/ON C Data
FRCDX X xETIX] @ Memory

A XX
BC l Contents of
’ -~ A B.CDEH
DE .
H.L ‘ or Lis yy
SP
PC mmmm mmmm + 1 Program
1% Memory
Y
| 1011 1xxx | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
CcP reg
ey e
10111 xxx

———

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 forreg=L
111 for reg=A

Subtract the contents of Register A, B, C. D. E, H or L from the contents of the Ac-
cumulator, treating both numbers as simple binary data. Discard the result; i.e., leave
the Accumulator alone, but modify status flags to reflect the result of the subtraction.

Suppose xx=E31g and Register B contains AO1g. After the instruction
CF B

has executed, the Accumulator will stifl contain E31g. but statuses will be modified as
follows:

E3 = 1110 0011
A0 = 101C 0000

000 €011
Osets Sto0 tU LNon-zero result, set Z to O
No borrow, set C to 0 No borrow, set Ac to O
-~

181=0,s5etP/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

3-61

CP {HL} — COMPARE MEMORY WITH ACCUMULATOR
CP (IX+disp)
CP (1Y +disp)

/~L—\

S Z AcP/ON C Data

FEXTXIXIx111xX1 Memory

A xx ——@q— vy PPAq
B.C T

DE
H.L pp qaq
SP
PC mmmm mmmm + 1 Program
1% Memaory
1Y
I BE mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of CP (HL):
CP (HL)
S’

BE

Subtract the contents of memory location {specified by the contents of the HL register
pair} from the contents of the Accumulator, treating both numbers as simple binary
data. Discard the result; i.e.. leave the Accumulator alone, but modify status flags to
reflect the result of the subtraction.

Suppose xx=E315 and yy=A01g. After execution of
CP (HU)
the Accumulator will still contain E316. but statuses will be modified as follows:

E3 = 1110 0011
AD = 0110 0000

0npoo 0011

Osets St 0 UT LNon-zero result, set Z to 0
N‘oborrow, setC o0 No borrow. set Ag to0

1% 1=0, set P/0 10 0 Subtract instruction, set N to 1
Notice that the resulting carry is compiemented.
DD BE d

3-62

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) from the contents of the Accumulator, treat-
ing both numbers as simple binary data. Discard the result: i.e., leave the Accumulator
alone, but modify status flags to reflect the result of the subtraction.

CP (Y +disp)
S
FD BE d

This instruction is identical to CP {IX+disp), except that it uses the IY register instead of

the IX register.

CPD — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER

s W

S Z AcP/ON C

Set if BC-1 #0,
F X1X L reset otherwise

A XX

B.C tt uu

D.E

HL pp qq

ppag-1

5P

Data
Memory

Yy

ppaq

PC mmmm

IX

Y

N

R

CPD
e
ED A9

Program
Memory

ED

A9

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Compare the contents of the Accumulator with the contents of memory location
{specified by the HL register pair). If A is equal to memory. set Z flag. Decrement the HL
and BC register pairs. BC is used as the Byte Counter.)

Suppose xx=E315, ppag=40001. BC contains 00011g. and yy=A01¢. After the in-
struction

CPD

has executed. the Accumulator wiil still contain E31g. but statuses will be modified as
follows:

E3
AO

0 sets S to 0<—J

n
o
(e
[

Non-zero resuit, set Z to 0

k

No borrow. set Ag to 0

The P/0O flag will be reset
because BC-1=0

Subtract instruction involved,
setN to 1

Carry not affected.
The HL register pair will contain 3FFFqg, and BC=0.

CPDR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER.
CONTINUE UNTIL MATCH IS FOUND OR BYTE
COUNTER IS ZERO

CPDR
-
EC B9

This instruction is identical to CPD, except that it is repeated until a match is found or
the byte counter is zero. After each data transfer, interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 500016, the BC register pair contains 00FF g,
the Accumulator contains F91g, and memory has contents as follows:

Location Contents

500014 AA1g
4FFF16 BC1g
4FFE16 1916
4FFD1g 7A98
4FFC1 8 F916
4FFB1 g DD1g

After execution of
CPDR

the P/O flag will be 1. the Z flag will be 1, the KL register pair will contain 4FFB1g, and
the BC register pair will contain OOFA1g.

3-64

CPl — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS

XX-yy
S Z AcP/ON C Data
Set if BC-1 #0, Mem
F -n. reset otherwise i
BC - ™ vy ppaq
DE T
HL pp a9
SP
pe — Program
x Memory
: =
' ED mmmm
R A1l mmmm + 1
mmmm + 2
mmmm + 3

CP!
- -
ED A1

Compare the contents of the Accumulator with the contents of memory location
{specified by the HL register pair). If A is equal to memory. set the Z flag. Increment the
HL register pair and decrement the BC register pair (BC is used as Byte Cou nter).

Suppose xx=E31g. ppqa=40001¢g. BC contains 003214, and yy=E31g. After the in-
struction

CPI

has executed. the Accumulator will still contain E314. but statuses will be modified as
follows:

E3 1111 0011
-E3 = 0000 1101

0O sets S to OC—J U1 LResuIt ts 0. set Z to 1
No borrow. set Ag 100
The P/O flag will be set
because BC-1 # 0.

i

Subtract instruction involved.
set N to 1.

Carry not affected.
The HL register pair will contain 40011g. and BC will contain 003116,

3-65

CPIR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS.
CONTINUE UNTIL MATCH IS FOUND
OR BYTE COUNTER IS ZERO

CPIR
[——

ED B1

This instruction is identical to CPl, except that it is repeated until a match is found or
the byte counter is zero. After each data transfer interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 450016. the BC register pair contains 00FF 4.
the Accumulator contains F91g. and memory has contents as follows:

Location Contents
450016 AA1g
450114 15186
450214 F916
After execution of
CPIR

the P/C flag will be 1. and the Z flag will be 1. The HL register pair will contain 450314,
and the BC register pair will contain 00FCq 4.

3-66

CPL — COMPLEMENT THE ACCUMULATOR

S ZAcP/ON C Data
FLL] 110 Memory
A XX XX
B8.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
IX Memory
Y
! 2F mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
CPL
e
2F

Complement the contents of the Accumulator. No other register's contents are
affected.

Suppose the Accumulator contains 3A16. After the instruction
CPL
has executed, the Accumulator will contain Cb1g.

3A = 0011 1010
Complement = 1100 0101

This is a routine logical instruction. You need not use it for binary subtraction; there are
special subtract instructions (SUB, SBC).

3-67

DAA — DECIMAL ADJUST ACCUMULATOR

S ZAcP/ON C Data
EEEIN Memory
A o Convert to
decimal
B.C
DE
H,L
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
| 27 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

DAA

S

27

Convert the contents of the Accumulator to binary-coded decimal form. This instruc-
tion should only be used after adding or subtracting two BCD numbers: i.e., look upon
ADD DAA or ADC DAA or INC DAA or SUB DAA or SBC DAA or DEC DAA or NEG DAA
as compound. decimal arithmetic instructions which operate on BCD sources to gener-
ate BCD answers.

Suppose the Accumulator contains 391 and the B register contains 471g. After the in-
structions

ADD B
DAA

have executed. the Accumulator will contain 861g. not 801

Z80 CPU logic uses the values in the Carry and Auxiliary Carry, as well as the Ac-
cumulator contents, in the Decimal Adjust operation.

3-68

DEC reg — DECREMENT REGISTER CONTENTS

S ZAcP/ON C

FIXIXIXIX|1I l

A Contents of A,
B.C B.C. D, EH,
DE or L is yy
HL
SP
PC mmmm mmmm + 1

X

Y

|

R

DEC reg
00 XXX 101
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract 1 from the contents of the specified register.

Suppose Register A contains 501g. After execution of

Register A will contain 4F14.

DEC A

3-69

Data
Memory

Program
Memory

O0xxx 101

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

DEC rp — DECREMENT CONTENTS OF SPECIFIED REGISTER
DEC IX PAIR
DEC 1Y

S 2 AcP/ON C

PO L1 1]

Data
Memory

A
8.C Contents of BC,
D.E DE, HL or SP
H.L is yyyy
SP

PC mmmm mmmm + 1 Program

I Memory

Y
) 00xx1011 | mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC rp:
DEC rp

e

00 xx 1011
Sa——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair. No status flags
are affected.

Suppose the H and L registers contain 2F001g. After the instruction
DEC HL
has executed. the H and L registers will contain 2EFF1g.

DEC IX
S

DD 2B
Subtract 1 from the 16-bit value contained in the IX register.
DEC IY
N ot
FD 2B
Subtract 1 from the 16-bit value contained in the IY register.

Neither DEC rp, DEC IX nor BEC 1Y affects any of the status flags. This is a defect in the
Z80 instruction set, inherited from the 8C80. Whereas the DEC reg instruction is used in
iterative instruction loops that use a counter with a value of 266 or less, the DEC rp
{DEC IX or DEC IY} instruction must be used if the counter value is more than 256. Since
the DEC rp instruction sets no status flags, other instructions must be added to simply

3-70

test for a zero result. This is a typical loop form:

LD DE.DATA ;LOAD INITIAL 16-BIT COUNTER VALUE
LOOP - ;FIRST INSTRUCTION OF LOOP

DEC DE :DECREMENT COUNTER

LD AD :TO TEST FOR ZERO. MOVE D TO A

OR E :THEN OR A WITH E

JP NZ,LOOP ;RETURN IF NOT ZERO

DEC (HL) — DECREMENT MEMORY CONTENTS
DEC (IX+disp)
DEC (1Y +disp)

S ZAcP/ON C Data
F|X|X|X|X|1| | Memory
B.C
D.E
H.L pp aq
SP
PC mmmm ‘mmmm + 1 Program
1X Memory
Y
| 35 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The ilustration shows execution of DEC {HL):

DEC {HL)
S
35

Subtract 1 from the contents of memory location (specified by the contents of the HL
register pairl.

Suppose ppgq=45001g, yy=5F1g. After execution of

DEC (HL)
memory location 46001 will contain 5Eqg.
5 = 0101
_01 =

1111
1111 1111
on o 1110
0 sets S to O‘-lJ U LNon—zero result. set Z to O
sz vt
1% 1=0.setP/O to O No borrow, set Ac to 0

Subtract instruction, set N to 1

DEC (IX+disp)
A e

DD 35 d

Subtract 1 from the contents of memory location {specified by the sum of the contents
of the IX register and the displacement vaiue d).

DEC (IY+disp)
e e e

FD 36 d

This instruction is identical to DEC (IX+disp), except that it uses the |Y register instead
of the IX register.

DI — DISABLE INTERRUPTS

S ZAcF/ON C Data
rLL L T T 11 Memory
A
B.C
DE
HL
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| F3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
DI
—y—
F3

When this instruction is executed, the maskable interrupt request is disabled and the
INT input to the CPU will be ignored. Remember that when an interrupt is
acknowledged. the maskable interrupt is automatically disabled.

The maskable interrupt request remains disabled until it is subsequently enabled by an
Ef instruction.

No registers or flags are affected by this instruction.

3-72

DJNZ disp — JUMP RELATIVE TO PRESENT
CONTENTS OF PROGRAM COUNTER IF
REG B IS NOT ZERO

S ZAcP/ON C

xx-1 Data
L L LT L] Memory
A
8.cC XX
D.E
H.L
SP
mmmm +
i o (dd-2)+2, Frogram
1X Memory
Y
! 10 mmmm
R dd-2 mmmm + 1
mmmm + 2
mmmm + 3
DJINZ disp
S
10 dd-2

Decrement Register B. If remaining contents are not zero. add the contents of the DJNZ
instruction object code second byte and 2 to the Program Counter. The jump is
measured from the address of the instruction operation code, and has a range of -126 to
+129 bytes. The Assembler automatically adjusts for the twice-incremented PC.

if the contents of B are zero after decrementing. the next sequential instruction is ex-
ecuted.

The DJNZ instruction is extremely useful for any program foop operation, since the one
instruction replaces the typical “"decrement-then-branch on condition” instruction se-
quence.

Ei — ENABLE INTERRUPTS
S ZAcP/ON C

Data
L T 1] Memory
A
8C
D.E
HL
SP
PC ’ mmmm mmmm + 1 Program
X Memory
Y
| FB mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

3-73

El

i

FB

Execution of this instruction causes interrupts to be enabled. but not until one more in-
struction executes.

Most interrupt service routines end with the two instructions:

El ;ENABLE INTERRUPTS
RET :RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially, then for the entire duration of the interrupt service
routine all maskable interrupts are disabled — which means that in a multi-interrupt
application there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the
Return instruction would not be executed. Under these circumstances, returns would
stack up one on top of the other —and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

interrupt

Interrupt service routine
Interrupt

Interrupt service routine

Interrupt service routine

By inhibiting interrupts for one more instruction following execution of El, the Z80 CPU
ensures that the RET instruction gets executed in the sequence:

El 'ENABLE INTERRUPTS
RET :RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

interrupt Interrupt

AN AN

Interrupt service routing Interrupt service routine

3-74

EX AF.AF' — EXCHANGE PROGRAM STATUS AND ALTERNATE
PROGRAM STATUS

~ma

Alternate
S Z AcP/ON C Register Set
I 1)< '4{ .
A o
8C ~ / B"
DE D’
H.L "
SP
PC p—— mmmm + 1 Program
X Memory
Y
1 08. mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
EX AFAF
S
08

The two-byte contents of register pairs AF and A'F’ are exchanged.

Suppose AF contains 4F991g and A'F contains 10AA1g. After execution of
EX AF AF

AF will contain 10AA1g and AF' will contain 4F391¢.

3-76

EX DE ,HL — EXCHANGE DE AND HL CONTENTS

S ZACP/ON Cc Data
M
FLLL T] emory
A
B.C
D.E PP qq
H.L xx vy
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
| EB mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
EX DEHL
e
EB

The D and E registers’ contents are swapped with the H and L registers’ contents.
Suppose pp=0316. qq=2A15. xx=411g and yy=FC1g. After the instruction
EX DE.HL

has executed, H will contain 031g6. L will contain 2A16. D will contain 411g and E will
contain FC14.

The two instructions:

EX DE.HL
LD A, (HL)

are equivalent to:
LD A.(DE)
but if you want to load data addressed by the D and E register into the B register,

EX DE.HL
LD B.(HL}

has no single instruction equivalent.

3-78

EX (SP),HL — EXCHANGE CONTENTS OF REGISTER AND
EX (SPLIX TOP OF STACK

EX (SP),IY
S ZAcP/ON C Data
FLLL 1 11 Memory
A aq 5SS
8.C — \ pp ssss + 1
DE V- i 8588 + 2
HL XX vY
SP 5885
PC mmmm mmmm + 1 Program
IX Memory
Y
I E3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of EX {SP).HL.

EX (SP).HL
N

E3

Exchange the contents of the L register with the top stack byte. Exchange the contents
of the H register with the byte below the stack top.

Suppose xx=2115, yy=FA16. pp=3A16. ga=E21g. After the instruction
EX (SP)LHL

has executed, H will contain 3A16. L will contain E21g and the two top stack bytes will
contain FA1g and 211g respectively.

The EX (SP),HL instruction is used to access and maniputate data at the top of the stack.
EX (SPLIX
S
DD E3

Exchange the contents of the IX register's low-order byte with the top stack byte. Ex-
change the IX register's high-order byte with the byte below the stack top.

EX (SP)LIY
-

FD E3

This instruction is identical to EX (SPLIX, but uses the IY register instead of the IX
register.

3-77

EXX — EXCHANGE REGISTER PAIRS AND ALTERNATE
REGISTER PAIRS

S Z AcP/ON C Alternate
FETT U T 1 Register Set
E
A A
8.C B'.C
DE }.‘_ - DE
H.L H.L
sSP
PC mmmm mmmm + 1 Program
% Memory
Y
| D9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
EXX
———
D9

The contents of register pairs BC. DE and HL are swapped with the contents of register
pairs B'C'. D'E’, and H'L".

Suppose register pairs BC, DE and HL contain 49011g. 6F001g and 725116 respec-
tively, and register pairs B'C". D'E’. H'L’ contain 000016, 10FF1g and 333314 respec-
tively. After the execution of

EXX
the registers will have the following contents:
BC: 000014 DE: 10FF1q; HL: 333316
B'C': 490116 D'E': BFOO1g: H'L: 725116
This instruction can be used to exchange register banks to provide very fast interrupt
response times.

3-78

HALT

S ZAcP/ON C

FLL]

L1 1]

A

B.C

DE

HL

SP

PC

mmmm

IX

Y

!
R

HALT

S s

76

mmmm + 1

Data
Memory

Program
Memory

76

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

When the HALT instruction is executed, program execution ceases. The CPU requires
an interrupt or a reset to restart execution. No registers or statuses are affected:;
however, memory refresh logic continues to operate.

3-79

IM 0 — INTERRUPT MODE 0

S Z AcP/ON C

Data
R EREN Memory
A
BC
DE
HL
SP
PC mmmm mmmm + 2 Program
X Memary
1Y
l ED mmmm
R 46 mmmm + 1
mmmm + 2
mmmm + 3

IMO
et er’

ED 46

This instruction places the CPU in interrupt mode O In this mode. the interrupting
device will place an instruction on the Data Bus and the CPU will then execute that in-
struction. No registers or statuses are affected.

IM 1 — INTERRUPT MODE 1

IM 1
\N-’
ED 56

This instruction places the CPU in interrupt mode 1. In this mode. the CPU responds to
an interrupt by executing a restart (RST) to location 003814.

IM 2 — INTERRUPT MODE 2

IM 2
g, o
ED 5E

This instruction places the CPU in interrupt mode 2. In this mode, the CPU performs an
indirect call to any specified location in memory. A 16-bit address is formed using the
contents of the Interrupt Vector) register for the upper eight bits, while the lower
eight bits are supplied by the interrupting device. Refer to Chapter 12 for a full descrip-
tion of interrupt modes. No registers or statuses are affected by this instruction.

3-80

IN A, (port) — INPUT TO ACCUMULATOR

S ZAcP/ON C Data
L L 11 1] 1/0 port yy Memory
A C-_J

B.C
D.E
H.L
SP
PC mmmm [mmmm + 2 Program
IX Memary
Y
! DB
R ¥y
{port}
‘—\(./

Yy

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Load a byte of data into the Accumulator from the |/O port {identified by the second IN

instruction object code byte).

Suppose 3616 is held in the buffer of I/0 port 1At After the instruction

IN A{1AH]

has executed. the Accumulator will contain 361¢.

The IN instruction does not affect any statuses.

Use of the IN instruction is very hardware dependent. Valid 1/O port addresses are
determined by the way in which 1/Q logic has been implemented. It is also possible to
design a microcomputer system that accesses external logic using memory reference
instructions with specific memory addresses.

3-81

INC reg — INCREMENT REGISTER CONTENTS

S 2 AcP/ON C Data
rlxIxIxIx]o] | Memory
A
BC Contents of A,
OE B,C.D E Hor
ML Lis yy
SP
PC mmmm mmmm + 1 Program
1% Memory
Y
f Q0xxx 100 | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

INC reg

N

00 xxx 100

———

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add 1 to the contents of the specified register
Suppose Register E contains A81g. After execution of

INC E
Register E will contain A91g.

3-82

INC rp — INCREMENT CONTENTS OF SPECIFIED REGISTER PAIR
INC IX

INC 1Y
S ZAgP/ON C Data
Mem
L L1 1) emory
A Contents of BC,
g‘é DE, HL or SP
: is
HL —-is yYYY
SP
PC mmmm @ Program
X Memorv
Y
| 00xx0011 Immmm
R mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of INC rp:
INC rp
00 xx 0011
———

Q0 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add 1 to the 16-bit value contained in the specified register pair. No status flags are
affected.

Suppose the D and E registers contain 2F7A1g. After the instruction
INC DE
has executed, the D and E registers will contain 2F7B1g.

INC IX
S
DD 23

Add 1 to the 16-bit value contained in the !X register.

INC 1Y
e Ve
FD 23

Add 1 to the 16-bit value contained in the |Y register.

Just like the DEC rp, DEC IX and DEC 1Y, neither INC rp. INC IX nor INC IY affects any
status flags This is a defect in the Z80 instruction set inherited from the 8080.

INC (HL) — INCREMENT MEMORY CONTENTS
INC (1X+disp)
INC (1Y +disp)

S Z AcP/ON C Data
FxIxIxIxio] |} Mermory
A @S vy ppaq +d
BC
DE
H.L
SP
PC mmmm mmmm + 3 Program
X ppaq Memory
Y
! DD mmmm
R 34 mmmm + 1|
ppaq +d d mmmm + 2
mmmm + 3

The illustration shows execution of INC (IX+d):

INC {IX+disp)
S——

DD 34 d

Add 1 to the contents of memory Incation [specified by the sum of the contents of
Register IX and the displacement value d).

Suppose ppaq=40001¢ and memory location 400F1g contains 361g. After execution
of the instruction

INC {IX+OFH)
memory location 400F1g will contain 371¢.
3 = 0011 0110

OsetsSto0 UT LNon—zero result, set Z to 0
Carry status not affected No carry. set Ac to 0
-

i
0% 0=0. set P/Oto O Addition instruction, set N to 0
INC (Y +disp)
ey~
FD 34 d

This instruction is identical to INC (IX+disp), except that it uses the 1Y register instead
of the IX register.

INC (HL)
A
34

Add 1 1o the contents of memory location {specified by the contents of the HL register
pair).

3-84

IND — INPUT TO MEMORY AND DECREMENT POINTER

xx-1

S ZAcP/ON C Data
FlufxJulul1]] 1/0 port yy Memory
A I Lb ppaq
BC xx = v
OE ppag-1
H.L pp qq
SP
PC mmmm Program
IX mmmm + 2 Memory
Iy
! ED mmmm
R AA mmmm + 1
mmmm + 2
mmmm + 3
IND
- —
ED AA

Input from I/O port (addressed by Register C) to memory location (specified by HL)
Decrement Registers B and HL.

Suppose xx=051g. yy=1516. ppqa=24001g. and 191g is held in the buffer of I/0 port
151g. After the instruction

IND

has executed, memory location 240015 will contain 1916. The B register will contain ~
0414 and the HL register pair 23FF1g.

INDR — INPUT TO MEMORY AND DECREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INDR
S —
ED BA

INDR is identical to IND, but is repeated until Register B=0.

Suppose Register B contains 031g. Register C contains 1514, and HL contains 240016,
The following sequence of bytes is available at 1/0 port 161g:

1716. 5916 and AE1g
After the execution of
INDR

the HL register pair will contain 23FD1g and Register B will contain zero, and memory
locations will have contents as follows:

Location Contents

2400 1716
23FF 59185
23FE AE1g

This instruction is extremely useful for loading blocks of data from an input device into
memory.

3-85

INI — INPUT TO MEMORY AND INCREMENT POINTER

S ZACP/ON C Xx-1 Data
L L T T 1] 1/O port yy Memory
A — ppaq
B.C XX Yy
DE pPaq + 1
H.L pp aq
SP
PC mmmm Program
X mmmm + 2 Memory
Y
' ED mmmm
R A2 mmmm + 1
mmmm + 2
mmmm + 3

INI
S
ED AZ

Input from 1/0 port (addressed by Register C} to memory location {specified by HL).
Decrement Register B increment register pair HL.

Suppose xx=051g, yy=1515. ppag=240014. and 1914 is held in the buffer of I/0 port
1516

After the instruction
INI

has executed. memory location 24001g will contain 121g. The B register will contain
041p and the HL register pair 240115,

INIR — INPUT TO MEMORY AND INCREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INIR
e

ED BZ
INIR is identical to INI, but is repeated until Register B=0.

Suppose Register B contains 031, Register C contains 1514, and HL contains 24001 g.
The following sequence of bytes is available at 1/0 port 1515

1716. 5916 and AE1g

After the execution of
INIR

the HL register pair will contain 240315 and Register B will contain zero, and memory
locations will have contents as follows:

Location Contents

2400 17186
2401 5816
2402 AE1g

This instruction is extremely useful for loading blocks of data from a device into memo-
ry.

3-86

IN reg.(C) — INPUT TO REGISTER

S ZACP/ON C Dot
Fxdxjogxjol | 1/0 port yy Memory

A
B8.C Yy
D.E HorL
H.L
sp
PC mmmm Program
IX Memory
Y
| ED mmmm
R 01xxx000 | mmmm + 1
mmmm + 2
mmmm + 3

IN reg. {C)

e sy ety

ED 01 xxx 000
D

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
110 for setting of status flags without
changing registers

Load a byte of data into the specified register {reg) from the I/0 port lidentified by the
contents of the C register).

Suppose 4216 is held in the buffer of I/0 port 3616, and Register C contains 3616
After the instruction

IN D.(C)
has executed, the D register will contain 4214.

During the execution of the instruction, the contents of Register B are placed on the top

half of the Address Bus, making it possible to extend the number of addressabie /0
ports.

JP label —JUMP TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

S ZAcP/ON C Data
L1 1T 1 1] Memory
A
B.C
DE
HL
SP
PC mmmm ppaq Program
IX Memory
Y
I C3 mmmm
R 1 aq mmmm + 1
{ pp mmmm + 2
mmmm + 3
JP label
M\N—/
C3 ppaq

Load the contents of the Jump instruction object code second and third bytes into the
Program Counter; this becomes the memory address for the next instruction to be ex-
ecuted. The previous Program Counter contents are lost.

In the following sequence:

JP NEXT
AND 7FH
NEXT CPL

The CPL instruction will be executed after the JP instruction. The AND instruction will
never be executed, unless a Jump instruction somewhere else in the instruction se-
quence jumps to this instruction.

3-88

JP condition,label — JUMP TO ADDRESS IDENTIFIED IN THE
OPERAND IF CONDITION IS
SATISIFED

JP cond. label

11 cc 010 ppaq

Condition Relevant Flag
000 NZ Non-Zero zZ
001 Z Zero z
010 NC No Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
11 M Sign Negative S

This instruction is identical to the JP instruction, except that the jump will be per-
formed only if the condition is satisfied; otherwise. the instruction sequentially follow-
ing the JP condition instruction will be executed.

Consider the instruction sequence

}
|

JP, COND.LABEL
|

condition not satisfied

N AND * 7CH
condition
satisfied -
LABEL OR B

After the JP cond.label instruction has executed. if the condition is satisfied then the
OR instruction will be executed. If the condition is not satisfied. the AND instruction,
being the next sequential instruction, s executed

3-89

JP (HL) — JUMP TO ADDRESS SPECIFIED BY CONTENTS
JP (I1X) OF 16-BIT REGISTER

JP {lY)
S Z AcP/ON C Data
FLL L L 1 1] Memory
A
B.C
DE
H.L pp qq
sP
X Memory
1Y
| E9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of JP (HL):

JP{HL)
S

£9

The contents of the HL register pair are moved to the Program Counter: therefore, an
implied addressing jump is performed.

The instruction sequence

LD H.ADDR
JpP (HL)

has exactly the same net effect as the single instruction
JP ADDR
Both specify that the instruction with label ADDR is to be executed next.

The JP (HL) instruction is useful when you want to increment a return address for a
subroutine that has multiple returns.

Consider the following call to subroutine SUB:

CALL SuUB :CALL SUBROUTINE
JP ERR .ERROR RETURN
:GOOD RETURN

Using RET to return from SUB would return execution of JP ERR; therefore, if SUB ex-
gcutes without detecting error conditions, return as follows:

PGP HL ;POP RETURN ADDRESS TQ HL
INC HL ;ADD 3 TO RETURN ADDRESS
INC HL
INC HL
JP {HL} ;:RETURN

JP {IX)

et i

DD E9

This instruction is identical to the JP {HL) instruction, except that it uses the IX register

3-90

instead of the HL register pair.

JP {Y)
S, pr
FD E9

This instruction is identical to the JP (HL) instruction, except that it uses the |Y register
instead of the HL register pair.

JR C.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY IS SET

JR C. disp
S——

38 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Carry status equals 1; otherwise, the next instruction is executed.

In the following instruction sequence:
|

4000 JR 1 C.$+8

1 c-o

4002 AND + 7FH

c=1 -

1l

4008 OR B

After the JR C,$+8 instruction. the OR instruction is executed if the Carry status equals
1. The AND instruction is executed if the Carry status equals 0.

3-91

JR disp — JUMP RELATIVE TO PRESENT CONTENTS OF
PROGRAM COUNTER

S Z AcP/ON C
I EEEEE

A

B.C

D.E

H.L

sP

PC mmmm

X

Y

R

JR disp
——— any—

18 dd-2

mmmm +
{dd-2}+ 2

Data
Memory

Program
Memory

18

dd-2

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Add the contents of the JR instruction object code second byte, the contents of the Pro-
gram Counter, and 2. Load the sum into the Program Counter. The jump is measured
from the address of the instruction operation code, and has a range of -126 to +129
bytes. The Assembler automatically adjusts for the twice-incremented PC.

The following assembly language statement is used to jump four steps forward from ad-

dress 400016

Result of this instruction is shown below:

3-92

JR $+4
Location Instruction
4000 18
4001 02
4002 -
4003
4004

- «g———new PC value

JR NC.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY FLAG IS RESET

JR NC.disp
S — oy
30 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Carry status equals O; otherwise, the next instruction is executed.

In the following instruction sequence:

4000 ADD I A 7FH
4001 |
c-o 4002 :°=‘

4003 JR 4, NC.$-3
4005 OR ‘B

After the JR NC.$-3 instruction. the OR instruction is executed if the Carry status equals
1. The ADD instruction is executed if the Carry status equals 0.

JR NZ,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS RESET
JR NZ.disp
-
20 dd-2

This instruction is identical to the JR disp instruction. except that the jump is only ex-
ecuted if the Zero status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

|
4000 JR ‘: NZ.$+6
4002 AND * 7FH
2=0 4004 - Z=1
4005 -
4006 OR B

After the JR NZ.$+6 instruction. the OR instruction is executed if the Zero status equals
0. The AND instruction is executed if the Zero status equals 1.

3-93

JR Z.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS SET

JR Z.disp
Nt

28 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Zero status equals 1; otherwise, the next instruction is executed.

In the following instruction sequence:
1

4000 JR__} z$+6

4002 AND | 7FH
z=1 4004) 'z=o

4005 -

4006 OR

After the JR Z,$+6 instruction, the OR instruction is executed if the Zero status equals
1. The AND instruction is executed if the Zero status equals O.

LD A,1—MOVE CONTENTS OF INTERRUPT VECTOR OR
LD A,R REFRESH REGISTER TO ACCUMULATOR

S ZA¢P/ON C Data
FlxIxJolx]o]] Memory
A XX gl
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
1% Memory
Y
! XX ED mmmm
R 57 mmmm + 1
mmmm + 2
mmmm + 3

The tllustration shows execution of LD Al:
LD Al
S ~——

ED 57

Move the contents of the Interrupt Vector register to the Accumulator, and reflect inter-
rupt enable status in Parity/Overflow flag.

Suppose the Interrupt Vector register contains 7F1g. and interrupts are disabled. After
execution of

LD Al
Register A will contain 7F1g. and P/O wilt be 0.

LD AR
S
ED bF

Move the contents of the Refresh register to the Accumulator. The value of the interrupt
flip-flop will appear in the Parity/Overflow flag.

3-94

LD A,{addr} — LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

S ZAcP/ON C Data
el 11 1] Memory
A Yy - Yy pPaq
B.C
DE
HL
SP
PC mmmm mmmm + 3 Program
1X Memory
Y
! 3A mmmm
R qq mmmm + 1
pp mmmm + 2
mmmm + 3

LD A, {addr)
S

3A ppag

Load the contents of the memory byte {addressed directly by the second and third
bytes of the LD A.{addr) instruction object code} into the Accumulator. Suppose memo-
ry byte 084A1g contains 201g. After the instruction

label EQU 084AH

LD A llabel)
has executed. the Accumulator will contain 201.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084A1g wherever the label appears.

The instruction

LD A.llabel)

is equivalent to the two instructions
LD HL.labei
LD A(HL)

When you are loading a single value from memory, the LD A (label) instruction is prefer-
red; it uses one instruction and three object program bytes to do what the LD HL label,
LD A.(HL) combination does in twe instructions and four object program bytes. Also,
the LD HL.label, LD A,(HL} combination uses the H and L registers, which LD A, (label)
does not.

3-95

LD A,{rp) — LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

S Z AcP/ON C Data
JEEREE Memory
A Yy yy ppaq
B.C
DE }—.—BC or DE contain ppqaq
HL
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
! 000x1010 | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD A (rp)

000 x 1010
——
0 if register pair=BC
1 if register pair=DE

Load the contents of the memory byte laddressed by the BC or DE register pair) into the
Accumulator.

Suppose the B register contains 0814, the C register contains 4A1g. and memory byte
084A1g contains 3A1g. After the instruction

LD A.(BC)
has executed, the Accumulator will contain 3A1g.

Normally. the LD A.(rp) and LD rp,data will be used together. since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD A, (BC)

3-96

LD dst,src — MOVE CONTENTS OF SOURCE REGISTER TO

S ZAcP/ON C

DESTINATION REGISTER

F Register A, B, C,
RN D& Horl
A / '
B.C Register A, B, C
D.E D.E H, L
H.L
SP
PC mmmm mmmm + 1
IX
Y
|
R
LD dst. src
A e e e d
01 ddd sss
N

000 for dst or src=8
001 for dst or src=C
010 for dst or src=D
011 for dst or src=E
100 for dst or src=H
101 for dst or src=L
111 for dst or src=A

Data
Memory

Program
Memory

01dddsss

The contents of any designated register are loaded into any other register.

For example:

LD AB

loads the contents of Register B into Register A.

LD LD

loads the contents of Register D into Register L.

LD C.C

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

does nothing, since the C register has been specified as both the source and the

destination.

3-97

LD HL,(addr) — LOAD REGISTER PAIR OR INDEX REGISTER
LD rp,(addr) FROM MEMORY USING DIRECT ADDRESSING
LD iX,{addr)

LD 1Y, (addr)

S Z AcP/ON C Data
J RN Memory
A XX PPaq
B.C — < Yy ppag + 1
DE z ¥
H.L Yy XX
SP
PC mmmm mmmm + 3 Pragram
X Memory
1Y
1 2A mmmm
R aq mmmm + 1
pp mmmm + 2
mmmm + 3

The illustration shows execution of LD HL(ppqa):

LD HL.addr
\1-\,-—‘\‘-/

2A ppaq
Load the HL register pair from directly addressed memory location.

Suppose memory location 40041g contains AD1g and memory location 400514 con-
tains 121g. After the instruction

LD HL.{4004H)
has executed, the HL register pair will contain 12AD1g.
LD rp. (addr)

e o .
ED 01 dd 1011 ppaq

00 for rp is register pair BC

01 for rp is register pair DE

10 for rp is register pair HL

11 for rp is Stack Pointer
Load register pair from directly addressed memory.

Suppose memory location 49FF1g contains BEqg and memory location 4A0016 con-
tains 331g. After the instruction

LD DE.([49FFH)
has executed. the DE register pair will contain 33BE1g.

LD iX.{addn
e et 2aad
DD 2A ppaq

Load X register from directly addressed memory.

3-98

Suppose memory location D1111g contains FF1g and memory location D112 con-
tains 561g. After the instruction

LD IX.{D111H)

has executed, the IX register will contain 56FFg.

LD 1Y, (addr
e e Vo
FD 2A ppaq

Load IY register from directly addressed memory.
Affects IY register instead of IX. Otherwise identical to LD IX{addr).

LD I,A — LOAD INTERRUPT VECTOR OR REFRESH
LD R, A REGISTER FROM ACCUMULATOR

S ZAcP/ON C Data
L 1 1 11 Memory
A XX ~
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
IX Memary
hg
I\ ED mmmm
R jonll] / 4F mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD RA:
LD R.A
S— oy
ED 4F
Load Refresh register from Accumulator.
Suppose the Accumulator contains 7F1g. After the instruction
LD RA
has executed, the Refresh register will contain 7F146.

LD LA
e e
ED 47

Load Interrupt Vector register from Accumulator.

3-99

LD reg.data — LOAD IMMEDIATE INTO REGISTER
S ZAcP/ON C

Data
i1 1T 11 11 Memory
A . . .
BC Destination is
D’E Register A, B, C,
H',L‘ D, E,HorlL
SP
PC mmmm @ Program
1% Memory
Y
! 00xxx 110 | mmmm
R YY mmmm + 1
mmmm + 2
mmmm + 3

LD reg.data
Na——

00 xxx 110 yy

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load the contents of the second object code byte into one of the registers.
When the instruction

LD A2AH
has executed. 2A16 is loaded into the Accumulator.

3-100

LD rp.data — LOAD 16 BITS OF DATA IMMEDIATE INTO
LD IX,data REGISTER

LD lY.data
S ZAcP/ON C Data
rFTTL T L L 1L Memory
A
Selact BC, DE, HL or
B.C .
SP. Load ppqgq into
DE L
selected destination
H.L
sP
PC mmmm mmmm +3 Program
1 Memory
Y
| 00xx0001 | mmmm
R qaq mmmm + 1
pp mmmm + 2
mmmm + 3

The illustration shows execution of LD rp.data:

LD rp. data
e

00 xx 0001 ppaq

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load the contents of the second and third object code bytes into the selected register
pair. After the instruction

LD SP.217AH
has executed, the Stack Pointer will contain 217A16.
LD IX, data
N ———
DD 21 ppagq
Load the contents of the second and third object code bytes into the Index register X,
LD IY, data
——
FD 21 ppag
Load the contents of the second and third object code bytes into the Index Register Y.

Notice that the LD rp.data instruction is equivalent to two LD reg.data instructions.

For example:

LD HL,032AH
is equivalent t0

LD H,03H

LD L.2AH

3-101

LD reg,(HL) — LOAD REGISTER FROM MEMORY
LD reg, (IX+disp)
LD reg, (1Y +disp)

S ZACP/ON C

Data
L L T T 1] Memory
A
8.C Register A, B, C, -a}— Yy ppaq +d
DE D,E,HeorlL
H.L
SP
PC mmmm Program
iX ppaq Memory
Y
| DD mmmm
R 01xxx110 § mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of LD reg. (IX+disp):
LD reg. (X + disp)

N s o s st

DD 01 xxx110d

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load specified register from memory location (specified by the sum of the contents of
the IX register and the displacement digit d).

Suppose ppqa=400415 and memory location 401014 contains FFyg. After the instruc-
tion

LD B{X+0CH)
has executed, Register B will contain FFqg.

LD reg. (Y +disp)

e ——— —y—

FD 01 xxx 110 d

;bsame as for LD reg.(IX+disp)

This instruction is identical to LD reg.{IX+disp). except that it uses the IY register in-
stead of the IX register.

3-102

LD reg.fl_i_L_)

e gy

01 xxx 110
g same as for LD reg.(X+disp)

Load specified register from memory location {specified by the contents of the HL
register pair).

LD SP.HL — MOVE CONTENTS OF HL OR INDEX REGISTER
LD SP.IX TO STACK POINTER

LD SP,IY
S Z AcP/ON C Data
FLLL L | 1 1] Memory
A
8.C
DE
H.L pp aq
sp <
PC mmmm mmmm + 1 Program
IX Memory
1Y
! F9 mmmm
R mmmm + 1
mmmm + 2
mmmm +3

The illustration shows execution of LD SP.HL:

LD SP.HL
N
F9

Load contents of HL into Stack Pointer.

Suppose pp=081g and qq=3F1g. After the instruction
LD SP.HL

has executed, the Stack Pointer will contain 083F16.

LD SP.1X
Sp—
DD F9

Load contents of Index Register IX into Stack Pointer.

LD SP.lY
S
FD F9

Load contents of Index Register 1Y into Stack Pointer.

3-103

LD (addr},A — STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING

S Z AcP/ON C

Data
FLLL T T 1] Memory
A Y =1 W]ppaq
B.C
D.E
H.L
sp
PC mmmm mmmm + 3 Program
X Memory
1Y
| 32 mmmm
R qaq mmmm + 1
pp mmmm + 2
mmmm + 3

LD (addn,A

32 ppaq

Store the Accumulator contents in the memory byte addressed directly by the second
and third bytes of the LD {addrl.A instruction object code.

Suppose the Accumulator contains 3A1g. After the instruction
label EQU 084AH

LD {label). A
has executed, memory byte 084A15 will contain 3A14.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084AH whenever the word “label” appears.

The instruction
LD (addr).A
is equivalent to the two instructions

LD H.label
LD (HL).A

When you are storing a single data value in memory, the LD {label).A instruction is
preferred because it uses one instruction and three object program bytes to do what the
LD Hilabel), LD {HL).A combination does in two instructions and four object program
bytes. Also, the LD Hllabel), LD {HL).A combination uses the H and L registers, while the
LD {label),A instruction does not.

3-104

LD (addr),HL — STORE REGISTER PAIR OR INDEX
LD (addr).rp REGISTER IN MEMORY USING DIRECT
LD (addr),xy = ADDRESSING

S Z AcP/ON C

Data
JEEEEEE Memory
A - hAJ pPaq
B.C _—— e - XX ppaq + 1
DE y /
H.L XX Yy
SP
PC mmmm mmmm + 4 Program
1% Memory
[\
! ED mmmm
R 01010011 | mmmm + 1
qq mmmm + 2
pp mmmm + 3

The illustration shows execution of LD (ppgq).DE:
LD (addr), rp
Ve e

ED 01 xx 0011 ppaq
Ll

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Store the contents of the specified register pair in memory. The third and fourth object
code bytes give the address of the memory location where the low-order byte is to be
written. The high-order byte is written into the next sequential memory location.

Suppose the BC register pair contains 3C2A1g. After the instruction
label EQU 084AH

LD ({label).BC

has executed, memory byte 084A1¢g will contain 2A15. Memory byte 084B+g will con-
tain 3C16.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler 1o use the 16-bit value 084A1g whenever the word “label’” appears.

LD (addr) HL
N,

22 ppaq

This is a three-byte version of LD {addr).rp which directly specifies HL as the source
register pair.

3-105

LD (addn,IX
Nl —

DD 22 ppqq

Store the contents of Index register IX in memory. The third and fourth object code
bytes give the address of the memory location where the low-order byte is to be writ-
ten. The high-order byte is written into the next sequential memory location.

LD (addr).ﬂfw

FD 22 ppag

This instruction is identical to the LD (addr).IX instruction. except that it uses the tY
register instead of the IX register.

3-106

LD (HL),data — LOAD IMMEDIATE INTO MEMORY
LD (IX+disp),data
LD (IY+disp),data

S Z AcP/ON C Data
Pt I 1 1) Memory
A At XX ppaq +d
B.C
D.E
H.L
sp
PC mmmm Program
IX ppaq Memory
Y
| DD mmmm
R 36 mmmm + 1
d mmmm + 2
—] XX mmmm + 3

The illustration shows execution of LD (IX+d} xx:
LD (X+disp).data
_\(./

DD 36 d xx
Load Immediate into the Memory location designated by base relative addressing.
Suppose ppaq=540014. After the instruction
LD {IX+9).FAH
has executed. memory location 5403 1g will contain FA1g.

FD 36 d xx

This instruction is identical to LD (IX+displ.data, but uses the Y register instead of the
IX register.

LD {HL).data
e e
36 XX

Load Immediate into the Memory location (specified by the contents of the HL register
pair).

The Load Immediate into Memory instructions are used much less than the Load Im-
mediate into Register instructions.

3-107

LD (HL),reg — LOAD MEMORY FROM REGISTER
LD (IX+disp),reg
LD (IY+disp).reg

S ZAcP/ON C
L LT 1]

A
B.C
OE
H.L

SP

PC

1X

Y
|

R

PP

a9

mmmm

The illustration shows execution of LD (HL).reg:

Data
Memory
Contents of A, B—a vy ppag
C.D,E HorlL
is Yy
7
mmmm + 1 Program
Memory
01110xxx § mmmm
mmmm + 1
mmmm + 2
mmmm + 3
LD (HL),reg
g
01110 xxx
———

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load memory location (specified by the contents of the HL register pair) from specified
register.

Suppose ppaq=456001¢g and Register C contains F91g. After the instruction

LD HL.C

has executed. memory location 4560014 will contain F91g.

LD {IX+disp).reg
S~ -

DDO1110 xxx d

same as for LD (HU).reg

Load memory location (specified by the sum of the contents of the IX register and the

3-108

displacement value d) from specified register.
LD {IY+disp},
LD Lr+displreg

A

FDO1110%xx 4
same as for LD (HL).reg

This instruction is identical to LD (IX+displ).req. except that it uses the Y register in-
stead of the IX register.

LD {rp},A — LOAD ACCUMULATOR INTO THE MEMORY
LOCATION ADDRESSED BY REGISTER PAIR

S Z AcP/ONC Data
rLLL L L1 1] Memory
A vy - Yy ppaq
B.C | BC or DE
DE § contain ppaq
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
¥ -
I 000x0010 f mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD (rp).A
R Gt o/

000 x 0010
(=]
0 if register pair=BC
1 if register pair=DE
Store the Accumulator in the memory byte addressed by the BC or DE register pair.

Suppose the BC register pair contains 084A15 and the Accumulator contains 3A1g.
After the instruction

LD BCLA
has executed, memory byte 084A1g will contain 3A1g.

The LD (rp).A and LD rp.data will normally be used together, since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD (BC).A

3-109

LDD — TRANSFER DATA BETWEEN MEMORY LOCATIONS,
DECREMENT DESTINATION AND SOURCE ADDRESSES

~

Set if BC-1 # 0, reset otherwise

S Z AcP/ON C

ttuu-1 Data
uu-
FCCIeT T] Memory
A Yy
B8.C t uu
D.E w SS r
“HL pp qq Yy
SP ppag-1
PC mmmm Program
1X Memory
Y
| mmmm + 2 ED
R A8

LDD
S, —

ED A8

ppaq-1
ppag

rrss- 1
[TSS

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Transfer a byte of data from memory location addressed by the HL register pair to

memory location addressed by the DE register pair. Decrement contents of register
pairs BC, DE, and HL.

Suppose register pair BC contains 004F1g, DE contains 4564514, HL contains 201214,

and memory location 201215 contains 181g. After the instruction

LDD

has executed, memory location 45451 will contain 1814, register pair BC will contain
004E1 6. DE will contain 454416, and HL will contain 201116,

3-110

LDDR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.DECREMENT DESTINATION AND
SOURCE ADDRESSES

LDDR

e g

ED B8
This instruction is identical to LDD. except that it is repeated until the BC register pair
contains zero. After each data transfer, interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents

HL 201215 201216 1816
DE 454515 201115 AA18
BC 000315 20101 2518

After execution of
LDDR

register pairs and memory locations will have the following contents:

Register/Contents Location/Contents Location/Contents
HL 20081¢ 201216 1818 464515 184¢
DE 454216 201118 AA1p 454415 AA1g
BC 000014 201015 2516 454315 2518
This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

3-111

LDI — TRANSFER DATA BETWEEN MEMORY
LOCATIONS, INCREMENT DESTINATION AND
SOURCE ADDRESSES

" Set if BC-1 # O, reset otherwise

S Z AchON Cc Data
FLL Jol ol J @ Memory

Yy ppaq
A ppaq + 1
8.C Tt uu mss + 1
DE T SS YY rss
L PP aq = rss + 1
se ppag + 1
PC mmmm Program
I1X Memory
Y
| @ ED mmmm
R AO mmmm + 1
mmmm + 2
mmmm + 3

LDi
\-.v-’
ED AO

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Increment contents of register pairs
HL and DE. Decrement contents of the BC register pair.

Suppose register pair BC contains 004F 6. DE contains 454516, HL contains 201218,
and memory location 20121 contains 181g. After the instruction

LDI

has executed, memory location 454514 will contain 181g. register pair BC will contain
004E1g, DE will contain 454616, and HL will contain 201316

3-112

LDIR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.INCREMENT DESTINATION AND
SOURCE ADDRESSES

LDIR

S
ED BO

This instruction is identical to LDI, except that it is repeated until the BC register pair
contains zero. After each data transfer, interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 20121g 201216 1816
DE 45451g 201315 CD16
BC 00031g 201415 FO1g
After execution of
LDIR
register pairs and memory will have the following contents:
Register/Contents Location/Contents Location/Contents
HL 201546 201215 1846 454515 1818
DE 45481g 201315 CD1g 454616 CD1g
BC 00001g 201449 FOvg 454716 FO1g

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

NEG — NEGATE CONTENTS OF ACCUMULATOR

S ZAcP/ON C Data

F.x|x|x|1[x| Memory
A XX XX + 1
B.C
DE
H.L
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
U ED mmmm
R .44 mmmm + 1
mmmm + 2
mmmm + 3

Negate contents of Accumulator. This is the same as subtracting contents of the Ac-
cumulator from zero. The result is the two's complement. 80H will be left unchanged.

Suppose xx=b5A1g. After the instruction
NEG
has executed, the Accumulator will contain A61g.

bA 0101 1010
Two's complement 1010 0110

3-113

NOP — NO OPERATION

S ZAcP/ON C

Data
M
L L 1 [1] emory
A
B.C
D.E
H.L
SP
pC mmmm mmmm + 1 Program
1X Memory
Y
! 00 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

NOP
Saaltn, o

00

This is a one-byte instruction which performs no operation, except that the Program
Counter is incremented and memory refrash continues. This instruction is present for
several reasons:

1) A program error that fetches an object code from non-existent memory will fetch
00. It is a good idea to ensure that the most common program error will do nothing.

2) The NOP instruction atlows you 1o give a label to an object program byte:
HERE NOP

3) To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay.

NOP is not a very useful or frequently used instruction.

3-114

OR data — OR IMMEDIATE WITH ACCUMULATOR

S ZAcP/ON C

FXTxT1 [x]0]0)

A

XX

B.C

D.E

HL

SP

PC mmmm

IX

Y

R

OR data
—— ——r—
F6 vy

xx OR vy

mmmm + 2

Data
Memory

Program
Memory

F6

Yy

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

OR the Accumulator with the contents of the second instruction object code byte.

Suppose xx=3A1g. After the instruction

has executed. the Accumulator will contain 7E16.

3A
7C

OsetsStol

OR 7CH

0011 1010
0111 1100

0111 1110

Six 1 bits, set P/O to 1

Non-zero result, set Z to 0

This is a routine logical instruction; it is often used to turn bits “on”". For example, the

instruction

will unconditionally set the high-order Accumulator bit to 1.

OR 80H

3-118

OR reg — OR REGISTER WITH ACCUMULATOR

S 2 AcP/ON C

F|X|X|1|X|0|OI

A

XX

B.C

DE

H.L

sP

PC mmmm

Contents of A, B,
~=C D E HorlL
is yy

mmmm + 1

IX

Y

R

OR
10110

reg

——

XXX

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

10110xxx

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Logically OR the contents of the Accumulator with the contents of Register A, B, C, D,
E. H or L. Store the result in the Accumulator.

Suppose xx=E31g and Register E contains AB1g. After the instruction
OR E

has executed. the Accumulator will contain EB1g.

E3
AB

1110 0011
1010 1000
1110 1011

1 sets S to 1<—J

Six 1 bits, set P/O to 1

Non-zero result, set Z to 0

3-116

OR (HL) — OR MEMORY WITH ACCUMULATOR
OR (IX+disp}
OR (1Y +disp)

S Z AcP/ON C Data
FlxIx]1]x]ojo] Memory
A XX xx OR yy Yy ppaq
B.C
DE
HL pp qq
SP
PC mmmm mmmm + 1 Program
1% Memory
Y
! B6 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of OR (HL):

OR (HL)
S
86

OR contents of memory location (specified by the contents of the HL register pair) with
the Accumulator.

Suppose xx=E31g. ppaa=40001g. and memory location 400016 contains AB1g. After
the instruction

OR (HL}
has executed, the Accumulator will contain EB1g.

E3 = 1110 0011
A8 = 1010 1000

1110 1011

1 sets S to 14——J Six 1 bits, set P/O to 1

Naon-zero result, set Z 10 0
OR (IX+disp)
Nt ——

DD B6 d

OR contents of memory location (specified by the sum of the contents of the IX register
and the displacement value d) with the Accumulator.

OR (Y +disp)

g

FD B6 d

This instruction is identical to OR {IX+disp). except that it uses the IY register instead of
the IX register.

3-117

OUT (C).reg — OUTPUT FROM REGISTER

S Z AcP/ON C

Data
Memory
SHEEBEN 1/0 port vy
A
B.C Y Register A, B, C,
D.E D, E HorlL
HL
SP
PC mmmm @ Program
b4 Memory
N
: ED
R O1xxx001

OUT (C).reg
R N e and

ED 01 xxx 001

Syt

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Suppose yy=1F1g and the contents of H are AA1g. After the execution of

OouT (C)H

AAqg will be in the buffer of 1/0 port 1F1g.

3-118

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

OUTD — OUTPUT FROM MEMORY. DECREMENT ADDRESS

S Z ACP/ON C xx-1 Data
FlulxX{ulu]1] } 1/O port yy Memory
A 1 Q— ppRaq
B.C XX Yy
D.E ppag-1
HL pp aq
SP
PC mmmm Program
1X mmmm + 2 Memory
1Y
! ED mmmm
R AB mmmm + 1
mmmm + 2
mmmm + 3
QUTD
\—\/ﬁl
ED AB

Output from memory location specified by HL to 1/Q port addressed by Register C.
Registers B and HL are decremented.

Suppose xx=0A1g. yy=FF16. ppaq=50001g. and memory location 500014 contains
771g. After the instruction

ouTD

has executed. 7715 will be held in the buffer of I/O port FFqg. The B register will con-
tain 0918, and the HL register pair 4FFFqg.

OTDR — OUTPUT FROM MEMORY. DECREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTDR
—
ED BB

O7TDR is identical to OUTD, but is repeated until Register B contains O.

Suppose Register B contains 031g. Register C contains FF1. and HL contains 500016.
Memory locations 4FFEq1g through 500016 contain:

Location/Contents
4FFE1s CAqp
4FFF15 1B1g
500015 Fl16

After execution of
OTDR

register pair HL will contain 4FFD1g. Register B will contain zero. and the sequence
F118. 1816. CA1g will have been written to {/0 port FF1g.

This instruction is very useful for transferring blocks of data from memory to output
devices.

3-119

OUTI — OUTPUT FROM MEMORY. INCREMENT ADDRESS

S ZAcP/ON C xx-1 Data
FluldJufuli]] 1/Q port yy Memory
A I ; PPaq
B.C XX =/ Y
DE ppaq + 1
H.L pp aq
SP
PC mmmm Program
1X mmmm + 2 Memory
Y
I ED mmmm
R A3 mmmm + 1
mmmm + 2
mmmm + 3

QUTI

-q',.’

ED A3
Output from memory location specified by HL to I/0 port addressed by Register C.
Register B is decremented and the HL register pair is incremented.

Suppose xx=0A1g. yy=FF1g. ppag=500015, and memory location 500014 contains
7718 After the instruction

OouTI

has executed, 771g will be held in the buffer of I/O port FFq1g. The B register will con-
tain 091 and the HL register pair will contain 50011g.

OTIR — OUTPUT FROM MEMORY. INCREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTIR
S
ED B3

OTIR is identical to OUTI, except that it is repeated until Register B contains O.

Suppose Register B contains 041, Register C contains FF1g. and HL contains 50001,
Memory locations 500016 through 500316 contain:

Location/Contents

50001 CA1g
50011 1B1g
50021 Bl1g
500315 AD1s

After execution of
OTIR

register pair HL will contain 500416, Register B will contain zero and the sequence
CA16. 1B1g. B11g and AD1g will have been written to 1/0 port FFqg.

This instruction is very useful for transferring blocks of data from memory to an output
device.

3-120

OUT (port), A— OUTPUT FROM ACCUMULATOR

S Z AcP/ON C 1 Osta
AEEEEEN 1/ port yy Memory
A |

B.C
D.E
HL
SP
PC mmmm mmmm + 2 Program
X Memory
Y
| D3 mmmm
R 1 Yy mmmm + 1
mmmm + 2
mmmm + 3

ouT {port). A

D3 vy

Output the contents of the Accumulator to the |/O port identified by the second OUT in-
struction object code byte.

Suppose 3616 is held in the Accumulator. After the instruction
OUT {1AH).A
has executed, 361g will be in the buffer of I/0 port 1A14.

The QUT instruction does not affect any statuses. Use of the OUT instruction is very
hardware-dependent. Valid I/O port addresses are determined by the way in which /0
logic has been implemented. It is also possible to design a microcomputer system that
accesses external logic using memgry reference instructions with specific memory ad-
dresses. OUT instructions are frequently used in special ways to control microcomputer
logic external to the CPU.

3-121

POP rp — READ FROM THE TOP OF THE STACK

POP IX
POP 1Y
S Z AcP/ON C Data
e L 1 1] Memory

’ qq §88S

A l t pp ssss + 1
B8.C ssss+ 2
D.E - 888§ + 2
H.L
5P $5SS
PC mmmm mmmm + 1 Program

1% Memory

Iy

I 17000007 1 mmmm

R mmmm + 1

mmmm + 2
mmmm + 3
The illustration shows execution of POP BC:
POP p
e
11 xx 0001
00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F
POP the two top stack bytes into the designated register pair.
Suppose ag=011g and pp=2A14. Execution of
POP HL
loads 0114 into the L register and 2A4g into the H register. Execution of the instruction
POP AF

loads 01 into the status flags and 2A1g into the Accumulator. Thus, the Carry status
will be set to 1 and other statuses will be cleared.

POP IX
————— g
DD E1

POP the two top stack bytes into the IX register.

POP 1Y
e
FD E1

POP the two top stack bytes into the 1Y register.

The POP instruction is most frequently used to restore register and status contents
which have been saved on the stack. for example, while servicing an interrupt.

3-122

PUSH rp — WRITE TO THE TOP OF THE STACK

PUSH IX
PUSH 1Y
S ZACP/ON C Data
L 1 1 1) Memory
qq $885-2
A pp ssss-1
B8.C $SSS
DE
H.L
SP $SSS
PC mmmm mmmm + 2 Program
X Memory
Y ppaq
1 FD mmmm
R ES mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of PUSH IY:
PUSH 1Y
S

FD Eb
PUSH the contents of the IY register onto the top of the stack.
Suppose the 1Y register contains 45FF1g. Execution of the instruction
PUSH IY
loads 4515, then FF1g onto the top of the stack.
PUSH IX

N
DD E5
PUSH the contents of the IX register onto the top of the stack.
PUSH rp

11 xx 0101
———

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F

PUSH contents of designated register pair onto the top of the stack.
Execution of the instruction

PUSH AF
loads the Accumulator and then the status flags onto the top of the stack.

The PUSH instruction is most frequently used to save register and status contents; for
example, before servicing an interrupt.

3-123

RES b,reg — RESET INDICATED REGISTER BIT
S ZAcP/ON C

P L 11 13

A
BC
D.E
HL
SP
PC
X
Y
I
R

YYYYYYYY.

mmmm

CB 10 bbb

w

bbb
000
001
010
011
100
101
110
11

—

Reset indicated bit within specified register.

After the instruction

RES 6.H

o

Register

PrImMmMOO0O®

Data
Memory

Program
Memory

CB

10bbbxxx

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

has executed. bit 6 in Register H will be reset. {Bit O is the least significant bit.)

3-124

RES b, (HL) — RESET BIT b OF INDICATED MEMORY POSITION
RES b, (IX+disp)
RES b, (1Y +disp)

S ZAcP/ON C

Ll L L L]

A
B.C
DE
HL
SP
PC
IX
Y
i
R

The illustration shows execution of SET b,{IX+disp). Bit 0 is execution

2

mmmm

PPaq

b.(X+disp). Bit O is the least significant bit.

RES b, (X+disp)

ODDCB d 10 bbb 110

—r—
bbb Bit Reset
000
001
010
011
100
101
110
111

N WN-2O

Data
Memory
yyyyyyyy Jppaq +d
A
J
Program
Memory
DD mmmm
cB mmmm + 1
d mmmm + 2
10bbb110 } mmmm + 3
mmmm + 4
of SET

Reset indicated bit within memory location indicated by the sum of Index Register IX

and d.

Suppose IX contains 41101g. After the instruction

RES 0.(1X+7)

has executed. bit O in memory location 411714 will be 0.

RES b.(Y+disp}

FDCB d 10 bbb 110

———
bbb is the same as in RES b.(IX+disp)

This instruction is identical to RES b,(IX+disp). except that it uses the |Y register instead

3-125

of the IX register.
RES b.(HL)
IB‘
CB 10 bbb 110

bbb is the same as in RES b, {IX+disp)

Reset indicated bit within memory location indicated by HL.
Suppose HL contains 444414. After execution of

RES 7.(HL)
bit 7 in memory location 444415 will be 0.

RET — RETURN FROM SUBROUTINE

S ZAcP/ON C Data
BN EBEEN Memory
’_‘ aq XAXXK
A pp xxxx + 1
B.C XXXX + 2
DE
HL
SP XXXX XXXX + 2
PC mmmm Program
IX Memory
Y
| co mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RET
——
C9

Move the contents of the top two stack bytes to the Program Counter; these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2. to address the new top of stack.

Every subroutine must contain at least one Return {or conditional Return) instruction;
this is the last instruction executed within the subroutine, and causes execution to
return to the calling program.

3-126

RET cond — RETURN FROM SUBROUTINE IF CONDITION
IS SATISFIED

RET cond
S —
11 xxx 000
Condition Relevant Flag

000 NZ Non-Zero zZ
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
$11 M Sign Negative S

This instruction is identical to the RET instruction, except that the return is not ex-
ecuted unless the condition is satisfied: otherwise, the instruction sequentially follow-
ing the RET cond instruction will be executed.

Consider the instruction sequence:

CALL SUBR
AND 7CH---~I

:First subroutine instruction

condition satisfied

RET cond

condition not
satisfied

OR 80H

After the RET cond is executed, if the condition is satisfied then execution returns to the
AND instruction which follows the CALL. If the condition is not satisfied. the OR in-
struction, being the next sequential instruction. is executed.

3-127

RET cond — RETURN FROM SUBROUTINE IF CONDITION
IS SATISFIED

RET cond
S —
11 xxx 000
Condition Relevant Flag

000 NZ Non-Zero zZ
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/O
110 P Sign Positive S
$11 M Sign Negative S

This instruction is identical to the RET instruction, except that the return is not ex-
ecuted unless the condition is satisfied: otherwise, the instruction sequentially follow-
ing the RET cond instruction will be executed.

Consider the instruction sequence:

CALL SUBR
AND 7CH---~I

:First subroutine instruction

condition satisfied

RET cond

condition not
satisfied

OR 80H

After the RET cond is executed, if the condition is satisfied then execution returns to the
AND instruction which follows the CALL. If the condition is not satisfied. the OR in-
struction, being the next sequential instruction. is executed.

3-127

RETI — RETURN FROM INTERRUPT
S Z AcP/ON C

Data
L 1 1 1] Memory
r{ aq XXXX
A pp xXxxx + 1
B.C XXXX + 2
D.E
H.L
SP XXXX XXXX + 2
PC mmmm Program
1% Memory
Y
! PPaq ED mmmm
R 4D mmmm + 1
mmmm + 2
mmmm + 3

RET!
~— '
ED 4D

Move the contents of the top two stack bytes to the Program Counter: these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2, and address the new top of stack.

This instruction is used at the end of an interrupt service routine, and, in addition to
returning control to the interrupted program, it is used to signal an 1/0 device that the
interrupt routine has been completed. The I/0 device must provide the logic necessary
to sense the instruction operation code. refer to An Introduction to Microcom-
puters: Volume 2 for a description of how the RETI instruction operates with the Z80 -
family of devices.

3-128

RETN — RETURN FROM NON-MASKABLE INTERRUPT

S ZAcP/ON C Data
(O 11 1] Memory
qq mmmm
A "{ pp mmmm + 1
B.C mmmm + 2
DE
SP XXXX @
PC mmmm Program
IX Memory
Y
I ED mmmm
R 45 mmmm + 1
mmmm + 2
mmmm + 3
RETN
‘M
ED 4b

Move the contents of the top two stack bytes to the Program Counter; these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2 to address the new top of stack.
Restore the interrupt enable logic tc the state it had prior to the occurrence of the non-
maskable interrupt.

This instruction is Used at the end of a service routine for a non-maskable interrupt, and
causes execution to return to the program that was interrupted.

3-129

RL reg — ROTATE CONTENTS OF REGISTER LEFT
THROUGH CARRY

S Z AcP/O rq‘ Data
FXdx]olx]ol ¥y Memory
QE
H.L
SP
PC mmmm mmmm + 2 Program
IX Memory
Iy
! CcB mmmm
R 00010001 | mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of RL C:
RL reg
CB 00010 xxx
000 for reg=8B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register left one bit through Carry.
Suppose D contains A91g and Carry=0. After the instruction
AL D
has executed, D will contain 5214 and Carry will be 1:
Before After
Register D Carry Register D Carry
10101001 [0 [0io10010]
0 sets S to Q-a— Non-zero result, set Z to 0

3 ones. setP/Oto 0

3-130

RL (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RL {(IX+disp) LEFT THROUGH CARRY

RL {IY+disp)

-
S ZAcP/ON % Data
FEXiXx]olx]o Memory }
- P praa +
A
B.C
DE
H.L
SP
PC mmmm Program
1X ppaq Memory
g
! oD mmmm
R cB mmmm + 1
d mmmm + 2
16 mmmm + 3
mmmm + 4

The illustration shows execution of RL {IX+disp):
RL {IX+disp)
—— Sy

DD CB 16

Rotate contents of memory location (specified by the sum of the contents of Index

Register X and displacement integer d) left one

bit through Carry.

Suppose the 1X register contains 400015, memory location 400715 contains 2F 1. and
Carry is set to 1. After execution of the instruction

After

RL (IX+7)
memory location 4007 15 will contain 5F1g. and Carry is O:
Before
Memory Carry

Mermory Carry

0010 1111 [Cio11111] [0]

~

0 sets S to O -
6 ones, set P/O to 1

RL {IY+disp)

FD CB d

16

CNon-zero result, set Z to 0

This instruction is identical to RL (IX+disp). but uses the |Y register instead of the IX

register.

3-131

RL {HL)
CB 16

Rotate contents of memory iocation {specified by the contents of the HL register pair)
left one bit through Carry.

RLA — ROTATE ACCUMULATOR LEFT THROUGH CARRY

S Z AcP/ON Data
E 0 0]'] Memory
A :
B.C
DE
HL
SP
PC mmmm mmmm + 1 Program
1% Memory
Y
B 17 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RLA
———
17

Rotate Accumulator contents left one bit through Carry status.

Suppose the Accumulator contains 2A1g and the Carry status is set to 1. After the in-
struction

RLA
has executed, the Accumulator will contain F51g and the Carry status will be reset to 0:
Before After
Accumulator Carry Accumulator Carry

01111010 11110101} [0]

3-132

RLC reg — ROTATE CONTENTS OF REGISTER LEFT CIRCULAR

~-— —

S ZACP/ON C Data
FIXIx]olx|o Memory
A
B.C
H.L i
SP
PC mmmm @ Program
X Memory
Y
I CB mmmm
R 00000011 fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RLC E:

RLC reg
D el

CB 000 00 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit, copying bit 7 inta Carry.
Suppose Register D contains A91g and Carry is 1. After execution of
RLC D
Register D will contain 531 and Carry will be 1:
Before After
Register D Carry Register D Carry

10101001 [07010011]
N

0 sets S to O --—/ Non-zero result, set Z 1o O
4 ones, set P/O to 1

3-133

RLC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RLC {IX+disp) LEFT CIRCULAR
RLC (IY+disp)

*
S Z AcP/ON C Data
lelxlolxlol Jut- Memary

—}ppqq

A

8.C

D.E

HL pp aq

SP

PC mmmm mmmm + 2 Program

I1X Memory

b

| CB mmmm

R 06 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RLC {HL):

RLC {HL)
S e’
CB 06

Rotate contents of memory location (specified by the contents of the HL register pair)
left one bit, copying bit 7 into Carry.

Suppose register pair HL contains 54FF1g. Memory location 54FF1g contains Abqg,
and Carry is 0. After execution of

RLC (HL)
memory location b4FF1g will contain 4B1g. and Carry will be 1
Before Atter
Memory Carry Memory Carry

B @Eooonl [

~
0 sets S t0 O -g— [:Non-zero result, setZ to 0

4 ones, set P/O 10 1
RLC (X+disp)
.L\;;
DD CB d 06

Rotate memory location (specified by the sum of the contents of Index register 1X and
displacement integer d) left one bit, copying bit 7 into Carry.

Suppose the IX register contains 400016. Carry is 1. and memory location 40074 6 con-
tains 2F1g. After the instruction

RLC (IX+7)

3-134

has executed. memory location 400714 will contain 5E1g. and Carry will be O:
Before After
Memory Carry Memory Carry

M poiae O
g

0 sets S to 0 -— Non-zero result. set Z tc 0
5 ones, set P/0 to O

RLC {IY+disp)
A
FD CB d 06

This instruction is identical to RLC (IX+disp). but uses the IY register instead of the IX
register.

RLCA — ROTATE ACCUMULATOR LEFT CIRCULAR

-
S ZAcP/ON C Data
rl o] Jol Memory

A L | L L i |) §
I i A
B.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
% Memorv
Y
| 07 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RLCA
e

07
Rotate Accumulator contents left one bit. copying bit 7 into Carry.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RLCA
has executed, the Accumulator will contain F41g and the Carry status will be reset to 0:
Before After
Accumulator Carry Accumulator Carry

11110100] [0]

RLCA should be used as a logical instruction.

3-135

RLD — ROTATE ONE BCD DIGIT LEFT BETWEEN
THE ACCUMULATOR AND MEMORY LOCATION

S ZAcPON C Data

FlXIXIOIXIOI | ' | Memory

A x | ¥ r ppag
B.C
!
HL pp q9
sP
PC mmmm mmmm + 2 Program
I1X Memory
Y
' ED mmmm
R ” 6F mmmm + 1
mmmm + 2
mmmm + 3
RLD
W—/
ED 6F

The four low-order bits of a memory location (specified by the contents of register pair
HL} are copied into the four high-order bits of the same memory location. The previous
contents of the four high-order bits of that memory location are copied into the four
low-order bits of the Accumulator. The previous four low-order bits of the Accumulator
are copied into the four low-order bits of the specified memory location.

Suppose the Accumulator contains 7F1g, HL register pair contains 40001 6. and memo-
ry location 40001 contains 121. After execution of the instruction

RLD
the Accumulator will contain 711 and memory location 40001 will contain 2F1g:
Before After

Accumulator Memory Accumulator Memory
7 F 112 L7 T 177 [2TF]

-

high-order bit=0, set S to 0 g Non-zero result. set Z to O
4 ones, set P/O to 1

3-136

RR reg — ROTATE CONTENTS OF REGISTER RIGHT THROUGH

CARRY
—a
S ZAcP/ON C Data
FIxIxjolx]o] 4= Memory
D.,E
H.L
SP)
PC mmmm mmmm + 2 Program
1X Memory
Y
l cB mmmm
: 00011001 | mmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of RR C:
RR reg
CB 00011 xxx
Rt o
G00 for reg=B
001 for regq=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register right one bit through Carry.
Suppose Register H contains OF 15 and Carry is set to 1. After the instruction
RR H
has executed. Register H will contain 871g. and Carry will be 1:
Before After
Register H Carry Register H Carry
0000 1111 [10000117T]
B
1 sets S to 1 -g—/ l—bNon-zero result, set Z to 0

4 ones, set P/O to 1

3-137

RR (HL) — ROTATE CONTENTS OF MEMORY LOCATION
RIGHT THROUGH CARRY

RR (IX+disp)

RR (1Y +disp)

-
S 2 AcP'ON (Data
Flxdxfolxfolw] Memary
t LI LI I
) ppaq +d
A
BC
DE
HL
SP
PC mmmm mmmm + 4 Program
X Memory
Y ppaq
| FD mmmm
R CB mmmm + 1
ppaq +d d mmmm + 2
1E mmmm + 3
mmmm + 4
The illustration shows execution of RR (Y+disp):
RR (IY+disg)
,.NS_
FD CB d 1E

Rotate contents of memory location (specified by the sum of the contents of the 1Y
register and the displacement value d} right one bit through Carry.

Suppose the IY register contains 460015, memory location 450F1 g contains 1D18. and
Carry is set to 0. After execution of the instruction

RR ('Y+OFH)
memory location 450Fqg will contain OE1g, and Carry will be 1:
Before After
Memory Carry Memory Carry

00011101] [0 00001110

0 sets S to 0 --— Non-zero result, set Z to O
3 ones, set P/Oto 0

RR (X+disp)
N o St
DD CB d 1E

This instruction is identical to RR {tY+disp). but uses the IX register instead of the 1Y
register.

3-138

RR (HL)
Y
CB 1E

Rotate contents of memory location (specified by the contents of the HL register pair)
right one bit through Carry.

RRA — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

-
S Z AcP/ON Data
F 0 0 Memory
= > T rq"f‘l—l——J
8.C
DE
ML
SP
PC mmmm mmmm + 1 Program
1X Memory
1Y
r iF mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RRA

D e

1F
Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRA

has executed. the Accumulator will contain BD1g and the Carry status will be reset to
0:

Before After

Accumulator Carry Accumulator Carry

01111010 10111101] [0]

3-139

RR (HL)
Y
CB 1E

Rotate contents of memory location (specified by the contents of the HL register pair)
right one bit through Carry.

RRA — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

-
S Z AcP/ON Data
F 0 0 Memory
= > T rq"f‘l—l——J
8.C
DE
ML
SP
PC mmmm mmmm + 1 Program
1X Memory
1Y
r iF mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RRA

D e

1F
Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRA

has executed. the Accumulator will contain BD1g and the Carry status will be reset to
0:

Before After

Accumulator Carry Accumulator Carry

01111010 10111101] [0]

3-139

RRC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RRC (IX+disp) RIGHT CIRCULAR
RRC (1Y +disp}

-
S ZAcP/ON C | Data
FlXIXIOIXIOI k Memory
A L— ppaq
B.C
D.E
HL: PP aq
sP
PC mmmm mmmm + 2 Program
X Memory
Y
I CB mmmm
R OE mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC (HL):
RRC (HL)
N oo

CB OE

Rotate contents of memory location {specified by the contents of the HL register pair)

right one bit circularly, copying bit O into the Carry status.

Suppose the HL register pair contains 460015, memory location 45001¢ contains

3416. and Carry is set to 1. After execution of
RRC (HL)
memory location 456001 will contain 1A1g. and Carry will be O:
Before After
Memory Carry Memory Carry

00110100 [ooo1i1010] [O]
Nu—— o’

0 sets S to O - l-bNon-zero result, set Z to O

3 ones, set P/Oto 0
RRC (IX+disp)

DD CB d OF

Rotate contents of memory location (specified by the sum of the contents of the IX

3-141

register and the displacement value d) right one bit circularly, copying bit O into the Ca-
rry status.

RRC {IY+disp)

FD CB d OE

This instruction is identical to the RRC (IX+disp) instruction, but uses the 1Y register in-
stead of the IX register.

RRCA — ROTATE ACCUMULATOR RIGHT CIRCULAR

~all}
S ZAcP/ON C Data
T Tl ToI 3 vemory
A T
BC
D.E
H.L
SP
PC mmmm mmmm + 1 Pragram
1% Memory
Y
| OF mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

RRCA
Ve

OF
Rotate Accumulator contents right one bit circularly, copying bit 0 into the Carry status.

Suppose the Accumulator contains 7A16 and the Carry status is set to 1. After the in-
struction

RRCA

has executed. the Accumulator will contain 3D1g and the Carry status will be reset to
0:

Before After
Accumulator Carry Accumulator Carry

[crriioro] [([oofri701] [O]

RRCA should be used as a logical instruction.

3-142

RRD — ROTATE ONE BCD DIGIT RIGHT BETWEEN THE

A
BC
DE
HL

SP
PC
IX
1Y
|

R

ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C Data
FIXTXJ0Ix]0] } r Memary
x | ¥ r | s]oppaq
‘¢ i
w4
PP qg
mmmm mmmm + 2 Program
Memory
ED mmmm

67 mmmm + 1

mmmm + 2

mmmm + 3

RRD
Ve
ED 67

The four high-order bits of a memory location {specified by the contents of register pair
HL) are copied into the four low-order bits of the same memory location. The previous
contents of the four low-order bits are copied into the four low-order bits of the Ac-
cumulator. The previous four low-order bits of the Accumulator are copied into the four
high-order bits of the specified memory location.

Suppose the Accumulator contains 7F4g, HL register pair contains 40001 g, and memo-
ry location 400014 contains 1216 After execution of the instruction

the Accumulator will contain 7215 and memory location 40001g will contain F11g:

RRD
Before After
Accumulator Memory Accumulator

Memory

Lz L e J[+I2] L7 1 2 |[e]i]

Y \ Y Vi \M

Y \ ,I
\\ L4 ”

—— -

High-order bit=0, set S to 0 -&—
4 ones, set P/O 1o 1

3-143

Non-zero result,
setZ to 0

RST n— RESTART
S ZAcP/ON C

L L1 1]

A
B8C

D.E PPaq-2
H.L

5P ppaq
PC mmmm @
IX

Y
|
R

0000000000xxx000

BST 1

-1A1‘xxx 111

Data
Memory

mm + 1 _§ppaq-2

mm ppaqg-1

ppaq

Pragram
Memory

117°%xxx 111 mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Call the subroutine origined at the low memory address specified by n.

When the instruction
RST 18H

has executed. the subroutine origined at memory location 00181g is called. The pre-

vious Program Counter contents are pushed to the top of the stack.

Usually, the RST instruction is used in conjunction with interrupt processing, as de-

scribed in Chapter 12.

If your application does not use all RST instruction codes 1o service
interrupts, do not overlock the possibility of calling subroutines
using RST instructions. Origin frequently used subroutines at ap-
propriate RST addresses, and these subroutines can be called with

SUBROUTINE
CALL USING
RST

a single-byte RST instruction instead of a three-byte CALL instruction.

SBC A.,data — SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR WITH BORROW

S Z ACP/O N C Data
FOX XX %] " 1x] @ Memory
A XX
B.C
DE
H.L
SP
PC mmmm mmmm + 2 Program
X Memory
Y
h DE mmmm
R N Yy mmmm + 1
mmmm + 2
mmmm + 3
SBC A, data
W—/ S
DE vy

Subtract the contents of the second object code byte and the Carry status from the Ac-
cumulator.

Suppose xx=3A15 and Carry=1. After the instruction
SBC A.7CH
has executed, the Accumulator will contain BD1g.

3A 0011 1010
Twos comp of 7C 1000 0100
Twos comp of Carry = 1111 1111

1011 1101
1setsStol Ut LNon—zero result, set Z to O
Borrow, set C to 1 Borrow, set Ac to 1

iy
1% 1=0, 5et P/O t0 O Subtract instruction, set N to 1

il

The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.

3-145

SBC A,reg — SUBTRACT REGISTER WITH BORROW
FROM ACCUMULATOR

S Z AcP/ON C

FIXIXIXIX|1|XI

A XX
B.C Contents of A, B,
DE C,D,EEHorlL
HL is yy
SP
PC mmmm mmmm + 1
IX
Y
|
R
SBC A, reg
— Sy
10011 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data
Memory

Program
Memory

1001 1xxx

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of the specified register and the Carry status from the Accumula-

tor.

Suppose xx=E31g. Register E contains AO1g, and Carry=1. After the instruction
SBC A.E

has executed. the Accumulator will contain 421¢.

E3 = 1110
Two'scompof AO = 0110
Two'scompof 1 = 1111

0100

OsetsSto0 1U L
No borrow, set C to O

;.
1%1=0, set P/O to 0

0011
0000
1111

0010

No borrow. set Ac 10 0

Non-zero result. set Z to 0

Subtract instruction, set N to 1

The Carry flag is set to 1 for a borrow and reset to O if there is no borrow.

3-146

SBC A, (HL) — SUBTRACT MEMORY AND CARRY FROM
SBC A, (IX+disp) ACCUMULATOR
SBC A, (IY+disp)

S ZAcP/ON C Data
FIXTXIXTX[11X} ¥ Memory
A XX Yy ppaq
BC
D.E
H.L pp qq =
SP
PC mmmm mmmm + 1 Program
% Memory
Y
| 9E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SBC A.{HL):

SBC A,(HL)
m—— e

9E

Subtract the contents of memory location (specified by the contents of the HL register
pair) and the Carry from the Accumulator.

Suppose Carry=0, ppaq=40001g. xx=3A1g. and memory location 40001¢g contains
7C1p. After execution of the instruction

SBC A.(HL)
the Accumulator will contain BEqg.
3A = 0011 1010
Twoscompof7C = 1000 0100
Two's comp of Carry = 0

1sets Stol U LNon—zero result, set Z to 0

Borrow. set C to 1 L—-Borrow, set Ac to 1
-~ -
04 0=0, setP/Oto 0 Subtract instruction, set N to 1

The Carry flag is set to 1 for a borrow and reset to O if there is no borrow.
SBC A,(IX+@§B)

DD 9t d

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d} and the Carry from the Accumulator.

SBC A.{IY+disp)
s N o

FD 9E d

This instruction is identical to the SBC A.IX+disp) instruction, except that it uses the 1Y
register instead of the X register.

3-147

SBC HL.,rp — SUBTRACT REGISTER PAIR WITH CARRY

FROM H AND L

S Z AcP/ON ¢

FXIXIXIX] 11X} @

A

B.C BC, DE, HL or SP
DE contains yyyy
H.L XX XX J

spP '-)

PC mmmm mmmm + 2
IX
Y
B
R

SBC HL, p

.,
01 xx 0010

o —

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Data
Memory

Program
Memory

ED

01xx0010

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of the designated register pair and the Carry status from the HL

register pair.

Suppose HL contains F4A21g, BC contains A03416, and Carry=0. After the instruction

SBC HL.BC
has executed, the HL register pair will contain 546E1g:

Two's comp of F4A2
Two's comp of A034
Two's comp of Carry

1111 0100 1010 0010
0101 1111 1100 1100
0

0101 G100 0110 1110

OsetsSto0 t Non-zero result, set Z to 0
No borrow. set C to O No borrow.
1% 1=0, 56t P/O to 0 Subtract instruction.set N to 1

The Carry flag is set to 1 for a borrow and reset to O if there is no borrow.

3-148

SCF — SET CARRY FLAG
S Z AcP/ON C

Data

F[lll[I@ Memary

A

B.C

D.E

HL

SP

PC mmmm mmmm + ¢t Program

X Memory

1Y

| 37 mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

SCF

-

37

When the SCF instruction is executed, the Carry status is set to 1 regardless of its pre-
vious value. No other statuses or register contents are affected.

3-149

SET b.reg — SET INDICATED REGISTER BIT

S ZAcCP/ON C Data
L T T 1 Memory
A
D.E
H.L YYYY YYYY
spP
PC mmmm mmmm + 2 Program
1X Memory
A4
| CB mmmm
R 71bbbxxx | mmmm + 1
mmmm + 2
mmmm + 3
SET b,reg
~—— ~——

FARY

CB 11bbb xxx

R e S)

L’it bbb xxx Register

0 000 000 B
1 001 001 c
2 010 010 D
3 011 om E
4 100 100 H
5 101 101 L
6 110 111 A
7 1M

SET indicated bit within specified register. After the instruction
SET 2.L
has executed, bit 2 in Register L will be set. (Bit O is the least significant bit.)

3-150

SET b, (HL)} — SET BIT b OF INDICATED MEMORY POSITION
SET b, (IX+disp)
SET b, (Y +disp)

S ZAcP/ON C

Data
I 1T ©_ Vemory
A YYYY YYYY | PPQQ
B.C
D.E
HL pp qq’
SP
PC mmmm Program
1X Merory
Y
' CB mmmm
R 11bbb110_| mmmm + 1
) mmmm + 2
mmmm + 3

The illustration shows execution of SET b.(HL). Bit O is the least significant bit.
SET b,(HL)

FANY

CB 11 bbb 110

R S

Bit Set bbb

000
001
010
on
100
101

110
111

Set indicated bit within memory location indicated by HL.

~NOOObbWOWN-=O

Suppose HL contains 40004¢. After the instruction
SET 6.(HL)
has executed, bit 5 in memory position 40001g will be 1.
SET b.IX+disp)

OD CB & 11 bbb 110

B e

bbb is the same as in SET b,{HL)

Set indicated bit within memory location indicated by the sum of Index Register IX and
displacement.

3-1561

Suppose Index Register IX contains 400014, After execution of
SET 6.{1X+5H)

bit 6 in memory location 40051 will be 1.
SET b.IY+disp)

A, A ogtn,
FD CB d 11 bbb 110
——

bbb is the same as in SET b.(HL)

This instruction is identical to SET b, {(IX+disp), except that it uses the 1Y register instead
of the IX register.

SLA reg — SHIFT CONTENTS OF REGISTER LEFT ARITHMETIC

S ZAcP/ON Data
FIx | Xx]o]x]o Memory

A 1
ae e <—®
D.E
H.L
SP
PC mmmm mmmm + 2 Program
I1X Memory
Y
l CB mmimm
R 00100001 | mmmm + 1
mmmm + 2
mmmm + 3

The itlustration shows execution of SLA C:

SLA reg
b anadie o

CB 00100 xxx

“——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register left one bit, resetting the least significant bit to 0.
Suppose Register B contains 1F45. and Carry=1. After execution of
StA B

Register B will contain 3E1g and Carry will be zero.

3-152

Before After
Register B Carry Register B Carry

(o117 1110] (@
.

0 sets S to O -g— L>Non-zero result, set Z to 0
5 ones, set P/O to 0

SLA (HL) — SHIFT CONTENTS OF MEMORY LOCATION

SLA (IX+disp} LEFT ARITHMETIC
SLA (IY+disp)

(0)-
S Z AcP/ON C Data

F|x|x|0|x[o[b 1 Memory

A T TITIT

Bc L1l E] ppqq

A

HL pp qq.

SP

PC mmmm mmmm + 2 Program

X Memory

Y

| CB mmmm

R 26 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA {HL):
SLA (HU
S,

CB 26

Shift contents of memory location (specified by the contents of the HL register pair) left
one bit, resetting the least significant bit to 0.

Suppose the HL register pair contains 450015, memory location 450016 contains
841g. and Carry=0. After execution of

SLA (HL)
memory location 45001 will contain 081g. and Carry will be 1.

Before After
Memory Carry Memory Carry
10000100 [00001000]
N—
0 sets S to 0 --— L>Non—zero result, set Z to 0

1 one, set P/Oto 0

3-153

SLA (IX+disp)

DB CB 26

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) left one bit arithmetically. resetting least signifi-
cant bitto 0.

SLA {IY+disp)

FD CB d 26

This instruction is identical to SLA {IX+disp). but uses the IY register instead of the IX
register.

SRA reg — ARITHMETIC SHIFT RIGHT CONTENTS OF

REGISTER
S ZAcP/ON C Data
F.XIOIXIOI I" Memory
: pl R
B.C (|4
D.E oV
H,L
SP
PC mmmm Program
1X Memory
Y
! cB mmmm
R 00101111 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRA A:

SRA reg

CB 00101 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift specified register right one bit. Most significant bit is unchanged.
Suppose Register H contains 591g. and Carry=0. After the instruction
SRA H

has executed, Register H will contain 2Cqg and Carry will be 1.

3-154

SRA (HL) —
SRA (IX+disp)

Before
Register H C

proiioe] @

0 sets S to O -l—

3 ones, set P/0 to 0

ARITHMETIC SHIFT RIGHT CONTENTS OF
MEMORY POSITION

SRA (Y +disp)

-8
S Z AcP/ON
rix]xJolx]o

A
BC
DE
HL
SP
PC
1X
Y
I

R

After
Register H C

[oo101100]
N,

LhNon—zero result, set Z to O

mmmm

ppaq

The illustration shows execution of SRA (X+disp):
SRA (IX+disp)
Ve i o

DD CB

Shift contents of memory locaticn (specified by the sum of the contents of Register IX
and the displacement value d) right. Most significant bit is unchanged.

2E

-}
Data
Memory
ppaq +d
mmmm + 4 Program
Memory
DD mmmm
CB mmmm + 1
ppaq +d d mmmm + 2
2E mmmm + 3
mmmm + 4

Suppose Register IX contains 340016, memory location 34AA1g contains 2716, and
Carry=1. After execution of

SRA (IX+0AAH)
memory location 34AA1g will contain 1316, and Carry will be 1.

Before

Memory Carry

0 sets S to 0 wg—

3 ones, set P/O to O

3-1565

After
Memary Carry

00100111 [o0071 0011]
N —

LbNon-zero result, set Z to 0

SRA (Y+disp)
Sa—

FD CB 2E

This instruction is identical to SRA (IX+disp), but uses the IY register instead of the IX
register.

SRA {HL)
S
CB 2E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is unchanged.

SRL reg — SHIFT CONTENTS OF REGISTER RIGHT

LOGICAL
- O
S ZAcP/ON C Data
FROIX]OJX]O] Jum Memory
A
B.C
>as ———t1+11
HL |
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
| CB mmmm
R 00111011 frmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL E:

SRL reg

Sty

CB 00111 xxx

e

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register right one bit. Most significant bit is reset to 0.
Suppcse Register D contains 1F1g, and Carry=0. After execution of

SRL D
Register D will contain OFqg. and Carry will be 1.

3-156

Before After
Register D Carry Register D Carry

00011111 [0] [0000 1111

N
4 ones, set P/O to 1 LbNon-zero result, set Z to 0

SRL (HL) — SHIFT CONTENTS OF MEMORY LOCATION
SRL (IX+disp) RIGHT LOGICAL
SRL (IY+disp)

S ZAcP/ON C

Data
Flolxlolxlol I‘ Memory
A 0 ppaq
B.C
DE j
HL [qq
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
! CB mmmm
R 3E mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL (HL):

SRL (HL}
N—
CB 3E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is reset to 0.

Suppose the HL register pair contains 20001g. memory location 20001 contains 8F 14,
and Carry=0. After execution of

SRL {HL)
memory location 20001g will contain 471g. and Carry will be 1.
Before After
Memory Carry Memory Carry

10001111 [0] 01000111
R —

4 ones, set P/O to 1 |-> Non-zero resuit, set Z to 0
SRL (IX+disp)

DD CB d 3E

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) right one bit. Most significant bit is reset to 0.

3-1567

SRL (IY+disp)

S g ot
FOD DB d 3E

This instruction is identical to SRL {IX+disp). but uses the IY register instead of the IX
register.

SUB data — SUBTRACT IMMEDIATE FROM ACCUMULATOR
S ZAcCP/ON C

Data
Pl xdx]x 11 [x] Memory
A XX XX-yy
B.C
D.E
H.L
SP
PC mmmm Program
1X Memory
Y
| D6 mmmm
R — Yy mmmm + 1
mmmm + 2
mmmm + 3

suB data
s aad s and
D6 Yy

Subtract the contents of the second object code byte from the Accumulator.
Suppose xx=3A1g. After the instruction

SUB 7CH
has executed. the Accumulator will contain BEqg.

3A 0011 1010
Two's comp of 7C 1000 0100

1,011 1110
1 sets S to 1 U LNon-zero result. set Zto O
‘Borrow, setC to 1 f‘Borrow, set Ac to 1
0¥ 0=0,setP/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

3-158

SUB reg — SUBTRACT REGISTER FROM ACCUMULATOR

S ZACP/ON C Data
R EE e Coon D | memeny
A XX

B.C Contents of A, B, C,
D.E D, E, HorlLisvyy

Program

PC mmmm mmmm + 1
Memory

' 10010xxx_{mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

suB reg
S—— ——
10010 XXX

Aoy
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract the contents of the specified register from the Accumulator.
Suppose xx=E3 and Register H contains AQ1g. After execution of
sSuUB H

the Accumulator will contain 4316.

E3 1110 0011
Two's comp of AO 0110 0000

0100 0011

OsetsSto0 U, LNon—zero result, set Z to 0
No borrow. set C to 0 No borrow, set Ac to 0
-
1%1=0, set P/Ot0 0 Subtract instruction, set N to 1

Il

Notice that the resulting carry is complemented.

3-159

SUB (HL) — SUBTRACT MEMORY FROM ACCUMULATOR
SUB (IX+disp)
SUB {IY+disp)

S 2 ACP/ON C

Data
FEXIXIXIxT1 [x] Memory
A xx Xx-yy Yy ppqq +d
B.C
DE
H.L
SP
eC mmmm Program
1X PpPAaq Memery
Y
! DD mmmm
R 96 mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of SUB {IX+d):
SUB {IX+disp)
N

DD 96 d

Subtract contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) from the Accumulator.

Suppose ppaq=40001¢, xx=FF1g. and memory location 40FFqg contains 5014. After
execution of

SUB {(IX+OFFH)
the Accumulator will contain AFqg.

FF =

1111
Two's comp of 50 0000

111
101
1,01

[a) PN

1111

1sets S tol Non-zero result, set Z to O

l’"C

No borrow, set Ac to 0

No borrow, set C to 0
-

1% 1=0 setP/O 100 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.
SUB (IY+disp)
e N s

FD 96 d

This instruction is identical to SUB (IX+disp). except that it uses the 1Y register instead
of the IX register.
SUB (HL)

S——
96

Subtract contents of memory location (specified by the contents of the HL register pair)
from the Accumulator.

3-160

XOR data — EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR

S ZAcP/ON C Data
RIS Memory
A XX XX Ak yy
B.C
D.E
H.L
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
| EE mmmm
R ~— YY mmmm + 1
mmmm + 2
mmmm + 3
XOR data
—— D et
EE vy

Exclusive-OR the contents of the second object code byte with the Accumulator.
Suppose xx=3A1g. After the instruction

XOR 7CH
has executed, the Accumulator will contain 461g.

3A = 0011 1010
7€ = 0111 1100

0100 0110

OsetsSto0 Non-zero result, set Z to O

Three 1 bits. set P/O 10 0

The Exclusive-OR instruction is used to test for changes in bit status.

3-161

XOR reg — EXCLUSIVE-OR REGISTER WITH ACCUMULATOR

S 2 ACP/ION C Data
FExIxT1[x]o]ol @ Memory

A
BC Contents of A, B,
DE C D,EHorlL
H.L 'Sy
sP
PC mmmm mmmm + 1 Program
X Memory
Y
: 10101xxx J mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
XOR reg
'_v- T
10101 XXX
Sy
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Exclusive-OR the contents of the specified register with the Accumulator.
Suppose xx=E31g and Register E contains AO1g. After the instruction
XOR E
has executed. the Accumulator will contain 4314,
E3 = 1110 0011
AD = 1010 0000
6100 0011
OsetsSto0 Non-zero result, set Z to O

Three 1 bits, set P/O to 0

The Exclusive-OR instruction is used to test for changes in bit status.

3-162

XOR (HL) — EXCLUSIVE-OR MEMORY WITH ACCUMULATOR
XOR (IX+disp)
XOR ({IY+disp)

S ZAcP/ON C Data
- CECFEE) Memory
A XX ¥y ppaq + d
B.C
D.E
HL
SP
PC mmmm mmmm + 3 Program
X ppaq Memory
Y
1 DD mmmm
R AE mmmm + 1
ppaq +d d mmmm + 2
mmmm + 3

The illustration shows execution of XOR (IX+disp):
XOR {IX+disp)
S ——

DD AE d

Exclusive-OR contents of memory location {specified by the sum of the contents of the
IX register and the displacement value d) with the Accumulator.

Suppose xx=E31g. ppag=45001g. and memory location 45FF1g contains AQ4g. After
the instruction

XOR (IX+0FFH)
has executed, the Accumulator will contain 4316.

E3 = 1110 0011
AD 1010 0000

0100 0017

OsetsSto0 Non-zero result. set Z to O

Three 1 bits, set P/O t0 0
XOR (Y-+disp)
— o

B

FD AE d

This instruction is identical to XOR (IX+disp), except that it uses the |Y register instead
of the IX register.

XOR (HL)
—— e

AE

Exclusive-OR contents of memory location {specified by the contents of the HL register
pairl with the Accumulator.

3-163

8080A/280 COMPATIBILITY

Although the Z80 microprocessor can certainly be used on 8080A/280
its own merits, one of its important characteristics is its COMPATIBILITY
compatibility with the B080A microprocessor. This com- FEATURES

patibility has the following features:

1) Al 8080A machine language instructions are also Z80 machine language instruc-

tions.
2) All BOBOA registers are also Z80 registers (see Table 3-6).

3} Almost all BOBOA programs will run on a Z80, with some minor differences to be

noted later.

4) The Z80 has instructions, registers., and other features not present on the 8080A,

so Z80 programs will not generally run on 8080A processors.

Note that this compatibility does not extend to assembly 8080A/Z80
language source statements since Z80 assemblers and 8080A ASSEMBLY
assemblers use different operation code mnemonics. Table 3-7 LEVEL
contains a list of the B080A mnemonic codes and the corres- CONVERSION
ponding 280 codes, whils Table 3-8 is the same list organized

by Z80 codes.

Readers should note the binary coding limitations that this com- 8080A
patibility places on the extra features of the ZB0 microprocessor. UNUSED
The B080A has some unused operation codes (see Table 3-9) that OPERATION
are used for some of the Z8Q's extra instructions. But there are CODES
simply not enough such codes to cover the large number of

features in a simple form.

Thus, many of the added Z80 instructions require a 2-byte opera- 2-BYTE

tion code. The first byte is CB, DD, ED, or FD. Note the following OPERATION
meanings of these codes from Table 3-9: CODES

CB — a register or bit operation
DD — an operation involving register 1X

ED — a miscellaneous non-8080A instruction not covered elsewhere

FD — an operation involving register IY

The second byte of the operation code describes the actual operation to be performed.

The end result is that these multi-byte instructions execute rather |FASTER AND
slowly {(and use more memory) because an additional memory |SLOWER
access is required. The reader shouid be aware of this variation in JEXECUTING
execution times and try to use faster executing instructions when [INSTRUCTIONS

possible. This warning particularly applies to the extra shift

instructions (RLC, RRC, RL, RR. SRA, SRL) and to instructions involving the index

registers IX and IY.

There are a few minor incompatibilities between the 8080A/280
8080A and the Z80. These are: INCOMPATIBILITIES

1) The Z80 uses the P {or P/0) flag to indicate twos com-

plement overflow after arithmetic operations. The B080A always uses this flag for
parity.

2) The Z80 and 8080A execute the DAA instruction differently. On the Z80, this in-
struction will correct decimal subtraction as well as decimal addition. On the
8080A, it will correct only decimal addition.

3} The Z8BO rotate instructions clear the Ac flag. The 8080A rotate instructions do

not'affect the Ac flag.

3-164

Table 3-6. Register and Flag Correspondence between

280 and 808B0A

Z80 Register
A

IIMTMMQOOOoRe»

IICCIRT

SP

280 Register Pairs

8080A Register

A
None
B
None
o4
None
D
None
E
None
Least Significant Half of PSW
None
H
None
None
None
None
L
None
Nona
PC
SP

8080A Register Pairs

BC B
DE D
HL H
AF PSW
Z80 Flags 8080A Flags
C (Carry) C (Carry)
H (Half-Carry) AC (Auxiliary Carry)
N (Subtract) None
P/Q (Parity/Overfiow} P (Parity)
S (Sign} S (Sign)
Z (Zero} Z (Zero)
The Z80 is not compatible with the extra features of 80856/Z80
the 8086 microprocessor. The codes used for RIM and INCOMPATIBILITIES
SIM on the BO8E are used for relative jumps (NZ and NC) on
the Z80.
Instruction timings on the 8080A, 8085, and Z80 all TIMING
differ. Programs that depend on precise instruction tim- INCOMPATIBILITIES

ings will therefore execute properly only on the pro-

cessor for which they were written.

The N flag on the Z80 occupies bit 2 of the F register; the corresponding bit in the
Processor Status Word of the 8080A is always a logic ‘1°.

3-165

Table 3-7 Correspondence between BO80A and 280 Mnemonics

8080A Mnemonic

280 Mnemonic

8080A Mnemonic

280 Mnemonic

ACI data
ADC reg or M
ADD reg or M

ADI data

ANA reg or M

ANI data

CALL addr

cc addr

CM addr

CMA

CMC

CMP reg or M

CNC addr

CNZ addr

CcP addr

CPE addr

CPI data

CPO addr

cz addr

DAA "
$pDaD 1

DCR reg or M

DCX rp

o]

El

HLT

IN port

INR reg or M

INX e

JC addr

JM addr

JMP addr

JNC addr

JP addr

JNZ addr

JPE addr

JPO addr

Jz addr

LDA addr

LDAX BorD

ADC A.data
ADC A.reg or (HL)
ADD A reg or (HL)

ADD Adata
AND reg or (HL)
AND data

CALL addr
CALL C.addr
CALL M., addr
CPL

CCF

CcP rag or (HL)
CALL NC,addr
CALL NZ.addr
CALL P,addr
CALL PE,addr
CP data

CALL PO.addr
CALL Z,addr
DAA

ADD HL.rp

DEC reg or (HL)
DEC p

o]

€l

HALT

IN A {port)
INC reg or {HL)
INC P

JP C.addr

JP M, addr

JP addr

JpP NC,addr
JP P,addr

JP NZ . addr
JP PE.addr
JP PO,addr
JP Z.addr

LD A laddr)

LD A.(BC) or (DE)

LHLD addr

LXI rp,dataig
MOV regreg or M
MOV reg or M.reg
MVI reg or M,data
NOP

ORA regorM
ORI data
ouTt port
PCHL

POP pr

PUSH pr

RAL

RAR

RC

RET

RLC

RM

RNC

RNZ

RP

RPE

RPO

RRC

RST n

RZ

SeB reg or M
] data
SHLD addr
SPHL

STA addr
STAX BorD
STC

sSuB rag or M
sui data
XCHG

XRA rag or M
XR1 data
XTHL

LD HL (addr}

LD rp,datal16

LD rag,reg or {HL)
LD rag or (HL) reg
LD reg or {HL)data
NOP

OR reg or {HL)

OR data

QUT (portlA
JP {HL)

POP pr

PUSH pr

RLA

RRA

RET c

RET

RLCA

RET M

RET NC

RET NZ

RET P

RET PE

RET PO

RRCA

RST n

RET r4

SBC A reg or (HL)
SBC A data

LD {addr),HL
LD SPHL

LD {addr)A
LD (BC) or (DELA
SCF

sus reg or {HL)
suB data

EX DE HL
XOR rog or (ML)
XOR data

EX (SPLHL

3-166

Table 3-8. Correspondence between Z80 and 8080A Mnemonics

Z80 Mnemeonic

8080A Mnemonic

280 Mnemonic

8080A Mnemonic

ADC Adata
ADC A[HL)
ADC A reg

ADC Alxy + disp}
ADC HLm

ADD A data
ADD A[HL)
ADD Ajreg

ADD Aflxy + disp)
ADD HL,rp

ADD 1X.pp

ADD 1Y, rr

AND data

AND (HL)

AND reg

AND (xy + disp)
BIT b{HL)

BIT b.reg

BIT bixy + disp)
CALL addr

CALL C.addr
CALL M. addr
CALL NC.addr
CALL N2 addr
CALL P,addr
CALL PE,addr
CALL PO,addr
CALL Zaddr
CCF

cpP data

cP (HL)

cpP reg

cP {xy + disp)
CPD

CPDR

CPI

CPIR

CPL

DAA

DEC {HL)

DEC reg

DEC wm

DEC xy

DEC {xy + disp)
Dt

DJNZ disp

El

EX AF AF

EX DE,HL

EX (SP),HL

EX (SP),xy
EXX

HALT

M m

IN A (port}

IN reg,(C)

INC (HL)

INC reg

ACl data
ADC M
ADC reg
ADH data
ADD M
ADD reg
DAD mp
ANI data
ANA M
ANA reg
CALL addr
cc addr
CcM addr
CNC addr
CNZ addr
o4 addr
CPE addr
CPO addr
cz addr
CMC

CPi data
CMP M
CMP reg
CMA

DAA

DCR M
DCR reg
DCX p

o]

El

XCHG

XTHL

HLT

IN port
INR M
INR reg

INC p

INC Xy

INC {xy + disp)
IND

INDR

INI

INIR

JP addr

JP C.addr

Jp (HL)

JP M, addr

JP NC.addr

JP NZ,addr

JP P,addr

JP PE.addr

JP PO, addr

JP Z,addr

Je xy

JR C.disp

JR disp

JR NC.disp

JR NZ.disp

JR Z disp

LD A laddr}

LD A (BC) or (DE)
LD Al

LD AR

LD {addr) A

LD {addr),BC or DE
LD (addr),HL

LD (addr).SP

LD {addr),xy

LD {BC) or (DE)LA
LD BC or DE,(addr}
LD HL {addr)

LD {HL) data

LD {HL).reg

LD LA

LD RA

LD reg.data

LD reg.(HL)

LD reg.reg

LD reg.ixy + disp)
[} rp.data1é

L0 SP (addr)

il SP,HL

LD SP,xy

LD xy,datalé

LD xy {addr}

LD {xy + disp}data
LD {xy + disp)reg
LDD

LDDR

LOI

LDIR

NEG

NOP

OR data

INX m
JMP addr
JC addr
PCHL

JM addr
JNC addr
JNZ addr
JP addr
JPE addr
JPG addr
Jz addr
LDA addr
LDAX BorD
STA addr
SHLD addr
STAX BorD
LHLD addr
MVI M. deta
MOV Mreg
Mvi reg,data
MOV regM
MOV regreg

LXI rp.dataif

— indicates that there is no corresponding instruction.

3-167

Table 3-8. Correspondence between Z80 and 8080A Mnemonics (Continued)

Z80 Mnemonic

8080A Mnemonic

Z80 Mnsmonic

8080A Mnemonic

OR
OR
OR
OTDR
OTIR
ouTt
out
ouTD
ouTl

POP
PUSH
PUSH
RES
RES
RES
RET
RET
RET
RET
RET
RET
RET
RET
RET
RET!
RETN
RL

RL

AL
RLA
RLC
RLC
RLC
RLCA
RLD

(HL)
reg
{xy + disp)

{C)reg
{port), A

pr

Xy

pr

Xy

b.(HL)

b,reg

bixy + disp}

{xy + disp)

{HL)
reg
{xy + disp)

ORA
ORA

RNC
RNZ

M
reg

pr

RR
AR
RR
RRA
RRC
RRC
RRC
RRCA
RRD
RST
SBC
SBC
SBC
S8C
S8C
SCF
SET
SET
SET
SLA
SLA
SLA
SRA
SRA
SRA
SRL
SRL
SRL
SuB
sue
suB
SuUB
XOR
XOR
XOR
XOR

(HL)
reg
(xy + disp)

(HL)
reg
{xy + disp)

n
A data

A[HL)

A.reg

Alxy + disp)
HLmp

b.{HL}
b,reg

bxy + disp)
HL)

reg

{xy + disp)
(HL)

reg

{xy + disp)
{HL)

reg

{xy + disp)
data

{HL)

reg

{xy + disp)
data

(HL)

reg

{xy + disp)

RAR

RRC

RST n
S8l data
SBB M
SBB reg
STC

Sul data
suB M
sus reg
XRI data
XRA M
XRA rag

— indicates that there is no corresponding instruction

3-168

Table 3-9. Unused BO80A Operation Codes and Their ZBO Meanings

B80B0A Operation Code Z80 Use
08 EX AF.AF'
10 DJN7Z disp
18 JR disp
20 {RIM on 8085) JR NZ.disp
28 JR Z.disp
30 {SIM on 8085) JR NC,disp
3 JR C disp
CcB BIT, RES, RL, RLC, RR, RRC, SET, SLA, SRA, SRAL
D9 EXX
DD All instructions involving Register IX.
ED ADC HLrp LD At NEG
CPD LD AR OTDR
CPDR LD {addrirp OTIR
CPl LD LA OUT (Clreg
CPIR LD R.A ouTD
™M m LD rpladdr) QUTI
N rag.{C) LDD RETI
IND LDDR RETN
INDR LDI RLD
INI LDIR RRD
INIR SBC HLrp
FD All instructions involving Register IY,

3-169 .

